
Edition December 2007

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
A

ng
el

a_
ne

u\
E

D
T-

A
nw

ei
su

ng
en

_v
17

0\
us

\e
dt

17
an

w
.v

or

EDT V17.0A Unicode Mode
Statements

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@fujitsu-siemens.com

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Siemens Computers GmbH 2008.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

Alle hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@fujitsu-siemens.com
http://www.cognitas.de

U41709-J-Z125-1-76

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.iv
z

Contents

1 Preface . 17

1.1 Structure of the EDT documentation . 18

1.2 Target groups for the EDT manuals . 18

1.3 Structure of the EDT statements manual . 19

2 Modified and new functionality in EDT V17.0A 21

2.1 Introduction to the EDT operating modes . 21

2.2 Unicode mode . 22
2.2.1 Additional functions - overview . 22
2.2.2 Additional functions - explanations . 23
2.2.3 Functions that are no longer supported . 25

2.3 Compatibility mode . 26
2.3.1 @CODENAME statement . 26
2.3.2 @IF statement . 26
2.3.3 @MODE statement . 26
2.3.4 Messages . 26

3 Underlying EDT concepts . 27

3.1 Work files . 27
3.1.1 Properties of work files . 27
3.1.2 Current work file . 30
3.1.3 Empty work file . 31

3.2 Line numbers . 33
3.2.1 Current line number and current increment . 34
3.2.2 Symbolic line numbers . 35
3.2.3 Implicit increment assignment . 35

Contents

 U41709-J-Z125-1-76

3.2.4 Line number assignment . 36
3.2.4.1 Using the source line numbers . 36
3.2.4.2 Insertion at the current line number . 38
3.2.4.3 Insertion after implicit deletion . 39
3.2.4.4 Insertion at predefined line number . 40
3.2.4.5 Insertion between two lines . 41

3.3 Record marks . 45

3.4 Character sets . 47
3.4.1 Character sets in BS2000 . 47
3.4.2 Supported character sets . 49
3.4.3 Strings . 50
3.4.4 Conversion and substitute characters . 51
3.4.5 Substitute character representation in Unicode . 52
3.4.6 Communications character set . 53
3.4.7 Character sets in work files . 54
3.4.8 Reading in files . 55
3.4.9 Writing files . 57
3.4.10 Copying between work files . 57
3.4.11 Character set in a statement . 58
3.4.12 The character set EDF03DRV . 58
3.4.13 String variables . 59
3.4.14 S variables and job variables . 60
3.4.15 POSIX files . 60
3.4.16 Outputs to SYSOUT and SYSLST . 60

3.5 EDT variables . 61
3.5.1 Integer variables . 61
3.5.2 String variables . 62
3.5.3 Line number variables . 62
3.5.4 Job variables . 63
3.5.5 S variables . 63

3.6 EDT procedures . 64
3.6.1 Creating and executing EDT procedures . 65
3.6.2 @INPUT procedures . 68
3.6.3 Calling an EDT procedure in a BS2000 system procedure 71
3.6.4 EDT start procedure . 72
3.6.5 Unconditional and conditional branches . 72
3.6.6 External and internal loops . 74
3.6.7 Parameters . 76

Contents

U41709-J-Z125-1-76

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
A

ng
el

a_
ne

u\
E

D
T-

A
nw

ei
su

ng
en

_v
17

0\
us

\e
dt

17
an

w
.iv

z

3.7 Searching with @ON . 78
3.7.1 Case sensitivity . 79
3.7.2 Using wildcards in search terms . 80
3.7.3 Negative searches . 81
3.7.4 Delimiter characters . 81
3.7.5 Indirect specification of the search term . 83
3.7.6 Search range . 84
3.7.7 Other search parameters . 85
3.7.8 Recording a hit . 86

4 Using EDT . 87

4.1 Starting EDT . 87
4.1.1 The EDT start command . 88
4.1.2 Calling EDT as a main program . 90
4.1.3 Calling EDT as a subroutine . 90

4.2 Interrupting and terminating an EDT session . 91
4.2.1 Interrupting an EDT session . 91
4.2.2 Terminating an EDT session . 92
4.2.3 EDT command return code . 94

4.3 Monitoring the EDT session with monitoring job variables 96

4.4 Input and output . 97

4.5 Job switches . 98
4.5.1 Job switch 4 . 98
4.5.2 Job switch 5 . 98
4.5.3 Job switch 6 . 98
4.5.4 Job switch 7 . 99
4.5.5 Job switch 8 . 99

4.6 Access protection . 99
4.6.1 Constraints for privileged user IDs . 99
4.6.2 Uninterruptible procedures . 100

5 EDT work modes . 101

5.1 F mode . 101
5.1.1 The work window . 103
5.1.1.1 Statement code column . 105
5.1.1.2 Line number display . 105
5.1.1.3 Data window . 105

Contents

 U41709-J-Z125-1-76

5.1.1.4 Statement codes in F mode . 109
5.1.1.5 Statement in data window – splitting a record 112
5.1.1.6 Statement line . 113
5.1.1.7 Statement buffer . 114
5.1.1.8 Status display . 114
5.1.1.9 Processing sequence . 115
5.1.2 Modifying the work window . 116
5.1.2.1 Line number display . 116
5.1.2.2 Outputting long records . 117
5.1.2.3 Column counter . 118
5.1.2.4 Second work window . 119
5.1.2.5 Hexadecimal mode . 120
5.1.3 Function keys in F mode . 123
5.1.3.1 The F keys . 123
5.1.3.2 The K keys . 124
5.1.4 Statements in F mode . 125

5.2 L mode . 126
5.2.1 Input in L mode . 126
5.2.2 Entering records in character, hexadecimal or binary format 127
5.2.3 Function keys in L mode . 128
5.2.4 Statements in L mode . 129

6 File processing . 131

6.1 File types . 131
6.1.1 SAM files . 131
6.1.2 ISAM files . 132
6.1.3 POSIX files . 134
6.1.4 Library elements . 135

6.2 Basic information on reading and writing data 137

6.3 Reading and writing all supported file types 138
6.3.1 Reading . 138
6.3.2 Writing . 138
6.3.3 File link names . 139

6.4 Characteristics of the old file access statements 140
6.4.1 Predefining file names . 140
6.4.2 Partial reading and writing . 141
6.4.3 Version numbers . 141
6.4.4 File link names . 142

Contents

U41709-J-Z125-1-76

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
A

ng
el

a_
ne

u\
E

D
T-

A
nw

ei
su

ng
en

_v
17

0\
us

\e
dt

17
an

w
.iv

z

6.5 Reading and writing SAM files with the old statements 143
6.5.1 Reading . 143
6.5.2 Writing . 143

6.6 Reading and writing ISAM files with the old statements 144
6.6.1 Reading . 144
6.6.2 Writing . 145

6.7 Real processing of ISAM files . 146
6.7.1 Opening . 146
6.7.2 Processing . 147
6.7.3 Closing . 147

6.8 Reading and writing POSIX files with the old statements 148
6.8.1 Reading . 148
6.8.2 Writing . 148

6.9 File catalogs . 149

6.10 System files . 149
6.10.1 The SYSDTA system file . 149
6.10.2 The SYSOUT system file . 150
6.10.3 The SYSLST system file . 152
6.10.4 The system files SYSLST01 .. SYSLST99 . 154

7 Description of the statements . 155

7.1 Metasyntax . 155

7.2 Statement syntax . 157
7.2.1 Indirect operand specification . 161

7.3 Structure of the statement descriptions . 162

7.4 Operand syntax . 164
7.4.1 Characters and symbols . 166
7.4.2 Variables . 169
7.4.3 Numbers . 171
7.4.4 Strings . 172
7.4.5 Lines and line ranges . 177
7.4.6 Columns and column ranges . 180
7.4.7 File names and other system designations . 181
7.4.8 Other . 184

Contents

 U41709-J-Z125-1-76

8 Statement overview . 187

8.1 EDT parameter settings . 187

8.2 File processing . 190

8.3 Old statements for processing SAM and ISAM files 191

8.4 Old statements for processing POSIX files . 192

8.5 Moving or positioning the work file . 192

8.6 Treatment of line numbers . 193

8.7 Creating, inserting and modifying texts . 194

8.8 Copying and transferring lines . 196

8.9 Deleting work files, lines, texts and record marks 196

8.10 Comparing work files . 197

8.11 Switching the work mode or operating mode 197

8.12 Output lines and information . 198

8.13 Interrupting or terminating EDT . 199

8.14 Runtime control in EDT procedures . 200

8.15 Administering and executing EDT procedures 201

8.16 Calling a user program . 202

8.17 Working with job variables . 202

8.18 Working with S variables . 203

9 EDT statements (alphabetical) . 205

9.1 @< – Move data window to the left . 205

9.2 @<< – Move data window to the start of the record 207

9.3 @+ – Increase the current line number . 208

9.4 + – Move data window forwards . 209

9.5 ++ – Move to the last (marked) record in the work file 211

9.6 $0..$22 – Change work file . 212

9.7 @– – Decrease the current line number . 213

Contents

U41709-J-Z125-1-76

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
A

ng
el

a_
ne

u\
E

D
T-

A
nw

ei
su

ng
en

_v
17

0\
us

\e
dt

17
an

w
.iv

z

9.8 – – Move data window backwards . 214

9.9 – – – Move to the first (marked) record in the work file 216

9.10 @> – Move data window to the right . 217

9.11 @: – Declaring a statement symbol . 219

9.12 # – Output the last statement . 221

9.13 @AUTOSAVE – Automatic saving . 223

9.14 @BLOCK – Set block mode . 225

9.15 @CHECK (format 1) – Check lines . 226

9.16 @CHECK (format 2) – Check lines for convertibility 228

9.17 @CLOSE – Write back and close a file . 231

9.18 @CODENAME (format 1) – Define the character set for work files
and string variables . 234

9.19 @CODENAME (format 2) – Define the communications character set 236

9.20 @COLUMN – Insert text and delete blanks at end of line 237

9.21 @COMPARE (format 1) – Compare two work files 240

9.22 @COMPARE (format 2) – Compare two work files line by line 248

9.23 @CONTINUE – Empty statement . 253

9.24 @CONVERT – Convert uppercase or lowercase 255

9.25 @COPY (format 1) – Read in a file . 256

9.26 @COPY (Format 2) – Copy lines or string variables 260

9.27 @CREATE (format 1) – Check line . 265

9.28 @CREATE (format 2) – Assign string to string variable 268

9.29 @CREATE (format 3) – Read in string and create line 270

9.30 @CREATE (format 4) – Read in line and assign to string variable 272

9.31 @DELETE (format 1) – Copy lines and string variables 274

9.32 @DELETE (format 2) – Completely delete work files 277

9.33 @DELETE (format 3) – Delete files and library elements 278

9.34 @DELETE (format 4) – Delete record marks . 280

9.35 @DELIMIT – Declare text delimiter characters 281

9.36 @DIALOG – Call screen dialog . 282

Contents

 U41709-J-Z125-1-76

9.37 @DO (format 1) – Start EDT procedures from work files 285

9.38 @DO (format 2) – Activate or deactivate logging 295

9.39 @DROP – Delete work files . 297

9.40 @EDIT (format 1) – Switch to F mode . 299

9.41 @EDIT (format 2) – Set input from terminal . 300

9.42 @EDIT (format 3) – Set input from SYSDTA . 301

9.43 @EDIT (format 4) – Control full record display 303

9.44 @ELIM – Delete records in an ISAM file . 304

9.45 @END – Exit current work file or terminate the EDT session 307

9.46 @ERAJV – Delete job variables . 309

9.47 @EXEC – Start program . 310

9.48 @FILE – Preset file name . 312

9.49 @FSTAT – Output BS2000 catalog information 314

9.50 @GET – Read ISAM file . 317

9.51 @GETJV – Read value of job variable . 320

9.52 @GETLIST – Read elements of a list variable 322

9.53 @GETVAR – Read S variable . 324

9.54 @GOTO – Branch statement in procedures . 326

9.55 @HALT – Terminate EDT . 328

9.56 @HEX – Set hexadecimal mode . 330

9.57 @IF (format 1) – Query error switches . 331

9.58 @IF (format 2) – Compare strings, line numbers and numbers 333

9.59 @IF (format 3) – Query @ON hits or work file status 341

9.60 @IF (format 4) – Query job and user switches 344

9.61 @IF (format 5) – Query EDT parameter settings 346

9.62 @INDEX – Control line number display . 348

9.63 @INPUT (format 1) – Start @INPUT procedure 350

9.64 @INPUT (format 2) – Start @INPUT procedure from DMS file 353

9.65 @INPUT (format 3) – Define EDT input mode 357

Contents

U41709-J-Z125-1-76

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
A

ng
el

a_
ne

u\
E

D
T-

A
nw

ei
su

ng
en

_v
17

0\
us

\e
dt

17
an

w
.iv

z

9.66 @LIMITS – Output line numbers and number of lines 358

9.67 @LIST – Print work file ranges or string variables 359

9.68 @LOAD – Load program . 365

9.69 @LOG – Control logging . 367

9.70 @LOWER – Lowercase and uppercase on input 368

9.71 @MODE – Change operating mode . 370

9.72 @MOVE – Move lines or string variables . 371

9.73 @NOTE – Empty statement . 375

9.74 @ON (format 1) – Output lines or string variables containing the search term . 377

9.75 @ON (format 2) – Output the start column of a hit string 382

9.76 @ON (format 3) – Mark lines with search term 386

9.77 @ON (format 4) – Copy marked lines . 389

9.78 @ON (format 5) – Copy lines with search term 391

9.79 @ON (format 6) – Replace hit string . 394

9.80 @ON (format 7) – Replace or insert before or after the
hit string . 396

9.81 @ON (format 8) – Delete hit string . 400

9.82 @ON (format 9) – Delete before or after the hit string 402

9.83 @ON (format 10) – Delete lines or string variables which contain the
search term . 404

9.84 @OPEN (format 1) – Open and read a file . 407

9.85 @OPEN (format 2) – Real processing of an ISAM file 411

9.86 @P-KEYS – Define programmable keys . 414

9.87 @PAGE – Form feed . 416

9.88 @PAR – Define EDT parameter settings . 417

9.89 @PARAMS – Define procedure parameters . 430

9.90 @PREFIX – Insert string as prefix . 437

9.91 @PRINT – Print or output line ranges or the content of string variables 440

9.92 @PROC (format 1) – Switch work files . 444

9.93 @PROC (format 2) – Output information about work files 447

Contents

 U41709-J-Z125-1-76

9.94 @QUOTE – Redefine delimiter character for strings 450

9.95 @RANGE – Declare line range symbol . 451

9.96 @READ – Read a SAM file . 452

9.97 @RENUMBER – Renumber lines . 455

9.98 @RESET – Reset EDT and DMS error switches 457

9.99 @RETURN – Return from EDT procedures . 458

9.100 @RUN – Call user routine . 460

9.101 @SAVE – Write as ISAM file . 462

9.102 @SCALE – Output column counter . 465

9.103 @SDFTEST – Syntax check by SDF . 467

9.104 @SEARCH-OPTION – Set default value for searching with @ON 471

9.105 @SEPARATE – Perform line break . 473

9.106 @SEQUENCE (format 1) – Perform line numbering 475

9.107 @SEQUENCE (format 2) – Adopt line numbers 477

9.108 @SEQUENCE (format 3) – Check line numbers 479

9.109 @SET (format 1) – Supply values for integer variables 481

9.110 @SET (format 2) – Supply values for string variables 484

9.111 @SET (format 3) – Supply values for line number variables 486

9.112 @SET (format 4) – Store values of variables 488

9.113 @SET (format 5) – Date and time . 490

9.114 @SET (format 6) – Modify current increment and line number 492

9.115 @SETF – Change work file and set position . 494

9.116 @SETJV – Catalog job variable and assign value 497

9.117 @SETLIST – Extend list variable . 499

9.118 @SETSW – Set job and user switches . 501

9.119 @SETVAR – Declare S variable and assign value 503

9.120 @SHIH – Output statement buffer . 505

9.121 @SHOW (format 1) – Output directory . 507

9.122 @SHOW (format 2) – Output supported character sets 514

Contents

U41709-J-Z125-1-76

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
A

ng
el

a_
ne

u\
E

D
T-

A
nw

ei
su

ng
en

_v
17

0\
us

\e
dt

17
an

w
.iv

z

9.123 @SORT – Sort line ranges . 516

9.124 @SPLIT – Display 2 work windows . 518

9.125 @STAJV – Output job variable information . 520

9.126 @STATUS – Display current settings and contents of variables 523

9.127 @SUFFIX – Append strings . 527

9.128 @SYMBOLS – Define symbols . 529

9.129 @SYNTAX – Set test mode . 531

9.130 @SYSTEM – Enter system commands . 533

9.131 @TABS (format 1) – Define and output hardware tabs 536

9.132 @TABS (format 2) – Define and output software tabs 538

9.133 @TABS (format 3) – Expand software tabs in work files 542

9.134 @TMODE – Output task attributes . 543

9.135 @UNLOAD – Unload a module . 544

9.136 @UNSAVE – Delete SAM or ISAM file . 546

9.137 @USE – Define external statement routines . 547

9.138 @VDT – Control screen format . 551

9.139 @VTCSET – Control screen output . 552

9.140 @WRITE (format 1) – Write file . 553

9.141 @WRITE (format 2) – Write SAM file . 558

9.142 @XCOPY – Read POSIX file . 561

9.143 @XOPEN – Open and read a POSIX file . 563

9.144 @XWRITE – Save content of current work file in a POSIX file 565

9.145 0..22 – Switch work file . 567

Contents

 U41709-J-Z125-1-76

10 Statement codes in F mode (alphabetical) . 569

10.1 + – Move forward in the work window . 569

10.2 + – Move forward in work window by structure depth 570

10.3 * – Delete copy buffer . 571

10.4 – – Move backward in work window . 572

10.5 – – Move backward in work window by structure depth 572

10.6 A – Copy or move after a line . 574

10.7 B – Copy or move before a line . 576

10.8 C – Collect lines for copying . 577

10.9 D – Delete records . 579

10.10 D – Delete record mark . 579

10.11 E – Insert characters . 580

10.12 H – Activate hexadecimal mode for a record 582

10.13 I – Activate permanent insert function . 583

10.14 J – Join two records . 586

10.15 K – Copy a line to the statement line . 587

10.16 L – Convert lines into lowercase . 589

10.17 M – Collect lines for move . 590

10.18 O – Copy or move on a line range . 592

10.19 R – Collect lines for multiple copying . 597

10.20 S – Position the work window (horizontally and vertically) 599

10.21 T – Syntax test by SDF . 601

10.22 U – Convert lines into uppercase . 606

10.23 X – Modify lines . 607

10.24 1..9 – Insert lines . 608

10.25 1..9 – Set record mark . 609

Contents

U41709-J-Z125-1-76

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
A

ng
el

a_
ne

u\
E

D
T-

A
nw

ei
su

ng
en

_v
17

0\
us

\e
dt

17
an

w
.iv

z

11 Compatibility mode . 611

11.1 @CODENAME – Define character set . 611

11.2 @IF (format 5) – Query EDT parameter settings 613

11.3 @MODE – Change operating mode . 614

11.4 Activating compatibility and Unicode mode . 615

11.5 Subroutine interfaces and operating modes . 616

11.6 Character sets . 618
11.6.1 Supported character sets . 618
11.6.2 Strings . 619
11.6.3 Communications character set . 619
11.6.4 Character sets in work files . 619
11.6.5 Reading in files . 620
11.6.6 Writing files . 620
11.6.7 Copying between work files . 620
11.6.8 Character set in statements . 621
11.6.9 String variables . 621
11.6.10 S variables and job variables . 622
11.6.11 POSIX files . 622

11.7 Starting EDT . 622

12 Migration aids . 623

12.1 Compatibility mode . 623

12.2 Unicode mode . 623
12.2.1 Functions that are no longer supported . 624
12.2.2 Modified statement actions . 625
12.2.2.1 I/O statements . 625
12.2.2.2 Work file statements . 626
12.2.2.3 ON statements . 626
12.2.2.4 Tabulators . 627
12.2.2.5 Miscellaneous . 627
12.2.3 Changes in the screen display and on input/output 629
12.2.4 Changes in the general or work file-specific parameter settings 630
12.2.4.1 Character sets . 630
12.2.4.2 Line numbers . 631
12.2.4.3 Work file-specific . 631
12.2.4.4 Miscellaneous . 631
12.2.5 Changes to the subroutine instance . 632

Contents

 U41709-J-Z125-1-76

13 Messages . 635

13.1 Message weight (severity) . 635

13.2 Error switch . 636

13.3 Messages which require a response . 636

13.4 Message output . 637

13.5 Message texts . 638

14 Logistics . 721

14.1 Software requirements . 721

14.2 Scope of delivery . 722

14.3 Product structure . 723

14.4 Installation . 724
14.4.1 Public installation . 724
14.4.2 Private installation . 726

Glossary . 729

Related publications . 735

Index . 737

U41709-J-Z125-1-76 17

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
01

1 Preface
EDT is the BS2000 file editor, used for the user-friendly creation and editing of BS2000 files
in SAM and ISAM formats, as well as text-type library elements and POSIX files.

The repetitive operations which occur during editing such as deleting, modifying, inserting
and copying records and characters, searching for records containing certain character
strings, outputting records etc. are performed using powerful yet easy-to-learn statements.

EDT V17.0A can be used in an extended Unicode mode and a V16.6-compatible compati-
bility mode.

● In Unicode mode, EDT V17.0A can edit character sets coded in Unicode and other
character sets. Users benefit from easy-to-handle support capabilities such as, for
example, the ability to edit differently coded files in various EDT work files simulta-
neously. In addition, there is no longer any restriction to line length (previously 256
characters). When reading from and writing to files, EDT is able to process all the record
lengths provided by DMS and LMS. In the case of POSIX files, it is able to process files
with a maximum length of 32768 characters.

The fact that a Unicode representation is used internally in EDT means that the compat-
ibility of all the various interfaces at which users previously had direct access to the
internal EDT data cannot be maintained. This applies to the old L mode subroutine
interface, the former @RUN interface and the Locate mode of the IEDTGLE interface.
These interfaces can therefore no longer be used in Unicode mode.

● The compatibility mode provides the full functionality of EDT V16.6B with only slight
extensions.

Even though EDT has been designed to be an interactive program, it is also able to process
files and library elements in batch mode.

File editing operations which have to be performed frequently in identical or similar forms
can be programmed using EDT procedures.

EDT can call other programs as subroutines and can itself be called as a subroutine by a
user program.

Structure of the EDT documentation Preface

18 U41709-J-Z125-1-76

1.1 Structure of the EDT documentation

The manuals

● EDT V17.0A Unicode Mode Statements

● EDT V17.0A Unicode Mode Subroutine Interface

describe EDT's Unicode mode. The manuals

● EDT V16.6B Statements

● EDT V16.6A Subroutine Interface

contain a description of the compatibility mode.

In addition, the EDT V17.0A Statements manual contains a section describing the exten-
sions in the compatibility mode compared to EDT V16.6B.

The manuals dealing with the EDT statements describe the fundamental concepts of EDT
in each of these modes and can be used as a reference for the many EDT statements.

The manuals dealing with the subroutine interface describe how the user can write
programs which can be called by EDT or which themselves call EDT as a subroutine can
be programmed. These manuals can only be used properly in combination with the
manuals describing the EDT statements.

1.2 Target groups for the EDT manuals

While the manual dealing with the EDT statements is intended for EDT novices and users,
the manual dealing with the EDT subroutine interfaces is intended for experienced EDT
users and programmers who want to employ EDT in their own programs.

This manual, which deals with the EDT statements, is intended for users who are not yet
familiar with EDT through to experienced EDT users for whom chapter 9 “EDT statements”
which contains a description of all the EDT statements will constitute a valuable reference
document. The section on “EDT procedures” will be of great help to EDT users who want
to write their own EDT procedures or modify existing EDT procedures.

In order to call EDT, you should be familiar with the most important BS2000 commands.

Preface Structure of the EDT statements manual

U41709-J-Z125-1-76 19

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
01

1.3 Structure of the EDT statements manual

This manual first provides an introduction to EDT, followed by a description of files and
library elements as well as the use and creation of EDT procedures. It also provides an
overview of all the EDT statements together with a detailed description and a large number
of examples.

The extensions to the compatibility mode and the way it interacts with Unicode mode are
presented in a separate chapter.

This manual covers the following individual topics:

– Modified and new functionality in EDT V17.0A

major changes and important new features in EDT V17.0A
Introduction to the new functionality.

– Underlying EDT concepts

The fundamental concepts and mechanisms on which EDT is based.
This includes the handling of work files, operations involving lines, character sets and
EDT variables as well as the use of EDT procedures.

– Running EDT

The EDT start command. Starting, interrupting and terminating an EDT session.
Monitoring the EDT session, input/output, job switches and access protection.

– EDT work modes

File processing in F mode: screen-oriented operation of EDT, description of the
statement codes and statements which can only be used in F mode.
File processing in L mode: line-oriented operation.

– File processing

Processing of all the file types supported by EDT: ISAM, SAM, POSIX files and libraries.

– EDT statements

A thematically organized overview of the statements. Presentation of the metasyntax,
statement syntax and operand syntax.
EDT statements in alphabetical order accompanied by numerous examples.

In many statements, the subdivision and designation of the formats is now clearer than
the presentation in the EDT V16.6B manual. However, these changes are simply
modifications to the presentation which do not reflect any technical differences.

Structure of the EDT statements manual Preface

20 U41709-J-Z125-1-76

– Compatibility mode

Description of the extensions to the compatibility mode and the way it interacts with
Unicode mode. New statements in compatibility mode.

– EDT messages

List of all the EDT messages together with their meanings and the actions to be taken
in response to them.

– Logistics

Requirements and procedures for the installation and start-up of EDT V17.0A.

U41709-J-Z125-1-76 21

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
02

2 Modified and new functionality in EDT V17.0A
EDT version V17.0A provides a range of important new functions.
For example, it supports the processing of files coded in Unicode and the restriction of
record lengths to 256 characters has been eliminated.
A brief introduction to the modified and new functionality is provided below.

2.1 Introduction to the EDT operating modes

The most important new feature of EDT V17.0A compared to the preceding versions is the
capability to process files coded in Unicode. This support was introduced in order to achieve
the following two aims:

● Users who want to process files coded in Unicode should be able work in an easy-to-
use environment. This includes, for example, the ability to edit differently coded files in
various EDT work files simultaneously as well as the elimination of the line length
restriction (previously 256 characters).

● Users who want to continue to edit files coded in 7-bit or 8-bit character sets as before
should be able to make use of functions and interfaces compatible with EDT V16.6B.
This relates, in particular, to the execution of EDT procedures and operations at the
subroutine interfaces.

The increase in the permitted record length together with the fact that a Unicode represen-
tation is used internally in the work files means that the compatibility of all the various inter-
faces at which users previously had direct access to the internal EDT data cannot be
maintained. This applies to the old L mode subroutine interface, the former @RUN interface
and the Locate mode of the IEDTGLE interface. It is therefore no longer possible to use
these interfaces if you wish to make use of the new functionality.

Nevertheless, programs which simply use the EDT subroutine interfaces to permit their
users to edit files without having to exit the current program should also be able to operate
with Unicode files with the smallest possible number of changes.

Unicode mode Modified and new functionality in EDT V17.0A

22 U41709-J-Z125-1-76

This is possible because it is now possible to run EDT V17.0A in two modes:

● In Unicode mode which has been extended for the processing of Unicode files but in
which there are certain incompatibilities, in particular at the level of the subroutine
interface.

● In compatibility mode which offers the full functionality of EDT V16.6B but which does
not support the processing of Unicode files, increased record lengths or locally
configured character sets.

For more information on the operating modes and the way they interact see chapter 11.

2.2 Unicode mode

2.2.1 Additional functions - overview

In Unicode mode, the following additional functions are available:

● Processing of files with different character sets in the EDT work files, and in particular
files with Unicode coding (UTF16, UTFE or UTF8) or ISO coding (the special treatment
of POSIX files coded in ISO is eliminated in the new approach). Interpretation of a
substitute representation of Unicode characters.

● Processing of files with record lengths of up to 32768 bytes (upper limit of DMS).

● Consistent handling up empty records.

● All 23 work files are also available in F mode.

● Consistent extension to many statements.

Modified and new functionality in EDT V17.0A Unicode mode

U41709-J-Z125-1-76 23

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
02

2.2.2 Additional functions - explanations

Local character sets

In EDT V17.0A Unicode mode, it is possible to define a different character set for each work
file. This includes the 7-bit and 8-bit character sets which were supported in the past as well
as the Unicode character sets UTF8, UTF16 and UTFE, the ISO character sets supported by
XHCS and the user-defined character sets declared in XHCS.

In statements both in literals and in data, it is possible to specify Unicode characters by
means of a substitute representation by defining the hexadecimal value of the corre-
sponding UTF16 code.

The character sets for the individual work files are set either implicitly by reading a corre-
spondingly coded file or explicitly via the @CODENAME statement.

A detailed description of working with local character sets, and in particular of data transfer
between work files or between EDT variables and work files can be found in the section
“Character sets” on page 47.

Long records

The restriction of the record length to 256 characters is eliminated in EDT V17.0A Unicode
mode. When reading from and writing to DMS files, EDT is able to process records of a
maximum length of 32768 bytes (depending on file format). This limit is imposed by the
DMS and refers to the byte count. In the case of library elements, the limit imposed by LMS
is 32763 bytes. Because when Unicode character sets are used, characters may be coded
by multiple bytes, the permitted number of characters per record may be lower. Internally,
EDT works with long buffers with the result that this restriction only has an impact when the
records are converted into the work file character set for write operations. EDT provides a
statement (@CHECK, Format 2) which can be used to check whether records need to be
truncated on write operations.

In the case of POSIX files, the line length is restricted only by the maximum EDT line length
of 32768 characters (not bytes).

The elimination of the record length restriction applies equally to records in work files, string
variables and statement lengths and has an effect on the statement syntax (e.g. in the case
of column specifications), the layout of the status display, the subdivision of the screen on
@EDIT LONG and on the subroutine interface.

Unicode mode Modified and new functionality in EDT V17.0A

24 U41709-J-Z125-1-76

Consistent handling of empty lines

The files that are to be processed by EDT may contain records of length 0.
In the case of POSIX or SAM files, the records genuinely have length 0. In the case of ISAM
files with standard attributes, the records may have the length 8 or 16 (in the case of files
coded in UTF16).

To permit the depiction of records of length 0 in the data window, EDT in Unicode mode
indicates the end of the record using a terminal-specific logical line end character [LZE].
The terminal fills the remainder of the screen to the right of [LZE] with protected NULL
characters (X'00'). If the end of the record is located outside of the data window then [LZE]
is not displayed. The screen line then ends with the last character of the record that is still
visible or consists only of protected NUL characters.
A record of zero length is therefore depicted in the data window by a screen line which
consists only of the character [LZE] in column 1 and protected NULL characters (empty
line). If [LZE] is entered in column 1 of a line then a record of length 0 is created for this line
in the work file.

Empty lines should be distinguished from new lines which EDT provides in F mode after the
last record in the file or during the processing of the statement codes 1..9 or I. These lines
do not (yet) correspond to any record in the work file and consist only of NULL characters
(X'00') without [LZE] (and which can be overwritten).

The [LZE] character can usually be omitted during input.
It only has to be entered when the record is intended to end with NULL characters. When
input is performed in F mode, EDT ignores all NULL characters at the end of the entered
line, i.e. all the NULL characters up to the first character which is not NULL (this can be an
[LZE] or another character) are truncated from the right. The [LZE] itself is ignored on input.
Since new lines only consist of NULL characters they are ignored overall on input and are
not inserted in the work file.
In contrast, entering an [LZE] in column n of a new line would cause a record with n-1
blanks to be inserted by default in the work file after data transfer (or alternatively a record
with n-1 NULL characters depending on the definition made using @SYMBOLS FILLER).
In particular, a record of length 0 would be inserted for n=1.

The terminal does not permit any entries to the right of the [LZE] character in a line. When
adding entries to a line, it is therefore necessary to activate the terminal insertion mode or
to overwrite the [LZE] character. This incompatibility with EDT V16.6B is tolerated since it
permits the consistent handling of blank lines in Unicode mode.

For a more precise description of program behavior on the entry of lines which contain NULL
characters or fill characters, see section “F mode” on page 101.

Modified and new functionality in EDT V17.0A Unicode mode

U41709-J-Z125-1-76 25

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
02

Availability of all work files

In F mode, it is now possible to switch to one of the work files 10 to 22 by entering the corre-
sponding number in the statement line. In the past, this was only possible in L mode with
the help of the @PROC statement (see also section “F mode” on page 101).

Uniformity of the statement interfaces

In EDT V17.0A, it is now possible to access files of all supported file types using a uniform
set of statements (@OPEN, @CLOSE, @COPY, @WRITE) (see also “File processing” on
page 131 and the descriptions of the individual statements).

To make this possible, the statements have been extended by the corresponding operands.
Although it is still possible to use the old statements, users are recommended to employ
only the new statements.

For reasons of completeness and consistency, new operands have also been introduced
for other statements. For the related details, see the statement descriptions.

2.2.3 Functions that are no longer supported

In Unicode mode, the following EDT V16.6B functions are no longer available:

● Output to SDF list variables on @LOG

● V15-compatible L mode syntax control

● Support for the old L mode subroutine interface

● Support for the IEDTGLE interface's Locate mode.

● Support for the previous @RUN interface. A new @RUN interface is now available.

● Support for terminals with Arabic or Farsi character sets.

● Support for 3270 terminals (IBM) and printer terminals.

● The @CODE statement whose use in combination with XHCS was already indicated
as pointless in the EDT V16 manual.

● The @UPDATE and @ZERO-RECORDS statements.

Compatibility mode Modified and new functionality in EDT V17.0A

26 U41709-J-Z125-1-76

2.3 Compatibility mode

The compatibility mode provides the full functionality of EDT V16.6B including the old L
mode subroutine interface. The extended functions provided in Unicode mode are not
available in compatibility mode.

The EDT V17.0A compatibility mode has simply been extended by a small number of
required functions.

For a detailed description of compatibility mode see chapter 11.

2.3.1 @CODENAME statement

The @CODENAME statement has also been extended in compatibility mode. This means
that it is possible to perform targeted modifications to the character set for migration
purposes even in non-empty work files.

2.3.2 @IF statement

The EDT V17.0A compatibility mode has been extended by format 5 of the @IF statement.
This makes it possible to query the current operating mode and react if necessary.

2.3.3 @MODE statement

The new @MODE statement is also present in compatibility mode and makes it possible to
switch to Unicode mode.

2.3.4 Messages

The message EDT4983 may occur in EDT V17.0A compatibility mode.

U41709-J-Z125-1-76 27

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3 Underlying EDT concepts
This section describes the underlying concepts and high-level mechanisms which are used
in EDT.

3.1 Work files

Users have 23 work files in virtual memory available to them for file processing purposes.
These are work files 0 to 22. The work files are able to accommodate records of a length
up to 32768 characters. This means that it is possible to process DMS files and library
elements with the maximum permitted record length. The maximum number of records
permitted in a work file is 99999999.
In work files, it is possible to enter new data, read in existing files for processing, generate
and edit data using EDT statements or copy data from other work files.

In F mode, work file 9 is used by a number of EDT statements in order to store results
(@COMPARE, @FSTAT, @SHIH, @SHOW, @STAJV, @STATUS).
This may cause existing content to be deleted without warning.

However, if a file is open in work file 9 then a message EDT5189 is output and the related
statement is not executed. Work file 9 should therefore only be used as a temporary help
file.

3.1.1 Properties of work files

Each work file has certain properties which can be modified using EDT statements and
which have an effect on the operation of EDT statements or the way work files are
displayed. The table below collates the various work file properties.

Work files Underlying EDT concepts

28 U41709-J-Z125-1-76

Properties Initial
value

Value can be changed by

General
Current character set for the
work file

*NONE @CODENAME
implicitly via data input (file read operations,
screen input, statements)

Work file occupied (only for
work files 1 to 22)

not used @PROC, @DELETE, @DROP, used in F
mode

Work file empty Yes Read file, screen input, miscellaneous state-
ments

Work file modified No Modify work file, @DELETE
Save file present No @AUTOSAVE and modify work file,

@DELETE
Line numbers
Current line number
(symbolic line number *)

1. @SET (Format 6), @+, @-, implicitly via
data input (read file, screen input, statements)

Current increment value 1. @SET (Format 6), @PAR INCREMENT
Current renumbering value Off @PAR RENUMBER
Lowest assigned line number
(display by means of
@LIMITS)

0.0000 Implicitly due to file read operation, screen
operation, miscellaneous statements

Symbolic line number % = * Implicitly due to file read operation, screen
operation, miscellaneous statements

Highest assigned line number
(display by means of
@LIMITS)

0.0000 Implicitly due to file read operation, screen
operation, miscellaneous statements

Symbolic line number $ = * Implicitly due to file read operation, screen
operation, miscellaneous statements

Symbolic line number ? 0.0000 @ON
Memory area @SET (Format
6)

Empty @SET (Format 6)

Underlying EDT concepts Work files

U41709-J-Z125-1-76 29

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

File processing
Link to file name (local @FILE
entry)

No link @FILE, @READ, @GET, @DELETE

Link to open file No link @OPEN, @CLOSE
Default library name *NONE @PAR LIBRARY
Default element type S @PAR ELEMENT-TYPE
Default character set for a
POSIX file

EDF041 @PAR CODE

Input
Differentiation between
uppercase and lowercase

Off @PAR LOWER

Maximum record length for
entry in F mode

32768 @PAR LIMIT

Escape character for Unicode
substitute representation

*NONE @PAR ESCAPE-CHARACTER

Unicode substitute character
including for data

Off @PAR DATA-REPLACEMENT

Representation of work file
Full display of records in F
mode

Off @PAR EDIT-LONG

Hexadecimal mode Off @PAR HEX
Data window and statement
code column are both
overwritable simultaneously

Off @PAR EDIT-FULL

Ruler in data window Off @PAR SCALE
Information line in data
window

Off @PAR INFORMATION

Data window-specific representation
First line displayed in
data window 1

0.0000 @SETF, +, -, ++, --, statement codes
+, -, B, I, S, 1..9 in data window 1

First column displayed in data
window 1

1 @SETF, >, <, << in data window 1

Line number display in data
window 1

Off @PAR INDEX in data window 1

Properties Initial
value

Value can be changed by

Work files Underlying EDT concepts

30 U41709-J-Z125-1-76

The work file properties defined with the @PAR statement can be reset to their initial values
using @PAR $0..$22 without the need for any further operands.

3.1.2 Current work file

At any time there is precisely one work file which is referred to as the current work file. Data
is entered and EDT statements are executed in the current work file if no other work file is
explicitly specified in the statement).

In F mode, a section of the current work file is usually displayed on the screen. The number
of the current work file is displayed in the status bar. It is possible to move the displayed
section of the work file (see the statements @SETF and +, -, ++, --, >, <, <<) or change the
current work file (see statements @SETF, $0..$22 and 0..22).

First line displayed in
data window 2

0.0000 @SETF, +, -, ++, --, statement codes
+, -, B, I, S, 1..9 in data window 2

First column displayed in data
window 2

1 @SETF, >, <, << in data window 2

Line number display in data
window 2

On @PAR INDEX in data window 2

Other
Program name for
SDF syntax check

*NONE @PAR SDF-PROGRAM

Type of program name for
SDF syntax check

INTERNAL @PAR SDF-NAME-TYPE

Character for data record
separation

*NONE @PAR SEPARATOR

Character for structure sheets @ @PAR STRUCTURE
Write protection at record
level

Off @PAR PROTECTION

Indicator for hits on last @ON
for @IF (Format 3)

Off @ON

Column for hits on last @ON
for @IF (Format 3)

0 @ON

Properties Initial
value

Value can be changed by

Underlying EDT concepts Work files

U41709-J-Z125-1-76 31

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

It is also possible to divide the work window and display sections from two work files simul-
taneously (see the section on the F mode). In this case, the current work file switches
between the two displayed work files. When a statement or statement code is processed
(see section “Processing sequence” on page 115) the current work file is always considered
to be the work file containing the statement line or statement code column from which the
current statement or statement code comes. When input in the data window is processed,
the current work file is considered to be the work file in whose data window the input is
made.

In L mode, the number of the current work file can be displayed by means of the @PROC
statement. The current work files are switched using the statements @SETF, @PROC and
@END. However, an active work file (which contains an active @DO
procedure) can never be made into the current work file.

When EDT is started, work file 0 is the current work file.

3.1.3 Empty work file

An empty work file is a work file which contains no records. This is generated when

– EDT is started or

– when the work file is completely deleted with @DELETE (Format 2), @DROP or other
statements which implicitly execute a @DELETE (Format 2) or

– in F mode, when all the lines are deleted with the statement code D or M or when all the
lines are deleted with @DELETE (Format 1), @MOVE or @ON (Format 8 or 10).

In dialog operation, an empty work file can be recognized by the fact that it contains no
records. In EDT procedures, it is possible to use the @IF statement (Format 3) to check
whether a work file is empty.

It is possible to write an empty work file. In such cases, the character set configured for the
work file may also be configured for the file depending on the operands set for the relevant
statement.

The properties of a work file when EDT is started are indicated in the table in the preceding
section. All the work file properties defined with the @PAR statement, with the exception of
those explicitly listed below, are retained following a delete operation.

The table below collates the additional properties of a work file following deletion.

Work files Underlying EDT concepts

32 U41709-J-Z125-1-76

Properties Values after deletion
with @DELETE (Format
2) or @DROP

Values after the deletion
of all the present
lines

General
Current character set for the
work file

*NONE Not changed

Work file occupied (only for work
files 1 to 22)

None (apart from current) Yes

Work file empty Yes Yes
Work file modified No Yes
Save file present Save file deleted Save file deleted
Line numbers
Current line number (symbolic
line number *)

1. 0 + Current increment
value

Current increment value 1. Not changed
Lowest assigned line number
(display by means of @LIMITS)

0.0000 0.0000

Symbolic line number % 1. ==*

Highest assigned line number
(display by means of @LIMITS)

0.0000 0.0000

Symbolic line number $ 1. ==*

Symbolic line number ? 0.0000 Not changed
Memory area
(Format 6)

Empty Not changed

File processing
Link to file name No link Not changed
Link to open file No link (implicit @CLOSE

executed)
Not changed (can be
revoked with @CLOSE)

Input
Unicode substitute character
including for data

Off Not changed

Underlying EDT concepts Line numbers

U41709-J-Z125-1-76 33

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.2 Line numbers

Every line in a work file has an 8-digit line number (range of values 0000.0001 to
9999.9999). However, there does not have to be a line for every line number.
The line numbers permit the unique identification of the lines in a work file. In addition, the
numerical values of the line numbers define a sequence for all the lines in a work file (if a
line has a lower number than another then it must precede the other line).
This means that it is possible to specify line ranges by defining the lowest and highest line
number in the range.
In many EDT statements which process lines in whatsoever form, line numbers are used in
order to define the lines or line ranges that are to be processed by the statement.

Data window-specific representation
First line displayed in
data window 1

0.0000 0.0000

First column displayed in
data window 1

1 Not changed

First line displayed in
data window 2

0.0000 0.0000

First column displayed in
data window 2

1 Not changed

Other
Indicator for hits on last @ON for
@IF (Format 3)

Off Not changed

Column for hits on last @ON for
@IF (Format 3)

0 Not changed

Properties Values after deletion
with @DELETE (Format
2) or @DROP

Values after the deletion
of all the present
lines

Line numbers Underlying EDT concepts

34 U41709-J-Z125-1-76

3.2.1 Current line number and current increment

A current line number and current increment are assigned to each work file. In L mode, data
is entered in the line with the current line number.
The new, current line number is then determined on the basis of the previous current line
number plus the current increment value. If WRTRD is used to perform a read operation in L
mode then the current line number is used as a prompt for data entry. A line with the current
line number may exist but this is not obligatory.

In some EDT statements, the location in the work file at which the lines are to be inserted
can be defined by means of a temporary current line number and a temporary current
increment which are specified using the operands of the corresponding EDT statement and
which are valid only in this single statement or, otherwise, assume the role of the current
line number and current increment in this EDT statement. The current line number can also
be changed by running this type of EDT statement.

When EDT is started or after a work file has been completely deleted
(either explicitly or implicitly), the current line number is 1.0000 and the current increment
is 1.0000. The current line number and the current increment can be redefined using the
@SET statement (Format 6) or the current increment can be set separately by means of
@PAR INCREMENT.

The statements @+ and @- are used to redefine the current line number by adding or
subtracting the current increment to or from the previous current line number. If the @EDIT
statement has first been issued with the SEQUENTIAL operand then the current line number
is only formed in this way if there are no lines between the previous current line number and
the new current line number. If this is not the case, the first intervening line number
becomes the current line number. In all cases, the current increment remains unchanged.

The @RENUMBER statement modifies both the current line number and the current
increment. The new current line number is the line number of the last line in the work file
after renumbering plus new current increment defined by means of the @RENUMBER
statement. If only a line number is specified in the @RENUMBER statement then the new
current increment is implicitly defined in the same way on the basis of this line number as,
for example, in the @SET statement, format 6 (see section “Implicit increment assignment”
on page 35).

The current line number and the current increment are also modified by all statements
which completely delete the work file either explicitly or implicitly. After the explicit or implicit
deletion to the complete work file, the current increment is 1.0000 and the current line
number is 1.0000. However, if the entire work file is implicitly deleted, the current line
number is then usually modified again by the application responsible for deletion.

If the @SET statement (format 6) is used to modify the current line number and the current
increment then the pair of values consisting of the previous current line number and the
previous current increment is saved in a memory area which may contain a maximum of
three such pairs of values (see the description of the @SET statement, format 6).

Underlying EDT concepts Line numbers

U41709-J-Z125-1-76 35

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

If the @SET statement (format 6) is specified without parameters then the last pair of values
saved in this memory area becomes the current line number and current increment again.
All the statements which explicitly or implicitly delete the work file also completely delete
this memory area.

3.2.2 Symbolic line numbers

Alongside the line number variables (#L00..#L20) which can be assigned any line
numbers, there are also four special characters (*, %, $, ?) which represent symbolic
line numbers.
The current line number can be addressed via the symbolic line number *, the lowest line
number in a work file by the symbolic line number % and the highest line number in a work
file by the symbolic line number $.

When EDT is started, these three symbolic line numbers have the value 1.0000. The
symbolic line number ? contains the first hit line returned by a preceding @ON statement.
When EDT is started, it has the value 0.0000 and is only modified by @ON statements
which return a hit. The four symbolic line numbers *, %, $ and ? are work file-specific.
In addition, the @DO statement (format 1) makes it possible to define a special character
as a loop character in a @DO procedure. This loop symbol is assigned a sequence of
values which are defined by means of a start value, an end value and an increment (which
must also be specified in the @DO statement).
In the procedure, this special character can then be used like a symbolic line number repre-
senting the current value of the loop symbol in EDT statements. For the special characters
that can be used as the loop symbol, see the description of the @DO statement (format 1).

3.2.3 Implicit increment assignment

If, in the case of statements for which both a line number and an increment can be specified
(e.g. @SET, format 6), only a line number is specified then the increment is implicitly
defined by the specified line number (the line number and increment may be either the
current line number and current increment or may take the form of specifications which
apply only to the statement in question).
If the expression which defines the line number contains only line number variables
(#L0..#L20) or symbolic line numbers (%,*,$,?) or integer variables (#I0..#I20) or
relative line number specifications (nL) or a combination of these then the new current
increment is 0.0001.
If a numerical line number specification forms part of a statement then the number of
decimal places in this numerical line number specification (maximum 4) determines the
current increment. If no decimal place is present then the current increment is 1, if one
decimal place is present then the current increment is 0.1 etc.
If four decimal places are present, the current increment is 0.0001.

Line numbers Underlying EDT concepts

36 U41709-J-Z125-1-76

3.2.4 Line number assignment

Both the inclusion of new lines in a work file by means of EDT statements (e.g. by reading
a file or copying lines etc.) and the deletion of lines if the previous last line in the work file
is one of the deleted lines usually result in a modification to the current line number (there
are a few exceptions where the current line number remains unchanged). The new current
line number is usually determined from the line number of the last line in the work file plus
the current increment. However, in some cases, the current line number is the line number
of the last line inserted by the EDT statement plus the current increment.

The numbering of lines which are newly inserted in a work file is performed using one of the
five procedures listed below.

3.2.4.1 Using the source line numbers

The line numbers in the source are used. In the case of a copy operation, these are the lines
to be copied from another work file.
When data is read from a file then, in the case of ISAM files, the line numbers are formed
from the ISAM key (unless specified to the contrary). In the case of SAM files with the KEY
operand specified, the first eight characters of each record are interpreted as the line
number.
Any lines with the same line numbers present in the target file are overwritten. The new
current line number is formed from the line number of the last line plus the current increment
if the line number of the last line has changed. Otherwise it remains unchanged.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other procedures may be used in the event of a different
format or different operands).

Underlying EDT concepts Line numbers

U41709-J-Z125-1-76 37

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

Statement Comments on operands General comments
@COPY
Format 1

Read in ISAM files with operand
specification
KEY=LINENUMBER

@COPY
Format 2

No target specification

@GET With operand specification
NORESEQ

@MOVE No target specification
@ON
Format 4 + 5

With operand specification KEEP If the OLD operand is not specified
then the target work file is deleted
before insertion.

@OPEN
Format 1

Open ISAM files with
operand specification
KEY=LINENUMBER

The work file must be empty before
the statement is executed.

@OPEN
Format 2

Open a copy of SAM
files with specification of KEY
operand and open a copy of ISAM
files

The work file must be empty before
the statement is executed. If a file is
already opened with the @OPEN
statement (format 2) and a new
@OPEN statement (format 2) is
issued then the second @OPEN
statement is implicitly preceded by a
@CLOSE statement, i.e. the work
file is implicitly deleted.

@READ With specification of the KEY
operand

Line numbers Underlying EDT concepts

38 U41709-J-Z125-1-76

3.2.4.2 Insertion at the current line number

Lines are inserted starting at the current line number. The line numbers of the other lines
that are to be inserted are determined by adding the current increment to the line number
of each last inserted line. Any lines with the same line numbers present in the target file are
overwritten. The new, current line number is then the line number of the last newly inserted
line plus the current increment.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other procedures may be used in the event of a different
format or different operands).

Statement Comments on operands General comments
L mode
data entry

This not only relates to input at the L
mode prompt but also to
data inputs in EDT procedures and
via the text operand of some L
mode statements.

@GET No operand specification
NORESEQ

@GETLIST
@ON
Format 4 + 5

No KEEP operation specified but OLD
operand specified

@OPEN
Format 2

Open a copy of SAM
files without specifying the KEY
operand

The work file must be empty before
the statement is executed. This is
the case after EDT is started or after
an explicit deletion. In both cases,
the current line number and the
current increment are both 1.0000.
However, it is possible to set a new
current line number and a new
current increment before executing
the statement.

@READ Without specification of the KEY
operand

Underlying EDT concepts Line numbers

U41709-J-Z125-1-76 39

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.2.4.3 Insertion after implicit deletion

The work file in which the lines are to be inserted is implicitly completely deleted prior to
insertion, i.e. the current increment and the current line number are both 1.0000 immedi-
ately before insertion. Lines are then inserted starting at the current line number(=
1.0000).

The line numbers of the other lines that are to be inserted are determined by adding the
current increment (= 1.0000) to the line number of each last inserted line. On completion
of the insertion operation, the new current line number is determined from the line number
of the last newly inserted line plus the current increment.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other procedures may be used in the event of a different
format or different operands).

Statement Comments on operands General comments
@ON
Format 4 + 5

Without specification of the KEEP
and OLD operands

@OPEN
Format 2

Open a copy of SAM
files without specifying the KEY
operand in a work file in which a file
has already been opened
with @OPEN (format 2).

Before the second @OPEN
statement, a @CLOSE statement is
issued, i.e. the work file is implicitly
deleted.

@SHIH The output is sent to work file 9.
@STATUS Without target specification on

output
in F mode

The output is sent to work file 9.

Line numbers Underlying EDT concepts

40 U41709-J-Z125-1-76

3.2.4.4 Insertion at predefined line number

Lines are inserted starting at the line number specified as an operand in the statement. The
line numbers of the other lines that are to be inserted are determined by adding any
increment specified as an operand in the statement to the line number of the last line to be
inserted.

If no increment is specified in the statement then it is defined implicitly on the basis of the
specified line number (see section “Implicit increment assignment” on page 35) using the
same procedure as for implicitly defining the current increment on the basis of the current
line number. Any lines with the same line numbers present in the target file are overwritten.
The new current line number is formed from the line number of the last line plus the current
increment if the line number of the last line has changed. Otherwise it remains unchanged.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other procedures may be used in the event of a different
format or different operands).

Statement Comments on operands General comments
@COMPARE
Format 1

If the LIST operand is not specified,
output is sent to the screen; if LIST
is specified without a line number
then it is sent to
SYSLST

@COPY
Format 2

With target specification

@FSTAT With target specification
@GETJV With output to a line Only one line is generated.
@GETVAR With output to a line Only one line is generated.
@MOVE With target specification
@SHOW
Format 1 +2

With target specification

@STAJV With target specification
@STATUS With target specification
@SYSTEM With target specification

Underlying EDT concepts Line numbers

U41709-J-Z125-1-76 41

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.2.4.5 Insertion between two lines

In this procedure, the new lines for insertion are inserted between two existing lines without
overwriting any existing lines. The procedure first attempts to insert the new lines on the
basis of the current increment. If it is not possible to insert the new lines in this way, the
increment used for line insertion is repeatedly divided by 10 until it is possible to insert the
lines or the smallest possible increment of 0.0001 has been reached.

If it is still not possible to insert the new lines in full at the smallest possible increment of
0.0001 then the insertion procedure is interrupted with an error message if the @PAR
RENUMBER=OFF statement has previously been used to deactivate automatic line
renumbering.

If, however, automatic line renumbering is active (@PAR RENUMBER=ON), then the
procedure attempts to renumber the larger of the two line numbers between which insertion
is to be performed and any other line numbers following this in such a way that the insertion
operation can be completed successfully.

Only if it is not possible to renumber sufficient lines is the insertion operation interrupted with
an error message. When EDT starts, the setting @PAR RENUMBER=ON always applies
for all work files. However, the setting can be modified individually for each work file.
The insertion operation is described in rather more detail below.

In this insertion procedure, it is always necessary to have two line numbers between which
the new lines are to be inserted. One of the two line numbers is predefined
(in some cases implicitly) by the corresponding statement. In the case of statement codes
in F mode this may be, for example, the line number of the line in which the statement code
was entered, thus in the case of the @XCOPY statement, for example, the line number of
what was previously the last line in the work file.

In most cases, insertion is performed after this explicitly or implicitly specified line number.
The line number of the next line is then used as the second line number. If insertion is
performed after the last line in the work file then the value 10000.0000 is used as the ficti-
tious line number for the second line.

Only in the case of the statement codes B,I,1..9 and the @COPY statement (format 1)
with the BEFORE parameter specified is insertion performed before the predefined line. In
this case, the line number of the preceding line is used as the second line number.
If insertion is performed before the first line then the value 0.0000 is assumed for the
second line. If the work file is empty then 0.0000 is assumed for the first line number and
10000.0000 for the second line number.
In this case, the fictitious line number 0.0000 is used to determine the line number of the
first line that is to be inserted (= 0.0000 + increment) and cannot be occupied itself.

Line numbers Underlying EDT concepts

42 U41709-J-Z125-1-76

Insertion without automatic renumbering (@PAR RENUMBER=OFF)

The current increment is used as the increment for the first insertion attempt. The line
number of the first line for insertion is obtained by adding the increment to the smaller of the
two line numbers between which insertion is to be performed. The line numbers of the
following lines for insertion are obtained by continuing to add the increment to each new
value calculated. If the lines numbered in this way fit between the two starting lines then this
numbering is used.
However, if they do not fit then the subsequent procedure depends on whether or not the
increment is equal to its smallest possible value of 0.0001.
If it is equal to 0.0001 then the insertion of lines is rejected with the message EDT5365.
If the increment is greater than 0.0001 then it is used to calculate a new increment by
dividing the preceding increment by 10 (the current increment is not modified!). If this new
increment is smaller than 0.0001, then 0.0001 is used as the new increment.
This new increment is then used for a new insertion attempt. If the lines for insertion can be
inserted using this new increment then the operation is complete.
However, if the increment is already 0.0001 then the insertion operation is rejected with the
message EDT5365. If the increment is still greater than 0.0001, then it is again divided by
10 and a new attempt is made with this new increment.
The current line number only changes if at least one new line is created with a line number
greater than the previous highest line number and is then equal to the line number of the
last line in the work file plus the current increment (this is only possible when a line is
inserted after the previous last line).

Insertion with automatic renumbering (@PAR RENUMBER=ON)

In this case, a two-stage procedure is used in order to maintain maximum compatibility with
EDT V16.6B.
Exactly the same procedure is used as for @PAR RENUMBER=OFF.

If the increment has reached the value 0.01 and the lines can still not be inserted then an
attempt is made to renumber all the existing lines which would be overwritten by the newly
inserted lines in such a way that they can be appended at the last line inserted so far with
an increment of 0.01. This is the procedure used in EDT V16.6B or in compatibility mode.
If it proves impossible to renumber sufficient lines in this way, EDT V16.6B or the compati-
bility mode interrupts the insertion operation with an error message.
In contrast, Unicode mode attempts to further reduce the increment (i.e. division by 10)
down to the smallest increment value of 0.0001 in order to insert the lines.
Once the smallest possible increment of 0.0001 has been reached, the lines are always
inserted with this increment of 0.0001. All the existing lines which would be overwritten by
the newly inserted lines are now renumbered in such a way that they are appended to the
previous last inserted line using an increment of 0.0001.

Underlying EDT concepts Line numbers

U41709-J-Z125-1-76 43

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

If this renumbering again overwrites existing lines then the operation is repeated, i.e. these
lines are also renumbered. If the renumbering operation does not overwrite any more
existing lines then the insertion/renumbering procedure has been completed.
Here again, the current line number only changes if at least one new line is created with a
line number greater than the previous highest line number and is then equal to the line
number of the last line in the work file plus the current increment.

The statement code O represents an exception here.
When this statement code is issued, only existing lines are overwritten starting with the line
indicated by O. If all the lines following the line indicated by O have already been overwritten
and there are still lines present for insertion then these lines are inserted after the last
overwritten line in accordance with the procedure described above.

The following table indicates the EDT statements for which this procedure is used (in the
case of some EDT statements, other insertion procedures may be used in the event of a
different format or different operands). Statements which do not start with an EDT statement
symbol are statement codes.

Statement Comments on operands General comments
A
B
I
1..9
O See above for differences from

usual procedure
T
@COMPARE
Format 2

The work file is deleted before use
and insertion is therefore performed
after line number 0.0000.

@COPY
Format 1

Read in SAM files, POSIX files and
library elements as well as ISAM
files with the KEY operand being
specified and not equal to
LINENUMBER

If neither the AFTER nor the BEFORE
operand is specified then insertion is
performed after the previous last
line; otherwise before or after the
specified line.

@FSTAT Without target specification on
output in F mode

The work file 9 is deleted before use
and insertion is therefore performed
after line number 0.0000.

Line numbers Underlying EDT concepts

44 U41709-J-Z125-1-76

@OPEN
Format 1

OPEN SAM files, POSIX files and
library elements as well as ISAM
files with the KEY operand being
specified and not equal to
LINENUMBER

The work file must be empty before
the statement is executed and
insertion is therefore performed
after the line number 0.0000.

@SDFTEST
@SEPARATE
@SHOW
Format 1 +2

Without target specification on
output in F mode

The work file 9 is deleted before use
and insertion is therefore performed
after line number 0.0000.

@STAJV Without target specification on
output in F mode

The work file 9 is deleted before use
and insertion is therefore performed
after line number 0.0000.

@XCOPY If the work file is not empty, insertion
is performed after the previous last
line. If the work file is empty, it is
performed after line number
0.0000.

@XOPEN The work file must be empty before
the statement is executed and
insertion is therefore performed
after the line number 0.0000.

Statement Comments on operands General comments

Underlying EDT concepts Record marks

U41709-J-Z125-1-76 45

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.3 Record marks

Every line in an EDT work file can be flagged with one or more record marks. The record
marks are noted in the EDT data area and are not visible to users. They are not taken over
when files are written to.
If EDT is not called as a subroutine, record marks 1 to 9 are available. If EDT is called as a
subroutine, the record marks 13, 14 and 15 can also be used for special functions.
The record marks 0, 10, 11 and 12 are reserved for internal special functions and are not
available to users irrespective of whether or not EDT is called as a subroutine.

Record marks 1 to 9 can be set and deleted both with EDT statements and statement codes
and with the IEDTPUT and IEDTPTM functions provided by the EDT subroutine interface. In
contrast, record marks 13, 14 and 15 can only be set and deleted with the IEDTPUT and
IEDTPTM functions.

No marks can be entered for lines in ISAM files opened for real processing with the @OPEN
statement (format 2).

Record marks can be set using

– the statement code 1..9 [F3] in the statement code line
– the @ON statement (format 3) or
– the IEDTPUT and IEDTPTM functions when EDT is called as a subroutine

Record marks can be deleted using

– the statement code D [F3] in the statement code line
– the @DELETE statement (format 4) or
– the IEDTPUT and IEDTPTM functions when EDT is called as a subroutine

In F mode, record marks 1 to 9 can be used as the target for positioning in the work file,
either by means of one of the statements +, ++, - or - followed by [F3] or with the
@SETF statement.

In the case of the @ON (format 4) and @SETLIST statements with the MARK parameter,
record marks 1 to 9 are used to select the lines that are to be processed.
The @ON statement (format 4) can be used to copy marked lines to another work file while
@SETLIST can be used to take over the marked lines into an SDF-P list variable.

The record marks are deleted if a new record is created and replaces another record.
However, they are not deleted if a record is simply modified. New records are created using
the statements: @CREATE, @COPY (format 2), @MOVE, @READ, @GET, @GETJV,
@GETVAR, @GETLIST @ON (format 4, 5) and the statement codes A, B and O. Modifica-
tions consist of the input of new content at the terminal (typed input), changes caused by
the statement codes L and U and the statements @PREFIX, @SUFFIX, @CONVERT,
@COLUMN, @SEQUENCE (format 1, 2) and @ON (format 6, 7, 8, 9). In the case of the

Record marks Underlying EDT concepts

46 U41709-J-Z125-1-76

@SEPARATE statement, the original line retains the mark but the newly generated lines are
not marked. In the event of a join with J, the top line retains any mark it may have had but
the mark is not taken over by the lower line.

When renumbering is performed with @RENUMBER and @SORT or implicit renumbering
results from the insertion of other records, the marks in a record are retained.

If EDT is used as a subroutine, record marks can be set and deleted using the IEDTPUT
and IEDTPTM functions.

The IEDTGTM function can be used to read lines with specific record marks. A line's record
mark is also returned when reading is performed with IEDTGET.

Record mark 13 has the special function of an ignorer indicator. Lines marked in this way
are

– automatically deleted on return of control to the main program after a @DIALOG call
via the subroutine interface

– not included when writing to a file or library element
– not copied when lines are copied
– only taken into consideration by the IEDTGET and IEDTPUT functions if

the flag EAMIGN13 is set in the EAMFLAG field of control block EDTAMCB. The functions
IEDTGTM and IEDTPTM always take account of record mark 13 irrespective of whether
the flag EAMIGN13 is set in the EAMFLAG field.

In the @SDFTEST statement or the statement code T as well as in the statement codes J,
C, M, R, A, B and O, lines with record mark 13 are always ignored.

Record mark 14 has the special function of an update indicator. Lines marked in this way
are depicted as being available to be overwritten in F mode. They continue to be available
for overwriting if only [DUE] is sent or if this type of line is modified by a statement (e.g. the
@ON statements, formats 6 to 9).
Only if at least one character is entered directly in the line and sent with [DUE] is the record
mark 14 deleted, with the result that the line is no longer displayed as being available for
overwriting.

Record mark 15 has the special function of a write protection indicator. Lines with record
mark 15 cannot be set to overwritable with the statement codes X, H or with [F2] in the F
mode screen dialog.

However, such lines can be modified using statements (e.g. the @ON statement, formats
6 to 9) or one or more following lines can be appended to a line with record mark 15 using
statement code J
In both cases, record mark 15 continues to be present.

PROTECTION=ON must be set using the @PAR statement before it is possible to evaluate
record marks 14 and 15.

Underlying EDT concepts Character sets

U41709-J-Z125-1-76 47

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

If a record with one of the marks 13, 14 or 15 is modified at the terminal by means of an
entry in the data window (typing) then these special marks are deleted.

3.4 Character sets

EDT makes it possible to process texts present in different character sets. In Unicode
mode, data can and must be converted between character sets. This greatly extends the
functionality compared to compatibility mode (see chapter “Compatibility mode” on
page 611).

It is possible to specify a different character set for each work file. It is therefore possible to
process data in different character sets in different work files. These character sets can be
modified at any time using the @CODENAME statement. In addition, EDT possesses its
own character set – the communication character set – which it uses to communicate with
the terminal. This can be different from the character set used in any work file in which data
is stored.

3.4.1 Character sets in BS2000

In BS2000, character sets are provided by the software product XHCS. By default, these
include:

– 7-bit character sets such as, for example. ISO646 (international 7-bit character set,
ASCII), EDF03IRV (international reference version, EBCDIC), EDF03DRV (German
reference version, EBCDIC).

– 8-bit character sets such as, for example. ISO88591 (Latin Alphabet No.1, ASCII),
EDF041
(Latin Alphabet No.1, EBCDIC), EDF04DRV (extension of EDF03DRV) etc.

– The 3 Unicode character sets UTF16, UTF8 and UTFE.

XHCS also makes it possible to provide user-defined character sets. These character sets
must be assigned all the attributes that the character sets defined by default also possess,
i.e. all the property tables must be present. If this is not the case then the character set
cannot be used in EDT.
In addition, EDT also requires a conversion property. It must be possible to convert all the
occurring characters into UTF16.

Character sets Underlying EDT concepts

48 U41709-J-Z125-1-76

Note
There is no guarantee that the glyphs of all Unicode characters are supported, for
example the MT9750 V7 and Spool in OSD V6 do not contain the full Unicode scope
but only the characters from the supported ISO 8859 variants 1,2,3,4,5,7,9,15.

In the text, the XHCS names for the names of the character sets and not the complete
names, i.e. EDF041 instead of EBCDIC.DF.04-1 or UTF16 instead of UTF-16.

The UTFE character set is a BS2000-proprietary Unicode character set in which the
characters are coded in byte sequences of variable length in the same way as in UTF8. The
special feature of this character set is that not only all the characters from EDF03IRV but
also all the relevant BS2000 control characters with the same code are coded in a single
byte as previously. As a result, this character set is not just downwardly compatible with
EDF03IRV, but also with the transport sequences used in communications with terminals.

The catalog entries of files and libraries in BS2000 may possess a character set specifi-
cation. This specification is evaluated by the various products used in BS2000 such as
OpenFT, SHOW-FILE and EDT.

Communication with a terminal is always performed in a character set. VTSU is responsible
for this communication. However, VTSU makes it possible to specify a character set for
each dialog step. Nevertheless, VTSU imposes certain restrictions as a function of the
terminal mode. If the dialog step takes place in 7-bit mode then only EDF03IRV can be used
In 8-bit mode, it is only possible to specify an EBCDIC character set which is compatible
with an ISO character set variant that is supported by the terminal. If the terminal supports
Unicode, then communication can take place in UTFE.

Example
The terminal is only able to depict ISO character set variant 1. In this case, EDF041 or
EDF04DRV can be specified as the character set in VTSUCB. The character set
ISO88591 cannot be specified since this is an ISO character set. The character set
EDF042 cannot be specified since it is not compatible with ISO character set variant 1.

For more information on XHCS and character sets, see [8].

Underlying EDT concepts Character sets

U41709-J-Z125-1-76 49

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.4.2 Supported character sets

EDT only ever permits character sets which are supported by the current XHCS installation.
This applies to both batch mode and interactive mode.
The communication character set must be compatible with the terminal. However, it can be
different from the data character set.
The necessary conversions are handled via XHCS and the properties of the characters
(uppercase/lowercase, special characters) are provided by XHCS.
By default, the Unicode character sets, all the EBCDIC character sets and the ISO
character sets are permitted.

Handling invalid characters

Illegal byte sequences may occur in Unicode character sets. Thus, for example, in UTFE or
UTF8 several multibyte start characters may occur in sequence. EDT always rejects the
entry of this type of illegal byte sequence both when reading files or variables and in the
case of input in hex mode.

In UTF16, only characters from the surrogate range (xD800-xDFFF) are illegal.

All other characters, i.e. 2-byte sequences are accepted even if they cannot be depicted at
the terminal. Special EDT semantic considerations are also ignored, e.g. the requirement
that a character should not cause any line feed. In particular, even a Byte Order Mark (BOM)
has no effect but is simply transferred as a character.

In the case of 7-bit character sets or incompletely defined 8-bit character sets all bytes are
accepted and are taken over unchanged for reasons of compatibility. However, these
undefined characters can never be converted into another character set.

Handling of national 7-bit character sets

In Unicode mode, all the 7-bit character sets that are defined in XHCS are permitted (for the
handling of national 7-bit character sets, see section “The character set EDF03DRV” on
page 58).

The @SHOW CCS statement can be used to query the currently supported character sets.

Character sets Underlying EDT concepts

50 U41709-J-Z125-1-76

3.4.3 Strings

All strings are always interpreted and processed in a character set.

However, different character sets can be used. For example, data can be present in a file
in one character set, be stored in a different character set in the work file and be displayed
in a different character set again.
If necessary, in such cases, the string can be converted from the source into the target
character set. Thus, for example, a file which is present in the character set EDF03IRV can
be read into a work file in the character set UTF16 and displayed in UTFE at a Unicode
terminal. It is then possible to insert any required characters (from the set of those
available).
For logging purposes, the file can also be output to SYSLST using the character set EDF041.

The following table indicates how EDT determines the character set to be used in each
case.

Source/target Character set for the string
Input/output at a terminal Communications character set
Reading from SYSDTA Character set assigned to SYSDTA (provided by the

BS2000 macro GCCSN). If *NONE, then EDF03IRV is used.
If SYSDTA is assigned to a terminal then the communica-
tions character set is used.

Reading from a work file Character set for the work file
Writing to a work file Character set for the work file. If *NONE, then character set

for the input data.
Reading from a string variable Character set for the string variable.
Writing to a string variable When a new string variable is created, character set in the

CODE operand. If not specified, character set for the string.
If no new string variable is created, character set of the
string variable.

S variables or job variables Character set from the CODE operand in the read/write
statement. EDF041, if not specified.

Executing an @INPUT
procedure

Character set of the file which contains the @INPUT
procedure. If *NONE, then EDF03IRV is used.

Executing a @DO
procedure

Character set of the work file which contains the @DO
procedure.

Inserting from a DMS file or a
library element

Character set from the file's catalog entry. If *NONE, then
EDF03IRV is used.

Underlying EDT concepts Character sets

U41709-J-Z125-1-76 51

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

In the case of some statements (e.g. @CREATE, @SETJV), it is possible to specify multiple
character sets which are initially joined in an intermediate result.
If all the strings involved have the same character set then this is also the character set of
the intermediate result. If the involved strings have different character sets then the
character set of the intermediate result is UTFE.
This intermediate result is then converted into the target character set.

3.4.4 Conversion and substitute characters

If necessary, EDT converts data from each permitted character set into another permitted
character set. In such cases, if characters from the source data are not present in the target
character set then a substitute character is used if the user has defined one with the
statement @PAR SUBSTITUTION-CHARACTER. By default, no substitute character is
defined (SUBSTITUTION-CHARACTER=*NONE).

When output is sent to a terminal in interactive mode, then, unlike in the case of other output
destinations, the device-specific smudge character is used. If no substitute character is
defined then a blank is used for all characters that are not present in the target character
set when output is sent to SYSOUT/SYSLST. In all other cases, conversion is rejected, i.e.
the associated statement is not executed.

Writing to a DMS file or a
library element

If a new file is created, character set from the CODE
operand or character set of the work file. On write-back,
character set from the CODE operand or character set of
the file or work file

Reading and writing from/to a
POSIX file

Character set from the CODE operand in the
read/write statement or the character set specified in
@PAR CODE. By default EDF041.

Writing to SYSOUT Character set assigned to SYSOUT (provided by the
BS2000 macro GCCSN). If *NONE, then EDF03IRV is used.
If SYSOUT is assigned to a terminal then the communica-
tions character set is used.

Writing to SYSLST Character set assigned to SYSLST (provided by the
BS2000 macro GCCSN). If *NONE, then EDF03IRV is used.

Source/target Character set for the string

Character sets Underlying EDT concepts

52 U41709-J-Z125-1-76

The @CHECK statement (format 2) can be used to check whether a line range can be
converted without loss into a target character set. This not only checks whether all the
characters are present in the target character set but also that no length restriction will be
exceeded. Strings may be significantly longer when converted into a Unicode character set.

Note
XHCS only converts compatible character sets with the result that conversion may
pass via a Unicode character set (since these are always compatible).

3.4.5 Substitute character representation in Unicode

In Unicode mode, EDT permits the entry of characters which are, for example, not defined
in the character set used in the source of the input, in the form of a substitute representation
in which the UTF16 code of the character is specified directly. To do this, the
@PAR ESCAPE-CHARACTER is used to declare a global or work file-specific escape
character which initiates the substitute representation. By default, no substitution is
performed (ESCAPE-CHARACTER=*NONE). The DATA-REPLACEMENT operand in the @PAR
statement can be used to define the context in which substitution takes place.

By default, the substitute representation is only evaluated within statements and there only
in literals (DATA-REPLACEMENT=OFF). Setting DATA-REPLACEMENT=ON causes this to be
performed in data input as well.

The substitute representation has the form specUxxxx, i.e. the escape character is
followed by a U or u (for Unicode) and exactly 4 hexadecimal numbers which specify the
code of the character. If, for example, the escape character % has been specified using
@PAR ESCAPE-CHARACTER='%', then the Greek Ω can be entered in the form %U03A9
or %u03a9 (the input is not case-sensitive).

If @PAR ESCAPE-CHARACTER=*NONE (default setting) has been declared either
globally or for the current work file, if the substitute representation is formally incorrect or if
no valid UTF16 character corresponds to the entered code then the substitute represen-
tation is treated as a normal string. The substitute representation is also not converted on
data entry in F mode if the string for the substitute representation exceeds a column position
for which a hardware tab has been defined.

If despite the specification of a valid UTF16 character, this cannot be converted into the
target character set, then the procedure is the same as if an invalid character had been
entered directly (e.g. via a corresponding keyboard).

The interpretation is independent of whether the characters entered using the substitute
representation can be displayed at the screen or not. As described in the previous section,
characters which cannot be displayed are depicted by means of the smudge character.

Underlying EDT concepts Character sets

U41709-J-Z125-1-76 53

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.4.6 Communications character set

 The communications character set is the character set used by EDT to exchange data with
a terminal.

In Unicode mode, the communications character set can be different from the character set
used in the current work file. Inputs and outputs are then converted accordingly if required.

Since VTSU is the interface to the terminal, the communications character set in interactive
mode can only be a character set that is accepted by VTSU with the exception of
EDF03DRV at a 7-bit terminal (see section “The character set EDF03DRV” on page 58).
Restrictions consequently apply to the choice of the communications character set.

On start-up, EDT sets the character set from the terminal option CODED-CHARACTER-SET
as the communications character set. The @CODENAME statement (format 2) can be
used to set the communications character set explicitly. This setting remains valid until
modified by a subsequent @CODENAME statement.

@CODENAME *AUTO, TERMINAL can be used to activate a mechanism by which EDT
automatically attempts to select the most suitable character set. If it is communicating with
a Unicode-compatible emulation, it specifies UTFE as the communications character set.

In the case of a terminal operating in 8-bit mode, i.e. if no communication via UTFE is
possible, then the communications character set is implicitly defined by the character set of
the work file displayed in the (top) work window.
If this character set changes, e.g. if EDT displays a different character set then the commu-
nications character set may also change. If the work file is empty and has the character set
*NONE then, by default EDT takes the character set from the terminal
option CODED-CHARACTER-SET. If 7-BIT is specified here, it uses EDF03IRV, otherwise the
character set specified here. If the work file displayed in the (top) work window has a
character set which is compatible with the terminal then this character set is specified.
If this character set is an ISO character set which is compatible with a character set which
is itself compatible with the terminal then this is specified. If this is not the case, EDF041 is
used.

For communications with a terminal in 7-bit mode, the communications character set
EDF03IRV is always used.

The same rules apply in L mode. This also applies when reading from SYSDTA (@EDIT
ONLY), and SYSDTA is assigned to a terminal.

Character sets Underlying EDT concepts

54 U41709-J-Z125-1-76

3.4.7 Character sets in work files

In Unicode mode, each work file may possess a separate character set.

Only in an empty work file is it possible for the character set to have the value *NONE. This
is the setting after EDT has started and after the complete deletion of a work file using
@DROP or @DELETE (format 2).

If the setting is *NONE then the character set can be defined either implicitly by inserting data
in the work file, or explicitly by means of a @CODENAME statement. Once the character
set for a work file has been set, all the characters which enter this work file are also
converted into this character set.

If data is inserted into an empty work file with the character set *NONE then the work file is
implicitly assigned the character set for this data on the basis of the source from which they
arrive. For information on how EDT determines the character set, see the table in the
section on strings.

If the work file already has a defined character set (i.e. not *NONE), then data is converted
from its source character set when it is inserted in this work file. Independently of whether
the work file is empty or not, the data is converted into the work file's character set on
insertion.

If data is present in the work file then switching the character set with the @CODENAME
statement causes this data to be converted into the new character set.

@CODENAME …,GLOBAL makes it possible to specify the same character set for all the
work files using a single statement.

When migrations have to be performed, the @CODENAME statement provides additional
performance scope. With @CODENAME …,FORCE=YES, it is possible to relabel the work
file's character set. The work file is then assigned a new character set. However, the data
it contains is not converted but remains unchanged. This option can be used to correct
incorrectly labeled files. The FORCE operand is only applicable to 7-bit and 8-bit character
sets.

Underlying EDT concepts Character sets

U41709-J-Z125-1-76 55

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.4.8 Reading in files

In the following section, instead of talking about files or library elements, we refer only to
files.

When reading in a file, EDT evaluates the character set of the catalog entry.

If the work file into which the file is to be read does not as yet have any character set
(*NONE), the file's character set is defined for this work file and the file is read in. If the file
has the character set *NONE, EDF03IRV is set.

If the work file already has a character set then the content of the file is converted from the
catalog entry's into the work file's character set when it is read in. The work file does not
have to be empty. It is therefore possible to read files with different character sets into a
work file. The data is then present in the work file's character set. If the file contains
characters which are not supported by the work file's character set then the file is not read
in unless a substitute character has been defined. This is then used. If the file contains an
invalid byte sequence (possible in Unicode character sets) then the file is not read in.

If the character set entered in the catalog is not supported then the file is also not read in.

If the file has been opened for real processing (see section “File processing” on page 131),
then the work file must be empty and, in order to be defined, its character set must be the
same as the file's character set or *NONE.

Example

To set the character set UTFE for work file 0, read in the file ADDRESSES with CCS=*NONE.

 1.00 ··
 2.00 ··
 3.00 ··
 4.00 ··
 5.00 ··
 6.00 ··

CODENAME UTFE;COPY FILE=ADDRESSES······························0000.00:00001(00)

Character sets Underlying EDT concepts

56 U41709-J-Z125-1-76

Since the work file has the character set UTFE any characters from the Unicode character
set can be entered in it provided that the terminal supports Unicode. This can be achieved
as here, for example, by means of statements.

However, it can also be achieved by entering the data directly. Here UE has been replaced
by Ü and πλάτων etc has been inserted in line 6.

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

CREATE 0.01 ’ÅNGSTRØM ANDERS STERNWARTE STOCKHOLM ’;--··0001.00:00001(00)

 0.01 ÅNGSTRØM ANDERS STERNWARTE STOCKHOLM<····························
 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

···0000.01:00001(00)

 0.01 ÅNGSTRØM ANDERS STERNWARTE STOCKHOLM<····························
 1.00 BERGER ADALBERT HOCHWEG 10 81234 MÜNCHEN<························
 2.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MÜNCHEN<························
 5.00 STIWI MANUELA POSTWEG 3 80123 MÜNCHEN<························
 6.00 πλάτων Academia Athens<································

···0000.01:00001(00)

Underlying EDT concepts Character sets

U41709-J-Z125-1-76 57

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.4.9 Writing files

When new files are written, the character set of the work file is written to the catalog.

When the work file is written to a new file or an existing file with the character set *NONE,
the character set specified with the new CODE operand or the character set of the work file
becomes the character set for the file. If this character set is EDF03IRV and the file previ-
ously had the character set *NONE then the value *NONE is retained.

If, on a write operation to an existing file with a character set not equal to *NONE, the
character sets of the file and work file are different (this occurs when a read-in file is written
back after an explicit change of character set with @CODENAME or when an existing file
is overwritten with new content), then an operand in the statements @CLOSE, @WRITE
(format 1) and @XWRITE makes it possible to select the character set to be used for
writing. If this operand is not specified then the write operation is rejected in batch mode. In
interactive mode, the user is asked which character set is to be used.

If the file's character set is selected, EDT converts the work file before writing. If characters
are present that cannot be depicted in the file's character set and if no substitute character
has been defined (see @PAR SUBSTITUTION-CHARACTER), then the write operation is
rejected with an error message. The user can then define the substitute character or modify
the character set for writing and write the file again.

3.4.10 Copying between work files

The @COPY statement, @MOVE statement, @ON statement or statement codes can be
used to copy data from one work file to another.

The source work file and target work file may have different character sets. In such cases,
the data to be copied can be converted from the source into the target character set. If
characters from the source data are not present in the target character set then the transfer
is rejected unless the user has defined a substitute character.

Character sets Underlying EDT concepts

58 U41709-J-Z125-1-76

3.4.11 Character set in a statement

The analysis of statements is always performed in UTFE.
The statements are converted from the character set in which they were read in into UTFE.
This is always possible. This ensures, for example, that the '@' character can be used as
the EDT statement symbol in all character sets.
Alongside the EDT statement symbol, EDT also makes it possible to redefine a number of
other symbols of syntactic importance (single quotes and double quotes with @QUOTE,
the line range symbol with @RANGE, wildcard symbols and filler characters with
@SYMBOLS). To ensure consistent usage here, the set of permitted symbols is limited:
Only the following symbols can be used:

This means that only the special characters from EDF03IRV are permitted. Symbols which
are present as special characters only in other character sets are rejected. in the case of
EDF041, for example, these are § and ¤ as well as the symbols that cannot be entered at a
normal keyboard such as ¼, ², ¶.

3.4.12 The character set EDF03DRV

The character set EDF03DRV is the only national 7-bit character set which is known in
XHCS. For reasons of compatibility, it is handled in a special way if the terminal is recog-
nized as a 7-bit terminal.

In this case, EDT also makes it possible to set EDF03DRV as the communications character
set. However, the characters are also handled as EDF03IRV characters (without
conversion) on transfer to and from the terminal. The correct display of the characters is
ensured by the corresponding settings at the terminal or emulation. EDT is not able to check
whether these settings are consistent. This is the user's responsibility.

! " # $ % & ’ () * +
, - . / : ; < = > ? @
[\] ^ _ ` { | } ~

Underlying EDT concepts Character sets

U41709-J-Z125-1-76 59

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.4.13 String variables

String variables may be assigned any text such as a line in a work file. They can be
accessed globally across work files. Every string variable has a content at all times since it
is assigned the character 'Ë' (X'40') on initialization.

String variables always have a character set since they have a content at all times. Each
string variable may have a different character set.

At EDT start time, string variables may be initialized by the S variables
SYSEDT-S00..SYSEDT-S20. If one or more of these S variables are present then their
values are taken over into the corresponding string variable. At this point, it is not possible
to specify a character set. The string variables are therefore assigned the initial character
set EDF041 irrespective of whether they were initialized with 'Ë' or by S variables.

The @CREATE statement can be used to assign a new value to a string variable. In this
case, the CODE=name operand can be used to specify the resulting character set explicitly.
If CODE is not specified then the resulting character set is the character set of the value that
is to be assigned. If this value is obtained by joining strings with different character sets then
the umbrella character set UTFE is used.

The character set for a string variable can also be defined using the @CODENAME
statement. @CODENAME name,#S0 converts the content of #S0 to the corresponding
character set. This character set is assigned to the string variable. @CODENAME name
#S0,FORCE=YES can be used to relabel the character set (only permitted in the case of 7-
bit and 8-bit character sets).

The @SET statement can also be used to assign a value to a string variable. If this value
is specified as a string then a new string variable is created. It is then assigned the character
set of this string variable.
If the value is obtained from the content of an integer variable, the content of a line number
variable or line number or from the name of a printable string variable, then the string
variable, if newly created, is assigned the character set EDF041. If only a part of the content
is overwritten then the intermediate result is converted into the character set of the string
variable and inserted.
If a binary value is inserted then the string variable is always newly created and assigned
the character set EDF041.

Character sets Underlying EDT concepts

60 U41709-J-Z125-1-76

3.4.14 S variables and job variables

The @GETVAR, @GETLIST and @GETJV statements can be used to transfer the
contents of S variables or job variables to string variables or work files.

In Unicode mode, each string requires a character set specification. Since S variables and
job variables record no information about their character sets, the character set must be
defined at transfer time. This is possible using the new operand CODE=name. If the operand
is not specified, the character set EDF041 is used. If the statement is applied to a line in a
work file then the content of the variable may be converted from this character set into the
character set of the work file if necessary. If it is applied to a string variable then the value
is taken over and the character set is assigned to the string variable.

Note
@GETVAR SYSEDT,CODE=name can be used to transfer the value of the SYSEDT
variable to the string variable again while taking account of the character set.

The statements @SETVAR, @SETLIST and @SETJV can be used to generate S variables
or job variables and assign a value to them.

In these statements, the CODE=name operand can be used to specify a character set into
which the values are to be converted before assignment. If the operand is not specified,
EDF041 is used.

3.4.15 POSIX files

POSIX files also record no information about the associated character set.

In the statements used to read or write POSIX files, the operand CODE=name can be used
to specify the character set in which the file's data is present or the character set to be used
when writing the file. name may be any supported character set.

The specifications CODE=ISO - corresponding to CODE=ISO88591 - and CODE=EBCDIC -
corresponding to CODE=EDF041 - are still possible for reasons of compatibility.

3.4.16 Outputs to SYSOUT and SYSLST

If SYSOUT is assigned to the terminal then output takes place in the communications
character set and characters which cannot be displayed in this character set are replaced
by the device-specific smudge character.

Otherwise, output to SYSOUT or SYSLST is performed in the relevant assigned character set
which can be determined using the BS2000 macro GCCSN. If this character set is *NONE
then EDF03IRV is used. If the output contains characters which cannot be displayed in the
target character set and no substitute character has been defined then a blank is inserted.

Underlying EDT concepts EDT variables

U41709-J-Z125-1-76 61

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.5 EDT variables

The EDT variables are used to store values. These values can be integer values, strings or
line numbers. In EDT procedures, these variables are used, for example, for the interme-
diate storage of values, as loop counters, for the input of strings (file names, search terms
etc.) or to perform simple calculations.

EDT variables are only valid for the current EDT session, provided that the operating mode
(see section “Introduction to the EDT operating modes” on page 21) does not change. They
are globally visible, i.e. they can be set, used or queried from within all work files. If a value
is assigned to a variable in a work file, then the variable is also available with the same
value in other work files.

EDT provides three types of variables which can be assigned the following values. 21
variables of each variable type are available and are indexed from 0 to 20.

– Integer variables (#I0..#I20)
– String variables (#S0..#S20)
– Line number variables (#L0..#L20)

The EDT variables are assigned values by means of various formats of the @SET
statement or using @CREATE (see @SET, format 1-5 and @CREATE). Another possibility
is to supply the EDT variables with the content of job variables (@GETJV) or S variables
(@GETVAR, @GETLIST) (see below).

The line number variable #L0 and the integer variables #I0 to #I3 should not be used
since they may be overwritten with values if an @ON statement returns a hit.

Although job variables and S variables do not form part of the EDT variables, they are
nevertheless discussed in the summary below since they are frequently used to store the
content of EDT variables either between EDT sessions or permanently.

3.5.1 Integer variables

The integer variables (#I0..#I20) are used to store positive or negative integer values.
The largest possible value is 2147483647 (231 - 1).

The integer variables can be supplied with values by means of the @SET statement
(Format 1) and with @GETVAR. @STATUS can be used to output the content of integer
variables on screen. @IF (format 2) is used to evaluate the values of integer variables
within EDT procedures.

When EDT is started, all the integer variables are preset to the value 0.

EDT variables Underlying EDT concepts

62 U41709-J-Z125-1-76

3.5.2 String variables

The string variables, (#S0..#S20) can be used to store strings in all character sets
supported by EDT.
A string variable is similar to a record in a work file.
Like a record, it can accommodate a maximum of 32768 characters which can be
addressed either individually or in sections thanks to column specifications, they can be
searched in, replaced by other strings etc.

The integer variables can be supplied with values by means of the @SET statement,
formats 2, 4 and 5, by means of @CREATE or using @GETJV, @GETVAR or @GETLIST.
@PRINT can be used to output the content of the string variables on screen. @IF (format
2) is used to evaluate the values of string variables within EDT procedures and column
specifications make it possible to address subsections or individual lines.

When EDT is started, string variables are preset to a blank in the character set EDF041
unless they have assumed the values of any S variables SYSEDT-S00..SYSEDT-S20
which may be present (see section “Starting EDT” on page 87).

Every string variable is assigned a character which specifies how the content of the variable
is to be interpreted.
In the case of the @CREATE and @SET statements as well as in @GETJV and
@GETVAR, this character set can be specified explicitly for the new string variable that is
to be filled. If no character set is specified or if the string variables are already assigned
values when EDT is started (see above) then the default values for the string variables are
set as a function of the data source and system environment.

In statements in which the name of a string variable could be confused with a file name or
a library element designation, it is necessary to prefix the variable name with a period in
order to indicate that a string variable is intended, e.g. @OPEN FILE=.#S1 opens the file
whose name is stored in the string variable #S1 whereas @OPEN FILE=#S1 opens the file
with the name '#S1'.

3.5.3 Line number variables

Line numbers can be stored in the line number variables (#L0..#L20). The range of values
is 0.0001 to 9999.9999.

The line number variables can be supplied with values by means of the @SET statement
(format 3). @STATUS can be used to output the content of line number variables on screen.
@IF (format 2) is used to evaluate the values of line number variables within EDT proce-
dures.

When EDT is started, all the line number variables are preset to the (invalid) value 0.0000.

Underlying EDT concepts EDT variables

U41709-J-Z125-1-76 63

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.5.4 Job variables

In systems in which the JV subsystem (Job Variable Support) is installed, it is possible to
use job variables in JV. Unlike the integer, string and line number variables, job variables
persist after EDT has terminated and it is possible to access existing job variables in EDT.

In EDT, it is possible to delete job variable entries (@ERAJV), output the values of job
variables or transfer these values to a work file or string variable (@GETJV), generate job
variables and assign values to them (@SETJV) as well as output information about job
variables or write this information to a work file (@STAJV). In EDT procedures, it is not
possible to evaluate the content of job variables directly but instead only after this has been
transferred to a work file or a string variable.

BS2000 does not assign any character set to job variables. When a job variable is read with
@GETJV, it is therefore possible to explicitly define the character set in which EDT is to
interpret the content of the job variable. If nothing is specified then the default mechanisms
described in the section on character sets apply.

3.5.5 S variables

It is possible to access S variables in EDT (for S list variables, it is necessary to install SDF-
P). Unlike the integer, string and line number variables, S variables persist after EDT has
terminated and it is possible to access existing S variables in EDT.

In EDT, it is possible to output the content of S variables of type STRING and INTEGER,
transfer this content to a work file, a string variable or an integer variable (@GETVAR),
generate S variables of type STRING and INTEGER and assign values to them (@SETVAR)
as well as to generate S list variables (type LIST with element type STRING), extend such
variables, assign values to them (@SETLIST) and transfer their values to a work file
(@GETLIST). In EDT procedures, it is not possible to evaluate the content of S variables
directly but instead only after this has been transferred to a work file, a string variable or an
integer variable.

BS2000 does not assign any character set to S variables. When an S variable is read with
@GETVAR, it is therefore possible to explicitly define the character set in which EDT is to
interpret the content of the S variable. If nothing is specified then the default mechanisms
described in the section on character sets apply.

EDT procedures Underlying EDT concepts

64 U41709-J-Z125-1-76

3.6 EDT procedures

EDT makes it possible to store sequences of statements in work files, cataloged files or
library elements and execute these as required. Alongside statements, records may also
be present which are then inserted in the current work file at the relevant current line
number. Such sequences of statements and records are referred to under the umbrella term
of EDT procedure.

EDT procedures are subdivided into @DO procedures and @INPUT procedures
depending on their storage location and the statement used to start them.

@DO procedures

– are stored in an EDT work file (1..22),
– can only be executed as a whole,
– permit the passing of parameters, nesting, (conditional) branches and loops and
– are started with the EDT statement @DO.

@INPUT -procedures

– are stored in a file,
– can be executed as a whole or partially,
– do not permit the passing of parameters, nesting, branches or loops,
– can be started as an EDT start procedure when EDT starts or
– can be started with the EDT statement @INPUT.

The following sections start by explaining the concepts which apply to all procedure types.
These form the basic rules for the creation and execution of EDT procedures. This is
followed by a discussion of the possibilities offered by the @INPUT procedures and by
integrating EDT procedures in BS2000 system procedures. The EDT start procedure is
explained as a special type of @INPUT procedure. Finally, the language tools which can
only be used in combination with @DO procedures are described, namely branches, loops
and parameters.

Underlying EDT concepts EDT procedures

U41709-J-Z125-1-76 65

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.6.1 Creating and executing EDT procedures

When creating and executing EDT procedures it is necessary to observe the following
rules.

Reading statements and data lines

When executing an EDT procedure, EDT reads statements and data lines in L mode. If the
EDT procedure is started in F mode, EDT switches to L mode, executes the procedure and
then switches back to F mode.

The distinction between statements and data lines is therefore governed by the same rules
as for input in L mode (see section “L mode” on page 126). In particular, lines with two
consecutive (possibly separated only by blanks) EDT statement symbols or user statement
symbols are interpreted as data lines. This makes it possible to construct other procedures
dynamically within procedures and run these immediately (see example below).

Permitted statements

All the statements that are permitted in L mode may be used in EDT statements with the
exception of the @DIALOG, @DROP and @INPUT statements (see section “L mode” on
page 126).
In @DO procedures, the statements @GOTO, @DO (Format 2) and @PARAMS are also
permitted. In @INPUT procedures, the @IF ... GOTO statement is tacitly ignored if the
condition is not fulfilled and is rejected with the error message EDT4942 if the condition is
fulfilled.

Current and active work file, special work files

In L mode, the current work file is called with the @PROC or @SETF statement and in F
mode with the @SETF statement or by entering the corresponding work window in the
statement line. When EDT procedures are executed, the read statements and records
always apply to the current work file. The current work file must therefore not be specified
in a @DO statement.
The attempt is rejected with the message EDT4906.

Active work files are those work files which contain a @DO procedure which is currently
being executed. If @DO procedures are nested then multiple work files can be active (up
to 22), i.e. those that have been activated by a @DO and have not yet been exited with a
@RETURN.

EDT procedures Underlying EDT concepts

66 U41709-J-Z125-1-76

When @DO procedures are nested, an active work file may also be specified in @DO state-
ments.

Recursive calls are therefore possible but again only to a maximum nesting depth of 23. An
active work file must not be made into the current work file. A @PROC or @SETF statement
for an active work file is therefore rejected with the message EDT4959.

@DO procedures can be stored and run in every work file with the exception of work file 0,
i.e. in work files 1 to 22.
A @DO 0 is rejected with the message EDT3209.
Since many EDT statements write their output to work file 9 by default, it is advisable not to
use this work file for @DO procedures.

EDT procedures and character sets

When an EDT procedure is executed, statements and records are read in the character set
of the current EDT procedure.
In the case of @INPUT procedures, this is the character set of the cataloged file or library
element; in the case of @DO procedures, it is the character set of that active work file which
is being read. The read data records and the literals or text-type expressions may have to
be converted if they refer to objects (e.g. the current work file or a string variable) to which
another character set is assigned. For the precise rules, see section “Character sets” on
page 47.

Example: Creating and calling a @DO procedure in F mode

This switches to work file 22. The procedure is created in this work file.

 1.00 ···
 2.00 ···
 3.00 ···
 4.00 ···

 23.00 ···
22···0000.00:00001(00)

Underlying EDT concepts EDT procedures

U41709-J-Z125-1-76 67

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

The statements are created in work file 22. After this, processing returns to work file 0.

The procedure in work file 0 is called with @DO from work file 0.

The result of running the procedure can be seen in work file 0.

 1.00 @COPY FILE=TESTFILE<··
 2.00 @PAR LOWER=ON<···
 3.00 ···
 4.00 ···

 23.00 ···
0··0001.00:00001(22)

 1.00 ···
 2.00 ···

 23.00 ···
@do 22···0000.00:00001(00)

 1.00 This is a test file which<···
 2.00 has been read into work file 0<··
 3.00 using a procedure.<··
 4.00 ···
 5.00 ···

 23.00 ···
···0001.00:00001(00)

EDT procedures Underlying EDT concepts

68 U41709-J-Z125-1-76

Example: Calling a procedure in L mode as a @DO procedure

1. @PROC 1 -- (01)
1. @ @CREATE 1: 'THIS IS AN EXAMPLE'
2. @ @CREATE 2: 'OF A PROCEDURE IN L MODE'
3. @ @COPY 1 TO 3-- (02)
4. @ @DELETE 1:1-8
5. @ @PRINT
6. @END --- (03)
1. @DO 1 -- (04)
1.0000 AN EXAMPLE
2.0000 OF A PROCEDURE IN L MODE
3.0000 THIS IS AN EXAMPLE
4.

(01) Processing switches to work file 1.

(02) EDT statements are written to work file 1 (@DO procedure). Here, the L mode input
mechanism is used to insert lines with two EDT statement symbols as data lines in
the work file and truncate these before the second statement symbol (see section
“L mode” on page 126).

(03) Processing returns to work file 0.

(04) Call of the @DO procedure. The statements in the work file are executed.

3.6.2 @INPUT procedures

EDT statements and records can be written as @INPUT procedures to a SAM, ISAM or.
POSIX file or to a library element of a permitted type (see section “File processing” on
page 131).

The advantages of an @INPUT procedure (permanent availability, informative procedure
name) can be combined with the benefits of @DO procedures (nesting, branches and
loops, parameter settings) by dynamically creating and executing one or more @DO proce-
dures within the @INPUT procedure. This makes use of the possibilities of L mode input
with two EDT application symbols.

Underlying EDT concepts EDT procedures

U41709-J-Z125-1-76 69

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

Structure of a @DO procedure within an @INPUT procedure

Example

@DELETE
@...
.
.
.
@PROC procnr
@DELETE

@@...
.
.
.
@@...

@END
@DO procnr
@...
.
.

Delete current work file
EDT statements
and records

Switch to work file procnr
Delete content of procnr

@DO procedure:
EDT statements
and records

Exit work file procnr
Call @DO procedure procnr
EDT statements
and records

@INPUT procedure

 1.00 @NOTE--READ IN FILE NAME·
 2.00 @CREATE #S00 READ 'FILENAME: '<···
 3.00 @NOTE--------------------------------OPEN WORK FILE 22·········
 4.00 @PROC 22<···
 5.00 @DELETE<··
 6.00 @NOTE------------------STORE FILE IN THE FORM YYMMDD IN #S01···
 7.00 @ @SET #S01 = DATE ISO<··
 8.00 @ @SET #S01 = #S01:1-8<··
 9.00 @ @ON #S01 CHANGE ALL '-' TO ''<····································
 10.00 @NOTE----------------STORE TIME IN THE FORM HHMMSS IN #S02·····
 11.00 @ @SET #S02 = TIME<··
 12.00 @NOTE-----ASSEMBLE COPY FILE COMMAND AND STORE IN #S03·········
 13.00 @ @CREATE #S03 : '/COPY-FILE ',#S00,',',#S00,'.',#S01,'.',#S02<·········
 14.00 @NOTE-----------ISSUE COPY FILE COMMAND AS SYSTEM COMMAND······
 15.00 @ @SYSTEM #S03<···
 16.00 @NOTE----------------------------------CLOSE WORK FILE 22······
 17.00 @END<···
 18.00 @DO 22<···
 19.00 ··
 20.00 ··
 21.00 ··
 22.00 ··
 23.00 ··
@write file=backupcopy.input···································0001.00:00001(00)

EDT procedures Underlying EDT concepts

70 U41709-J-Z125-1-76

The procedure is created in F mode in the work file 0 and is stored as a SAM file under the
name BACKUPCOPY.INPUT.

The @DO procedure consists of all the statements with two consecutive statement symbols
separated only by blanks (@ @ - see below).

The procedure is called with @INPUT. The statements in the SAM file
BACKUPCOPY.INPUT are processed. When this is done, the nested
@DO procedure (lines 6.00 to 16.00, EDT-statements with more than one statement
symbol @) are stored in work file 22 (see below) and executed immediately.
Processing then switches to work file 22.

When the statement @CREATE ... READ is processed, an input prompt is output. Once the
file name TESTFILE is entered, a backup copy with the name TESTFILE.yymmdd.hhmmss
is created.

The statements in the @INPUT procedure which have more than one application symbol
have been stored in work file 22 in the form of a @DO procedure and the content before
the second application symbol has been deleted.

 20.00 ···
 21.00 ···
 22.00 ···
% EDT0172 FILE 'BACKUPCOPY.INPUT' CREATED AND WRITTEN
@input file=backupcopy.input;22································0001.00:00001(00)

 FILENAME: testfile

 1.00 @SET #S01 = DATE ISO<··
 2.00 @SET #S01 = #S01:1-8<··
 3.00 @ON #S01 CHANGE ALL '-' TO ''<······································
 4.00 @SET #S02 = TIME<··
 5.00 @CREATE #S03 : '/COPY-FILE ' ,#S00,',',#S00,'.',#S01,'.',#S02<··········
 6.00 @SYSTEM #S03<···
 7.00 ··

···0001.00:00001(22)

Underlying EDT concepts EDT procedures

U41709-J-Z125-1-76 71

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.6.3 Calling an EDT procedure in a BS2000 system procedure

An EDT procedure can be dynamically constructed and called within a BS2000 system
procedure.

Example of an EDT procedure in a BS2000 system procedure

/SET-PROCEDURE-OPTIONS DATA-ESCAPE-CHAR=*STD
/BEGIN-PARAMETER-DECLARATION
/DECLARE-PARAMETER FILE,TYPE=STRING,INITIAL-VALUE=*PROMPT
/END-PARAMETER-DECLARATION
/SHOW-FILE-ATTRIBUT &FILE --(01)
/MODIFY-JOB-SWITCHES ON=(4,5) --(02)
/START-EDT ---(03)
@PROC 20 ---(04)
@ @READ '&FILE'
@ @PAR LOWER=ON
@ @PAR SCALE=ON --(05)
@ @PAR INFORMATION=ON
@ @PAR EDIT FULL=ON
@END ---(06)
@DO 20 ---(07)
@DIALOG --(08)
@HALT --(09)
/SET-JOB-STEP
/MODIFY-JOB-SWITCHES OFF=(4,5) ---(10)

(01) Check whether the file specified via the procedure parameter is present. If not,
processing branches to SET-JOB-STEP.

(02) Set job switches 4 and 5 (see section “Job switches” on page 98).

(03) Call EDT.

(04) Processing switches to work file 20.

(05) The EDT statements in the @DO procedure are stored in work file 20.

(06) Processing returns to work file 0.

(07) Call the @DO procedure located in work file 20 (read in a file, distinguish between
uppercase and lowercase, output a column counter, output an information line, set
data window and mark column to overwritable).

(08) Switch to F mode dialog. After termination of interactive mode with @HALT or
@RETURN, the system procedure run is continued at the point where it was inter-
rupted.

EDT procedures Underlying EDT concepts

72 U41709-J-Z125-1-76

(09) Terminate EDT

(10) Reset the job switches.

3.6.4 EDT start procedure

The EDT start procedure is a special @INPUT procedure which is run when EDT is started
(see section “Starting EDT” on page 87). The EDT start procedure is determined on the
basis of the following search hierarchy.

1. If the link name $EDTPAR has been assigned then the file associated with it is defined
as the EDT start procedure and the search is terminated.

2. If a file named EDTSTART exists under the caller of EDT's user ID then this is used and
the search is terminated.

3. If in the EDT installation, the system administrator has assigned the logical identification
SYSDAT.EDTSTART to an existing, accessible file then this file is used and the search is
terminated.

4. If the file $.EDTSTART exists under the default user ID and is accessible then this is
used and the search is terminated.

5. If steps 1 to 4 fail to identify any file then no EDT start procedure is executed.

Each time EDT is called, /SET-FILE-LINK can therefore be used to set an individual EDT
start procedure. In particular
/SET-FILE-LINK FILE-NAME=*DUMMY,LINK-NAME=$EDTPAR
can be set to prevent the execution of any EDT start procedure including the one set by the
system administrator.

3.6.5 Unconditional and conditional branches

The @GOTO statement is used in @DO procedures to branch to a line. The line number is
specified in the @GOTO statement. The line must exist and must not be located outside of
the procedure.

If a @GOTO statement is specified in an @IF statement then a condition-dependent branch
is possible in a @DO procedure. If the condition is fulfilled then processing branches to the
line specified in the GOTO statement. If the condition is not fulfilled then the procedure
continues with the statement which immediately follows the @IF statement.

To prevent the possible displacement of lines when the procedure is modified, the line
numbers should be determined again with @SET, format 6 (abbreviated to @ for improved
clarity) before branch destinations are specified (see also example).

Underlying EDT concepts EDT procedures

U41709-J-Z125-1-76 73

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

Branches are not permitted in @INPUT procedures.

Example of unconditional and conditional branches

@PROC 2
@DELETE
@1.00 -- (01)
@ @CONTINUE *** LINE NUMBER 1.00 AS OF HERE ***
@ @CREATE #S1 READ 'PLEASE ENTER SEARCH TERM: ' ---------------------- (02)
@ @ON & FIND #S1 MARK 5
@ @IF .TRUE. @GOTO 2 --- (03)
@ @CREATE #S2: 'NO HIT FOUND'
@ @PRINT #S2
@ @GOTO 3 -- (04)
@2.00
@ @CONTINUE *** LINE NUMBER 2.00 AS OF HERE ***
@ @DELETE MARK 5
@ @ON & PRINT #S1 -- (05)
@3.00
@ @CONTINUE *** LINE NUMBER 3.00 AS OF HERE ***
@END

(01) Statement @1.00 sets line number 1.00 and, implicitly, the increment 0.01 in work
file 2. The same applies equivalently for the other @SET statements.

(02) @CREATE...READ prompts the user to enter a search term. In the following line,
all the lines which contain the search term are flagged with record mark 5.

(03) @IF checks whether there are any hits and, if there are, branches to line 2.00.

(04) If there are no hits, the corresponding message is output and processing branches
to the end of the procedure.

(05) If there are hits, the record mark is deleted and the hit lines are output.

The lines with two consecutive statement symbols are read back into the lines defined by
the @ statement in work file 2. The EDT procedure can then be executed with @DO 2.

EDT procedures Underlying EDT concepts

74 U41709-J-Z125-1-76

3.6.6 External and internal loops

External loops make it possible to work through @DO procedures repeatedly in full. If only
parts of a procedure are to be looped through repeatedly then it is necessary to use internal
loops.

External loops are implemented by referencing a loop counter in the @DO procedure. The
start value, end value and increment of this counter must be specified when the procedure
is called in the @DO statement (see @DO statement page 285). The loop counter must be
a special character and should not conflict with special characters which have a fixed
meaning in EDT (e.g. % or $). In contrast, the characters ! or | are suitable. Within the
@DO procedure, the loop counter must be used like a line number (not like a line number
variable, i.e. it cannot be modified in the procedure).

When the last statement in the @DO procedure is executed, the loop counter is increased
or decreased by the specified increment and compared with the end value. If the
comparison value is not greater or lower than the end value accordingly, the procedure is
run again with the modified loop counter value. If the last statement in the @DO procedure
is not executed, for example because the procedure has been exited with @RETURN, the
procedure is not looped through again but is interrupted, perhaps before the specified end
value is reached. It may therefore be necessary to write an artificial (empty) final statement
(see @CONTINUE statement).

The special character representing the loop counter may be present, when the @DO
statement is entered, in a character set other than that used in the called procedure. If
necessary, it is converted in accordance with the same rules as the literals which may occur
in other EDT statements (see section “Character sets” on page 47).

External loops can be replaced by internal loops. In an external loop, alongside the start
and end value it is only possible to specify a fixed positive or negative increment. In an
internal loop, it is possible to specify a variable increment, for example via a line number
variable.

Example of an external loop

@PROC 3
@DELETE
@ @COLUMN 10 ON ! INSERT !:27-36:
@END

The above statement sequence constructs a @DO procedure containing the single
statement @COLUMN... in work file 3.

If this @DO procedure is started with @DO 3, !=11,15, then the values 11,12,13,14
and 15 are used sequentially for the loop counter ! (the implicit increment is 1). In these
lines, the content of the relevant line (columns 27-36) is inserted again at column 10.

Underlying EDT concepts EDT procedures

U41709-J-Z125-1-76 75

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

If this procedure is applied to a work file with a smaller increment (for example 0.1) then
some lines may be ignored. If all the lines are to be taken into account independently of the
increment, an internal loop should be used (see example below).

Example of an internal loop

@PROC 4 -- (01)
@DELETE
@RESET
@1.00
@ @IF ERRORS : @G0TO 2 --- (02)
@ @IF #L10 > 15 @GOTO 2 -- (03)
@ @COLUMN 10 ON #L10 INSERT #L10:27-36: ------------------------------ (04)
@ @SET #L10 = #L10 + 1L -- (05)
@ @G0T0 1 -- (06)
@2.00
@ @CONTINUE
@END....

@SET #L10 = 11 --- (07)
@DO 4

(01) A @DO procedure is constructed in work file 4.

(02) The procedure should be aborted if EDT errors occur.

(03) If loop counter #L10 exceeds the value 15 then the procedure should be aborted.

(04) The content of the corresponding line in column 27-36 should be inserted again in
the line defined via #L10 in column 10.

(05) The line number is set to the next existing line number. Specifying the value 1
instead of 1L here would have the same effect as in the external loop (see above).

(06) Processing branches to the start of the loop.

(07) The start value of the loop counter is set outside of the @DO procedure and the
procedure is then called.

Note
Line 11.00 must exist in the file that is to be processed and the last line in the file to be
processed should be greater than 15.00, otherwise the procedure is aborted with an
error message.

EDT procedures Underlying EDT concepts

76 U41709-J-Z125-1-76

3.6.7 Parameters

When @DO procedures are created in EDT, @PARAMS can be used to define formal
parameters to which current values (current parameters) are assigned when the procedure
is called with @DO.

The @PARAMS statement must be the first statement in a @DO procedure and may only
occur once in the procedure. Both positional and keyword parameters are permitted. All the
positional parameters must be defined before the keyword parameters.

A formal parameter starts with the character &. This is followed by a letter which in turn is
followed by up to 6 letters or digits.

When the procedure is called, the parameters in the @DO statement are specified as the
current parameters. It is also possible to set keyword parameters to a default value within
the @PARAMS statement.

The default value is used if the corresponding keyword parameter is not specified in the
@DO statement. When the procedure is called, the formal parameters in the procedure are
replaced by the values of the current parameters or the default values.

The processing of these parameters should be considered as a two-stage process. First of
all in the called procedure, the text of the formal parameters is replaced by the current
parameters and the modified lines are then processed. Here, it may be necessary to take
account of the presence of a number of different character sets, i.e. the character set in the
statement (for the current parameters), the character set used in the work file that is to be
run as a procedure and the character set of the current work file to which the statements in
the procedure are applied or in which the records are inserted.

In the first stage of text substitution, it is therefore necessary to convert the character set of
the statement into the character set of the executing procedure.
This applies both to the names of the specified current parameters and the names of the
formal keyword parameters. If the current parameters contain a substitute representation
for Unicode characters (see section “Substitute character representation in Unicode” on
page 52), then they are not converted into the corresponding Unicode characters at the
time of text substitution even if the current parameters are quoted.

In the second stage of processing (execution), both lines and literals in statements must be
converted from the procedure's character set into the character set of the current work file.
This operation includes the interpretation of a substitute representation for Unicode
characters if substitute representation in a literal has been used.

It is not possible to pass through the current parameters unmodified since text substitution
can take place at any position in a line in the executing procedure (in literals, in other
operands or even in the statement name itself).

Underlying EDT concepts EDT procedures

U41709-J-Z125-1-76 77

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

If in a Unicode environment, a procedure file is used which is present in a 7-bit or 8-bit
character set, undesired character substitutions may therefore occur during the recoding of
a parameter entered in Unicode into the character set used in the procedure file. This can
only be prevented by using the substitute representation for Unicode characters (see
above). For the precise rules governing recoding, see section “Character sets” on page 47.

Note
If EDT procedures with parameters are also to be used in BS2000 system procedures
which also contain parameters, it is advisable to set the BS2000 parameter symbol to
a value other than & (/SET-PROC-OPT DATA-ESCAPE-CHAR=...) in order to avoid
conflicts.

Example for the use of parameters in an EDT procedure

In the following example, a file is read into work file 0. The records which contain the search
term are copied into work file 5, prepared accordingly and output on the screen.

 1. @PROC 4
 1. @DELETE
 1. @ @PARAMS &FILE,&SEARCH --------------------------------------- (01)
 2. @ @DELETE
 3. @ @READ '&FILE'
 4. @ @ON & FIND PATTERN '&SEARCH' COPY TO (5)
 5. @ @PROC 5
 6. @ @CREATE 0.01: '~' * 50
 7. @ @CREATE 0.02: 'MENU ','&SEARCH'
 8. @ @CREATE 0.03: '~' * 50
 9. @ @RENUMBER
10. @ @CREATE $+1: '~' * 50
11. @ @PRINT
12. @ @END
13. @END
 1. @DO 4 (MENU,CW 49) --- (02)
 1.0000 ~~
 2.0000 MENU CW 49
 3.0000 ~~
 4.0000 CW 49 - 05.12. CORN FRITTERS, CHOCOLATE MOUSSE
 5.0000 CW 49 - 06.12. BEEFBURGER, BOILED POTATOES, YOGHURT
 6.0000 CW 49 - 07.12. CUMBERLAND SAUSAGE, FRENCH FRIES, FRUIT SALAD
 7.0000 CW 49 - 08.12. PENNE IN GARLIC AND MUSHROOM, TRIFLE
 8.0000 CW 49 - 09.12. COD IN BATTER, SAUTE POTATOES, APPLE FLAN
 9.0000 ~~

Searching with @ON Underlying EDT concepts

78 U41709-J-Z125-1-76

10. @DO 4 (MENU,SAUSAGE) --------------------------------- (02)
 1.0000 ~~
 2.0000 MENU SAUSAGE
 3.0000 ~~
 4.0000 CW 45 - 10.11. SAUSAGE AND EGG, FRENCH FRIES, CUSTARD PUDDING
 5.0000 CW 49 - 07.12. CUMBERLAND SAUSAGE, FRENCH FRIES, FRUIT SALAD
 6.0000 ~~

(01) Define the symbolic parameters (two positional parameters).

(02) Call the procedure with the associated current parameters. The formal parameters
in the @READ, @ON statement are replaced by the current values on each @DO
call.

3.7 Searching with @ON

There are ten formats of the @ON statement in which actions can be triggered depending
on the search term. The search term defines one or more strings which can be searched
for in a search range.

Alongside simple characters, the search term can include wildcards which act as place-
holders for groups of characters. The wildcards stand either for precisely one character or
for a string of any length. When a wildcard is interpreted, pattern matching occurs during
the search operation.

The search term is bounded by a delimiter character on both the left and right. There are
two different delimiters.

Depending on the delimiter character that is used, the start and/or end of the hit string is
determined either simply by the hit string or by the hit string plus additional text delimiter
characters before or after the search term. The two possible delimiter characters can be
combined as desired when the search term is entered directly. The strings that are
considered to be hits depend on the employed delimiter characters.

If wildcards are interpreted or if text delimiter characters are searched for in the search
object then the search term and the hit strings may not be identical. In such cases, it is even
possible that the individual hit strings will differ from one another.

The search term is only searched for in the line or column ranges which are specified in
the @ON statement. The following sections discuss the details which are of relevance
when searching using the @ON statement.

Underlying EDT concepts Searching with @ON

U41709-J-Z125-1-76 79

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.7.1 Case sensitivity

The @SEARCH-OPTION statement can be used to define whether a distinction should be
made between uppercase/lowercase when searching for strings with the @ON statement.
By default, searches are case-sensitive. If no distinction is to be made between
uppercase/lowercase then the search term and search area are temporarily converted from
lowercase to uppercase when the statement is executed.

The conversion is performed using the interface provided by XHCS. When
lowercase/uppercase conversion is performed, the lengths of the strings do not change
irrespective of the specified character set.

Example

The CASELESS-SEARCH setting only applies to formats 1 to 3 and 5 to 10.
In format 4 it is not relevant since searches in this format are only conducted for marked
lines.

@SEARCH-OPTION CASELESS-
SEARCH=OFF

@ON & C'suCH' TO 'SUCH'

The uppercase/lowercase notation of a character is
taken into consideration during the search. This
corresponds to the default setting of the @SEARCH-
OPTION statement.

Only the string ' suCH ' is converted into 'SUCH'.
Strings of the form 'such' or 'sucH' are not converted.

@SEARCH-OPTION CASELESS-
SEARCH=ON

@ON & C'suCH' TO 'SUCH'

Uppercase/lowercase notation is not taken into
consideration during the search.

All 'such' strings in all possible case variations are
converted into 'SUCH'.

Searching with @ON Underlying EDT concepts

80 U41709-J-Z125-1-76

3.7.2 Using wildcards in search terms

Alongside simple characters, it is also possible to specify placeholders for groups of
character (so-called wildcards). There are two wildcards.

asterisk (Default value *) stands for a string of any length including an empty string.
If specified more than once in succession then it is interpreted as a single
asterisk, e.g. 'ABC**F' is equivalent to 'ABC*F'.

slash (Default value /) stands for precisely one character.

If the keyword PATTERN is specified then the wildcards are interpreted and pattern
matching takes place. The wildcards are resolved into the shortest possible substring in the
search range.

If the keyword PATTERN is not specified then the wildcards are handled as simple constant
characters.

Example

Multiple wildcards may be present in every search term. A search term which consists only
of wildcards is also permitted. The @SYMBOLS statement can be used to redefine the
wildcards.

No wildcards can be specified within the substitute representation of Unicode characters.

@ON & PRINT ’AB*C’ Displays all the lines which contain precisely the string
AB*C

@ON & PRINT PATTERN ’AB*C’ Displays all the lines which contain the strings ABC,
ABXC,
ABCDEFG, ABXXXXXXC etc.

Underlying EDT concepts Searching with @ON

U41709-J-Z125-1-76 81

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.7.3 Negative searches

If the keyword NOT is specified in the @ON statement then the records and/or string
variables which do not contain the search term are identified. This is described in detail for
the individual formats of the @ON statement.

Example

The work file contains the following lines:

1.ABCD
2.ABCE
3.ABDE
4.ACDE

With @ON & PRINT NOT 'AB' only the 4th line would be output.

With @ON & PRINT NOT 'ABC', the 3rd and 4th line would be output.

3.7.4 Delimiter characters

On input, the search term is bounded by a delimiter character on both the left and right.
There are two different delimiter characters.

apostrophe (Default value ') specifies that text delimiter characters before or after the
search term should not be searched for in the search range. The start and
end of the hit string are therefore determined solely by the search term.

quotation mark
(Default value ") specifies that the hit string in the search range must be
bounded by a text delimiter character before and/or after the search term.
The start and/or end of the hit string are therefore defined by delimiter
characters or by the first or last column of the column range to be searched.

The settings for the delimiter character apostrophe and for the delimiter character quotation
mark can be modified using the @QUOTE statement.

The strings that are considered to be hits depend on the type of delimiter character used. If
the search term is enclosed in apostrophes then an occurrence of the search term in the
search range is considered to be a hit.
The wildcard asterisk has no significance if it occurs in the search term immediately next to
the delimiter character apostrophe.

If the search term's left-hand delimiter character is the quotation mark, then for the search
term to count as a hit it must be located either at the start of the line or a text delimiter
character must be located immediately in front of it.

Searching with @ON Underlying EDT concepts

82 U41709-J-Z125-1-76

If the wildcard character asterisk is located immediately after the delimiter character
quotation mark in the search term then the hit string extends to the next text delimiter
character before the search term. If there is no text delimiter character then the hit string
continues to the start of the line.

If the search term's right-hand delimiter character is the quotation mark, then for the search
term to count as a hit it must be located either at the end of the line or a text delimiter
character must be located immediately after it. If the wildcard character asterisk is located
immediately before the delimiter character quotation mark in the search term then the hit
string extends to the next text delimiter character after the search term.
If there is no text delimiter character then the hit string continues to the end of the line.

By default, EDT presets the set of text delimiter characters to the characters: blank (X'40')
and +.!*();-/,?:'=".
This character set can be redefined using the @DELIMIT statement.

To search for the delimiter characters apostrophe or quotation mark as part of a search term
then these must be specified in duplicate.

The first and last columns of a specified column range act as text delimiter characters
during the search in the same way as the start or end of a line.

The delimiter characters in a search term can be combined as desired.

Example 1

The work file contains the following lines:

1.ABCD
2.A,BCD
3.ABC,D
4.A,BC,D

With @ON & PRINT 'BC' 1 hit is identified in all 4 lines.
With @ON & PRINT "BC' 1 hit is identified in the 2nd and 4th lines.
With @ON & PRINT 'BC" 1 hit is identified in 3rd and 4th line.
With @ON & PRINT "BC" 1 hit is identified in the 4th line.

Example 2

The work file contains the following line:

1.XXX,ABCDEFGH-YYY
@ON 1 PRINT PATTERN 'EFG*"

The hit string is 'EFGH' since it extends to the right as far as the next text delimiter
character '-'.

@ON 1 PRINT PATTERN "*BCD'

The hit string is 'ABCD' since it extends to the left as far as the next text delimiter
character '-'.

Underlying EDT concepts Searching with @ON

U41709-J-Z125-1-76 83

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

Example 3

@ON & PRINT 'This ""string"" contains no ''X''.'

In this case, the search is conducted for the string

This "string" contains no 'X'.

3.7.5 Indirect specification of the search term

In the @ON statement, it is also possible to specify the search term via a line number, a line
number variable or a string variable (in each case a column specification is possible). The
line with the specified line number or string variable contains the search term.

Examples

@CREATE 6 : 'AB*C//D'
@ON 2-3 PRINT PATTERN 6:2-5:

The search term is therefore 'B*C/'.

@CREATE 1 : 'ABCDEFG'
@SET #L3 = 1
@ON 2-3 PRINT PATTERN #L3:4-7:

The search term is therefore 'DEFG'.

@SET #S0 = 'ABCD*E//F'
@ON & PRINT PATTERN #S0:3-8:

The search term is therefore 'CD*E//'.

In the case of an indirect specification, the search term is treated as if it were enclosed in
apostrophes. The search for text delimiter characters in search ranges is therefore not
possible in the case of indirect entry.

Searching with @ON Underlying EDT concepts

84 U41709-J-Z125-1-76

3.7.6 Search range

The @ON statement searches only in the specified search range.

Here, it is possible to specify one or more line ranges. A line range can also consist of just
a single line. The line ranges are searched through in the specified order. It is also possible
to specify a range of string variables for a line range.

An operand can be used to specify whether in each specified line range, the @ON
statement identifies only the first hit line or searches through all the lines in the line range.
By default, the @ON statement searches in all the lines in each specified line range.

Examples

@ON 1-3 FIND 'ABC'

In the @ON statement, only a single line range is searched.

@ON 1,2,3 FIND 'ABC'

The search range consists of three line ranges consisting of one line each. Depending
on the operands, the search result may be different from in the preceding example.

@ON #S01,#S03.-#S04 CHANGE 'ABC' TO 'DEF'

In the @ON statement, the string variables #S01, #S03 and #S04 are searched for a hit.

A column range can be specified for a search in a line. It is not permissible to specify
multiple column ranges. If no column range is specified then a default column range is used
(see @SEARCH-OPTION).

Examples

@ON &:15-15: CHANGE 'A' TO 'D'

In the @ON statement, only a single column is therefore examined.

@ON &:15-25: PRINT 'XYZ'

In the @ON statement, only a contiguous column range is therefore searched.

Underlying EDT concepts Searching with @ON

U41709-J-Z125-1-76 85

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
03

3.7.7 Other search parameters

Depending on the operands, the search range can be searched through from either left to
right or from right to left (R operand). By default, EDT searches the lines from left to right.

When a search is performed in a line, an operand can be entered to control as of how many
occurrences a search term is considered to be a hit. By default, the first occurrence of the
search term in a line is considered to be a hit.
Once the search term has been found, the @ON statement performs certain actions
depending on the format in question.

Then, depending on the operand specification (ALL operand), the search for further hits in
a line may be continued. In this case, the @ON statement takes account of the fact that the
individual hit strings may not overlap.
This also applies if the hit strings are of variable length because the wildcard asterisk is inter-
preted or because a search is performed for text delimiter characters.
If the search is performed from left to right, the @ON statement therefore continues after
the hit string. If the search is performed from right to left, the search for further hits is
restricted to the columns located in front of the hit string.
As of the search for the second hit, every further occurrence of the search term in a line is
considered to be a hit. By default, the @ON statement only identifies the first hit within a
line.

Searching with @ON Underlying EDT concepts

86 U41709-J-Z125-1-76

3.7.8 Recording a hit

EDT records the results of the search for hits in local switches or in variables.

@IF (format 3) can be used to query whether a hit was identified the last time the @ON
statement was run or whether the current work file was empty. If a hit was recorded, it is
also possible to query the number of the column in which the first hit string starts.

In addition, EDT records the results of the search operation in accessible variables.

The number of the line in which EDT identified the first hit is recorded in line number
variable #L0 and under the line number symbol '?'. If no hit is found or if the hit is identified
in a string then the values of #L0 and '?' remain unchanged.

The number of the column in which the search term begins on the first identified hit
(independently of whether this is a line or a string variable), is stored in the integer variable
#I0 and the number of the column in which it ends in the integer variable #I1.
If no hit is found, the values of #I0 and #I1 remain unchanged.
This also applies to hits found in a string variable.
@PRINT #L0:#I0-#I1 can be used to output the hit string on screen if the hit was located
in a line. If the operands V and ALL are specified then the number of hit lines or the number
of string variables which contain the search term is stored in the integer variable #I2 and
the total number of hits is stored in the integer variable #I3.
Independently of the specified character set, column specifications designate character
and not byte addresses.

In the case of a negative search, following the occurrence of the first record in which the
search term does not occur, the start position of the searched column range is recorded in
integer variable #I0 and the end position in integer variable #I1.

If the end position of the column range is greater than the record length then the record
length is stored in #I1.

Example

The work file contains a line with the string ’XXX-ABCD-YYY’.

Search term Hit string Content of #I0 and #I1
’ABC*Y“ ABCD-YYY #I0 = 5; #I1 = 12

’ABC*Y’ ABCD-Y #I0 = 5; #I1 = 10

"ABCD’ ABCD #I0 = 5; #I1 = 8

’*BCD’ BCD #I0 = 6; #I1 = 8

U41709-J-Z125-1-76 87

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
04

4 Using EDT
This section describes how EDT is integrated in the BS2000 system environment. This
includes the underlying processes involved in starting, terminating, interrupting and
monitoring EDT, an overview of the input and output flows and a presentation of the ways
in which the system can be protected against undesired access via EDT.

4.1 Starting EDT

Since EDT as of V17.0A can be run in two operating modes (see section “Introduction to
the EDT operating modes” on page 21), the EDT start commands have been extended
accordingly.

When starting EDT it is possible to decide whether to opt for compatibility and do without
the functional extensions – i.e. start EDT in compatibility mode – or to make use of the new
functions and accept the presence of certain incompatibilities – i.e. start EDT in Unicode
mode.

It is also possible to use EDT statements after start-up to switch between compatibility
mode and Unicode mode.
It is always essential to start in Unicode mode if you need to make use of the functional
extensions at the moment EDT is initialized, e.g. when running the EDT start procedure
(see “EDT start procedure” on page 72).
For details of the functional extensions and incompatibilities in Unicode mode and the use
of EDT statements to switch between modes, see section “Introduction to the EDT
operating modes” on page 21 and chapter “Compatibility mode” on page 611.
The start process in Unicode mode is described below.

For information on starting EDT in compatibility mode, see section “Compatibility mode” on
page 611.

Starting EDT Using EDT

88 U41709-J-Z125-1-76

4.1.1 The EDT start command

As of EDT V17.0A, EDT can be loaded and started in Unicode mode using the command
/START-EDTU.
The /START-EDTU command makes it possible to select a specific EDT version if multiple
versions coexist. /START-EDTU considers only EDT versions greater than or equal to
V17.0A.
The /START-EDTU command may only be used under user IDs which have the necessary
privileges (see section “Access protection” on page 99).

The alias for the /START-EDTU command is /EDTU.

VERSION =
Product version of EDT that is to be started.

VERSION = *STD
The version defined by the command /SELECT-PRODUCT-VERSION is selected. If there is
no defined version, the system selects the highest possible version.

VERSION = <product-version 6..10> /
<product-version 4..8 without-correction-state> /
<product-version 3..7 without-manual-release>

Explicit specification of the product version.

MONJV = *NONE / <full-filename 1..54 without-gen-vers>
Name of the job variable which is to monitor the EDT session. The job variable must have
been cataloged beforehand (only for users of the JV software product [9]). For a detailed
description, see section “Monitoring the EDT session with monitoring job variables” on
page 96.

MONJV = *NONE
No job variable is used for monitoring.

START-EDTU Alias: EDTU

VERSION = *STD / <product-version 6..10> /<product-version 4..8 without-correction-state> /
<product-version 3..7 without-manual-release>

,MONJV = *NONE / <full-filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767>

,PROGRAM-MODE = *ANY / 24

Using EDT Starting EDT

U41709-J-Z125-1-76 89

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
04

CPU-LIMIT = *JOB-REST / <integer 1..32767>
The CPU time which EDT is allowed to use for execution. If this time is exceeded, then the
system informs the user of this in interactive mode. In batch mode, the session is
terminated.

CPU-LIMIT = *JOB-REST
If the operand CPU-LIMIT=STD has been specified in the /SET-LOGON-PARAMETERS
command then the program is not subject to any time restriction.
If the operand CPU-LIMIT=t has been set in the /SET-LOGON-PARAMETERS command, the
value defined during system generation is used as the time restriction for the EDT session.

PROGRAM-MODE =
Defines the addressing mode in which EDT is to run.

PROGRAM-MODE = *ANY
EDT is loaded in the upper address space and runs in 31-bit mode.

PROGRAM-MODE = 24
EDT is loaded in the lower address space and runs in 24-bit mode. If EDT is loaded in the
upper address space as a subsystem then a private copy is dynamically loaded into the
lower address space.

In interactive mode, EDT is started by default in F mode (full-screen mode, see section “F
mode” on page 101), while in batch mode the default start mode is L mode (line mode, see
section “L mode” on page 126).

If job switch 5 is set (see section “Job switches” on page 98) then L mode is also used for
interactive mode. In this case, EDT uses RDATA to read input from SYSDTA.

EDT's mode of operation is also influenced by the declaration of the user's default character
set with the /MODIFY-TERMINAL-OPTIONS command and by the character set defined for
SYSDTA (for more information, see sections “Introduction to the EDT operating modes” on
page 21 and “Character sets” on page 47).

The following initialization steps are executed during the EDT start phase:

1. Take over S variables defined via SDF-P into EDT string variables (see below)
2. Execute the EDT start procedure (see section “EDT start procedure” on page 72)

Processing takes place in the specified order. When EDT is started as a subroutine, these
initialization steps are not performed.

When EDT is started, the string variables #S00..#S20 are initialized. If one or more of the
S variables SYSEDT-S00..SYSEDT-S20 exist and are of STRING type then their content is
assigned to the corresponding string variables. The content of S variables of other types is
not taken over.

Since it is not possible to specify a character set at this point, the string variables are
assigned the character set EDF041.

Starting EDT Using EDT

90 U41709-J-Z125-1-76

4.1.2 Calling EDT as a main program

For reasons of compatibility, it is still possible to call EDT using /START-PROGRAM. EDT is
then loaded as a main program with one of the following BS2000 commands and is started
in Unicode mode:

4.1.3 Calling EDT as a subroutine

EDT cannot only be called as a main program but can also be called as a subroutine by a
user program.

The process of calling EDT as a subroutine is described in the manual "EDT Subroutine
Interfaces" [1].

For a discussion of the specific considerations relating to the interaction between Unicode
mode and EDT as a subroutine, see “Subroutine interfaces and operating modes” on
page 616.

Command AMODE
START-PROGRAM $.SYSPRG.EDT.170.EDTU AMODE 31
START-PROGRAM
*MODULE ($.SYSLNK.EDT.170,EDTCU, RUN-MODE=*ADVANCED)

AMODE 24

Using EDT Interrupting and terminating an EDT session

U41709-J-Z125-1-76 91

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
04

4.2 Interrupting and terminating an EDT session

The next two sections describe the special considerations to be borne in mind when inter-
rupting or terminating EDT.

4.2.1 Interrupting an EDT session

In both F mode and L mode, the EDT session can be interrupted by means of @SYSTEM
or by pressing [K2]. In both cases EDT remains loaded.

If, during the period of interruption, other programs are loaded via the BS2000 command
interface (e.g. with /START-PROGRAM or /LOAD-PROGRAM) or if procedures are started
which load other programs then EDT is unloaded without any query being issued and it is
then not possible to continue the EDT session.

It is possible to return to the interrupted EDT work mode using the /RESUME-PROGRAM
command. The /RESUME-PROGRAM command continues the EDT session at the point
where it was interrupted.

In F mode, if the work window in which the EDT session was interrupted is not displayed or
is incomplete following /RESUME-PROGRAM, then the original content can be restored by
pressing [K3]. If EDT is interrupted using [K2] then all input which has not yet been trans-
ferred is lost.

It is also possible to continue an interrupted EDT session mode using the
/INFORM-PROGRAM command. When this is done, any message passed in the command is
ignored.

If the @SYSTEM statement was specified in a statement sequence in F mode or in an input
block in L mode (BLOCK mode) and /INFORM-PROGRAM is used to return to EDT after the
interruption then a message is output and the remainder of the statement line or input block
after @SYSTEM is not executed.

If, at the time of interruption, EDT had not yet fully processed the lines in a @DO or
@INPUT procedure then the interrupted processing is aborted following a return with
/INFORM-PROGRAM. A message is output and the remaining lines are not executed.

If a line range is being executed in an EDT statement at the time of interruption then
execution of the statement is usually aborted and a message output on return to EDT with
/INFORM-PROGRAM.

Note
The EDT run cannot be interrupted if EDT was started within a BS2000 system
procedure protected against interruption by means of the setting INTERRUPT-
ALLOWED=NO (see section “Access protection” on page 99).

Interrupting and terminating an EDT session Using EDT

92 U41709-J-Z125-1-76

4.2.2 Terminating an EDT session

The statements @HALT, @RETURN (outside of procedures), @EXEC and @LOAD and,
in F mode, the [K1] key terminate EDT normally. When this is done, EDT closes all open
files.

In interactive mode, it may also be possible to terminate EDT with @END. In L mode, the
messages

% EDT4939 '@END' WITHOUT '@PROC' STATEMENT
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

are first output to prevent any unintentional termination of EDT.

If EDT is running a screen dialog (after @DIALOG), then the statements @HALT,
@RETURN (outside of procedures), @END and the [K1] key terminate the screen dialog
but not EDT itself. In this case, the user is not asked to confirm.

@HALT ABNORMAL can be used to force an abnormal termination of the EDT session if
EDT was started as a main program. If EDT was started as a subroutine, @HALT
ABNORMAL returns control to the calling program and issues a special return code.
If there are any unsaved work files when termination is requested, EDT is not immediately
terminated if it is running in interactive mode. After the message

% EDT0900 EDITED FILE(S) NOT SAVED!

the numbers of the work files containing unsaved data are output. The user then sees the
following query:

% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

If the user replies N, the EDT session continues and the user can resume work, for example
by writing back as yet unsaved files. If the user replies Y the unsaved work files are lost and
EDT is terminated.

In F mode, if EDT is terminated with the [K1] key then the confirmation query

% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

is output in the work window's message line even if there are no open work files.

When EDT is terminated, the content of the string variables #S00..#S20 is assigned to the
corresponding S variables SYSEDT-S00..SYSEDT-S20 if these exist and if they are able to
accept a value of type STRING. The values of the string variables are passed in the
character set EDF041. If conversion errors occur, the value is not transferred. If the value is
more than 4096 bytes long then it is truncated and only the first 4096 bytes are transferred.
No messages are output. This assignment step is omitted if it has already been performed
manually using @SETVAR with the KEEP operand or if EDT was started as a subroutine.

Using EDT Interrupting and terminating an EDT session

U41709-J-Z125-1-76 93

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
04

If the event Program runtime exceeded occurs (EDT runtime exceeds the value specified for
CPU-LIMIT in the /START-PROGRAM command), then a message is output to SYSOUT and
EDT is terminated abnormally if it is running in batch mode.

If the interrupt event PROCHK (program error) or ERROR (unrecoverable program error)
occurs and the EDT data area is still addressable then message EDT8910 is output and
specifies the program counter and interrupt weight. A memory dump is generated and EDT
is terminated abnormally.

To control system procedures in which EDT is called, information about the cause of EDT
termination and about the EDT session is provided both in the event of normal termination
with @HALT, @RETURN (in interactive mode, also with @END), or abnormal termination
brought about by the system or by the user with @HALT ABNORMAL.

This information is not available if the EDT session is aborted with the @EXEC or @LOAD
statements or with the BS2000 /CANCEL-PROGRAM command or if EDT is unloaded by
means of another BS2000 command.

Interrupting and terminating an EDT session Using EDT

94 U41709-J-Z125-1-76

4.2.3 EDT command return code

EDT supplies a command return code that can be used by SDF-P for the control of S proce-
dures. The command return code makes it possible to react specifically to certain error
situations.

The command return code consists of three parts:

– the main code which corresponds to a message code by means of which more detailed
information can be queried using the command HELP-MSG-INFORMATION

– subcode1 (SC1) which assigns the error situation that has occurred to an error class
which makes it possible to estimate the severity of the error

– subcode2 (SC2) which may contain additional information (value other than null)

For information on the messages and message levels, see section “Message texts” on
page 638.

If EDT is terminated abnormally, it is possible to query the components of the return code
using the SDF-P functions SUBCODE1(), SUBCODE2() and MAINCODE().

SC2 SC1 Main code Meaning
0 0 EDT8000 Normal termination of the EDT session. No messages

were issued.
2 0 EDT8000 Normal termination of the EDT session. Only messages

of message severity 0, 1, 2 were issued (information,
warnings, no syntax errors)

5 0 EDT8000 Normal termination of the EDT session. At least one
message of message severity 4 or 5 occurred (function or
execution errors, no syntax errors)

10 0 EDT8000 Normal termination of the EDT session. At least one
message of level 3 severity was issued (syntax error in a
statement)

50 64 EDT8101 Abnormal termination by the user
(@HALT ABNORMAL)

100 64 EDT8200 Abort due to time overrun (program runtime exceeded)
100 64 EDT8292 Read error. Program aborted.
100 64 EDT8293 Write error. Program aborted.
150 64 EDT8910 Program interruption.

Abnormal abort with memory dump
150 64 EDT8001 Abnormal termination after program interruption
200 64 EDT8002 Error in dynamic loading of EDT mode.
200 64 EDT8003 Insufficient virtual memory available
200 64 EDT8005 EDT initialization error
200 64 EDT8006 Installation error

Using EDT Interrupting and terminating an EDT session

U41709-J-Z125-1-76 95

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
04

If EDT is terminated normally, the /SAVE-RETURNCODE command can be used to save the
return code for evaluation (for more detailed information on command return codes and for
querying return codes, see the SDF-P User Guide [7]).

Example for the querying of return codes

/MODIFY-JOB-SWITCHES ON=5
/START-EDT
@LOG NONE
@...
@DIALOG
@...
@HALT
/SAVE-RETURNCODE
/IF-BLOCK-ERROR
/ WRITE-TEXT 'ERROR: &SUBCODE1, &SUBCODE2, &MAINCODE'
/ELSE
/ WRITE-TEXT 'EDT TERMINATED NORMALLY'
/ IF (&SUBCODE2 > 5)
/ WRITE-TEXT 'A SYNTAX ERROR HAS OCCURRED'
/ RAISE-ERROR MAINCODE=EDT3002
/ END-IF
/ ...
/END-IF
/HELP-MSG-INFORMATION &MAINCODE
/MODIFY-JOB-SWITCHES OFF=5

Monitoring the EDT session with monitoring job variables Using EDT

96 U41709-J-Z125-1-76

4.3 Monitoring the EDT session with monitoring job variables

EDT execution can be monitored with a BS2000 job variable.

/START-EDTU MONJV=jvname

If a monitoring job variable is specified when EDT is started then this is filled with a value
when EDT terminates.

The value of the job variable consists of

– a 3-byte status display,

– a 4-byte return code display,

The following table indicates the values which EDT may assign to the job variable.

The value and meaning of the last 3 digits of the return code correspond to subcode 2 (SC2)
of the command return code.

Error class Termination Status
indicator

Return
code

Spin-off
mechanism

No message
Note
Function error
Syntax error

Normal $T 0000
1002
1005
1010

No

Interruption Abnormal
by the user

$A 2050 Yes

Fatal
Fatal with DUMP
Initialization error

Abnormal 2100
2150
3200

Using EDT Input and output

U41709-J-Z125-1-76 97

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
04

4.4 Input and output

Input to EDT may take the following form

– from the screen (primary source)
– from the system file SYSDTA
– from a SAM or ISAM file
– from a library element
– from a POSIX file
– from another EDT work file (@DO procedure)

When reading input, EDT distinguishes between data (texts) and statements.

Whether EDT reads from the terminal or from SYSDTA depends, on the one hand, on the
system environment (dialog or batch mode) and, on the other, on the EDT work mode
(F mode or L mode) (see section “EDT work modes” on page 101). The work modes can,
in turn, be set by means of job switches (see section “Job switches” on page 98) and state-
ments (@EDIT statement).

The other input sources must be explicitly declared in a statement (see the statements
@OPEN, @COPY, @READ, @GET, @XOPEN, @XCOPY, @INPUT, @DO)

Output from the EDT may take the following form:

– to the screen (primary target)
– to the system file SYSOUT
– to a SAM or ISAM file
– to a library element
– to a POSIX file
– to the system file SYSLST

Whether EDT writes to the terminal or to SYSOUT depends, on the one hand, on the system
environment (dialog or batch mode) and, on the other, on the EDT work mode. The work
modes can, in turn, be set by means of job switches (see section “Job switches” on
page 98) and statements (@EDIT statement).

The other output targets are declared either directly or indirectly in a statement (see the
statements @CLOSE, @WRITE, @SAVE, @COPY, @XCLOSE, @XWRITE, @PRINT,
@LIST)

For details, see chapter “File processing” on page 131.

Job switches Using EDT

98 U41709-J-Z125-1-76

4.5 Job switches

There are 5 job switches whose settings are evaluated by EDT for runtime control
purposes. Before the EDT session, the switches can be set or reset using the system
command /MODIFY-JOB-SWITCHES. During the EDT session, this is possible using
@SETSW.

4.5.1 Job switch 4

If job switch 4 is set before EDT is loaded then, after loading, the messages of the dynamic
binder loader (BLS05xx), the EDT start message in L mode (EDT0001) and, on EDT termi-
nation, the message

% EDT8000 EDT TERMINATED

are not output. The following messages are also not issued:

% EDT0900 EDITED FILE(S) NOT SAVED!
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

If job switch 4 is set before EDT is loaded in batch mode then @LOG NONE is set, i.e. no
logging is performed during the EDT session.

4.5.2 Job switch 5

If job switch 5 is set when EDT starts then L mode is used. EDT uses RDATA to read input
from SYSDTA. The same effect (reading from SYSDTA with RDATA) can be achieved by
entering @EDIT ONLY at the screen. Instead of the current line number, EDT outputs * as
a prompt in interactive mode.

Changing the setting of this switch during the EDT session has no effect.

An explicit switchover (with @EDIT without operands in L mode or with @EDIT FULL
SCREEN in F mode) is nevertheless still possible.

4.5.3 Job switch 6

If output is sent to SYSLST (e.g. @LIST statement), EDT normally writes no more than 132
characters per line. If job switch 6 is set then EDT writes up to 160 characters per line.
Longer outputs are distributed over multiple lines.

Job switch 6 must already be set when EDT is started.

Using EDT Access protection

U41709-J-Z125-1-76 99

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
04

4.5.4 Job switch 7

This job switch can be set either before EDT starts or during the EDT session. It prevents
EDT from automatically releasing previously assigned disk space after writing SAM or ISAM
files. Normally, EDT releases unoccupied disk space using the FILE macro (see chapter
“File processing” on page 131).

4.5.5 Job switch 8

In batch mode, EDT writes messages and outputs a series of statements (e.g.: @STATUS)
to SYSLST. If job switch 8 is set then EDT writes this output to SYSOUT (see section “System
files” on page 149).

Job switch 8 must already be set when EDT is started.

4.6 Access protection

 There are two ways of protecting the system against unauthorized access via EDT.
– EDT may only be started if the user ID possesses a specific privilege.
– Protection by means of uninterruptible BS2000 system procedures which check which

EDT statements are called

4.6.1 Constraints for privileged user IDs

The /START-EDTU command can be entered under all user IDs which possess the privilege
TSOS and/or STANDARD-PROCESSING. If a user ID has only one or more of the following
privileges, then EDT is started but any statements with security implications are rejected.

Privilege Meaning System ID
HARDWARE-MAINTENANCE Hardware online maintenance $SERVICE
SECURITY-ADMINISTRATION Security administration $SYSPRIV
SAT-FILE-MANAGEMENT Management of SAT files $SYSAUDIT
SAT-FILE-EVALUATION Evaluation of SAT files $SYSAUDIT

Access protection Using EDT

100 U41709-J-Z125-1-76

The following statements have security implications for user IDs with these privileges:

If used with the above-mentioned user IDs, these statements are rejected with error
message EDT4976.

4.6.2 Uninterruptible procedures

If BS2000 system procedures are protected against interruption by the caller by means of
INTERRUPT-ALLOWED=NO then the following applies to EDT:

– It is not possible to switch to system mode by means of [K2].

– If EDT procedures are aborted by means of [K2] then EDT issues the message
EDT0913 to ask whether any actions are to be performed.

– In interactive mode and when input is read from a file (read with RDATA from SYSDTA,
processing of an EDT start procedure), the statements with security implications –
@SYSTEM, @EXEC, @RUN, @LOAD, @UNLOAD and @USE – are rejected unless
the statements are issued by the protected procedure itself (SYSDTA=SYSCMD).

Statement Meaning
@EXEC Start program
@LOAD Load program
@RUN Run a user program as a subroutine
@SYSTEM Issue system commands
@UNLOAD Unload program
@USE Define external statement routines

U41709-J-Z125-1-76 101

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5 EDT work modes
EDT offers two work modes for processing data:

– In FULL-SCREEN mode (F mode) the whole screen is available in 23 work files (0-22)
for the input of data and statements.

– In LINE mode (L mode), there are 23 work files (0-22) but only one screen line is
available for the entry of data and statements at any time.
To make it possible to distinguish between records and statements, statements must
start with the statement symbol (by default: @) or with the user statement symbol
(see @USE statement, page 547).

5.1 F mode

In F mode, EDT provides screen-oriented file processing for SAM and ISAM files, library
elements and POSIX files. A total of 23 work files (0-22) are available to the user.

Screen-oriented means that in the data area that is displayed on the screen,

– the data can be overwritten in any order
– text can be deleted and inserted anywhere in a screen line
– text can be entered at the end of the file or in newly inserted screen lines

In addition to the possibility of making changes directly at the screen, users can control file
processing by means of:

– statements entered in the statement line
– statement codes entered in the statement code column
– statements entered in the data window (e.g. division of lines)
– record mark
– function keys

The formatted screen output is referred to as the work window. This displays the data of the
work file which has been written to this file by means of screen input or by reading SAM or
ISAM files, library elements or POSIX files.

It is possible to switch from F mode to L mode (see @EDIT).

F mode EDT work modes

102 U41709-J-Z125-1-76

Supported terminals

In EDT's F mode, the characteristics of the employed terminal are clearly of special impor-
tance. EDT was designed for the 8160 and 9750 terminals and upwardly compatible
devices as well as for the corresponding terminal emulations and the associated character-
istics.

It is usually only possible to work purposefully with Unicode files if using a terminal
emulation which permits the input of Unicode characters and which is also able to display
these characters correctly in the screen window (e.g. MT9750 as of V7.0 with terminal type
9763 and Unicode terminal mode). The 3270 terminal is no longer supported in the EDT
Unicode mode. It can, however, still be used in compatibility mode.

During data transfer with a terminal, it is only ever possible to use one character set per
dialog step. A dialog step with a different character set modifies the terminal display globally
and not just the presentation of the most recently transferred data. This results in the screen
being deleted and then reconstructed.

Since EDT permits the simultaneous processing of work files which are coded in different
character sets, it must be possible to define the character set used for communication with
the terminal independently of the currently visible work files (in particular if the terminal does
not support the work file's character set). This is done using the @CODENAME statement
(format 2).

This statement simply modifies the screen display and possibly also the interpretation of the
screen input. It does not modify the character set used in the work files or the character set
of the underlying DMS file “Character sets” on page 47).

EDT work modes F mode

U41709-J-Z125-1-76 103

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.1 The work window

The work window subdivides the screen into fields with different functions. The diagram
below indicates the structure of the work window with line number display active.

The display at the terminal is always constructed using the communications character set
specified for the terminal. This can be selected automatically by EDT or set explicitly by the
user with the @CODENAME statement (format 2) (see also section “Communications
character set” on page 53).

A valid character set that has been explicitly specified using @CODENAME name,
TERMINAL is always set independently of the content of the work files and of the character
sets defined for these work files. This character set remains valid until the user changes it
again or reactivates EDT's automatic character set selection capability with @CODENAME
*AUTO, TERMINAL.
When EDT starts, the character set declared by means of /MODIFY-TERMINAL-OPTIONS
is specified.

A = Statement code column
A + B = Line number display
C = Data window
D = Statement line
E = Status indicator

B C

D E

A

F mode EDT work modes

104 U41709-J-Z125-1-76

If EDT's automatic character set selection capability for communications with the terminal
is active then EDT proceeds as follows:

– If the terminal supports the display of Unicode character sets then the character set
UTFE is defined as the communications character set even if it differs from the character
set declared in /MODIFY-TERMINAL-OPTIONS.

– If the terminal supports 8-bit character sets (but not Unicode), the character set
declared by means of /MODIFY-TERMINAL-OPTIONS is defined. If 7-BIT is specified,
EDF03IRV is used as the communications character set, otherwise the specified
character set is used.

– If the terminal can only operate in 7-bit mode, EDF03IRV is used.

In certain situations, EDT's automatic character set selection capability results in the
communications character set being changed in order to optimally adapt the depiction to
the displayed contents. A switchover may occur whenever the current work file is changed
or when the EDT automatic character set selection capability for communications with
terminals is activated (switched on).

– If the terminal supports the display of Unicode character sets then UTFE is set immedi-
ately (even without a change of work file).

– If the terminal supports the display of Unicode character sets then the definition of the
communications character set is not modified when the work file is changed. If the
terminal can only operate in 7-bit mode, the communications character set never
changes.

– If the terminal supports 8-bit character sets (but not Unicode) then the defined character
set is the one declared for the work file displayed in the (topmost) work file provided that
this character set is supported by the terminal.
If this character set is an EBCDIC or Unicode character set and is not supported by the
employed terminal then EDF041 is set. If it is an ISO character set then the data is
converted to EBCDIC in a way which is transparent to the user and the EBCDIC
character set which is assigned to the ISO character set is used.
If the work file displayed in the (topmost) work window is empty and has the character
set *NONE then the character set declared by means of /MODIFY-TERMINAL-OPTIONS
is used.

The character set specified for output also defines the character set in which input at the
terminal arrives at EDT.
Independently of this character set which is used for transfer purposes, it may nevertheless
be necessary to reinterpret the input depending on whether or not it is to be evaluated
globally (statement codes, file names in statements etc.) or refers to objects with a separate
character set (work files, string variables etc.). The rules for this interpretation of the input,
in particular in the case of literals, are described in section “Character sets” on page 47.

EDT work modes F mode

U41709-J-Z125-1-76 105

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.1.1 Statement code column

Functions can be triggered by entering single-character statement codes in the statement
code column.

In the default setting, when records are displayed in the data window, the statement code
column can be overwritten while the data window is protected against overwriting. The data
window lines are set to overwritable only when statement codes are entered in the
statement code column or when data is transferred with [F2]. It is not then possible to
specify any statement codes in the overwritable screen lines.

As an alternative to the default setting, the statement @PAR EDIT-FULL=ON can be used
while the line number display is active (@PAR INDEX=ON) to set the data window and the
statement code column to overwritable. It is then possible to enter a statement code and at
the same time modify data in this screen line (see @PAR EDIT-FULL).

Invalid entries in the statement code column can be deleted by overwriting them with blanks
or NULL characters.

5.1.1.2 Line number display

When EDT is called, the line number display is active by default. It can be deactivated using
@PAR INDEX=OFF.

With the exception of the start of the line number display which is also the statement code
column, it is not possible to overwrite the line number display.

Line numbers are displayed in 6-digit form. Four of these digits precede the decimal point
and two follow it. A non-overwritable blank separates the line number from the data line.

The complete line number with its total of four digits after the decimal point is displayed in
L mode.

5.1.1.3 Data window

In the data window, the current work file is displayed on the screen. A work file consists of
records. These records are output in the data window's screen lines and a record may be
longer than a single screen line. In this case only part of the record is visible in the data
window. The data window represents a section of the work file. However, it can be moved
to a new position in the work file.

Provided that their length does not exceed the number of characters that can be displayed
at the terminal, records that are longer than a data window line can be displayed in full in
EDIT-LONG mode (see @PAR EDIT-LONG).

F mode EDT work modes

106 U41709-J-Z125-1-76

If the file contains fewer records than the data window has lines, the remaining lines are
filled with the filler character (by default the NULL character) and are set to overwritable.
These lines are already sequentially numbered with the set default standard increment. The
same depiction is also used if the data window is positioned so close to the end of the file
that there are fewer records to be displayed than there are lines present in the data window.

When EDT is called, the empty work file 0 is displayed on the screen.

By default, the records in the data window cannot be overwritten. Before they can be
modified, individual records must be set to overwritable using the statement codes X or E or
all the data window lines must be set to overwritable with [F2]. In EDIT-FULL mode, which
is set with @PAR EDIT-FULL=ON, all the records in the data window are overwritable at all
times. In EDIT-FULL mode, statement codes can be entered in the statement code column
at the same time as entries for the same line are made in the data window (see @PAR
EDIT-FULL).

The function keys [F1] to [F22] as well as the [DUE] and [DUE2] keys can be used to
transfer input to the terminal. The keys [K1] to [K15] do not transfer the input and any
entered text is lost. Some function keys also trigger special actions in EDT, for more infor-
mation see sections “Function keys in F mode” on page 123 and “Function keys in L mode”
on page 128.

Empty lines and new lines

The files that are to be processed by EDT may contain records of length 0. In the case of
POSIX or SAM files, the records genuinely have length 0. In the case of ISAM files with
standard attributes, the records may have the length 8 or 16 (in the case of files coded in
UTF16).

To permit the depiction of records of length 0 in the data window, EDT in Unicode mode
indicates the end of the record using a terminal-specific character [LZE] (Logical Line End).
The terminal fills the remainder of the screen to the right of [LZE] with protected NULL
characters (X'00'). If the end of the record is located outside of the data window then [LZE]
is not depicted and the screen line then ends with the last character of the record that is still
visible or consists only of NULL characters. A record of zero length is therefore depicted in
the data window by a screen line which consists only of the character [LZE] in column 1 and
protected NULL characters (empty line). If [LZE] is entered in column 1 of a screen line then
a record of length 0 is created for this line in the work file.

Empty lines should be distinguished from new lines which EDT provides in F mode after the
last record in the file or during the processing of the statement codes 1..9 or I. These
screen lines do not (yet) correspond to any record in the work file and consist only of NULL
characters (X'00') without [LZE] (and can be overwritten).

EDT work modes F mode

U41709-J-Z125-1-76 107

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

The [LZE] character can usually be omitted during input. It only has to be entered when the
record is intended to end with NULL characters. EDT ignores NULL characters at the end of
the entered screen line, i.e. all the NULL characters up to the first character which is not
NULL (this can be an [LZE] or another character) are truncated from the right. The [LZE]
itself is not taken over into the record. Since new lines only consist of NULL characters they
are ignored overall on input and are not inserted in the work file. In contrast, entering an
[LZE] in column n of a new line would cause a record with n-1 filler characters (default
value: blank) to be inserted in the work file after data transfer. In particular, a record of length
0 would be inserted for n=1.

The terminal does not permit any entries to the right of the [LZE] character in a screen line
When adding entries to a line, it is therefore necessary to activate the terminal insertion
mode or to overwrite the [LZE] character.

Treatment of filler characters in the data window

Since the [LZE] deletes the remainder of the screen line at the terminal, it is not possible to
display any characters in the remainder of the line apart from the character specified for the
terminal at the hardware level (normally NULL). The EDT statement @SYMBOLS FILLER
can therefore no longer be used in Unicode mode to define the filler character displayed
between the end of the record and the end of the screen line in F mode. However, for
reasons of compatibility, the filler character specified in this way (default value: NULL) is still
replaced by a blank on entry within a record. If all the characters entered in a record, i.e.
including the NULL characters, are to be taken over unchanged into the work file, the
@SYMBOLS FILLER='Ë' statement must be used to change the filler character to blanks.

Treatment of NULL characters in the data window

If a screen line only contains NULL characters, i.e. no [LZE], and if the displayed section
comprises the entire record then the screen line is not taken over into the work file or is even
deleted from it when it existed before.

When a record is entered (typed into an empty file, appended at the end of a file, inserted
in screen lines which are provided for insertion after one of the statement codes 1..9 or I),
NULL before or between other characters (including before [LZE]) are converted into blanks
unless @SYMBOLS FILLER has been used to specify a character other than NULL as the
filler character (see above).

NULL characters at the end of a screen line are ignored. In the case of records which are
longer than the section that can be displayed on the screen, NULL characters at the end of
the screen line cause the remaining text to be placed at the first location that is not equal to
NULL, thus shortening the record. This mechanism is particularly common when performing
insertions with the statement code E.

F mode EDT work modes

108 U41709-J-Z125-1-76

The statement code D should always be used to delete an entire record. The [LZE] and
[LZF] keys can be used to delete sections of a record and operate as follows:

– [LZE] deletes all the characters in the record as of the specified position (including the
characters to the right outside of the section displayed on screen). If an entry is made
in column 1 of the screen line, a record of length 0 is entered in the work file. [LZE] can
therefore never be used to delete an entire record.

– [LZF] deletes only the remainder of the screen line; any characters in the record outside
of the screen line are pulled in from the right in the next dialog step. If the displayed
section comprises the entire record and contains only NULL characters after the delete
operation, i.e. it also contains no [LZE], then the entire record is deleted and removed
from the work file. In this case, [LZF] has the same effect as the statement code D.

Nondisplayable characters in the text

If a file contains characters which cannot be displayed on screen then these characters are
output as the device-specific smudge character which is set as the SUBSTITUTE-
CHARACTER in /MODIFY-TERMINAL-OPTIONS.

If such a record is modified, the original character, not the smudge character, is entered in
the file. If the position of the smudge character in the record changes due to insertion or
deletion ([EFG] / [AFG]) then a question mark '?' is entered at the position of the smudge
character and the line is displayed in protected mode with a '?' in the statement code
column. The original content of the record remains intact.

Warning
If insertion or deletion results in the position of the smudge character moving to a
location at which another smudge character was previously present, EDT cannot tell
whether the character in question is the original or the displaced smudge character. In
this case, the change is not indicated by a question mark '?' and the content of the
record may change in ways which were not intended.

Note
In LOWER OFF mode, lowercase letters in the file are output as smudge characters. This
is intended to remind users that they have activated the wrong mode. Texts which
contain nondisplayable characters should entered in HEX mode (see @PAR HEX) or via
the substitute representation (see below).

EDT work modes F mode

U41709-J-Z125-1-76 109

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.1.4 Statement codes in F mode

Statement codes are single-character statements. They are entered in the statement code
column. Statement codes are not case-sensitive.

The summary below presents the statement codes by thematic group.

Statement codes used to position the work window

Statement codes used to copy and move records

Statements codes for record processing

Statement code Function
+ / - Position the work window (vertically)
+ / - [F1] Position the work window in accordance with the structure depth
S Position the work window interactively (horizontally and vertically)

Statement code Function
* Delete the copy buffer
C Collect lines for copying
R Collect lines for multiple copying
M Collect lines for moving
A Copy/move after a line
B Copy/move before a line
O Copy/move on a line range (O = on)

Statement code Function
D Delete records
J Join two records
L Convert records into lowercase
U Convert records into uppercase
X Modify records
H Display/modify records in hexadecimal mode
E Insert characters
1..9 Insert data lines
I Activate the permanent insert function

F mode EDT work modes

110 U41709-J-Z125-1-76

Statements codes used to handle record marks

Other statement codes

A detailed description of the individual statement codes can be found in chapter “Statement
codes in F mode (alphabetical)” on page 569.

Syntactic and semantic checks

The first step before processing the entries in a work window is to check the syntax and
semantics of the statement codes (see the section describing the processing sequence). If
invalid statement codes or invalid combinations (e.g. M followed by C, see below) are found
then the subsequent input processing steps are not performed. A '?' is output in place of
the invalid statement codes and the cursor moves to the first invalid statement code.

Permitted combinations of statement codes in a work window

A distinction is made between the following cases when processing the statement code
depending on the function key used for data transfer and/or the entered statement codes.

1. If [F3] is used then EDT only accepts statement codes which can be sent using [F3]
(statements for setting and deleting record marks). These can be combined in any
desired way. If illegal statement codes are sent with [F3] then EDT considers these to
be invalid, marks them with '?' and aborts the further processing of the input.

2. If [F1] is used then EDT only accepts statement codes which can be sent using [F1] (+
or - for positioning on the basis of the structure depth). Only one of these is permitted
per work window. If illegal statement codes are sent with [F1] then EDT considers these
to be invalid, marks them with '?' and aborts the further processing of the input.

3. If the statement codes are sent with [DUE] or a function key other than [F1] or [F2] then
the table below indicates which statement codes may be combined within a work
window. When reading the table, it should be borne in mind that a statement code
indicated in a row in the table should be entered in the statement code column of the
same work window above the statement code indicated in the table column. Statement

Statement code Function
D [F3] Delete a record mark
1..9 [F3] Set a record mark

Statement code Function
K Copy a line to the statement line
T Syntax test by SDF

EDT work modes F mode

U41709-J-Z125-1-76 111

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

codes can be combined (in this sequence) if there is no entry at the intersection
between the two codes in the table. An X at the intersection means that they cannot be
combined. Special cases are indicated by a lowercase letter and are annotated below.

a) If a syntax error occurs in the SDF statement tested with T then + or - ignored.

b) If neither C nor M nor O is specified at the same time as * then the message EDT5360 is
issued informing the user that the copy buffer has been emptied and can no longer be
copied.

+ * - A B C D E H I J K L M O R S T U X 1..9
+ X X X a
* X b b b
- X X X X X X a X X
A b
B b
C X X
D
E X X X X
H X X X X
I X X X X X
J
K X
L
M X X
O b
R X X
S X X X X X X X X X
T X X X X X X X X
U
X X X X X

1..9 X X X X

F mode EDT work modes

112 U41709-J-Z125-1-76

Processing sequence during the processing of statement codes

If multiple statement codes that can be combined with one another are entered in a work
window's statement code column then they are processed in the following sequence:

– all D statement codes
– the * statement code for deleting the copy buffer
– the K statement code
– all C, M and R statement codes for making entries in the copy buffer
– all U and L statement codes
– all J statement codes for joining two records
– all A, B, O statement codes for copy and move operations
– all T codes for testing SDF syntax
– the + and - statement codes for positioning
– the S statement code
– all the following statement codes: X (modify), H (modify, hexadecimal), E (insert

characters), 1..9 and I (insert lines)

The statement codes X, H, E and I as well as 1..9 are processed from top to bottom in a
work window. The statement codes X, H and E after I or 1..9 may be lost if the lines can
no longer be displayed on screen due to the insertion area. No warning is issued.

The statement line is evaluated after the statement codes have been processed (see
section “Processing sequence” on page 115).

5.1.1.5 Statement in data window – splitting a record

@PAR SEPARATOR can be used to define a freely selectable record separator. If this
record separator is entered in a screen line in the data window then the record is split at this
point.

Several split points can be defined in one and the same record. The first part of the record
retains the originally assigned line number. The following record parts are inserted as new
records. Line numbers are assigned using the procedure Insertion between two lines (see
section “Line number assignment” on page 36).
When inserting the record separator it is necessary to make sure that no characters are lost
at the end of the data window line.

Records are only split when new records are inserted or existing records are modified, e.g.
when the separator character is inserted or overwritten. It is important to note that copying
or moving a record does not cause it to be split, even if the record contains separator
characters.

EDT work modes F mode

U41709-J-Z125-1-76 113

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.1.6 Statement line

Entries in the statement line are interpreted as statements. For an overview of the F mode
statements, see the section “Statements in F mode” on page 125. The EDT statement
symbol (default value: @) does not have to be specified (except in the case of the @:
statement).

Users can enter one or more statements (statement sequence) in the statement line. The
individual statements must be separated by a semicolon (';'). Processing is aborted if an
error occurs. An error message is output together with the unprocessed portion of the
statement input including the invalid statement.

When the input has been processed correctly, the statement line is deleted from the screen
output. The statement # or n# can be used to display the last entered statement or the nth
last entered statement again so that it can be re-issued either in its original form or modified.
In this case, at least one character must be overwritten, modified or added. Alternatively,
the @SHIH statement can be used to output the buffer containing the statements most
recently executed by EDT in work file 9 (see below).

The content of a statement line or the remainder of a line that is no longer required can be
deleted with [LZF].

A semicolon is not interpreted as a statement separator in literals.

When @EDIT is used to switch to L mode in a statement string then any residual part of the
statement sequence is not processed.

The maximum permitted statement length in F mode is smaller than in L mode due to the
limitation imposed by the terminal. For more information, see the following section.

Statement line continuation

If, when the screen is sent, the last character in the statement line is not a NULL character,
EDT assumes that the user needs a continuation area for input. In this case, a second line
is made available provided that the work window is large enough so that at least one further
data line can be output. EDT places the content of the statement line in the preceding
screen line and the now empty statement line is provided as the continuation line. A
maximum of two continuation lines can be provided. The maximum length of input is
therefore 189 characters for a terminal with 80 columns or 345 for a terminal with 132
columns.

Treatment of NULL characters in the statement line

NULL characters at the end of the statement line are ignored. Before the input is analyzed,
NULL characters in the statement sequence are converted into blanks.

F mode EDT work modes

114 U41709-J-Z125-1-76

5.1.1.7 Statement buffer

EDT saves the most recent statements entered in F mode in a buffer. This statement buffer
can be output using the @SHIH statement (Show Input History). The statement code K can
be used (following output to a work file) to enter the output line containing the required
statement in the statement line.

Alternatively, the # or n# statement can be used to retrieve the last or nth last statement
directly into the statement line.

The statement buffer can accommodate a maximum of 2048 statements (independently of
their length). No scrolling statements, statements for changing the operating or work mode
or the statements @SHIH and # themselves are entered in the statement buffer. In the
same way, statements that are not executed (e.g. because of syntax errors) are not entered
in the statement buffer. In contrast, statements that are executed are always entered in the
statement buffer, even if they report an error.

Statements that are entered in a statement chain are entered separately in the statement
buffer. Statements are always entered in the buffer in the form in which they were originally
issued and may therefore sometimes be entered in lowercase irrespective of the @LOWER
setting. Leading blanks are removed and empty input is ignored.

5.1.1.8 Status display

From left to right, the status display indicates:

– the line number of the first line in the work window (6 digits) or 0000.00 if the work file
is empty

– the column number at which the display of records in the data window begins (5 digits)
– the number of the displayed work file (2 digits in parentheses)

The status display cannot be overwritten. If the status display has the format described here
(column number: 5 digits, work file number: 2 digits) this shows that EDT is operating in
Unicode mode (in compatibility mode, the column number has 3 digits and the work file
number 1 digit).

Example

Line 8.00 is the first line in work window 21.

···0008.00:00001(21)

EDT work modes F mode

U41709-J-Z125-1-76 115

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.1.9 Processing sequence

The input in a work window is processed in the following sequence:

1. Syntactical and semantic check of the input in the statement code column

2. Evaluation of the data window

3. Execution of the statement codes entered in the statement code column

4. Execution of the statements entered in the statement line

If two work windows are present (see also section “Second work window” on page 119) then
each of the above steps is performed first for the upper and then for the lower work window.

irrespective of the number of work windows, as long as insert or delete statement codes
(1..9,I,X,H or E) are present in the statement code column of one of the work windows,
only data windows and the statement code are evaluated. First of all, the records are taken
over from the data window into the file. The statement code column is then evaluated. The
content of the statement line remains unchanged and is not evaluated until none of the
above-mentioned statement codes is still specified in any of the work windows. In contrast,
if the permanent insert function is active (see statement code I) then this does not prevent
the evaluation of the statement line.

 If errors occur during processing then the following applies:

1. If errors are detected while checking the syntax or semantics of the statement code
column, the invalid statement codes are overwritten with question marks ('?') and the
further processing of the input is aborted.

2. If errors occur during the evaluation of the data window, for example because it is not
possible to split a line with @PAR RENUMBER=OFF, then the statement codes in the
affected work window are processed. However, the statement line is not processed and
is instead displayed again unchanged. Entries in a second work window, if present, are
processed normally.

3. If errors occur during the processing of statement codes, for example because it is not
possible to insert lines with @PAR RENUMBER=OFF, then the remaining statement
codes in the affected work window are processed. However, the statement line is not
processed and is instead displayed again unchanged. Statement codes in a second
work window, if present, are also processed. Here again, the statement line is not
executed.

4. Errors during the processing of entries in the statement line are not detected until state-
ments in the data window or statement codes have already been processed. State-
ments in a statement sequence continue to be executed until an invalid statement is
found. This applies to each work window independently of the other (see also section
“Statement line” on page 113).

F mode EDT work modes

116 U41709-J-Z125-1-76

Note
If, when the screen is split, @PAR SPLIT=OFF is entered in the upper statement line
and a statement is entered in the lower statement line then @PAR SPLIT=OFF is
rejected with an error message.

If the two work windows are displaying the same or overlapping sections of the same
work file, then statement codes and statements in the two work windows may affect one
another, for example if a line is to be simultaneously deleted in one work window and
transferred to the copy buffer in the other.
Users are therefore advised not to work in this way. In contrast, non-overlapping
sections from the same work file can be processed simultaneously in two different work
windows without difficulty.

5.1.2 Modifying the work window

The user can modify the format of the work window by

– activating or deactivating the line number display,
– displaying long records in part or in whole in the data area,
– hiding or showing a column counter (”horizontal ruler”),
– displaying one or more work windows on the screen or
– activating or deactivating the hexadecimal display of the data.

When EDT starts, the format of the data within is set as follows by default:

– Line number display activated,
– No complete display of long records,
– No column counter,
– Non-split (only one) work window, and
– No hexadecimal display.

5.1.2.1 Line number display

The @PAR INDEX statement or the @INDEX statement which is only available in F mode
can be used to activate or deactivate the line number display in the work window. By default
(@PAR INDEX=ON or @INDEX ON), the format with 72 characters per screen line (or 124
characters per screen line if @VDT F2 has been specified), 6-digit line number display and
blank as separator are set.

@PAR INDEX=OFF or @INDEX OFF set 80 (or 132) characters per screen line without line
number display. In both formats, the first column of each screen line forms the statement
code column. If line numbers are displayed, this overlaps with the first column of the line
number display. If line numbers are not displayed, this overlaps with the first column of the
data window.

EDT work modes F mode

U41709-J-Z125-1-76 117

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.2.2 Outputting long records

The @PAR EDIT-LONG statement or the @EDIT LONG statement which is only available
in F mode can be used to modify the screen output. In the case of records which exceed
the number of screen columns, it is possible to specify that

– records are fully displayed in the data window – provided that their length permits this
(@PAR EDIT-LONG=ON or @EDIT LONG ON)

– only a section consisting of 72, 80, 124 or 132 characters in a record (depending on the
@PAR INDEX setting) is displayed in the data window (@PAR EDIT-LONG=OFF or
@EDIT LONG OFF).

EDIT-LONG mode functions without any line number display. A record is written continu-
ously over multiple screen lines.

When new records are input at the end of the work file or in an insert area made available
in one of the statement codes I or 1..9, a line which is not terminated either with [LZE] or
with NULL characters is combined with the following line to form a record. In this way, it is
possible, depending on the screen format, to enter records with a length of up to 3432
characters directly in EDIT-LONG mode. This only applies to new records. If an existing
record is continued at the end of a work file or is continued into the new line range immedi-
ately in front of an insert area then the new records are not combined with the existing
record. Existing records can only be extended with the statement code E (see below).

If an input line is shortened by converting a substitute representation (e.g. %U20AC) into the
corresponding characters it is not combined with the following line even if the original input
line does not contain any terminating [LZE] or NULL characters.

In EDIT-LONG mode, the hardware tabulator (see @TABS statement) only applies to the
first screen line in a record. In the case of existing records, it is not possible to use the
hardware tabulator to move to a position in the following screen lines. In the case of new
records (see previous section), the tabulator positions in all the lines are identical to those
in the first screen line.

If [F2] is used to set the entire data window to overwritable, any final record that is
completely displayed in the data window remains non-overwritable. If such a record is
marked with the statement code X then (if possible) the window is positioned in such a way
that the record is fully displayed in the data window. If this is not possible then the record
continues to be non-overwritable. Records that are so long that they cannot usually be
displayed in full cannot be edited in EDIT-LONG mode. This type of record can only be
edited after @PAR EDIT-LONG=OFF. It may then be necessary to scroll horizontally (>, <)
in order to move the section to be edited into the displayed area.

F mode EDT work modes

118 U41709-J-Z125-1-76

The statement code column is the first column on the screen. In the case of multi-line
records, the statement code must be entered in the first line. If a record is to be extended
with the statement code E then an entire line of NULL characters is output in EDIT-LONG
mode. If necessary, the window is repositioned to make this possible. The statement codes
S and H are not permitted in EDIT-LONG mode.

Unlike the display with @PAR EDIT-FULL=ON, in EDIT-LONG mode it is only ever possible
to overwrite either the statement code column or the associated record in the data window.

In EDIT-LONG mode, neither the column counter set with @PAR SCALE=ON nor an infor-
mation line requested with @PAR INFORMATION=ON are displayed. The column counter
and information lines are not displayed until EDIT-LONG mode is quitted.

If EDIT-LONG mode is quitted with @PAR EDIT-LONG=OFF or @EDIT LONG OFF then
the line number display remains active.

EDIT-LONG mode is also deactivated by @PAR INDEX=ON, @PAR INDEX=OFF and
@PAR HEX=ON.

Note
The statements for horizontal scrolling (>, <) and the @PAR EDIT-FULL=ON
statement are accepted and processed. However, the effects are not visible until EDIT-
LONG mode is exited or the line number display is restored.

5.1.2.3 Column counter

The @PAR SCALE=ON statement or the @SCALE ON statement which is only available
in F mode can be used to output a column counter (horizontal ruler) in the work window.
The column counter is displayed as the 1st screen line in the work window (not in EDIT-
LONG mode). The statements @PAR SCALE=OFF or @SCALE OFF deactivate the display
of the column counter again.

If a tabulator has been defined (see @TABS), the column counter is extended by an
additional screen line in which the current position of the tabulator is displayed.

If the screen is split (see @PAR SPLIT), the @SCALE statement only applies to the work
window in which @SCALE was entered.

In EDIT-LONG mode, the @PAR SCALE statement is accepted and processed. However,
the effects (showing or hiding the column counter) are not visible until EDIT-LONG mode is
deactivated.

EDT work modes F mode

U41709-J-Z125-1-76 119

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.2.4 Second work window

The @PAR SPLIT statement or the @SPLIT statement which is only available in F mode
can be used to activate or deactivate the display of a second work window on the screen.
The following applies when two work windows are displayed:

Each work window has its own statement line.

The cursor is positioned in the upper statement line once the screen has been split. After
each subsequent output, it is positioned in the statement line in which the last statement or
statement sequence was entered.

If a statement is entered in both statement lines, then the cursor is positioned in the upper
statement line. If an error occurs while processing a statement then the cursor is positioned
in the statement line in which the invalid statement was entered.

If, when the screen is split, @PAR SPLIT=OFF is entered in the upper statement line and
a statement is entered in the lower statement line then @PAR SPLIT=OFF is rejected with
an error message.

Display in work windows with different character sets

Splitting the work window makes it possible to display two work windows which contain data
in different character sets. However, the terminal is only able to display one character set
correctly. In addition, changing the character set at the terminal always results in the screen
being deleted and then reconstructed (and should therefore be done as infrequently as
possible).

EDT therefore attempts to operate without switching the terminal character set if at all
possible. If the terminal supports Unicode character sets and automatic character set
selection is active, UTFE is used for communication with the terminal and this character set
is not changed when the window is split (for details, see the introduction to section “The
work window” on page 103). In this Unicode character set, the display in the two work
windows is correct or, at least, legible.

If a 7-bit or 8-bit character set is used for communication with the terminal, perhaps because
the terminal does not support Unicode, then, by default, the upper work window determines
the character set used for communication with the terminal unless the user has explicitly
modified this setting using the @CODENAME statement.

In a data window containing an assigned work file which is not present in the terminal's
character set, the characters are displayed using their equivalents in the terminal's
character set or by smudge characters (if the character is invalid in this character set).

The character set used for communications with the terminal can be modified using the
@CODENAME statement (format 2).
This statement only modifies the display, not the coding of the data in the work file (see the
description of the @CODENAME statement).

F mode EDT work modes

120 U41709-J-Z125-1-76

For the procedure used to interpret the input, see the introduction to the section “The work
window” on page 103 as well as section “Character sets” on page 47.

5.1.2.5 Hexadecimal mode

In F mode, EDT can display the content of work files in hexadecimal form and make it
available for editing in this format. This display mode is known as hexadecimal mode or HEX
mode for short. It is activated using the statement @PAR HEX=ON or the @HEX ON
statement which is only available in F mode. @PAR HEX=OFF or @HEX OFF deactivates
HEX mode again. The statement code H can also be used to display an individual line in
hexadecimal form and make it available for editing in this format.

The HEX mode display is dependent on the character set in which the data in the work file
is coded. In the case of 7-bit and 8-bit character sets, each character is coded by two
hexadecimal digits. UTF16 requires four hexadecimal digits for each character while in UTF8
the number of digits required per character varies between two, four and six and in UTFE
the number varies between two and eight. In addition, the printable form of the line is always
displayed.

The first screen line displays the record content in printable form. Below each printable
character in this screen line, the character's hexadecimal code is displayed vertically over
multiple screen lines. These screen lines are referred to as hex lines below. There are two
hex lines when displaying 7 and 8-bit character sets, four when displaying UTF16, six for
UTF8 and eight for UTFE. They are followed by a column counter as in the case of @PAR
SCALE=ON. Any column counter which may have been activated for a data window using
@PAR SCALE=ON is not output in HEX mode.

Only hexadecimal values (0..9,A..F) and NULL characters are displayed in the hex lines
and these, together with blanks, are also the only values permitted for input. Null bytes at
the end of a record are not removed and records which are still empty after the end of the
file and which are still displayed in the data window are also displayed by means of NULL
characters in the hex lines.

HEX mode applies to the current work file independently of the work window, i.e. if the same
work file is displayed in different work windows then the same display is used in both work
windows.

HEX mode is also deactivated by specifying @PAR EDIT-LONG=ON.

EDT work modes F mode

U41709-J-Z125-1-76 121

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

Modifying records in HEX mode

Modifications can be made both in the first screen line (printable form) or in the hex lines. If
characters are entered in both the character display and in the hex lines in the same record
in a single dialog step then the changes in the character display are ignored.

In the case of 7 or 8-bit character sets, only hexadecimal characters (0..9, A..F) may be
entered in the hex lines and, in the case of Unicode character sets, the characters must
present a legal coding.
If invalid characters or codings are entered then a correction dialog opens, i.e. the screen is
output again with the invalid character or coding overwritten with a question mark. The
cursor is located in the first invalid screen line. The remaining, valid characters or codings
are displayed in modified form on the screen but are not yet taken over into the work file. If
the user does not want to correct the invalid character then it is possible to exit the correction
dialog by sending the screen unchanged with [DUE]. The old content of the invalid line is
then restored and the VALID lines are taken over into the work file. In contrast, [K3] does
not exit the correction dialog but simply cancels the last change made by means of keyboard
input. Hexadecimal characters may also be deleted (overwritten with NULL characters) or
removed. When removing such characters, it is important to make sure that the half-bytes
in the character codings are not disarranged.

Split screen display

When the screen is split (@PAR SPLIT), the display in HEX mode depends on the number
of data lines (screen lines in the data window) in the relevant screen:

– If only one screen line is missing then the column counter line is not output.

– If there is not sufficient space to display all the hex lines then only the character display
line is displayed. Unlike in the compatibility mode display, the column counter line is not
output in this display mode since it is not of use here.

– Any remaining screen lines are used for the display of the following records. These
rules then apply recursively to such lines.

Since in HEX mode, records are always displayed by means of multiple screen lines, this
mode is only of any value if at least one record can be displayed together with all its hex
lines. If this is not the case, the message EDT2404 is output when HEX mode is activated.
However, HEX mode is activated nevertheless. The user can then enlarge the data window
to view the hex lines.

F mode EDT work modes

122 U41709-J-Z125-1-76

Special considerations when displaying UTFE and UTF8

In the subsets of UTF8 and UTFE supported in BS2000, characters are coded using one to
three or one to four bytes per character respectively. Despite this, each record is displayed
with six or eight hex lines. In the case of characters that are coded with fewer than six or
eight bytes respectively, the remaining hex lines contain NULL characters.

Example

The data in the example is coded in UTF8.

 1.00 Price change:<··
 57667C66677663··
 025933E4525E7A··
 ·····A··
 ·····4··
 ··
 ··
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 2.00 <···
 ··
 ··
 ··
 ··
 ··
 ··
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 3.00 200,00 €<···
 2222223332332E··
 000000200C0002··
 ·············8··
 ·············2··
 ·············A··
 ·············C··
···0001.00:00001(00)

EDT work modes F mode

U41709-J-Z125-1-76 123

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.3 Function keys in F mode

In EDT's F mode, it is possible to initiate a large number of actions using function keys. The
[K2] key is exceptional here since, on the one hand, it is the only function key that also
operates in L mode and, on the other, its action can be completely suppressed, for example
in noninterruptible procedures or when EDT has been called as a subroutine (e.g. in the
POSIX shell).

5.1.3.1 The F keys

All the F keys transfer the input in the data window, the statement code column and
statement line from the terminal to EDT. In addition, the keys [F1] to [F3] have special
functions:

[F1] Positioning at records with the same structure depth

[F1] can be used in combination with the statement codes + and - to move to the next
record with the same structure depth (see section “Statement codes in F mode” on
page 109).

[F2] Setting all the screen lines in the data window to overwritable

If the screen is sent with [F2] then the data window, or both data windows if the screen is
split, is set to overwritable on the following output.

When transfer is performed with [F2], if the entries in the statement line have not yet been
executed due to the processing sequence observed by EDT, for example because both a
statement and one of the statement codes 1..9, I or E (see the section dealing with the
processing sequence) have been transferred with [F2] then the data window is first set to
overwritable and the statement line is output again unchanged. The changes then entered
in the data window become effective even before the processing of the statement line.

[F3] Processing record marks

[F3] in combination with the statement codes 1..9 and D or the scrolling statements +, -
and ++, -- triggers the following functions:

– Set record marks (statement codes 1..9)
– Delete record marks (statement code D)
– Move to records with record marks (statements +,-, ++, --)

F mode EDT work modes

124 U41709-J-Z125-1-76

5.1.3.2 The K keys

Unlike the F keys, pressing a K key does not trigger any transfer of the modified data from
the screen to EDT. All input in the screen is therefore lost.

[K1] Terminating EDT

Pressing [K1] requests the termination of EDT. Unlike termination with @HALT, a confir-
mation query is issued in the work window's message line even if the work files do not
contain any unsaved data:

% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

If the user enters Y then EDT is terminated. If N is entered then EDT continues to run. If one
of the work files contains unsaved data then [K1] has the same effect as @HALT (see also
section “Terminating an EDT session” on page 92).

[K2] Interrupting the EDT session

It is possible to interrupt the EDT session and switch to system mode by means of the
@SYSTEM statement or by pressing [K2].

The /RESUME-PROGRAM command can be used to return to F mode. After this, the entire
screen is output again.

If the work window in which the EDT session was interrupted is not output or is output
incompletely after /RESUME-PROGRAM then the original content can be restored with [K3].

If, during the period of interruption, another program is loaded (e.g. with /START-PROGRAM
or /LOAD-PROGRAM) or if a procedure is started which loads another program then EDT is
unloaded without any query being issued.

[K3] Restoring the screen content, rejecting user input

If the screen content is moved (for example, due to a broadcast message), then [K3] can
be used to restore the original state. The screen content (together with any messages
output by EDT) is restored exactly as it was before the user entered the first character. The
[K3] key can therefore also be used to reject all user inputs and restart entry, for example
if the user has accidentally overwritten screen lines which should have remained
unchanged with new text.

[K4] to [K15] are treated in the same way as [K3] (see above).

EDT work modes F mode

U41709-J-Z125-1-76 125

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.1.4 Statements in F mode

The following statements are permitted in F mode

In F mode, the EDT statement symbol (default value: @) does not have to be specified
(except in the case of the @: statement). For a detailed description of the statements, see
chapter 9.

<
<<
+
++
$0..$22
-
--
>
@:
#
@AUTOSAVE
@BLOCK
@CHECK (Format 2)
@CLOSE
@CODENAME
@COLUMN
@COMPARE
@CONVERT
@COPY
@CREATE (Format 1+ 2)
@DELETE
@DELIMIT
@DO (Format 1)
@DROP
@EDIT
@ELIM
@END
@ERAJV
@EXEC
@FSTAT
@GET

@GETJV
@GETLIST
@GETVAR
@HALT
@HEX
@INDEX
@INPUT (Format 1+2)
@LIMITS
@LIST
@LOAD
@LOG
@LOWER
@MODE
@MOVE
@ON
@OPEN
@P-KEYS
@PAGE
@PAR
@PREFIX
@PRINT
@QUOTE
@RANGE
@READ
@RENUMBER
@RESET
@RETURN
@RUN
@SAVE
@SCALE
@SDFTEST

@SEARCH-OPTION
@SEPARATE
@SEQUENCE
@SET
@SETF
@SETJV
@SETLIST
@SETSW
@SETVAR
@SHIH
@SHOW
@SORT
@SPLIT
@STAJV
@STATUS
@SUFFIX
@SYMBOLS
@SYNTAX
@SYSTEM
@TABS
@TMODE
@UNLOAD
@UNSAVE
@USE
@VDT
@VTCSET
@WRITE
@XCOPY
@XOPEN
@XWRITE
0...22

L mode EDT work modes

126 U41709-J-Z125-1-76

5.2 L mode

In L mode, files are processed line-by-line, that is to say that in interactive mode, EDT only
outputs one line (the current line) at a time or only reads one line (in both batch and inter-
active mode) from SYSDTA. This line may contain both records and statements and is
processed as soon as it has been read in.

Records are written to the current line and the current line is then increased by the current
increment. The current line can be addressed symbolically via the '*' symbol, e.g.
@PRINT *.

Statements are executed immediately. The EDT statement symbol @ is used for differenti-
ation (see below).

L mode is available in both interactive and batch mode.

When @DO procedures and @INPUT procedures are run as well as when SYSDTA is read
using RDATA (system procedures, batch mode), the statements are processed as if they had
been entered in L mode. In such cases, only L mode statements are therefore permitted.

The @EDIT FULL statement is used to switch to F mode.

5.2.1 Input in L mode

EDT interprets input in L mode as a statement if

– the first character other than a blank is the EDT statement symbol (default value: @) or
a user statement symbol for an external statement routine (see @USE statement)

– and the second character other than a blank is not identical to the first character that is
not a blank.

If EDT recognizes a statement then it is executed immediately.

In the next two paragraphs, the term statement symbol is used to refer to both the EDT
statement symbol and the user statement symbol.

All input in which the first character other than a blank is not a statement symbol is inter-
preted as a record and is stored unchanged in the current line. In interactive mode, empty
input which is sent with[F1] instead of [DUE] causes an empty line (line of length 0) to be
stored in the current line (see section “Function keys in L mode” on page 128).

EDT work modes L mode

U41709-J-Z125-1-76 127

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

Input in which the first two characters other than blanks are statement symbols are also
interpreted as records but are subject to special processing:
The characters located before the second statement symbol (which can only be blanks or
the first statement symbol), are removed.
This special processing simplifies the creation of procedures in L mode (see also section
“EDT procedures” on page 64). The input is not immediately executed as a statement but
is stored as a statement and can therefore be subsequently run as many times as
necessary.

Examples

5.2.2 Entering records in character, hexadecimal or binary format

In L mode, records (but not statements) can be entered not only as character strings but
also as sequences of hexadecimal or binary characters. The @INPUT statement (format 3)
is used to switch between these input formats.

By default, EDT expects L mode input in the form of character strings (@INPUT CHAR). In
this format, the character set of the underlying data source is used (terminal, SYSDTA, file,
library element, work file). Since the entered records are inserted in the current work file
and the character set used in this work file may be different from that of the data source, a
conversion operation may be necessary. The precise rules are described in section
“Character sets” on page 47.

If records are to be entered as sequences of hexadecimal or binary characters in L mode,
then this must be set explicitly using the statement @INPUT HEX or @INPUT BINARY.
The hexadecimal or binary characters themselves are expected in the character set used
in the associated input source. The specified codes are then interpreted in the character set
used in the current work file. If hexadecimal characters are entered which do not corre-
spond to any valid character in this character set then the input is rejected with the message
EDT5460 (see also section “Character sets” on page 47).

Input Interpretation

@RENUMBER Statement
ËËËËËË@ËËËËËËRENUMBER Statement
RENUMBER Record, the value ’RENUMBER’ is stored
@@RENUMBER Record, the value ’@RENUMBER’ is stored
@ËËËËËËËË@RENUMBER Record, the value ’@RENUMBER’ is stored
ËËË@ËËËËË@ËËRENUMBER Record, the value ’@ËËRENUMBER’ is stored

L mode EDT work modes

128 U41709-J-Z125-1-76

Once hexadecimal or binary input has been activated, only records in a valid hexadecimal
or binary format are accepted. Invalid input is rejected with the message EDT3902 or
EDT3901. If the number of entered characters is not a multiple of 2 or 8 then the input is left-
filled with blanks.

Since, when a hexadecimal representation is used, each character is coded by at least two
bytes, the number of characters that can be entered per line is reduced to no more than half
of the value that would otherwise apply to the input source in question. In the case of binary
representation, the number of characters is reduced to an eighth or less of the value appli-
cable for the input source.

Example

1. ABC
2. @INPUT HEX
2. C1C2C3
3. @INPUT BINARY
3. 110000011100001011000011
4. @PRINT
1.0000 ABC
2.0000 ABC
3.0000 ABC
4.

5.2.3 Function keys in L mode

The following description relates to interactive mode only.

In L mode, all the F keys have the same effect as [DUE], irrespective of whether RDATA
(input prompt is *) or WRTRD (input prompt is the line number) is used for reading.

The [DUE2] key transfers the entire screen content including any [LZE] characters and end
marks that may be present. In EDT, this system characteristic may cause multiple lines to
be inserted in the current work file. Since this is not usually desired, the [DUE2] key should
not be used for entry in L mode.

In L mode, the [F1] key is used to enter a blank line (line of length 0). To do this, [F1] or [EM]
[F1] should be entered at the input prompt. In contrast, if only [DUE] or [EM] [DUE] is
entered, the input is ignored (as in the past) and the input prompt is displayed again. If other
characters are entered in addition to [F1] or [EM] [F1] then [F1] has the same effect as
[DUE].

If any of the K keys other than [K2] is entered then all the characters entered at the screen
are ignored and the input prompt is displayed again.

[K2] causes EDT to be interrupted and processing switches to system mode unless this is
prevented by the system settings (see section “Interrupting an EDT session” on page 91).

EDT work modes L mode

U41709-J-Z125-1-76 129

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
05

5.2.4 Statements in L mode

The following statements are permitted in L mode

The following statements are not permitted in EDT procedures:
@DROP, @DIALOG, @INPUT (format 1 and 2)

The following statements are only permitted in EDT procedures:
@GOTO, @DO (format 2), @PARAMS

The EDT statement symbol (default value: @) must be specified in L mode.
For a detailed description of the statements, see chapter 9.

@+
@–
@:
@AUTOSAVE
@BLOCK
@CHECK
@CLOSE
@CODENAME
@COLUMN
@COMPARE
@CONTINUE
@CONVERT
@COPY
@CREATE
@DELETE
@DELIMIT
@DIALOG
@DO (Format 1)
@DROP
@EDIT
@ELIM
@END
@ERAJV
@EXEC
@FILE
@FSTAT
@GET
@GETJV
@GETLIST

@GETVAR
@HALT
@IF
@INPUT
@LIMITS
@LIST
@LOAD
@LOG
@LOWER
@MODE
@MOVE
@NOTE
@ON
@OPEN
@P-KEYS
@PAGE
@PAR
@PREFIX
@PRINT
@PROC
@QUOTE
@RANGE
@READ
@RENUMBER
@RESET
@RETURN
@RUN
@SAVE
@SDFTEST

@SEARCH-OPTION
@SEPARATE
@SEQUENCE
@SET
@SETF
@SETJV
@SETLIST
@SETSW
@SETVAR
@SHIH
@SHOW
@SORT
@STAJV
@STATUS
@SUFFIX
@SYMBOLS
@SYNTAX
@SYSTEM
@TABS
@TMODE
@UNLOAD
@UNSAVE
@USE
@VDT
@VTCSET
@WRITE
@XCOPY
@XOPEN
@XWRITE

L mode EDT work modes

130 U41709-J-Z125-1-76

U41709-J-Z125-1-76 131

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

6 File processing
EDT can be used to process ISAM files, SAM files, library elements and POSIX files. These
files are loaded into work files for processing. When the term “file” is used below, it is
intended to refer to all four of these file types.

EDT also provides input/output interfaces to the BS2000 system files SYSDTA, SYSOUT and
SYSLST.

The handling of character sets on read and write operations is described in section
“Character sets” on page 47. Files with character sets which are not known in XHCS cannot
be processed.

6.1 File types

The file types supported by EDT are described in the following sections.

6.1.1 SAM files

When accessing an existing SAM file, any printer control character specification in the
catalog is ignored. Moreover, in the case of SAM files with variable record length, the
explicit specification of a record length in the catalog is ignored.

When EDT writes to a new SAM file, this file is usually stored on disk with the following
default attributes:

– variable record length without record length specification,
– block size 2 for files on NK4 disks or block size 1 otherwise. If when the file is opened,

the longest record that is to be written to it does not fit in this block size then a larger
block size (maximum 16) is used.

If the attributes of new files shall differ from these default values then the file attributes and
a file link name must be stored in the Task File Table before the file is written and the
write operation must be performed using this file link name.
However, only the attributes described in section “File link names” on page 139 are
evaluated.

File types File processing

132 U41709-J-Z125-1-76

Usually, the files that are to be processed by EDT are read (fully or partially) into work files.
It is not possible to process SAM files directly on disk (real processing). However, EDT is
able to copy SAM files to ISAM files and then open these for real processing (see the
@OPEN statement, format 2, page 411).

File names used in EDT statements must comply with the requirements of the BS2000 data
management system. EDT checks the validity of file names.

EDT is able to process records of length 0.

SAM files on magnetic tape cannot be processed using the @OPEN (format 1) and
@CLOSE statements. In this case, the other statements (@COPY, @WRITE) should be
used. If a new SAM file is to be created on magnetic tape, its name and properties must first
be declared using the BS2000 /CREATE-FILE command.

It is not possible to process SAM files with record format UNDEFINED in EDT.
Similarly, attempts to process SAM files with the character set UTF16 and a fixed, odd-
numbered record length are rejected.

6.1.2 ISAM files

When accessing an existing ISAM file, any printer control character specification in the
catalog is ignored. Moreover, in the case of ISAM files with variable record length, the
explicit specification of a record length in the catalog is ignored.

When EDT writes to a new ISAM file, this file is usually stored with the following default
attributes:

– variable record length without record length specification,
– key position 5,
– key length 16 in the case of files with the character set UTF16 or key length 8 in the case

of files with a different character set and
– block size 2 for files on NK4 disks or block size 1 otherwise. If when the file is opened,

the longest record that is to be written to it does not fit in this block size then a larger
block size (maximum 16) is used.

By default, no multiple keys are permitted on writing.
If the attributes of new files shall differ from these default values then the file attributes and
a file link name must be stored in the Task File Table before the file is written and the
write operation must be performed using this file link name.
However, only the attributes described in section “File link names” on page 139 are
evaluated.

Usually, the files that are to be processed by EDT are read (fully or partially) into work files.
It is also possible to process ISAM files directly on disk (real processing). This can only be
done in work file 0.

File processing File types

U41709-J-Z125-1-76 133

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

File names used in EDT statements must comply with the requirements of the BS2000 data
management system. EDT checks the validity of file names.

EDT is able to process records which consist solely of the ISAM key.

When ISAM files are processed, the ISAM key can be read in as a line number, read into
the work file's data area (as line content) or completely ignored.

On a write operation, the ISAM key can be formed from the line number or taken over from
the data area.
If the ISAM key is to be retained it must therefore first be taken over as a line number or into
the data area and must not be modified by EDT statements.

If the ISAM key is taken over as a line number when read in, it must be numerical (each of
the 8 characters belongs to the range 0..9) and the key 00000000 is not permitted.

If the file's key length is shorter than 8 (or 16 in the case of UTF16 files) and if the line
number is formed from the ISAM key then the line number is left-filled with zeros. For
example, in the case of a KEY-LENGTH specification of 4, the ISAM key 1234 would be
taken over as line number 0000.1234.

If the file's key length is shorter than 8 (or 16 in the case of UTF16 files) and if the ISAM key
is formed from the line number then the line number is truncated at the left. For example, in
the case of a KEY-LENGTH specification of 4, the line number 1234.5678 would be written
as the ISAM key 5678. It is not therefore always possible to guarantee that the ISAM key
is unique. If multiple keys are permitted when writing to the file, then work file records for
which the same ISAM key was generated are written to the file. Otherwise, the write
operation is aborted and the message EDT4208 (DMS error code OAAF) is output.

The only way to process ISAM files with non-standard key positions (≠5 for variable record
lengths or ≠1 for fixed record lengths), with a key length greater than that specified as the
default, with non-numerical keys or with duplicate key values is to take the ISAM key over
into the data area.

If the ISAM key is located in the data area and modified in EDT, if lines are swapped or
records inserted, then the user must make sure that the sequence of work file records corre-
sponds to the sequence of ISAM keys as otherwise the write operation will be rejected with
the message EDT4208 (DMS error code 0AAB).

In the case of ISAM files with duplicate key values (duplicate keys), it is possible to read
in all the records provided that the key is not taken over as a line number. If the ISAM key
is taken over as a line number then only the last record with the same key is read in.
In order to process such files, the key should therefore also be taken over into the record.
When files with multiple keys are written, the attribute DUPLICATE-KEY=YES must be stored
in the Task File Table.
It is not possible to process ISAM files with the character set UTF16 and a fixed, odd-
numbered record length or an odd-numbered key length.

File types File processing

134 U41709-J-Z125-1-76

The definitions of any secondary keys in an ISAM file (in a secondary index) are retained if
the file is processed using the @OPEN and @CLOSE statements and the key fields are not
modified inconsistently in the data area.

If inconsistent changes are made, the message EDT5246 is output and the secondary index
is deleted. The secondary index is also deleted if the file is fully overwritten with the @SAVE
or @WRITE (format 2) statement (but not in the case of UPDATE).

6.1.3 POSIX files

The POSIX subsystem must be activated before it is possible to process files in the POSIX
file system.

The POSIX file names in the statements which permit access to POSIX files are path
names in the POSIX file system. EDT cannot be used to move to a position within the
POSIX file system. If no absolute path name (starting with '/') is specified then the file
names always refer to the current directory. When the call is issued from BS2000, this is
the user's home directory.

POSIX file names used in EDT statements must comply with the requirements of the POSIX
file system. In particular, the maximum permitted length is 1023 bytes. It can be specified
directly as a string or indirectly as a string variable. If the name of a POSIX file contains
blanks or other special characters then it must be specified by means of a string variable.

POSIX file names are case-sensitive. Consequently, when input is made from a terminal,
@PAR LOWER=ON should be activated.

EDT reads data character-by-character. The end of a record is recognized by means of the
(character set-specific) end-of-record character (for example X'15' in EBCDIC or X'0A'
in ISO character sets). If a record is detected, it is placed in the current work file. If two end-
of-record characters occur one after the other then a record of length 0 is generated in the
work file.

If when reading a POSIX file, no end-of-record is recognized after 32768 characters then
EDT outputs the message EDT1253, truncates the output and ignores the characters
through to the next end-of-record character.

When the content of the work file is written to the POSIX file, a (character set-specific) end-
of-record character (for example X'15' in EBCDIC or X'0A' in ISO character sets) is
written after every work file record.

In the case of records of length 0, only an end-of-record character is written.

When writing write-protected POSIX files under the user ID TSOS in interactive mode, the
message EDT0244 is issued to ask the user whether write access is to be permitted. If it is
not, EDT issues the message EDT5312. In batch mode, EDT issues the message EDT5312
and does not permit write access.

File processing File types

U41709-J-Z125-1-76 135

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

Unlike in the case of BS2000 files or library elements, the system permits the multiple
opening of the same POSIX file. EDT does not prevent this. Users must therefore take the
necessary care and attention.

6.1.4 Library elements

EDT is able to process elements in program libraries (PLAM libraries, Program Library
Access Method). For more detailed information on these libraries, see the LMS User Guide
[14].

In the current manual, program libraries are simply referred to as libraries.

Delta elements cannot be processed using EDT statements. Although read access is
possible, if users want to modify delta elements then they must use the LMS statements in
EDT. The precise procedure is described in the LMS User Guide [14].

The library name in EDT statements must comply with the BS2000 data management
system requirements for file names. It can be specified directly as a string or indirectly as a
string variable. If the library that is to be opened is a part of a file generation group then the
library name must be specified by means of a string variable (because of the parentheses).

EDT is able to process records of length 0.

Elements in libraries can be addressed individually via their element designations.

The element designation consists of the name, version and element type and is specified
in the following form:

elname[(vers)][,eltype]

Here, elname is the name of the element, vers the version designation of the element and
eltype the type of element.

The version and element type specifications are optional. If no value is entered for vers in
a statement then the highest existing version is used on read operations and highest
possible version on write operations. If no value is entered for eltype in a statement or if
the value is *STD then the value specified in @PAR ELEMENT-TYPE is used. The
presetting when EDT is started is S.

The element designation must comply with the name conventions as defined in the LMS
User Guide [14].

File types File processing

136 U41709-J-Z125-1-76

In the read and write operations, it is only possible to specify text-type and user-defined
types as the element type. The text-type standard types are:

In the case of the standard types, no check is performed to determine whether the content
of the element is actually text-type. If the element type is a user-defined type, no check is
performed to determine whether it is derived from a text-type basic type.

Elements containing format B records cannot be edited by EDT. In the case of format A
records, EDT only takes account of record type 1 records. EDT leaves other record types
unmodified.

Type Element content
S Source program
M Macros
P Data edited for printing
J Procedures
D Text data
X Data in any format

File processing Basic information on reading and writing data

U41709-J-Z125-1-76 137

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

6.2 Basic information on reading and writing data

If a file that is to be read contains characters which are not supported by the work file's
character set then the file is not read in unless a substitute character has been defined
which is then used. If the file contains an invalid byte sequence (possible in Unicode
character sets) then the file is not read in.

Since EDT provides internal support for lines of up to 32768 characters, it is possible, when
writing to DMS file or library elements, that a record may not be written because it is too
long. In particular, when writing to a file which uses the UTF16, UTFE or UTF8 character set,
this may occur in connection with significantly shorter lines if the work file record contains
sufficient characters that are coded as 2-byte or 3-byte characters. This phenomenon can
therefore easily occur in files with a fixed record length. If it is not possible to write a record
because it is too long, EDT outputs the message EDT5444 and aborts the write operation.
It is then the user's responsibility to shorten the lines accordingly or use another file format.

If when writing a file with fixed record length, a work file record is shorter than the file's
record length, EDT fills the record with blanks up to the defined record length.

In the case of DMS files, the required file size is estimated before writing and, if possible,
the required number of pages is assigned as the primary allocation in order to prevent the
file from being split into a large number of different extents.

Once a DMS file has been closed after writing (statements @WRITE, @CLOSE, @SAVE),
EDT usually releases the unneeded disk storage space. This space is not released if job
switch 7 was set before writing or if the file name starts with a user ID.

When write operations are performed using the old statements (see chapter 9) – @WRITE
(format 2) and @SAVE – this can also be achieved by assigning the file name a fixed
predefined file link name and specifying the symbolic designation '/' instead of the file
name.

Reading and writing all supported file types File processing

138 U41709-J-Z125-1-76

6.3 Reading and writing all supported file types

The following statements can be used to process files belonging to all the file types
supported by EDT. It is recommended that you now use only these statements for file
processing.

6.3.1 Reading

The @OPEN statement (format 1) can be used to read a file into the current work file for
processing or to create a new file. The file remains open until it is closed with @CLOSE.

The @COPY statement (format 1) can also be used to read a file into the current work file.
After being read in, the file is closed again.

When ISAM files are read, the KEY operand in the @OPEN or @COPY statement can be
used to determine whether the ISAM key is to be ignored or to be taken over as a line
number or into the data area.

A file can be run as a procedure by means of the @INPUT statement (format 1).

6.3.2 Writing

The current work file can be written back to a file with @CLOSE provided that this has been
previously read in or created with @OPEN (format 1). After the write operation, the file is
closed and the work file is deleted.

The current work file can be written to a new file with @WRITE (format 1). The work file is
retained after writing.

The current work file can be written to an existing file with @WRITE (format 1). This
completely replaces the old file content. The work file is retained after writing.

The current work file can be written back to the file opened with @OPEN (format 1) with
@WRITE (format 1). The file remains open after writing and the work file is retained.

If a new SAM or ISAM file is created before the write operation then the file type's default
attributes are generally used. If file attributes other than the defaults are to be used then
they must be stored in the Task File Table together with a freely definable file link name
before the @OPEN or @WRITE statement is called and the call to the @OPEN or
@WRITE statement must use this file link name.

File processing Reading and writing all supported file types

U41709-J-Z125-1-76 139

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

6.3.3 File link names

When using the new statements, it is possible to employ freely definable file link names to
address SAM and ISAM files. Here, it is essential that at least the file name is entered in
the Task File Table.

In the case of existing files only a few of the attributes are taken over from the Task File
Table. These are (if specified):

FILE-NAME
WRITE-CHECK

In the case of ISAM files, the following attributes are also taken over:

WRITE-IMMEDIATE
DUPLICATE-KEY
PADDING-FACTOR
SHARED-UPDATE

All the other specifications are ignored and are taken over from the existing file.
In the case of newly created files, more of the attributes specified in the Task File Table
are taken over. These are (if specified):

FILE-NAME
ACCESS-METHOD
RECORD-FORMAT
RECORD-SIZE
PRINT-CONTROL
BLOCK-SIZE
BLOCK-CONTROL
WRITE-CHECK

In the case of ISAM files, the following attributes are also taken over:

KEY-LENGTH
KEY-POSITION
WRITE-IMMEDIATE
DUPLICATE-KEY
PADDING-FACTOR
VALUE-FLAG-LENGTH
PROPAGATE-VALUE-FLAG
LOGICAL-FLAG-LENGTH
SHARED-UPDATE

All other specifications are always ignored.

The access method specification is only used if there is no explicit specification in the corre-
sponding statement.

Characteristics of the old file access statements File processing

140 U41709-J-Z125-1-76

6.4 Characteristics of the old file access statements

Preliminary comment
The term old does not refer to the distinction between these statements in Unicode and
compatibility mode but to the file access statements originally developed for EDT.
These remain valid in both operating modes.

The old file access statements @READ, @GET, @WRITE (format 2), @SAVE, @ELIM and
@OPEN (format 2) are subject to certain restrictions. They are not able to process all file
types and certain accesses are only possible using workarounds (definition of file link
names). They provide a number of special functions for the supported file types. These are
described in the present section.

If a file is read into the current work file using the @READ or @GET statements then the
file is closed again immediately after being read in. The file is then not opened again for
writing until a @WRITE or @SAVE statement is issued. If the UPDATE operand is not
specified in these statements, the old file content is deleted and completely replaced. The
file is not locked for other users while it is being processed. During a write operation, it is
therefore possible that intermediate changes made by other users may be overwritten.

6.4.1 Predefining file names

Following the read operation with @READ or @GET, the work file is linked to the file name
(implicit local @FILE entry). This predefines the file name for the @WRITE (format 2) and
@SAVE statements.

Linkage can also be performed explicitly using the @FILE statement. The predefined file
name then applies to the statements @READ, @GET and @WRITE (format 2), @SAVE,
@ELIM and @OPEN (format 2).

The linkage is eliminated again when the work file is completely deleted with @DELETE
(format 2) or with statements which implicitly execute a @DELETE (format 2) or is explicitly
deleted with the @FILE statement.

In addition, the @FILE statement can be used to define a presetting which applies globally
to all the work files. An explicit @FILE entry (including global entries) always has priority
over an implicit @FILE entry.

File processing Characteristics of the old file access statements

U41709-J-Z125-1-76 141

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

6.4.2 Partial reading and writing

The @READ and @GET statements can be used to select the records which are to be read
from the file into the work file. When this is done, it is possible to modify the sequence of
records in the file. Records can be read into the work file more than once.

It is also possible to select the characters (columns) which are to be read from the selected
records into the work file. Here again, it is possible to modify the character sequence and
characters can be read in more than once.
If column values which exceed the record length are specified then blanks are read into the
work file in their place. This applies corresponding to the @INPUT statement (format 2).

If line ranges are specified for selection then only the specified (and possibly adjacent) lines
are examined for illegal byte sequences. However, they are examined in full independently
of any column selection which may have been made. Illegal byte sequences which occur
in non-read lines are not detected.

The @WRITE (format 2) and @SAVE statements can be used to select the work file
records to be written to the file. When this is done, it is possible to modify the sequence in
which the work file records are written.

Work file records can be written more than once. It is also possible to select the characters
(columns) which are to be written from the selected work file records into the file. Here
again, it is possible to modify the character sequence and characters can be written more
than once. If column values which exceed the work file record length are specified then
blanks are written to the file in their place.

6.4.3 Version numbers

In the statements @GET, @SAVE, @READ, @WRITE (format 2), @OPEN (format 2),
@ELIM, @INPUT (Format 2), @FILE and @UNSAVE it is possible, in addition to the file
name, to specify a version number between 0 and 255 or specify * to represent the current
version number. This makes it possible to protect the file against accidental overwriting.

When a file is first created, it is assigned the version number 1 after being written to disk.
Each time the file is written, DMS increases the version number by 1.
The version number is incremented up to 255. The following version number is then 0
again.

Read accesses (@GET, @READ) with a version number other than the current version
number are executed. The current version number is output in message EDT0902.
If * is specified as the version number then the current version number is also displayed in
the message EDT0902. Although this specification is possible in @INPUT (format 2), it is
completely ignored. Write accesses (@SAVE, @WRITE (format 2), @ELIM, @UNSAVE)

Characteristics of the old file access statements File processing

142 U41709-J-Z125-1-76

and attempts to open files for real processing (@OPEN, format 2) with a version number
other than the current value are not executed. Instead, the correct version number is
displayed in the message EDT4985.
In the case of the explicit or symbolic specification of the current version number, the new
version number which has been incremented by 1 is displayed in the message EDT0902.

The version numbers provide increased protection against file destruction. If a version
number is specified when a file is read in, then the valid version number is output after the
read operation, thus making it possible to identify obsolete file versions.

The EDT version number should not be confused with the generation number of file gener-
ation groups in BS2000. This is a component of the file name.
For each generation, it is also possible to specify a version number.
The meaning of the EDT version number corresponds more closely to the variant number
of library elements.

6.4.4 File link names

In the statements @ELIM, @GET, @SAVE, @READ and @WRITE (format 2), it is possible
to specify '/' instead of the file name if the fixed file link name EDTISAM (for @ELIM,
@GET, @SAVE) or EDTSAM (for @READ, @WRITE) has been assigned to the file before
it is accessed by EDT.

If the fixed file link name EDTISAM has been assigned to a file then the attributes are read
from the Task File Table when the file is opened for reading or writing with @GET or
@SAVE. If EDTSAM has been assigned to the file then the attributes from the Task File
Table are used when the file is opened for reading or writing with @READ or @WRITE.

If on a write operation, the file attributes differ from the EDT standard format (see the
sections on ISAM files and SAM files) then it is only possible to write the files with the state-
ments @SAVE and @WRITE (format 2) if the discrepant attributes have first been entered
in the Task File Table and the fixed file link name EDTISAM or EDTSAM has been
assigned to the file.

If the symbolic name '/' is specified for a file when a write operation is performed with
@SAVE or @WRITE then the unneeded disk storage space is not released after the file is
closed and no confirmation query is issued (EDT0903) asking whether an existing file
should be overwritten.

File processing Reading and writing SAM files with the old statements

U41709-J-Z125-1-76 143

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

6.5 Reading and writing SAM files with the old statements

The old statements @READ and @WRITE (format 2) can still be used to access SAM files.
However, users are recommended only to use the new statements (see section “Reading
and writing all supported file types” on page 138).

These statements make it possible to select specific lines and columns and specify a
version number. If the file has been assigned the fixed file link name EDTSAM then it is also
possible to specify '/' instead of the file name (see section “Characteristics of the old file
access statements” on page 140).

These statements also make it possible to interpret the first 8 characters in a SAM file (in
UTF16 files, these are the first 16 bytes) as a line number.
In the case of write operations, the associated EDT line numbers are used and the work file
record is written as of character 9.
On read operations, the first 8 characters of the record that is to be read are taken over as
a line number and the remainder of the record as of character 9 is taken over into the work
file.
In this case, a check is performed to verify that the characters in the line number are
numerical (for details, see the descriptions of the individual statements).

6.5.1 Reading

A SAM file can be read into the current work file for processing using the old @READ
statement. After being read in, the file is closed again.

An implicit local @FILE entry is created and this can be used in a subsequent @WRITE
statement.

6.5.2 Writing

The current work file can be written to a SAM file using the old @WRITE statement (format
2). This may either exist or can be created before the write operation. The work file is
retained after writing.

Existing SAM files with a fixed record length can only be overwritten in the same record
format if this file attribute has been stored with the file name and the fixed file link name
EDTSAM in the Task File Table before the @WRITE statement is executed.

If a new SAM file is created before the write operation then the default attributes are
generally used. If file attributes other than the default attributes are used then they must be
stored together with the file name and the fixed file link name EDTSAM in the Task File
Table before the @WRITE statement.

Reading and writing ISAM files with the old statements File processing

144 U41709-J-Z125-1-76

6.6 Reading and writing ISAM files with the old statements

The old statements @GET, @SAVE and @ELIM can still be used to access ISAM files.
However, users are recommended only to use the new statements (see section “Reading
and writing all supported file types” on page 138).

These statements make it possible to select specific lines and columns and specify a
version number.
If the file has been assigned the fixed file link name EDTISAM then it is also possible to
specify '/' instead of the file name in the @GET and @SAVE statements (see section
“Characteristics of the old file access statements” on page 140).

6.6.1 Reading

An ISAM file can be read into the current work file for processing using the old @GET
statement. After being read in, the file is closed again.

An implicit local @FILE entry is created and this can be used in a subsequent @SAVE
statement.

The ISAM key is not usually transferred as a line number. However, this is possible by
means of the NORESEQ operand.
It is not possible to transfer the ISAM key into the data area with @GET. To do this, it is
necessary to store the file name, the fixed file link name EDTSAM and the ISAM access
method in the Task File Table and use the statement @READ '/'. In this case, it is not
possible to specify the file name in the @READ statement.

To read in ISAM files with non-standard key positions (≠5 for variable record lengths or ≠1
for fixed record lengths), with a key length greater than that specified as the default, with
non-numerical keys or with duplicate key values, it is necessary to take the ISAM key over
into the data area.
To do this, it is necessary to store the divergent file attributes together with the file name,
the fixed file link name EDTSAM and the ISAM access method in the Task File Table. The
file is then read in using the @READ '/' statement.

File processing Reading and writing ISAM files with the old statements

U41709-J-Z125-1-76 145

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

6.6.2 Writing

The current work file can be written to a ISAM file using the old @SAVE statement. This
may either exist or can be created before the write operation. The work file is retained after
writing.

Existing ISAM files with a fixed record length and/or a key length shorter than that defined
as the default can only be overwritten using these same attributes if the divergent file
attributes have been stored together with the file name and the fixed file link name EDTISAM
in the Task File Table before the @SAVE statement is executed.

Existing ISAM files whose ISAM key has been taken over into the data area can be
overwritten if the divergent file attributes have been stored in the Task File Table
together with the file name, the fixed file link name EDTSAM and the ISAM access method
and are written using the @WRITE '/' statement. In this case, it is not possible to specify
the file name in the @WRITE statement.

If a new ISAM file is created before the write operation then the default attributes are
generally used.

If the ISAM key is to be formed from the line number when a new file is created then it may
be necessary to store the file attributes which differ from the default values in the Task
File Table together with the file name and the fixed file link name EDTISAM before the
@SAVE statement is executed.

If the ISAM key is to be taken from the data area when a new file is created then it may be
necessary to store the file attributes which differ from the default values in the Task File
Table together with the file name and the fixed file link name EDTSAM and the ISAM access
method. The file is then written in using the @WRITE '/' statement. In this case, it is not
possible to specify the file name in the @WRITE statement.

The @ELIM statement can be used to delete the ISAM file either fully or partially.

Real processing of ISAM files File processing

146 U41709-J-Z125-1-76

6.7 Real processing of ISAM files

ISAM files can be processed directly on disk without first having to be read fully into the EDT
memory area. When this is done, work file 0 must be the current work file.
It must either be empty or a file must have been opened for real processing.
In the former case, the character set of work file 0 must be *NONE or must correspond to
the character set of the file that is to be opened.
In the latter case, the opened file is implicitly deleted. In this case, the work file is implicitly
deleted and the character set *NONE is set.

6.7.1 Opening

An ISAM file is opened for real processing using the @OPEN statement (format 2). If the
file does not yet exist, it is created before being opened. When this is done, the default
attributes for ISAM files are used unless a different specification has been made using the
fixed file link name EDTMAIN. The file remains open until processing is terminated by means
of an explicit or implicit close.

If the file link name EDTMAIN is used, it is still necessary to specify the file name in the
@OPEN statement. It is not possible to specify '/'.

The real processing of ISAM files with non-standard key positions or key lengths longer
than the default value is not supported.

The real processing of ISAM files with duplicate key values or non-numerical keys is not
supported. If such a file is opened then an error occurs as soon as one of its records is
processed.

If a file's key length is shorter than 8 (or 16 in the case of UTF16 files) then the line number
is left-filled with zeros when read in. For example, in the case of a KEY-LENGTH specification
of 4, the ISAM key 1234 would be taken over as line number 0000.1234. Furthermore, in
this case the current increment would be set to a suitable value. If when the file is opened,
the current increment has the default value 1 or if the set increment is greater than the
largest possible line number then it is set to the value 0.0001 for key lengths smaller than
or equal to 2, to 0.01 for key lengths smaller than or equal to 5 and to the value 1.0
otherwise.

File processing Real processing of ISAM files

U41709-J-Z125-1-76 147

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

6.7.2 Processing

Only the section of the ISAM file that is actually required is read into the current work file.
In F mode, these are the records which are fully or partially displayed on the screen and, in
L mode, the line range specified in an EDT statement. On a read operation, the ISAM key
is taken over as a line number.

In F mode, every change is immediately transferred to the disk file when the [DUE] key or
another data transfer key is pressed. In L mode, the changes are transferred after the
execution of an EDT statement. Only the modified records are written back to the file. On a
write operation, the ISAM key is formed from the line number. It is not possible to renumber
lines when performing real processing.

A file's character set cannot be modified during real processing. The @CODENAME
statement is rejected with the message EDT5452.

Line numbers that are longer than the key length cannot be generated during real
processing. The corresponding statements are rejected with an error message in the same
way as when an excessively large increment is set.

Errors in the file (e.g. non-numerical keys, duplicate keys, illegal byte sequences etc.) may
sometimes not be detected until the corresponding records are to be read. Not all the
records in the file are read in when the file is opened. Any errors that are subsequently
detected are then reported by the command which was executing when they occurred. In
such cases, a file that has been opened for real processing is automatically closed.

6.7.3 Closing

A file that has been opened for real processing is closed with @CLOSE. It is also closed if
one of the statements @HALT, @EXEC, @LOAD, @OPEN (format 2), @DELETE (format
2) or @DROP is entered.

The work file is deleted after the close operation.

Reading and writing POSIX files with the old statements File processing

148 U41709-J-Z125-1-76

6.8 Reading and writing POSIX files with the old statements

The old statements @XOPEN, @XCOPY and @XWRITE can still be used to access
POSIX files. However, users are recommended only to use the new statements (see
section “Reading and writing all supported file types” on page 138).

6.8.1 Reading

A POSIX file can be read into the current work file for processing using the @XOPEN
statement. The file remains open until it is closed with @CLOSE.

The @XCOPY statement can also be used to read a POSIX file into the current work file.
After being read in, the file is closed again.

6.8.2 Writing

The current work file can be written back to a POSIX file with @CLOSE provided that this
has been previously read in with @XOPEN or if a new POSIX file has first been created
with @XOPEN, MODE=NEW. After the write operation, the file is closed and the work file
is deleted.

The current work file can be written to a new POSIX file with @XWRITE. The work file is
retained after writing.

The current work file can be written to an existing POSIX file with @XWRITE. This
completely replaces the old file content. The work file is retained after writing.

@XWRITE can be used to write the current work file back to a POSIX file which has been
opened with @XOPEN. The file remains open after writing and the work file is retained.

File processing File catalogs

U41709-J-Z125-1-76 149

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

6.9 File catalogs

The @SHOW statement (format 1) can be used to output lists of files from the BS2000
catalog, from a POSIX directory or from a library.

The @DELETE statement (format 3) can be used within EDT to delete files from the
BS2000 catalog or from a POSIX directory or to delete elements from a library.

If the statements refer to library elements then all element types are permitted.

BS2000 file catalogs can also still be processed using the old statements. The @FSTAT
statement can be used to output lists of BS2000 files. The @UNSAVE statement can be
used to delete files from the BS2000 catalog from within EDT.

6.10 System files

EDT makes it possible to read from SYSDTA and write to SYSOUT and SYSLST.

The handling of character sets when accessing system files is described in section
“Character sets” on page 47. The system files SYSLST and SYSOUT should only be assigned
to files or library elements with a Unicode character set if it is certain that only EDT sends
output to these files. Otherwise files containing invalid characters could be created since
other system components do not usually take account of the character set assigned to
SYSLST or SYSOUT.

6.10.1 The SYSDTA system file

EDT reads from SYSDTA in the following cases:

– When reading lines in L mode if @EDIT ONLY is set or in batch mode. If the line repre-
sents an EDT statement then it is executed immediately. Otherwise, the line is stored in
the current work file.

– When reading with the statement @CREATE ... READ without a prompt or in batch
mode.

The records that are to be read from SYSDTA may have a maximum length of 32763 bytes
(RDATA permits an input area of 32767 bytes, where the first 4 bytes constitute the record
length field).

When EDT is initialized, the SYSDTA character set is determined.
This is used when reading from SYSDTA. If the assignment to SYSDTA changes then the
character set is determined again and reading is subsequently performed with the new
character set.

System files File processing

150 U41709-J-Z125-1-76

6.10.2 The SYSOUT system file

In interactive mode, the following EDT output is written to SYSOUT:

1. Both in F mode and in L mode, the output from the statements @COMPARE (format 1),
@LIMITS, @ON COLUMN, @SEQUENCE CHECK, @TABS VALUES is sent to
SYSOUT.

2. In L mode only, the output from the statements @COMPARE (format 2), @FSTAT,
@PROC (format 2), @SHOW, @STAJV, @STATUS is written to SYSOUT.

3. In L mode only, EDT error messages are written to SYSOUT.

4. Logging output resulting from the statements @CHECK (L mode only), @DO PRINT,
@EDIT PRINT, @INPUT PRINT is written to SYSOUT.
In this case, work file records or EDT statements (sometimes with additional infor-
mation) are output.

5. Both in F mode and in L mode, the output from the statements @ON PRINT and
@PRINT (without the V operand) is written to SYSOUT. In this case, the work file records
are output together with line numbers.

In batch mode, only the messages concerning normal or abnormal termination (e.g.
EDT8000) are sent to SYSOUT unless job switch 8 is set.

If an error that cannot be corrected occurs when writing to SYSOUT then EDT is terminated.

The first character in each record when output is written to SYSOUT is a line feed character.
If SYSOUT is assigned to a terminal then it is not displayed. If SYSOUT is assigned to a file
then it becomes a component of the file. If a non-existent file is assigned, then the system
indicates in the catalog that the file contains EBCDIC control characters. However, EDT
does not evaluate the catalog entry but always generates EBCDIC line feed characters or
the control characters which correspond to these EBCDIC characters in the character set
which is assigned to SYSOUT.
If the user wants to print the file then it is possible to evaluate these line feed characters. If
output is sent to SYSOUT then the same line feed characters are used as in the case of
SYSLST (see section “The SYSLST system file” on page 152).

The length of output to SYSOUT is restricted (2032 bytes including the record length field and
line feed characters on output to files and 32767 bytes on output to the terminal).
If the output is longer than this then the record to be output is subdivided into sections of
maximum 2027 bytes in the case of output to a file and 32762 bytes in the case of output
to a terminal and the record is then output in several sections.
If SYSOUT is using a Unicode character set, this ensures that the line feed always takes
place at a character boundary.

File processing System files

U41709-J-Z125-1-76 151

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

EDT sends output to SYSOUT in the assigned character set which is determined using the
BS2000 macro GCCSN except in the case of the terminal. Output to the terminal is always
sent in the specified communications character set. If the assignment to SYSOUT changes
then the character set is determined again and writing is subsequently performed with the
new character set. If this character set is *NONE then EDF03IRV is used. If the output
contains characters which cannot be displayed in the target character set then the
substitute character defined with @PAR SUBSTITUTION-CHARACTER is used. If no such
character is defined, a blank is inserted.

When assigning a character set to SYSOUT it is always important to consider what compo-
nents send their output there since not all system components take account of the SYSOUT
character set correctly.
For example, in interactive mode, EDT output generated with WRTRD is sent to the terminal
in the communications character set.
In this case, if SYSOUT is assigned to a file, then the system also writes the data present in
the communications character set (e.g. UTFE) and any consequent user input (also in this
character set) to this file without taking account of the file's character set (with which
SYSOUT has been harmonized). This may cause problems if the file uses a different
character set.
It is therefore currently advisable only to use EBCDIC character sets as the SYSOUT
character set and to avoid redirecting SYSOUT to a file in interactive mode if at all possible.

If screen monitoring is active and SYSOUT is assigned to a terminal then output can be inter-
rupted by pressing [K2]. If the EDT session is continued with /RESUME-PROGRAM or
/INFORM-PROGRAM then the output is aborted and one or more messages are issued.

System files File processing

152 U41709-J-Z125-1-76

6.10.3 The SYSLST system file

In both interactive and batch mode, the following EDT output is written to SYSLST:

1. Output from the statements @LIST (without I operand) and @PAGE is written to
SYSLST. In this case, the work file records are output together with line numbers.

2. Logging output resulting from the @LOG statement is written to SYSLST. In this case,
work file records or EDT statements are output.

In batch mode, the following EDT output is also written to SYSLST unless job switch 8 is set:

3. Output from the statements @COMPARE, @FSTAT, @LIMITS, @ON COLUMN,
@PROC (format 2), @SEQUENCE CHECK, @SHOW, @STAJV, @STATUS,
@TABS VALUES is written to SYSLST.

4. EDT error messages are written to SYSLST.

5. Logging output resulting from the statements @CHECK, @DO PRINT,
@EDIT PRINT, @INPUT PRINT is written to SYSLST. In this case, work file records or
EDT statements (sometimes with additional information) are output.

6. Output from the statements @ON PRINT and @PRINT is written to SYSLST. In this
case, the work file records are output together with line numbers.

If job switch 8 is set then EDT writes this output to SYSOUT in batch mode. Although this is
not explicitly formulated in the statement description, it applies even if only 'is output to
SYSLST in batch mode' is stated.

If it is not possible to write to SYSLST in batch mode then the output is aborted and the error
message EDT5498 is output at SYSOUT.

The first character in each record when output is written to SYSLST is a line feed character.
If a non-existent file is assigned, then the system indicates in the catalog that the file
contains EBCDIC control characters. However, EDT does not evaluate the catalog entry but
always generates EBCDIC line feed characters or the control characters which correspond
to these EBCDIC characters in the character set which is assigned to SYSLST. They are
evaluated if SYSLST is printed during task termination. If a file assigned to SYSLST is printed
then the user can trigger this evaluation.
If SYSLST has a Unicode character set then the control characters are converted accord-
ingly. It is therefore possible to process the file in EDT. When the file is printed, the control
characters are converted back again by the BS2000 SPOOL subsystem.

The line feed characters generated by EDT are presented in detail in the description of the
@LIST statement as is the treatment of Unicode files with line feed characters during print
operations.

File processing System files

U41709-J-Z125-1-76 153

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
06

A number of statements generate additional line feeds at the start of their output or at the
start of a new section.
The line feed is usually omitted if the output occurs at the start if a page. The page size for
SYSLST is set with the @PAGE and @LIST statements and applies to all output to SYSLST.
If the SYSLST assignment is modified during the EDT session then EDT assumes that this
has occurred at the start of a page and restarts its line count accordingly.

Output to SYSLST is usually limited to a maximum of 132 characters (plus line feed
characters). If job switch 6 is set then the maximum length is 160 characters.
If the output is longer then it is split accordingly and output over several different sections.
Line feeds are always performed at character boundaries.

Output to SYSLST is performed in the assigned character set which is determined using the
BS2000 macro GCCSN. If the assignment to SYSLST changes then the character set is deter-
mined again and writing is subsequently performed with the new character set. If this
character set is *NONE then EDF041 is used. If the output contains characters which cannot
be displayed in the target character set then the substitute character defined with @PAR
SUBSTITUTION-CHARACTER is used. If no such character is defined, a blank is inserted.

System files File processing

154 U41709-J-Z125-1-76

6.10.4 The system files SYSLST01 .. SYSLST99

EDT logging output resulting from the @LOG statement can be written to the files
SYSLST01 to SYSLST99 in both interactive and batch mode.

It is only possible to send output to these system files if they are associated with a file, a
library element or an S variable.

The first character in each record when output is written to SYSLST01 to SYSLST99 is a line
feed character.
If a non-existent file is assigned, then the system indicates in the catalog that the file
contains EBCDIC control characters. However, EDT does not evaluate the catalog entry but
always generates EBCDIC line feed characters or the control characters which correspond
to these EBCDIC characters in the character set which is assigned to the relevant
SYSLSTnn file. If the user wants to print the file then it is possible to evaluate these line feed
characters.
If output is sent to SYSLST01 to SYSLST99 then EDT only uses a small number of line feed
characters, and in particular the page size is not monitored as in the case of SYSLST.

Output to SYSLST01 to SYSLST99 is usually limited to a maximum of 132 characters (plus
line feed characters). If job switch 6 is set then the maximum length is 160 characters. If the
output is longer then it is split accordingly and output over several different sections. Line
feeds are always performed at character boundaries.

Output to SYSLST01 to SYSLST99 is performed in the assigned character set which is deter-
mined using the BS2000 macro GCCSN. If the assignment changes then the character set
is determined again and writing is subsequently performed with the new character set. If
this character set is *NONE then EDF03IRV is used. If the output contains characters which
cannot be displayed in the target character set then the substitute character defined with
@PAR SUBSTITUTION-CHARACTER is used. If no such character is defined, a blank is
inserted.

U41709-J-Z125-1-76 155

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

7 Description of the statements
This section explains the notational conventions used in the detailed descriptions of the
statement and statement codes, the basic structure of the descriptions and the operand
types used in the various statements.

7.1 Metasyntax

The following metasyntax and typographic conventions are used for the formal presentation
of the statements.

Formal representation Explanation Examples
UPPERCASE
and
special characters

Uppercase characters and
special characters designate
constants or keywords which
the user must enter in exactly
the presented form.

UPDATE,
OVERWRITE

UPPERCASE
semibold

Semibold uppercase letters
indicate the short form of the
keywords. Any input between
the short form and the long
form is permitted.

@LOWER
The user may enter:
@LOW, @LOWE
or @LOWER

lowercase Lowercase letters describe
variable operands which the
user must replace with
current values during input.

@GOTO line
The user may enter, for
example:
@GOTO 3

Braces enclose a number of
alternatives, i.e. one of the
entries must be selected.

@LOWER

The user may enter:
@LOWER ON or
@LOWER OFF

ON

OFF

Metasyntax Description of the statements

156 U41709-J-Z125-1-76

| | separates alternatives when
these are not located above
but next to one another.

@LOWER {ON | OFF}

. . . . designates alternatives
which are not listed individ-
ually but have to be selected
from a continuous range.

1. .22
The user may enter a value
between 1 and 22.
$1. . $22
The user may enter a symbol
between $1 and $22.

[] Specifications in square
brackets are optional and
may be entered if the user
wishes.

[,...] This construction with three
dots indicates the possible
repetition of the preceding
syntactic unit. A comma must
be entered as a separator
between the repetitions.

line [,...]
The user may enter, for
example:
1, 3, 7 or 10.

Underscore Value used by EDT if none of
the possible alternatives is
specified. If, in such a case,
none of the alternatives is
identified as the default value
then refer to the detailed
description to determine
EDT's behavior.

@LOWER []

The entries @LOWER and
@LOWER ON have the same
effect.

ON

OFF

Description of the statements Statement syntax

U41709-J-Z125-1-76 157

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

7.2 Statement syntax

This section explains the underlying concepts during the syntactic analysis of EDT state-
ments.

Because the two types of input are handled differently, when ever input is received EDT
must decide whether this is data input or an EDT statement (multiple EDT statements are
also possible. In F mode, these are separated by semicolons (;),and in L mode by [LZE]
characters provided that BLOCK mode has been activated).

In F mode, EDT makes this decision on the basis of the location of the input. EDT always
interprets input in the statement line as an EDT statement and input in the data window as
data input. It interprets input in the statement code column as statement codes. The same
principle applies to the subroutine interface where EDT statements and data have to be
entered in separate input areas provided for the purpose.

In contrast, in L mode all the input is made in a line. To make it possible to distinguish
between data input and EDT statements in L mode, all EDT statements entered in L mode
must start with the EDT statement symbol (default value: @).
In F mode and at the subroutine interface, the EDT statement symbol may be omitted since
there is no danger of confusion with data input.

In L mode, the following special characteristics should also be noted.
If an entry starts with two EDT statement symbols (@@, where one or more blanks may be
located before and after the first @), EDT interprets the input as data input and the second
EDT statement symbol is considered to be the first character of the data input. EDT
removes all the characters (first EDT statement symbol and all the blanks) which occur
before the second EDT statement symbol. In L mode, it is therefore easy to write lines
containing EDT statements in EDT procedures (if an input starts with a single EDT
statement symbol then it is immediately executed as an EDT statement and is not written
to a line). In L mode, therefore, data input is only interpreted as a statement if the first
character which is not a blank is the EDT statement symbol and the first character that is
not a blank following the EDT statement symbol is not the EDT statement symbol.

The above applies equally to user statement symbols. If input starts with two identical user
statement symbols then this input is interpreted as data input and the second user
statement symbol is considered to be the first character in the data input. In contrast, if the
input starts with one user statement symbol or two different user statement symbols then
everything after the first user statement symbol is interpreted and executed as a user
statement (blanks are skipped).

Some EDT statements (e.g. @SET, format 6) possess the operand text (see section
“Operand syntax” on page 164). This text operand which EDT handles as a separate
input, may in turn take the form of either an EDT statement or a data input. EDT decides
which interpretation is correct on the basis of the rules used in L mode.

Statement syntax Description of the statements

158 U41709-J-Z125-1-76

If EDT identifies the input as an EDT statement then, in case the input consists of multiple
EDT statements, it first isolates the first non-processed EDT statement in the input. In F
mode, the semicolon is used as the separator and semicolons are not taken into account
when literals are broken down. In L mode, the separator is the [LZE] character. The
(separated) EDT statement is then copied to two internal buffers. One of the two buffers
then contains the EDT statement as it was input while, in the other, it is converted into
uppercase to simplify the recognition of the statement name and operands.

EDT then attempts to determine the statement name. If it is possible to identify the
statement name and if it corresponds to an EDT statement with an indirect operand speci-
fication (see section “Indirect operand specification” on page 161) then the operands are
now entered in the two internal buffers and in one of these, the input is again converted into
uppercase.

A syntax check of the EDT statement is then performed.
During the analysis of EDT statements, EDT accesses the originally entered statement for
those sections in which the distinction between uppercase and lowercase is relevant, e.g.
literals.
Unicode substitute representations in EDT statements are only interpreted inside of literals
(except in @DO and @PARAMS).
Furthermore, no tabulator expansion is performed in EDT statements. If there are no syntax
errors, the EDT statement is now executed and the originally entered EDT statement is then
written to the statement buffer (indirect operands are not resolved in this buffer).

An EDT statement begins with a statement name (e.g. @OPEN, @COPY, @WRITE) which
may be followed by one or more operands. In the case of some EDT statements, a
comment is permitted after the operands. One or more blanks are permitted (but not
necessary) before the EDT statement symbol and between the EDT statement symbol and
the statement name.

If an EDT statement possesses operands then these follow the statement name, possibly
separated by one or more blanks. The operands must be entered in the predefined order.
Any number of blanks may be entered before or after each operand. Some operands must
always be specified whereas others are optional.

If optional operands are omitted then default values are assumed for these operands. The
syntax description for each of the statements indicates which operands are optional and
which are not and what the default values for omitted operands are.

The blanks between the statement name and the operands or between the individual
operands themselves may be omitted. However, they must be entered if it would otherwise
not be possible to distinguish between the statement name and the operand or between two
successive operands.

Example
@SYMBOLS='?' is incorrect; the correct form is @SYMBOL S='?', since @SYMBOL is
a legal abbreviation of the statement @SYMBOLS.

Description of the statements Statement syntax

U41709-J-Z125-1-76 159

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

Users are generally not advised to omit the blanks between the statement name and the
operands or between the individual operands since this may sometimes make statements
very difficult to understand.

Alongside the direct entry of operands as described above, they can also be specified
indirectly by means of string variables. This means that it is possible, for example, not to
specify operands until runtime, thus permitting much greater flexibility, in particular in EDT
procedures. This method of specifying operands is described in more detail in section
“Indirect operand specification” on page 161.

In the case of some EDT statements, a comment is permitted after the operands if present.
The syntax description of each statement indicates whether or not it may be accompanied
by a comment.

Most EDT statements can be abbreviated. This is usually achieved by omitting one or more
characters at the end of the statement name. In some cases, however, there are also abbre-
viations which do not result from the omission of characters. The @BLOCK statement, for
example, can be abbreviated as @BK, the @QUOTE statement can be abbreviated as
@QE and the @SETF statement in F mode can be reduced to the character #. In the
@SEARCH-OPTIONS statement, it is also possible to omit certain characters in the middle
of the statement name with the result, for example, that @SEA or @SEA-OPTIONS
constitute valid abbreviations for these statements. The @SET statement, in which the
statement name can be entirely omitted, is an exception here. However, if @SET (format
6) is used in F mode or at the subroutine interface then the statement symbol must be
specified to remove ambiguity. The minimum portion of the statement name that must be
present so that EDT can recognize the statement without ambiguity is indicated in bold print
in the syntax diagrams.

Starting with the shortest possible abbreviation, EDT attempts to uniquely identify the
statement name. If it is successful, any further characters in the statement name are
skipped. This operation continues until EDT has processed the complete statement name
or a character which does not correspond to the statement name is detected (this may also
be a blank). The first character other than a blank that does not correspond to the statement
name is interpreted as the first character of the operand section.

In the case of three pairs of statements (@DELETE/@DELIMIT, @PAR/@PARAMS and
@UNSAVE/@UPDATE), the analysis of the statement name is not sufficient for a unique
identification of the statement since the shortest possible abbreviations are identical (@D,
@PAR and @U respectively). In these three cases, the first character of the operand
section is used for differentiation. In the case of the @DELIMIT statement, for example, the
operand section starts with the character =, whereas this character does not occur in the
operand section of the @DELETE statement (in the case of the @PARAMS, statement & is
the first character in the operand section and in the @UNSAVE statement, it is the character
'. Neither of these characters occurs in the operand section of the other statement in the
pair).

Statement syntax Description of the statements

160 U41709-J-Z125-1-76

Example
Consider the input @DEL& (blanks between the statement name and the operand
section can be omitted). The abbreviations @DIALOG, @DO and @DR (for @DROP)
do not match. The only remaining abbreviation is @D which may stand for the
statement @DELETE or for the statement @DELIMIT. However, the @DELIMIT
statement can be excluded because the character = does not occur in the remainder
of the statement. The statement name is therefore @DELETE. The characters E and L
in the input are now skipped since they match the corresponding characters in the
statement name. However, the character & does not match the corresponding character
(E) in the statement name and is therefore the first (and in this case the only) character
in the operand section.

The above description of the procedure employed when analyzing statements also makes
it clear why error messages with no immediately obvious cause are sometimes output.
If no statement can be identified in the input, the message EDT3101 (illegal statement) is
output (e.g. @XD). However, there are a large number of situations in which the message
EDT3002 (operand error) is output even though the message EDT3101 would be expected.
Let us assume that in the above example, @DDL& is accidentally entered instead of
@DEL&. Exactly as in the above statement analysis, EDT would come to the conclusion
that the intended statement is @DELETE (@DELIMIT is not possible because there is no
=). However, the very next character after @D in the input differs from the corresponding
character in the statement name @DELETE. Therefore, everything as of this character is
considered to belong to the operand section (DL&). However, the string DL& cannot be
interpreted as a permitted operand for any of the three formats of the @DELETE statement
and the message EDT3002 is therefore output.

Notes
– The delimiter characters for literals (by default, the characters ' and ") can be redefined

using the @QUOTE statement. However, in the @DO and @PARAMS statements, the
character ' is always used as the delimiter for literals irrespective of any redefinition
performed using the @QUOTE statement.

– In @DO procedures, statements are not analyzed until the procedure parameters have
been substituted. Only then is any indirect operand specification resolved.

– It is not permissible to include blanks in the keywords of statements or append
comments at the end of statements (comments are only permitted at the end of a
statement if this is explicitly indicated in the statement description).

– The statement @SYNTAX TESTMODE=ON activates test mode. In this case, with only
a few exceptions, EDT statements are not executed but simply subjected to a syntax
check in L mode. This makes it possible, for example, to make sure that EDT proce-
dures are suitable for execution before running them (for more detailed information, see
the @SYNTAX statement, page 531).

Description of the statements Statement syntax

U41709-J-Z125-1-76 161

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

7.2.1 Indirect operand specification

In the case of indirect operand specification, all the operands that the user wants to specify
in the corresponding EDT statement are stored in a string variable (#S00..#S20) before
the EDT statement is executed. In the EDT statement itself, the indirect operand specifi-
cation is introduced by the & character after the statement name and separated from it by
one or more blanks. Thee & character must be immediately followed by the name of the
string variable which contains the operands for the EDT statement. The statement may not
contain any other characters (apart from blanks).

Once the statement name has been identified, the remainder of the statement (the &
character followed by the name of the string variable) is replaced by the content of the string
variable and the operands it contains are evaluated.

If logging is active (e.g. @LOG ALL or @LOG COMMANDS) then the statement generated
by this substitution is output together with the original input.
If the line causing an error message is output then only the original input is specified.

If the length of the statement name together with the substitution of the string variable
exceeds 32768 then processing is rejected with error message EDT5485.

The text operand in the statements @+, @-, @IF (format 1) and @SET (format 6) may
itself be an EDT statement. Indirect operand specification is also possible in these EDT
statements specified in the text operand.

No indirect operand specification is permitted in the statements @: (redefine the EDT
statement symbol), @+, @- and value assignments to EDT variables with the @SET
statement (the statement name @SET is omitted). This also applies to the @PARAMS
statement since all its operands start with the character &.

Caution

If indirect operand specifications are used for the @IF and @SET (format 6) statements
then endless loops may occur in EDT if the text operand in these statements itself contains
an @IF or @SET (format 6) statement, e.g.:

 1. @SET #S1='1: @SET &#S1' -------------------------------------- (1)
 2. @SET &#S1 -- (2)

or:

 1. @SET #S1='1: @IF &#S2' --------------------------------------- (1)
 2. @SET #S2='NO ERRORS: @SET &#S1' ------------------------------ (1)
 3. @SET &#S1 -- (2)

(1) The string variables #S1 and #S2 are filled with suitable content prior to indirect operand
specification.

Structure of the statement descriptions Description of the statements

162 U41709-J-Z125-1-76

(2) Once this statement has been issued with indirect operands, EDT enters an endless
loop.

If additional different string variables are used, it is possible to construct statement
sequences of any required level of complexity which may also cause EDT to enter an
endless loop.

7.3 Structure of the statement descriptions

The detailed statement descriptions have a uniform structure:

1. Description of the function of the statement

2. Formal statement syntax

3. Detailed description of the operands

4. Description of the statement's special characteristics and limitations as well as notes on
its use

5. Examples

Every statement description starts with a general description of the function of the
statement. This is immediately followed by a formal description of the statement's syntax in
the following form:

The Operation field contains the name of the statement written out in full and the maximum
permitted abbreviation of the application name is highlighted in semibold type. In the case
of all the statements which have to be introduced with the statement symbol in L mode or
which may be introduced by the statement symbol in F mode or at the subroutine interface,
the default statement symbol @ is also specified. In the case of statements which may not
be introduced by the statement symbol, it is omitted. In the case of a very few statements,
two possible statement names are specified. It is possible to use either of these. Any other
special characteristics which have to be taken into account when using the statement name
or one of its abbreviations are explained in the following text section of the statement
description.

The Operands field contains a formal syntactic description of the operands permitted for the
statement as if they were specified directly in a statement line. This also corresponds to the
syntax that must be observed when operand specification is made by means of a string

Operation Operands Modes
Operation Operands

Description of the statements Structure of the statement descriptions

U41709-J-Z125-1-76 163

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

variable when the statement is to be called with indirect operand specification. Otherwise,
there is no discussion of indirect operand specification itself in the statement descriptions
(see section “Statement syntax” on page 157). However, if indirect operand specification is
prohibited then this is mentioned in the text section of the statement description.

The naming of variable operands also identifies the operand type and thus describes the
syntax of the values that can be used for it. For a description of all the operand types, see
the section “Operand syntax” on page 164.

The Modes field lists the EDT operating modes in which the statement may be used. The
following specifications are possible:

F mode The statement may be used in F mode. If the field does not contain any
other entries then the statement may only be used in F mode. The following
text section of the statement description may indicate any other special
characteristics relating to the use of the statement in F mode.

L mode The statement may be used in L mode and consequently also in proce-
dures. If the field does not contain any other entries then the statement may
not be used in F mode. The following text section of the statement
description may indicate any other special characteristics relating to the use
of the statement in L mode.

@PROC The statement is only permitted in procedures. It is not possible to use them
in L mode outside of procedures and they may also not be used in F mode.

The formal description of the statement syntax is followed by a detailed description of the
individual operands, usually in the order in which they occur. The description presents not
only the function of the operand in question but also any special semantic considerations
relating to the operands, the default values if operands are omitted and interactions
between operands. However, the syntax of variable operands is not described. This can be
found in the section “Operand syntax” on page 164.

The operand description is usually followed by a text section in which further special
characteristics and restrictions relating to the current statement are explained. This section
also contains any special comments concerning use.

Most of the statement descriptions end with one or more examples which again demon-
strate the special characteristics of the statement. Unless indicated otherwise, all the
examples assume the EDT default settings.

Operand syntax Description of the statements

164 U41709-J-Z125-1-76

7.4 Operand syntax

This section contains the precise syntactic definition of the various variable operands which
occur in EDT statements. An operand's name always makes it possible to identify its
particular syntactic definition. Any special semantic considerations or restrictions within the
context of the particular statement in question are indicated in the operand descriptions in
the detailed statement descriptions.

All the operand types are defined in the following sections. These operand types are used
as operand names in the detailed statement descriptions. If syntactically equivalent
operands occur at various positions in a statement description then they are differentiated
by appending a sequential number. A definition is provided only for the basic names of any
such operands.

The following description of the operand syntax is subdivided into thematically linked
sections. Within the sections, the descriptions are organized in such a way that, if possible,
each operand type is defined before it is used for the first time. The following alphabetically
ordered overview will help readers find the particular definitions they require.

Operand Short description Page
binary Binary digit 166
char Any character 167
char* Any character or Unicode substitute representation 168
chars String 172
chars* String with Unicode substitute representation 172
col Column number 180
cols Column range 180
cols* Column range relative to the end of the record 180
comment Any comment: 173
dd Decimal digit 166
elname Name of a library element 182
eltype Type of a library element 181
entry Name of an entry point or a CSECT 181
escseq Unicode substitute representation 167
escsymb Escape character for Unicode substitute representation 167
file Name of a DMS file (quoted) 182
formal Formal parameter (in @DO procedures) 184

Description of the statements Operand syntax

U41709-J-Z125-1-76 165

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

fraction Part of a line number (after the decimal point) 171
freetype Free type name of a library element 181
hd Hexadecimal digit 166
hex Sequence of hexadecimal digits 171
hpos Relative horizontal positioning statement 185
inc Increment for line numbers 177
int Integer 171
intex Integer expression 172
ivar Integer variable 169
line Line number specified directly or as an expression 178
lines Contiguous range of line numbers 178
linkname Link name for files or job variables 182
lnum Directly specified line number 177
loopsymb Loop counter 168
lsym Symbolically specified line number 177
lvar Line number variable 169
m Record mark 185
message Any message text 173
modlib Library dynamically loaded from the module 183
n Unsigned integer 171
name String of maximum eight characters 173
op Mathematical operator + or - 168
param Parameter in @DO procedures 184
path Path name of a DMS file or job variable 183
procnr Name of a work file 185
progname Name of a program 182
rangesymb Range symbol 168
rel Relation in an @IF statement 168
search Search term in an @ON statement 175
spec Special character 167
str Quoted sequence of characters 173

Operand Short description Page

Operand syntax Description of the statements

166 U41709-J-Z125-1-76

7.4.1 Characters and symbols

This section contains descriptions of the elementary operand types as well as operand
types which are only needed for the definition of other operand types but which do not
themselves occur as real operands in any of the statements.

The digit 0 or 1.

Decimal digit.

strchar Quoted individual characters 174
strspec Quoted individual special character 174
string Directly or indirectly specified string 175
svar String variable 169
svarex Indirect specification of a string variable 170
svars Contiguous range of string variables 170
text Follow-up input in L mode statements 175
unicode UTF16 code of a character (4 hexadecimal digits) 167
ver Version number of a cataloged DMS file 183
vers Version number of a library element 183
vpos Relative vertical positioning statement 185
vpos–op Vertical positioning operand 185
xpath Path name of a POSIX file 184

Operand Definition
binary 0 | 1

Operand Definition
dd 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Operand Definition
hd dd | A | B | C | D | E | F | a | b | c | d | e | f

Operand Short description Page

Description of the statements Operand syntax

U41709-J-Z125-1-76 167

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

Hexadecimal digit.

A special character from the group of characters specified above (see also section
“Character set in a statement” on page 58).

Sequence of precisely four hexadecimal digits which specify a character's UTF16 code.

The current escape character which introduces a Unicode substitute representation
escseq. It can be defined using the statement @PAR ESCAPE-CHARACTER. By default,
no escape character is assigned.

Substitute representation for a Unicode character. The sequence of hexadecimal digits for
the unicode operand type must correspond to the character's UTF16 coding. If the user has
defined the escape character % with @PAR ESCAPE-CHARACTER=‘%‘ then, for example,
%U20AC would be a valid Unicode corresponding to the character €.

Any character.

Operand Definition
spec ! " # $ % & ’ () * + , - . / : ; < = > ? @ [\] ^ _ ‘ { | } ~

Operand Definition
unicode hd hd hd hd

Operand Definition
escsymb spec

Operand Definition
escseq escsymb U unicode

Operand Definition
char Any character

Operand syntax Description of the statements

168 U41709-J-Z125-1-76

The group of available characters depends on the employed character set on the one hand,
and on the input source on the other. Thus it is not possible to input any character via the
keyboard even if the terminal is able to display this character. In the case of characters
which cannot be entered directly, the operand type char* permits a Unicode substitute
representation.

Any character which is specified directly or in its UTF16 coding in the form of a Unicode
substitute representation (see also section “Substitute character representation in Unicode”
on page 52).

The current range symbol. This can be modified using the @RANGE statement. By default,
this is the character &.

The current loop counter which is defined in the @DO statement and which can be used in
the same way as a line number variable in the called @DO procedure.

One of the mathematical operators + or -.

Character representing a relation which can be queried using the @IF statement.

Operand Definition
char* char | escseq

Operand Definition
rangesymb spec

Operand Definition
loopsymb spec

Operand Definition
op + | -

Operand Definition
rel GT | LT | GE | LE | EQ | NE | > | < | >= | <= | = | <>

Description of the statements Operand syntax

U41709-J-Z125-1-76 169

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

The GT or > (greater than), LT or < (less than), GE or >= (greater than or equal to), LE or<=
(less than or equal to), EQ or = (equal to) and NE or <> (not equal to) have their usual mathe-
matical meanings.

7.4.2 Variables

This section contains the definition of integer variables, line number variables and string
variables together with expressions which determine these variables. The variables may be
specified in many EDT statements instead of explicitly defined numbers, line numbers or
strings.

One of the integer variables #I00,#I01,...,#I20 (see section “EDT variables” on
page 61). Leading zeros in the numerical part of the variable designation may be omitted.
Integer variables can be used to store positive or negative integer values. The permitted
range of values is between -231 and 231-1. If an integer variable is used in a statement
instead of an explicitly specified number then different limits apply depending on the
statement.

One of the line number variables #L00,#L01,...,#L20 (see section “EDT variables” on
page 61). Leading zeros in the numerical part of the variable designation may be omitted.
A line number variable may have a value between 0.0001 and 9999.9999. When EDT is
started, all the line number variables have the invalid value 0.0. Permissible values must
then be assigned to the line number variables before they are used.

One of the string variables #S00,#S01...,#S20 (see section “EDT variables” on page 61).
Leading zeros in the numerical part of the variable designation may be omitted. Every string
variable is assigned a content (a string) and a character set. If a string variable is deleted

Operand Definition
ivar #I00..#I20

Operand Definition
lvar #L00..#L20

Operand Definition
svar #S00..#S20

Operand syntax Description of the statements

170 U41709-J-Z125-1-76

then it has a blank as content and the character set EDF041. This is also the preliminary
default setting for all string variables. String variables may be used as work file line numbers
in many EDT statements.

Indirect specification of a string variable in the form of an expression which describes its
position relative to a given string variable. The relative position of the desired sequence of
string variables can be defined by means of the content of an integer variable or explicitly
by specifying nL.

Examples

– If #I10 contains the value 5, then #S0+#I10 designates the variable #S5.

– If #I3 contains the value 7, then #S10-#I3 designates the variable #S3.

– The expression #S15-5L designates the variable #S10.

– The expression #S3+8L designates the variable #S11.

A contiguous range of string variables

Note
The entry of dots before and/or after the range separator and the entry of leading zeros
before a variable name are still supported in the previous form for reasons of compati-
bility but are no longer necessary.

The specification svarex1-svarex2 (e.g. #S1-#S10) has the same effect as
svarex2-svarex1 (e.g. #S10-#S1). If a svarex operand is now specified, the range
consists of only this one string variable.

Examples

– #S3 selects the string variable #S3.

– #S4-#S7 selects #S4,#S5,#S6 and #S7.

– #S2+1L-#S6-#I3 selects #S3 and #S4 if #I3 has the content 2.

Operand Definition
svarex svar[op ivar] | svar[op nL]

Operand Definition
svars svarex [[.] - [.] svarex]

Description of the statements Operand syntax

U41709-J-Z125-1-76 171

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

7.4.3 Numbers

This section defines various numerical formats which are used in EDT. If certain formats
define semantic rules for the specified number then these are described here.

Unsigned integer.
The number of permitted digits depends on the statement in question. Therefore, 00005
does not necessarily have to be equal to 5.

The part of a line number after the decimal point.
The values.0001 to .9999 are permitted.

Sequence of hexadecimal digits.

Integer value which can be specified either explicitly or via an integer variable, for example:
5,0,-23456 or #I0,#I1,...#I20.
Unlike the operand type n, only the numerical value is of significance in int and leading
zeros do not cause any distinction.
When explicitly specified, the permitted range of values is between -231 and 231-1.

Operand Definition
n dd | n dd

Operand Definition
fraction .dd | fraction dd

Operand Definition
hex hd | hex hd

Operand Definition
int n | op n | ivar

Operand syntax Description of the statements

172 U41709-J-Z125-1-76

Integer expression.

7.4.4 Strings

This section defines strings which are used with different semantics in EDT statements, for
example in search statements, as comments or as special characters.

Strings without a defined delimiter (e.g. quotation mark) are first extracted during the syntax
analysis without taking account of the associated semantic constraints.
In this case, all the characters from the first character that is not a blank up to an internally
defined delimiter or the end of the statement are used (unless otherwise described for the
operand type). EDT normally uses the blank, comma, equals sign and parentheses as a
delimiter. Only when the operand has been extracted is it checked for length, characters
used and permitted syntax.

String.

String which may contain not only characters from the associated character set but also
substitute representations for Unicode characters. The substitute representation escseq
(see char*) for Unicode characters can be used if a character cannot be entered directly
at the keyboard or if Unicode characters are to be entered via files which are not themselves
coded in Unicode (see also section “Substitute character representation in Unicode” on
page 52).

If, for example, the character % is defined as escsymb using @PAR ESCAPE-
CHARACTER=‘%‘ then 'Have you got a %U20ac?' would be a valid operand of type
chars*.

Operand Definition
intex int | op int | intex op int

Operand Definition
chars char | chars char

Operand Definition
chars* char* | chars* char*

Description of the statements Operand syntax

U41709-J-Z125-1-76 173

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

Any comment.

Any text (up to the end of the statement, including blanks) which is passed to the calling
program when EDT is called as a subroutine with @RETURN or @HALT.
The string may contain a maximum of 80 characters and only use printing characters from
the EDF03IRV character set.

String of maximum length of 8 characters corresponding to the SDF data type
<alphanum-name 1..8>.

Sequence of quoted characters specified either as characters from the associated
character set or in their binary or hexadecimal coding. When displaying characters, the
Unicode substitute representation escseq is also permitted. Whether or not a blank string
is permitted in the character display depends on the statement in question and is set out in
the associated description.

If B or X is used, then the binary or hexadecimal digit is always interpreted in the character
set for the current work file (or in EDF041 if the current work file does not have a character
set) irrespective of what the employed command then does with the string.
If the string needs to contain a apostrophe then it is necessary to enter two apostrophe. The
valid quote character can be modified using the @QUOTE statement.

Operand Definition
comment chars

Operand Definition
message chars

Operand Definition
name chars

Operand Definition
str ’ [chars*] ’ [*int] | B ’ binary ’ [*int] | X ’ hex ’ [*int]

Operand syntax Description of the statements

174 U41709-J-Z125-1-76

The optional specification of *int is intended for the repetition of strings, e.g. 'ab'*3 is
the equivalent of 'ababab'. Since the maximum length of a string is 32768, int must not
exceed this value. If int has the value 0 or if the string that is to be repeated has the length
0 then the resulting string has the length 0.

Examples
– Specifying 'A''BC''D' generates the string A'BC'D.

– Specifying 'ABC'*5 generates the string ABCABCABCABCABC.

– Specifying X'C1F2'*4 generates the string A2A2A2A2 if EDF041 has been defined as
the character set.

– Specifying B'11110000'*3 generates the string 000 if EDF041 has been defined as the
character set.

– Specifying 'That is the %U0391 and %U03a9' generates the string
'That is the Α and Ω' if a Unicode character set has been defined and the
character % has been declared for @PAR ESCAPE-CHARACTER.

Notes
– If an odd number of characters is used in a hexadecimal specification then the entry is

left-filled with zeros. Thus X'F' is equivalent to X'0F' and X'A'*4 is equivalent to
X'0A'*4.

– The same applies to binary representations if the number of binary characters is not a
multiple of 8. Here again, the value is left-filled with zeros until the number of binary
characters is a multiple of 8. Thus B'1' is the equivalent of B'00000001' and
B'1111'*2 is the equivalent of B'00001111'*2.

Individual character in quotes or in binary or hexadecimal coding or direct specification of
UTF16 coding. The resulting string must have precisely the length 1.

Individual character in quotes or in binary or hexadecimal coding. The resulting string must
have precisely the length 1 and come from the group of characters defined in spec.

Operand Definition
strchar str | U’unicode’

Operand Definition
strspec str

Description of the statements Operand syntax

U41709-J-Z125-1-76 175

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

A directly or indirectly specified string.

If string is specified indirectly via a string variable or if a line number is specified then EDT
uses the content of the string variable or the content of the corresponding line as string.
If no such line exists, an error message is output and the statement is rejected.

If only a portion of a line or a string variable is required as string then this can be defined
by means of the appropriate column specifications. If column values which exceed the line
length are specified then a corresponding number of blanks are used in their place.
For example, if line 6 contains the string AB3CD6EF9 and string is specified as 6:1-
3,9,8,9,8-9,5-7,30,1,30-32,1:, then the corresponding string represented by this
expression is AB39F9F9D6EËAËËËA.

If the string specification in a statement consists of a line number which is itself modified
by the EDT statement then the original content of the line is used as the operand. If, for
example, line 1 has the value ABC and the EDT statement is @CREATE1:1,'D'*3,1, then,
after execution of the statement, line 1 has the value ABCDDDABC.

Analogous to the string operand type but, however, a quotation mark (") can be used
instead of an apostrophe (') within the alternative str. Both characters can be redefined
using the @QUOTE statement.

The search operand type is only used in the @ON statement in order to define the search
term.
For an explanation of the meaning of the apostrophe and quotation mark characters in a
search statement, see “Searching with @ON” on page 78.

Follow-up input in certain L mode statements.

Operand Definition
string str | line[:cols[,...] [:]] | svarex[:cols[,...] [:]]

Operand Definition
search string

Operand Definition
text chars*

Operand syntax Description of the statements

176 U41709-J-Z125-1-76

The text is treated in the same way as input in L mode, i.e. it is either considered to be a
statement and executed immediately or it is considered to be data input and inserted in the
current work file at the position of the current line number. EDT is able to determine the
nature of the input depending on whether the first characters other than blanks in the text
consist of one, two or no statement symbols or user statement symbols (see section “Input
in L mode” on page 126).

If the text consists of data input and contains Unicode substitute representations – escseq
– then these are only interpreted as Unicode characters if the employed escape character
has been defined with @PAR ESCAPE-CHARACTER and @PAR DATA-
REPLACEMENT=ON has been set. If the text is a statement then Unicode substitute repre-
sentations are only interpreted as Unicode characters inside literals. In this case, the inter-
pretation is independent of the setting of @PAR DATA-REPLACEMENT.

Description of the statements Operand syntax

U41709-J-Z125-1-76 177

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

7.4.5 Lines and line ranges

This section defines the various formats which can be used to address lines and line ranges
in EDT statements.

Line number.
Values between 0.0001 and 9999.9999 are permitted for lnum.

Increment for line numbers.
Values between 0.0001 and 9999.9999 are permitted for inc.

Symbolically specified line number which is specified either as a line number variable or as
one of the symbols explained below (see also section “Symbolic line numbers” on page 35).

* Current line number, i.e. the line number which EDT last wrote to the terminal as an
acknowledgment in L mode. If the file is empty, * has the value 1.

% Lowest line number in the file. If the file is empty, % has the value 1.

$ Highest line number in the file. If the file is empty or possesses only a single line then
$=%.

? Line number of the first hit line resulting from a preceding @ON statement. The value
when EDT starts is 0. This can only be modified by a successful @ON statement.
Following an @ON, the symbolic line number ? therefore has the same value as #L00.

The symbolic line numbers *,%,$ and ? always refer to the current work file even if they
are used in a range specification for another work file or for an external file. Their values at
any given time can be output using the @STATUS statement.

Operand Definition
lnum n | fraction | n fraction

Operand Definition
inc lnum

Operand Definition
lsym lvar | * | % | $ | ? | loopsymb

Operand syntax Description of the statements

178 U41709-J-Z125-1-76

The line operand can be used to specify line numbers directly or as an expression which
describes their position relative to other line numbers.
If neither ivar nor nL occurs in the expression specified for line then the line number is
calculated as an absolute value, i.e. the line number is determined by adding or subtracting
the values of lsym and/or lnum.
If ivar or nL is specified then a logical line number is determined, i.e. the number of existing
lines specified by means of ivar or nL are skipped starting from an absolute value,
independently of the increment used for line numbering.

In the expression nL, n may not have the value 0. However, it is possible to store this value
in an integer variable. It is only possible to assign a logically determined line number if a
corresponding line actually exists. Otherwise an error message is output.

Examples
– 17.1 addresses the required line directly and absolutely.

– If *=50.1 and %=1.0000, then *+3.5-% addresses the line 52.6000 absolutely.

– If %=1.0000 and #I15=6, then %+#I15 addresses the 6th logical line after line number
1.0000 (this is not necessarily line 7.0000).

– If %=1.000, then %+2L addresses the 2nd logical line after 1.0000.

– If %=1.0000 and *=3.0000, then %+* addresses line 4.0000.

– If *=50.1 and #I5=1, then *+3.5+#I5 addresses the line which logically follows line
53.6000 (this is not necessarily line 53.7000).

– If *=50.1000, then *+3.5+6L addresses the 6th logical line after 53.6000.

A contiguous line range.

Specifying line1-line2 (e.g. 1-10) has the same effect as line2-line1 (10-1). If only
one line operand is specified then the line range consists of only this one line.

Operand Definition
line

 [op]

Operand Definition
lines rangesymb | line[[.] - [.] line]

lsym [op inc]

lnum

ivar
nL
lsym

Description of the statements Operand syntax

U41709-J-Z125-1-76 179

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

The rangesymb operand represents the range symbol which can be declared by means of
the @RANGE statement. The default setting is the character '&' and the range 0.0001-
9999.9999.
Since the minus sign can both be used as a symbol for defining range limits and occur with
its arithmetical meaning in the line expression, ambiguous cases may arise. The following
conventions help overcome this problem:
– If the first range limit ends with lsym, then the correct notation is lsym.-line.
– If the second range limit starts with lsym, then the correct notation is line-.lsym ... or

line-.lsym op ...

Specifying . (period) makes it clear that the expression describes a range and not a
difference. The figure 0 can be entered instead of a period. Unlike in svars, the period may
only be entered in the specified cases here.

Examples
– 1-10 specifies the lines 1 to 10.

– %.-5 selects the range from the 1st line in the file through to line 5.

– %+5L-.$-10L selects the range from the 6th line in the file through to the 10th line
before the end of the file.

– %.-$ specifies the entire file.

– *+2.1-?.-.%+5L expresses the range *+2.1-? through to the 6th line of the file.

– #L1.-#L2 designates the range from #L1 to #L2.

– 12.011 selects only the line 12.011.

– #L9 selects only the line whose number is stored in #L9 .

Operand syntax Description of the statements

180 U41709-J-Z125-1-76

7.4.6 Columns and column ranges

This section defines the various formats which can be used to address columns and column
ranges in EDT statements.

Column number which may have a value between 1 and 32768. Nevertheless, some EDT
statements demand a smaller col value.

A contiguous column range.

The second col must not be smaller than the first. If it is not specified then the first col may
either designate the specified column or the range from col through to the end of the line.
Which of these applies can be found in the descriptions of the relevant statements.

If the second col is specified and is greater than the line length then the column range
extends through to the end of the line in question. The procedure adopted if the first col is
greater than the line length is specified in the descriptions of the relevant statements.

Column range in which the associated column number is specified relative to the end of the
record. The rules specified for cols apply equivalently to cols*. However, the range col1-
col2 for each line must be replaced by (linelength-col2+1)-(linelength-col1+1). If
this results in negative column numbers, the value 1 should be used.

Operand Definition
col int

Operand Definition
cols col[-col]

Operand Definition
cols* col[-col]

Description of the statements Operand syntax

U41709-J-Z125-1-76 181

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

7.4.7 File names and other system designations

This section defines special formats for strings which are used in EDT statements to
designate external objects such as files or library elements.

Strings without a defined delimiter (e.g. apostrophe) are first extracted during the syntax
analysis without taking account of the associated semantic constraints.
In this case, all the characters from the first character that is not a blank up to an internally
defined delimiter or the end of the statement are used (unless otherwise described for the
operand type).
EDT normally uses the blank, comma, equals sign and parentheses as a delimiter. Only
when the operand has been extracted is it checked for length, characters used and
permitted syntax.

Name of an entry point (ENTRY) or a CSECT section. This specification is case-sensitive. The
name must not be longer than 32 characters and must comply with the BLS constraints for
symbol names.

Free type name of a library element, specified as a string of 2 to 8 characters in length which
may not begin with $ or SYS.

Type of a library element.
Free type names can also be used to specify an element type. No check of the basic type
is performed. In some statements, only text types are permitted.

Operand Definition
entry chars | .svar

Operand Definition
freetype name

Operand Definition
eltype S | M | R | C | P | J | D | X | H | L | U | F | *STD | freetype | .svar

Operand syntax Description of the statements

182 U41709-J-Z125-1-76

Name of a library element which corresponds to the SDF data type <composed-name
1..64 with-under>.

Name of a program whose statements are to be subjected to a syntax check by EDT. The
name must correspond to the SDF data type <structured-name 1..30>.

File name which can be specified by means of a printable, hexadecimal or binary represen-
tation.
The file name may consist of a maximum of 54 characters without wildcards or 80
characters with wildcards. The DMS constraints for file names must be taken into account.
The specification of wildcards is not permitted in all statements. These are the wildcards
accepted in DMS, not the wildcards patterns declared in EDT.
Whether or not partial file name specifications are permitted again depends on the relevant
statement and is set out in the corresponding description.
In some statements, it is also possible to specify '/' to indicate the use of a given link
name. This is explained in the descriptions of the corresponding statements.

Specifies a file or job variable via its link name.
The name must correspond to the SDF data type <filename 1..8 without-gen>.

Operand Definition
elname chars | .svar

Operand Definition
progname chars

Operand Definition
file str

Operand Definition
linkname chars

Description of the statements Operand syntax

U41709-J-Z125-1-76 183

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

Path name of a file or a job variable which can be specified either directly or via a string
variable.
The path name may consist of a maximum of 54 characters without wildcards or 80
characters with wildcards. The DMS constraints for file names must be taken into account.
The specification of wildcards is not permitted in all statements.
These are the wildcards accepted in DMS, not the wildcards patterns declared in EDT.
Whether or not partial file name specifications are permitted again depends on the relevant
statement and is set out in the corresponding description.

Library containing a module that is to be loaded by EDT.
The name must correspond to the SDF data type <filename 1..54 without-vers>.

Version number of a cataloged file.
This can be specified either as * or int where int stands for a number between 0 and 255.
For information on using version numbers when reading and writing files, see section
“Version numbers” on page 141.

Version designation of a library element.
The designation must correspond to the SDF data type <composed-name 1..24 with-
under>.

Operand Definition
path chars | .svar

Operand Definition
modlib path

Operand Definition
ver * | int

Operand Definition
vers chars | *STD

Operand syntax Description of the statements

184 U41709-J-Z125-1-76

String which specifies the name of a POSIX file.
The specification of the complete path name is permitted. If no complete path name is
specified then the file is located in the current POSIX directory.
Blanks and commas in a name are only permitted if the name is specified in svar.
The path name must correspond to the SDF data type <posix-pathname 1..1023>.

7.4.8 Other

This section describes syntax elements which do not correspond to any of the categories
described above.

Formal parameter of the form &id which is to be specified in the @PARAMS statement of
a @DO procedure.
The remainder of the operand – id – is the name and may consist of 7 letters or digits. The
first character must be a letter.
This operand is used for keyword and positional parameters.

Parameters which are passed to a procedure file for execution via @DO.
These consist of a freely defined string which must be quoted if a comma, a closing paren-
thesis or a Unicode character with substitute representation is to be passed as part of the
parameter sequence.

In this case, each apostrophe that is to be passed in the parameter expression must be
identified by duplicate apostrophes. The delimiting apostrophes can be redefined using
@QUOTE.

Operand Definition
xpath chars | .svar

Operand Definition
formal &id

Operand Definition
param ’ [chars*] ’ | chars

Description of the statements Operand syntax

U41709-J-Z125-1-76 185

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
07

Number of a work file.
Values between 0 and 22 are permitted. In some statements, the value 0 is not permitted.

Record mark 1..9.

Relative horizontal positioning statement.

Relative vertical positioning statement.

Vertical positioning operand.

Operand Definition
procnr int

Operand Definition
m dd | ivar

Operand Definition
hpos >[n] | <[n] | <<

Operand Definition
vpos op n | vpos-op | vpos-op (m[,...])

Operand Definition
vpos-op + | - | ++ | --

Operand syntax Description of the statements

186 U41709-J-Z125-1-76

U41709-J-Z125-1-76 187

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

8 Statement overview
This overview presents the EDT statements ordered by topic and provides a brief
description. For the precise operand syntax, a detailed functional description and notes on
any restrictions or error messages, refer to the following alphabetically ordered description.
If the same statement can be assigned to a number of different topic groups then it is listed
more than once.

A corresponding comment indicates the statements which are no longer supported in EDT
V17.0 Unicode mode.

8.1 EDT parameter settings

The following statements are used to modify the predefined EDT parameter settings and
thus enable users to largely adapt the behavior and appearance of EDT to their own
requirements.

@: Defines a new statement symbol. F mode
L mode

@AUTOSAVE Activates the automatic time-controlled saving of work files. F mode
L mode

@BLOCK
@BK

Activates or deactivates EDT's blocked input/output mode
(BLOCK mode).

F mode
L mode

@CHECK
(Format 1)

Activates the logging of all lines that are created or modified
in a work file or a string variable by a statement. It also
makes it possible to check the number of characters per
line.

F mode
L mode

@CHECK
(Format 2)

Causes EDT to check whether the specified range in the
current work file or range of string variables can be
converted into the target character set without loss.

F mode
L mode

@CODE This statement is only supported in compatibility mode. F mode
L mode

EDT parameter settings Statement overview

188 U41709-J-Z125-1-76

@CODENAME
(Format 1)

Defines the character sets for work files and string
variables.

F mode
L mode

@CODENAME
(Format 2)

Specifies the communications character set which EDT
uses in interactive mode in order to exchange data with the
terminal.

F mode
L mode

@DELIMIT Declares characters that act as delimiters when searches
are performed with @ON.

F mode
L mode

@INPUT
(Format 3)

Specifies how EDT is to interpret text input in L mode. L mode

@LOWER Specifies whether or not EDT converts lowercase
characters into uppercase when data and statements are
input at the terminal.

F mode
L mode

@P-KEYS Loads the keyboard's programmable keys (P keys) with a
default assignment predefined by EDT or displays the EDT
predefined default assignment.

F mode
L mode

@PAR Specifies the EDT parameter settings. These settings
control the screen display, behavior on input, default values
for statements and the declaration of special meanings for
certain characters.

F mode
L mode

@QUOTE
@QE

Redefines the delimiter characters apostrophe and quotation
mark.

F mode
L mode

@RANGE Declares a symbol for a line range. F mode
L mode

@SEARCH-
OPTION

Makes presettings for searches using the @ON statement. F mode
L mode

@SETSW User and job switches are set or reset. F mode
L mode

@SYMBOLS Declares the wildcard symbols asterisk and slash for
searches using placeholders. The FILLER operand
declares a filler character.

F mode
L mode

@SYNTAX Defines the type of syntax check for input in L mode. It is
also possible to activate or deactivate the test mode.

F mode
L mode

@TABS
(Format 1)

Tabulator positions are defined for positioning with the
hardware tabulator and the current values of these positions
are output.

F mode
L mode

@TABS
(Format 2)

Tabulator characters and tabulator positions are defined for
positioning with software tabulators and the current values
are output.

F mode
L mode

Statement overview EDT parameter settings

U41709-J-Z125-1-76 189

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

@VDT The screen format for F mode is set. The function no longer
has any function in L mode and is supported for reasons of
compatibility only.

F mode
L mode

@VTCSET On output to SYSOUT, specifies whether the line mode
control characters which may be present in the lines of data
that are to be output are transferred unchanged or are
converted into smudge characters.

F mode
L mode

@EDIT
(Format 2)

In the interactive mode's L mode, this switches the input
stream to terminal input. WRTRD is used for reading and the
current line number is output as the prompt. If the statement
is entered in F mode, operation first switches to L mode.

F mode
L mode

@EDIT
(Format 3)

In the interactive mode's L mode, this switches the input
stream to input from SYSDTA. Reading is performed with
RDATA. If the statement is entered in F mode, operation first
switches to L mode.

F mode
L mode

@EDIT
(Format 4)

In F mode, switches between the full display of records and
the display of a record section in the data window for the
current work file.

F mode

@HEX Activates or deactivates hexadecimal mode for the current
work file.

F mode

@INDEX In F mode, activates or deactivates the line number display
for the current work file in the relevant data window.

F mode

@SCALE In F mode, activates or deactivates the display of a column
counter (horizontal ruler) for the current work file in the work
window.

F mode

@SPLIT In F mode, activates or deactivates the display of a second
work window on the screen.

F mode

@ZERO-
RECORDS

This statement is now only supported in compatibility mode. F mode
L mode

File processing Statement overview

190 U41709-J-Z125-1-76

8.2 File processing

The file processing statements provide a uniform interface for all the file types supported by
EDT (DMS files, library elements and POSIX files).
These statements therefore represent the preferred way of processing files. The old, non-
uniform statements for the file types are now only supported for reasons of compatibility.

@CLOSE Causes the current work file to be written back to disk or
tape, opened SAM, ISAM or POSIX files or library elements
to be closed and the work file to be deleted.

F mode
L mode

@COPY
(Format 1)

Reads an existing SAM, ISAM or POSIX file or a library
element in full into the current work file. The work file does
not have to be empty when this is done. After being read in,
the file or library element is closed again.

F mode
L mode

@DELETE
(Format 3)

Deletes files or library elements. F mode
L mode

@OPEN
(Format 1)

Opens an existing SAM, ISAM or POSIX file or a library
element and reads it into the current work file or creates a
new file and opens this for processing.

F mode
L mode

@SHOW
(Format 1)

Outputs a library's directory or a list of files from the BS2000
catalog or from a POSIX directory.

F mode
L mode

@WRITE
(Format 1)

Creates a new SAM, ISAM or POSIX file or a library
element and writes the content of the current work file to the
new file or overwrites an existing file with the content of the
current work file or writes the content of the current work file
back to a file opened using @OPEN (format 1). An opened
file remains open when @WRITE is issued and the content
of the work file is retained.

F mode
L mode

Statement overview Old statements for processing SAM and ISAM files

U41709-J-Z125-1-76 191

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

8.3 Old statements for processing SAM and ISAM files

These statements for processing SAM and ISAM files are now only supported for reasons
of compatibility. The statements listed in section “File processing” on page 190 should be
used in their place.

@ELIM Deletes records in an ISAM file. If all the records are deleted
then - unlike @UNSAVE – the file name remains present in
the catalog.

F mode
L mode

@FILE Supplies a file name as the default value for @GET,
@READ, @WRITE (Format 2), @SAVE, @OPEN (Format
2) and @ELIM. It is also possible to predefine a file name
that only applies to the current work file (explicit local
@FILE entry), or a file name which applies to all the work
files (global @FILE entry).

F mode
L mode

@GET Fully or partially reads an ISAM file from disk or tape into the
current work file.

F mode
L mode

@OPEN
 (Format 2)

Opens an ISAM file for processing directly on the disk. This
file may already exist, may be created before being opened
or be created as a copy of an existing SAM or ISAM file. It
is only possible to open ISAM files for real processing in
work file 0. This be empty or contain a file opened for real
processing using @OPEN (format 2).

F mode
L mode

@READ Fully or partially reads a SAM file from disk or tape into the
current work file.

F mode
L mode

@SAVE Fully or partially writes the content of the current work file as
an ISAM file to disk.

F mode
L mode

@UNSAVE Deletes a BS2000 file and the associated catalog entry. F mode
L mode

@WRITE
(Format 2)

Fully or partially writes the content of the current work file as
a SAM file to disk or tape.

F mode
L mode

Old statements for processing POSIX files Statement overview

192 U41709-J-Z125-1-76

8.4 Old statements for processing POSIX files

These statements for processing POSIX files are now only supported for reasons of
compatibility. The statements listed in section
“File processing” on page 190 should be used in their place.

8.5 Moving or positioning the work file

The following statements, which are primarily used in F mode, make it possible to move the
required section of a work file into the screen for processing.

@XCOPY Reads a POSIX file which is stored in a POSIX file system
into the current work file.

F mode
L mode

@XOPEN Opens a POSIX file which is stored in a POSIX file system
and reads it into the current work file.

F mode
L mode

@XWRITE Writes the content of the current work file into a
POSIX file. The work file is retained.

F mode
L mode

+ Moves forwards in the work file (toward the end of the file).
The position can be moved forwards by a given number of
lines or to a record with a specified record mark.

F mode

- Moves backwards in the work file (toward the beginning of
the file). The position can be moved backwards by a given
number of lines or to a record with a specified record mark.

F mode

++ Moves to the end of the work file or to the last record with a
specified record mark.

F mode

- - Moves to the beginning of the work file or to the first record
with a specified record mark.

F mode

< Moves horizontally to the left in the work file, i.e. the data
window can be moved through column-by-column to the left
(toward the start of the record).

F mode

> Moves horizontally to the right in the work file, i.e. the data
window can be moved through column-by-column to the
right (toward the end of the record).

F mode

<< Moves horizontally to the start of the record in the work file,
i.e. the data window is moved through column-by-column to
the start of the record.

F mode

Statement overview Treatment of line numbers

U41709-J-Z125-1-76 193

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

8.6 Treatment of line numbers

The following statements make it possible to adapt the line numbers and increments in a
work file to meet current requirements. It is also possible to store line numbers in variables
or number records sequentially.

see @SETF statement F mode
@END In L mode, causes the current work file to be exited.

Processing returns to the work file in which the @PROC
statement activating the current work file was issued. In F
mode, @END terminates the EDT session.

F mode
L mode

@ON
(Format 3)

Causes all records in which a hit is identified to be flagged
with the specified record mark. In F mode, the work window
is positioned at the first hit record.

F mode
L mode

@PROC
(Format 1)

In L mode, switches to another work file. This work file then
becomes the current work file.

L mode

@SETF Simultaneously sets the vertical and horizontal position of
the work window for a work file either with or without
changing the current work file. In F mode, this statement
may be abbreviated to # (if specified with operands).

F mode
L mode

0..22 Switches to another work file. F mode
$0..$22 Switches to another work file. F mode

@ See @SET (format 6). F mode
L mode

@+ The current line number is increased by the current
increment or, in SEQUENTIAL mode (see the @EDIT
statement), processing switches to the next current line.

L mode

@- The current line number is reduced by the current increment
or, in SEQUENTIAL mode (see the @EDIT statement),
processing switches to the preceding line number.

L mode

@PAR Defines the current increment by means of the INCREMENT
operand.

F mode
L mode

@RENUMBER The lines present in the work file are renumbered. It is
possible to specify both the line number which is to accom-
modate the first line in the work file and the increment which
is to be used for renumbering.

F mode
L mode

Creating, inserting and modifying texts Statement overview

194 U41709-J-Z125-1-76

8.7 Creating, inserting and modifying texts

The following statements are used if it is necessary to make similar changes to text
occupying a large range. They can be used in EDT procedures to automate frequently
recurring changes.

@SEQUENCE
(Format 1)

Causes EDT to write a number in each line of a contiguous
line range. A predefined number consisting of a maximum
of 8 digits (possibly with leading zeros) is written to the first
line of the line range. This also defines the number of digits
in all the following numbers. All the following numbers are
given by the total of the preceding number plus the
predefined increment.

F mode
L mode

@SEQUENCE
(Format 2)

Causes EDT to write the associated line number in each
line of a contiguous line range. The line number is written as
an 8-digit number without a decimal point.

F mode
L mode

@SEQUENCE
(Format 3)

Causes EDT to examine the content of a column or
contiguous range of columns in each line of a contiguous
line range. It interprets the string it finds there as a binary
number and checks whether the binary numbers form an
ascending sequence.

F mode
L mode

@SET
(Format 3)

Assigns a value to a line number variable. This value may
consist of: a line number specification, the value of an
integer variable, the specification of a line number as a
string or the binary value of the first 4 bytes in a string.

F mode
L mode

@SET
(Format 6)

Defines the current line number and the current increment
or restores earlier values for the line number and increment.

F mode
L mode

@COLUMN Inserts or replaces text in existing work file lines or string
variables as of the specified column position. Blanks at the
end of a line are also deleted.

F mode
L mode

@CONVERT In line ranges, converts lowercase characters to uppercase
or uppercase to lowercase.

F mode
L mode

@CREATE
(Format 1)

Creates a line with the specified content. F mode
L mode

@CREATE
(Format 2)

Assigns a string to a string variable. F mode
L mode

Statement overview Creating, inserting and modifying texts

U41709-J-Z125-1-76 195

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

@CREATE
(Format 3)

Reads a string from the terminal or from SYSDTA
and creates a line with its content.

F mode
L mode

@CREATE
(Format 4)

Reads a string from the terminal or from SYSDTA
and creates a string variable with its content.

F mode
L mode

@ON
(Format 6)

Searches for a string and replaces the hit string with the
specified text.

F mode
L mode

@ON
(Format 7)

Searches for a string and inserts text before or after the hit
string or replaces this.

F mode
L mode

@PREFIX Prefixes each line or string variable in the specified range
with a string.

F mode
L mode

@SDFTEST Checks whether a line range contains syntactically correct
SDF commands or syntactically correct SDF statements.

F mode
L mode

@SEPARATE Breaks a line or line range into multiple lines. The point at
which the break takes place can be specified by a separator
character or by a column position.

F mode
L mode

@SORT Sorts contiguous line ranges in the current work file in
ascending or descending order. By specifying a column
range, it is possible to restrict the sort operation to the
relevant section of the record.

F mode
L mode

@SUFFIX Inserts a string at the end of each line or string variable in
the specified range.

F mode
L mode

@TABS
(Format 3)

Expands software tabulators in work files and
string variables if a tabulator character and a corresponding
tabulator position have been defined.
(see @TABS, format 2).

F mode
L mode

@UPDATE This statement is now only supported in compatibility mode. L mode

Copying and transferring lines Statement overview

196 U41709-J-Z125-1-76

8.8 Copying and transferring lines

The following statements are used to copy or move larger text areas in cases where the
intuitive method using statement codes in F mode would be too fiddly.

8.9 Deleting work files, lines, texts and record marks

The following statements provide various ways of deleting records, parts of records or entire
work files.

@COPY
(Format 2)

Copies lines from the current or another work file or string
variable into the current work file.

F mode
L mode

@MOVE Transfers lines from the current or another work file or string
variable into the current work file and deletes it at the
original positions.

F mode
L mode

@ON
(Format 4)

Copies all the records marked with the specified record
mark in the searched line ranges into the specified work file.

F mode
L mode

@ON
(Format 5)

Searches for a string and copies the hit lines into the
specified work file..

F mode
L mode

@DELETE
(Format 1)

Fully or partially deletes lines and string variables. F mode
L mode

@DELETE
(Format 2)

Completely deletes work files. F mode
L mode

@DELETE
(Format 4)

Deletes record marks. F mode
L mode

@DROP Completely deletes the specified work files. L mode
@ON

(Format 8)
Deletes the hit string in the searched
range.

F mode
L mode

@ON
(Format 9)

Searches for a string and deletes the content of a work file
line or string variable before or after the hit string.

F mode
L mode

@ON
(Format 10)

Searches for a string and deletes the work file lines or the
content of string variables which contain the search term.

F mode
L mode

Statement overview Comparing work files

U41709-J-Z125-1-76 197

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

8.10 Comparing work files

The two statements for comparing work files differ primarily in the layout of the output and
in the capability to compare only sections of work files.

8.11 Switching the work mode or operating mode

The following statements make it possible to switch between L mode and F mode or
between Unicode mode and compatibility mode.

@COMPARE
(Format 1)

Compares two work files with one another either in full or in
part. The results of the comparison can be sent to a work
file, SYSOUT or SYSLST as required.

F mode
L mode

@COMPARE
(Format 2)

Compares the contents of two work files line-by-line. EDT
stores the results in a work file. It is also possible to send the
results to SYSLST and, in L mode, SYSOUT.

F mode
L mode

@DIALOG In interactive mode, switches to the screen dialog. F mode
L mode

@EDIT
(Format 1)

In interactive mode, switches from L mode to F mode. F mode
L mode

@EDIT
(Format 2)

In the interactive mode's L mode, switches the input stream
to terminal input. WRTRD is used for reading and the current
line number is output as the prompt. If the statement is
entered in F mode, operation first switches to L mode.

F mode
L mode

@EDIT
(Format 3)

In the interactive mode's L mode, this switches the input
stream to input from SYSDTA. Reading is performed with
RDATA. If the statement is entered in F mode, operation first
switches to L mode.

F mode
L mode

@MODE Switches between Unicode mode and compatibility
mode.

F mode
L mode

Output lines and information Statement overview

198 U41709-J-Z125-1-76

8.12 Output lines and information

The following statements are used to output data and information. In most cases, it is
possible to decide whether the output is to be written to a work file or to SYSOUT or SYSLST.

[n] # Variant of the # statement (see the description of this
statement). The nth last statement already executed is
output in the statement line again.

F mode

Outputs the last statement already executed by EDT in the
statement line again.

F mode

@FSTAT Outputs a list of files in the BS2000 catalog to a work file or
to SYSOUT or SYSLST as required.

F mode
L mode

@LIMITS Outputs the lowest and the highest assigned line numbers
as well as the number of lines for the current work file.

F mode
L mode

@LIST Outputs ranges of a work file or string variables to SYSLST
or at the printer.

F mode
L mode

@LOG Activates or deactivates logging of input in batch mode and
interactive mode and controls the scope of logging.

F mode
L mode

@ON
(Format 1)

Searches for a string and outputs the content of every
line or string variable in which a hit is found. In interactive
mode, the output is written to SYSOUT and in batch mode it
is written to SYSLST.

F mode
L mode

@ON
(Format 2)

Searches for a string and outputs the line numbers or the
names of the string variables as well as the numbers of the
columns in which the hit strings start.

F mode
L mode

@PAGE Generates a form feed at SYSLST. F mode
L mode

@PRINT Outputs the content of the specified line ranges or string
variables. In interactive mode, the output is written to
SYSOUT and in batch mode it is written to SYSLST.

F mode
L mode

@PROC
(Format 2)

Outputs the number of the current work file, the numbers of
all the free work files and the numbers of all the occupied
work files.

L mode

@SHOW
(Format 1)

Outputs a library's directory or a list of files from the BS2000
catalog or from a POSIX directory.

F mode
L mode

@SHOW
(Format 2)

Outputs a list of the character sets supported by XHCS. In
interactive mode, it also indicates the character sets
supported by the terminal.

F mode
L mode

Statement overview Interrupting or terminating EDT

U41709-J-Z125-1-76 199

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

8.13 Interrupting or terminating EDT

The following statements interrupt or terminate EDT or execute system commands without
exiting EDT.

@STATUS Outputs the EDT and system environment parameter
settings as well as the values of line number and integer
variables.

F mode
L mode

@SHIH Outputs the EDT statement buffer. F mode
L mode

@TMODE Outputs information about the task under which EDT is
running. The information is output as a message.

F mode
L mode

@END In L mode, causes the current work file to be exited.
Processing returns to the work file in which the @PROC
statement activating the current work file was issued. In F
mode, @END terminates the EDT session or terminates the
screen dialog after @DIALOG.

F mode
L mode

@EXEC Terminates the EDT session and loads and starts the
specified program.

F mode
L mode

@HALT Terminates the EDT session, the screen dialog after
@DIALOG or EDT as a subroutine with or without trans-
ferring a text to the calling program.

F mode
L mode

@LOAD Terminates the EDT session and loads the specified
program.

F mode
L mode

@RETURN In EDT procedures, terminates the execution of the
procedure and returns to the point at which it was called. If
the @RETURN statement is issued outside of an EDT
procedure then the EDT session or, after @DIALOG, the
screen dialog is terminated.

F mode
L mode

@SYSTEM Interrupts (like [K2]) the EDT session or executes an
operating system command without interrupting the EDT
session.

F mode
L mode

Runtime control in EDT procedures Statement overview

200 U41709-J-Z125-1-76

8.14 Runtime control in EDT procedures

The following statements are used in EDT procedures to control execution and to program
loops and branches.

@CONTINUE Does not perform any action. The statement is used to
generate a line in EDT procedures which can be branched
to with @GOTO.

L mode

@GOTO In a @DO procedure, causes an unconditional jump to the
specified line.

@PROC

@IF
(Format 1)

In EDT procedures and in L mode checks whether EDT or
DMS errors have occurred. Depending on the result, a
specified string either is or is not processed as input.

L mode

@IF
(Format 2)

In EDT procedures, compares strings, line numbers or
integer variables with one another. Depending on the result,
a specified string either is or is not processed as input.

L mode

@IF
(Format 3)

In EDT procedures, checks whether EDT identified a hit the
last time @ON was executed or whether the current work
file is empty. Depending on the result, a specified string
either is or is not processed as input.

L mode

@IF
(Format 4)

In EDT procedures, checks which job and/or user switches
are active and inactive. Depending on the result, a specified
string either is or is not processed as input.

L mode

@IF
(Format 5)

In EDT procedures or in L mode, identifies the currently set
operating mode. Depending on the result, a specified string
either is or is not processed as input.

L mode

@RESET Resets EDT and DMS error switches. F mode
L mode

Statement overview Administering and executing EDT procedures

U41709-J-Z125-1-76 201

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

8.15 Administering and executing EDT procedures

The following statements are used to start EDT procedures and supply parameters to them.
Further statements are used to switch between different procedure levels and to initialize
and modify variables.

@DO
(Format 1)

Starts a @DO procedure, i.e. the text lines and EDT state-
ments in the specified work file are processed.

F mode
L mode

@DO
(Format 2)

Activates and deactivates the logging of the read state-
ments (see the PRINT operand in format 1 of the @DO
statement) at any location within the procedure.

@PROC

@END In L mode, causes the current work file to be exited.
Processing returns to the work file in which the @PROC
statement activating the current work file was issued. In F
mode, @END terminates the EDT session or terminates the
screen dialog after @DIALOG.

F mode
L mode

@INPUT
(Format 1)

Starts an @INPUT procedure from any file. The statements
and/or records in the file are processed sequentially.

F mode
L mode

@INPUT
(Format 2)

Starts an @INPUT procedure from a SAM or ISAM file. The
statements and/or records in the file are processed sequen-
tially. This format is now only supported for reasons of
compatibility and should no longer be used.

F mode
L mode

@NOTE Does not perform any action. The statement is used to
insert comments in EDT procedures.

L mode

@PARAMS Defines symbolic parameters which can be used in a
@DO procedure.

@PROC

@PROC
(Format 1)

Switches to another work file. This work file then becomes
the current work file.

L mode

@SET
(Format 1)

Assigns a value to an integer variable. F mode
L mode

@SET
(Format 2)

Assigns a value to a string variable. F mode
L mode

@SET
(Format 4)

Inserts the contents of an integer variable, the name of a
string variable or the contents of a line number variable as
of a given column in printable form in a work file line or string
variable.

F mode
L mode

@SET
(Format 5)

Stores the date and time as of the desired column in a string
variable or a work file line.

F mode
L mode

Calling a user program Statement overview

202 U41709-J-Z125-1-76

8.16 Calling a user program

The following statements are used to load and start routines written by users or third-party
suppliers in order to extend the EDT functionality.

8.17 Working with job variables

The following statements are used to process job variables.

@RUN Calls a user routine. This statement is different from the
statement of the same name in
compatibility mode

F mode
L mode

@UNLOAD Unloads modules that have been loaded with @USE. F mode
L mode

@USE Defines user statements by specifying a user statement
symbol and the associated statement routine.

F mode
L mode

@ERAJV Deletes job variable entries from the catalog. F mode
L mode

@GETJV Outputs the value of a job variable on the screen, writes it to
a work file or assigns it to a string variable.

F mode
L mode

@SETJV Enters a job variable in the catalog or assigns it a value. F mode
L mode

@STAJV Outputs the properties of job variables on the screen or to a
work file.

F mode
L mode

Statement overview Working with S variables

U41709-J-Z125-1-76 203

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
08

8.18 Working with S variables

The following statements are used to process S variables.

@GETLIST Writes elements of an S list variable to the current work file. F mode
L mode

@GETVAR Outputs the value of an S variable on the screen, writes it to
a work file or assigns it to a string variable.

F mode
L mode

@SETLIST Assigns elements to an S list variable. In this case, lines are
taken over from the current work file or from string variables.

F mode
L mode

@SETVAR Declares an S variable or assigns a value to an S variable. F mode
L mode

Working with S variables Statement overview

204 U41709-J-Z125-1-76

U41709-J-Z125-1-76 205

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9 EDT statements (alphabetical)
The following sections contain the detailed descriptions of all the EDT statements listed in
alphabetical order.

In the case of statements which contain special characters, the sequence followed is that
defined in the character set EBCDIC.DF.04. The statement symbol @ in the statement
name is ignored.

9.1 @< – Move data window to the left

The < statement moves the work file horizontally to the left, i.e. the data window can be
moved through column-by-column to the left (toward the start of the record).

The column number as of which the records are displayed in the data window is output in
the status display in the work window.

n Number of columns that the work window is to be shifted to the left. Values
between 0 and 32768 are permitted for n. If the value specified for n is
greater than the current column position then the position is set to the first
column.

If n is omitted, EDT moves to the left by the current line length of the data
window (depending on the employed terminal, the settings made for it in the
@VDT statement and the visibility of the line number display).

If EDT is in EDIT-LONG mode then the statement is accepted and processed (as can be
seen from the change in the status display). However, the change is not visible until EDIT-
LONG mode is exited.

Operation Operands F mode
@< [n]

@< EDT statements

206 U41709-J-Z125-1-76

Example

The data window starts at column 10 (see status display).

The data window is to be shifted 9 columns to the left.

This operation causes the data window to start at column 1.

 1.00 ADALBERT HOCHSTR.10 81234 MUENCHEN<································
 2.00 DONALD WALTSTREET 8 DISNEYLAND<····································
 3.00 GUNDULA HAFERSTR.16 89123 AUGSBURG<································
 4.00 LUDWIG GANGGASSE 3A 80123 MUENCHEN<································
 5.00 MANUELA POSTWEG 3 80123 MUENCHEN<································
 6.00 ··

<9···0001.00:00010(00)

 1.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHEN<·······················
 2.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

···0001.00:00001(00)

EDT statements @<<

U41709-J-Z125-1-76 207

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.2 @<< – Move data window to the start of the record

The << statement moves the work file horizontally to the start of the record, i.e. the data
window can be moved through column-by-column to the left as far as the start of the record.
After this operation, the displayed section of the records starts at column 1. The column
number is output in the work window's status display.

If EDT is in EDIT-LONG mode then the statement is accepted and processed (as can be
seen from the change in the status display). However, the change is not visible until EDIT-
LONG mode is exited.

Example

The data window starts at column 10 (see status display).

The data window is shifted to the left as far as column 1.

This operation causes the data window to start at column 1.

Operation Operands F mode
@<<

 1.00 ADALBERT HOCHSTR.10 81234 MUENCHEN<································
 2.00 DONALD WALTSTREET 8 DISNEYLAND<····································
 3.00 GUNDULA HAFERSTR.16 89123 AUGSBURG<································
 4.00 LUDWIG GANGGASSE 3A 80123 MUENCHEN<································
 5.00 MANUELA POSTWEG 3 80123 MUENCHEN<································
 6.00 ··

<<···0001.00:00010(00)

 1.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHEN<·······················
 2.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

···0001.00:00001(00)

@+ EDT statements

208 U41709-J-Z125-1-76

9.3 @+ – Increase the current line number

The @+ statement increases the current line number by the current increment or, in
SEQUENTIAL mode (see the @EDIT statement), processing switches to the next current
line.

text EDT statement or data input which is executed or inserted in the new
current line after the current line number has been increased. The string is
treated as if it had been entered at the prompt in L mode. In particular, the
decision to interpret the text as data input or as a statement is made in
accordance with the same rules (for more information, see section “L mode”
on page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

If no operand is specified then only the current line is modified.

The indirect specification of operands is not permitted for this statement.

Operation Operands L mode
@+ [:[text]]

EDT statements +

U41709-J-Z125-1-76 209

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.4 + – Move data window forwards

The + statement moves forwards in the work file (toward the end of the file). The position
can be moved forwards by a given number of characters or to a record with a specified
record mark.

If the statement is sent without operands by means of the [DUE] key or a function key other
than [F3] then the position moves forwards by the number of records visible in the data
window. Any column counters or lines hidden by messages, for example, are taken into
account.

If the statement is sent without operands by means of [F3] then the position moves to the
next record having any record mark (1..9). The statement +[F3] is therefore equivalent to
+() [DUE] (see below).

n Number of lines to be scrolled through forwards. Values between 0 and
99999999 are permitted for n. However, forwards scrolling stops when the
last record in the work file is visible in the first screen line.

The value of n determines the number of records by which the data window
can be moved forwards independently of the currently set increment in the
line number display or gaps in the record numbering.

m Is one of the possible record marks (1..9) to which the position may be
moved. It is possible to specify multiple record marks which must be
separated by commas. The position moves forwards to the next record with
one of the specified record marks - this is displayed in the first screen line
of the data window. Marks with special functions (see section “Record
marks” on page 45) are ignored here.

If m is not specified then the position moves to the next record having any
record mark (1..9).

Operation Operands F mode
+ [DUE]
+ [F3]
+

 n

 ([m[,...]])

+ EDT statements

210 U41709-J-Z125-1-76

Note
If the statement is sent with [F3] then it is important to make sure that only statement
codes that can be sent with [F3] are specified simultaneously (see section “Statement
codes in F mode” on page 109). Otherwise, the operation is aborted during the analysis
of the statement codes and the + statement is not executed.

Example

A column counter is displayed in the top data window which has been reduced with
@SPLIT. The last line in the data window is hidden by the message EDT0901.

The + statement is to be used to scroll forwards.

The position scrolls forwards to the first line that was not previously visible (4.00).

For an example of moving to a record with a record mark, see the description of the @ON
statement, format 4.

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 BERGER ADALBERT H0CHSTR.10 81234 MUENCHEN<·······················
 2.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
% EDT0901 NO MATCH IN RANGE
+··0001.00:00001(00)
 1.00 ··

···0000.00:00001(04)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN
 6.00 ...
 7.00..
...0001.00:00001(00)
 1.00...

···0000.00:00001(04)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··
 7.00 ··
···0004.00:00001(00)
 1.00 ··

EDT statements ++

U41709-J-Z125-1-76 211

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.5 ++ – Move to the last (marked) record in the work file

The ++ statement moves to the end of the work file or to the last record with a specified
record mark.

If the statement is sent without operands by means of the [DUE] key or a function key other
than [F3] then the work file is positioned in such a way that the last record of the work file
is displayed in the last screen line of the data window (in contrast, +99999999 causes the
last record in the work file to be displayed in the first screen line of the data window).

If the statement is sent without operands by means of [F3] then the position moves to the
last record having any record mark (1..9). The statement +[F3] is therefore equivalent to
++() [DUE].

m Is one of the possible record marks (1..9) to which the position may be
moved. It is possible to specify multiple record marks which must be
separated by commas. The position moves forwards to the last record with
one of the specified record marks - this is displayed in the first screen line
of the data window. Marks with special functions (see section “Record
marks” on page 45) are ignored here.

If m is not specified then the position moves to the last record having any
record mark (1..9).

Note
If the statement is sent with [F3] then it is important to make sure that only statement
codes that can be sent with [F3] are specified simultaneously (see section on statement
codes). Otherwise, the operation is aborted during the analysis of the statement codes
and the ++ statement is not executed.

Operation Operands F mode
++ [DUE]

++ [F3]

++ ([m[,...]])

$0..$22 EDT statements

212 U41709-J-Z125-1-76

9.6 $0..$22 – Change work file

This statement causes EDT to switch to another work file.

EDT displays the work file selected with the $0..$22 statement in the work window in which
the statement was entered. The line position and column position are set to the values that
were previously valid in the newly set work file. If the work file has not yet been used then
the default values apply.

The @SETF statement can also be used to change work file and, at the same time, set the
position to any required line and column.

Example

Statement $7 is entered in order to switch to work file 7.

Work file 7 is displayed in the work window (see status display).

Operation Operands F mode
$0..$22

 1.00 This statement switches EDT to another<·································
 2.00 work file<··
 3.00 ··

$7 ··0001.00:00001(00)

···0000.00:00001(07)

EDT statements @–

U41709-J-Z125-1-76 213

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.7 @– – Decrease the current line number

The @- statement reduces the current line number by the current increment or, in
SEQUENTIAL mode (see the @EDIT statement), processing switches to the preceding
current line.

text EDT statement or data input which is executed or inserted in the new
current line after the current line number has been decreased. The string is
treated as if it had been entered at the prompt in L mode. In particular, the
decision to interpret the text as data input or as a statement is made in
accordance with the same rules (for more information, see section “L mode”
on page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

If no operand is specified then only the current line is modified.

The indirect specification of operands is not permitted for this statement.

Operation Operands L mode
@– [:[text]]

– EDT statements

214 U41709-J-Z125-1-76

9.8 – – Move data window backwards

The - statement moves backwards in the work file (toward the start of the file). The position
can be moved backwards by a given number of characters or to a record with a specified
record mark.

If the statement is sent without operands by means of the [DUE] key or a function key other
than [F3] then the position moves backwards by the number of records visible in the data
window. Any column counters or lines hidden by messages, for example, are taken into
account.

If the statement is sent without operands by means of [F3] then the position moves
backwards to the next record having any record mark (1..9). The statement -[F3] is
therefore equivalent to -() [DUE] (see below).

n Number of lines to be scrolled through backwards. Values between 0 and
99999999 are permitted for n. However, backwards scrolling stops when
the first record in the work file is visible in the first screen line.

The value of n determines the number of records by which the data window
can be moved backwards independently of the currently set increment in
the line number display or gaps in the record numbering.

m Is one of the possible record marks (1..9) to which the position may be
moved. It is possible to specify multiple record marks which must be
separated by commas. The position moves backwards to the next record
with one of the specified record marks - this is displayed in the first screen
line of the data window. Marks with special functions (see section “Record
marks” on page 45) are ignored here.

If m is not specified then the position moves to the next record having any
record mark (1..9).

Operation Operands F mode
– [DUE]
– [F3]
–

 n

 ([m[,...]])

EDT statements –

U41709-J-Z125-1-76 215

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Note
If the statement is sent with [F3] then it is important to make sure that only statement
codes that can be sent with [F3] are specified simultaneously (see section on statement
codes). Otherwise, the operation is aborted during the analysis of the statement codes
and the - statement is not executed.

Example

The increment 0.1 is set in the data window.

Backwards scrolling is to be performed using -3.

The position moves backwards 3 records (to line 9.70).

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 10.00 BERGER ADALBERT H0CHSTR.10 81234 MUENCHEN<·······················
 10.10 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 10.20 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 10.30 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 10.40 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 10.50 ··
 10.60 ··
 10.70 ··

-3···0010.00:00001(01)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 9.70 ÅNGSTRØM ANDERS STERNWARTE STOCKHOLM<····························
 9.80 BASLER MARIO SÄNBENER STR.1 80321 MUENCHEN<·······················
 9.90 BAYER ALOIS OTTOSTR.4 80123 MUENCHEN<·······················
 10.00 BERGER ADALBERT H0CHSTR.10 81234 MUENCHEN<·······················
 10.10 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 10.20 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 10.30 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 10.40 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 10.50 ··
 10.60 ··

···0009.70:00001(01)

– – EDT statements

216 U41709-J-Z125-1-76

9.9 – – – Move to the first (marked) record in the work file

The -- statement moves to the start of the work file or to the first record with a specified
record mark.

If the statement is sent without operands by means of the [DUE] key or a function key other
than [F3] then the position moves to the first record in the work file, i.e. the first record in
the work file is displayed in the first line in the data window.

If the statement is sent without operands by means of [F3] then the position moves to the
first record having any record mark (1..9). The statement
 – –[F3] is therefore equivalent to – –()[DUE].

m Is one of the possible record marks (1..9) to which the position may be
moved. It is possible to specify multiple record marks which must be
separated by commas. The position moves backwards to the first record
with one of the specified record marks - this is displayed in the first screen
line of the data window. Marks with special functions (see section “Record
marks” on page 45) are ignored here.

If m is not specified then the position moves to the first record having any
record mark (1..9).

Note
If the statement is sent with [F3] then it is important to make sure that only statement
codes that can be sent with [F3] are specified simultaneously (see section on statement
codes). Otherwise, the operation is aborted during the analysis of the statement codes
and the -- statement is not executed.

Operation Operands F mode
– –[DUE]

– –[F3]

– – ([m[,...]])

EDT statements @>

U41709-J-Z125-1-76 217

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.10 @> – Move data window to the right

The > statement moves the position horizontally in the work file, i.e. the data window can
be moved through column-by-column to the right (toward the end of the record and
beyond).

The column number as of which the records are displayed in the data window is output in
the status display in the work window.

n Number of columns that the work window is to be shifted to the right. Values
between 0 and 32768 are permitted for n. The position can be moved so far
to the right that the last column of the screen line displays the maximum
column position which EDT permits for a record (32768). This applies
independently of whether the work file actually contains any records of this
length.

If n is omitted, EDT moves to the right by the current line length of the data
window (depending on the employed terminal, the settings made for it in the
@VDT statement and the visibility of the line number display).

If EDT is in EDIT-LONG mode then the statement is accepted and processed (as can be
seen from the change in the status display). However, the change is not visible until EDIT-
LONG mode is exited.

Example

The data window is shifted 9 columns to the right.

Operation Operands F mode
@> [n]

 1.00 BERGER ADALBERT HOCHSTR.10 81234 MUENCHEN<·······················
 2.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

>9········· ···0001.00:00001(00)

@> EDT statements

218 U41709-J-Z125-1-76

This operation causes the data window to start at column 10.

 1.00 ADALBERT HOCHSTR.10 81234 MUENCHEN<································
 2.00 DONALD WALTSTREET 8 DISNEYLAND<····································
 3.00 GUNDULA HAFERSTR.16 89123 AUGSBURG<································
 4.00 LUDWIG GANGGASSE 3A 80123 MUENCHEN<································
 5.00 MANUELA POSTWEG 3 80123 MUENCHEN<································
 6.00 ··

···0001.00:00010(00)

EDT statements @:

U41709-J-Z125-1-76 219

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.11 @: – Declaring a statement symbol

The @: statement is used to define a new statement symbol.

spec Special character for the new statement symbol.

If the spec operand is not a valid special character then @: is rejected with the error message
EDT3952.

The current range symbol (see @RANGE) may not be used for the spec operand and is
rejected with the error message EDT4315.

If this statement is issued in F mode then it also must be preceded by the previously valid
statement symbol.

When EDT starts, @ is the current statement symbol.

Caution

If the spec operand is assigned one of the special characters <, > (only in F mode), +,
-, $, %, * or ? (in F and L mode) then the statements may in some cases be ambiguous
and undesired program behavior may occur.

If the special character : is used for spec then it is no longer possible to undo the setting
since, from this moment onwards, a sequence of colons at the start of a line is inter-
preted as a sequence of statement symbols.

Operation Operands F mode, L mode
@: spec

@: EDT statements

220 U41709-J-Z125-1-76

Example

3. @print -- (1)
1.0000 This statement allows the user to declare a new
2.0000 statement symbol.
3. @:! --- (2)
3. @print -- (3)
4. !print -- (4)
1.0000 This statement allows the user to declare a new
2.0000 statement symbol.
3.0000 @print
4. !:@ --- (5)
4.

(1) @PRINT is used to output the content of the work file.

(2) ! is declared as the new statement symbol.

(3) @PRINT is now not interpreted as a statement but as text.

(4) !PRINT outputs the content of the work file.

(5) @ is declared as the statement symbol again.

EDT statements #

U41709-J-Z125-1-76 221

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.12 # – Output the last statement

The # statement can be used to output one of the last statements already executed by EDT
in the statement line again. This does not apply to any of the scrolling statements or the
statements used to change work file.

n n specifies the depth, i.e. how far back in the processing sequence the
statement to be output lies. Values between 1 and 2048 are permitted for n.

The # or 1# statement outputs the last statement already executed by EDT in the statement
line again. 2# outputs the second last statement. If the # statement is entered more than
once successively then the pointer in the statement buffer is preset to the specified position
each time. If the start of the buffer has been reached then the statement line remains empty.
If a # statement then follows, the position returns to the last saved statement (end of the
buffer). After each entry other than # or after an empty entry, the end of the buffer is taken
as the starting point again.

If the statement to be displayed is longer than the command line then up to 3 command
lines can be displayed. If even then it is not possible to display the statement in full, it is
truncated and no message is issued.

If a communications character set other than the current one was defined when a statement
was entered then the statement is converted accordingly for output in the statement line. If,
in such a case, it is not possible to convert individual characters then the message EDT5453
is issued. The statement is output nevertheless and the non-converted characters are
replaced by question marks '?'.

The statement buffer can accommodate a maximum of 2048 statements independently of
their various lengths.

At least one character in the statement line must be overwritten, modified or added if the
content of the line is to be sent as a statement.

This operation takes no account of whether a statement was entered in the upper or lower
part of a split screen. Statements are stored in the statement buffer independently of the
work file to which the statement was applied. Statements in a statement sequence (state-
ments separated by ';') are stored individually.

If a # statement is entered in a statement sequence then after # has been executed,
processing is aborted and the last executed statement is output. Any statements located
after # in the statement sequence are not executed.

Operation Operands F mode
[n] #

EDT statements

222 U41709-J-Z125-1-76

Note
In F mode, the statement # followed by operands is an abbreviation of the @SETF
statement and is used to position the data window. This statement should not be
confused with the one described here.

The statement @SHIH (Show Input History) can be used to output the entire EDT
statement buffer to a work file. It is then possible to use statement code K to copy
individual statements into the statement line.

EDT statements @AUTOSAVE

U41709-J-Z125-1-76 223

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.13 @AUTOSAVE – Automatic saving

The @AUTOSAVE statement activates the automatic time-controlled saving of work files.

name Freely selectable identifier for the autosave files which is included in the
names assigned to the autosave files (default value: EDT).

n Time interval in minutes(0..255) between a manual or automatic save and
the next automatic save (default value: 5).

If TIME=0 then a save is performed after every dialog step.

ON Automatic saving is activated (default value).

OFF Automatic saving is deactivated. All the autosave files are deleted.

The @AUTOSAVE statement is only effective in interactive mode, i.e. data is only saved in
interactive mode. The statement is ignored in batch mode and no message is issued.

When an EDT session starts, the autosave function is deactivated.

Under certain circumstances, it may not be possible to save very long records (close to
32768). In such cases, the maximum possible length of the record in question is saved and
the warning EDT2405 is issued.

A save operation is performed each time the autosave function is activated or after every
dialog step, i.e. before the next prompt, if the autosave function is activated and the time
defined when it was activated has elapsed since the last automatic save. All non-empty
work files whose content is not already present as a disk file (either explicitly created by the
user or created by the autosave function in the form of an autosave file) are saved. ISAM
files opened for real processing are not saved.

The names of the autosave files are formed as follows:

S.name.yyyy-mm-dd.hhmmss.SAVEnn

The specification yyyy-mm-dd.hhmmss is the point in time at which the autosave function
was activated. The specification nn is the number of the current work file.

Operation Operands F mode / L mode
@AUTOSAVE [ID=name] [[,] TIME=n] [ON]

OFF

@AUTOSAVE EDT statements

224 U41709-J-Z125-1-76

An associated autosave file is deleted, if:

– the work file no longer contains any records, (e.g. @DELETE)

– the contents of the file have been explicitly saved as a file or library element. The
possible statements are: @WRITE, @SAVE, @XWRITE and @CLOSE.

All the autosave files are deleted when the statement @AUTOSAVE OFF is issued, when
the EDT session is terminated with one of the statements @HALT, @END, @EXEC or
@LOAD or when control returns to the main program.

The save files are not deleted on abnormal termination or if EDT is exited with [K2] or the
@SYSTEM statement without a return.

Note
The content and character set of an individual work file can be restored by issuing the
following statement in an empty work file.

@COPY FILE=S.name.yyyy-mm-dd.hhmmss.SAVEnn,KEY=LINENUMBER

EDT statements @BLOCK

U41709-J-Z125-1-76 225

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.14 @BLOCK – Set block mode

The @BLOCK statement activates or deactivates EDT's blocked input/output mode (BLOCK
mode).

When BLOCK mode is active, it is possible, in L mode, to use a single entry at the terminal
to create multiple lines or input multiple statements for sequential execution or enter a
mixture of the two. The individual lines and/or statements must be separated using the
[LZE] character.

ON Activates BLOCK mode (default value).

OFF Deactivates BLOCK mode.

When an EDT session starts, BLOCK is activated by default.

In BLOCK mode, the maximum number of lines that can be entered in a block is the number
that can be displayed on a screen page.

If the entered block contains an illegal statement then this is output together with the current
line number and the corresponding error message at the time of its execution. The
remainder of the block is then executed.

If an entered block contains a @BLOCK OFF statement then the remaining statements or
data input in the block are ignored.

In batch mode, the @BLOCK statement is ignored.

When @DO procedures are called, BLOCK mode is set to OFF. If the @DO procedure is
exited again, BLOCK mode is restored to the status it had before the @DO procedure was
called.

Operation Operands F mode / L mode
@BLOCK
@BK []

ON

OFF

@CHECK (format 1) EDT statements

226 U41709-J-Z125-1-76

9.15 @CHECK (format 1) – Check lines

This statement can be used to log every line that is created or modified in a work file or a
string variable by a statement. In interactive mode, the line in question is output to SYSOUT
and in batch mode it is output to SYSLST. The @CHECK statement can also be used to
check the line length (number of characters per line) while taking account of tabulator
expansion.

ON Activates CHECK mode (default value). If CHECK mode is activated then
every line that is created or modified in a work file or a string variable by one
of the following statements is written to SYSOUT: @COLUMN, @COPY
(format 2), @CREATE, @MOVE, @ON (formats 7 to 10), @PREFIX,
@SET (formats 2, 4 and 5), @SEPARATE, @SEQUENCE (formats 1 and
2), @SUFFIX.

OFF Deactivates CHECK mode.

col Specifies the number of characters per line for the check of the line length.
In particular, it displays any cases in which the predefined line length is
exceeded due to possible tabular expansion EDT checks the number of
characters in every line which is newly entered or created by one of the
following statements: @+, @–, @IF, @SET (format 6). The number of
characters per line is checked independently of the current CHECK mode
setting.

If a line is longer than the value specified in col then the line is nevertheless
created and EDT outputs the message EDT2901 to indicate that the
predefined number of characters per line has been exceeded. The default
value of col corresponds to the maximum possible value of 32768
characters per line while the minimum possible value of col is 1 character
per line.

The col value can also be modified using the @TABS statement.

Operation Operands L mode
@CHECK

[] [,] [col]
ON

OFF

EDT statements @CHECK (format 1)

U41709-J-Z125-1-76 227

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

When EDT starts, CHECK mode is deactivated.

The @CHECK statement is only effective in L mode. Any temporary switch to F mode
deactivates the CHECK mode. This does not change the current value of col.

Specifying ON or OFF has no effect on the current value of col. Consequently, the current
value of col is not modified if only ON or OFF is specified. To reset col to the default value
32768, it is necessary to specify this default value explicitly (@CHECK [ON,]32768 or
@CHECK OFF,32768).

@CHECK (format 2) EDT statements

228 U41709-J-Z125-1-76

9.16 @CHECK (format 2) – Check lines for convertibility

This format of the @CHECK statement can be used to check whether the specified range
in the current work file or range of string variables can be converted into the target character
set without loss.

lines One or more line ranges to be checked. If the specified range contains no
lines or only empty lines then the result of the check is positive (empty lines
can always be written without loss).

svars One or more ranges of string variables to be checked.

cols Contiguous column range for checking in the current work file or in the
specified string variables.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the entire line or string variable is
checked.

CODE= Specifies, either directly or symbolically, the character set for which the
check is to be performed.

 name Name of the character set for which the check is to be performed. The
specified line range or range of string variables is converted into this
character set for test purposes. Depending on the selected option, faulty
lines are either marked or output to SYSOUT.

 *EDT The character set that is set for the current work file should be used for the
check. Since a work file may not contain any records with characters which
are invalid in the work file's character set, the specification of *EDT is only
of any value if only a check for lines of excess length is to be performed (see
the LENGTH operand).

Operation Operands F mode, L mode
@CHECK

[[,...] [:cols[:]]] [,] CODE = [,MARK[=m]]

 [,LENGTH =]

lines

svars

name
*EDT
*FILE

 int

*FILE

EDT statements @CHECK (format 2)

U41709-J-Z125-1-76 229

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

 *FILE The character set entered in the catalog for the open file or open library
element or which was specified in the CODE operand in the @OPEN
statement is to be used for the check. If no file or library element is open
then the specification of *FILE is rejected with error message EDT5467. If
the character set *NONE is entered for the file then the check is performed
using the character set EDF03IRV.

MARK= The lines which cannot be converted without loss into the specified
character set should be assigned a record mark. This option is only
permitted if only line ranges in the current work file are to be checked. If
MARK is not specified then the lines or string variables which cannot be
converted without loss are output to SYSOUT.

 m Record mark (1..9) used to mark the lines which cannot be converted
without loss into the specified character set. If m is not specified, record mark
1 is used.

LENGTH= This specifies a maximum length (in bytes) which may not be exceeded
when the lines or string variables are converted. Since, when conversion is
performed into a Unicode character set, many characters are coded by
multiple bytes, a line may become longer on conversion. Lines or string
variables which exceed the specified maximum length on conversion are
therefore considered to contain an error.

 int Explicitly defines a maximum length (1..32768).

 *FILE The maximum length is calculated from the catalog entry for the open file or
open library element. A value is selected which guarantees that all the
checked records can be copied without loss into the file when all the other
relevant file properties (e.g. the file type and record format) are taken into
account. If no file or library element is open then the value 32768 is used.

If neither lines nor svars is specified then the entire current work file is checked.
A line or string variable is considered to contain an error for the purposes of the check
performed by @CHECK if, after conversion, it is either longer than the value specified in
LENGTH or if it contains characters which would have to be mapped to any substitute
character which may have been specified (see the statement @PAR SUBSTITUTION-
CHARACTER) when converted into the specified character set.

If EDT does not identify any such defective lines or string variables or if they are only found
to be of excess length (see below) then the user can be certain that a conversion into the
specified character set is possible even if no substitute characters have been specified.
Otherwise, the user can decide whether to specify a substitute character (if this has not
already been done) and accept the resulting loss of information or to modify the relevant
lines or string variables in order to permit loss-free conversion.

@CHECK (format 2) EDT statements

230 U41709-J-Z125-1-76

Lines or string variables which are found to be excessively long are truncated when written
to a file, a job variable or an S variable if the checked length is of physical relevance (e.g.
in the case of files with a fixed record length). In all cases, truncation is performed at a valid
boundary between two characters. The length that is actually written may therefore be a
maximum of 3 bytes shorter than the checked length. If truncation is not acceptable, the
user must subdivide or shorten the identified lines in a meaningful way.

The function not only marks and/or outputs the lines or string variables in which errors are
detected but also issues a message summarizing the result of the check. If only invalid
characters are detected, the message EDT5453 is output and if only length overruns are
detected, the message EDT5462 is output. If both invalid characters and length overruns
occur, the message EDT5456 is output.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

EDT statements @CLOSE

U41709-J-Z125-1-76 231

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.17 @CLOSE – Write back and close a file

@CLOSE may be used to write back an open file, close this file and then delete the work
file.

NOWRITE The work file is deleted and is not written back. The opened file or library
element is closed unchanged. If a file has been opened for real processing
in work file 0 (see @OPEN, format 2) then NOWRITE has no effect.

CODE= The operand controls the character set in which the work file is to be written.
In the case of a file opened for real processing in work file 0 the operand
has no effect.

If the operand is not specified and if the character set of the SAM file, ISAM
file or library element or the character set used when opening a POSIX file
differs from that of the work file then, in batch mode, the message EDT5457
is output, no write operation is performed and the file remains open. In inter-
active mode, the query

 % EDT0915 CONVERT TO FILE CCS (&00)? REPLY (Y=YES; N=NO)?

is output. If the user responds Y then a conversion to the file's character set
is performed before the write operation. If the user responds N then the work
file's character set is used.

 name Character set that is to be used for writing. The name of a valid character
set must be specified (see section “Character sets” on page 47).

 *FILE Before the write operation, the work file is converted into the character set
of the existing SAM file, ISAM file or library element or into the character set
used when opening a POSIX file. If this character set was *NONE then
EDF03IRV is used.

 *EDT The work file's character set is used for writing irrespective of whether any
file that may exist has a different character set.

The @CLOSE statement is rejected with error message EDT5177 if the current work file
does not contain a file or library element opened with @OPEN or @XOPEN.

Operation Operands F mode, L mode
@CLOSE

[]
NOWRITE

CODE =
name
*EDT
*FILE

@CLOSE EDT statements

232 U41709-J-Z125-1-76

After the close operation, the character set used for writing is entered in the catalog for SAM
files, ISAM files and library elements.

If the work file is converted before writing and if it contains characters which are invalid in
the character set used by the file that is to be written then these characters are replaced by
a substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the file is not written, it remains open and error
message EDT5453 is output. The user can then define a substitute character or modify the
character set for writing and run @CLOSE again.

If the work file contains lines that are too long for the file that is to be written (e.g. if the file
has a fixed record length) or if the conversion operation creates any such records (possible
in the case of Unicode character sets), then the write operation is aborted with the message
EDT5444.

When ISAM files are written, the ISAM key is formed from the line number if
KEY=LINENUMBER or KEY=IGNORE was specified when the file was opened. If KEY=DATA
was specified when the file was opened then the ISAM key is taken over from the data area.
In this case, the user must make sure that the sequence of work file records corresponds
to the sequence of ISAM keys as otherwise the write operation will be rejected with the
message EDT4208 (DMS error code 0AAB).

The definition of any secondary keys in an ISAM file (in a secondary index) is retained after
@CLOSE unless the key fields have been modified inconsistently in the data area. In this
case, the message EDT5246 is output and the secondary index is deleted.

If, during the processing of an opened ISAM file, the character set is changed either from
or to UTF16 or if this occurs implicitly due to a corresponding specification in the CODE
operand then the file cannot be written back since this would modify the length of the key
field. In this case, the @CLOSE statement is rejected with the error message EDT5468.

After a SAM or ISAM file has been closed with @CLOSE, EDT usually releases the file's
no longer required disk storage space. However, this can be prevented by setting
job switch 7.

If the current version number was specified when an ISAM file was opened for real
processing (see @OPEN, format 2) whereas the AS operand was not specified then the
current version number (which has been incremented by 1) is displayed after @CLOSE.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
When @CLOSE is run, an implicit @DELETE (format 2) is executed for the current
work file. This resets a number of work file properties to their initial values.

EDT statements @CLOSE

U41709-J-Z125-1-76 233

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

@OPEN FILE=FILE1 -- (1)
<EDT statements> -- (2)
@CLOSE CODE=UTFE -- (3)

(1) The file FILE1 is opened and read into the current work file in the file's character set.

(2) The current work file is processed.

(3) The file FILE1 is opened and read into the current work file in the file's character set.
In the BS2000 catalog, FILE1 is assigned the attribute
CODED-CHARACTER-SET=UTFE. The current work file is deleted.

@CODENAME (format 1) EDT statements

234 U41709-J-Z125-1-76

9.18 @CODENAME (format 1) – Define the character set for work
files and string variables

Format 1 of the @CODENAME statement can be used to define the character set used by
EDT for a work file or a string variable. The definition made in @CODENAME takes priority
over the implicit selection of a character set by EDT, for example on the basis of an entry in
the file catalog.

name Name of the character set that is to be defined. The character set name
must be known in XHCS; otherwise, the statement is rejected with message
EDT4980. The specified character set is defined for one or more work files
or for the string variable determined by means of the other operands.

LOCAL The specified character set is defined for the current work file. If the work
file is not empty and the operand FORCE=YES is not specified then the data
it contains is converted into the new character set.

GLOBAL The specified character set is defined globally for all EDT work files. All non-
empty work files are converted unless the operand FORCE=YES has been
specified. This setting does not apply to character sets for string variables.

The operand is primarily used if EDT is called as a subroutine via the old
subroutine interface (V16 format). If EDT recognizes that the same
character set is defined for all the work files then this character set is
entered in the global control block EDTPARG at the old subroutine interface.
If the calling program evaluates this entry, it is therefore advisable to use the
GLOBAL operand to define the same character set for all the work files (and
then not to change these again afterwards).

For the behavior of the old subroutine interface if no global character set is
defined and further details concerning the use of character sets at the
subroutine interface, see the Subroutine Interfaces User Guide [1].

$0..$22 The specified character set is defined for the specified work file. If the work
file is not empty and the operand FORCE=YES is not specified then the data
it contains is converted into the new character set.

Operation Operands F mode, L mode
@CODENAME

name [,] [, FORCE =]

 LOCAL
 GLOBAL
 $0...$22
#S0...#S20

YES

 NO

EDT statements @CODENAME (format 1)

U41709-J-Z125-1-76 235

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

#S0..#S20 The specified character set is defined for the specified string variable. If the
operand FORCE=YES is not specified then the data present in the string
variable is converted into the new character set.

FORCE=

NO The data in the specified work file or string variable is converted into the
specified character set.

YES The specification FORCE=YES is only permitted for 7 and 8-bit character sets
and results in the relabeling of the specified work file or string variable, i.e.
the content of the work file or string variable remains unchanged (as a byte
sequence) but is reinterpreted in the specified character set. This function
is used to correct errors in the assignment of character sets, for example
due to incorrect entries in the DMS catalog. In the case of Unicode
character sets, the statement is rejected with the message EDT5494.

If the work file is converted and if it contains characters which cannot be displayed in the
target character set then these characters are replaced by a substitute character provided
that such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, the @CODENAME statement is rejected and error message EDT5453 is output.
Specifying GLOBAL does not, in this case, convert back work files which have already been
converted.

If a character set is assigned to a work file or a string variable using @CODENAME then
this assignment applies until it is explicitly modified by another @CODENAME statement
or until the work file or string variable has been completely deleted (e.g. with @DELETE,
format 2). This means that all the data that is copied or read into the work file or character
set is converted into this character set (see section “Character sets in work files” on
page 54).

If an ISAM file is opened for real processing in work file0 by means of the @OPEN
statement (format 2) then every @CODENAME statement which applies explicitly or
implicitly for this work file is rejected with message EDT5452.

In the case of an opened, existing file for which the character set *NONE is entered, calling
the @CODENAME statement always causes the character set used for writing to be
entered explicitly in the catalog when the file is written back with @CLOSE or @WRITE.

@CODENAME (format 2) EDT statements

236 U41709-J-Z125-1-76

9.19 @CODENAME (format 2) – Define the communications
character set

Format 2 of the @CODENAME statement can be used to define the communications
character set used by EDT. The definition made in @CODENAME takes priority over the
implicit selection of a character set by EDT, for example on the basis of the employed
terminal.

name Name of the character set that is to be defined. The character set must be
known in XHCS. The character set must be supported by the employed
terminal; otherwise, the statement is rejected with message EDT5487.

If a communications character set is specified explicitly then it cannot be
selected automatically by EDT (see section “Communications character
set” on page 53).

*AUTO Activates automatic selection of the communications character set by EDT
(see section “Communications character set” on page 53).

If no operand is specified then only the character set defined using
/MODIFY-TERMINAL-OPTIONS is used as the communications character set. This is also
the default setting when EDT is started.

The specified character set is used as the communications character set for data exchange
with the terminal and the operand has no direct influence on the coding in the work files (see
section “Character sets” on page 47). However, empty work files which have no character
set and are only filled with data as a result of direct user input at the terminal are initially
assigned this character set. More specifically, if the automatic selection of the communica-
tions character set is active and a modern Unicode-compatible emulation is being used
then work files which are filled with data in this way are always assigned the character set
UTFE. This can only be prevented by the earlier explicit assignment of a work file character
set.

In batch mode, this statement is ignored.

Operation Operands F mode, L mode
@CODENAME

[,TERMINAL]
 name

*AUTO

EDT statements @COLUMN

U41709-J-Z125-1-76 237

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.20 @COLUMN – Insert text and delete blanks at end of line

The @COLUMN statement modifies the content of existing work file lines or string
variables.

During the first stage, new text is inserted or existing text is overwritten as of the specified
column. Then all the blanks are deleted (as far as the next character which is not a blank)
from right to left starting at the last character in the work file line or string variable. A work
file line which only consists of blanks remains present as an empty line in the work file. A
string variable which only contains blanks becomes an empty string variable after the delete
operation.

col Column as of which text is to be replaced or inserted.

lines One or more line ranges in which text is to be inserted or replaced. Only
existing lines are processed.

svars One or more ranges of string variables in which text is to be inserted or
replaced.

CHANGE The string specified with string replaces the existing text as of column col
(default value).

INSERT The string specified with string is inserted as of column col.

: This specification is obligatory if neither CHANGE nor INSERT is specified in
order to clearly separate the range specification from the string.

string String which is inserted or which replaces existing text as of the specified
column in every line of a specified line range. It is also permissible to specify
an empty string.

The string is converted into the character set used by the work file or string
variable. If the string contains characters which cannot be displayed in the
target character set then these are replaced by a substitute character if such
a character has been specified.
(see @PAR SUBSTITUTION-CHARACTER); otherwise, the @COLUMN
statement is rejected and the error message EDT5453 is issued.

If the column as of which the text is to be inserted is located after the previous line end then
the intervening columns are filled with blanks.

Operation Operands F mode, L mode
@COLUMN

col ON [,...] [] [:] string
lines

svars

 CHANGE

 INSERT

@COLUMN EDT statements

238 U41709-J-Z125-1-76

No text is replaced or inserted if this would cause the work file or string variable line length
to exceed the permitted maximum of 32768 characters. Instead, in this case, the message
EDT5474 is output. EDT does not check whether deleting blanks at the end of a line would
restore the line to a permitted value.

If errors occur during processing (EDT5453 or EDT5474) then the statement is aborted. Any
lines and/or string variables which have been successfully modified up to this point retain
their changes.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
This statement can be used to delete blanks at ends of lines without knowing the line
length. If an empty string is specified as the replacement text in the @COLUMN
statement then no text is replaced in the lines. The right-to-left delete operation causes
blanks to be deleted at the ends of the lines.

Example

The content of column 2.00 is to be entered in line 1.00 as of column 3. The old content of
line 1.00 is therefore overwritten.

The string 567 is to be inserted in line 1.00 as of column 5. Consequently, no characters are
overwritten in line 1.00.

 1.00 126790<···
 2.00 348<··
 3.00 ··

column 3 on 1:2 ···0001.00:00001(01)

 1.00 123480<···
 2.00 348<··
 3.00 ··

column 5 on 1 insert '567'·····································0001.00:00001(01)

EDT statements @COLUMN

U41709-J-Z125-1-76 239

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

 1.00 123456780<··
 2.00 348<··
 3.00 ··

@COMPARE (format 1) EDT statements

240 U41709-J-Z125-1-76

9.21 @COMPARE (format 1) – Compare two work files

This format of the @COMPARE statement causes EDT to compare all or part of two work
files with one another. The results of the comparison can be sent to a work file, SYSOUT or
SYSLST as required.

procnr1, procnr2
Numbers of the two work files that are to be compared (0..22). It is also
possible to compare different ranges in the same work file (procnr1 equals
procnr2). If one of the files for comparison is work file 0 and if a file has
been opened in it for real processing with @OPEN, format 2 then
@COMPARE is rejected with the error message EDT4935. If procnr1 or
procnr2 is not specified then the value of the current work file is used for
the missing operand.

lines1, lines2 Line ranges that are to be compared with one another. The lines1 operand
defines the line range in the first work file (procnr1). The lines2 operand
defines the line range in the second work file (procnr2). Neither of these
line ranges may be empty as otherwise the statement is rejected with the
error EDT4932.

int1, int2 int1 and int2 can be used to determine how tolerant EDT is to be if it finds
non-identical lines. If EDT does not find at least int2 consecutive lines that
are identical in the two files after examining int1 lines then it aborts the
comparison.

In addition, int2 specifies how many consecutive lines in a work file must
match the corresponding number of consecutive lines in the other work file
before EDT considers the ranges consisting of these lines to be identical.

The following applies to int1 and int2: int2 Î int1 Î 65535. The
default value for int1 is 10, and for int2 it is 1.

Operation Operands F mode / L mode
@COMPARE [procnr1] :lines1 WITH [procnr2] :lines2

[,[int1] [(int2)] [LIST [line [(inc)]]]]

EDT statements @COMPARE (format 1)

U41709-J-Z125-1-76 241

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

LIST Specifies where EDT is to output the result of the comparison.

If LIST is specified without line, EDT outputs the result of the comparison to
SYSLST. In this case, EDT outputs the line number and the first 51
characters of line content for every line for which no match is found.

If LIST is specified with line then EDT writes the result of the comparison to
the current work file unless this is one of the two files involved in the
comparison. Otherwise, the @COMPARE statement is rejected with the
message EDT4909. The line number assignment can be influenced using
the line and inc operands (see below). Only the numbers of the lines for
which no match is found are output. The line content is not output.

If LIST is not specified, EDT outputs the result of the comparison to SYSOUT
in interactive mode and to SYSLST in batch mode. The output format is the
same as for output to the current work file.

line The number of the line in the current work file which is to contain the first
line of the result of the comparison. The format in which EDT writes the
result is the same as that used when output is sent to SYSOUT.

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see section
“Implicit increment assignment” on page 35).

Before performing the comparison, EDT internally converts each line into UTF16 and
compares the resulting lines as byte sequences. The lines are identical if both the line
content and line length of this byte sequence are identical. The line numbers are ignored
during the comparison of the files. If both work files use the same character set then this
procedure is equivalent to a byte-by-byte comparison of the original lines.

It may be necessary to convert the output of the result of this comparison into a suitable
character set. If the output is sent to SYSOUT or SYSLST then this is the character set that
has been defined for SYSOUT or SYSLST. If the output is sent to the current work file then
this is the character set defined for this work file. If no character set is defined for the current
work file then output takes place using the character set of the compared work files. If these
use different character sets then the output takes place in the character set UTFE.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

EDT starts the comparison at the beginning of the specified line ranges. If EDT identifies a
non-identical pair of lines then it reads forwards in the two files to try to find the next block
of int2 identical lines.

In this case, EDT reads a maximum of int1 lines in each file. If, in this range, EDT identifies
int2 consecutive identical lines, it aligns the two files for further comparison at this point.
Otherwise, it aborts the comparison.

@COMPARE (format 1) EDT statements

242 U41709-J-Z125-1-76

By choosing a suitable setting for int2, it is also possible to cause EDT to consider multiple
consecutive lines as a unit during the comparison. This can be of use in address files if the
address specifications consist of multiple lines (see example 2).

If the same values are selected for int2 and int1 then EDT will not be able to find any
matching line ranges in the two files if even a single pair of lines is not identical.

EDT reports the result of the comparison in the form of commented lists of line numbers.

In this case, it does not separately specify whether lines or line ranges are identical. The
ranges for which a matching range has been found in the other file are identified together
by EDT (provided that they contain at least int2 lines), i.e. they form pairs of matching
ranges. If empty ranges are permitted then it is also possible to form pairs for the non-
matching ranges since two adjacent pairs of matching ranges are necessarily separated by
precisely one pair of non-matching ranges, one of which may be empty.

EDT generates a commented list for each pair of non-matching ranges as a function of their
size and location.

If both members of a pair of non-matching ranges are not empty but comprise no more than
int1 - int2 lines then the ranges are considered to be different:

NON-MATCHING LINES
 ln ln
 . .
 . .
 . ln
 ln

If both members of a pair of non-matching ranges are not empty and one range contains
more than int1 - int2 lines then the output of the above list is shortened accordingly and
the comparison is aborted with the message

NOTHING SEEMS TO MATCH

If one member of a pair of non-matching ranges is empty and the other contains no more
than int1 - int2 lines then the non-empty range is listed as an additional range:

EXTRA LINES IN 1ST FILE
 ln
 .
 .
 .
 ln

EDT statements @COMPARE (format 1)

U41709-J-Z125-1-76 243

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the non-empty range is located in the second file then the output is equivalent but has a
different heading:

EXTRA LINES IN 2ND FILE

If the non-empty range contains more than int1 - int2 lines and is not located at the end
of the line range for comparison then the output of the above list is shortened accordingly
and the comparison is aborted with the message

NOTHING SEEMS TO MATCH

If the non-empty range of more than int1 - int2 lines is located at the end of the line range
for comparison then the message

REACHED LIMIT ON 1ST FILE

or

REACHED LIMIT ON 2ND FILE

Is output instead, where 1ST or 2ND designates the file which contains the empty range.

If no non-matching ranges of more than int1 - int2 lines are found in either file up to the
end of the line range for comparison then the note

REACHED LIMIT ON BOTH FILES

is also output if a pair of non-matching ranges is located at the end of the line ranges for
comparison. In contrast, if a pair of matching ranges is located at the end of the line ranges
for comparison, the message

REACHED LIMIT ON BOTH FILES AT SAME TIME

is output. If both of the line ranges for comparison match fully then this is the only message
to be output.

@COMPARE (format 1) EDT statements

244 U41709-J-Z125-1-76

Example 1

 1. @PROC 1
 1. @COPY FILE=PROC-FILE.1 -- (1)
 7. @PRINT
 1.0000 AAAAAA
 2.0000 BBBBBB
 3.0000 CCCCCC
 4.0000 UUUUUU
 5.0000 VVVVVV
 6.0000 WWWWWW
 7. @END
 1. @PROC 2
 1. @COPY FILE=PROC-FILE.2 --------------------------------------- (2)
 8. @PRINT
 1.0000 AAAAAA
 2.0000 BBBBBB
 3.0000 ZZZZZZ
 4.0000 AAAAAA
 5.0000 BBBBBB
 6.0000 CCCCCC
 7.0000 UUUUUU
 8. @END
 1. @COMPARE 1:1-6 WITH 2:1-7, 5(2) ------------------------------- (3)
EXTRA LINES IN 2ND FILE
 3.0000
 4.0000
 5.0000
EXTRA LINES IN 1ST FILE
 5.0000
 6.0000
REACHED LIMIT ON BOTH FILES
 1. @COMPARE 1:1-6 WITH 2:1-7, 5(3) ------------------------------- (4)
NON-MATCHING LINES
 1.0000 1.0000
 2.0000 2.0000
 3.0000 3.0000
 4.0000 4.0000
 5.0000 5.0000
NOTHING SEEMS TO MATCH
 1. @COMPARE 1:1-6 WITH 2:1-7, 6(3) ------------------------------- (5)
EXTRA LINES IN 2ND FILE
 1.0000
 2.0000
 3.0000

EDT statements @COMPARE (format 1)

U41709-J-Z125-1-76 245

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

EXTRA LINES IN 1ST FILE
 5.0000
 6.0000
REACHED LIMIT ON BOTH FILES
 1.

(1) The SAM file PROC-FILE.1 is read into work file 1.

(2) The SAM file PROC-FILE.2 is read into work file 2.

(3) If the examination of 5 lines in each of the two files does not reveal at least 2 consec-
utive identical line pairs then the comparison is to be aborted. The comparison is
continued through to the end of the two files.

(4) The @COMPARE issued in (3) is issued again in slightly modified form. It is now
necessary to find at least 3 consecutive identical line pairs. This time, EDT aborts the
comparison.

(5) The @COMPARE issued in (4) is issued again in slightly modified form. The
comparison should now only be aborted after 6 lines have been examined. It is
continued through to the end.

Example 2

This example assumes that the work files have already been filled with the corresponding
data.

 5. @PROC 1
 21. @PRINT --- (1)
 1.0000 Donald Duck
 2.0000 Am Dorfteich 11
 3.0000 12345 Entenhausen
 4.0000 -
 5.0000 Dagobert Duck
 6.0000 Schlossallee 1a
 7.0000 12345 Entenhausen
 8.0000 -
 9.0000 Daisy Duck
 10.0000 Am Dorfteich 12
 11.0000 12345 Entenhausen
 12.0000 -
 13.0000 Gustav Gans
 14.0000 Im Wiesengrund 10
 15.0000 12345 Entenhausen
 16.0000 -
 17.0000 Gustav Gans
 18.0000 Schmale Gasse 7
 19.0000 12345 Entenhausen
 20.0000 -

@COMPARE (format 1) EDT statements

246 U41709-J-Z125-1-76

 21. @END
 5. @PRINT --- (2)
 1.0000 Gustav Gans
 2.0000 Im Wiesengrund 10
 3.0000 12345 Entenhausen
 4.0000 -
 5. @COMPARE 0:& WITH 1:&, 9999(4) ------------------------------- (3)
EXTRA LINES IN 2ND FILE
 1.0000
 2.0000
 3.0000
 4.0000
 5.0000
 6.0000
 7.0000
 8.0000
 9.0000
 10.0000
 11.0000
 12.0000
EXTRA LINES IN 2ND FILE
 17.0000
 18.0000
 19.0000
 20.0000
REACHED LIMIT ON BOTH FILES
 5. @ON 2 CHANGE '10' TO '13'
 5. @COMPARE 0:& WITH 1:&, 9999(4) ------------------------------- (4)
NON-MATCHING LINES
 1.0000 1.0000
 2.0000 2.0000
 3.0000 3.0000
 4.0000 4.0000
 5.0000
 6.0000
 7.0000
 8.0000
 9.0000
 10.0000
 11.0000
 12.0000
 13.0000
 14.0000
 15.0000
 16.0000
 17.0000
 18.0000
 19.0000

EDT statements @COMPARE (format 1)

U41709-J-Z125-1-76 247

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

 20.0000
REACHED LIMIT ON BOTH FILES
 5.

(1) Work file 1 is output. This is an address file.

(2) On return from work file 1, work file 0 is output. It contains an address (4 lines) which is
to be searched for in work file 1.

(3) The search is performed by comparing the two files. Selecting the value 9999 for int1
(see the operand description) ensures that the comparison is not aborted. Selecting 4
for int2 ensures that only ranges with 4 matching lines are considered to be identical.
The output identifies the presence of EXTRA LINES both before and after the matching
range, i.e. the address is present in work file 1.

(4) Once the building number has been changed, the search is repeated. Since no further
range of 4 matching lines is found, only NON-MATCHING LINES are reported. The
address is therefore not present.

If the comparison is performed with @COMPARE 0:& WITH 1:&, 9999(1) instead of with
@COMPARE 0:& WITH 1:&, 9999(4) then the same output is obtained for both matching
and non-matching building numbers since EDT resynchronizes on the first matching line
(12345 Entenhausen).

@COMPARE (format 2) EDT statements

248 U41709-J-Z125-1-76

9.22 @COMPARE (format 2) – Compare two work files line by line

Format 2 of the @COMPARE statement can be used to compare the contents of two work
files line by line. EDT stores the results in a work file. This is deleted before the result is
stored in it. It is also possible to send the results to SYSLST and, in L mode, SYSOUT.

procnr1 Number of the work file that is to be compared. If procnr1 is not specified
then the current work file is compared with procnr2.

procnr2 Number of the work file against which the comparison is to be performed. If
procnr2 is not specified then procnr1 is compared with the current work
file.

LIST If LIST is specified then the result is stored in work file procnr3. If procnr3
is not specified then the result is output to SYSLST.

If LIST is not specified then in the interactive mode's L mode, the result is
output to SYSOUT, in batch mode it is output to SYSLST and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

procnr3 Work file in which the detailed result of the comparison is stored if any such
result is generated (see below). Line numbers are assigned using the
procedure “Insertion between two lines” (see section “Line number
assignment” on page 36).

The work file is deleted before being used. If a file is open in this work file
then it is implicitly closed without being written back (@CLOSE NOWRITE).

procnr4 The specification of a work file as an auxiliary file is now only permitted for
reasons of compatibility. Any work file specified here is not used by EDT.

The work files procnr1 and procnr2 must be different from one another. Otherwise, the
@COMPARE statement is rejected with the message EDT5499. The work file procnr3 can
be identical to procnr1 or procnr2. However, in this case no detailed result is output (see
below).

Operation Operands F mode / L mode
@COMPARE

 [LIST [procnr3]] [,procnr4]
[procnr1] WITH procnr2

procnr1

EDT statements @COMPARE (format 2)

U41709-J-Z125-1-76 249

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If all the lines to be compared are either identical or different then only the message
EDT0291 or EDT0290 respectively is output. In this case, no detailed result of the
comparison is output.

If a detailed result is to be sent to procnr3 then the message EDT0297 is output once the
comparison has been completed. In this case, if one of the two files for comparison is the
work file which is to contain the result then the message EDT5350 is output and no detailed
result is output.

If one of the files for comparison is work file 0 then no ISAM file may be opened for real
processing with @OPEN, format 2. Otherwise, the @COMPARE statement is rejected with
the message EDT4935.

To make it possible to query the result of the comparison in EDT procedures, the EDT error
switch is set in addition to the output of the messages EDT0290 and EDT0297. This can be
queried using the @IF statement (see @IF statement):

If it is necessary to distinguish between all the cases listed above then it is necessary to
reset the EDT error switch with @RESET and delete the work file procnr3 before
performing a comparison with @COMPARE.

Before performing the comparison, EDT internally converts each line into UTF16 and
compares the resulting lines as byte sequences. The lines are identical if both the line
content and line length of these byte sequences are identical. The line numbers are ignored
during the comparison of the files. If both work files use the same character set then this
procedure is equivalent to a byte-by-byte comparison of the original lines.

It may be necessary to convert the output of the result of this comparison into a suitable
character set. If the output is sent to SYSOUT or SYSLST then this is the character set that
has been defined for SYSOUT or SYSLST. If the output is sent to a work file then this is the
character set of the compared work files. If these use different character sets then the
output takes place in the character set UTFE.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

EDT error switch Work file procnr3
EDT0291 Not set Empty
EDT0290 Set Empty
EDT0297 Set Not empty

@COMPARE (format 2) EDT statements

250 U41709-J-Z125-1-76

The format of the output is identical irrespective of whether it is written to a work file or sent
to SYSLST or SYSOUT:

LINE#(1) FILENAME: DAT.270104
 LINE#(0) FILENAME: COMP.1

A header line is output which identifies the columns assigned to the compared work files
together with LINE#... and the number of the relevant work file (in parentheses). In addition,
if present, the name of an opened file or library element or a local @FILE entry is output.

0007.10 CUST-100 SORT
0007.20 CUST-200 PERCON
 0007.30 CUST-700 FDDRL

0010.00 $CUST-900 LMS
 0010.00 $CUST-900 LMSCONV

In the case of lines which occur in only one work file, the line numbers and the content of
the records (possibly truncated by 17 characters) are output. Here, the location of the line
in either column 1 or in column 2 under the heading LINE#... indicates which of the work
files contains the record. This also applies equivalently for records with different contents.
These occur with one content only in the first work file and with the other content only in the
second work file and will generally appear consecutively.

0008.00=0010.00
0018.00=0020.00

In the case of lines with the same content, the identified line numbers are output in the form
0001.00=0006.00. If a number of consecutive records are identical (range of identical
records) then only the first and last pairs of line numbers in the range are output (for further
details, see the example).

EDT statements @COMPARE (format 2)

U41709-J-Z125-1-76 251

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

Processing switches from work file 2 to work file 1.

Work file 2 is compared with work file 1 and the result is stored in work file 3. Processing
then switches to work file 3.

 1.00 X<··
 2.00 Y<··
 3.00 Z<··
 4.00 G<··
 5.00 H<··
 6.00 A<··
 7.00 B<··
 8.00 C<··
 9.00 J<··
 10.00 K<··
 11.00 D<··
 12.00 E<··
 13.00 ··

1··0001.00:00001(02)

 1.00 A<··
 2.00 B<··
 3.00 C<··
 4.00 D<··
 5.00 E<··
 6.00 F<··
 7.00 G<··
 8.00 H<··
 9.00 I<··
 10.00 J<··
 11.00 K<··
 12.00 ··

@compare 2 with 1 list 3; 3···································0001.00:00001(01)

@COMPARE (format 2) EDT statements

252 U41709-J-Z125-1-76

The result of comparing work files 1 and 2 is stored in work file 3.

 0.10 LINE#(1) FILENAME:<···
 0.20 LINE#(2) FILENAME:<···
 0.30 0001.00 X<···
 0.40 0002.00 Y<···
 0.50 0003.00 Z<···
 0.60 0004.00 G<···
 0.70 0005.00 H<···
 0.80 0001.00=0006.00<··
 0.90 0003.00=0008.00<··
 1.00 0004.00 D<···
 1.10 0005.00 E<···
 1.20 0006.00 F<···
 1.30 0007.00 G<···
 1.40 0008.00 H<···
 1.50 0009.00 I<···
 1.60 0010.00=0009.00<··
 1.70 0011.00=0010.00<··
 1.80 0011.00 D<···
 1.90 0012.00 E<···
 2.90 ··
 3.90 ··
 4.90 ··
% EDT0297 RESULT OF COMPARE IN PROCFILE 3
···0000.10:00001(03)

EDT statements @CONTINUE

U41709-J-Z125-1-76 253

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.23 @CONTINUE – Empty statement

The @CONTINUE statement does not perform any action. It is used to generate a line in
EDT procedures which can be branched to by means of a @GOTO statement. It can also
be used to insert comments in EDT procedures. The @NOTE statement has the same
functionality as @CONTINUE.

comment The comment operand may contain any text as a comment.

Alongside the insertion of comments, this statement is also frequently used to define a last
line in an EDT procedure which can be specified as the destination of a branch operation
in a @GOTO or an @IF statement. This construction is required if an EDT procedure is
called in an external loop with a loop counter (e.g. @DO 5,!=%,$), and an @IF ... RETURN
would result in an unwanted abort of the external loop. Instead, processing branches to the
end of the procedure in order to start the next pass.

Example

 6. @PRINT
 1.0000 WITH EDT
 2.0000 ANYONE WHO KNOWS
 3.0000 THE STATEMENTS CAN
 4.0000 WRITE HIS PROGRAM ONE
 5.0000 PROCEDURE AT A TIME
 6. @PROC 1
 1. @1.00
 1.00 @ @CON OBJECTIVE: IF A LINE CONTAINS 'W' ---------------------- (1)
 1.01 @ @CON DISPLAY IT ON THE SCREEN
 1.02 @ @ON ! FIND 'W'
 1.03 @ @IF .FALSE. : @GOTO 2
 1.04 @ @PRINT !
 1.05 @2.00
 2.00 @ @CONTINUE --- (2)
 2.01 @END
 6. @DO 1,!=1,$ --- (3)
 1.0000 WITH EDT
 2.0000 ANYONE WHO KNOWS
 4.0000 WRITE HIS PROGRAM
 6.

Operation Operands L mode
@CONTINUE [comment]

@CONTINUE EDT statements

254 U41709-J-Z125-1-76

(1) In this case, @CONTINUE is used to insert a comment.

(2) In this case, @CONTINUE is required because there must be a last line in a procedure
that can be branched to.

(3) @DO with a loop counter executes the procedure in work file 1 which acts on work file
0.

EDT statements @CONVERT

U41709-J-Z125-1-76 255

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.24 @CONVERT – Convert uppercase or lowercase

The @CONVERT statement is used to convert lowercase characters into uppercase or
uppercase characters into lowercase in line ranges.

lines One or more line ranges in which conversion is to be performed. Only
existing lines are processed.

svars One or more ranges of string variables in which conversion is to be
performed.

UPPER All lowercase characters are converted into uppercase.

LOWER All uppercase characters are converted into lowercase.

Either UPPER or LOWER must be specified. If neither lines nor svars is specified then
conversion is performed throughout the entire current work file.

The information about which characters in the character set used in the current work file are
lowercase or uppercase characters is obtained from XHCS. All other characters are left
unchanged.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Operation Operands F mode, L mode
@CONVERT

[[[,...]] TO =]
lines

svars

 UPPER

 LOWER

@COPY (format 1) EDT statements

256 U41709-J-Z125-1-76

9.25 @COPY (format 1) – Read in a file

@COPY (format 1) is used to read an existing file in full into the current work file. The work
file does not have to be empty when this is done. It is possible to specify the position in the
work file at which the file is to be inserted. After being read in, the file is closed again.

Whenever this section refers to a “file”, this can be a SAM file, an ISAM file, a library
element or a POSIX file.

LIBRARY= A library element is to be read in. This is defined by explicitly specifying the
library name and the element designation.

 path1 Name of the library.

 elname Name of the element.

 vers Version of the required element (see the LMS User Guide [14]). If vers is
not specified or if *STD is specified then the highest available version of the
element is selected.

 eltype Type of element. Permitted type specifications are S,M, P, J, D, X, *STD as
well as freely selectable type names having one of these types as basic
type. If eltype is not specified then the default type specified with @PAR
ELEMENT-TYPE is used. The permitted element types and their meanings
are described in chapter “File processing” on page 131.

Operation Operands F mode, L mode
@COPY

LIBRARY=path1 ([ELEMENT=] elname [(vers)][,eltype])
ELEMENT=elname [(vers)][,eltype]

FILE = [,KEY =]

POSIX - FILE = xpath [,CODE = name]

 [[,] line]

path2

*linkname

LINENUMBER
DATA
IGNORE

BEFORE

AFTER

EDT statements @COPY (format 1)

U41709-J-Z125-1-76 257

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

ELEMENT= A library element is to be read in. This is defined by means of the element
designation without any library name specification. The default library set
with @PAR LIBRARY is used implicitly (if @PAR LIBRARY has been
specified, otherwise the error message EDT5181 is issued).

The operands elname, vers and eltype have the same meaning as when
a library is specified explicitly (see above).

FILE= A BS2000 file is to be read in.

 path2 Name of the BS2000 file (fully qualified file name) that is to be read in.

 *linkname File link name of the BS2000 file that is to be read in. The file name and the
file attributes are stored in the Task File Table. The file link name must
not be specified as the special file name *BY-PROGRAM. This results in the
error EDT4923. If no file link name is defined then the statement is rejected
with the message EDT5480.
If the file link name is declared as the special file name *DUMMY then it is
treated as an existing empty file.

KEY= In the case of ISAM files, specifies the location at which the ISAM key is
stored in the work file. In the case of other file types, this operand is ignored.

 LINENUMBER
The ISAM key is stored as a line number in the work file. Any existing lines
with the same line numbers are overwritten. The operands BEFORE and
AFTER may not be specified. If the ISAM key cannot be interpreted as a line
number because the position of the key differs from the default value, the
key is too long or the keys are not numerical then the message EDT5459 is
output and the file is not read in.

 DATA The ISAM key becomes a component of the data range in the work file.

 IGNORE The ISAM key is not stored in the work file. This is the default value. If the
position of the key differs from the default value, the message EDT5466 is
output and the file is not read in.

POSIX-FILE= A POSIX file is to be read in.

 xpath Path name of the POSIX file that is to be read into the current work file.
The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

@COPY (format 1) EDT statements

258 U41709-J-Z125-1-76

CODE= Defines the character set that is to be assumed for the POSIX file. Since it
is not possible to assign character sets to POSIX files in the POSIX file
system, a user specification is required here.

If CODE is not specified then the character set defined in @PAR CODE is
assumed.

 name Character set of the POSIX file that is to be read in. The name of a valid
character set must be specified for name (see section “Character sets” on
page 47).

 EBCDIC The keyword EBCDIC is now only supported for reasons of compatibility and
is a synonym for the character set EDF041.

 ISO The keyword ISO is now only supported for reasons of compatibility and is
a synonym for the character set ISO88591.

BEFORE The file is inserted in front of the specified line in the work file. This operand
may not be specified if KEY=LINENUMBER is defined.

AFTER The file is inserted after the specified line in the work file. This operand may
not be specified if KEY=LINENUMBER is defined.

line Line number before or after which the file is inserted.

If the specified file does not exist or cannot be accessed as required or if the file cannot be
read in successfully then the statement is rejected with a corresponding error message.

In neither BEFORE nor AFTER is specified and if the KEY operand is not equal to LINENUMBER
then the file is inserted after the last line of the current work file.

When ISAM files are read with the operand KEY=LINENUMBER, the line numbers in the work
file are derived from the file's ISAM key. In all other cases, they are formed using the
procedure “Insertion between two lines” (see section “Line number assignment” on
page 36).

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the file that is to be read in. If this character set is *NONE then the work file
is assigned the character set EDF03IRV.

If the work file already has a character set then the records that are to be read in are
converted from the file's character set into the work file's character set. If the file that is to
be read in contains characters which cannot be displayed in the work file's character set
then these are replaced by a substitute character if such a character has been specified.
(see @PAR SUBSTITUTION-CHARACTER), otherwise the file is not read in and the error
message EDT5453 is output.

EDT statements @COPY (format 1)

U41709-J-Z125-1-76 259

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the read operation is rejected with the message
EDT5454.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

@COPY LIBRARY=MACLIB(ELEMENT=XYZ,M) AFTER 12.3

The element with the name XYZ, the highest existing version and the element type M
(macro) from the library MACLIB is inserted in full after line 0012.3000 in the current work
file.

@PAR LIBRARY=DATA
@COPY ELEMENT=PERSONAL(@),D

The element with the name PERSONAL, the highest existing version and the element type D
(text data) from the library DATA is inserted after the last line in the current work file.

@COPY FILE=FILE.ISAM,KEY=LINENUMBER

The ISAM file FILE.ISAM is read into the work file. The line numbers in the work file are
formed from the ISAM key. Any existing lines are overwritten.

@COPY POSIX-FILE=/home/user1/test/data,CODE=UTF8

The POSIX file data in the directory /home/user1/test with the character set UTF8 is
inserted after the end of the current work file. When this is done, the file is converted into
the work file's character set.

@COPY (format 2) EDT statements

260 U41709-J-Z125-1-76

9.26 @COPY (format 2) – Copy lines or string variables

The @COPY statement copies records from the current or another work file or the content
of a string variable into the current work file.

For the sake of clarity, the line range in the source work file which contains the records that
are to be copied or the range of string variables are referred to as the “source range” below.
The line range in the current work file into which the records from the source work file are
to be copied is referred to as the “target range”.

lines Contiguous line range that is to be copied into the current work file.
Symbolic line numbers in lines refer to the line numbers of the current
work file even if the lines are copied from another work file.

procnr Number of the source work file from which the lines are to be copied
(0..22). If procnr is not specified then the lines are copied from the current
work file. An active work file may not be specified.
If the TO operand is not specified then procnr must not be the current work
file.

svars Range of string variables whose contents are to be copied into the current
work file.

TO... The operands which follow TO define the target range or ranges. If no target
range is specified then the line numbers in the source work file are taken
over into the current work file.
If the source work file is the current work file or if string variables are copied
then TO... must be specified. In these cases, if no target range is specified
then the @ COPY statement is rejected with the error message EDT3218.

line1 Number of the first line in the target range.

inc Increment used to form the line numbers following line1. If inc is not
specified then the increment implicitly specified by line1 is used (see
section “Implicit increment assignment” on page 35).

: The operands line1 and line2 should be separated by : if inc is not
specified.

Operation Operands F mode, L mode
@COPY

 [TO {line1 [(inc)] [:] [line2]} [,...]] [,...]
lines [(procnr)]

svars

EDT statements @COPY (format 2)

U41709-J-Z125-1-76 261

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

line2 Specifies the largest possible line number in the target range up to which
the copying of records is permitted.

As a result, nothing is copied into lines in the current work file with line
numbers higher than line2. This also applies if it is not possible to copy all
the records in the source range to the target range.
If line2 is not specified then the @COPY statement does not define any
maximum value for the line numbers in the target range.

In the @COPY statement, it is possible to specify multiple comma-separated source ranges
each of which are associated with multiple target ranges. The number of source and target
ranges is only limited by the maximum permitted length of EDT statements.

If the source and target ranges overlap then the source range is copied line-by-line. This
means that a record may initially be copied to a line and then be copied again from this line
if the line is present in both the source and target ranges. In this way, it is possible to create
multiple copies of the source range or parts of it in the target range.

Any existing lines with the same line numbers present in the work file are overwritten on the
copy operation.

If a line with a number greater than the previous highest line number is created then the
current line number is modified.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the source work file or the first specified string variable when the copy
operation is performed. If the current work file has a character set then the lines to be copied
or the contents of the string variables are converted into the character set of the current
work file. If characters which cannot be displayed in the work file's character set are
identified then these characters are replaced by a substitute character provided that such
a character has been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise,
the @ COPY statement is rejected and error message EDT5453 is output.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

@COPY (format 2) EDT statements

262 U41709-J-Z125-1-76

Note
Since the above syntax permits the omission of the TO operand, it is not always possible
to distinguish unambiguously between the target and source ranges. In such cases,
EDT interprets the ambiguous specification as a target range. Thus, for example, in the
input

@COPY 2-3(1) TO 7,1(1)

the specification 1(1) is interpreted as a second target range (the 1 in parentheses is
interpreted as the increment), whereas the specification 1(0) at this point would be
interpreted as the next source range (the 0 cannot be an increment and is interpreted
as a work file number). If, in this example, the user wants to force the specification to
be interpreted as a source range, it would be possible, for example, to enter

@COPY 2-3(1) TO 7,1-1(1)

to eliminate all ambiguities.

Example 1

The three @COPY statements are intended to copy line 1 to line 7, line 2 to line 5 and line
range from 1 to 3 to the line range starting at line 30.1 with the explicit increment 5.

 1.00 NOW<··
 2.00 WE CAN<···
 3.00 COPY<··
 4.00 ··

copy 1 to 7 ; copy 2 to 5 ; copy 1-3 to 30.1 (5)···············0001.00:00001(00)

 1.00 NOW<··
 2.00 WE·CAN<···
 3.00 COPY<··
 5.00 WE CAN<···
 7.00 NOW<··
 30.10 NOW<··
 35.10 WE CAN<···
 40.10 COPY<··
 41.10 ··

EDT statements @COPY (format 2)

U41709-J-Z125-1-76 263

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 2

The @COPY statement can be used to duplicate line ranges one or more times if the send
and receive areas overlap. In the example below, the first line is to be duplicated.

This statement copies the line range from line number 1 to 2 to the line range starting at line
number 1.5 with the implicit increment 0.1.

In this case, EDT starts by copying line 1 to line 1.5. This line is located in the specified
source range. Consequently line 1.5 is copied to line 1.6 with the implicit increment 0.1.
Accordingly, line 1.6 is copied to 1.7, ... , line 1.9 to 2.0 (and the content of line 2 is
overwritten) and line 2.0 is then copied to line 2.1.

The line range 3 to 5 is to be copied to the line range 4.1 to 5 with the implicit increment 0.1.

 1.00 111<··
 2.00 222<···
 3.00 333<··
 4.00 444<···
 5.00 555<··
 6.00 ··

copy 1-2 to 1.5··0001.00:00001(00)

 1.00 111<··
 1.50 111<··
 1.60 111<··
 1.70 111<··
 1.80 111<··
 1.90 111<··
 2.00 111<··
 2.10 111<··
 3.00 333<··
 4.00 444<···
 5.00 555<··
 6.00 ··
 7.00 ··
 8.00 ··
 9.00 ··
 10.00 ··
 11.00 ··
 12.00 ··
 13.00 ··
 14.00 ··
 15.00 ··
 16.00 ··
 17.00 ··
copy 3-5 to 4.1 : 5··0001.00:00001(00)

@COPY (format 2) EDT statements

264 U41709-J-Z125-1-76

To do this, EDT first copies line 3 to line 4.1 and line 4 to line 4.2. The two newly created
lines are located in the specified source range. As a result, line 4.1 is copied to line 4.3, line
4.2 to 4.4 ... , line 4.8 to 5.0. This operation overwrites the content of line 5. Lines 4.9 and
5.0 are not copied since the highest possible line number in the target range has been
reached.

 1.00 111<··
 1.50 111<··
 1.60 111<··
 1.70 111<··
 1.80 111<··
 1.90 111<··
 2.00 111<··
 2.10 111<··
 3.00 333<··
 4.00 444<···
 4.10 333<··
 4.20 444<···
 4.30 333<··
 4.40 444<···
 4.50 333<··
 4.60 444<···
 4.70 333<··
 4.80 444<···
 4.90 333<··
 5.00 444<···
 6.00 ··
 7.00 ··
 8.00 ··
···0001.00:00001(00)

EDT statements @ CREATE (format 1)

U41709-J-Z125-1-76 265

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.27 @CREATE (format 1) – Check line

Format 1 of the @CREATE statement creates a line with the specified content.

line The line number in the current work file that is to be created. If this line
already exists then it is completely overwritten.

: This must be specified if line cannot be unambiguously separated from
string.

string One or more strings which are to be joined in the specified order and
inserted as a line.

name Character set that is to be defined for the current work file if this is empty
and has the character set *NONE.

During the first step, the character strings specified in string are joined to one another. If
all the strings involved have the same character set then the intermediate result is also
assigned this character set. If the involved strings have different character sets then the
intermediate result is assigned the character set UTFE.

If, after conversion, the intermediate result exceeds the maximum length of 32768
characters then it is truncated to the maximum length and message EDT2400 is output.

If the CODE operand is not specified and the current work file is empty and has the character
set *NONE then the intermediate result is inserted in the line without being converted. The
character set used for the intermediate result is assigned to the work file.

If the CODE operand is specified and the current work file is empty and has the character set
*NONE then the intermediate result is converted into the character set name before being
inserted. Precisely this character set is then defined for the current work file.

If the CODE operand is specified and the current work file already has a different character
set then the character set *NONE then the @CREATE statement is not executed and the
message EDT5458 is issued.

If the CODE operand is not specified and the current work file already has a character set
then the intermediate result is converted into the work file's character set before being
inserted.

If the string that is to be inserted contains characters which cannot be displayed in the work
file's character set then these characters are replaced by a substitute character provided
that such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, the @CREATE statement is rejected and error message EDT5453 is output.

Operation Operands F mode, L mode
@CREATE line [:] [string[,...]] [,CODE=name]

@ CREATE (format 1) EDT statements

266 U41709-J-Z125-1-76

If string is not specified then the line is created as an empty line (line of length 0). The
character set EDF041 is defined for the current work file if this is empty and has the
character set *NONE and the CODE operand has not been specified.

The @CREATE statement does not modify the current line number. This also applies if new
lines are created after the end of the existing work file.

Example

A new line 3 is created with @CREATE.

The new line 3 is created from the content of the old line 3 joined to the new text
AND GETS LONGER

The new line 4 is created and consists of the joining of line 1, the text CHAINED WITH and
lines 2 and 1.

 1.00 THIS IS THE FIRST LINE<···
 2.00 THIS IS THE SECOND LINE<··
 3.00 ··

create 3 'LINE 3 IS CREATED WITH @CREATE'·····················0001.00:00001(00)

 1.00 THIS IS THE FIRST LINE<···
 2.00 THIS IS THE SECOND LINE<··
 3.00 LINE 3 IS CREATED WITH @CREATE<···
 4.00 ··

create 3:3, ' AND GETS LONGER'·································0001.00:00001(00)

 1.00 THIS IS THE FIRST LINE<···
 2.00 THIS IS THE SECOND LINE<··
 3.00 LINE 3 IS CREATED WITH @CREATE AND GETS LONGER<·························
 4.00 ··

create 4:1, ' CHAINED WITH ',2,1; edit long on·················0001.00:00001(00)

EDT statements @CREATE (format 1)

U41709-J-Z125-1-76 267

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

EDIT LONG ON is input to make it possible to display the content of line 4 in full at the
terminal.

A new line 4 is created. The new content of this line consists of joining columns 1 to 12 of
line 1, the word FOURTH and columns 19 to 23 of line 2 in this order.

The work window then switches back to the default format.

THIS IS THE FIRST LINE<···
THIS IS THE SECOND LINE<··
LINE 3 IS CREATEDE WITH @CREATE AND GETS LONGER<································
THIS IS THE FIRST LINE CHAINED WITH THIS IS THE SECOND LINETHIS IS THE FIRST LIN
E<··

create 4:1:1-12:,'FOURTH',2:19-23: ; index on ·················0001.00:00001(00)

 1.00 THIS IS THE FIRST LINE<···
 2.00 THIS IS THE SECOND LINE<··
 3.00 LINE 3 IS CREATED WITH @CREATE AND GETS LONGER<·························
 4.00 THIS IS THE FOURTH LINE<··
 5.00 ··

@ CREATE (format 2) EDT statements

268 U41709-J-Z125-1-76

9.28 @CREATE (format 2) – Assign string to string variable

Format 2 of the @CREATE statement is used to assign strings to string variables.

svarex New string variable that is to be created.

: This must be specified if svarex cannot be unambiguously separated from
string.

string One or more strings which are to be chained together in the specified order
and assigned to a string variable.

name Character set that is to be defined for the specified string variable.

During the first step, the character strings specified in string are chained together. If all
the strings involved have the same character set then the intermediate result is also
assigned this character set. If the involved strings have different character sets then the
intermediate result is assigned the character set UTFE.

If, after conversion, the intermediate result exceeds the maximum length of 32768
characters then it is truncated to the maximum length and message EDT2400 is output.

If the CODE operand is not specified then the content and character set of the intermediate
result are assigned to the string variable.

If the CODE operand is specified then this character set is assigned to the string variable and
intermediate result is converted into the character set name before being assigned to the
string variable. If the string that is to be inserted contains characters which cannot be
displayed in the character set specified in name then these characters are replaced by a
substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the @CREATE statement is rejected and error
message EDT5453 is output.

If neither the string nor the CODE operand is specified then the string variable is created with
a blank and the character set EDF041. If string is not specified but the CODE operand is
then the string variable is created with a blank in the character set specified in the CODE
operand.

Operation Operands F mode, L mode
@CREATE svarex [:] [string[,...]] [,CODE=name]

EDT statements @ CREATE (format 2)

U41709-J-Z125-1-76 269

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

@READ ’SRC.EDF041’ -- (1)
@CREATE #S01:1,CODE=UTF16 --- (2)
@DELETE
@READ ’SRC.EDF045’ -- (3)
@CREATE #S02:3,CODE=UTF16 --- (4)
@CREATE #S03: #S01,#S02 --- (5)

(1) The character set EDF041 is defined for the work file.

(2) The CODE operand is used to define the character set UTF16 for the string variable
#S01. The first line in the work file is converted from EDF041 to UTF16 and assigned to
the string variable #S01.

(3) The character set EDF045 is defined for the work file.

(4) The CODE operand is used to define the character set UTF16 for the string variable
#S02. The third line in the work file is converted from EDF045 to UTF16 and assigned to
the string variable #S02.

(5) The character set UTF16, which is the character set of the strings #S01 and #S02, is
implicitly defined for the string variable #S03. The contents of the string variables #S01
and #S02 are chained together and assigned to the string variable #S03.

@ CREATE (format 3) EDT statements

270 U41709-J-Z125-1-76

9.29 @CREATE (format 3) – Read in string and create line

Format 3 of the @CREATE statement is used to read a string from the terminal or from
SYSDTA and create a line with its content.

line The line number in the current work file that is to be inserted in a string. If
this line already exists then it is completely overwritten.

string One or more strings which are to be chained together in the specified order
and output at the terminal as a prompt.

If string is not specified then no prompt is output at the terminal.

name Character set that is to be defined for the current work file if this is empty
and has the character set *NONE.

In interactive mode, the prompt formed from the operands is output at the terminal and a
string is read. If the prompt formed from the operands exceeds the maximum length of
32763 bytes then it is truncated to the maximum length and error message EDT2402 is
output. If string is not specified then a string is read from SYSDTA instead of from the
terminal.

In batch mode, string is ignored and the string is always read from SYSDTA.

The maximum length of the read string depends on the input medium.

If the current work file already has a character set then the read string is converted into this
character set before being inserted. If the string that is to be inserted contains characters
which cannot be displayed in the work file's character set then these characters are
replaced by a substitute character provided that such a character has been specified (see
@PAR SUBSTITUTION-CHARACTER); otherwise, the @CREATE statement is rejected
and error message EDT5453 is output.

If the CODE operand is not specified and the current work file is empty and has the character
set *NONE then the read string is inserted in the line without being converted. The commu-
nications character set is defined as the character set for the current work file.

If the CODE operand is specified and the current work file already has a different character
set then the character set then the @CREATE statement is not executed and the message
EDT5458 is issued.

Entering [F1] without text at a terminal causes the specified line to be created as an empty
line (line of length 0). Empty input that is sent with [DUE] or another function key is ignored
and the prompt is output again.

Operation Operands L mode
@CREATE line READ [string[,...]] [,CODE=name]

EDT statements @ CREATE (format 3)

U41709-J-Z125-1-76 271

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

 1. @PROC 1
 1. @CREATE 1 READ '*** NAME OF THE FIRST PARTICIPANT ?',CODE=UTF16 –
(1)
*** NAME OF THE FIRST PARTICIPANT ? SCHÖLLER
 1. @PROC 2 --- (2)
 4. @PRINT
 1.0000 MAIER
 2.0000 LINE IS OVERWRITTEN
 3.0000 SCHMIDT
 4. @CREATE 2 READ '*** MUELLER OR MÜLLER ?' ---------------------- (3)
*** MUELLER OR MÜLLER ? MÜLLER

(1) The CODE operand is used to define the character set UTF16 for work file 1 which is
empty and has the character set *NONE. The prompt '*** NAME OF THE FIRST
PARTICIPANT ?' is output at the terminal and a string is read. This is converted into
the character set UTF16 and written to the first line of the work file.

(2) The character set EDF041 is defined for work file 2.

(3) The prompt '*** MUELLER OR MÜLLER ?' is output at the terminal and a string is
read. This is converted into the work file's character set (EDF041) and written to the
second line. When this is done, the existing content of the second line is completely
overwritten.

@ CREATE (format 4) EDT statements

272 U41709-J-Z125-1-76

9.30 @CREATE (format 4) – Read in line and assign to string
variable

Format 4 of the @CREATE statement is used to read a string from the terminal or from
SYSDTA and assign it to a string variable.

svarex New string variable that is to be created.

string One or more strings which are to be chained together in the specified order
and output at the terminal as a prompt.

If string is not specified then no prompt is output at the terminal.

name Character set that is to be defined for the specified string variable.

In interactive mode, the prompt formed from the operands is output at the terminal and a
string is read. If the prompt formed from the operands exceeds the maximum length of
32763 bytes then it is truncated to the maximum length and error message EDT2402 is
output. If string is not specified then a string is read from SYSDTA instead of from the
terminal.

In batch mode, string is ignored and the string is always read from SYSDTA.

The maximum length of the read string depends on the input medium.

If the CODE operand is not specified then the content of the string is assigned to the string
variable and the communications character set is defined as its character set.

If the CODE operand is specified then this character set is assigned to the string variable and
the read string is converted into the character set name before being assigned. If the string
that is to be inserted contains characters which cannot be displayed in the character set
specified in name then these characters are replaced by a substitute character provided that
such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, the @CREATE statement is rejected and error message EDT5453 is output.

Entering [F1] without text at a terminal causes the specified string variable to be created as
an empty string variable. Empty input that is sent with [DUE] or another function key is
ignored and the prompt is output again.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Operation Operands L mode
@CREATE svarex READ [string[,...]] [,CODE = name]

EDT statements @ CREATE (format 4)

U41709-J-Z125-1-76 273

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 1

 6. @PRINT
 1.0000 HELLO
 2.0000 NO-ONE IS TO LEAVE
 3.0000 THE ROOM
 4.0000 LINE
 5.0000 IS TO BE
 6. @SET #S1 = ' OUTPUT *** '
 6. @PROC 1
 1. @ @CREATE #S2 READ '*** WHICH ',4,5,#S1 ----------------------- (1)
 2. @ @SET #L2 = SUBSTR #S2 --------------------------------------- (2)
 3. @ @PRINT #L2
 4. @END
 6. @DO 1
*** WHICH LINE IS TO BE OUTPUT *** 2 ------------------------------------ (3)
 2.0000 NO-ONE IS TO LEAVE
 6.

(1) @CREATE...READ is to be used to create the string variable #S2. First, however, the
text resulting from *** WHICH is output at the terminal together with the contents of
lines 4 and 5 and the string variable #S1.

(2) The input is interpreted and stored in the line number variable #L2.

(3) The query output via the terminal is answered.

Example 2

@CREATE #S01 READ 'MUELLER OR MÜLLER ?'

The prompt 'MUELLER OR MÜLLER ?' is output at the terminal and a string is read. The
content of the read string is assigned to the string variable and the communications
character set is defined as its character set.

@CREATE #S02 READ 'RESIDENT IN GÜNZBURG OR DONAUWÖRTH ?',CODE=EDF041

The character set EDF041 is defined for the string variable #S02. The prompt RESIDENT IN
GÜNZBURG OR DONAUWÖRTH ?' is output at the terminal and a string is read. This is
converted into the character set EDF041 and assigned to the string variable #S02.

@DELETE (format 1) EDT statements

274 U41709-J-Z125-1-76

9.31 @DELETE (format 1) – Copy lines and string variables

This format of the @DELETE statement is used to delete lines in the current work file or a
range of string variables either in part or completely.

lines The line range to be deleted.

svars The range of string variables whose contents are to be deleted.

cols Column range in the specified lines or string variables that is to be deleted.

If only one column number is specified then the remainder of the line or
string variable is deleted as of this column. If the first column specification
is greater than the length of the line or string variable then the line or string
variable is ignored.

If there is no column specification then the entire line or string variable is
deleted (see below).

Whenever a line range is deleted, only the specified records are removed. Furthermore, no
“clean up” operations are performed even if the work file does not contain any more records
after deletion.

Completely deleting a string variable restores this to the status which it had before it was first
assigned a value, i.e. it contains precisely one blank in the initial character set EDF041.

If an ISAM file has been opened for real processing in work file 0 using @OPEN (format 2)
then the corresponding range in the ISAM file is also deleted. However, the file's catalog
entry is always retained even if the file contains no further files after deletion.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Operation Operands F mode, L mode
@DELETE

 [:cols [:] [,...]
lines

svars

EDT statements @DELETE (format 1)

U41709-J-Z125-1-76 275

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

The line range consisting of line numbers 1 to 2 is deleted from the work file

Columns 7 to 10 inclusive are to be deleted throughout the entire work file.

 1.00 111<··
 1.50 111<··
 1.60 111<··
 1.70 111<··
 1.80 111<··
 1.90 111<··
 2.00 111<··
 2.10 111<··
 3.00 333<··
 4.00 444<···
 4.10 333<··
 4.20 444<···
 4.30 333<··
 4.40 444<···
 4.50 333<··
 4.60 444<···
 4.70 333<··
 4.80 444<···
 4.90 333<··
 5.00 444<···
 6.00 123456789012<···
 7.00 ··
 8.00 ··
@delete 1-2 ···0001.00:00001(00)

 2.10 111<··
 3.00 333<··
 4.00 444<···
 4.10 333<··
 4.20 444<···
 4.30 333<··
 4.40 444<···
 4.50 333<··
 4.60 444<···
 4.70 333<··
 4.80 444<···
 4.90 333<··
 5.00 444<···
 6.00 123456789012<···
 7.00 ··
 8.00 ··
 9.00 ··
 10.00 ··
 11.00 ··
 12.00 ··
 13.00 ··
 14.00 ··
 15.00 ··
@delete & : 7-10···0002.10:00001(00)

@DELETE (format 1) EDT statements

276 U41709-J-Z125-1-76

The specified range has been deleted.

 2.10 111<··
 3.00 <···
 4.00 44<···
 4.10 <···
 4.20 44<···
 4.30 <···
 4.40 44<···
 4.50 <···
 4.60 44<···
 4.70 <···
 4.80 44<···
 4.90 <···
 5.00 44<···
 6.00 12345612<···
 7.00 ··
···0002.10:00001(00)

EDT statements @DELETE (format 2)

U41709-J-Z125-1-76 277

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.32 @DELETE (format 2) – Completely delete work files

This format of the @DELETE statement is used for the complete deletion of work files.

ALL All the work files are deleted in full.

procnr The work files with the specified numbers (0..22) are deleted in full.

If no operand is specified then the current work file is deleted in full.

In the F mode statement line, the abbreviation D without operands is rejected with an error
message in order to prevent the accidental deletion of the current work file when D
statement codes are entered.

If one of the specified work files is an active work file then the statement is rejected with the
message EDT5476.

Completely deleting a work file makes it into an empty work file. In particular, not only are
all the records deleted. In addition, the work file's character set is set to *NONE and other
work file-specific settings are restored to their default values (see section “Work files” on
page 27). Furthermore, a file that has been fully deleted (except for the current work file) is
removed from the set of work files in use (see @PROC USED).

The work files are deleted without a confirmation query, irrespective of their content. If files
are open in the work files that are to be deleted then these are implicitly closed without
being written back. This also applies to files opened for real processing using @OPEN
(format 2). The records they contain are therefore not deleted.

Operation Operands F mode, L mode
@DELETE

 []
ALL

(procnr[,...])

@DELETE (format 3) EDT statements

278 U41709-J-Z125-1-76

9.33 @DELETE (format 3) – Delete files and library elements

This format of the @DELETE statement can be used to delete files or elements in a library.

LIBRARY= A library element is to be deleted.

 path1 Name of the library.

 elname Name of the element.

 vers Version of the element that is to be deleted (see the LMS User Guide [14]).
If vers is not specified or if *STD is specified then the highest available
version of the element is deleted.

 eltype Type of element. Permitted type specifications are S, M, P, J, D, X, R, C, H, L,
U, F, *STD and freely selectable type names having one of these types as
basic type. If eltype is not specified then the default type specified with
@PAR ELEMENT-TYPE is used. The permitted element types and their
meanings are described in section “File processing” on page 131.

ELEMENT= The library element to be deleted is defined by means of its name without
any library name specification. The default library specified with @PAR
LIBRARY is used implicitly (provided that @PAR LIBRARY has been
specified – otherwise the error message EDT5181 is output).
The operands elname, vers and eltype have the same meaning as when
a library is specified explicitly (see above).

FILE= A BS2000 file is to be deleted.

 path2 The fully qualified file name of a BS2000 file that you want to delete.

POSIX-FILE= A POSIX file is to be deleted.

 xpath Path name of the POSIX file that you want to delete.

The xpath operand can also be specified via a string variable. It must be
specified via a string variable if it contains special characters which have a
special meaning in EDT syntax (e.g. blanks or semicolons in F mode).

Operation Operands F mode, L mode
@DELETE LIBRARY=path1 ([ELEMENT=] elname [(vers)][,eltype])

ELEMENT=elname [(vers)][,eltype]
FILE = path2
POSIX-FILE = xpath

EDT statements @DELETE (format 3)

U41709-J-Z125-1-76 279

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the specified file does not exist or cannot be accessed as required then the statement is
rejected with a corresponding error message.

Example

@DELETE LIBRARY=PROGLIB(ELEMENT=TESTOLD(VER2))

Version VER2 of the library element TESTOLD in the library PROGLIB and with element type
S is deleted.

@DELETE (format 4) EDT statements

280 U41709-J-Z125-1-76

9.34 @DELETE (format 4) – Delete record marks

This format of the @DELETE statement is used to delete record marks (see section
“Record marks” on page 45).

m One or more record marks (1..9) that are to be deleted in all the records in
the current work file.

If m is not specified then all the record marks 1 to 9 are deleted in the records
present in the current work file.

Record marks with a special function (marks 13, 14, 15, see section “Record marks” on
page 45) are not deleted.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Operation Operands F mode, L mode
@DELETE MARK [m[,...]]

EDT statements @DELIMIT

U41709-J-Z125-1-76 281

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.35 @DELIMIT – Declare text delimiter characters

The @DELIMIT statement declares characters that act as text delimiters when searches
are performed with @ON (see section “Delimiter characters” on page 81).

R The blank Ë and the characters +.!*();–/,?:'=" are declared as text
delimiter characters.

str1 String containing all the characters that are to be declared as text delimiter
characters.

str2 String containing additional characters to be declared as text delimiter
characters (+) or characters that are no longer to be declared as text
delimiter characters (–).

If no operand is specified (@DELIMIT =) then no characters are to be used as text delimiter
characters.

Operation Operands F mode, L mode
@DELIMIT

 = []
R
str1
+|– str2

@DIALOG EDT statements

282 U41709-J-Z125-1-76

9.36 @DIALOG – Call screen dialog

The @DIALOG statement can be used to switch EDT to screen dialog mode when input is
read from SYSDTA (usually in BS2000 system procedures or from the subroutine interface).
In screen dialog, the preceding read operation is interrupted and EDT reads its input from
the terminal in F mode (or in L mode after the entry of @EDIT). The screen dialog can be
exited again with @HALT, @END, @RETURN or [K1]. EDT then continues the interrupted
read operation.

The statement is ignored in F mode. If, in L mode, @DIALOG is entered from a medium
other than SYSDTA (e.g. if statements are read from an EDT procedure or if input is read
from the terminal with the line number as the prompt) or if it is called in batch mode then the
statement is rejected with the error message EDT5400 or EDT4920.

If screen dialog mode is called from a BS2000 system procedure then the statements
@SYSTEM without operands and @EDIT ONLY are prohibited and are rejected with the
message EDT4976. In this case, the only way to switch to the operating system is to press
[K2] provided that the BS2000 system procedure has not been protected against this with
the option INTERRUPT-ALLOWED=NO see section “Access protection” on page 99).

The screen dialog is terminated with @HALT, @END, @RETURN or [K1]. If @DIALOG is
called via the subroutine interface or from a BS2000 procedure then processing continues
with the statement that follows @DIALOG. If there are no further statements at the
subroutine interface after @DIALOG then control passes to the calling program. If it is
called from SYSDTA (after @EDIT ONLY) then the next input is requested from SYSDTA. In
all cases, EDT remains loaded and all the EDT parameter settings remain as they were at
the point screen dialog mode was exited.

Operation Operands F mode, L mode
@DIALOG

EDT statements @DIALOG

U41709-J-Z125-1-76 283

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

BS2000 procedure PROC.DIALOG

/BEGIN-PROCEDURE LOGGING=A,PARAMETERS=YES(-
/ PROCEDURE-PARAMETERS=(&FILE1=,&FILE2=),-
/ ESCAPE-CHARACTER='&')
/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/MODIFY-JOB-SWITCHES ON=(4,5) --- (1)
/START-EDTU
@PROC 1 --- (2)
@COPY FILE=&FILE1 --- (3)
@PAR SCALE=ON --- (4)
@DIALOG --- (5)
@SETF(1) -- (6)
@WRITE FILE=&FILE2 -- (7)
@HALT --- (8)
/MODIFY-JOB-SWITCHES OFF=(4,5)
/ASSIGN-SYSDTA TO-FILE=*PRIMARY
/END-PROCEDURE

(1) Job switch 5 is set before EDT is loaded. This sets L mode and the input is read from
SYSDTA.

(2) Processing switches to work file 1.

(3) A file is to be read in. The file name is queried while the procedure is running.

(4) The display of the column counter is activated.

(5) EDT is to be switched to the F mode screen dialog and the work window is to be output
on the screen. It is then possible to input all F and L mode statements in this dialog
mode. The F mode screen dialog is terminated with @END, @HALT or @RETURN or
K1 and processing continues with the statement following @DIALOG.

(6) Work file 1 is again set as the current work file. This is necessary because the user may
have set a different work file in the F mode screen dialog.

(7) Work file 1 is written to a SAM file. The file name is queried while the procedure is
running.

(8) EDT is terminated.

@DIALOG EDT statements

284 U41709-J-Z125-1-76

The procedure PROC.DIALOG is started. This requests the name of the file that is to be read
in. EDT then switches to F mode screen dialog.

The column counter is displayed in accordance with the default values specified under (4).
@HALT terminates the F mode screen dialog again and the procedure which was inter-
rupted by @DIALOG continues.

The procedure then queries the name of the file to which the work file is to be written.
Depending on the actions performed in the F mode screen dialog, other messages may be
output.

 /call-procedure name=proc.dialog
 %/BEGIN-PROCEDURE LOGGING=A,PARAMETERS=YES(PROCEDURE-PARAMETERS
=(&FILE1=,&FILE2=),ESCAPE-CHARACTER='&')

 %/ASSIGN-SYSDTA TO-FILE=*SYSCMD
 %/MODIFY-JOB-SWITCHES ON=(4,5)
 %/START-EDTU
 %PROC 1
 %@COPY FILE=&FILE1
 %&FILE1=xmpl.dialog

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 EDT is the BS2000 file<···
 2.00 editor, used for the user-<···
 3.00 friendly creation and editing<··
 4.00 of BS2000 files in SAM and ISAM formats<································
 5.00 as well as text-like library<···
 6.00 elements and POSIX files<···

@halt··0001.00:00001(01)

 %@SETF (1)
 %@WRITE FILE=&FILE2
 %&FILE2=xmpl.dialog1
 %@WRITE FILE=XMPL.DIALOG1
 %@HALT
 %/MODIFY-JOB-SWITCHES OFF=(4,5)
 %/ASSIGN-SYSDTA TO-FILE=*PRIMARY
 %/END-PROCEDURE
 /

EDT statements @DO (format 1)

U41709-J-Z125-1-76 285

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.37 @DO (format 1) – Start EDT procedures from work files

Format 1 of the @DO statement starts a @DO procedure, i.e. the text lines and EDT state-
ments in the specified work file are processed.
For information on the structure and processing of EDT procedures, see section “EDT
procedures” on page 64.

procnr The number of the work file (1..22) whose content is to be processed by
EDT.
If the work file is empty, error message EDT4950 is issued.

param Parameters which are passed to the procedure that is to be run. The param-
eters must be defined in the procedure using @PARAMS (see the
@PARAMS statement). They are separated from one another by commas.

If parameters (including empty parameters) are specified in a procedure
which contains no @PARAMS statement then the statement is rejected with
the message EDT4944. If too many parameters are specified then the error
message EDT4963 or EDT4965 is output.

A distinction is made between positional and keyword parameters. In the
case of positional parameters, only the value of the parameter is passed. In
the case of keyword parameters, an expression of the form formal=value
is passed where formal is the keyword (not prefixed by the & character)
with which the parameter was defined in the @PARAMS statement
(detailed information on parameter transfer can be found in the description
of the @PARAMS statement below).

The positional parameters must be located before the keyword parameters
and must be specified in precisely the same order as they were defined in
@PARAMS. Keyword parameters can be specified in any order. If a
positional parameter is specified after a keyword parameter then the
statement is rejected with EDT4948. If a keyword parameter is specified
more than once then the message EDT3911 is issued.

The possible number of parameters is limited by the maximum length of an
EDT statement.

Operation Operands F mode, L mode
@DO procnr [,] [(param [,...])] [spec]

 [=line1,line2 [, [-] line3]] [PRINT]

@DO (format 1) EDT statements

286 U41709-J-Z125-1-76

spec Loop counter. In the procedure, this can be used as an operand in EDT
statements if it is necessary to address a line number. When the procedure
is executed, EDT uses the current value of the loop counter at all times (see
section “EDT procedures” on page 64).

The loop counter must be one of the permitted special characters as
otherwise @DO is rejected with the error message EDT3952. To avoid
errors and unpredictable events, the following characters should not be
used as a loop counter.

% $? * (: # + – . < = > ’ ;

The command syntax means that the '=' character cannot be specified at
all. If the procedure is started in F mode then ';' may not be used.

Suitable characters for the loop counter are:

! { } [] | /

If the loop counter is not specified then it is considered to be undefined. If
the sequence of operands line1,line2,[–]line3 is not specified then
the loop counter has the value 1.

=line1,line2,[–]line3
A procedure is repeated several times (see example 3).

Before the first pass, EDT assigns the initial value line1 to the loop
counter. After every pass, EDT increments or decrements (minus sign in
front of line3) the loop counter by line3. The default value for line3 is 1.
The procedure is repeated as long as the loop counter has not risen above
(or fallen below) the value of line2. Otherwise the execution of the
procedure is aborted.

The procedure is passed through at least once since the counter value is
checked after the last line has been processed (REPEAT UNTIL). If the
presence of a @RETURN statement in the procedure means that the last
line is not processed then no check is performed and the procedure is not
repeated.

Line number symbols (e.g. %,$) may also be specified for line1, line2 or
line3. EDT uses the value which this symbol had when @DO is executed.
If the value of this symbol changes during execution of the procedure then
the number of passes is not affected.

In the procedure, the loop counter is treated like a line number variable. The
loop counter is therefore only replaced by the current value if it is addressed
as a line number, in particular therefore not in literals. If the loop counter is

EDT statements @DO (format 1)

U41709-J-Z125-1-76 287

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

specified in a statement which permits a line number with an implicit
increment then – in the same way as for line number variables - the implicit
increment is always considered to be 0.0001 (see example 6.

The fact that a special character is only considered to be a loop counter if it
is used instead of a line number and is specified as a loop counter in the
calling @DO statement means that the same loop counter can be used
more than once for nested external loops. In this case, it always has the
values that are specified in the calling @DO statement (see example 7). It
is not possible to access loop counters which have been specified in a lower
nested level at call time. The symbols used there are not replaced by line
numbers in higher levels and this usually results in syntax errors.

The default value for line1, line2 and line3 is 1.

PRINT Each line of the procedure should be logged (with expanded parameters)
before it is executed. In interactive mode, the output is written to SYSOUT
and in batch mode it is written to SYSLST.

Specifying PRINT also causes all error messages to be output and sets the
EDT error switch. Normally, the two messages EDT0901 and EDT4932 are
not output in procedures and the EDT error switch is not set (see section
“Message texts” on page 638).

The value of a positional parameter is determined by all the characters, including blanks,
specified between the commas or parentheses.
If there are no characters between the commas or parentheses then the value of the
positional parameter is a empty string.
The value of a keyword parameter is determined by all the characters, including blanks,
specified between the equals sign and the following comma or parenthesis.
If there are no characters between the equals sign and the following comma or parenthesis
then the value of the keyword parameter is a empty string.
A parameter may be enclosed in single quotes. These are not transferred if they occur as
the first or last character in the parameter value and only double quotes occur between
them.
In all other cases, the specified single quotes form part of the parameter (see the examples
for the @PARAMS statement). The comma and closing parenthesis characters may only
form part of a parameter if they occur in a substring in the parameter value that is enclosed
by single quotes.
Single quotes must always occur in pairs in a parameter value. An individual single quote
cannot be passed in a parameter value. If @QUOTE has already been used to assign the
function of the single quote to another character then this does not apply to the single
quotes enclosing the parameter value.
If a positional parameter is not specified then it is assigned the value of an empty string.
If a keyword parameter is not specified then it is assigned the default value defined in the
@PARAMS statement.

@DO (format 1) EDT statements

288 U41709-J-Z125-1-76

During parameter substitution, the specified parameters are converted into the character
set used by the procedure work file. If the string variable contains characters which cannot
be displayed in the target character set then these are replaced by a substitute character if
such a character has been specified (see @PAR SUBSTITUTION-CHARACTER).
Otherwise, the @DO statement is rejected and the error message EDT5453 is output.

The parameters may contain Unicode substitute representations. These are not expanded
during the parameter substitution process. This is not done until the associated procedure
line is executed.

EDT procedures can be interrupted at any time using [K2].
In the operating system, it is then possible to use /RESUME-PROGRAM to continue the
procedure or use /INFORM-PROGRAM to return to EDT and abort the procedure.

The procedure cannot be aborted with /INFORM-PROGRAM while a user statement (see
@USE) is being executed.

An illegal statement during execution does not cause the procedure to be aborted.

Example 1

 1. @SET #S0 = 'TEST OF PROCEDURE FILE 1'
 1. @PROC 1 --- (1)
 1. @ @SET #S1 = #S0:1-4: --- (2)
 2. @ @CREATE #S2: ' '*4,#S0:5-8:
 3. @ @CREATE #S3: ' '*9,#S0:9-24:
 4. @ @CREATE #S4: ' '*24
 5. @ @PRINT #S1.-#S4
 6. @ @PRINT #S0
 7. @END -- (3)
 1. @DO 1 --- (4)
 #S01 TEST
 #S02 OF
 #S03 PROCEDURE FILE 1
 #S04
 #S00 TEST OF PROCEDURE FILE 1
 1.

(1) Processing switches to work file 1.

(2) EDT statements are written to work file 1. When the procedure is called with @DO,
these cause the string variables #S1 to #S4 to be created and output together with #S0.

(3) @END causes a return from work file 1.

(4) The procedure located in work file 1 is called.

EDT statements @DO (format 1)

U41709-J-Z125-1-76 289

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 2

 1. @PROC 2 --- (1)
 1. @ @PARAMS &STRING --- (2)
 2. @ @SET #S1 = '+++++++++++'
 3. @ @SET #S2 = &STRING -- (3)
 4. @ @PRINT #S2
 5. @END
 1. @DO 2(#S1) PRINT -- (4)
 1. @SET #S1 = '+++++++++++'
 1. @SET #S2 = #S1
 1. @PRINT #S2
 #S02 +++++++++++
 1. @DO 2('#S1') PRINT -- (5)
 1. @SET #S1 = '+++++++++++'
 1. @SET #S2 = #S1
 1. @PRINT #S2
 #S02 +++++++++++
 1. @DO 2(Ë'#S1'Ë) PRINT -- (6)
 1. @SET #S1 = '+++++++++++'
 1. @SET #S2 = Ë'#S1'Ë
 1. @PRINT #S2
 #S02 #S1
 1.

(1) Processing switches to work file 2.

(2) The first line stored in this work file is a @PARAMS statement. This makes it possible
to address the positional parameter &STRING in this work file.

(3) #S2 is to be assigned a value that is not available at the time work file 2 is defined and
will only be defined in a @DO 2(...)... statement.

(4) The value #S1 present in parentheses causes &STRING to be replaced globally by the
value #S1 before the statements located in work file 2 are executed. PRINT causes the
statements to be output before they are executed.

(5) The value #S1 is now passed for the positional parameter &STRING. Since the first and
last characters of this parameter value are single quotes they are removed when the
parameter value is replaced in work file 2 as the PRINT operand here clearly shows.
This therefore has the same effect as (4).

(6) The only difference to (5) is that the parameter value has been extended by a preceding
or following blank. However, this is sufficient to ensure that the content of the parameter
value is passed.

@DO (format 1) EDT statements

290 U41709-J-Z125-1-76

Example 3

 1. *
 2. @PROC 3 --- (1)
 1. @ @CREATE $+1: $,'*' -- (2)
 2. @END -- (3)
 2. @DO 3,!=1,15 -- (4)
 2. @PRINT
 1.0000 *
 2.0000 **
 3.0000 ***
 4.0000 ****
 5.0000 *****
 6.0000 ******
 7.0000 *******
 8.0000 ********
 9.0000 *********
 10.0000 **********
 11.0000 ***********
 12.0000 ************
 13.0000 *************
 14.0000 **************
 15.0000 ***************
 16.0000 **************** -- (5)
 2.

(1) Processing switches to work file 3.

(2) A single EDT statement is written to work file 3.

(3) Processing returns to work file 0.

(4) Work file 3 is executed. In this case, the ! character is used as a loop counter. Work file
3 is executed 15 times. It would be possible to address line numbers there using !.
However, this can be omitted as in this example. The specification !=1,15 has the
same effect as issuing @DO 3 fifteen times without this sequence of operands.

(5) In the output, it can be seen that 15 new lines have been created.

EDT statements @DO (format 1)

U41709-J-Z125-1-76 291

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 4

 5. @PRINT
 1.0000 1111111
 2.0000 2222222
 3.0000 3333333
 4.0000 4444444
 5. @SET #S4 = '-----------------'
 5. @PROC 4 --- (1)
 1. @ @PRINT !.-.$ -- (2)
 2. @ @PRINT #S4 N
 3. @END
 5. @DO 4,!=$,%,-1 -- (3)
 4.0000 4444444

 3.0000 3333333
 4.0000 4444444

 2.0000 2222222
 3.0000 3333333
 4.0000 4444444

 1.0000 1111111
 2.0000 2222222
 3.0000 3333333
 4.0000 4444444

 5.

(1) Processing switches to work file 4.

(2) A line number is addressed via the loop counter !.

(3) Work file 4 is executed a number of times. On the first pass, the value of the highest
assigned line number is assumed for !. On each subsequent pass, this value is reduced
by 1 (third line=-1) until the line number has the value of the lowest assigned line
number (%).

@DO (format 1) EDT statements

292 U41709-J-Z125-1-76

Example 5

 1. @PROC 4 --- (1)
 1. @READ 'PROC-FILE.4' --- (2)
 6. @PRINT
 1.0000 @PARAMS &A, &OPTION=ALL
 2.0000 ABCABCABCABC
 3.0000 EFG
 4.0000 @ON 1 CHANGE &OPTION 'ABC' TO '&A'
 5.0000 @5: &A
 6. @END -- (3)
 1. @DO 4 ('A','B',OPTION=R) -------------------------------------- (4)

6. @PRINT
 1.0000 ABCABCABCA,'B --- (5)
 2.0000 EFG
 5.0000 A,''B
 6.

(1) Processing switches to work file 4.

(2) The SAM file PROC-FILE.4 is read into work file 4.

(3) Processing returns to work file 0.

(4) The default value ALL of the keyword parameter &OPTION is replaced by R at call time.
As a result, the search and replace operation in line 1 is performed backwards.

(5) The execution of the work file caused lines to be written to the current work file. In line
1, EDT has removed one of the 2 successive single quotes. In line 3, EDT has taken
over the parameter value unchanged.

EDT statements @DO (format 1)

U41709-J-Z125-1-76 293

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 6

 1. AAA
 2. BBB
 3. CCC
 4. @PROC 1
 1. @@COPY 1-3 TO ! --- (1)
 2. @END
 4. @DO 1,!=4,4 --- (2)
 5.0002 @DO 1,!=5.0,5.0 --- (3)
 6.0002 @PRINT -- (4)
 1.0000 AAA
 2.0000 BBB
 3.0000 CCC
 4.0000 AAA
 4.0001 BBB
 4.0002 CCC
 5.0000 AAA
 5.0001 BBB
 5.0002 CCC
 6.0002

(1) The procedure file contains a statement in which the increment is implicitly defined by
specifying the line number of the target range.

(2) Calls the procedure with loop counter 4.

(3) Calls the procedure with loop counter 5.0.

(4) The output shows that the implicit increment 0.0001 is always used for the loop counter
as is also the case for line number variables.

@DO (format 1) EDT statements

294 U41709-J-Z125-1-76

Example 7

 1. @PROC 1
 1. @ @DO 2, !=!,1,-1 --- (1)
 1. @END
 1. @PROC 2
 1. @ @SET #L1 = ! -- (2)
 2. @ @SET #S1 = C #L1 -- (3)
 3. @ @PRINT #S1 -- (4)
 3. @END
 1. @DO 1,!=1.4 --- (5)
 #S01 1.0000 --- (6)
 #S01 2.0000
 #S01 1.0000
 #S01 3.0000
 #S01 2.0000
 #S01 1.0000
 #S01 4.0000
 #S01 3.0000
 #S01 2.0000
 #S01 1.0000
 1.

(1) A @DO procedure is stored in work file 1. In this case, the loop counter ! is significant
for two reasons: on the one hand, it is redefined by the @DO procedure call in work file
2 and, on the other, the current value of the loop counter specified when work file 1 was
called is taken over as the initial value. This is possible because substitution is only
performed in locations where the ! symbol is also used as a line number.

(2) In work file 2, the current value of the work file's loop counter is assigned to the line
number variable #L1.

(3) The line number variable #L1 is stored in printable form in #S1.

(4) The string variable #S1 is output.

(5) When work file 1 is called, the loop counter is allowed to run from 1 to 4.

(6) The result indicates that the internal loop counter (in work file 2) runs backwards 4 times
until it reaches 1.0000 on the basis of the starting values 1.0000 to 4.0000.

EDT statements @DO (format 2)

U41709-J-Z125-1-76 295

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.38 @DO (format 2) – Activate or deactivate logging

This format of the @DO statement can be used to suspend or activate the logging of the
read statements (see the PRINT operand in format 1 of the @DO statement) at any location
within the procedure.

N EDT no longer logs the following lines of the procedure before they are
executed.

P EDT logs the following lines of the procedure before they are executed.

This statement can also be used for troubleshooting in EDT procedures. It is possible to find
out, for example, whether a specific part of a procedure has been processed or not.

Operation Operands @PROC
@DO N

P

@DO (format 2) EDT statements

296 U41709-J-Z125-1-76

Example

 1. @PROC 5 --- (1)
 1. @ @SET #S5 = 'A'
 2. @ @DO N --- (2)
 3. @ @CREATE #S6: 'B'*6,#S5
 4. @ @CREATE #S7: #S6,'C',#S6
 5. @ @DO P
 6. @ @PRINT #S5.-#S7 --- (3)
 7. @ @DELETE #S5.-#S7
 8. @END -- (4)
 1. @DO 5 PRINT --- (5)
 1. @SET #S5 = 'A'
 1. @DO N
 1. @PRINT #S5.-#S7
 #S05 A
 #S06 BBBBBBA
 #S07 BBBBBBACBBBBBBA
 1. @DELETE #S5.-#S7
 1.

(1) Processing switches to work file 5.

(2) The lines that follow in the procedure are no longer logged.

(3) EDT logs the following lines of the procedure before execution.

(4) Processing returns to work file 0.

(5) The procedure in work file 5 is started. The statements are to be logged before being
executed.

EDT statements @DROP

U41709-J-Z125-1-76 297

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.39 @DROP – Delete work files

The @DROP statement completely deletes the specified work files.

procnr The number of the work file (1..22) that is to be deleted. Any number of
work files can be specified.

ALL Work files (1..22) are deleted.

The @DROP statement may only be entered if the current work file is work file 0. @DROP
is also not permitted in @DO procedures.

The work files are deleted without a confirmation query, irrespective of their content. If files
have been opened with @OPEN or @XOPEN in the work files that are to be deleted then
these are implicitly closed.

Note
The @DROP statement has the same effect as deleting each of the specified work files
with @DELETE (format 2) and removes the specified work files from the set of work
files in use (see @PROC statement).
Opened files or library elements should first be written back and closed (see @CLOSE)
as otherwise any changes will be lost.

Operation Operands L mode
@DROP procnr[,...]

ALL

@DROP EDT statements

298 U41709-J-Z125-1-76

Example 1

 1. @PROC USED -- (1)
<03> 1.0000 TO 3.0000
<05> 1.0000 TO 1.0000
<08> 1.0000 TO 1.0000
<10> 1.0000 TO 1.0000
<14> 1.0000 TO 1.0000
 1. @DROP 10 -- (2)
 1. @PROC USED
<03> 1.0000 TO 3.0000
<05> 1.0000 TO 1.0000 -- (3)
<08> 1.0000 TO 1.0000
<14> 1.0000 TO 1.0000
 1. @DROP 8,5 --- (4)
 1. @PROC USED
<03> 1.0000 TO 3.0000 -- (5)
<14> 1.0000 TO 1.0000
 1.

(1) The work files 1..22 that are in use should be output. In this case, these are the work
files 3, 5, 8, 10, 14.

(2) Work file 10 is deleted and released.

(3) @PROC USED reports that only the work files 3, 5, 8, 14 are still in use.

(4) @DROP can also be used to delete and release multiple work files such as, for
example, 5 and 8 here.

(5) This only leaves work files 3 and 14.

Example 2

 1. @PROC USED -- (1)
<03> 1.0000 TO 3.0000
<14> 1.0000 TO 1.0000
 1. @DROP ALL --- (2)
 1. @PROC USED
% EDT0907 NO WORK FILES USED -- (3)
 1.

(1) All the work files that are in use should be output.

(2) The work files 1..22 are deleted and released.

(3) None of the work files 1 to 22 is now in use.

EDT statements @EDIT (format 1)

U41709-J-Z125-1-76 299

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.40 @EDIT (format 1) – Switch to F mode

In interactive mode, format 1 of the @EDIT statement switches from L mode to
F mode.

In batch mode and in F mode, this statement is ignored. If it occurs inside an EDT
procedure, it is rejected with the message EDT4920.

If @EDIT FULL SCREEN is specified inside a statement block (BLOCK mode) in interactive
mode then the statements that follow it are ignored.

Note
The statement @PAR EDIT-FULL differs semantically from @EDIT FULL SCREEN and
cannot therefore be used as an alternative to @EDIT FULL SCREEN.

Operation Operands F mode, L mode
@EDIT FULL [SCREEN]

@EDIT (format 2) EDT statements

300 U41709-J-Z125-1-76

9.41 @EDIT (format 2) – Set input from terminal

In the interactive mode's L mode, format 2 of the @EDIT statement switches the input
stream to terminal input. WRTRD is used for reading and the current line number is output as
the prompt.

If the statement is entered in F mode, operation first switches to L mode. In batch mode,
this only affects logging (see note below).

PRINT Specifying PRINT causes the line number and content of the current line to
be output on the screen before the prompt is output in interactive mode and
before the next statement or line of data is read in batch mode.

If PRINT is not specified, the statement deactivates this function again
without exiting L mode.

SEQUENTIAL The operand affects the incrementation of the current line number.
Normally, in L mode the current line number is increased or decreased by
the increment when a data line is entered in or when the statements @+ or
@- are issued. This may result in existing lines, i.e. the lines between the old
and the new current line number, being skipped without this being noticed
by the user.

If SEQUENTIAL is specified then the current line number is only formed as
described above if there are no intervening lines. If this is not the case, the
first intervening line becomes the current line.

If SEQUENTIAL is not specified, the statement deactivates this function
again without exiting L mode.

Note
In batch mode, EDT usually reads from SYSDTA. However, the type of logging that is
performed (see @LOG statement) differs depending on whether @EDIT format 2 or
@EDIT format 3 is specified. If @EDIT format 2 is specified then every logged entry
starts with the current line number whereas this is omitted in @EDIT format 3. The latter
behavior corresponds to the setting when EDT is started in batch mode.

Operation Operands F mode, L mode
@EDIT [PRINT] [SEQUENTIAL]

EDT statements @EDIT (format 3)

U41709-J-Z125-1-76 301

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.42 @EDIT (format 3) – Set input from SYSDTA

In the interactive mode's L mode, format 3 of the @EDIT statement switches the input
stream to input from SYSDTA. Reading is performed with RDATA. The type of prompt
displayed and the method used depend on the operating system settings (by default, a * is
output).

If the statement is entered in F mode, operation first switches to L mode. In batch mode,
this only affects logging (see note below).

PRINT Specifying PRINT causes the line number and content of the current line to
be output on the screen before the prompt is output in interactive mode and
before the next statement or line of data is read in batch mode.

If PRINT is not specified then only the input stream is switched and the
SEQUENTIAL operand is evaluated if it has been specified.

If the function is activated with @EDIT ONLY PRINT then the only way to
deactivate it without exiting L mode is to issue the @EDIT (format 2)
statement.

SEQUENTIAL The operand affects the incrementation of the current line number.
Normally, in L mode the current line number is increased or decreased by
the increment when a data line is entered in or when the statements @+ or
@- are issued. This may result in existing lines, i.e. the lines between the old
and the new current line number, being skipped without this being noticed
by the user.

If SEQUENTIAL is specified then the current line number is only formed as
described above if there are no intervening lines. If this is not the case, the
first intervening line number becomes the current line number.

If SEQUENTIAL is not specified then only the input stream is switched and
the PRINT operand is evaluated if it has been specified.

If the function is activated with @EDIT ONLY SEQUENTIAL then the only
way to deactivate it without exiting L mode is to issue the @EDIT (format 2)
statement.

Operation Operands F mode, L mode
@EDIT ONLY [PRINT] [SEQUENTIAL]

@EDIT (format 3) EDT statements

302 U41709-J-Z125-1-76

If the input is redirected to SYSDTA with @EDIT format 3 then statements and data are inter-
preted in the character set that is currently defined for SYSDTA. In interactive mode, this is
usually the same as the character set declared for the terminal using /MODIFY-TERMINAL-
OPTIONS unless SYSDTA was previously assigned to a file. If the statements and data refer
to one of the EDT work files, it may be necessary to convert the input into the character set
of the work file in question. For details, see section “Character sets” on page 47.

Note
In batch mode, EDT usually reads from SYSDTA. However, the type of logging that is
performed (see @LOG statement) differs depending on whether @EDIT format 2 or
@EDIT format 3 is specified. If @EDIT format 2 is specified then every logged entry
starts with the current line number whereas this is omitted in @EDIT format 3. The latter
behavior corresponds to the setting when EDT is started in batch mode.
In interactive mode, if an EOF is identified at SYSDTA, EDT automatically switches to
terminal input.

EDT statements @EDIT (format 4)

U41709-J-Z125-1-76 303

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.43 @EDIT (format 4) – Control full record display

In F mode, format 4 of the @EDIT statement switches between the full display of records
and the display of a record section in the current work file's data window.

ON The display in F mode is set in such a way that the records are (if possible)
fully displayed in the data window. The line number display is deactivated.
For details of the display in EDIT-LONG mode, see section “The work
window” on page 103.

Activating EDIT-LONG mode implicitly deactivates the line number display
(@PAR INDEX=OFF) and hexadecimal mode (@PAR HEX=OFF).

OFF The display of long records in F mode is set in such a way that only a section
(depending on the terminal and @VDT and @PAR INDEX setting, this may
be 72, 80, 124 or 132 characters) is visible in the data window. For details
on work file display, see section “The work window” on page 103.

The line number display remains active when EDIT-LONG mode is exited.
EDIT-LONG mode is also deactivated by @PAR INDEX=ON and @PAR
HEX=ON.

At the start of an EDT session, @EDIT LONG OFF is set by default for all the work files.

In EDIT-LONG mode, neither the column counter activated with @PAR SCALE=ON nor an
information line requested with @PAR INFORMATION=ON are displayed. The column
counter and information lines are not displayed until EDIT-LONG mode is exited.

The activation and deactivation of EDIT-LONG mode applies at work file level. If the relevant
work file is displayed in multiple data windows on the screen then the same mode is used
in both data windows.

The @PAR EDIT-LONG statement can be used instead of @EDIT format 4 and has the
same functionality. Furthermore, @PAR EDIT-LONG can be used for a specific work file or
globally for all the work files and is also permitted in L mode and therefore in EDT proce-
dures.

Operation Operands F mode
@EDIT

LONG []
ON

OFF

@ELIM EDT statements

304 U41709-J-Z125-1-76

9.44 @ELIM – Delete records in an ISAM file

The @ELIM statement deletes an ISAM file either fully or partially. If the entire content is
deleted then - unlike @UNSAVE – the file name remains present in the catalog. It is also
possible to delete the file in the work file and on disk simultaneously.

file Name of the ISAM file in which ranges are to be deleted. The name must
correspond to the SDF data type <filename 1..54> or must consist of the
special specification '/'.

If the file operand is not specified then the explicit local @FILE entry, if
present, and otherwise the global @FILE entry is used as the file name (see
also @FILE statement). If there is neither an explicit local nor a global
@FILE entry then the @ELIM statement is rejected with the error message
EDT5484.

If the specified file does not exist, is of the wrong type or cannot be
accessed, then the @ELIM statement is rejected with a corresponding
message.

If the file link name EDTISAM is assigned to a file then the user simply needs
to specify '/' in order to delete records in the file (see chapter “File
processing” on page 131).

ver Version number of the file that is to be deleted. If the specified version
number does not match the file's version number, the statement is rejected
with message EDT4985.

lines One or more line ranges that are to be deleted from the ISAM file. If
symbolic line numbers are specified then their values are determined from
the current work file and therefore usually have nothing to do with the record
structure of the file specified in file.

If the range symbol (default value &) is specified for lines and the default
value is still set to 0.0001-9999.9999 (see @RANGE statement) then the
entire content of the file is deleted. However, the catalog entry is retained.

BOTH The designated line range is to be deleted both in the ISAM file and in the
work file.

Operation Operands F mode, L mode
@ELIM [file] [(ver)] lines[,...] [BOTH]

EDT statements @ELIM

U41709-J-Z125-1-76 305

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The file is only opened temporarily during the delete operation. @ELIM can only be used to
delete records in files that do not have the default attributes assumed by EDT (e.g. no
variable record length) if a corresponding /SET-FILE-LINK command has been issued
with the file link name EDTISAM (see chapter “File processing” on page 131).

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

The ISAM file XMPL.ELIM is read into work file 0. The ISAM keys are to be taken over as
the line numbers.

The line range 5-7 is deleted both in work file 0 and in the ISAM file XMPL.ELIM.
If the ISAM file is read using @GET without NORESEQ then the ranges to be deleted in the
ISAM file and the work file do not have to correspond.

Work file 0 is deleted and then the ISAM file XMPL.ELIM is read in again.

 23.00 ··
@get 'xmpl.elim' noreseq ······································0001.00:00001(00)

 1.00 ONE<··
 2.00 TWO<··
 3.00 THREE<··
 4.00 FOUR<···
 5.00 FIVE<···
 6.00 SIX<··
 7.00 SEVEN<··
 8.00 EIGHT<··

@elim 'xmpl.elim' 5-7 both ····································0001.00:00001(00)

 1.00 ONE<··
 2.00 TWO<··
 3.00 THREE<··
 4.00 FOUR<···
 8.00 EIGHT<··
 9.00 ··

@delete ; @get 'xmpl.elim' noreseq·····························0001.00:00001(00)

@ELIM EDT statements

306 U41709-J-Z125-1-76

The line range 5 to 7 is also deleted in the ISAM file.

 1.00 ONE<··
 2.00 TWO<···
 3.00 THREE<···
 4.00 FOUR<··
 8.00 EIGHT<···
 9.00 ···

EDT statements @END

U41709-J-Z125-1-76 307

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.45 @END – Exit current work file or terminate the EDT session

In L mode, @END causes the current work file to be exited. Processing returns to the work
file in which the @PROC statement activating the current work file was issued. In F mode,
@END terminates the EDT session or terminates the screen dialog.

comment The comment operand may contain any text as a comment. It may only be
input in L mode.

In this statement, it is obligatory for at least one blank to be entered between the statement
name and any specified operands.

If the @END statement is entered in work file 0 in L mode then the message EDT4939 is
output. In batch mode and in EDT procedures, the next statement is then read. In interactive
mode, behavior after the warning message EDT4939 is the same as for the @HALT
statement without operands except that even if job switch 4 is set, the queries EDT0900 and
EDT0904 are still output.

In F mode, the @END statement is always processed in the same way as @HALT without
operands independently of the current work file, i.e. the EDT session or screen dialog is
terminated and, if EDT was called as a subroutine, control returns to the calling program
(see @HALT statement).

If the current work file (not equal to work file 0) in L mode was not set by means of a
@PROC statement but with @SETF or implicitly after a switch from F mode to L mode then
processing switches back to work file 0.

@END cannot be used to make a work file in which a @DO procedure is running (active
work file) the current work file. Any such attempt is rejected with the message EDT4959.

Operation Operands F mode, L mode
@END [comment]

@END EDT statements

308 U41709-J-Z125-1-76

Example 1

 1. @PROC 1 --- (1)
 1. @ @SET #S1 = DATE
 2. @ @SET #S2 = TIME -- (2)
 3. @ @PRINT #S1.-#S2 N
 4. @END -- (3)

(1) Processing switches to work file 1.

(2) An EDT procedure is entered in work file 1.

(3) Processing returns to work file 0. The procedure located in work file 1 can be called with
@DO 1.

Example 2

 1. @PROC 7 --- (1)
 1. @PROC --- (2)
<07>
 1. @ @SET #S7 = 'THIS IS PROC 7'
 2. @ @PRINT #S7
 3. @PROC 8 --- (3)
 1. @ @SET #S8 = 'THIS IS PROC 8'
 2. @PROC USED
<07> 1.0000 TO 2.0000 -- (4)
<08> 1.0000 TO 1.0000
 2. @END -- (5)
 3. @PROC --- (6)
<07>
 3. @END -- (7)
 1. @PROC --- (8)
<00>

(1) Processing switches to work file 7.

(2) Queries the current work file.

(3) Processing switches to work file 8.

(4) Work files 7 and 8 are in use.

(5) EDT returns to work file 7 (from where processing branched to work file 8 due to
@PROC).

(6) The query of the current work file confirms the return to work file 7.

(7) Processing returns to work file 0 again.

(8) Repeated query of the active work file confirms the return to work file 0.

EDT statements @ERAJV

U41709-J-Z125-1-76 309

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.46 @ERAJV – Delete job variables

The @ERAJV statement deletes job variable entries from the catalog.

string String indicating the name of the job variable that is to be deleted. All the
specifications that are also permitted in the BS2000 macro ERAJV are
allowed. It is therefore also possible to make a partially qualified entry or use
wildcards. EDT does not perform any full syntax check.

If the specification does not designate any existing job variable then
message EDT4982 is output.

ALL If ALL is specified then all the job variables designated by string are
removed from the catalog without any confirmation query.

If ALL is not specified and more than one job variable indicated by string is
present then the statement is not executed in batch mode. In interactive
mode, EDT issues the query

 % EDT0298 ERASE ALL JOBVARIABLES (&00)? REPLY (Y=YES; N=NO)?

If the user responds N then the message EDT0299 is output and the
statement is aborted.

If the BS2000 macro ERAJV is rejected by the system (for example, if the job variable is
password-protected) then EDT reports the error EDT4208.

If the Job Variable Support subsystem is not installed, the statement is rejected with the
error message EDT5254. For details concerning job variables, see the User Guide JV [9].

Operation Operands F mode, L mode
@ERAJV string [ALL]

@EXEC EDT statements

310 U41709-J-Z125-1-76

9.47 @EXEC – Start program

The @EXEC statement terminates the EDT session and loads and starts the specified
program.

string String specifying the name of the program that is to be loaded and started.
The system expects the name of a BS2000 file which contains the program
that is to be loaded. It is not possible to specify a library element.

The @EXEC statement is one of the EDT statements with security implications (see also
section “Access protection” on page 99). The statement is rejected in uninterruptible
system procedures in interactive mode and on input from a file (read with RDATA from
SYSDTA not equal to SYSCMD, execution of a start procedure).

The @EXEC statement always causes EDT to be terminated irrespective of whether the
specified program file exists or contains a valid program.

As far as the handling of unsaved files and the related security queries is concerned,
@EXEC acts in the same way as the @HALT statement (see section “Terminating an EDT
session” on page 92). Since EDT is always terminated, save queries may, unlike in the case
of @HALT, also be issued if the statement was entered in the screen dialog (started with
@DIALOG).

If EDT was loaded as a subroutine and the EDT screen dialog has been activated with
@DIALOG, the @EXEC statement does not result in the continuation of the subroutine.
Instead, the user program is also unloaded.

It is therefore possible to prohibit users from issuing the @EXEC statement when EDT is
called as a subroutine. In this case, calls are rejected with message EDT4976.

Note
If @DIALOG was entered in a system procedure, then the remaining procedure
commands after @EXEC may be interpreted as input for the newly started program and
may therefore result in unexpected effects.

Operation Operands F mode, L mode
@EXEC string

EDT statements @EXEC

U41709-J-Z125-1-76 311

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

The example assumes that the records present in the work file have not yet been saved.

EDT is to be terminated and LMS is to be loaded and started.

Since the work file has not yet been saved, EDT queries (in the same way as in @HALT),
whether it should really terminate. Only if the user responds Y is EDT terminated and LMS
loaded and started.

 1.00 EDT is to be terminated<··
 2.00 and LMS is to be loaded<··
 3.00 This is done with the @EXEC statement<··································
 4.00 ···

@exec '$lms'···0001.00:00001(00)

 % EDT0900 EDITED FILE(S) NOT SAVED!
 LOCAL FILE (0) :
 % EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?y
 % BLS0500 PROGRAM 'LMS', VERSION 'V3.0A' OF 'yy-mm-dd' LOADED.
 LMS0310 LMS VERSION V03.0A00 LOADED
 CTL=(CMD) PRT=(OUT)
 $

@FILE EDT statements

312 U41709-J-Z125-1-76

9.48 @FILE – Preset file name

The @FILE statement can be used to preset a file name for @GET, @READ, @WRITE,
@SAVE, @OPEN (format 2) and @ELIM. It is also possible to predefine a file name that
only applies to the current work file (explicit local @FILE entry), or a file name which applies
to all the work files (global @FILE entry).

string String specifying a file name. The name must correspond to the SDF data
type <filename 1..54> or must consist of the special specification '/'.

ver Version number of the file. If LOCAL is specified then the specification of the
version number has no effect. The version number can be overwritten by
means of an explicit specification in the file access statements.

LOCAL The specified file name is recorded as the work file-specific file name of the
current work file (explicit local @FILE entry). If string is not specified then
the local @FILE entry is deleted.

If LOCAL is not specified then the specified file name is recorded as the
global @FILE entry. If string is also not specified then the global @FILE
entry is deleted.

If there is no explicit local @FILE entry when the statements @READ 'file' or @GET 'file'
are executed then the specified file name becomes the local file name (implicit local @FILE
entry).

In the case of the @WRITE and @SAVE statements, the file name is searched for first in
the statement, then in the explicit local @FILE entry, then in the global @FILE entry and
finally in the implicit local @FILE entry.

In the case of the @GET, @READ and @ELIM statements, the file name is searched for
first in the statement, then in the explicit local @FILE entry and finally in the global @FILE
entry. These statements ignore an implicit local @FILE entry.

In the @OPEN statement (format 2), the file name is first searched for in the statement and
then in the global @FILE entry. The @OPEN statement ignores local @FILE entries.

Note
The local @FILE entry is also deleted if the work file is completely deleted with
@DELETE (format 2) or @DROP or if a file opened for real processing is closed with
@CLOSE.

Operation Operands F mode, L mode
@FILE [string [(ver)]] [LOCAL]

EDT statements @FILE

U41709-J-Z125-1-76 313

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

The file name XMPL.FILE with the version number * is preset for the following @GET and
@SAVE statements. The file XMPL.FILE is then read in with @GET.

The line range 1 to 2 is deleted in the work file and the content of the work file is then written
to the file XMPL.FILE with @SAVE.

 23.00 ··
file 'xmpl.file' (*) ; get ····································0000.00:00001(00)

 1.00 ONE<··
 2.00 TWO<··
 3.00 THREE<··
 4.00 FOUR<···
 5.00 FIVE<···
 6.00 ··

% EDT0902 FILE 'XMPL.FILE' VERSION 002
delete 1-2 ; save ···0001.00:00001(00)

 3.00 THREE<··
 4.00 FOUR<···
 5.00 FIVE<···
 6.00 ···

% EDT0903 FILE 'XMPL.FILE' IS IN THE CATALOG, FCBTYPE = ISAM
y EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO) ················0003.00:00001(00)

 3.00 THREE<··
 4.00 FOUR<···
 5.00 FIVE<···
 6.00 ··

% EDT0902 FILE 'XMPL.FILE' VERSION 003
···0003.00:00001(00)

@FSTAT EDT statements

314 U41709-J-Z125-1-76

9.49 @FSTAT – Output BS2000 catalog information

The @FSTAT statement can be used to output a list of files from the BS2000 catalog. It is
possible to define the destination for the output. Optionally, it is also possible to output
additional information about the files. The list is alphabetically sorted on the file names.

file Designates the files that are to be listed. The file operand must corre-
spond to the SDF data type <partial-filename 1..54 with-
wild(80)>.

Here, the symbolic name '/' for a file for which the LINK name EDTSAM or
EDTISAM has been assigned by means of the SET-FILE-LINK command is
not permitted.

If no file with the specified name is found, the message EDT5281 is output.

svarex The list of files for output can also be specified by means of a string variable
(#S00..#S20).

line Line number as of which information is to be written to the current work file.
Any existing lines are overwritten.

If a line with a number greater than the previous highest line number is
created then the current line number is modified.

If line is not specified then in the interactive mode's L mode, the result is
output to SYSOUT, in batch mode it is output to SYSLST and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see
section “Implicit increment assignment” on page 35).
This specification does not change the work file's current increment.

SHORT One file is output per line. Only file names, together with the associated
catalog ID and user ID, are output.

Operation Operands F mode, L mode
@FSTAT

[] [[TO] line [(inc)]] []
file

svarex

SHORT

LONG [ISO4]

EDT statements @FSTAT

U41709-J-Z125-1-76 315

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

LONG Further catalog information is output in addition to the file names.

The list is alphabetically sorted on the file names.

If the output is sent to SYSOUT or SYSLST then it is accompanied by a
header. If the output is sent to work file 9 (in F mode, without the line
operand) then the header is output in the information line (can be displayed
using @PAR INFORMATION=ON). If the output is written to a work file due
to the line operand then no header is output.

ISO4 The creation date is output in the form YYYY-MM-DD. The following fields
(see table) are moved accordingly.

If neither file nor svarex is specified then a list of all the files under the user's own ID is
output.

If neither SHORT nor LONG is specified then only the file names are output (one per line). If
the file specification in file or svarex contains a catalog ID, the file names are output with
the catalog ID and user ID.

Otherwise, the file names are output in the same form as they are specified in the
statement.
Partially qualified file names with a user ID form an exception here. In this case, @FSTAT
outputs a list of file names without catalog IDs or user IDs for reasons of compatibility.

Column Header Meaning
1-7 SIZE Number of PAM pages
8 P File on private or public data medium (*/Ë)
9-62 FILENAME File name with CATID and USERID
63-69 LAST PP Last used PAM page
71-78 CR-DATE Creation date (format YY-MM-DD)
80 S SHARE attribute (Y/N/S)
81 A ACCESS attribute (W/R)
83-86 FCB FCB type (SAM/ISAM/PAM/BTAM/NONE)
88 R READ-PASS attribute (Y/N)
89 W WRITE-PASS attribute (Y/N)
91-98 CODESET Character set

@FSTAT EDT statements

316 U41709-J-Z125-1-76

Output to SYSOUT or SYSLST is sent in the character set that has been defined for these
system files. If the output is written to a work file then it is sent in the work file's character
set. If the work file is empty and has the character set *NONE then the character set EDF041
is used. Characters that cannot be displayed in the target character set are always replaced
by blanks.

Caution

In the case of large files, the fields for the reserved and used size for output in LONG
mode may not be sufficient. In this case, nothing is output here. To ensure complete
output in these cases, only the @SHOW command (format 1) should be used.

EDT statements @GET

U41709-J-Z125-1-76 317

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.50 @GET – Read ISAM file

The @GET statement fully or partially reads an ISAM file from disk into the current work file.

file Name of the ISAM file that is to be read in. The name must correspond to
the SDF data type <filename 1..54> or must consist of the special speci-
fication '/'.

If there is as yet no local @FILE entry for the work file then, if the statement
is successful, the specified file name is entered as an implicit local @FILE
entry. If the file operand is not specified then, if present, the explicit local
@FILE entry and otherwise the global @FILE entry is used as the file name
(see also @FILE statement). If neither an explicit local nor a global @FILE
entry is defined (e.g. there is only an implicit local file entry) then the @GET
statement is rejected with the error message EDT5484.

If the specified file does not exist or cannot be accessed as required then
the statement is rejected with a corresponding error message.

If the file link name EDTISAM is assigned to a file then the user simply needs
to specify '/' in order to read this file (see chapter “File processing” on
page 131).

ver Version number of the file that is to be read. If the specified version number
does not match the file's version number, the message EDT0902 is output
and the file is read in nevertheless.

lines One or more line ranges that are to be read in from the ISAM file. If symbolic
line numbers are specified then their values are determined from the current
work file and therefore usually have nothing to do with the record structure
of the file specified in file.

If lines is not specified, the entire file is read in.

The line numbers specified with lines always refer to the record keys even
if these are not taken over as line numbers. Consequently, if lines is
specified, a check is always performed for valid record keys (see NORESEQ).

Operation Operands F mode, L mode
@GET [file] [(ver)] [lines[,...]] [:cols[,...]:] [NORESEQ]

@GET EDT statements

318 U41709-J-Z125-1-76

cols One or more column ranges which define the section to be read in from
each record. The ranges may repeat and overlap. The column specifica-
tions refer to the characters in the file that is to be read in.
In the case of files which are present in a Unicode character set, they do not
usually correspond to the byte positions within a record. If column values
which exceed the record length are specified then blanks are read into the
work file in their place.
Columns are counted starting after the record key.

If no column range is specified then the lines are read in full.

NORESEQ The line numbers are formed from the ISAM keys of the ISAM files that are
read. When this is done, lines which have existing line numbers may be
overwritten.

In this case, EDT checks whether a valid line number is present in the
record key. To be valid, the key may consist only of the digits 0 to 9.
Otherwise, the @GET statement is aborted with the error message
EDT4984. The records read up to this point are taken over into the work file.
If a record has the key 0 then it is treated in the same way as a record with
1 (line number 0.0001) and the warning EDT2900 is issued.

If NORESEQ is not specified then the line numbers are assigned as a function
of the current line number and current increment (see section “Line number
assignment” on page 36).

The file is only opened during the read operation. Records which consist solely of the key
are read in as empty lines. If the file to be read in is empty, warning EDT2903 is output.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the file that is to be read in. If this character set is *NONE then the work file
is assigned the character set EDF03IRV.

If the work file already has a character set then the records that are to be read in are
converted from the file's character set into the work file's character set. If the file that is to
be read contains characters which cannot be displayed in the work file's character set then
these characters are replaced by a substitute character provided that such a character has
been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise file read is aborted
and error message EDT5453 is output. This also applies if there are invalid characters
outside of the column range that is to be read. In contrast, invalid characters outside of the
line range that is to be read in are ignored.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the read operation is rejected with the message
EDT5454.

EDT statements @GET

U41709-J-Z125-1-76 319

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
If a attempt is made to use @GET to read a SAM file then EDT issues the error
message EDT1902 and sets the switch for EDT errors. It nevertheless reads the
specified file by performing an internal @READ for this file. In this case, the lines or
NORESEQ operands are ignored.

@GETJV EDT statements

320 U41709-J-Z125-1-76

9.51 @GETJV – Read value of job variable

The @GETJV statement outputs the value of a job variable on the screen, writes it to a work
file or assigns it to a string variable.

string String which specifies the fully qualified name of a job variable. Although the
name must comply with the syntactic rules for job variable names, EDT
does not check these rules in full. If string is not specified then the job
variable is addressed using the file link name *EDTLINK. If this is not
defined then the message EDT5289 is output.

line Number of the line to which the value of the job variable is to be written.

svarex String variable in which the value of the job variable is to be written.

name Name of the character set in which the value of the job variable is to be inter-
preted. The character set must be valid; otherwise, the statement is rejected
with message EDT4980. If the operand is not specified, the value of the job
variable is interpreted in the character set EDF041 (see section “Character
sets” on page 47).

If neither line nor svarex is specified, the value of the job variable is output to SYSOUT in
interactive mode and to SYSLST in batch mode.

If a line with a number greater than the previous highest line number is created then the
current line number is modified.

If the job variable does not exist then the message EDT4982 is output. If it cannot be
accessed then the message EDT4208 is output.

If the job variable is empty then an empty string is used as its value.

If the job variable contains an invalid byte sequence (possible in Unicode character sets)
then it is not read and the message EDT5454 is output.

Operation Operands F mode, L mode
@GETJV

[string] [=] [,CODE=name]
 line

 svarex

EDT statements @GETJV

U41709-J-Z125-1-76 321

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If it is assigned to a string variable then this is also assigned the character set specified
implicitly or explicitly via name. If it is inserted in a work file then the value is converted into
the work file's character set. If the work file is empty and has the character set *NONE then
it is assigned the character set specified explicitly or implicitly via name. If the string that is
to be assigned contains characters which cannot be converted into the work file's character
set then these characters are replaced by a substitute character provided that such a
character has been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise, the
string is not assigned and the error message EDT5453 is output.

If the Job Variable Support subsystem is not installed, the statement is rejected with the
error message EDT5254. For details concerning job variables, see the User Guide JV [9].

@GETLIST EDT statements

322 U41709-J-Z125-1-76

9.52 @GETLIST – Read elements of a list variable

The @GETLIST statement writes elements of a list variable into the current work file.

string String which specifies the name of an S list variable.
Although the name must comply with the syntactic rules for S variable
names, EDT does not check these rules in full. If the name is longer than
246 characters then the statement is aborted with the message EDT3174.

lines One or more line ranges which specify the list elements which are to be
taken over.

Only the list variable elements that are identified by this line range are read.
Element names and line numbers are assigned to one another in such a
way that 0.0001 stands for the 1st element in the list, 0.0002 for the 2nd
element etc.

If no element corresponds to a specified line number then the specification
is ignored.

If lines is not specified, then all the elements are read.

cols One or more column ranges in the S variables that are to be read. The
ranges may repeat and overlap. Column n is assigned to the nth character.
All the specified characters are concatenated in the sequence in which the
columns are specified (possibly multiple times) and the result is inserted in
the work file. If the result is longer than 32768 characters then the statement
is aborted with the message EDT5474.

If a list element contains fewer characters than the specified column then a
blank is inserted for it.

If no column range is specified then each element is read in full.

name Name of the character set in which the value of the S variable is to be inter-
preted. The character set name must be permitted; otherwise, the
statement is rejected with message EDT4980. If the operand is not
specified, the value of the S variable is interpreted in the character set
EDF041 (see section “Character sets” on page 47).

If the specified S variable is not a list then the message EDT4910 is output. If the value of a
list element is not of type STRING then the statement is aborted with the message EDT5343.
If the list does not contain any elements then the message EDT5340 is output.

Operation Operands F mode, L mode
@GETLIST string [lines[,...]] [:cols[,...]:] [,CODE=name]

EDT statements @GETLIST

U41709-J-Z125-1-76 323

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Line numbers are assigned using the procedure “Insertion at the current line number” (see
section “Line number assignment” on page 36). If the maximum line number is reached, the
statement is aborted and the message EDT5252 is output.

If a list element contains an invalid byte sequence (possible in Unicode character sets) then
the statement is aborted and the message EDT5454 is output.

On insertion, the values are converted into the work file's character set. If the work file is
empty and has the character set *NONE then it is assigned the character set specified
explicitly or implicitly via name. If the string that is to be assigned contains characters which
cannot be converted into the work file's character set then these characters are replaced
by a substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the string is not assigned and the error
message EDT5453 is output.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

For details on S variables, see the SDF-P User Guide [7].

@GETVAR EDT statements

324 U41709-J-Z125-1-76

9.53 @GETVAR – Read S variable

The @GETVAR statement outputs the value of an S variable, writes it to a work file or
assigns it to a variable.

string String which specifies a valid S variable name. Although the name must
comply with the syntactic rules for S variable names, EDT does not check
these rules in full.

line Number of the line to which the value of the S variable is to be written.

If the value of the S variable is not of type STRING then the statement is
aborted with the message EDT5342.

svarex String variable in which the value of the S variable is to be written.

If the value of the S variable is not of type STRING then the statement is
aborted with the message EDT5342.

ivar Integer variable (#I0..#I20) into which the content of the S variable is to
be taken over.

If the value of the S variable is not of type INTEGER then the statement is
aborted with the message EDT5342.

SYSEDT If they exist and their values are of the type STRING then the contents of the
S variables SYSEDT-S00..SYSEDT-S20 are assigned to the string
variables #S00..#S20. In the case of non-existent S variables, S variables
with no value or S variables of a different type, no error is reported. Instead
the associated string variable is not modified.

name Name of the character set in which the value of the S variable is to be inter-
preted. If the value of the S variable is not of type STRING then the specifi-
cation is ignored. The character set name must be permitted; otherwise, the
statement is rejected with message EDT4980. If the operand is not
specified, the value of the S variable is interpreted in the character set
EDF041 (see section “Character sets” on page 47).

Operation Operands F mode, L mode
@GETVAR

 [,CODE=name]
string [=]

SYSEDT

line
svarex
ivar

EDT statements @GETVAR

U41709-J-Z125-1-76 325

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If neither line nor svarex nor ivar is specified then the value of the S variable is output
to SYSOUT in interactive mode and in batch mode it is output to SYSLST.

If the S variable is not present then the message EDT5274 is output. If it has no value then
the message EDT5340 is output (except in the case of SYSEDT).

If a line with a number greater than the previous highest line number is created then the
current line number is modified.

If the variable contains an invalid byte sequence (possible in Unicode character sets) then
it is not read and the message EDT5454 is output.

If it is assigned to a string variable then this is also assigned the character set specified
implicitly or explicitly via name.
If it is inserted in a work file then the value is converted into the work file's character set. If
the work file is empty and has the character set *NONE then it is assigned the character set
specified explicitly or implicitly via name.
If the string that is to be assigned contains characters which cannot be converted into the
work file's character set then these characters are replaced by a substitute character
provided that such a character has been specified (see @PAR SUBSTITUTION-
CHARACTER); otherwise, the string is not assigned and the error message EDT5453 is
output.

For details on S variables, see the SDF User Guide [6].

@GOTO EDT statements

326 U41709-J-Z125-1-76

9.54 @GOTO – Branch statement in procedures

The @GOTO statement is used in a @DO procedure to execute an unconditional branch
to the specified line.

line The line operand designates the line number to be branched to.

The @GOTO statement is only permitted in @DO procedures. If @GOTO is specified
outside of a @DO procedure then it is rejected with the message EDT4942. In an @INPUT
procedure, the message is output and processing continues with the statement which
follows the illegal @GOTO statement.

If line is a line number variable which has the value 0.0000 at the time the branch is
executed (this corresponds to the preset values of line number variables when EDT is
started), then the @GOTO statement is rejected with the message EDT4932 and the
procedure continues with the statement which follows the invalid @GOTO statement.

The line which is branched to with @GOTO must exist in the associated procedure. If an
attempt is made to branch to a line which does not exist then error message EDT4974 is
issued and the procedure continues with the statement which follows the invalid @GOTO
statement.

If lines are to be branched to by means of @GOTO in EDT procedures then it is advisable
to always define the line numbers of these lines explicitly by means of the @SET statement
(format 6) in order to ensure that the numbers of the lines that are to be branched to do not
change implicitly if statements are inserted or deleted.

Note
It is not advisable to use symbolic line numbers since these always refer to the current
work file and not therefore to the procedure work file.
If the first statement in a procedure is the @PARAMS statement then this cannot be
branched to with @GOTO.

Operation Operands @PROC
@GOTO line

EDT statements @GOTO

U41709-J-Z125-1-76 327

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

 1. @SET #I3 = 1 -- (1)
 1. @PROC 3
 1. @1 -- (2)
 1. @ @IF #I3 > 5 : @RETURN --------------------------------------- (3)
 2. @ @STATUS = #I3
 3. @ @SET #I3 = #I3+1
 4. @ @GOTO 1
 5. @END
 1. @DO 3 --- (4)
#I03= 0000000001
#I03= 0000000002
#I03= 0000000003
#I03= 0000000004
#I03= 0000000005
 1.

(1) The value 1 is assigned to the integer variable #I3.

(2) Specification of the line number which is branched to by means of @GOTO.

(3) If the procedure is executed in work file 3 then the value assigned to the integer variable
#I3 should be incremented by 1 and output until it is greater than 5. This is implemented
by means of a loop. At the end of the loop, @GOTO branches back to the start of the
loop.

(4) The procedure in work file 3 is executed.

@HALT EDT statements

328 U41709-J-Z125-1-76

9.55 @HALT – Terminate EDT

The @HALT statement terminates the EDT session, the screen dialog after @DIALOG or
EDT if it has been called as a subroutine with or without transferring a text to the calling
program (see section “Terminating an EDT session” on page 92 for the general conse-
quences of terminating EDT).

ABNORMAL If EDT was called as a main program, it is terminated abnormally. In proce-
dures, processing continues at the next JOB-STEP or in an ERROR-BLOCK.

If EDT was called as a subroutine then the entire string as of the first non-
blank character after @HALT is passed to the calling program as a
message text (see also message operand). If this string starts with
'ABNORMAL' then a special return code (0008002C instead of 00080000) is
set.

message String which is passed to the calling program when EDT is called as a
subroutine. This operand may only be specified if EDT is called as a
subroutine.

If this string starts with 'ABNORMAL' then a special return code (0008002C
instead of 00080000) is set.

In this statement, it is obligatory for at least one blank to be entered between the statement
name and any specified operands.

The @HALT statement causes the termination of the EDT session in interactive or batch
mode, if EDT was started as a main program with the /START-EDT or /START-EDTU
command or equivalent /START-PROGRAM command (see section “Starting EDT” on
page 87) and is not in screen dialog mode after @DIALOG. The EDT session is also termi-
nated if @HALT is entered via the subroutine interface's CMD function (see the Subroutine
Interfaces User Guide [1]).

In interactive mode, if the screen dialog is started with the @DIALOG statement from within
a system procedure or via the subroutine interface then @HALT simply terminates the
screen dialog and the system procedure or calling program is continued. The content of the
work files is retained and there is consequently no save confirmation query (see below). In
this case, specifying ABNORMAL has no special effect apart from informing the calling
program.

Operation Operands F mode, L mode
@HALT

[]
ABNORMAL

message

EDT statements @HALT

U41709-J-Z125-1-76 329

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If there are still any unsaved work files then, in interactive mode, the numbers of the work
files with unsaved data are output after the message EDT0900 before EDT is terminated.

In addition, if they exist, the local @FILE entry (see the statements @FILE, @READ,
@GET and @OPEN, format 2) or the name of an open file or the library and element name
of an open library element (see the statements @OPEN and @XOPEN) is output for each
of these work files.

In interactive mode, the user then sees the query:

% EDT0904 TERMINATE EDT? REPLY (Y=YES, N=NO)?

If the user responds N then, in F mode, the work window is displayed. In L mode, the prompt
is displayed again. The user may close or write back unsaved work files. If the user replies
Y then unsaved work files are lost. EDT is terminated.

If job switch 4 is set before EDT is called, the save query is not issued. The save query is
also not output if F mode has been called with @DIALOG (see also section “Terminating an
EDT session” on page 92).

Example

 1. @HALT
 % EDT0900 EDITED FILE(S) NOT SAVED!
 LOCAL FILE (0) :
 LOCAL FILE (1) :
 LOCAL FILE (4) : L= EDT164
 E= HALT(001),X
 % EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

@HALT terminates EDT in L mode. Since unsaved files are still present, the message
EDT0900 is output together with a list of the work files.

@HEX EDT statements

330 U41709-J-Z125-1-76

9.56 @HEX – Set hexadecimal mode

The @HEX statement activates or deactivates hexadecimal mode for the current work file.
In hexadecimal mode, all the records are displayed on screen in both printable and
hexadecimal form.

ON Activates hexadecimal mode (default value).
This implicitly deactivates EDIT-LONG mode.

OFF Deactivates hexadecimal mode.

The layout in hexadecimal mode is described in detail in section “F mode” on page 101.

When an EDT session starts, hexadecimal mode is deactivated for all the work files.

The activation and deactivation of hexadecimal mode applies at work file level. If the
relevant work file is displayed in multiple data windows on the screen then the same mode
is used in both data windows.

If, in the case of split screen display, the work window is so small that it is not possible to
display even one data line together with its hex lines then the message EDT2404 is output.
Hexadecimal mode is activated nevertheless. The user can then enlarge the data window
so that the hex lines can also be displayed.

The @PAR HEX statement can be used instead of @HEX and has the same functionality.
Furthermore, @PAR HEX can be used for a specific work file or globally for all the work files
and is also permitted in L mode and therefore in EDT procedures.

Operation Operands F mode
@HEX

[]
 ON

 OFF

EDT statements @IF (format 1)

U41709-J-Z125-1-76 331

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.57 @IF (format 1) – Query error switches

This format of the @IF statement can be used in EDT procedures and in L mode to check
whether EDT or DMS errors have already occurred. Depending on the result, a specified
string either is or is not processed as input.

EDT errors may occur, for example, if an incorrect EDT statement is entered. The DMS
error switch can be set for statements which access files (e.g. @WRITE, format 1) or may
indicate system access errors.

ERRORS The condition is fulfilled if the EDT error switch is set.

NO ERRORS The condition is fulfilled if the EDT error switch is not set.

DMS ERRORS
The condition is fulfilled if the DMS error switch is set.

NO DMS ERRORS
The condition is fulfilled if the DMS error switch is not set.

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

Operation Operands L mode
@IF

:[text]

ERRORS
NO [ERRORS]

DMS [ERRORS]
NO DMS [ERRORS]

@IF (format 1) EDT statements

332 U41709-J-Z125-1-76

Note
If a specific statement is to be checked then the error switch must be reset before the
relevant statement (see @RESET). Otherwise the @IF statement may return an
unwanted result since earlier statements may have already set the EDT or DMS switch.

The @IF ERRORS statement should not be used to query hits after @ON. @IF format
3 should be used for this.

Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

EDT statements @IF (format 2)

U41709-J-Z125-1-76 333

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.58 @IF (format 2) – Compare strings, line numbers and
numbers

This format of the @IF statement can be used in EDT procedures to compare strings, line
numbers or integer numbers with one another. The operands may be specified either
explicitly (as literals) or via a reference (line number or EDT variable).

If the condition for the comparison is fulfilled then the specified string is processed as input.
If the condition is not fulfilled, the statement has no effect.

S The keyword S is only obligatory if string1 and string2 contain line
numbers or line number variables without column specifications, in which
case it specifies that the content of the lines identified by the line numbers or
knowledge variables is to be compared and not the line numbers
themselves.

For example, the statement @IF #L1=#L2 compares the line numbers in
#L1 and #L2. However, if the contents of the lines indicated by #L1 and #L2
are to be compared then @IF S #L1=#L2 must be entered.

string1, string2 The strings to be compared.

line1, line2 The line numbers to be compared. The contents of the lines are not
compared.

I The keyword I only has to be entered if a number (a literal) has been
explicitly entered for int1 as otherwise EDT cannot tell whether the input is
a line number or an integer.

int1, int2 The integers to be compared.

A (positive or negative) integer or an integer variable can be entered for
each of these (#I0..#I20).

Operation Operands L mode
@IF

 :[text]
[S] string1 rel string2
line1 rel line2
[I] int1 rel int2

@IF (format 2) EDT statements

334 U41709-J-Z125-1-76

rel Defines the relational operator:

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

The previous specification of GOTO or RETURN without a colon in procedures continues to
be supported for reasons of compatibility.

Comparisons of two strings depend, on the one hand, on the character set in which the
strings are encoded and, on the other, on the length of the strings (strings of zero length are
permitted).

In all cases, it is possible to assign the operands string1 and string2 a character set
which corresponds to their source. If the two character sets determined in this way are
identical then a binary comparison is performed in this shared character set.
If the two character sets are different but are both EBCDIC 7/8-byte character sets then a
binary comparison is performed as in the past.
Otherwise, the two character sets are converted internally into UTF16 and the comparison
is performed in UTF16.

Following any necessary conversion, the corresponding characters in the two strings are
compared. Processing thus either reaches a non-identical character pair or the end of one
or other of the two character strings. If the characters differ at any point then the two strings

Symbol Meaning
> or GT greater than
< or LT less than
>= or GE greater than or

equal to
<= or LE less than or equal

to
= or EQ equal to
<> or NE not equal to

EDT statements @IF (format 2)

U41709-J-Z125-1-76 335

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

are considered to be non-identical. EDT interprets the two non-identical characters as
binary numbers on the basis of their character sets. The string with the character with the
larger binary number is considered to be the greater of the two. If no non-identical pair of
characters is identified then the longer of the two strings is considered to be the greater. If
the two strings are of the same length and no non-identical character pair is detected then
the strings are identical. If the two strings are of different lengths they can therefore never
be identical.

Note
When line numbers are compared, both%+3L and %+3 designate valid line numbers.
This can lead to difficulties of interpretation if followed by the relational operator LE. It
is therefore usually advisable to use the mathematical symbols for the relational
operators.
The use of column specifications with the string2 operand can also result in difficulties
of interpretation when the text operand is introduced. Special care must be taken to
ensure that the notation can be interpreted unambiguously in such cases. In particular,
it is obligatory to conclude the column specification with a colon (otherwise optional).

For reasons of compatibility, the sort weighting defined by XHCS when comparing
characters is ignored. This also applies to Unicode character sets. A sort operation, for
example using the SORT program, may therefore return a sequence different from the
result supplied by an @IF query in EDT.

Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

Example 1

 4. @PRINT
 1.0000 PLEASE DO NOT LAUGH
 2.0000 AT THIS EXAMPLE
 3.0000 PLEASE DO NOT LAUGH
 4. @SET #S0 = 'FIRST LINE = LAST LINE'
 4. @SET #S1 = 'FIRST LINE NOT EQUAL TO LAST LINE' --------------- (1)
 4. @SET #I9 = 2
 4. @PROC 3
 1. @ @IF S %+#I9 = $-2L : @GOTO 4 ------------------------------- (2)
 2. @ @PRINT #S1 N
 3. @ @RETURN
 4. @ @PRINT #S0 N
 5. @END
 4. @DO 3 -- (3)
FIRST LINE = LAST LINE
 4. @ON 1 DELETE 'NOT'
 4. @DO 3 -- (4)
FIRST LINE NOT EQUAL TO LAST LINE
 4.

@IF (format 2) EDT statements

336 U41709-J-Z125-1-76

(1) The string variables #S0 and #S1 as well as the integer variable #I9 are filled with
content.

(2) When work file 3 is executed, line contents are compared here instead of line numbers.

(3) The execution of the statements stored in work file 3 results in the comparison of lines
(%+#I9) and 1 ($-2L, i.e. 3-2). Since the contents of these two lines are identical,
processing branches to line 4 of work file 3.

(4) Since the content of line 1 has now changed, processing does not branch to line 4 of
work file 3.

Example 2

 1. @SET #S4 = 'M' -- (1)
 1. @PROC 4
 1. @ @PRINT #S4 N -- (2)
 2. @ @CREATE #S4: 'M',#S4
 3. @ @IF #S4 < 'M'*8 : @GOTO 1
 4. @END
 1. @DO 4
M
MM
MMM
MMMM
MMMMM
MMMMMM
MMMMMMM
 1.

(1) The string variable #S4 contains the character M.

(2) The following procedure is entered in work file 4: the content of #S4 is to be output. This
is to be followed by the current content of #S4 preceded by the letter M.

If the content of #S4 is smaller than MMMMMMMM then processing should start from the
beginning again.

EDT statements @IF (format 2)

U41709-J-Z125-1-76 337

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 3

 9. @PRINT
 1.0000 ABC
 2.0000 WHO
 3.0000 ABC
 4.0000 WANTS
 5.0000 ABC
 6.0000 TO TRY
 7.0000 ABC
 8.0000 HIS LUCK?
 9. @PROC 6
 1. @ @IF ! <> 'ABC' : @GOTO 3 ------------------------------------ (1)
 2. @ @CREATE !: '*' * 20
 3. @ @CONTINUE
 4. @END
 9. @DO 6,!=%,$ --- (2)
 9. @PRINT
 1.0000 ********************
 2.0000 WHO
 3.0000 ********************
 4.0000 WANTS
 5.0000 ********************
 6.0000 TO TRY
 7.0000 ********************
 8.0000 HIS LUCK?
 9.

(1) In work file 6, the line numbers are addressed via the loop counter !. If the content of
the line currently addressed via the counter ! is different from ABC then the line content
should not be modified. Otherwise, the line content is to be replaced by
******************** .

(2) Work file 6 is executed. During processing, all the lines in the current work file are to be
addressed in sequence by the loop counter !.

@IF (format 2) EDT statements

338 U41709-J-Z125-1-76

Example 4

 4. @PRINT
 1.0000 PLEASE DO NOT LAUGH
 2.0000 AT THIS EXAMPLE
 3.0000 IT IS TOO SIMPLE
 4. @SET #S0 = 'RESULT POSITIVE'
 4. @SET #S1 = 'RESULT NEGATIVE' ---------------------------------- (1)
 4. @SET #I9 = 1
 4. @PROC 1 --- (2)
 1. @ @IF %+#I9 = $-1L : @GOTO 4 ---------------------------------- (3)
 2. @ @PRINT #S1 N
 3. @ @RETURN
 4. @ @PRINT #S0 N
 5. @END
 4. @DO 1 --- (4)
RESULT POSITIVE
 4. @SET #I9 = 2
 4. @DO 1 --- (5)
RESULT NEGATIVE
 4.

(1) The string variables #S0 and #S1 are filled with content. The value 1 is assigned to the
integer variable #I9.

(2) Work file 1 is opened.

(3) If @DO 1 is subsequently issued then this line causes the line numbers %+#I9 and $–
1L to be compared.

% addresses the first line number (i.e. 1).

$ addresses the last line number (i.e. 3).

$-1L addresses the penultimate line number (i.e. 2).

(4) The procedure in work file 1 is executed. At this point, the relation indicated there
%+#I9=$–1L is true since 1+1=3–1 is true.

(5) At this point, the relation indicated in work file 1%+#I9=$-1L is false since 1+2=3–1 is
false.

EDT statements @IF (format 2)

U41709-J-Z125-1-76 339

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 5

 4. @PRINT
 1.0000 PLEASE DO NOT LAUGH
 2.0000 AT THIS EXAMPLE
 3.0000 IT IS TOO SIMPLE
 4. @SET #L3 = 5
 4. @PROC 2
 1. @ @IF %+6-#L3 <> $-* : @RETURN -------------------------------- (1)
 2. @ @CREATE $+1: 'OR PERHAPS NOT'
 3. @ @PRINT
 4. @END
 4. @$-1
 2. @DO 2 --- (2)
 2. @1
 1. @DO 2 --- (3)
 1.0000 PLEASE DO NOT LAUGH
 2.0000 AT THIS EXAMPLE
 3.0000 IT IS TOO SIMPLE
 4.0000 OR PERHAPS NOT
 1.

(1) If when work file 2 is executed, the relation indicated here is not fulfilled (<> means not
equal to) then the procedure is aborted at this point.

(2) Work file 2 is executed. Because *=$–1=2, the expression %+6–#L3<>$–* is equiv-
alent to 1+6–5<>3–2 and is therefore true. The execution of the procedure is therefore
aborted.

(3) At this point, *=1 and consequently the relation in work file 2 %+6–#L3<>$–* is false
because 1+6–5=3–1. Consequently, the remaining statements in work file 2 are
executed.

@IF (format 2) EDT statements

340 U41709-J-Z125-1-76

Example 6

 1. @SET #I3 = 1 -- (1)
 1. @PROC 7
 1. @ @IF #I3 > 5 : @RETURN
 2. @ @STATUS = #I3 --- (2)
 3. @ @SET #I3 = #I3+1
 4. @ @GOTO 1
 5. @END
 1. @DO 7 --- (3)
#I03= 0000000001
#I03= 0000000002
#I03= 0000000003
#I03= 0000000004
#I03= 0000000005
 1.

(1) The value 1 is assigned to the integer variable #I3.

(2) The procedure in work file 7 should output the values for the integer variable #I3
(@STATUS =#I3) and increment these (#I3+1) until #I3 has a value greater than 5
for the first time.

(3) Work file 7 is executed.

EDT statements @IF (format 3)

U41709-J-Z125-1-76 341

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.59 @IF (format 3) – Query @ON hits or work file status

This format of the @IF statement makes it possible to check in EDT procedures whether
EDT identified a hit the last time @ON was executed or whether the current work file is
empty. Depending on the result, a specified string either is or is not processed as input.

.TRUE. Processing branches if a hit was identified in the current work file the last
time @ON was executed.

If rel and col are specified then the condition is structured in such a way
that the column number in which the first identified hit begins is compared
with the column number specified by col using the relational operator
indicated by rel. The condition is only considered to be fulfilled if this
comparison is positive.

rel Defines the relational operator for the column numbers (see above):

col Column number which is compared with the number of the column in which
the first hit started in the current work file when the last @ON statement was
executed.

.FALSE. Processing branches if no hit was identified in the current work file the last
time @ON was executed.

Operation Operands L mode
@IF

:[text]

Symbol Meaning
> or GT greater than
< or LT less than
>= or GE greater than or

equal to
<= or LE less than or equal

to
= or EQ equal to
<> or NE not equal to

.TRUE. [rel col]

.FALSE.

.EMPTY.

@IF (format 3) EDT statements

342 U41709-J-Z125-1-76

.EMPTY. Processing branches if the current work file is empty. A work file is empty if
it contains no records

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

The previous specification of GOTO or RETURN without a colon continues to be supported for
reasons of compatibility.

Note
Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

Example 1

 5. @PRINT
 1.0000 WHO
 2.0000 WANTS
 3.0000 TO TRY
 4.0000 HIS LUCK
 5. @PROC 8
 1. @ @ON ! FIND 'I'
 2. @ @IF .FALSE. : @GOTO 4 --------------------------------------- (1)
 3. @ @CREATE !: '*' * 20
 4. @ @CONTINUE
 5. @END
 5. @DO 8,!=%,$ --- (2)
 5. @PRINT
 1.0000 WHO
 2.0000 WANTS
 3.0000 TO TRY
 4.0000 ********************
 5.

(1) In work file 8, the line numbers are addressed via the loop counter !. If the letter I is
not present in one of the addressed lines then the line remains unchanged. Otherwise,
the line content is to be replaced by 20 asterisks.

EDT statements @IF (format 3)

U41709-J-Z125-1-76 343

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

(2) Work file 8 is executed. During processing, all the lines in the main file are to be
addressed in sequence by the loop counter !.

Example 2

 5. @PRINT
 1.0000 WHO
 2.0000 WANTS
 3.0000 PLENTY OF
 4.0000 LUCK?
 5. @PROC 9
 1. @ @ON ! FIND 'EN'
 2. @ @IF .TRUE. = 3 : @GOTO 4
 3. @ @GOTO 5 --- (1)
 4. @ @SUFFIX ! WITH ' GOOD'
 5. @ @CONTINUE
 6. @END
 5. @DO 9,!=%,$ --- (2)
 5. @PRINT
 1.0000 WHO
 2.0000 WANTS
 3.0000 PLENTY OF GOOD
 4.0000 LUCK?
 5.

(1) In the procedure in work file 9, the line numbers are addressed via the loop counter !.
If the string EN occurs in columns 3 to 4 of one of the lines addressed in this way, then
the string GOOD is to be appended to it. Otherwise, the line is left unchanged.

(2) The procedure in work file 9 is executed. During processing, all the lines in the main file
are addressed in sequence by the loop counter !.

@IF (format 4) EDT statements

344 U41709-J-Z125-1-76

9.60 @IF (format 4) – Query job and user switches

In EDT procedures, this format of the @IF statement checks which job and/or user switches
are active and inactive (see also @SETSW and section “Job switches” on page 98).
Depending on the result, a specified string either is or is not processed as input.

ON Processing branches if the specified switch is set.

OFF Processing branches if the specified switch is not set.

U Specifies that a user switch is to be checked. If U is not specified then a job
switch is checked.

int Number of the switch (0..31) whose setting is to be checked.

If the keyword U is specified before the switch number then the user switch
int belonging to the user's own ID is checked instead of the job switch int.

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

The previous specification of GOTO or RETURN without a colon in procedures continues to
be supported for reasons of compatibility.

Note
Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

Operation Operands L mode
@IF

 = [U] int :[text]
ON

OFF

EDT statements @IF (format 4)

U41709-J-Z125-1-76 345

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

 1. @SET #S2 = 'SWITCH 15 IS OFF'
 1. @SET #S3 = 'SWITCH 15 IS ON
 1. @PROC 8
 1. @ @IF ON = 15 : @GOTO 4
 2. @ @PRINT #S2 N
 3. @ @RETURN -- (1)
 4. @ @PRINT #S3 N
 5. @END
 1. @SETSW OFF = 15 --- (2)
 1. @DO 8 --- (3)
SWITCH 15 IS OFF
 1. @SETSW ON = 15 -- (4)
 1. @DO 8 --- (5)
SWITCH 15 IS ON
 1.

(1) The procedure in work file 8 outputs the string variable #S3 if job switch 15 is set, and
the string variable #S2 otherwise.

(2) Switch 15 is reset.

(3) The procedure in work file 8 is executed.

(4) Switch 15 is set.

(5) Work file 8 is executed.

@IF (format 5) EDT statements

346 U41709-J-Z125-1-76

9.61 @IF (format 5) – Query EDT parameter settings

This format of the @IF statement can be used in EDT procedures or in L mode to query the
operating mode that is currently set (see section “Introduction to the EDT operating modes”
on page 21). Depending on the result, a specified string either is or is not processed as
input.

OPERATING-MODE=
The EDT operating mode is checked.

UNICODE The condition is fulfilled if EDT is in Unicode mode.

COMPATIBLE
The condition is fulfilled if EDT is in compatibility mode.

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted.

Note
Using @IF with @RETURN as a statement outside of procedures may cause EDT to
terminate (see the @RETURN statement).

Operation Operands L mode
@IF

OPERATING-MODE = :[text]
UNICODE

COMPATIBL

EDT statements @IF (format 5)

U41709-J-Z125-1-76 347

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

 1. @IF OP = C : @GOTO 5
 2. @SET #S2 = 'PROCEDURE ONLY RUNS IN COMPATIBILITY MODE'
 3. @PRINT #S2 N
 4. @HALT
 5. @CONTINUE
 6. ...other statements

The procedure results in the abnormal termination of EDT if it is not running in compatibility
mode.

@INDEX EDT statements

348 U41709-J-Z125-1-76

9.62 @INDEX – Control line number display

In F mode, the @INDEX statement activates or deactivates the line number display for the
current work file in the relevant data window (see also section “The work window” on
page 103).

ON Activates line number display (default value).

OFF Deactivates line number display.

When an EDT session starts, the line number display is activated for both data windows of
all work files.

If the line number display is activated in F mode then, depending on the employed terminal
and the way it has been set with the @VDT statement (72 or 124 characters per line), the
6-digit line number display is output with a decimal point and a protected blank for the visual
separation of the line contents.

If the line number display is deactivated then 80 or 132 characters are output per line.

In both formats, the first column of each line forms the statement code column.

The setting for the line number display is saved separately for the upper and lower
(possible) data windows corresponding to each work file. If only one data window is
displayed on the screen then the setting is made for both (possible) data windows. In
contrast, if the screen is split (see @PAR SPLIT) then it applies only to the work window in
which it was entered even if the same work file is displayed in both work windows.

Specifying @INDEX ON deactivates EDIT-LONG mode (see the @EDIT statement).

The @PAR INDEX statement can be used instead of @INDEX. Furthermore, @PAR
INDEX can be used for a specific work file or globally for all the work files and is also
permitted in L mode and therefore in EDT procedures. Please refer to the description of the
@PAR statement for information on which of the data windows of the specified work file
@PAR INDEX applies to.

Operation Operands F mode
@INDEX

[]
ON

OFF

EDT statements @INDEX

U41709-J-Z125-1-76 349

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

The line number display is deactivated.

The work window is displayed without line numbers.

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
 3.00 friendly creation and editing<··
 4.00 of BS2000 files in SAM and ISAM formats<································

@index off···0001.00:00001(00)

EDT is the BS2000 file<··
editor, used for the user-<···
friendly creation and editing<··
of BS2000 files in SAM and ISAM formats<··

@INPUT (format 1) EDT statements

350 U41709-J-Z125-1-76

9.63 @INPUT (format 1) – Start @INPUT procedure

This format of the @INPUT statement starts an @INPUT procedure from a file. The state-
ments and/or records in the file are processed sequentially.

For information on the structure and processing of EDT procedures, see section “EDT
procedures” on page 64.

LIBRARY=... The @INPUT procedure is defined by explicitly specifying the library name
and the element name.

path1 Name of the library.

elname Name of the element.

vers Version of the required element (see the LMS User Guide [14]). If vers is
not specified or if *STD is specified then the highest available version of the
element is selected.

eltype Type of element. Permitted type specifications are S,M, P, J, D, X, *STD as
well as freely selectable type names having one of these types as basic
type. If eltype is not specified then the default type specified with @PAR
ELEMENT-TYPE is used. The permitted element types and their meanings
are described in chapter “File processing” on page 131.

ELEMENT=... The @INPUT procedure is defined by the element name or by specifying
the library name. The default library set with @PAR LIBRARY is used
implicitly (if @PAR LIBRARY has been specified - otherwise the error
message EDT5181 is issued).

The operands elname, vers and eltype have the same meaning as when
a library is specified explicitly (see above).

FILE= The @INPUT procedure is defined by the name of a BS2000 file.

path2 Name of the file that is to be read in as an @INPUT procedure.

Operation Operands F mode, L mode
@INPUT

 [PRINT]

LIBRARY=path1 ([ELEMENT=] elname [(vers)][,eltype])
ELEMENT=elname [(vers)][,eltype]

FILE =

POSIX-FILE=xpath [,CODE=name]

path2

*linkname

EDT statements @INPUT (format 1)

U41709-J-Z125-1-76 351

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

*linkname File link name of the BS2000 file that is to be read in as an @INPUT
procedure. The file name and the file attributes are stored in the Task File
Table. The file link name must not be specified as the special file name
*BY-PROGRAM. This results in the error EDT4923. If no file link name is
defined then the statement is rejected with the message EDT5480.

If the file link name is declared as the special file name *DUMMY then it is
treated as an existing empty file.

POSIX-FILE= The @INPUT file is defined by the path name of a POSIX file.

xpath Path name of the POSIX file that is to be read in as an @INPUT procedure.

The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

CODE= Defines the character set that is to be assumed for the POSIX file. Since it
is not possible to assign character sets to POSIX files in the POSIX file
system, a user specification is required here.

If CODE is not specified then the character set defined in @PAR CODE is
assumed.

name Character set of the POSIX file that is to be read in. The name of a valid
character set must be specified for name (see section “Character sets” on
page 47).

EBCDIC The keyword EBCDIC is now only supported for reasons of compatibility and
is a synonym for the character set EDF041.

ISO The keyword ISO is now only supported for reasons of compatibility and is
a synonym for the character set ISO88591.

PRINT Each line of the procedure should be logged before it is executed. In inter-
active mode, the output is written to SYSOUT and in batch mode it is written
to SYSLST.
Specifying PRINT also causes all error messages to be output and sets the
EDT error switch. Normally, the two messages EDT0901 and EDT4932 are
not output in procedures and the EDT error switch is not set (see section
“Message texts” on page 638).

If the specified file does not exist or cannot be accessed as required or if the file cannot be
read in successfully then the statement is rejected with a corresponding error message.

The @INPUT statement (format 1) must not be issued in @INPUT or in @DO procedures.

@INPUT (format 1) EDT statements

352 U41709-J-Z125-1-76

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

The execution of an @INPUT procedure is terminated when the @RETURN statement or
the last statement in the procedure has been executed.

If the @INPUT procedure contains records then these are inserted in the current work file
in the same way data input in L mode (empty records are ignored). If the current work file
is empty and has the character set *NONE then it is assigned the character set of the file if
records are inserted. If this character set is *NONE then the work file is assigned the
character set EDF03IRV when records are inserted.

The statements or records read from the @INPUT procedure are interpreted in the
character set corresponding to the specified file. If this character set is *NONE then
EDF03IRV is used.

This character set may differ from the character set used in the current work file. Since
statements always apply to the current work file and records are always inserted in the
current work file it may therefore be necessary to convert literals in statements or records.
If the file contains characters which cannot be displayed in the work file's character set then
these characters are replaced by a substitute character provided that such a character has
been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise, the execution of
the @INPUT procedure is aborted with the error message EDT5453.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the execution of the @INPUT procedure is aborted
with the message EDT5454.

EDT statements @INPUT (format 2)

U41709-J-Z125-1-76 353

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.64 @INPUT (format 2) – Start @INPUT procedure from DMS file

This format of the @INPUT statement starts an @INPUT procedure from a SAM or ISAM
file. Format 2 is now only supported for reasons of compatibility and should no longer be
used. The statements and/or records in the file are processed sequentially. For information
on the structure and processing of EDT procedures, see section “EDT procedures” on
page 64.

file Name of the SAM or ISAM file that is to be read and processed. The name
must correspond to the SDF data type <filename 1..54>.

Here, the symbolic name '/' for a file for which the LINK name EDTSAM
or EDTISAM has been assigned by means of the SET-FILE-LINK command
is not permitted.

If the specified file does not exist or cannot be accessed as required or if the
file cannot be read in successfully then the statement is rejected with a
corresponding error message.

ver Although this operand may be entered for the purposes of symmetry, it is
completely ignored.

lines One or more line ranges that are to be processed in the ISAM or SAM file.
If lines is not specified then all the lines in the file are processed.

If symbolic line numbers are specified then their values are taken over from
the current work file and therefore usually have nothing to do with the record
structure of the specified file.
Any lines specification for SAM files is ignored unless one of the keywords
KEY or RECORDS has been specified at the same time.

cols One or more column ranges containing the statements to be processed.
The ranges may repeat and overlap. If column values which exceed the
record length are specified then blanks are read in their place.
If KEY is specified for SAM files or in the case of ISAM files then the column
count starts after the key in the record.
If no column range is specified then the lines are read in full.

Operation Operands F mode, L mode
@INPUT

file [(ver)] [lines[,...]] [:cols[,...]:] [] [PRINT]
 RECORDS

 KEY

@INPUT (format 2) EDT statements

354 U41709-J-Z125-1-76

KEY Specifies that the first 8 characters of each line in a SAM file are to be inter-
preted as a line number. In the case of SAM files, this type of record can be
created by specifying @WRITE together with the KEY operand.
If KEY is specified in the @INPUT statement then these numbers are inter-
preted as line content rather than line numbers when the file is read.
Otherwise, EDT would consider every line in the file to be a text line.

RECORDS In the case of SAM files, specifies that a line range (see lines operand) is
to be selected via the logical line number. The logical line number of the 1st
line in the file is 0.0001, the logical line number of the 2nd line in the file is
0.0002 etc.

PRINT Each line of the procedure should be logged before it is executed. In inter-
active mode, the output is written to SYSOUT and in batch mode it is written
to SYSLST.

Specifying PRINT also causes all error messages to be output and sets the
EDT error switch. Normally, the two messages EDT0901 and EDT4932 are
not output in procedures and the EDT error switch is not set (see section
“Message texts” on page 638).

The @INPUT statement (format 2) must not be issued in @INPUT or in @DO procedures.

The keywords KEY and RECORDS are ignored in the case of ISAM files. If neither RECORDS
nor KEY is specified then any lines specification for a SAM file is ignored, i.e. all the lines
in the file are processed.

The execution of an @INPUT procedure is aborted if the @RETURN statement or the last
statement in the procedure has been processed.

In the case of ISAM files and SAM files (with the KEY operand), the record key should
always contain a valid line number and, when processing SAM files, EDT expects the
records to be present in ascending order.

If the file is read without any line range specification then the record keys are simply
ignored, i.e. they are not checked. In contrast, if line ranges are specified then EDT
processes SAM and ISAM files differently.
In the case of ISAM files, the keys corresponding to the records which are actually read are
checked. If a record contains a non-numerical key then execution of the procedure is
aborted with error EDT4984.
In the case of SAM files, records with non-numerical keys or with keywords which are
smaller than the current lower range boundary are ignored. If the keyword is greater than
the current upper range boundary then the record in question and all the records following
it are ignored. Furthermore, in the case of SAM files, records that are shorter than 8
characters are also ignored.

EDT statements @INPUT (format 2)

U41709-J-Z125-1-76 355

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the @INPUT procedure contains records then these are inserted in the current work file
in the same way data input in L mode (empty records are ignored). If the current work file
is empty and has the character set *NONE then it is assigned the character set of the file if
records are inserted. If this character set is *NONE then the work file is assigned the
character set EDF03IRV when records are inserted.

The statements or records read from the @INPUT procedure are interpreted in the
character set corresponding to the specified file. If this character set is *NONE then
EDF03IRV is used.

This character set may differ from the character set used in the current work file. Since
statements always apply to the current work file and records are always inserted in the
current work file it may therefore be necessary to convert literals in statements or records.
If the file contains characters which cannot be displayed in the work file's character set then
these are replaced by a substitute character if such a character has been specified (see
@PAR SUBSTITUTION-CHARACTER), otherwise execution of the @INPUT procedure is
aborted with the error message EDT5453. This also applies if there are invalid characters
outside of the column range that is to be read. In contrast, invalid characters outside of the
line range that is to be read are ignored.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the execution of the @INPUT procedure is aborted
with the message EDT5454.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

@INPUT (format 2) EDT statements

356 U41709-J-Z125-1-76

Example

6. @PRINT
1.0000 @DELETE
2.0000 I AM LINE 1
3.0000 I AM THE SECOND LINE
4.0000 @PRINT 1
5.0000 @PRINT 2
6. @WRITE 'SAM-INP' KEY --- (1)
6. @SAVE 'ISAM-INP' --- (2)
6. @INPUT 'SAM-INP' KEY --- (3)
1.0000 I AM LINE 1
2.0000 I AM THE SECOND LINE
3. @INPUT 'ISAM-INP' 1-3,5,4 -- (4)
2.0000 I AM THE SECOND LINE
1.0000 I AM LINE 1
3.

(1) The content of the work file is written as a SAM file. When this is done, each line is
prefixed by a key calculated on the basis of the current line number.

(2) The content of the work file is written again, but in this case as an ISAM file.

(3) The complete file SAM-INP is read and executed. Since this file was created using
@WRITE together with a KEY specification, KEY must be specified. Otherwise, the
stored keys are not converted into line numbers.

(4) Lines 1-3,5,4 in the file ISAM-INP are to be read and executed in the specified
sequence.

EDT statements @INPUT (format 3)

U41709-J-Z125-1-76 357

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.65 @INPUT (format 3) – Define EDT input mode

This format of the @INPUT statement allows users to define how EDT is to interpret text
input in L mode.

CHAR Causes EDT to interpret record input in L mode as a sequence of characters
in the character set applicable to the input source (terminal, SYSDTA, file,
library element, work file) (see section “L mode” on page 126 which also
discusses the handling of character sets during input in L mode).

HEX, X Causes EDT to interpret record input in L mode as a sequence of
hexadecimal characters (see section “L mode” on page 126 which also
discusses the handling of character sets during hexadecimal input).

ISO This operand is no longer supported in EDT V17.0 Unicode mode. For
reasons of compatibility, it is ignored and no error message is issued if it is
input. In EDT V17.0 Unicode mode, ISO character sets are not subject to
any special processing. If an ISO character set is defined for the current
work file then hexadecimal input for this work file is automatically interpreted
in the correct code and there is no implicit conversion into EBCDIC.

BINARY Causes EDT to interpret record input in L mode as a sequence of binary
characters (see section “L mode” on page 126).

The default setting when EDT is called is @INPUT CHAR.

The maximum permitted abbreviation of the statement can only be used if operands are
specified. If called without operands, the maximum permitted abbreviation is @INP as EDT
otherwise recognizes the @INDEX statement.

Note
Even if @INPUT HEX or @INPUT BINARY has been specified, statements may not be
entered in hexadecimal or binary coding.

Operation Operands L mode
@INPUT

[]
[CHAR]
HEX | X [ISO]
BINARY

@LIMITS EDT statements

358 U41709-J-Z125-1-76

9.66 @LIMITS – Output line numbers and number of lines

The @LIMITS statement causes EDT to output the lowest and the highest assigned line
number as well as the number of lines for the current work file.

In interactive mode, the output is written in a line to SYSOUT and in batch mode it is written
to SYSLST.

In the case of files opened for real processing, the number of lines 0 is always output.

Example

 4. @PRINT
 1.0000 A
 2.0000 B
 3.0000 C
 4. @LIMITS
 1.0000 TO 3.0000 3 LINES --------------------------------- (1)

 4. @COPY 1-3 TO 99.01 -- (2)

 100.03 @LIMITS
 1.0000 TO 99.0300 6 LINES --------------------------------- (3)

 100.03

(1) The lowest and highest assigned line numbers are output together with the number of
lines.

(2) Lines 1-3 are copied to the lines 99.01, 99.02 and 99.03.

(3) The lowest and highest assigned line numbers are now 1.0000 or 99.0300. The
number of lines is now 6.

Operation Operands F mode, L mode
@LIMITS

EDT statements @LIST

U41709-J-Z125-1-76 359

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.67 @LIST – Print work file ranges or string variables

The @LIST statement is used to output ranges of a work file or string variables to SYSLST
or at the printer. Unless specified to the contrary, every output line is prefixed by the line
number and every output string variable is prefixed by the number of the string variable.

lines The line range to be output.

svars The range of string variables whose contents are to be output.

cols Column range for output in the current work file or in the specified string
variables.

If only one column number is specified then the remainder of the line or
string variable is output as of this column. If the first column specification is
greater than the length of the line or string variable then the line or string
variable is ignored.

If no column range is specified then the line or string variable is read in full.

X The lines are printed in hexadecimal form. The output format is the same as
in @PRINT.. X.

N The line numbers or the numbers of the string variables are omitted on
printing.

C int EDT expects an EBCDIC line feed character as the first character in each
line in the specified column range. This generates a line feed during printing
but is not itself printed. The line feed character must be present in the
character set of the current work file or the current string variable (see
below). EDT bases its interpretation of this character on the meaning of the
equivalent EDF041 character.
Any characters which EDT cannot interpret in the first column result in a
simple line feed.

Values between 0 and 256 are permitted for int. If a value of int other than
0 is specified, EDT generates not only the line feeds present in the record
itself but also a form feed after int output lines (taking account of the form
and line feeds present in the record itself). If int has the value 0 then no
additional form feed is generated.

Operation Operands F mode, L mode
@LIST

[[:cols[:]] [X] [N] [] [I] [S]] [,...]
 lines

svars

C [int]

P int

@LIST EDT statements

360 U41709-J-Z125-1-76

The value set here for the page size remains valid and therefore influences
all outputs to SYSLST.

If int is not specified, EDT uses the last page size setting defined with the
@LIST or @PAGE statement independently of whether int was specified
in combination with C or P. If there has been no previous @LIST modifying
the value of int then the default value 65 is assumed (see @PAGE
statement).

P int EDT prefixes every output record with an EBCDIC line feed character.
When doing this, EDT only uses the EBCDIC feed characters Line feed
after printing each line or Form feed in the coding corresponding
to the character set for the output file in question (SYSLST or temporary file)
(see below).

Values between 0 and 256 are permitted for int. If int is not equal to 0
then a form feed is inserted exactly after every int lines. If int has the
value 0 then no form feed is inserted. The value set here for the page size
remains valid and therefore influences all outputs to SYSLST.

I Printing starts immediately. This means that EDT writes the records that are
to be output to a temporary file (using the system file SYSLST97) and then
outputs these after closure to the defined standard printer by means of a
/PRINT-DOCUMENT command.

When ranges from a work file are output, the temporary file is created in the
character set used by the work file provided that this is an EBCDIC
character set. If not, the reference character set is used provided that this
is an EBCDIC character set. In all other cases, the temporary file is created
in the character set UTFE. If ranges of string variables are to be output then
the character set is determined in the same way for each individual string
variable. If the character sets determined in this way are all identical then
this character set is used, otherwise UTFE.

If the user is not authorized to create temporary files or if the system admin-
istrator has prohibited the use of temporary files or if, for any other reason,
it is not possible to create the file or write its content then a @LIST
statement issued with the I operand is rejected with a corresponding error
message.

The I operand is only permitted in interactive mode. It is only of value if the
defined standard printer is able to reproduce the character set used for the
output correctly.

If I is not specified then the output is sent to SYSLST. If SYSLST is not
assigned to a file then printing does not start until after /LOGOFF. If SYSLST
is assigned to a file then users must initiate output themselves.

EDT statements @LIST

U41709-J-Z125-1-76 361

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

S Eliminates the additional line feed which usually takes place before the first
output line.

If neither lines nor svars is specified then the entire current work file is output.

If neither P nor C is specified, EDT generates feed characters as in the case of P and the
last page size value set using @LIST or @PAGE is used.

If EDT generates the feed characters then it takes account of the set or specified page size
and usually generates an additional line feed before the first line of every range. This
operation is only omitted if the S operand is specified or if this line is output at the start of a
page. A line feed is inserted in the output after every 132 characters (or 160 characters if
job switch 6 is set).

When ranges in a work file are output, these are converted from the character set used in
the work file into the character set used for SYSLST or the character set of the temporary
file (see the description of the I operand. When ranges of string variables are output, each
string variable is converted from the character set assigned to it into the character set used
for SYSLST or the character set of the temporary file (see the description of the I operand.
If characters are found which do not correspond to a valid character in the target character
set then these are replaced by a substitute character if such a character has been specified
(see @PAR SUBSTITUTION-CHARACTER). Otherwise blanks are used.

The EBCDIC and ASA feed characters in BS2000 are valid characters in every employed
8-bit or Unicode character set and can therefore always be edited in EDT even if they
cannot be displayed. This is particularly true of the feed characters which are interpreted or
inserted by EDT (see the C and P operands. As a result, some feed characters are coded
as Unicode characters with more than one byte (see the table below).

In the case of print files which are present in a Unicode character set (e.g. SYSLST), the
BS2000 SPOOL subsystem converts the feed character from the print file's Unicode
character set into EDF041 and interprets the resulting character as explained in the User
Guide, Commands, Volume 3 [10], description of the /PRINT-DOCUMENT command.
Conversion is only performed if the file is printed using
LINE-SPACING=*BY-EBCDIC-CONTROL or LINE-SPACING=*BY-ASA-CONTROL. In the
case of files that are to be printed using LINE-SPACING=*BY-IBM-CONTROL no conversion
is performed. In these files, the feed characters are not usually valid Unicode characters
with the result that they cannot be processed in EDT. If the print file possesses a 7-bit or
8-bit character set then, as in the past, SPOOL interprets the feed character without
converting it.

@LIST EDT statements

362 U41709-J-Z125-1-76

The codings of the EBCDIC feed characters interpreted or generated by EDT are given
below for a number of character sets:

UTF16 UTF8 UTFE EDF041 Charac
ter

0020 20 40 40 No feed before printing, new line after
printing

00a0 c2a0 6741 41 One line feed before printing, new
line after printing

00e2 c3a2 68b0 42 â Two lines feed before printing, new
line after printing

00e4 c3a4 689f 43 ä Three lines feed before printing, new
line after printing

00e0 c3a0 6841 44 à Four lines feed before printing, new
line after printing

00e1 c3a1 68aa 45 á Five lines feed before printing, new
line after printing

00e3 c3a3 68b1 46 ã Six lines feed before printing, new
line after printing

00e5 c3a5 68b2 47 å Seven lines feed before printing, new
line after printing

00e7 c3a7 68b5 48 ç Eight lines feed before printing, new
line after printing

00f1 c3b1 688f 49 ñ Nine lines feed before printing, new
line after printing

0060 60 4a 4a ` Ten lines feed before printing, new
line after printing

002e 2e 4b 4b . Eleven lines feed before printing, new
line after printing

003c 3c 4c 4c < Twelve lines feed before printing, new
line after printing

0028 28 4d 4d (Thirteen lines feed before printing,
new line after printing

002b 2b 4e 4e + Fourteen lines feed before printing,
new line after printing

007c 7c 4f 4f | Fifteen lines feed before printing, new
line after printing

0041 41 c1 c1 A Page feed before printing

EDT statements @LIST

U41709-J-Z125-1-76 363

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

When interpreting feed characters, EDT also accepts the EBCDIC control characters
x'00'..x'0F' (or their equivalents in other character sets) and interprets them as
x'40'..x'4F'. However, when output is written in the character set UTF8 or UTFE, EDT
never generates feed characters that are coded with more than one byte. Instead it
generates the corresponding number of single line feeds.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
The system files SYSLST and SYSOUT should only be assigned to files or library
elements with a Unicode character set if it is certain that only EDT sends output to these
files. Otherwise files containing invalid characters could be created since other system
components do not usually take account of the character set assigned to SYSLST or
SYSOUT.

@LIST EDT statements

364 U41709-J-Z125-1-76

Example

 6. @PRINT
 1.0000 THE @LIST STATEMENT
 2.0000 PERMITS THE CONTENTS
 3.0000 OF A WORK FILE TO BE
 4.0000 TRANSFERRED TO PAPER
 5.0000 IN ANY DESIRED FORM.
 6. @LIST --- (1)
 6. @LIST 4-5 N --- (2)
 6. @LIST 4 :13-14 X -- (3)
 6. @LIST & I --- (4)

(1) The entire content of the work file is to be output to SYSLST. The print-out (possibly
initiated by the system) is not started until LOGOFF.

Print output

 1.0000 THE @LIST STATEMENT
 2.0000 PERMITS THE CONTENTS
 3.0000 OF A WORK FILE TO BE
 4.0000 TRANSFERRED TO PAPER
 5.0000 IN ANY DESIRED FORM.

(2) Lines 4 to 5 are to be output to SYSLST without line numbers.

Print output

TRANSFERRED TO PAPER
IN ANY DESIRED FORM.

(3) The two columns 12 and 13 of line 4 are to be output in hexadecimal to SYSLST.

Print output

 4.0000 E3D6

(4) All the lines are to be printed immediately.

Print output

As in (1). However, the following system message is also displayed:

% SCP0810 SPOOLOUT OF FILE 'XXX' ACCEPTED, TSN: 'XXX', PNAME: 'XXX'.

in order to confirm that the print job has been assigned.

EDT statements @LOAD

U41709-J-Z125-1-76 365

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.68 @LOAD – Load program

The @LOAD statement terminates the EDT session and loads the specified program.

string String specifying the name of the program that is to be loaded. The system
expects the name of a BS2000 file which contains the program that is to be
loaded. It is not possible to specify a library element.

The @LOAD statement is one of the EDT statements with security implications (see also
section “Access protection” on page 99). The statement is rejected in uninterruptible
system procedures in interactive mode and on input from a file (read with RDATA from
SYSDTA not equal to SYSCMD, execution of a start procedure).

The @LOAD statement always causes EDT to be terminated irrespective of whether the
specified program file exists or contains a valid program.

As far as the handling of unsaved files and the related security queries is concerned,
@LOAD acts in the same way as the @HALT statement (see section “Terminating an EDT
session” on page 92). Since EDT is always terminated, save queries may, unlike in the case
of @HALT, also be issued if the statement was entered in the screen dialog (started with
@DIALOG).

If EDT was loaded as a subroutine and the EDT screen dialog has been activated with
@DIALOG, the @LOAD statement does not result in the continuation of the user program.
Instead, the user program is also unloaded.

It is therefore possible to prohibit users from issuing the @LOAD statement when EDT is
called as a subroutine. In this case, calls are rejected with the message EDT4976.

Note
If @DIALOG was issued in a system procedure, then the remaining procedure
commands after @LOAD are executed while the specified program is loaded instead
of EDT. This may result in unwanted effects.

Operation Operands F mode, L mode
@LOAD string

@LOAD EDT statements

366 U41709-J-Z125-1-76

Example

The example assumes that the records present in the work file have not yet been saved.

EDT is to be terminated and LMS is to be loaded.

Since the work file has not yet been saved, EDT queries (in the same way as in @HALT),
whether it should really terminate.

Since @LOAD was specified rather than @EXEC, a slash indicates that further system
commands are expected. LMS is not started until the /RESUME-PROGRAM command is
issued.

 1.00 EDT is to be terminated<··
 2.00 and LMS loaded<···
 3.00 This is done with the @LOAD statement<··································
 4.00 ··

@LOAD '$lms'···0001.00:00001(00)

% EDT0900 EDITED FILE(S) NOT SAVED!
 LOCAL FILE (0) :
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?y
% BLS0500 PROGRAM 'LMS', VERSION 'V3.0A1 OF 'yy-mm-dd' LOADED,
/resume-program
% LMS0310 LMS VERSION V03.0A00 LOADED
CTL=(CMD) PRT=(OUT)
$

EDT statements @LOG

U41709-J-Z125-1-76 367

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.69 @LOG – Control logging

The @LOG statement controls the logging of the input in batch and interactive mode.

ALL All L mode input (text and statements) that is entered via RDATA or via the
terminal is to be logged.

In the case of inputs in the F mode's interactive mode, the input in the
statement lines (separated into individual statements if the case of
statement sequences) is logged.

COMMANDS Only statements are to be logged.

NONE Nothing is to be logged.

SYSLST Log output is sent to SYSLST. This is the default setting when EDT is started.

SYSLST n Log output is written to the file to which SYSLSTnn is assigned (values
between 1 and 99 are permitted for n).

The default setting when EDT is started in batch mode is @LOG NONE if job switch 4 is
set and @LOG COMMANDS if job switch 4 is not set. If EDT is called in interactive mode
then @LOG NONE is set by default.

The definition of the output medium (SYSLST, SYSLSTnn) remains valid for subsequent
@LOG statements unless these specify a different value.

Note
Statements and data input which are read from EDT procedures and executed are not
logged by @LOG in either batch or interactive mode. The logging of such items must
be requested explicitly by means of @DO ...PRINT or @INPUT ...PRINT.
In test mode, the @LOG statement is not just checked for its syntax. It is also executed
(see @SYNTAX- statement).

Logging to list variables, which was possible in the predecessor version, is no longer
supported. It is, however, possible to use the /ASSIGN-SYSLST command to assign a
list variable to the system file SYSLST.

Operation Operands F mode, L mode
@LOG

[] []
ALL
COMMANDS
NONE

SYSLST

SYSLST n

@LOWER EDT statements

368 U41709-J-Z125-1-76

9.70 @LOWER – Lowercase and uppercase on input

The @LOWER statement specifies whether or not EDT is to convert lowercase characters
into uppercase when data and statements are input at the terminal.

ON EDT differentiates between uppercase and lowercase. Strings are
processed in the form that they are entered.

OFF EDT converts entered lowercase characters into uppercase.

In F mode, any lowercase characters present in the work file are converted
into smudge characters for output in the work window. If output is sent to
SYSOUT or SYSLST (e.g. by means of the @ON statement, format 1, in L
mode) then they are displayed as printable characters.

When EDT starts, the value ON is set as the default for all the work files.

The @LOWER statement applies globally to all the work files. The @PAR LOWER
statement can be used to set the way in which lowercase characters are handled for each
work file separately.

EDT uses the system component XHCS when converting from lowercase to uppercase.
Which characters are converted therefore depends on the definition of the associated
character set attributes in XHCS.

If the @LOWER statement is issued in L mode inside an input block (see @BLOCK) or in
F mode as part of a statement sequence (statements separated by ;) then the conversion
mode takes effect as of the statement or data line that follows @LOWER.

If @LOWER OFF is set then all the characters entered at the terminal are converted from
lowercase to uppercase irrespective of whether the input was made in F mode or L mode
or whether the input consists of statements or data lines. However, in F mode, this
conversion is not performed until a statement is stored in the statement buffer, i.e. state-
ments are stored here in the same way that they were entered (see also @SHIH
statement).

Operation Operands F mode, L mode
@LOWER

[]
ON

OFF

EDT statements @LOWER

U41709-J-Z125-1-76 369

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If input is read from files or work files, e.g. during the execution of EDT procedures or when
reading from SYSDTA after this has been assigned to a file, then text input and literals in
statements are not converted into uppercase even if @LOWER OFF is set. This is the same
behavior as when reading from files in which case there is also no conversion.

When statements are input, the setting @LOWER ON only affects literals. Statements and
keywords are always converted into uppercase when a statement is analyzed.

@MODE EDT statements

370 U41709-J-Z125-1-76

9.71 @MODE – Change operating mode

The @MODE statement is used to switch between the operating modes (compatibility
mode and Unicode mode, see section “Introduction to the EDT operating modes” on
page 21).

OPERATING-MODE=
The EDT operating mode is switched.

UNICODE EDT changes from compatibility mode to Unicode mode. If EDT is already
running in Unicode mode, the statement is ignored.

COMPATIBLE
EDT changes from Unicode mode to compatibility mode. If EDT is already
running in compatibility mode, the statement is ignored.

It is only possible to change operating mode if all the EDT work files are empty and no files
are open. Otherwise, the statement is rejected with the message EDT4983.

Changing the operating mode amounts to terminating EDT in one mode and then restarting
it in another mode. When this is done, all the settings are lost and all the variables are reini-
tialized. For details, see section “Activating compatibility and Unicode mode” on page 615.

Operation Operands F mode, L mode
@MODE

OPERATING-MODE =
UNICODE

COMPATIBL

EDT statements @MOVE

U41709-J-Z125-1-76 371

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.72 @MOVE – Move lines or string variables

The @MOVE statement transfers records from the current or another work file to the
current work file and then deletes them at their original positions or transfers the contents
of string variables to the current work file and then reinitializes the string variables.

For the sake of clarity, the line range in the source work file which contains the records that
are to be moved or the range of string variables are referred to as the “source range” below.
The line range in the current work file into which the records from the source work file are
to be moved is referred to as the “target range”.

lines Contiguous line range that is to be moved to the current work file. Symbolic
line numbers in lines refer to the line numbers of the current work file even
if the lines are taken over from another work file.

procnr Number of the source work file from which the records are to be moved
(0..22). If procnr is not specified then the records are moved from the
current work file. An active work file may not be specified. If the TO operand
is not specified then procnr must not be the current work file.

svars Range of string variables whose contents are to be moved into the current
work file. After transfer, the string variables are deleted, i.e. they are reini-
tialized with a blank in the character set EDF041.

TO... The operands which follow TO define the target range or ranges. If no target
range is specified then the line numbers in the source work file are taken
over into the current work file.

If the source work file is the current work file or if string variables are moved
then TO... must be specified. In these cases, if no target range is specified
then the @MOVE statement is rejected with the error message EDT3218.

line1 Number of the first line in the target range.

inc Increment used to form the line numbers following line1. If inc is not
specified then the increment implicitly specified by line1 is used (see
section “Implicit increment assignment” on page 35).

: The operands line1 and line2 should be separated by : if inc is not
specified.

Operation Operands F mode, L mode
@MOVE

 [TO {line1 [(inc)] [:] [line2]} [,...]] [,...]
lines [(procnr)]

svars

@MOVE EDT statements

372 U41709-J-Z125-1-76

line2 Specifies the largest possible line number in the target range up to which
the transfer of records is permitted.

As a result, no move operation is performed to lines in the current work file
with line numbers higher than line2. This also applies if it is not possible
to move all the records in the source range to the target range.

If line2 is not specified then the @MOVE statement does not define any
maximum value for the line numbers in the target range.

In the @MOVE statement, it is possible to specify multiple comma-separated source
ranges each of which are associated with multiple target ranges. The number of source and
target ranges is only limited by the maximum permitted length of EDT statements. It is not
usually of value to specify multiple target ranges since the lines are deleted in the source
range the first time they are transferred and are therefore no longer available for further
move operations.

If the source and target ranges overlap then the source range is moved and deleted line-
by-line.

Any existing lines with the same line numbers present in the work file are overwritten on the
move operation.
If a line with a number greater than the previous highest line number is created then the
current line number is modified.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the source work file or the first specified string variable when the move
operation is performed.

If the current work file has a character set then the lines to be moved or the contents of the
string variables are converted into the character set of the current work file. If characters
which cannot be displayed in the work file's character set are identified then these
characters are replaced by a substitute character provided that such a character has been
specified (see @PAR SUBSTITUTION-CHARACTER); otherwise, the @ MOVE statement
is rejected and error message EDT5453 is output.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

EDT statements @MOVE

U41709-J-Z125-1-76 373

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Note
Since the above syntax permits the omission of the TO operand, it is not always possible
to distinguish unambiguously between the target and source ranges. In such cases,
EDT interprets the ambiguous specification as a target range. Thus, for example, in the
input

@MOVE 2-3(1) TO 7,1(1)

the specification 1(1) is interpreted as a second target range (the 1 in parentheses is
interpreted as the increment), whereas the specification 1(0) at this point would be
interpreted as the next source range (the 0 cannot be an increment and is interpreted
as a work file number). If, in this example, the user wants to force the specification to
be interpreted as a source range, it would be possible, for example, to enter

@MOVE 2-3(1) TO 7,1-1(1)

to eliminate all ambiguities.

Example

Lines 2 to 4 are to be moved to the line range starting at line 20. The value 1 is specified
implicitly as the increment for the target range.

 1.00 THIS LINE IS NOT MOVED<...
 2.00 LINE 2 AND LINE 3<..
 3.00 AND LINE 4 ARE MOVED<...
 4.00 SEVERAL TIMES<..
 90.00 THE LINE IS NEVER OVERWRITTEN<..
 91.00 ..

move 2-4 to 20...0001.00:00001(00)

 1.00 THIS LINE IS NOT MOVED<...
 20.00 LINE 2 AND LINE 3<..
 21.00 AND LINE 4 ARE MOVED<...
 22.00 SEVERAL TIMES<..
 90.00 THE LINE IS NEVER OVERWRITTEN<..
 91.00 ..

move 20-22 to 100 (5)..0001.00:00001(00)

@MOVE EDT statements

374 U41709-J-Z125-1-76

Lines 20, 21 and 22 have now been created with the implicit increment 1 and lines 2, 3 and
4 have been deleted.

Lines 20-22 are to be copied to 100, 105 and 110.

The line range from line 100 through to the end of the work file (100-.$) is to be copied to
the line range starting at line 82 with the explicit increment 5. Since 89 has been specified
as the highest possible line number for the target range, line 90 is not written.

Since 89 has been specified as the highest possible line number for the target range, line
110 is not transferred.

 1.00 THIS LINE IS NOT MOVED<···
 90.00 THE LINE IS NEVER OVERWRITTEN<··
 100.00 LINE 2 AND LINE 3<··
 105.00 AND LINE 4 ARE MOVED<···
 110.00 SEVERAL TIMES<··
 111.00 ··

move 100-.$ to 82(5) : 89······································0001.00:00001(00)

 1.00 THIS LINE IS NOT MOVED<···
 82.00 LINE 2 AND LINE 3<··
 87.00 AND LINE 4 ARE MOVED<···
 90.00 THE LINE IS NEVER OVERWRITTEN<··
 110.00 SEVERAL TIMES<··
 111.00 ··

EDT statements @NOTE

U41709-J-Z125-1-76 375

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.73 @NOTE – Empty statement

The @ NOTE statement does not perform any action. It is used to insert comments in EDT
procedures. Lines which contain a @NOTE statement can also be branched to by means
of @GOTO. The @ CONTINUE statement offers the same functionality as @ NOTE.

comment The comment operand may contain any text as a comment.

Alongside the insertion of comments, this statement is also frequently used to define a last
line in an EDT procedure which can be specified as the destination of a branch operation
in a @GOTO or an @IF statement. This construction is required if an EDT procedure is
called in an external loop with a loop counter (e.g. @DO 5,!=%,$), and an @IF ... RETURN
would result in an unwanted abort of the external loop. Instead, processing branches to the
end of the procedure in order to start the next pass.

Example

 6. @PRINT
 1.0000 WITH EDT
 2.0000 ANYONE WHO KNOWS
 3.0000 THE STATEMENTS CAN
 4.0000 WRITE HIS PROGRAM
 5.0000 PROCEDURE AT A TIME
 6. @PROC 1
 1. @1.00
 1.00 @ @NOTE OBJECTIVE: IF A LINE CONTAINS A 'W' ------------------- (1)
 1.01 @ @NOTE DISPLAY IT ON THE SCREEN
 1.02 @ @ON ! FIND 'W'
 1.03 @ @IF .FALSE. : @GOTO 2
 1.04 @ @PRINT !
 1.05 @2.00
 2.00 @ @NOTE --- (2)
 2.01 @END
 6. @DO 1,!=1,$ --- (3)
 1.0000 WITH EDT
 2.0000 ANYONE WHO KNOWS
 4.0000 WRITE HIS PROGRAM
 6.

Operation Operands L mode
@NOTE [comment]

@NOTE EDT statements

376 U41709-J-Z125-1-76

(1) In this case, @NOTE is used to insert a comment.

(2) In this case, @ NOTE is required because there must be a last line in a procedure that
can be branched to.

(3) @DO with a loop counter executes the procedure in work file 1 which acts on work file
0.

EDT statements @ON (format 1)

U41709-J-Z125-1-76 377

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.74 @ON (format 1) – Output lines or string variables containing
the search term

This format of the @ON statement causes EDT to output the content of each line or string
variable in which a hit is found. In interactive mode, the output is written to SYSOUT and in
batch mode it is written to SYSLST.

lines One or more line ranges in which the search is to be performed.

svars One or more ranges of string variables in which the search is to be
performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL The ALL operand only has an effect if the E operand is also specified. In this
case, all the hits in a line are highlighted. If ALL is not specified but E is, then
only the first hit in a line is highlighted.

F Only the first hit line in each specified line range is output. If F is not
specified then all the hit lines in each specified line range are output. If both
F and E are specified then the first hit in the first hit line in each specified line
range is highlighted. If F, ALL and E are specified then all the hits in the first
hit line in each specified line range is highlighted.

R The lines are searched through from right to left. If R is not specified then
they are searched through from left to right.

If R is specified but neither ALL nor F is then the minimum possible abbrevi-
ation for PRINT is PR.

Operation Operands F mode, L mode
@ON

 [,...] [:cols[:]] PRINT [ALL] [F] [R] [NOT] [PATTERN]

 search [,int] [S] [N] [E]

 lines

 svars

@ON (format 1) EDT statements

378 U41709-J-Z125-1-76

NOT A hit is identified if the search term is not present in the specified column
range in a line (negative search). In this case, the ALL and E operands are
meaningless.

PATTERN The wildcards present in the search term are interpreted.

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

int Only the intth occurrence of the search term in a line is considered to
represent the first hit. Values between 1 and 32768 are permitted for int.
The default value for int is 1 byte.

S The empty line which precedes the first line for output is omitted. This
operand only has an effect if the output is sent to SYSLST. If S is not specified
then the output begins with an empty line.

N The hit lines are output without an associated line number. Equally, no string
variable names (#S00..#S20) are output if hits are searched for in string
variables. If N is not specified then the line numbers and the names of the
string variables are output.

E The hits are highlighted when the hit lines are output on screen. If both E
and ALL are specified then all the hits in the hit line are highlighted,
otherwise only the first hit. If E is not specified then the hits are not
highlighted on output.

This operand is only effective if VTCSET ON is set; otherwise it is ignored.
When long lines are output, the system may interrupt the operation with a
%PLEASE ACKNOWLEDGE. If this occurs within a highlighted hit string then the
remainder of the string, which is displayed in the following screen, is not
highlighted.

If inserting the terminal control characters in the line that is to be output
would increase its length beyond 32768 characters then the insertion
operation is aborted and the hit strings in the remainder of the line are not
highlighted. The message EDT1248 informs the user of this.

EDT statements @ON (format 1)

U41709-J-Z125-1-76 379

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

The first line containing the string HIT is to be output.

All the lines containing the string HIT are to be output. The first located hit string is then to
be written to line 100.

If there is more than one hit then the contents of the line number variable #L0 and the
integer variables #I0 and #I1 apply to the first detected hit, i.e.. HIT in line 2.

 1.00 ALL LINES IN<···
 2.00 WHICH A HIT OCCURS<···
 3.00 ARE TO BE OUTPUT.<··
 4.00 IF THERE IS NO<···
 5.00 HIT THEN NOTHING<···
 6.00 IS DISPLAYED.<··
 7.00 ··

on & print f 'HIT'

 2.0000 IN WHICH A HIT OCCURS
 %PLEASE ACKNOWLEDGE

 1.00 ALL LINES IN<···
 2.00 WHICH A HIT OCCURS<···
 3.00 ARE TO BE OUTPUT.<··
 4.00 IF THERE IS NO<···
 5.00 HIT THEN NOTHING<···
 6.00 IS DISPLAYED.<··
 7.00 ··

on & print 'HIT';create 100: #l0:#i0-#i1:··············

 2.0000 IN WHICH A HIT OCCURS
 5.0000 HIT THEN NOTHING
 %PLEASE ACKNOWLEDGE

@ON (format 1) EDT statements

380 U41709-J-Z125-1-76

All the lines which contain the string HIT after column 2 are to be output.

The lines which contain the string UT at least twice are to be output.

 1.00 ALL LINES IN<···
 2.00 WHICH A HIT OCCURS<···
 3.00 ARE TO BE OUTPUT.<··
 4.00 IF THERE IS NO<···
 5.00 HIT THEN NOTHING<···
 6.00 IS DISPLAYED.<··
 100.00 HIT<··
 101.00 ··

on &:2 print 'HIT'···0001.00:00001(01)

 2.0000 IN WHICH A HIT OCCURS
 %PLEASE ACKNOWLEDGE

 1.00 ALL LINES IN<···
 2.00 WHICH A HIT OCCURS<···
 3.00 ARE TO BE OUTPUT.<··
 4.00 IF THERE IS NO<···
 5.00 HIT THEN NOTHING<···
 6.00 IS DISPLAYED.<··
 100.00 HIT<··
 101.00 ··

on & print 'UT',2··0001.00:00001(01)

 3.0000 ARE TO BE OUTPUT.
 %PLEASE ACKNOWLEDGE

EDT statements @ON (format 1)

U41709-J-Z125-1-76 381

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

All the lines which do not contain the string HIT are to be output.

 1.00 ALL LINES IN<···
 2.00 WHICH A HIT OCCURS<···
 3.00 ARE TO BE OUTPUT.<··
 4.00 IF THERE IS NO<···
 5.00 HIT THEN NOTHING<···
 6.00 IS DISPLAYED.<··
 100.00 HIT<··
 101.00 ··

on & print not HIT·······································0001.00:00001(01)

 1.0000 ALL LINES IN
 3.0000 ARE TO BE OUTPUT.
 4.0000 IF THERE IS NO
 6.0000 IS DISPLAYED.
 %PLEASE ACKNOWLEDGE

@ON (format 2) EDT statements

382 U41709-J-Z125-1-76

9.75 @ON (format 2) – Output the start column of a hit string

This format of the @ON statement causes EDT to output the line numbers and the numbers
of the columns in which hit strings begin when searching in work files. In interactive mode,
the output is written to SYSOUT and in batch mode it is written to SYSLST. If no search term
is specified in the statement, EDT outputs the line numbers and the length of each line in
the specified line range.

When the search is performed in string variables, the names and lengths of the string
variables are output instead of the line numbers and line lengths. The length specifications
indicate the number of characters in the lines or string variables.

lines One or more line ranges in which the search is to be performed.

svars One or more ranges of string variables in which the search is to be
performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL Each time a hit string is found in a line, the value of the column at which the
string begins is output. If ALL is not specified then only the column value
corresponding to the first hit string in a line is output.

F Only the column values for the first hit line in each specified line range are
output. If F is not specified then the column value for each hit line in each
line range is output.

R The lines are searched through from right to left. If R is not specified then
they are searched through from left to right.

Operation Operands F mode, L mode
@ON

 [,...] [:cols[:]] COLUMN

 [[ALL] [F] [R] [PATTERN] search [,int]]

 lines

 svars

EDT statements @ON (format 2)

U41709-J-Z125-1-76 383

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

PATTERN The wildcards present in the search term are interpreted.

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

int Only the intth occurrence of the search term in a line is considered to
represent the first hit. Values between 1 and 32768 are permitted for int.
The default value for int is 1 byte.

The output column values have five digits since the maximum number of characters that
can be accommodated in a work file line or a string variable is 32768. A line of output may
contain up to 10 column specifications followed by a line feed. The line number is not output
in the continuation line.

Example

The lengths of all the lines are to be output.

 1.00 HOW LONG IS LINE 1 ?<···
 2.00 AND LINE 2 ?<···
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?<·······································
 4.00 ··

on & column··0001.00:00001(01)

 1.0000 00020
 2.0000 00012
 3.0000 00032
 %PLEASE ACKNOWLEDGE

@ON (format 2) EDT statements

384 U41709-J-Z125-1-76

The column at which the string ’E ’ occurs for the first time (searching from the right) is to
be output.

All the columns in which the string 'E ' occurs in line 1 are to be output.

The column number of the hit (i.e. third occurrence of the search term E) is to be output for
all the lines which contain at least three occurrences of the string E.

 1.00 HOW LONG IS LINE 1 ?<···
 2.00 AND LINE 2 ?<···
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?<·······································
 4.00 ··

on 1 column r 'E '···0001.00:00001(01)

 1.0000 00016
 %PLEASE ACKNOWLEDGE

 1.00 HOW LONG IS LINE 1 ?<···
 2.00 AND LINE 2 ?<···
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?<·······································
 4.00 ··

on 1 column all 'E '···01.00:00001(01)

 1.0000 00016
 %PLEASE ACKNOWLEDGE

 1.00 HOW LONG IS LINE 1 ?<···
 2.00 AND LINE 2 ?<···
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?<·······································
·

on & column 'E ',3···0001.00:00001(01)

EDT statements @ON (format 2)

U41709-J-Z125-1-76 385

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

All the lines and column numbers which contain the search term are to be output.

 3.0000 00028
 %PLEASE ACKNOWLEDGE

 1.00 HOW LONG IS LINE 1 ?<···
 2.00 AND LINE 2 ?<···
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?<···v···································
 4.00 ··

on & column all 'E'···001.00:00001(01)

 1.0000 000016
 2.0000 00008
 3.0000 00013 00016 00028
 %PLEASE ACKNOWLEDGE

@ON (format 3) EDT statements

386 U41709-J-Z125-1-76

9.76 @ON (format 3) – Mark lines with search term

This format of the @ON statement causes all records in which a hit is identified to be
flagged with the specified record mark. In F mode, the work window is positioned at the first
hit record.

lines One or more line ranges in which the search is to be performed.

svars One or more ranges of string variables in which the search is to be
performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line is
ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL Although it is permissible to specify ALL the specification is pointless since
a record can only be marked once.

F Only the first hit line in each line range is marked. If F is not specified then
each hit line in each specified line range is marked.

R This specification is pointless since whether or not hits are found in a line is
independent of the direction of the search.

NOT A hit is identified if the search term is not present in the specified column
range in a line (negative search).

PATTERN The wildcards present in the search term are interpreted.

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

Operation Operands F mode, L mode
@ON

 [,...] [:cols[:]] FIND [ALL] [F] [R] [NOT] [PATTERN]

 search [,int] [MARK [m]]

 lines

 svars

EDT statements @ON (format 3)

U41709-J-Z125-1-76 387

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

int Only the intth occurrence of the search term in a line is marked. All values
between 1 and 32768 are permitted for int. The default value for int is 1
byte.

MARK The hit lines are marked. If the operand is not specified, the hit lines are
assigned the mark 1. If string variables are specified in the search range
then the MARK operand is ignored for these.

m Number of the mark (1..9). If m is not specified, the hit line is assigned
record mark 1.

Any existing record marks (e.g. those set by previous @ON statements) are retained.

If the statement is used for a file opened for real processing with @OPEN (format 2) then
no records are marked. In F mode, the work window is simply positioned at the first hit
record. The explicit specification of MARK or MARK m is rejected with the error message
EDT4935.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
The statement @ON lines FIND NOT PATTERN '/'... can be used to specifically mark
empty lines (records of length 0) if '/' is the wildcard that stands for precisely one
character.

Example

The records which contain the search term STR. should be flagged with record mark 2. EDT
automatically moves to the 1st hit record.

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

on & find 'STR.' mark 2··0001.00:00001(01)

@ON (format 3) EDT statements

388 U41709-J-Z125-1-76

The work window has been positioned at line 3 since this contains the first hit record.

+(2) is specified to scroll to the next record with record mark 2.

 3.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

+(2)··.0003.00:00001(01)

 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

EDT statements @ON (format 4)

U41709-J-Z125-1-76 389

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.77 @ON (format 4) – Copy marked lines

This format of the @ON statement copies all the records marked with the specified record
mark in the searched line ranges into the specified work file.

lines One or more line ranges in which the search is to be performed.

cols Although the column range may be specified, this has no significance since
only record marks are searched for.

ALL Although the specification is permitted, it is pointless since a record can only
be marked once.

F Only the first hit record with the specified record mark in each specified line
range is copied. If F is not specified then all the records with the specified
record mark in each specified line range are copied.

R This specification is of no significance since the search direction is irrel-
evant when searching for record marks.

NOT If NOT is specified then records which possess a record mark other than the
specified record mark m are copied. If NOT is not specified then records
which possess the record mark m are copied.

This format cannot be used to copy records which do not have a record
mark.

m Number of the record mark (1..9) that is to be searched for.

procnr The number of the work file (0..22) to which the hit lines are to be copied.

An active work file or the current work file may not be specified. If OLD is not
specified and hit records are found then the target work file is deleted in full
before the copy operation (see @DELETE, format 2). If no hit records are
found then the content of the target work file remains unchanged.

KEEP The line numbers of the hit records are retained on copying. If KEEP is not
specified, EDT creates the target work file as of the current line number
which is increased by the current increment for each copied hit record.

Operation Operands F mode, L mode
@ON lines[,...] [:cols[:]] FIND [ALL] [F] [R] [NOT] MARK m

 [COPY [TO]] (procnr) [KEEP] [OLD]

@ON (format 4) EDT statements

390 U41709-J-Z125-1-76

OLD The content of the target work file is not deleted before the copy operation.
Any existing lines which have the same line number in the work file are
overwritten. If OLD is not specified and hit records are found then the target
work file is deleted in full before the copy operation (see @DELETE, format
2).

If the specified work file is empty or has been completely deleted and has the character set
*NONE then it is assigned the character set of the current work file when the copy operation
is performed.

If the specified work file has a character set then the lines that are to be copied are
converted into this work file's character set. If characters which cannot be displayed in the
work file's character set are identified then these characters are replaced by a substitute
character provided that such a character has been specified (see @PAR SUBSTITUTION-
CHARACTER); otherwise, the @ ON statement is rejected and error message EDT5453 is
output.

When lines are copied to the target work file, record marks are not taken over.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

Line range 1 to 5 is to be checked for record mark 2 and the hit records are to be copied
together with their line numbers to work file 3. Processing then branches to work file 3.

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

on 1-5 find mark 2 copy to (3) keep ; 3························0001.00:00001(01)

 3.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00

···0003.00:00001(03)

EDT statements @ON (format 5)

U41709-J-Z125-1-76 391

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.78 @ON (format 5) – Copy lines with search term

This format of the @ON statement is used to copy all the hit lines in the line ranges that are
to be searched into the specified work file.

lines One or more line ranges in which the search is to be performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line is
ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL Although the specification is permitted, it is pointless since a record can only
be copied once.

F Only the first hit line in each specified line range is copied. If F is not
specified then all the hit lines from each specified line range are copied.

R This specification is pointless since whether or not hits are found in a line is
independent of the direction of the search.

NOT A hit is identified if the search term is not present in the specified column
range in a line (negative search).

PATTERN The wildcards present in the search term are interpreted.

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

int Only the intth occurrence of the search term in a line is considered to
represent the first hit. Values between 1 and 32768 are permitted for int.
The default value for int is 1 byte.

Operation Operands F mode, L mode
@ON lines[,...] [:cols[:]] FIND [ALL] [F] [R] [NOT] [PATTERN]

 search [,int] [COPY [TO]] (procnr) [KEEP] [OLD]

@ON (format 5) EDT statements

392 U41709-J-Z125-1-76

procnr The number of the work file (0..22) to which the hit lines are to be copied.

An active work file or the current work file may not be specified. If OLD is not
specified and hit records are found then the target work file is deleted in full
before the copy operation (see @DELETE, format 2). If no hit records are
found then the content of the target work file remains unchanged.

KEEP The line numbers of the hit records are retained on copying. If KEEP is not
specified, EDT creates the target work file as of the current line number
which is increased by the current increment for each copied hit record.

OLD The content of the target work file is not deleted before the copy operation.
Any existing lines which have the same line number in the work file are
overwritten. If OLD is not specified and hit records are found then the target
work file is deleted in full before the copy operation (see @DELETE, format
2).

If the specified work file has a character set then the lines that are to be copied are
converted into this work file's character set. If characters which cannot be displayed in the
work file's character set are identified then these characters are replaced by a substitute
character provided that such a character has been specified (see @PAR SUBSTITUTION-
CHARACTER); otherwise, the @ ON statement is rejected and error message EDT5453 is
output.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

Records which contain the search term STR are to be copied into work file 5. Processing
then branches to work file 5.

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 HOFER MARIA GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

on & find 'STR.' copy to (5) ; 5·······························0001.00:00001(01)

EDT statements @ON (format 5)

U41709-J-Z125-1-76 393

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Processing branches to work file 1.

All the records corresponding to individuals whose first names start with M and end with A
are copied to work file 6. Processing then branches to work file 6.

 1.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 2.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 3.00 ··

1··0001.00:00001(05)

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 HOFER MARIA GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTR.8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

on & :10-20: find pattern 'M*A' copy to (6) ; 6················0001.00:00001(01)

 1.00 HOFER MARIA GANGGASSE 3A 80123 MUENCHEN<·······················
 2.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 3.00 ··

···0001.00:00001(06)

@ON (format 6) EDT statements

394 U41709-J-Z125-1-76

9.79 @ON (format 6) – Replace hit string

If a hit is found then this format of the @ON statement replaces the hit string with a specified
string.

lines One or more line ranges in which the search is to be performed.

svars One or more ranges of string variables in which the search is to be
performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL All the hit strings in a line are replaced by the specified string. If ALL is not
specified then only the first hit string is replaced.

F In each specified line range, strings are only replaced in the first hit line. If
F is not specified then the replacement is made in every hit line of every
specified line range.

R The lines are searched through from right to left. If R is not specified then
they are searched through from left to right.

PATTERN The wildcards present in the search term are interpreted.

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

int Only the intth occurrence of the search term in a line is considered to
represent the first hit. Values between 1 and 32768 are permitted for int.
The default value for int is 1 byte.

Operation Operands F mode, L mode
@ON

 [,...] [:cols[:]] CHANGE [ALL] [F] [R] [PATTERN]

 search [,int] [TO] string [V]

 lines

 svars

EDT statements @ON (format 6)

U41709-J-Z125-1-76 395

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

string String that is to be replaced by the hit string. It is also permissible to specify
an empty string.

The string is converted into the character set used by the work file or string
variable. If the string contains characters which cannot be displayed in the
target character set then these characters are replaced by a substitute
character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the @ON statement is rejected
and error message EDT5453 is output.

V The number of hit lines is stored in the integer variable #I2 and the total
number of hits is stored in the integer variable #I3. The count is performed
irrespective of whether any replacement is performed or not (due to
excessive length). The V operand only has an effect if the ALL operand is
also specified. If V is not specified then the integer variables #I2 and #I3
remain unchanged.

If the replacement would cause a record to exceed the maximum record length of 32768
characters then no replacement is made, message EDT1937 is output and processing is
continued.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

The first @ON searches for the third occurrence of the character I in line 2. This I is then
to be replaced by the string present in columns 19 to 21 of line 1, i.e. STU.

The second @ON replaces the first occurrence of the string IS in line 2 with an empty
string, i.e. it is deleted (alternative to @ON format 9).

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 ABCDEFGHIJKLMNOPQRSTUVWXYZ<···
 2.00 WHO ISIS AS IBBORN AS A MULE ?<···
 3.00 ··

on 2 change 'I',3 to 1:19-21 ; on 2 change 'IS' to '' ·········0001.00:00001(01)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 ABCDEFGHIJKLMNOPQRSTUVWXYZ<···
 2.00 WHO IS AS STUBBORN AS A MULE ?<···
 3.00 ··

@ON (format 7) EDT statements

396 U41709-J-Z125-1-76

9.80 @ON (format 7) – Replace or insert before or after the
hit string

This format of the @ON statement can be used to insert or replace text before or after a hit
string in work file lines or string variables.

lines One or more line ranges in which the search is to be performed.

svars One or more ranges of string variables in which the search is to be
performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL In the case of a text insertion operation, EDT inserts the string string
before or after all the hit strings in a line. To identify any further hits, the
search continues after the inserted text in the case of a left-to-right search
and before the inserted text in the case of a right-to-left search.

In the case of a text replacement operation, EDT replaces the line content
with the string string before or after all the hit strings in a line. To identify
any further hits, the search is continued before or after the replaced text.

If, in the case of a left-to-right search, the text is replaced after a hit string
then the specification ALL is of no significance. The same applies if text is
replaced before a hit string during a right-to-left search.

If ALL is not specified then text is only inserted or replaced before or after
the first hit string in a line.

Operation Operands F mode, L mode
@ON

 [,...] [:cols[:]] FIND [ALL] [F] [R] [PATTERN]

search [,int] string

 lines

 svars
 CHANGE

 INSERT

 PREFIX

 SUFFIX

EDT statements @ON (format 7)

U41709-J-Z125-1-76 397

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

F In each specified line range, text is only replaced or inserted in the first hit
line. If F is not specified then the replacement or insertion is performed in
every hit line of every specified line range.

R The lines are searched through from right to left. If R is not specified then
they are searched through from left to right.

PATTERN The wildcards present in the search term are interpreted.

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

int Only the intth occurrence of the search term in a line is considered to
represent the first hit. Values between 1 and 32768 are permitted for int.
The default value for int is 1 byte.

CHANGE The text located before or after the hit string up to the start or end of the
record respectively is replaced by the string specified with string.

INSERT The string specified with string is inserted in front of or after the hit string.

PREFIX The string specified with string replaces the line content before the hit
string or is inserted in front of the hit string.

SUFFIX The string specified with string replaces the line content after the hit string
or is inserted behind the hit string.

string String which is to replace the text before or after the hit string or which is to
be inserted before or after the hit string. It is also permissible to specify an
empty string.

The string is converted into the character set used by the work file or string
variable. If the string contains characters which cannot be displayed in the
target character set then these characters are replaced by a substitute
character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the @ON statement is rejected
and error message EDT5493 is output.

The string string should be separated from the operands PREFIX or
SUFFIX by a blank.

No text is replaced or inserted if this would cause the record to exceed the maximum record
length of 32768 characters. Instead, in this case, the message EDT1937 is output and
execution is continued.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

@ON (format 7) EDT statements

398 U41709-J-Z125-1-76

Example 1

All shareable files under the user ID USER2 which begin with the partially qualified name
XMPL. are to be listed.

Every partially qualified name XMPL. is to be preceded by the string @READ '$USER2..

The closing single quote is inserted after the four file names $USER2.XMPL.1 to
$USER2.XMPL.4.

The four files XMPL.1 to XMPL.4 are read in sequence into work file 1.

 23.00 ··
fstat '$user2.xmpl.'···············..........·················0001.00:00001(01)

 1.00 XMPL.1<···
 2.00 XMPL.2<···
 3.00 XMPL.3<···
 4.00 XMPL.4<···
 5.00 ··

on & find 'XMPL.' insert prefix '@READ ''$USER2.'··············0001.00:00001(09)

 1.00 @READ '$USER2.XMPL.1<···
 2.00 @READ '$USER2.XMPL.2<···
 3.00 @READ '$USER2.XMPL.3<···
 4.00 @READ '$USER2.XMPL.4<···
 5.00 ·· ·······

on & find pattern 'XMPL./' insert suffix ''''··················0001.00:00001(09)

 1.00 @READ '$USER2.XMPL.1'<··
 2.00 @READ '$USER2.XMPL.2'<··
 3.00 @READ '$USER2.XMPL.3'<··
 4.00 @READ '$USER2.XMPL.4'<··
 5.00 ··

1 ; do 9···0001.00:00001(09)

EDT statements @ON (format 7)

U41709-J-Z125-1-76 399

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 2

The third occurrence of the string 11 (reading right to left) is to be searched for in the line
range 1 to 2 and, if a hit is found, ++++ is to be inserted after it.

In line 1, the search term occurred the third time (reading from the right) in columns 17-18.

In line 2, the search term occurred for the first time in columns 24-25, for the second time
in columns 22-23 and for the third time in columns 19-20. The string ++++ has been inserted
after the hit.

It is now necessary to search through the entire work file as of column 4 for the third occur-
rence of the string 111. If a hit is found then the text that follows it is to be replaced by ####.

The search term was not found in line 1.

In line 2, the search term occurred as a hit as of line 4 for the first time in columns 7-9, for
the second time in columns 12-14 and for the third time in columns 17-19. The remainder
of the line after the hit has been replaced by the string ####.

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 A11B11C11D11E11F11G11H11<···
 2.00 A1111B1111C1111D1111E1111<··
 3.00 ··

on 1-2 find R '11',3 insert suffix '++++'······················0001.00:00001(01)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 A11B11C11D11E11F11++++G11H11<···
 2.00 A1111B1111C1111D1111++++E1111<··
 3.00 ··

on &:4 find '111',3 change suffix '####'·······················0001.00:00001(01)

 1.00 A11B11C11D11E11F11++++G11H11<···
 2.00 A1111B1111C111D111####<···
 3.00 ··

@ON (format 8) EDT statements

400 U41709-J-Z125-1-76

9.81 @ON (format 8) – Delete hit string

If a hit is found then this format of the @ON statement deletes the hit string when the line
content or string variable is being searched through. In this case, the remaining content of
the work file lines or string variables is retained.

lines One or more line ranges in which the search is to be performed.

svars One or more ranges of string variables in which the search is to be
performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL All the hit strings in a line are deleted. If ALL is not specified then only the
first hit string in a line is deleted.

F In each specified line range, hit strings are only deleted in the first line
containing hits. If F is not specified then the hit strings are deleted in each
line in each specified line range.

R The lines are searched through from right to left. If R is not specified then
they are searched through from left to right.

PATTERN The wildcards present in the search term are interpreted.

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

int Only the intth occurrence of the search term in a line is considered to
represent the first hit. Values between 1 and 32768 are permitted for int.
The default value for int is 1 byte.

Operation Operands F mode, L mode
@ON

 [,...] [:cols[:]] DELETE [ALL] [F] [R] [PATTERN]

 search [,int]

 lines

 svars

EDT statements @ON (format 8)

U41709-J-Z125-1-76 401

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

The lines in the entire work file are to be searched through from right to left for the string
XXXYYYZZZ. The first time the search term occurs, the string is to be deleted and the search
terminated.

In line 1, the first occurrence of the search term when searching from the right was found
starting at column 29.

Next, every occurrence of the search term XXXYYYZZZ is to be deleted throughout the entire
work file.

 1.00 XXXYYYZZZ *** XXXYYYZZZ ### XXXYYYZZZ %%%<······························
 2.00 AAA XXXYYYZZZ BBB XXXYYYZZZ CCC XXXYYYZZZ<······························
 3.00 ··

on & delete f r 'XXXYYYZZZ'····································0001.00:00001(01)

 1.00 XXXYYYZZZ *** XXXYYYZZZ ### %%%<·······································
 2.00 AAA XXXYYYZZZ BBB XXXYYYZZZ CCC XXXYYYZZZ<······························
 3.00 ··

on & delete all 'XXXYYYZZZ'····································0001.00:00001(01)

 1.00 *** ### %%%<···
 2.00 AAA BBB CCC<··
 3.00 ··

@ON (format 9) EDT statements

402 U41709-J-Z125-1-76

9.82 @ON (format 9) – Delete before or after the hit string

This format of the @ON statement causes EDT to delete the content of a work file line or
string variable before or after the hit string if a hit is found.

lines One or more line ranges in which the search is to be performed.

svars One or more ranges of string variables in which the search is to be
performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL Each time a hit string is found in a line, the text before or after the hit string
is deleted. If, in the case of a left-to-right search, the text after the hit string
is deleted then the specification ALL is of no significance. The same applies
if the text before the hit string is deleted during a right-to-left search. If ALL
is not specified then the delete operation only applies to the first hit string in
a line.

F In each specified line range, texts are only deleted before or after the hit
strings in the first line containing hits. If F is not specified then text is deleted
before or after the hit strings in each hit line in each specified line range.

R The lines are searched through from right to left. If R is not specified then
they are searched through from left to right.

PATTERN The wildcards present in the search term are interpreted.

Operation Operands F mode, L mode
@ON

 [,...] [:cols[:]] FIND [ALL] [F] [R] [PATTERN]

 search [,int] DELETE

 lines

 svars
 PREFIX

 SUFFIX

EDT statements @ON (format 9)

U41709-J-Z125-1-76 403

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

int Only the intth occurrence of the search term in a line is considered to
represent the first hit. Values between 1 and 32768 are permitted for int.
The default value for int is 1 byte.

PREFIX The content of the hit line before the hit string is deleted as far as the start
of the record.

SUFFIX The content of the hit line after the hit string is deleted as far as the end of
the record.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

The text preceding the hit is to be deleted before the fourth occurrence of the string ABABAB
('AB'*3,4) in every line in the entire line range (%.-.$).

In line 1, the search term was found for the fourth time as a hit starting at column 22.

In line 2, the search term is found as a hit for the first time starting in column 1, for the
second time starting in column 7, for the third time starting in column 13 and for the fourth
time starting in column 19. When searching for the second and subsequent hits, EDT starts
after a hit string each time.

 1.00 ABABAB ABABAB ABABAB ABABAB<··
 2.00 ABABABABABABABABABABABAB<···
 3.00 ··

on %.-.$ find 'AB'*3,4 delete prefix···························0001.00:00001(01)

 1.00 ABABAB<···
 2.00 ABABAB<···
 3.00 ··

@ON (format 10) EDT statements

404 U41709-J-Z125-1-76

9.83 @ON (format 10) – Delete lines or string variables which
contain the search term

This format of the @ON statement causes EDT to delete the line or the content of a string
variable which contains the search term. In this case, string variables are reinitialized with
a blank and contain the character set EDF041.

lines One or more line ranges in which the search is to be performed.

svars One or more ranges of string variables in which the search is to be
performed.

cols Contiguous column range to which the search is to be limited.

If the range specification contains only a single column specification, this
indicates the range from the specified column through to the end of the line.
If the first column specification is greater than the line length then the line or
string variable is ignored.

If no column range is specified then the column range specified with
@SEARCH-OPTION is used.

ALL Although the specification is permitted, it serves no purpose since a line is
always deleted when the first hit string is found.

F Only the first hit line in each specified line range is deleted. If F is not
specified then each line containing the hit string in each line range is
deleted.

R This specification is pointless since whether or not hits are found in a work
file line is independent of the direction of the search.

NOT A line is deleted if the search term is not found in the specified column range
in a line (negative search).

PATTERN The wildcards present in the search term are interpreted.

Operation Operands F mode, L mode
@ON

 [,...] [:cols[:]] FIND [ALL] [F] [R] [NOT] [PATTERN]

 search [,int] DELETE

 lines

 svars

EDT statements @ON (format 10)

U41709-J-Z125-1-76 405

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

search Search term that is to be searched for in the search range (for details, see
section “Searching with @ON” on page 78). It is not permissible to specify
an empty string.

int Only the intth occurrence of the search term in a line is considered to
represent the first hit. Values between 1 and 32768 are permitted for int.
The default value for int is 1 byte.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
All the empty lines (records of length 0) in a range can be deleted using the statement
@ON lines FIND NOT PATTERN '/' DELETE if '/' is the wildcard that stands for
precisely one character.

Example

All the lines in the work file that contain three or more occurrences of the string ABC are to
be deleted.

Lines 1, 2 and 3 have been deleted. Next, all the lines in the entire work file in which the
character A occurs after column 7 are to be deleted.

 1.00 1 ABC 2 ABC 3 ABC 4 ABC 5 ABC<·································
 2.00 1 ABC 2 ABC 3 ABC 4 ABC<···
 3.00 1 ABC 2 ABC 3 ABC<···
 4.00 1 ABC 2 ABC<···
 5.00 1 ABC<···
 6.00 1<··
 7.00 ··

on & find 'ABC',3 delete·······································0001.00:00001(01)

 4.00 1 ABC 2 ABC<···
 5.00 1 ABC<···
 6.00 1<··
 7.00 ··

on & : 7 find 'A' delete·······································0004.00:00001(01)

@ON (format 10) EDT statements

406 U41709-J-Z125-1-76

Line 4 has been deleted. Next, all the lines in the entire work file which contain two consec-
utive blanks ’ËË’ are to be deleted.

Line 5 has been deleted.

 5.00 1 ABC<···
 6.00 1<··
 7.00 ··

on & find ' '*2 delete···0005.00:00001(01)

 6.00 1<··
 7.00 ··

EDT statements @OPEN (format 1)

U41709-J-Z125-1-76 407

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.84 @OPEN (format 1) – Open and read a file

@OPEN (format 1) is used to open an existing file and read it into the current work file or
to create a file and open it for processing.

The work file must be empty and a SAM file, ISAM file or library element must not already
be open in another work file. The file remains open until it is closed with @CLOSE.

Whenever this section refers to a “file”, this can be a SAM file, an ISAM file, a library
element or a POSIX file.

LIBRARY= A library element is to be opened and read in. This is defined by explicitly
specifying the library name and the element designation.

path1 Name of the library.

elname Name of the element.

vers Version of the required element (see the LMS User Guide [14]). If vers is
not specified or if *STD is specified then the highest available version of the
element is selected.

eltype Type of element. Permitted type specifications are S,M, P, J, D, X, *STD as
well as freely selectable type names having one of these types as basic
type. If eltype is not specified then the default type specified with @PAR
ELEMENT-TYPE is used. The permitted element types and their meanings
are described in chapter “File processing” on page 131.

Operation Operands F mode, L mode
@OPEN

 [,MODE=]

LIBRARY=path1 ([ELEMENT=] elname [(vers)] [,eltype])
ELEMENT=elname [(vers)] [,eltype]

FILE= [,TYPE=] [,KEY=]

POSIX-FILE=xpath [,CODE=name]

path2

*linkname

ISAM
SAM
CATA-

LINENUMBER
DATA
IGNORE

ANY
UPDATE
NEW
REPLACE

@OPEN (format 1) EDT statements

408 U41709-J-Z125-1-76

ELEMENT=... A library element is to be opened and read in. This is defined by means of
the element designation without any library name specification. The default
library set with @PAR LIBRARY is used implicitly (if @PAR LIBRARY has
been specified, otherwise the error message EDT5181 is issued).

The operands elname, vers and eltype have the same meaning as when
a library is specified explicitly (see above).

FILE= A BS2000 file is to be opened and read in.

path2 Name of the BS2000 file (fully qualified file name) that is to be opened.

*linkname File link name of the BS2000 file that is to be opened and read in. The file
name and the file attributes are stored in the Task File Table. In this way,
it is possible to create files with nonstandard names. The file link name must
not be specified as the special file name *BY-PROGRAM. This results in the
error EDT4923. If no file link name is defined then the statement is rejected
with the message EDT5480.

If the file link name is declared as the special file name *DUMMY then it is
treated as a nonexistent file. However, no file is created.

TYPE= Specifies the access method for the BS2000 file.

SAM If the file does not yet exist then a SAM file is created, otherwise the speci-
fication is ignored. This is the default value when a new file is created.

ISAM If the file does not yet exist then an ISAM file is created, otherwise the speci-
fication is ignored.

CATALOG If the file already exists then the attributes are taken over from the category
entry, otherwise the message EDT5281 is output. The access method is
determined on the basis of the FCBTYPE attribute in the catalog entry. This
is the default value for existing files.

KEY= In the case of ISAM files, specifies the location at which the ISAM key is
stored in the work file. In the case of other file types, this operand is ignored.

LINENUMBER
The ISAM key is stored as a line number in the work file. This is the default
value. If the ISAM key cannot be interpreted as a line number because the
position of the key differs from the default value, the key is too long or the
keys are not numerical then the message EDT5459 is output and the file is
not opened.

DATA The ISAM key becomes a component of the data range in the work file.

IGNORE The ISAM key is not stored in the work file. If the position of the key differs
from the default value, the message EDT5466 is output and the file is not
read in.

EDT statements @OPEN (format 1)

U41709-J-Z125-1-76 409

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

POSIX-FILE= A POSIX file is to be opened.

xpath Path name of the POSIX file that is to be opened.

The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

CODE= Defines the character set that is to be assumed for the POSIX file. Since it
is not possible to assign character sets to POSIX files in the POSIX file
system, a user specification is required here.

If CODE is not specified then the character set defined in @PAR CODE is
assumed.

name Character set of the POSIX file that is to be read in. The name of a valid
character set must be specified for name (see section “Character sets” on
page 47).

EBCDIC The keyword EBCDIC is now only supported for reasons of compatibility and
is a synonym for the character set EDF041.

ISO The keyword ISO is now only supported for reasons of compatibility and is
a synonym for the character set ISO88591.

MODE= Specifies whether the file should already be present.

ANY If the file already exists then it is opened for processing and read in.
Otherwise, it is created and opened for processing. This is the default value.

UPDATE The file that is to be opened and read in for processing must already exist
or must be linked to *DUMMY via the file link name. Otherwise, the message
EDT5281, EDT5284 or EDT5310 is output depending on the file type.

NEW The file is created and opened for processing. It must not already be present
as otherwise the message EDT5258, EDT5273 or EDT5311 is output
depending on the file type.

REPLACE If the file already exists then it is opened for processing. However, its
previous content is deleted and is not read into the work file. Otherwise, it
is created and opened for processing.

If the current work file is not empty or a file is already open in it then the statement is rejected
with the message EDT5191 or EDT5180.

If the specified file does not exist or cannot be accessed as required or if an existing file
cannot be read in successfully then the statement is rejected with a corresponding error
message.

@OPEN (format 1) EDT statements

410 U41709-J-Z125-1-76

When ISAM files are read with the operand KEY=LINENUMBER, the line numbers in the work
file are derived from the file's ISAM key. In all other cases, they are formed using the
procedure “insert between two lines” (see section “Line number assignment” on page 36).

If the empty work file has the character set *NONE when an existing file is read in then the
work file is assigned the character set of the file that is to be read in. If this character set is
*NONE then the work file is assigned the character set EDF003IRV.

If the empty work file already has a character set when an existing file is opened (e.g. due
to a preceding @CODENAME statement) then the records that are to be read in are
converted from the file's character set into the work file's character set. If the file that is to
be read in contains characters which cannot be displayed in the work file's character set
then these characters are replaced by a substitute character provided that such a character
has been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise, the file is not
read in and the error message EDT5453 is output.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the read operation is rejected with the message
EDT5454.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

@OPEN LIBRARY=PROGLIB(ELEMENT=TEST)

The element TEST in the library PROGLIB is opened and read into the current work file. In
this case, the highest available version and the default type specified with @PAR
ELEMENT-TYPE are used. The work file must first be empty.

@PAR LIBRARY=LIB1
@SET #S01='PROC.EX'
@OPEN ELEMENT=.#S01(V01),J

The element with the name PROC.EX, the version V01 and the element type J (procedure)
from the library LIB1 is opened and read into the current work file.

@OPEN FILE=FILE1,TYPE=ISAM,MODE=NEW

The ISAM file FILE1 is created and opened. The line numbers in the work file represent the
ISAM key.

@OPEN POSIX-FILE=/home/user1/test/data,CODE=UTF8

The POSIX file data in the directory /home/user1/test with the character set UTF8 is
opened and read into the current work file.

EDT statements @OPEN (format 2)

U41709-J-Z125-1-76 411

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.85 @OPEN (format 2) – Real processing of an ISAM file

@OPEN (format 2) opens an ISAM file for processing directly on the disk. This file may
already exist, may be created before being opened or be created as a copy of an existing
SAM or ISAM file.

Only the section of the ISAM file that is actually required is read at any given time into the
current work file. In F mode, these are the records which are fully or partially displayed on
the screen. In L mode, the required records are not read in until an EDT statement is
executed. The file remains open until processing is terminated by @CLOSE.

It is only possible to open ISAM files for real processing in work file 0. This must be empty
or contain a file opened for real processing using @OPEN (format 2).

file1 Name of the file that is to be opened or copied. The name must correspond
to the SDF data type <filename 1..54>.

Here, the symbolic name '/' for a file for which the file link name EDTSAM
or EDTISAM has been assigned by means of the SET-FILE-LINK command
is not permitted.

If no file with this name exists and the AS operand is not present then an
ISAM file is created and opened. If the AS operand is present then the
statement is rejected with the message EDT4971.

If the file is a SAM file and the operand AS is not present then the message
EDT4934 is output.

If the file1 operand is not present then the file that has been preset
globally with @FILE is opened or copied. If there is no such default setting
then the @OPEN statement is rejected with the message EDT5484.

ver Version number of the file. If an incorrect version number is specified for an
existing file then the statement is rejected with EDT4985. If the file that is to
be opened does not exist then this specification is ignored.

KEY Only effective if a SAM file is copied to an ISAM file which is then opened
for real processing. The first 8 characters of each record in the SAM file then
form the key of the ISAM file and are to be interpreted as a line number and
not as a record content after being read in. This type of record can be
created by specifying @WRITE together with the KEY operand.

If file1 is an ISAM file then the KEY operand is ignored.

Operation Operands F mode, L mode
@OPEN [file1] [(ver)] [[KEY] [AS file2 [[,]OVERWRITE]]

@OPEN (format 2) EDT statements

412 U41709-J-Z125-1-76

AS ... The file file1 is copied to an ISAM file. If the copy operation is successful
then the copy is opened for real processing.

file2 Name of the ISAM file to which file1 is copied and which is then opened.
Here, the symbolic name '/' for a file for which the file link name EDTSAM
or EDTISAM has been assigned by means of the SET-FILE-LINK command
is not permitted.
If no file with this name exists then an ISAM file is created before the copy
operation.

If the file file2 already exists and the operand OVERWRITE has not been
specified then the following query is issued in interactive mode:

% EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)?

The file file2 is only overwritten and opened if the user responds Y. In
batch mode, the file is overwritten and opened.

The file names file1 and file2 must not be identical as otherwise the
statement is rejected with the message EDT5489.

OVERWRITE
Suppresses the query EDT0296 if the file file2 exists. The file is
overwritten and opened. If file2 does not yet exist then OVERWRITE has
no effect.

After @OPEN (format 2), the statements @RENUMBER, @SORT and @COMPARE are
rejected. Records from files which have been opened for real processing cannot be marked
(mark statement code, @ON, format 3) and are not automatically saved (see
@AUTOSAVE).

If a file is already open for real processing then this is implicitly closed when another
@OPEN (format 2) statement is issued and the work file is deleted. Only then is the second
file opened.

The line numbers in the work file are formed from the file's ISAM key when the file is read.
When a SAM file is copied to an ISAM file, the ISAM keys are formed from the first 8
characters of the file if the KEY operand has been specified. Otherwise they are formed
using the procedure “Insertion at the current line number” (see section “Line number
assignment” on page 36).

The work file is assigned the character set of the file that is to be read in or (if this does not
yet exist) the character set defined by the current system settings. If this character set is
*NONE then the work file is assigned the character set EDF03IRV. The character set of the
work file can then not be changed until the file is closed.

If the work file already has a different character set then the statement is rejected with the
message EDT5452.

EDT statements @OPEN (format 2)

U41709-J-Z125-1-76 413

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the file link name EDTMAIN is assigned to the ISAM file that is to be opened and if the file
has been newly created then the attributes stored in the TFT are taken into account when
the file is created. Otherwise, a file with default attributes is created. This does not apply if
an existing ISAM file is copied and then opened. Such a file is assigned the attributes of the
file that is to be copied.

Errors in the file (e.g. non-numerical keys, illegal byte sequences etc.) may sometimes not
be detected until much later when the corresponding records are to be read. Not all the
records in the file are read in when the file is opened. Any errors that are subsequently
detected are then reported by the command which was executing when they occurred. In
such cases, a file that has been opened for real processing is automatically closed.

If the ISAM file opened for real processing contains records with identical key values
(duplicate keys) then it is not possible to predict how EDT will behave in all cases. Depending
on the type of read operation, it is possible that either the first or the last of the records with
the identical keys will be displayed. In such cases, the first record is always overwritten. If
EDT identifies the occurrence of such identical key values then it terminates file processing
in the same way as in the presence of other file errors, issues the message EDT5445 and
closes the file that has been opened for real processing.

In an ISAM file with a short key (fewer than 8 characters) which has been opened for real
processing, it is not possible to create records with line numbers that are too large to be
correctly displayed as a key. Statements which cause this are aborted with the error
message EDT5446.

If the AS operand is specified and the first file is an ISAM file then it is copied by means of
an implicit COPY-FILE command. If it is a SAM file then the copy operation is implemented
by means of an implicit @READ statement and an implicit @SAVE statement.

In this case, the statement can be interrupted with [K2]. If it is interrupted and the EDT
session is continued with /INFORM-PROGRAM then the processing of the statement is
aborted and message EDT5501 is output.

Note
This command is suited for processing statements which are too large to be fully loaded
into EDT for processing.

@P-KEYS EDT statements

414 U41709-J-Z125-1-76

9.86 @P-KEYS – Define programmable keys

The @P-KEYS statement is used in interactive mode to load the keyboard's programmable
keys (P keys) with a default assignment predefined by EDT or display the EDT predefined
default assignment.

SHOW This operand displays the predefined EDT default assignment which is
loaded into the P keys with the @P-KEYS statement.

If SHOW is not specified then the P keys are loaded with the default
assignment predefined by EDT.

In batch mode, the @P-KEYS statement is ignored.

When EDT is started, any existing P key assignment remains unchanged. Similarly, the
current assignment is retained when EDT is terminated.

Once the @P-KEYS statement has been executed, the P keys are assigned statements
which cause the following actions (output from the @P-KEYS SHOW statement):

Operation Operands F mode, L mode
@P-KEYS [SHOW]

*** MEANING OF THE P-KEYS ***
P1 : position CURSOR to 1st command line
P2 : position CURSOR to 2nd command line
P3 :
P4 : skip to next page in first window
P5 : skip to previous page in first window
P6 : skip to next page in first window for corrections
P7 : skip to next page in second window
P8 : skip to previous page in second window
P9 : skip to next page in second window for corrections
P10: skip to the next mark in the first window
P11: skip to the previous mark in the first window
P12: position CURSOR eight characters to the right
P13: skip to the next mark in the second window
P14: skip to the previous mark in the second window
P15:
P16:
P17:
P18:
P19:
P20:
--
 PRESS DUE1 FOR RETURN

EDT statements @P-KEYS

U41709-J-Z125-1-76 415

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the P keys have already been loaded with the default EDT settings when the @PAR
SPLIT statement is used to modify the division of the screen or the @VDT statement is used
to change the format at a 9763 terminal then the @P-KEYS statement must be entered
again if the user wants to continue working with the standard EDT assignment for the P
keys (this is necessary because the statement sequences stored in the P keys refer to
absolute positions on the screen).

If @P-KEYS is entered at a terminal without P keys then the statement is rejected with the
error message EDT5366.

@PAGE EDT statements

416 U41709-J-Z125-1-76

9.87 @PAGE – Form feed

The @PAGE statement causes a form feed at SYSLST.

In addition to the output of the feed control character for a form feed, the maximum number
of lines to be printed per page, which is set to a value between 1 and 256 using the @LIST
statement, is reset to the default value 65.

Operation Operands F mode, L mode
@PAGE

EDT statements @PAR

U41709-J-Z125-1-76 417

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.88 @PAR – Define EDT parameter settings

The @PAR statement is used to define the EDT parameter settings. These settings control
the screen display, behavior on input, default values for statements and the declaration of
special meanings for certain characters.

The parameter operand consists of a keyword and the associated assigned value. The
following syntax description for the possible values of parameter is organized thematically.
The operands in the operand description are ordered alphabetically.

Operation Operands F mode, L mode
@PAR

[] [[,] parameter[,...]]

Parameters for the display and output of the work windows in F mode
parameter EDIT [-] FULL [={ON] | OFF}]

EDIT [[-] LONG] [={ON] | OFF}]
HEX [={ON] | OFF}]
INDEX [={ON] | OFF}]
INFORMATION [={ON] | OFF}]
OPTIMIZE [={ON] | OFF}]
PROTECTION [={ON] | OFF}]
SCALE [={ON] | OFF}]
SPLIT = {n $0..$22 | n (0..22) | OFF}

Control of behavior on input and data acquisition
parameter DATA-REPLACEMENT [={ON] | OFF}]

INCREMENT = {inc | *STD}
LIMIT = {col | *STD}
LOWER [={ON] | OFF}]
RENUMBER [={ON] | OFF}]

 $0..$22

 GLOBAL

@PAR EDT statements

418 U41709-J-Z125-1-76

$0..$22 The work file to which the @PAR statement refers.
The comma after the work file specification may only be omitted if no further
operands are specified.

The operands OPTIMIZE and SUBSTITUTION-CHARACTER always apply to
all the work files whereas the SPLIT operand always applies to the current
work file. Any work file specification is ignored in these cases. In the case
of SPLIT, the warning EDT3127 is also output.

If neither $0..$22 nor GLOBAL is specified then the statement applies to the
current work file (if neither OPTIMIZE nor SUBSTITUTION-CHARACTER has
been specified).

GLOBAL Specifies that the @PAR statement applies to all the work files. The comma
after GLOBAL may only be omitted if no further operands are specified.

The SPLIT operand always applies to the current work file (even if GLOBAL
is specified). In this case, the specification of GLOBAL is ignored.

If neither $0..$22 nor GLOBAL is specified then the statement applies to the
current work file (if neither OPTIMIZE nor SUBSTITUTION-CHARACTER has
been specified).

Default settings for other statements
parameter CODE = {name | EBCDIC I ISO}

[ELEMENT [-]] TYPE = {eltype I *STD}
LIBRARY = {path I *NONE}
SDF-NAME-TYPE = {INTERNAL I EXTERNAL I *STD}
SDF-PROGRAM = {progname I *NONE}

Declaration of special meanings for characters
parameter ESCAPE-CHARACTER = {strspec I *NONE}

SEPARATOR = {strchar I *NONE}
STRUCTURE = {strchar I *STD}
SUBSTITUTION-CHARACTER = {strchar I *NONE}

EDT statements @PAR

U41709-J-Z125-1-76 419

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

CODE= Specifies the default value of the CODE operand for statements which read
or write POSIX files (see section “POSIX files” on page 134 and the note at
the end of the section).

When EDT starts, the value EDF041 is set as the default.

name Name of a valid character set. This is used for the CODE operand in state-
ments which read or write POSIX files unless a character set is explicitly
specified for them

EBCDIC This operand is now only supported for reasons of compatibility. It is synon-
ymous with EDF041.

ISO This operand is now only supported for reasons of compatibility. It is synon-
ymous with ISO88591.

DATA-REPLACEMENT=
Specifies whether or not the substitute representation for Unicode
characters (see the operand ESCAPE-CHARACTER) is to be taken into
account when data is input into the specified work file (in the F mode data
window or in L mode) (see section “Substitute character representation in
Unicode” on page 52).

When EDT starts, the value DATA-REPLACEMENT=OFF is set as the default.

ON When data is input in the specified work file, substitute representations of
the form %uxxxx (where % is the escape character defined with @PAR
ESCAPE-CHARACTER and the xs are hexadecimal figures) are replaced
by the corresponding Unicode characters. This applies when lines are
entered in F mode or in L mode but not, for example, when records are read
from files or library elements.

OFF Substitute representations of Unicode characters are only taken into
account in literals in EDT statements.

EDIT-FULL= Determines whether both the data window and statement code column are
to be set to overwritable in F mode. This setting is only effective if the line
number display is active (@PAR INDEX=ON).

When EDT starts, the value EDIT-FULL=OFF is set as the default.

ON The data window and the statement code column are both set to
overwritable. It is possible to enter a statement code in a line and at the
same time to modify data in this line. This means that it is possible to enter
statement codes for data lines that have not yet been created, for example
the statement code O.

@PAR EDT statements

420 U41709-J-Z125-1-76

Switching to EDIT LONG mode (@PAR EDIT-LONG=ON) or deactivating
the line number display (@PAR INDEX=OFF) invalidates this setting.
However, the setting is not deactivated. Instead, it is recorded and becomes
effective again as soon as the conflicting mode is deactivated.

The specification of @PAR EDIT-FULL=ON is ignored as long as write
protection (@PAR PROTECTION=ON) is active.

OFF In a screen line, it is only possible to write the statement code column or the
data section.

EDIT-LONG= Determines whether records that are longer than a screen line are to be
displayed in full or truncated in the work window in F mode.

When EDT starts, the value EDIT-LONG=OFF is set as the default.

ON If possible, records are displayed in full in the work window. In EDIT-LONG
mode, neither the column counter activated with @PAR SCALE=ON nor an
information line requested with @PAR INFORMATION=ON are displayed.
The column counter and information lines are not displayed until EDIT-
LONG mode is exited. For details of the screen layout in EDIT-LONG mode,
see section “The work window” on page 103.

Activating EDIT-LONG mode implicitly deactivates the line number display
(@PAR INDEX=OFF) and hexadecimal mode (@PAR HEX=OFF).

OFF If necessary, records are displayed in truncated form. The length of the
displayed section depends on the terminal and the setting made with @VDT
or @PAR INDEX: 72, 80, 124 or 132 characters per screen line.

The line number display remains active when EDIT-LONG mode is exited.
EDIT-LONG mode is also deactivated by @PAR INDEX=ON and @PAR
HEX=ON.

ELEMENT-TYPE=
Specifies the default element type for library elements.

This type of element is accessed if no element type is specified in the
@COPY, @OPEN, @DELETE, @WRITE or @INPUT statements (see the
note at the end of the section).

When EDT starts, the value S is set as the default.

eltype Permitted type specifications are S, M, P, J, D, X, R, C, H, L, U, F and freely
selectable type names having one of these types as basic type. The eltype
operand can also be specified as a string variable in the form ELEMENT-
TYPE=.svarex. The period must be specified in order to make it possible
to distinguish the name of the string variable from a freely selectable type
name starting with #.

EDT statements @PAR

U41709-J-Z125-1-76 421

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The non-text types (R, C, H, L, U, F) are not permitted in statements used for
reading and writing. Specifying them in @PAR ELEMENT-TYPE is
therefore only of any use if the default setting is used only for the @DELETE
statement. The permitted element types and their meanings are described
in section “File processing” on page 131.

*STD Restores the default value (i.e. the value S).

ESCAPE-CHARACTER=
Specifies the character used to introduce the substitute representation for
Unicode characters (see also section “Substitute character representation
in Unicode” on page 52 and the note at the end of the section).

When EDT starts, the value ESCAPE-CHARACTER=*NONE is set.

strspec Special character that acts as an escape character to introduce a Unicode
substitute representation. If, for example, @PAR ESCAPE-
CHARACTER='%' has been used to declare % as the escape character
then a string of the form %Uxxxx with four hexadecimal digits x is interpreted
as the substitute representation for the Unicode character with the code
xxxx. The setting for @PAR DATA-REPLACEMENT controls whether the
substitute representation is only to be taken into account for literals in state-
ments or is also to apply to data input in the work window or in L mode. The
escape character for the current work file is always used as the basis for the
interpretation of both statements and data input.

*NONE No escape character is assigned. EDT assumes that the input does not
contain any substitute representations.

HEX= This is used to activate and deactivate hexadecimal mode (see section
“Hexadecimal mode” on page 120). In F mode, the lines for which
hexadecimal mode has been activated are displayed on screen in both
printing and hexadecimal form. Details concerning the layout can be found
in the section on hexadecimal mode.

When EDT starts, the value HEX=OFF is set.

ON Hexadecimal mode is activated for the specified work file. This implicitly
deactivates EDIT-LONG mode.
If the same work file is displayed in multiple work windows on the screen
then the same setting is used in both data windows.

If, in the case of split screen display, the work window is so small that it is
not possible to display even one data line together with its hex lines then the
message EDT2404 is output. Hexadecimal mode is activated nevertheless.
The user can then enlarge the data window so that the hex lines can also
be displayed.

OFF Hexadecimal mode is deactivated.

@PAR EDT statements

422 U41709-J-Z125-1-76

INCREMENT= Specifies the increment that is to be used when line numbers are assigned.
For a description of the statements and actions to which this setting applies,
see section “Line number assignment” on page 36.

When EDT starts, the value 1.0 is set as the default.

inc Increment that is to be used when line numbers are assigned. If @PAR
INCREMENT is specified with an increment <0.01 then it should be noted
that the line numbers of read, copied or inserted lines are not displayed in
full in F mode (6-digit line number display). Unwanted results may occur if
these incompletely displayed line numbers are used in statements.

*STD The default value on EDT start is restored.

INDEX= Activates and deactivates the line number display in F mode. The screen
layout with the line number display activated and deactivated is described
in section “F mode” on page 101.

The setting for the line number display is saved separately for the upper and
lower (possible) data windows corresponding to each work file. If only one
data window is displayed on the screen then its settings overwrite those of
the upper data window for the corresponding work file.

If the statement @PAR GLOBAL,INDEX=... has been entered then it
applies to all the (possible) screen windows corresponding to all the work
files. If only a single work file is specified (including the implicit specification
of the current work file) then it is necessary to distinguish between a number
of different cases:

If the screen is split (see @PAR SPLIT) then the @PAR INDEX statement
only applies to the currently visible screen window corresponding to the
specified work file. If both screen windows corresponding to the specified
work file are visible then the statement applies to the entry window.

If neither of the screen windows corresponding to the specified work file are
visible then the statement applies to the upper screen window. The equiv-
alent comments apply to input in L mode, where visibility and entry window
refer to the state following any switch to F mode (using the @EDIT FULL
statement). The corresponding information can be displayed in L mode
using @STATUS=PAR(..).

If the screen is not split then the statement applies to both (possible) screen
windows of the specified work file irrespective of whether these are visible
or not. The equivalent comments again apply in L mode, i.e. if a non-split
screen is displayed after @EDIT FULL.

When EDT starts, the value INDEX=ON is set as default.

EDT statements @PAR

U41709-J-Z125-1-76 423

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

ON The line number display is activated. Specifying @PAR INDEX=ON also
deactivates EDIT-LONG mode.

OFF The line number display is deactivated. When the line number display is
deactivated, EDIT-FULL mode ceases to be effective but is not deactivated.

INFORMATION=
In F mode, specifies whether an information line for the specified work file
is to be output in the data window.

Alongside the number of the work file and the name of the character set
defined for this work file if one exists, the information line contains the name
of a local @FILE entry or the name of the open file or library element (see
section “File processing” on page 131). If work file 9 contains the output
from one of the statements @FSTAT LONG, @STAJV LONG or @SHOW
(without a target specification) and the content has not been changed then
the information line in work file 9 contains column headers for the
associated output. If none of these cases applies then the information line
contains only the number of the work file and the character set.

When EDT starts, the value INFORMATION=OFF is set as default.

ON The information line is displayed as the first line in the work window ahead
even of any column counter that may have been activated. The screen
display is not modified if the work window is too small to display at least one
data line in addition to the information line. The setting does not take effect
until the work window is enlarged accordingly.

OFF No information line is output.

LIBRARY= Specifies the default library name for the statements @COPY, @OPEN,
@WRITE, @INPUT and @SHOW. This default setting is used if no library
name is specified in the above-mentioned statements (see note at the end
of the section).

When EDT starts, the value LIBRARY=*NONE is set as default.

path Name of the library.

*NONE The default setting for the library name is reset. In the above-mentioned
statements, it is then necessary to specify the library explicitly.

@PAR EDT statements

424 U41709-J-Z125-1-76

LIMIT= Defines the maximum record length in the F mode data window. If a record
is input with a length which exceeds the specified value then the record is
truncated and the message EDT2267 is output.

Indirect modifications to records due to statements or data entry in L mode
are unaffected by this check. In particular, this parameter has nothing to do
with the record length check set using the @CHECK or @TABS statements
in L mode.

When EDT starts, the value LIMIT=32768 is set as default.

col The maximum permitted record length (1..32768) for input in the F mode
data window.

*STD The default value on EDT start is restored.

LOWER= Specifies whether or not EDT converts lowercase characters entered at the
terminal into uppercase (see also note at the end of the section).

When EDT starts, the value LOWER=ON is set as the default.

ON EDT differentiates between uppercase and lowercase. Texts and strings are
processed in the form that they are entered.

OFF EDT converts lowercase characters entered at the terminal into uppercase.
In F mode, any lowercase characters present in the work file are converted
into smudge characters for output in the work window.

OPTIMIZE= Activates and deactivates the optimization of screen output. Before each
screen output, EDT compares the screen that is to be output with the
previous screen. By default, it only outputs the modified text in order to
improve the output (optimization). The unchanged text in the old screen is
retained unmodified.

When EDT starts, the value OPTIMIZE=ON is set as default.

ON In each dialog step, only the modified line contents are output.

OFF The entire content of the work window is output in each dialog step.

EDT statements @PAR

U41709-J-Z125-1-76 425

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

PROTECTION=
Activates or deactivates record-level write protection. This operand is only
of use if the EDT subroutine interface is used. Records can then be marked
accordingly to display them as write-protected or overwritable from within
the user program (see the Subroutine Interfaces User Guide [1]).

When EDT starts, the value PROTECTION=OFF is set as default.

ON Correspondingly marked records are displayed as write-protected or are
automatically set to overwritable in the F mode dialog.

If @PAR EDIT-FULL=ON has already been used to set both the statement
code column and the data lines to overwritable then this setting is reset.

OFF The presetting specified by the user program (write-protected or
overwritable) does not apply.

RENUMBER= Controls the automatic renumbering of line numbers. For a description of
the statements and actions to which this setting applies, see section “Line
number assignment” on page 36.

When EDT starts, the value RENUMBER=ON is set as default.

ON The line numbers in a work file are renumbered if required. EDT does this
if the increment is not small enough to execute the statement in full when
reading a file (or library element) or when performing a copy or insert
operation in a file.

OFF EDT does not modify the line numbers in a file. EDT issues a message if it
is not possible to execute the statement because the increment is not small
enough to accommodate all the records.

SCALE= In F mode, activates or deactivates the display of a column counter
(horizontal ruler) in the data window.

The column counter is not output in EDIT-LONG mode. In the case of output
in hexadecimal mode, there is not just one column counter. Instead, a
column counter is output for every line. However, the setting made with
@PAR SCALE becomes effective if the corresponding mode is exited.

When EDT starts, the value SCALE=OFF is set as default.

ON The column counter is displayed as the first line after an information line, if
one is present (see @PAR INFORMATION), and displays the current work
window line numbers for the required work file (e.g. after the work window
has been moved horizontally).

@PAR EDT statements

426 U41709-J-Z125-1-76

If a tabulator has been defined (see @TABS statement), an additional
screen line is displayed in which the current position of the tabulator is
displayed with I. In this line, the tabulator character itself is depicted in the
statement code column.

If the work window is too small to display at least one data line in addition to
the column counter then the column counter is not displayed. As the work
window is enlarged, the information line (if present) is shown again first,
followed by the column counter and then, finally, the tabulator line (if
present).

OFF Deactivates the column counter and the tabulator display scale if present.

SDF-NAME-TYPE=
Specifies the name type of the program name which has been predefined
with @PAR SDF-PROGRAM as well as the default setting for the name type
in the @SDFTEST statement (see also the note at the end of the section).

When EDT starts, the value SDF-NAME-TYPE=INTERNAL is set as default.

INTERNAL
The program name is the maximum 8-character internal name. The internal
name can be ascertained using SDF-A if it does not correspond to the name
of the program.

EXTERNAL
The program name is the maximum 30-character external name (e.g. LMS,
SDF-A or HSMS).

*STD The default value on EDT start is restored.

SDF-PROGRAM=
Defines the name of a program for the @SDFTEST statement and the
statement code T. When this statement or statement code are executed
then data lines which start with // are analyzed using this program's syntax
file (see also the note at the end of this section).

When EDT starts, the value SDF-PROGRAM=*NONE is set as the default.

progname Name of a program. Either the internal name with a maximum of 8
characters or the external name with a maximum of 30 characters can be
defined (see @PAR SDF-NAME-TYPE)

*NONE *NONE cancels the program definition.

EDT statements @PAR

U41709-J-Z125-1-76 427

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

SEPARATOR= Specifies the record separator used to delimit records or the character
which acts as the default value for the @SEPARATE statement (see section
“Statement in data window – splitting a record” on page 112 or
@SEPARATE statement and the note at the end of the section).

When EDT starts, the value SEPARATOR=*NONE is set as the default.

strchar The record separator can be specified as an alphanumeric character or
special character in single quotes or in the form U'unicode' in its UTF16
coding.

Different characters must be chosen for the record separator and the
tabulator character.

*NONE Cancels a record separator definition. For reasons of compatibility, the
keyword OFF is also permitted here.

SPLIT= In F mode, SPLIT can be used to output a second work window on the
screen. The work file in which this statement was entered (current work file)
is displayed in the upper work window. The work file specified with $0..$22
is displayed in the lower work window. When EDT starts, the value
SPLIT=OFF is set as the default.

n $0..$22 | n (0..22)
The specified work file is displayed with length n in the lower work window.
A value of 2 or more must be specified for the length n and this value must
not be more than two less than the maximum number of lines permitted by
the terminal for the screen format in question (see @VDT statement).

The file position (line, column number) in the work file specified here is
retained when @PAR is issued. In the subsequent EDT dialog, the file
positions of the two work files can be modified individually.

OFF Hides the second work file and sets the length for the remaining screen
window to the maximum value permitted by the terminal. The screen
window containing the statement line in which the statement was issued
remains present. If @PAR SPLIT = OFF is entered in the upper work
window while statements are present in the lower work window then @PAR
SPLIT is rejected with an error message. The display of two work windows
is also implicitly deactivated by the @VDT statement.

@PAR EDT statements

428 U41709-J-Z125-1-76

STRUCTURE=
Specifies the structure symbol that is evaluated when positioning is
performed on the basis of the structure depth (see the statement codes +
and –).

When EDT starts, the value '@' is set as the default.

strchar Character that is to be used as the structure symbol. This symbol indicates
records which have to be taken into account when positioning is performed
on the basis of the structure depth. The character can be specified as an
alphanumeric character or special character in single quotes or in the form
U'unicode' in its UTF16 coding.

If a character other than a blank is defined as the structure symbol then only
lines that contain this structure symbol are positioned to when scrolling is
performed on the basis of structure depth. If a blank is specified as the
structure symbol then it is possible to position to all the lines.

*STD The default value on EDT start is restored.

SUBSTITUTION-CHARACTER=
Specifies the substitute character that is used instead of a character which
is invalid in the target character set during conversion. The setting applies
for all work files and string variables irrespective of the work file in which the
@PAR statement was issued. This setting does not apply when characters
are converted into the communications character set (see section
“Character sets” on page 47). In this case, the terminal's device-specific
smudge character is always used as the substitute character.

When EDT starts, the value SUBSTITUTION-CHARACTER=*NONE is set as
the default.

strchar Character that is used instead of a character which is invalid in the target
character set during conversion. The character can be specified as an
alphanumeric character or as a special character in single quotes or in the
form U'unicode' in its UTF16 coding.

Since it is not possible to declare a separate substitute character for every
possible target character set, it only makes sense to choose characters
which are present in every employed character set. For example, a number
of the characters in the EBCDIC DF03 kernel (&-/:.,<*%_+>?) or the
character X'00' may be suitable (see section “Character sets” on page 47).
However, this is not checked on input. If conversion is to be performed using
an invalid character set then EDT behaves as if *NONE had been defined for
the substitute character.

EDT statements @PAR

U41709-J-Z125-1-76 429

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

*NONE On conversion, no substitute representation is used for characters that are
invalid in the target character set. Instead, conversions that would result in
such characters are rejected with an error message. Outputs to SYSOUT and
SYSLST are an exception this rule. In this case, blanks are used.

If no operands are specified then all the presettings for the current work file (with the
exception of SPLIT and OPTIMIZE) are reset to the values that apply when EDT is started.
The value for SUBSTITUTION-CHARACTER is always reset to this default value for all the
work files.

If only the operands GLOBAL or $1..$22 are specified then all the presettings for all the
work files or all the presettings for the specified work file (with the exception of SPLIT and
OPTIMIZE) are reset to these default values. The value for SUBSTITUTION-CHARACTER is
always reset to this default value for all the work files.

The settings operands are set in the order in which they are specified. This is of significance
in the case of parameters which affect one another or when a statement is aborted due to
a runtime error (may occur in the case of SPLIT and CODE).

The @PAR statement can also be used in L mode to change settings which affect the
display in F mode. Although these take effect immediately, this is, of course, only visible,
when processing switches to F mode.

With the exception of INDEX, all the settings for a work file apply irrespective of whether
one, both or neither of the possible screen windows for this work file are displayed. Thus, if
the same work file is displayed on the screen more than once, the setting applies to both
work windows (except in the case of INDEX).

The current values for the settings made with @PAR can be output using the @STATUS
statement.

Note
The settings that are made with @PAR (except in the case of OPTIMIZE, SPLIT and
SUBSTITUTION-CHARACTER) can be set differently for each work file.
This also applies to the settings made with CODE, ELEMENT-TYPE, ESCAPE-CHARACTER,
LIBRARY, LOWER, SDF-NAME-TYPE, SDF-PROGRAM and SEPARATOR which affect the
default values or the behavior of another statement (statement using the value). In the
case of these settings, the rule is that the value of the work file set as the current work
file when the statement using the value is active should apply.
If it is permissible to specify string variables for a value then the value is replaced by the
content of the string variables when the @PAR statement is executed. Consequently,
any later changes to the string variables have no effect on the setting.

@PARAMS EDT statements

430 U41709-J-Z125-1-76

9.89 @PARAMS – Define procedure parameters

The @PARAMS statement can be used to define symbolic parameters which are used in
@DO procedures. There is a distinction between keyword parameters and positional
parameters.

The parameters can be considered as string variables which are replaced, before the EDT
procedure is executed, by the corresponding values which were specified when the
procedure was called in the @DO statement or, in the case of keyword parameters, are
defined as the default values in the @PARAMS statement itself.

formal Formal (symbolic) parameter. A parameter starts with the character &. This
is followed by a letter (A..Z, a..z) which in turn can be followed by up to
6 letters or digits. Lowercase characters may also be used. It should be
noted that EDT differentiates between uppercase and lowercase. The
specifications &A and &a therefore designate different parameters. The
parameter names used in a work file only apply within this work file. If an
illegal formal parameter is specified then execution of the procedure is
rejected with the message EDT4924.

param Default value of the keyword parameter. The specified value is used in the
procedure if no other value was specified for this keyword parameter when
the procedure was called with the @DO statement. Keyword parameters
must be declared after all the positional parameters.

The @PARAMS statement must be located in the first line of a @DO procedure. A
@PARAMS statement in continuation lines is ignored and the message EDT5479 is output.
Errors in the @PARAMS statement interfere with the execution of the procedure and are
reported by @DO. The @PARAMS statement is not itself a component of the procedure
and can, for example, not be branched to, is not logged if the procedure is executed with
the setting @DO...PRINT and is not executed more than once in procedures which contain
external loops.

At least one formal parameter must be specified. Otherwise execution of the procedure is
rejected with the message EDT4918. The same message is output if a parameter does not
start with & or there is no further parameter after a comma.

If positional parameters are specified after keyword parameters then the message EDT4948
is issued. If a keyword parameter is specified more than once then the error message
EDT3910 is output. In the event of other errors, the message EDT5478 is output.

Operation Operands @PROC
@PARAMS [formal[,...]] [[,] {formal=param} [,...]]

EDT statements @PARAMS

U41709-J-Z125-1-76 431

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The number of formal parameters possible in @PARAMS is only limited by the maximum
permitted length of EDT statements.

In the @PARAMS statement, EDT ignores blanks which occur immediately before or after
a parameter name. The specification of blanks in the parameter name which was possible
in compatibility mode is no longer supported.

In keyword parameters, the parameter name (keyword) is followed by an equals sign. The
equals sign is followed by the parameter's default value. Keyword parameters are also
assigned the current value from the parameter list in the @DO call. If this value is not
present there then the predefined default value specified in @PARAMS is used. The
assigned default value consists of all the specified characters, including blanks. If no default
value is to be assigned to a keyword parameter then a comma must be specified immedi-
ately after the equals sign or @PARAMS must be terminated. Alternatively, the explicit
specification of an empty string '' as the default value is also possible.

The default value of a keyword parameter may be enclosed in single quotes. These are not
transferred if they occur as the first or last character in the parameter value and no quotes
or only double quotes occur between them. In all other cases, all the specified single quotes
form part of the parameter (see example). The comma and closing parenthesis characters
may only form part of a parameter if they occur in a substring in the parameter value that is
enclosed by single quotes. Single quotes must always occur in pairs in a parameter value.
An individual single quote cannot be passed in a parameter value. If @QUOTE has already
been used to assign the function of the single quote to another character then this does not
apply to the single quotes enclosing the default value.

If no value is specified for a positional parameter when the procedure is called with @DO
then it is assigned an empty string as its value. If no value is specified for a keyword
parameter when the procedure is called with @DO then it is assigned the default value
specified in the @PARAMS statement as its value.

The positional parameters must be specified in the same order in @PARAMS and in @DO.
The sequence of keyword parameters can be different in @PARAMS and @DO (see the
@DO statement).

If the procedure file contains a string which starts with & and could syntactically be identified
as a formal parameter which, however, is not declared in the @PARAMS statement or if
there is no @PARAMS statement then the corresponding string is not replaced.

The parameters can be used at any location within the procedure and can be linked
together with other strings and parameters.

If, in the procedure, the formal parameter is directly followed by a letter, a digit, or a period
then the formal parameter must be separated from these characters by a period (except in
the case of parameter names with a maximum length of 7).

@PARAMS EDT statements

432 U41709-J-Z125-1-76

A single period after a formal parameter is interpreted as a delimiter and is not taken over
when the formal parameter is replaced by the corresponding value (see example). This
applies independently of the character that follows the period.

If a string which starts with & and corresponds to one of the formal parameters listed in
@PARAMS is not to be replaced by the current parameter value in the procedure file then
the & character must be doubled. When the procedure executes, one of the two &s is elimi-
nated. Any other doubled &s are reduced to a single & if the procedure contains a
@PARAMS statement.

If a formal parameter is replaced by the current parameter value in the procedure then this
may cause the line to exceed the maximum permitted line length. This causes the output of
error message EDT1938 during the execution of the procedure. The line in question is not
executed.

For information on the handling of character sets during parameter processing, see section
“EDT procedures” on page 64 and the description of the @DO statement.

The indirect specification of operands is not permitted for this statement.

Example 1

Parameter value specification Substituted string
&F=A,...
&F=,...
&F='',...
&F=ËABCË,...
&F='X',...
&F='X''X',...
&F='X'Y'X',...
&F='AB'C,...
&F=Ë'ABC',...
&F=Ë,...
&F=',)',...
&F=A','B,...

A
Empty string
Empty string
ËABCË
X
X''X
'X'Y'X'
'AB'C
Ë'ABC'
Ë
,)
A','B

EDT statements @PARAMS

U41709-J-Z125-1-76 433

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 2

Line in procedure file Parameter input Generated line

&PARAM(BC)
&PARAM.(BC)
&PARAM..(BC)
&PARAM..BC
&PARAM.2BC
&PARAMBC
&PARAM,.2B
BC&PARAM
BC,&PARAM
B2&PARAM
&PARAM.&PARAM
&PARAM&PARAM
&PARAM..&PARAM
&PARAM&&PARAM
@ON &F'&SEARCH'
@SET #S1=&STR
&DATA
@P RANGE
&CMD #S1

&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&PARAM=A
&SEARCH=A''B
&STR=Ë'TEXT'
&DATA='A'B
&RANGE='3,7'
&CMD=@PRINT

A(BC)
A(BC)
A.(BC)
A.BC
A2BC
&PARAMBC
A,.2B
BCA
BC,A
B2A
AA
AA
A.A
A&PARAM
@ON &F'A''B'
@SET #S1=Ë'TEXT'
'A'B
@P 3,7
@PRINT #S1

@PARAMS EDT statements

434 U41709-J-Z125-1-76

Example 3

7. @PRINT
 1.0000 THE OUTPUT
 2.0000 FROM THIS
 3.0000 PROCEDURE
 4.0000 IS DETERMINED
 5.0000 IN THE @DO
 6.0000 COMMAND
 7. @SET #S3 = '*** AS YOU SEE ***'
 7. @PROC 1
 1. @ @PARAMS &LINES --- (1)
 2. @ @NOTE Output &LINES

3. @ @PRINT &LINES -- (2)
 4. @END
 7. @DO 1(2-4) --- (3)
 2.0000 FROM THIS
 3.0000 PROCEDURE
 4.0000 IS DETERMINED
 7. @DO 1(#S3),PRINT
 7. @NOTE Output #S3 --- (4)
 7. @PRINT #S3
 #S03 *** AS YOU SEE ***
 7. @DO 1(2,4N) -- (5)
 % EDT4963 TOO MANY OPERANDS
 7. @DO 1('2,4N') -- (6)
 2.0000 FROM THIS
IS DETERMINED
 7.

(1) The positional parameter &LINES is declared in the first line of work file 1.

(2) This parameter occurs in the @PRINT statement. Which lines are now output depends
on the parameter value specified in the @DO statement.

(3) Work file 1 is executed. However, before the individual statements are executed, the
range of values 2-4 is assigned to the parameter &LINES.

(4) The use of the parameter values becomes particularly clear if the individual statements
in the procedure are output on the screen before they are executed since the parameter
values have already been inserted at this point.

(5) If the user attempts, for example, to display line 2 with a line number and line 4 without
a line number then a comma which forms part of the parameter value is interpreted as
a separator between two parameters and the @DO statement is therefore rejected.

(6) A parameter value can be passed in single quotes. In this case, the value that is located
between the single quotes is assigned to the &LINES parameter. In this way, it is also
possible to transfer commas as a part of the parameter value.

EDT statements @PARAMS

U41709-J-Z125-1-76 435

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 4

 1. @PROC 2
 1. @ @PARAMS &STRVAR1,&STRVAR2,&CONTENT1=**** -------------------- (1)
 2. @ @SET &STRVAR1 = '&CONTENT1'
 3. @ @SET #S2 = '&STRVAR1'
 4. @ @SET #S3 = &STRVAR1
 5. @ @SET &STRVAR2 = &STRVAR1
 6. @ @SET #S4 = 'FROM &STRVAR1 TO &STRVAR2'
 7. @ @PRINT &STRVAR1,&STRVAR2,#S2,#S3,#S4
 8. @END
 1. @DO 2(#S0,#S1) -- (2)
 #S00 ****
 #S01 ****
 #S02 #S0
 #S03 ****
 #S04 FROM #S0 TO #S1
 1. @DO 2(#S15,#S13,CONTENT1=BLABLA) ------------------------------ (3)
 #S15 BLABLA
 #S13 BLABLA
 #S02 #S15
 #S03 BLABLA
 #S04 FROM #S15 TO #S13
1.

(1) Two positional parameters and one keyword parameters are defined for work file 2.

(2) The values of the positional parameters in @DO must be specified in a sequence which
corresponds to the sequence of the positional parameters in the @PARAMS line. When
work file 2 is executed, the value of &STRVAR1 is set to #S0 and the value of &STRVAR2
is set to #S1. Since no value is specified for the keyword parameter &CONTENT1, the
default value, i.e. ****, is used at runtime.

(3) The specification of a parameter value for a keyword parameter in @DO replaces the
default value.

@PARAMS EDT statements

436 U41709-J-Z125-1-76

Example 5

 1. @PROC 3
 1. @ @PARAMS &A,&B,&C,&X=111,&Y=222,&Z=333 ----------------------- (1)
 2. @ @CREATE #S10: '&A','&B','&C','&X','&Y','&Z'
 3. @ @PRINT #S10
 4. @END
 1. @DO 3 (AAAAA,BB,CCCCCCC) -------------------------------------- (2)
 #S10 AAAAABBCCCCCCC111222333
 1. @DO 3 (AA,BBBB,C,Y=****,X=########) --------------------------- (3)
 #S10 AABBBBC########****333
 1.

(1) Three positional and three keyword parameters are defined in work file 3.

(2) Work file 3 is executed. However, since no values have been specified for keyword
parameters, the default values are used.

(3) Now, values are specified for two of the keyword parameters. It should be noted that
the sequence of values specified for the keyword parameters does not correspond to
the sequence used for the definition of the keyword parameters in the @PARAMS line.

EDT statements @PREFIX

U41709-J-Z125-1-76 437

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.90 @PREFIX – Insert string as prefix

The @PREFIX statement is used to insert a string as a prefix in front of every line or string
variable in each specified range (see also @SUFFIX).

lines One or more line ranges in which text is to be inserted at the start of each
line. Only existing lines are processed.

svars One or more ranges of string variables in which text is to be inserted at the
start of each string variable.

string String that is to prefix each line or string variable in each specified range. It
is also permissible to specify an empty string.

The string is converted into the character set used by the work file or string
variable. If the string contains characters which cannot be displayed in the
target character set then these characters are replaced by a substitute
character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the @ PREFIX statement is
rejected and error message EDT5453 is output.

If inserting the string would cause a line or string variable to exceed the maximum record
length of 32768 characters then it is not inserted and the message EDT5474 is output.

If errors occur during processing (EDT5453 or EDT5474) then the statement is aborted. Any
lines and/or string variables which have been successfully modified up to this point retain
their changes.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Operation Operands F mode, L mode
@PREFIX

 [,...] WITH string
 lines

 svars

@PREFIX EDT statements

438 U41709-J-Z125-1-76

Example

The string ONCE is to be inserted as a prefix in the line range 4-5.

The content of line 1 is to be inserted as a prefix in the line range 4-5.

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 AGAIN<··
 5.00 AGAIN<··
 6.00 ··

prefix 4-5 with ' ONCE '······································0001.00:00001(00)

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 ONCE AGAIN<··
 5.00 ONCE AGAIN<··
 6.00 ··

prefix 4-5 with 1··0001.00:00001(00)

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 AND ONCE AGAIN<···
 5.00 AND ONCE AGAIN<···
 6.00 ··

prefix 4-5 with ' '*5··0001.00:00001(00)

EDT statements @PREFIX

U41709-J-Z125-1-76 439

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Five blanks are to be inserted as a prefix in the line range 4 to 5.

The content of line 4 is to be inserted as a prefix in the line range 4-5.

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 AND ONCE AGAIN<··
 5.00 AND ONCE AGAIN<··
 6.00 ··

prefix 4-5 with 4··0001.00:00001(00)

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 AND ONCE AGAIN AND ONCE AGAIN<·································
 5.00 AND ONCE AGAIN AND ONCE AGAIN<·································
 6.00 ··

@PRINT EDT statements

440 U41709-J-Z125-1-76

9.91 @PRINT – Print or output line ranges or the content of string
variables

The @PRINT statement outputs the content of the specified line ranges or string variables.
In interactive mode, the output is written to SYSOUT and in batch mode it is written to
SYSLST.

For the sake of simplicity, the operand description refers primarily to lines and line ranges.
However, the descriptions apply equally to string variables and ranges of string variables
unless explicitly indicated to the contrary.

lines Line range that is to be output.

svars Range of string variables whose content is to be output.

cols Column range in the work file or in the string variables that is to be output.

If only one column number is specified then the remainder of the line is
output as of this column. If the first column specification is greater than the
line length then the line is not output.

If no column range is specified then the entire line or string variable is output
even if it is empty.

X The format of the output is hexadecimal. Between two and eight
hexadecimal numbers are output for each character depending on the
character set which has been defined for the work file or string variable.

N Removes the line numbers or string variable names from the output.

S If the output is sent to SYSLST then the first line of each range is usually
output with an additional line feed if the output does not start at the
beginning of a page. If S is specified then this empty line is not output. The
operand is only meaningful in batch mode and is ignored in interactive
mode.

Operation Operands F mode, L mode
@PRINT

[[:cols[:]] [X] [N] [S] []] [,...]
 lines

 svars

 V

 E

EDT statements @PRINT

U41709-J-Z125-1-76 441

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

V, E In interactive mode, the operands V and E cause EDT to output the specified
line range one section at a time (depending on the screen size) and possibly
also to give the user the opportunity to enter scrolling statements at the end
of each section (see below). The number of physical lines (screen lines)
present in a section depends on the employed terminal.

These operands are only meaningful when working at the screen and are
ignored in batch mode.

If V is specified (or if a scrolling statement causes a switch to V mode) then
the user is always prompted to enter a scrolling instruction at the end of
each section.
To terminate output or move to the next specified range, the user must enter
0 or change to E mode (see below).

In contrast, if E is specified (or if the user switches to E mode by means of
a scrolling statement) then the user is only prompted to enter a scrolling
statement at the end of a section if this section does not itself contain the
last line of the current range. If the section that is to be output contains the
last line of the current range then the section is output without any scrolling
request if it is not followed by any further ranges or if the following range
does not make use of either the V or the E operand.

If another range has been specified with the V or E operand then the last
section of the current range is joined with the start of the next range to form
a single section. The way EDT behaves at the end of this composite section
is determined by the V or E operands of the next range.

If neither V nor E is specified then the complete range is output. Output in
interactive mode is only interrupted if the operating system's overflow
monitoring (/MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL=USER-
ACKNOWLEDGE) is active.
After an interruption of output via %PLEASE ACKNOWLEDGE, the user can
choose [K2] and /RESUME-PROGRAM to abort the output of the line range or
enter any other value to continue the output. Positioning within the line
range is not possible.

If no operand is specified then the entire current work file is output one section at a time (in
the same way as if E is specified).

The content of the specified line range is output line-by-line with or without a prefixed line
number (see the N operand). If SYSOUT is assigned to a terminal in interactive mode then
the individual lines are separated from one another by [LZE] (logical end-of-line).
It is possible to specify multiple ranges with different output options provided that these are
separated by commas. The number of range specifications is only limited by the maximum
permitted length of EDT statements.

@PRINT EDT statements

442 U41709-J-Z125-1-76

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

In the case of section-by-section output in interactive mode, EDT prompts the user to enter
a scrolling instruction after outputting a section (section of a file or sequence of string
variables). This enables the user to interrupt output or move to a required position. In this
case, it is also possible to exit the range defined with lines or svars. The following
scrolling instructions are possible:

[DUE] Void input on scrolling causes EDT to go to the next section of the output
(i.e. the section immediately following the last one output). In V mode, if the
end of the current range has already been reached then the last line in this
range is output again and the user is once more asked to enter a scrolling
instruction.
When the output of a range starts, the current range is always equal to the
specified range. However, this can be modified using the scrolling state-
ments + or -.

* Switches to E mode and resets the current range (if it has been changed) to
the range specified in the statement.
EDT then moves on to the next section of the output (i.e. the section
immediately following the last one that was output) unless the last line that
was output is the last line of the specified range or already exceeds the
specified range (possible if + has been entered). In this case, EDT moves
on to the next specified range or terminates output.

+ Switches to V mode and the range is set to 0.0001-9999.9999 for lines
and #S01-#S20 for string variables irrespective of the specifications in the
lines or svars operands.

The section which immediately follows the last one output is then output.
When the last line in the work file or the last string variable (#S20) is reached
then entering + again simply causes EDT to output the last line once more
and request a scrolling instruction.

+n Switches to V mode and the range is set to 0.0001-9999.9999 for lines
and #S01-#S20 for string variables irrespective of the specifications in the
lines or svars operands.
EDT then outputs the section which starts n lines after the last output line in
the work file (the same applies equivalently to string variables). When the
last line in the work file or the last string variable (#S20) is reached then
entering +n again simply causes EDT to output the last line once more and
request a scrolling instruction.

– Irrespective of the specifications in the lines or svars operands, the range
0.0001-9999.9999 is set for lines and #S01-#S20 is set for string
variables (Caution: unlike in the case of +, there is no switch to V mode).

EDT statements @PRINT

U41709-J-Z125-1-76 443

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The section which immediately precedes the last one output is then output.
When the first line in the work file or the first string variable (#S00) is
reached then entering - again simply causes EDT to output the section
which starts with the first line once more and request a scrolling instruction.

–n Irrespective of the specifications in the lines or svars operands, the range
0.0001-9999.9999 is set for lines and #S01-#S20 is set for string
variables (Caution: unlike in the case of +, there is no switch to V mode).
EDT then outputs the section which starts n lines before the first line of the
last section to be output in the work file (the same applies equivalently to
string variables). When the first line in the work file or the first string variable
(#S00) is reached then entering -n again simply causes EDT to output the
section which starts with the first line once more and request a scrolling
instruction.

0 Terminates the output of the current range. If more than one range was
specified for output in the @PRINT statement then EDT moves on to the
next range.

If in the case of section-by-section output, a long line no longer fits on the screen then the
section is terminated before this line (if it already contains lines) even if the screen has not
been filled. If the very first line is longer than the screen permits then this line is output as a
separate section. Output of the line in interactive mode is only interrupted if the operating
system's overflow monitoring is active.

All output is converted from the character set used by the work file or string variable into the
character set defined for SYSOUT or SYSLST.

If characters are found which do not correspond to a valid character in the target character
set then these are replaced by a substitute character if such a character has been specified
(see @PAR SUBSTITUTION-CHARACTER). Otherwise blanks are used.

A line feed is inserted in the output after every 132 characters (or 160 characters if job
switch 6 is set) when outputting to SYSLST. Output to SYSOUT is wrapped as specified in the
WROUT or WRTRD macros. However, line feeds always occur at a character boundary.

Note
Unlike in compatibility mode, the entry of a command in response to the scroll prompt
is always rejected and the request to enter a scrolling instruction is issued again. To
enter a command, it is therefore first necessary to terminate @PRINT by entering 0.
In interactive mode, the output from the @PRINT statement is generated by WROUT or
WRTRD and, in the case of @PRINT...E, both together. There may therefore be little point
in redirecting SYSOUT to a file, in particular in view of the problems relating to character
sets as described in the section “System files” on page 149.

@PROC (format 1) EDT statements

444 U41709-J-Z125-1-76

9.92 @PROC (format 1) – Switch work files

This format of the @PROC statement causes EDT to switch to another work file. This work
file then becomes the current work file.

procnr The number of the work file (1..22) that EDT is to switch to.

comment Any text as a comment.

The work file that is switched to using this statement this work file continues to be the
current work file until an @END statement is issued in order to return to the previous current
work file or a further @PROC or @SETF(procnr) statement causes a switch to another
work file.

When @PROC is used to switch to a work file, EDT remembers the work file it has just left
together with its predecessors (nested work files), i.e. the @END statement returns to the
exited work file(s). In contrast, if the user changes the work file with @SETF(procnr) then
EDT deactivates the nesting of work files before switching to the new work file and any
subsequent @END statement always returns to work file 0 (unless the user has already
switched to work file 0 with @SETF). The nesting depth is 22. After this, error message
EDT4962 is issued.

If the number of the current work file is specified in the @PROC statement then the
statement is rejected with the message EDT4909. An active work file cannot be specified as
the current work file. If the user attempts to do so, the message EDT4959 is issued.

Operation Operands L mode
@PROC procnr [comment]

EDT statements @PROC (format 1)

U41709-J-Z125-1-76 445

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 1

 5. @PRINT
 1.0000 AAAA
 2.0000 BBBAADAFD
 3.0000 AAA
 4.0000 CCCCCCCCCCCCCCCCC
 5. @PROC 6
 1. @ @SET #I6 = LENGTH !
 2. @ @SET #L6 = !
 3. @ @DO 10
 4. @ @DO 12
 5. @ @CREATE #S6: LINE ',#S12,' IS ',#S10,' CHARACTERS LONG'
 6. @ @PRINT #S6 N
 7. @END -- (1)
 5. @PROC 10 -- (2)
 1. @ @SET #S10 = CHAR #I6
 2. @ @ON #S10:2-2: DELETE '0'
 3. @ @IF .TRUE. : @GOTO 2
 4. @END
 5. @PROC 12 -- (3)
 1. @ @SET #S12 = CHAR #L6
 2. @END
 5. @DO 6 !=%,$
 LINE 1.0000 IS 4 CHARACTERS LONG
 LINE 2.0000 IS 9 CHARACTERS LONG
 LINE 3.0000 IS 3 CHARACTERS LONG
 LINE 4.0000 IS 17 CHARACTERS LONG
 5.

(1) Processing returns to work file 0. Work file 6 contains 6 EDT statements including a
@DO 10 and a @DO 12. However, these two work files do not yet exist. Consequently,
entering a @DO 6 at this point would result in an error.

(2) Work file 10 is set up. It contains an EDT procedure which transfers the value stored in
#I6 to #S10 in printable form and deletes any leading zeros.

(3) Work file 12 is set up. It contains an EDT procedure which transfers the content of the
line number variable #I6 to #S12 in printable form.

@PROC (format 1) EDT statements

446 U41709-J-Z125-1-76

Example 2

 1. @SET #I4 = 1
 1. @PROC #I4 --- (1)
 1. @4.00
 4.00 @ @SET #I4 = #I4 + 1 -- (2)
 4.01 @ @IF #I4 > 4 : @GOTO 8
 4.02 @ @PROC #I4
 4.03 @ @PROC --- (3)
 4.04 @ @GOTO 4
 4.05 @8.00
 8.00 @ @SET #I4 = #I4 - 1
 8.01 @ @END -- (4)
 8.02 @ @IF #I4 = 2 : @RETURN
 8.03 @ @PROC --- (5)
 8.04 @ @GOTO 8
 8.05 @END
 1. @DO #I4 --- (6)
 <02>
 <03>
 <04>
 <03>
 <02>
 1.

(1) It is also possible to switch to a work file by means of an integer variable. The integer
variable must be between 1 and 22.

(2) Executing work file 1 causes processing to switch to work files 1 and 4. The relevant
work file number is always passed in #I4.

(3) @PROC is issued to check which work file is currently being used. Thus if work file #I4
is being executed at this point, the associated #I4 is recorded.

(4) A single @END is used to ensure that processing returns to the work file located one
level higher in all cases.

(5) After the return to this work file, the work file that is currently being used is checked
again. As a result, a descending sequence of work file numbers from 3 to 2 is output.

(6) An integer variable can also be used to call a work file for the first time.

EDT statements @PROC (format 2)

U41709-J-Z125-1-76 447

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.93 @PROC (format 2) – Output information about work files

This format of the @PROC statement is used to output the number of the current work file,
the numbers of all the free work files and the numbers of all the work files that are in use.
A work file (other than work file 0) is considered to be in use if it was once or still is the
current work file and has not been released with @DROP or
@DELETE (format 2) in the meantime. A work file that is in use does not necessarily have
to contain records.

FREE The numbers (1-22) of the work files which are not yet in use are to be
output.

If no work file apart from work file 0 is in use then EDT outputs the message
EDT0907. If all the work files are in use then there is no output.

USED The numbers (1-22) of the work files which are already in use are to be
output. The lowest and highest line numbers are output for each number.

If no work file apart from work file 0 is in use then EDT outputs the message
EDT0907.

If no operand is specified then the number of the current work file is output on the screen.

Note
In compatibility mode, a work file is not considered to be in use unless it was, at some
point, the current work file, was quitted with an @END statement, a @PROC statement,
a @SETF statement or, in F mode, by means of one of the statements 0..22 and has
not since been released using @DROP. Consequently, in this case the current work file
set with @PROC is not considered to be in use even if it contains data.

Operation Operands L mode
@PROC

[]
 FREE

 USED

@PROC (format 2) EDT statements

448 U41709-J-Z125-1-76

Example 1

 1. @PROC --- (1)
 <00>
 1. @PROC 15 -- (2)
 1. @PROC --- (3)
 <15>
 1. @END -- (4)
 1. @PROC --- (5)
 <00>

(1) The query to check the current work file returns the number <00>.

(2) Processing switches to work file 15.

(3) When the number of the work file is queried, <15 > is now output.

(4) Processing returns to work file 0.

(5) The user is now in work file 0 again.

Example 2

 1. @DROP ALL --- (1)
 1. @PROC USED -- (2)
% EDT0907 NO WORK FILES USED
 1. @PROC 13
 1. A
 2. @END
 1. @PROC USED -- (3)
 <13> 1.0000 TO 1.0000

(1) All the work files are released.

(2) Queries which work files are in use.

(3) After the creation of work file 13, this again queries which work files are in use.

EDT statements @PROC (format 2)

U41709-J-Z125-1-76 449

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 3

 1. @DROP ALL --- (1)
 1. @PROC FREE -- (2)
% EDT0907 NO WORK FILES USED
 1. @PROC 13
 1. A
 2. @END
 1. @PROC FREE -- (3)
 01 02 03 04 05 06 07 08 09 10 11 12 14 15 16 17 18 19 20 21 22

(1) All the work files are released.

(2) Queries which work files are not in use.

(3) After the creation of work file 13, this again queries which work files are not in use.

@QUOTE EDT statements

450 U41709-J-Z125-1-76

9.94 @QUOTE – Redefine delimiter character for strings

The @QUOTE statement redefines the delimiter characters apostrophe (single quotes) and
quotation mark (double quotes) (see section “Delimiter characters” on page 81).

Strings which are enclosed in these delimiters are literals which play a special role in state-
ments (see section “Statement syntax” on page 157).

spec Special character that is to be used as the apostrophe. When EDT starts, the
value ' is set.

char Character that is to be used as the quotation mark. When EDT starts, the
value " is set.

It is obligatory to specify one of the two operands. It is not possible to specify special
characters which have a special meaning such as blanks, the semicolon in F mode, or the
comma.

The characters used for apostrophe and quotation mark must be different as otherwise the
statement is rejected with the message EDT4903. They must also be different from the
wildcards as otherwise, the statement is rejected with the message EDT5461.

If spec is not one of the valid special characters then @QUOTE is rejected with the error
message EDT3952.

Note
The specification does not apply to the operands in the @DO and @PARAMS state-
ments.

Operation Operands F mode, L mode
@QUOTE
@QE

[spec] [,char]

EDT statements @RANGE

U41709-J-Z125-1-76 451

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.95 @RANGE – Declare line range symbol

The @RANGE statement can be used to declare a symbol for line ranges.

spec Special character that is to declared as the line range symbol. If spec is not
one of the valid special characters then @RANGE is rejected with the error
message EDT3952.

lines Line range that is to be assigned to the line range symbol.

svars Range of string variables which are to be assigned to the line range symbol.

When EDT starts, the character & is defined as the line range symbol with the line range
0.0001-9999.9999. If a new line range symbol is declared then the old one becomes
invalid.

If no operand is specified then the line range symbol is canceled. There is then no line range
symbol until a new one is declared using @RANGE.

Operation Operands F mode, L mode
@RANGE

[= spec =]
 lines

 svars

@READ EDT statements

452 U41709-J-Z125-1-76

9.96 @READ – Read a SAM file

The @READ statement fully or partially reads a SAM file from disk or tape into the current
work file.

file Name of the SAM file that is to be read in. The name must correspond to
the SDF data type <filename 1..54> or must consist of the special speci-
fication '/'.

If there is as yet no local @FILE entry for the work file then, if the statement
is successful, the specified file name is entered as an implicit local @FILE
entry. If the file, operand is not specified then the explicit local @FILE
entry, if present, and otherwise the global @FILE entry is used as the file
name (see also @FILE statement).
If neither an explicit local nor a global @FILE entry is defined (e.g. there is
only an implicit local file entry) then the @READ statement is rejected with
the error message EDT5484.

If the specified file does not exist or cannot be accessed as required then
the statement is rejected with a corresponding error message.

If the file link name EDTSAM is assigned to a file then the user simply needs
to specify '/' in order to read this file (see chapter “File processing” on
page 131).

ver Version number of the file that is to be read. If the specified version number
does not match the file's version number, the message EDT0902 is output
and the file is read in nevertheless.

lines One or more line ranges that are to be read in from the SAM file. If symbolic
line numbers are specified then their values are determined from the current
work file and therefore usually have nothing to do with the record structure
of the file specified in file.

If lines is specified together with RECORDS then lines refers to the file's
logical line numbers (see RECORDS). If lines is specified without RECORDS
then the result is the same as specifying lines with KEY.

If lines is not specified, the entire file is read in.

Operation Operands F mode, L mode
@READ

[file] [(ver)] [lines[,...]] [:cols[,...]:] [] [STRIP]
 RECORDS

 KEY

EDT statements @READ

U41709-J-Z125-1-76 453

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

cols One or more column ranges which define the section to be read in from
each record. The ranges may repeat and overlap. The column specifica-
tions refer to the characters in the file that is to be read in. In the case of files
which are present in a Unicode character set, they do not usually corre-
spond to the byte positions within a record. If column values which exceed
the record length are specified then blanks are read into the work file in their
place. If KEY is specified (or lines without RECORDS) then the column count
starts after the key in the record.

If no column range is specified then the lines are read in full.

KEY EDT interprets the first 8 characters of each read in record as a key. The
records that are read into the work file are assigned this key as a line
number and not as part of the line content. The KEY operand is the default
value if lines has been specified.

In this case, EDT checks whether a valid key is present in the first 8
characters of each line. To be valid, the key may consist only of the digits 0
to 9. Otherwise, the @ READ statement is aborted with the error message
EDT4984. The records read up to this point are taken over into the work file.
If a record has the key 0 then it is treated in the same way as a record with
the key 1 (line number 0.0001) and the warning EDT2900 is issued.

If lines is used to select lines then EDT assumes that the records in the
file have ascending keys. If they do not, it is possible that not all the
expected records will be read in.

RECORDS Specifies that a line range (see lines operand) is to be selected via the
file's logical line numbering. The logical line number of the first line is
0.0001, that of the second line 0.0002 etc. The records that are read in are
inserted at the position in the work file determined by the current line
number (see below).

If STRIP is not specified then the RECORDS keyword can be abbreviated to
R. The RECORDS operand is the default value if lines has not been specified.

STRIP Causes any blanks at the end of each generated work file line to be deleted.
If a line consists solely of blanks then all the blanks except one are deleted.

If KEY is specified (or lines without RECORDS) then lines shorter than 8 characters are
ignored.

If lines or cols is specified then line numbers or column numbers may repeat, thus
resulting in the corresponding lines or columns being read in several times.

If the read operation is performed without a KEY specification then the line numbers are
assigned as a function of the current line number and current increment (see section “Line
number assignment” on page 36).

@READ EDT statements

454 U41709-J-Z125-1-76

The file is only opened temporarily during the read operation. If the file to be read in is
empty, warning EDT2903 is output.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the file that is to be read in. If this character set is *NONE then the work file
is assigned the character set EDF03IRV.

If the work file already has a character set then the records that are to be read in are
converted from the file's character set into the work file's character set. If the file that is to
be read contains characters which cannot be displayed in the work file's character set then
these are replaced by a substitute character if such a character has been specified (see
@PAR SUBSTITUTION-CHARACTER), otherwise file read is aborted and the error
message EDT5453 is output. This also applies if there are invalid characters outside of the
column range that is to be read. In contrast, invalid characters outside of the line range that
is to be read are ignored.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the read operation is rejected with the message
EDT5454.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
If an attempt is made to use @READ to read an ISAM file then EDT issues the error
message EDT1901 and sets the switch for EDT errors. It nevertheless reads the
specified file by performing an internal @GET for this file.
In this case, the operands STRIP, RECORDS and KEY are ignored.

If file is specified then it is still possible, for reasons of compatibility, to abbreviate
@READ to R in F mode.

EDT statements @RENUMBER

U41709-J-Z125-1-76 455

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.97 @RENUMBER – Renumber lines

The @RENUMBER statement is used to renumber the lines present in the work file. The
user can specify both the line number which is to accommodate the first line in the work file
and the increment which is to be used for renumbering. This increment also becomes the
new current increment (independently of whether it is specified explicitly or defined implicitly
by means of the specified line number) The new, current line number is then calculated as
the highest line number after renumbering plus the current increment value.

line This operand specifies the line number which is to contain the first line in the
work file after renumbering.

If the line operand is not specified then the first line in the work file is
assigned line number 1.

inc This operand specifies the new current increment. If inc is not specified
then the increment implicitly specified by line is used (see section “Implicit
increment assignment” on page 35).

The @RENUMBER statement cannot be used for a file opened for real processing with
@OPEN (format 2).

If the work file is empty then @RENUMBER is ignored and, in particular, no new increment
is set.

If the statement is issued in interactive mode and lines would be lost because the greatest
possible line number is reached then the following message is output:

% EDT0910 '@RENUMBER': LINES WILL BE LOST
% EDT0911 CONTINUE PROCESSING? REPLY (Y=YES; N=NO)?

If the user responds N to message EDT0911 then the @RENUMBER statement is not
executed. In contrast, if the user responds Y to message EDT0911 then the @RENUMBER
statement is executed, excess lines are deleted and the message EDT2904 is output.

In F mode, the file section displayed in the data window is usually retained following renum-
bering with the @RENUMBER statement. Only the number display changes. The only
exception here is if renumbering causes lines that were previously visible in the data
window to be lost at the end of the work file. After renumbering, the lost lines are no longer
displayed in the data window. If renumbering causes the loss of all the lines visible in the
data window then only the last line of the work file that is still present after renumbering is
still displayed in the data window.

Operation Operands F mode, L mode
@RENUMBER [line [(inc)]]

@RENUMBER EDT statements

456 U41709-J-Z125-1-76

The execution of the @RENUMBER statement is not aborted if the EDT session is
continued with /INFORM-PROGRAM after being interrupted with [K2].

Note
The line number/increment pairs stored in an internal memory area by the @SET
statement (format 6) (see @SET statement, format 6) are not modified by the
@RENUMBER statement and the same also applies to any line numbers present in the
copy buffer (see statement codes, C, R, M).
Once renumbering has been performed successfully using the @RENUMBER
statement, the lines that were originally identified by the line numbers stored in these
two areas may therefore have new line numbers.
It is not therefore usually of any value to access the line numbers stored in these two
areas (using the @SET statement without operands or the statement codes A, B or O)
after renumbering using the @RENUMBER statement.

EDT statements @RESET

U41709-J-Z125-1-76 457

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.98 @RESET – Reset EDT and DMS error switches

The @RESET statement can be used to reset EDT and DMS error switches.

It is only possible to reset both error switches together. It is not possible to choose between
them. The statement is primarily used in EDT procedures in combination with @IF
(format 1).

Operation Operands F mode, L mode
@RESET

@RETURN EDT statements

458 U41709-J-Z125-1-76

9.99 @RETURN – Return from EDT procedures

The @RETURN statement is used in EDT procedures to terminate the execution of the
procedure and return to the point at which it was called. If the @RETURN statement is
issued outside of an EDT procedure then the EDT session or, after @DIALOG, the screen
dialog is terminated.

message The message operand can contain any text which is passed to the calling
program when EDT is called as a subroutine.

The message operand may only be specified when EDT is called via the
subroutine interface or on the return from an EDT procedure.

In this statement, it is obligatory for at least one blank to be entered between the statement
name and any specified operands.

If the @RETURN statement is issued outside of an EDT procedure then it has the same
effect as @HALT (see the @HALT statement).

If @RETURN is used in @DO or @INPUT procedures then execution of the procedure is
aborted and processing continues at the point where the procedure was called. In this case,
the message operand is ignored.

Note
A @RETURN statement in a @DO procedure also aborts any external loop, i.e. the
procedure is not executed as many times as is specified by means of the start value,
end value and the increment of the loop counter in the @DO statement (see section
“EDT procedures” on page 64 and @DO statement).

Operation Operands F mode, L mode
@RETURN [message]

EDT statements @RETURN

U41709-J-Z125-1-76 459

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example 1

 1. @PROC 6 --- (1)
 1. @ @SET #S1 = 'I AM #S1'
 2. @ @SET #S2 = 'I AM #S2'
 3. @ @PRINT #S1
 4. @ @RETURN --- (2)
 5. @ @PRINT #S2
 6. @END -- (3)
 1. @DO 6 --- (4)
 #S01 I AM #S1

(1) Work file 6 is opened for processing.

(2) When the procedure is executed in work file 6 for this statement then the following
statements are no longer executed.

(3) Execution of work file 6 is started.

(4) The procedure is executed.

Example 2

 1. AAAA
 2. BBBB
 3. CCCC
 4. @PROC 7 --- (1)
 1. @ @PRINT ! -- (2)
 2. @ @RETURN --- (3)
 3. @END
 4. @DO 7,!=%,$ --- (4)
 1.0000 AAAA
 4.

(1) The procedure is created in work file 7.

(2) When the statements present in the procedure are executed, the line addressed by the
loop counter ! is to be output.

(3) The execution of the statements in the procedure is terminated here irrespective of
whether the loop counter has reached the upper limit or not.

(4) The procedure is called. In this case, the loop counter ! is to take on the values 1 to 3
(%=1, $=3). However, due to the @RETURN present in the procedure, the loop
counter is not incremented.

@RUN EDT statements

460 U41709-J-Z125-1-76

9.100 @RUN – Call user routine

The @RUN statement is used to execute a routine written by the user (user routine) (see
Subroutine Interfaces User Guide [1]).

entry Entry point for the user routine.

modlib Name of the library containing the module which contains the entry point.
The library must exist. Otherwise, the statement is rejected with the error
message EDT5372.

If no module containing the entry point is found in the specified library, the
system first searches in the alternative libraries BLSLIBnn then in the
private task library and system task library $TASKLIB.

If no library is specified, the system first searches in the private task library
and then in the system task library $TASKLIB.

If the search fails, the error message EDT5372 is issued.

UNLOAD Specifies that the load unit which contains the entry point is to be unloaded
following return to EDT. The UNLOAD operand has the same effect as a
separate @UNLOAD UNIT=entry statement, i.e. it only causes an unload
if the specified entry point is also the name of a load unit (see below). If, for
example, the entry point has been found in an already loaded load unit with
a different name then it is not possible to execute UNLOAD. In this case, the
message EDT1907 is output.

string String that is passed to the called program.

The implementation of external user routines and the way parameters are passed to them
are explained in more detail in “User Routines - @RUN” [1].

If no initialization routine is defined for the user routine then the statement is rejected with
the message EDT5469. If the associated initialization routine sends a return code then the
statement is rejected with the message EDT5470 if the initialization routine does not support
the version and the message EDT5471 if the initialization routine reports a different error.

If the execution of the @RUN statement results in a separate load operation then a UNIT
name which is the same as the specified entry point is notified to the dynamic binder loader .

Operation Operands F mode, L mode
@RUN ENTRY=entry [,MODLIB=modlib] [,UNLOAD] [,string]

EDT statements @RUN

U41709-J-Z125-1-76 461

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

This UNIT name can be specified in the @UNLOAD statement in order to unload all the load
units that were loaded together with the entry point. The @RUN statement's UNLOAD
operand also refers to this UNIT name. If the entry point is found inside another load unit,
@RUN does not therefore result in a separate load operation and the entry point can only
be unloaded together with this load unit.

The @RUN statement is one of the EDT statements with security implications (see also
section “Access protection” on page 99). Under certain privileged IDs, the @RUN
statement is rejected. This also applies to uninterruptible system procedures in interactive
mode (read from SYSDTA with RDATA, execute EDT start procedure) unless the @RUN
statement is issued by the protected procedure itself (SYSDTA=SYSCMD).

Note
The entry operand, which accepts names of up to 32 characters in length, is case-
sensitive.

Caution

The format of the statement and interface used to call the routine are different in
Unicode and compatibility mode.

@SAVE EDT statements

462 U41709-J-Z125-1-76

9.101 @SAVE – Write as ISAM file

The @SAVE statement fully or partially writes the content of the current work file to disk as
an ISAM file.

file Name of the ISAM file that is to be written. The name must correspond to
the SDF data type <filename 1..54> or must consist of the special speci-
fication '/'.

If the file operand is not specified then the explicit local @FILE entry is
used as the file name if present. If not, the global @FILE entry is used and,
failing this, the implicit local @FILE entry (e.g. from the @GET statement)
(see also @FILE statement). If there is neither a local nor a global @FILE
entry then the @SAVE statement is rejected with the error message
EDT5484.

If the specified file cannot be accessed as required then the statement is
rejected with a corresponding error message.

If the file link name EDTISAM is assigned to a file then the user simply needs
to specify '/' in order to write this file (see chapter “File processing” on
page 131).

ver Version number of the file that is to be overwritten. If an incorrect version
number is specified for an existing file then the statement is rejected with
EDT4985. If the file does not yet exist then this specification is ignored and
version 001 of the file is written.

lines One or more line ranges that are to be written to the ISAM file. If lines are
specified more than once then they are also written more than once.

If lines is not specified, then the entire file is written.

Operation Operands F mode, L mode
@SAVE [file] [(ver)] [lines[,...]] [:cols[,...]:]

[]
UPDATE

[RENUMBER [line [(inc)]]] [OVERWRITE]

EDT statements @SAVE

U41709-J-Z125-1-76 463

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

cols One or more column ranges which define the section to be written for each
record. The ranges may repeat and overlap. The column specifications
refer to the characters in the current work file. If column values which exceed
the work file record length are specified then blanks are written to the file in
their place.

If no column range is specified then the lines are written in full.

UPDATE Specifying UPDATE causes the lines that are to be saved to be inserted in
the ISAM file. In the ISAM file, EDT only overwrites the lines whose
numbers also exist in the current work file and which are located in the
range specified with lines. The remaining lines in the ISAM file are
retained.

This operand is ignored if no ISAM file with the specified name exists.

RENUMBER New ISAM record keys are formed for the lines that are to be saved. The
line numbering in the work file remains unchanged. If lines are output more
than once (due to overlaps in the range specifications) then they are also
entered in the file multiple times (with different record keys).

If RENUMBER is not specified then the ISAM keys result from the line
numbers of the lines that are to be saved. If the file is to be read subse-
quently with @GET ... NORESEQ and is to have the same line numbering
as at the time it was saved then RENUMBER must not be specified.

If renumbering results in the maximum permitted line number (corre-
sponding to the key length) being overwritten then the statement is aborted
with error message EDT5252.

line Starting number for the new ISAM record keys that are to be formed. If line
is not specified then the value 1 is used.

inc Increment for the new ISAM record keys that are to be formed. If inc is not
specified then the increment implicitly specified by line is used (see
section “Implicit increment assignment” on page 35).

OVERWRITE An existing file of the same name is overwritten without any request for
confirmation. If the specified file does not yet exist, OVERWRITE has no
effect.

If neither UPDATE nor OVERWRITE is specified and if a file with the same name already exists
then, in interactive mode, EDT issues the query:

% EDT0903 FILE 'file' IS IN THE CATALOG, FCBTYPE = fcbtyp
% EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)?

@SAVE EDT statements

464 U41709-J-Z125-1-76

If the user answers the message with Y then the existing file is overwritten as an ISAM file
with the content of the current work file. In contrast, if the user answers N then the file is not
written and the message EDT0293 is output.
In batch mode, the file is always overwritten.

If an existing file is overwritten by @SAVE without the UPDATE operand then the file type
and file attributes may change. The file is written as an ISAM file with default attributes (e.g.
variable record length unless a corresponding /SET-FILE-LINK command with the file link
name EDTISAM and the divergent attributes has previously been issued (see chapter “File
processing” on page 131). Files of the type PAM or BTAM cannot be overwritten.

The file is only opened temporarily during the write operation.

The character set used for the write operation depends on whether the file is overwritten,
created or extended (see the UPDATE operand.

If the file is overwritten or created then the data is written in the work file's character set and
this character set is entered for the file in the catalog.

If the file is extended then the data is converted from the work file's character set into the
character set specified in the file's catalog entry.
If the value *NONE is entered for the file in the catalog then EDF03IRV is used (see also
section “Character sets” on page 47). If the work file contains characters which are invalid
in the character set of the file that is to be written then these characters are replaced by a
substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the file is not written and the error message
EDT5453 is output.
This does not apply to invalid characters outside of the line or column range that is to be
written. These are ignored.

If the work file contains lines that are too long for the file that is to be written (e.g. if the file
has a fixed record length) or if the conversion operation creates any such records (possible
in the case of Unicode character sets), then the write operation is aborted with the message
EDT5444.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
If file is specified then it is still possible, for reasons of compatibility, to abbreviate
@SAVE to S in F mode.

EDT statements @SCALE

U41709-J-Z125-1-76 465

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.102 @SCALE – Output column counter

The @SCALE statement activates or deactivates the display of a column counter
(horizontal ruler) for the current work file in the work window (see also section “The work
window” on page 103).

ON Activates the display of the column counter (default value).

The column counter is displayed as the first line after an information line, if
one is present and displays the current column numbers for the work file
(e.g. after the work window has been moved horizontally).

If a tabulator has been defined (see @TABS statement), an additional
screen line is displayed in which the current position of the tabulator is
displayed with 'I'. In this line, the tabulator character itself is depicted in
the statement code column.

OFF Deactivates the display of the column counter and any displayed tabulator
positions.

When an EDT session starts, the column counter display is deactivated for all the work files.

The activation and deactivation of the column counter display applies at work file level. If
the work file is simultaneously displayed in multiple data windows on the screen then the
statement therefore applies in both data windows.

If the data window is too small to display at least one data line in addition to the column
counter and any displayed information line or tabulator line then some of the displays are
hidden. The data window must then be enlarged appropriately. The hidden displays are
then shown again in the sequence: information line, column counter, tabulator display.

In EDIT-LONG mode (see the @EDIT statement), the column counter is not output. In HEX
mode, the @SCALE statement has no effect. However, in both cases, the setting becomes
effective if the corresponding mode is exited.

Operation Operands F mode
@SCALE

[]
 ON

 OFF

@SCALE EDT statements

466 U41709-J-Z125-1-76

The @PAR SCALE statement can be used instead of @SCALE and has the same function-
ality. Furthermore, @PAR SCALE can be used for a specific work file or globally for all the
work files and is also permitted in L mode and therefore in EDT procedures.

Example

A column counter is requested in order to check the column numbers.

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

@scale on··0001.00:00001(00)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 BERGER ADALBERT H0CHSTR.10 81234 MUENCHEN<·······················
 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

EDT statements @SDFTEST

U41709-J-Z125-1-76 467

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.103 @SDFTEST – Syntax check by SDF

The @SDFTEST statement is used to check whether a line range contains syntactically
correct SDF commands or syntactically correct SDF statements.

A program name can be set for the check of the SDF syntax of SDF statements.

If the SDF option GUIDANCE=MIN|MED|MAX is set then the user is taken to the SDF
correction dialog if incorrect SDF syntax is detected.

If the user aborts the correction dialog or if the dialog is not possible then the error message
EDT4310 is output if the SDF syntax is incorrect.

If the SDF syntax is correct or has been corrected then the text is taken over into the work
file. The format in which the statement is taken over is determined by the SDF LOGGING
option (see the description of the /MODIFY-SDF-OPTIONS command and the description in
the SDF User Guide [6]).

The current SDF settings apply. These can be modified with /MODIFY-SDF-OPTIONS.

lines One or more line ranges in which the SDF syntax of SDF commands and,
if required, also of SDF statements is to be checked.

If lines is not specified then the SDF syntax of all the SDF commands and,
if required, SDF statements in the work file is checked.

PROGRAM= Causes the SDF syntax of SDF statements to be analyzed.

If PROGRAM is not specified then only the SDF syntax of SDF commands is
analyzed.

progname Name of the program whose statements are to be subjected to a syntax
check in accordance with the SDF syntax file hierarchy.

If progname is not specified then the predefined name set by the @PAR
SDF-PROGRAM statement is used. If no name has been preset then the
@SDFTEST statement is rejected with the message EDT5320. If the
program name is not known in the current SDF syntax file hierarchy then the
@SDFTEST statement is rejected with the message EDT5321.

Operation Operands F mode, L mode
@SDFTEST

[lines[,...]] [PROGRAM [= progname []]]
INTERNAL

EXTERNAL

@SDFTEST EDT statements

468 U41709-J-Z125-1-76

INTERNAL The program name is the maximum 8-character internal name. The internal
name can be ascertained using SDF-A if it does not correspond to the name
of the program.

EXTERNAL The program name is the maximum 30-character external name (e.g. LMS,
SDF-A or HSMS).

If neither INTERNAL nor EXTERNAL is specified as the name type then the
name type set as the default value in the @PAR SDF-NAME-TYPE
statement is used. When EDT starts, the name type INTERNAL is set as the
default.

EDT differentiates between 3 types of record content:

1. Records which start with one (and only one) '/' in column 1:

These are checked for command syntax in accordance with the SDF syntax file
hierarchy. Admissibility in terms of privileges and system environment is determined by
the current user and the current environment.

2. Records which start with '//':

These are passed to SDF for a statement check if PROGRAM has been specified.

3. Other data lines:

Records which do not start with either '/' or '//' are ignored.

Lines which start with '/' and have a continuation character ('-') as their final character
are chained with the next line provided that this also starts with '/'. The two lines are then
passed to SDF together when the @SDFTEST statement is executed. The continuation
lines do not have to be present in any of the specified line ranges. It is sufficient for the first
line to be present in one of the specified line ranges. If PROGRAM is specified then this
procedure also applies to lines that start with '//'.

The checked command or statement overwrites the old command or statement in the work
file together with all the continuation lines. If the command or statement is modified during
the SDF check (for example because LOGGING=INVARIANT was set in a preceding
/MODIFY-SDF-OPTIONS command) then the affected lines are reformated and split into
multiple continuation lines if necessary. The continuation character is set in the 72nd
column. If necessary, the following lines are renumbered. Line numbers are assigned using
the procedure Insertion between two lines (see section “Line number assignment” on
page 36). If it is not possible to insert the lines generated by SDF then the statement is
aborted with the message EDT5364 or EDT5365.

In F mode, the message EDT0285 is issued after all the checks have been performed if no
errors have occurred or if processing was continued after an error. In L mode, the SDF
output for statements (but not for commands) is sent to SYSOUT.

EDT statements @SDFTEST

U41709-J-Z125-1-76 469

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If a checked command or statement contains errors and the correction dialog is unsuc-
cessful, EDT outputs the message EDT4310. In interactive mode, the user is also asked
whether the check is to be continued.

% EDT4310 SDF: SYNTAX ERROR IN LINE (&00)
% EDT0911 CONTINUE PROCESSING? REPLY (Y=YES; N=NO)?

If the user responds N to the message in interactive mode then the @SDFTEST statement
is interrupted with the message EDT5324 and, in F mode, the incorrect line is displayed at
the topmost position in the window. In contrast, if the user responds Y then the syntax check
continues with the next line which has not yet been examined. In batch mode, the syntax
check is always continued.

If the work file containing the lines to be checked has a character set other than EDF03IRV
then it is necessary to take note of certain special characteristics of SDF use. In particular,
characters which do not belong to the EBCDIC kernel are naturally only permitted in literals
or comments. Furthermore, SDF always conducts the correction dialog in the character set
defined using /MODIFY-TERMINAL-OPTIONS and also always interprets the byte
sequences passed to it in this character set.

Consequently, before passing the statements or commands to SDF, EDT converts them
into the character set defined with /MODIFY-TERMINAL-OPTIONS if the currently set
GUIDANCE-MODE does not make it possible to conduct a correction dialog. If this operation
is unsuccessful, then the @SDFTEST statement is rejected with the message EDT5327.

If no correction dialog is possible then EDT uses other (less constraining) rules for the
conversion. If the work file has an EBCDIC character set then this is used without
conversion. If the work file possesses an ISO character set then the corresponding EBCDIC
reference character set is used. In all other cases, EDT uses the character set UTFE. If
conversion is not possible, then the @SDFTEST statement is aborted with the message
EDT5327.

If SDF returns data then this is converted into the work file's character set. If this is not
possible, then the @SDFTEST statement is aborted with the message EDT5453.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

@SDFTEST EDT statements

470 U41709-J-Z125-1-76

Note
If GUIDANCE=EXPERT is set then EDT displays any errors reported by SDF only in the
form EDT4310. To permit a more precise error analysis, it is advisable to set
GUIDANCE=MIN, MED or MAX.

Passwords and other operands which have been defined using OUTPUT=SECRET-
PROMPT are replaced by P if the GUIDANCE setting is MIN, MED or MAX.

SDF does not recognize incorrect operands in ISP commands.

If the character set UTFE has been set in /MODIFY-TERMINAL-OPTIONS then the
screen layout for the SDF correction dialog is shifted if characters not present in
EDF03IRV occur. This is due to the fact that SDF does not currently support Unicode.
However, it does not usually cause any functional restrictions.

Commands and statements may not exceed a maximum length of 16379 bytes either
on input or on output. Otherwise, the @SDFTEST statement is rejected with the
message EDT5325 or EDT5326.

EDT statements @SEARCH-OPTION

U41709-J-Z125-1-76 471

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.104 @SEARCH-OPTION – Set default value for searching with
@ON

On the one hand, the @SEARCH-OPTION statement can be used to specify whether the
@ON statement is to differentiate between uppercase and lowercase in the search term
when searching for strings and, on the other, it can be used to define a global column range
to which the search is restricted if the @ON statement contains no explicit column range
specification.

CASELESS-SEARCH=
The operand specifies whether a distinction is to be made between
uppercase and lowercase characters in the search term when searching
with @ON.

ON The search with @ON does not consider whether the characters in the
located text match those in the search term in terms of uppercase and
lowercase notation, i.e. if 'string' is defined as the search term then the
strings 'String', 'STRING' or 'StrIng' are all identified as hits (see also
section “Searching with @ON” on page 78).

OFF The uppercase/lowercase notation of a character is taken into consideration
during the search. This is the default setting when EDT is started.

COLUMN-RANGE=
The operand provides a global specification for the column range to which
the search is to be restricted if the @ON statement contains no explicit
column range specification.

cols Contiguous column range to which searches using the @ON statement are
to be limited. If the range specification contains only a single column speci-
fication, this indicates the range from the specified column through to
32768. If the first operand is greater than the second then the statement is
rejected with the message EDT3922.

If no column range is specified then the setting is reset to the value defined
at EDT start time, i.e. 1-32768.

Operation Operands F mode, L mode
@SEARCH-
OPTION

 [,...]
CASELESS-SEARCH [=]

COLUMN-RANGE [= cols]

 ON

 OFF

@SEARCH-OPTION EDT statements

472 U41709-J-Z125-1-76

EDT uses the system component XHCS when assigning lowercase characters to
uppercase. Which characters are treated as an uppercase/lowercase pair therefore
depends on the definition of the associated character set attributes in XHCS.

The option CASELESS-SEARCH=ON is effective independently of the setting made with
@PAR LOWER. Consequently, in F mode with @PAR LOWER=OFF hits may be displayed
in which the located characters are depicted as smudge characters.

EDT statements @SEPARATE

U41709-J-Z125-1-76 473

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.105 @SEPARATE – Perform line break

The @SEPARATE statement breaks the specified lines into multiple lines. The point at
which the break takes place is specified by a separator character or by a column position.

lines One or more line ranges in which line breaks are to be inserted. If the lines
operand is not specified then all the lines in the file are processed.

AT This operand introduces the definition of the point where the lines are to be
broken.

If the AT operand is not specified then the record separator defined as the
default using @PAR SEPARATOR determines the break position (see the
@PAR SEPARATOR statement). If no default record separator has been
defined then the error message EDT4952 is output.

strchar This operand specifies the record separator character for line breaks. It may
be any character which must be specified in single quotes. The character
can also be specified in the form of a substitute representation for Unicode
characters.

col This operand specifies the number of the column at which the line break is
to be performed.

If the break is performed using a record separator character then no break is inserted in
lines in the specified line range which do not contain this record separator.

In contrast, if a line in the specified line range contains one or more record separator
characters then the line is searched through from left to right for the first occurrence of the
record separator character.

All the characters before the first record separator character remain in the original line while
all the characters after the record separator character (including any other record
separators that may be present) are inserted as a new line in the work file.
The record separator character at which the line break is performed is removed, i.e. it is no
longer present either in the original or in the newly inserted line.
If the newly inserted line itself contains further record separator characters then the
procedure described above is repeated for this line. This operation continues until a newly
inserted line contains no further record separator characters.

Operation Operands F mode, L mode
@SEPARATE

[lines[,...]] [AT]
strchar

col

@SEPARATE EDT statements

474 U41709-J-Z125-1-76

If the line contains several record separator characters which immediately follow one
another or if the line starts or ends with one or more record separator characters then empty
records (record length=0) are inserted.

If the point of the break is defined by means of a column number then all the characters as
of this position (including the character in the specified column) are separated from the
original line and inserted as a new line in the work file. If the new line still contains the same
number as or more columns than are specified in the col operand then this line is itself
broken at column col. This operation is repeated until the newly inserted line has fewer
columns than are specified in the col operand.

If the original line possesses fewer columns than are specified in the col operand or if col=1
is specified in the statement then the line is not modified.

The lines created as a result of the line break operation are numbered using the procedure
Insertion between two lines (see section “Line number assignment” on page 36).

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example 1

A printed list is to be made narrower:

@SEPARATE 5-100 AT 41

Lines 5 to 100 are shortened to a length of 40 characters. The remaining characters of each
line are inserted after each line in the file.

Example 2

Records contain line feed characters (= U'000A' in UTF16) which are to be evaluated (for
the purposes of this example, it is assumed that the character % has been declared as the
escape character for the substitute representation of Unicode characters, by means of the
@PAR ESCAPE-CHARACTER statement):

@SEPARATE & AT '%U000A'

EDT statements @SEQUENCE (format 1)

U41709-J-Z125-1-76 475

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.106 @SEQUENCE (format 1) – Perform line numbering

The @SEQUENCE statement (format 1) causes EDT to write a number in each line of a
contiguous line range.
A predefined number consisting of a maximum of 8 digits (possibly with leading zeros) is
written to the first line of the line range. This also defines the number of digits in all the
following numbers. All the following numbers are given by the total of the preceding number
plus the predefined increment. If this process would result in a number containing more
digits than are present in the starting number then only the same number of digits from the
right as are present in the starting number are used.

This statement overwrites any content in columns in which the numbers are written.

lines EDT writes a number to each line in the specified line range.

svars EDT writes a number to each string variable in the specified range of string
variables.

col The operand specifies the column which is to accommodate the first digit of
the number that is to be written. If a line in the specified line range has fewer
columns than are specified in the col then the columns between the
previous line end and the column col are filled with blanks.

If the col operand is missing, EDT writes the first digit in column 73.

n1 This operand specifies the integer value that EDT is to write as a decimal
number in the first line of the relevant line range. The n1 operand may
consist of a maximum of 8 digits (possibly with leading zeros). The numbers
that are written in the following lines have the same number of digits.

If the n1 operand is missing, EDT writes the number 00000100 in the first
relevant line.

n2 This operand specifies the increment (as an integer value) for the formation
of the following numbers. Each of these numbers consists of the sum of the
preceding number and the increment. During this process, only as many
digits are used starting from the right as are present in the starting number
n1.

If the n2 operand is missing, EDT uses the value 100 as the increment.

Operation Operands F mode, L mode
@SEQUENCE

[] [: [col] [: [n1] [(n2)]]]
 lines

 svars

@SEQUENCE (format 1) EDT statements

476 U41709-J-Z125-1-76

If neither the lines nor the svars operand is specified then EDT writes a number in every
line of the current work file.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
The choice of starting value and increment determines whether the sequence of
numbers generated by the @SEQUENCE statement (format 1) is ascending,
descending or constant. For example, the starting value 0100 and increment 100 result
in the ascending sequence of numbers 0100, 0200, 0300, etc., at least up to the value
9900.
After that, the value reverts to 0000 and numbering continues with 0100, 0200 etc.
If the starting value 999 is selected in combination with the increment 998, then the
descending sequence 999, 997, 995 etc. is obtained. When the value 001 is reached,
the next number is 999 again and the sequence repeats from the beginning.

In the example above, the same result could be obtained by setting the increment to
3998, for example, because the leading 3 is omitted in each newly formed number.
An alternating sequence of numbers can be obtained, for example, by setting the
starting value 3 and the increment 5: 3, 8, 3, 8, etc. The easiest way to obtain a
constant sequence is to set the increment 0.

EDT statements @SEQUENCE (format 2)

U41709-J-Z125-1-76 477

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.107 @SEQUENCE (format 2) – Adopt line numbers

The @SEQUENCE statement (format 2) causes EDT to write the associated line number
in each line of a contiguous line range. The line number is written as an 8-digit number
without a decimal point. If necessary, the number is filled with zeros at the right and left.
EDT overwrites any content in the 8 columns in which it writes the line numbers.

lines EDT writes the associated line number in each line of the specified line
range. If the lines operand is missing, EDT writes the associated line
number in each line of the current work file.

col The operand specifies the column which is to accommodate the first digit of
the associated line number. If a line in the specified line range has fewer
columns than are specified in the col operand then the columns between
the previous line end and the column col are filled with blanks.

If the col operand is missing, EDT writes the first digit of the line number in
column 73.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Example

The associated line number is to be written starting at column 20 in every line of the work
file.

Operation Operands F mode, L mode
@SEQUENCE [lines] : [col] : LINE

 0.00 THE<··
 1.11 SEQUENCE<···
 88.76 IS<···
 88.76 OFTEN<··
5555.00 VERY<···
9876.54 IMPORTANT<··
9877.54 ··

sequence :20: line···0000.00:00001(00)

@SEQUENCE (format 2) EDT statements

478 U41709-J-Z125-1-76

The line numbers have been written as 8-digit numbers without a decimal point starting at
column 20. The line numbers have been filled on the right and left with zeros as required.

 0.00 THE 00000035<··
 1.11 SEQUENCE 00011110<··
 88.76 IS 00887610<··
 88.76 OFTEN 00887620<··
5555.00 VERY 55550000<··
9876.54 IMPORTANT 98765432<··
9877.54 ··

EDT statements @SEQUENCE (format 3)

U41709-J-Z125-1-76 479

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.108 @SEQUENCE (format 3) – Check line numbers

The @SEQUENCE statement (format 3) causes EDT to examine the content of a column
or contiguous range of columns in each line of a contiguous line range. In the case of
Unicode character sets, it interprets the string located there on the basis of its UTF16
coding. Otherwise, it interprets the string as a binary number in accordance with the coding
corresponding to the work file's character set. If the column to be examined is located to the
right of the end of the line then EDT considers the column content to be a blank.
EDT checks whether the identified binary numbers form an ascending sequence. It outputs
all the lines in which it identifies a binary number which is equal to or smaller than that of
the preceding line. In interactive mode, the output is written to SYSOUT and in batch mode
it is written to SYSLST.

lines The specified column range is examined in each line in the specified line
range.

svars The specified column range is examined in each string variable in the
specified range of string variables.

col The operand specifies the column containing the first character that is to be
checked. If all or part of the column range that is to be checked is located
after the end of the line then a blank is taken as the value of every column
located after the end of the line.

If the col operand is missing, EDT starts the check in column 73.

int This operand specifies the number of columns that are to be considered
(1..8). If the int operand is missing, EDT examines 8 columns.

If a range of string variables is specified then either a Unicode character set or a 7 or 8-bit
character set must be defined for all the string variables. If this is not the case, the error
message EDT5473 is output and the execution of the statement is aborted.
If neither the lines nor the svars operand is specified then EDT checks every line of the
current work file.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Operation Operands F mode, L mode
@SEQUENCE

[] : [col] : CHECK [int]
 lines

 svars

@SEQUENCE (format 3) EDT statements

480 U41709-J-Z125-1-76

Example

EDT is to check all lines to determine whether the contents of columns 2 to 3 form an
ascending sequence.

EDT outputs all the lines that deviate from the ascending sequence.

Now, only the content of the 1st column in the first four lines is to be used for the check.

The sequence is 1 (line 1), 2 (line 2), 2 (line 3) and 1 (line 4). In particular, it should be noted
that the sequence is not considered to be ascending if identical values are identified. This
occurs here in line 3.

 1.00 15 LINE 1<···
 2.00 20 LINE 2<···
 3.00 21 LINE 3<···
 4.00 16 LINE 4<···
 5.00 18 LINE 5<···
 6.00 01 LINE 6<···
 7.00 99 LINE 7<···
 8.00 97 LINE 8<···

sequence & :1: check 2···0001.00:00001(00)

 4.0000 16 LINE 4
 6.0000 01 LINE 6
 8.0000 97 LINE 8
 %PLEASE ACKNOWLEDGE

 1.00 15 LINE 1<··················· ··
 2.00 20 LINE 2<··
 3.00 21 LINE 3<··
 4.00 16 LINE 4<··
 5.00 18 LINE 5<··
 6.00 01 LINE 6<··
 7.00 99 LINE 7<··
 8.00 97 LINE 8<··

sequence 1-4 :1: check 1·······································0001.00:00001(00)

 3.0000 21 LINE 3
 4.0000 16 LINE 4
 %PLEASE ACKNOWLEDGE

EDT statements @SET (format 1)

U41709-J-Z125-1-76 481

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.109 @SET (format 1) – Supply values for integer variables

This format of the @SET statement is used to assign values to integer variables. This value
may be the result of an expression, may be obtained by converting a printable number or
the content of a line number variable into an integer value, or may take the form of a line
length or the binary value of a string.

ivar Integer variable (#I0..#I20) which is to be supplied with a value.

intex Integer expression. If the maximum negative or positive value (-231,231-1)
is exceeded on an arithmetic operation then the statement is rejected with
the message EDT4946.

lvar Line number variable (#L0..#L20) whose value is to be assigned to the
integer variable. When converted into an integer value, the content of the
line number variable is multiplied by 10000 and then assigned.

LENGTH line Line number of a line whose length is to be assigned as a value to the
integer variable. If the line is empty then the value 0 is assigned. If the line
does not exist then, for reasons of compatibility, the value 0 is again
assigned to the integer variable.

LENGTH svarex
String variable whose length is to be assigned as a value to the integer
variable.

Operation Operands F mode, L mode
@SET

ivar =

intex
lvar
LENGTH line
LENGTH svarex
SUBSTR string
STRING string [,CODE = name]

@SET (format 1) EDT statements

482 U41709-J-Z125-1-76

SUBSTR string
String specifying an integer value to be assigned to the integer variable. Any
plus or minus sign present in the string is taken into account during
conversion. If the sign is missing then + is assumed. If the string contains
blanks then these are eliminated during conversion.

If the string is not an integer value then the statement is rejected with the
error message EDT5477. If the integer value is not in the permitted range
(-231,231-1) then the statement is rejected with the message EDT4946.
Empty strings are not permitted and result in the error EDT3907.

STRING string
String. The binary value of the first 4 bytes of the string is assigned to the
integer variable. If the string contains fewer than 4 bytes then it is left-filled
with zeros.
Empty strings are not permitted and result in the error EDT3907.

name Character set in which the string is to be interpreted. The string is converted
into this character set before being assigned. The first 4 bytes are then
assigned without regard for character boundaries.
If the string contains characters which are invalid in the target character set
then these characters are replaced by a substitute character provided that
such a character has been specified (see @PAR SUBSTITUTION-
CHARACTER); otherwise, the statement is rejected with the error message
EDT5453.

If the operand is not specified then the character set of the specified string
(which depends on the source) is used.

In this statement, the statement name may be omitted entirely. In F mode, it is also permis-
sible to omit the statement symbol.

EDT statements @SET (format 1)

U41709-J-Z125-1-76 483

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

 1. @SET #I0 = SUBSTR '123' --------------------------------------- (1)
 1. @SET #L0 = 1.01 --- (2)
 1. @SET #I1 = #L0 -- (3)
 1. @CREATE 1 'AB' -- (4)
 1. @SET #I2 = LENGTH 1 --- (5)
 1. @SET #I3 = 2124 + #I0 + #I1 - #I2 ----------------------------- (6)
 1. @SET #I4 = STRING '123' --------------------------------------- (7)
 1. @SET #I5 = STRING 'A',CODE=UTF16 ------------------------------ (8)
 1. @STATUS = I --- (9)
#I00= 0000000123 #I01= 0000010100 #I02= 0000000002
#I03= 0000012345 #I04= 0015856371 #I05= 0000000065
#I06= 0000000000 #I07= 0000000000 #I08= 0000000000
#I09= 0000000000 #I10= 0000000000 #I11= 0000000000
#I12= 0000000000 #I13= 0000000000 #I14= 0000000000
#I15= 0000000000 #I16= 0000000000 #I17= 0000000000
#I18= 0000000000 #I19= 0000000000 #I20= 0000000000

(1) The value 123 is assigned to the integer variable #I0.

(2) The value 0001.0100 is assigned to the line number variable #L0.

(3) The value 10100, line number 1.01 * 10000, is assigned to the integer variable #I1.

(4) Line 1 is created with the content AB.

(5) The value 2, the length of line 1, is assigned to the integer variable #I2.

(6) The value of the expression is assigned to the integer variable #I3.

(7) The value X'00F1F2F3' = 15856371 is assigned to the integer variable #I4.

(8) The value which corresponds to the Unicode code position 'A' is assigned to the
integer variable #I5.

(9) The content of the integer variable is output.

@SET (format 2) EDT statements

484 U41709-J-Z125-1-76

9.110 @SET (format 2) – Supply values for string variables

This format of the @SET statement is used to assign values to string variables. This value
can be the binary value of an integer variable, a line number or the name of a string variable.
It is also possible to assign a string. In both cases, a new string variable is created.

svarex String variable (#S0..#S20) which is to be supplied with a value.

INTERNAL ivar
Integer variable (#I0..#I20) whose content is to be supplied to the string
variable in binary form. The result is not usually printable. The character set
is EDF041.

INTERNAL line
Line number which is to be assigned to the string variable as a binary value.
In this case, each of the 8 digits in the line number are assigned to a half
byte in binary form. The result is not usually printable. The character set is
EDF041.

INTERNAL svar
String variable (#S0..#S20) whose name is to be supplied to the string
variable as a value. The character set is EDF041.

string String which is to be assigned to the string variable.

name Character set which is to be assigned to the string variable. The string
string is converted into this character set before being assigned. If it
contains characters which are invalid in the target character set then these
characters are replaced by a substitute character provided that such a
character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, the statement is rejected with the error message EDT5453.
If the operand is missing then the string variable is assigned the character
set of the string that is to be supplied to it.

In this statement, the statement name may be omitted entirely. In F mode, it is also permis-
sible to omit the statement symbol.

Operation Operands F mode, L mode
@SET

svarex
= INTERNAL

= string [,CODE=name]

 ivar
 line
 svar

EDT statements @SET (format 2)

U41709-J-Z125-1-76 485

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

 1. @SET #I0 = -2122153084 -- (1)
 1. @SET #S0 = INTERNAL #I0 --------------------------------------- (2)
 1. @SET #S1 = INTERNAL 4081.4082 --------------------------------- (3)
 1. @SET #S2 = INTERNAL #S0 --------------------------------------- (4)
 1. @SET #S3 = 'ABC' -- (5)
 1. @PRINT #S00.-#S03 --- (6)
 #S00 abcd
 #S01 a b
 #S02 #S00
 #S03 ABC

(1) The value -2122153084 is assigned to the integer variable #I0.

(2) The value X'81828384' is assigned to the string variable #S0.

(3) The value X'40814082' is assigned to the string variable #S1.

(4) The value '#S00' is assigned to the string variable #S2.

(5) The value 'ABC' is assigned to the string variable #S3.

(6) The string variables #S00-#S03 are output.

@SET (format 3) EDT statements

486 U41709-J-Z125-1-76

9.111 @SET (format 3) – Supply values for line number variables

This format of the @SET statement is used to assign values to line number variables. This
value may consist of: a line number specification, the value of an integer variable, the speci-
fication of a line number as a string or the binary value of the first 4 bytes in a string.

lvar Line number variable (#L0..#L20) which is to be supplied with a value.

line Line number which is to be assigned to the line number variable.

ivar Integer variable (#I0..#I20) whose content is to be supplied to the line
number variable in converted form. In this case, the permitted range of
values for ivar is 1 to 99999999. This results in the line numbers 0.0001
to 9999.9999. On conversion, therefore, the value of the integer is divided
by 10000 and the resulting value is assigned to the line number variable. If
the value of the integer variable is outside of the valid range then the
statement is rejected with the message EDT5475.

SUBSTR string
String which is converted into a line number and assigned to the line number
variable. If the string does not represent a valid line number then the
statement is rejected with the message EDT5477. If the string contains
blanks then these are eliminated during conversion.
Empty strings are not permitted and result in the error EDT3907.

STRING string
String whose binary value is interpreted as a line number and assigned to
the line number variable. In this case the 8 half bytes in the first 4 bytes of
the string are each interpreted as a decimal digit.

If the string contains fewer than 4 bytes after conversion then it is left-filled
with zeros.

If the binary value of one of the half bytes in the first 4 bytes of the string
does not correspond to a decimal digit 0..9 then the statement is rejected
with the message EDT4928.
Empty strings are not permitted and result in the error EDT3907.

Operation Operands F mode, L mode
@SET

lvar =

line
ivar

SUBSTR string
STRING string[,CODE=name]

EDT statements @SET (format 3)

U41709-J-Z125-1-76 487

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

name Character set in which the string is to be interpreted. The string is converted
into this character set before being assigned. The first 4 bytes are then
assigned without regard for character boundaries.

If the string contains characters which are invalid in the target character set
then these characters are replaced by a substitute character provided that
such a character has been specified (see @PAR SUBSTITUTION-
CHARACTER); otherwise, the statement is rejected with the error message
EDT5453.

If the operand is not specified then the character set of the specified string
(which depends on the source) is used.

In this statement, the statement name may be omitted entirely. In F mode, it is also permis-
sible to omit the statement symbol.

Example

 1. @SET #L0 = 1.01 --- (1)
 1. @SET #I0 = #L0 -- (2)
 1. @SET #L1 = #I0 -- (3)
 1. @SET #L2 = SUBSTR '1.01' -------------------------------------- (4)
 1. @SET #L3 = STRING X'00010100' --------------------------------- (5)
 1. @STATUS = L --- (6)
#L00= 1.0100 #L01= 1.0100 #L02= 1.0100
#L03= 1.0100 #L04= 0.0000 #L05= 0.0000
#L06= 0.0000 #L07= 0.0000 #L08= 0.0000
#L09= 0.0000 #L10= 0.0000 #L11= 0.0000
#L12= 0.0000 #L13= 0.0000 #L14= 0.0000
#L15= 0.0000 #L16= 0.0000 #L17= 0.0000
#L18= 0.0000 #L19= 0.0000 #L20= 0.0000

(1) The value 0001.0100 is assigned to the line number variable #L0.

(2) The value 10100, line number 1.01 * 10000, is assigned to the integer variable #I1.

(3) The value 0001.0100 is assigned to the line number variable #L1.

(4) The value 0001.0100 is assigned to the line number variable #L2.

(5) The value 0001.0100 is assigned to the line number variable #L3.

(6) The content of the line number variable is output.

@SET (format 4) EDT statements

488 U41709-J-Z125-1-76

9.112 @SET (format 4) – Store values of variables

This format of the @SET statement is used to insert the contents of an integer variable, the
name of a string variable or the contents of a line number variable as of a given column in
printable form in a work file line or string variable.

svarex String variable (#S0..#S20) in which a value is to be inserted.
Any characters in the corresponding positions are overwritten.

lvar Line number variable (#L0..#L20) specifying the line to which a value is to
be written. If the line does not yet exist, it is created. Any characters in the
corresponding positions are overwritten.

col Column as of which the line or string variable is to be written. The default
value of col is 1. If col is located after the end of the line then the line is
filled with blanks up to the column col.

CHAR ivar Integer variable (#I0..#I20) whose content is to be inserted as a string in
the line as of column col. The conversion produces an 11 character long,
printable number starting either with a blank or a minus sign depending on
whether the integer is positive or negative.

CHAR svar String variable (#S0..#S20) whose name is to be inserted in the specified
line or string variable.

CHAR lvar1 Line number variable whose value is to be inserted in printable form in the
specified line or string variable.

Converting the value of a line number variable always results in 9 printable
characters in the form IIII.IIII where each I represents a printable
digit. In this case, leading zeros are replaced by blanks.

If the insertion operation causes the line or string variable to exceed the maximum length
of 32768 then the statement is rejected with the message EDT5474.

If the information is inserted in a line then the character set depends on the work file. If the
current work file already has a character set then the value is inserted in this character set.
If the work file is empty and has the character set *NONE then it is assigned the character
set EDF041 prior to insertion.

Operation Operands F mode, L mode
@SET

 [,col] = CHAR
 svarex

 lvar

ivar
svar
lvar1

EDT statements @SET (format 4)

U41709-J-Z125-1-76 489

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the information is inserted in a string variable then it is converted into the character set of
the string variable before insertion.

In this statement, the statement name may be omitted entirely. In F mode, it is also permis-
sible to omit the statement symbol.

Example

 1. @SET #L0 = 1 --- (01)
 1. @SET #I0 = 123 --- (02)
 1. @SET #L0 = CHAR #I0 -- (03)
 1. @SET #L0 ,13 = CHAR #S0 -------------------------------------- (04)
 1. @SET #L0 ,18 = CHAR #L0 -------------------------------------- (05)
 1. @SET #S0 = CHAR #I0 -- (06)
 1. @SET #L0 = 47.11 --- (07)
 1. @SET #S1 = CHAR #L0 -- (08)
 1. @SET #S2 ,5 = CHAR #S0 --------------------------------------- (09)
 1. @PRINT 1,#S0-#S2 --- (10)
 1.0000 0000000123 #S00 1.0000
 #S00 0000000123
 #S01 47.1100
 #S02 #S00

(01) The value 0001.0000 is assigned to the line number variable #L0.

(02) The value 123 is assigned to the integer variable #I0.

(03) The string ' 0000000123' is inserted in line 1 as of column 1.

(04) The string '#S00' is inserted in line 1 as of column 13.

(05) The string ' 1.0000' is inserted in line 1 as of column 18.

(06) The value ' 0000000123' is assigned to the string variable #S0.

(07) The value 47.11 is assigned to the line number variable #L0.

(08) The value ' 47.1100' is assigned to the string variable #S1.

(09) The value '#S00' is assigned to the string variable #S2 starting at column 5, i.e. its
 value is ' #S00'.

(10) Line 1 and the string variables #S0..#S2 are output.

@SET (format 5) EDT statements

490 U41709-J-Z125-1-76

9.113 @SET (format 5) – Date and time

This format of the @SET statement is used to store the date and time in a string variable
or a work file. The value is stored starting at a specified column.

svarex String variable (#S0..#S20) in which the date or time are to be inserted.
Any characters in the corresponding positions are overwritten.

lvar Line number variable (#L0..#L20) specifying the line in which the date or
time are to be inserted. If the line does not yet exist, it is created. Any
characters in the corresponding positions are overwritten.

col Column as of which the date or time are to be stored. If col is not specified
then the values are inserted starting at column 1. If col is located after the
end of the line then the line is filled with blanks up to the column col.

DATE The current date is inserted in the specified string variable or line in the
desired form. If ISO is not specified then the form mm/dd/yyjjj is used.
Here, mm specifies the month, dd the day, yy the year and jjj the day of
the year.

ISO Specifies that the date is to be output in the format yy-mm-ddjjj.

ISO4 Specifies that the date is to be output in the format yyyy-mm-ddjjj.

TIME The time is stored in the specified string variable or line in the form hhmmss.
Here, hh specifies the hours, mm the minutes and ss the seconds.

If the insertion operation causes the line or string variable to exceed the maximum length
of 32768 then the statement is rejected with the message EDT5474.

If the information is inserted in a line then the character set depends on the work file. If the
current work file already has a character set then the value is inserted in this character set.
If the work file is empty and has the character set *NONE then it is assigned the character
set EDF041 prior to insertion.

If the information is inserted in a string variable then it is converted into the character set of
the string variable before insertion.

In this statement, the statement name may be omitted entirely. In F mode, it is also permis-
sible to omit the statement symbol.

Operation Operands F mode, L mode
@SET

 [,col] =
 svarex

 lvar

DATE [ISO[4]]

TIME

EDT statements @SET (format 5)

U41709-J-Z125-1-76 491

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Example

 1. @SET #L0 = 1 -- (1)
 1. @SET #L0 = DATE --- (2)
 1. @SET #L0 ,13 = DATE ISO --------------------------------------- (3)
 1. @SET #S0 = TIME --- (4)
 1. @SET #S0 ,13 = DATE ISO4 -------------------------------------- (5)
 1. @PRINT 1 -- (6)
 1.0000 02/07/06038 06-02-07038
 1. @PRINT #S00 --- (7)
 #S00 165941 2006-02-07038

(1) The value 0001.0000 is assigned to the line number variable #L0.

(2) The date is inserted in line 1 as of column 1.

(3) The date is inserted in ISO format in line 1 as of column 13.

(4) The time is inserted in the string variable #S00 starting at column 1.

(5) The date in ISO4 format is inserted in the string variable #S00 starting at column 13.

(6) Line 1 is output.

(7) The string variable #S00 is output.

@SET (format 6) EDT statements

492 U41709-J-Z125-1-76

9.114 @SET (format 6) – Modify current increment and line number

This format of the @SET statement defines the current line number and the current
increment or restores earlier values for the line number and increment.

line This operand specifies the new current line number.

inc This operand specifies the new current increment. If inc is not specified
then the increment implicitly specified by line is used (see section “Implicit
increment assignment” on page 35).

text EDT statement or data input which is executed or inserted in the new
current line after the new current line number and increment have been
defined. The string is treated as if it had been entered at the prompt in L
mode. In particular, the decision to interpret the text as data input or as a
statement is made in accordance with the same rules (for more information,
see section “L mode” on page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified (although the colon is), then an empty line (line of
length 0) is inserted. If neither the text operand nor the colon are specified
then only the new current line and increment are defined.

Every @SET line [(inc)] statement defines a new current line number and a new current
increment. The values that previously represented the current line number and increment
for the current work file are stored in a memory area which can accommodate a maximum
of three pairs of values (line number/increment).

The pairs of values previously stored in this memory area slip down one place every time
the values are redefined. When the memory area is full the last (oldest) pair of values is lost.

Operation Operands F mode, L mode
@SET [line [(inc)] [:text]]]

EDT statements @SET (format 6)

U41709-J-Z125-1-76 493

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the @SET statement is specified without operands then the last pair of values saved in
this memory area is used as the current line number and current increment.
The movement of the pairs of values in the memory area depends on whether or not the
memory area was already full. If the memory area was not already full then all the pairs of
values move forward one place.
The last place in the memory area remains empty. If the memory area is already empty
when @SET is issued without operands then the previous current line number and the
previous current increment are retained and the message EDT4964 is output.

If the memory area is already full when the @SET statement is specified without operands
then the last pair of values saved in this memory area is again used as the current line
number and current increment.

However, in this case, the values in the memory area are rotated, i.e. all the pairs of values
in the memory area except for the first pair move forwards one place and what was previ-
ously the first pair in the memory area (and now forms the new current line number and the
new current increment) is stored in the last place in the memory area.

If the work file is completely deleted then the memory area is emptied.

In this statement, the statement name may be omitted entirely. Unlike the other formats of
the @SET statement, in F mode it is then necessary to specify the statement symbol.

Particular attention is required when using the text operand in F mode. When it is used,
EDT temporarily switches to L mode and then reactivates F mode again.
This also occurs if the operand contains a statement which causes a switch to L mode. If
the operand contains data input which in turn contains a semicolon or non-paired double
quotes then this results in the statement line being broken down into subsegments, possibly
with unexpected consequences.

@SETF EDT statements

494 U41709-J-Z125-1-76

9.115 @SETF – Change work file and set position

The @SETF statement sets the vertical and horizontal position of the work window for a
work file either with or without changing the current work file.

$0..$22 Work file in which the position is to be set. The current work file remains
unchanged. If no further operands are specified then the position in the
specified work file is set to the (logical) first line and first column.

0..22 Work file in which the position is to be set. The specified work file is set as
the current work file before positioning. Before EDT goes to the specified
work file any nesting of the work files undertaken with @PROC is undone.
If no further operands are specified then the specified work file is simply set
as the current work file and the line and column positions in the specified
work file remain unchanged.

An active work file cannot be specified as the current work file. If the user
attempts to do so, the message EDT4959 is issued.

GLOBAL Positioning is performed simultaneously in all the work files. If no further
operands are specified then the position is set to the (logical) first line and
first column in all the work files.

line Absolute specification of the vertical position. The user must specify the line
number which is to be displayed in the first line of the work window. If no line
with this line number is present then the position is set to an existing line
which has the next (higher) line number. If there is no such line then the
position is set to the existing line with the highest line number.

vpos Relative vertical positioning statement. It is possible to specify +[n], ++,
–[n], –– as well as +([m[,...]]), ++([m[,...]]), –([m[,...]])
and ––([m[,...]]).

Here, m is one of the 9 possible record marks to which the position may be
moved. Multiple record marks can be specified.

Marks with special functions (e.g. mark 15 for write protection, see section
“Record marks” on page 45) are ignored here.

Operation Operands F mode, L mode
@SETF
@# [] [] []

$0..$22
GLOBAL
(0..22)

line

vpos

:col:

hpos

EDT statements @SETF

U41709-J-Z125-1-76 495

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The relative positioning statement acts in the same way as the corre-
sponding statement (+[n], ++ etc.) in F mode if this is transferred with
[DUE] (see the corresponding statement). However, positioning with
@SETF is also possible in L mode (for example in procedures) or when
EDT is controlled via the subroutine interface.

col Absolute specification of the horizontal position. The user must specify the
number of the column which is to be displayed as the first column in the
work window.

hpos Relative horizontal positioning statement. It is possible to specify >[n],
<[n] and << .

The relative positioning statement acts in the same way as the corre-
sponding statement (>[n], << etc.) in F mode if this is transferred with
[DUE] (see the corresponding description). However, positioning with
@SETF is also possible in L mode (for example in procedures) or when
EDT is controlled via the subroutine interface.

If @SETF is specified without any operands then the position in the current work file is set
to the (logical) first line and first column. If @SETF is specified without positioning operands
then @SETF (n) simply changes the current work file. All the positions are retained. If
@SETF $n or @SETF GLOBAL is specified then the position in the relevant work files is
set to the (logical) first line and first column.

The abbreviation # may only be entered in F mode. At least one operand must be specified.
Otherwise, the # statement (output last statement) is executed.

The setting for the window position is saved separately for the upper and lower (possible)
data windows corresponding to each work file. The effect of the set position depends on the
visibility of the affected window and possibly on the current input window. This applies
equivalently for input in L mode where visibility and input window refer to a possible switch
to F mode (with the @EDIT FULL statement). The corresponding information can be
displayed in L mode using @STATUS=PAR(..).

In the case of non-visible work files, the position is set for the upper window.

If an affected work file is visible in precisely one window (upper or lower) then the
positioning instructions apply to this window irrespective of which window is the input
window.

If a work file is visible in both windows when the screen is split then only the input window
is positioned.

@SETF EDT statements

496 U41709-J-Z125-1-76

Note
If @SETF is used to make settings for work files (GLOBAL or $0..$22 operand), these
no longer temporarily become the current work file as they do in compatibility mode.
The restrictions and side effects described there do not therefore occur in Unicode
mode.

Example

This example assumes that work file 1 already contains records and that
@PAR LOWER=ON is set.

EDT is to switch to work file 1 and set the position there to line number 4, column 3.

The switch to work file 1 and the positioning operation have been performed.

 23.00 ··
@setf (1) 4 :3:··0000.00:00001(02)

 4.00 iendly creation and editing<··
 5.00 BS2000 files in SAM and ISAM formats<···································
 6.00 s well as text-like library<···
 7.00 ements and POSIX files<···

···0004.00:00003(01)

EDT statements @SETJV

U41709-J-Z125-1-76 497

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.116 @SETJV – Catalog job variable and assign value

The @SETJV statement enters a job variable in the catalog and assigns it a value.

string String which specifies the fully qualified name of a job variable.
Although the name must comply with the syntactic rules for job variable
names, EDT does not check these rules in full.

If the job variable is not yet present in the catalog, it is cataloged using the
standard functions of the DCLJV macro.

The link name *EDTLINK is assigned to the job variable. This can be used
to address it in subsequent statements. The assignment is performed
before the corresponding system interfaces are called. If errors then occur
when values are assigned, the assignment that has already been
performed is retained.

If string is not specified then the job variable is addressed using the link
name *EDTLINK. In this case, string1 must be specified. If no job variable
is linked to the link name *EDTLINK then the statement is rejected with the
message EDT5289. If string1 is also not specified then the statement
is rejected with the message EDT3908.

If the job variable cannot be accessed then the statement is aborted with the
message EDT4208.

string1 One or more strings that are to be assigned to the job variable.

If multiple strings are assigned then they are chained together to form an
intermediate result. If all the strings involved have the same character set
then this is also the character set of the intermediate result. If the involved
strings have different character sets then the character set of the interme-
diate result is UTFE.

If the string is longer than 256 bytes then only the first 256 bytes are
assigned as a value and the message EDT1936 is output.

If string1 is not specified or if string1 is an empty string then an empty
job variable is created. If it already exists, its value is not changed.

Operation Operands F mode, L mode
@SETJV [string] = string1[,...] [,CODE=name]

string

@SETJV EDT statements

498 U41709-J-Z125-1-76

name Name of a character set into which the intermediate result is converted
before being assigned to the job variable. If name is not specified, EDF041
is used. The character set name must be known in XHCS; otherwise, the
statement is rejected with message EDT4980.

If the string that is to be assigned contains characters which are invalid in the specified
character set then these characters are replaced by a substitute character provided that
such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, no assignment is performed and the error message EDT5453 is output.

If the Job Variable Support subsystem is not installed, the statement is rejected with the
error message EDT5254. For details concerning job variables, see the User Guide JV [9].

EDT statements @SETLIST

U41709-J-Z125-1-76 499

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.117 @SETLIST – Extend list variable

The @SETLIST statement assigns elements to an S list variable. In this case, values are
taken over from lines in the current work file or from string variables.

If no values are specified then the content of the S list variable is deleted.

string String which specifies the valid name of an S list variable. Although the
name must comply with the syntactic rules for S variable names, EDT does
not check these rules in full.

lines One or more line ranges whose contents are to be taken over into the S list
variable. If no lines are present in the specified line range then the message
EDT2903 is output. If no line range is specified then all the lines in the
current work file are used.

MARK Only marked lines in the specified line ranges are to be taken over. If MARK
is not specified then all the lines are taken over.

m Number of the record mark (1..9) that is to be used as a selection criterion.
If m is not specified, then only data lines with record mark 1 are used.

svar Name of a string variable whose content is to taken over as an element.

cols One or more column ranges whose characters are to be taken over. The
ranges may repeat and overlap.
If a line in a column that is to be used does not contain any characters then
a blank is inserted instead of it.
All the specified characters are concatenated in the sequence in which the
columns are specified (possibly multiple times) and the result is inserted in
the list element.

If the operand is not specified, the entire line is taken over.

Operation Operands F mode, L mode
@SETLIST

string [:cols[,...]:]

[,] [MODE=] [,CODE = name]

[lines[,...]] [MARK [m]]

svar

A PPEND
PREFIX
OVERWRITE

@SETLIST EDT statements

500 U41709-J-Z125-1-76

MODE= Specifies the way in which a list is to be extended.

 APPEND The list is extended at the end, i.e. the new list elements are appended after
the last element (default value).

 PREFIX The list is extended at the start, i.e. the new list elements are inserted before
the first element.

 OVERWRITE
The content of the S list variable is first deleted. The new list elements are
then taken over.

If no line is present in the specified line range then the S list variable is not
assigned any further elements. In F mode, the message EDT0211 informs
the user of this.

name Character set in which the string for assignment is to be converted before
being assigned. If name is not specified, EDF041 is used. The character set
name must be known in XHCS; otherwise, the statement is rejected with
message EDT4980.

The comma in front of the MODE operand must be specified in order to distinguish it from
MARK if no other operand is specified apart from the list name or any range specification.

The list variable must already exist. If it does not, the message EDT5274 is issued. If it is
not a list variable, the message EDT4910 is output. If the list variable is not of type STRING
or ANY then the statement is rejected with the message EDT5343.

If an S variable is extended by means of APPEND or PREFIX then, in F mode, the message
EDT0210 is output to inform the user of this.

In L mode, if the work file is empty and a line range (not a string variable) has been specified
then the message EDT2903 is output.

If the string that is to be assigned contains characters which are invalid in the specified
character set then these characters are replaced by a substitute character provided that
such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, no assignment is performed and statement is aborted with the error message
EDT5453.

If the value that is to be assigned is longer than 4096 bytes then only the first 4096 bytes
are assigned as a value and the message EDT2403 is output.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

For details on S list variables, see the SDF-P User Guide [7].

EDT statements @SETSW

U41709-J-Z125-1-76 501

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.118 @SETSW – Set job and user switches

The @SETSW statement is used to set or reset user and job switches.

ON The specified switches are set (default value).

OFF The specified switches are reset.

U If U is specified then the subsequent input of int1 and possibly of int2
applies to a user switch under the user's own ID.

If U is not specified then the subsequent input of int1 and possibly of int2
applies to a job switch.

int1 Number of the switch (0..31) that is to be set or reset.

int2 All the switches between int1 and int2 (0..31) are set or reset. If int2
is smaller than int1, then the statement is rejected with the message
EDT3216.

Format 4 of the @IF statement can be used to check whether or not a job switch or user
switch is set for the user's own ID.

In a @SETSW statement, it is possible to set or reset both user switches and job switches.

Example 1

@SET #I2 = 6
@SETSW ON = U1-#I2,12-20,U31

User switches 1 to 6 and 31 and job switches 12 to 20 are set.

Operation Operands F mode, L mode
@SETSW

[=] {[U] int1[-int2]} [,...]
ON

OF F

@SETSW EDT statements

502 U41709-J-Z125-1-76

Example 2

 1. @SET #S2 = 'SWITCH 15 IS OFF'
 1. @SET #S3 = 'SWITCH 15 IS ON
 1. @PROC 9
 1. @ @IF ON = 15 : @GOTO 4 --------------------------------------- (1)
 2. @ @PRINT #S2 N
 3. @ @RETURN
 4. @ @PRINT #S3 N
 5. @END
 1. @SETSW OFF = 15 --- (2)
 1. @DO 9 --- (3)
SWITCH 15 IS OFF
 1. @SETSW ON = 15 -- (4)
 1. @DO 9 --- (5)
SWITCH 15 IS ON
 1.

(1) A procedure is stored in work file 9 that outputs the string variable #S3 if job switch 15
is set, and the string variable #S2 otherwise.

(2) Job switch 15 is reset.

(3) The procedure in work file 9 is executed.

(4) Job switch 15 is set.

(5) The procedure in work file 9 is executed.

EDT statements @SETVAR

U41709-J-Z125-1-76 503

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.119 @SETVAR – Declare S variable and assign value

The @SETVAR statement is used to declare an S variable and/or assign a value to an S
variable.

string String which specifies a valid S variable name. Although the name must
comply with the syntactic rules for S variable names, EDT does not check
these rules in full.

string1 String which is to be assigned to the S variable.

If the S variable is not of type STRING or ANY or if it is an array or list then
the statement is aborted with the message EDT5342.

If the value that is to be assigned is longer than 4096 bytes then only the
first 4096 bytes are assigned as a value and the message EDT2403 is
output.

ivar Integer variable (#I0..#I20) whose content is to be assigned as a value to
the S variable specified in string.

If the S variable is not of type INTEGER or ANY or if it is an array or list then
the statement is aborted with the message EDT5342.

SYSEDT The contents of the string variables #S00 to #S20 are assigned to the S
variables SYSEDT-S00..SYSEDT-S20. If errors occur, the corresponding
messages are output and the same message may be repeated. This does
not terminate the statement.

In the case of S variables to which no string can be assigned as a value
(other type) no error is reported and no assignment is performed. The
treatment of non-existent S variables depends on the MODE setting.

Operation Operands F mode, L mode
@SETVAR

 [,MODE= [,CODE = name]
string [=]

SYSEDT [,KEEP]

 string1

 ivar

ANY
NEW
UPDATE

@SETVAR EDT statements

504 U41709-J-Z125-1-76

KEEP If KEEP is specified then EDT is set not to overwrite the S variables SYSEDT-
S00..SYSEDT-S20 on termination. If KEEP is not specified then the setting
is canceled, i.e. on termination, EDT assigns the contents of the string
variables #S00 to #S20 using the character set EDF041.

MODE= Specifies whether the S variable should already exist.

ANY A value is assigned to an existing or a new S variable.

NEW The S variable must not already exist. If it already exists then the statement
is not executed and the message EDT5272 is output. If SYSEDT is specified
then the specification of NEW is treated in the same way as ANY.

UPDATE The S variable must already exist. If it does not already exist then the
statement is not executed and the message EDT5274 is output. If SYSEDT
is specified then the message is not output and values are only assigned to
existing S variables of type STRING or ANY.

name Character set in which the string for assignment is to be converted before
being assigned. If name is not specified, EDF041 is used. If string is
specified but string1 is not then the operand is ignored. Otherwise, the
character set name must be known in XHCS. If it is not, the statement is
rejected with message EDT4980.

If string is specified but there is no specification for either string1 or ivar then an empty
string is assigned as a value to the S variable. If it does not yet exist then it is created with
default attributes (TYPE=ANY,MULTIPLE-ELEMENTS=*NO,SCOPE=PROCEDURE). If the
variable already exists and has incompatible attributes then the statement is rejected with
the message EDT5342.

If the string that is to be assigned contains characters which are invalid in the specified
character set then these characters are replaced by a substitute character provided that
such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, no assignment is performed and the error message EDT5453 is output.

For details on S variables, see the SDF User Guide [6].

EDT statements @SHIH

U41709-J-Z125-1-76 505

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.120 @SHIH – Output statement buffer

The @SHIH statement is used to output the EDT statement buffer. Only statements input
in F mode are entered in the statement buffer.
The scrolling statements, the statements for changing the work file and the @SHIH itself
are not entered in the statement buffer.

line Line number as of which information is to be written to the current work file.

If a line with a number greater than the previous highest line number is
created then the current line number is modified.

If line is not specified then in the interactive mode's L mode, the result is
output to SYSOUT (in batch mode, no output is possible) and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see
section “Implicit increment assignment” on page 35).

FORWARD If this operand is specified then the statements are output in the sequence
in which they were entered. If it is not specified then they are output in the
opposite sequence, i.e. the last entered statement is output first.

The statement buffer can accommodate a maximum of 2048 statements independently of
their respective lengths. If the statement buffer is empty then the @SHIH statement is
rejected with the message EDT5376.

This operation takes no account of whether a statement was entered in the upper or lower
part of a split screen. Statements are stored in the statement buffer independently of the
work file to which the statement was applied. Statements in a statement sequence (state-
ments separated by ’;’) are stored individually.

If output is written to work file 9 (in F mode, without the line operand) then the header is
output in the information line (can be displayed using @PAR INFORMATION=ON). In
addition, a @LOWER ON statement is implicitly issued for work file 9.

Operation Operands F mode, L mode
@SHIH [[TO] line [(inc)]] [FORWARD]

@SHIH EDT statements

506 U41709-J-Z125-1-76

Output to SYSOUT is sent in the character set that has been defined for this system file. If
the output is written to a work file then it is sent in the work file's character set. If the work
file is empty and has the character set *NONE then the character set UTFE is used.
Characters that cannot be displayed in the target character set are always replaced by
blanks.

Note
The statement code K can be used to copy a statement to the statement line. This can
then be executed in another work file if it is preceded by a statement that changes work
file (see the $0..$22 statement).

EDT statements @SHOW (format 1)

U41709-J-Z125-1-76 507

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.121 @SHOW (format 1) – Output directory

The @SHOW statement (format 1) can be used to output a library's directory or a list of files
from the BS2000 catalog or from a POSIX directory. It is possible to define the destination
for the output. Optionally, it is also possible to output additional information about the files
or library elements.

LIBRARY= The directory of a library or of an element type in a library is to be output. If
there is more than one version of an element then all the versions are
displayed. If there are no elements of the specified element type, the
message EDT5287 is output. If the specified library does not exist or cannot
be accessed as required then a corresponding message is output.

If LIBRARY (and also FILES and POSIX-FILES) is not specified then the
default library set with @PAR LIBRARY is used implicitly provided that
@PAR LIBRARY has been specified. Otherwise, the message EDT5181 is
output.

path1 Name of the library.

TYPE= Only the directory of all the elements of a specific type should be specified.
If TYPE is not specified then the entire library directory is output.

eltype Type of element. Permitted type specifications are S, M, P, J, D, X, R, C, H, L,
U, F, *STD and freely selectable type names having one of these types as
basic type. The permitted element types and their meanings are described
in chapter “File processing” on page 131.

Operation Operands F mode, L mode
@SHOW

[]

 [[TO] line [(inc)]] []

LIBRARY=path1 [,[TYPE =]eltype]
TYPE=eltype

FILES [=path2]
POSIX-FILES [= xpath]

 SHORT

 LONG [MODDATE]

@SHOW (format 1) EDT statements

508 U41709-J-Z125-1-76

FILES= A list of files from the BS2000 catalog is to be output.

path2 Designates the files that are to be listed. The path2 operand can be a fully
or partially qualified file name, may contain wildcards and can be up to 80
characters in length.

If path2 is not specified then a list of all the files under the user's own ID is
output. If no file with the specified name is found, the message EDT5281 is
output.

POSIX-FILES=
A list of files from the POSIX directory is to be output.

xpath Designates the POSIX files that are to be listed. If xpath is a directory then
all the files in this directory are listed (without the directory component). If
xpath is an ordinary file then its name is displayed as specified.

The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

If xpath is not specified then a list of all the files in the current POSIX
directory is output. If no file with the specified name is found or if the
directory cannot be accessed as required then a corresponding message is
output.

line Line number as of which information is to be written to the current work file.

If a line with a number greater than the previous highest line number is
created then the current line number is modified.

If line is not specified then in the interactive mode's L mode, the result is
output to SYSOUT, in batch mode it is output to SYSLST and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see
section “Implicit increment assignment” on page 35).

EDT statements @SHOW (format 1)

U41709-J-Z125-1-76 509

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

SHORT This is the default value for handling information output. The meaning of
SHORT is different for the individual file types.

In the case of libraries, every element is output:

The list is alphabetically sorted on the type names, element names and
version names. In the case of type names > 4, element names > 32 or
version designations > 12 characters, entries consist of 2 lines.

If the output is sent to SYSOUT or SYSLST then it is accompanied by a header
(see table). If the output is sent to work file 9 (in F mode, without the line
operand) then the header is output in the information line (can be displayed
using @PAR INFORMATION=ON). If the output is written to a work file due
to the line operand then no header is output.

In the case of BS2000 files, one file is output per line. Only the extended file
names together with the catalog ID and user ID, are output. The list is alpha-
betically sorted on the file names.
No header is displayed.

In the case of POSIX files, one file is output per line. Only the file names are
output. The list is alphabetically sorted on the file names. No header is
displayed.

LONG Additional information is output for the files. The meaning of LONG is
different for the individual file types.

In the case of libraries, a line with the following content is output for every
element:

Column Header Meaning
2–5 TYP Element type
7–38 ELEMENT Element name
42–53 VERSION Version designation or @ for the highest

possible version
56–59 VAR Variant number
63–72 DATE User date (format YYYY-MM-DD)

@SHOW (format 1) EDT statements

510 U41709-J-Z125-1-76

The list is alphabetically sorted on the type names, element names and
version names.

If the output is sent to SYSOUT or SYSLST then it is accompanied by a header
(see table) which includes the name of the library. If output is written to work
file 9 (in F mode, without the line operand) then the header is output in the
information line (can be displayed using @PAR INFORMATION=ON). If the
output is written to a work file due to the line operand then no header is
output.

In the case of BS2000 files, a line with the following content is output for
every file:

Column Header Meaning
1-8 TYP Element type
10-73 ELEMENT

L=path1
Element name

75-98 VERSION Version designation or @ for the highest
possible version

100-103 VAR Variant number
105-114 DATE User date or date of last modification

(format YYYY-MM-DD)
116-123 CODESET Character set

Column Header Meaning
1-10 SIZE Number of PAM pages
11 P File on private or public data medium (*/Ë)
12-65 FILENAME File name with CATID and USERID
67-76 LAST PP Last used PAM page
78-87 CR-DATE or

MOD-DATE
Creation date or date of the last modification
(format YYYY-MM-DD)

89 S SHARE attribute (Y/N/S)
90 A ACCESS attribute (W/R)
92-95 FCB FCB type (SAM/ISAM/PAM/BTAM/NONE)
97 R READ-PASS attribute (Y/N)
98 W WRITE-PASS attribute (Y/N)

EDT statements @SHOW (format 1)

U41709-J-Z125-1-76 511

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The list is alphabetically sorted on the file names.

If the output is sent to SYSOUT or SYSLST then it is accompanied by a header
(see table). If the output is sent to work file 9 (in F mode, without the line
operand) then the header is output in the information line (can be displayed
using @PAR INFORMATION=ON). If the output is written to a work file due
to the line operand then no header is output.

In the case of POSIX files, a line with the following content is output for
every file:

The list is alphabetically sorted on the file names.

If the output is sent to SYSOUT or SYSLST then it is accompanied by a
header. If the output is sent to work file 9 (in F mode, without the line
operand) then the header is output in the information line (can be displayed
using @PAR INFORMATION=ON). If the output is written to a work file due
to the line operand then no header is output.

MODDATE In the case of BS2000 files, the date of the last modification is output instead
of the creation date. The date format is unchanged. MOD-DATE is output in
the header.
In the case of libraries, the date of the last modification is output instead of
the user date.

In the case of POSIX files, this operand is ignored.

100-107 CODESET Character set

Column Header Meaning
1 T Type (D for directory, L for symbolic link, B for

device file (block), C for device file (character),
M for file with distributed access, P for FIFO, S
for semaphore file or F for file)

2-10 ACCESS Access rights (RWX for user, group, others)
12-31 SIZE Size of file in bytes
33-42 MOD-DATE Date of last modification

(format YYYY-MM-DD)
44+ FILENAME File name (case-sensitive)

Column Header Meaning

@SHOW (format 1) EDT statements

512 U41709-J-Z125-1-76

Output to SYSOUT or SYSLST is sent in the character set that has been defined for these
system files.
If the output is written to a work file then it is sent in the work file's character set. If the work
file is empty and has the character set *NONE then the character set EDF041 is used.
Characters that cannot be displayed in the target character set are always replaced by
blanks.

Example

The entire directory of the library EDT.LIB.XMPL is to be output in the current work file
starting at line number 100 and using the increment 10.

Detailed information on all the BS2000 files whose names contain the string TEXT is output
in work file 9. EDIT LONG is specified to make it possible to view the information in full in
the data window.

 1.00 @SHOW DISPLAYS THE DIRECTORY FOR A LIBRARY.<····························
 2.00 THE NAME OF THE LIBRARY MUST BE SPECIFIED IN THE OPERAND..<·············
 3.00 ··

show library=edt.lib.xmpl to 100(10)···························0001.00:00001(00)

 1.00 @SHOW DISPLAYS THE DIRECTORY FOR A LIBRARY.<····························
 2.00 THE NAME OF THE LIBRARY MUST BE SPECIFIED IN THE OPERAND.<··············
 100.00 C PROG @ 0003 2006-01-11
 110.00 C PR0G1 @ 0004 2006-01-11
 120.00 D E.TEXT1 @ 0006 2005-12-05
 130.00 D E.TEXT2 @ 0013 2005-12-05
 140.00 D E.TEXT3 100 0011 2003-12-13
 150.00 D E.TEXT3 101 0121 2003-12-20
 160.00 D E.TEXT3 102 0007 2004-04-11
 170.00 J ASSEMB @ 0099 2006-01-11
 180.00 J FILE-TRANSFER @ 0045 2006-01-11
 190.00 J PR0C1 1 0001 2005-12-05
 200.00 D THIS-IS-AN-ELEMENT-WITH-A-VERY-L @ 0000 2005-08-17
 210.00 ONG NAME
 220.00 D THIS-IS-AN-ELEMENT-WITH-A-VERY-L VERY-OLD.VER 0000 2003-08-17
 230.00 ONG-VERSION SION
 240.00 FREE THIS-IS-AN-ELEMENT-WITH-A-FREE-T @ 0000 2003-08-17
 250.00 TYPX YPE-NAME
 251.00 ··
 252.00 ··
 253.00 ··
 254.00 ··
 255.00 ··
show files=*text* long;edit long·······························0001.00:00001(00)

EDT statements @SHOW (format 1)

U41709-J-Z125-1-76 513

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Detailed information about the POSIX file “data” in the current POSIX directory is output in
work file 9. EDIT-LONG mode is deactivated again.

0000000003 :N:$USER.XMPL.TEXT 0000000002 200
7-01-12 NW ISAM NN *NONE <···
0000000006 :N:$USER.TEXT.PROG 0000000006 200
7-01-12 YR PAM NY *NONE <···
0000000015 :N:$USER.TEXT1 0000000014 200
7-01-12 NW SAM NN EDF041 <···
0000000021 :N:$USER.TEXT2 0000000020 200
7-01-12 NW SAM NN EDF03IRV<···

show posix-files=data long;index on····························0001.00:00001(09)

 1.00 FRW-RW-RW- 00000000000000000004 2006-11-08 data <····················
 2.00 ··

···0001.00:00001(09)

@SHOW (format 2) EDT statements

514 U41709-J-Z125-1-76

9.122 @SHOW (format 2) – Output supported character sets

The @SHOW statement (format 2) can be used to output a list of the character sets
supported by XHCS. In interactive mode, it also indicates the character sets supported by
the terminal.

line Line number as of which information is to be written to the current work file.

If a line with a number greater than the previous highest line number is
created then the current line number is modified.

If line is not specified then in the interactive mode's L mode, the result is
output to SYSOUT, in batch mode it is output to SYSLST and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see
section “Implicit increment assignment” on page 35).

If output is written to work file 9 (in F mode, without the line operand) then a header is
output in the information line (can be displayed using @PAR INFORMATION=ON).

A list of the character sets supported by XHCS is output. Unlike the behavior in EDT V16.6
or in compatibility mode, in Unicode mode each of the listed character sets can be defined
as the character set for a work file.

Alongside the name of the character set, every line in the list contains an additional
indicator, namely:

P If the character set is a partial character set (see the XHCS User Guide [8]).
E If the character set is an EBCDIC character set.
I If the character set is an ISO character set.
* If the character set is one of the character sets accepted by the terminal (in inter-

active mode only).
The character sets identified by * are also those that can be defined as the commu-
nications character set using @CODENAME (format 2).

Operation Operands F mode, L mode
@SHOW CCS [[TO] line [(inc)]]

EDT statements @SHOW (format 2)

U41709-J-Z125-1-76 515

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Output to SYSOUT or SYSLST is sent in the character set that has been defined for these
system files. If the output is written to a work file then it is sent in the work file's character
set. If the work file is empty and has the character set *NONE then the character set EDF041
is used. Characters that cannot be displayed in the target character set are always replaced
by blanks.

@SORT EDT statements

516 U41709-J-Z125-1-76

9.123 @SORT – Sort line ranges

The @SORT statement is used to sort contiguous line ranges in the current work file in
ascending or descending order. By specifying a column range, it is possible to restrict the
sort operation to the relevant section of the record.

lines Line range in which the data is to be sorted. If no line range is specified then
all the records in the current work file are sorted.

cols Column range whose characters are to be included in the sort operation.
This column range is referred to as the sort field below.

If only one column number is specified then the characters from this column
up to the end of the line are included in the operation. If the first column
specification is greater than the line length then the corresponding line is
treated as if it contained an empty sort field.

The sort fields in two lines are compared one character at a time from left to
right. If the end of one of the sort fields is reached during this comparison
(with no differences being discovered) then the line with the shorter sort field
is considered to be smaller.

If no column range is specified then the sort field comprises the entire line.

cols* Column range starting at the end of the record. Counting from the end of the
record back toward the start of the record simply determines the number of
characters present in the sort field. Despite this, the characters in the sort
field are compared from left to right. The specification 1-10, for example,
therefore means the last ten characters in every line.

A Sorting is performed in ascending order.

D Sorting is performed in descending order.

Lines with identical sort fields retain their original sequence in the work file.

Operation Operands F mode, L mode
@SORT

[lines] [] []
:cols[:]

:R (cols*)

A

D

EDT statements @SORT

U41709-J-Z125-1-76 517

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If a 7-bit or 8-bit character set is assigned to the work file then the sequence of the individual
characters is determined by their byte codes interpreted as binary numbers. If a Unicode
character set is assigned to the work file then the sequence of the individual characters is
determined by the UTF16 codes of the characters interpreted as binary numbers. The sort
weighting managed by XHCS for the individual characters is ignored. The sort sequence
when sorting with EDT may therefore differ from the sort sequence when sorting with the
SORT program.

The @SORT statement uses a combination of quicksort and bubblesort.

The @SORT statement cannot be used for a file opened for real processing with @OPEN
(format 2).

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Examples

@SORT :1-15

Sorts all the records in the current work file in ascending order on the basis of the contents
of columns 1 to 15.

@SORT &:1-15

Sorts all the records in the range defined using the range symbol & (see @RANGE
statement) in the current work file in ascending order on the basis of the contents of
columns 1 to 15.

@SORT %-.%+19L :R(1-8) D

Sorts the first 20 records in the current work file in descending order on the basis of the
contents of the last 8 columns.

@SORT 20-.$:#I1-#I2

Sorts the records from line number 20 through to the end of the current work file in
ascending order. The column range within which sorting is performed is defined by the
integer variables #I1 and #I2.

@SPLIT EDT statements

518 U41709-J-Z125-1-76

9.124 @SPLIT – Display 2 work windows

In F mode, the @SPLIT statement can be used to activate or deactivate the display of a
second work window on the screen. Each work window has a separate statement line (see
also section “The work window” on page 103).

n Specifies the number of lines for the lower work window including the
statement line. A value of 2 or more must be specified for n and this value
must not be more than two less than the maximum number of lines
permitted by the terminal for the screen format in question (see @VDT
statement).

0..22 | $0..$22 Number of the work file that is to be displayed in the lower work window.
The upper work window contains the work file in which the statement was
issued. Users are permitted to define the same work file for both work
windows. This makes it possible, for example, to edit different line ranges in
the same work file at the same time.

OFF The work window containing the statement line in which the statement was
issued is displayed in full. The specification of 0 (Null) instead of OFF is now
only supported for reasons of compatibility.

When an EDT session starts, the work window is not split in F mode.

The cursor is positioned in the upper statement line once the screen has been split. After
each subsequent output, it is positioned in the statement line in which the last statement or
statement sequence was entered. If a statement is entered in both statement lines, then the
cursor is positioned in the upper statement line after the statements have been executed.
If an error occurs while processing a statement then the cursor is positioned in the
statement line in which the invalid statement was entered.

If, when the screen is split, @SPLIT OFF is entered in the upper statement line and a
statement is entered in the lower statement line then @SPLIT OFF is rejected with an error
message.

Operation Operands F mode
@SPLIT

n

 OFF

 (0..22)

 $0..$22

EDT statements @SPLIT

U41709-J-Z125-1-76 519

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The @PAR SPLIT statement can be used instead of @SPLIT and has the same function-
ality. Furthermore, @PAR SPLIT can be used for a specific work file or globally for all the
work files and is also permitted in L mode and therefore in EDT procedures.

Example

@SPLIT 10(2) requests a second work window which contains 10 lines including the
statement line. Work file 2 is to be displayed in this work window.

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

@split 10(2)···0001.00:00001(00)

 1.00 BERGER ADALBERT H0CHSTR.10 81234 MUENCHEN<·······················
 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··
 7.00 ··
 8.00 ··
 9.00 ··
 10.00 ··
 11.00 ··
 12.00 ··
 13.00 ··
···0001.00:00001(00)
 1.00 YOU CAN NOW<··
 2.00 EDIT WORK FILES 0 AND 2<··
 3.00 IN ALTERNATION OR<··
 4.00 SIMULTANEOUSLY<···
 5.00 ··
 6.00 ··
 7.00 ··
 8.00 ··
 9.00 ··
···0001.00:00001(02)

@STAJV EDT statements

520 U41709-J-Z125-1-76

9.125 @STAJV – Output job variable information

The @STAJV statement outputs information about job variables or writes this information
to a work file.

string String indicating the names of the job variables whose attributes are to be
output. All the specifications that are also permitted in the BS2000
command /SHOW-JV-ATTRIBUTES are allowed. It is therefore also possible
to make a partially qualified entry or use wildcards.
EDT does not perform any full syntax check.

If the specification does not designate any existing job variable then
message EDT4982 is output.

If the name of the job variable is fully qualified then the catalog ID (CATID)
is only included in the output if it is already present in the name.

If string is not specified then all the job variables under the current user
ID are output.

line Line number as of which job variable information is to be written to the
current work file.

If a line with a number greater than the previous highest line number is
created then the current line number is modified.

If line is not specified then in the interactive mode's L mode, the result is
output to SYSOUT, in batch mode it is output to SYSLST and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see
section “Implicit increment assignment” on page 35).

SHORT Only the job variable names are output (default value).

Operation Operands F mode, L mode
@STAJV

[string] [TO line [(inc)]] []
[SHORT]

LONG [ISO4]

EDT statements @STAJV

U41709-J-Z125-1-76 521

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

LONG Further catalog information is output in addition to the job variable names.

The list is alphabetically sorted on the job variable names.

If the output is sent to SYSOUT or SYSLST then it is accompanied by a header
(see table). If the output is sent to work file 9 (in F mode, without the line
operand) then the header is output in the information line (can be displayed
using @PAR INFORMATION=ON). If the output is written to a work file due
to the line operand then no header is output.

ISO4 The creation date (CR-DATE) is output in the form YYYY-MM-DD. The
following fields (see table) are moved accordingly.

Any attempt to query the status of system job variables ($SYSJV.) is rejected with the
message EDT3087.

If the Job Variable Support subsystem is not installed, the statement is rejected with the error
message EDT5254. For details on job variables, see the JV User Guide [9].

Column Header Meaning
1-7 SIZE Length of the current value in bytes
8 M Indicates whether the job variable is a

monitoring job variable (*/Ë)
9-62 JOBVARIABLE

NAME
Job variable name with USERID and possibly
CATID (see above)

64-71 CR-DATE Creation date (YY-MM-DD)
73 S SHARE attribute (Y/N)
75 A ACCESS attribute (W/R)
77 R READ-PASS attribute (Y/N)
79 W WRITE-PASS attribute (Y/N)

@STAJV EDT statements

522 U41709-J-Z125-1-76

Example

The string present in line 2 is assigned to the job variable TODAY.

The information line is activated and the line number display is hidden. @STAJV is used to
write information about the job variable TODAY to work file 9.

Information about the job variable is displayed.

Information about the job variable is displayed.

 1.00 90-06-27178<··
 2.00 GOOD MORNING, THE DATE TODAY IS 27.06.1990<·····························
 3.00 ··

setjv 'today'=2··0001.00:00001(00)

 1.00 90-06-27178<··
 2.00 GOOD MORNING, THE DATE TODAY IS 27.06.1990<·····························
 3.00 ··

par global,information=on,index=off;stajv 'today' long·········0001.00:00001(00)

SIZE M JOBVARIABLE NAME CR-DATE S A R W
0000038 $EW.TODAY 90-06-27 N W N N
··

stajv'tod*'long4···0001.00:00001(09)

SIZE M JOBVARIABLE NAME CR-DATE S A R
0000038 :XYZA:$EW.TODAY 1990-06-27 N W N
··

···0001.00:00001(09)

EDT statements @STATUS

U41709-J-Z125-1-76 523

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.126 @STATUS – Display current settings and contents of
variables

The @STATUS statement can be used to output the EDT and system environment settings
together with the values of line number and integer variables.

ALL All the information concerning the parameters TIME, BUFFER, SIZE,
SYMBOLS, DELIM, VDT, MODES, LOG, SEARCH-OPTION, CCS and FILE is
output. In addition the user ID (USERID), the task serial number (TSN) and
the current EDT operating mode are output (see section “Introduction to the
EDT operating modes” on page 21).

TIME This outputs the current time, the duration so far of the current EDT session,
the CPU time required so far, the difference in the CPU time between the
last two @STATUS statements.

BUFFER This outputs the current size of the physical input/output buffer for the
terminal (see SETBF macro) and the column number as of which the permis-
sibility of the length of input in L mode is to be checked (see @CHECK
statement). In batch mode, the column number is always output.

Operation Operands F mode, L mode
@STATUS

[=] [TO line [(inc)]]

ALL

[,...]

TIME
BUFFER
SIZE
SYMBOLS
DELIM
VDT
MODES
FILE
PAR [(procnr | *)]
LINEV
INTV
lvar
ivar
SDF
CCS
LOG
SEARCH-OPTION

@STATUS EDT statements

524 U41709-J-Z125-1-76

SIZE This operand is now only supported for reasons of compatibility. The value
0 is always output.

SYMBOLS The following are output: the current statement symbol (see @: statement),
the valid delimiter for literals (see @QUOTE statement), the valid wildcards
(see @SYMBOLS statement), the current range symbol together with the
defined range (see @RANGE statement), the current fill character in
hexadecimal form (see @SYMBOLS statement) and the current substitute
character used to replace invalid characters during conversion operations
(see the statement @PAR SUBSTITUTION-CHARACTER).

DELIM Outputs the set of declared text delimiter characters (see @DELIMIT
statement).

VDT Outputs the number of screen lines and columns (see @VDT statement)
together with the current behavior on screen output as defined using @PAR
OPTIMIZE.

In the case of 9763 terminals, the current screen format is also output (see
@VDT statement).

MODES Outputs the default settings that may be defined using the @BLOCK,
@CHECK, @INPUT, @TABS, @EDIT and @VTCSET statements.

The settings for syntax control in L mode, the execution mode (see
@SYNTAX statement) and the values that may be set for the @AUTOSAVE
statement are also output.

FILE Outputs the global file name declared using the last @FILE statement. If a
version number was also specified in the statement then this is output here.

In addition (and if present), a local @FILE entry which has been defined
implicitly (with @READ or @GET) or explicitly (with @FILE .. LOCAL) is
output for every work file together with the name of an open file or the library
and element name of an open library element.

If the output from the FILE operand would be empty then it is omitted.

EDT statements @STATUS

U41709-J-Z125-1-76 525

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

PAR (procnr | *)
A local @FILE entry (if present) together with the name of an open file or
library element is first output for the specified work file in the same format
as for @STATUS=FILE. Then the character set defined for this work file
(see @CODENAME statement), the current values of all the work file-
specific settings that can be modified using the @PAR statement which
apply to the current work file and the work file-specific line number variables
(*, ?, % and $) are output. Finally, the line and column positions (see
@SETF statement) and the option selected for the line number display (see
@PAR INDEX statement) are displayed for each (possible) screen window
corresponding to the specified work file, together with the number of lines
(after switching to F mode) in the visible area (see @PAR SPLIT) and an
indication of whether (after switching to F mode), the cursor is located in this
screen window.

If no work file is specified then a list containing the above-mentioned infor-
mation is output for all the work files. If * is specified then the information is
output for the current work file.

LINEV Displays the contents of all the line number variables (#L0..#L20)

INTV Displays the contents of all the integer variables (#I0..#I20)

lvar The content of the named line number variable is output.

ivar The content of the named integer variable is output.

SDF The current SDF settings are displayed. In addition, for each work file, the
name (if present) of the program set with @PAR
SDF-PROGRAM or @SDFTEST is output together with an ID indicating
whether this is an internal or an external name (as declared in @PAR SDF-
NAME-TYPE). The format of the output is identical to the corresponding
output for @STATUS=PAR.

CCS The currently defined character set is output for the communications
character set (TERMACT, see @CODENAME statement) as well as for every
work file that has a character set and for every string variable. The character
sets for the system files SYSDTA, SYSOUT and SYSLST and, in interactive
mode, the character set defined using /MODIFY-TERMINAL-OPTIONS
(TERMDEF) as well as the settings for the Auto mechanism are also output

LOG The values defined for logging are output (see @LOG statement).

@STATUS EDT statements

526 U41709-J-Z125-1-76

SEARCH-OPTION
Outputs the default settings for the search functions (@ON statement) that
have been defined using the @SEARCH-OPTION statement.

line Line number as of which information is to be written to the current work file.

If a line with a number greater than the previous highest line number is
created then the current line number is modified.

If line is not specified then in the interactive mode's L mode, the result is
output to SYSOUT, in batch mode it is output to SYSLST and in F mode it is
written to work file 9. Work file 9 is deleted before being used. If a file is open
in work file 9 then the message EDT5189 is output and the statement is not
executed.

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see
section “Implicit increment assignment” on page 35).

If no operand is specified then the value ALL is used.

The output sequence when multiple operands are specified is predefined by EDT and not
in any way dependent on the order in which the operands are entered. If the same operand
is specified more than once then this does not cause the information concerning it to be
output again.

Output to SYSOUT or SYSLST is sent in the character set that has been defined for these
system files. If the output is written to a work file then it is sent in the work file's character
set. If the work file has the character set *NONE then the character set EDF041 is used. All
characters which might be mapped to an invalid character when converted into the appli-
cable output character set (for example, the values for @PAR SEPARATOR or @PAR
STRUCTURE) are output both as characters (or possibly as blanks) and in the hexadecimal
form U'xxxx', in which case the character coding is displayed in UTF16.

If @SYNTAX TEST=ON has first been used to activate the test mode for L mode input and
if @STATUS is entered in L mode then any specification of TO line(inc) is ignored, i.e.
the output is written to SYSOUT instead.

EDT statements @SUFFIX

U41709-J-Z125-1-76 527

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.127 @SUFFIX – Append strings

The @SUFFIX statement is used to append a string to every line or string variable in each
specified range (see also @PREFIX).

lines One or more line ranges in which text is to be appended at the end of each
line. Only existing lines are processed.

svars One or more ranges of string variables in which text is to be appended at
the end of each string variable.

string String that is to be appended at the end of each line or string variable in
each specified range. It is also permissible to specify an empty string.

The string is converted into the character set used by the work file or string
variable. If the string contains characters which cannot be displayed in the
target character set then these characters are replaced by a substitute
character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the @SUFFIX statement is
rejected and error message EDT5453 is output.

If inserting the string would cause a line or string variable to exceed the maximum record
length of 32768 characters then it is not inserted and the message EDT5474 is output.

If errors occur during processing (EDT5453 or EDT5474) then the statement is aborted. Any
lines and/or string variables which have been successfully modified up to this point retain
their changes.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Operation Operands F mode, L mode
@SUFFIX

 [,...] WITH string
 lines

 svars

@SUFFIX EDT statements

528 U41709-J-Z125-1-76

Example

The string ONCE is appended to lines 4 and 5.

The content of line 3 is appended to lines 4 and 5.

First of all, 5 blanks are appended to lines 4 and 5 and then the content of line 4 is appended
to these same lines.

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 AND<··
 5.00 AND<··
 6.00 ··

suffix 4-5 with ' ONCE '·······································0001.00:00001(00)

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 AND ONCE <··
 5.00 AND ONCE <··
 6.00 ··

suffix 4-5 with 3··0001.00:00001(00)

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 AND ONCE AGAIN<···
 5.00 AND ONCE AGAIN<···
 6.00 ··

suffix 4-5 with ' '*5 ; suffix 4-5 with 4······················0001.00:00001(00)

 1.00 AND<··
 2.00 ONCE<···
 3.00 AGAIN<··
 4.00 AND ONCE AGAIN AND ONCE AGAIN<······································
 5.00 AND ONCE AGAIN AND ONCE AGAIN<······································
 6.00 ··

EDT statements @SYMBOLS

U41709-J-Z125-1-76 529

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.128 @SYMBOLS – Define symbols

The @SYMBOLS statement can be used to declare the wildcard symbols asterisk and slash
for searches using placeholders (see section “Using wildcards in search terms” on
page 80).

The FILLER operand declares a filler character (see section “Data window” on page 105).

ASTERISK= Declares the wildcard that stands for a string of any length including an
empty string. When EDT starts, the value '*' is set by default. If the
operand is not specified then the wildcard value is not modified unless no
operand at all is specified, in which case the default value '*' is restored.

strspec1 Special character that is to be declared as the wildcard. If no value is
specified, the default value '*' is restored.

SLASH= Defines the wildcard that stands for precisely one character. When EDT
starts, the value '/' is set by default. If the operand is not specified then
the wildcard value is not modified unless no operand at all is specified, in
which case the default value '/' is restored.

strspec2 Special character that is to be defined as the wildcard. If no value is
specified, the default value '/' is restored.

FILLER= Defines a filler character which is replaced by a blank when data is entered
at the terminal in F mode. When EDT starts, the value X'00' is set by
default. If the operand is not specified then the filler character is not modified
unless no operand at all is specified, in which case the default value X'00'
is restored.

strchar Any character that is to be declared as the filler character.

If the @SYMBOLS statement is entered without any operands then all 3 characters are
reset to their default values.

Operation Operands F mode, L mode
@SYMBOLS

[[,...]]
ASTERISK [= strspec1]
SLASH [= strspec2]
FILLER [= strchar]

@SYMBOLS EDT statements

530 U41709-J-Z125-1-76

Different characters must be specified for spec1 and spec2 as otherwise the statement is
rejected with the message EDT3181. They must also be different from the characters
defined in @QUOTE as otherwise the statement is rejected with the message EDT3180.

If spec1 or spec2 is not a valid special character then the @SYMBOLS statement is
rejected with the error message EDT3952.

EDT statements @SYNTAX

U41709-J-Z125-1-76 531

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.129 @SYNTAX – Set test mode

The @SYNTAX statement can be used to activate or deactivate test mode for input in L
mode. If the test mode is activated then statements input in L mode are not executed
(a syntax check of statements is always performed independently of the set test mode).

TESTMODE= The TESTMODE operand defines whether or not the entered statements are
to be executed. Test mode only applies to input in L mode.

ON The statements are subjected to a syntax check but are not executed (this
also applies to external statement routines functioning as a statement filter).
Exceptions to this rule are listed below. Data lines entered in L mode are not
taken over into the work file. Input which starts with at least one EDT
statement is checked for its syntax.

The following statements are always executed even if test mode is active:

– @HALT, @LOG, @RETURN, @SYNTAX and @: (redefine the EDT
statement symbol)

– @STATUS. However, if test mode is active, the output is always sent to
SYSOUT

The following statements and operands are not checked:

– Calls of external statement routines (statements with user statement
symbol)

– The text operand in the statements @+, @-, @IF and @SET (format
6). If the statement otherwise contains no errors then the message
EDT0110 is output instead of EDT0100 in the dialog.

– statements which contain indirect operand specifications.

OFF Test mode is deactivated.

Test mode is always deactivated when EDT is started.

The @STATUS statement can be used to output the current setting for the test mode.

Operation Operands F mode, L mode
@SYNTAX

TESTMODE [=]
ON

OF F

@SYNTAX EDT statements

532 U41709-J-Z125-1-76

In L mode, if test mode is active, then not only is the invalid statement identified. The
position at which the error was detected is also marked with : . If no errors are detected in
a statement then the message EDT0100 is output in the dialog.

Note
If the syntax of the text operand is to be checked in the statements @, @+, @- and
@SET (format 6) then the statement must be split into two statements, e.g. @3:@...
should be split into the two statements @3 and @...

EDT statements @SYSTEM

U41709-J-Z125-1-76 533

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.130 @SYSTEM – Enter system commands

The @SYSTEM statement can be used to interrupt (like [K2]) the EDT session or to
execute an operating system command without interrupting the EDT session.

string String containing the command that is to be executed. The system expects
a BS2000 command which is then executed immediately. The EDT session
is then continued provided that the executed system command does not
cause the program to be unloaded (see below). In this case, EDT is
unloaded without regaining control again.

If string is not specified then the EDT session is interrupted. The
/RESUME-PROGRAM or /INFORM-PROGRAM command can be used to
continue the EDT session at the point where it was interrupted by
@SYSTEM (see section “Interrupting an EDT session” on page 91). In
uninterruptible system procedures, it is not possible to interrupt the EDT
session in interactive mode.

line Line number as of which any output from the system command is to be
inserted in the current work file. It is only possible to insert output that the
operating system writes to SYSOUT (this does not include, for example,
formatted output from the /SHOW-FILE command). The command output is
redirected, i.e. the output is written to the current work file and not to
SYSOUT. When this is done, the output is converted from the character set
EDF041 into the character set used by the current work file.

If the output contains characters which are invalid in the current work file's
character set then these characters are replaced by a substitute character
provided that such a character has been specified (see @PAR SUBSTI-
TUTION-CHARACTER); otherwise, the error message EDT5453 is issued.

If line is not specified then the output from the system command is written
as specified in the command itself (usually to SYSOUT). If the command
generates formatted output (e.g. /SHOW-FILE) then it may be necessary to
refresh the work window with [K3] (see section “Function keys in F mode”
on page 123).

inc Increment used to form the line numbers which follow line. If inc is not
specified then the increment implicitly specified by line is used (see
section “Implicit increment assignment” on page 35).

Operation Operands F mode, L mode
@SYSTEM [string [TO line [(inc)]]]

@SYSTEM EDT statements

534 U41709-J-Z125-1-76

The @SYSTEM statement is one of the EDT statements with security implications (see also
section “Access protection” on page 99). The statement is rejected in uninterruptible
system procedures in interactive mode and on input from a file (read with RDATA from
SYSDTA not equal to SYSCMD, execution of a start procedure).

The command can be written with or without the leading slash. Before being passed to the
operating system, the command string is converted from the input source's character set
into the character set UTFE.

It is only permissible to specify commands that can also be issued using the CMD macro. If
a command is not permitted at the CMD interface or in the current SDF syntax file then it is
rejected with the error message EDT4300 (which also contains the message key from the
command return code). The commands permitted for use with the CMD macro are described
in the Executive Macros User Guide [12].

Some system commands cause the program to be unloaded when used via the CMD
interface (e.g. /EXIT-JOB, /LOGOFF, /HELP-SDF, /CALL-PROCEDURE, /START-PROGRAM,
/LOAD-PROGRAM or user commands defined by means of SDF-A and implemented using
command procedures). For a full overview of these commands, see the Executive Macros
User Guide [12]. It is advisable to avoid unloading EDT due to this type of command since
open files are not closed and there is no opportunity to write back unsaved work files.

Example

The output from the /SHOW-SYSTEM-INFORMATION command is to be used to obtain infor-
mation about the OSD version.

 1.00 ··
 2.00 ··
 3.00 ··
 4.00 ··
 5.00 ··
 6.00 ··

@SYSTEM '/SHOW-SYSTEM-INFORMATION' TO 1;@ON & F NOT 'OSD' DEL··0000.00:00010(00)

EDT statements @SYSTEM

U41709-J-Z125-1-76 535

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The relevant information is stored in the work file.

 12.00 OSD-BC-VERSION = V05.0C0000<·························
 27.00 VM2000-MONITOR- OSD-BC-VERSION = *NONE<······························
 25.00 ··
 26.00 ··
 27.00 ··
 28.00 ··

···0012.00:00001(00)

@TABS (format 1) EDT statements

536 U41709-J-Z125-1-76

9.131 @TABS (format 1) – Define and output hardware tabs

Format 1 of the @TABS statement is used to define tabulator (tab) positions for positioning
with the hardware tabulator and output the current values of these positions. The hardware
tabulator is only effective in F mode.

The settings for the hardware and software tabulator are stored separately. However, only
one of the two tabulator functions can be active at any time. If the hardware tabulator is
activated then any software tabulator that may be active is therefore deactivated.

col Specifies one or more comma-separated tab positions for positioning with
the hardware tabulator. The number of possible tab positions is restricted by
the length of a statement and possibly also by the hardware. EDT goes to
the tab positions in the specified order. If the tab positions are not specified
in ascending order then the @TABS statement is not executed and the error
message EDT4940 is issued.

If the tab positions are defined in such a way that more fields per line would
be required for the on-screen display than are permitted at the relevant
terminal, then the @TABS statement is rejected with the error message
EDT5463 (at 975x terminals, for example, only 64 fields are permitted per
line).

If col is not specified then the current values of the hardware tabulator's tab
positions remain unchanged.

ON The function of the hardware tabulator is activated (default value).

If the current or an earlier statement has defined tab positions then it is
possible to specify [TAR] in order to move the cursor to the next defined tab
position to the right of its current position. This corresponds to the forward
strategy in the evaluation of software tabs.

If no tab positions are defined then the @TABS statement is rejected with
the error message EDT4941.

OFF The function of the hardware tabulator is deactivated. The defined tab
positions are retained and can be reactivated using @TABS ON.

Operation Operands F mode, L mode
@TABS

[col [,...]] []

VALUES

ON

OFF

EDT statements @TABS (format 1)

U41709-J-Z125-1-76 537

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

VALUES The current tab positions of the hardware tabulator are output. If no tab
position is defined then there is no output.

The tab positions for output are five digits in length. Up to 11 tab positions
can be output per output line. These are then followed by a line break.

In interactive mode, the output is written to SYSOUT and in batch mode it is
written to SYSLST.

When EDT starts, the hardware tabulator is deactivated.

In EDIT-LONG mode, the hardware tabulator can only be used to go to the tab positions
which have values smaller than the screen width. Tab positions with values greater than the
screen width are ignored.

If the hardware tabulator is active and the @SCALE ON statement has been used in F
mode to activate the column counter display then an additional screen line is displayed in
which the current tab positions are indicated by an 'I'. This is not displayed in EDIT-LONG
mode.

If the hardware tabulator is active then only [EFG] and [AFG] can be used to perform inser-
tions and deletions within the tabulator positions since the hardware tabulator is imple-
mented by means of terminal fields.

Example

The values 10,16 and 40 are defined as tab positions for the hardware tabulator.

Entering [TAB] at the terminal moves the cursor to the tab positions 10,16 and 40.

 23.00 ··
tabs 10,16,40··0000.00:00001(00)

 1.00 BALR 14,15 TO SUBROUTINE AND RETURN<·····
 2.00 LABEL DC C ' OK'<··
 3.00 ···

@TABS (format 2) EDT statements

538 U41709-J-Z125-1-76

9.132 @TABS (format 2) – Define and output software tabs

Format 2 of the @TABS statement is used to define tabulator (tab) characters and positions
for positioning with the software tabulator, output the corresponding current values and
activate and deactivate the software tabulator.

If software tabulators have been activated then tabulator expansion is performed when data
lines are input from a terminal (not in batch mode or on input from procedures) in L mode
(including indirect input via the text operand in certain statements) or when EDT
enters/modifies data lines in the F mode data window. If the software tabulator has been
defined (although not necessarily activated), then @TABS (format 3) can be used to
perform tabulator expansion for existing lines. Tabulator expansion is performed from left to
right in the data lines and it is possible to set two expansion strategies.

The normal forward strategy causes a tab character to be replaced by blanks (at least one)
until the following character is located at the next tab position to the right of the current
position.

The somewhat unusual positioning strategy causes the nth tab character to be positioned at
the nth tab position irrespective of whether this is located to the left or the right of the current
position. If it is located to the right of the current position then the tab character is replaced
by the corresponding number of blanks in the same way as in the forward strategy. In
contrast, if it is located to the left of the current position (or exactly at it) then the tab
character is deleted and the current position is set to the tab position. Any following
characters then usually overwrite any preceding characters in the entered line. The user
can request a message to be output when this occurs.

In both strategies, any tab characters for which no further tab positions can be ascertained
are not replaced and are retained as normal text characters.

The settings for the software and hardware tabulator are stored separately.
However, only one of the two tabulator functions can be active at any time. If the software
tabulator is activated then any hardware tabulator that may be active is therefore deacti-
vated.

Operation Operands F mode, L mode
@TABS

: :

[char [:] col [,...]] [[col1]]

ON
OFF
VALUES

CHECK
F ORWARD
NOCHECK

EDT statements @TABS (format 2)

U41709-J-Z125-1-76 539

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

char Character that EDT is to interpret as a tab character in subsequent input.
This implicitly activates the software tabulator. Neither the statement
symbol nor the separator character should be specified as the tab character.
The character ; cannot be used when statements are entered in F mode
since it is interpreted as a statement separator. The tab character char
must be separated from col by a : if char is one of the characters C, F, O,
V, N or a digit.

If char is not specified but a strategy is then only the strategy is modified.

If neither char nor a strategy is specified then the current settings for the
software tabulator are set to undefined and the software tabulator is deacti-
vated.

col Specifies the comma-separated tab positions for positioning with the tab
character. The number of possible tab positions is only restricted by the
length of a statement. If the tab positions are not specified in ascending
order then the @TABS statement is not executed and the error message
EDT4940 is issued.

CHECK EDT uses the positioning strategy described in the introduction and outputs
a message if the position is set to a tab position to the left of the current
position in the line. If this occurs when text is output at the terminal then the
message EDT2902 is output. If it occurs during the evaluation of tab
characters in a work file using the @TABS statement (format 3) then the
message EDT4312 is output. Furthermore, in this case, no further tabulator
expansion is performed as of the line to which the message refers.

If CHECK but not char is specified then the strategy is set irrespective of
whether a software tabulator is defined and active. It applies until it is
explicitly modified again.

FORWARD EDT uses the forward strategy described in the introduction.

If FORWARD but not char is specified then the strategy is set irrespective of
whether a software tabulator is defined and active. It applies until it is
explicitly modified again.

NOCHECK EDT uses the positioning strategy described in the introduction and does not
check whether any tabulator expansion is performed at a position to the left
of the current line position.

If NOCHECK but not char is specified then the strategy is set irrespective of
whether a software tabulator is defined and active.

It applies until it is explicitly modified again.

When EDT starts, the value NOCHECK is set by default.

@TABS (format 2) EDT statements

540 U41709-J-Z125-1-76

col1 Specifies the number of characters per line (1..32768) for the check of the
line length in L mode. EDT checks the number of characters in newly
entered lines. In particular, it is used to display any cases in which the
predefined line length is exceeded due to possible tabular expansions.

If a line is longer than the value specified in col1 then the line is never-
theless created and EDT outputs the message EDT2901 to indicate that the
predefined number of characters per line has been exceeded.

If col1 is not specified then the set value remains unchanged.

When EDT starts, the value for the line length check in L mode is set to
32768 characters.

ON The function of the software tabulator is activated. A software tabulator must
already have been defined.

If no tab positions are defined then the @TABS statement is rejected with
the error message EDT4941.

OFF The function of the software tabulator is deactivated. The defined tab
positions are retained and can be reactivated using the @TABS ::ON
statement.

VALUES The current tab character and the associated software tabulator tab
positions are output. If no tab character is defined then there is no output.

The tab positions for output are five digits in length. Up to 11 tab positions
can be output per output line. These are then followed by a line break. The
tab character is not output in the continuation lines.

In interactive mode, the output is written to SYSOUT and in batch mode it is
written to SYSLST.

If, due to tabulator expansion, a line exceeds the maximum length of 32768 characters then
it is truncated to the maximum length and the message EDT1903 is output in L mode and
the message EDT2400 in F mode.

If tab positions are defined and the @SCALE ON statement has been used in F mode to
activate the column counter display then an additional screen line is displayed in which the
current tab positions are indicated by an 'I'. In this line, the tabulator character itself is
depicted in the statement code column.

The tab character applies globally to all the work files. If data is entered in F mode then
tabulator expansion is performed in the entire line, not just in the displayed section.

If only a strategy is specified (e.g. @TABS::FORWARD), then this strategy is set even if no
software tabulator has been defined. If no strategy is specified then the set strategy is
retained. When EDT starts, the value NOCHECK is set by default.

EDT statements @TABS (format 2)

U41709-J-Z125-1-76 541

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Note
If @TABS:: is entered then the current software tabulator setting is set to undefined. If
no software tabulator at all is specified (but, for example, a hardware tabulator is) then
this statement has no effect.

It is better to use @CHECK to modify the value for the line length check in L mode. Here
it is now only supported for reasons of compatibility.

The main use of the @TABS statement is to create files, e.g. source files, which have
the correct information in the correct columns. For example, it makes sense to issue the
statement @TABS::[:10,16,40 CHECK 71 when creating a source file for an Assembler
program. CHECK ensures that a message is output if excessively long names are
specified (FORWARD instead of CHECK would not achieve the desired effect here). It is
sensible to specify a maximum line length of 71 since this means that column 72, which
indicates continuation lines, cannot be overwritten.

Caution

It is risky to have too many tab characters in a line when using the positioning strategy.
If a further tabulator expansion is performed, e.g. due to a correction in the line in
F mode then these all suddenly become effective – usually with unwanted conse-
quences.

Example

[is declared as the tab character. Let the tab positions be 10, 16 and 40.

The text is entered together with 3 tab characters.

Tabulator expansions are performed in columns 10, 16 and 40.

 23.00 ··
lower off;tabs ::[: 10,16,40···································0000.00:00001(00)

 1.00 [balr[14,15[subroutine and then return<·································
 2.00 label[dc[c' ok'<··
 3.00 ··

 1.00 BALR 14,15 SUBROUTINE AND THEN RETURN<······
 2.00 LABEL DC C ' OK'<··
 3.00 ··

@TABS (format 3) EDT statements

542 U41709-J-Z125-1-76

9.133 @TABS (format 3) – Expand software tabs in work files

Format 3 of the @TABS statement is used to expand software tabs in work files and string
variables if a tab character and corresponding tab positions have been defined (see
@TABS, format 2).

lines One or more line ranges in which tab characters are to be expanded.

svars One or more ranges of string variables in which tab characters are to be
expanded.

If neither lines nor svars is specified then the tab characters are expanded in all the lines
of the current work file.

If no software tabulator is defined then the statement is rejected with the error message
EDT5953. However, the software tabulator does not have to be active.

If, due to tabulator expansion, a line or string variable exceeds the maximum length of
32768 characters then tabulator expansion is aborted and the message EDT4314 is output.
There is no check of the maximum length defined using @TABS (format 2) or @CHECK
(format 1).

If the positioning strategy for the software tabulator is set with a check (CHECK in format 2)
and backward positioning would be performed then tabulator expansion is aborted and the
message EDT4312 is output.

Operation Operands F mode, L mode
@TABS

RANGE [= [,...]]
 lines

 svars

EDT statements @TMODE

U41709-J-Z125-1-76 543

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.134 @TMODE – Output task attributes

The @TMODE statement provides the user with information about the task under which
EDT is running. The information is output as a message.

The following information about the task under which EDT is running is output.

Example

Information about the task attributes is requested.

Operation Operands F mode, L mode
@TMODE

TSN Task sequence number
USERID User ID specified in the LOGON command
ACCOUNT Account number of the task
CPU-TIME Used CPU time
DATE Date (YYYY-MM-DD)
TIME Time
STATEMENT SYMBOL The current statement symbol (e.g. @)
TERMINAL Type of terminal

 23.00 ··
tmode··0000.00:00001(00)

 22.00 ··
% EDT0300 0582 BOND 007 15.1635 2005-09-27 15:12:19 @ 9763
···0000.00:00001(00)

@UNLOAD EDT statements

544 U41709-J-Z125-1-76

9.135 @UNLOAD – Unload a module

The @UNLOAD statement is used to unload load units that were loaded with @USE or
@RUN. At the same time, application routines that were assigned to the unloaded unit are
deactivated and their user statement symbols are set to invalid.

UNIT=entry The load unit (UNIT) with the name entry is to be completely unloaded.
When loading external statement routines with @USE or user routines with
@RUN, EDT informs the dynamic binder loader of the name of the specified
module or the entry point (ENTRY) in the form of a UNIT name. When this
name is specified in @UNLOAD then the complete load unit including any
dynamically autolinked modules is unloaded.

MODULE=entry
The module with the name entry is to be unloaded. In contrast to the speci-
fication of UNIT, only the specified module is unloaded.

name Name of the module that is to be unloaded. This format is now only
supported for reasons of compatibility.

If the @UNLOAD statement results in a load unit or module being unloaded, EDT then
makes the necessary changes in the list of declared statement routines. Here, a statement
routine is only identified by means of the string specified in entry or name without taking
account of the load structure. All statement routines with the specified name are deacti-
vated and their user statement symbols are set to invalid. Statement routines defined using
@USE ...,ENTRY=* are ignored during this operation, i.e. the corresponding user
statement symbol remains valid and the unloaded load unit is loaded again, if necessary,
with the corresponding entry point the next time it is called.

The @UNLOAD statement is one of the EDT statements with security implications (see also
section “Access protection” on page 99). The statement is rejected in uninterruptible
system procedures in interactive mode and on input from a file (read with RDATA from
SYSDTA not equal to SYSCMD, execution of a start procedure).

The attempt to unload modules that have been dynamically loaded internally by EDT is
rejected with the message EDT1907.

Operation Operands F mode, L mode
@UNLOAD UNIT=entry

MODULE=entry
(name)

EDT statements @UNLOAD

U41709-J-Z125-1-76 545

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

The same message is output if the module cannot be unloaded for other reasons. The
possible causes for this include an incorrect module name, the specification of a module
that has been loaded as shareable or the specification of a CSECT or ENTRY name that did
not result in a load operation in the @USE or @RUN statement.

Note
Names of up to 32 characters in length are permitted in the entry specification and the
name is case-sensitive. Only 8 characters are permitted for name and any lowercase
characters that are entered are converted into uppercase.

Caution

On @UNLOAD, EDT only deletes the user statement symbol to which the specified
load unit or specified module were assigned directly.
User statement symbols which refer to other entry points (ENTRY) in the load unit are
retained and subsequently point to invalid addresses. It is the user's own responsibility
to ensure that such user statement symbols are no longer used after the unload.

@UNSAVE EDT statements

546 U41709-J-Z125-1-76

9.136 @UNSAVE – Delete SAM or ISAM file

The @UNSAVE statement deletes a SAM or ISAM file and the corresponding catalog entry.

file Name of the file that is to be deleted. The name must correspond to the SDF
data type <filename 1..54>.

Here, the symbolic name '/' for a file for which the LINK name EDTSAM or
EDTISAM has been assigned by means of the SET-FILE-LINK command is
not permitted.

ver Version number of the file that is to be deleted. If the specified version
number does not match the file's version number, the statement is rejected
with message EDT4985.

If the specified file does not exist or cannot be accessed as required then the statement is
rejected with a corresponding error message.

Operation Operands F mode, L mode
@UNSAVE file [(ver)]

EDT statements @USE

U41709-J-Z125-1-76 547

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.137 @USE – Define external statement routines

The @USE statement is used to define user statements by specifying a user statement
symbol and an associated statement routine (see Subroutine Interfaces User Guide [1]).

spec Special character which is used as the user statement symbol for an
external statement routine. The user statement symbol must be different
from the current EDT statement symbol.

In the specific case that an external statement routine is to be used as a
statement filter then an empty string must be specified instead of a user
statement symbol. However, this is only possible when EDT is called as a
subroutine (see the section “Special application as a statement filter” in [1]).

entry Entry point for the external statement routine: The module which contains
the entry point is loaded immediately.

name Entry point for the external statement routine: The operand syntax with
parentheses is now only supported for reasons of compatibility.

* The name of the statement routine's entry point is specified as the
statement name when the user-defined statement is entered. The module
which contains the entry point is not loaded until the user-defined statement
is executed for the first time.
Similarly, the UNIT name which is used to unload the load unit again (see
below) is not formed until this point.

modlib Name of the library containing the module which contains the entry point.
The library must exist. Otherwise, the statement is rejected with the error
message EDT5372.

If the module containing the entry point is not found in the specified library,
the system first searches in the alternative libraries BLSLIBnn then in the
private task library and system task library $TASKLIB.

Operation Operands F mode, L mode
@USE

COMMAND='[spec]' []

,ENTRY= [,MODLIB=modlib]

 ([,modlib])

entry

*

name

*

@USE EDT statements

548 U41709-J-Z125-1-76

If no library is specified, the system first searches in the private task library
and then in the system task library $TASKLIB.

If the search fails, the error message EDT5372 is issued.

A maximum of 5 different user statement symbols can be declared. The attempt to declare
a sixth user statement symbol is rejected with the message EDT5373.

If no other operands are specified apart from the user statement symbol then the statement
routine previously defined using the user statement symbol is deactivated.

If the execution of the @USE statement results in a separate load operation then a UNIT
name which is the same as the entry point specified in entry or name is notified to the
dynamic binder loader.

This UNIT name can be specified in the @UNLOAD statement in order to unload all the load
units that were loaded together with the entry point. If the entry point is found inside another
load unit, @USE does not therefore result in a separate load operation and the entry point
can only be unloaded together with this load unit.

If the value * is specified instead of entry or name then this mechanism is not applied until
a user-defined statement is entered. This means that the names of all the entry points which
have resulted in a load operation are notified to the dynamic binder loader as UNIT names.

EDT only dynamically loads an entry point if this has not already been found in a previously
loaded load unit. If EDT itself has been loaded as a subroutine in a user program, this also
applies to entry points in this user program.

It is not therefore possible to use entry points of the same name in different load units in
parallel. It is nevertheless possible that the dynamic binder loader may identify duplicate
names when loading a statement routine. In this case, the @USE statement or user
statement that caused dynamic loading is rejected with the message EDT4208. If EDT is not
running in F mode then the error message from the dynamic binder loader is also output.
This message makes it possible to identify the name of the duplicate symbol.

This situation can be avoided by using the @UNLOAD statement to unload the load unit
loaded with a previous @USE statement before issuing any further @USE statements. The
associated user statement symbol is then also canceled.

In contrast, if the user statement symbol is simply canceled using @USE
COMMAND='spec' or if a user statement symbol is assigned twice then the originally
assigned load unit is not implicitly unloaded.

If EDT-specific entry points or module names are specified in the @USE statement then it
is rejected with the message EDT4933.

EDT statements @USE

U41709-J-Z125-1-76 549

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

If the ENTRY=* or (*,modlib) operand is specified then conversion to uppercase
characters is always performed when the name of the entry point is formed from the first
part of the user statement. The remainder of the user statement may or may not be
converted to uppercase depending on the @PAR LOW setting.
If (*,modlib) is specified then (for reasons of compatibility) only a maximum of 8
characters are taken into account during the formation of the entry point name. Otherwise,
a maximum of 32 characters are taken into account.

For details on the implementation of external statement routines or statement filters and for
information on passing parameters to these, see the section “Calling a user-defined
statement” in [1].

The @USE statement is one of the EDT statements with security implications (see also
section “Access protection” on page 99). Under certain privileged IDs, the @USE statement
is rejected. This also applies to uninterruptible system procedures in interactive mode (read
from SYSDTA with RDATA, execute EDT start procedure) unless the @USE statement is
issued by the protected procedure itself (SYSDTA=SYSCMD).

Note
Names of up to 32 characters in length are permitted in the entry specification and the
name is case-sensitive. Only 8 characters are permitted for name and any lowercase
characters that are entered are converted into uppercase.

Example 1

The module which contains the entry point JOBVAR in the library PRIVLIB can be called with
the parameters CATJV <name>, ERAJV <name>, GETJV <name>,<ln> or SETJV
<name>,<ln>. The name of the entry point JOBVAR is specified directly in the @USE
statement.

@USE COMMAND = '*',ENTRY=JOBVAR,MODLIB=PRIVLIB ---------------------------(1)
*CATJV JV.TEST -- (2)
*SETJV JV.TEST,3 -- (3)

(1) The user statement symbol * is declared and the module JOBVAR is loaded.

(2) The module JOBVAR is called with the parameter 'CATJV JV.TEST'.

(3) The module JOBVAR is called with the parameter 'SETJV JV.TEST,3'.

@USE EDT statements

550 U41709-J-Z125-1-76

Example 2

The library PRIVLIB contains the two modules SORT and HELP. The name of the entry point
is not defined until the user-defined statement is actually called.

@USE COMMAND = '*',ENTRY=*,MODLIB=MODLIB -------------------------------- (1)
*SORT 20-100 -- (2)
*HELP EDT5100 --- (3)

(1) * is declared as the user statement symbol. However, no module is loaded as yet.

(2) The module SORT is loaded and called with the parameter '20-100'.

(3) The module HELP is loaded and called with the parameter 'EDT5100'.

EDT statements @VDT

U41709-J-Z125-1-76 551

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.138 @VDT – Control screen format

The @VDT statement can be used to set the screen format in F mode.

F1 Sets the screen format to 24 lines and 80 columns. This format is also set
when EDT starts or if no operand is specified.

F2 Sets the screen format to 27 lines and 132 columns.

F3 Sets the screen format to 32 lines and 80 columns.

F4 Sets the screen format to 43 lines and 80 columns.

The screen formats F2, F3 and F4 are only supported by DSS 9763. If a terminal does not
support a specified format then the statement is rejected with the error message EDT4945.

If the @VDT statement is entered in a statement sequence or in a statement block in BLOCK
mode then it is the last statement to be executed after all the others have been processed.

The @VDT statement implicitly terminates the display of two work windows.

In batch mode, this statement is ignored and no error message is issued. In L mode and
when output is sent to SYSOUT (provided that SYSOUT is assigned to a terminal) then the
screen format F1 is always set.

Operation Operands F mode, L mode
@VDT

[]

F1
F2

F3
F4

@VTCSET EDT statements

552 U41709-J-Z125-1-76

9.139 @VTCSET – Control screen output

When output is sent to SYSOUT (e.g. by means of one of the statements @PRINT or
@ON..PRINT), the @VTCSET statement specifies whether the line mode control
characters which may be present in the lines of data that are to be output are transferred
unchanged or are converted into smudge characters.

ON Specifies that the output is not checked and that therefore no smudge
characters are used as replacements. This is also the setting when EDT is
started.

OFF Causes line mode control characters in data lines to be replaced by smudge
characters when output to SYSOUT.

The character specified in /MODIFY-TERMINAL-OPTIONS SUBSTITUTE-CHARACTER=...
is used as the smudge character.

The setting @VTCSET OFF is of use when the data which is interpreted as control
characters fragments the screen output. However, this is only possible when output is
written to SYSOUT and SYSOUT is assigned to the terminal. The @VTCSET statement has
no effect in the case of formatted work window output in F mode, output to SYSLST (@LIST)
or output in batch mode.

Output to SYSOUT is usually written in the character set defined for SYSOUT (either that of
the terminal or that of the file or library element to which SYSOUT is assigned). The output
may therefore be converted.

Once this conversion has been performed, the line mode control characters are replaced
(see Executive Macros User Guide [12], VTCSET macro).
Since all the terminals supported by EDT only support character sets in which the control
characters have the same binary coding, the sequence in which the characters are
replaced is only of significance for the depiction of the smudge character.

Operation Operands F mode, L mode
@VTCSET

[]
ON

OF F

EDT statements @WRITE (format 1)

U41709-J-Z125-1-76 553

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.140 @WRITE (format 1) – Write file

The @WRITE statement (format 1) creates a new file and writes the content of the current
work file to the new file, overwrites an existing file with the content of the current work file
or writes the content of the current work file back to a file opened using @OPEN (format 1).
An open file remains open when @WRITE is issued. If existing files are overwritten then
the old file content is completely replaced. The work file is retained in all cases.

Whenever this section refers to a “file”, this can be a SAM file, an ISAM file, a library
element or a POSIX file.

LIBRARY=... A library element is to be overwritten. This is defined by explicitly specifying
the library name and the element designation.

path1 Name of the library.

elname Name of the element.

vers Version of the required element (see the LMS User Guide [14]). If vers is
not specified or if *STD is specified then the highest available version of the
element is selected.

eltype Type of element. Permitted type specifications are S,M, P, J, D, X, *STD as
well as freely selectable type names having one of these types as basic
type. If eltype is not specified then the default type specified with @PAR
ELEMENT-TYPE is used. The permitted element types and their meanings
are described in chapter “File processing” on page 131.

Operation Operands F mode, L mode
@WRITE

[]

 [,MODE=] [,CODE=]

LIBRARY=path1 ([ELEMENT=] elname [(vers)][,eltype])
ELEMENT=elname [(vers)] [,eltype]

FILE = [,TYPE=] [,KEY =]

POSIX-FILE=xpath

path2

*linkname

ISAM

SAM

LINENUMBER

DATA

ANY
UPDATE
NEW
REPLACE

name
*FILE
*EDT

@WRITE (format 1) EDT statements

554 U41709-J-Z125-1-76

ELEMENT=... A library element is to be written. This is defined by means of the element
designation without any library name specification. The default library set
with @PAR LIBRARY is used implicitly (if @PAR LIBRARY has been
specified, otherwise the error message EDT5181 is issued).

The operands elname, vers and eltype have the same meaning as when
a library is specified explicitly (see above).

FILE= A BS2000 file is to be written.

path2 Name of the BS2000 file (fully qualified file name) that is to be written.

*linkname File link name of the BS2000 file that is to be written. The file name and the
file attributes are stored in the Task File Table. In this way, it is possible
to create files with nonstandard names. The file link name must not be
specified as the special file name *BY-PROGRAM. This results in the error
EDT4923. If no file link name is defined then the statement is rejected with
the message EDT5480.

If the file link name is declared as the special file name *DUMMY then it is
treated as an non-existent file. However, no file is created.

TYPE= Specifies the access method when creating a new file. In the case of
existing files, this operand is ignored.

SAM A SAM file is created and written. This is the default value.

ISAM An ISAM file is created and written.

KEY= In the case of ISAM files, specifies how the ISAM key is to be formed. In the
case of other file types, this operand is ignored.

If the operand is not specified then the ISAM key is formed from the line
number when a new file is written or when an existing file is overwritten.
When data is written back to an open file, the ISAM key is formed from the
line number if KEY=LINENUMBER or KEY=IGNORE was specified when the file
was opened. If KEY=DATA was specified when the file was opened then the
ISAM key is taken over from the data area.

LINENUMBER
The ISAM key is formed from the line number. If the position of the key
differs from the default value or if the key is too long, the message EDT5465
is output and the file is not written. If the key is too short, the line number is
truncated from the left.

DATA The ISAM key is a component of the data range in the work file. In this case,
the user must make sure that the sequence of work file records corresponds
to the sequence of ISAM keys as otherwise the write operation will be
rejected with the message EDT4208 (DMS error code 0AAB).

EDT statements @WRITE (format 1)

U41709-J-Z125-1-76 555

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

POSIX-FILE= A POSIX file is to be written.

xpath Path name of the POSIX file that is to be written.

The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

MODE= Specifies whether the file should already be present. If an open file is to be
written back, this operand is ignored.

ANY If the file already exists then it is overwritten. Otherwise, it is created and
written. This is the default value.

UPDATE The file that is to written must already be present as otherwise the message
EDT5281, EDT5270 or EDT5310 is output depending on the file type. The old
content is completely overwritten.

NEW The file is created and written. It must not already be present as otherwise
the message EDT5258, EDT5273 or EDT5311 is output depending on the file
type.

REPLACE Has the same meaning as ANY. If the file already exists then it is overwritten.
Otherwise, it is created and written.

CODE= The operand controls the character set in which the work file is to be written.

If this operand is not specified then the character set defined with @PAR
CODE is used for POSIX files and the work file's character set is used for
other files. If in the case of SAM files, ISAM files or library elements, the
character set of an existing file differs from that of the work file then the
message EDT5457 is output in batch mode and no write operation is
performed. In interactive mode, the following query is output:

 % EDT0915 CONVERT TO FILE CCS (&00)? REPLY (Y=YES; N=NO)?

If the user responds Y then a conversion to the file's character set is
performed before the write operation. If the user responds N then the work
file's character set is used.

name Character set that is to be used for writing. The name of a valid character
set must be specified for name (see section “Character sets” on page 47).

@WRITE (format 1) EDT statements

556 U41709-J-Z125-1-76

*FILE Before the write operation, the work file is converted into the character set
of the existing SAM file, ISAM file or library element or into the character set
used when opening a POSIX file. If this character set was *NONE then
EDF03IRV is used. If the file does not yet exist or if an existing POSIX file is
to be overwritten then the message EDT1181 is output and the CODE
operand is ignored. System behavior is then the same as when the CODE
operand is omitted.

*EDT The work file's character set is used for writing irrespective of whether any
file that may exist has a different character set.

When new files are written or when existing files are overwritten, it is always necessary to
specify a file name operand. When files opened with @OPEN are written back, the file
name operand can be omitted. If the file name operand is omitted even though no file is
open then the statement is rejected with the message EDT5122. If all the statement's
operands are omitted and no file is open then the statement is interpreted as @WRITE
(format 2) and a @FILE entry is searched for (see @WRITE format 2).

If the specified file cannot be accessed as required then the statement is rejected with a
corresponding error message.

After the write operation, the employed character set is entered in the catalog for SAM files,
ISAM files and library elements. If this character set is EDF03IRV and the file that is to be
written already exists with the character set *NONE in the catalog then this value is retained.

If the work file is converted before writing and if it contains characters which are invalid in
the character set used by the file that is to be written then these characters are replaced by
a substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the file is not written and error message
EDT5453 is output. The user can then define a substitute character or modify the character
set for writing and run @WRITE again.

If the work file contains lines that are too long for the file that is to be written (e.g. if the file
has a fixed record length) or if the conversion operation creates any such records (possible
in the case of Unicode character sets), then the write operation is aborted with the message
EDT5444.

If, during the processing of an opened ISAM file, the character set is changed either from
or to UTF16 or if this occurs implicitly due to a corresponding specification in the CODE
operand a file opened with @OPEN cannot be written back since this would modify the
length of the key field. In this case, the @WRITE statement is rejected with the error
message EDT5468.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

EDT statements @WRITE (format 1)

U41709-J-Z125-1-76 557

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

Caution

Since the default setting is MODE=ANY, existing files are overwritten without any warning
being issued.

Example

@WRITE LIBRARY=PROGLIB(ELEMENT=SYNT)

The current work file is written to the element SYNT in the library PROGLIB. In this case, the
highest possible version and the default type specified with @PAR ELEMENT-TYPE are
used.

@PAR LIBRARY=LIB1
@SET #S02='PROC.PR'
@WRITE ELEMENT=.#S02 (V01),J

The current work file is written to the element with the name PROC.PR, the version V01 and
the element type J in the library LIB1.

@WRITE FILE=FILE2,MODE=NEW,CODE=*EDT

The SAM file FILE2 is created and the current work file is written to the new file. The work
file's character set is used.

@OPEN POSIX-FILE=/home/user1/test/data,CODE=UTF8
@WRITE ,MODE=ANY

The current work file is written back to the open POSIX file data in the directory
/home/user1/test.

@WRITE (format 2) EDT statements

558 U41709-J-Z125-1-76

9.141 @WRITE (format 2) – Write SAM file

The @WRITE statement (format 2) fully or partially writes the content of the current work
file to disk or tape as a SAM file.

file Name of the SAM file that is to be written. The name must correspond to the
SDF data type <filename 1..54> or must consist of the special specifi-
cation '/'.

If the file file does not yet exist then it is created prior to the write
operation. If the file operand is not specified then the explicit local @FILE
entry is used as the file name if present. If not, the global @FILE entry (from
the @FILE statement) is used and, failing this, the implicit local @FILE entry
(e.g. from the @READ statement). If there is no @FILE entry then @WRITE
is rejected with the message EDT5484.

If the specified file cannot be accessed as required then the statement is
rejected with a corresponding error message.

If the file link name EDTSAM is assigned to a file then the user simply needs
to specify '/' in order to write this file (see chapter “File processing” on
page 131).

ver Version number of the file that is to be overwritten. If an incorrect version
number is specified for an existing file then the statement is rejected with
EDT4985. If the file does not yet exist then this specification is ignored and
version 001 of the file is written.

lines One or more line ranges that are to be written to the SAM file. If lines are
specified more than once then they are also written more than once.

If lines is not specified, then the entire file is written.

cols One or more column ranges which define the section to be written for each
record. The ranges may repeat and overlap. The column specifications
refer to the characters in the current work file. If column values which exceed
the work file record length are specified then blanks are written to the file in
their place.

If no column range is specified then the lines are written in full.

Operation Operands F mode, L mode
@WRITE

[file] [(ver)] [,] [lines[,...]] [:cols[,...]:] [KEY] []
UPDATE

OVERWRITE

EDT statements @WRITE (format 2)

U41709-J-Z125-1-76 559

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

KEY When the SAM file is written, every line is prefixed with an 8-character long
key which is derived from the associated line number. As a result, the file
can subsequently be read in using exactly the same line numbers (see
@READ with the KEY operand).

UPDATE Specifying UPDATE causes the lines that are to be saved to be appended
at the end of the existing SAM file.

This operand is ignored if no SAM file with the specified name exists.

OVERWRITE An existing file of the same name is overwritten without any request for
confirmation. If the specified file does not yet exist, OVERWRITE has no
effect.

If neither UPDATE nor OVERWRITE is specified and if a file with the same name already exists
then, in interactive mode, EDT issues the query:

% EDT0903 FILE 'file' IS IN THE CATALOG, FCBTYPE = fcbtyp
% EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)?

If the user answers the message with Y then the existing file is overwritten as a SAM file
with the content of the current work file. In contrast, if the user answers N then the file is not
written and the message EDT0293 is output.
In batch mode, the file is always overwritten.

If an existing file is overwritten by @WRITE without the UPDATE operand then the file type
and/or file attributes may change. The file is written as a SAM file with default attributes (e.g.
variable record length) unless a corresponding /SET-FILE-LINK command with the file
link name EDTSAM has already been specified with the divergent attributes (see section “File
processing” on page 131). Files of the type PAM or BTAM cannot be overwritten.

The file is only opened temporarily during the write operation.

The character set used for the write operation depends on whether the file is overwritten,
created or extended (see the UPDATE operand.

If the file is overwritten or created then the data is written in the work file's character set and
this character set is entered for the file in the catalog.

If the file is extended then the data is converted from the work file's character set into the
character set specified in the file's catalog entry. If the value *NONE is entered for the file in
the catalog then EDF03IRV is used (see also section “Character sets” on page 47).

If the work file contains characters which are invalid in the character set of the file that is to
be written then these characters are replaced by a substitute character provided that such
a character has been specified (see @PAR SUBSTITUTION-CHARACTER); otherwise,
the file is not written and the error message EDT5453 is output. This does not apply to
invalid characters outside of the line or column range that is to be written. These characters
are ignored.

@WRITE (format 2) EDT statements

560 U41709-J-Z125-1-76

If the work file contains lines that are too long for the file that is to be written (e.g. if the file
has a fixed record length) or if the conversion operation creates any such records (possible
in the case of Unicode character sets), then the write operation is aborted with the message
EDT5444.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

If all the statement's operands are omitted and no file is open in the current work file then
the statement is interpreted as @WRITE (format 1) and no @FILE entry is searched for
(see @WRITE format 1).

Caution

If the @FILE statement has been used to prefix a file name then the statement
sequence

@READ 'filename'
@WRITE

does not cause the read file to be written. Instead, the file from the @FILE entry is
written.

Example

 1. A VERY SHORT FILE --- (1)
 2. @WRITE 'TEST.@WRITE.1' -- (2)
 2. @FILE 'TEST.@WRITE.1' --- (3)
 2. @WRITE UPDATE --- (4)
 2. @DELETE --- (5)
 1. @READ --- (6)
 3. @PRINT
 1.0000 A VERY SHORT FILE
 2.0000 A VERY SHORT FILE --- (7)
 3.

(1) A line is written to the work file.

(2) This line is written to disk as the file TEST.@WRITE.1.

(3) The file name TEST.@WRITE.1 is declared via @FILE.

(4) @WRITE refers to the file name declared in (3). UPDATE causes the content of the work
file – i.e. still the line created in (1) – to be appended at the end of the file
TEST.@WRITE.1.

(5) The content of the work file is deleted.

(6) The file TEST.@WRITE.1 is moved into the work file (here again, there is no need to
specify a file name.)

(7) It can be seen that the line was appended at the end of the file in (4).

EDT statements @XCOPY

U41709-J-Z125-1-76 561

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.142 @XCOPY – Read POSIX file

The @XCOPY statement is used to read a POSIX file which is stored in the POSIX file
system into the current work file. This statement is now only supported for reasons of
compatibility. In its place, users are recommended to use @COPY (format 1) with the
operand POSIX-FILE.

xpath Path name of the POSIX file that is to be read into the current work file.

The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

If the specified file does not exist or cannot be accessed as required then
the statement is rejected with a corresponding error message.

CODE= Defines the character set that is to be assumed for the POSIX file. Since it
is not possible to assign character sets to POSIX files in the POSIX file
system, a user specification is required here.

If CODE is not specified then the character set defined in @PAR CODE is
assumed. When EDT starts, the value EDF041 is set.

name Character set of the POSIX file that is to be read in. The name of a valid
character set must be specified for name (see section “Character sets” on
page 47).

EBCDIC The keyword EBCDIC is now only supported for reasons of compatibility and
is a synonym for the character set EDF041.

ISO The keyword ISO is now only supported for reasons of compatibility and is
a synonym for the character set ISO88591.

The records read from the file are inserted after the last line in the current work file using
the procedure “Insertion between two lines” (see section “Line number assignment” on
page 36).

Operation Operands F mode, L mode
@XCOPY

FILE=xpath [,CODE=]
name
EBCDIC
ISO

@XCOPY EDT statements

562 U41709-J-Z125-1-76

If the current work file is empty and has the character set *NONE then it is assigned the
character set specified in CODE. If no character set is specified then the work file is assigned
the character set defined using @PAR CODE.

If the work file already has a character set then the records that are to be read in are
converted from the file's character set into the work file's character set.

If the file that is to be read in contains characters which cannot be displayed in the work
file's character set then these characters are replaced by a substitute character provided
that such a character has been specified (see @PAR SUBSTITUTION-CHARACTER);
otherwise, the file is not read in and the error message EDT5453 is output.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the read operation is rejected with the message
EDT5454.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

EDT statements @XOPEN

U41709-J-Z125-1-76 563

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.143 @XOPEN – Open and read a POSIX file

The @XOPEN statement is used to open a POSIX file which is stored in the POSIX file
system and read it into the current work file. This statement is now only supported for
reasons of compatibility. In its place, users are recommended to use the @OPEN (format
1) statement with the operand POSIX-FILE.

xpath Path name of the POSIX file that is to be opened.

The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

If the specified file does not exist or cannot be accessed as required then
the statement is rejected with a corresponding error message.

CODE= Defines the character set that is to be assumed for the POSIX file. Since it
is not possible to assign character sets to POSIX files in the POSIX file
system, a user specification is required here.

If CODE is not specified then the character set defined in @PAR CODE is
assumed. When EDT starts, the value EDF041 is set.

name Character set of the POSIX file that is to be opened. The name of a valid
character set must be specified for name (see section “Character sets” on
page 47).

EBCDIC The keyword EBCDIC is now only supported for reasons of compatibility and
is a synonym for the character set EDF041.

ISO The keyword ISO is now only supported for reasons of compatibility and is
a synonym for the character set ISO88591.

Operation Operands F mode, L mode
@XOPEN

FILE=xpath [,CODE=] [,MODE=]
name
EBCDIC
ISO

ANY
UPDATE
NEW
REPLACE

@XOPEN EDT statements

564 U41709-J-Z125-1-76

MODE= Specifies whether the file should or may already be present.

ANY If the file already exists then it is opened for processing and read in.
Otherwise, it is created and opened for processing. This is the default value.

UPDATE The file that is to be opened for processing and read in must already exist
as otherwise the message EDT5310 is output.

NEW The file is created and opened for processing. It must not already be
present. Otherwise, the message EDT5311 is output.

REPLACE If the file already exists then it is opened for processing. However, its
previous content is deleted and is not read into the work file. If the file does
not exist, it is created and opened for processing.

If the current work file is not empty then the @XOPEN statement is rejected with the
message EDT5191. Unlike BS2000 files or library elements, POSIX files can be opened
multiple times in different work files (in POSIX, files are not protected against being simul-
taneously opened by different tasks).
The records read from the file are inserted in the current work file after position 0.0000
using the procedure “Insertion between two lines” (see section “Line number assignment”
on page 36).
If the empty work file has the character set *NONE then it is assigned the character set
specified in CODE. If no character set is specified then the work file is assigned the character
set defined using @PAR CODE.

If the empty work file already has a character set (e.g. due to a preceding @CODENAME)
then the records that are to be read in are converted from the file's character set into the
work file's character set. If the file that is to be read in contains characters which cannot be
displayed in the work file's character set then these characters are replaced by a substitute
character provided that such a character has been specified (see @PAR SUBSTITUTION-
CHARACTER); otherwise, the file is not read in and the error message EDT5453 is output.

If the file is present in a Unicode character set and contains an illegal byte sequence, e.g.
surrogate characters, then it will be impossible to read it even if SUBSTITUTION-
CHARACTERS is specified. In this case, the read operation is rejected with the message
EDT5454.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Note
When EDT is terminated (@HALT, @END, @RETURN), if a file is open due to
@XOPEN and the save query EDT0900 is output, then the POSIX file name is displayed
in the form X=xpath.

EDT statements @XWRITE

U41709-J-Z125-1-76 565

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.144 @XWRITE – Save content of current work file in a POSIX file

The @XWRITE statement can be used to write the content of the current work file to a
POSIX file. The work file is retained. This statement is now only supported for reasons of
compatibility. In its place, users are recommended to use the @WRITE (format 1) statement
with the operand POSIX-FILE.

xpath Path name of the POSIX file that is to be written.

The xpath operand can also be specified as a string variable. It must be
specified as a string variable if the path name contains characters which
have a special meaning in EDT syntax (e.g. blanks, semicolons in F mode
or commas).

If xpath is not specified then a POSIX file opened with @XOPEN or
@OPEN (format 1) is written back. If there is no open POSIX file then the
statement is rejected with the message EDT5122.

If the specified file cannot be accessed as required then the statement is
rejected with a corresponding error message.

CODE= Defines the character set with which the POSIX file is to be written.

If CODE is not specified then the file is written in the character set defined in
@PAR CODE (including when writing back files that were opened with
another character set). When EDT starts, the value EDF041 is set.

name Character set of the POSIX file that is to be written. The name of a valid
character set must be specified for name (see section “Character sets” on
page 47).

EBCDIC The keyword EBCDIC is now only supported for reasons of compatibility and
is a synonym for the character set EDF041.

ISO The keyword ISO is now only supported for reasons of compatibility and is
a synonym for the character set ISO88591.

Operation Operands F mode, L mode
@XWRITE

[FILE=xpath] [,CODE=] [,MODE=]
name
EBCDIC
ISO

ANY
UPDATE
NEW
REPLACE

@XWRITE EDT statements

566 U41709-J-Z125-1-76

MODE= Specifies whether the file should or may already be present. If an open file
is to be written back, this operand is ignored.

ANY If the file already exists then it is overwritten. Otherwise, it is created and
written. This is the default value.

UPDATE The file that is to be written must already exist as otherwise the message
EDT5310 is output.

NEW The file is created and written. It must not already be present. Otherwise,
the message EDT5311 is output.

REPLACE Has the same meaning as ANY. If the file already exists then it is overwritten.
Otherwise, it is created and written.

If a POSIX file has been opened with @XOPEN or @OPEN (format 1) then it is not
necessary to specify the file name in @XWRITE. The content of the opened file is replaced
by the content of the work file. The file remains open until @CLOSE is issued.

If the work file is converted before writing and if it contains characters which are invalid in
the character set used by the file that is to be written then these characters are replaced by
a substitute character provided that such a character has been specified (see @PAR
SUBSTITUTION-CHARACTER); otherwise, the file is not written and error message
EDT5453 is output. The user can then define a substitute character or modify the character
set for writing and run @XWRITE again.

If the statement is interrupted with [K2] and the EDT session is continued with /INFORM-
PROGRAM then the processing of the statement is aborted and message EDT5501 is output.

Caution

Since the default setting is MODE=ANY, existing files are overwritten without any warning
being issued if MODE is not specified.

EDT statements 0..22

U41709-J-Z125-1-76 567

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
09

9.145 0..22 – Switch work file

This statement causes EDT to switch to another work file.

EDT displays the work file selected with the 0..22 statement in the work window in which
the statement was entered.

The line position and column position are set to the values that were previously valid in the
newly set work file. If the work file has not yet been used then the default values apply.

The @SETF statement can also be used to change work file and, at the same time, set the
position to any required line and column.

Operation Operands F mode
0..22

0..22 EDT statements

568 U41709-J-Z125-1-76

U41709-J-Z125-1-76 569

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10 Statement codes in F mode (alphabetical)
This chapter contains a detailed description of all the EDT statement codes available in F
mode listed in alphabetical order.

In the case of statements which contain special characters, alphabetical means the
sequence defined in the character set EBCDIC.DF.04.

10.1 + – Move forward in the work window

The statement code + repositions the work window so that the line in which + was entered
becomes the first line in the data window.

This statement code does not modify the column position.

Statement code Key
+ [DUE] or [F2]

+ Statement codes in F mode

570 U41709-J-Z125-1-76

10.2 + – Move forward in work window by structure depth

If the statement code + is sent with the function key [F1] then the position is set to the next
record that has the same structure depth as the specified record.

The structure depth is the distance of the first non-blank character from the start of the
record. It makes no difference whether the record is displayed as of column 1 or whether
the screen section has been shifted to the right.

If a structure symbol other than a blank has been defined (see @PAR STRUCTURE) then
only records which contain this character are considered. If the blank is defined as the
structure symbol then all the records are considered. The default value for the structure
symbol is @.

If no record with the same structure depth is found then the position remains unchanged.

If the specified record does not contain a structure symbol then the statement code is
rejected with the message EDT5354.

Example

This example assumes that the blank has been defined as the structure symbol using
@PAR STRUCTURE=' '.

The statement code + is entered in line 4.00 and is sent with [F1].

Statement code Key
+ [F1]

 1.00 if (b != 0)<···
 2.00 {<···
 3.00 if (a == 1)<···
+ 4.00 {<···
 5.00 b = 0;<···
 6.00 c = 3;<···
 7.00 }<···
 8.00 else<··
 9.00 {<···

···0001.00:00001(00)

Statement codes in F mode *

U41709-J-Z125-1-76 571

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

The position has been moved to the next record with the same structure depth.

10.3 * – Delete copy buffer

The statement code * deletes a copy buffer created with C, M or R.

The statement code * is evaluated before A, B, O, C, M or R irrespective of the line in which
* is entered. This means that the copy buffer is always deleted if * is entered in a line.

The deletion of the copy buffer is acknowledged with the message EDT0292. The message
is not issued if new lines have been entered in the copy buffer by simultaneously specifying
the statement codes C, M or R.

Statement code Key
* [DUE] or [F2]

 7.00 }<···
 8.00 else<··
 9.00 {<···

···0007.00:00001(00)

– Statement codes in F mode

572 U41709-J-Z125-1-76

10.4 – – Move backward in work window

The statement code - repositions the work window so that the line in which - was entered
becomes the last line in the data window.

This statement code does not modify the column position.

The statement code – has no effect if there are not enough records to completely fill the
work window.

10.5 – – Move backward in work window by structure depth

If the statement code - is sent with the function key [F1] then the position is set to the
previous record that has the same structure depth as the specified record.

The structure depth is the distance of the first non-blank character from the start of the
record. It makes no difference whether the record is displayed as of column 1 or whether
the screen section has been shifted to the right.

If a structure symbol other than a blank has been defined (see @PAR STRUCTURE) then
only records which contain this character are considered. If the blank is defined as the
structure symbol then all the records are considered. The default value for the structure
symbol is @.

If no record with the same structure depth is found then the position remains unchanged.

If the specified record does not contain a structure symbol then the statement code is
rejected with the message EDT5354.

Statement code Key
– [DUE] or [F2]

Statement code Key
– [F1]

Statement codes in F mode –

U41709-J-Z125-1-76 573

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

Example

This example assumes that the blank has been defined as the structure symbol using
@PAR STRUCTURE=' '.

The statement code - is entered in line 7.00 and is sent with [F1] .

The position has been moved to the previous record with the same structure depth.

 1.00 if (b != 0)<···
 2.00 {<···
 3.00 if (a == 1)<···
 4.00 {··
 5.00 b = 0;<···
 6.00 c = 3;<···
- 7.00 }<···
 8.00 else<··
 9.00 {<···

···0001.00:00001(00)

 4.00 {<···
 5.00 b = 0;<···
 6.00 c = 3;<···
 7.00 }<···
 8.00 else<··
 9.00 {<···

···0004.00:00001(00)

A Statement codes in F mode

574 U41709-J-Z125-1-76

10.6 A – Copy or move after a line

The statement code A copies or moves records with line numbers collected in the copy
buffer using C, M or R after the specified line. If the copy buffer has been filled with the
statement codes C or M then it is subsequently deleted.

For the sake of simplicity; the description below refers only to copying even if the lines are
deleted after the copy operation (i.e. they are moved).

If the copy buffer is empty then the statement is rejected with the message EDT5376.

When inserting or appending the copied lines, EDT assigns line numbers using the
procedure “Insertion between two lines” (see section “Line number assignment” on
page 36). If it is not possible to insert the lines then the copy operation is not performed, the
copy buffer is not deleted and the message EDT5365 is output.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the source work file of the first line for copying when the copy operation is
performed.

If the current work file has a character set then the lines that are to be copied are converted
into this work file's character set.

If characters are detected which cannot be displayed in the work file's character set then
these are replaced by a substitute character if such a character has been specified (see
@PAR SUBSTITUTION-CHARACTER). Otherwise, the statement code is rejected and the
error message EDT5453 is output.

Note
The statement code A is not executed until the statements C, M and R have been
processed. As a result, the target location can be specified in a work window before the
lines that are to be copied in a single dialog step.

Statement code Key
A [DUE] or [F2]

Statement codes in F mode A

U41709-J-Z125-1-76 575

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

Example

Line 2.00 is to be copied to a position after line 3.00.

Line 2.00 has been copied as the new line 3.10 after line 3.00.

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
c 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
a 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 3.10 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

B Statement codes in F mode

576 U41709-J-Z125-1-76

10.7 B – Copy or move before a line

The statement code B copies or moves records with line numbers collected in the copy
buffer using C, M or R before the specified line. If the copy buffer has been filled with the
statement codes C or M then it is subsequently deleted.

For the sake of simplicity; the description below refers only to copying even if the lines are
deleted after the copy operation (i.e. they are moved).

If the copy buffer is empty then the statement is rejected with the message EDT5376.

When inserting or appending the copied lines, EDT assigns line numbers using the
procedure “Insertion between two lines” (see section “Line number assignment” on
page 36). If it is not possible to insert the lines then the copy operation is not performed, the
copy buffer is not deleted and the message EDT5365 is output.

If statement code B has been entered in the first screen line then the screen is subsequently
repositioned in such a way that the inserted lines are visible.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the source work file of the first line for copying when the copy operation is
performed.

If the current work file has a character set then the lines that are to be copied are converted
into this work file's character set. If characters are detected which cannot be displayed in
the work file's character set then these are replaced by a substitute character if such a
character has been specified (see @PAR SUBSTITUTION-CHARACTER). Otherwise, the
statement code is rejected and the error message EDT5453 is output.

Note
The statement code B is not executed until the statements C, M and R have been
processed. As a result, the target location can be specified in a work window before the
lines that are to be copied in a single dialog step.

Statement code Key
B [DUE] or [F2]

Statement codes in F mode C

U41709-J-Z125-1-76 577

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.8 C – Collect lines for copying

The statement code C transfers the line numbers and work file number corresponding to the
specified record to the EDT copy buffer so that the record can subsequently be copied using
one of the statement codes A, B or O.

As soon as one of the statement codes A, B or O is entered, the copy operation is executed,
i.e. the records are inserted in the corresponding position. The content of the copy buffer is
then deleted.

If, when C is specified, the copy buffer already contains entries that were generated using
the statement codes M or R then the copy buffer is deleted before the specified line is
entered and the message EDT0295 is output.

The copy buffer can also be filled with lines taken from different work files. The records
determined by the copy buffer can then be copied into any work file.

The copy buffer contains the work file and line numbers of the records collected with C. The
line numbers and content of the records that are to be copied should therefore not be
modified between being collected with C and the performance of the copy operation with the
statement codes A, B or O. However, if this does occur then the new contents are copied. If
any records have been deleted in the interim then these are skipped without any warning
during the copy operation.

Since the copy buffer only contains work file and line numbers, no conversion of the
selected lines is performed during collection. Since the target character set is not deter-
mined until the target work file is specified, any conversion that is required is not performed
until the statement codes A, B or O are evaluated (see section “Character sets” on page 47).

Note
If the screen is split then lines can be copied from the first to the second work window
in a single dialog step. If items are copied from the second to the first work window then
two dialog steps may be necessary depending on the processing sequence.

Statement code Key
C [DUE] or [F2]

C Statement codes in F mode

578 U41709-J-Z125-1-76

Example

Line 3.00 is to be copied to a position before line 7.00 and after line 8.00. This is achieved
by entering statement code C in line 3.00, statement code B in line 7.00 and statement
code A in line 8.00.

Line 3.00 has been copied to a position before line 7.00 but not after line 8.00. Instead,
EDT issues an error message.

Lines collected with C can only be copied to a single target location since the copy buffer is
deleted after the first copy operation. The second specified target location causes the error
message. If lines are to be copied multiple times then they must be collected with R.

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
c 3.00 <··
 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
 6.00 as well as text-like library<···
b 7.00 elements and POSIX files.<··
a 8.00 The repetitive operations which occur<································
 9.00 during editing, such as deleting<·····································
 10.00 ···

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
 3.00 <···
 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
 6.00 as well as text-like library<···
 6.10 <···
 7.00 elements and POSIX files.<··
 8.00 The repetitive operations which occur<································
 9.00 during editing, such as deleting<·····································
 10.00 ··

 21.00 ··
% EDT5360 NO COPY. BUFFER EMPTY
···0001.00:00001(00)

Statement codes in F mode D

U41709-J-Z125-1-76 579

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.9 D – Delete records

The statement code D deletes the specified record from the work file.

Example

The line 2.00 is to be deleted. This is achieved by specifying D in the statement code
column.

Line 2.00 has been deleted.

10.10 D – Delete record mark

If the statement code D is sent with the function key [F3] then it deletes any record mark
that was present (see section “Record marks” on page 45).

The statement code D only deletes the record marks 1..9; special marks are retained.

Statement code Key
D [DUE] or [F2]

Statement code Key
D [F3]

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
d 2.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

E Statement codes in F mode

580 U41709-J-Z125-1-76

10.11 E – Insert characters

Statement code E sets the specified line to overwritable for the subsequent insertion of
characters. If necessary, space is created for the insertion of the characters.

If the line identified by E does not contain at least 20 NULL characters at the line-end then
EDT provides 20 NULL characters at the end of the line. The characters in the line,
(including the closing [LZE]) that are shifted by the 20 NULL characters remain present in
the data window but are no longer visible.

The user can insert up to 20 characters anywhere in the line ([EFG]). If fewer than 20
characters are inserted then the shifted remainder of the line is moved back into the data
window after data transfer.

In EDIT-LONG mode, the statement code E causes a line with NULL characters to be made
available in the data window in addition to the usual record display.

Example

Statement code E is entered in line 6.00 in order to insert characters.

Statement code Key
E [DUE] or [F2]

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
 3.00 <···
 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
e 6.00 as well as text-like library elements and POSIX files.<···············
 7.00 The repetitive operations which occur<································
 8.00 during editing, such as deleting<·····································
 10.00 ··

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
 3.00 <···
 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
 6.00 as well as text-like library elements and POSIX fil···················
 7.00 The repetitive operations which occur<································
 8.00 during editing, such as deleting<·····································
 10.00 ··

Statement codes in F mode E

U41709-J-Z125-1-76 581

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

Since there are fewer than 20 characters available at the end of line 6.00, EDT shifts the
remainder of the line (including the [LZE]) out of the data window and provides 20 NULL
characters.

The word and has been inserted in line 6.00.

Since fewer than 20 characters were inserted in line 6.00, EDT moves the shifted line
remainder back into the data window.

 1.00 EDT is the BS2000 file<···
 2.00 editor, used for the user-<···
 3.00 <···
 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
 6.00 as well as text-like and library elements and POSIX fil···············
 7.00 The repetitive operations which occur<································
 8.00 during editing, such as deleting<·····································
 10.00 ··

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
 3.00 <···
 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
 6.00 as well as text-like and library elements and POSIX files.<···········
 7.00 The repetitive operations which occur<································
 8.00 during editing, such as deleting<·····································
 10.00 ··

H Statement codes in F mode

582 U41709-J-Z125-1-76

10.12 H – Activate hexadecimal mode for a record

The statement code H activates hexadecimal mode for the selected record only (see section
“Hexadecimal mode” on page 120) and sets all the screen lines that belong to this record
to overwritable.

If the screen window (when the screen is split) is too small to display the data line with all
its hex lines then the statement code is rejected with the message EDT2404.

If necessary, and possible, the data window is repositioned in a way that permits the display
of the hex lines.

The hex lines are not displayed when the screen is reconstructed after being sent unless
the statement code H is entered in the statement code column again. However, for this to
be possible the data window and the statement code column must first have been set to
overwritable with @PAR EDIT-FULL=ON.

Example

The data in the example is coded in UTF8.

Only line 3.00 is to be displayed in hexadecimal mode. This is achieved by specifying H in
the statement code column.

Statement code Key
H [DUE] or [F2]

 1.00 Price change:<··
 2.00 <···
H 3.00 200,00 €<···

 1.00 Price change:<··
 2.00 <···
 3.00 200,00 €<···
 2222223332332E··
 000000200C0002··
 ·············8··
 ·············2··
 ·············A··
 ·············C··
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--

Statement codes in F mode I

U41709-J-Z125-1-76 583

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.13 I – Activate permanent insert function

The statement code I activates the permanent insert function, i.e. new lines are provided
on the screen before the specified line. They can be filled with text and inserted in the work
file after data transfer. This process repeats until the permanent insert function is terminated
(see below); i.e. after data transfer, another range of new lines is made available after the
lines that have just been inserted.

For the distinction between new lines and empty lines (which correspond to records of
length 0) see section “F mode” on page 101.

The permanent insert function is terminated if

● there is no input in the last new line output or

● the statement code S is entered or

● other statements move the insertion position out of the data window.

If the work window is large enough then an insertion range of 9 new lines is provided. The
area displayed in the data window may be moved to make the new lines available.

The permanent insert function is only activated if at least 10 screen lines are visible in the
data window (not including the column counter). If the data window is shorter than this then
I simply provides one insertion range of the length of the data window – 1.

When inserting the new lines, EDT assigns line numbers using the procedure “Insertion
between two lines” (see section “Line number assignment” on page 36). If insertion is not
possible then the statement code I is rejected with message EDT5365.

If no text is entered in one of the available new lines then no record is created in the work
file. However, this does not terminate the permanent insert function provided that the line
in question is not the last line.

Statement code Key
I [DUE] or [F2]

I Statement codes in F mode

584 U41709-J-Z125-1-76

Example

More than 9 lines are to be inserted in front of line 8.00. This is achieved by entering the
statement code I (permanent insert function) in line 8.00.

All 9 lines in the inserted range have been filled with data.

 1.00 a<··
 2.00 b<···
 3.00 c<···
 4.00 d<··
 5.00 e<···
 6.00 111<··
 6.10 112<··
 6.20 113<··
 6.30 114<··
 7.00 222<···
i 8.00 333<··
 9.00 ··

 1.00 a<··
 2.00 b<···
 3.00 c<···
 4.00 d<··
 5.00 e<···
 6.00 111<··
 6.10 112<··
 6.20 113<··
 6.30 114<··
 7.00 222<···
 7.10 1<··
 7.20 2<··
 7.30 3<··
 7.40 4<··
 7.50 5<··
 7.60 6<··
 7.70 7<··
 7.80 8<··
 7.90 9<··
 8.00 333<··
 9.00 ··
 10.00 ··
 11.00 ··
···0001.00:00001(00)

Statement codes in F mode I

U41709-J-Z125-1-76 585

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

Since the insertion range has been filled, an additional insertion range consisting of 9 new
lines with line number increment 0.01 is made available.

 7.90 9<··
 7.91 ··
 7.92 ··
 7.93 ··
 7.94 ··
 7.95 ··
 7.96 ··
 7.97 ··
 7.98 ··
 7.99 ··
 8.00 333<··
 9.00 ··

J Statement codes in F mode

586 U41709-J-Z125-1-76

10.14 J – Join two records

The statement code J appends the specified record to the preceding record. The appended
record is then deleted.

If the total of the record lengths of the records joined in this way exceeds the maximum
permitted record length of 32768 characters then it is truncated to the maximum record
length. In this case, the record (partially) appended with J is not deleted and the message
EDT2400 is output.

If the statement code J is issued for the first record in the work file then it is ignored.

The opposite operation – separating a record – is described in section “Statement in data
window – splitting a record” on page 112 (see also the description of the @SEP statement).

Example

The records in lines 4.00 and 7.00 are each to be joined to the record that directly
precedes them.

The records have been appended. Appending a record to a record of length 0 is equivalent
to moving the appended record.

Statement code Key
J [DUE] or [F2]

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
 3.00 <···
j 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
 6.00 as well as text-like library<···
j 7.00 elements and POSIX files.<··
 8.00 The repetitive operations which occur<································
 9.00 during editing, such as deleting<·····································
 10.00 ··

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
 3.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
 6.00 as well as text-like and library elements and POSIX files.<···········
 8.00 The repetitive operations which occur<································
 9.00 during editing, such as deleting<·····································
 10.00 ··

Statement codes in F mode K

U41709-J-Z125-1-76 587

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.15 K – Copy a line to the statement line

The statement code K copies the specified screen line to the statement line.
The copy operation starts at the specified column position. Starting at this point, it is
possible to copy at most the number of characters that will fit in the statement line. The last
character in the statement line is set to binary zero. Any previous content in the statement
line is first deleted.

At least one character in the line copied with K must be overwritten, modified or added in
the statement line if it is to be sent as a statement.

The statement line is interpreted in the character set that has been defined for communi-
cation with the terminal (see statement @CODENAME name,TERMINAL). It may therefore
be necessary to convert the line from the work file's character set to this target character
set. If, in such a case, it is not possible to convert individual characters then the message
EDT5453 is issued. The statement is output nevertheless and the non-converted characters
are replaced by question marks '?'.

Example

The @SHIH statement outputs the EDT statement buffer to work file 9.

Statement code Key
K [DUE] or [F2]

 1.00 EDT is the BS2000 file<···
 2.00 editor, used for the user-<···

@SHIH··0001.00:00001(00)

 1.00 @par lower=on<··
 2.00 @split 12(7)<···
k 3.00 @on & find 'well'<··
 4.00 @scale on<··

···0001.00:00001(09)

K Statement codes in F mode

588 U41709-J-Z125-1-76

Statement code K copies screen line 3.00 into the statement line.

0 is inserted in front of the copied statement. This switches to work file 0 and starts the
search.

 1.00 @par lower=on<··
 2.00 @split 12(7)<···
 3.00 @on & find 'well'<··
 4.00 @scale on<··

0; @on & find 'well'···0001.00:00001(09)

Statement codes in F mode L

U41709-J-Z125-1-76 589

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.16 L – Convert lines into lowercase

The statement code L causes the specified record to be converted into lowercase.
Conversion is performed in the same way as for @CONVERT TO=LOWER using the corre-
sponding XHCS function.

Example

Line 5.00 is to be converted into lowercase characters.

Line 5.00 has been converted into lowercase characters.

Statement code Key
L [DUE] or [F2]

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
L 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················

 1.00 BERGER ADALBERT HOCHWEG 10 81234 MUENCHEN<·······················
 3.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 4.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 5.00 stiwi manuela postweg 3 80123 muenchen<·······················

M Statement codes in F mode

590 U41709-J-Z125-1-76

10.17 M – Collect lines for move

The statement code M transfers the line numbers and work file numbers corresponding to
the specified record to the EDT copy buffer so that the record can subsequently be moved
using one of the statement codes A, B or O.

As soon as one of the statement codes A, B or O is entered, the move operation is executed,
i.e. the records are inserted in the corresponding position and are deleted at their original
position. The content of the copy buffer is then deleted.

If, when M is specified, the copy buffer already contains entries that were generated using
the statement codes C or R then the copy buffer is deleted before the specified line is
entered and the message EDT0295 is output.

The copy buffer can also be filled with lines taken from different work files. The records
determined by the copy buffer can then be moved into any work file.

The copy buffer contains the work file and line numbers of the records collected with M. The
line numbers and content of the records that are to be copied should therefore not be
modified between being collected with M and the performance of the copy operation with the
statement codes A, B or O. However, if this does occur then the new contents are moved. If
any records have been deleted in the interim then these are skipped without any warning
during the move operation.

Since the copy buffer only contains work file and line numbers, no conversion of the
selected lines is performed during collection. Since the target character set is not deter-
mined until the target work file is specified, any conversion that is required is not performed
until the statement codes A, B or O are evaluated (see section “Character sets” on page 47).

Note
If the screen is split then lines can be moved from the first to the second work window
in a single dialog step. If items are moved from the second to the first work window then
two dialog steps may be necessary depending on the processing sequence.

Statement code Key
M [DUE] or [F2]

Statement codes in F mode M

U41709-J-Z125-1-76 591

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

Example

Line 3.00 is to be moved to a position after line 5.00. This is achieved by entering
statement code M in line 3.00, statement code A in line 5.00.

Line 3.00 has been moved to a position after line 5.00.

 1.00 EDT is the BS2000 file<···
 2.00 editor, used for the <··
m 3.00 <···
 4.00 friendly creation and editing<··
a 5.00 of BS2000 files in SAM and ISAM formats<······························
 6.00 as well as text-like library<···
 7.00 elements and POSIX files.<··
 8.00 The repetitive operations which occur<································
 9.00 during editing, such as deleting<·····································
 10.00 ··

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<······························
 5.10 <···
 6.00 as well as text-like library<···
 7.00 elements and POSIX files.<··
 8.00 The repetitive operations which occur<································
 9.00 during editing, such as deleting<·····································
 10.00 ··

O Statement codes in F mode

592 U41709-J-Z125-1-76

10.18 O – Copy or move on a line range

The statement code O copies or moves records with work file and line numbers collected in
the copy buffer using C, M or R onto the specified line and the subsequent line range.

For the sake of simplicity; the description below refers only to copying even if the lines are
deleted after the copy operation (i.e. they are moved).

If the copy buffer is empty then the statement is rejected with the message EDT5376.

It is necessary to distinguish between two cases:

1. If the specified record is displayed as of column 1 in the data window then the entire
content of the specified record is overwritten by the record that is to be copied.

2. If the specified record is displayed in the data window as of a column position greater
than column 1 then the range starting at the displayed column position is overwritten
with the content and to the length of the record that is to be copied. If the length of the
record that is to be copied is less than the length of the record specified in O then the
remaining parts of the record that is to be overwritten are retained. In this way it is
possible to insert records in other records or append them to other records.

If more than one line is transferred for copying then they are written to the corresponding
number of records which follow the specified record. If this operation goes beyond the end
of the work file then new lines are created there.

When inserting or appending the copied lines, EDT assigns line numbers using the
procedure “Insertion between two lines” (see section “Line number assignment” on
page 36). If it is not possible to append the lines then the copy operation is not performed,
the copy buffer is not deleted and the message EDT5365 is output. However, any lines that
have already been overwritten remain so.

If the current work file is empty and has the character set *NONE then it is assigned the
character set of the source work file of the first line for copying when the copy operation is
performed.

If the current work file has a character set then the lines that are to be copied are converted
into this work file's character set. If characters are detected which cannot be displayed in
the work file's character set then these are replaced by a substitute character if such a
character has been specified (see @PAR SUBSTITUTION-CHARACTER). Otherwise, the
statement code is rejected and the error message EDT5453 is output.

Statement code Key
O [DUE] or [F2]

Statement codes in F mode O

U41709-J-Z125-1-76 593

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

Note
The statement code O is not executed until after any C-, M and R statements have been
processed. As a result, it is possible to specify the target location before the lines that
are to be copied in a single dialog step in a work window.

Unexpected effects may occur if O is used to copy over a line which is itself located in
the range of lines that are to be moved or copied, and in particular when lines are moved
with M. For more information, see the following examples:

Example 1

Line 2.00 is to be copied to line 3.00. This is achieved by entering statement code C in line
2.00, statement code O in line 3.00.

Line 3.00 has been overwritten with the content of line 2.00.

 1.00 1<··
c 2.00 2<···
o 3.00 3<··

 1.00 1<··
 2.00 2<···
 3.00 2<···

O Statement codes in F mode

594 U41709-J-Z125-1-76

Example 2

Lines 2.00 to 5.00 are collected for copying.

The lines from the copy buffer are to be copied onto line 4.00 and the following lines.

Since the copy operation has modified the content of the lines in the copy buffer itself, the
above result is obtained.

 1.00 1<··
c 2.00 2<···
c 3.00 3<··
c 4.00 4<···
c 5.00 5<··
 6.00 6<···

 1.00 1<··
 2.00 2<···
 3.00 3<··
o 4.00 4<···
 5.00 5<··
 6.00 6<···

 1.00 1<··
 2.00 2<···
 3.00 3<··
 4.00 2<···
 5.00 3<··
 6.00 2<···
 7.00 3<··

Statement codes in F mode O

U41709-J-Z125-1-76 595

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

Example 3

Line 2.00 is selected to be moved.

It is to overwrite line 2.00.

Line 2.00 has been deleted because, when lines are moved, they are deleted after transfer.

 1.00 1<··
m 2.00 2<···
 3.00 3<··

 1.00 1<··
o 2.00 2<···
 3.00 3<··

 1.00 1<··
 3.00 3<··

O Statement codes in F mode

596 U41709-J-Z125-1-76

Example 4

Lines 1.00 to 3.00 are selected for copying. At the same time, the statement >8 is used to
move the data window 8 characters to the right.

The statement code O copies the lines from the copy buffer over line 1 which has been
moved to the right and the line which follows it. At the same time, the statement << is used
to move back to the start of the record.

The result is that each line has been appended to itself.

c 1.00 -111-222<···
c 2.00 -333-444<···
c 3.00 -555-666<···
 4.00 ··

>8···0001.00:00001(00)

o 1.00 <···
 2.00 <···
 3.00 <···
 4.00 <···

<<···0001.00:00009(00)

 1.00 -111-222-111-222<···
 2.00 -333-444-333-444<···
 3.00 -555-666-555-666<···
 4.00 ··

···0001.00:00001(00)

Statement codes in F mode R

U41709-J-Z125-1-76 597

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.19 R – Collect lines for multiple copying

The statement code R transfers the line numbers and work file numbers corresponding to
the specified record to the EDT copy buffer so that the record can subsequently be copied
multiple times using one of the statement codes A, B or O.

As soon as one of the statement codes A, B or O is entered, the copy operation is executed,
i.e. the records are inserted in the corresponding position. Unlike the statement codes C and
M, R does not cause the content of the copy buffer to be deleted after the operation. It
therefore remains available for further copy operations.

If, when R is specified, the copy buffer already contains entries that were generated using
the statement codes C or M then the copy buffer is deleted before the specified line is
entered and the message EDT0295 is output.

The copy buffer can also be filled with lines taken from different work files. The records
determined by the copy buffer can then be copied into any work file.

The copy buffer contains the work file and line numbers of the records collected with R. The
line numbers and content of the records that are to be copied should therefore not be
modified between being collected with R and the performance of the copy operation with the
statement codes A, B or O. However, if this does occur then the new contents are copied. If
any records have been deleted in the interim then these are skipped without any warning
during the copy operation.

Since the copy buffer only contains work file and line numbers, no conversion of the
selected lines is performed during collection. Since the target character set is not deter-
mined until the target work file is specified, any conversion that is required is not performed
until the statement codes A, B or O are evaluated (see section “Character sets” on page 47).

Note
If the screen is split then lines can be copied from the first to the second work window
in a single dialog step. If items are copied from the second to the first work window then
two dialog steps may be necessary depending on the processing sequence.

Statement code Key
R [DUE] or [F2]

R Statement codes in F mode

598 U41709-J-Z125-1-76

Example

Line 3.00 is to be copied to a position before line 7.00 and after line 8.00. This is achieved
by entering statement code R in line 3.00, statement code B in line 7.00 and statement
code A in line 8.00.

Line 3.00 has been copied to positions before line 7.00 and after line 8.00.

 1.00 EDT is the BS2000 file<··
 2.00 editor, used for the user-<···
r 3.00 <···
 4.00 friendly creation and editing<··
 5.00 of BS2000 files in SAM and ISAM formats<································
 6.00 as well as text-like library<···
b 7.00 elements and POSIX files.<··
a 8.00 The repetitive operations which occur<··································
 9.00 during editing, such as deleting<·······································
 10.00 ··

 1.00 EDT is the BS2000 file<···
 2.00 editor, used for the user-<···
 3.00 <···
 4.00 friendly creation and editing···
 5.00 of BS2000 files in SAM and ISAM formats<································
 6.00 as well as text-like library<···
 6.10 <···
 7.00 elements and POSIX files.<··
 8.00 The repetitive operations which occur<··································
 8.10 <···
 9.00 during editing, such as deleting<·······································
 10.00 ··

 21.00 ··
 22.00 ··
···0001.00:00001(00)

Statement codes in F mode S

U41709-J-Z125-1-76 599

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.20 S – Position the work window
(horizontally and vertically)

S moves the work window to the required line and column position in two steps.

In the first step, i.e. after the statement code S has been transferred with [DUE] ([F2] has
the same effect as [DUE] in statement code S), the specified line is set to overwritable and
is positioned in the second line in the work window. A column counter is displayed in the
first line of the work window.

In the second step, the line below the column counter is used to move the position to the
required column. This is achieved by entering blanks up to just before the required column
position and then transferring the input. EDT then positions

– the line previously specified with S as the first line in the work window, and

– the work window to the first column which does not contain a blank in this line.

The statement code S is ignored if it is entered in a line which is not (or is no longer) present.
The statement code S is not permitted in EDIT-LONG mode.

If the line is not modified in the second step then no column positioning is performed.
Any blanks or other characters that are entered do not modify the original line contents. If
it is necessary to move the position to within a range of blanks then the user must enter a
non-blank character at the corresponding location.

If the user overwrites the entire text of a line indicated with S with blanks, EDT positions the
work window at the first column which is no longer visible on the screen.

In the second processing step (positioning at the required column), any other required
statement codes can be entered (and combined). In this case, positioning is performed
before the other statement codes are processed. This is of particular importance for the
statement code O which is executed in accordance with the rules which apply to a column
position which has been moved to the right.

Statement code Key
S [DUE] or [F2]

S Statement codes in F mode

600 U41709-J-Z125-1-76

Example

The work window is to be positioned to line 4.00 and the column containing the product
name. In the first step, S is therefore entered in line 4.00.

Line 4.00 has been set to overwritable. Blanks are entered in this line up to the required
column position.

After transfer, EDT has positioned the work window to line 4.00 and column 18.

Note
It is also possible to position at a line and column in a single dialog step using the
@SETF statement. However, in this case, it is necessary to enter the column position
as a number.

 1.00 SERNO. ART.NO. ART.NAME QUANTITY ORDERED<·····················
 2.00 1 0024 SOAP 3000 150<··························
 3.00 2 0015 DEODORANT 2500 600<··························
s 4.00 3 0048 PERFUME 400 60<···························
 5.00 4 0003 CREAM 987 555<··························
 6.00 5 0091 SHAVING FOAM 350 30<···························
 7.00 6 0090 AFTERSHAVE 340 30<···························
 8.00 7 0092 RAZOR BLADES 200 30<···························
 9.00 ··

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 4.00 PERFUME 400 60<···························
 5.00 4 0003 CREAM 987 555<··························
 6.00 5 0091 SHAVING FOAM 350 30<···························
 7.00 6 0090 AFTERSHAVE 340 30<···························
 8.00 7 0092 RAZOR BLADES 200 30<···························
 9.00 ··

 4.00 PARFUME 400 60<··
 5.00 CREAM 987 555<···
 6.00 SHAVING FOAM 350 30<··
 7.00 AFTERSHAVE 340 30<··
 8.00 RAZOR BLADES 200 30<··
 9.00 ··

Statement codes in F mode T

U41709-J-Z125-1-76 601

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.21 T – Syntax test by SDF

The statement code T passes the specified line – possibly together with continuation lines
(as used by SDF) – to the SDF system component which verifies the command and
statement syntax.

If the SDF option GUIDANCE=MIN|MED|MAX is set then the user is taken to a guided SDF
correction dialog if incorrect SDF syntax is found.

If the user aborts the correction dialog or if no such dialog is possible then the line is
displayed at the topmost window position (where it can be overwritten) and an error
message is output as in the case of the @SDFTEST statement.

If the SDF syntax is correct or has been corrected then the text is entered in the work file.
The format in which the statement is taken over depends on the SDF LOGGING option (see
the description of the command /MODIFY-SDF-OPTIONS).

The current SDF settings apply. These can be modified with /MODIFY-SDF-OPTIONS.

EDT distinguishes between 3 types of record content:

1. Records which start with (a single) '/' in column 1:

These are checked for command syntax in accordance with the SDF syntax file
hierarchy. Admissibility in terms of privileges or system environment is determined on
the basis of the current user and the current environment.

2. Records which start with '//' :

These are passed to SDF for statement verification. The external or internal program
name must be preset using the statement @PAR SDF-PROGRAM as otherwise the
statement code is rejected with the message EDT5320. The program name must also
be known in a current SDF syntax file. Otherwise, the statement code is rejected with
the message EDT5321.

3. Other data lines

The specification of T is ignored for other data lines.

Statement code Key
T [DUE] or [F2]

T Statement codes in F mode

602 U41709-J-Z125-1-76

Lines that start with '/' or '//' and have the continuation character ('–') as their last
character are chained with the continuation line if this also starts with '/' or '//' and the
two lines are passed to SDF together when the statement code T is executed. It is not
necessary to specify the statement code T in continuation lines. The specification in the first
line is enough.

The verified command or statement overwrites the old command or statement in the work
file together with all the continuation lines. If the command or statement is modified during
verification by SDF (for example because LOGGING=INVARIANT was set in a preceding
/MODIFY-SDF-OPTIONS command) then the affected lines are reformated and split into
multiple continuation lines if necessary. The continuation character is set in the 72nd
column.

The following lines are renumbered if necessary. Line numbers are assigned using the
procedure “Insertion between two lines” (see section “Line number assignment” on
page 36). If the lines generated by SDF cannot be inserted, the execution of the statement
code is aborted with error message EDT5365.

If a verified command or statement contains errors and no successful correction dialog is
conducted then EDT issues the message EDT4310 and aborts verification, i.e. any further
selected commands and statements are not verified.

If the work file containing the lines that are to be checked has a character set other than
EDF03IRV then it is necessary to take account of certain peculiarities when using SDF. In
particular, characters which do not form part of the EBCDIC kernel are naturally only
permitted in literals or comments. Furthermore, SDF always conducts the correction dialog
in the character set defined for it with /MODIFY-TERMINAL-OPTIONS and also always inter-
prets the byte sequences passed to it in this character set.

Consequently, if the currently defined GUIDANCE-MODE permits a correction dialog, EDT
converts statements and commands into the character set defined in /MODIFY-TERMINAL-
OPTIONS before passing them to SDF. If this fails, the statement code T is aborted with the
message EDT5327.

If no correction dialog is possible, EDT performs conversion in accordance with other (less
constraining) rules. If the work file possesses an EBCDIC character set then this is used
without conversion. If the work file has an ISO character set then the corresponding
EBCDIC reference character set is used. In all other cases, EDT uses the character set
UTFE. If conversion is not possible then the statement code T is rejected with message
EDT5453.

If SDF returns data then this is converted back into the work file's character set. If this is not
possible then the statement code T is rejected with message EDT5453.

Statement codes in F mode T

U41709-J-Z125-1-76 603

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

Note
If GUIDANCE=EXPERT then EDT simply displays errors reported by SDF in the form
EDT4310. For a more precise error analysis, it is advisable to set GUIDANCE=MIN, MED
or MAX.

Passwords and other operands that have been defined using OUTPUT=SECRET-PROMPT
are replaced by P if the GUIDANCE setting is MIN, MED or MAX.

SDF does not detect invalid operands in ISP commands.

If /MODIFY-TERMINAL-OPTIONS has been used to define the character set UTFE then
the screen layout in the SDF correction dialog is shifted if characters which are not
present in EDF03IRV are used. This is due to the fact that SDF does not currently
support Unicode. However, it does not generally lead to any functional limitations.

A command or statement must not exceed the maximum length of 16379 bytes either
on input or output. Otherwise, the statement code T is aborted with the message
EDT5325 or EDT5326.

Example 1

The EXPERT form of the non-guided dialog is set for SDF.

Lines 1.00 to 8.00 are to be checked by SDF for correct syntax.

/MODIFY-SDF-OPTIONS GUIDANCE=EXPERT,LOGGING=INPUT-FORM

t 1.00 /SET-JOB-STEP...
t 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE2, -..............................
 3.00 / NEW-NAME=FILE3, -...............................
 4.00 / PROT=*PARAMETERS(UCCESS=*READ)..................
t 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -..............................
 6.00 / NEW-NAME=FILE2, -...............................
 7.00 / PROT=*PARAMETERS(ACCESS=*READ)..................
 8.00 ..

t 1.00 /SET-JOB-STEP<··
t 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE2, -<·····························
 3.00 / NEW-NAME=FILE3, -<······························
 4.00 / PROT=*PARAMETERS(UCCESS=*READ)<·················
t 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -<·····························
 6.00 / NEW-NAME=FILE2, -<······························
 7.00 / PROT=*PARAMETERS(ACCESS=*READ)<·················
 8.00 ··

 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE2, -<·····························
 3.00 / NEW-NAME=FILE3, -<······························
 4.00 / PROT=*PARAMETERS(UCCESS=*READ)<·················
 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -<·····························
 6.00 / NEW-NAME=FILE2, -<······························
 7.00 / PROT=*PARAMETERS(ACCESS=*READ)<·················
 8.00 ··

% EDT4310 SDF: SYNTAX ERROR IN LINE 0002.0000
···0002.00:00001(00)

T Statement codes in F mode

604 U41709-J-Z125-1-76

The position is set to the first line of the invalid command and the command lines are output
in overwritable form.

Example 2

The guided dialog with minimum help level is set for SDF.

Lines 1.00 to 8.00 are to be checked by SDF for correct syntax.

The user sees the guided SDF error dialog.

/MODIFY-SDF-OPTIONS GUIDANCE=MINIMUM,LOGGING=INPUT-FORM

t 1.00 /SET-JOB-STEP<··
t 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE2, -<·····························
 3.00 / NEW-NAME=FILE3, -<······························
 4.00 / PROT=*PARAMETERS(UCCESS=*READ)<·················
t 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -<·····························
 6.00 / NEW-NAME=FILE2, -<······························
 7.00 / PROT=*PARAMETERS(ACCESS=*READ)<·················
 8.00 ··

SITUATION: ERROR IN PROG/S-PROC COMMAND: MODIFY-FILE-ATTRIBUTES

--
FILE-NAME = FILE2
NEW-NAME = FILE3
SUPPORT = *UNCHANGED
PROTECTION = *PARAMETERS(ACCESS=*UNCHANGED,USER-ACCESS=*UNCHANGED,BASI
 C-ACL=*UNCHANGED,GUARDS=*UNCHANGED,WRITE-PASSWORD=*UNCHAN
 GED,READ-PASSWORD=*UNCHANGED,EXEC-PASSWORD=*UNCHANGED,DES
 TROY-BY-DELETE=*UNCHANGED,AUDIT=*UNCHANGED,SPACE-RELEASE-
 LOCK=*UNCHANGED,RETENTION-PERIOD=*UNCHANGED)
SAVE = *UNCHANGED
MIGRATE = *UNCHANGED
CODED-CHARACTER-SET = *UNCHANGED

--
NEXT = *CONTINUE
 *EXECUTE"F3" OR + OR *EXIT"K1" OR *EXIT-ALL"F1"

ERROR: CMD0185 OPERAND NAME 'UCCESS' COULD NOT BE IDENTIFIED

Statement codes in F mode T

U41709-J-Z125-1-76 605

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

The user corrects the error.

Lines 2.00 to 4.00 are replaced by lines 2.00 to 3.00 and are reformated.

SITUATION: ERROR IN PROG/S-PROC COMMAND: MODIFY-FILE-ATTRIBUTES

--
FILE-NAME = FILE2
NEW-NAME = FILE3
SUPPORT = *UNCHANGED
PROTECTION = *PARAMETERS(ACCESS=R)

SAVE = *UNCHANGED
MIGRATE = *UNCHANGED
CODED-CHARACTER-SET = *UNCHANGED

--
NEXT = *CONTINUE
 *EXECUTE"F3" OR + OR *EXIT"K1" OR *EXIT-ALL"F1"

ERROR: CMD0185 OPERAND NAME 'UCCESS' COULD NOT BE IDENTIFIED

 1.00 /SET-JOB-STEP<··
 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE2,NEW-NAME=FILE3,PROTECTION= -
 3.00 /*PARAMETERS(ACCESS=*READ)<···
 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -<·····························
 6.00 / NEW-NAME=FILE2, -<······························
 7.00 / PROT=*PARAMETERS(ACCESS=*READ)<·················
 8.00 ··

U Statement codes in F mode

606 U41709-J-Z125-1-76

10.22 U – Convert lines into uppercase

The statement code U causes the specified record to be converted into uppercase.
Conversion is performed in the same way as for @CONVERT TO=UPPER using the corre-
sponding XHCS function.

Example

Line 5.00 is to be converted into uppercase characters.

Line 5.00 has been converted into uppercase characters.

Statement code Key
U [DUE] or [F2]

 1.00 aaa bbb ccc ddd<··
 2.00 eee fff ggg hhh<··
 4.00 <···
u 5.00 iii jjj kkk lll<··

 1.00 aaa bbb ccc ddd<··
 2.00 eee fff ggg hhh<··
 4.00 <···
 5.00 III JJJ KKK LLL<··

Statement codes in F mode X

U41709-J-Z125-1-76 607

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.23 X – Modify lines

Statement code X sets lines to overwritable so that they can be modified.

The changes take effect in the record section displayed in the data window. The ranges to
the left and right of the displayed section remain unchanged. However, when inserting items
with [EFG] it should be remembered that parts of records that are pushed out over the right-
hand edge of the data window are lost. This can be avoided by using the statement code E
for insertion.

The entire data window can be set to overwritable using [F2] (see section “The F keys” on
page 123). Specifying @PAR EDIT-FULL=ON causes EDT to set all the lines to perma-
nently overwritable.

Note
The special function record marks 14 and 15 (see section “Record marks” on page 45)
are deleted when a record is modified. A record with record mark 15 can only be
modified (overwritten) if the write protection set with mark 15 is ignored by specifying
@PAR PROTECTION=OFF. Conversion to uppercase or lowercase using the
statement codes U or L or the joining of lines with statement code J are not considered
to be modifications. In these cases, the record marks are retained.

Example

Line 2.00 is selected for modification.

The line that is to be modified is set to overwritable. The Zip code is inserted before
DISNEYLAND.

Statement code Key
X [DUE] or [F2]

 1.00 BERGER ADALBERT H0CHSTR.10 81234 MUENCHEN<·······················
x 2.00 DUCK DONALD WALTSTREET 8 DISNEYLAND<···························
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

 1.00 BERGER ADALBERT H0CHSTR.10 81234 MUENCHEN<·······················
 2.00 DUCK DONALD WALTSTREET 8 33333 DISNEYLAND<·····················
 3.00 GROOT GUNDULA HAFERSTR.16 89123 AUGSBURG<·······················
 4.00 HOFER LUDWIG GANGGASSE 3A 80123 MUENCHEN<·······················
 5.00 STIWI MANUELA POSTWEG 3 80123 MUENCHEN<·······················
 6.00 ··

1..9 Statement codes in F mode

608 U41709-J-Z125-1-76

10.24 1..9 – Insert lines

The statement codes 1..9 are used to provide new lines on the screen in front of the
specified line. They can be filled with text and inserted in the work file after data transfer.
For the distinction between new lines and empty lines (which correspond to records of
length 0) see section “F mode” on page 101.

Depending on the selected statement code (1..9), 1 to 9 new lines are provided before the
specified line. The displayed area may be shifted in the data window in order to accom-
modate the new lines.
Line numbers are already formed for the new lines at this point using the procedure
“Insertion between two lines” (see section “Line number assignment” on page 36). If
insertion is not possible then the statement code is rejected with message EDT5365.
If no text is entered in one of the available new lines then no record is created in the work
file.

Example

Three lines are to be inserted in front of line 7.00. This is achieved by entering the
statement code 3 in line 7.00.

The new lines 6.10 to 6.30 are provided.

Statement code Key
1..9 [DUE] or [F2]

 1.00 1··9 INSERTING LINES<··
 2.00 <···
 3.00 <···
 4.00 1··9 can be used to insert lines in a work file.<·······················
 5.00 <···
 6.00 111<··
3 7.00 222<···
 8.00 333<··

 1.00 1··9 INSERTING LINES<··
 2.00 <···
 3.00 <···
 4.00 1··9 can be used to insert lines in a work file.<·······················
 5.00 <···
 6.00 111<··
 6.10 ··
 6.20 ··
 6.30 ··
 7.00 222<···
 8.00 333<··
 9.00 ··

Statement codes in F mode 1..9

U41709-J-Z125-1-76 609

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
10

10.25 1..9 – Set record mark

If one of the statement codes 1..9 is sent with the function key [F3] then the corresponding
record marks are set in the specified record (see section “Record marks” on page 45).
These record marks can be used, for example, to position the data window or to copy the
marked records (see @ON statement).

The @ON statement (format 4) can also be used to set record marks.

Statement code Key
1..9 [F3]

1..9 Statement codes in F mode

610 U41709-J-Z125-1-76

U41709-J-Z125-1-76 611

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

Pa
th

: Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
An

ge
la

_n
eu

\E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w.

k1
1

11 Compatibility mode
This section describes compatibility mode and the way it interacts with Unicode mode.

The compatibility mode provides the full functionality of EDT V16.6B including the old
L mode subroutine interface. The extended functions provided in Unicode mode are not
available in compatibility mode.

In addition, in compatibility mode the functionality provided by EDT V16.6B has been
extended in the following three modified or new statements.

11.1 @CODENAME – Define character set

In compatibility mode, the @CODENAME statement is used to define the character set for
global use.

name Name of the character set that is to be defined. It must be known in XHCS.

If it is an 8-bit character set or the 7-bit character set EDF03IRV then this
character set is used. In interactive mode, it is also necessary for the
character set to be supported by the employed terminal. Otherwise, the
statement is rejected with the message EDT5259.

If the character set is an ISO character set, a Unicode character set or a
7-bit character set other than EDF03IRV and if all the work files are empty
and no file is open then processing switches automatically to Unicode mode
in which the character set is defined for all the work files as in the case of
the @MODE statement.

Operation Operands F mode, L mode
@CODENAME

[name] [,FORCE=]
YES

NO

@CODENAME Compatibility mode

612 U41709-J-Z125-1-76

When operation switches to Unicode mode as a result of the
@CODENAME statement, the mechanism for the automatic selection of the
communications character set is also activated (see section “Communica-
tions character set” on page 53).

If the character set that is already defined is specified in the statement then
the statement is ignored and no message is issued.

If name is not specified then – if permitted – EDT's default character set is
used (see section “Character sets” on page 47).

FORCE=NO If FORCE=NO is specified or if the FORCE is not specified then it is only permis-
sible to define the character set if all the work files are empty and no files
are open for real processing.

FORCE=YES Specifying FORCE=YES causes the character set to be switched even if one
or more files are not empty or files are open.

The data is not converted but is simply interpreted in the new character set.
The display of the characters at the terminal changes accordingly. The new
character set is also entered in the file's or library element's catalog entry if
the work file is written back or an open file is closed.

Specifying FORCE=YES has no effect on ISO character sets, Unicode
character sets or 7-bit character sets other than EDF03IRV.

Compatibility mode @IF (format 5)

U41709-J-Z125-1-76 613

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

Pa
th

: Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
An

ge
la

_n
eu

\E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w.

k1
1

11.2 @IF (format 5) – Query EDT parameter settings

This format of the @IF statement can be used in EDT procedures or in L mode to query the
operating mode that is currently set (see section “Introduction to the EDT operating modes”
on page 21). Depending on the result, a specified string either is or is not processed as
input.

OPERATING-MODE=
The EDT operating mode is checked.

UNICODE The condition is fulfilled if EDT is in Unicode mode.

COMPATIBLE
The condition is fulfilled if EDT is in compatibility mode.

text EDT statement or data line. If the condition is fulfilled, the string is treated
as if it had been entered at the prompt in L mode. In particular, the decision
to interpret the text as data input or as a statement is made in accordance
with the same rules (for more information, see section “L mode” on
page 126).

The text operand starts immediately after the character ':', i.e. any
specified blanks form part of the operand and are taken over into the line in
the case of data input.

If text is not specified, the statement is ignored.

Operation Operands L mode
@IF

OPERATING-MODE = :[text]
UNICODE

COMPATIBL

@MODE Compatibility mode

614 U41709-J-Z125-1-76

11.3 @MODE – Change operating mode

The @MODE statement is used to switch between the operating modes (compatibility
mode and Unicode mode).

OPERATING-MODE=
The EDT operating mode is changed.

UNICODE EDT changes from compatibility mode to Unicode mode. If EDT is already
running in Unicode mode, the statement is ignored.

COMPATIBLE
EDT changes from Unicode mode to compatibility mode. If EDT is already
running in compatibility mode, the statement is ignored.

It is only possible to change operating mode if all the EDT work files are empty and no files
are open. Otherwise, the statement is rejected with the message EDT4983.

Changing the operating mode amounts to terminating EDT in one mode and then restarting
it in another mode. When this is done, all the settings are lost and all the variables are reini-
tialized. For further details, see section “Activating compatibility and Unicode mode” on
page 615.

Alongside an explicit change of operating mode using the @MODE statement, an implicit
change from compatibility mode to Unicode is also possible if all the work files are empty,
no files are open and a @CODENAME statement specifying an ISO character set, a
Unicode character set or 7-bit character set other than EDF03IRV is issued. However, an
implicit change from Unicode mode to compatibility mode never occurs.

Operation Operands F mode, L mode
@MODE

OPERATING-MODE =
UNICODE

COMPATIBL

Compatibility mode Activating compatibility and Unicode mode

U41709-J-Z125-1-76 615

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

Pa
th

: Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
An

ge
la

_n
eu

\E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w.

k1
1

11.4 Activating compatibility and Unicode mode

If EDT is started in interactive or batch mode with /START-EDT then compatibility mode is
initially activated. It is possible to start EDT directly in Unicode mode by issuing the
command /START-EDTU (see also section “Starting EDT” on page 87). If EDT is started via
one of the subroutine interfaces then the rules summarized in the table below apply.

An automatic change from compatibility to Unicode mode occurs during the EDT initial-
ization phase if

– EDT was called in interactive mode and a Unicode character set has been defined for
the terminal with/MODIFY-TERMINAL-OPTIONS,

– EDT was called in a procedure or a batch operation and the character set of the file
assigned to SYSDTA (or of the library element) is a Unicode or ISO character set,

– EDT finds an EDT start procedure which is coded in a Unicode or ISO character set.

A subsequent change from compatibility to Unicode mode is possible if

– the @MODE or @CODENAME statement with the corresponding operands is applied
to empty work files,

A change from Unicode mode to compatibility mode occurs if

– a @MODE statement with the corresponding operands is applied to empty work files;

For further details, and in particular for the description of the operands and their default
values, see the description of the @MODE statement.

Since it is only possible to change between Unicode and compatibility mode if all the work
files are empty no data loss or corruption is possible in files when the mode is changed. The
change is therefore global in nature and no confirmation query is issued.

In F mode, the currently set operating mode is clear from the layout of the status display in
the statement line (see section “F mode” on page 101). In addition, both in Unicode mode
and compatibility mode, the current operating mode is output when @STATUS=ALL is
issued (this information is also available in L mode).
Finally, the @IF statement can be used in procedures to determine the current operating
mode.

Because a change of operating mode is only possible when the work files are empty, it is
not possible to exchange data between the operating modes in this way. In addition, all the
other global data such as the contents of variables or parameter settings specified with
@PAR are not taken over in the other mode and are therefore lost.
Instead, EDT acts as if the switch were made between different instances of the program
which do not know anything about one another.

Subroutine interfaces and operating modes Compatibility mode

616 U41709-J-Z125-1-76

Consequently, the changeover is equivalent to exiting EDT in one mode and then restarting
it in the other mode. The following steps are performed:

– In the old mode, the string variables #S00 to #S20 are exported to the corresponding S
variables SYSEDT-S00 to SYSEDT-S20 and are then reinitialized in the new mode
provided that the S variables exist and are of type STRING.

– The EDT start procedure is executed in the new mode (provided that the prerequisites
for this are fulfilled in accordance with section “EDT start procedure” on page 72).

– In addition, all the EDT parameter settings are reset to their initial values, i.e. even if the
user changes several times between compatibility and Unicode mode, EDT does not
remember any previous settings.

11.5 Subroutine interfaces and operating modes

On the one hand, it is possible to load and initialize EDT via the subroutine interfaces and,
on the other, the subroutine interfaces can be called in an already initialized EDT
environment (for example, after F mode has been switched to with @DIALOG and the user
has issued @HALT to return to the calling program).
If, in the latter case, the work files are not empty, then EDT is either in compatibility or
Unicode mode and no changeover is possible.
It is permissible to change operating mode directly after initialization or when all the work
files are empty.
It is necessary to distinguish between these cases when issuing calls at the subroutine
interface.
The following table provides an overview of which subroutine interfaces are permitted in
which environment and how the calls are handled.
It also considers the case in which only EDT V16 is available in the current system
environment.

Compatibility mode Subroutine interfaces and operating modes

U41709-J-Z125-1-76 617

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

Pa
th

: Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
An

ge
la

_n
eu

\E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w.

k1
1

The following functions are available depending on the set EDT V17.0A mode and the
employed subroutine interface:

L mode interface:

All the functions present in compatibility mode are available. If Unicode mode has been
activated, all calls via the L mode interface are rejected with RC X'0C'. Since it is usually
only permitted to switch to Unicode mode and back again if the work files are empty, it is
not possible to access the new Unicode mode record structure via the L mode interface.

IEDTGLE interface (V16 format):

All the functions present in compatibility mode are available. If Unicode mode is active then
IEDTCMD, IEDTEXE, IEDTDEL and IEDTREN can be used without restrictions. IEDTPUT,
IEDTGET are permitted in Move mode. However, conflicts may occur if the buffer size is
inadequate. In the past, the provided buffer was sometimes too small to accept the record.
In this case, a corresponding return code was supplied and this still occurs.

EDT V17 not
present

EDT V17 present,
switchover
permitted and call
via IEDTCMD

EDT V17 present,
compatibility mode
active, switchover
prohibited

EDT V17 present,
Unicode mode
active, switchover
prohibited

Call via
IEDTGLE V16
interface

As previously Set compatibility
mode

No special action
necessary

Convert to V17
interface – if not
possible: error

Call via
IEDTGLE V17
interface
(compatible format)

Convert to V16
interface

Set Unicode mode Convert to V16
interface

No special action
necessary

Call via
IEDTGLE V17
interface (extended
format)

Error Set Unicode mode Error No special action
necessary

Call via
L mode interface

As previously Set compatibility
mode

No special action
necessary

Error

Character sets Compatibility mode

618 U41709-J-Z125-1-76

IEDTGLE interface (compatible V17 format):

Only those Unicode mode functions are provided that can be converted to equivalent V16
format functions. This format is intended for users who want to use the new interface but
who need to make sure that their programs will still run with EDT V16.6B. Locate mode is
no longer provided.

IEDTGLE interface (extended V17 format):

Only the Unicode mode functions are available. Locate mode is no longer provided.

Detailed information about the subroutine interfaces is provided in the manual “EDT
Subroutine Interfaces” [1].

11.6 Character sets

EDT makes it possible to process texts present in different character sets. The method of
operation in compatibility mode is very different from in Unicode mode. Since EDT never
converts data from one character set to another in compatibility mode only limited support
is available in this mode.

In compatibility mode, EDT always has precisely one defined character set.
Texts can therefore only be processed simultaneously if they are present in the same
character set. This character set can only be modified if no data is present in the work files.
It is therefore defined when data enters a work file. EDT also uses this character set to
communicate with the terminal or to read and write its input/output when communicating
with other sources. In particular, EDT can only process files if it is guaranteed that these
can be fully displayed on screen. Certain character sets are therefore excluded, for example
EDF03DRV, EDF046 and ISO character sets.

11.6.1 Supported character sets

EDT only ever permits character sets which are supported by the current XHCS installation.
The necessary conversions are handled via XHCS and the properties of the characters
(uppercase/lowercase, special characters) are provided by XHCS.

In compatibility mode, there are further restrictions due to VTSU. The only 7-bit character
set permitted by EDT is EDF03IRV even if others, for example e.g. EDF03DRV, are defined
in XHCS since EDF03IRV is the only 7-bit character set that can be used to communicate
with terminals.
This restriction also applies in batch mode. Furthermore, only EBCDIC character sets are
permitted, not ISO character sets. If EDT communicates with a terminal then the character
set must be compatible with it. In contrast, all the 8-bit EBCDIC character sets are permitted
in batch mode.

Compatibility mode Character sets

U41709-J-Z125-1-76 619

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

Pa
th

: Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
An

ge
la

_n
eu

\E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w.

k1
1

EDT accepts all input even if the characters/bytes do not form part of the recognized code.
All bytes with codes which are not present in the current character set are displayed as
smudge characters at the terminal.
They are ignored during lowercase/uppercase conversion and should not be used as
special characters such as tab characters (however, there is no mechanism to prevent this).
However, they are not (usually) modified by EDT.

Unicode character sets and ISO character sets are not permitted in compatibility mode.

11.6.2 Strings

All strings are always interpreted and processed in a character set.

In compatibility mode, there is precisely one character set in which data is read, stored,
displayed, processed and written. This is always the current character set.

11.6.3 Communications character set

The communications character set is the character set used by EDT to exchange data with
a terminal.

In compatibility mode, this is the character set currently defined in EDT. There is therefore
no independent communications character set.

11.6.4 Character sets in work files

The handling of character sets in compatibility mode is very different from in Unicode mode.

In compatibility mode, EDT always has precisely one defined character set. On start up, it
determines a default value for the character set.
If EDT reads its input from a terminal, it takes the character set from the terminal option
CODED-CHARACTER-SET. If 7-BIT is specified here, it uses EDF03IRV, otherwise the
character set specified here.
If EDT reads its input from SYSDTA, it uses the character set which is assigned to SYSDTA.
If no character set is specified here (*NONE), it uses EDF03IRV.

On start-up, the current character set is initially the default character set. It can be modified
as long as there is no data in the work files. As soon as the first record is written to a work
file, the character set is fixed and cannot be modified until all the work files are empty again.
The change can be performed implicitly by reading a file or explicitly with the
@CODENAME statement.

Character sets Compatibility mode

620 U41709-J-Z125-1-76

The @CODENAME statement is only executed if the character set is permitted and if no
data is present in the work files. Otherwise the @CODENAME statement is either rejected
or has no effect.

The @MODE statement can be used to switch to Unicode mode (see @MODE statement).

Note
The @CODENAME character set can be used to modify the current character set but
not to define a character set. The character set may therefore be changed when a file
is read in.

11.6.5 Reading in files

When reading in a file, EDT evaluates the character set of the catalog entry.

In compatibility mode, the file is only read if this character set is identical with EDT's current
character set or if no data is present in the work files. The corresponding character set is
then defined.
If data with a different character set is present in any of the other character sets then the file
is not read in. The file is also not read if the character set is not supported, i.e. if in interactive
mode, for example, it cannot be displayed at the terminal.

11.6.6 Writing files

When new files are written, the character set of the work file is written to the catalog.

In compatibility mode, when a file is closed after being written, the work file's character set,
i.e. the current EDT character set, is entered in the catalog.
The exception to this rule is that EDT does not modify the catalog entry if the file has the
character set *NONE and the current character set is EDF03IRV. In this case, the value
*NONE is retained.

11.6.7 Copying between work files

The @COPY statement, @MOVE statement, @ON statement or statement codes can be
used to copy data from one work file to another.

In compatibility mode, only one character set is involved in this operation with the result that
data is not converted but is transferred unchanged.

Compatibility mode Character sets

U41709-J-Z125-1-76 621

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

Pa
th

: Z
:\s

ch
w

ab
ba

ue
r\E

D
T_

17
\e

dt
17

_a
nw

\e
n\

E
D

T_
vo

n_
An

ge
la

_n
eu

\E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w.

k1
1

11.6.8 Character set in statements

In compatibility mode, although statements are read using the current character set, the
statements are analyzed in EDF041. Consequently, a byte with X'7C' is always expected
as the EDT statement symbol (unless it has been redefined).
If the statement is read in EDF04DRV then the character '§' must be used as the EDT
statement symbol instead of '@' since this character is coded X'7C'.
The same applies if symbols are redefined. For example, if the currency symbol '¤' has
been defined as the EDT statement symbol in EDF041 then the Euro character '€' must be
used in EDF04F.
Finally, it is also possible to define a character as the statement symbol which is not even
a special character in another character set. For example, after @CODENAME
EDF04DRV; §:|; @CODENAME EDF041, the statement symbol is the character 'ä'. Since
this is not a special symbol, no statements at all are recognized in L mode.

Note
This situation is remedied in Unicode mode in which statements are always analyzed
in UTFE.

11.6.9 String variables

String variables may be assigned any text such as a line in a work file. They can be
accessed globally across work files. Every string variable has a content at all times since it
is assigned the character 'Ë' (X'40') on initialization.

In compatibility mode, string variables do not have a character set. Their contents are
always interpreted in the current character set.
Even after its content has been deleted or it has been assigned an empty string, a string
variable is always initialized with the character 'Ë' (X'40').

Note

Workarounds (save data in string variables, delete all work files, insert from the string
variables) can be used in compatibility mode to change the character set between saving
and inserting a string. In this case, the data to be copied is of course transferred unchanged.
The result is not usually meaningful and will certainly be different from in Unicode mode.
For example, after the sequence

@CODENAME EDF047
@CREATE 1 ' πλάτων '
@CREATE #s0:1
@DELETE
@CODENAME EDF041
@CREATE 1 #S0

Starting EDT Compatibility mode

622 U41709-J-Z125-1-76

line 1 of a work file in compatibility mode has the content Ðëáôùí.

In Unicode mode, EDT attempts to convert the string ' πλάτων ' into EDF041. This is either
rejected or the substitute character is used.

11.6.10 S variables and job variables

The @GETVAR, @GETLIST and @GETJV statements can be used to transfer the
contents of S variables or job variables to string variables or work files.
In compatibility mode, the content is taken over unchanged, i.e. the character set is ignored.
The @SETVAR, @SETLIST and @SETJV statements can be used to create S variables
or job variables and assign them a value.
In compatibility mode, the content is assigned unchanged, i.e. the character set is ignored.

11.6.11 POSIX files

POSIX files also record no information about the associated character set.

In compatibility mode, it is possible in the @XOPEN, @XCOPY and @XWRITE statements,
to use the CODE operand to specify whether the file is an EBCDIC (CODE=EBCDIC) or
ASCII (CODE=ISO) file.

In the latter case, when it is read, the text is converted using a fixed table ISO88591 ->
EDF041, and when written it is converted using a fixed table EDF041-> ISO88591. The
@PAR CODE=EBCDIC/ISO statement can be used to define a default setting.

11.7 Starting EDT

In compatibility mode, EDT is loaded and started with the command /START-EDT. The
/START-EDT command corresponds to the command in EDT V16.6B. For a description,
see the manual “EDT V16.6B Statements” [2].

For reasons of compatibility, it is still possible to call EDT using /START-PROGRAM. EDT is
then loaded as a main program with one of the following BS2000 commands and is started
in compatibility mode:

Command AMODE
START-PROGRAM $.EDT AMODE 31
START-PROGRAM *MODULE ($.SYSLNK.EDT.170, EDTC,
RUN-MODE=*ADVANCED)

AMODE 24

U41709-J-Z125-1-76 623

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
12

12 Migration aids
To assist you in migrating between versions, this chapter presents the differences between
compatibility mode and Unicode mode

12.1 Compatibility mode

There are two new statements in compatibility mode.

On the one hand, the @MODE statement has been introduced to make it possible to switch
to Unicode mode.

On the other, format 5 of the @IF statement has been introduced to enable users to query
the current operating mode and react appropriately.

In addition, a number of errors have been corrected in compatibility mode. These correc-
tions may result in changes in system behavior.

12.2 Unicode mode

Unicode mode, which solely incorporates the most important extensions to EDT V17.0A
such as support for Unicode character sets and long records, operates differently from
compatibility mode when performing a wide variety of functions. The general principle is
that the constraints applying to modifications in L mode are significantly greater than in F
mode since the potential consequences in interactive mode are considerably less serious.

The present chapter provides a brief overview of the differences between Unicode mode
and compatibility mode. It is particularly important to take account of these notes when
procedures have to be migrated to Unicode mode. This will not normally be possible without
modifications which may sometimes be time-consuming.

Unicode mode Migration aids

624 U41709-J-Z125-1-76

The presentation is subdivided into the following subsections:

● EDT V16.6B functions that are no longer supported in EDT V17.0 Unicode mode.

● Statements which act differently in the EDT V17.0A Unicode mode than in EDT V16.6B.

● Changes in the screen display and input/output in EDT V17.0A compared to EDT
V16.6B.

● Changes in the general or work file-specific settings in the EDT V17.0A Unicode mode
compared to EDT V16.6B.

● Changes to the subroutine interface if the new V17 format of the interface is to be used
or if EDT V17.0A's old V16 format is to be used in Unicode mode.

During implementation, a large number of errors were identified in EDT V16.6B. Many of
these have only been corrected in Unicode mode. Not all of these corrections are listed
here.

12.2.1 Functions that are no longer supported

Compatible L mode syntax checking for EDT V15 statements is no longer supported. There
is no longer a SECURITY operand in the @SYNTAX statement. This syntax analysis which
was set by default when procedures were used was unreliable and accepted a large
number of syntactically incorrect entries. As a result, however, it is necessary to correct
these specifications when switching over to Unicode mode.

The old L mode subroutine interface is no longer supported since the EDT internal record
format was revealed at this interface. Only the more recent IEDTGLE interface is now
available as a subroutine interface.

The old @RUN statement for calling a user program, in the form in which it was defined in
EDT V16.6B, no longer exists in Unicode mode since the EDT internal record format was
also revealed at this interface. It has been replaced by a new @RUN statement. Alterna-
tively, the @USE statement is also available.

Locate mode during data transfer via the IEDTGLE interface is no longer supported. The
internal EDT record format was also revealed at this interface. It is now only possible to use
MOVE mode.

Terminals which use Arabic or Farsi character sets are no longer supported. These special
terminals are not suitable for the use of Unicode character sets. If necessary, they can be
used in compatibility mode.

The 3270 terminal (IBM) is no longer supported. This special terminal is not suitable for the
use of Unicode character sets. If necessary, it can be used in compatibility mode.

The @CODE statement is no longer supported. It is no longer required if character sets for
files are used correctly.

Migration aids Unicode mode

U41709-J-Z125-1-76 625

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
12

The @UPDATE statement is no longer supported since the introduction of the F mode
means that it is no longer needed.

The @ZERO-RECORDS statement is no longer supported. It is no longer required due to
the new procedure for handling empty records.

The direct specification of a list variable as an output medium is no longer possible in the
@LOG statement. It is, however, possible to use the /ASSIGN-SYSLST command to assign
a list variable to the system file SYSLST.

12.2.2 Modified statement actions

The action of a number of statements has been modified in special cases. In most cases,
the reason is that the old mode of action was inconsistent and led to unexpected results. In
many cases, the change corresponds more accurately to a patch.

12.2.2.1 I/O statements

When a file is read (@OPEN, @COPY, @XOPEN, @XCOPY, @READ, @GET state-
ments), empty lines (lines of length 0) are treated as normal lines. In the past, empty lines
were eliminated on reading and were therefore lost when files were written back.

In the @OPEN statement (format 1), TYPE=CATALOG is the default setting for existing DMS
files. In the past, this setting was TYPE=SAM.

When an empty work file is written or written back, an empty file is created.

When writing or writing back to a file which has the file attribute SECONDARY-
ALLOCATION=0, the attribute is evaluated, i.e. if necessary, the file is not extended and an
error message is output.

If a file is open in a work file then the @WRITE statement without any operands is no longer
rejected but is interpreted as @WRITE (format 1) and the file is written back.

The attempt to close a file (@CLOSE statement) or write back an existing file (@WRITE
statement) may be rejected if the file has a character set other than that defined for the work
file and the CODE has not been specified. In EDT V16.6B, this situation could only occur if
the work file had been deleted and then reconstructed in another character set. In such
cases, the file's character set was modified without any query being issued.

In the @XOPEN and @XWRITE statements, MODE=REPLACE now has the same effect as
MODE=NEW if the file does not yet exist. In the past, the statements were rejected. The
response is now the same as for the @OPEN and @WRITE statements.

The @READ and @GET statements can now be used to read files with nonstandard
attributes.

Unicode mode Migration aids

626 U41709-J-Z125-1-76

12.2.2.2 Work file statements

When a work file is completely deleted with the @DELETE statement issued without
parameters, any file open in the work file or any opened library element is implicitly closed.
The work file is then no longer in use (as with @DROP). In the past, the file remained open
and was empty following a subsequent @CLOSE statement. If this action is genuinely
required, it is necessary to delete all the records by specifying a range.

The @DROP statement executes an implicit delete @DELETE, i.e. if a file is open then it
is also closed. In the past, the file remained open but could no longer be accessed.

The syntax of the @COPY (format 2) and @MOVE statements has been changed with the
result that the specification of a source work file is no longer accepted when string variables
are copied or moved. Since string variables do not belong to any particular work file, this
specification was both meaningless and confusing.

In the @COPY (format 2) and @MOVE statements, it is possible to specify multiple
comma-separated send ranges each of which are associated with multiple receive ranges.

12.2.2.3 ON statements

Case sensitivity in searches using @ON (which can be defined using the @SEARCH-
OPTION statement) now applies independently of the @PAR LOWER setting. It also
applies to the @ON formats 8 to 10. The behavior in the past had no justification and was
confusing since @PAR LOWER simply determines the conversion of characters on input
from the terminal and the display of lowercase characters in the work window.

In the past, if the MARK operand was not specified in the @ON statement (format 3) then hit
lines were not marked in L mode. Now they are marked with 1 as in F mode. The previous
behavior was inconsistent: there should be no subtle differences between L mode and F
mode.

If a backward search is performed with @ON (R operand), then if a hit is found the position
is now moved far enough to the left to prevent any further hit from extending into the
preceding one. The previous procedure could sometimes lead to backward searches
indicating different hits from forward searches.

No column range is now specified in the @RANGE statement. Since this column range had
nothing to do with the range symbol that was defined with @RANGE and was only taken
into account in the @ON statement, it has now been transferred to the @SEARCH-
OPTION statement.

Migration aids Unicode mode

U41709-J-Z125-1-76 627

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
12

12.2.2.4 Tabulators

When defining software tabulators using the @TABS statement (format 2), it is now
necessary to specify at least one tab position in addition to the tab character. The tab
positions must be sorted in ascending order. In the past, it was possible to issue a @TABS
statement without a tab position. However, this had no effect and not even the tab character
was modified.

Hardware and software tabulators can be defined independently of one another. It is
possible to activate either of them.

In the display function provided by the @TABS statement, it is now also possible to differ-
entiate between hardware and software tabulators. The @TABS VALUES statement
outputs the positions of the hardware tabulators, while the @TABS ::VALUES statement
outputs the positions of the software tabulators together with the defined tab character. In
the past, the positions of the hardware tabulators (if defined) were prioritized on output. It
was then not possible to display the positions of the software tabulator.

12.2.2.5 Miscellaneous

The ISO operand in the @INPUT statement (format 3) is ignored. Hexadecimal input is
based on the coding of the current work file's character set.

The output format of the @STATUS statement has been modified since some of the items
in the output are no longer relevant, some global properties are now work file-specific and
there are other properties that need to be output.

In the @VTCSET=OFF statement, only those line mode control characters that do not
belong to the EBCDIC-DF03 kernel are converted into smudge characters. This contributes
to the purpose of the statement which is to prevent the fragmentation of the screen output
due to control characters.

No line count is now specified for screen output in the @VDT statement. Screen output with
the @PRINT V or @PRINT E statement now always uses the number of lines that can be
displayed on the screen (in L mode this is always 23 lines).

When the @VDT F2 statement is issued, the position is no longer moved back to column
1. Instead, the screen remains at the specified start column.

The @VDT statement now also supports the additional formats F3 and F4.

The statements @COMPARE, @FSTAT, @SHIH, @SHOW, @STAJV and @STATUS
output information to work file 9. If a file is already open there then the output is rejected. In
the past, this was only the case for the @SHIH and @SHOW LIBRARY statements.

The characters defined as delimiter characters using the @QUOTE statement must not be
the same as the wildcard characters (see the @SYMBOLS statement). Although, in the
past, the @SYMBOLS statement was rejected if a delimiter character was to be defined as

Unicode mode Migration aids

628 U41709-J-Z125-1-76

a wildcard character, the @QUOTE statement was nevertheless accepted if a wildcard was
to be defined as a delimiter character. In some cases, this could lead to problems during
the analysis of statement syntax.

The special marks (marks 13, 14 and 15) are no longer deleted by the @DELETE MARK
statement. Even though, in the past, the special marks could only be set via the subroutine
interface they were not protected against deletion by ordinary EDT users. This is the
behavior described in the V16.6B manual.

Column number specifications in the @SEPARATE statement now operate recursively, i.e.
if separating a record creates a continuation record which exceeds the specified column
number, then the continuation record itself is split. In the past, the continuation record was
not separated, thus obviating the point of specifying a column number as a separation point.

Specifying a separator in @SEPARATE may result in the creation of records of length 0 if
multiple separators occur in immediate succession in the record. This change is the result
of the desire to make the handling of empty lines consistent.

It is now also possible in F mode to save the last defined current line number and current
increment in the @SET statement (format 6) and to restore the saved settings. In the past,
this function was only effective in L mode.

A new @RUN statement with modified syntax and a modified interface has been intro-
duced.

The @SHOW statement (format 1) no longer uses the ISO4 operand. The layout of the
information line has been adapted.

In batch mode, the @DIALOG statement is rejected with the message EDT5400. In
compatibility mode and in EDT V16.6B it is ignored without any message if switch 5 is set.
If switch 5 is not set, it is rejected with message EDT5400 in compatibility mode and with
the (inappropriate) message EDT5409 in EDT V16.6B.

In the @SDFTEST statement, the explicit specification of either the name of the program
whose statements are to be checked or of the name type applies only to the current call and
does not implicitly modify the settings made for these values using @PAR SDF-PROGRAM
or @PAR SDF-NAME-TYPE.

In the @SDFTEST statement, it is now possible to check commands and statements with
more than 255 continuation lines (up to the maximum buffer length of 16379 bytes).

A record marked by means of the statement code S is always positioned in the second
screen line. If necessary, the information line and tab line are temporarily hidden.

If a statement which is retrieved into the statement line using # contains characters which
cannot be displayed in the current communications character set then ?s are output instead
of these characters.

Migration aids Unicode mode

U41709-J-Z125-1-76 629

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
12

12.2.3 Changes in the screen display and on input/output

In the status display in the EDT work window (right-hand part of the statement line), the
column number display now has five digits and the work file number display two digits. This
means that the maximum possible length of the input in the statement line is reduced by
three characters. This change is necessary due to the support now provided for long
records and for all 23 work files in F mode.

The end of a record in the data window is now indicated by the terminal-specific character
[LZE] in the data window. The terminal fills the remainder of the screen to the right of [LZE]
with protected NULL characters (X'00'). No further input is possible in this area. Either the
input must be made in front of the [LZE] or the [LZE] must be overwritten. This change is
the result of the desire to make the handling of empty lines (records of length 0) consistent.

The characters in the remainder of the screen line after [LZE] can no longer be displayed
using characters other than those specified for the terminal at the hardware level (normally
NULL). The EDT statement @SYMBOLS FILLER='char' can therefore no longer be used in
Unicode mode to define the filler character displayed between the end of the record and the
end of the screen line in F mode. This change is the result of the desire to make the handling
of empty lines (records of length 0) consistent.

The function keys [K4] to [K15] are now handled in the same way as [K3] for the purposes
of data transfer in F mode. In the past, EDT's behavior when these keys were entered was
undefined.

In L mode, an empty input with the [F1] key creates an empty line (record of length 0). In
the past, [F1] was treated in the same way as [DUE]. This change is the result of the desire
to make the handling of empty lines (records of length 0) consistent.

The column counter, tabulator display or information line are only displayed in a work
window if the work window is large enough to display at least one line of data. If it is not then
all or some of the additional displays are hidden. In the past, it was possible to reduce the
window to such an extent that the additional information was visible even though no data
lines could be seen.

The information line (@PAR INFO=ON) has a new layout.

If a work window has so few lines that it is not possible to display a complete data line in
hexadecimal mode then EDT does not switch to hexadecimal mode or, if hexadecimal
mode was previously activated, then it is deactivated. Since the display of a data line coded
in Unicode may require up to 6 hex lines, it is only possible to work sensibly with hex mode
if a sufficiently large work window is available.

In hexadecimal mode, only hexadecimal digits (0...9), A...F) and NULL characters are
displayed in the hex lines and these, together with blanks, are also the only values
permitted for input. Null bytes at the end of a record are not removed and records which are

Unicode mode Migration aids

630 U41709-J-Z125-1-76

still empty after the end of the file and which are still displayed in the data window are also
displayed by means of NULL characters in the hex lines. The previous procedure was incon-
sistent and was also not documented.

The error dialog in hexadecimal mode has been modified. If the error is not corrected, the
dialog is aborted and the incorrect specifications are discarded.

In test mode, all output is now uniformly sent to SYSLST. In the past, although normal
logging entries were written to SYSLST, any output marked as incorrect was sent to SYSOUT.

When output is written to SYSLST, the feed control character X'41' is replaced by X'40'
and an additional empty line is written in front of the line in question if SYSLST has the
character set UTFE. This change was necessary to permit the generation of interpretable
1-byte feed control characters in SYSLST files encoded in UTFE.

If line feeds extend over page boundaries then no additional empty lines are generated on
the new page. The other line feeds are rejected.

If a library directory is output using the @SHOW statement (format 1) then the header line
is no longer output in the first line of the work file.

12.2.4 Changes in the general or work file-specific parameter settings

12.2.4.1 Character sets

Each work file may have its own character set. This one of the most important new features
of the EDT V17.0A Unicode mode.

When EDT starts and a work file has been completely deleted, no character set is any
longer defined for the work file (*NONE). This change is due to the fact that a separate
character set is now possible for each work file.

When data is read into a work file, it is converted into the work file's character set if this is
not *NONE. An implicit change of character set now only occurs if the work file's character
set is *NONE. This change is due to the fact that a separate character set is now possible
for each work file.

When EDT starts, @PAR LOWER=ON is set for all the work files. It is no longer possible to
instruct editors which support Unicode character sets to start in uppercase mode.

Migration aids Unicode mode

U41709-J-Z125-1-76 631

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
12

12.2.4.2 Line numbers

There is now only one current increment. This can be modified both with @SET (format 6)
and with @PAR INCREMENT. In the past, there were two different increments which were
used with different statements even though this was not clearly documented.

A number of statements cause lines to be inserted. If it is not possible to insert a set of lines
at an increment of 0.01 then the insert operation is no longer aborted. Instead, EDT
attempts the insertion process again down to the smallest possible increment of 0.0001.
There was no justification for the abort of the operation in the past.

In the case of statements which write their output to empty (or implicitly deleted) work files,
e.g. @COMPARE or @SHOW, line numbers are assigned using the same procedure as for
the @COPY statement, i.e., if necessary the increment is reduced and the lines are renum-
bered in order to permit the output of all the lines. The previous procedure was inconsistent
and was therefore confusing.

12.2.4.3 Work file-specific

There is now a work file-specific symbolic line number ?.

The condition, queried with @IF (format 3), of whether a hit was identified the last time the
@ON statement was run is now also recorded on a work file-specific basis as is the corre-
sponding column number.

12.2.4.4 Miscellaneous

It is no longer permissible to use any special characters for the special character operand
type (spec). Instead, only the special characters explicitly listed in the operand description
may be used. This change is necessary because the special characters have a special
significance during syntax analysis and exotic multibyte special characters from Unicode
character sets can cause problems during this operation.

The program name for the SDF syntax check, the type of program name for the SDF syntax
check and the characters for separating records are now defined for each work file
separately and not globally. This change helps simplify the behavior of the @PAR
statement. There are now only two exceptions to the rule that @PAR can be used to make
settings for each work file separately.

The initial value of the symbolic line number for hit lines ? is now 0.0000 instead of 0.0001.
By predefining an invalid value, it is possible to determine whether any search statement
has been issued.

The special mark 13 (record should be ignored when the file is written) is now also taken
into account for POSIX files. The previous exceptional treatment of POSIX files was unjus-
tified.

Unicode mode Migration aids

632 U41709-J-Z125-1-76

Specifications of file names, library elements and job variable names in statements are
subjected to a syntax check and may be rejected with a syntax error message if appro-
priate.

All interruptible statements can now be aborted with [K2] and /INFORM-PROGRAM. In the
past, behavior was inconsistent.

The previous handling of European 7-bit terminals is no longer supported since it does not
harmonize with the general support for 7-bit character sets. Special handling has been
implemented to support the character set EDF03DRV, the only national 7-bit code recog-
nized in XHCS.

12.2.5 Changes to the subroutine instance

This section describes the changes that users must note – in addition to the elimination of
the L mode interface and the replacement of the @RUN interface (see section “Functions
that are no longer supported” on page 624) – if they want to use the IEDTGLE interface in
their programs.

Here, it is necessary to distinguish between use of the V16 format of the IEDTGLE interface
(old macros or new macros with a corresponding VERSION parameter), the V17 format of
the IEDTGLE interface (new macros with corresponding VERSION parameter) or the
compatible V17 format (can be controlled using the flag EGLCOMP). The compatible V17
format should be used if the application needs to run in environments in which only an EDT
version lower than V17.0A is installed.

If read or write operations are called in Locate mode in V16 format while EDT is in Unicode
mode and it is not possible to switch to compatibility mode (e.g. because not all the work
files are empty) then the call is rejected with a return code.

When the global status is read (IEDTGET function with pseudo work file 'G') in V16 format
then the field for the globally specified character set which is omitted in V17 format is only
set to a value other than 'blank' if the same character set is specified in all the non-empty
work files.

In V16 format, strings that are transferred in the buffer EDTREC are interpreted in the
character set defined for the relevant work file. V16 format functions that use the COMMAND,
MESSAGE1 and MESSAGE2 buffers can only be processed correctly in Unicode mode by
switching to compatibility mode or if the same character set is defined for all the work files
(see the @CODENAME GLOBAL,... statement). Otherwise, the relevant function is
rejected with a return code.

In both formats, the calling program must take account of the fact that in Unicode mode
records longer than 256 bytes are supplied and that long records are truncated. If insuffi-
cient buffer space has been made available, then it is necessary, at the very least, to
evaluate the return code (EAMAC04) and react accordingly.

Migration aids Unicode mode

U41709-J-Z125-1-76 633

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
12

In both formats, the calling program must take account of the fact that in Unicode mode
records of length 0 are supplied.

In both formats, the IEDTINF function always returns the value 0 in the EGLINFM field
(number of memory pages required for the static data area) of the EDTGLCB control block.

The flag EGLREOR (suppress memory reorganization) is no longer present in the V17 format
of the EDTGLCB control block. New additions to this control block are the fields EGLCCSN
(name of the character set in which the buffers COMMAND, MESSAGE1, MESSAGE2 and EDTREC
are coded) and EGLCOMP (flag for compatible V17 format), the field EGLIND2 (display that
EDT is running in compatibility mode) and the return code EUPCMPER (use of incompatible
functions in the compatible format). In the compatible V17 format, the field EGLCCSN may
only contain blanks.

In the V17 format of the control block EDTUPCB the flag EUPNUNI (block switch from Unicode
to compatibility mode) is new. In compatible V17 format, EUPNUNI must not be set.

The V17 format of the EDTAMCB control block no longer contains the field EAMMMODB and the
two flags EAMMOVM and EAMLOCM (all used in connection with MOVE mode). In addition, the
equates for the unused marks (EAMMK10, EAMMK11, EAMMK12 and EAMMK0) are no longer
present.

The field EPGCCSN (name of the globally defined character set in EDT) is no longer present
in the V17 format of the EDTPARG control block. This is now present locally for each work
file as the name EPLCCSN in the EDTPARL control block.

The field EPLCCSN is new in the V17 format of the EDTPARL control block (this field was
previously present with the name EPGCCSN in the EDTPARG control block). In addition, the
field EPLCCSNG (character set applies locally for all work files) is new while the fields
EPLSTCOD (code default: EBCDIC/ISO) and EPLOPNXC (code of POSIX file: EBCDIC/ISO)
are no longer present.

If it is necessary to use external statement routines (user statements defined with the
@USE statement) which are implemented to use the V17 format of the subroutine interface
then the developer of the statement routines must also provide an initialization routine. The
presence of the initialization routine indicates to EDT that the V17 format is understood.

Unicode mode Migration aids

634 U41709-J-Z125-1-76

U41709-J-Z125-1-76 635

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

13 Messages
The EDT messages are provided by the BS2000 component MIP (Message Improvement
Processing). When a message is output it may contain more recent text passages
(so-called inserts).
The user can define the scope (/MODIFY-JOB-OPTIONS INFORMATION-LEVEL) and the
language (/MODIFY-MSG-ATTRIBUTES TASK-LANGUAGE) for message output.

13.1 Message weight (severity)

EDT's messages are identified by means of a 7-digit message key. This possesses the
following structure:

EDTwnnn

The message weights have the following meanings:

The identified message weights influence the EDT command return code (see chapter 4
“Using EDT” on page 87). Within a message weight class, the messages are grouped
together by area of application on the one hand and, on the other, are sequentially
numbered.

w Message weight
nnn Sequential number

Message
weight

Meaning

0 Information
1 Warning
2 Minor error (e.g. work file too long, line length exceeded)
3 Syntax error
4 and 5 Function error (including system errors, DMS problems)
8 Error causing termination and abort

Messages

636 U41709-J-Z125-1-76

13.2 Error switch

In L mode, there are two error switches, the EDT error switch and the DMS error switch.
The EDT error switch is set for the majority of messages. It indicates incorrect EDT state-
ments. The DMS switch is set for messages that are output on file or system access errors.
For some messages, both the EDT and DMS error switches are set. There are also
messages for which no switch is set (e.g. information, confirmation queries, messages
which are only output in F mode). The error switches can be queried in EDT procedures
(see the @IF (format 1) and @RESET statements in chapter 9). Whether or not an error
switch is set is indicated in the message help texts

13.3 Messages which require a response

In interactive mode, a large number of messages require the user to enter a response. The
format of these messages is

EDT0nnn <Question>? REPLY (Y=YES; N=NO)?

The alternatives available here are Yes and No. The responses Y and y are interpreted as
Yes and the responses N and a blank input as No. If the response consists of more than one
character then the remaining characters are ignored. The response to characters other than
those listed above depends on the operating mode. In L mode all other characters cause
the question to be repeated. If no correct input has been received after the tenth repetition
then the response No is assumed. In F mode, the entry of other characters is interpreted as
No.

Messages

U41709-J-Z125-1-76 637

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

13.4 Message output

In the L mode interactive mode, messages are output to SYSOUT,and in batch mode they
are output to SYSLST.

In F mode, the messages are output in the last line of the data window which is referred to
as the message line. The display in the data window is then shortened by one line. If a
message is longer than the message line, for example because it contains a very long
insert, then it is output in the two last lines of the data window and the display in the data
window is shortened by a further line. If the screen is split and only one data line is available
then the message is truncated and output in this line. Some messages require input from
the user. These are also usually output in the message line. However, in some cases, the
query message is output together with another message. In such cases, this message is
output in the message line and the query message is output in the screen's statement line.
In all cases, the response must be entered in the first column of the statement line. If an
EDT statement results in more than one message then only the message with highest
weight is output. If the message weights are the same then the last generated message is
output.

EDTCOPY Messages

638 U41709-J-Z125-1-76

13.5 Message texts

EDTCOPY Copyright (C) (&00) (&01) All Rights Reserved

EDTLOAD Program ’(&00)’, Version ’(&01)’ of ’(&02)’ loaded from file ’(&03)’

EDTSTRT Procedure ’(&00)’, Version ’(&01)’ of ’(&02)’ started from file ’(&03)’

EDT0001 (&00) STARTED

Meaning
EDT was started.

EDT0002 (&00) RESTARTED IN COMPATIBILITY MODE

Meaning
A statement changing the operation mode was given. EDT was restarted in compatibility
mode.

EDT0003 (&00) RESTARTED IN UNICODE MODE

Meaning
A statement changing the operation mode was given. EDT was restarted in
Unicode mode.

EDT0100 TESTMODE: NO SYNTAX ERROR

Meaning
Test mode is set. There was no syntactical error. The statements have not been processed.
Error switch: not set.

EDT0110 TESTMODE: SYNTAX CANNOT BE TESTED

Meaning
Test mode is set. The statement has not been processed. But its syntax can only be tested
at run time.
Possible reasons: indirect operands, operands in variables or user statements.
Error switch: not set.

EDT0120 TESTMODE: CHARACTER(S) SKIPPED

Meaning
Test mode is set. The syntax check in line mode skipped one or more characters. A strict
syntax check with the option SECURITY=HIGH would possibly find an error.
Error switch: not set.

Response
See your EDT manual for the correct syntax of the statement. Correction to the therein
described form will ensure processing in following EDT versions. The support of this
statement is not guaranteed.

Messages EDT0160

U41709-J-Z125-1-76 639

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT0160 FILE ’(&00)’ WRITTEN

EDT0170 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ REPLACED AND WRITTEN

Meaning
The old content of the library element was replaced.

EDT0171 FILE ’(&00)’ REPLACED AND WRITTEN

Meaning
The old content of the file was replaced.

EDT0172 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ CREATED AND WRITTEN

Meaning
The library element was created and written.

EDT0173 FILE ’(&00)’ CREATED AND WRITTEN

Meaning
The file was created and written.

EDT0178 FILE ’(&00)’ CLOSED

EDT0190 WORK FILE (&00) EMPTY

EDT0193 WORK FILE (&00) CLEARED

EDT0196 UFS FILE ’(&00)’ REPLACED AND WRITTEN

Meaning
The old content of the POSIX file was replaced.

EDT0197 UFS FILE ’(&00)’ CREATED AND WRITTEN

Meaning
The POSIX file was created and written.

EDT0200 CCS CHANGED TO ’(&00)’

Meaning
By reading or opening a file or library element with the attribute (&00)
EDT uses this Coded Character Set.
Error switch: not set.

EDT0210 ELEMENT(S) ADDED TO S-VARIABLE ’(&00)’

Meaning
The SDF-P list variable (&00) has been extended by appending or prefixing one or more
elements to the list.

EDT0211 Messages

640 U41709-J-Z125-1-76

EDT0211 /FREE-VARIABLE COMMAND PROCESSED FOR S-VARIABLE ’(&00)’

Meaning
The contents of the SDF-P variable (&00) have been destroyed. In the given statement
@SETLIST with operand MODE=NEW the specified range did not contain any line or
column.

EDT0227 ISAM FILE ’(&00)’ CREATED AND OPENED IN WORK FILE (&01)

Meaning
The ISAM file was created and opened in actual work file.

EDT0228 ISAM FILE ’(&00)’ REPLACED AND OPENED IN WORK FILE (&01)

Meaning
The old content of the ISAM file was deleted, then the file was opened in actual work file.

EDT0229 ISAM FILE ’(&00)’ OPENED IN WORK FILE (&01)

Meaning
The ISAM file was opened in actual work file.

EDT0230 FILE ’(&00)’ OPENED IN CURRENT WORK FILE (&01)

Meaning
The file was opened in actual work file.

EDT0231 FILE ’(&00)’ CREATED AND OPENED IN CURRENT WORK FILE (&01)

Meaning
The file was created and opened in actual work file.

EDT0232 FILE ’(&00)’ REPLACED AND OPENED IN WORK FILE (&01)

Meaning
The old content of the file was deleted, then the file was opened in actual work file.

EDT0235 FILE ’(&00)’ WRITTEN AND CLOSED

Meaning
The file was written and closed.

EDT0236 FILE ’(&00)’ CLOSED UNCHANGED

Meaning
The file was closed unchanged.

EDT0237 UFS FILE ’(&00)’ OPENED

Meaning
The POSIX file was opened in actual work file.

Messages EDT0238

U41709-J-Z125-1-76 641

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT0238 UFS FILE ’(&00)’ CREATED AND OPENED

Meaning
The POSIX file was created and opened in actual work file.

EDT0239 UFS FILE ’(&00)’ REPLACED AND OPENED

Meaning
The old content of the POSIX file was deleted, then the file was opened in
actual work file.

EDT0240 UFS FILE ’(&00)’ CLOSED

Meaning
The POSIX file was written and closed.

EDT0241 UFS FILE ’(&00)’ CLOSED UNCHANGED

Meaning
The POSIX file was closed unchanged.

EDT0242 FILE ’(&00)’ COPIED

Meaning
The file was copied into the actual work file.

EDT0243 UFS FILE ’(&00)’ COPIED

Meaning
The POSIX file was copied into the actual work file.

EDT0244 ALLOW WRITE ACCESS FOR READ ONLY FILE? REPLY (Y=YES; N=NO)

Meaning
This query is issued following a @OPEN, @WRITE, @XOPEN or @XWRITE
statement if the POSIX file is read only and the current user id is TSOS.

Response
Y: the file will be overwritten/opened for writing
N: the file will not be overwritten/opened for writing.

EDT0258 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ OPENED

Meaning
The library element was opened in actual work file.

EDT0259 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ CREATED AND OPENED

Meaning
The library element was created and opened in actual work file.

EDT0264 Messages

642 U41709-J-Z125-1-76

EDT0264 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ WRITTEN AND CLOSED

Meaning
The library element was written and closed.

EDT0265 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ CLOSED UNCHANGED

Meaning
The library element was closed unchanged.

EDT0266 WORK FILE EMPTY: MEMBER ’(&00)’ CLOSED UNCHANGED

Meaning
The work file specified in the CLOSE or WRITE statement is empty.
The member (&00) has been closed but not written back.

EDT0268 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ OPENED FOR REPLACEMENT

Meaning
The library element was opened in actual work file, the old content was not read.

EDT0274 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ COPIED

Meaning
The library element was copied into the actual work file.

EDT0281 /DELETE-FILE COMMAND PROCESSED FOR FILE ’(&00)’

Meaning
The file has been erased from catalog.

EDT0282 DELETE PROCESSED FOR MEMBER ’(&00)’

Meaning
The element has been deleted from library.

EDT0283 UFS FILE ’(&00)’ DELETED

Meaning
The POSIX file has been removed from its directory.

EDT0285 SDF: SYNTAX TESTED. (&00) ERROR(S) IN RANGE

Meaning
At the processing of statement @SDFTEST (&00) errors have been detected.
Error switch: not set.

EDT0290 ALL LINES ARE DIFFERENT

Meaning
All lines to be compared are different.
Error switch: EDT.

Messages EDT0291

U41709-J-Z125-1-76 643

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT0291 ALL LINES ARE EQUAL

Meaning
All lines to be compared are equal.
Error switch: not set.

EDT0292 COPY BUFFER CLEARED

Meaning
Acknowledgement following an ’*’ in the mark column.

EDT0293 FILE NOT WRITTEN

Meaning
N has been specified in response to an OVERWRITE inquiry.

EDT0294 MAXIMUM LINE NUMBER

Meaning
The screen cannot be completely filled with empty lines after the last used line, as not
enough line numbers are available.

EDT0295 OLD COPY BUFFER CLEARED, NEW COPY BUFFER FILLED

Meaning
An R statement code is followed by a C or M statement code.
The copy buffer created by means of R statement code(s) has been cleared.

EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)

Meaning
This query is issued following a @WRITE or a @SAVE statement if the file already exists.

Response
Y: the file will be overwritten
N: the file will not be overwritten.

EDT0297 COMPARE RESULT IN WORK FILE (&00)

Meaning
The result of a successfully processed @COMPARE statement (format 2)
is output to work file (&00).
Error switch: EDT.

EDT0298 ERASE ALL JOB VARIABLES ’(&00)’? REPLY (Y=YES; N=NO)

Meaning
This query is issued following a @ERAJV statement, if the name was specified partially
qualified or in wildcard syntax and this refers to more than one job variable.

Response
Y: all job variables concerned will be erased from the catalog.
N: the statement will be aborted and no job variable will be erased.

EDT0299 Messages

644 U41709-J-Z125-1-76

EDT0299 JOB VARIABLES NOT ERASED

Meaning
Message EDT0298 (ERASE ALL JOB VARIABLES?) was answered with N.

EDT0300 (&00)

Meaning
Following a @TMODE statement, the task attributes are displayed
from left to right in this order:

TSN - task sequence number
USER ID - user ID in the /LOGON command
ACCOUNT - account number of the task
CPU TIME - CPU time used for the task
DATE - date (YYYY-MM-DD)
TIME - time (HH:MM:SS)
STATEMENT SYMBOL - actual statement symbol
TERMINAL - type of terminal.

EDT0610 BUFFER SIZE UNCHANGED

Meaning
The buffer for output to the screen could not be changed by EDT.
Error switch: not set.

EDT0650 UNABLE TO SUPPORT NATIONAL TERMINAL. STANDARD WILL BE USED

Meaning
The connected DSS is a national 7-bit terminal, but EDT can only support
it with standard functions. Possible reasons:
- The DSS has been generated with wrong parameters or a variant has been

used EDT cannot support yet.
- There is problem at XHCS or VTSU.

Response
Try to generate the DSS in a different way.

EDT0651 CCS ’(&00)’ CANNOT BE SET. STANDARD WILL BE USED

Meaning
At EDT initialisation, the character set (&00) shall be made the actual character set. As this
is not possible with the current operation mode, the 7 bit standard EDF03IRV is used
instead.

EDT0900 EDITED FILE(S) NOT SAVED!

Meaning
A @HALT (or another) statement has been entered in order to terminate EDT, but some
data have not yet been saved.
EDT will output a list of work files whose data have not yet been saved.

Messages EDT0901

U41709-J-Z125-1-76 645

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT0901 NO MATCH IN RANGE

Meaning
No match exists for the search string in the specified range when processing an @ON
statement.
Error switch: EDT.
If this error occurs while an EDT procedure (@DO or @INPUT) is being processed, and
logging by means of the PRINT operand has not been activated, this message is not
displayed and the EDT error switch is not set.

EDT0902 FILE (&00) VERSION (&01)

Meaning
Possible reasons:
- The file (&00) has been specified in a write access statement with the

version number ’*’ or the actual version number:
The new actual version number after writing is (&01).

- The file (&00) has been specified in a read access statement with the
version number ’*’ or a wrong version number:
The correct version number is (&01).

EDT0903 FILE ’(&00)’ IS IN THE CATALOG, FCBTYPE = (&01)

Meaning
The file (&00) ist already in the catalog, its access method is (&01).

EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)

Meaning
Inquiry whether EDT is to be terminated.

Response
Y: EDT will be terminated
N: EDT will not be terminated.

EDT0905 EDITED MEMBER TO BE ADDED? REPLY (Y=YES; N=NO)

Meaning
Before returning control to LMS, EDT inquires whether the edited work file is to be saved
by LMS.

EDT0906 REPEAT ATTEMPT? REPLY (Y=YES; N=NO)

Meaning
If there is not enough virtual memory space to process the statement the statement can be
repeated after appropriate measures have been taken.

Response
Y: The attempt will be repeated.
N: The statement will be aborted.

EDT0907 Messages

646 U41709-J-Z125-1-76

EDT0907 NO WORK FILES USED

Meaning
A @DROP ALL statement has been issued by the user but no work files are currently used.

EDT0909 AUTOSAVE ABORTED. ERASE SAVING FILES? REPLY (Y=YES; N=NO)

Meaning
The writing of the backup files could not be performed.
Possible reasons are a virtual address space shortage or an unexpected DMS error.
The automatic saving is switched off.

Response
Y: existing saving files will be erased.
N: existing saving files will not be erased.

EDT0910 ’@RENUMBER’: LINES WILL BE LOST

Meaning
A @RENUMBER statement has been entered in order to renumber the lines.
If EDT renumbers in the asked way, the maximum line number (9999.9999) would be
reached and the rest of the file would be deleted.

Response
Get information about the number of lines in the work file by entering the statement
@LIMIT before asking to renumber.

EDT0911 CONTINUE PROCESSING? REPLY (Y=YES; N=NO)

Meaning
At the processing of a statement an error has been detected.
EDT inquires whether it should continue processing.

Response
Y: Processing of the statement will be continued.
N: The statement will be aborted.

EDT0912 INTERRUPTION NOT POSSIBLE

Meaning
The K2-key has been pushed during a non-interruptable procedure. It is not possible to
change to system mode at the moment.

EDT0913 /INFORM-PROG TO BE SIMULATED? REPLY (Y=YES; N=NO)

Meaning
The command /INFORM-PROGRAM cannot be performed in a non-interruptable
procedure. EDT asks if an action should be performed.

Response
Y: EDT treats like /INFORM-PROGRAM has been given.
N: The program will be continued.

Messages EDT0914

U41709-J-Z125-1-76 647

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT0914 RECORD SIZE > 256. ONLY 256 CHARACTERS WILL BE WRITTEN

Meaning
Only 256 characters are written for each record, the rest of the records becomes undefined.

EDT0915 CONVERT TO FILE CCS (&00)? REPLY (Y=YES; N=NO)

Meaning
The work file’s Coded Character Set is different from that of the file to be written to.

Response
Y: convert to file’s character set before writing.
N: use work file’s character set for writing.

EDT0990 (&00)

Meaning
(&00): Message from test routine.

EDT0999 (&00)

Meaning
(&00): Message from external routine.

EDT1137 SPECIFIED WORK FILE IGNORED IN CONJUNCTION WITH ’SPLIT’

Meaning
In the @PAR statement a work file has been specified as the first operand. The actions
initiated by the @PAR statement are to be performed only with regard to the specified work
file, but the effect of the operand SPLIT is global.

EDT1150 NAME OF PLAM LIBRARY MEMBER TRUNCATED AFTER 64 CHARACTERS

EDT1151 VERSION OF PLAM LIBRARY MEMBER TRUNCATED AFTER 24 CHARACTERS

EDT1174 FILE ATTRIBUTES IGNORED

Meaning
By means of the @WRITE statement (format 2) an internal work file is written back to the
associated external BS2000 file. File attributes cannot be defined by means of the
@WRITE statement, as they have already been defined for the external file.
The specified file attributes are ignored.

EDT1180 CODE ATTRIBUTE IGNORED

Meaning
By means of the XWRITE statement the actual work file is written back to the UFS file
opened before by means of XOPEN. The CODE attribute was ignored, as there is already
one defined for that file.
By asking to write the file with MODE=UPDATE that attribute cannot be changed.
Error switch: not set.

EDT1181 Messages

648 U41709-J-Z125-1-76

Response
A change of the code can be performed in the following way:
Write back the work file with MODE=REPLACE und requested CODE-Operand and then
close the file by issuing @CLOSE NOWRITE.

EDT1181 CODE OPERAND IGNORED

Meaning
A POSIX file, a not existing DMS file or a not existing library element shall be written using
@WRITE CODE=*FILE.
For POSIX files the code set defined with @PAR CODE is used, for other files the code set
of actual work file.

EDT1190 WORK FILE (&00) IS EMPTY. COPY OPERATION NOT PERFORMED

EDT1226 SPECIFIED FCBTYPE IGNORED: ’(&00)’ IS ASSUMED

Meaning
The FCB type specified in the @OPEN or @WRITE statement (format 2) does not match
the catalog entry. The specified type is ignored and the FCBTYPE (&00) is taken over from
the catalog.

EDT1227 CCS ATTRIBUTE CANNOT BE SET

Meaning
The file has been created or updated, but the CCS attribute cannot be set, as the access
to file catalog or library catalog returned an error.
Error switch: EDT, DMS.

EDT1243 FILE ’(&00)’ TO BE COPIED IS EMPTY

Meaning
The DMS file to be copied into the actual work file is empty.
Error switch: EDT.

EDT1244 FILE ’(&00)’ EMPTY

EDT1245 JOB VARIABLE IS EMPTY

Meaning
An attempt has been made to get the value of a job variable by a @GETJV statement, but
the entire job variable is empty.
Error switch: EDT.

EDT1246 UFS FILE ’(&00)’ TO BE COPIED IS EMPTY

Meaning
The POSIX file to be copied into the actual work file is empty.
Error switch: EDT.

Messages EDT1247

U41709-J-Z125-1-76 649

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT1247 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ TO BE COPIED IS EMPTY

Meaning
The library element to be copied into the actual work file is empty.
Error switch: EDT.

EDT1248 EMPHASIS INCOMPLETE IN SOME LINES

Meaning
When the lines containing the search string are displayed on the screen after an @ON
statement, not all matches are emphasized, as the insertion of screen control characters
makes one or more lines too long.
Error switch: EDT.

EDT1253 (SOME) RECORD(S) TRUNCATED

Meaning
Records that are too long are truncated when being read into the internal work file (in
Unicode Mode after 32768, otherwise after 256 characters).
Error switch: EDT.

EDT1254 NO MARKS SET FOR FILE TO BE PROCESSED IN REAL MODE

Meaning
No marks can be set for files processed in real mode (statement @OPEN).
Error switch: EDT.

EDT1901 ISAM FILE. ’@GET’ STATEMENT PROCESSED

Meaning
A @READ statement has been entered for an ISAM file. EDT automatically processes a
@GET statement.
Error switch: EDT.

EDT1902 SAM FILE. ’@READ’ STATEMENT PROCESSED

Meaning
A @GET statement has been entered for a SAM file. EDT automatically processes a
@READ statement.
Error switch: EDT.

EDT1903 INPUT TRUNCATED

Meaning
In Unicode mode, a line exceeds the maximum length (32768 characters) during tabulator
expansion. The line will be truncated.
In compatibility mode, when reading data in line mode or the element of a list variable, more
than 256 characters are read. The input will be truncated.
Error switch: EDT.

EDT1904 Messages

650 U41709-J-Z125-1-76

EDT1904 SOME LINES > 256

Meaning
Some lines read by means of a @GET or @READ statement are longer than 256 bytes.
The lines concerned are truncated after 256 characters.
Error switch: EDT.

EDT1905 INPUT TOO LONG. CORRECT INPUT

Meaning
The following conditions cause a termination error when reading:
- input for a @CREATE...READ statement >256 bytes, or
- input >284 subsequent to a @PRINT statement and input request *+-0, or
- input of a statement with indirect operands and the sum of characters of

operation string and the length of the string variable exceeds 256.
Error switch: not set.

EDT1906 TOO MANY NAMES. LIST INCOMPLETE

Meaning
The 15 pages provided for FSTAT are not sufficient to accommodate all the file names, or
the 8 pages provided for STAJV are not sufficient to accommodate all the names of job
variables, or the 8 pages provided for CMD are not sufficient to accommodate all the lines
to be output to the buffer. The list (of names) is not complete.
Error switch: EDT.

EDT1907 MODULE CANNOT BE UNLOADED

Meaning
The module specified in the @RUN statement or in the @UNLOAD statement could not be
unloaded. Either an incorrect module name has been specified or the module is not loaded.
Error switch: EDT.

EDT1936 MODIFIED LINE > 256 CHARACTERS

Meaning
An edited line became too long as a result of modification. This error can be caused by an
@ON, @PREFIX, @SUFFIX, @COL or @CREATE statement.
Moreover, an extended line containing formal operands may have become too long in a
procedure. The line is truncated after 256 characters.
In a @SETJV statement, when the extended string for the value of a job variable became
too long, only the first 256 characters are taken over as the value.
Error switch: EDT.

EDT1937 MODIFIED LINE > 32768 CHARACTERS

Meaning
A work file line would become too long as a result of modification with an @ON statement.
The line will remain unchanged.
Error switch: EDT.

Messages EDT1938

U41709-J-Z125-1-76 651

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT1938 MODIFIED LINE > 32768 CHARACTERS

Meaning
A @DO procedure line would become too long as a result of parameter replacement. The
line will be truncated.
Error switch: EDT.

EDT2169 WORK FILE (&00) IS EMPTY. WRITE OPERATION NOT PERFORMED

Meaning
The statement @WRITE (format 2) or @XWRITE could not be performed, for the work file
(&00) is empty.
Error switch: not set.

EDT2266 WORK FILE IS EMPTY: MEMBER ’(&00)’ CLOSED UNCHANGED

Meaning
As the work file specified in the @CLOSE or @WRITE statement (format 2) is empty, the
member (&00) has been closed but not saved.

EDT2267 LINE TRUNCATED AFTER (&00) CHARACTERS

Meaning
As the input record in F mode is longer than the LIMIT specified in the @PAR statement, it
is truncated.
(&00): maximum permissible record length.

EDT2301 COPY BUFFER OVERFLOW

Meaning
The copy buffer cannot hold more than 256 line numbers.

EDT2400 LINE TRUNCATED AFTER 32768 CHARACTERS

Meaning
A @CREATE or @SETJV statement, a J statement code or a data input with tabulator
expansion results in a work file line with more than 32768 characters. The line will be
truncated after 32768 charcters.
Error switch: EDT.

EDT2401 LINE TRUNCATED AFTER 2048 BYTES

Meaning
The prompt string to be displayed for @CREATE statement (format 3 or 4) is too long. It is
truncated after 2048 bytes.
Error switch: EDT.

EDT2402 Messages

652 U41709-J-Z125-1-76

EDT2402 OUTPUT TRUNCATED AFTER (&00) CHARACTERS

Meaning
The prompt string to be output for statement @CREATE (format 3 or 4) is too long. It is
truncated after (&00) characters.
Error switch: EDT.

Response
Shorten string.

EDT2403 OUTPUT TRUNCATED AFTER 4096 BYTES

Meaning
The string to be assigned to a S variable is too long.
It is truncated after 4096 bytes.
Error switch: EDT.

EDT2404 NOT ENOUGH LINES FOR HEX MODE

Meaning
On a split screen there are less lines in the work window than would be needed for diplaying
a line in hexadecimal mode.
Error switch: EDT.

Response
Enlarge the work window (@PAR SPLIT).

EDT2405 LINE TRUNCATED DURING AUTOSAVE

Meaning
Whe a work file is saved using @AUTOSAVE, a line is longer than the maximum record line
of the saving file. The line will be truncated.
Error switch: EDT.

EDT2406 MAXIMUM LINE NUMBER

Meaning
The given statement was processed correctly, but the new actual line can not be the last
line of the work file incremented with the actual increment, because the maximum line
number (9999.9999) would be exceeded. The new actual line will become the last line of
the work file.
Error switch: EDT.

EDT2407 OUTPUT OF SYSTEM COMMAND TRUNCATED

Meaning
The output of the operating system command issued via @SYSTEM is too long, it will be
truncated.
Error switch: EDT.

Messages EDT2408

U41709-J-Z125-1-76 653

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT2408 LOGGING TERMINATED

Meaning
The output media specified in @LOG cannot be written to. Logging will be switched off.
Error switch: EDT.

EDT2409 CPU TIME SPECIFIED AT EDT START EXCEEDED

Meaning
The CPU time specified at EDT start has been exceeded. EDT will be continued.
Error switch: EDT.

EDT2900 A KEY WAS ZERO AND HAS BEEN SET TO 0.0001

Meaning
A key with the value 0 has been detected during processing of a @GET or @READ
statement (with the KEY function). The line number in the work file is set to 0.0001 for this
line.
Error switch: EDT.

EDT2901 CHECK LINE LENGTH

Meaning
The line length check is active (@CHECK or @TABS) and the line read or created by
tabulator expansion is longer than specified in the CHECK statement or operand. The line
will be created as specified.
Error switch: EDT.

EDT2902 CHECK TAB COLUMNS

Meaning
The CHECK function was specified in the @TABS statement. CHECK detected that the line
which has just been entered with tabs causes reverse positioning, i.e. text was overwritten.
Error switch: EDT.

Response
Check the line, as it probably contains an error.

EDT2903 FILE IS EMPTY

Meaning
Possible error cause:
- An empty file on disk is accessed by means of a @READ, @GET, @INPUT

or @ELIM statement.
- A @SETLIST statement has been specified in an empty work file.
- A work file specified in a @COMPARE statement is empty.
Error switch: EDT.

EDT2904 Messages

654 U41709-J-Z125-1-76

EDT2904 MAXIMUM LINE NUMBER WHEN PROCESSING ’@RENUMBER’. SOME LINES ARE LOST

Meaning
The maximum permissible line number (9999.9999) has been reached during processing
of a @RENUMBER statement. EDT does not permit duplicate line numbers in a work file.
The rest of the file has been erased.
Error switch: EDT.

EDT3002 OPERAND ERROR

Meaning
The statement contains a syntax error.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3003 ’(’ MISSING

Meaning
Error switch: EDT.

Response
Insert the missing bracket and re-enter the statement.

EDT3004 ’)’ MISSING

Meaning
Error switch: EDT.

Response
Insert the missing bracket and re-enter the statement.

EDT3040 NAME INVALID OR MISSING

Meaning
The string contains more than 8 characters or does not fullfill the syntax of the operand or
is missing.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3050 INVALID SYSLST-NUMMER

Meaning
The SYSLST number issued in the statement @LOG is invalid.
Only values between 1 and 99 are valid.
Error switch: EDT.

Response
Correct and re-enter the statement.

Messages EDT3065

U41709-J-Z125-1-76 655

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3065 NUMBER OF LINES OR ’OFF’ OR ’O’ EXPECTED

Meaning
The operand SPLIT of the @PAR statement must contain
- either the number of lines of the second window and the name of the

work file to be displayed in the second window, or
- OFF or O in order to set the screen back to one window.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3066 WRONG COLUMN NUMBER

Meaning
A wrong column number has been specified in the @SETF statement.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3068 POSITION INVALID OR MISSING

Meaning
The specification of POSITION in the @SETF statement is mandatory.
The statement could not be processed.

Response
Correct and re-enter the statement.

EDT3069 STRING TO BE INSERTED IS MISSING

Meaning
The statement has not been processed because the string to be inserted is missing.

Response
Correct and re-enter the statement.

EDT3070 ’EDIT-LONG’ EXPECTED

Meaning
The operand specified in the @PAR statement is wrong.
Correct form of the operand: @PAR EDIT-LONG =

Response
Correct and re-enter the statement.

EDT3071 Messages

656 U41709-J-Z125-1-76

EDT3071 ’ON’, ’OFF’ OR ’O’ EXPECTED

Meaning
The operand specification in the @PAR statement contains an error, ON, OFF or O is
missing after an equals sign.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3072 NUMBER INVALID OR MISSING

Meaning
The format of the specified numeric value is incorrect, or the value has not been specified
at all.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3073 TARGET POSITION IS INVALID OR MISSING

Meaning
The statement has not been processed because the target position in the COPY statement
is missing or invalid.

Response
Correct and re-enter the statement.

EDT3074 ’KEEP’ OPERAND EXPECTED IN ’COPY’ STATEMENT

Meaning
The COPY statement has not been processed because the operand KEEP is missing.

Response
Correct and re-enter the statement.

EDT3075 RECORD RANGE CANNOT BE SPECIFIED

Meaning
The statement has not been processed because no record range can be specified in the
statement.

Response
Correct and re-enter the statement.

EDT3076 ’COPY KEEP’ PERMISSIBLE ONLY FOR ISAM FILES

Meaning
The KEEP operand in the COPY statement can only be specified for ISAM files.
The statement has not been processed.

Messages EDT3077

U41709-J-Z125-1-76 657

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3077 OPERAND ’STRUCTURE=’ INCORRECT

Meaning
In the @PAR statement the symbol for STRUCTURE is either missing or not given in single
quotes.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3078 SPECIFIED NUMBER INVALID (VALID RANGE: 1..256)

Meaning
The specified value for LIMIT in the @PAR statement or the factor n in the repetition
statement # is not within the permissible range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3079 COLUMN ’0’ NOT PERMISSIBLE

Meaning
The statement has not been processed because ’0’ cannot be specified as a column
number.

Response
Correct and re-enter the statement.

EDT3080 SPECIFIED COLUMN INVALID, OR ’:’ MISSING IN COLUMN RANGE

Meaning
The character ’:’ is missing in the specified column range, or the specified range is invalid.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3081 LINE NUMBER > 9999.9999

Meaning
The specified line number is too high. The maximum permissible line number is 9999.9999.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3082 LINE NUMBER 0 INVALID

Meaning
Line number 0 or increment 0 cannot be specified.
Error switch: EDT.

EDT3085 Messages

658 U41709-J-Z125-1-76

Response
Correct and re-enter the statement.

EDT3085 ’(&00)’ NOT POSSIBLE FOR PLAM ELEMENT TYPE ’(&01)’

Meaning
Library elements of the type R, C, H, L, U, F or corresponding free type cannot be used with
the statements @COPY, @OPEN, @WRITE or @INPUT.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3086 INVALID PLAM TYPE

Meaning
The PLAM type specified in the statement is invalid.
Valid PLAM types: S, M, J, P, D, X, R, C, H, L, U, F and equal free typenames.
A free typename must not start with $ or SYS and consists of 2 to 8 characters.

EDT3087 INVALID JOB VARIABLE NAME

Meaning
The string used to specify a job variable name is incompatible with the syntax of a job
variable name, or the job variable name in a @SETJV or @GETJV statement was not
fully qualified, or it was an invalid request by an @ERAJV statement.
Error switch: EDT.

Response
Correct and re-enter statement.

EDT3088 INVALID NAME OF S-VARIABLE

Meaning
The string used to specify a SDF-P variable in a @GETVAR or @SETVAR statement is
incompatible with the syntax of a SDF-P variable.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3089 INVALID NAME OF UFS FILE

Meaning
A string used for specifying the name of a UFS file did not follow the syntax of a file name
in the POSIX file system or one of the directories issued does not exist.
Error switch: EDT.

Response
Correct and re-enter the statement.

Messages EDT3093

U41709-J-Z125-1-76 659

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3093 INVALID STRUCTURED NAME OR STRUCTURED NAME MISSING

Meaning
The string contains more than 30 characters or does not fulfil the syntax of the operand or
is missing.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3100 WORK FILE IS EMPTY. STATEMENT NOT PROCESSED

Meaning
The statement refers to a line number which cannot be found as the work file is empty.

EDT3101 INVALID STATEMENT

Meaning
No valid EDT statement has been recognized.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3106 SPECIFIED WORK FILE INVALID (VALID RANGE: 0..9)

Response
Correct and re-enter the statement.

EDT3110 EQUAL SIGN EXPECTED. STATEMENT NOT PROCESSED

Meaning
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3111 ’TYPE’ OPERAND IS MISSING OR INVALID

Meaning
The TYPE operand has been specified without a valid operand value.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3112 Messages

660 U41709-J-Z125-1-76

EDT3112 ’TYPE’ OPERAND ALREADY DEFINED

Meaning
An attempt was made to specify the TYPE operand a second time.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3116 ’CODE’ OPERAND MISSING OR INVALID

Meaning
The CODE operand has been specified without a valid operand value.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3117 ’MODE’ OPERAND MISSING OR INVALID

Meaning
The MODE operand has been specified without a valid operand value.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3118 ’MODE’ OPERAND ALREADY DEFINED

Meaning
An attempt was made to specify the MODE operand a second time.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3119 WORK FILE ALREADY DEFINED

Meaning
In the OPEN or WRITE statement, an attempt was made to define the work file a second
time.

Response
Correct and re-enter the statement.

EDT3120 FILE NAME ALREADY DEFINED

Meaning
In the OPEN or WRITE statement, an attempt was made to define the file name a second
time.

Response
Correct and re-enter the statement.

Messages EDT3121

U41709-J-Z125-1-76 661

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3121 LIBRARY NAME MISSING OR FORMAT OF SPECIFIED LIBRARY NAME INVALID

Meaning
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3122 FILE NAME MISSING OR FORMAT OF SPECIFIED FILE NAME INVALID

Meaning
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3123 NO VALID NAME OF PLAM MEMBER

Meaning
When processing a PLAM library, no valid member name has been specified.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3124 VERSION NUMBER MISSING OR INVALID

Meaning
The version number of a PLAM library member has not been specified or the specified
version number contains invalid characters.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3125 ’OPEN REAL’ PERMISSIBLE ONLY FOR ISAM FILES

Meaning
It is not possible to process the specified file in OPEN REAL mode because that mode is
permitted only for ISAM files.

Response
Process the specified file in virtual memory.

EDT3126 FILE ATTRIBUTES CANNOT BE SPECIFIED

Meaning
It is not possible to specify file attributes in the relevant statement, therefore the statement
has not been processed.

EDT3127 Messages

662 U41709-J-Z125-1-76

EDT3127 NAME OF WORK FILE IS INVALID OR MISSING

Meaning
No name has been specified for the work file, or the specified name is invalid.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3128 PLAM LIBRARY NAME INVALID OR MISSING

Meaning
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3129 NO FILE ATTRIBUTES CAN BE DEFINED FOR PLAM LIBRARIES

Meaning
When processing a PLAM library an attempt was made to define the file attribute
FCBTYPE=ISAM or SAM. The statement has not been processed.

Response
Correct and re-enter the statement.

EDT3132 PLAM TYPE IS MISSING OR INVALID

Meaning
The TYPE of the PLAM member has not been specified in the
statement, or the specification is invalid.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3133 PLAM VERSION SPECIFICATION INVALID

Meaning
Error switch: EDT.

Response
Correct the version specification and re-enter the statement.

EDT3134 ’*STD’ EXPECTED

Meaning
When processing a PLAM library, ’*’ has been specified for the type or the version.

Response
Replace ’*’ by ’*STD’ and re-enter the statement.

Messages EDT3135

U41709-J-Z125-1-76 663

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3135 MODUL NAME MISSING

Meaning
The @UNLOAD statement has not been processed for the name of the modul has not been
specified.

Response
Correct and re-enter the statement.

EDT3136 ’INCREMENT=0’ NOT PERMISSIBLE

Meaning
The specification INCREMENT=0 in the @PAR statement is not permitted.
The statement has not been processed.

Response
Correct and re-enter the statement.

EDT3138 ONLY ONE CHARACTER POSSIBLE AS SYMBOL

Meaning
More than one character has been specified as a symbol.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3170 SYNTAX ERROR IN LINE NUMBER

Meaning
The operand which is supposed to be a line number is syntactically incorrect.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3172 MODULE NAME TOO LONG

Meaning
The modul name specified in an @UNLOAD statement was longer than 8 characters
(compatible format) or longer than 32 characters (new format).
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3173 NUMBER OF WORK FILE FOR COMPARE OPERATION MISSING OR INVALID

Meaning
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3174 Messages

664 U41709-J-Z125-1-76

EDT3174 NAME TOO LONG

Meaning
A string used for specifying a file or jobvariable name consists of more characters than
allowed by the system (fully qualified: 54, with wildcards: 80).
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3175 SYNTAX ERROR IN SPECIFIED RANGE

Meaning
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3176 STATEMENT SYMBOL INVALID OR TOO LONG

Meaning
The statement symbol in the @USE statement must be specified within single quotes and
must consist of exactly one character.

Response
Correct and re-enter the statement.

EDT3177 ENTRY NAME TOO LONG

Meaning
The entry name is longer than the permissible maximum of 8 characters (compatible
format) or 32 characters (new format).
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3178 LIBRARY NAME TOO LONG

Meaning
The library name is longer than the permissible maximum of 54 characters.
Error switch: EDT.

Response
Correct and re-enter the statement.

Messages EDT3179

U41709-J-Z125-1-76 665

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3179 ENTRY NAME MISSING OR INVALID

Meaning
The specified string does not fulfill the syntactical requirements for entry names, or the entry
name is missing.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3180 JOKER SYMBOL EQUALS QUOTE

Meaning
Possible reasons:
- The value specified in the @SYMBOLS statement for the ASTERISK or

SLASH chartacter is invalid as it is the same as one of the
QUOTE characters.

- An @ON statement with keyword PATTERN could not be processed, as
QUOTE1 or QUOTE2 is the same as the ASTERISK or SLASH character.

Error switch: EDT.

Response
Choose different symbols for ASTERISK, SLASH, QUOTE1 and QUOTE2.

EDT3181 BOTH JOKER SYMBOLS ARE THE SAME

Meaning
An attempt was made to redefine one of the joker symbols by means
of a @SYMBOLS statement. The statement was not processed
because different symbols must be defined for ASTERISK and SLASH.
Error switch: EDT.

Response
Choose different symbols for ASTERISK and SLASH, and
re-enter the @SYMBOLS statement.

EDT3182 CCSN TOO LONG

Meaning
A string used for specifying a coded character set name consists of more
than 8 characters.
Error switch: EDT.

Response
Correct and re-enter statement.

EDT3183 Messages

666 U41709-J-Z125-1-76

EDT3183 LINE NUMBER EXPECTED

Meaning
A valid line number has to be specified after the keyword TO in the statement @SHOW,
@FSTAT, @STATUS, @SYSTEM or @STAJV.
Error switch: EDT.

Response
Correct and re-enter statement.

EDT3190 SPECIFIED NUMBER INVALID (VALID RANGE: 1..32768)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3191 OPERAND TOO LONG

Meaning
The specified operand is too long.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3192 ILLEGAL CHARACTER IN OPERAND

Meaning
The specified operand contains illegal characters.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3193 SPECIFIED WORK FILE INVALID (VALID RANGE: 0..22)

Meaning
The specified work file number is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

Messages EDT3194

U41709-J-Z125-1-76 667

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3194 SPECIFIED NUMBER INVALID (VALID RANGE: 1..9)

Meaning
The specified record mark is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3195 SPECIFIED UNICODE VALUE INVALID

Meaning
The specification of a separator character, a structure symbol, a surrogate character or a
filler character as a Unicode value does not correspond to a valid character.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3196 SPECIFIED HEX OR BINARY VALUE INVALID

Meaning
The specified haxadecimal or binary value does not correspond to a valid character.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3197 SPECIFIED NUMBER INVALID (VALID RANGE: 0..32768)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3198 SPECIFIED NUMBER INVALID (VALID RANGE: 0..99999999)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3199 Messages

668 U41709-J-Z125-1-76

EDT3199 SPECIFIED NUMBER INVALID (VALID RANGE: 0..31)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3200 SPECIFIED NUMBER INVALID (VALID RANGE: 1..8)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3201 SPECIFIED NUMBER INVALID (VALID RANGE: 0..65535)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3202 SPECIFIED NUMBER INVALID (VALID RANGE: 1..65535)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3203 ’KEY’ OPERAND ALREADY DEFINED

Meaning
The KEY operand has been specified a second time.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3204 ’CODE’ OPERAND ALREADY DEFINED

Meaning
The CODE operand has been specified a second time.
Error switch: EDT.

Response
Correct and re-enter the statement.

Messages EDT3205

U41709-J-Z125-1-76 669

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3205 ’KEY’ OPERAND IS MISSING OR INVALID

Meaning
The KEY operand has been specified without a valid operand value.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3206 SPECIFIED NUMBER INVALID (VALID RANGE: 0..255)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3207 SPECIFIED NUMBER INVALID (VALID RANGE: 0..256)

Meaning
The specified value is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3209 SPECIFIED WORK FILE INVALID (VALID RANGE: 1..22)

Meaning
The specified work file number is outside the valid range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3210 ’LENGTH’ OPERAND IS MISSING OR INVALID

Meaning
The LENGTH operand has been specified without a valid operand value.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3211 ’LENGTH’ OPERAND ALREADY DEFINED

Meaning
The LENGTH operand has been specified a second time.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3212 Messages

670 U41709-J-Z125-1-76

EDT3212 ’MARK’ OPERAND IS MISSING OR INVALID

Meaning
The MARK operand has been specified without a valid operand value.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3213 ’MARK’ OPERAND ALREADY DEFINED

Meaning
The MARK operand has been specified a second time.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3214 LINK NAME IS MISSING OR INVALID

Meaning
The specified link name has no valid value.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3215 MISSING CLOSING QUOTE IN STRING

Meaning
A string was specified without a closing quote symbol.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3216 INVALID RANGE (LOWER > UPPER)

Meaning
The first switch number in the @SETSW statement is higher than the second one.
Error switch: EDT.

Response
Correct and re-enter the statement.

Messages EDT3217

U41709-J-Z125-1-76 671

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3217 TOO MANY DIGITS IN NUMBER

Meaning
The decimal integer used for numbering lines in the @SEQUENCE statement may only
have up to 8 digits.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3218 ’TO’ OPERAND EXPECTED

Meaning
In the @COPY or @MOVE statement a TO operand is missing.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3219 ’TYPE’ OPERAND NOT ALLOWED

Meaning
The TYPE operand is only allowed for DMS files.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3220 ’KEY’ OPERAND NOT ALLOWED

Meaning
The KEY operand is only allowed for DMS files.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3221 ’CODE’ OPERAND NOT ALLOWED

Meaning
The CODE operand is only allowed for POSIX files.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3222 Messages

672 U41709-J-Z125-1-76

EDT3222 INCREMENT MISSING OR INVALID

Meaning
No increment is specified or the increment value is invalid.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3223 UFS FILE NAME MISSING OR INVALID

Meaning
The specification of a UFS file name is missing, or it does not follow the syntax of a file name
in the POSIX file system.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3224 SPECIFIED NUMBER INVALID (VALID RANGE: 1..2048)

Meaning
The factor n in the repetition statement # is not within the permissible range.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3901 ILLEGAL BINARY CONSTANT

Meaning
A string with a ’B’ in front of the first single quote or the text input after @INPUT BINARY is
in error.
Only the digits ’0’ and ’1’ are valid characters, and the string must not be empty.
Error switch: EDT.

Response
Correct and re-enter the statement or text.

EDT3902 ILLEGAL HEX CONSTANT

Meaning
A string with an ’X’ in front of the first single quote or the text input after @INPUT HEX is in
error. Only the digits 0 to 9 and the letters A to F are valid characters and the string must
not be empty.
Error switch: EDT.

Response
Correct and re-enter the statement or text.

Messages EDT3903

U41709-J-Z125-1-76 673

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3903 INVALID RANGE

Meaning
Either the line numbers in the specified range are invalid or a dash (-) is not followed by a
second line number.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3904 INVALID SUBSTRING

Meaning
A @SET statement contains an invalid substring. All substrings must comply with the
syntax ln or +/-int.
Error switch: EDT.

EDT3905 INVALID VARIABLE

Meaning
A line number, string or integer variable has been specified incorrectly.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3906 LINE NUMBER INVALID

Meaning
Possible error cause:
- The integer variable in the statement @SET (format 3) does not contain

a valid line number.
- The target line number variable in the statement @SET (format 4 or 5)

does not contain a valid line number.
- The destination of the output in the statement @GETJV is not a valid

line number.
- The line number is too high for the specified KEYLEN of a file opened

in real mode by means of an @OPEN statement.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3907 Messages

674 U41709-J-Z125-1-76

EDT3907 EMPTY STRING NOT PERMISSIBLE

Meaning
A string specified directly or indirectly (i.g. by means of a EDT string variable or a SDF-P
variable) is empty. But that is not permissible for this statement.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3908 STRING MISSING OR INVALID

Meaning
A string is missing in a statement or is invalid.
In compatibility mode, the error cause also may be that no file name is specified in an I/O
statement and neither a local nor a global @FILE entry is defined.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3909 PARAMETER ERROR

Meaning
Some of the most common error causes are:
- the line number or increment is invalid
- one or more operands are missing in the statement
- invalid ON/OFF
- the number of a procedure file is ’0’
- the value in @SETSW statement is greater than 31.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3910 DUPLICATE FORMAL OPERAND

Meaning
A formal operand has been specified at least twice in the @PARAMS statement.
Error switch: EDT.

Response
Correct and re-enter the statement.

Messages EDT3911

U41709-J-Z125-1-76 675

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT3911 DUPLICATE KEYWORD

Meaning
A keyword has been specified at least twice in a @DO statement.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3922 INVALID COLUMN (RANGE)

Meaning
The value specified for a column is invalid, or the specified column (range) is syntactically
incorrect.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3951 PROCEDURE NUMBER > 22

Meaning
Error switch: EDT.

EDT3952 INVALID SYMBOL

Meaning
For the symbol definition a special character has to be choosen.
Error switch: EDT.

Response
Choose a valid special character as symbol.

EDT3991 SYNTAX ERROR IN EXTERNAL STATEMENT

Meaning
The external routine reports a syntax error in the specified statement without any additional
information.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3999 (&00)

Meaning
The external routine reports a syntax error in the specified statement with the message
(&00).
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT4200 Messages

676 U41709-J-Z125-1-76

EDT4200 MACRO ’(&00)’: DMS ERROR CODE: ’(&01)’

Meaning
All DMS errors are output in this form:
(&00): DMS macro (OPEN, etc.) during whose processing the error occurred.
(&01): hexadecimal error code.

For more detailed information about the DMS error enter the
ISP command /HELP DMS(&01) or the SDF command /HELP-MESS DMS(&01)
in system mode, or see the BS2000 manual "System Messages" or one
of the BS2000 DMS manuals.

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4201 MACRO ’(&00)’: JVS ERROR CODE: ’(&01)’

Meaning
All JVS errors are output in this form:
(&00): JVS macro (STAJV, etc.) during whose processing the error occurred
(&01): Hexadecimal error code.

For more detailed information about the JVS error enter the
ISP command /HELP JVS(&01) or the SDF command /HELP-MESS JVS(&01)
in system mode, or see the BS2000 manual "System Messages" or
the BS2000 JVS manual.

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4202 MACRO ’(&00)’: SDF-P ERROR CODE: ’(&01)’

Meaning
All SDF-P errors are output in this form:
(&00): SDF-P macro (PUTVAR, etc.) during whose processing the error occured.
(&01): Hexadecimal error code.

For more detailed information about the SDF-P error enter the
ISP command /HELP SDP(&01) or the SDF command /HELP-MESS SDP(&01)
in system mode, or see the BS2000 manual "System Messages" or
the BS2000 SDF-P manual.

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

Messages EDT4203

U41709-J-Z125-1-76 677

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT4203 MACRO ’(&00)’: XHCS ERROR CODE: ’(&01)’

Meaning
All XHCS errors are output in this form:
(&00): XHCS macro (NLSCODE, etc.) during whose processing the error occured
(&01): Hexadecimal error code.

or more detailed information about the XHCS error
see the BS2000 manual "XHCS".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4204 MACRO ’(&00)’: TIAM ERROR CODE: ’(&01)’

Meaning
All TIAM errors are output in this form:
(&00): TIAM-Macro (WRLST, etc.) during whose processing the error occured
(&01): Hexadecimal error code.

For more detailed information about the TIAM error see the
BS2000 manual "TIAM" or the BS2000 manual "Macro Calls".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4205 MACRO ’(&00)’: BLS ERROR CODE: ’(&01)’

Meaning
All errors of the dynamic binder loader are output in this form:
(&00): BLS macro (BIND) during whose processing the error occured
(&01): Hexadecimal error code.

For more detailed information about the BLS error see the BS2000
manual "Dynamic Binder Loader" or the BS2000 manual "Macro cals".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4206 POSIX-CALL ’(&00)’: ERROR ’(&01)’

Meaning
All errors reported by POSIX-calls are output in this form:
(&00): Function which returns an error
(&01): error code returned in C-variable ERRNO.

For more detailed information about the error see the BS2000 manual
"C library functions" or the BS2000 manual "POSIX".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4207 Messages

678 U41709-J-Z125-1-76

EDT4207 MACRO ’(&00)’: SDF ERROR CODE: ’(&01)’

Meaning
All errors of SDF-macros are output in this form:
(&00): SDF-Macro (CMDSTA, etc.) during whose processing the error occured
(&01): Hexadecimal error code.

For more detailed information about the SDF error see the BS2000
manual "SDF-A".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4208 MACRO ’(&00)’ RETURNS ERROR CODE ’(&01)’

Meaning
When executing the macro (&00) an error with error code (&01) occurred.
The error code is issued in form of a message number if available.
Otherwise the complete macro returncode (subcode2, subcode1, maincode) is
issued. If there are two return codes available, both are issued,
separated by a /.
For more detailed information about the error see the appropriate BS2000 manual.
Error switch: EDT, DMS.

EDT4209 FUNCTION ’(&00)’ RETURNS ERROR ’(&01)’

Meaning
When executing the function (&00) an (&01) error was returned in C-variable ERRNO.
For more detailed information about the error see the appropriate BS2000
manual.
Error switch: EDT, DMS.

EDT4300 ERROR AT SYSTEM COMMAND: ERROR CODE ’(&00)’

Meaning
The command specified in the @SYSTEM statement is rejected by the CMD macro.
For more detailed information about the error cause enter the command
/HELP-MESS (&00) in system mode, or see the BS2000 manual
"System Messages".
Error switch: DMS.

EDT4310 SDF: SYNTAX ERROR IN LINE (&00)

Meaning
While checking the syntax of data lines with @SDFTEST a syntax error has
been detected in line (&00) and could not be corrected in a SDF error dialog.
Error switch: EDT.

Response
Enable SDF guided error dialog, e.g. by
@SYSTEM ’/MODIFY-SDF-OPTIONS GUIDANCE=MIN’.

Messages EDT4312

U41709-J-Z125-1-76 679

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT4312 CHECK TAB COLUMNS IN LINE (&00)

Meaning
The CHECK function was specified for the @TABS statement. CHECK detected
that in line (&00) tabs caused reverse positioning, i.e. text was overwritten.
Processing of @TABS RANGE has been aborted.
Error switch: EDT.

EDT4313 LINE (&00) > 256 CHARACTERS

Meaning
The length of line (&00) would exceed 256 characters.
Processing of @TABS RANGE has been aborted.
Error switch: EDT.

EDT4314 LINE (&00) > 32768 CHARACTERS

Meaning
The length of line (&00) would exceed 32768 characters.
Processing of @TABS RANGE has been aborted.
Error switch: EDT.

EDT4315 RANGE SYMBOL MUST NOT BE USED AS STATEMENT SYMBOL

Meaning
For the definition of a new statement symbol with statement @:
the actual range symbol (see @RANGE) was used.
The statement is not processed.
Error switch: EDT.

EDT4900 /SET-FILE-LINK IS IN EFFECT

Meaning
A /SET-FILE-LINK command with a link name used by EDT (EDTSAM, EDTISAM, or
EDTMAIN) is active. However, the file name specified in the EDT statement
(@GET, @READ, @INPUT, @OPEN, @ELIM, @WRITE or @SAVE) does not match
the one specified in the /SET-FILE-LINK command.
The statement is not processed.
Error switch: EDT.

EDT4901 ONE INPUT FILE IS ALREADY ACTIVE

Meaning
The @INPUT statement is not permissible inside an @INPUT procedure.
Error switch: EDT.

EDT4903 Messages

680 U41709-J-Z125-1-76

EDT4903 BOTH OPERANDS IN ’@QUOTE’ STATEMENT ARE THE SAME

Meaning
If both operands are specified in the @QUOTE statement, they
must be different.
Error switch: EDT.

EDT4904 BTAM FILES NOT SUPPORTED

Meaning
An attempt was made to process a BTAM file by means of a @GET, @SAVE
@READ, @WRITE, @INPUT, @OPEN or @ELIM statement. However, EDT does
not support BTAM files.
Error switch: EDT.

EDT4906 ’(&00)’ NOT POSSIBLE FOR CURRENT WORK FILE

Meaning
The statement (&00) refers to the current work file and therefore is
impossible to be executed (e.g. @DO, @DROP).
Error switch: EDT.

EDT4907 ’@DROP’ NOT POSSIBLE DURING PROCEDURE FILE PROCESSING

Meaning
The @DROP statement is not permissible inside a @DO procedure.
Error switch: EDT.

EDT4908 INVALID COMMAND

Meaning
The command specified in the @SYSTEM statement either contains an error
or cannot be passed by the CMD macro.
Error switch: DMS.

Response
Correct and re-enter the statement or
branch to system mode by means of @SYSTEM.

EDT4909 WORK FILE ALREADY ACTIVE

Meaning
In a @PROC statement the number of current work file was specified.
Error switch: EDT.

Messages EDT4910

U41709-J-Z125-1-76 681

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT4910 S-VARIABLE MUST BE OF TYPE LIST

Meaning
The SDF-P variable specified in a @GETLIST or @SETLIST statement or in a @LOG
statement in compatibility mode is not of type LIST
or has not been declared yet.
Error switch: EDT.

Response
If the variable has not been declared yet, perform the system command
/DECL-VAR NAME=..,MULT-ELEM=LIST before re-entering the statement.

EDT4912 EAM OPEN ERROR

Meaning
An EAM file cannot be opened during a @LIST statement in conjunction with
the ’I’ operand.
Error switch: EDT.

EDT4913 EAM WRITE ERROR

Meaning
A write error has occurred while writing to an EAM file (@LIST statement in conjunction with
the ’I’ operand).
Error switch: EDT.

EDT4916 FILE ’(&00)’ NOT IN CATALOG

Meaning
A file name specified in a @FSTAT, @GET, @READ, @INPUT, @ELIM, @SAVE
@WRITE, @COPY, or @UNSAVE statement does not exist in the catalog.
If this error occurs in an @FSTAT statement, the DMS error switch is also
set for reasons of compatibility. Processing of @INPUT files is, however not aborted.
In new EDT procedures only the EDT error switch should be checked.
Error switch: EDT, DMS (see meaning text).

EDT4918 FORMAL OPERAND MISSING

Meaning
A formal operand has been expected but not found in a @PARAMS statement.
Error switch: EDT.

EDT4919 Messages

682 U41709-J-Z125-1-76

EDT4919 REQM ERROR FOR (&00) BUFFER

Meaning
During processing of a @FSTAT, @STAJV, @LIST I or @SYSTEM statement using the
(&00) macro, the required pages of virtual address space could not be provided by REQM
for the (&00) buffer.
E.g.: for FSTAT >=15 pages, for STAJV 8 pages, for EAM 1 page
for CMD 8 pages.
Error switch: EDT.

EDT4920 STATEMENT ILLEGAL DURING PROCEDURE FILE PROCESSING

Meaning
The specified statement is not permissible inside a @DO or @INPUT
procedure (e.g. @INPUT, @SETF GLOBAL, ...).
Error switch: EDT.

EDT4921 STATEMENT ILLEGAL DURING ’@INPUT’ PROCESSING

Meaning
The @UPDATE statement (format 2), @CODENAME or @GOTO has been read from a
file opened by means of @INPUT.
Error switch: EDT.

EDT4923 INVALID FILE NAME

Meaning
The file name specified in a @FSTAT, @GET, @READ, @INPUT, @OPEN, @ELIM
@WRITE, @SAVE, @UNSAVE, @COPY or @DELETE statement does not comply with
the conventions governing the definition of the file names.
In compatibility mode, a possible error cause is that the file name
specified in single quotes or in a string variable has a leading blank.
Error switch: EDT, DMS.

EDT4924 INVALID FORMAL OPERAND

Meaning
A @PARAMS statement contains an invalid formal operand.
Error switch: EDT.

EDT4925 STATEMENT ONLY PERMITTED IN WORK FILE 0

Meaning
A file can only be opened in real mode in work file 0.
Error switch: EDT.

Messages EDT4926

U41709-J-Z125-1-76 683

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT4926 INVALID KEY

Meaning
In the @GET ’...’ N, @READ ’...’ KEY, or @ELIM ’...’ statement an attempt
was made to access a record using an invalid key. Processing of the
statement has been aborted.
Processing of the @INPUT files has been aborted in case of DMS errors.
In batch mode or if EDT is reading in data from SYSDTA by means of RDATA
EDT terminates and the following message is displayed:
"EDT8001 EDT TERMINATED ABNORMALLY".
Error switch: EDT, DMS.

EDT4927 INVALID KEY IN FILE OPENED IN REAL MODE

Meaning
An ISAM file has been opened in real mode (@OPEN) and an attempt has
been made to access a record by means of an invalid key. Processing of
the statement has been aborted, and the file currently being processed
has been closed. Processing of @INPUT files is aborted as
in the case of DMS errors. In batch mode or if EDT is reading
from SYSDTA by means of RDATA, EDT terminates and the following
message is displayed: "EDT8001 EDT TERMINATED ABNORMALLY".
Error switch: EDT, DMS.

EDT4928 INVALID VALUE

Meaning
Possible error cause:
- In a @COMPARE statement (format 1) the value of int2 is greater than

that of int1.
- The string specified after STRING keyword in a @SET statement (format 3)

cannot be interpreted as a line number.
- A @PARAMS keyword or a @DO operand has an invalid value.
Error switch: EDT.

EDT4929 ISAM ’RECORD-FORMAT=*FIXED’ NOT SUPPORTED

Meaning
An attempt has been made to process a file with fixed record length using the @OPEN
statement and the /SET-FILE-LINK command with LINK-NAME=EDTMAIN.
Error switch: EDT.

EDT4930 Messages

684 U41709-J-Z125-1-76

EDT4930 ’KEY-POSITION <> 1’ AND ’RECORD-FORMAT=*FIXED’ NOT SUPPORTED

Meaning
In a @GET or @SAVE statement an ISAM file has been assigned by means of a
/SET-FILE-LINK ...,LINK-NAME=EDTISAM,ACCESS-METHOD=ISAM(REC-
FORM=FIXED...)
command, but the file does not have ’KEY-POSITION=1’.
Error switch: EDT.

EDT4931 KEY-LENGTH TOO BIG

Meaning
A @GET, @SAVE, @ELIM or @OPEN statement has been issued for a file
with KEY-LENGTH >8.
Error switch: EDT.

EDT4932 LINE NUMBER NOT FOUND

Meaning
A line number has been specified for a string, but the line is not in
the procedure file or the file is empty, or the range of lines specified
in the @COMPARE statement is invalid.
Error switch: EDT.
If a non existing line number has been specified for a string while an EDT
procedure (@DO or @INPUT) is being processed, and logging has not been
activated by means of the PRINT operand, this message is not displayed
and the EDT error switch is not set either. However the statement will not
be processed.

EDT4933 MODULE LOADING NOT POSSIBLE

Meaning
It is not possible to load the module (e.g. EDTSTRT) by means of the
@RUN or @USE statement.
Error switch: EDT.

EDT4934 FILE HAS ACCESS METHOD SAM

Meaning
The first file name specified in the @OPEN statement is the name of a SAM file. A copy of
the SAM file can be processed in real mode by specifying ’@OPEN <file1> AS <file2>’.
Error switch: EDT.

EDT4935 FILE IS OPENED REAL

Meaning
An attempt was made to process a statement that is not permissible
as long as the file is opened real by means of @OPEN
(e.g. @RENUMBER).
Error switch: EDT.

Messages EDT4936

U41709-J-Z125-1-76 685

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT4936 ’KEY-POSITION <>5’ AND ’RECORD-FORMAT=*VARIABLE’ NOT SUPPORTED

Meaning
It is not possible to process a file with that catalog properties by means
of @GET, @SAVE or @OPEN.
Error switch: EDT.

EDT4937 NO MORE SPACE FOR OPERAND VALUES

Meaning
A current operand value or a formal keyword value consisting of n
characters uses (n+1) bytes of a virtual memory page reserved for
procedure file arguments (values). With the exception of empty
operands, this message is displayed if a value causes more than
4096 bytes to be used.
For more detailed information on the error see the "EDT" manual.
Error switch: EDT.

EDT4938 NO MORE SPACE FOR OPERANDS

Meaning
A formal operand of length n (including the ’&’ character) is using (n+4) bytes on a page of
the virtual memory reserved for formal operands of procedure files. If an operand causes
more than 4096 bytes to be used this message is displayed.
The page for formal operands will not be allocated if no operands are used. It will be
returned after all procedure files have been dropped by means of the @DROP statement,
or if no more @INPUT files are active.
For more detailed information on the error see the "EDT" manual.
Error switch: EDT.

EDT4939 ’@END’ WITHOUT ’@PROC’ STATEMENT

Meaning
An @END statement has been specified but there is no procedure file which
has to be ended, that means that the current work file is work file 0.
Error switch: EDT.

EDT4940 POSITION VALUES NOT ASCENDING

Meaning
The values in a @TABS statement to define the positions of the hardware tabulators and
the software tabulators (in Unicode mode) must be in ascending order.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT4941 Messages

686 U41709-J-Z125-1-76

EDT4941 NO POSITIONS DEFINED

Meaning
Tabulators cannot be activated until the positions have been defined.
Error switch: EDT.

Response
Define the positions using the @TABS statement.

EDT4942 STATEMENT ONLY POSSIBLE IN PROCEDURE FILE

Meaning
A @RETURN or @GOTO statement (in compatibility mode also an @IF statement)
can only be executed while a procedure file is being processed.
Error switch: EDT.

EDT4943 CHANGE OF CCS NOT POSSIBLE - WORK FILES NOT EMPTY

Meaning
A change of the coded character set is only possible, if all work files are empty.
Either a @CODENAME statement was issued, or a file with a CCS name different
from the actual was to be input or opened (@READ @OPEN,..).
Error switch: EDT.

Response
Re-enter statement after closing opened files and deleting work files.

EDT4944 @PARAMS STATEMENT MISSING

Meaning
The @DO statement contains operands, but there is no @PARAMS statement in
the procedure file, or it is not the first statement in the procedure
file.
Error switch: EDT.

EDT4945 NOT POSSIBLE ON THIS TERMINAL

Meaning
Possible error cause:
- An attempt was made to change the screen dimension with a @VDT statement

for a terminal other than a 9763.
- An attempt was made to define hardware tabulators for a 3270 terminal.
Error switch: EDT.

EDT4946 OVERFLOW ERROR

Meaning
The result of an integer expression exceeds the highest positive
or negative value of an integer variable (2^31-1,-2^31).
Error switch: EDT.

Messages EDT4947

U41709-J-Z125-1-76 687

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT4947 PAM FILE NOT SUPPORTED

Meaning
An attempt was made to process a PAM file by means of a @GET, @READ @INPUT,
@OPEN, @ELIM, @SAVE or @WRITE statement. PAM files are not supported by EDT.
Error switch: EDT.

EDT4948 POSITIONAL OPERAND AFTER KEYWORD OPERAND

Meaning
In a @DO statement a positional operand has been specified after a keyword operand.
Error switch: EDT.

EDT4949 PROCEDURE FILE IS EMPTY

Meaning
An EDT procedure started by means of a @DO statement is empty.
Error switch: EDT.

EDT4950 WORK FILE IS UNDEFINED

Meaning
No work file was specified in the @DO statement and no work file has
been left with @END before.
In compatibility mode, a possible error cause also may be that in a @DO or @COMPARE
statement a procedure file has been specified that has not been used yet.
Error switch: EDT.

EDT4951 WORK FILE IS EMPTY. STATEMENT NOT PROCESSED

Meaning
The statement refers to a line number which cannot be found as the work file is empty.
Error switch: EDT.

EDT4952 NO SEPARATOR DEFINED

Meaning
The statement @SEPARATE has been issued without operator AT. As there
has not been defined a separator with @PAR SEPARATOR before, the
statement cannot be performed.
Error switch: EDT.

Response
Issue the character for separation in the statement @SEPARATOR after the
operand AT or preset it with @PAR SEPARATOR.

EDT4953 Messages

688 U41709-J-Z125-1-76

EDT4953 NO CHARACTER FOR TABULATOR DEFINED

Meaning
The statement @TABS RANGE has been issued. But there has not been
activated a character for tabulator yet.
Error switch: EDT.

Response
Define and activate a character and positions for the tabulator
before repeating @TABS RANGE.

EDT4954 REQM ERROR. PLEASE ACKNOWLEDGE. REPLY (Y=YES)

Meaning
The attempt by EDT to allocate additional memory is rejected with a
return code, or the ENTRLINE routine has been called by an EDT subroutine
(@RUN), but no virtual memory is available.
Error switch: not set.

Response
Y: EDT returns to the next free line number.
Else: The message will be repeated.
If this message is output during processing of an EDT procedure, the
processing can be ended by issuing K2 and /INTR.

EDT4955 PROCEDURE FILE(S) NOT YET TERMINATED

Meaning
A @DROP statement is not permitted while there are nested procedure files
which are not yet terminated.
Error switch: EDT.

EDT4956 SYSDTA EOF

Meaning
EDT issued a read instruction, but an end-of-file condition occurred.
If ’EOF’ is reported by RDATA (@EDIT ONLY mode), the EDT will switch to
WRTRD (@EDIT mode). If ’EOF’ is reported by WRTRD or in batch mode
EDT will issue a BKPT. Then the EOF condition can be reset, and
processing can be continued by means of the /RESUME-PROGRAM command.
Error switch: EDT.

EDT4957 SYSDTA NOT ASSIGNED OR READ ERROR

Meaning
The RDATA macro supplied the return code X’14’ or X’18’. The EDT run will be aborted and
the message "EDT8001 EDT TERMINATED ABNORMALLY" displayed.
Error switch: EDT.

Messages EDT4958

U41709-J-Z125-1-76 689

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT4958 @SYSTEM STATEMENT INCORRECT

Meaning
The command specified in the @SYSTEM statement contains an invalid operand
or returned an DMS error.
Error switch: DMS.

EDT4959 WORK FILE ALREADY ACTIVE

Meaning
A work file that is currently used to execute a @DO procedure
(active work file), can not be made the actual work file.
Error switch: EDT.

EDT4960 TIAM MACRO ERROR

Meaning
One of the macros WROUT, WRTRD, RDATA or MSG7 reported an error with
return code X’04’ or X’08’.
EDT terminates with the message "EDT8001 EDT TERMINATED ABNORMALLY".
In the case of the return code X’08’ an area dump is output additionally.
Error switch: not set.

EDT4961 TOO MANY PROCEDURE FILES ACTIVE

Meaning
Only 22 procedure files can be processed at the same time.
The @DO statement is rejected.
Error switch: EDT.

EDT4962 TOO MANY NESTED PROCEDURE FILES

Meaning
Only 22 procedure files can be nested. The @PROC statement is rejected.
In compatibility mode, the @INPUT statement is rejected too.
Error switch: EDT.

EDT4963 TOO MANY OPERANDS

Meaning
There are more current operands in the @DO statement than formal operands
in the @PARAMS statement.
Error switch: EDT.

EDT4964 Messages

690 U41709-J-Z125-1-76

EDT4964 LINE NUMBER AREA EMPTY

Meaning
A @ statement (or in Unicode mode a @SET statement, format 6) has been
specified to make the last stored pair of line number and increment the
actual line number and increment. However no more entries exist in the
line number area.
Error switch: EDT.

EDT4965 TOO MANY POSITIONAL OPERANDS

Meaning
There are more positional operands in a @DO statement than have been
specified in a @PARAMS statement.
Error switch: EDT.

EDT4966 ’UPDATE’ FOR ISAM FILE NOT POSSIBLE

Meaning
A @WRITE statement with UPDATE operand has been specified for an ISAM file.
Error switch: EDT.

EDT4967 ’UPDATE’ FOR SAM FILE NOT POSSIBLE

Meaning
A @SAVE statement with UPDATE operand has been specified for a SAM file.
Error switch: EDT.

EDT4968 WORK FILE NOT EMPTY

Meaning
There are still some lines in the work file. Opening a file for real processing using @OPEN
statement is only permitted if the work file is empty.
Error switch: EDT.

EDT4969 WRONG VERSION: (&00) (&01)

Meaning
A file name has been specified in a statement with a wrong version number. In this message
EDT displays the correct version number of the file. If the file is only to be read, the
statement will be processed. In the case of write access, the statement will not be
processed. If a statement containing a wrong version number (write and read access) is
read from an @INPUT file, the procedure will be aborted.
Error switch: DMS.

EDT4971 FIRST FILE EMPTY OR NOT CATALOGED

Meaning
An AS file has been specified in an @OPEN statement but the first file
is either empty or not cataloged.
Error switch: EDT.

Messages EDT4972

U41709-J-Z125-1-76 691

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT4972 @ELIM STATEMENT FOR SAM FILE ILLEGAL

Meaning
The @ELIM statement is only allowed for ISAM files.
Error switch: EDT.

EDT4973 @UPDATE STATEMENT IN BINARY MODE NOT POSSIBLE

Meaning
After activation of binary mode by means of the @INPUT statement
an @UPDATE statement (format 2) has been specified for corrections.
Error switch: EDT.

EDT4974 LINE NOT IN PROCEDURE FILE

Meaning
The line number specified in a @GOTO statement does not exist in the procedure file.
Error switch: EDT.

EDT4975 BIND NOT SUCCESSFUL

Meaning
In the specified module library, DLL could not find any module
with the ENTRY or CSECT name specified in a @RUN statement.
Error switch: EDT.

EDT4976 STATEMENT INHIBITED FOR USER

Meaning
A statement was given by the user (@RUN, @LOAD, etc.)
which is not permitted at the moment.
Possible reasons are:
- running under an userid with special privileges
- running in a non-interruptable procedure
- statement has been inhibited by the calling program.
Error switch: EDT.

EDT4977 ’RECORD-FORMAT=*UNDEFINED’ ILLEGAL

EDT4978 INVALID IN F-MODE

Meaning
The statement is not allowed in full screen mode.

EDT4980 ILLEGAL OR UNKNOWN CCS NAME

Meaning
The CCSN specified in a @CODENAME statement or the CCSN of a file or
library element to be read (@READ, @OPEN, @COPY, @INPUT) or the CCSN
specified in the CODE operand of a Unicode statement is unknown.
Error switch: EDT.

EDT4981 Messages

692 U41709-J-Z125-1-76

EDT4981 RECORD-SIZE > 256. FILE NOT WRITTEN

EDT4982 REQUESTED JOB VARIABLE NOT CATALOGED

Meaning
The name of the job variable specified in a @GETJV, @STAJV, or @ERAJV
statement has not been found in the catalog, or no name was specified
in a @STAJV statement and no job variables exist in the actual user id.
Error switch: EDT, DMS.

EDT4983 CHANGE OF OPERATION MODE NOT POSSIBLE

Meaning
A statement was given to switch from compatibility mode to Unicode mode
(@MODE, @CODENAME) or vice versa (@MODE). However a mode change is only
possible if all work files are empty and no files are opened.
If the statement for switching to compatibility mode was read from an
EDT start procedure or from SYSDTA, the character set of this input file
additionally must be useable in compatibility mode.
Error switch: EDT.

Response
Close opened files (@CLOSE), delete work files (@DELETE)
and re-enter the statement. If necessary, correct input file.

EDT4984 NON-NUMERIC KEY

Meaning
When reading a file an attempt was made to access a record whose key
cannot be made a EDT line number. Processing of the statement was aborted.
Error switch: EDT, DMS.

EDT4985 WRONG VERSION FOR FILE (&00), CORRECT VERSION (&01)

Meaning
The file (&00) has been specified in a write access statement with a
wrong version number. The correct version number is (&01).
The statement will not be processed.
Error switch: EDT, DMS.

EDT5065 INVALID RANGE: LOWER LIMIT > UPPER LIMIT

Meaning
The first line number specified in the range is higher than the second
one.

Response
Correct and re-enter the statement.

Messages EDT5080

U41709-J-Z125-1-76 693

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5080 OPERANDS ’$0’..’$9’, ’FIRST’, ’LAST’ NOT SUPPORTED

Meaning
The specified operands <wkflvar>, FIRST (or FI) or LAST (or LA)
are invalid here.

Response
Instead of @SETF FI use @SETF or @SETF %.
Instead of @SETF LA use @SETF $.
Correct and re-enter statement.

EDT5122 NO FILE NAME

Meaning
No file name has been specified in the @WRITE or @XWRITE statement and no
file is opened for writing back.
Error switch: EDT.

EDT5126 ’(&00)’ NOT POSSIBLE: WORK FILE 0 IS OPEN

Meaning
The file or library element could not be opened because an ISAM file has
been opened real in work file 0 by means of the statement @OPEN
(format 1). A subsequent @OPEN (format 2) or @XOPEN is rejected.
Error switch: EDT.

Response
Enter the @CLOSE statement in order to close the file opened by means of
the @OPEN statement.

EDT5177 NO FILE TO CLOSE

Meaning
A @CLOSE statement was given, but no file is opened.
Error switch: EDT.

EDT5179 PLAM MEMBER MISSING. STATEMENT NOT PROCESSED

EDT5180 ’@CLOSE’ OR ’@CLOSE NOWRITE’ EXPECTED

Meaning
An attempt was made to process a file or library element by means of the
@OPEN or @XOPEN statement, although another file or library element is
already open in that work file.
Error switch: EDT.

Response
Close the processed file or library element by means of @CLOSE or
@CLOSE NOWRITE and re-enter the statement.

EDT5181 Messages

694 U41709-J-Z125-1-76

EDT5181 NO LIBRARY NAME DEFINED

Meaning
Neither in the statement itself nor using the @PAR LIBRARY statement a
library name has been defined.
Error switch: EDT.

EDT5188 NUMBER OF LINES NOT PERMISSIBLE

Meaning
The number specified in the SPLIT statement or in the SPLIT operand of the
@PAR statement for the number of lines in the second work window would
mean that one of the two work windows would contain less than 2 lines.
Error switch: EDT.

EDT5189 ’(&00)’ NOT POSSIBLE: A FILE IS OPENED IN WORK FILE 9

Meaning
A (&00) statement was issued but cannot be performed, for a file is opened in work file 9.

Response
Close the file opened in work file 9.

EDT5191 ’(&00)’ NOT POSSIBLE. WORK FILE (&01) IS NOT EMPTY

Meaning
Statement (&00) (e.g. @OPEN, @XOPEN,...) can only be processed
if the work file (&01) is empty.
Error switch: EDT.

Response
Select another work file or delete the specified work file and re-enter
the statement.

EDT5221 READ ERROR ((&00)): DMS ERROR CODE: ’(&01)’

Meaning
The @OPEN or @COPY statement (format 2) has not been processed due to a
read error of the access method (&00).
(&01): DMS error code.

For more detailed information about the DMS error enter the
ISP command /HELP DMS(&01) or the SDF command /HELP-MESS DMS(&01)’-
in system mode, or see the BS2000 manual "System Messages" or one
of the BS2000 DMS manuals.

Messages EDT5224

U41709-J-Z125-1-76 695

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5224 INVALID ACCESS-METHOD

Meaning
Possible reasons:
- The file specified in a @COPY, @OPEN or @WRITE statement cannot be

processed by EDT because its access-method is neither SAM nor ISAM.
- An attempt was made to write to a not yet existing file associated with

the link name EDTISAM and the access method SAM using the @SAVE statement.
Error switch: EDT, DMS.

Response
Convert the specified file into a SAM or ISAM file resp. change the
access method.

EDT5225 INVALID RECORD-FORMAT

Meaning
The RECORD-FORMAT of a file specified in a @COPY, @OPEN or @WRITE
statement (format 2) cannot be processed by EDT.
At present, EDT supports only files with variable record format.

Response
Convert the specified file to a file with RECORD-FORMAT=VARIABLE.

EDT5226 ’@OPEN’ NOT POSSIBLE: RECORD SIZE > 256

Meaning
A file with fixed record size larger than 256 bytes cannot be handled
by means of @OPEN. The contents of the records would get lost from column
257 on.
Error switch: EDT.

EDT5233 SET ERROR (ISAM): DMS ERROR CODE: ’(&00)’

Meaning
The @COPY statement (format 2) has not been processed due to a SET error.
(&00): DMS error code.

For more detailed information about the DMS error enter the
ISP command /HELP DMS(&00) or the SDF command /HELP-MESS DMS(&00)
in system mode, or see the BS2000 manual "System Messages" or one
of the BS2000 DMS manuals.

EDT5237 Messages

696 U41709-J-Z125-1-76

EDT5237 WRITE ERROR ((&00)): DMS ERROR CODE: ’(&01)’

Meaning
The @CLOSE or @WRITE statement has not been processed due to a write error
in the access method (&00).
(&01): DMS error code.

For more detailed information about the DMS error enter the
ISP command /HELP DMS(&01) or the SDF command /HELP-MESS DMS(&01)
in system mode, or see the BS2000 manual "System Messages" or one
of the BS2000 DMS manuals.

EDT5241 FILE ’(&00)’ FOR COPY OPERATION DOES NOT EXIST

Meaning
The file specified in the COPY statement does not exist. The statement has
not been processed.
(&00): File name.

EDT5244 ’COPY’ STATEMENT WITH ’KEEP’ ONLY VALID FOR ISAM FILES

EDT5245 INVALID RECORD KEY

Meaning
It is not possible to read an ISAM file with an alphanumeric record key.

EDT5246 SECONDARY KEY(S) INCOMPLETLY SET

Meaning
The ISAM file has been written. While restoring the secondary keys
afterwards an error has been reported.
Error switch: EDT.

Response
Check data of secondary keys.

EDT5250 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’(&01)’

Meaning
The PLAM function (&01) (i.g. DETACH, ATTACH,..) called when processing
the statement supplied the error code (&00). The statement has not been processed.

EDT5251 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’CLOSE’

Meaning
The PLAM function CLOSE called when processing the CLOSE statement
supplied the error code (&00). The statement has not been processed.

Messages EDT5252

U41709-J-Z125-1-76 697

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5252 MAXIMUM LINE NUMBER

Meaning
The line number 9999.9999 has been reached. When input from a file or a
SDF-P variable the number of records or list elements is too high.
Error switch: EDT.

EDT5253 SPECIFIED FILE IS NOT A PLAM LIBRARY

Meaning
The file specified in the operand LIBRARY of a @OPEN, @COPY, @WRITE,
@DELETE, @INPUT or @SHOW statement or predefined in a @PAR statement
cannot be accessed by PLAM.
Error switch: EDT.

EDT5254 (&00) NOT IN SYSTEM

Meaning
The specified statement could not be processed because the subsystem (&00)
is not available in the system.
Error switch: EDT, DMS.

EDT5255 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’GETA’

Meaning
The PLAM function GETA called when processing the statement supplied the
error code (&00). The statement has not been processed.

EDT5256 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’ATTACH’ / DMS ERROR CODE ’(&01)’

Meaning
During statement processing the called PLAM function ATTACH reported
the error code (&00). The statement has not been processed.
(&01): DMS error code.

For more detailed information about the DMS error enter the
ISP command /HELP DMS(&01) or the SDF command /HELP-MESS DMS(&01)
in system mode, or see the BS2000 manual "System Messages" or one
of the BS2000 DMS manuals.

EDT5257 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’OPEN’

Meaning
The PLAM function OPEN called when processing the OPEN statement supplied
the error code (&00). The statement has not been processed.

EDT5258 FILE ’(&00)’ ALREADY EXISTS

Meaning
The file (&00) specified in the @OPEN statement already exists.
The statement has not been processed.
Error switch: EDT.

EDT5259 Messages

698 U41709-J-Z125-1-76

EDT5259 CCS ’(&00)’ INCOMPATIBLE WITH TERMINAL

Meaning
A file or library element which was to be read or opened had the catalog
attribute (&00), or the CCS (&00) was asked for at a @CODENAME statement.
It is not possible to change the Coded Character Set to (&00), because the
terminal cannot be set to this.
Error switch: EDT.

EDT5261 ’DELETE’ NOT PROCESSED. LIBRARY ’(&00)’ DOES NOT EXIST

EDT5263 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’PUTA’

Meaning
The PLAM function PUTA called when processing the statement supplied the
error code (&00).
The member has been closed but was not written back.

EDT5266 LIBRARY ’(&00)’ LOCKED

Meaning
The specified library (&00) is read-protected.
The statement has not been processed.

EDT5267 SPECIFIED LIBRARY ’(&00)’ DOES NOT EXIST

Meaning
The library specified in the statement cannot be processed, as it does not exist.
Error switch: EDT.

EDT5268 MEMBER ’(&00)’ IS LOCKED

Meaning
The specified member could not be accessed, as it is either
protected against unauthorized access or has already been opened.
Error switch: EDT.

EDT5270 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ NOT FOUND FOR UPDATE OPERATION

Meaning
The member (&00) in library (&01) specified in the @OPEN statement could
not be found. The statement has not been processed.

Response
Check PLAM typ of required member.

EDT5271 S-VARIABLE NOT FOUND FOR UPDATE

Meaning
A @SETVAR statement was issued with the operand MODE=UPDATE, but the
specified variable has not been defined.
Error switch: EDT.

Messages EDT5272

U41709-J-Z125-1-76 699

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5272 S-VARIABLE ALREADY DECLARED

Meaning
A @SETVAR statement was issued with the operand MODE=NEW, but the
specified variable has already been defined.
Error switch: EDT.

EDT5273 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ ALREADY EXISTS

Meaning
The member (&00) in the library (&01) specified in the @OPEN statement
with operand MODE=NEW already exists.
The statement has not been processed.
Error switch: EDT.

EDT5274 S-VARIABLE NOT DECLARED

Meaning
A @GETVAR, @GETLIST or @SETLIST statement could not be processed
because the specified variable has not been defined yet.
Error switch: EDT.

EDT5275 ’COPY’ NOT POSSIBLE: MEMBER ’(&00)’ DOES NOT EXIST

Meaning
The specified member could not be copied to the virtual data space
because the member does not exist.
The statement (@COPY, @INPUT Format2) has not been processed.

Response
Check PLAM typ of required member.

EDT5278 FILE ’(&00)’ PROTECTED BY PASSWORD

Meaning
Error switch: EDT, DMS.

Response
Contact the file owner.

EDT5279 FILE ’(&00)’ LOCKED

Meaning
The specified file either has already been opened or is read-protected
in compatibility mode.
Error switch: EDT, DMS.

EDT5281 FILE ’(&00)’ DOES NOT EXIST

Meaning
The file specified in the statement cannot be processed, as it does not exist.
Error switch: EDT.

EDT5282 Messages

700 U41709-J-Z125-1-76

EDT5282 FILE ’(&00)’ IS EMPTY OR LOCKED

Meaning
The specified file has last-page pointer 0.
Possible reasons are:
- The file is empty.
- The file is assigned to SYSLST or SYSOUT.

Response
Re-enter statement later.

EDT5283 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’DELETE’

Meaning
When attempting to delete a PLAM member the PLAM DELETE macro issued
error code (&00).

EDT5284 MEMBER ’(&00)’ DOES NOT EXIST

Meaning
The @DELETE statement for member (&00) could not be processed because
the specified member does not exist.
Error switch: EDT.

Response
Re-enter the statement with the correct member name and PLAM typ.

EDT5285 ’SHOW’: PLAM ERROR CODE ’(&00)’

Meaning
When processing the @SHOW statement, a PLAM macro issued the error code (&00).

EDT5286 INVALID USER TYPE

Meaning
The requested library element is not editable. The specified user type
is not equivalent to one of the PLAM types S,M,P,J,D or X.
Error switch: EDT.

EDT5287 NO MEMBERS OF SPECIFIED TYPE OR LIBRARY IS EMPTY

Meaning
The @SHOW statement has not been processed because no members of the
specified type exist, or the library is empty.
Error switch: EDT.

EDT5289 LINK NAME FOR JOB VARIABLE NOT DEFINED

Meaning
An attempt was made to access a job variable by calling it by link name
but a job variable with this link name is not defined.
Error switch: EDT, DMS.

Messages EDT5290

U41709-J-Z125-1-76 701

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5290 BUFFER TOO SMALL

Meaning
EDT has readied a buffer for the output of a system macro:
e.g. for STAJV 8 pages of virtual memory space.
However, this buffer was too small to hold the complete output, with the result that
processing of the macro was rejected with an appropriate return code.
Error switch: EDT.

Response
Reduce the scope of the output by issuing the statement (@STAJV or
@ERAJV) with a partially qualified job variable name
or in case of @SDFTEST, change the options for SDF.

EDT5291 SYSDTA EOF

Meaning
When attempting to read the next statement from SYSDTA the end of the file
(EOF) has been reached.
Error switch: EDT.

Response
Terminate EDT normally by means of the HALT statement.

EDT5293 REQM ERROR

Meaning
No virtual memory is available for file processing.

EDT5294 RELM ERROR

Meaning
An error has occurred while releasing virtual memory.

EDT5295 NO MORE MEMORY AVAILABLE

Meaning
No more virtual memory is available for file processing.
Error switch: EDT.

EDT5300 INTERNAL EDT ERROR ’(&00)’

Meaning
Internal EDT runtime error.
(&00): Error code.

Response
Contact the system support service.

EDT5310 Messages

702 U41709-J-Z125-1-76

EDT5310 UFS FILE ’(&00)’ DOES NOT EXIST

Meaning
The specified UFS-file (&00) cannot be dealt with, for it does not exist.
Error switch: EDT.

EDT5311 UFS FILE ’(&00)’ ALREADY EXISTS

Meaning
The file specified in @OPEN, @WRITE, @XOPEN oder @XWRITE cannot be handled
with the operand MODE=NEW, for it already exists as UFS-file.
Error switch: EDT.

EDT5312 INVALID ACCESS TO UFS FILE ’(&00)’

Meaning
The UFS file whose name was specified in an @OPEN, @COPY, @WRITE, @INPUT,
@XOPEN, @XCOPY oder @XWRITE statement could not been opened
for reading or writing for the access was denied.
Error switch: EDT.

EDT5313 UNABLE TO CREATE UFS FILE ’(&00)’

Meaning
The UFS file &00 could not be opened with MODE=NEW, for a directory
is missing.
Error switch: EDT.

EDT5320 SDF: NO PROGRAM NAME FOR TEST OF STATEMENTS DEFINED

Meaning
The user issued @SDFTEST PROGRAM or marked a line starting with ’//’ with
statement code T, but has not defined a program name yet.
Error switch: EDT.

Response
Issue @SDFTEST with operand PROGRAM=name or define a program
name with @PAR SDF-PROGRAM=name.

EDT5321 SDF: PROGRAM NAME UNKNOWN

Meaning
The program name which was to be used in the statement
@SDFTEST PROGRAM is not known in any active syntax file.
Error switch: EDT.

Messages EDT5322

U41709-J-Z125-1-76 703

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5322 SDF: TEST OPERATION ABORTED

Meaning
Processing of @SDFTEST or the statement code T has been aborted.
A possible reason is that the statement to be tested has more than 255
continuation lines.
Error switch: EDT.

EDT5323 SDF: EXTERNAL PROGRAM NAME NOT SUPPORTED

Meaning
Specification of external program name in @SDFTEST or
@PAR SDF-PROGRAM statement is not supported with actual SDF version.
Error switch: EDT.

Response
Use internal program name instead.

EDT5324 SDF: SYNTAX TEST ABORTED BY USER

Meaning
The syntax check of SDF commands or SDF statements using @SDFTEST has
been aborted by user.
Error switch: EDT.

EDT5325 SDF: LINE TOO LONG

Meaning
A line to be checked syntactically exceeds the maximum length allowed
by SDF (16379 characters). The syntax check will be aborted.
Error switch: EDT.

EDT5326 SDF: OUTPUT TOO LONG

Meaning
The output for a line checked by SDF exceeds the maximum length allowed
by SDF (16379 characters). The syntax check will be aborted.
Error switch: EDT.

EDT5327 CANNOT CONVERT TO TERMINAL CCS

Meaning
The actual character set cannot be converted into the terminal character
set in order to allow a SDF error dialog. The syntax check will be aborted.
Error switch: EDT.

EDT5340 Messages

704 U41709-J-Z125-1-76

EDT5340 CANNOT GET S-VARIABLE

Meaning
The statement @GETVAR or @GETLIST could not be processed because the specified
variable is not set to any value, or the list does not contain any element.
Error switch: EDT.

EDT5341 S-VARIABLE LONGER THAN 256 CHARACTERS

Meaning
The @GETVAR statement could not be performed, for the value of the
specified variable is a string longer than 256 characters.
Error switch: EDT.

EDT5342 WRONG TYPE OF S-VARIABLE

Meaning
The @GETVAR or @SETVAR statement could not be processed, for the type of
the specified variable does not match the operand on the right side of the
equal sign.
Error switch: EDT.

Response
A SDF-P variable of type INTEGER can only be put to an integer variable
and vice versa.

EDT5343 WRONG TYPE OF LIST ELEMENT

Meaning
The statement @GETLIST or @SETLIST could not be processed for the elements
of the specified list variable are not of type STRING.
Error switch: EDT.

EDT5350 COMPARE RESULT CANNOT BE SHOWN

Meaning
The output file is one of the work files to be compared.
Error switch: EDT.

EDT5351 COMPARE OPERATION ABORTED

Meaning
While processing the @COMPARE statement (format 2), an unrecoverable error
occurred causing the compare operation to be aborted.
Error switch: EDT.

Messages EDT5352

U41709-J-Z125-1-76 705

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5352 COMPARE OPERATION ABORTED, RENUMBER

Meaning
Processing of the @COMPARE statement (format 2) has been aborted. The last byte of a
line number used internally during comparison is not ’0’. The work files must be renumbered
before the compare operation can be tried again.
Error switch: EDT.

EDT5353 UNRECOVERABLE FORMAT ERROR ON SCREEN DISPLAY

Meaning
When building data for screen output, an unrecoverable format error
occurrred. EDT will be terminated.

EDT5354 STRUCTURE SYMBOL ’(&00)’ NOT FOUND

Meaning
The structure symbol (&00) does not exist in the specified line.
No positioning has been performed.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT5356 K-LINE NOT COPIED BECAUSE OF TERMINAL CONTROL CHARACTERS

Meaning
K-line cannot be copied to the statement line because it contains
screen control characters.
Error switch: not set.

EDT5357 LINE DOES NOT EXIST

Meaning
The line specified in format 2 of the @CODE statement by <ln> does not exist.
Error switch: EDT.

EDT5358 LINE SHORTER THAN 256 BYTES

Meaning
The line specified in format 1 of the @CODE statement by <ln> is shorter than 256 bytes.
Error switch: EDT.

EDT5359 MAXIMUM LINE NUMBER. COPY INCOMPLETE

Meaning
Processing of the COPY statement is aborted because the maximum
permissible line number has been exceeded.
(See also error message: EDT5252 MAXIMUM LINE NUMBER.)
Error switch: EDT.

EDT5360 Messages

706 U41709-J-Z125-1-76

EDT5360 NO COPY. BUFFER EMPTY

Meaning
The copy buffer is empty, therefore the statement code A/B/O cannot be processed.

EDT5362 <TEXT> SPECIFICATION ILLEGAL IN CURRENT STATEMENT

EDT5364 NO INSERT: MAXIMUM LINE NUMBER

Meaning
New data lines cannot be inserted at the end of work file by means of a
statement or a statement code because this would cause the maximum
permissible number of lines to be exceeded.
Error switch: EDT.

EDT5365 NO INSERT: RENUMBERING INHIBITED

Meaning
The required lines cannot be inserted without renumbering the existing
lines. Renumbering is, however, inhibited as the operand RENUMBER=OFF has
been specified in a @PAR statement.
Error switch: EDT.

EDT5366 NO P-KEYS ON THIS TERMINAL

Meaning
The @P-KEYS statement has been called on a data display terminal without p-keys.

EDT5368 SECOND STATEMENT LINE NOT EMPTY

Meaning
SPLIT OFF or @PAR with operand SPLIT=OFF has been specified in the first
statement line of the screen, even though the second statement line contains a statement.

EDT5371 TARGET FILE IS CURRENT WORK FILE

Meaning
The statement has not been processed because the target file is identical
with the current work file.

EDT5372 ENTRY DOES NOT EXIST IN SPECIFIED LIBRARY OR TASKLIB

Meaning
The specified entry does not exist and could therefore not be loaded dynamically.

Response
Correct and re-enter the statement, or create the library.

Messages EDT5373

U41709-J-Z125-1-76 707

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5373 NO MORE THAN 5 USER SYMBOLS ARE PERMITTED

Meaning
5 is the maximum permissible number of user statement symbols that can be
specified using a @USE statement.
Error switch: EDT.

Response
Delete a symbol by means of the @USE statement and define a new symbol.

EDT5375 NO ’USE’ ENTRY DEFINED WITH SPECIFIED SYMBOL

Meaning
The specified USE entry has not been defined and thus cannot be deleted.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT5376 STATEMENT BUFFER EMPTY

Meaning
The SHIH statement has not been processed because no statements
have been stored previously in the statement buffer.

EDT5380 SOME JOB VARIABLES NOT ERASED

Meaning
An attempt was made to erase all job variables whose name was specified
as partially qualified or using wildcards,
but some of these job variables could not be erased.
Possible reasons:
- the job variable is only open for read access
- the job variable is protected as a monitoring job variable.
Error switch: EDT.

EDT5381 JOB VARIABLES NOT ERASED

Meaning
More than one job variable matches the string specified in the @ERAJV
statement given in batch mode without an ALL operand.
The @ERAJV statement will not be processed.
Error switch: EDT.

EDT5400 NOT SUPPORTED ON THIS INTERFACE

Meaning
The statement is not possible in this work mode or at this subroutine interface.
Error switch: EDT.

EDT5402 Messages

708 U41709-J-Z125-1-76

EDT5402 ENTER AT LEAST 2 CHARACTERS FOR ’@DELETE’

Meaning
In F mode at least two characters (@D or DE) have to be specified if the
@DELETE statement is entered without any operands.

EDT5409 STATEMENT ILLEGAL IN THIS ENVIRONMENT

Meaning
A statement filter only can be defined if the @USE statement is issued
at the subroutine interface.
Error switch: EDT.

EDT5410 UNDEFINED ERROR IN USER PROGRAM

Meaning
EDT received an undefined return code from a user program without any
additional information.
Error switch: EDT.

Response
Correct the user program.

EDT5419 (&00)

Meaning
EDT received an undefined return code from a user program with the
message (&00).
Error switch: EDT.

Response
Correct the user program.

EDT5442 TERMINAL BUFFER TOO SMALL. SCREEN FORMAT SET TO F1

Meaning
With the choosen screen format, the length of screen output would exceed
the terminal buffer size. The screen format is changed to F1.
Error switch: EDT.

EDT5443 TERMINAL BUFFER TOO SMALL. CHANGED TO L-MODE

Meaning
The length of screen output in F mode would exceed the terminal buffer size.
The operating mode is changed to L mode.
Error switch: EDT.

Messages EDT5444

U41709-J-Z125-1-76 709

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5444 FILE WRITE NOT POSSIBLE. RECORD LONGER THAN (&00) BYTES

Meaning
When writing a file using a @WRITE, @CLOSE or @SAVE statement, or writing
in a file opened in real mode, a record would exceed the maximum
file record size (&00). The record size may be limited by the blocking
factor or a fixed record length specification. It should be noted that for
Unicode character sets the record size in bytes may be greater than the
number of characters in the work file line, and that it may depend on
the chosen character set.
The file writing will be aborted or the real opened file will be closed.
Error switch: EDT.

EDT5445 DUPLICATE KEYS IN REAL OPENED FILE DETECTED

Meaning
In a file opened in real mode by means of an @OPEN statement duplicate
keys were detected. Processing of the file will be aborted.
Error switch: EDT.

EDT5446 LINE NUMBER TOO BIG

Meaning
In a file opened in real mode by means of an @OPEN statement a line number
cannot be used as key because it is too big for the specified key length of the file.
Error switch: EDT.

EDT5447 PRINTING FAILED

Meaning
The immediate output to the printer has not been processed, because an
error occurred during the print system call.
Error switch: EDT, DMS.

EDT5448 CANNOT USE TEMPORARY FILE

Meaning
A temporary file is needed for immediately outputting a work file range to
the printer. However it is not available due to the actual BS2000 system parameters.
Error switch: EDT.

EDT5449 NOT ENOUGH LINES FOR HEX MODE

Meaning
On a split screen there are less lines in the work window than would be
needed for diplaying a line in hexadecimal mode.
Error switch: EDT.

Response
Enlarge the work window (@PAR SPLIT).

EDT5450 Messages

710 U41709-J-Z125-1-76

EDT5450 NATIONAL EDT: INTERNAL ERROR. RETURNCODE = X’(&00)’ AT CCS (&01)

Meaning
Processing of the user defined CCS (&01) was aborted on a national
terminal due to an internal error.
(&00): Error code.

Response
Contact the system support service.

EDT5451 CANNOT OPEN TAPE FILE

Meaning
A magnetic tape file cannot be opened by means of a @OPEN statement.
Error switch: EDT.

EDT5452 CHANGE OF CCS NOT POSSIBLE FOR REAL OPENED FILES

Meaning
An attempt was made to change the coded character set of the work file in
which a file is opened in real mode, or the coded character set of a file
to be opened in real mode is different from that of the actual work file.
The @CODENAME resp. @OPEN statement will not be processed.
Error switch: EDT.

EDT5453 SOME CHARACTER CANNOT BE CONVERTED

Meaning
Some characters of the string are not defined in the target character set.
The string cannot be converted.
Error switch: EDT.

Response
Define substitution character using @PAR SUBSTITUTION-CHARACTER.

EDT5454 ILLEGAL BYTE SEQUENCE IN INPUT DATA

Meaning
In a file, a job variable, a S variable or a record delivered over the
subroutine interface there is a byte sequence, which does not correspond
to a valid character in the target character set. The file, the variable
or the record will not be read.
Error switch: EDT.

Messages EDT5456

U41709-J-Z125-1-76 711

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5456 SOME CHARACTERS CANNOT BE CONVERTED AND SOME LINES MUST BE TRUNCATED

Meaning
A check with @CHECK (Format 2) resulted both in characters not contained
in the target code set and in lines or string variables whose length is
longer than the maximum length allowed.
Error switch: EDT.

Response
Define substitution character using @PAR SUBSTITUTION-CHARACTER.
Split or shorten lines or string variables.

EDT5457 FILE CCS DIFFERENT FROM WORK FILE CCS, FILE NOT WRITTEN

Meaning
The coded character set of the work file is different from the coded character set of the file
the work file should be written to. The file will not be written.
Error switch: EDT.

Response
Specify operand CODE in @CLOSE or @WRITE statement.

EDT5458 CCS CANNOT BE CHANGED

Meaning
In a @CREATE statement a coded character set is specified for the actual
work file. However this work file already has a different coded character
set. The @CREATE statement will not be processed.
Error switch: EDT.

EDT5459 CANNOT CREATE LINE NUMBER FROM ISAM KEY

Meaning
When reading an ISAM file whose key position is different from standard,
whose key length is too big or whose keys are not numeric, the line
number shall be built from ISAM key. The file will not be read.
Error switch: EDT.

Response
Read the file using KEY=DATA.

EDT5460 CANNOT CONVERT HEX OR BIN CHARACTER TO WORK FILE CCS

Meaning
A hexadecimal or binary value does not correspond to a valid character
in the work file’s coded character set. The input is rejected.
Error switch: EDT.

EDT5461 Messages

712 U41709-J-Z125-1-76

EDT5461 QUOTE SYMBOL MUST BE DIFFERENT TO WILDCARD SYMBOLS

Meaning
An attempt was made to define a character as string delimiter symbol
(single or double quote) which is currently used as wildcard symbol (see
@SYMBOLS). The @QUOTE statement will not be processed.
Error switch: EDT.

EDT5462 SOME LINES MUST BE TRUNCATED

Meaning
A check with @CHECK (Format 2) resulted in lines or string variables whose
length is longer than the maximum length allowed.
Error switch: EDT.

Response
Split or shorten lines or string variables.

EDT5463 TABULATOR POSITION NUMBER EXCEEDS MAXIMUM VALUE SUPPORTED BY HARDWARE

Meaning
The number of hardware tabulator positions defined in the @TABS statement
exceeds the maximum value allowed by the terminal.
The statement will not be processed.
Error switch: EDT.

EDT5465 CANNOT CREATE ISAM KEY FROM LINE NUMBER

Meaning
When writing an ISAM file whose key position is different from standard or
whose key length is too big, the ISAM key shall be built from the line
number. The file will not be written.
Error switch: EDT.

Response
Write the file using KEY=DATA.

EDT5466 CANNOT IGNORE ISAM KEY

Meaning
When reading an ISAM file whose key position is different from standard,
the ISAM key shall be ignored. The file will not be read.
Error switch: EDT.

Response
Read the file using KEY=DATA.

Messages EDT5467

U41709-J-Z125-1-76 713

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5467 NO FILE OPEN

Meaning
In the @CHECK statement CODE=*FILE was specified and no file is opened.
Error switch: EDT.

Response
Specify another value for CODE operand.

EDT5468 LENGTH OF ISAM KEY CHANGED, FILE NOT WRITTEN

Meaning
If an ISAM file was opened using @OPEN statement and the coded character
set was changed from UTF16 to another character set or vice versa either
explicitly or implicitly by specifying a corresponding CODE operand in the
@WRITE or @CLOSE statement, the file cannot be written back
because this would change the length of the ISAM key.
Error switch: EDT.

EDT5469 INITIALIZATION ROUTINE MISSING

Meaning
For a user subroutine in V17 format there must exist an initialisation
routine. The @RUN statement will not be processed.
Error switch: EDT.

EDT5470 VERSION ERROR IN INITIALIZATION ROUTINE

Meaning
The initialisation routine for an external statement routine or for a
user subroutine does not support the version of control block
(Returncode EUPVEERR is given).
The statement will not be processed.
Error switch: EDT.

EDT5471 RUNTIME ERROR IN INITIALIZATION ROUTINE

Meaning
An error occurrred in the initialisation routine for an external statement
routine or for a user subroutine (Returncode EUPRTERR is given).
Error switch: EDT.

EDT5472 MINIMUM LINE NUMBER

Meaning
Using the @- statement, an attempt was made to set the actual line number
to a number less than the smallest possible number (0.0001).
Error switch: EDT.

EDT5473 Messages

714 U41709-J-Z125-1-76

EDT5473 CCS OF STRING VARIABLES INCONSISTENT

Meaning
When a range of string variables is checked via @SEQUENCE statement
(format 3), either all variables must have a Unicode character set
or all must have a 7 bit or 8 bit character set.
The statement will not be processed.
Error switch: EDT.

EDT5474 MODIFIED LINE > 32768 CHARACTERS

Meaning
An edited line became too long as a result of modification with @COLUMN,
@PREFIX or @SUFFIX statement. Processing of statement will be aborted.
Error switch: EDT.

EDT5475 LINE NUMBER OUT OF RANGE

Meaning
The value of a line number given indirectly or as result of an arithmetic
expression is outside the valid range 0000.0001..9999.9999.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT5476 CANNOT DELETE AN ACTIVE WORK FILE

Meaning
A work file that is currently used to execute a @DO procedure
(active work file), cannot be deleted.
Error switch: EDT.

EDT5477 STRING CONTENT INVALID

Meaning
The content of a string which has to be interpreted as integer in the @SET
statement (format 1) or as line number in the @SET statement (format 3)
is invalid.
Error switch: EDT.

EDT5478 @PARAMS STATEMENT INVALID

Meaning
A syntactical error occurred in the @PARAMS statement of a @DO procedure
to be executed.
Error switch: EDT.

Messages EDT5479

U41709-J-Z125-1-76 715

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5479 @PARAMS STATEMENT NOT FIRST LINE OF PROCEDURE

Meaning
The @PARAMS statement has to be in the first line of the @DO procedure to be executed.
Error switch: EDT.

EDT5480 LINK NAME ’(&00)’ NOT DEFINED

Meaning
The link name specified in a @COPY, @OPEN, @WRITE or @INPUT statement
is not defined.
Error switch: EDT, DMS.

EDT5481 INVALID RECORD-FORMAT

Meaning
An attempt was made to access a file with RECORD-FORMAT=UNDEFINED or a
file with RECORD-FORMAT=FIXED which has an odd record size and the coded
character set UTF16. The statement will not be processed.
Error switch: EDT, DMS.

EDT5482 INVALID ACCESS TO FILE ’(&00)’

Meaning
The file (&00) specified in an I/O statement could not be opened
as the access was denied.
Error switch: EDT, DMS.

EDT5483 INVALID ACCESS TO MEMBER ’(&00)’ IN LIBRARY ’(&01)’

Meaning
The element (&00) of library (&01) specified in an I/O statement could not
be opened as the access was denied.
Error switch: EDT.

EDT5484 NO @FILE ENTRY DEFINED

Meaning
The file name operand is not given in an I/O statement, but neither a
local nor a global @FILE entry is defined.
Error switch: EDT.

EDT5485 INPUT TOO LONG

Meaning
If a statement with indirect operands is given, the sum of the operation
string length and the length of the string variable exceeds the
maximum line length of 32768 characters.
Error switch: EDT.

EDT5486 Messages

716 U41709-J-Z125-1-76

EDT5486 WILDCARD SYMBOL MUST BE DIFFERENT TO QUOTE SYMBOLS

Meaning
An attempt was made to define a character as wildcard symbol (ASTERISK,
SLASH) which is currently used as string delimiter symbol (see @QUOTE).
The @SYMBOLS statement will not be processed.
Error switch: EDT.

EDT5487 CCS ’(&00)’ NOT SUPPORTED BY TERMINAL

Meaning
The communication character set given in the @CODENAME ...,TERMINAL
statement cannot be used as it is not supported by the terminal.
Error switch: EDT.

EDT5488 TERMINAL NOT SUPPORTED

Meaning
The actual terminal is not supported by EDT (Unicode mode).

EDT5489 FILES MUST BE DIFFERENT

Meaning
An attempt was made to open the copy of a file for real processing
(AS operand). However both files specified in @OPEN are identical.
Error switch: EDT.

EDT5490 ILLEGAL CCS NAME SPECIFIED

Meaning
An illegal CCS name was specified at the subroutine interface.
Error switch: EDT.

EDT5491 XHCS MISSING OR HAS WRONG VERSION

Meaning
The subsystem XHCS does not exist or it has a version not sufficient for
EDT. EDT can not be started.
Error switch: EDT.

EDT5492 ILLEGAL RECORD FORMAT

Meaning
There are Format-B records in the library element. EDT cannot process these records.
Error switch: EDT.

Messages EDT5493

U41709-J-Z125-1-76 717

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT5493 STRING CANNOT BE CONVERTED

Meaning
Some characters of a string in the @ON statement are not defined in the
character set of the line actually processed. The string cannot be
converted. Processing of statement will be aborted.
Error switch: EDT.

EDT5494 ’FORCE’ OPERAND NOT ALLOWED

Meaning
The FORCE operand in the @CODENAME statement is not allowed for Unicode
character sets.
Error switch: EDT.

EDT5495 NO FILES CORRESPONDING TO SPECIFIED OPERANDS

Meaning
No files match the file specification in @SHOW or @FSTAT statement.
Error switch: EDT.

EDT5496 INVALID VALUE FOR ATTRIBUTE (&00) IN TFT

Meaning
The file specified via a link name cannot be created, because the
attribute (&00) in the Task File Table has an invalid value.
Error switch: EDT, DMS.

EDT5497 ’(&00)’ NOT POSSIBLE FOR PLAM ELEMENT TYPE ’(&01)’

Meaning
Library elements of the type R, C, H, L, U, F or corresponding free type
cannot be used with the statements @COPY, @OPEN, @WRITE or @INPUT.
Error switch: EDT.

EDT5498 CANNOT WRITE TO SYSLST

Meaning
When writing to SYSLST, an error occurred. Output will be terminated.
Messages of EDT will be logged to SYSOUT from now.
Error switch: EDT.

EDT5499 WORK FILES MUST BE DIFFERENT

Meaning
Both work files specified in @COMPARE statement are identical.
Error switch: EDT.

EDT5500 Messages

718 U41709-J-Z125-1-76

EDT5500 STATEMENT SEQUENCE PROCESSING INTERRUPTED BY USER

Meaning
A statement sequence was specified in F-Mode dialog, in L-Mode dialog
(block mode) or at the subroutine interface. The processing
was interrupted by the user by means of a /INFORM-PROGRAM or
/INTR command.
In F-Mode dialog, the rest of the statement sequence, which has not been
processed, is output to the command line.

EDT5501 STATEMENT ’(&00)’ INTERRUPTED BY USER

Meaning
The processing of statement (&00) was interrupted by the user by means
of a /INFORM-PROGRAM or /INTR command.

EDT5502 PROCEDURE INTERRUPTED BY USER

Meaning
The processing of a @DO or @INPUT procedure was interrupted by the user
by means of a /INFORM-PROGRAM or /INTR command.

EDT5990 (&00)

Meaning
The test routine reports an error with the message (&00).
Error switch: EDT.

EDT5991 RUNTIME ERROR IN EXTERNAL STATEMENT

Meaning
The external routine reports a runtime error in the execution of the
specified statement without any additional information.
Error switch: EDT.

EDT5999 (&00)

Meaning
The external routine reports a runtime error in the execution of the
specified statement with the message (&00).
Error switch: EDT.

EDT8000 EDT TERMINATED

Meaning
EDT termination message in the case of a normal program termination.

EDT8001 EDT TERMINATED ABNORMALLY

Meaning
EDT termination message in the case of an abnormal program termination.

Messages EDT8002

U41709-J-Z125-1-76 719

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
13

.5
6

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
13

EDT8002 (&00) TO EDT UNSUCCESSFULLY. RETURNCODE = X’(&01)’

Meaning
An error has occured during the dynamic loading of EDT. The macro
(&00) rejected the loading with returncode (&01).
If the retuncode is X’0C010104’, then a call of EDT under service user id
is only possible if EDT subsystem is loaded.

EDT8003 NO VIRTUAL MEMORY AVAILABLE

Meaning
The initialisation of EDT could not be processed, as there is not enough
memory for the EDT internal data.

Response
Release virtual memory.

EDT8005 ERROR ON EDT INITIALIZATION

Meaning
An error occurred during initialisation of EDT.

EDT8006 ERROR ON INSTALLATION OF EDT

Meaning
The EDT installation items are inconsistent, or EDT cannot be started
under current operating system version.

Response
Check and correct the installation of EDT.

EDT8100 EDT INTERRUPTED BY USER

Meaning
This message serves as information for SDF-P procedures.
EDT is loaded, but has been interrupted by @SYSTEM (without operand) or by
an explicit K2.

EDT8101 USER TERMINATED EDT ABNORMALLY

Meaning
The user terminated EDT by the statement @HALT ABNORMAL.

EDT8200 STXIT ROUTINE FOR RUNOUT ACTIVATED

Meaning
The end of the program run time has been reached, therefore EDT is terminated.

EDT8292 UNRECOVERABLE READ ERROR. PROGRAM ABORTED

Meaning
An unrecoverable error occurred while reading from SYSDTA or from terminal.
EDT is terminated.

EDT8293 Messages

720 U41709-J-Z125-1-76

EDT8293 UNRECOVERABLE WRITE ERROR. PROGRAM ABORTED

Meaning
An unrecoverable error occurred while writing to SYSOUT. EDT is terminated.

EDT8300 INTERNAL EDT ERROR ’(&00)’

Meaning
EDT program error.

Response
Contact the system administrator.

EDT8900 NO VIRTUAL ADDRESS SPACE AVAILABLE

Meaning
During loading, EDT requests 4 pages in the virtual address space
for data and variables by means of REQM. If REQM encounters an error
this message is displayed and EDT is terminated. If EDT is called as a
subroutine, return code X’10’ is supplied right-justified in register 15.

EDT8901 ERROR RECOVERY FAILED. EDT ABORTED

Meaning
The interrupt error recovery after a data error could not be completed successfully.
Error switch: not set.

EDT8902 ’@HALT’ STATEMENT PROCESSED

Meaning
A data error or an unrecoverable error occurred in an EDT batch job.
Error switch: EDT.

EDT8910 EDT INTERRUPTED AT LOCATION ’(&00)’, INTERRUPT WEIGHT=(&01)

Meaning
A program interruption of event class "program error" or "unrecoverable
program error" occurred at location (&00). Detailed information about
the error cause is given by the interrupt weight (&01).

Response
Contact the system administrator.

U41709-J-Z125-1-76 721

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
14

14 Logistics
This section describes the requirements and procedures for the installation and start-up of
EDT V17.0A.

14.1 Software requirements

EDT V17.0A has been released for operating system versions as of OSD-BC V6.0. To
provide support for Unicode mode, the following subsystems must be installed and running
in the system:

XHCS-SYS V2.0 A14 or higher

CRTE-BASYS V1.6 A10 or higher

VTSU V13.2 A05 or higher

TIAM V13.1 C03 or higher

SYSFILE V15.0 C00 or higher

The following are also required for individual functions:

JV V14.0 or higher if job variables are to be used

SDF V4.6 or higher if the @SDFTEST statement or the T statement code are to be
used

SDF-P V2.3 or higher if S list variables are to be used

POSIX V6.0 A39 or higher if POSIX files are to be processed

The user-friendly handling of Unicode files in interactive mode is only possible when
working with a terminal emulation which is able to process Unicode characters, e.g. under
Windows the emulation MT9750TM V7.0 or higher.

Scope of delivery Logistics

722 U41709-J-Z125-1-76

14.2 Scope of delivery

The product EDT V17.0A comprises the following release items:

Note
The SYSNRF files supplied in the past are no longer required. Instead the REPs for
EDT are indicated by the corresponding REP identifier.
(S for Selectable Unit or U for Selectable Unit Optional).

The SYSACF file for assigning the alias name $.EDTLIB is no longer supplied. Instead
of incorporating the SYSACF file in the system alias catalog, the same result can be
achieved using the system administrator command:

/ADD-ALIAS-CATALOG-ENTRY ALIAS-FILE-NAME=$.EDTLIB,FILENAME=$.SYLNK.EDT.170

If installation is performed using IMON then the phase for starting in compatibility mode
(SYSPRG.EDT.170) is stored under the name EDT in the installation ID.

Release item Content
SYSPRG.EDT.170.EDTU Phase for EDT (start in Unicode mode)
SYSPRG.EDT.170 Phase for EDT (start in compatibility mode)
SYSLNK.EDT.170 EDT module library
SYSLNK.EDT.170.INIT Library containing the EDT initialization module
SYSLIB.EDT.170 User macro library
SYSMES.EDT.170 System message file
SYSSSC.EDT.170 Subsystem declaration for SSCM
SYSSII.EDT.170 Structure and installation information
SYSRMS.EDT.170 Correction storage for RMS
SYSREP.EDT.170 REP file
SYSFGM.EDT.170.D Release Note (German)
SYSFGM.EDT.170.E Release Note (English)
SYSSDF.EDT.170 Syntax file for SDF (START-EDT / START-EDTU)
SINPRC.EDT.170 Procedure for installing a private version
SYSSMB.EDT.170 Symbol information for diagnosis with DAMP

Logistics Product structure

U41709-J-Z125-1-76 723

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
14

14.3 Product structure

The file SYSSII.EDT.170 contains the structure and installation information. Logical
names (Logical ID) are assigned to the product components. IMON can use these to identify
the current installation location.

The module library SYSLNK.EDT.170 contains the following modules:

Release item Logical ID
SYSPRG.EDT.170.EDTU
SYSPRG.EDT.170
SYSLNK.EDT.170
SYSLNK.EDT.170.INIT
SYSLIB.EDT.170
SYSMES.EDT.170
SYSSSC.EDT.170
SYSSII.EDT.170
SYSRMS.EDT.170
SYSREP.EDT.170
SYSFGM.EDT.170.D
SYSFGM.EDT.170.E
SYSSDF.EDT.170
SINPRC.EDT.170
SYSSMB.EDT.170
*DUMMY.EDTSTART

SYSPRG.EDTU
SYSPRG
SYSLNK
SYSLNK.INIT
SYSLIB
SYSMES
SYSSSC
SYSSII
SYSRMS
SYSREP
SYSFGM.D
SYSFGM.E
SYSSDF
SINPRC
SYSSMB
SYSDAT.EDTSTART

Module Function Unicode
/compatibility
mode

EDTSTRT Drivers for START-EDT and START-EDTU U/C
EDTU Main module for EDT U
EDT Main module for EDT C
EDTXCODIR Dynamically loadable module for CODE statement C
EDTXPKEY Dynamically loadable module for PKEY statement C
EDTSSLNK DSSM dynamically loadable module U/C
IEDTGLE Link and load module for EDT as a subroutine U/C
CODTAB Code table for CODE statement C
EDTCON Connection module for EDT, switch operating mode U/C
EDCNATA Dynamically loadable module for national applications C

Installation Logistics

724 U41709-J-Z125-1-76

The module library SYSLNK.EDT.170.INIT contains the following module:

Details concerning the components which are only required for compatibility mode are not
described any further here. The corresponding descriptions can be found in the EDT
V16.6B User Guide [2].

14.4 Installation

EDT can be installed publicly using the SOLIS procedure or can be installed by a user as a
private installation under any required user ID.

14.4.1 Public installation

By default, the product is installed using the SOLIS procedure. In turn, this requires the
IMON installation monitor. EDT V17.0 can no longer be used in systems in which IMON is
not present.

In existing programs which call EDT via the L mode subroutine interface, the library name
$EDTLIB is present as a fixed program element. This type of program can only work with
EDT V17.0 in compatibility mode. To ensure that these programs can continue to run
unchanged, it is either necessary to save a copy of the library SYSLNK.EDT.170 under the
name $TSOS.EDTLIB or make a corresponding entry in the global system alias catalog (see
manual Guide to Systems Support [13] section ACS: Alias catalog system).

Module Function Unicode
/compatibility
mode

IEDTCRT Module for initializing EDT and switching between Unicode
and compatibility mode.

U/C

Logistics Installation

U41709-J-Z125-1-76 725

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
14

The REP file SYSREP.EDT.170 must be shareable (USER-ACCESS=SPECIAL). Only then
are the corrections loaded on the dynamic loading of EDT.

For performance reasons, it is also possible to load EDT as a subsystem (see below).

Start procedure: EDTSTART

For each publicly installed EDT version, IMON can be used to install an EDT start
procedure which is valid for all user IDs. The installation location of the procedure file can
be chosen freely as required (see also the section on the EDT start procedure). The logical
identification SYSDAT.EDTSTART is defined for this file in the SYSSII file.

The /SET-INSTALLATION-PATH command can be used to inform the installation monitor
of the installation file name. EDT retrieves this information using the IMON function
GETINSP and the defined path is set instead of $.EDTSTART. If no file is assigned to the
logical ID SYSDAT.EDTSTART then EDT uses the EDT start procedure $.EDTSTART if this
exists.

EDT as subsystem

EDT consists of three subsystems: EDTCON, EDTU and EDT. All the EDT subsystems run
independently of the addressing mode, i.e. they can run with 24-bit or 31-bit addressing.
The decision whether to load a subsystem into the upper or lower address space therefore
depends on the addressing mode applicable to the most frequent users of the EDT
subroutine interface.

The EDTCON subsystem (which consists of the modules EDTCON, IEDTGLE and EDTSSLNK)
is loaded into the lower address space. In EDT V17.0A, EDTCON is simply an adapter which
supplies the previous EDT entries in compatible form and dynamically loads its own initial-
ization module IEDTCRT from the library SYSLNK.EDT.170.INIT into the user's address
space. However, the EDTCON module is no longer supplied as an OM but as an LLM.

The EDTU and/or EDT subsystems can be loaded into the upper address space. The EDTU
subsystem contains the modules which are required for EDT to run in Unicode mode, while
the EDT subsystem contains the equivalent modules for compatibility mode. Depending on
the intended type of utilization, it may make sense to preload only one of the two
subsystems. When the operating mode is switched, the other subsystem would then be
dynamically loaded as a private copy. However, it is only possible to preload these two
subsystems if the EDTCON subsystem has already been preloaded.

If EDT is to run as a main program or subroutine in 24-bit addressing mode then either the
IEDTCRT module establishes a connection to an EDT system loaded in the lower address
space or EDT is dynamically loaded privately in the lower address space.

The mechanism for switching between the EDT operating modes is also implemented in
IEDTCRT. This means that depending on whether EDT is called as a main program via
/START-EDTU or /START-EDT or, equally, on the employed version of the subroutine

Installation Logistics

726 U41709-J-Z125-1-76

interface, processing branches either to the EDTU subsystem (Unicode mode) or the EDT
subsystem (compatibility mode). IEDTCRT functions are also used when the operating
mode is changed explicitly or implicitly due to user input.

The EDTCON subsystem can be preloaded with

/START-SUBSYSTEM SUBSYSTEM-NAME=EDTCON,SYNC=*YES

It is then possible to start the subsystems EDTU and/or EDT using

/START-SUBSYSTEM SUBSYSTEM-NAME=EDTU

or

/START-SUBSYSTEM SUBSYSTEM-NAME=EDT

in any desired order.

14.4.2 Private installation

The file SINPRC.EDT.170 contains a procedure which can be used to install a private
version under any user ID. Private versions should only be used for test purposes and
should not lead to the coexistence of two EDT versions.

Before this procedure is called, at least the following files must be available under the instal-
lation ID for the private EDT version:

– SYSPRG.EDT.170 and SYSPRG.EDT.170.EDTU (starter phases)
– SYSLNK.EDT.170 (module library)
– SYSLNK.EDT.170.INIT (module library containing the EDT initialization routine)
– SYSREP.EDT.170 (REP file)

For reasons of compatibility, a file named EDT is also used as the starter phase for compat-
ibility mode (as in a public installation) if no file named SYSPRG.EDT.170 is present under
the installation ID. However, it is advisable to use the name SYSPRG.EDT.170 since this is
the only way of creating multiple private installations of different EDT versions under a
single installation ID.

The procedure can be called under the installation ID or TSOS:

/CALL-PROCEDURE FROM-FILE=SINPRC.EDT.170, -
/PROCEDURE-PARAMETERS=(USERID=userid,ORIG=Y|N, -
/EDT=edt,EDTU=edtu,EDTLIB=edtlib,INILIB=inilib,
/REPFILE=repfile)

Logistics Installation

U41709-J-Z125-1-76 727

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 1

5.
01

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.k
14

The procedure parameters can be specified directly or via parameter prompting. The param-
eters EDT, EDTU, EDTLIB, INILIB and REPFILE only need to be specified if ORIG=N has
been specified.

userid Installation ID under which the private EDT version is to be installed.

ORIG=Y Specifies that the provided original files (under the installation ID) are to be
modified.

ORIG=N Specifies that copies of the provided original files are to be created and that the
modifications are to be made in the copies only.

edt Name of the copy for the private starter phase for compatibility mode (if the
original files are not to be edited).

edtu Name of the copy for the private starter phase for Unicode mode (if the original
files are not to be edited).

edtlib Name of the copy for the private module library (if the original files are not to be
edited).

inilib Name of the copy for the private module library containing the EDT initialization
module (if the original files are not to be edited).

repfile Name of the copy for the private REP file for EDT (if the original files are not to
be edited).

The private EDT version can be started with the command

/START-PROGRAM FROM-FILE=$userid.name-private-starterphase

The installation procedure freezes all the references to the logical names defined in IMON
for the private version. This is particularly important if a SYSDAT.EDTSTART assignment has
been defined. Any EDT start procedure defined centrally in this way is therefore not
executed by the private version.

Programs that want to call this private EDT version must either link the connection module
IEDTGLE from the created module library or dynamically load it from this library using the
ENTRY name IEDTGLE. When doing this it is essential to specify the parameter SHARE=NO
in the BIND macro.

Programs that want to call the private EDT version as a subroutine and dynamically load
EDT from $.EDTLIB using a BIND (not LINK) macro call can assign a private module library
with the following command:

/SET-FILE-LINK LINK-NAME=BLSLIBnn,FILE-NAME=library

where nn=00..99. This procedure is only possible if EDT is not loaded as a subsystem.

Installation Logistics

728 U41709-J-Z125-1-76

U41709-J-Z125-1-76 729

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.m
ix

Glossary
@DO procedure

A @DO procedure is an EDT procedure which is stored in a work file. It can be
run by means of a @DO statement. @DO procedures provide a number of
statements used for runtime control. At call time, it is possible to pass
parameters to these statements which can also be nested.

@INPUT procedure
An @INPUT procedure is an EDT procedure which is stored in a file or library
element. It can be run by means of an @INPUT statement. The runtime control
statements are not (directly) available in @INPUT procedures. These
procedures cannot be nested and it is not possible to pass any parameters. It
is, however, possible to call @DO statements.

Batch mode
Batch mode is the EDT operating mode in which no terminal is present. EDT
can then only operate in L mode.

Character set
EDT V17.0A makes it possible to process texts in all the character sets made
available by XHCS. In addition to the character sets supported in EDT V16.6B
and compatibility mode, the character sets supported in Unicode mode include
the three Unicode character sets, ISO character sets and additional 7-bit
character sets.
In each work file it is possible to configure a different character set so that texts
in different character sets can be processed in parallel. A communications
character set is configured to permit communication with a terminal.

Communications character set
 Character set used by EDT in Unicode mode to communicate with the terminal.
This can be different from the character set used by the current or any other
work file. The communications character set is usually optimally suited to the
capabilities offered by the terminal.

Glossary

730 U41709-J-Z125-1-76

Compatibility mode
Compatibility mode is an EDT V17.0A operating mode. Compatibility mode
provides the full functionality of EDT V16.6B. However, the extended functions
of EDT V17.0A cannot be used. For example, it is not possible to process
Unicode files and the record length continues to be restricted to 256 bytes.
Under some circumstances, there may be an implicit switchover to Unicode
mode if a Unicode file is read or an explicit switchover may occur if a @MODE
statement is entered.

Data window
Field in the work window in which the current work file is displayed. The work
file records are output in the data window's screen lines.

Delimiter characters
Literals are usually enclosed by the delimiter character apostrophe (or single
quote, default value '). When a search is performed using the @ON statement,
it is possible to use a special delimiter character, namely the quotation mark
(default value “). This specifies that a string is only recognized as a hit if it is
delimited by text delimiters. The text delimiter characters consist of a
configurable set of characters which, by default, include the space character,
parentheses etc.

EDT procedures
An EDT procedure is a sequence of entries, statements and/or records sent to
EDT and stored in a file (@INPUT procedure) or work file (@DO procedure).

EDT start procedure
The EDT start procedure is a special @INPUT procedure which (if present) is
run when EDT is started.

Interactive mode
Interactive mode is the EDT operating mode in which a terminal is present. This
is the only mode in which EDT can operate in F mode.

EDT statement symbol
The EDT statement symbol is a special character used to identify statements.
By default, this is the character @ which is therefore consistently used in this
document.

Glossary

U41709-J-Z125-1-76 731

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.m
ix

EDT variables
EDT variables are containers which can be used to store values across work
file boundaries. EDT variables are only valid for the current EDT session.
There are three types of variables which can be assigned the corresponding
values. 21 variables of each variable type are available.

– Integer variables (#I0..#I20)
– String variables (#S0..#S20)
– Line number variables (#L0..#L20)

Full screen mode (F mode)
Full screen mode (F mode) is an EDT work mode. In F mode, the entire screen
is available as a work window for the entry of data and statements. It is possible
to switch from F mode to L mode. EDT can only operate in F mode if it is in
interactive mode.

Line mode (L mode)
Line mode (L mode) is an EDT work mode. In L mode, files are processed line-
by-line, that is to say that in dialog operation EDT only outputs one line (the
current line) at a time or only reads one line (in both batch and dialog operation)
from SYSDTA. This line may contain records or statements and is processed as
soon as it has been read in.

Line number
A line number is assigned to every record in a work file. This line number
uniquely identifies the record. A line number is the current line number in which
data is entered in L mode.

Operating mode
Since it was not possible to implement the extensions required for Unicode
support in a way which would ensure compatibility, a new EDT operating mode
has been introduced. EDT V17.0A can therefore be used in two modes:
Unicode mode and compatibility mode.
In Unicode mode, a range of extensions are available. Most importantly, it is
possible to process Unicode files (only) in Unicode mode.
However, this mode is not compatible with EDT V16.6B in all respects.
In contrast, compatibility mode provides the full functionality of EDT V16.6B.
However, the extensions are not available in this mode.
By default, EDT V17.0A is started in compatibility mode. A new statement is
available to start it in Unicode mode.

Glossary

732 U41709-J-Z125-1-76

Operating types
A distinction is made between two type of operation depending on whether or
not a terminal is present. In interactive mode, a terminal is present whereas it is
not in batch mode.

Record mark
Every record in a work file can be flagged with a record mark which is invisible
to users. These marks can be set, queried and deleted using statements and
statement codes. Once marked, records can, for example, be copied or deleted.

Screen dialog
The statement @DIALOG – which can only be entered at the subroutine
interface or by SYSDTA – is used to switch EDT to screen dialog. In screen
dialog, the preceding read operation is interrupted and EDT reads its input from
the terminal in F mode (or in L mode after the entry of @EDIT). The screen
dialog can be exited again with @HALT, @END, @RETURN or [K1]. EDT then
continues the interrupted read operation.

Screen line
Lines in the data window in which the records of the current work file are output.

Statement
Inputs to EDT take the form either of records or statements. Statements are
used either to activate EDT functions or make parameter settings. In order to
distinguish between statements and records, statements must be entered in line
mode with the EDT statement symbol. In F mode, statements are entered in the
statement line There are also statement codes which are entered in the
statement code column.

Statement buffer
EDT saves the most recent statements entered in F mode in a buffer. These
statements can then be retrieved from this buffer.

Statement code
Statement codes are 1 character long statements which can be entered in the
statement code column in F mode.

Statement code column
The statement code column is a field in the work window in which statement
codes can be entered.

Statement line
A work window field in F mode. Entries in the statement line are interpreted as
statements. The EDT statement symbol can normally be omitted.

Glossary

U41709-J-Z125-1-76 733

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
de

 fÐ
ºr

 F
ra

m
eM

ak
er

 V
7.

x
vo

m
 2

8.
03

.2
00

7
¬©

 c
og

ni
ta

s
G

m
bH

 2
00

1-
20

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
at

h:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.m
ix

Substitute character
When strings are converted from one character set to another, it is possible that
characters in the source character set may not be present in the target
character set. In such cases, the substitute character is used (if it has been
defined). If no substitute character has been defined then conversion is usually
rejected.

Unicode mode
Unicode mode is an EDT operating mode. The extended EDT V17.0A functions
are only available in Unicode mode, i.e. only in this Unicode mode is it possible
to process Unicode files, can records exceed 256 bytes in length, are local
character sets available etc.
However, this mode is not compatible with EDT V16.6B in all respects. In
particular, there are incompatibilities in terms of the subroutine interface.
However, a large number of inconsistencies have been eliminated.

Unicode substitute representation
In both statements in literals and in data, EDT permits the substitute
representation of Unicode characters through the specification of the
associated UTF16 code. This makes it possible to enter all the (supported)
characters via an escape character even if the character set for the statement
or the data is not a Unicode character set.

User statement symbol
A user statement symbol is a special character which identifies user statements
which are executed using external statement routines.

Wildcards
Wildcards are placeholders for groups of characters in a search string. Here,
the asterisk (default value *) stands for a string of any length (including an
empty string) and the slash (default value /) for precisely one character.

Work file
In EDT, data is always entered and processed in a work file. In work files, it is
possible, for example, to insert, edit and delete data. The content of work files
can be displayed on screen. If it is necessary to process the content of a file
(DMS file, library element or POSIX file) then this content must first be
transferred to a work file. After processing, the content of a work file can be
written back to a file.
EDT is able to manage 23 work files. The work files are organized into records
to which line numbers are assigned.

Glossary

734 U41709-J-Z125-1-76

Work file, active
An active work file is a work file which contains a @DO procedure which is
currently being executed. If there are nested @DO procedures then multiple
work files may be active.

Work file, current
A single work file is the current work file. Data is entered in this work file and
statements are effective within it. In F mode, a section of the current work file is
displayed on the screen.

Work file, empty
An empty work file is a work file which contains no records. However, an empty
work file may also contain properties which do not correspond to the initial state,
for example it can be considered to be in use or occupied or linked to a file. A
work file is only reset to its original state following a @DELETE statement
(format 2) or other statements which completely delete work files either
implicitly or explicitly.

Work mode
EDT provides two work modes for data processing: line mode (L mode) and full
screen mode (F mode).
In L mode, only one screen line is available for the entry of data and statements
at any time.
In F mode, the entire screen is available for the entry of data and statements.
The work modes should not be confused with the EDT operating modes
(compatibility mode and Unicode mode). While the work modes relate to
differences in the way data is displayed and processed, the operating modes
represent different EDT environments with a restricted or extended function
scope.

Work window
In F mode, the current work file is displayed on the screen. In this case, the
screen is subdivided into fields with different functions. Alongside the data
window in which the content of the current work file is displayed, the work
window contains a statement line and a statement code column together with
other elements.

U41709-J-Z125-1-76 735

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

32
us

 fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 2
8.

03
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.li
t

Related publications
The manuals are available as online manuals, see http://manuals.fujitsu-siemens.com, or in
printed form which must be paid and ordered separately at http://FSC-manualshop.com.

[1] EDT V17.0A UNICODE Mode (BS2000/OSD)
Subroutine Interface
User Guide

[2] EDT V16.6B (BS2000/OSD)
Statements
User Guide

[3] EDT V16.6 (BS2000/OSD)
Subroutine Interface
User Guide

[4] EDT-ARA (BS2000/OSD)
Additional Information for Arabic
User Guide

[5] EDT-FAR (BS2000/OSD)
Additional Information for Farsi
User Guide

[6] SDF (BS2000/OSD)
Introductory Guide to the SDF Dialog Interface
User Guide

[7] SDF-P (BS2000/OSD)
Programming in the Command Language
User Guide

[8] XHCS (BS2000/OSD)
8-Bit Code and Unicode Processing in BS2000/OSD
User Guide

http://manuals.fujitsu-siemens.com
http://FSC-manualshop.com

Related publications

736 U41709-J-Z125-1-76

[9] JV (BS2000/OSD)
Job Variables
User Guide

[10] BS2000/OSD-BC
Commandes Volume 1-5
User Guide

[11] BS2000/OSD-BC
Commands Volume 6, Output in S Variables and SDF-P-BASYS
User Guide

[12] BS2000/OSD-BC
Executive Macros
Benutzerhandbuch

[13] BS2000/OSD-BC
Introductory Guide to System Support
User Guide

[14] LMS (BS2000/OSD)
SDF Format
User Guide

[15] POSIX (BS2000/OSD)
POSIX Basics for Users and System Administrators
User Guide

[16] POSIX (BS2000/OSD)
Commands
User Guide

[17] ASSEMBH (BS2000/OSD)
Reference Manual

[18] ASSEMBH (BS2000/OSD)
User Guide

U41709-J-Z125-1-76 737

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.s
ix

Index

statement 221
$0..$22 statement 212
+ statement 209
++ statement 211
-- statement 216
@ 205, 207
@ CREATE (format 1) statement 265
@ CREATE (format 2) statement 268
@ CREATE (format 3) statement 270
@ CREATE (format 4) statement 272
@+ statement 208
@- statement 213, 214
@> statement 217
@AUTOSAVE statement 223
@BLOCK statement 225
@CHECK (format 1) statement 226
@CHECK (format 2) statement 228
@CLOSE statement 231
@CODENAME (format 1) statement 234
@CODENAME (format 2) statement 236
@COLUMN statement 237
@COMPARE (format 1) statement 240
@COMPARE (format 2) statement 248
@CONTINUE statement 253
@CONVERT statement 255
@COPY (format 1) statement 256
@COPY (format 2) statement 260
@DELETE (format 1) statement 274
@DELETE (format 2) statement 277
@DELETE (format 3) statement 278
@DELETE (format 4) statement 280
@DELIMIT statement 281
@DIALOG statement 282
@DO (format 1) statement 285

@DO (format 2) statement 295
@DROP statement 297
@EDIT (format 1) statement 299
@EDIT (format 2) statement 300
@EDIT (format 3) statement 301
@EDIT (format 4) statement 303
@ELIM statement 304
@END statement 307
@ERAJV statement 309
@EXEC statement 310
@FILE statement 312
@FSTAT statement 314
@GET statement 317
@GETJV statement 320
@GETLIST statement 322
@GETVAR statement 324
@GOTO statement 326
@HALT statement 328
@HEX statement 330
@IF (format 1) statement 331
@IF (format 2) statement 333
@IF (format 3) statement 341
@IF (format 4) statement 344
@IF (format 5) statement 346
@INDEX statement 348
@INPUT (format 1) statement 350
@INPUT (format 2) statement 353
@INPUT (format 3) statement 357
@LIMITS statement 358
@LIST statement 359
@LOAD statement 365
@LOG statement 367
@LOWER statement 368
@MOVE statement 371
@NOTE statement 375

Index

738 U41709-J-Z125-1-76

@ON (format 1) statement 377
@ON (format 10) statement 404
@ON (format 2) statement 382
@ON (format 3) statement 386
@ON (format 4) statement 389
@ON (format 5) statement 391
@ON (format 6) statement 394
@ON (format 7) statement 396
@ON (format 8) statement 400
@ON (format 9) statement 402
@OPEN (format 1) statement 407
@OPEN (format 2) statement 411
@P-KEYS statement 414
@PAGE statement 416
@PAR statement 417
@PARAMS statement 430
@PREFIX statement 437
@PRINT statement 440
@PROC (format 1) statement 444
@PROC (format 2) statement 447
@QUOTE statement 450
@RANGE statement 451
@READ statement 452
@RENUMBER statement 455
@RESET statement 457
@RETURN statement 458
@RUN statement 460
@SAVE statement 462
@SCALE statement 465
@SDFTEST statement 467
@SEARCH-OPTION statement 471
@SEPARATE statement 473
@SEQUENCE (format 1) statement 475
@SEQUENCE (format 2) statement 477
@SEQUENCE (format 3) statement 479
@SET (format 1) statement 481
@SET (format 2) statement 484
@SET (format 3) statement 486
@SET (format 4) statement 488
@SET (format 5) statement 490
@SET (format 6) statement 492
@SETF statement 494
@SETJV statement 497

@SETLIST statement 499
@SETSW statement 501
@SETVAR statement 503
@SHIH statement 505
@SHOW (format 1) statement 507
@SHOW (format 2) statement 514
@SORT statement 516
@SPLIT statement 518
@STAJV statement 520
@STATUS statement 523
@SUFFIX statement 527
@SYMBOLS statement 529
@SYNTAX statement 531
@SYSTEM statement 533
@TABS (format 1) statement 536
@TABS (format 2) statement 538
@TABS (format 3) statement 542
@TMODE statement 543
@UNLOAD statement 544
@UNSAVE statement 546
@USE statement 547
@VDT statement 551
@VTCSET statement 552
@WRITE (format 1) statement 553
@WRITE (format 2) statement 558
@XCOPY statement 561
@XOPEN statement 563
@XWRITE statement 565

0..22 statement 567
7-bit character set 49
8-bit character set 49

A
access protection 99

privileged user IDs 99
assign increment

implicitly 35
assign line number 36
automatic saving 223
AUTOSAVE statement 223

Index

U41709-J-Z125-1-76 739

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.s
ix

B
BLOCK statement 225
branches

conditional 72
unconditional 72

C
character sets 47

convert 51
in BS2000 47
in statements 58
in work files 54, 620
local 23
output 514

character sets (compatibility mode) 618
character sets in statements 621
character sets in work files 619
communications character set 619
copying between work files 620
POSIX files 622
reading files 620
S/job variables 622
string variables 621
strings 619
supported character sets 618
writing files 620

characters 166
CHECK statement (format 1) 226
CHECK statement (format 2) 228
CLOSE statement 231
CODENAME statement 611
CODENAME statement (format 1) 234
CODENAME statement (format 2) 236
column counter 118

output 465
column ranges 180
COLUMN statement 237
columns 180
command return code 94
communications character set 53, 236
compare

line numbers 333
numbers 333
strings 333

work file 197
work files line by line 248

COMPARE statement (format 1) 240
COMPARE statement (format 2) 248
compatibility mode 26, 611

@CODENAME 611
@IF (format 5) 613
@MODE 614
activate 615
character sets 618
EDT start command 622

CONTINUE statement 253
control line number display 348
control screen format 551
control screen output 552
CONVERT statement 255
copy

data in work files 57
lines 196, 260
lines with search term 391
marked lines 389
string variable 260

COPY statement (format 1) 256
COPY statement (format 2) 260
create

lines 265
texts 194

CREATE statement (format 1) 265
CREATE statement (format 2) 268
CREATE statement (format 3) 270
CREATE statement (format 4) 272

D
data window

filler characters 107
move backwards 214
move forwards 209
move to left 205
move to right 217
move to start of record 207
nondisplayable characters 108
NULL characters 107

declare line range symbol 451

Index

740 U41709-J-Z125-1-76

define 236
character set in string variable 59
character set in work file 234
communications character set 236
external statement routine 547
hardware tabs 536
input mode 357
procedure parameters 430
programmable keys 414
settings 417
software tabs 538
symbols 529

delete
files 278
hit string 400
ISAM files 546
job variable 309
library elements 278
lines 274
record marks 280
records in ISAM files 304
SAM files 546
string variable 274
texts 196
work files 297

DELETE statement (format 1) 274
DELETE statement (format 2) 277
DELETE statement (format 3) 278
DELETE statement (format 4) 280
DELIMIT statement 281
delimiter characters 81
delimiters 181
DIALOG statement 282
display

contents of variables 523
settings 523
two work windows 518

DMS
reset error switch 457

DO parameters 76
DO procedures 64, 76
DO statement (format 1) 285
DO statement (format 2) 295
DROP statement 297

E
EDIT statement (format 1) 299
EDIT statement (format 2) 300
EDIT statement (format 3) 301
EDIT statement (format 4) 303
EDT

call as main program 90
call as subroutine 90
command return code 94
define input mode 357
define settings 417
input 97
output 97
query settings 346
reset error switch 457
start 87
start command 88
start procedure 72
terminate 328
variables 61

EDT procedures 66
call 71
character sets 66
create 65
DO procedures 64
execute 65
INPUT procedures 64
return 458
start from work files 285

EDT session
interrupt 91
monitor with monitoring job variables 96
terminate 92, 307

EDTU start command alias 88
ELIM statement 304
empty lines 24, 106, 387
empty statement 375
END statement 307
enter system command 533
enumbering 42
ERAJV statement 309
escape character 167
EXEC statement 310
execute EDT procedures 65, 201

Index

U41709-J-Z125-1-76 741

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.s
ix

F
F mode 101

function keys 123
K keys 124
statement codes 109
statements 125

file catalogs 149
file link names 139
file names 181

preset 312
FILE statement 312
file types 131

ISAM files 132
libraries 135
POSIX files 134
read and write 138
SAM files 131

files
delete 278
open 407
read 55, 256, 407
write 57, 553
write back and close 231

form feed 416
FSTAT statement 314
function keys

in F mode 123
in L mode 128

G
GET statement 317
GETJV statement 320
GETLIST statement 322
GETVAR statement 324
GOTO statement 326

H
HALT statement 328
hardware tabs

define 536
output 536

HEX statement 330

hexadecimal mode 120
modify records 121
set 330

hit string 382, 396
delete 400
replace 394

I
IF statement (format 1) 331
IF statement (format 2) 333
IF statement (format 3) 341
IF statement (format 4) 344
IF statement (format 5) 346, 613
increment

current 34
modify 492

INDEX statement 348
INPUT procedures 64, 68

start 350
start from DMS file 353

INPUT statement (format 1) 350
INPUT statement (format 2) 353
INPUT statement (format 3) 357
insert text 237
installation

information 723
private 726
public 724

integer variable 61
supply values 481

ISAM files
delete 546
delete records 304
read 144, 317
real processing 146, 411
write 145
write as ISAM file 462

J
job switch

query 344
set 501

Index

742 U41709-J-Z125-1-76

job switches
job switch 4 98
job switch 5 98
job switch 6 98
job switch 7 99
job switch 8 99

job variable 60, 63
assign value 497
catalog 497
delete 309
output information 520
read value 320

L
L mode 126

function keys 128
input 126
statements 129

libraries 135
library elements 135

delete 278
read 256

LIMITS statement 358
line number variable 62

supply values 486
line numbers 33

adopt 477
check 479
compare 333
current 34
decrease 213
increase 208
insert 38, 42
modify 492
symbolic 35

line ranges 177
sort 516

lines 177
automatic renumbering 42
break 473
check 226
copy 260
copy with search term 391

create 265
delete 274
insert 39, 40
insert between two lines 41
mark 386
move 371
number 475

LIST statement 359
list variable

extend 499
read elements 322

LOAD statement 365
local character sets 23
log control 367
LOG statement 367
logging activate/deactivate 295
long records 23, 117
loops

external 74
internal 74

LOWER statement 368

M
metasyntax 155
MODE statement 370, 614
module

library 723
unload 544

monitoring job variable 96
move

data window backwards 214
data window forwards 209
data window to left 205
data window to right 217

MOVE statement 371

N
negative search 81
NOTE statement 375
number of lines

output 358
numbers 171

compare 333

Index

U41709-J-Z125-1-76 743

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.s
ix

O
ON statement (format 1) 377
ON statement (format 10) 404
ON statement (format 2) 382
ON statement (format 3) 386
ON statement (format 4) 389
ON statement (format 5) 391
ON statement (format 6) 394
ON statement (format 7) 396
ON statement (format 8) 400
ON statement (format 9) 402
OPEN statement (format 1) 407
OPEN statement (format 2) 411
operand syntax 164
operand types 164, 166
operands

indirect specification 161
operating mode 616

change 370
compatibility mode 21
Unicode mode 21

output
catalog information 314
character sets 514
column counter 465
content of string variables 440
directory 507
hardware tabs 536
information about job variables 520
information about work files 447
last statement 221
line ranges 440
number of lines 358
software tabs 538
statement buffer 505
task attributes 543

overview of all statements 187

P
P-KEYS statement 414
PAGE statement 416
PAR statement 417
PARAMS statement 430

position
work file 192
work files 494

POSIX files 60
open 563
read 148, 561, 563
write 148

PREFIX statement 437
PRINT statement 440
print work file ranges 359
PROC statement (format 1) 444
PROC statement (format 2) 447
procedures

branch statement 326
define parameters 430
uninterruptible 100

product structure 723
SYSLNK.EDT.170 723
SYSSII.EDT.170 723

program
libraries 135
load 365
start 310

Q
query error switch 331
QUOTE statement 450

R
RANGE statement 451
read

character sets in files 620
elements in list variable 322
file types 138
files 55, 256, 407
ISAM files 144, 317
library elements 256
POSIX files 148, 561, 563
S variable 324
SAM files 143, 452
strings 270
value of job variable 320

READ statement 452

Index

744 U41709-J-Z125-1-76

record marks 45
delete 280

release items 722
renumber lines 455
RENUMBER statement 455
RESET statement 457
RETURN statement 458
RUN statement 460

S
S variable 60, 63

assign value 503
declare 503
read 324

SAM files 131
delete 546
read 143, 452
write 143, 558

SAVE statement 462
SCALE statement 465
scope of delivery 722
screen dialog, call 282
SDFTEST statement 467
search range 84
search term 80

indirect specification 83
search with @ON 78

default setting 471
delimiter characters 81
negative search 81
other search parameters 85
record hit 86

SEARCH-OPTION statement 471
second work window 119
SEPARATE statement 473
SEQUENCE statement (format 1) 475
SEQUENCE statement (format 2) 477
SEQUENCE statement (format 3) 479
set

block mode 225
hexadecimal mode 330
input at terminal 300
test mode 531

SET statement (format 1) 481

SET statement (format 2) 484
SET statement (format 3) 486
SET statement (format 4) 488
SET statement (format 5) 490
SET statement (format 6) 492
SETF statement 494
SETJV statement 497
SETLIST statement 499
SETSW statement 501
SETVAR statement 503
SHIH statement 505
SHOW statement (format 1) 507
SHOW statement (format 2) 514
software requirements 721
software tabs

define 538
expand in work files 542
output 538

SORT statement 516
split screen 121
SPLIT statement 518
STAJV statement 520
start

EDT 87
EDT procedures 285
INPUT procedures 350, 353
program 310

statement buffer 114
output 505

statement codes in F mode 109, 569
* 571
+ 569, 570
- 572
1..9 608, 609
A 574
B 576
C 577
D 579
E 580
H 582
I 583
J 586
L 589
M 590

Index

U41709-J-Z125-1-76 745

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.s
ix

O 592
permitted combinations 110
processing sequence 112
R 597
S 599
T 601
U 606
X 607

statement descriptions 162
structure 162

statement line 113
continuation 113

statement output
last 221

statement overview 187
administering/executing EDT

procedures 201
calling user programs 202
comparing work files 197
copying/transferring lines 196
creating/inserting/modifying texts 194
deleting work files/lines/texts/record

marks 196
EDT parameter settings 187
file processing 190
handling line numbers 193
interrupting/terminating EDT 199
line/information output 198
moving/positioning the work file 192
processing POSIX files 192
processing SAM and ISAM files 191
runtime control in EDT procedures 200
switching work mode/operating mode 197
working with job variables 202
working with S variables 203

statement routine
define external 547

statement symbol 219
declare 219

statement syntax 157
statements

in F mode 125
in L mode 129

STATUS statement 523

store date and time 490
string variable 59, 62

assign string 268
copy 260
define character set 59, 234
delete 274
move 371
output content 440
output line ranges 440
print 359
supply values 484

strings 50, 172
append 527
compare 333
insert as prefix 437
read 270
redefine delimiter character 450

subroutine interface
IEDTGLE interface (compatible V17

format) 618
subroutine interfaces 616

IEDTGLE interface (extended V17
format) 618

IEDTGLE interface (V16 format) 617
L mode interface 617

substitute characters 51
SUFFIX statement 527
supported character sets 49

EBCDIC 49
ISO 49
UTF16 49
UTF8 49
UTFE 49

switch to F mode 299
switch work files 444
symbols 166

define 529
SYMBOLS statements 529
syntax check by SDF 467
syntax elements 164

other 184
SYNTAX statement 531
system designations 181
system files 149

Index

746 U41709-J-Z125-1-76

SYSDTA 149
SYSLST 152
SYSLST01..SYSLST99 154
SYSOUT 150

SYSTEM statement 533

T
TABS statement (format 1) 536
TABS statement (format 2) 538
TABS statement (format 3) 542
task attributes output 543
terminal, set input 300
terminate

EDT 328
EDT session 92, 307

text delimiter characters
declare 281

TMODE statement 543

U
Unicode character sets

UTF16 47
UTF8 47
UTFE 47

Unicode mode 22
activate 615

Unicode substitute character representation 52,
167

UNLOAD statement 544
UNSAVE statement 546
USE statement 547
user routine, call 460
user switch

query 344
set 501

UTF16 49
UTF8 49
UTFE 49

V
variables 169

save values 488
VDT statement 551
VTCSET statement 552

W
wildcard 80
work files

change 212, 494, 567
compare line by line 248
copy data 57
current 30, 65
define character set 234
delete 297
delete completely 277
empty 31
output information 447
position 494
properties 27
query status 341
save current in POSIX file 565
special 65
switch 444

work mode 101
F mode 101
FULL SCREEN mode 101
L mode 126

work window 103
data window 105
different character sets 119
empty lines 106
line number display 105, 116
long record output 117
modify 116
new lines 106
permitted combinations of statement

codes 110
processing sequence 115
statement code column 105
statement codes in F mode 109
statement line 113
status display 114
structure 103

WRITE statement (format 1) 553
WRITE statement (format 2) 558

Index

U41709-J-Z125-1-76 747

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

10
. A

pr
il

20
08

 S
ta

nd
 0

8:
17

.3
1

P
fa

d:
 Z

:\s
ch

w
ab

ba
ue

r\E
D

T_
17

\e
dt

17
_a

nw
\e

n\
E

D
T_

vo
n_

A
ng

el
a_

ne
u\

E
D

T-
A

nw
ei

su
ng

en
_v

17
0\

us
\e

dt
17

an
w

.s
ix

X
XCOPY statement 561
XHCS 49
XOPEN statement 563
XWRITE statement 565

Index

748 U41709-J-Z125-1-76

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Contents
	Preface
	Structure of the EDT documentation
	Target groups for the EDT manuals
	Structure of the EDT statements manual

	Modified and new functionality in EDT V17.0A
	Introduction to the EDT operating modes
	Unicode mode
	Additional functions - overview
	Additional functions - explanations
	Functions that are no longer supported

	Compatibility mode
	@CODENAME statement
	@IF statement
	@MODE statement
	Messages

	Underlying EDT concepts
	Work files
	Properties of work files
	Current work file
	Empty work file

	Line numbers
	Current line number and current increment
	Symbolic line numbers
	Implicit increment assignment
	Line number assignment
	Using the source line numbers
	Insertion at the current line number
	Insertion after implicit deletion
	Insertion at predefined line number
	Insertion between two lines

	Record marks
	Character sets
	Character sets in BS2000
	Supported character sets
	Strings
	Conversion and substitute characters
	Substitute character representation in Unicode
	Communications character set
	Character sets in work files
	Reading in files
	Writing files
	Copying between work files
	Character set in a statement
	The character set EDF03DRV
	String variables
	S variables and job variables
	POSIX files
	Outputs to SYSOUT and SYSLST

	EDT variables
	Integer variables
	String variables
	Line number variables
	Job variables
	S variables

	EDT procedures
	Creating and executing EDT procedures
	@INPUT procedures
	Calling an EDT procedure in a BS2000 system procedure
	EDT start procedure
	Unconditional and conditional branches
	External and internal loops
	Parameters

	Searching with @ON
	Case sensitivity
	Using wildcards in search terms
	Negative searches
	Delimiter characters
	Indirect specification of the search term
	Search range
	Other search parameters
	Recording a hit

	Using EDT
	Starting EDT
	The EDT start command
	Calling EDT as a main program
	Calling EDT as a subroutine

	Interrupting and terminating an EDT session
	Interrupting an EDT session
	Terminating an EDT session
	EDT command return code

	Monitoring the EDT session with monitoring job variables
	Input and output
	Job switches
	Job switch 4
	Job switch 5
	Job switch 6
	Job switch 7
	Job switch 8

	Access protection
	Constraints for privileged user IDs
	Uninterruptible procedures

	EDT work modes
	F mode
	The work window
	Statement code column
	Line number display
	Data window
	Statement codes in F mode
	Statement in data window - splitting a record
	Statement line
	Statement buffer
	Status display
	Processing sequence

	Modifying the work window
	Line number display
	Outputting long records
	Column counter
	Second work window
	Hexadecimal mode

	Function keys in F mode
	The F keys
	The K keys

	Statements in F mode

	L mode
	Input in L mode
	Entering records in character, hexadecimal or binary format
	Function keys in L mode
	Statements in L mode

	File processing
	File types
	SAM files
	ISAM files
	POSIX files
	Library elements

	Basic information on reading and writing data
	Reading and writing all supported file types
	Reading
	Writing
	File link names

	Characteristics of the old file access statements
	Predefining file names
	Partial reading and writing
	Version numbers
	File link names

	Reading and writing SAM files with the old statements
	Reading
	Writing

	Reading and writing ISAM files with the old statements
	Reading
	Writing

	Real processing of ISAM files
	Opening
	Processing
	Closing

	Reading and writing POSIX files with the old statements
	Reading
	Writing

	File catalogs
	System files
	The SYSDTA system file
	The SYSOUT system file
	The SYSLST system file
	The system files SYSLST01 .. SYSLST99

	Description of the statements
	Metasyntax
	Statement syntax
	Indirect operand specification

	Structure of the statement descriptions
	Operand syntax
	Characters and symbols
	Variables
	Numbers
	Strings
	Lines and line ranges
	Columns and column ranges
	File names and other system designations
	Other

	Statement overview
	EDT parameter settings
	File processing
	Old statements for processing SAM and ISAM files
	Old statements for processing POSIX files
	Moving or positioning the work file
	Treatment of line numbers
	Creating, inserting and modifying texts
	Copying and transferring lines
	Deleting work files, lines, texts and record marks
	Comparing work files
	Switching the work mode or operating mode
	Output lines and information
	Interrupting or terminating EDT
	Runtime control in EDT procedures
	Administering and executing EDT procedures
	Calling a user program
	Working with job variables
	Working with S variables

	EDT statements (alphabetical)
	@< - Move data window to the left
	@<< - Move data window to the start of the record
	@+ - Increase the current line number
	+ - Move data window forwards
	++ - Move to the last (marked) record in the work file
	$0..$22 - Change work file
	@- - Decrease the current line number
	- - Move data window backwards
	- - - Move to the first (marked) record in the work file
	@> - Move data window to the right
	@: - Declaring a statement symbol
	# - Output the last statement
	@AUTOSAVE - Automatic saving
	@BLOCK - Set block mode
	@CHECK (format 1) - Check lines
	@CHECK (format 2) - Check lines for convertibility
	@CLOSE - Write back and close a file
	@CODENAME (format 1) - Define the character set for work files and string variables
	@CODENAME (format 2) - Define the communications character set
	@COLUMN - Insert text and delete blanks at end of line
	@COMPARE (format 1) - Compare two work files
	@COMPARE (format 2) - Compare two work files line by line
	@CONTINUE - Empty statement
	@CONVERT - Convert uppercase or lowercase
	@COPY (format 1) - Read in a file
	@COPY (format 2) - Copy lines or string variables
	@CREATE (format 1) - Check line
	@CREATE (format 2) - Assign string to string variable
	@CREATE (format 3) - Read in string and create line
	@CREATE (format 4) - Read in line and assign to string variable
	@DELETE (format 1) - Copy lines and string variables
	@DELETE (format 2) - Completely delete work files
	@DELETE (format 3) - Delete files and library elements
	@DELETE (format 4) - Delete record marks
	@DELIMIT - Declare text delimiter characters
	@DIALOG - Call screen dialog
	@DO (format 1) - Start EDT procedures from work files
	@DO (format 2) - Activate or deactivate logging
	@DROP - Delete work files
	@EDIT (format 1) - Switch to F mode
	@EDIT (format 2) - Set input from terminal
	@EDIT (format 3) - Set input from SYSDTA
	@EDIT (format 4) - Control full record display
	@ELIM - Delete records in an ISAM file
	@END - Exit current work file or terminate the EDT session
	@ERAJV - Delete job variables
	@EXEC - Start program
	@FILE - Preset file name
	@FSTAT - Output BS2000 catalog information
	@GET - Read ISAM file
	@GETJV - Read value of job variable
	@GETLIST - Read elements of a list variable
	@GETVAR - Read S variable
	@GOTO - Branch statement in procedures
	@HALT - Terminate EDT
	@HEX - Set hexadecimal mode
	@IF (format 1) - Query error switches
	@IF (format 2) - Compare strings, line numbers and numbers
	@IF (format 3) - Query @ON hits or work file status
	@IF (format 4) - Query job and user switches
	@IF (format 5) - Query EDT parameter settings
	@INDEX - Control line number display
	@INPUT (format 1) - Start @INPUT procedure
	@INPUT (format 2) - Start @INPUT procedure from DMS file
	@INPUT (format 3) - Define EDT input mode
	@LIMITS - Output line numbers and number of lines
	@LIST - Print work file ranges or string variables
	@LOAD - Load program
	@LOG - Control logging
	@LOWER - Lowercase and uppercase on input
	@MODE - Change operating mode
	@MOVE - Move lines or string variables
	@NOTE - Empty statement
	@ON (format 1) - Output lines or string variables containing the search term
	@ON (format 2) - Output the start column of a hit string
	@ON (format 3) - Mark lines with search term
	@ON (format 4) - Copy marked lines
	@ON (format 5) - Copy lines with search term
	@ON (format 6) - Replace hit string
	@ON (format 7) - Replace or insert before or after the hit string
	@ON (format 8) - Delete hit string
	@ON (format 9) - Delete before or after the hit string
	@ON (format 10) - Delete lines or string variables which contain the search term
	@OPEN (format 1) - Open and read a file
	@OPEN (format 2) - Real processing of an ISAM file
	@P-KEYS - Define programmable keys
	@PAGE - Form feed
	@PAR - Define EDT parameter settings
	@PARAMS - Define procedure parameters
	@PREFIX - Insert string as prefix
	@PRINT - Print or output line ranges or the content of string variables
	@PROC (format 1) - Switch work files
	@PROC (format 2) - Output information about work files
	@QUOTE - Redefine delimiter character for strings
	@RANGE - Declare line range symbol
	@READ - Read a SAM file
	@RENUMBER - Renumber lines
	@RESET - Reset EDT and DMS error switches
	@RETURN - Return from EDT procedures
	@RUN - Call user routine
	@SAVE - Write as ISAM file
	@SCALE - Output column counter
	@SDFTEST - Syntax check by SDF
	@SEARCH-OPTION - Set default value for searching with @ON
	@SEPARATE - Perform line break
	@SEQUENCE (format 1) - Perform line numbering
	@SEQUENCE (format 2) - Adopt line numbers
	@SEQUENCE (format 3) - Check line numbers
	@SET (format 1) - Supply values for integer variables
	@SET (format 2) - Supply values for string variables
	@SET (format 3) - Supply values for line number variables
	@SET (format 4) - Store values of variables
	@SET (format 5) - Date and time
	@SET (format 6) - Modify current increment and line number
	@SETF - Change work file and set position
	@SETJV - Catalog job variable and assign value
	@SETLIST - Extend list variable
	@SETSW - Set job and user switches
	@SETVAR - Declare S variable and assign value
	@SHIH - Output statement buffer
	@SHOW (format 1) - Output directory
	@SHOW (format 2) - Output supported character sets
	@SORT - Sort line ranges
	@SPLIT - Display 2 work windows
	@STAJV - Output job variable information
	@STATUS - Display current settings and contents of variables
	@SUFFIX - Append strings
	@SYMBOLS - Define symbols
	@SYNTAX - Set test mode
	@SYSTEM - Enter system commands
	@TABS (format 1) - Define and output hardware tabs
	@TABS (format 2) - Define and output software tabs
	@TABS (format 3) - Expand software tabs in work files
	@TMODE - Output task attributes
	@UNLOAD - Unload a module
	@UNSAVE - Delete SAM or ISAM file
	@USE - Define external statement routines
	@VDT - Control screen format
	@VTCSET - Control screen output
	@WRITE (format 1) - Write file
	@WRITE (format 2) - Write SAM file
	@XCOPY - Read POSIX file
	@XOPEN - Open and read a POSIX file
	@XWRITE - Save content of current work file in a POSIX file
	0..22 - Switch work file

	Statement codes in F mode (alphabetical)
	+ - Move forward in the work window
	+ - Move forward in work window by structure depth
	* - Delete copy buffer
	- - Move backward in work window
	- - Move backward in work window by structure depth
	A - Copy or move after a line
	B - Copy or move before a line
	C - Collect lines for copying
	D - Delete records
	D - Delete record mark
	E - Insert characters
	H - Activate hexadecimal mode for a record
	I - Activate permanent insert function
	J - Join two records
	K - Copy a line to the statement line
	L - Convert lines into lowercase
	M - Collect lines for move
	O - Copy or move on a line range
	R - Collect lines for multiple copying
	S - Position the work window (horizontally and vertically)
	T - Syntax test by SDF
	U - Convert lines into uppercase
	X - Modify lines
	1..9 - Insert lines
	1..9 - Set record mark

	Compatibility mode
	@CODENAME - Define character set
	@IF (format 5) - Query EDT parameter settings
	@MODE - Change operating mode
	Activating compatibility and Unicode mode
	Subroutine interfaces and operating modes
	Character sets
	Supported character sets
	Strings
	Communications character set
	Character sets in work files
	Reading in files
	Writing files
	Copying between work files
	Character set in statements
	String variables
	S variables and job variables
	POSIX files

	Starting EDT

	Migration aids
	Compatibility mode
	Unicode mode
	Functions that are no longer supported
	Modified statement actions
	I/O statements
	Work file statements
	ON statements
	Tabulators
	Miscellaneous

	Changes in the screen display and on input/output
	Changes in the general or work file-specific parameter settings
	Character sets
	Line numbers
	Work file-specific
	Miscellaneous

	Changes to the subroutine instance

	Messages
	Message weight (severity)
	Error switch
	Messages which require a response
	Message output
	Message texts

	Logistics
	Software requirements
	Scope of delivery
	Product structure
	Installation
	Public installation
	Private installation

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

