
Edition March 2007

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: X

:\K
u

rt
 a

n
 S

te
fa

n
\E

D
T

_1
6_

6B
_e

ng
_

A
nw

\e
dt

16
bs

tm
.v

or

EDT V16.6B
Statements

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to
manuals@fujitsu-siemens.com.

Certified documentation
according to DIN EN ISO 9001:2000
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Siemens Computers GmbH 2007.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@fujitsu-siemens.com
http://www.cognitas.de

U1884-J-Z125-9-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.iv

z

Contents

1 Preface . 11

1.1 Structure of the EDT documentation . 12

1.2 Target groups for the EDT manuals . 12

1.3 Structure of the “EDT Statements” manual . 13

1.4 Changes compared to EDT V16.6A . 15

1.5 Notational conventions . 17

2 Introduction to EDT . 19

2.1 Principle of operation of EDT . 20

2.2 Working with EDT . 21
2.2.1 The EDT screen . 21
2.2.2 Statements in EDT . 23

2.3 Updating files . 24

2.4 Example of how to process a file . 27

3 Using EDT . 33

3.1 Calling EDT . 33

3.2 Interrupting and terminating EDT . 37
3.2.1 EDT command return code . 39
3.2.2 Monitoring an EDT session with monitoring job variables 41

3.3 Input and output . 42
3.3.1 Entering data (text) . 44
3.3.2 Entering statements . 44
3.3.3 Indirect specification of operands . 45
3.3.4 Symbolic line numbers . 46

Contents

 U1884-J-Z125-9-76

3.3.5 Uniqueness of string variables . 47

3.4 Work file concept . 48

3.5 File processing . 49
3.5.1 Processing ISAM files with nonstandard attributes 50
3.5.2 Processing SAM files with nonstandard attributes 52

3.6 Processing POSIX files . 54
3.6.1 POSIX in BS2000 . 54
3.6.2 EDT and POSIX . 55
3.6.3 Processing POSIX files . 57
3.6.4 Overwriting read-only files . 57

3.7 Library processing with EDT . 58
3.7.1 Element types supported by EDT . 60
3.7.2 Processing library elements using EDT . 61

3.8 SDF support for the writing of system procedures 62

3.9 Extended Host Code Support (XHCS) . 63
3.9.1 XHCS and EDT . 63
3.9.2 XHCS in EDT interactive mode . 64
3.9.3 XHCS in EDT procedure mode . 66

3.10 Job variables . 67

3.11 SDF-P support . 68

3.12 Task switches . 69

3.13 Data protection . 71
3.13.1 Constraints on privileged user IDs . 71
3.13.2 Uninterruptible procedures . 72

4 EDT operating modes . 73

4.1 F mode . 73
4.1.1 Work window . 75

Mark column . 75
Line number display . 76
Data window . 76
Statement line . 78
Status display . 79
Processing sequence . 81

4.1.2 F keys . 83
4.1.3 K keys . 84

Contents

U1884-J-Z125-9-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.iv

z

4.1.4 Statement codes in F mode . 85
Overview of EDT statement codes . 86
* Clear copy buffer . 87
A,B,O Mark line as destination . 88
C Mark for copying . 90
D Delete records . 92
E Insert characters . 93
J Chain two records . 95
K Copy line to statement line . 96
L Convert marked records to lowercase . 97
M Copy and delete marked lines . 98
n/I Insert lines . 100
R Mark for copying (without clearing copy buffer) 103
S Position work window (horizontal and vertical) 105
T Syntax test by SDF . 107
U Convert marked records to uppercase . 112
+/– Position work window . 113
+/– Position work window by structure depth . 114
X Modify lines . 116
D Delete record mark . 118
m Set record mark . 118

4.1.5 Statement in the data window - split record . 119
4.1.6 Statements in the statement line . 119

+/– Position within work file . 120
>/< Position horizontally within work file . 122
Display last statement . 124
fwkfnr/fwkfv Switch work files . 125
EDIT LONG Display records with more than 80 characters 126
HEX Switch on hexadecimal code . 128
INDEX Select work window format . 130
SCALE Display column counter . 131
SHIH Display statement buffer . 133
SPLIT Display 2 work windows . 134

4.1.7 Description of the record marks in F mode . 136
4.1.8 Statements in F mode . 137

4.2 L mode . 138
4.2.1 Input in L mode . 138
4.2.2 Statements in L mode . 139

Contents

 U1884-J-Z125-9-76

5 EDT procedures . 141

5.1 EDT input sources . 141

5.2 EDT variables . 143

5.3 Creating, calling and executing EDT procedures 145

5.4 @DO procedures . 147

5.5 @INPUT procedures . 149

5.6 Calling an EDT procedure in a BS2000 system procedure 153

5.7 Unconditional and conditional branches . 155

5.8 External and internal loops . 156

5.9 Variable EDT procedures - parameters . 158

6 EDT statements . 161

6.1 Description of the syntax . 161

6.2 Overview of the EDT operands . 164

6.3 Overview of the EDT statements . 180
EDT management . 180
File processing . 185
Processing of POSIX files . 186
Program library and file processing . 187
Switching or positioning the work file . 188
Line number handling . 189
Creating, inserting and modifying texts . 191
Copying and moving lines . 192
Deleting work files, lines, texts and record marks 193
Comparing work files . 194
Changing the operating mode . 194
Output of lines and information . 194
Interrupting or terminating EDT . 197
Branching within EDT procedures . 197
Management and execution of EDT procedures 198
Calling a user program . 201
Erasing, reading, cataloging and outputting job variables 201
Declaring and reading S variables and list variables 202

Contents

U1884-J-Z125-9-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.iv

z

6.4 Description of the statements . 203
@ Change current increment value and line number 203
@+ Increment current line number . 206
@– Decrement current line number . 207
@: Define statement symbol . 208
@AUTOSAVE Automatic saving . 209
@BLOCK Set or reset block mode . 211
@CHECK Check lines . 213
@CLOSE Close and write file or library element 214
@CODE Convert character codes . 216
@CODENAME Switch explicitly to different CCSN 223
@COLUMN Insert text or delete blanks at end of line 224
@COMPARE Compare work files line-by-line . 226
@CONTINUE Define branch destination . 238
@COPY Copy data . 240
@CREATE Create text lines . 248
@DELETE Delete work files, library elements and record marks 253
@DELIMIT Define text delimiter characters . 258
@DIALOG Switch to F mode screen dialog . 259
@DO Start EDT procedure . 262
@DROP Delete work files . 271
@EDIT Switch edit mode . 273
@ELIM Delete ISAM file . 275
@END Terminate processing of current work file 277
@ERAJV Delete job variables . 279
@EXEC Start program . 280
@FILE Preset file name . 282
@FSTAT Display catalog information . 284
@GET Read ISAM file . 287
@GETJV Read value of job variable . 289
@GETLIST Read elements of list variable . 291
@GETVAR Read S variable . 293
@GOTO Branch to line number in procedure . 294
@HALT Terminate EDT . 295
@IF Query strings, line numbers, integers and switches 297
@INPUT Define input mode or start procedure 313
@LIMITS Display line numbers . 321
@LIST Print contents of work file . 322
@LOAD Load program . 325
@LOG Control logging in batch mode . 327
@LOWER Specify uppercase and lowercase display 328
@MOVE Move line ranges . 329
@NOTE Place comment in EDT procedure . 333
@ON Process file with search string . 334

Contents

 U1884-J-Z125-9-76

@OPEN Open and read file or library element 376
@P-KEYS Define programmable keys . 384
@PAGE Execute form feed . 385
@PAR Enter default parameters . 386
@PARAMS Define EDT parameters . 396
@PREFIX Insert string as prefix . 402
@PRINT Print or display lines or string variables 404
@PROC Switch work files . 408
@QUOTE Redefine delimiter for strings . 413
@RANGE Define line range symbol . 414
@READ Read SAM file . 415
@RENUMBER Renumber lines . 420
@RESET Reset EDT and DMS error switches 422
@RETURN Terminate screen dialog and abort procedures 423
@RUN Call user program as subroutine . 426
@SAVE Write as ISAM file . 427
@SDFTEST Start SDF syntax check on data lines 430
@SEARCH-OPTION Set default value for searching with @ON 433
@SEPARATE Perform line break . 434
@SEQUENCE Generate or check line numbers 437
@SET Supply values for EDT variables . 442
@SET Specify new current line number and increment 469
@SETF Position window . 471
@SETJV Catalog job variable and assign value 473
@SETLIST Extend list variable . 474
@SETSW Set switches . 476
@SETVAR Declare S variable and assign value 478
@SHOW Display directory . 479
@SORT Sort lines in line range . 485
@STAJV Output information on job variables . 487
@STATUS Show current EDT settings and variable contents 490
@SUFFIX Append string to lines . 494
@SYMBOLS Define symbols . 496
@SYNTAX Set syntax check and execution mode 498
@SYSTEM Enter system commands . 500
@TABS Set tabs . 502
@TMODE Display task information . 506
@UNLOAD Unload module . 507
@UNSAVE Delete file . 508
@UPDATE Update records . 509
@USE Define external statement routines . 514
@VDT Control screen output . 516
@VTCSET Control screen output . 517
@WRITE Write file or library element . 518

Contents

U1884-J-Z125-9-76

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.iv

z

@XCOPY Read POSIX file . 524
@XOPEN Open and read POSIX file . 526
@XWRITE Save contents of current work file to POSIX file 528
@ZERO-RECORDS Setting empty line mode 530

7 EDT messages . 533

8 Installation notes . 593

8.1 Product components . 594

8.2 EDTSTART start procedure . 597

8.3 EDT as a subsystem . 597

8.4 Installation notes for the module CODTAB . 598

Related publications . 601

Index . 603

Contents

 U1884-J-Z125-9-76

U1884-J-Z125-9-76 11

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
1

1 Preface
The EDT (EDITOR) is used to edit files. It can edit SAM and ISAM files, elements of
program libraries and POSIX files.

With EDT, the user can

– open, create, close and store files or elements
– update files or elements (by deleting, inserting and modifying data)
– search files or elements for specific data
– compare files or elements with each other
– display or print the contents of files or elements.

For data processing, EDT offers the following facilities:

1. Virtual processing of files and library elements in interactive mode

a) creation and processing in the user address space

b) writing and storing a file or a library element from the user address space to disk or
tape.
The main advantages of processing in the user address space are that

– the file is closed during processing, and
– the number of disk access operations required is minimal.

2. Real processing of files in interactive mode
The files can be processed directly on the disk.

3. Processing of files and library elements using EDT procedures
File processing operations which have to be executed frequently in the same or a
similar manner can be programmed as EDT procedures.

4. Processing in batch mode
Although EDT was designed as an interactive program, it can also be used for the
virtual or real processing of files and library elements in batch mode.

EDT can

– call another program as a subroutine, or
– be called by another program as a subroutine.

Structure of the EDT documentation Preface

12 U1884-J-Z125-9-76

1.1 Structure of the EDT documentation

The complete documentation for EDT comprises three manuals:

– Statements
– Subroutine Interfaces
– Statement Formats (Ready Reference)
– EDT Operands (Reference Card)

The “Statements” manual describes all EDT statements and should be available to every
EDT user. It offers a brief introduction to EDT, but is mainly intended as a reference volume
for the numerous EDT statements.

The “Subroutine Interfaces” manual describes the EDT subroutine interfaces. It is helpful
only in conjunction with the “Statements” manual.

The “Ready Reference” contains summary descriptions of all EDT statements.

1.2 Target groups for the EDT manuals

While the “Statements” manual (which you are reading right now) is directed mainly at EDT
novices and end users, its companion volume, “Subroutine Interfaces”, is intended for
seasoned EDT users and programmers who wish to employ EDT in their own programs.

The present manual, “EDT Statements”, is aimed at the full range of EDT users from the
beginner to the expert (for the latter chapter 6, “EDT statements”, which contains
descriptions of all EDT statements, constitutes an indispensable source of reference).
EDT users wishing to write their own EDT procedures or to adapt existing ones will find in
chapter 5, “EDT procedures”, a valuable introduction to writing procedures with EDT.

In order to call EDT, users should be familiar with the most important BS2000 commands.

Preface Structure of the “EDT Statements” manual

U1884-J-Z125-9-76 13

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
1

1.3 Structure of the “EDT Statements” manual

This manual begins with an introduction to EDT and continues by describing the processing
of files and library elements (members) and the creation and application of EDT
procedures. It also provides an overview of all EDT statements, accompanied by detailed
descriptions and a variety of examples.

Breakdown of the various chapters:

– Introduction to EDT

Brief introduction for newcomers to EDT.

– Using EDT

Explanation of how to call and terminate EDT, and of the processing of files and library
elements.

– EDT operating modes

File processing in F mode: screen-oriented operation with EDT, description of the
statement codes and statements which can only be used in F mode.
File processing in L mode.

– EDT procedures

Application of EDT procedures (creation, invocation, execution).

– EDT statements

EDT statements in alphabetical order, accompanied by numerous examples. Overview
of EDT operands.

– EDT messages

List of all EDT messages and their “Meaning” and “Response” texts.

– Installation notes

Notes on installation for the system administrator.

A detailed description of the EDT subroutine interfaces can be found in the companion
manual:

EDT (BS2000) V16.6
Subroutine Interfaces
User Guide

Summary descriptions of all EDT statements are contained in:

EDT (BS2000) V16.6
Statement Formats
Ready Reference

Structure of the “EDT Statements” manual Preface

14 U1884-J-Z125-9-76

README file

Information on functional changes and additions to the current product version described in
this manual can be found in the product-specific README file. You will find the
README file on your BS2000 computer under the file name
SYSRME.product.version.language. The user ID under which the README file is cataloged
can be obtained from your systems support staff. You can view the README file using the
SHOW-FILE command or an editor, and print it out on a standard printer using the following
command:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL

or, for SPOOL versions earlier than V3.0A:

/PRINT-FILE FILE-NAME=filename,LAYOUT-CONTROL=
 PARAMETERS(CONTROL-CHARACTERS=EBCDIC)

Preface Changes compared to EDT V16.6A

U1884-J-Z125-9-76 15

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
1

1.4 Changes compared to EDT V16.6A

New statements

@SHIH Display statement buffer

@ZERO-RECORDS Set empty line mode

Extensions in statements

@SDFTEST Syntax check of files by SDF

– External program name permitted (INTERNAL | EXTERNAL new operands).

@PAR Enter default parameters

– External program name permitted for SDF-PROGRAM operand.

– The new SDF-NAME-TYPE operand controls whether a program name in the
@SDFTEST and @PAR SDF-PROGRAM statement is interpreted as an internal or
external name (operand value INTERNAL | EXTERNAL).

@STATUS Display current settings and variable contents

Either the internal or external program name is oputput with @STATUS=SDF, depen-
ding on the setting. In addition, the setting of the current name type is also output.

@FSTAT Query catalog information

The length of the file name specification has been extended to 80 characters.

@SHOW Output a table of contents

The length of the file name specification in the FILES operand has been extended to 80
characters.

@ON (format 1) Output lines containing the search string

When the lines containing the search string are output, the search string can be high-
lighted (Emphasize switch).

@ON (format 7) Replace the search string

When replacing the search string, the number of hits and the number of hit lines can be
written into integer variables (V switch).

@TMODE Output process attributes

The date is output with a four-digit year specification.

Changes compared to EDT V16.6A Preface

16 U1884-J-Z125-9-76

Handling data lines with length 0

The @ZERO-RECORDS statement enables you to specify that lines with length 0 should
also be taken into account when reading and writing POSIX files, SAM files and library
members, and that this should also apply for lines of length 8 when reading and writing
ISAM files with standard properties.

Coded character set (CCS)

– It is possible to switch to another CCS name in procedure or batch mode.

– The coded character set name EDF04F is used for the EBCDIC.DF-04-15 character set
(Euro character set) and for the EBCDIC.DF.04-NAF.IND character set (French-
Arabic alphabet with Indian digits). As EDT cannot determine which of these character
sets is meant, from V16.6B EDF04F this is by default interpreted as the Euro character
set.

POSIX support

– In a TSOS ID the user can now control whether or not a read-only file should be over-
written.

– The CRTE subsystem no longer needs to be activated when the @XCOPY, @XOPEN
and @XWRITE statements are used.

Writing to files with a record length > 256

It is possible to initialize SAM and ISAM files with a fixed record length > 256.

Search hierarchy for the EDTSTART file

The search hierarchy for the EDTSTART file has been extended.

Preface Notational conventions

U1884-J-Z125-9-76 17

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
1

1.5 Notational conventions

The following notational conventions are used in this manual:

“quotes“ Chapter/section titles and words to be emphasized.

Blank.

[number] Reference to a manual in the "Related publications" section.

[Key] Symbolizes a key on the keyboard.

Indicates additional information.

Warning, for example against loss of data.

For a description of the syntax and the EDT operands, see section “Description of the
syntax” on page 161ff, and section “Overview of the EDT operands” on page 164ff.

i

!

Notational conventions Preface

18 U1884-J-Z125-9-76

U1884-J-Z125-9-76 19

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
2

2 Introduction to EDT
This chapter is intended for users who are not yet familiar with EDT.

It deals only with selected functions in order to simplify the introduction to the operating
principles and handling of EDT.

EDT is an aid for the systematic creation and editing of texts.

With EDT, the user can

– create files and library elements
– enter, modify, insert and delete data
– write files and library elements to disk and read them from disk
– search a file or a library element for specific data
– display or print the data.

EDT can be used to process files or library elements for a wide range of applications,
such as:

– text files or tables (for bookkeeping, inventories, ...)
– source programs
– test data for validating program operation
– data for the productive execution of programs
– work files.

Principle of operation of EDT Introduction to EDT

20 U1884-J-Z125-9-76

2.1 Principle of operation of EDT

EDT can be used to create and update files (SAM, ISAM, POSIX) and library elements.
These files and elements are processed in 3 memory areas:

– the work window displayed on the screen of the terminal,

– the work area of EDT in virtual memory, referred to from now on as the work file,

– the public space on disk.

Figure 1: The memory areas of EDT

EDT creates a work area, called the work file, in virtual memory. When EDT is started, this
work file is empty.

When the user wishes to create a file or a library element, he/she enters the data in the work
window. The contents of this work window are then transferred to the work file by pressing
a function key. When data input has been completed, EDT statements are used to write the
work file contents to disk in the form of a SAM or ISAM or POSIX file or a library element.

In order to update an existing file or library element, the file or element must first be read
into the work file. When this is done, the first 23 lines of this work file are displayed in the
work window. The disk file remains unchanged.

EDT statements are used to execute the desired functions, such as inserting, modifying or
deleting data, in the work file. The changes are stored and displayed in the work window.
The [DUE] key transfers the contents of the work window to the work file. Newly
entered texts and corrections are stored in the correct positions in this file. Finally, the
updated work file is written back to the disk file with the aid of an EDT statement. This
overwrites the old contents of the disk file.

File (SAM,
ISAM, POSIX)
Lib. member

Work file

Work
window

Terminal Virtual memory Public space

Introduction to EDT Working with EDT

U1884-J-Z125-9-76 21

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
2

Whenever data is transferred from one memory area to another, the information in the
source memory area always remains unchanged, i.e. the data is available in both memory
areas. If errors occur during processing in the target memory area, it is thus always possible
to retrieve the original data and rectify the error.

If, for example, a file which has been transferred from disk to the work file is updated, the
user can still access the disk# file at any time if an error occurs. Similarly, an error during
the updating of lines on the screen can be rectified by fetching the “old” data again from the
work file, thus discarding the changes already made on the screen.

2.2 Working with EDT

2.2.1 The EDT screen

The file editor EDT is called up by means of the system command START-PROGRAM
$EDT or START-EDT (as of BS2000/OSD V2.0).

The screen displays an empty work window.

Figure 2: The work window displayed when EDT is called

 1.00 ...
 2.00 ...
 3.00 ...
 4.00 ...
 5.00 ...
 6.00 ...
 7.00 ...
 8.00 ...
 9.00 ...
 10.00 ...
 11.00 ...
 12.00 ...
 13.00 ...
 14.00 ...
 15.00 ...
 16.00 ...
 17.00 ...
 18.00 ...
 19.00 ...
 20.00 ...
 21.00 ...
 22.00 ...
 EDT V16.6A00
..0000.00:001(0)

Working with EDT Introduction to EDT

22 U1884-J-Z125-9-76

The work window is made up of 5 areas:

Figure 3: The 5 areas making up the EDT work window

A The mark column (column 1 on the screen)
Lines in the work window can be marked for specific purposes (see below) by
entering certain characters in the mark column.

B The line number display
The line numbers of the text in the data window are shown here.

C The data window
This is where the records are entered and/or displayed.

D The statement line (the bottom screen line)
EDT statements must be entered in this statement line.

E The status display
The first part of the status display is the line number of the first line in the data
window, followed by a colon. The second part is the current column number. The
last part of the status display is the number of the work file, which is enclosed in
parentheses.

EDT is a screen-oriented editor, i.e. the user can, with the aid of EDT statements, display
any part of a file in the data window and process it as desired, e.g. by overwriting the text
or deleting or inserting lines. The data is transferred to the work file by means of [DUE].

B C

D E

A

Introduction to EDT Working with EDT

U1884-J-Z125-9-76 23

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
2

2.2.2 Statements in EDT

Functions can be implemented by means of:

– statements, which must be entered in the statement line of the work window (see
chapter “EDT statements” on page 161ff).

– statement codes, which must be entered in the mark column of the work window (see
section “Statement codes in F mode” on page 85ff).

– statements in the data window (see section “Statement codes in F mode” on page 85).

Statements are passed to EDT by means of one of the following keys:

– [DUE] or [DUE1]

The statements or statement codes in the work window are executed.

– [F2]

The statements or statement codes in the work window are executed and the data
window is set to overwritable (bright). The data can now be modified as desired without
the need for any statements.

Statements may be entered in the statement line (see chapter “EDT statements” on
page 161ff) or in the mark column (see section “Work window” on page 75ff) in either
uppercase or lowercase letters.

Updating files Introduction to EDT

24 U1884-J-Z125-9-76

2.3 Updating files

Entering data

Records with any desired contents are entered in the data window from the keyboard. First,
the cursor is positioned to the beginning of the first line by hitting ò.

The text is then entered in the line. Hittingò causes the cursor to move to the beginning of
the next line, where further text can be entered.

When all desired text lines have been entered, or when all lines in the data window have
been used, the text must be sent off by hitting [DUE] or [DUE1].

If more text is to be entered, the user must enter + in the statement line and transmit the
data by hitting [DUE]. The last line of the old data window now appears as the first line in
the new data window.

ò must now be pressed twice to move the cursor to the beginning of the second line.

Further text lines can now be entered as described above.

Storing (writing) a newly created work file

After the data has been entered, the work file is written into a file or a library element by
means of @WRITE or @SAVE (see @WRITE, @SAVE).

Creating (writing) a SAM file on disk or tape:

@WRITE 'filename'

Creating (writing) an ISAM file on disk or tape:

@SAVE 'filename'

Creating (writing) a library element:

@WRITE LIBRARY = libname (ELEMENT = elemname)

Introduction to EDT Updating files

U1884-J-Z125-9-76 25

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
2

Reading a file into the work file

An existing file is read into the work file by means of @READ or @GET (see @READ,
@GET).

Reading in a SAM file:

@READ 'filename'

Reading in an ISAM file:

@GET 'filename'

Reading in a library element:

@COPY LIBRARY = libname (ELEMENT = elemname)

The beginning of the file or library element is displayed in the data window.

Correcting characters

The desired section of the file or element is moved into the data window by means of the
+, +n, ++, –, –n, – – statements.

– To make the data window overwritable, you can either press [F2] or mark the line with
an X in the mark column.

The data window is displayed with high intensity, indicating that it is overwritable.

The cursor is then moved by means of the positioning keys to the character in the data
window which is to be corrected.

The text can now be corrected by overwriting or by inserting or deleting.

If the line number indicator is switched on, @PAR EDIT FULL=ON can always be used
to set the data window to overwritable. At the same time, statement codes can also be
specified in the mark column.
Hitting ò then positions the cursor at the mark column in the next line or at the
beginning of the data line.

– Characters are deleted by pressing [AFG].

– Characters are inserted by pressing [EFG].

Characters can then be inserted at the desired position. Note that any characters which
are shifted past the right-hand edge of the data window as a result of insertion will be
lost.

Updating files Introduction to EDT

26 U1884-J-Z125-9-76

– Insert mode is switched off using the [RS] key.

The corrected data window is sent to the work file by hitting [DUE].

If the corrections are not to be sent to the work file (e.g. because the input was incorrect)
the original screen contents can be restored by pressing [K3]. This will work only if the
incorrect contents of the data window have not yet been copied into the work file using
[DUE].

Inserting lines

The file section in which lines are to be inserted is first moved to the data window by means
of the +, +n, ++, –, –n or – – statement (see above).

In the line before which the lines are to be inserted, a number between 1 and 9 (indicating
the number of lines to be inserted) is entered in the mark column and the [DUE] key is hit.
The requested number of empty lines now appears in the data window and text may be
entered in these lines exactly as for creation of a new file. Finally, the [DUE] key must be
pressed.

If you wish to enter further text, repeat the procedure (see also statement code I).

Deleting lines

The file section in which lines are to be deleted is moved to the data window by means of
the +, +n, ++, –, –n or – – statement.

The letter D is then entered in the mark column of the line(s) to be deleted and the [DUE]
key is pressed.

The lines marked in this manner are deleted from the work file. The data window in which
the lines were deleted is displayed again, with the lines following the deleted lines moved
up to occupy the space which has become free.

Storing files and library elements

Updated files or library elements are saved by means of @WRITE or @SAVE, or closed by
means of @CLOSE.

Introduction to EDT Example of how to process a file

U1884-J-Z125-9-76 27

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
2

2.4 Example of how to process a file

In this example, the SAM file DRUGSTORE, which is stored in public space on disk, is read
into virtual memory as a work file. The work file DRUGSTORE is then processed in the data
window:

– The entry in the column ORDERED is corrected in one line.

– 4 lines are deleted from the work file, since these articles are no longer stocked.

– 4 lines are inserted into the work file and one line is appended to the work file, since 5
new articles are to be added to the sales range.

The work file DRUGSTORE, as modified in the data window, is then written back to disk:
the original contents of the disk file DRUGSTORE are overwritten by the (modified)
contents of the work file.

The SAM file DRUGSTORE is read into work file 0. All changes are made in the virtual
memory of EDT and must then be saved to a file by means of a @WRITE or @SAVE
statement.

 /start-program $edt

 1.00 ...
 2.00 ...
 3.00 ...
 4.00 ...
 5.00 ...
 6.00 ...
 7.00 ...
 8.00 ...
 9.00 ...
 10.00 ...
 11.00 ...
 12.00 ...
 13.00 ...
 14.00 ...
 15.00 ...
 16.00 ...
 17.00 ...
 18.00 ...
 19.00 ...
 20.00 ...
 21.00 ...
 22.00 ...
 EDT V16.6A00
 @read 'drugstore' ...0000.00:001(0)

Example of how to process a file Introduction to EDT

28 U1884-J-Z125-9-76

The data window is to be moved one data window towards the end of the file and then set
to overwritable.

+ is entered in the statement line and sent off by hitting function key [F2].

[F2] switched the data window to overwritable, which means that the number 50 can now
be entered directly in the ORDERED column of line 26.00.

The data window is now to be positioned to line 21. This is done by entering #21 in the
statement line and pressing [DUE].

 1.00 SEQ.NR ART.NO. ART.NAME STOCK ORDERED......................
 2.00 1 0024 SOAP 3000 150..........................
 3.00 2 0015 DEODORANT 2500 600..........................
 4.00 3 0048 PARFUME 400 60...........................
 5.00 4 0003 CREME 987 555..........................
 6.00 5 0091 SHAVING FOAM 350 30...........................
 7.00 6 0090 AFTER SHAVE 340 30...........................
 8.00 7 0092 SHAVING BRUSH 200 30...........................
 9.00 8 0054 TOOTH PASTE 400 50...........................
 10.00 9 0055 TOOTH BRUSH 200 30...........................
 11.00 10 0061 SHOWER GEL 250 40...........................
 12.00 11 0062 BATH SALTS 150 55...........................
 13.00 12 0071 BODY LOTION 100 80...........................
 14.00 13 0073 HAND CREAM 350 30...........................
 15.00 14 0075 NIGHT CREAM 240 20...........................
 16.00 15 0076 DAY CREAM 300 -............................
 17.00 16 0105 SUN LOTION 160 200..........................
 18.00 17 0107 SUN OIL 220 200..........................
 19.00 18 0121 SUN GLASSES 50 50...........................
 20.00 19 0144 COSMETIC BAG 30 35...........................
 21.00 20 0056 COMB 40 200..........................
 22.00 21 0057 HAIR BRUSH 70 150..........................
 23.00 22 0058 MASSAGE BRUSH 35 40...........................
 + ...0001.00:001(0)

 24.00 23 0039 SHAMPOO 600 300..........................
 25.00 24 0010 TISSUES 1500 500..........................
 26.00 25 0053 MANICURE SET 80 50...........................
 27.00 26 0201 DIAPERS 2000 500..........................
 28.00 27 0210 BABY CREAM 1300 100..........................
 29.00 28 0211 BABY OIL 700 400..........................
 30.00 29 0220 BABY FOOD 4000 200..........................
 31.00 ...

 #21 ...0021.00:001(0)

Introduction to EDT Example of how to process a file

U1884-J-Z125-9-76 29

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
2

Lines 22.00 through 25.00 are to be deleted. This is done by entering D in the mark column
of each of these lines and sending of the data window with [DUE].

Lines 22.00 through 25.00 have been deleted.

Four new lines are now to be inserted before line 26. 4 is entered in the mark column of
line 26 and [DUE] is pressed.

New articles are entered in the newly inserted lines 22.00 through 25.00.

 21.00 20 0056 COMB 40 200..........................
 d 22.00 21 0057 HAIR BRUSH 70 150..........................
 d 23.00 22 0058 MASSAGE BRUSH 35 40...........................
 d 24.00 23 0039 SHAMPOO 600 300..........................
 d 25.00 24 0010 TISSUES 1500 500..........................
 26.00 25 0053 MANICURE SET 80 50...........................
 27.00 26 0201 DIAPERS 2000 500..........................
 28.00 27 0210 BABY CREAM 1300 100..........................
 29.00 28 0211 BABY OIL 700 400..........................
 30.00 29 0220 BABY FOOD 4000 200..........................
 31.00 ...

 21.00 20 0056 COMB 40 200..........................
 4 26.00 25 0053 MANICURE SET 80 50...........................
 27.00 26 0201 DIAPERS 2000 500..........................
 28.00 27 0210 BABY CREAM 1300 100..........................
 29.00 28 0211 BABY OIL 700 400..........................
 30.00 29 0220 BABYFOOD 4000 200..........................
 31.00 ...

 21.00 20 0056 COMB 40 200..........................
 22.00 21 0133 ski glasses 100 20...........................
 23.00 22 0134 ski wax 500 -............................
 24.00 23 0138 gloves 150 -............................
 25.00 24 0139 scarf 15 30...........................
 26.00 25 0053 MANICURE SET 80 50...........................
 27.00 26 0201 DIAPERS 2000 500..........................
 28.00 27 0210 BABY CREAM 1300 100..........................
 29.00 28 0211 BABY OIL 700 400..........................
 30.00 29 0220 BABY FOOD 4000 200..........................
 31.00 ...
 32.00 ...
 33.00 ...
 34.00 ...
 35.00 ...
 36.00 ...
 37.00 ...
 38.00 ...
 39.00 ...
 40.00 ...
 41.00 ...
 42.00 ...
 43.00 ...
 + ...0021.00:001(0)

Example of how to process a file Introduction to EDT

30 U1884-J-Z125-9-76

The data window is then to be moved one data window towards the end of the file. + is
entered in the statement line and sent off by hitting [DUE].

Since line 30.00 is the last line in the work file, EDT positions the work file to this line. New
articles can now be entered at the end of the file without the need for special statements:
line 31 is created automatically.

Finally, the changes are to be written back to file DRUGSTORE on disk. This is done by
entering @WRITE ’DRUGSTORE’ in the statement line and sending it off by means of
[DUE].

Since file DRUGSTORE already exists, EDT asks whether this file is to be overwritten.

The file is to be overwritten. This is indicated by entering Y in the statement line and
pressing the [DUE] key.

 30.00 29 0220 BABY FOOD 4000 200..........................
 31.00 30 0130 nasal spray 250 40...........................
 32.00 ...

 @write 'drugstore'...0030.00:001(0)

 30.00 29 0220 BABY FOOD 4000 200..........................
 31.00 30 0130 nasal spray 250 40...........................
 32.00 ...

% EDT0903 FILE 'DRUGSTORE' IS IN THE CATALOG, FCBTYP = SAM
y EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)....................0030.00:001(0)

Introduction to EDT Example of how to process a file

U1884-J-Z125-9-76 31

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
11

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
2

EDT confirms that the work file was written to the file DRUGSTORE.

EDT is now to be terminated. This is done by entering @HALT in the statement line and
pressing the [DUE] key.

If the user forgets to save his/her work files before attempting to terminate EDT, the attempt
is rejected and EDT issues the message: % EDT0900 EDITED FILE(S) NOT SAVED!
The numbers of the work files with data that has not been saved is then output. The user is
then asked: % EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)

Response N: The EDT work window is displayed again and the user can close
and write any work files that have not yet been saved.

Response Y: Any virtual files which have not been saved are lost. EDT is termi-
nated.

 30.00 29 0220 BABY FOOD 4000 200..........................
 31.00 30 0130 nasal spray 250 40...........................
 32.00 ...

 % EDT0171 FILE ':3:$USID.DRUGSTORE' REPLACED AND WRITTEN
 @halt..0030.00:001(0)

Example of how to process a file Introduction to EDT

32 U1884-J-Z125-9-76

U1884-J-Z125-9-76 33

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3 Using EDT

3.1 Calling EDT

Calling EDT as the main program

EDT can be called as the main program by means of the following command:

or

Starting EDT as of BS2000/OSD V2.0

As of BS2000/OSD V2.0, EDT can be loaded and started by means of the START-EDT
command. The START-EDT command allows the user to select a particular version of EDT
if two or more versions are installed.

The START-EDT command may only be input in user IDs which have the requisite privileges
(see section “Data protection” on page 71).

The alias for the START-EDT command is EDT.

START-PROGRAM $EDT AMODE 31
 (if supported by the hardware)

START-PROGRAM *MODULE($EDTCLIB,EDTC) AMODE 24

START-EDT Alias: EDT

VERSION = *STD / <product-version 6..10> /<product-version 4..8 without-correction-state> /

<product-version 3..7 without-manual-release>

,MONJV = *NONE / <full-filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767>

,PROGRAM-MODE = *ANY / 24

Calling EDT Using EDT

34 U1884-J-Z125-9-76

VERSION =
Version of EDT which is to be started.

VERSION = *STD
The version defined by the command SET-PRODUCT-VERSION is selected. If there is no
version defined as standard, the system selects the highest version available.

VERSION = <product-version 6..10> /
<product-version 4..8 without-correction-state> /
<product-version 3..7 without-manual-release>

Explicit specification of the version.

MONJV = *NONE / <full-filename 1..54 without-gen-vers>
Name of the job variable which is to monitor the EDT session. The job variable must have
been cataloged beforehand (only for users with the Job Variables software product).

During the EDT session, the system sets the job variables to the following values:

MONJV = *NONE
No job variable is to be used for monitoring.

CPU-LIMIT = *JOB-REST / <integer 1..32767>
The CPU time which EDT is allowed to use for execution. If EDT exceeds this time in inter-
active mode, the system informs the user, and if EDT exceeds this time in batch mode, the
system terminates the session.

CPU-LIMIT = *JOB-REST
If the operand CPU-LIMIT=STD was specified in the SET-LOGON-PARAMETERS
command, the program is not subject to any time limitation.
If the operand CPU-LIMIT=t was specified in the SET-LOGON-PARAMETERS command,
the value defined at system generation will be used as the time limitation for the EDT
session.

PROGRAM-MODE =
Specifies the addressing mode in which EDT is to run.

PROGRAM-MODE = *ANY
EDT is loaded into the upper address space and runs in 31-bit mode.

Value Meaning of value assigned

$R
$T
$A

EDT is running
EDT was terminated without errors
EDT was terminated abnormally

Using EDT Calling EDT

U1884-J-Z125-9-76 35

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

PROGRAM-MODE = 24
EDT is loaded into the lower address space and runs in 24-bit mode. If EDT is loaded into
the upper address space as a subsystem, a private copy is loaded into the lower address
space dynamically.

EDT is started in F mode.

If task switch 5 is set (section “Task switches” on page 69), L mode is activated. EDT reads
the inputs from SYSDTA with RDATA.

When you call EDT, values can be preset in the following way:

– Initializing string variables by means of S variables
– Executing an EDT start procedure.

Processing is performed in the order specified.

Initializing string variables by means of S variables

When EDT is called, each string variable is initialized with a blank.
If the SDF-P subsystem is installed in the system, S variables can be used for initializing the
string variables and for transferring values when EDT is terminated. Please note the
following:

– If S variables from the set SYSEDT-S00 through SYSEDT-S20 of TYPE=STRING exist
and have been assigned a value, their contents are transferred to the
corresponding string variables #S00 through #S20, thus initializing the string variables.

– If the contents of an S variable are longer than 256 characters, no characters are trans-
ferred, i.e. the relevant string variable is not initialized. No error message is issued.

– When EDT is terminated using @HALT, the values assigned to string variables #S00
through #S20 are exported to any existing S variables (SYSEDT-S00 through
SYSEDT-S20). New S variables (SYSEDT-Sxx) are not declared by EDT itself but can
be declared by the user in EDT by means of a @SETVAR statement.

Processing an @INPUT start procedure

After EDT is called, as start input procedure is processed, if one exists.
A search is first made for the link name $EDTPAR. If it exists, the file linked to it is used as
the start procedure. If it does not exist, the search for the start procedure is carried out as
follows:
– If a file EDTSTART exists in the current user ID, it is used as the start procedure.
– If it does not exist, the file linked with the logical ID SYSDAT.EDTSRART during

installation is used as the start procedure.
– If no file is assigned to SYSDAT.EDTSTART, $.EDTSTART is used as the start

procedure, if this file exists and can be accessed.

Calling EDT Using EDT

36 U1884-J-Z125-9-76

Otherwise, no start procedure is executed.
Any EDT caller is allowed to define an individual start procedure with the SET-FILE-LINK
command.
Furthermore, linking the file *DUMMY with $EDTPAR causes no start procedure to be
executed:
SET-FILE-LINK FILE-NAME = *DUMMY, LINK-NAME = $EDTPAR

See the chapter “EDT procedures” on page 141ff., and the @INPUT statement for more
details. If the procedure contains a @HALT statement, processing of the @INPUT
procedure is terminated. No error messages are issued.

Example of an EDTSTART start procedure

 @IF ON=5 RETURN -- (1)
 @PAR GLOBAL INFORMATION=ON, EDIT FULL=ON ----------------------------- (2)
 @GETJV '$SYSJV.JOBNAME'=1 -- (3)
 @ON 1:1-5 F 'USER1' ---(4)
 @DELETE ---(5)
 @IF .FALSE. RETURN --(6)
 @SYMBOLS FILLER=' ' ---(7)

(1) If task switch 5 is set, terminate procedure

(2) Display an information line in the data window

(3) The contents of $SYSJV.JOBNAME are written to line 1 in the work file

(4) Check whether line 1 (contents of $SYSJV.JOBNAME) is identical to 'USER1'. No
distinction is made between 'USER1' and, for example, 'USER11'.

(5) The work file is deleted (delete line 1).

(6) If no hit was found in @ON (line 1 is not identical to ’USER1’), abort the procedure.

(7) Define the filler character between the end of the record and the end of the screen
line as a blank.

Calling EDT as a subroutine

EDT can be called not only as the main program, but also as a subroutine from a user
program.

Calling EDT as a subroutine is described in the manual “EDT Subroutine Interfaces” [1].

Using EDT Interrupting and terminating EDT

U1884-J-Z125-9-76 37

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.2 Interrupting and terminating EDT

Interrupting an EDT session

In both F mode and L mode, the EDT session can be interrupted by means of @SYSTEM
or by hitting [K2]. In either case, EDT remains loaded.

The user can return to the interrupted EDT session using the command RESUME-
PROGRAM, which causes the EDT session to be resumed at the position where it was
interrupted. If, in F mode, the work window in which the EDT session was interrupted is not
displayed or is displayed only partially after RESUME-PROGRAM, the original contents of
the work window can be restored by hitting [K3].

If the EDT session was interrupted in F mode, the user can return to F mode using the
command SEND-MESSAGE TO=PROGRAM. The rest of the statement line is not,
however, executed.

If the EDT session was interrupted in L mode, the user can return to L mode using the
command SEND-MESSAGE TO=PROGRAM. This causes the STXIT routine of EDT to be
executed. This routine closes all open files (except for files opened by means of @OPEN).
If there is no active @INPUT or procedure file, the STXIT routine displays the current
statement symbol on the screen.

If, at the time of the interruption, EDT had not yet fully processed the lines of a @DO or an
@INPUT procedure or the lines of an input block (BLOCK mode) and if the SEND-
MESSAGE command is then used to return to the EDT session, the processing which was
interrupted will be aborted and the remaining lines will not be executed.

If the command START-PROGRAM or LOAD-PROGRAM is entered, or procedures
containing these commands are started, while EDT is interrupted, then EDT is unloaded,
regardless of whether it was interrupted in F mode or L mode.

The EDT run cannot be interrupted if EDT was started within a BS2000 system
procedure protected against interruption by means of the setting INTERRUPT-
ALLOWED=NO (see section “Data protection” on page 71).

Terminating an EDT session

The @HALT, @RETURN, @EXEC and @LOAD statements and the [K1] key all terminate
an EDT session. EDT closes all files which are open.

In interactive mode, EDT can be terminated with @END. In L mode, a message is first
issued.

@HALT ABNORMAL can be used in interactive mode or in a system procedure to force
abnormal termination of the EDT session.

i

Interrupting and terminating EDT Using EDT

38 U1884-J-Z125-9-76

If an attempt is made to terminate EDT while there are still unsaved work files, EDT is not
terminated. The numbers of the work files containing unsaved data are output after the
following message:

% EDT0900 EDITED FILE(S) NOT SAVED!

The user then receives the following query:

% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)

The user responses have the following effects:

N The EDT work window is displayed again. The user can now close and save any
files which had not been saved before.

Y Any unsaved virtual files are lost. EDT is terminated.

If the SDF-P subsystem is available in the system and S variables SYSEDT-S00 through
SYSEDT-S20 with TYPE=STRING exist, terminating EDT with @HALT or @END will cause
the values of string variables #S00 through #S20 to be exported to S variables SYSEDT-
S00 through SYSEDT-S20. New S variables SYSEDT-Sxx are not declared by EDT itself,
but can be declared in EDT with the statement @SETVAR.

If the event “Program runtime exceeded” occurs (EDT runtime is greater than the value
specified for CPU-LIMIT in the START-PROGRAM command), a message is output to
SYSOUT and EDT terminates abnormally.

If the interrupt event PROCHK (program check) or ERROR (unrecoverable program error)
occurs and the EDT data area is still addressable, message EDT8910 is output, in which
the program counter and the interrupt weight are specified. In interactive mode, EDT is
terminated with errors or an attempt is made (e.g. in the event of a data error in L mode) to
remove the invalid data by deleting the current work file. If this is not possible, TERM is
issued with a request for a memory dump.

Regardless of whether EDT is terminated normally using @HALT, @RETURN or, in inter-
active mode, using @END, or is terminated abnormally by the system or the user with
@HALT, information on the cause of termination and on the EDT session is made available
for use in controlling system procedures in which EDT is called.

This information is not made available for an EDT session which was aborted with @EXEC
or @LOAD.

Using EDT Interrupting and terminating EDT

U1884-J-Z125-9-76 39

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.2.1 EDT command return code

EDT provides a command return code that can be used by SDF-P for controlling S proce-
dures. This command return code makes it possible to make a targeted response to
particular error situations.

The command return code consists of three parts:

– the main code, which corresponds to a message code by means of which detailed infor-
mation can be queried with the command HELP-MSG-INFORMATION,

– subcode1 (SC1), which categorizes the error situation that occurred into an error class
indicating how serious the error is and

– subcode2 (SC2), which may contain additional information (value other than null).

(SC2) SC1 Main code Meaning
0 0 EDT8000 Normal termination of the EDT session. No messages

were issued.
2 0 EDT8000 Normal termination of the EDT session. Any messages

issued were of message levels* 0, 1 or 2 only. No syntax
errors occurred, only information, warnings or messages.

5 0 EDT8000 Normal termination of the EDT session. A message of
message level* 4 or 5 was issued. No syntax errors
occurred. An error in function or execution occurred.

10 0 EDT8000 Normal termination of the EDT session. An syntax error
occurred in a statement (message1 3).

1 The message level is the thousand’s place of the message number

50 64 EDT8100 Abnormal termination by the user (@HALT ABNORMAL).
100 64 EDT8200 Abort due to time overrun (RUNOUT).
100 64 EDT8292 Error in RDATA; program aborted.
100 64 EDT8901 Abort due to data error.
100 64 EDT8902 Abort due to data error (ENTER process).
150 64 EDT8910 Program interruption;

abnormal abort with DUMP.
150 64 EDT8001 Abnormal termination of the EDT session;

abnormal abort with DUMP.
200 64 EDT8002 Error in dynamic loading of EDT mode.
200 64 EDT8003 Insufficient virtual memory available.
200 64 EDT8005 Error in initializing EDT.
200 64 EDT8006 Installation error in EDT or EDTLIB.
200 64 EDT8300 Internal EDT error.
200 64 EDT8900 No virtual addressing space.

Interrupting and terminating EDT Using EDT

40 U1884-J-Z125-9-76

In the event of an error, the components of the return code can be queried with the SDF-P
functions SUBCODE1(), SUBCODE2() and MAINCODE().

The return code can also be saved and evaluated following an error-free session with the
command SAVE-RETURNCODE. (For more detailed information on command return
codes and how to query them, see the manual “SDF-P“ [13]).

Example of how to query return codes

/MODIFY-JOB-SWITCHES ON=5
/START-PROGRAM $EDT
@LOG NONE
@...
@DIALOG
@...
@HALT
/SAVE-RETURNCODE
/IF-BLOCK-ERROR
/ WRITE-TEXT 'FEHLER: &SUBCODE1, &SUBCODE2, &MAINCODE'
/ELSE
/ WRITE-TEXT 'EDT NORMAL BEENDET'
/ IF (&SUBCODE2 > 5)
/ WRITE-TEXT 'SYNTAX FEHLER IST AUFGETRETEN'
/ RAISE-ERROR MAINCODE=EDT3002
/ END-IF
/ ...
/END-IF
/HELP-MSG-INFORMATION &MAINCODE
/MODIFY-JOB-SWITCHES OFF=5

Using EDT Interrupting and terminating EDT

U1884-J-Z125-9-76 41

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.2.2 Monitoring an EDT session with monitoring job variables

EDT execution can be monitored with a BS2000 job variable.

To have the operating system set up the monitoring job variable, use the following
commands:

START-PROGRAM $EDT,MONJV=jvname or

START-EDT MONJV=jvname (as of BS2000/OSD V2.0)

The operating system maps two values in the job variable:

– a three-byte status indicator and

– a four-byte return code indicator.

The following table shows the values EDT may place in the job variable.

The last three places of the return code are identical in value and meaning to subcode2
(SC2) of the command return code.

Error class Termination Status
indicator

Return
code

Spin-off
mechanism

[No message]
[Note]
[Function error]
[Syntax error]

Normal $T 0000
1002
1005
1010

no

[Interruption] abnormal
by the user

$A 2050 yes

[Fatal]
[Fatal]+DUMP
[Initialization error]

abnormal 2100
2150
3200

Input and output Using EDT

42 U1884-J-Z125-9-76

3.3 Input and output

Input

Input to EDT can be entered as follows:

– primarily via the screen
– from a SAM or ISAM file
– from a library element
– from a POSIX file or
– from another EDT work file.

EDT makes a distinction between data (text) and statements in the input.

Output

EDT can output all or part of any work file:

– primarily to the screen
– to a SAM or ISAM file on disk
– to a library element
– to a POSIX file
– to another EDT work file or
– to the printer.

Using EDT Input and output

U1884-J-Z125-9-76 43

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

Figure 4: Input and output in EDT

SAM, ISAM
Lib, POSIX

Data display terminal

Virtual memory ofCataloged file
EDT

Work file (0-22)

1.00
2.00
3.00
4.00

Data display terminal

Work file (0-22)

Printer

SAM, ISAM
Lib, POSIX

Cataloged file

Input and output Using EDT

44 U1884-J-Z125-9-76

3.3.1 Entering data (text)

Data is transferred to the file in the order in which it is entered when the file is being created.
The text is formatted in accordance with any tab characters it may contain.

When a file is updated, EDT overwrites the corresponding records in the file with the
updated records.

3.3.2 Entering statements

Statements control the EDT session.

EDT regards the following inputs as statements:

– in F mode, entries in the statement line or the mark column (statement codes) of the
work window;

– in L mode, any input in which the first non-blank character is the statement symbol and
the next non-blank character after this statement symbol is not the statement symbol.

The default statement symbol in L mode is @. If an input begins with @@ (2 statement
symbols), then EDT regards this input as text. It regards the second statement symbol
as the first character of this text. EDT removes all characters (the first statement symbol
and any blanks) which come before the second statement symbol.

If, in L mode, EDT receives its input from the screen, it is possible, if block mode (see
chapter “EDT statements” on page 161ff) is active, to pass several inputs to EDT in a
single input block.

Each of these inputs may be up to 256 characters long.

If " or ’ appears within a character string, then "" or ’’ must be entered.

 Example

’This is a “random” character string’

Using EDT Input and output

U1884-J-Z125-9-76 45

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

General format of a statement:

operation The operation is the same as the statement name, e.g. @OPEN,
@COPY, @WRITE...
This must be at the beginning of the statement. In F mode, the EDT
statement symbol (default value: @) may be omitted.

operands The operation is followed by operands, which are separated from
the operation by one or more blanks. The operands must be entered
in the specified order. Each operand may be preceded or followed
by any number of blanks.

str-var String variable which contains the operands (indirect specification of
operands).

The separator (blank) between the operation and the operands, and between the individual
operands, must be entered if it is not possible to distinguish between the operation and the
operand or between two operands (example: @SYMBOLS=’?’ is incorrect; @SYMBOL
S=’?’ is correct).

3.3.3 Indirect specification of operands

Once the statement name (operation) has been recognized, the rest of the statement is
replaced by the contents of the specified string variable and the operands contained in the
variable are analyzed.

If logging has been activated (e.g. @LOG ALL or @LOG COMMANDS), the statement
generated by this replacement is output in addition to the original input. If an error occurs,
only the values to be used in the replacement are logged.

If the length of the statement name plus the replacement of the string variable is greater
than 256, processing of the statement is rejected with the following error message:
% EDT1905 INPUT TOO LONG. CORRECT INPUT

Operation Operands F mode/ L mode / @PROC

Operation operands

&str-var

Input and output Using EDT

46 U1884-J-Z125-9-76

Restrictions

Replacement is not possible in the following statements:

– statements which do not have a statement name (e.g. redefinition of the statement
symbol and value assignment for EDT variables without @SET)

– statements in which the statement name cannot be clearly recognized (e.g. setting and
modifying the current line number using @ln or @+, @–; in the “text” operand, e.g. in
an @IF statement).

– @PARAMS statement

In a @DO procedure, replacement of the procedure parameters is performed first, and then
any indirect operand specification is resolved.

3.3.4 Symbolic line numbers

In some statements (e.g @ON), the line range can also be specified by means of symbolic
line numbers (%, *, $) or via the current range symbol (&).]

When line ranges are specified, symbolic line numbers must be invalidated by means
of a ’.’ (period).

Example

Symbol Meaning

% Line number of the first record in the work file

$ Line number of the last record in the work file

* Current line number

& Set line range
(cf. @RANGE, default value: 0000.0001-9999.9999)

? Line number of the first hit line after @ON

%.–10 Line range from the first line to line 10

*–1L Line before the current line

10–.$ Line range from line 10 to the last line

$–1L Penultimate line

Using EDT Input and output

U1884-J-Z125-9-76 47

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.3.5 Uniqueness of string variables

In many statements it is possible to specify string variables as operands. In this case, the
variable name must be preceded by a period in order to avoid the risk of confusion with
another like-named variable: .#Sxx.

Example for @OPEN (Format 2)

.

.
@CREATE #S01:‘TESTLIB‘
@CREATE #S02:‘ELEM‘
.
.
@OPEN L=.#S01(E=.#S02,S) -- (1)

1 Specification of a period is necessary here because '#S01' could also be the file
name of the library and '#S02' could also refer to the element.

Work file concept Using EDT

48 U1884-J-Z125-9-76

3.4 Work file concept

In L mode, there are 23 virtual files in which the user can process files. These are the work
files 0 through 22. Work files are always virtual files. In work file 0, it is also possible to
process an ISAM file opened for real processing by means of @OPEN.

In F mode, work files 0 through 9 are available to the user for the direct input of data. In
F mode, the user can also split the work window (see @PAR SPLIT) and display two work
files at the same time.

Work files 9 and 10 are needed for the execution of some of the EDT statements. For this
reason, these two files should only be used as temporary help files.

– Some statements store their results in work file 9 (e.g. @COMPARE, format 2,
@FSTAT, @SHOW, @STATUS), overwriting the contents of this work file without
issuing a warning.

– Work file 10 is used as an auxiliary file by @COMPARE, format 2, unless the user
explicitly specifies another auxiliary file.

Using EDT File processing

U1884-J-Z125-9-76 49

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.5 File processing

By default, EDT processes the following ISAM and SAM files:

ISAM files with

– variable record length (RECORD-FORMAT = VARIABLE(...))
– key position 5 (ACCESS-METHOD = ISAM(KEY-POSITION = 5))
– key length 8 (ACCESS-METHOD = ISAM(KEY-LENGTH = 8))
– numeric keys (X’F0’-X’F9’, at least one character ≠ X’F0’),
– block size 1 (BUFFER-LENGTH = STD(1)).

EDT interprets the ISAM key as the line number of the record.

SAM files with

– variable record length (RECORD-FORMAT = VARIABLE(...))
– block size 1 (BUFFER-LENGTH = STD(1)).

Systems with the presetting BLKCTRL=DATA also have a default block-size value of
BUFFER-LENGTH=STD(2) for NK4 disks.

All records in variable-record-length SAM or ISAM files which exceed 256 characters in
length, will be truncated at position 257 when written back.

The files can be processed with @GET, @READ, @SAVE, @WRITE, @ELIM and
@INPUT (see chapter “EDT statements” on page 161ff.). The files can also be processed
with @OPEN, @WRITE,@COPY format 2. The access method is determined by the
operand TYPE=SAM|ISAM.

The name of the file must be enclosed in single quotes (’filename’).
Instead of ’filename’, the user may specify ’/’ if one of the following file link names was
permanently assigned to the file before EDT was started:

/SET-FILE-LINK LINK-NAME = EDTSAM | EDTISAM, FILE-NAME = filename

If a file link name has been permanently assigned to a file, EDT cannot process any other
SAM file (EDTSAM) or ISAM file (EDTISAM) until this assignment is canceled.

The permanent assignment is canceled by means of

/REMOVE-FILE-LINK LINK-NAME = EDTSAM | EDTISAM

File processing Using EDT

50 U1884-J-Z125-9-76

If ’/’ is specified as the file name, EDT does not check the catalog information before
opening the file and does release superfluous storage space after closing the file,. Nor does
EDT ask for confirmation as to whether or not an existing file is to be overwritten. Super-
fluous storage space is also not released if the file name is specified under a USERID other
than TSOS (unless EDT is running under TSOS) or task switch 7 is set.

3.5.1 Processing ISAM files with nonstandard attributes

If files with nonstandard attributes are to be processed, the file attributes must be specified
in the SET-FILE-LINK or CREATE-FILE command.

General processing sequence:

– The file link name EDTISAM is assigned to the file. Assigning the name EDTISAM and
specifying the nonstandard attributes are described in the individual steps below. If a
new file is to be created, all file attributes must be specified.

– Processing via @GET or @SAVE with LINK-NAME = EDTISAM and processing via
@READ or @WRITE with LINK-NAME = EDTSAM.

– It is advisable to cancel the file link name assignment by means of REMOVE-FILE-LINK
LINK-NAME = EDTISAM or LINK-NAME = EDTSAM after the file has been processed.

ISAM files with nonstandard attributes can also be processed directly with @OPEN
format 2 and the operand TYPE=CATALOG. In this case, the attributes are adopted
directly from the catalog, and it is not necessary to assign a file link name.

ISAM files with ISAM keys less than 8 bytes long

Assignment: / SET-FILE-LINK LINK-NAME = EDTISAM, FILE-NAME = filename, -
/ ACCESS-METHOD = ISAM(KEY-LENGTH = keylength)

If a key length of less than 8 bytes is specified, then any existing ISAM keys are truncated
on the left. If 4 is specified for KEY-LENGTH, for example, then the line number 1234.5678
is interpreted as the ISAM key 5678. This means that the ISAM key may no longer be
unique. The user is responsible for ensuring that the ISAM keys are unique.

ISAM file with fixed record length

Assignment: /SET-FILE-LINK LINK-NAME = EDTISAM, FILE-NAME = filename, -
/ RECORD-FORMAT = FIXED(RECORD-SIZE = reclength)

The length of the key (KEY-LENGTH) may lie in the range 1 through 8. If a value other than
1 is specified for KEY-POSITION, @GET OR @SAVE is rejected.

i

Using EDT File processing

U1884-J-Z125-9-76 51

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

If the record length is greater than 256 characters when it is written to an ISAM file, initially
the following message is output
% EDT0914 RECORD-SIZE > 256. ONLY 256 CHARACTERS WILL BE WRITTEN
and then
% EDT0296 OVERWRITE FILE? (Y=YES; N=NO)

If Y is input, the file is overwritten. Only 256 characters are written in each case. The rest of
the data record is overwritten with undefined information.
If N is input, the previous message EDT4981 is output.
Note
The OVERWRITE operand in the @SAVE statement also causes the file to be overwritten
(in batch mode too).

ISAM files with a block size greater than 1

Assignment: /CREATE-FILE FILE-NAME = filename, SUPPORT = PUBLIC-DISK(-
/ SPACE = RELATIVE(PRIMARY-ALLOCATION = pages)
/SET-FILE-LINK LINK-NAME = EDTISAM, FILE-NAME = filename, -
/ BUFFER-LENGTH = STD(SIZE = blocksize)

For ISAM files, the block size may be set to a multiple of the standard block size. In this case,
a primary allocation of at least twice this block size must be specified by means of CREATE-
FILE.

ISAM files which can be processed with the file link name EDTSAM:

– ISAM files with variable record format and a key position ≠ 5
– ISAM files with a fixed record length and a key position > 1
– ISAM files with a key length > 8
– ISAM files with a non-numeric ISAM key

Assignment: /SET-FILE-LINK LINK-NAME = EDTSAM, FILE-NAME = filename, -
/ ACCESS-METHOD = ISAM(KEY-LENGTH = keylength, -
/ KEY-POSITION = keypos), -
/ RECORD-FORMAT = format(RECORD-SIZE = reclength)

with the format FIXED for fixed-length records and the format VARIABLE for
variable record format.

File processing Using EDT

52 U1884-J-Z125-9-76

Processing:

@READ '/' or

@WRITE '/'

In this case, the line numbers are generated on the basis of the current line number and the
current increment, and the ISAM key is regarded as part of the record and placed in the
work file as such. If the ISAM key is modified, the record order must be the same as the
order of the ISAM keys, since @WRITE ’/’ will otherwise be rejected with an error message.

3.5.2 Processing SAM files with nonstandard attributes

General processing sequence:

– The file link name EDTSAM is assigned to the file. Assigning the name EDTSAM and
specifying the nonstandard attributes are described in the individual steps below. If a
new file is to be created, all file attributes must be specified.

– Processing with @READ or @WRITE

– It is advisable to cancel the file link name assignment by means of REMOVE-FILE-LINK
LINK-NAME = EDTSAM after the file has been processed.

ISAM files with nonstandard attributes can also be processed directly with @OPEN
format 2 and the operand TYPE=CATALOG. In this case, the attributes are adopted
directly from the catalog, and it is not necessary to assign a file link name.

SAM file with fixed record length

Assignment: /SET-FILE-LINK LINK-NAME = EDTSAM, FILE-NAME = filename, -
/ RECORD-FORMAT = FIXED(RECORD-SIZE = reclength)

If the record length is greater than 256 characters when it is written to an SAM file, initially
the following message is output
% EDT0914 RECORD-SIZE > 256. ONLY 256 CHARACTERS WILL BE WRITTEN
and then
% EDT0296 OVERWRITE FILE? (Y=YES; N=NO)

If Y is input, the file is overwritten. Only 256 characters are written in each case. The rest of
the data record is overwritten with undefined information.
If N is input, the previous message EDT4981 is output.
Note
The OVERWRITE operand in the @WRITE statement also causes the file to be overwritten
(in batch mode too).

i

Using EDT File processing

U1884-J-Z125-9-76 53

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

SAM files with a block size greater than 1

Assignment: /CREATE-FILE FILE-NAME = file name, SUPPORT = PUBLIC-DISK(-
/ SPACE = RELATIVE(PRIMARY-ALLOCATION = pages))
/SET-FILE-LINK LINK-NAME = EDTSAM, FILE-NAME = filename, -
/ BUFFER-LENGTH = STD(SIZE = blocksize)

For SAM files, the block size may be set to a multiple of the standard block size. In this case,
a primary allocation of at least twice this block size must be specified by means of
CREATE-FILE.

SAM file on magnetic tape

Assignment: /CREATE-FILE FILE-NAME = filename, SUPPORT = TAPE(-
/ VOLUME = vsn, DEVICE-TYP = devtype)
/SET-FILE-LINK LINK-NAME = EDTSAM, FILE-NAME = filename

Processing POSIX files Using EDT

54 U1884-J-Z125-9-76

3.6 Processing POSIX files

The functions for processing POSIX files are supported as of BS2000/OSD V2.0. POSIX
and the associated runtime system CRTE must be activated as subsystems.

3.6.1 POSIX in BS2000

The increasing degree of networking of heterogeneous computer systems and of
distributed processing within these networks require the standardization and openness of
the networked computer systems and their interfaces. These interfaces must comply with
the POSIX/XPG4 standards. The BS2000/OSD V2.0 operating system supports these
POSIX/XPG4 standards with the software product “POSIX”.

POSIX (Portable Open System Interface for UNIX) and XPG4 (X/Open Portability Guide
Version 4) are a series of UNIX-based standards. POSIX is used to denote both these
standards and the BS2000 software product.

The POSIX software product makes BS2000 an open system. Applications complying with
the standard can be ported between the BS2000 and other systems that support POSIX,
especially UNIX/SINIX.

The POSIX file system is a file system in BS2000 with the structure of a UNIX file system
(UFS). It is hierarchical in structure and consists of files (POSIX files) and directories.
POSIX users can create and process POSIX files. From within the POSIX file system,
POSIX users can access remote UNIX file systems. Conversely, a user on a remote UNIX
system can access the local POSIX file system.

POSIX can be accessed by all BS2000 users; even users on a UNIX system can access
POSIX on a BS2000 system (via rlogin or emulation). Access control is handled entirely by
the BS2000.

For further information on POSIX in BS2000, refer to the manual “POSIX Fundamentals for
Users and System Administrators” [15] and “POSIX Commands” [16].

Using EDT Processing POSIX files

U1884-J-Z125-9-76 55

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.6.2 EDT and POSIX

Files stored in the POSIX file system can be read into EDT with the statements
@XOPEN and @XCOPY and written back to the POSIX file system with the statements
@XWRITE and @CLOSE.

Conventions for naming files

EDT can process file names and path names only up to a maximum length of 256
characters. If the path name is longer, the user must first move to a subdirectory within the
POSIX shell using the cd command.

The name of a POSIX file is defined as follows:

xpath::= chars | .str-var (see also operand description).
A character string not exceeding 256 characters in length
and specifying the name of a POSIX file (perhaps with directory).

Non-printable characters, blanks and other delimiter characters may be used in a file name
only if specified in str-var.

When entering a name containing lowercase letters at a terminal operating in L mode, it is
first necessary to activate @LOWER ON or @PAR LOWER=ON.

EDT does not position itself in the POSIX file system. A file name always refers to the
current directory, unless it begins with /. In this case, the name refers to the root directory.

Record length

EDT reads data in character by character and recognizes the end of the record by means
of the record-end characters X’15’ or X’0A’.

Permitted record length: 1 through 256 characters

Character strings exceeding 256 characters in length are truncated at the 256th character,
and the error message % EDT1253 (SOME) RECORD(S) TRUNCATED is issued.

Character strings with a length of 0 cannot be represented in the EDT data area and must
be handled specially.

Processing POSIX files Using EDT

56 U1884-J-Z125-9-76

Depending on the setting of the AUTOFORM mode (see @BLOCK), EDT proceeds as
follows when reading in the data:

– AUTOFORM switched off:
character strings of length 0 are ignored; no record is created.

– AUTOFORM switched on:
each blank receives an end-of-line character X’0D’ and is created in the data area.

Analogously, the setting of the AUTOFORM mode is evaluated when writing a data line
containing X’0D’:

– AUTOFORM switched off:
data lines containing X’0D’ are written as such in the POSIX file.

– AUTOFORM switched on:
data lines containing X’0D’ are written as a record of length 0 in the POSIX file.

Processing data in ASCII code

EDT must be informed with the operand CODE whether the date is presently in ASCII code
or is to be stored in ASCII code in the POSIX file.

A fixed conversion table is used. The table corresponds to the correlation of EDF03IRV to
ISO646 international 7-bit code (equivalent to correlation of EDF041 to ISO8859-1).

With @PAR HEX=ON and the presetting @PAR CODE=ISO, the data in ASCII code in the
work file can be displayed in hexadecimal format in the data window and modified.

The presetting @INPUT HEX ISO makes hexadecimal input in ASCII code possible in L
mode.

Using EDT Processing POSIX files

U1884-J-Z125-9-76 57

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.6.3 Processing POSIX files

POSIX files can be processed with the following statements:

The individual statements are described in detail in the chapter “EDT statements” on
page 161ff.

3.6.4 Overwriting read-only files

Attempting to overwrite a read-only file with @XWRITE or to open one for writing with
@XOPEN leads to the following message being output:

% EDT0244 ALLOW WRITE ACCESS FOR READ ONLY FILE? REPLY (Y=YES; N=NO)

If Y is input, the file is overwritten with the @XWRITE statement or the file is opened for
writing with the @XOPEN statement so that the file can be overwritten with a subsequent
@CLOSE statement.

If N is input, as with IDs that have no TSOS privilege, message EDT5312 is output and the
file is not overwritten or opened for writing.

No overwriting is made in batch mode.

Function Statement

Create a new POSIX file
Read a POSIX file into the work file

@XOPEN

Copy POSIX files into the work file @XCOPY

Create a new POSIX file by writing an existing work file into a new
POSIX file
Write a work file back to a POSIX file

@XWRITE

Write a work file back to a POSIX file and close the POSIX file @CLOSE

Library processing with EDT Using EDT

58 U1884-J-Z125-9-76

3.7 Library processing with EDT

A library is a special file with a substructure which contains library elements (members) and
a directory.

An element is a storage unit in which a logically related set of data such as a file, a
procedure, an object module or a source program is stored. Each element in a library can
be addressed separately.

Figure 5: Structure of a library

File 3

File 1

File 2

File ...

elem 1

elem 2

elem 3

elem ...

elem1,
elem 2, elem 3,

elem ... Directory

Library

Library

elements
(members)

Using EDT Library processing with EDT

U1884-J-Z125-9-76 59

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

EDT processes program libraries

Program libraries are PAM files which are processed using the program library access
method PLAM. For this reason, they are also called PLAM libraries.

Program libraries offer the following advantages:

– Elements of all types can be stored in the same library.
The characteristics of program libraries permit all the data for a project, from the source
programs to the object and load modules, the compilation procedures, the test data,
right up to the documentation, to be held in the corresponding elements of a library.

– Elements with the same name may exist if they are distinguished by type or version
designation.

– Several users may access a library, for both read and write access, at the same time.

– Storing several files as elements in one library offloads the system catalog, since each
library has only one entry. This saves storage space, since a standard allocation of
storage space is made only once per library, and the elements only occupy the space
that they really require.

Element designation

Elements in program libraries can be addressed individually via their element designation.

The element designation consists of the name, version number and element type, and is
specified as follows:

elemname[(vers)][,elemtype]

“elemname” designates the name of the library element, “vers” the version number of the
element, and “elemtype” the type of the element. Specification of the version number and
the element type is optional.

If no version number is specified in a statement, the element with the highest version
number is selected by default. If no element type is specified in a statement, the value
specified for @PAR ELEMENT TYPE is used by default (Type S).

For reasons of compatibility, the allocation of element designations is governed by
the naming conventions of the software product LMS (see the “LMS” manual [14]).
These must be followed, so that library elements which have been created or
processed using EDT can also be managed with the software product LMS.

i

Library processing with EDT Using EDT

60 U1884-J-Z125-9-76

3.7.1 Element types supported by EDT

The element type determines the type of the stored data.

Standard and predefined types are:

If, in a statement, no value is specified for “elemtype”, the value specified in @PAR
ELEMENT TYPE is assumed by default.

As of EDT V16.5, freely selectable type names (user-defined types) may be used with the
statements for processing library elements. No check is made on the base type.

Element
type

Contents

S Source programs.

M Macros.

J Procedures.

P Edited data.

D Text data.

X Data in any format.

R Object modules.
Supported only by @DELETE and @SHOW.

C Load modules.
Supported only by @DELETE and @SHOW.

H Compiler result information.
Supported only by @DELETE and @SHOW.

L Link load modules.
Supported only by @DELETE and @SHOW.

U IFG format masks.

F IFG user profiles.

Using EDT Library processing with EDT

U1884-J-Z125-9-76 61

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.7.2 Processing library elements using EDT

EDT can be used to:
– create, modify or read elements (element types S,M,J,P,D, X and corresponding free

type names)
– delete elements (all element types)
– output the contents of a library (all element types).

Library elements can be processed using the following statements:

The various statements are described in detail in chapter “EDT statements” on page 161ff.

Element type X itself may be a complete library. It can still be processed by EDT but
its structure will be destroyed in the process.

Delta elements cannot be processed directly. To process delta elements with LMS
(as of LMS V3.0A), enter the following statement in EDT: @USE
COM='!'(LMSEDT,$LMSLIB)

For a more detailed description of libraries, see the “LMS” manual [14].

Function Statement Element types
supported

Create a new library element.
Read a library element into the work file

@OPEN, format 2 S, M, P, J, D, X,
free type names

Create a new library element by writing an
existing work file into a new library element.
Write a work file back to a library element.

@WRITE, format 2

Write a work file back to a library element
and close the library element.

@CLOSE S, M, P, J, D, X,
free type names

Copy library elements into a work file. @COPY, format 2

Delete library elements. @DELETE, format 2 S, M, P, J, D, X,
free type names

Preset libraries containing the most
frequently used elements.

@PAR LIBRARY S, M, P, J, D, X,
free type names

Preset the most frequently used element
type.

@PAR
ELEMENT TYPE

S, M, P, J, D, X, R, C,
H, L, U, F,
free type names

Output the directory of a library. @SHOW S, M, P, J, D, X,
free type names

!

i

SDF support for the writing of system procedures Using EDT

62 U1884-J-Z125-9-76

3.8 SDF support for the writing of system procedures

In systems in which SDF V3.0 or higher is installed, a system procedure created in or read
into an EDT work file can be checked for syntax errors and, if necessary, corrected without
the user’s leaving EDT.

EDT can be used to do the following:

– pass the contents of a line or a range of lines to SDF for a syntax check and, depending
on the setting of the SDF options, correct faulty or missing operands of commands or
statements in SDF’s correction dialog (@SDFTEST and T statement code). If the
correction dialog is aborted or if none is possible, the faulty line is displayed and can be
overwritten at the top of the window, and an error message is issued. If the syntax was
correct or has now been corrected, the commands and statements are transferred to
the EDT work file.

– preset the internal name of a program (@PAR SDF-PROGRAM). If the user specifies a
program name to which an SDF syntax file is assigned, the statements of the program
are also subjected to a syntax check.

– display on the screen or write to a file information on SDF syntax files and the SDF
options and internal program names that have been set (@STATUS=SDF).

When checking syntax, EDT distinguishes between three types of lines:

1. lines beginning with one (and only one) / in column 1
These lines are checked for command syntax in accordance with the SDF syntax file
hierarchy. Their admissability in regard to privileges or system environment (e.g. batch
process or procedure) is determined by the current user and the current environment.

2. lines beginning with //.
These lines are passed to SDF, where they are subjected to a statement check.
The program name is preset by means of the statement @PAR SDF-PROGRAM or is
known through a preceding @SDFTEST PROGRAM=name statement. The program
name must be known in a current SDF syntax file.

3. lines of pure data
These lines are not checked.

SDF does not detect faulty operands in ISP commands.

Using EDT Extended Host Code Support (XHCS)

U1884-J-Z125-9-76 63

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.9 Extended Host Code Support (XHCS)

Computer systems and data display terminals work with a single set of letters, numbers and
characters which are used to create words and other elementary components of a
language. This is referred to as the character set.

By extending these character sets, country-specific character representations, such as
umlauts (in German) or accents (in French) can be provided within a character set.

A coded character set (CCS) is the unique representation of the characters in a character
set in binary form. The contents of a coded character set and its specific regulations, such
as the sort sequence and the conversion rules, are laid down in international standards.

Example: The character “ä” is represented in the coded character set EBCDIC.DF.03
(German reference version) by the byte X’FB’ and in EBCDIC.DF.04-1 by
the byte X’43’.

Each coded character set (or code) is identified by its unique name (Coded Character Set
Name: CCSN).

Example: The code EBCDIC.DF.03 (international reference version) has the name
“EDF03IRV”.

The coded character set name EDF04F is used for two different chactersets:
– EBCDIC.DF.04-15 (Euro character set, as per ISO8859-15)
– EBCDIC.DF.04-NAF.IND (French-Arabic alphabet with Indian digits)

EDT cannot determine which of the two character sets is meant when EDF04F is set.
As of V16.6B, EDF04F is interpreted as the Euro character set.
(An optional object correction can be provided for customers who wish interpretation as the
French-Arabic character set).

You will find a list of existing codes in the “XHCS” manual [11].

3.9.1 XHCS and EDT

EDT uses conversion tables to determine non-displayable characters and for lowercase/
uppercase conversion if LOWER ON is specified.

If the XHCS subsystem (eXtended Host Code Support) is available, EDT uses these
conversion tables in place of the permanently defined EBCDIC.DF.03 tables.

If the XHCS subsystem is not available, the standard EDT conversion tables based on
EBCDIC.DF.03 are used.

Extended Host Code Support (XHCS) Using EDT

64 U1884-J-Z125-9-76

When EDT is initialized, the user standard code is set if it has been activated by means of
the /MODIFY-TERMINAL-OPTIONS command. In batch or procedure mode, the CCSN of
the procedure file read in with RDATA is used. In interactive mode, lowercase/uppercase
conversion is effected by VTSU (MODE=LINE).

EDT can also be used to process data containing binary values or packed numbers. If
conversion is performed from one CCS to another CCS, such data may be corrupted. This
is why EDT does not perform any conversion. A homogeneous code environment must exist
within an active EDT application, i.e. only a single CCS can be used at any one time.

If, for example, file A with the code XC1 is being processed, all work files are set to this code.
Reading in (merging) other files is only permitted if the code used in these files is the same
as the code used in file A. If the code used is different, @COPY, @GET, @INPUT and
@READ statements are rejected. If the user wishes to read in file B with the code XC2,
processing of file A must first be terminated. In other words, the work file must be cleared
by means of @DELETE or (if it has been opened with @OPEN) closed using @CLOSE.

Printer output from EDT (@LIST statement and logging to SYSOUT in batch mode) is
output, as before, as hexadecimal character strings without a code attribute.

Code attributes are ignored when EDT string variables (#S00-#S20) are processed.

Job variables and S variables are read and written as hexadecimal character strings without
taking any code attribute into account.

Extension for the Arabic and Farsi languages

EDT supports the Arabic and Farsi languages. The major difference between the writing of
these languages and that of European languages is the direction of writing (from right to
left). The modified and extended functions offered by EDT to support Arabic and Farsi are
described in the following manuals:

“Additional Information for Arabic“ [3]

“Additional Information for Farsi“ [4]

3.9.2 XHCS in EDT interactive mode

When EDT is called, the user standard code is set if it has been activated by means of
the /MODIFY-TERMINAL-OPTIONS command. The CCSN is stored in the EDT data area
and is valid for all work files.
This global CCSN remains valid until an explicit or implicit switch is made to a different
CCSN. In 7-bit mode (current CCSN=EDF03IRV) the generated files or library elements are
assigned the code attribute “blank” (CCSN=)

Using EDT Extended Host Code Support (XHCS)

U1884-J-Z125-9-76 65

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

EDT requests the table of displayable characters and the lowercase/uppercase conversion
table from the XHCS subsystem. Prior to output to the data display terminal, the video buffer
is converted using these tables (taking LOWER ON/OFF into account).

In the case of input/output to the data display terminal (WROUT, WRTRD, RDATA), the
CCSN is included as an operand via VTSU (in the VTSUCB).

When files or library elements are generated using @WRITE or @SAVE, the CCSN is
entered in the catalog or in the library, as appropriate, as the code attribute. Any existing
CCSN is overwritten. In 7-bit mode (current CCSN=EDF03IRV) the standard EDT
conversion tables are used.

Switching character sets

It is possible to switch from the character set selected in EDT to a different character set
either explicitly or implicitly. In order for this to be done without corrupting data, the following
conditions must be met:

– The EDT work files must not contain data which uses a different CCSN (i.e. all EDT
work files are empty).

– The CCSN must be included in the list of CCSNs valid for the data display terminal
(i.e. the data display terminal can display the character set).

– The coded character set (CCS) must not be an ISO code and must not be a 7-bit code
other than EDF03IRV.

If these conditions have been met, the table of displayable characters and the lowercase/
uppercase conversion table are requested from the XHCS subsystem. If these conditions
have not been fulfilled, the switchover is rejected with a message, and the currently set
CCSN remains valid.

An implicit character set switchover occurs when a file or library element which uses a
different CCSN is read in. If the file or library element contains a CCSN with the value
“blank”, the CCSN EDF03IRV is assumed by default. When switching to the 7-bit coded
character set (CCS) EDF03IRV, the standard EDT conversion tables are used.

An explicit character set switchover is achieved by means of the EDT statement
@CODENAME.

Extended Host Code Support (XHCS) Using EDT

66 U1884-J-Z125-9-76

3.9.3 XHCS in EDT procedure mode

In procedure and batch mode, EDT is started from a BS2000 procedure. This involves
reading the statements with RDATA.

If the CCSN of the file or library element read in with RDATA is “blank”, the CCSN
EDTF03IRV is assumed. If not, the specified CCSN is set for EDT.

Switching character sets

It is possible to switch to another CCS name in procedures or in batch operation, either
explicitly with the @CODENAME statement or implicitly by reading in a file with another
CCS name. The following requirement must be satisfied:
No EDT work file contains data with another CCSN (i.e. all EDT work files are empty).
Note
The CCS of the procedure or the batch file is used as the current CCS in EDT. It is therefore
possible that after switching over, conflicts will occur between the data in the work file and
(possibly diffently coded) data from the procedure file (for example, characters in an
@ON statement). EDT cannot detect such conflicts, so the user has the responsibility of
avoiding them.

Using EDT Job variables

U1884-J-Z125-9-76 67

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.10 Job variables

In systems in which the subsystem “job variable support” has been installed, job variables
(JV) can be used.

In EDT the user can:

– delete job variable entries from the catalog (@ERAJV),

– have the values of a job variable

– displayed on the screen
– written to a work file
– assigned to a character string (@GETJV)

– enter job variables in the catalog (@SETJV)

– allocate values to job variables (@SETJV) and

– have information on job variables

– output on the screen
– written to a work file (@STAJV).

An EDT session can be monitored using a monitor job variable (see section “Monitoring an
EDT session with monitoring job variables” on page 41).

For further information on job variables, see the “Job Variables” manual [12].

SDF-P support Using EDT

68 U1884-J-Z125-9-76

3.11 SDF-P support

In systems where the SDF-P subsystem has been installed, S variables can be used.

In EDT, the user can:

– display on the screen or

– assign to a character string (@GETVAR)

– the contents of STRING and INTEGER-type S variables

– declare S variables (@SETVAR)

– assign values to S variables (@SETVAR) or

– read in (@GETLIST)

– extend (@SETLIST)

– re-write (@SETLIST] or

– delete (@SETLIST MODE=OVERWRITE)

– the contents of composite LIST-type S variables (list variables). The elements of the
list variables must be of the STRING type.

As of BS2000/OSD-BC V1.0, regardless of whether EDT is terminated normally using
@HALT, @RETURN or, in interactive mode, using @END or is terminated abnormally, EDT
provides a command return code that can be used by SDF-P for controlling S procedures
(see section “EDT command return code” on page 39).

For more detailed information on S variables, see the “SDF-P” manual [13].

Using EDT Task switches

U1884-J-Z125-9-76 69

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.12 Task switches

There are four task switches which EDT evaluates for runtime control. These switches can
be set or reset by means of the system command MODIFY-JOB-SWITCHES before EDT is
started. During an EDT session, the switches can be set by means of the @SETSW
statement.

Task switch 4

Interactive or batch mode:
If task switch 4 is set before EDT is loaded, message BLS0500 (which normally appears
after EDT has been loaded) is suppressed, as is the message % EDT8000 EDT NORMAL
END when EDT is terminated. The following messages are likewise suppressed:
% EDT0900 EDITED FILE(S) NOT SAVED! and % EDT0904 TERMINATE EDT? REPLY
(Y=YES; N=NO)

Batch mode:
If task switch 4 is set before EDT is loaded, @LOG NONE is set, i.e. nothing is logged
during the EDT session.

Task switch 5

If task switch 5 is set before EDT is loaded, then EDT is set to L mode. It reads its inputs
from SYSDTA with RDATA. The same effect (reading from SYSDTA with RDATA) can be
achieved by entering @EDIT ONLY on the screen. Instead of the current line number in
interactive mode, EDT displays *.

If task switch 5 is set, the compatible syntax check of L mode is preset (see @SYNTAX
SECURITY=LOW).

Changing the setting of this task switch during the EDT session has no effect.

@EDIT without operands switches to L mode, and @EDIT FULL SCREEN switches to
F mode.

Task switch 6

Normally, EDT prints only 132 characters per line, but if task switch 6 is set it prints up to
160 characters per line. In both cases (132 or 160), any output which exceeds the line
capacity is printed in the following lines.

If task switch 6 is to be set, this must be done before EDT is loaded.

Task switches Using EDT

70 U1884-J-Z125-9-76

Task switch 7

This switch may be set before or during the EDT session and prevents EDT from
automatically releasing previously allocated storage space which is no longer needed.
Normally, EDT releases unoccupied storage space via FILE macro (see section “File
processing” on page 49ff).

Using EDT Data protection

U1884-J-Z125-9-76 71

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
3

3.13 Data protection

There are two ways of protecting your system against unauthorized access via EDT:

– EDT can only be started if the user ID has the required privilege

– use of uninterruptible BS2000 system procedures which check which EDT statements
are called

3.13.1 Constraints on privileged user IDs

The START-EDT command can be entered in all user IDs with the privilege TSOS and/or
STANDARD-PROCESSING. If a given user ID has only one or more of the following privi-
leges, EDT will be started but any, security-relevant statements will be rejected.

The following statements are security-relevant for user IDs with these privileges:

If used with the specified user IDs, these statements are rejected with the error message
%EDT4976: STATEMENT INHIBITED FOR USER

Privilege Meaning System ID

HARDWARE-MAINTAINACE Hardware online maintenance $SERVICE

SECURITY-ADMINISTRATION Security administration $SYSPRIV

SAT-FILE-MANAGEMENT Management of SAT files $SYSAUDIT

SAT-FILE-EVALUATION Evaluation of SAT files $SYSAUDIT

Table 1: User IDs with special privileges

Statement Meaning

@EXEC Start program

@LOAD Load program

@RUN Run user program as subroutine

@SYSTEM Issue system commands

@UNLOAD Unload program

@USE Define external statement routines

Table 2: Security-relevant statements

Data protection Using EDT

72 U1884-J-Z125-9-76

3.13.2 Uninterruptible procedures

If BS2000 system procedures are protected against interruption by the caller by means of
INTERRUPT-ALLOWED=NO, the following condition applies to EDT as of SDF-P V2.0:

– It is not possible to switch to system mode by means of [K2]

If EDT procedures are aborted by means of [K2], EDT issues message EDT0913 to
inquire whether any actions are to be performed.

In interactive mode and in the case of input from a file (read with RDATA from SYSDTA,
processing of a start procedure), the security-relevant statements @SYSTEM, @EXEC,
@LOAD, @RUN, UNLOAD and @USE are rejected.
Exception: SYSDTA=SYSCMD applies.

U1884-J-Z125-9-76 73

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

4 EDT operating modes
EDT offers two operating modes for processing data:

– In FULL SCREEN mode (F mode), the whole screen is available in 10 work files (0-9)
for the input of data and statements.

– In LINE mode (L mode), there are 23 work files (0-22) but only one screen line is ever
available for the input of data and statements.
Statements must be entered with a preceding @ in order to distinguish them from
records.

4.1 F mode

In FULL SCREEN mode (F mode), EDT provides screen-oriented file processing for SAM
and ISAM files and for elements of program libraries and for POSIX files. A total of 10 work
files (0-9) are available for this purpose.

Screen-oriented processing means that, in the file section displayed on the screen:

– data may be overwritten in any desired order,
– text can be deleted and inserted without having to worry about the record structure.

In addition to carrying out changes directly on the screen, the user can control file
processing by means of:

– statements entered in the statement line
– statement codes entered in the mark column
– statements entered in the data window
– record marks
– function keys

The formatted screen output is called the work window. This displays the data of the work
file, which was entered by inputs on the screen or by reading the contents of SAM or ISAM
files or library elements or POSIX files into this work file.

It is possible to switch from F mode to L mode (see @EDIT).

F mode EDT operating modes

74 U1884-J-Z125-9-76

Special features of the 3270 Data Display Terminal

EDT is designed for use with Siemens 8160 and 9750 Data Display Terminals (including
upwardly compatible devices) and their characteristics.

The device characteristics of the 3270 Data Display Terminal are very different from those
of the 8160/9750, with the result that modification of EDT for use with the 3270 must be less
than perfect from an ergonomic point of view.

When used in conjunction with the 3270 Data Display Terminal, the different device
characteristics mean that the full range of EDT functions cannot be used and that there are
a number of minor irregularities at the screen interface.

This is due primarily to the following device characteristics:

– The device control characters (ASZ, FBZ) occupy a visible byte (blank) on the screen,
and this reduces the possible number of characters in a line.

– There are no null characters (X’00’) on the screen display. Blanks (X’40’) are displayed
instead. The null characters displayed as blanks are not passed to the computer.

– The character X’44’ (Japanese currency symbol) is used as a substitute symbol for
codings which cannot be displayed.

– The keys field mark and DUP are irrelevant for EDT and are rejected in F mode with a
question mark (?). In L mode, the character X’44’ is passed to the computer.

EDT operating modes Work window

U1884-J-Z125-9-76 75

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

4.1.1 Work window

The work window divides the screen into fields with different functions. The following
diagram shows the structure of the work window.

Figure 6: Standard work window format with line number display active

A = Mark column

B = Line number display

C = Data window

D = Statement line

E = Status display

Mark column

Functions can be initiated by entering single-character statement codes in the mark
column.

When records are displayed in the data window, the default setting is that the mark column
is overwritable and the data window is protected against overwriting. The data window lines
are set to overwritable only when a statement code is entered in the mark column or when
data is sent off using [F2]. After this, it is no longer possible to enter statement codes in the
overwritable lines.

B C

D E

A

Work window EDT operating modes

76 U1884-J-Z125-9-76

The statement @PAR EDIT FULL=ON can be used, provided the line number display is
active (@PAR INDEX=ON), to set the data window and the mark column to overwritable. It
is possible to mark a line and at the same time modify data in this line (see @PAR EDIT
FULL).

Invalid entries in the mark column can be deleted by overwriting with blanks or null
characters.

Line number display

When EDT is called, the line number display is active by default. It can be suppressed by
means of @PAR INDEX=OFF.

With the exception of the first column, which is also the mark column, the line number
display cannot be overwritten.

The line number is displayed as 6 digits, 4 digits before and 2 digits after the decimal point.

The entire line number, with 4 digits after the decimal point, can be viewed only in L mode.

Data window

The current work file is displayed in the data window. A work file consists of records and
these records are displayed in the lines of the data window. A record may be longer than a
data window line; in this case, only part of the record is visible in the data window. The data
window displays only part of the work file, but it can be positioned anywhere within the file.

Records which are longer than a data window line can be displayed fully in EDIT LONG
mode (see @PAR EDIT LONG).

If the file contains fewer records than the data window has lines, the remaining lines are
filled with the filler character (default: NIL character) and set to overwritable.

When EDT is called, the empty work file 0 is displayed on the screen.

By default, the records in the data window are not overwritable. To change this, the records
must be marked in the mark column or the entire screen must be set to overwritable by
means of [F2]. In EDIT FULL mode, which is set by means of @PAR EDIT FULL = ON, all
records in the data window can always be overwritten. Statement codes can also be
specified simultaneously in the mark column (see @PAR EDIT FULL).

F mode requires no end-of-record character in order to detect the end of the record. The
end of the record is the last character in the record which is not null or a filler. Null or filler
characters at the end of a record are ignored.

Regardless of whether the screen is sent off using [F2], [DUE] or [DUE1], all inputs in the
data window are transferred to the work file.

EDT operating modes Work window

U1884-J-Z125-9-76 77

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Filler characters

The filler character can be defined via the statement @SYMBOLS FILLER = and is entered
between the end of the record and the end of the screen line. Unless otherwise specified,
the filler character is a null character (see @SYMBOLS).

Treatment of filler characters in the data window

When a record is input (by typing into an empty file, adding records to the end of the file,
entering text in lines which have been inserted by marking lines), null characters before or
between other characters are converted into blanks.

When existing records are modified, filler characters within a record are passed to the file
as blanks.

In EDIT LONG mode or in HEX mode, filler characters within a line are passed to the file.
Filler characters at the end of a line are ignored.

Screen lines consisting only of filler characters other than ’ ’ are not added to the file.
A record can therefore be deleted by overwriting the part that is visible in the data window
with filler characters.

Screen lines consisting only of the filler characters ’ ’ are created as records consisting of
2 blanks.

Treatment of null characters in the data window

If a line contains only null characters, no record is created for this line in the file.

During input of a record (by entering text in an empty file, appending records to a file, or
entering text in lines which have been inserted by marking existing lines) null characters
before or between other characters are converted into blanks.

When existing records are modified and the filler character is not the null character, null
characters within a record are treated as editable characters, i.e. X’00’ is displayed as a null
character on the screen and is placed unchanged in the file when the screen is sent off. In
EDIT LONG or HEX mode, null characters are also left unchanged in any new lines created
in the file.

Null characters at the end of a line are ignored. If a record is longer than a screen line, any
null characters at the end of the screen line cause the remainder of the text to be moved up
to the position after the last character which is not null, thus shortening the record.

Work window EDT operating modes

78 U1884-J-Z125-9-76

When deleting a complete record, the use of [LZE] and [LZF] is subject to the following
restrictions:

– [LZE] deletes all characters in the record as of the specified position.

– [LZF] deletes only the rest of the line; any characters in the subsequent record are
moved up.

A complete record starting in a column position other than 1 must be deleted explicitly by
means of @DELETE or with the statement code D.

@SYMBOLS FILLER = ’ ’ is used to set the form of display valid up to EDT V16.2.

Nondisplayable characters in the text

If a file contains characters which cannot be displayed on the screen, they are displayed as
smudge characters.

If such a record is modified, the original character, not the smudge character, is placed in
the file. If the position of the smudge character is changed by inserting or deleting
characters ([EFG]/[AFG]), the smudge character is replaced by a question mark, and the
line is displayed in protect mode with a ’?’ in the mark column. The original contents of the
record remain intact.

In LOWER OFF mode, lowercase letters in the file are also displayed as smudge
characters, in order to remind the user that he/she has selected the “wrong” mode.
Texts which contain nonprintable characters should be entered in hexadecimal
mode (see @PAR HEX) or in code mode (see @CODE).

Statement line

Inputs in the statement line are interpreted as statements. An overview of the F mode state-
ments can be found in chapter “EDT statements” on page 161ff. The EDT statement
escape symbol @ need not be entered.

The user may enter a single statement or several statements (a statement sequence) in the
statement line. If several statements are entered, they must be separated from each other
by semicolons (;). If an error occurs during execution of these statements, processing is
aborted, an error message is issued and that part of the input which has not yet been
processed - including the statement which caused the error - is displayed again.

After successful execution, the statement line on the screen is cleared. However, the last
statement entered can be displayed again by entering # and can be executed again with or
without modification. Note, however, that at least one character must be overwritten in the
statement or appended to the statement. The contents of the statement line from the
current cursor position to the end can be deleted by hitting [LZF].

i

EDT operating modes Work window

U1884-J-Z125-9-76 79

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

If the semicolon (;) appears within a string enclosed in single quotes, then it is not regarded
as the statement delimiter.

If, as part of a statement sequence, @EDIT is used to switch to L mode, then any
statements after this @EDIT will not be executed.

Statement line continuation

If, when the screen is sent off, the last character in the statement line is not null or blank,
EDT assumes that the user needs a continuation line for this input and displays a second
line. The contents of the statement line are placed in the preceding line and the statement
line, which is now empty, is offered as a continuation line.

A maximum of two continuation lines are offered, which means that the maximum length of
the input in the statement line is 198 characters.

Treatment of blanks in the statement line

Leading blanks before statements and blanks between keywords (operands) are ignored.
Blanks are not permitted within keywords.

Treatment of null characters in the statement line

A null character in the last position of the statement line indicates the end of the statement
input. Before the input is analyzed, any null characters in the input are converted to blanks.

Status display

The status display shows, from left to right:

– the line number of the first line in the work window (6 digits)
– the column number at which the display of records in the data window begins (3 digits)
– the number of the work file currently displayed (in parentheses)

The status display cannot be overwritten.

Example

Line 8.00 is the first line of work window 3.

... 0008.00:001(3)

Work window EDT operating modes

80 U1884-J-Z125-9-76

Modifying the work window

The user can modify the format of the work window by

– suppressing the line number display
– splitting the screen into two work windows.

Suppressing the line number display

@PAR INDEX=OFF extends the work window to the full 80 characters per screen line (3270
Data Display Terminal: 77 characters). The first character in each line is overwritable and
corresponds to the mark column.

Splitting the screen

If the screen is divided into two work windows (see @PAR SPLIT), then this is called a split
screen. The upper work window is called work window 1 and the lower one is called work
window 2. A work window must consist of at least two lines, one of which is the statement
line.

Example

The screen is to be split into two work windows. To do this, @PAR SPLIT 10 $3 is entered
in the statement line and the [DUE] key is pressed.

par split 10 $3 ... 0000.00:001(0)

EDT operating modes Work window

U1884-J-Z125-9-76 81

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

The upper work window (work window 1) is the one in which @PAR SPLIT was entered,
reduced in size to provide space for work window 2.

The lower work window (work window 2) is the new window. It comprises 10 lines, including
the statement line, and displays the contents of work file 3 (@PAR SPLIT 10 $3).

Processing sequence

Processing sequence with one work window:

1. Evaluation of the data window

2. Statement codes in the mark column

3. Statement(s) in the statement line

Only the data window and the mark column are evaluated as long as there are change or
insert marks in the mark column or as long as the permanent insert function (section “n/I
Insert lines” on page 100ff) is active. The records in the data window are first transferred to
the file and the mark column is then evaluated. The contents of the statement line remain
unchanged and are evaluated only when no further insert or change marks are specified or
when the permanent insert function is switched off.

 1.00 BERGER THOMAS 10. HIGH ST. DONCASTER............................
 2.00 DUCK DONALD 8. WALT ST. DISNEYLAND...........................
 3.00 GREEN JENNIFER 16. LOW RD. POUGHKEEPSIE.........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH...............................
 5.00 STUBBS MANUELA 3. POST ST. GRANTHAM.............................
 6.00 ...
 7.00 ...
 8.00 ...
 9.00 ...
 10.00 ...
 11.00 ...
 12.00 ...
 13.00 ...
 ...0001.00:001(0)
 1.00 YOU CAN NOW PROCESS..
 2.00 WORK FILES 0 AND 3...
 3.00 EITHER ALTERNALLY..
 4.00 OR SIMULTANEOUSLY..
 5.00 ...
 6.00 ...
 7.00 ...
 8.00 ...
 9.00 ...
..0001.00:001(3)

Work window EDT operating modes

82 U1884-J-Z125-9-76

Processing sequence with two work windows:

1. Evaluation of the data window in the upper work window

2. Statement codes in the mark column of the upper work window

3. Evaluation of the data window in the lower work window

4. Statement codes in the mark column of the lower work window

5. Statement(s) in the upper statement line

6. Statement(s) in the lower statement line

As long as there are insert or change marks in the mark column, or as long as the
permanent insert function is active, the above sequence is interrupted and only the data
window and the mark column of the affected work window are evaluated. If there are no
further change or insert marks, or if the permanent insert function is switched off, the data
window and the mark column of the other work window are evaluated.

If the screen format is reset to one work window by means of a @PAR SPLIT=OFF
statement entered in the upper statement line, any statements in the lower
statement line will not be executed.

i

EDT operating modes F keys

U1884-J-Z125-9-76 83

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

4.1.2 F keys

[F1] Position to records with the same structure depth

[F1] positions the cursor to the next record with the same structure depth as the marked
record (see the section “+/– Position work window by structure depth” on page 114ff).

[F2] Modify all lines

If the screen is sent off using [F2], the entire work window or, if appropriate, both work
windows are set to overwritable when the screen is next output.

If changes have been made in the data window, or if there are statement codes in the mark
column, then only these changes and the statement codes are first executed. The data
window is then set to overwritable. The statement line is not evaluated at this time.

If there is no input in the mark column, the statement line is processed and the data window
is then set to overwritable.

If an error occurs while the statement in the statement line is being executed, or if EDT
issues an error message, the data window is not set to overwritable.

[F3] Process record marks

[F3] initiates the following functions:

– setting of record marks
– deletion of record marks
– positioning to records with record marks.

 Key
Function

F1 F2 F3 F4 F5

Transferring data lines x x x x x

Statement codes x x x

Setting marks x

Setting to overwritable x x x

Positioning to records of the same structure depth x

Positioning to record marks x

K keys EDT operating modes

84 U1884-J-Z125-9-76

4.1.3 K keys

[K4] through [K15] have no functions.

[K1] Terminate F mode screen dialog

[K1] terminates the screen dialog, and produces the message: % EDT0904 TERMINATE
EDT? REPLY (Y=YES; N=NO). If Y is entered, the screen dialog is terminated; if N is
entered, the screen dialog is continued.

[K1] also terminates the display of the code table after @CODE SHOW.

[K2] Interrupt the EDT session

The EDT session can be interrupted, with a switch to system mode, by means of either
@SYSTEM or [K2].

The RESUME-PROGRAM command returns EDT to F mode and the entire screen is
displayed again.

If, after RESUME-PROGRAM, the work window in which the EDT session was interrupted
is not displayed, or is displayed incompletely, its original contents can be restored by means
of [K3].

If the START-PROGRAM or LOAD-PROGRAM command is entered or a procedure
containing one of these commands is started while the EDT session is interrupted, EDT is
unloaded.

[K3] Restore screen contents

If the screen contents have been shifted (e.g. by a broadcast message), the original display
can be restored by means of [K3].

 Key
Function

K1 K2 K3

Terminating F mode screen dialog and @CODE SHOW x

Interrupting the EDT session x

Restoring the screen contents x

EDT operating modes Statement codes

U1884-J-Z125-9-76 85

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

4.1.4 Statement codes in F mode

The statement codes - also called marks - are single-character statements which are
entered as uppercase or lowercase letters in the mark column of the work window.

Syntax and semantics checking

Before the screen is processed, the syntax and semantics of the statement codes are
checked. If invalid statement codes or invalid code combinations (such as M followed by C)
are detected, the input is not processed. Instead, the invalid statement code is replaced by
? and the cursor is positioned to the first invalid statement code.

Processing sequence in the mark column

Depending on the function key or statement code used, distinctions are made between the
following cases when processing the mark column:

1. If [F3] is used, EDT evaluates only the statement codes which may be sent off using
[F3] (statement codes for setting and deleting record marks).

2. If one of the destination marks A (after), B (before) or O (on) is entered, the statement
codes are evaluated in the following order:

– the K mark
– all D marks
– the * mark for clearing the copy buffer
– all C, R, M marks for copying
– the L and U marks
– all A, B, O marks as the destinations for copy operations.

Any other statement codes are executed after this.

3. If neither an S mark nor an A, B or O mark is entered, the statement codes are
processed in the following order:

– the K mark
– all D marks
– the * mark for clearing the copy buffer
– all C, R, M marks for copying
– the L and U marks
– all T marks for SDF syntax testing
– all X (change), E (insert characters), n and I (insert lines) marks.

The evaluation of X, E and I and n depends on the order in which they are entered. X and
E after I or n may be lost if the insert operation causes the lines containing them to be
moved off the screen. No warning is issued.

The statement line is evaluated after all statement codes have been executed.

Statement codes EDT operating modes

86 U1884-J-Z125-9-76

Overview of EDT statement codes

Statement code Function

* Clear copy buffer

A, B, O Mark line as destination for copying

C Mark for copying

D Delete records

E Insert character

J Chain two records

K Copy line to statement line

L Convert marked records to lowercase

M Copy and delete marked lines

n/I Insert lines

R Mark for copying (without clearing copy buffer)

S Position work window (horizontal and vertical)

T Syntax test by SDF

U Convert marked records to uppercase

+ / – Position work window (horizontal)

+ / – [F1] Position work window by structure depth

X Modify lines

D [F3] Delete record mark

m [F3] Set record mark

EDT operating modes * - clear copy buffer

U1884-J-Z125-9-76 87

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

* Clear copy buffer

* clears the contents of a copy buffer generated by means of C, M or R.

* is evaluated before A, B, O, C, M or R, regardless of the line in which it is entered. This
means that the copy buffer is always cleared first if any line is marked with *.

If a C, M or R mark is entered in the same window as the * mark without a destination
specification, then the message % EDT0292 COPYBUFFER CLEARED is not issued,
since these marks write new lines into the copy buffer.

Example

See the example in the section “R Mark for copying (without clearing copy buffer)” on
page 104.

Statement code Key

* [DUE] or [F2]

A/B/O - mark line as destination EDT operating modes

88 U1884-J-Z125-9-76

A,B,O Mark line as destination

These statement codes mark the destination for lines marked with C, M and R.

A The lines to be copied are inserted after the line marked with A.

B The lines to be copied are inserted before the line marked with B.

O The line to be copied or moved overwrites the line marked with O.
The following two cases must be distinguished:

– The first column of the file is the first column displayed in the data window.
The line to be copied overwrites the entire contents of the line marked with O.

– The first column of the file is not displayed in the first column of the data window.
If the line to be copied is shorter than the line marked with O, the remainder of
the line marked with O is not overwritten. This can be used to insert or append
text in another line. The text in the line marked with O is overwritten (or text is
appended to it) as of the active column position.

If several lines are copied, they are copied into the lines following the target line. If
the end of the work file is reached as this is done, new lines are created at the end
of the file.

EDT assigns line numbers to the copied lines in one of three ways (see @COPY, format 2):

1. Default numbering with an increment of 1.0000, unless some other value has been set
by means of @PAR INCREMENT.

2. Numbering with the increment set by the user (@PAR INCREMENT).

3. Automatic numbering and renumbering (only if @PAR RENUMBER=ON is specified).
EDT renumbers the lines automatically if the increment is too large to permit insertion
of all copied lines. For further details, see @COPY, format 2, “Calculation of line
numbers”.

The copy operation is executed only after the C, M and R marks have been
evaluated. This means that the specified destination may be before the line(s) to be
copied in the same data window in a single dialog step.

Statement code Key

A
B
O

[DUE] or [F2]

i

EDT operating modes A/B/O - mark line as destination

U1884-J-Z125-9-76 89

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example

Line 1.00 is to be copied after line 2.00. To this end, line 1.00 is marked with C in the mark
column and line 2.00 with A.

Line 2.00 is now to be moved into line 3.00. Line 2.00 is marked with M in the mark column
and line 3.00 with O.

Line 3.00 has been overwritten with the contents of line 2.00 and line 2.00 has been
deleted.

c 1.00 THE STATEMENT CODES A, B AND O MARK THE DESTINATION....................
a 2.00 FOR THE LINES MARKED WITH C, M AND R...................................
 3.00 ...

 1.00 THE STATEMENT CODES A, B AND O MARK THE DESTINATION....................
m 2.00 FOR THE LINES MARKED WITH C, M AND R...................................
o 3.00 THE STATEMENT CODES A, B AND O MARK THE DESTINATION....................
 4.00..

 1.00 THE STATEMENT CODES A, B AND O MARK THE DESTINATION....................
 3.00 FOR THE LINES MARKED WITH C, M AND R...................................
 4.00 ...

C - mark for copying EDT operating modes

90 U1884-J-Z125-9-76

C Mark for copying

C marks lines which are to be copied to a destination marked with A, B or O. The line
numbers (up to 255 lines) are stored in the copy buffer.

As soon as the destination is specified, the copy operation is executed and the contents of
the copy buffer are deleted.

EDT assigns line numbers to the copied lines in one of three ways (see @COPY, format 2):

1. Default numbering with an increment of 1.0000.

2. Numbering with the increment set by the user (@PAR INCREMENT).

3. Automatic numbering and renumbering (only if @PAR RENUMBER=ON is specified).
EDT renumbers the lines automatically if the increment is too large to permit insertion
of all copied lines. For further details, see @COPY, format 2, “Calculation of line
numbers”.

C, M and R are never executed simultaneously. Input of a combination of C, M and R in the
mark column of one work window is detected by the syntax and semantics check and
rejected: a “?” is displayed instead of the invalid statement code and the cursor is positioned
to this code to permit correction.

A, B, O and * clear the copy buffer. A copy buffer created with C is cleared by a
subsequent M or R statement code.

If the screen is split, lines can be copied from work window 1 to work window 2 in a single
dialog step.

However, due to the processing sequence, two dialog steps are necessary to copy lines
from work window 2 to work window 1.

The copy buffer contents can also be created by marking lines in several different work files,
and the destination may also be marked in any work file.

The copy buffer contains the work file numbers and the line numbers of the lines
marked with C. For this reason, the line numbers in the work files must not be changed
between marking the lines with C and entering the statement code A, B or O.

Statement code Key

C [DUE] or [F2]

EDT operating modes C - mark for copying

U1884-J-Z125-9-76 91

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example

Line 3.00 is to be copied before line 7.00 and after line 8.00: line 3.00 is marked with C, line
7.00 with B and line 8.00 with A.

Line 3.00 was copied before line 7.00 but not after line 8.00. Instead, EDT has issued an
error message.

Lines marked with C can be copied only to a single destination since the first copy operation
also clears the copy buffer. The specification of a second destination thus resulted in an
error message. If lines are to be copied several times, then they must be marked with R.

 1.00 C MARK FOR COPYING..
 2.00 =====================..
c 3.00 ..
 4.00 C MARKS LINES WHICH ARE TO BE COPIED TO A DESTINATION MARKED WITH......
 5.00 A, B OR O. THE LINE NUMBERS (UP TO 255 LINES) ARE STORED IN THE........
 6.00 COPY BUFFER. ..
b 7.00 AS SOON AS THE DESTINATION IS SPECIFIED, THE COPY OPERATION IS.........
a 8.00 EXECUTED AND THE CONTENTS OF THE COPY BUFFER ARE DELETED.
 9.00 ...

 1.00 C MARK FOR COPYING...
 2.00 =====================...
 3.00 ..
 4.00 C MARKS LINES WHICH ARE TO BE COPIED TO A DESTINATION MARKED WITH.......
 5.00 A, B OR O. THE LINE NUMBERS (UP TO 255 LINES) ARE STORED IN THE.........
 6.00 COPY BUFFER. ...
 6.10 ...
 7.00 AS SOON AS THE DESTINATION IS SPECIFIED, THE COPY OPERATION IS..........
 8.00 EXECUTED AND THE CONTENTS OF THE COPY BUFFER ARE DELETED.
 9.00 ..
 10.00 ..
 11.00 ..
 12.00 ..
 13.00 ..
 14.00 ..
 15.00 ..
 16.00 ..
 17.00 ..
 18.00 ..
 19.00 ..
 20.00 ..
 21.00 ..
% EDT5360 NO COPY. BUFFER EMPTY
... 0001.00:001(0)

D - delete records EDT operating modes

92 U1884-J-Z125-9-76

D Delete records

Any records marked with D are deleted.

Example

Line 2.00 is to be deleted: it is marked with D in the mark column.

Statement code Key

D [DUE] or [F2]

 1.00 BERGER THOMAS 10, HIGH ST. DONCASTER.............................
d 2.00 DUCK DONALD 8, WALT ST. DISNEYLAND............................
 3.00 GREEN JENNIFER 16, LOW RD. POUGHKEEPSIE..........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH................................
 5.00 STUBBS MANUELA 3, POST ST. GRANTHAM..............................
 6.00 ..

 1.00 BERGER THOMAS 10, HIGH ST. DONCASTER.............................
 3.00 GREEN JENNIFER 16, LOW RD. POUGHKEEPSIE..........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH................................
 5.00 STUBBS MANUELA 3, POST ST. GRANTHAM..............................
 6.00 ..

EDT operating modes E - insert characters

U1884-J-Z125-9-76 93

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

E Insert characters

E permits characters to be inserted in the line, which is set to overwritable for this purpose.

If there are not at least 20 null characters or filler characters at the end of the line marked
with E, EDT provides 20 null characters at the end of this line. Any characters in the line
which disappear from the data window due to the insertion of the null characters are not
lost.

The user can now insert up to 20 characters anywhere in the line (using[EFG]). If less than
20 characters are inserted, the part of the record which was shifted is moved back into the
data window.

In EDIT LONG mode, an additional line with 80 null characters is provided in addition to the
normal display of the line.

Example

Line 8.00 is marked with E for insertion and line 7.00 with X for updating.

Statement code Key

E [DUE] or [F2]

 1.00 E INSERT CHARACTERS..
 2.00 ..
 3.00 ..
 4.00 E PERMITS CHARACTERS TO BE INSERTED IN THE LINE, WHICH IS SET...........
 5.00 TO OVERWRITABLE FOR THIS PURPOSE..
 6.00 ..
x 7.00 IF THE END OF THE LINE MARKED WITH E CONTAINS LESS THAN 20 NULL.........
e 8.00 CHARACTERS, EDT PROVIDES 20 NULL CHARACTERS AT THAT POSITION............
 9.00 ANY CHARACTERS IN THE LINE WHICH DISAPPEAR FROM THE DATA WINDOW DUE.....
 10.00 TO THIS INSERTION ARE NOT LOST..
 11.00 ..

 1.00 E INSERT CHARACTERS..
 2.00 ..
 3.00 ..
 4.00 E PERMITS CHARACTERS TO BE INSERTED IN THE LINE, WHICH IS SET...........
 5.00 TO OVERWRITABLE FOR THIS PURPOSE..
 6.00 ..
 7.00 IF THE END OF THE LINE MARKED WITH E CONTAINS LESS THAN 20 NULL.........
 8.00 CHARACTERS, EDT PROVIDES 20 NULL CHARACTERS AT THAT
 9.00 ANY CHARACTERS IN THE LINE WHICH DISAPPEAR FROM THE DATA WINDOW DUE.....
 10.00 TO THIS INSERTION ARE NOT LOST..
 11.00 ..

E - insert characters EDT operating modes

94 U1884-J-Z125-9-76

Since there is not enough space at the end of line 8.00 for 20 characters, EDT moves the
rest of the line out of the data window and displays 20 null characters.

Line 7.00 has been changed and text has been inserted in line 8.00 by means of the [EFG]
key.

Since less than 20 characters were inserted in line 8.00, EDT moves the remainder of the
line back into the data window (as far as possible).

 1.00 E INSERT CHARACTERS..
 2.00 ..
 3.00 ..
 4.00 E PERMITS CHARACTERS TO BE INSERTED IN THE LINE, WHICH IS SET...........
 5.00 TO OVERWRITABLE FOR THIS PURPOSE..
 6.00 ..
 7.00 IF THE END OF THE LINE MARKED WITH E CONTAINS LESS THAN 20 filler.......
 8.00 (default=null) CHARACTERS, EDT PROVIDES 20 NULL CHARACTERS AT THAT......
 9.00 ANY CHARACTERS IN THE LINE WHICH DISAPPEAR FROM THE DATA WINDOW DUE.....
 10.00 TO THIS INSERTION ARE NOT LOST..
 11.00 ..

 1.00 E INSERT CHARACTERS..
 2.00 ..
 3.00 ..
 4.00 E PERMITS CHARACTERS TO BE INSERTED IN THE LINE, WHICH IS SET...........
 5.00 TO OVERWRITABLE FOR THIS PURPOSE..
 6.00 ..
 7.00 IF THE END OF THE LINE MARKED WITH E CONTAINS LESS THAN 20 FILLER.......
 8.00 (DEFAULT=NULL) CHARACTERS, EDT PROVIDES 20 NULL CHARACTERS AT THAT POSIT
 9.00 ANY CHARACTERS IN THE LINE WHICH DISAPPEAR FROM THE DATA WINDOW DUE.....
 10.00 TO THIS INSERTION ARE NOT LOST..
 11.00 ..

EDT operating modes J - chain two records

U1884-J-Z125-9-76 95

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

J Chain two records

A record which is to be chained to the preceding record must be marked with J. The marked
record is deleted after chaining.

If the total length of the chained record exceeds the maximum record length of 256
characters, the record is truncated to the maximum record length. In this case, the marked
record is not deleted and the error message: % EDT2267 LINE TRUNCATED AFTER 256
CHARACTERS is issued. No error switch is set.

If the first record of a file is marked with J, this record remains unchanged and is not deleted.

For information on splitting records, see the section “Statement in the data window - split
record” on page 119.

Example

Statement code Key

J [DUE] or [F2]

 1.00 THE RECORD WHICH IS...
j 2.00 TO BE CHAINED TO THE PRECEDING..
 3.00 RECORD MUST BE..
j 4.00 MARKED WITH J. THE MARKED...
j 5.00 RECORD IS...
 6.00 DELETED AFTER...
j 7.00 CHAINING..
 8.00 ..

 1.00 THE RECORD WHICH IS TO BE CHAINED TO THE PRECEDING......................
 3.00 RECORD MUST BE MARKED WITH J. THE MARKED RECORD IS......................
 6.00 DELETED AFTER CHAINING..
 7.00 ..

K - copy line to statement line EDT operating modes

96 U1884-J-Z125-9-76

K Copy line to statement line

The contents of a line marked with K (up to 65 characters) are copied into the statement
line, overwriting anything currently in the statement line.

Only one line may be marked with K in any given work window. If several lines are marked
with K, the input is not processed and the superfluous K marks are overwritten with ?.

At least one character in the statement line created in this manner must be overwritten,
modified or added in the statement line if the text is to be used as a statement.

Example

Statement code Key

K [DUE] or [F2]

 1.00 THE CONTENTS OF A LINE MARKED WITH K (UP TO 65 CHARACTERS) ARE..........
 2.00 COPIED INTO THE STATEMENT LINE, OVERWRITING ANYTHING IN THE.............
 3.00 STATEMENT LINE..
 4.00 ..
k 5.00 SCALE ON..

 1.00 THE CONTENTS OF A LINE MARKED WITH K (UP TO 65 CHARACTERS) ARE..........
 2.00 COPIED INTO THE STATEMENT LINE, OVERWRITING ANYTHING IN THE.............
 3.00 STATEMENT LINE..
 4.00 ...
 5.00 SCALE ON..
 6.00 ..

sCALE ON ...0001.00:001(0)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 THE CONTENTS OF A LINE MARKED WITH K (UP TO 65 CHARACTERS) ARE..........
 2.00 COPIED INTO THE STATEMENT LINE, OVERWRITING ANYTHING IN THE.............
 3.00 STATEMENT LINE..
 4.00 ..
 5.00 SCALE ON..
 6.00 ..

EDT operating modes L - convert marked records to lowercase

U1884-J-Z125-9-76 97

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

L Convert marked records to lowercase

All records marked with aL are converted to lowercase notation. Conversion is analogous
to @CONVERT TO=LOWER.

Record marks (including the special marks 13, 14 and 15) are retained. Separator
characters entered in an overwritable line marked with an L are taken into account before
conversion starts, i.e. only the portion preceding the first separator character is converted.

Activation of the coding function (@CODE) has no effect on data conversion.

Example

Statement code Key

L [DUE] or [F2]

 1.00 THE CONTENTS OF A LINE MARKED WITH L ARE CONVERTED TO LOWERCASE.........
 2.00 THE CONTENTS ARE NOT AFFECTED...
 4.00 ...
L 5.00 THE CONTENTS OF A LINE MARKED WITH L ARE CONVERTED TO LOWERCASE.........

 1.00 THE CONTENTS OF A LINE MARKED WITH L ARE CONVERTED TO LOWERCASE.........
 2.00 THE CONTENTS ARE NOT AFFECTED...
 4.00 ...
 5.00 the contents of a line marked with l are converted to lowercase.........

M - copy and delete marked lines EDT operating modes

98 U1884-J-Z125-9-76

M Copy and delete marked lines

M is used to mark lines which are to be moved to a specified destination (A, B or O). The
lines marked with M are then deleted. The line numbers (up to 255) of the lines to be moved
are stored in a copy buffer. As soon as the destination is specified, the move operation is
executed and the contents of the copy buffer are deleted.

EDT assigns line numbers to the copied lines in one of three ways (see @COPY, format 2):

1. Default numbering with an increment of 1.0000.

2. Numbering with the increment set by the user (@PAR INCREMENT).

3. Automatic numbering and renumbering (only if @PAR RENUMBER=ON is specified).
EDT renumbers the lines automatically if the increment is too large to permit insertion
of all copied lines. For further details, see @COPY, format 2, “Calculation of line
numbers”.

C, M and R are never executed simultaneously. Input of a combination of C, M and R in the
mark column of one work window is detected by the syntax and semantics check and
rejected: a ? is displayed instead of the invalid statement code and the cursor is positioned
to this code to permit correction.

A, B, O and * clear the copy buffer.

If the screen is split, lines can be moved from work window 1 to work window 2 in a single
dialog step.

However, due to the processing sequence, two dialog steps are necessary to move lines
from work window 2 to work window 1.

The copy buffer contents can also be created by marking lines in several different work files,
and the destination may also be marked in any work file. Copy buffer contents created with
M are deleted by a subsequent C or R.

The copy buffer contains the work file numbers and the line numbers of the lines
marked with M. For this reason, the line numbers in the work files must not be changed
between marking the lines with M and entering the statement code A, B or O.

If a line marked with M is subsequently marked with O, then this line is deleted.

Statement code Key

M [DUE] or [F2]

EDT operating modes M - copy and delete marked lines

U1884-J-Z125-9-76 99

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example

 1.00 M IS USED TO MARK LINES WHICH ARE TO BE MOVED TO A......................
 2.00 SPECIFIED DESTINATION (A, B OR O).......................................
m 3.00 ...
m 4.00 AAA...
a 5.00 BBB..
 6.00 CCC...
 7.00 ..

 1.00 M IS USED TO MARK LINES WHICH ARE TO BE MOVED TO A......................
 2.00 SPECIFIED DESTINATION (A, B OR O).......................................
 5.00 BBB..
 5.10 ..
 5.20 AAA...
 6.00 CCC...
 7.00 ..

n/I - insert lines EDT operating modes

100 U1884-J-Z125-9-76

n/I Insert lines

With the aid of n/l, records can be inserted into a work file.

n The number of lines to be inserted.
1 ≤ n ≤ 9
The lines are inserted before the line marked with n.

I The mark I (for “Insert”) activates a permanent insert function which - provided the
work window is large enough - creates a 9-line area for insertions.

When these nine empty lines have been filled and the work window has been sent
off by means of[DUE], a new insert area is displayed. This is repeated until

– no input is written into the last insert line, or
– S is entered, or
– the insert area can no longer be displayed in the data window, either due to a

change of work file or because the window has been positioned elsewhere in
the current work file.

Only one I mark may be entered in a work window.
Input of an I mark during use of the permanent insert function closes the first insert
area and opens a new one.

The number of empty lines specified by n is displayed before the marked line. These empty
lines already have line numbers, and these are displayed if the line number display is active.
The line numbers are formed by adding the selected increment value to the number of the
line before the insert area. The third and fourth digits of the number of the line before the
insert area are ignored. If the work file is numbered with an increment of 1, it is possible to
insert 99 lines at any point in the file without having to change the original line numbers.

If the difference between two line numbers is too small to permit insertion of the
specified number of lines with an increment of 0.01, the following lines are renumbered.
Line numbering continues with an increment of 0.01 until the ascending order can be estab-
lished again. This renumbering is retained even if only some of the available insert lines are
filled with text.

If no text is entered in one of the empty insert lines, no record is created in the work file for
this line. The I mark can also be sent off with [F2], which causes the lines in the work
window to be set to overwritable.

Statement code Key

n
I

[DUE] or [F2]

EDT operating modes n/I - insert lines

U1884-J-Z125-9-76 101

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example

Three lines are to be inserted before line 7.00. Line 7.00 is marked with 3.

More than 9 lines are to be inserted before line 8.00. Line 8.00 is marked with I (permanent
insert function).

 1.00 n/I INSERT LINES..
 2.00 ..
 3.00 ..
 4.00 With the aid of n/I, records can be inserted into a work file...........
 5.00 ..
 6.00 111...
3 7.00 222..
 8.00 333...

 1.00 n/I INSERT LINES..
 2.00 ...
 3.00 ...
 4.00 With the aid of n/I, records can be inserted into a work file...........
 5.00 ...
 6.00 111...
 6.10 ..
 6.20 ..
 6.30 ..
 7.00 222..
i 8.00 333...
 9.00 ..

 1.00 n/I INSERT LINES..
 2.00 ..
 3.00 ..
 4.00 With the aid of n/I, records can be inserted into a work file...........
 5.00 ..
 6.00 111...
 6.10 112...
 6.20 113...
 6.30 114...
 7.00 222..
i 8.00 333...
 9.00 ..

n/I - insert lines EDT operating modes

102 U1884-J-Z125-9-76

 All 9 lines of the insert area are filled with data.

Since all lines of the insert area contain data, 9 further lines with an increment value of 0.01
are displayed as a new insert area.

 1.00 n/I INSERT LINES..
 2.00 ...
 3.00 ...
 4.00 With the aid of n/I, records can be inserted into a work file...........
 5.00 ...
 6.00 111...
 6.10 112...
 6.20 113...
 6.30 114...
 7.00 222..
 7.10 1...
 7.20 2...
 7.30 3...
 7.40 4...
 7.50 5...
 7.60 6...
 7.70 7...
 7.80 8...
 7.90 9...
 8.00 333...
 9.00 ..
 10.00 ..
 11.00 ..
..0001.00:001(0)

 7.90 9...
 7.91 ..
 7.92 ..
 7.93 ..
 7.94 ..
 7.95 ..
 7.96 ..
 7.97 ..
 7.98 ..
 7.99 ..
 8.00 333...
 9.00 ..

EDT operating modes R - mark for copying

U1884-J-Z125-9-76 103

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

R Mark for copying (without clearing copy buffer)

R is used to mark lines for copying to a specified destination (A, B, O). The copy buffer is
not cleared when the lines are copied.

The line numbers (up to 255) are stored in the copy buffer and remain there until a C, M or
* mark is entered. This means that the lines marked with R can be copied to several different
destinations.

EDT assigns line numbers to the copied lines in one of three ways (see @COPY, format 2):

1. Default numbering with an increment of 1.0000.

2. Numbering with the increment set by the user (@PAR INCREMENT).

3. Automatic numbering and renumbering (only if @PAR RENUMBER=ON is specified).
EDT renumbers the lines automatically if the increment is too large to permit insertion
of all copied lines. For further details, see @COPY, format 2, “Calculation of line
numbers”.

C, M and R are never executed simultaneously. Input of a combination of C, M and R in the
mark column of one work window is detected by the syntax and semantics check and
rejected: a ’?’ is displayed instead of the invalid statement code and the cursor is positioned
to this code to permit correction.

If the screen is split, lines can be moved from work window 1 to work window 2 in a single
dialog step.

However, due to the processing sequence, two dialog steps are necessary to move lines
from work window 2 to work window 1.

The copy buffer contents can also be created by marking lines in several different work files,
and the destination may also be marked in any work file. Copy buffer contents created with
R are deleted by a subsequent C or M.

The copy buffer contains the work file numbers and the line numbers of the lines
marked with R. For this reason, the line numbers in the work files must not be changed
between marking the lines with R and entering the statement code A, B or O.

Statement code Key

R [DUE] or [F2]

R - mark for copying EDT operating modes

104 U1884-J-Z125-9-76

Example

 1.00 R MARK FOR COPYING (WITHOUT CLEARING COPY BUFFER)....................
r 2.00 ...
b 3.00 R is used to mark lines for copying to a destination (A, B, O)..........
b 4.00 The line numbers (up to 255) are stored in the copy buffer and..........
 5.00 remain there until a C, M or * mark is entered..........................
 6.00 This means that the lines marked with R can be copied to several........
 7.00 different destinations..
 8.00 ..
 9.00 ..

 1.00 R MARK FOR COPYING (WITHOUT CLEARING COPY BUFFER)....................
 2.00 ...
 2.10 ...
 3.00 R is used to mark lines for copying to a destination (A, B, O)..........
 3.10 ...
 4.00 The line numbers (up to 255) are stored in the copy buffer and..........
 5.00 remain there until a C, M or * mark is entered..........................
 6.00 This means that the lines marked with R can be copied to several........
 7.00 different destinations..
 8.00 ...
 9.00 ..

EDT operating modes S - position work window

U1884-J-Z125-9-76 105

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

S Position work window (horizontal and vertical)

S sets the marked line to overwritable and positions it in the second line of the work window.
A column counter (scale) is displayed in the first line of the work window.

If the user writes blanks in the marked line up to the position before the desired column,
then EDT positions

– the first line marked with S in the first line of the work window,

– the work window to the first column containing a non-blank character in the line marked
with S.

If the line is not changed, no column positioning is executed. Blanks and any other
characters which are entered do not change the original line contents. To position to a
column within a sequence of blanks, a non-blank character must be entered at the desired
position.

If the user overwrites all the text in a line marked with S with blanks, then EDT positions the
work window to column 73 or 81 (for INDEX=ON/OFF, respectively). S may be combined
only with K and D, and these must precede the S mark in the data window.

If other statement codes (X, E) are entered below S in the mark column, they are
overwritten with ? and rejected. If there are other statement codes above S in the mark
column, S is overwritten with ? and rejected.

The << statement repositions the work window to column 1 (see the section “>/< Position
horizontally within work file” on page 122ff.).

Statement code Key

S [DUE]

S - position work window EDT operating modes

106 U1884-J-Z125-9-76

Example

The work window is to be positioned to line 4.00 and this line is to be set to overwritable.

The work window is now to be positioned to column 18: line 4.00 is overwritten with blanks
up to the desired column.

EDT has positioned the work window to column 18.

Entering the << statement in the statement line positions the cursor back to
column 1 (see the section “>/< Position horizontally within work file” on page 122).

 1.00 SEQ.NO ART.NO. ART.NAME STOCK ORDERED.......................
 2.00 1 0024 SOAP 3000 150...........................
 3.00 2 0015 DEODORANT 2500 600...........................
s 4.00 3 0048 PERFUME 400 60............................
 5.00 4 0003 CREME 987 555...........................
 6.00 5 0091 SHAVING FOAM 350 30............................
 7.00 6 0090 AFTER SHAVE 340 30............................
 8.00 7 0092 SHAVING BRUSH 200 30............................
 9.00 ...

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 4.00 PERFUME 400 60............................
 5.00 4 0003 CREME 987 555...........................
 6.00 5 0091 SHAVING FOAM 350 30............................
 7.00 6 0090 AFTER SHAVE 340 30............................
 8.00 7 0092 SHAVING BRUSH 200 30............................
 9.00 ..

 4.00 PERFUME 400 60...
 5.00 CREME 987 555..
 6.00 SHAVING FOAM 350 30...
 7.00 AFTER SHAVE 340 30...
 8.00 SHAVING BRUSH 200 30...
 9.00 ..

i

EDT operating modes T - syntax test by SDF

U1884-J-Z125-9-76 107

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

T Syntax test by SDF

A line marked with T is passed together with its continuation lines to SDF for a check on the
command or statement syntax.

Depending on the GUIDANCE mode set for SDF (GUIDANCE=MIN|MED|MAX), faulty SDF
syntax causes the program to branch to SDF’s guided correction dialog.

If the user aborts the correction dialog or if none is possible, the faulty line is displayed and
can be overwritten at the top of the window, and an error message is issued as in the case
of the @SDFTEST statement.

If the SDF syntax was correct or has now been corrected, the commands and statements
are transferred to the work file.
The format is determined by the SDF setting LOGGING (see the description of the
MODIFY-SDF-OPTIONS command).

This statement code is subject to the current SDF settings, which can be modified with
MODIFY-SDF-OPTIONS.

EDT distinguishes between three types of lines:

1. lines beginning with one (and only one) / in column 1
These lines are checked for command syntax in accordance with the SDF syntax file
hierarchy. Their admissability in regard to privileges or system environment (e.g. batch
process or procedure) is determined by the current user and the current environment.

2. lines beginning with //.
These lines are passed to SDF, where they are subjected to a statement check.
The program name is preset by means of the statement @PAR SDF-PROGRAM or is
known through a preceding @SDFTEST PROGRAM=name statement.
The program name must be known in a current SDF syntax file.

3. lines of pure data
If you specify a t, it is ignored.

Continuation lines in the input

If the last character of a line beginning with / or // is a continuation character (i.e. -) and the
next line also begins with / or //, it is a continuation line and is passed to SDF as a concat-
enated character string. Any t mark is ignored.

Statement code Key

T [DUE] or [F2]

T - syntax test by SDF EDT operating modes

108 U1884-J-Z125-9-76

Output of the checked text and continuation lines in the output

Starting with the marked line number, the text is written into the file - if necessary, in pieces.

The continuation character is written in the 72nd column. If necessary, the subsequent lines
are renumbered.

Line numbers are assigned as in @COPY format 2.

– T marks must not be used in combination with positioning marks (+, - or S) or
insertion marks (1-9 or I).

– If the GUIDANCE setting is MIN, MED or MAX, passwords and other operands
defined with OUTPUT=SECRET-PROMPT are replaced with P.

– SDF does not detect faulty operands in ISP commands.

– A maximum of 255 continuation lines are permitted in the input or the output.

– Ampersand (&) replacement is accepted only in operand values, not in
commands, statements or operand names or any part thereof.

i

EDT operating modes T - syntax test by SDF

U1884-J-Z125-9-76 109

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example 1

The EXPERT form of the unguided dialog is set for SDF.

SDF is to check lines 1-8 for correct SDF syntax.

The cursor is positioned at the first line of the faulty command, and the lines of the command
are displayed and can be overwritten.

/MODIFY-SDF-OPTIONS GUIDANCE=EXPERT,LOGGING=INPUT-FORM

t 1.00 /SET-JOB-STEP...
t 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE2, -..............................
t 3.00 / NEW-NAME=FILE3, -...............................
t 4.00 / PROT=*PARAMETERS(UCCESS=*READ)..................
t 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -..............................
t 6.00 / NEW-NAME=FILE2, -...............................
t 7.00 / PROT=*PARAMETERS(ACCESS=*READ)..................
t 8.00 ..

 1.00 /SET-JOB-STEP...
 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE2, -..............................
 3.00 / NEW-NAME=FILE3, -...............................
 4.00 / PROT=*PARAMETERS(UCCESS=*READ)..................
 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -..............................
 6.00 / NEW-NAME=FILE2, -...............................
 7.00 / PROT=*PARAMETERS(ACCESS=*READ)..................
 8.00 ..

% EDT4310 SDF: SYNTAX ERROR IN LINE 0002.0000002.00:001(0)

T - syntax test by SDF EDT operating modes

110 U1884-J-Z125-9-76

Example 2

The guided dialog with minimum help is set for SDF.

SDF is to check lines 1-8 for correct SDF syntax.

The program branches to SDF’s guided correction dialog.

/MODIFY-SDF-OPTIONS GUIDANCE=MINIMUM,LOGGING=INPUT-FORM

t 1.00 /SET-JOB-STEP...
t 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE2, -..............................
t 3.00 / NEW-NAME=FILE3, -...............................
t 4.00 / PROT=*PARAMETERS(UCCESS=*READ)..................
t 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -..............................
t 6.00 / NEW-NAME=FILE2, -...............................
t 7.00 / PROT=*PARAMETERS(ACCESS=*READ)..................
t 8.00 ..

SITUATION: ERROR IN PROG/S-PROC COMMAND: MODIFY-FILE-ATTRIBUTES

--
FILE-NAME = FILE3
NEW-NAME = FILE4
SUPPORT = *UNCHANGED
PROTECTION = *PARAMETERS(ACCESS=*UNCHANGED,USER-ACCESS=*UNCHANGED,BASI
 C-ACL=*UNCHANGED,GUARDS=*UNCHANGED,WRITE-PASSWORD=*UNCHAN
 GED,READ-PASSWORD=*UNCHANGED,EXEC-PASSWORD=*UNCHANGED,DES
 TROY-BY-DELETE=*UNCHANGED,AUDIT=*UNCHANGED,SPACE-RELEASE-
 LOCK=*UNCHANGED,RETENTION-PERIOD=*UNCHANGED)
SAVE = *UNCHANGED
MIGRATE = *UNCHANGED
CODED-CHARACTER-SET = *UNCHANGED

--
NEXT = *CONTINUE
 *EXECUTE“F3“ OR + OR *EXIT“K1“ OR *EXIT-ALL“F1“

ERROR: CMD0185 OPERAND NAME ‚UCCESS‘ COULD NOT BE IDENTIFIED

EDT operating modes T - syntax test by SDF

U1884-J-Z125-9-76 111

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

The error is corrected.

Lines 2-4 are replaced with lines 2-3.

SITUATION: ERROR IN PROG/S-PROC COMMAND: MODIFY-FILE-ATTRIBUTES

--
FILE-NAME = FILE3
NEW-NAME = FILE4
SUPPORT = *UNCHANGED
PROTECTION = *PARAMETERS(ACCESS=R)

SAVE = *UNCHANGED
MIGRATE = *UNCHANGED
CODED-CHARACTER-SET = *UNCHANGED

--
NEXT = *CONTINUE
 *EXECUTE“F3“ OR + OR *EXIT“K1“ OR *EXIT-ALL“F1“

ERROR: CMD0185 OPERAND NAME ‚UCCESS‘ COULD NOT BE IDENTIFIED

 1.00 /SET-JOB-STEP...
 2.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE3,NEW-NAME=FILE4,PROTECTION= -
 3.00 /*PARAMETERS(ACCESS=*READ)..
 5.00 /MODIFY-FILE-ATTRIBUTES FILE-NAME=FILE1, -..............................
 6.00 / NEW-NAME=FILE2, -...............................
 7.00 / PROT=*PARAMETERS(ACCESS=*READ)..................
 8.00 ..

U - convert marked records to uppercase EDT operating modes

112 U1884-J-Z125-9-76

U Convert marked records to uppercase

All records marked with a U are converted to uppercase notation. Conversion is analogous
to @CONVERT TO=UPPER.

Record marks (including the special marks 13, 14 and 15) are retained. Separator
characters entered in an overwritable line marked with a U are taken into account before
conversion starts, i.e. only the portion preceding the first separator character is converted.

Activation of the coding function (@CODE) has no effect on data conversion.

Example

Statement code Key

U [DUE] or [F2]

 1.00 the contents of a line marked with u are converted to uppercase.........
 2.00 the contents are not affected...
 4.00 ...
u 5.00 the contents of a line marked with u are converted to uppercase.........

 1.00 the contents of a line marked with u are converted to uppercase.........
 2.00 the contents are not affected...
 4.00 ...
 5.00 THE CONTENTS OF A LINE MARKED WITH U ARE CONVERTED TO UPPERCASE.........

EDT operating modes +/– - position work window

U1884-J-Z125-9-76 113

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

+/– Position work window

+ makes the marked record the first record in the work window.

– makes the marked line the last record in the work window.

In the mark column of one work window, + or –

– may be specified only once
– must not be specified together with another + or - or with S
– must not be specified after X, E, n or I.

The column position is not affected by these statement codes.

The character + has no effect if only the last line of data is being displayed on the screen.

The character – has no effect in the first screen of a file (at the start of the data).

Statement code Key

+
–

[DUE] or [F2]

+/– - position work window by structure depth EDT operating modes

114 U1884-J-Z125-9-76

+/– Position work window by structure depth

With the aid of these statement codes, the work window can be positioned to the next or
previous record with the same structure depth.

The structure depth is defined as the distance between the first non-blank character and
the start of the record.

If a non-blank character if defined as the structure symbol (see @PAR STRUCTURE), only
those records containing at least this structure symbol are evaluated. If a blank is specified
as the structure symbol, all records are evaluated. The default value of the structure symbol
is @.

If no record with the same structure depth is found, the position remains unchanged.

If the marked record contains no structure symbol, the statement code is rejected with the
message: % EDT5354 STRUCTURE SYMBOL 'symbol' NOT FOUND

Example

A blank is defined as a structure symbol.

Statement code Key

+
–

[F1]

 1.00 STRUCTURE DEPTH 1...
 2.00 STRUCTURE DEPTH 2...
 3.00 STRUCTURE DEPTH 3...
 4.00 ..
 5.00 NOW STRUCTURE DEPTH 2 AGAIN...
 6.00 AND BACK TO STRUCTURE DEPTH 1...
 7.00 ..

par structure=' '...0001.00:001(0)

EDT operating modes +/– - position work window by structure depth

U1884-J-Z125-9-76 115

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Line 2 is marked as the structure depth.

[F1] positions the cursor to the next record with the same structure depth.

 1.00 STRUCTURE DEPTH 1...
+ 2.00 STRUCTURE DEPTH 2...
 3.00 STRUCTURE DEPTH 3...
 4.00 ..
 5.00 NOW STRUCTURE DEPTH 2 AGAIN...
 6.00 AND BACK TO STRUCTURE DEPTH 1...
 7.00 ..

..0001.00:001(0)

 5.00 NOW STRUCTURE DEPTH 2 AGAIN...
 6.00 AND BACK TO STRUCTURE DEPTH 1...
 7.00 ..

..0005.00:001(0)

X - modify lines EDT operating modes

116 U1884-J-Z125-9-76

X Modify lines

X is used to mark lines which are to be modified. EDT sets these lines to overwritable and
displays them with high intensity. The cursor is positioned to the beginning of the first
overwritable line within the data window.

Changes are effective in the parts of the records displayed in the data window; the
remainder of each record remains unchanged. However, the user should note that inserting
by means of[EFG] will cause any characters which are shifted past the right-hand edge of
the data window to be lost. This can be avoided by using the statement code E to insert
characters.

Lines which, after modification, contain only null characters (as a result, for example,
of[LZF] in column 1) are deleted from the work file.

If scrolling statements (+,–, ...) are entered in the statement line, any modification
statement codes in the mark column are executed first.

The contents of the work file can also be modified with the aid of statements in the
statement line.

The entire data window can be set to overwritable by means of[F2] (see the section “F
keys” on page 83ff.).

In the new operating mode, all records in the data window are always overwritable (see
@PAR EDIT FULL).

Statement code Key

X [DUE] or [F2]

EDT operating modes X - modify lines

U1884-J-Z125-9-76 117

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example

Line 2 has been marked for modification.

The line to be modified is displayed with high intensity and the zip code is inserted before
DISNEYLAND.

 1.00 BERGER THOMAS 10, HIGH ST. 9876 DONCASTER........................
x 2.00 DUCK DONALD 8, WALT ST. DISNEYLAND............................
 3.00 GREEN JENNIFER 16, LOW RD. 5532 POUGHKEEPSIE.....................
 4.00 HOPPER LARRY P.O. BOX 99 8000 MUNICH...........................
 5.00 STUBBS MANUELA 3, POST ST. 5217 GRANTHAM.........................
 6.00 ..

 1.00 BERGER THOMAS 10, HIGH ST. 9876 DONCASTER........................
 2.00 DUCK DONALD 8, WALT ST. 3333 DISNEYLAND.......................
 3.00 GREEN JENNIFER 16, LOW RD. 5532 POUGHKEEPSIE.....................
 4.00 HOPPER LARRY P.O. BOX 99 8000 MUNICH...........................
 5.00 STUBBS MANUELA 3, POST ST. 5217 GRANTHAM.........................
 6.00 ..

D/m - delete/set record mark EDT operating modes

118 U1884-J-Z125-9-76

D Delete record mark

D [F3] deletes any existing record mark (see “Deleting record marks” on page 136).

m Set record mark

The record mark m is set in the specified record.

The data window can be positioned to this record mark (see the section “+/– Position within
work file” on page 121).

m The number of the record mark, where 1 ≤ m ≤ 9 (see “Setting record marks” on
page 136).

m cannot be specified as an integer variable.

@ON, format 4, can also be used to set record marks.

Statement code Key

D [F3]

Statement code Key

m [F3]

Statements in the data window Record separator

U1884-J-Z125-9-76 119

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

4.1.5 Statement in the data window - split record

@PAR can be used to define a freely selectable record separator (such as @PAR
SEPARATOR = ’;’, see @PAR).

If this record separator is entered in a line in the data window, the record is split at this point.
Several separators may be entered in one record. The first part of the original record keeps
the original line number and all following parts are inserted as new records. The lines are
numbered as described for @COPY, format 2.

When inserting the record separator, the user should take care that no characters are lost
at the end of the line.

A record is split only when new records or separators are entered, or when existing records
or separators are modified. For example, if a record is inserted by copying, at least one
character must be overwritten, modified or inserted before the record can be split using
record separators.

The characters NIL (null) and AM cannot be defined as record separators.

Different characters should be selected as the record separator and the tab character.

The record separator must not be redefined while the code function is active.

Empty records (record length = 0) cannot be created; however, line numbers are
reserved where such records would have been generated.

A character which is not included in the data should be used as a separator.

4.1.6 Statements in the statement line

In F mode, statements are entered in the statement line (see the section “Work window” on
page 75ff). In the statement line, statements can be entered with or without the statement
symbol @, since EDT interprets all entries made there as statements.

The following pages contain descriptions only of those statements which can be entered
exclusively in F mode dialog. A description of the statements which can be used in both
F and L mode and in EDT procedures can be found in chapter “EDT statements” on
page 161ff.

+/– - position within work file Statements in the statement line

120 U1884-J-Z125-9-76

+/– Position within work file

The +/– statements have two formats offering the following functions:

– positioning forwards or backwards by one data window or by any desired number of
lines within the current work file (format 1)

– positioning to record marks within the current work file (format 2).

+/– (Format 1) Position within the work file

These statements are used to move to the desired position within the work file.

+ Position forwards (towards the end of the file) in the current work file by one data
window. The first record in the new window is the one which follows the last record
in the old window.

++ Position to the end of the current work file. The last line of the data window contains
the last record of the work file if the current work file contains more lines than the
current work window.

– Position backwards (towards the beginning of the file) in the current work file by one
data window. The last line of the new window contains the record before the first
record displayed in the old window.

– – Position to the beginning of the current work file. The first line of the data window
contains the first record of the work file.

n Any integer > 0: specifies a displacement for + or -.

+n displays the nth record, counting from the first record in the current data window,
as the first record in the new data window.

–n displays the nth record before the first record in the current data window as the
first record in the new data window.

If statement codes for inserting (I, n) or updating (X, E) lines are entered in the mark
column at the same time as a positioning statement, the codes are processed before the
file is positioned.

Operation Operands F mode

+
–

[n]

++
– –

Statements in the statement line +/– - position to record marks

U1884-J-Z125-9-76 121

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

+/– (Format 2) Position to record marks

This format of +/- is used to position to specific record marks.

The first record with the specified mark is displayed in the first line of the data window.
Further scrolling causes the next record with the specified mark to be displayed in the first
line of the data window.

If no mark is found, the position within the work file remains unchanged.

The statement is sent off with [F3] .

If the statement input is terminated with [DUE] or[F2] , the parentheses must be entered.

+ Position forwards to the next record which contains a record mark.

++ Position to the last record in the work file which contains a record mark.

– Position backwards to the next record which contains a record mark.

– – Position to the first record in the work file which contains a record mark.

m This specifies one of the nine possible record marks to which the file is to be
positioned. Several marks may be specified in one statement.

Marks with special functions (such as mark 15 for write protection) are ignored.

If m is not specified, the appropriate record (first, previous, next, last) containing any
record mark is used for positioning.

Example

See the example for @ON, format 4.

Operation Operands F mode

+
++
–
– –

[([m, ...])]

>/< - position horizontally within work file Statements in the statement line

122 U1884-J-Z125-9-76

>/< Position horizontally within work file

These statements are used to position horizontally within the work file, i.e. to move the data
window to the right or left (towards the end or the beginning of the record, respectively).

The number of the first column displayed in the data window is shown in the status display
of the work window.

> Move the work window to the right by the width of the data window within the current
work file.

< Move the work window to the left by the width of the data window within the current
work file.

<< Move the work window back to column 1.

n Number of columns by which the work window is to be moved by the < or >
statement.

1 ≤ n ≤ 184 (for INDEX ON)

1 ≤ n ≤ 176 (for INDEX OFF)

>n moves the window number columns to the right.

<n moves the window number columns to the left.

<<n is not permitted; any attempt to specify it will be rejected with an error message.

Operation Operands F mode

>
<

[n]

<<

Statements in the statement line >/< - position horizontally within work file

U1884-J-Z125-9-76 123

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example

The data window is moved 9 columns to the right.

The data window now begins at column 10 of each record.

 1.00 BERGER THOMAS 10, HIGH ST. DONCASTER.............................
 2.00 DUCK DONALD 8, WALT ST. DISNEYLAND............................
 3.00 GREEN JENNIFER 16, LOW RD. POUGHKEEPSIE..........................
 4.00 HOFPER LARRY P.O. BOX 99 MUNICH................................
 5.00 STUBBS MANUELA 3, POST ST. GRANTHAM..............................
 6.00 ..

>9..0001.00:001(0)

 1.00 THOMAS 10, HIGH ST. DONCASTER......................................
 2.00 DONALD 8, WALT ST. DISNEYLAND.....................................
 3.00 JENNIFER 16, LOW RD. POUGHKEEPSIE...................................
 4.00 LARRY P.O. BOX 99 MUNICH...
 5.00 MANUELA 3, POST ST. GRANTHAM.......................................
 6.00 ..

..0001.00:010(0)

- display last statement Statements in the statement line

124 U1884-J-Z125-9-76

Display last statement

causes the last statement executed by EDT to be displayed again in the statement line.
This does not apply to scroll statements and statements for switching to another work file.

n Specifies which of the preceding statements is to be displayed, i.e. the nth
preceding statement.

1 ≤ n ≤ 256

or 1# re-displays the last statement executed by EDT in the statement line. Specifying 2#
causes the statement preceding the last statement to be displayed. The # statement can be
entered in subsequent dialog steps so that each time the program moves back the specified
number of places in the statement buffer.
If the beginning of the buffer has been reached, the statement line remains empty. If another
statement follows, the program then returns to the most recently stored statement (the
end of the buffer).
After each dialog step not ending with #, the program returns to the end of the buffer.

The statement buffer has a fixed size, i.e. the length of all the statements entered deter-
mines how many statements the program can move back through.

It makes no difference whether a given statement was entered in the upper or the lower
window of a split screen.

If # is entered within a sequence of statements, processing is interrupted when # is
executed, and the last statement executed is displayed.

Statements following # are no longer executed.

Operation Operands F mode

[n]#

Statements in the statement line wkfnr/fwkfv - switch work files

U1884-J-Z125-9-76 125

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

fwkfnr/fwkfv Switch work files

This statement causes EDT to switch to another work file.

fwkfnr The number (0,...,9) of the work file to which EDT is to switch.

fwkfv The number of a work file variable ($0,...,$9) which contains the
number (0,...,9) of the work file to which EDT is to switch.

There is no functional difference between fwkfnr and fwkfv.

Example

The entry 7 tells EDT to switch to work file 7.

Operation Operands F mode

fwkfnr
fwkfv

 1.00 This statement causes EDT to switch to a................................
 2.00 different work file...
 3.00 ..

 7..0000.00:001(0)

..0000.00:001(7)

EDIT LONG Statements in the statement line

126 U1884-J-Z125-9-76

EDIT LONG Display records with more than 80 characters

With the aid of EDIT LONG, the user can modify the output on the screen. For records
longer than 80 characters, he/she can specify that

– the complete records are to be displayed in the data window, or

– an 80-character section of each record is to be displayed in the data window.

ON The complete records are to be displayed in the data window.

OFF Only an 80-character section of longer records is to be displayed in the data window.

EDIT LONG mode does not have a line number display. Each record is displayed on several
consecutive lines of the screen. Blanks at the end of a record are ignored. The last
non-blank or non-null character in the record is regarded as the end of the record in the case
of entry at the screen.

If a record finishes at the end of a screen line, one line full of null characters is displayed as
a record separator.

If the entire data window is set to overwritable by means of [F2], and the last record in the
data window is not displayed entirely, then this record cannot be overwritten. If this record
is marked using the statement code X, then this statement is ignored. In order to modify this
record, the data window must be positioned so that the entire record is displayed in the data
window.

The mark column is the first column on the screen. Records which extend over several lines
must be marked in their first line. If, during extension, a record which is shorter than 240
characters is marked with E, an entire line of null characters is also displayed.

After EDIT LONG OFF, the line number displayed remains switched off.

EDIT LONG mode is switched off by INDEX ON, INDEX OFF and HEX ON.

The statements for horizontal scrolling (>,<) are accepted, but become effective
only when EDIT LONG mode is switched off.

Operation Operands F mode

EDIT LONG [ON] | OFF

i

Statements in the statement line EDIT LONG

U1884-J-Z125-9-76 127

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example

The entire records are to be displayed in the data window.

It can now be seen that each record contains a further field, namely PURCHASE PRICE.

 1.00 NO. ART.NO. ART.NAME STOCK ORDERED RETAIL PRICE..
 2.00 1 0024 SOAP 3000 150 1.59 DM......
 3.00 2 0015 DEODORANT 2500 600 4.38 DM......
 4.00 3 0048 PERFUME 400 60 18.60 DM......
 5.00 4 0003 CREME 987 555 2.83 DM......
 6.00 5 0091 SHAVING FOAM 350 30 4.39 DM......
 7.00 6 0090 AFTER SHAVE 340 30 10.55 DM......
 8.00 7 0092 SHAVING BRUSH 200 30 11.50 DM......

edit long on ...0001.00:001(0)

 NO. ART.NO. ART.NAME STOCK ORDERED RETAIL PRICE PU
 RCHASE PRICE...
 1 0024 SOAP 3000 150 1.59 DM 1
 .10 DM...
 2 0015 DEODORANT 2500 600 4.38 DM 3
 .25 DM...
 3 0048 PERFUME 400 60 18.60 DM 14
 .00 DM...
 4 0003 CREME 987 555 2.83 DM 2
 .20 DM...
 5 0091 SHAVING FOAM 350 30 4.39 DM 3
 .70 DM...
 6 0090 AFTER SHAVE 340 30 10.55 DM 9
 .80 DM...
 7 0092 SHAVING BRUSH 200 30 11.50 DM 9
 .00 DM...
 ..

HEX Statements in the statement line

128 U1884-J-Z125-9-76

HEX Switch on hexadecimal code

HEX switches on hexadecimal mode, i.e. all records are displayed in both printable and
hexadecimal format on the screen:

Line 1: Data line in printable format

Lines 2,3: Data line in hexadecimal format (vertical representation)

Line 4: A column counter as for SCALE ON. The column counter switched on by
means of SCALE is not displayed in HEX mode.

Hexadecimal mode applies to the current work file, regardless of the work window.

ON Switches on hexadecimal mode.

OFF Switches off hexadecimal mode.

Hexadecimal mode is also switched off by EDIT LONG OFF.

When EDT is started, the default value is OFF.

Modifying data lines in hexadecimal mode

Hittingò in hexadecimal mode positions the cursor to the next hexadecimal line (not the
next data line).

Changes may be made in both the first line (printable format) and the two lines with the
hexadecimal display. If changes are made to the printable format and the hexadecimal
display in a single dialog step, only the changes in the hexadecimal lines are actually used.

If invalid hexadecimal characters (characters other than 0...9, A...F) are entered in the
hexadecimal lines, the invalid lines are displayed as overwritable and the invalid characters
are overwritten with question marks. The cursor is located in the first invalid line. All other
valid lines in the data window are set to “not overwritable”.

The hexadecimal code displayed depends on the CODE setting (see @PAR CODE).

Operation Operands F mode

HEX [ON] | OFF

Statements in the statement line HEX

U1884-J-Z125-9-76 129

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Split screen display

If the screen is split (@PAR SPLIT), the display in hexadecimal mode depends on the
number of data lines (lines in the data window) on the screen in question:

Overview table:

Note: the number of screen lines = number (data lines + statement line)

If the number of data lines is a multiple of 4, four screen lines per record are displayed.

If the number of data lines is not a multiple of 4, the remaining (1, 2 or 3) lines are treated
as shown in the overview table.

Number of
data lines

Display on the screen

1 Only Printable format of the record

2 Line 1 :
Line 2 :

Printable format of the record
Column counter line

3 Line 1:
Line 2. and 3.:

Printable format of the record
Hexadecimal format (column counter line not displayed)

INDEX Statements in the statement line

130 U1884-J-Z125-9-76

INDEX Select work window format

INDEX is used to select the format of the work window. By default, the format is set to 72
characters per line with a 6-digit line number display. Column 1 of each line is the mark
column.

ON Selects the work window with the default format.

OFF Selects the work window with 80 characters per line and no line number display.

If the screen is split (see @PAR SPLIT), INDEX affects only the work window in which it is
entered.

INDEX switches off EDIT LONG mode.

Example

The line number display is switched off.

Operation Operands F mode

INDEX [ON] | OFF

 1.00 INDEX is used to select the format of the work window..................
 2.00 By default, the format is set to 72 characters per line................
 3.00 with a 6-digit line number display.....................................
 4.00 Column 1 of each line is the mark column...............................
 5.00 ...

index off ..0000.00:001(0)

 INDEX is used to select the format of the work window..........................
 By default, the format is set to 72 characters per line........................
 with a 6-digit line number display...
 Column 1 of each line is the mark column.......................................
 ...

Statements in the statement line SCALE

U1884-J-Z125-9-76 131

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

SCALE Display column counter

SCALE displays a column counter (line scale) in the work window. This is displayed as the
first line in the work window (not valid in EDIT LONG mode).

ON The column counter appears as the first line after any information line present and
displays the current column numbers of the work window (e.g. after horizontal
shifting of the work window).

If a tab has been defined (see @TABS), a further screen line is displayed, in which
the current positions of the tabs are indicated by “I”. The tab character is shown in
the mark column position.

OFF Switches off the column counter and any existing tab display scale.

The default value is OFF when EDT is called.

If the screen is split (see @PAR SPLIT), SCALE affects only the work window in which it is
entered.

The column counter is not displayed in EDIT LONG mode.

Operation Operands F mode

SCALE [ON] | OFF

SCALE Statements in the statement line

132 U1884-J-Z125-9-76

Example

In order to check column alignment, a column counter is requested.

 1.00 BERGER THOMAS 10, HIGH ST. DONCASTER.............................
 2.00 DUCK DONALD 8. WALT ST. DISNEYLAND............................
 3.00 GREEN JENNIFER 16, LOW RD. POUGHKEEPSIE..........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH................................
 5.00 STUBBS MANUELA 3, POST ST. GRANTHAM..............................
 6.00 ..

scale on ...0001.00:001(0)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 BERGER THOMAS 10, HIGH ST. DONCASTER.............................
 2.00 DUCK DONALD 8, WALT ST. DISNEYLAND............................
 3.00 GREEN JENNIFER 16, LOW RD. POUGHKEEPSIE..........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH................................
 5.00 STUBBS MANUELA 3, POST ST. GRANTHAM..............................
 6.00 ..

Statements in the statement line SHIH

U1884-J-Z125-9-76 133

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

SHIH Display statement buffer

The following statement can be used to display the last executed EDT statements on the
monitor. This statement is only permitted in full screen mode.

The buffer does not contain any scroll statements, any statements to change the work file
nor the SHIH statement itself.
The size of the statement buffer is fixed. The maximum number of statements displayed
depends on the length of the separate statements (see also section “# Display last
statement” on page 124).

The last executed statements are written line by line into work file 9. The content of work
file 9 is deleted before it is used. If output of an information line is enabled
(@PAR INFORMATION=ON), a header line is output in work file 9.

Statement code K can be used to place the output line containing the desired statement into
the statement line. You can then execute it in the desired work file, if you precede it with a
"Switch work files" statement.

The EDT line number corresponds to the relative position in the statement buffer.
You can therefore also place the statement in line n.00 with statement n# in the statement
line, if you did not previously position in the statement buffer.

Operation Operands F mode

SHIH

SPLIT Statements in the statement line

134 U1884-J-Z125-9-76

SPLIT Display 2 work windows

SPLIT causes a second work window to be displayed on the screen. Each work window has
its own statement line.

After the screen has been split, the cursor is positioned to the upper statement line. After
each subsequent output, it is positioned to the statement line in which the last statement or
statement sequence was entered.

If statements are entered in both statement lines, the cursor is positioned to the upper
statement line. If an error occurs during execution of a statement, the cursor is positioned
to the statement line in which the incorrect statement was entered.

If, on a split screen, SPLIT OFF is entered in the upper statement line and some other
statement is entered in the lower statement line, then SPLIT OFF is rejected with an error
message.

The default value when EDT is started is SPLIT OFF.

n The number of lines (including the statement line) to be displayed in the lower work
window, where

2 ≤ n ≤ 22.

fwkfnr The number of the work file to be displayed in the lower work window. The upper
work window displays the work file in which the SPLIT statement was entered.

0 The work window in which this SPLIT statement is entered is

OFF expanded to occupy the full screen (24 lines).

Operation Operands F mode

SPLIT n(fwkfnr) | 0 | OFF

Statements in the statement line SPLIT

U1884-J-Z125-9-76 135

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

Example

SPLIT 10(2) requests a second work window with 10 screen lines (including the
statement line) and work file 2 is to be displayed in this window.

 1.00 BERGER THOMAS 10, HIGH ST. DONCASTER.............................
 2.00 DUCK DONALD 8, WALT ST. DISNEYLAND............................
 3.00 GREEN JENNIFER 16, LOW RD. POUGHKEEPSIE..........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH................................
 5.00 STUBBS MANUELA 3, POST ST. GRANTHAM..............................
 6.00 ..

split 10(2) ..0001.00:001(0)

 1.00 BERGER THOMAS 10, HIGH ST. DONCASTER.............................
 2.00 DUCK DONALD 8, WALT ST. DISNEYLAND............................
 3.00 GREEN JENNIFER 16, LOW RD. POUGHKEEPSIE..........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH................................
 5.00 STUBBS MANUELA 3, POST ST. GRANTHAM..............................
 6.00 ..
 7.00 ..
 8.00 ..
 9.00 ..
 10.00 ..
 11.00 ..
 12.00 ..
 13.00 ..
 ..0001.00:001(0)
 1.00 YOU CAN NOW...
 2.00 PROCESS WORK FILES 0 AND 2..
 3.00 EITHER ALTERNATELY..
 4.00 OR SIMULTANEOUSLY. ...
 5.00 ..
 6.00 ..
 7.00 ..
 8.00 ..
 9.00 ..
 ...0001.00:001(2)

Record marks Statements in the statement line

136 U1884-J-Z125-9-76

4.1.7 Description of the record marks in F mode

Each record in an EDT work file can be marked with one or more record marks. The record
marks are stored in the virtual data area of EDT and are not visible to the user. They are
not transferred to the real file when the work file is saved.

The record marks can be used for processing the work file (see @ON, +(m), etc.).

ISAM files opened in real mode by means of @OPEN, format 1, cannot be marked.

Setting record marks

Record marks can be set by means of

– the @ON statement in the statement line (see @ON, format 4)

– the functions IEDTPUT and IEDTPTM if EDT is called as a subroutine (see the “EDT
Subroutine Interfaces” manual [1])

– the statement code m [F3] in the mark column. The one-character record marks
(1 to 9) are entered in the mark column and sent off by means of [F3] .

Deleting record marks

The record marks in a work file can be deleted by means of @DELETE MARK (see
@DELETE MARK).

@COMPARE deletes the record marks in the files which are compared.

The statement code D [F3] in the mark column deletes any existing record marks of the
appropriate record.

In the preceding sections, the term “marking” has been used with respect to the
mark column and the statement codes which can be entered there. This form of
mark must be regarded as a function indicator; after execution of the statement
code, the mark no longer exists.

i

EDT operating modes F mode statements

U1884-J-Z125-9-76 137

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

4.1.8 Statements in F mode

The following statements may be used in F mode:

*) Not supported by the 3270 Data Display Terminal.

**) Not @ON, format 3.

***) Not @INPUT, format 3.

The EDT statement symbol (default value: @) may be omitted in F mode.

See chapter “EDT statements” on page 161ff, for a description of the statements.

– – [(m)]
+ [(m)]
– [(m)]
<
<<
>
#
@:
@AUTOSAVE
@BLOCK
@CLOSE
@CODE
@CODENAME
@COLUMN
@COMPARE
@CONVERT
@COPY
@CREATE (Format 1)
@DELETE
@DELIMIT
@DO (Format 1)
@DROP
@EDIT
@ELIM
@END
@ERAJV
@EXEC
@FILE
@FSTAT
@GET
@GETJV
@GETLIST

@GETVAR
@HALT
@INPUT ***)
@LIMITS
@LIST
@LOAD
@LOG
@LOWER
@MOVE
@ON **)
@OPEN
@P-KEYS *)
@PAGE
@PAR
@PREFIX
@PRINT
@QUOTE
@RANGE
@READ
@RENUMBER
@RESET
@RETURN
@RUN
@SAVE
@SEARCH-OPTION
@SDFTEST
@SEPARATE
@SEQUENCE
@SET
@SETF
@SETJV
@SETLIST

@SETSW
@SETVAR
@SHOW
@SORT
@STAJV
@STATUS
@SUFFIX
@SYMBOLS
@SYNTAX
@SYSTEM
@TABS **)
@TMODE
@UNLOAD
@UNSAVE
@USE
@VDT
@VTCSET
@WRITE
@XCOPY
@XOPEN
@XWRITE
@ZERO-RECORDS
EDIT LONG
HEX
INDEX
SCALE
SHIH
SPLIT
fwkfnr
fwkfv

L mode EDT operating modes

138 U1884-J-Z125-9-76

4.2 L mode

In LINE mode (L mode), files are processed line by line, i.e. EDT only offers one line at a
time, in which both records and statements can be written. Records are always written in
the current line. Statements are executed immediately. The statement symbol @ is used to
distinguish between the two (see below).

L mode can be used in both interactive and batch mode.

The following are only supported in L mode:

– EDT procedures
– INPUT files and
– reading from SYSDTA by means of RDATA (system procedures, batch mode).

Statements from F mode are interpreted as records in L mode.

@EDIT is used to switch to L mode.

4.2.1 Input in L mode

EDT interprets an input in L mode as a statement if:

– the first character is the statement symbol (default value: @), and
– the following character is not the statement symbol.

Otherwise input is written as text to the current line.

EDT ignores leading and trailing blanks. If an input has more than one statement symbol
(@@, or @ @, ...), EDT does not interpret it as a statement. In this case, the input is stored
as text in the current line, and the characters (first statement symbol and blank) before the
second statement symbol are truncated.
Inputs with more than one statement symbol are used to create procedures (see also the
chapter “EDT procedures” on page 141ff.). Instead of being immediately executed as a
statement, the input is stored as a statement, as it were, and can thus later be executed
several times.

All inputs without a statement symbol are always interpreted as records and stored
immediately in the current line.

EDT operating modes L mode statements

U1884-J-Z125-9-76 139

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
4

4.2.2 Statements in L mode

The following statements may be used in L mode:

The following statements may not be used in EDT procedures:

@CODENAME, @DROP

The following statements may only be used in EDT procedures:

@GOTO, @DO (format 2), @IF (formats 2, 3, 4), @PARAMS

The EDT statement symbol (default value: @) is mandatory in L mode.

For a description of the statements see chapter “EDT statements” on page 161ff.

@
@+
@–
@:
@AUTOSAVE
@BLOCK
@CHECK
@CLOSE
@CODE
@CODENAME
@COLUMN
@COMPARE
@CONTINUE
@CONVERT
@COPY
@CREATE
@DELETE
@DELIMIT
@DIALOG
@DO (Format 1)
@DROP
@EDIT
@ELIM
@END
@ERAJV
@EXEC
@FILE
@FSTAT
@GET
@GETJV

@GETLIST
@GETVAR
@HALT
@IF (Format 1)
@INPUT
@LIMITS
@LIST
@LOAD
@LOG
@LOWER
@MOVE
@NOTE
@ON
@OPEN
@P-KEYS
@PAGE
@PAR
@PREFIX
@PRINT
@PROC
@QUOTE
@RANGE
@READ
@RENUMBER
@RESET
@RETURN
@RUN
@SAVE
@SEARCH-OPTION
@SDFTEST

@SEPARATE
@SEQUENCE
@SET
@SETF
@SETJV
@SETLIST
@SETSW
@SETVAR
@SHOW
@SORT
@STAJV
@STATUS
@SUFFIX
@SYMBOLS
@SYNTAX
@SYSTEM
@TABS
@TMODE
@UNLOAD
@UNSAVE
@UPDATE
@USE
@VDT
@VTCSET
@WRITE
@XCOPY
@XOPEN
@XWRITE
@ZERO-RECORDS

L mode statements EDT operating modes

140 U1884-J-Z125-9-76

U1884-J-Z125-9-76 141

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

5 EDT procedures
When working with EDT, it is quite possible that different files may have to be processed
with identical or similar statement sequences. Such frequently used statement sequences
can be combined in so-called EDT procedures and called for execution as and when
necessary.

In addition to EDT statements which are used only in EDT procedures, all EDT statements
which can also be entered directly in L mode are permitted.

EDT procedures can be executed:

– in work files (temporarily during an EDT session) or
– in cataloged files (SAM or ISAM files).

5.1 EDT input sources

EDT receives the statements from any of the following sources:

– directly from the screen (F or L mode dialog),
– from a cataloged file or from a library element as an @INPUT procedure, or
– from a work file as a @DO procedure.

EDT input sources EDT procedures

142 U1884-J-Z125-9-76

Figure 7: Statements to EDT

The input source can be changed by means of @DO, @INPUT, @EDIT, @DIALOG,
@RETURN and @HALT (see the descriptions of these statements).

SAM, ISAM
Lib. mem.

Data display terminal

EDTCalaloged file

Work file (0-22)

1.00
2.00
3.00
4.00

@INPUT

@DO

EDT procedures EDT variables

U1884-J-Z125-9-76 143

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

5.2 EDT variables

The EDT variables are used to store values. These values can be integers, character
strings or line numbers. The many and varied areas of application of variables include
buffering values, defining loop counters and termination conditions, entering character
strings (file names, search strings, etc.) or making simple calculations.

EDT variables are only valid during the EDT run. They can be occupied, used or queried
from all work files. This means that if a value is assigned to a variable in one work file, this
variable is also available with the same value in another work file.

EDT offers three types of variables, which can be supplied with appropriate values.
21 variables of each type are available with the indices 0 to 20:

– integers (#I0-#I20)
– string variables (#S0-#S20)
– line number variables (#L0-#L20)

The EDT variables are supplied with values via the formats of the @SET statement or via
@CREATE (see @SET, formats 1 - 5, and @CREATE).

The line number variable #L0 and the integer variables #I0 and #I1 should not be used,
since in the event of a hit in the @ON statement they are overwritten with values.

Integer variables

Positive or negative integers (#I0-#I20) can be stored in the integer variables. The highest
number possible is 2.147.483.647 (231 - 1).

The integer variables can be assigned values via the @SET statement, format 1. The
contents of the integer variables can be displayed on the screen by means of @STATUS.

String variables

Character strings can be stored in the string variables (#S0-#S20) in EBCDIC code. A
character string can be up to 256 characters long.

The string variables can be assigned values by means of the @SET statement, formats 2
and 5, or via @CREATE. The contents of the string variables can be displayed on the
screen using @PRINT.

String variables are preset to a blank when EDT is started if no values are transferred to the
variables from any existing S variables SYSEDT-S00, ... SYSEDT-S20 (see section “Calling
EDT” on page 33).

If the name of a file or library element in a statement can be specified both as a string and
as a character variable, the variable name must be preceded by a period to ensure it is not
confused with another name.

EDT variables EDT procedures

144 U1884-J-Z125-9-76

Line number variables

Line numbers can be stored in the line number variables (#L0-#L20). Line numbers may lie
anywhere between 0.0001 and 9999.9999.

The line number variables can be assigned values via the @SET statement, format 3. The
contents of the line number variables can be displayed on the screen by means of
@STATUS.

Job variables

In systems in which the subsystem ’job variable support’ is installed, job variables (JV) can
be used in EDT. Unlike integer, string and line number variables, job variables remain in
existence even after EDT is terminated and existing job variables can be accessed in EDT
(see section “Job variables” on page 67).

S variables

In systems in which the SDF-P subsystem is installed, S variables can be used in EDT.
Unlike integer, string and line number variables, S variables remain in existence even after
EDT has terminated, and existing S variables can be accessed in EDT (see section “SDF-
P support” on page 68).

The contents of S variables can be assigned to string variables or the contents of string
variables can be assigned to S variables

– implicitly when EDT is started or terminated (see section “Calling EDT” on page 33ff) .
– explicitly by means of @GETVAR or @SETVAR.

EDT procedures Creating, calling and executing EDT procedures

U1884-J-Z125-9-76 145

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

5.3 Creating, calling and executing EDT procedures

Input in an EDT procedure

The input to be processed by EDT from a procedure can take any of the following forms:

– a character string (any text).

This does not begin with the statement symbol (default value: ’@’). EDT incorporates
the string into the current output file as data.

If a given character string begins with more than one statement symbol (e.g. @@...) or
more than one user escape symbol, EDT transfers the character string without the first
statement symbol or user escape symbol, respectively, as data to the current output file.

– a statement.

This begins with the statement symbol (default value: @), and is executed immediately
by EDT.

– an external statement.

This begins with the user escape character (see @USE). EDT executes the external
statement immediately.

Statement and text sequences can be written to any work file.

Creating EDT procedures

EDT procedures should be created in F mode, as this means that the various options
available for processing data can also be used to create EDT procedures.

In F mode, a total of 10 work files (0-9) are available for creating EDT procedures, while in
L mode 23 work files (0-22) are available. However, the following should be borne in mind
with regard to subsequent execution of the procedures:

– In work file 0, EDT procedures can only be created, i.e. they cannot be executed.

– Work files 9 and 10 serve as output files for some statements (e.g. @COMPARE or
@FSTAT). An existing EDT procedure can thus be deleted in these work files if
necessary.

Creating, calling and executing EDT procedures EDT procedures

146 U1884-J-Z125-9-76

Calling an EDT procedure

There are two types of EDT procedures:

– @DO procedures (call with @DO)

– @INPUT procedures (call with @INPUT)

Differences between @DO and @INPUT procedures

Executing procedures

Procedures are always executed in L mode.

If a procedure is called in F mode, the following occurs:

– EDT automatically branches to L mode,

– the procedure is processed, and then

– EDT automatically switches back to F mode.

@DO procedure @INPUT procedure

contained in a work file contained in a cataloged file on
disk or in a library element

only the whole procedure can be executed selected parts of the procedure can
be executed

several @DO procedures can be nested;
further @DO calls are possible;
can be called from an @INPUT procedure

can only be nested with one @DO
procedure, i.e. no further @INPUT
call is possible

branch statements within a
@DO procedure

no branch statements

parameters can be passed parameters cannot be passed

EDT procedures @DO procedures

U1884-J-Z125-9-76 147

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

5.4 @DO procedures

Statements contained in one of the work files 1-9 (in L mode 1-22) can be called directly
from a work file by means of @DO.

The advantages of a @DO procedure are as follows:

– the procedures can be called directly from a work file,

– parameters can be transferred (see @PARAMS) and

– @DO procedures can be nested (further @DO calls within a procedure).

@DO procedures are available in the EDT work files throughout the whole EDT session,
i.e. when EDT is terminated, they must be written to a cataloged file on disk (SAM or ISAM
file) to prevent them from being deleted.

Example: Calling a procedure as a @DO procedure in F mode

EDT switches to work file 1, where the procedure is to be written.

 1.00 ...
 2.00 ...
 3.00 ...
 4.00 ...
 5.00 ...
 6.00 ...
 7.00 ...

 23.00 ...
1...0001.00:001(0)

 1.00 @READ 'TESTFILE'...
 2.00 @PAR LOWER=ON..
 3.00 ...
 4.00 ...
 5.00 ...
 6.00 ...
 7.00 ...

 23.00 ...
0...0001.00:001(1)

@DO procedures EDT procedures

148 U1884-J-Z125-9-76

The statements are created, complete with the statement symbol, in work file 1. Control
then returns to work file 0.

The procedure in work file 1 is called from work file 0 by means of @DO.

Result of the procedure run.

 1.00 ...
 2.00 ...
 3.00 ...
 4.00 ...
 5.00 ...
 6.00 ...
 7.00 ...

 23.00 ...
do 1..0001.00:001(0)

 1.00 This is a test file,...
 2.00 which has been read into work window 0.................................
 3.00 using a procedure..
 4.00 ...
 5.00 ...
 6.00 ...
 7.00 ...

 23.00 ...
do 1..0001.00:001(0)

EDT procedures @INPUT procedures

U1884-J-Z125-9-76 149

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

Example: Calling a procedure as a @DO procedure in L mode

 1. @PROC 1 -- (01)
 1. @ @CREATE 1: 'THIS IS AN EXAMPLE'
 2. @ @CREATE 2: 'OF A PROCEDURE IN L MODE'
 3. @ @COPY 1 TO 3 ---------------- (02)
 4. @ @DELETE 1:1-9
 5. @ @PRINT
 6. @END --- (03)
 1. @DO 1 -- (04)
 1.0000 AN EXAMPLE
 2.0000 OF A PROCEDURE IN L MODE
 3.0000 THIS IS AN EXAMPLE
 4.

(01) EDT switches to work file 1.

(02) 5 EDT statements are written into work file 1 (@DO procedure).

(03) Control returns to work file 0.

(04) The @DO procedure is called. The statements in the work file are executed.

For further examples, see chapter “EDT statements” on page 161ff (e.g. @DO).

5.5 @INPUT procedures

EDT procedures can be written as @INPUT procedures to SAM or ISAM files on disk.

@INPUT procedures offer the following advantages:

– procedures can be called at any time during any EDT session

– selected parts of the procedure can be executed

– @INPUT procedures can be nested with @DO procedures (@DO call within a
@INPUT procedure).

@INPUT procedures cannot be nested within one another. A pure @INPUT procedure
(without @DO) must not contain branch statements and parameters.

In order to make full use of the benefits of @INPUT procedures and @DO procedures,
@INPUT procedures can be nested with @DO procedures.

@INPUT procedures EDT procedures

150 U1884-J-Z125-9-76

Structure of a nested @INPUT procedure

(@DO procedure within an @INPUT procedure)

Example of a nested @INPUT procedure

@DELETE
@...
.
.
.
@PROC procno
@DELETE

@@...
.
.
.
@@...

@END
@DO procno
@...
.
.

Delete current work file
EDT statements
and records

Open work file procno
Delete work file procno

@DO procedure:
EDT statements
and records

Close work file procno
Call @DO procedure procno
EDT statements
and records

@INPUT procedure

 1.00 @NOTE *** READ IN FILE NAME ***..
 2.00 @CREATE #S00 READ : 'FILE NAME:'
 3.00 @NOTE *** OPEN WORK FILE 1 ***...
 4.00 @PROC 1...
 5.00 @DELETE...
 6.00 @NOTE *** STORE DATE IN THE FORM ddmmyy IN #S0***......................
 7.00 @ @SET #S01 = DATE ISO...
 8.00 @ @SET #S01 = #S01:1-8...
 9.00 @ @ON #S01 CHANGE ALL '-' TO ''.....................................
 10.00 @NOTE *** STORE TIME IN THE FORM hhmmss IN #S02 ***....................
 11.00 @ @SET #S02 = TIME...
 12.00 @NOTE *** CREATE COPY-FILE COMMAND AND STORE IT IN #S03................
 13.00 @ @CREATE #S03 : '/COPY-FILE ',#S00,',',#S00,'.',#S01,'.',#S02..........
 14.00 @NOTE *** EXECUTE COPY-FILE COMMAND AS SYSTEM COMMAND ***..............
 15.00 @ @SYSTEM #S03..
 16.00 @NOTE *** CLOSE WORK FILE 1 ***..
 17.00 @END..
 18.00 @DO 1...
 19.00 ..
 20.00 ..
 21.00 ..
 22.00 ..
 23.00 ..
 write 'backupcopy.input'.. 0001.00:001(1)

EDT procedures @INPUT procedures

U1884-J-Z125-9-76 151

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

The procedure is created in work file 1 in F mode and is stored as a SAM file under the
name BACKUPCOPY.INPUT.

The @DO procedure comprises all statements with @@ (see below).

The procedure is called by means of @INPUT. The statements of the SAM file
BACKUPCOPY.INPUT are processed. This stores the nested @DO procedure (lines 6.00
to 16.00, EDT statements with more than one statement symbol ’@’) in work file 1 (see
below). Control then switches to work file 1.

When processing the @CREATE ... READ statement, the input request is output. When the
file name TESTFILE is entered, a backup copy with the name TESTFILE.ddmmyy.hhmmss
is created.

 1.00 @NOTE *** READ IN FILE NAME ***..
 2.00 @CREATE #S00 READ : 'FILE NAME:'
 3.00 @NOTE *** OPEN WORK FILE 1 ***...
 4.00 @PROC 1...
 5.00 @DELETE...
 6.00 @NOTE *** STORE DATE IN THE FORM ddmmyy IN #S0***......................
 7.00 @ @SET #S01 = DATE ISO...
 8.00 @ @SET #S01 = #S01:1-8...
 9.00 @ @ON #S01 CHANGE ALL '-' TO ''.....................................
 10.00 @NOTE *** STORE TIME IN THE FORM hhmmss IN #S02 ***....................
 11.00 @ @SET #S02 = TIME...
 12.00 @NOTE *** CREATE COPY-FILE COMMAND AND STORE IT IN #S03................
 13.00 @ @CREATE #S03 : '/COPY-FILE ',#S00,',',#S00,'.',#S01,'.',#S02..........
 14.00 @NOTE *** EXECUTE COPY-FILE COMMAND AS SYSTEM COMMAND ***..............
 15.00 @ @SYSTEM #S03..
 16.00 @NOTE *** CLOSE WORK FILE 1 ***..
 17.00 @END..
 18.00 @DO 1...
 19.00 ..
 20.00 ..
 21.00 ..
 22.00 ..
% EDT0160 FILE 'BACKUPCOPY.INPUT' WRITTEN
input 'backupcopy.input';1..0001.00:001(0)

 FILE NAME: testfile

@INPUT procedures EDT procedures

152 U1884-J-Z125-9-76

The statements of the @INPUT procedure with more than one statement symbol have been
stored in work file 1 as a @DO procedure with one statement symbol less.

 1.00 @SET #S01 = DATE ISO...
 2.00 @SET #S01 = #S01:1-8...
 3.00 @ON #S01 CHANGE ALL '-' TO ''.......................................
 4.00 @SET #S02 = TIME...
 5.00 @CREATE #S03 : '/COPY-FILE ',#S00,',',#S00,'.',#S01,'.',#S02............
 6.00 @SYSTEM #S03..
 7.00 ..

..0001.00:001(1)

EDT procedures EDT procedure in a BS2000 system procedure

U1884-J-Z125-9-76 153

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

5.6 Calling an EDT procedure in a BS2000 system procedure

An EDT procedure can also be called from a BS2000 system procedure.

For further information on BS2000 system procedures, see the description of
BEGIN-PROCEDURE in Volume 1 of the "Commands" manual [6].

Example of an EDT procedure in a BS2000 system procedure

/BEGIN-PROCEDURE -
/ PARAMETER=YES (PROCEDURE-PARAMETERS=(&DATEI),ESCAPE-CHARACTER='&')
/SHOW-FILE-ATTRIBUT &DATEI --- (01)
/ASSIGN-SYSDTA TO-FILE=*SYSCMD --- (02)
/MODIFY-JOB-SWITCHES ON=(4,5) -- (03)
/START-PROGRAM $EDT -- (04)
@DELETE -- (05)
@PROC 1 -- (06)
@DELETE -- (07)
@ @READ '&DATEI'
@ @PAR LOWER=ON
@ @PAR SCALE=ON -- (08)
@ @PAR INFORMATION=ON
@ @PAR EDIT FULL=ON
@END --- (09)
@DO 1 -- (10)
@DIALOG -- (11)
@HALT -- (12)
/ASSIGN-SYSDTA TO-FILE=*PRIMARY -- (13)
/MODIFY-JOB-SWITCHES OFF=(4,5) --- (14)
/SET-JOB-STEP
/END-PROCEDURE

(01) The system checks whether the file exists. If it does not, it branches to SET-JOB-
STEP.

(02) The input source is assigned. The system reads in both commands and data via
SYSCMD.

(03) Task switches 4 and 5 are set (see section “Task switches” on page 69ff).

(04) EDT is called.

(05) The contents of work file 0 are deleted.

(06) EDT switches to work file 1.

(07) The contents of work file 1 are deleted.

(08) The EDT statements are stored in work file 1.

EDT procedure in a BS2000 system procedure EDT procedures

154 U1884-J-Z125-9-76

(09) EDT returns to work file 0.

(10) The @DO procedure in work window 1 is called (reading in a file, differentiating
between uppercase and lowercase letters, outputting a column counter, outputting
an information line, setting data window and mark column to overwritable).

(11) EDT switches to F mode dialog. Once dialog mode has been terminated by means
of @HALT or @RETURN, the procedure run is resumed at the point at which it was
interrupted.

(12) EDT is terminated.

(13) The input sources are reset (reset optionally from END-PROCEDURE).

(14) The task switches are reset.

EDT procedures Unconditional and conditional branches

U1884-J-Z125-9-76 155

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

5.7 Unconditional and conditional branches

Within a @DO procedure, the @GOTO statement causes a branch to another line. The line
number is specified in @GOTO. The line must exist and must not be outside the procedure.
The system can only branch to a line, i.e. it cannot branch to a mark.

The @IF statement within a @DO procedure causes a branch which is dependent on a
condition. If the condition is fulfilled, the system branches to the line specified in the @IF
statement. If the condition is not fulfilled, the procedure is resumed with the statement
immediately following the @IF statement.

In order to avoid the possible displacement of lines when the procedure is updated, the line
numbers before the branch destinations should be redefined by means of @SET, format 6
(abbreviated to @ to make it easier to read); see example.

Within a pure @INPUT procedure, branching is not permitted.

Example of unconditional and conditional branching

Once a search string (line 5.00) has been entered, the system first checks whether the file
contains any records containing this search string (line 6.00). If no such records are found,
NO HIT FOUND is displayed on the screen (lines 9.00-10.00) and the procedure is termi-
nated. Otherwise, all the records containing the search string are listed on the screen (lines
15.00-16.00).

The statement @1.00 sets the current line number to 1 and also implicitly sets the
current increment to 0.01.

 1.00 @PROC 2...
 2.00 @DELETE...
 3.00 @1.00...
 4.00 @ @CONTINUE *** AS OF HERE LINE NUMBER 1.00 ***.........................
 5.00 @ @CREATE #S1 READ 'PLEASE ENTER SEARCH STRING: '.......................
 6.00 @ @ON & FIND #S1 MARK 5...
 7.00 @NOTE *** IF HIT FOUND IN @ON, GOTO LINE NUMBER 2.00 ***...............
 8.00 @ @IF .TRUE. GOTO 2...
 9.00 @ @CREATE #S2: 'NO HIT FOUND'
 10.00 @ @PRINT #S2..
 11.00 @NOTE *** IF NO HIT FOUND GOTO LINE NUMBER 3.00 ***....................
 12.00 @ @GOTO 3...
 13.00 @2.00...
 14.00 @ @CONTINUE *** AS OF HERE LINE NUMBER 2.00 ***.........................
 15.00 @ @DELETE MARK 5..
 16.00 @ @ON & PRINT #S1...
 17.00 @3.00...
 18.00 @ @CONTINUE *** AS OF HERE LINE NUMBER 3.00 ***.........................
 19.00 @END..
 20.00 @DO 2...
 21.00 ..

i

External and internal loops EDT procedures

156 U1884-J-Z125-9-76

5.8 External and internal loops

With external loops, procedures can be completely executed several times. However, if only
certain parts of a procedure are to be executed several times, these parts must be formu-
lated in the form of internal loops.

External loops can be replaced by internal loops. In an external loop, only a fixed increment
- a freely selectable positive or negative value can be specified. In an internal loop, a
variable increment can be specified, e.g. in the form of a line number variable.

Example of an external loop

The procedure enables copying to be performed column by column within a file. In the
above example, the contents of the appropriate line from column 27 through 36 are inserted
only in lines 11, 12, 13, 14, and 15, starting in column 10. The exclamation mark (!) is used
as a loop counter (see also @DO).

In order to copy not only lines 11, 12, 13, 14 and 15 but also all lines in between (e.g. line
12.34), the procedure must be supplied with an internal loop if no fixed increment is given
(e.g. ISAM file, ISAM key as line number).

 1.00 @PROC 3...
 2.00 @DELETE...
 3.00 @NOTE *** ! IS REPLACED BY THE APPROPRIATE LINE NUMBER
 4.00 @NOTE LINES 11,12,13,14 AND 15 ARE PROCESSED ***.................
 5.00 @ @COLUMN 10 ON ! INSERT !:27-36:.......................................
 6.00 @END..
 7.00 @NOTE *** PROCEDURE IS CALLED WITH ! AS LOOP COUNTER
 8.00 @NOTE INITIAL VALUE: 11
 9.00 @NOTE FINAL VALUE: 15
 10.00 @NOTE INCREMENT: 1 ***................
 11.00 @DO 3, !=11,15..
 12.00 ..

EDT procedures External and internal loops

U1884-J-Z125-9-76 157

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

Example of an internal loop

From line 11 through all lines up to and including line 15 of a file (i.e. including, for example,
line 13.314), the contents of the appropriate line from column 27 through 36 are reinserted,
starting in column 10. The loop counter here is the line number variable #L10.

If line 11 in the procedure is changed to @ @SET #L10 + 1, only lines 11, 12, 13, 14 and
15 are modified (the effects of this are shown in the previous example).

Line 11.00 must exist in the file which is to be processed, and the last line in this file
should be greater than 15.00, otherwise the procedure is terminated with an error
message.

 1.00 @PROC 4...
 2.00 @DELETE...
 3.00 @RESET..
 4.00 @NOTE *** SET INITIAL VALUE OF LOOP TO 11 ***..........................
 5.00 @SET #L10 = 11...
 6.00 @1.00...
 7.00 @NOTE *** ABORT LOOP IF ERROR OCCURS ***...............................
 8.00 @ @IF ERRORS : @GOTO 2..
 9.00 @NOTE *** ABORT LOOP ON REACHING FINAL VALUE 15 ***....................
 10.00 @ @IF #L10 > 15 GOTO 2..
 11.00 @NOTE *** #L10 IS REPLACED BY THE APPROPRIATE LINE NUMBER ***..........
 12.00 @ @COLUMN 10 ON #L10 INSERT #L10:27-36:.................................
 13.00 @NOTE *** INCREMENT LOOP COUNTER TO NEXT AVAILABLE LINE ***............
 14.00 @ @SET #L10 = #L10 + 1L...
 15.00 @ @GOTO 1...
 16.00 @2.00...
 17.00 @ @CONTINUE...
 18.00 @END..
 19.00 @DO 4...
 20.00 ..

i

Variable EDT procedures - parameters EDT procedures

158 U1884-J-Z125-9-76

5.9 Variable EDT procedures - parameters

When creating procedures in EDT, parameters can be defined by means of @PARAMS.
Parameters can be used to transfer different values to a procedure in a @DO call.

The @PARAMS statement must be the first statement in a @DO procedure and must not
appear more than once in the procedure. Just as in the BS2000 system, positional and
keyword parameters are permitted. All positional parameters must be defined before the
keyword parameters.

When the procedure is called, the parameters in the @DO statement are specified as actual
parameters. When the procedure is executed, the formal parameters in the procedure are
supplied with the values of these actual parameters.

A parameter begins with the character &. This is followed by a letter, which in turn can be
followed by 6 further letters or digits.

Example of the use of parameters in an EDT procedure

In the following example, a file is read into work file 0. The records containing the search
string are copied into work file 5, processed accordingly and displayed on the screen.

 1. @PROC 4
 1. @DELETE
 1. @ @PARAMS &FILE,&SUCH -- (01)
 2. @ @DELETE
 3. @ @READ '&FILE'
 4. @ @ON & FIND PATTERN '&SRCH' COPY TO (5)
 5. @ @PROC 5
 6. @ @CREATE 0.01: '-' * 68
 7. @ @CREATE 0.02: 'MANUAL LIST FOR:','&SRCH'
 8. @ @CREATE 0.03: '-' * 68
 9. @ @RENUMBER
10. @ @PREFIX 4-.$ WITH ' '
11. @ @SEQUENCE 4-.$:1:0001(1)
12. @ @CREATE $+1: '-' * 68
13. @ @PRINT
14. @ @END
15. @END
 1. @DO 4 (MANUAL FILE,EDT) ---(02)
 1.0000 --
 2.0000 MANUAL LIST FOR: EDT
 3.0000 --
 4.0000 0001 EDT V16.3A STATEMENTS U1884-J-Z125-5-7600
 5.0000 0002 EDT V16.3A STATEMENTS FORMATS U1978-J-Z125-4-7600
 6.0000 0003 EDT V16.3A SUBROUTINE INTERFACES U5133-J-Z125-1-7600
 7.0000 0004 EDT V16.4A STATEMENTS U1884-J-Z125-6-7600

EDT procedures Variable EDT procedures - parameters

U1884-J-Z125-9-76 159

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
5

 8.0000 0005 EDT V16.4A STATEMENTS FORMATS U1978-J-Z125-5-7600
 9.0000 0006 EDT V16.4A SUBROUTINE INTERFACES U5133-J-Z125-2-7600
 9.0000 0007 EDT V16.4A EDT-OPERANDEN U20207-J-Z125-1-7600
 7.0000 0008 EDT V16.5A STATEMENTS U1884-J-Z125-7-7600
 8.0000 0009 EDT V16.5A STATEMENTS FORMATS U1978-J-Z125-6-7600
 9.0000 0010 EDT V16.5A SUBROUTINE INTERFACES U5133-J-Z125-3-7600
10.0000 0011 EDT V16.5A EDT-OPERANDS U20207-J-Z125-2-7600
11.0000 --
 1. @DO 4 (MANUAL FILE,EDT*V16.5*) ----------------------------------(02)
 1.0000 --
 2.0000 MANUAL LIST FOR: EDT*V16.5*
 3.0000 --
 4.0000 0001 EDT V16.5A STATEMENTS U1884-J-Z125-7-7600
 5.0000 0001 EDT V16.5A STATEMENT FORMATS U1978-J-Z125-6-7600
 6.0000 0002 EDT V16.5A SUBROUTINE INTERFACES U5133-J-Z125-3-7600
 7.0000 0011 EDT V16.5A EDT-OPERANDS U20207-J-Z125-2-7600
 8.0000 --

(01) The symbolic parameters are defined (two positional parameters).

(02) The procedure is called with the appropriate actual parameters. The formal
parameters in the @READ, @ON statements are replaced by the current values in
every @DO call.

For further examples see @PARAMS.

Variable EDT procedures - parameters EDT procedures

160 U1884-J-Z125-9-76

BS2000 system procedure parameters

/BEGIN-PROCEDURE
/ PARAMETER=YES(PROCEDURE-PARAMETERS=(-
/ &FILE, -
/ &BEGCOL, -
/ &ENDCOL, - -------------- (01)
/ &DESTCOL,-
/ &FROMLINE=%, -
/ &TOLINE=$),-
/ ESCAPE-CHARACTER='&')
/SHOW-FILE-ATTRIBUTE &FILE
/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/MODIFY-JOB-SWITCHES ON=(4,5)
/START-PROGRAM $EDT -- (02)
@READ '&FILE' -- (03)
@PROC 4
@DELETE
 @NOTE INSERT COLUMN BY COLUMN --------------- (04)
@ @COLUMN &DESTCOL ON ! INSERT !:&BEGCOL-&ENDCOL:
@END
@DO 4, !=&FROMLINE,&TOLINE --- (05)
@WRITE '&FILE.NEW' --- (06)
@HALT -- (07)
/ASSIGN-SYSDTA TO-FILE=*PRIMARY
/MODIFY-JOB-SWITCHES OFF=(4,5)
/SET-JOB-STEP
/END-PROCEDURE

(01) The symbolic parameters are defined.

(02) EDT is called.

(03) File ’&file’ is read into work file 0.

(04) EDT procedure:
– switch to work file 4
– delete work file 4
– write the @COLUMN statement with the current parameter values into

work file 4
– switch back to work file 0.

(05) The EDT procedure is called:
In the file ’&file’, the columns ’&begcol’ through ’&endcol’ are inserted for the
specified line range ’&fromline’ to ’&toline’, starting at the column ’&destcol’.

(06) The modified file is stored under the name ’&file.NEW’.

(07) EDT is terminated.

U1884-J-Z125-9-76 161

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

6 EDT statements
This chapter describes all statements which may be entered either in F mode in the EDT
statement line and/or in L mode. The statement codes used in the mark column are
described in section “F mode” on page 73ff.

6.1 Description of the syntax

General format of a statement:

operation The operation is the same as the statement name, e.g. @OPEN, @COPY,
@WRITE... This must be at the beginning of the statement. In F mode, the
EDT statement symbol (default value: @) may be omitted.

operands The operation is followed by operands, which are separated from the
operation by one or more blanks. The operands must be entered in the
specified order. Each operand may be preceded or followed by any number
of blanks.

str-var String variable which contains the operands (indirect specification). For
more details on specifying operands indirectly see section “Indirect specifi-
cation of operands” on page 45.

The separator (blank) between the operation and the operands, and between the individual
operands, must be entered if it is not possible to distinguish between the operation and the
operand or between two operands (example: @SYMBOLS=’?’ is incorrect;
@SYMBOL S=’?’ is correct).

Operation Operands F mode / L mode / @PROC

operation operands

&str-var

Description of the syntax EDT

162 U1884-J-Z125-9-76

The following metasyntax is used for representing the statements:

Representation Exlanation Examples

UPPERCASE LETTERS
and
special characters

Uppercase letters and
special characters designate
constants; these must be
entered exactly as shown.

UPDATE,
OVERWRITE

UPPERCASE LETTERS
in bold type

Uppercase letters in bold
type designate the short form
of the constant. You may use
the short or long form of the
constant or anything in
between.

@HALT
Enter:
@H, @HA, @HAL
or @HALT

lowercase letters Lowercase letters designate
variables; hese must be
replaced by current values n
the user input.

@CODE ln, SHOW
Enter:
@CODE 3,SHOW

Braces enclose alternatives,
i.e. one of these options must
be specified.

@LOWER

Enter:
@LOWER ON or
@LOWER OFF

| | separates alternatives (in
braces)

[] Square brackets enclose
optional entries.

.... 3 dots indicate that the
preceding syntactical unit
may be repeated several
times in succession.

ln,...
Enter:
1,3,7

Underscore Value preset by EDT when
the editor is called.

ON

OFF

EDT Description of the syntax

U1884-J-Z125-9-76 163

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example

The statements have the following format:

Key:

F mode The statement may be specified in F mode.

L mode The statement may be specified in L mode.

@PROC The statement may be specified only in EDT procedures, or it is used
primarily in such procedures.

In L mode, the statement must be preceded by the EDT statement character (symbol) so
that EDT can distinguish between statements and data in the input. When EDT is called,
this character is set to @ by default. If desired, any other character can be defined as the
statement character (see the @: statement).

In F mode, the statement character does not need to be specified in the statement line,
since this line may contain only statements and it is therefore not necessary to distinguish
between statements and data.

Operation Operands F mode / L mode / @PROC

@COPY rng [(procno)] [TO ln1 [(inc)] [:] [ln2]] [,...]

Overview of the EDT operands EDT statements

164 U1884-J-Z125-9-76

6.2 Overview of the EDT operands

The symbol "|" in the definitions is used to separate alternatives.

Definition Meaning

binary::=0|1 A binary number.

char Any character which can be entered on a terminal or from a
card reader.

chars::=char|chars char Character string.

cl::=int A column number in the range 1 through 256. Some EDT
statements, however, require a cl value of less than 256.

clrng::=cl[-cl] Column range from the beginning of the record in the
direction of the end of the record.

col::=domain|col,domain|
cl|col,cl

Several column ranges (domains) or columns, separated
from each other by commas, e.g. 1-6, 8-11 or 1-6, 3-10,
3-10.

comment::=chars Any desired comment text.

dd::=0|1|2|3|4|5|6|7|8|9 A decimal digit.

domain::=cl[-cl] A column range in the form cl-cl which restricts a specified
line range to a certain column range beginning at the first cl
value. The second cl value must not be less than the first. If
the second cl value is omitted, the column range begins at
the first cl and ends at the end of the line. If the second cl is
specified and is greater than the line length, the column
range likewise extends to the end of the line. If the first cl is
greater than the line length, the related line is ignored.

edtsymb::=spec The statement symbol. The default value is the @ character
(this can be changed by means of @:).

entry::=name|.str-var Name of an entry point (ENTRY) or a CSECT statement in
a program.

elemname::=chars|.str-var Name of the library element.

elemtyp::=S|M|R|C|P|J|D|X|
H|L|U|F|*STD|
freetyp|.str-var

Type of the library element. User-defined type names may
also be used, but no check is made on the base type.

EDT statements Overview of the EDT operands

U1884-J-Z125-9-76 165

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

file::=str A file name, which can be specified in printable characters
or in binary or hexadecimal notation. It may have up to 54
characters, and the DMS restrictions on file names must be
observed.EDT does not check if the file name is valid, which
means that use of an invalid file name will result in a DMS
error message.
Instead of the file name, the complete path name may also
be specified for "file". Use of the special file name "/" (file
link) is not permitted with the @OPEN statement.

formal::=&id A formal parameter in the form &id, which must be specified
in the @PARAMS statement of a procedure file.
id is the name, which may consist of up to 7 letters or
numbers. The first character must be a letter.
This operand is used in keyword and formal parameters.

fraction::=.dd|fraction dd The line number portion after the decimal point (i.e. .0001 to
.9999).

freetyp::=chars User-defined type name of a library element. The type name
is a string from 2 to 8 characters in length and must not
begin with $ or SYS.

fwkfnr::=dd The number of a work file.
Minimum value is 0, maximum is 9.

fwkfv::=$dd The number of a work file variable ($0 through $9).

hd::=dd|A|B|C|D|E|F A hexadecimal digit.

hex::=hd|hex hd A hexadecimal expression.

hpos::=op n|vpos-op|
vpos-op (m,...)

Relative vertical position.

hpos-op::=>|<|hpos-op n Vertical positioning statement.

inc::=n|fraction|n fraction Line number or an increment for line numbers. This must lie
between 0.0001 and 9999.9999.

int::=n|op n|int-var An integer, which is specified either explicitly or as an
integer variable, e.g.: -5,0,23456,... or #I0,#I1,... #I20.

int-var::=#In One of the integer variables #I0, #I1, ..., #I20. The maximum
permissible value of such a variable is 231 (=2147483648),
but the actual limits depend on the application. All integer
variables are preset to 0. The integer variables #I0 and #I1
are modified by an @ON statement.

Definition Meaning

Overview of the EDT operands EDT statements

166 U1884-J-Z125-9-76

linkname::=chars Specifies a file or job variable via its link name. No wildcards
may be used in "linkname".

line::=ln|str-ln A line number, which may be specified either as for operand
ln or as for operand str-ln.

ln::= With the operand ln, line numbers can be specified symbol-
ically in one of the following formats:

ln-sym[op int-var]| Format 1:

Symbols %, *, $, ? are explained under ln-sym.
Example: % + #I15. If %=1.0000 and #I15=6, % + #I15
addresses the sixth line after line number 1.0000 (which is
not necessarily line 7.0000).

ln-sym[op nL]| Format 2:

nL skips n lines, starting at ln-sym. The maximum value for
n thus depends on the number of lines in the file.
Example: if % = 1.000, then % + 2L addresses the second
line after line 1.0000.

Definition Meaning

ln-sym op int-var

%
*
$
?

ln-var

+ / – #I0...#I20

ln-sym op nL

%
*
$
?

ln-var

+ / – 1L...nL

EDT statements Overview of the EDT operands

U1884-J-Z125-9-76 167

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

ln-sym[op ln-sym]| Format 3:

Example: if % = 1.0000 and * = 3.0000, then % + *
addresses line 4.0000.

[ln-sym op]inc[op ln-sym]| Format 4:

Example: if * = 50.1 and % = 1.0000, then * + 3.5-%
addresses line 52.6000.

[ln-sym op]inc[op int-var]| Format 5:

Example: if * = 50.1 and #I5 = 1, then * + 3.5 + #I5
addresses the line which follows line 53.6000 (which is not
necessarily line 53.7000).

Definition Meaning

ln-sym op ln-sym

%
*
$
?

ln-var

+ / –

%
*
$
?

ln-var

ln-sym op inc op ln-sym

%
*
$
?

ln-var

+ / –

0000.0001
.
.
.

9999.9999

+ / –

%
*
$
?

ln-var

ln-sym op inc op ln-sym

%
*
$
?

ln-var

+ / –

0000.0001
.
.
.

9999.9999

+ / – #I0...#I20

Overview of the EDT operands EDT statements

168 U1884-J-Z125-9-76

[ln-sym op]inc[op nL] Format 6:

nL skips n lines. The maximum value for n thus depends on
the number of lines in the file.
Example: if * = 50.1000, then * + 3.5 + 6L addresses the
sixth line after line 53.6000.

These formats can be divided into two groups:

1. Absolute line numbers
These are line numbers which are addressed without
the use of int-var or nL. These absolute line numbers
thus result from addition of the individual line numbers.
If, for example, % = 1.0000 and * = 3.0000, line number
% + 2.1 + * has the value 6.1000.

2. Relative line numbers
Relative line numbers are those which are obtained by
skipping certain lines, regardless of the increment
between the numbers of the skipped lines. If, for
example, % = 1.0000, then % + 2.1 + 5L addresses the
fifth line after line 3.1000.

n in the expression nL must not have the value 0. However,
this value can be stored in an integer variable. A relative line
number can be assigned only if there is actually a line with
this number; otherwise, an error message is issued.

Definition Meaning

ln-sym op inc op nL

%
*
$
?

ln-var

+ / –

0000.0001
.
.
.

9999.9999

+ / – 1L...nL

EDT statements Overview of the EDT operands

U1884-J-Z125-9-76 169

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

ln-sym::=ln-var|%|*|$|? Line number variable or one of the following symbolic line
numbers:

*,%,$,? all refer to the current work file.

ln-var::=#Ln One of the line number variables #L0, #L1, ..., #L20. The
minimum value of a line number variable is 0.0001, the
maximum 9999.9999. All line number variables are initially
set to 0, but this is an invalid value. This means that valid
values must be assigned to line number variables before
they are used. The line number variable #L0 is modified by
an @ON statement.

m::=dd|int-var Record marks 1 to 9.

message::=chars Any desired text. If EDT was called as a subroutine, this text
is returned to the calling program when EDT is terminated
by means of @RETURN or @HALT.

modlib::=path|.str-var Module library or program library containing a particular
module or load unit.

n::=dd|n dd One of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or a combination
of these digits. The number of digits depends on the
statement in which "n" is used. 00005 is thus not necessarily
equivalent to 5.

name::=chars Character string not exceeding eight characters in length.

Definition Meaning

Symbol Meaning

* The lowest line number in the file.

% The current line number, i.e. the line number
last displayed by EDT as an acknowl-
edgment.

$ The highest line number in the file. If the file
is empty or contains only a single line, then
% = $.

? The line number of the first line in which a
preceding @ON statement found a hit. The
initial value of ? is 0.0001 and this is
changed only by a successful @ON
statement. After @ON, ? thus has the same
value as #L00.

Overview of the EDT operands EDT statements

170 U1884-J-Z125-9-76

op::=+|– One of the mathematical functions + or -. These are used
with the operands int, str-ln and ln.

param::=
'[any string]'|
any string

With the aid of @DO, parameters can be passed to the
procedure file to be executed. Such a parameter consists of
any string, which must be enclosed in quotes if it includes a
comma or a right parenthesis as part of the parameter. In
this case, any single quotes character in the parameter
string must be entered twice. The single quotes used to
enclose the string must not be redefined by means of the
@QUOTE statement.

path::=chars|.str-var Path name of a file or job variable. path may have up to 54
characters, and the DMS restrictions on file names must be
observed.

pfile::=str File name that can be specified in printable, hexadecimal or
binary form. The file name may have up to 80 characters
(with wildcards), and the DMS restrictions for file names
apply. The name of a file or job variable may be partially
qualified.

ppath::=chars|.str-var Path name of a file or a job variable. ppath may have up to
80 characters (with wildcards), and the DMS restrictions for
file names apply. A file or a job variable may also be partially
qualified.

procno::=int The number of a work file in the range 1 through 22.
Exception: 0 is permitted in the statements @COMPARE,
@SETF, @COPY, @MOVE, @STATUS and @ON.

r::=spec The range symbol. The default value is the & character; this
can be changed by means of @RANGE.

range::=rng|range,rng One or more line ranges, separated from each other by
commas.

range*::=rng*|range*,rng* Analogous to the “range“ operand, but no string variables
may be used.

Definition Meaning

EDT statements Overview of the EDT operands

U1884-J-Z125-9-76 171

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

rel::=GT|LT|GE|LE|EQ|NE|
>|<|>=|<=|=|<>

A relational operator for specifying conditions in an @IF
statement.
Permissible operators are::

rng::=line[-line]|r A line range in the form line-line. Specifying line1-line2 (e.g.
1-10) has the same effect as line2-line1 (10-1).
If only one line is specified, the line range consists only of
this one line.
If two line operands are specified and the first of these is a
string variable, the other must also be a string variable.
The operand r shown above represents a line range which
can be declared by means of the @RANGE statement and
is preset to a value in the range 0.0001-9999.9999. Both the
range symbol and the line range can be modified by means
of the @RANGE statement. The desired line range may
also extend over string variables. Care must be taken when
using the - symbol and the operands ln-sym and str-var:
since the minus sign is also used for expressing a line
range, ambiguites can result.
In orde to avoid this problem, the following conventions have
been introduced.

1. If a range begins with ln-sym and ends with n (in any
form), then enter:
ln-sym.-ln

Definition Meaning

Symbol Meaning

GT or > greater than

LE or < less than

GE or >= greater than or equal to

LE or <= less than or equal to

EQ or = equel to

NE or <> not equal to

Overview of the EDT operands EDT statements

172 U1884-J-Z125-9-76

2. If a range begins with ln (except ln-sym) and ends with
a line number expressed via the operands ln-sym and
op, it is advisable to enter:
ln - 0 ln-sym [op int-var]
ln - 0 ln-sym [op nL]
ln - 0 ln-sym [op ln-sym]
ln - [0 ln sym op] inc [op ln-sym]
ln - [0 ln-sym op] inc [op int-var]
ln - [0 ln sym op] inc [op nL]
Specifying 0 indicates that this is a range and not a
difference. 0 may also be replaced by . (period).

3. If a range starts with a string variable and ends with str-
ln (in any form), enter:
str-var[-0 str-var][op int-var]
str-var[-0 str-var][op nL]

 Examples:

rng*::=ln[-ln]|r A special line range expressed via r or ln-ln.
In contrast to "rng", string variables must not be used here.
For this reason, the operand "ln" applies instead of "line"
(see above).

search::=strng|line[:col:] Search string.

Definition Meaning

rng Meaning

1-10 Line 1 to 10

%.-5 1st line of the file to line 5

%+5L-$-10L 6th line of the file to the 10th line
before the end of th e file

%.-$ From *+2.1-? to the 6th line of the file

*+2.1-?-%+5L From the 1st line to line #L2 + 5L

#L1.-#L2 From #L1 to #L2

12.011 Only line 12.011

#L9 Only the line whose number is stored
in #L9

#S3 Only the string variable #S3

#S4.-#S7 #S4, #S5, #S6, #S7

#S2+1L-#S6-#I3 #S3,..., #S6-#I3

EDT statements Overview of the EDT operands

U1884-J-Z125-9-76 173

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

spec Special character.

str::=
'any string'[*int]|
B'binary'[*int]|
X'hex'[*int]

3 cases are possible:
1. 'any string' [*int]
2. B‘binary number‘ [*int]
3. X‘hexadecimal number‘ [*int]

If B or X is used, then this letter must immediately precede
the binary or hexadecimal number, which is enclosed in
single quotes.
If, in case 1, the string includes a single quote, then this
must be entered twice. The valid character for a single quote
can be changed by means of @QUOTE.
The optional operand *int permits repetition of a string.
'ab'*3, for example, is equivalent to 'ababab'. Since the
maximum length of a string is 256 bytes, "int" must not
exceed this value. If "int" is 0, or if the length of the string is
0, then the resulting string alsoŠ has a length of 0.

Examples:

Note: if an odd number of digits is entered for a hexadecimal
number, then EDT inserts leading zeros as necessary. X‘F‘,
for example is equivalent to X‘0F‘, or X‘A‘ *4 equivalent to
X‘0A‘ *4.
The same applies to a binary number if the number of binary
digits specified is not a multiple of 8. Leading zeros are
inserted up to the next multiple of 8 binary digits. B‘1‘, for
example, is equivalent to B‘00000001‘, or B‘1111‘ *2 is
equivalent to B‘00001111‘ *2.

Definition Meaning

str Resulting string

'A''BC''D' A'BC'D

'ABC' *5 ABCABCABCABCABC

X'C1F2' *4 A2A2A2A2

B'11110000' *3 000

Overview of the EDT operands EDT statements

174 U1884-J-Z125-9-76

string::=str|line[:col:] Either operand "str" or "line [:col:]". If a string variable or a
line number is specified, EDT uses the contents of this
string variable or of this line as "string". If the specified line
does not exist, an error message is issued and the
statement is rejected.
If only part of a line is to be used as "string", then the desired
columns may be specified. If column values greater than the
line length are specified, blanks are inserted into "string".
If, for example, line 6 contains the string

AB3CD6EF9
and if "string"is specified as

6:1-3,9,8,9,8-9,5-7,30,1,30,1:,
the resulting string is

AB39F9F9D6E A A
If the column specification is used in one of the statements
@INPUT, @GET, @SAVE, @READ or @WRITE, then the
above applies to the lines to be read from or written to the
disk file. If the line number specified for "string" is the
number of a line which is to be modified using the EDT
statement in which "string" is used as an operand, then
"string" refers to the original contents of this line. If, for
example, line 1 contains

ABC
and the EDT statement is:

@CREATE1:1,'D'*3,1
the line 1 contains, after execute of this statement

ABCDDDABC

Definition Meaning

EDT statements Overview of the EDT operands

U1884-J-Z125-9-76 175

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

str-ln::=
str-var[op int-var]|
str-var[op nL]

A special form for expressing a string variable. There are
two possibilities:

Format 1:

Example: if #I10=5, then #S0+#I10=#S5 or
#S13+#I10=#S18.

Format 2:

Example: #S15-5L=#S10 or #S3+8L=#S11.

Definition Meaning

str-var op int-var

#Sn1 + / – #In2

str-var op nL

#Sn + / – 1L...nL

Overview of the EDT operands EDT statements

176 U1884-J-Z125-9-76

strng::=
'any string'[*int]|
B'binary'[*int|
X'hex'[*int]

Same as operand "str", but double quotes (") may be used
instead of single quotes (').
This operand may be used only in the first operand
("search") in the @ON statement. If the string includes a
single or double quote character, it must be entered twice.
Again as for operand str, a repetition factor (*int) may be
specified, but the resulting search string must not be longer
than 256 characters.
A search string is delimited on the left and the right by a
single or double quote, both of which can be redefined by
means of @QUOTE. If the double quote is used to delimit
the string on the left or right, then this indicates that there
must be a text delimiter on the left or right, respectively, of
the search string. The set of text delimiters is initially set by
EDT to the characters +.!*();-/,?:‘=‘‘ and the blank (X‘40‘).
This character set can be changed by means of the
@DELIMIT statement. By definition, there is always a text
delimiter before the first character and after the last
character. For the following example, it is assumed that
@DELIMIT has been used to define the comma and the
blank as delimiters. The @ON statement is now to be used
to search for a line with the following contents:
FLIPPER+*FLIPPER ,FLIPPER +FLIPPER*
1 10 20 30
The numbers under the line show the column numbers. The
search string in each case is the word FLIPPER; however,
note how the single and double quotes are used to enclose
this word:
'FLIPPER' Hits in columns 1, 10, 20 and 30
'FLIPPER" Hits in columns 10 and 20
"FLIPPER' Hits in columns 1 and 20
"FLIPPER" Hit in columns 20

structured-name::=chars String with a maximum length of 30 characters.
Permitted characters:
A...Z
0...9
$, #, @
hyphen
First character: A...Z oder $, #, @

Definition Meaning

EDT statements Overview of the EDT operands

U1884-J-Z125-9-76 177

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

str-var::=#Sn One of the 21 string variables #SO, #S1 ..., #S20. These
must be regarded as special additional lines in a file which
may be used to buffer any desired strings or the contents of
any other lines. With only a few exceptions, which are
mentioned in the syntax of the statements, string variables
can be treated just like normal lines. The contents of a string
variable have a minimum length of 1 and must not be longer
than 256 characters. If a string variable is deleted, it
contains one blank, which is also the default content of all
string variables.

tab::=char The tab character. This must be a character other than the
statement symbol "edtsymb".

text::=chars A text, with a maximum length of 256 characters, which is
entered from the terminal.
If the string which is entered starts with the EDT statement
symbol (@) and the next character is neither this symbol nor
a blank, the input is regarded as an EDT statement.
If this is not desired, and the statement symbol is to be used
as a text character in column 1, then this symbol must be
entered twice (@@).

usersymb::=char The user escape symbol for external statement routines.
This is defined by means of @USE.

Definition Meaning

Overview of the EDT operands EDT statements

178 U1884-J-Z125-9-76

ver::=*|int The version number of a cataloged file.
Either an asterisk (*) or (int) may be specified, where "int" is
a non-negative number. Such a version number may be
used in the EDT statements @OPEN, @ELIM, @GET,
@INPUT, @READ, @SAVE, @UNSAVE and @WRITE, for
example

@GET 'P.BEISPIEL'(2)

If the asterisk (*) is specified for the version number in
@GET, @INPUT or @READ, the current version number is
displayed on the terminal after the statement is executed.

If however, a number - such as (2) - is entered, the current
version number is displayed only if the specified version
number is invalid. The specified file is still read in this case.

Exception: execution of an @INPUT file is aborted as for a
DMS error, even if the statement with the invalid version
number is an input statement.

If version number (*) is specified in an output statement, the
new version number is displayed on the terminal and the file
is then output.

If a number is specified instead of the asterisk, the output is
executed only if the correct version number was specified.
Otherwise, the correct version number is simply displayed
on the terminal.

A new version number is generated when a file is first
created and each time the file is updated. This new version
number is formed by incrementing the old number by 1
(exceptions are possible for the @OPEN statement).

Definition Meaning

EDT statements Overview of the EDT operands

U1884-J-Z125-9-76 179

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

A new file has the version number 1. The highest possible
version number is 256 and the next new version will have
the version number 0. A file also has version number 0
before it is cataloged. The version number is not changed if
an output statement does not access the file. If, for example,
a range which does not exist in this file is specified in
@ELIM, the version number of this file remains unchanged.
In the other cases, however, the version number is changed
even if a file is completely overwritten or if a SAM file is
converted to an ISAM file or vice versa.

The version number offers increased protection against
destruction of a file. If a version number is specified when
the file is read in, the actual version number is output and
the user can see if this is an old version of the file.

vers::=chars|*STD Version identifier of a library element.

vpos::=op n|vpos-op|
vpos-op (m,...)

Relative horizontal position.

vpos-op::=+|–|++|– – Horizontal positioning statement.

xpath::=chars|.str-var Character string not exceeding 256 characters in length.
Specifies the name of a POSIX file (perhaps also its path).
Blanks and non-printable characters are permitted in the
name only if specified in str-var.

Definition Meaning

Overview of the EDT statements EDT statements

180 U1884-J-Z125-9-76

6.3 Overview of the EDT statements

EDT management

Define a new statement symbol for the statements. F mode
L mode

@: edtsymb

Switch on/off automatic saving of unsaved virtual files. F mode
L mode

@AUTOSAVE

Switch block mode for block input on or off. F mode
L mode

@BLOCK
@BK

Display lines changed by statements. Check the length of
newly entered lines.

L mode

@CHECK
 [,] [cl]

Switch on the code table for line number ln and display it on
the screen (format 1).

F mode
L mode

@CODE ln, SHOW

Switch on the code table for line number ln format 2). F mode
L mode

@CODE ln

Switch on, display or switch off the current code table
(format 3).

F mode
L mode

@CODE [ON] | SHOW | OFF

The specified coded character set is selected. F mode
L mode

@CODENAME [name]

[ID=name] [[,] TIME=n] [ON]

OFF

[ON [,] [AUTOFORM]]

OFF

[ON]

OFF

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 181

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Modify the text delimiter set (see @ON). F mode
L mode

@DELIMIT
=

Change the input mode in L mode (format 3). L mode

@INPUT

Display the lowest and highest assigned line numbers in the
current work file.

F mode
L mode

@LIMITS

Specify whether a distinction is to be made between
uppercase and lowercase letters.

F mode
L mode

@LOWER [ON] | OFF

Load or display the default values for the programmable
keys.

F mode
L mode

@P-KEYS [SHOW]

R
str1
+|– str2

[CHAR]
HEX|X [ISO]
BINARY

Overview of the EDT statements EDT statements

182 U1884-J-Z125-9-76

Preset values for input and output and for file processing. F mode
L mode

@PAR [fwkfv | GLOBAL]

[,] [EDIT[[-] LONG] [=ON] | =OFF]
[,] [HEX [=ON] | =OFF]
[,] [LOWER [=ON] | =OFF]
[,] [EDIT[-]FULL [=ON] | =OFF]
[,] [PROTECTION [=ON] | =OFF]
[,] [SCALE [=ON] | =OFF]
[,] [INFORMATION [=ON] | =OFF]

[,] [INDEX [=ON] | =OFF]
[,] [OPTIMIZE [=ON] | =OFF]
[,] [RENUMBER [=ON] | =OFF]

[,] [SPLIT = n fwkfv | =OFF]
[,] [SEPARATOR = 'char' | =OFF]
[,] [CODE= EBCDIC | =ISO]
[,] [[ELEMENT] [-] TYPE = elemtyp | =*STD]
[,] [INCREMENT = inc]
[,] [LIBRARY = path]
[,] [LIMIT = cl]
[,] [STRUCTURE = 'char']
[,] [SDF-PROGRAM =structured-name | =*NONE]
[,] [SDF-NAME-TYPE = INTERNAL | = EXTERNAL]

Replace the single and double quotes used as delimiters for
file names and character strings in statements by the
specified characters.

F mode
L mode

@QUOTE
@QE

Change the range symbol (default: &) and the domain
default: 0.0001 to 9999.9999).

F mode
L mode

@RANGE [=r =rng [:domain]]

Preset whether or not a distinction is to be made between
uppercase and lowercase letters when searching for strings
with @ON.

F mode
L mode

@SEA[RCH]-
OPTION

CASELESS-SEA[RCH] {=ON | =OFF}

spec, char
spec
,char

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 183

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Set and reset the task and user switches. F mode
L mode

@SETSW
 [U] int1 [-int2] [,...]

Define the current filler character and the wildcard symbols
asterisk (*) and slash (/).

F mode
L mode

@SYMBOLS [,] [ASTERISK [= '*' | ='spec1']
[,] [SLASH [= '/' | ='spec2']
[,] [FILLER] [= X'00' | =X'hex' | ='char']

Set the syntax check and execution mode. F mode
L mode

@SYNTAX
[SECURITY] [[,] TESTMODE]

Define and display a tab character and the related columns. F mode
L mode

@TABS

Change the number of lines displayed on the screen (for the
9763 Data Display Terminal, the number of screen columns
can be changed as well).

F mode
L mode

@VDT [int] [,] [F1 | F2]

Activate or deactivate the interpretation of line mode control
characters during screen output.

F mode
L mode

@VTCSET [ON] | OFF

Switch the display of entire records on the screen on or off. F mode

EDIT LONG [ON] | OFF

Switch hexadecimal mode on or off. F mode

HEX [ON] | OFF

[ON=]

OFF=

[=HIGH]

=LOW

[=ON]

=OFF

:: [tab [[:]cl1 [,cl2,...]] [[cl]]]

RANGE [=range]

[cl1[,cl2,...]] {ON | OFF}

[::] VALUES

CHECK

FORWARD

Overview of the EDT statements EDT statements

184 U1884-J-Z125-9-76

Switch line number display on or off. F mode

INDEX [ON] | OFF

Switch the column counter scale on or off. F mode

SCALE [ON] | OFF

Split the screen into two work windows. F mode

SPLIT n(fwkfno) | 0 | OFF

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 185

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

File processing

Close the file previously opened by means of @OPEN. F mode
L mode

@CLOSE [NOWRITE]

Delete an ISAM file. The catalog entry is retained. F mode
L mode

@ELIM ['file'] [(ver)] range* [BOTH]

Define a file name for @READ, @WRITE, @GET, @SAVE
and @OPEN.

F mode
L mode

@FILE [string [(ver)]] [LOCAL]

Read an ISAM file into the current work file. F mode
L mode

@GET ['file'] [(ver)] [range*] [:col:] [NORESEQ]

Physically open an ISAM file in work file 0. F mode
L mode

@OPEN ['file1'] [(ver)] [[KEY] [AS 'file2' [OVERWRITE]]]

Read a SAM file into the current work file. F mode
L mode

@READ
['file'] [(ver)] [range*] [:col:] [] [STRIP]

Store the current work file as an ISAM file. F mode
L mode

@SAVE ['file'] [(ver)] [range*] [:col:]

[]

Delete a file and its catalog entry. F mode
L mode

@UNSAVE 'file' [(ver)]

Store the current work file as a SAM file (format 1). F mode
L mode

@WRITE
['file'] [(ver)] [range*] [:col:] [KEY] []

RECORDS

KEY

UPDATE

[RENUMBER [ln [(inc)]]] [OVERWRITE]

UPDATE

OVERWRITE

Overview of the EDT statements EDT statements

186 U1884-J-Z125-9-76

Processing of POSIX files

Close a POSIX file opened earlier with @XOPEN. F mode
L mode

@CLOSE [NOWRITE]

Read in a POSIX file. F mode
L mode

@XCOPY FILE=xpath [,CODE=EBCDIC | ISO]

Open and read in a POSIX file. F mode
L mode

@XOPEN FILE=xpath [,CODE=EBCDIC | ISO]

[,MODE=ANY | UPDATE | NEW | REPLACE]

Write the contents of the current work file into a POSIX file. F mode
L mode

@XWRITE FILE=xpath [,CODE=EBCDIC | ISO]

[,MODE=ANY | UPDATE | NEW | REPLACE]

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 187

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Program library and file processing

Store and close a program library element previously
opened by means of @OPEN (format 2).

F mode
L mode

@CLOSE [NOWRITE]

Copy a program library element or a file into the current work
file (format 2).

F mode
L mode

@COPY

[ln]

Delete the specified program library element or file
(format 2).

F mode
L mode

@DELETE

Open a program library element or a file (SAM/ISAM) in the
current work file (format 2).

F mode
L mode

@OPEN

[,MODE=ANY | UPDATE | NEW | REPLACE]

Display the directory of a program library or a user catalog
or output it to a work file (format 1).

F mode
L mode

@SHOW

[[TO] ln [(inc)]]

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])
ELEMENT=elemname [(vers)][,elemtyp]
FILE=path2

BEFORE

AFTER

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])

FILE=path2

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])
ELEMENT=elemname [(vers)][,elemtyp]
FILE=path2 [,TYPE=ISAM | SAM | CATALOG]

[LIBRARY=path1 [,[TYPE=]elemtyp]]
TYPE=elemtyp
FILES[=ppath]

[SHORT]

LONG [ISO4]

Overview of the EDT statements EDT statements

188 U1884-J-Z125-9-76

Switching or positioning the work file

Write the current work file to the specified program library
element or to a SAM/ISAM file (format 2).

F mode
L mode

@WRITE
[]

[,MODE=ANY | UPDATE | NEW | REPLACE]

Scroll the work file forwards or backwards. F mode

+
–

[n]

++
– –

Scroll in the specified direction to the next record mark. F mode

+
++
–
– –

[([m,...])]

Scroll to the left or the right. F mode

>
<

[n]

<<

Switch to the previous work file. F mode
L mode
@PROC

@END [comment]

Mark records which contain the search string, and (in F
mode) position the data window to the first hit record (format
4).

F mode
L mode

@ON range* [:domain] FIND [ALL] [F] [R] [NOT] [PATTERN]

search [,int] MARK [m]

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])
ELEMENT=elemname [(vers)][,elemtyp]
FILE=path2 [,TYPE=ISAM | SAM]

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 189

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Line number handling

Switch to another work file. L mode
@PROC

@PROC procno [comment]

Position a work file to the specified line and column and,
optionally, switch to another work file. # is only permissible
in F mode.

F mode
L mode

@SETF
[] [] []

Switch to another work file. F mode

fwkfno
fwkfv

Change the current line number and increment, and shift the
stack entries.

L mode

@ [ln [(inc)] [:text]]

Increment the current line number by the current increment
value.

L mode

@+ [:text]

Decrement the current line number by the current increment
value.

L mode

@– [:text]

Renumber the lines of the current work file. F mode
L mode

@RENUMBER [ln [(inc)]]

Place a sequence number in each line of the specified
range, starting at the specified column (format 1).

F mode
L mode

@SEQUENCE [rng] [:[cl] [:[[n1] (n2)]]]

Place the line number of each line in each line in the
specified range, starting at the specified column (format 2).

F mode
L mode

@SEQUENCE [rng*] : [cl] : LINE

fwkfv
GLOBAL
(fwkfnr)

ln

vpos

:cl:

hpos

Overview of the EDT statements EDT statements

190 U1884-J-Z125-9-76

Check that the sequence numbers in the specified range are
in ascending order (format 3).

F mode
L mode

@SEQUENCE [rng] : [cl] : CHECK [int]

Define a new current line number and a new increment
value. Text may be entered at the same time (format 6).

F mode
L mode

@SET ln [(inc)] [:text]

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 191

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Creating, inserting and modifying texts

Insert or overwrite text, starting at the specified column.
Blanks at the end of the record are deleted.

F mode
L mode

@COLUMN
cl ON range [:] string

Create the specified line (format 1). F mode
L mode

@CREATE line [:] [string[,...]]

Convert the specified line or line range to uppercase or
lowercase letters.

F mode
L mode

@CONVERT [range] [TO=] {UPPER | LOWER}

If the search string is found in the specified range, replace it
with the specified string (format 7).

F mode
L mode

@ON range [:domain] CHANGE [ALL] [F] [R] [PATTERN]

search [,int] [TO] string [V]

If the search string is found in the specified range, either
replace the text before or after the hit with the specified
string or insert the specified string before or after the hit
(format 8).

F mode
L mode

@ON range [:domain] FIND [ALL] [F] [R] [PATTERN]

search [,int] string

Insert the specified string at the beginning of each line in the
specified range.

F mode
L mode

@PREFIX range WITH string

Initiate SDF check on syntax of data lines. F mode
L mode

@SDFTEST
[range*] [PROGRAM [=structured-name []]]

Insert a line break. F mode
L mode

@SEPARATE [range*] [AT {’char’ | X’hex’ | cl}]

[CHANGE]

INSERT

CHANGE

INSERT

PREFIX

SUFFIX

INTERNAL

EXTERNAL

Overview of the EDT statements EDT statements

192 U1884-J-Z125-9-76

Copying and moving lines

Sort the specified contiguous line ranges. F mode
L mode

@SORT
[rng*]

Append the specified string to each line in the specified
range.

F mode
L mode

@SUFFIX range WITH string

Update or delete existing records, either partially or
completely (format 1).

L mode

@UPDATE ln [:domain] ; text

Output a file section in edited form (format 2). L mode

@UPDATE [ln] [:domain]

Define a standard column range for updating records with
@UPDATE (format 3).

L mode

@UPDATE COLUMN [domain]

Copy the specified range from any work file to the current
work file (format 1).

F mode
L mode

@COPY rng [(procno)] [TO ln1 [(inc)] [:] [ln2]] [,...]

Move the specified range from any work file to the current
work file; the range is deleted from the source work file.

F mode
L mode

@MOVE rng [(procno)] [TO ln1 [(inc)] [:] [ln2]] [,...]

Copy the records marked with "m" into work file "procno". If
KEEP is specified, the line numbers are retained (format 5).

F mode
L mode

@ON range* [:domain] FIND [ALL] [F] [NOT] MARK m [COPY [TO]]

(procno) [KEEP] [OLD]

Copy records containing the search string into work file
"procno". If KEEP is specified, the line numbers are retained
(format 6).

F mode
L mode

@ON range* [:domain] FIND [ALL] [F] [R] [NOT] [PATTERN]

search [,int] [COPY [TO]] (procno) [KEEP] [OLD]

[:domain]

:R (clrng)

[A]

D

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 193

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Deleting work files, lines, texts and record marks

Delete the specified range(s) (format 1). F mode
L mode

@DELETE [rng [:domain]] [,...]

Delete the specified record mark(s) (format 3). F mode
L mode

@DELETE MARK [m, [...]]

Delete and release the specified work files or all work files. F mode
L mode

@DROP

Delete the search string from any lines within the range in
which it is found (format 9).

F mode
L mode

@ON range [:domain] DELETE [ALL] [F] [R] [PATTERN]

search [,int]

In any lines in the specified range in which the search string
is found, delete the text before or after this string
(format 10).

F mode
L mode

@ON range [:domain] FIND [ALL] [F] [R] [PATTERN]

search [,int] DELETE

Delete any lines in the specified range in which the specified
search string is found (format 11).

F mode
L mode

@ON range [:domain] FIND [ALL] [F] [R] [NOT] [PATTERN]

search [,int] DELETE

procno
[,...]

PREFIX

SUFFIX

Overview of the EDT statements EDT statements

194 U1884-J-Z125-9-76

Comparing work files

Changing the operating mode

Output of lines and information

Compare the specified ranges in two work files; the result of
the comparison is a list of line numbers (format 1).

F mode
L mode

@COMPARE [procno1] :rng*1 WITH [procno2] :rng*2

[,[int1] [(int2)] [LIST [ln [(inc)]]]]

Compare two entire work files; the result of the comparison
is a list of line numbers and the contents of the lines
(format 2).

F mode
L mode

@COMPARE [[procno1] [WITH]] procno2 [LIST [procno3]] [,procno4]

Switch to F mode dialog. Return to the interrupted
processing sequence by means of @HALT or @RETURN
(e.g. in system procedures).

F mode
L mode

@DIALOG

Switch from L mode to F mode dialog and vice versa;
parameters can be set for editing in L mode.

F mode
L mode

@EDIT

Show the last n preceding statements in the statement line. F mode

[n]#

Display the requested files on the screen or output them to
a work file.

F mode
L mode

@FSTAT
 [[TO] ln [(inc)]] []

Output the requested range to SYSLST. F mode
L mode

@LIST [rng [:domain] [X] [N] [C [int]|P int] [I] [S]] [,...]

FULL SCREEN

[ONLY] [PRINT] [SEQUENTIAL] [cl]

['pfile']

str-var

SHORT

LONG [ISO4]

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 195

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Control logging in batch mode. F mode
L mode

@LOG
[] []

Display each line in the specified range in which the
specified search string occurs (format 1).

F mode
L mode

@ON range [:domain] PRINT [ALL] [F] [R] [NOT] [PATTERN]

search [,int] [S] [N] [E]

Display the column number at which the specified search
string was found (format 2).

F mode
L mode

@ON range [:domain] COLUMN [ALL] [F] [R] [PATTERN]

[search [,int]]

If the search string is found, place the number of the hit line
in #L00 and the numbers of the start and end columns in
#I00 and #I01 (format 3).

L mode
@PROC

@ON range [:domain] FIND [ALL] [F] [R] [NOT] [PATTERN]

search [,int]

Execute a form feed on SYSLST. F mode
L mode

@PAGE

In F mode, display the contents of string variables; in L
mode, the contents of line ranges can also be displayed.

F mode
L mode

@PRINT [rng [:domain] [X] [N] [S] [V | E]] [,...]

Display the current work file. L mode

@PROC

Display the statement buffer. F mode

@SHIH

Display a list of the coded character set names available in
the system or output it to a work file (format 1).

F mode
L mode

@SHOW CCS [[TO] ln [(inc)]]

ALL
COMMANDS
NONE

SYSLST
SYSLST nn
LIST-VAR=chars

Overview of the EDT statements EDT statements

196 U1884-J-Z125-9-76

Display the current EDT settings and the contents of line
numbers and integer variables.

F mode
L mode

@STATUS [=ALL] |

[=
TIME |
BUFFER |
SIZE |
SYMBOLS |
DELIM |
VDT |
MODES |
FILE |
PAR[(procno)] |
LINEV |
INTV |
ln-var |
int-var |
SDF |
CCS |
LOG]
SEARCH-OPTION]

[,...]

[TO ln [(inc)]]

Display process information. F mode
L mode

@TMODE

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 197

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Interrupting or terminating EDT

Branching within EDT procedures

Terminate EDT. F mode
L mode

@END [comment]

Terminate EDT and load and start the specified program. F mode
L mode

@EXEC string

Terminate EDT; if EDT was called as a subroutine, a
message can be specified.

F mode
L mode

@HALT [ABNORMAL] [message]

Terminate EDT and load the specified program. F mode
L mode

@LOAD string

Terminate EDT; if EDT was called as a subroutine, a
message can be specified.

F mode
L mode

@RETURN [message]

Branch to the operating system or pass a BS2000 command
to BS2000 for execution.

F mode
L mode

@SYSTEM [string [TO ln [(inc)]]]

Create a line to which a @GOTO statement can branch or
which acts as a comment line.

L mode
@PROC

@CONTINUE [comment]

Branch to the specified line. @PROC

@GOTO ln

Check whether the EDT or DMS error switch was set during
the execution of previous statements. If the condition is
fulfilled, execute “text“ (format 1).

L mode
@PROC

@IF

 : text

ERRORS
NO ERRORS

DMS ERRORS
NO DMS ERRORS

Overview of the EDT statements EDT statements

198 U1884-J-Z125-9-76

Management and execution of EDT procedures

Compare the contents of variables or lines. If the condition
is fulfilled, branch to the specified line or abort the procedure
(format 2).

@PROC

@IF

Query whether a hit was found in the preceding @ON or the
current work file is empty. If the condition is satisfied, the
program branches to the specified line. If not, the procedure
is aborted (format 3).

@PROC

@IF

Check which task or user switches are set. If the condition
is fulfilled, branch to the specified line or abort the procedure
(format 4).

@PROC

@IF
 = [U] int

Reset the EDT and DMS error switches. F mode
L mode
@PROC

@RESET

Write the specified string into the specified line (format 2). L mode
@PROC

@CREATE line READ [string [,...]]

Execute the specified procedure (format 1). F mode
L mode
@PROC

@DO procno [,] [(param [,...])] [spec] [=ln1,ln2 [, [-] ln3]] [PRINT]

Switch logging of processed lines on or off (format 2). @PROC

@DO N | P

[S] string1 rel string2
ln1 rel ln2
[I] int1 rel int2

GOTO ln

RETURN

.TRUE. [rel cl]

.FALSE.

.EMPTY.

GOTO ln

RETURN

ON

OFF

GOTO ln

RETURN

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 199

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Terminate processing of the current file and return to the
work file which was previously current.

F mode
@PROC

@END [comment]

Execute part or all of the specified file as a procedure
(format 1).

F mode
L mode

@INPUT
'file' [(ver)] [range*] [:col:] [][PRINT]

Start an @INPUT procedure from a library element or from
a file (format 2).

F mode
L mode

@INPUT

[PRINT]

Place a comment in a procedure. L mode
@PROC

@NOTE [comment]

Define parameters in a procedure header. @PROC

@PARAMS formal [,...]

Switch to a different work file (format 1). L mode
@PROC

@PROC procno [comment]

Display the numbers of the work files (1 to 22) which are free
or in use (format 2).

L mode
@PROC

@PROC FREE | USED

Set an integer variable to a specified value (format 1). F mode
L mode
@PROC

@SET

int-var =

RECORDS

KEY

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])
ELEMENT=elemname [(vers)][,elemtyp]
FILE=path2

[+|–] int [+|– int] [...]
SUBSTR string
ln-var
LENGTH line
STRING string

Overview of the EDT statements EDT statements

200 U1884-J-Z125-9-76

Assign a value to a string variable (format 2). F mode
L mode
@PROC

@SET

str-ln

Assign a value to a line number variable (format 3). F mode
L mode
@PROC

@SET

ln-var =

Place a value in the line specified by the line number
variable, starting at the specified column (format 4).

F mode
L mode
@PROC

@SET
ln-var [,cl] = CHAR

Assign date and time to a string variable or place them in a
line (format 5).

F mode
L mode
@PROC

@SET
 [,cl] =

Set empty line mode. F mode
L mode

@ZERO-
RECORDS

[ON] | OFF

= string

= INTERNAL

[,cl] = CHAR

int-var
ln
str-var

int-var
ln-var
str-var

ln
int-var

SUBSTR string
STRING string

int-var
str-var
ln-var1

str-ln

ln-var

DATE [ISO[4]]

TIME

EDT statements Overview of the EDT statements

U1884-J-Z125-9-76 201

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Calling a user program

Erasing, reading, cataloging and outputting job variables

Load and start another program. This program must exist as
a module. EDT remains loaded.

F mode
L mode

@RUN (entry [,modlib]) [:string] [[,]UNLOAD]

Unload a loaded program. This program must exist as a
module.

F mode
L mode

@UNLOAD (name)

Define an external statement routine and the associated
statement symbol.

F mode
L mode

@USE
COMMAND = 'usersymb' [([,modlib])]

Delete job variable entries from the catalog. F mode
L mode

@ERAJV str [ALL]

Display the value of a job variable on the screen, write it to
a work file or assign it to a string variable.

F mode
L mode

@GETJV [string] [=line]

Enter a job variable in the catalog or assign a value to a job
variable.

F mode
L mode

@SETJV

Inquire which job variables are available and what attributes
they have.

F mode
L mode

@STAJV
[string] [TO ln [(inc)]]

entry

*

[string1] = string2 [,...]

string1

[SHORT]

LONG [ISO4]

Overview of the EDT statements EDT statements

202 U1884-J-Z125-9-76

Declaring and reading S variables and list variables

Read in elements of a list variable. F mode
L mode

@GETLIST string [range*] [:col:]

Display contents of S variables on the screen r assign them
to a string variable.

F mode
L mode

@GETVAR

Extend and re-write a list variables. F mode
L mode

@SETLIST
string [:col:][,]

[MODE]=APPEND | PREFIX | OVERWRITE

Declare S variables and assign them a value. F mode
L mode

@SETVAR
 [,MODE=ANY | NEW | UPDATE]

string [=line | =int-var]

SYSEDT

[range*] [MARK [m]]

str-var

string [=string1 | =int-var]

SYSEDT

EDT statements @

U1884-J-Z125-9-76 203

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

6.4 Description of the statements

@ Change current increment value and line number

@ defines a new current line number and increment value and shifts the stack entries.

The three-level EDT stack

EDT uses a three-level stack. Each stack entry consists of a pair of values for the line
number and the increment. When EDT is started, the stack is empty. Entries can be placed
in the stack and shifted with the aid of the @ statement.

ln The new current line number, e.g. 5.
The minimum value is 0.0001, the maximum 9999.9999. If inc is omitted,
the number of decimal positions in the line number implicitly defines the new
increment value: for example, line number 5 implies an increment of 1 and
line number 5.0 implies an increment of 0.1. ln may also be specified as a
line number variable (#L0 to #L20) or symbolically (e.g. %,$).

inc The new current increment value.
The minimum value is 0.0001, the maximum 9999.9999.

text Any character string.
If the first non-blank character in this string is

1. not the EDT statement symbol (@), then any blanks following the : are
regarded as part of the text.
The following processing guidelines apply:

– "text" is placed at the beginning of line ln
– any tab characters are interpreted
– the current line number is incremented by the current increment

value.

2. the EDT statement symbol (@), then any blanks following the : are
ignored. If the next character is

– not the EDT statement symbol, then "text" is interpreted as an
EDT statement and executed immediately

– the EDT statement symbol, then "text" is treated as a text line as
described in 1), above.

Operation Operands L mode

@ [ln [(inc)] [:text]]

@ EDT statements

204 U1884-J-Z125-9-76

3. the user escape symbol, then the external statement routine is executed
(cf. @USE).

Effect of @/@ln

Figure 8: Effect of @ln

@ln [(inc)] defines a new current line number and a new current increment. The
previous current line number and the previous current increment are stored in the three-
level EDT stack.

ln1 inc1

– –
– –
– –

ln2 inc2

ln 1 inc1
– –
– –

ln3 inc3

ln2 inc 2
ln1 inc 1

– –

ln4 inc4

ln3 inc3
ln2 inc2
ln1 inc1

ln5 inc5

ln4 inc4
ln3 inc3
ln2 inc2

Current line
number and
current increment

Entries in the
three-level stack

@ln @ln @ln @ln

EDT statements @

U1884-J-Z125-9-76 205

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Figure 9: Shifting stack entries

@ without operands pops the top entry from the stack and uses its values as the current
line number and the current increment. If no stack entry exists, an error message is issued.

The stack entries created by means of @ln are shifted as shown in figure 9.

ln4 inc4

ln3 inc3
ln2 inc2
ln1 inc1

ln3 inc3

ln 2 inc2
ln1 inc1
ln3 inc3

ln2 inc2

ln1 inc 1
ln3 inc 3
ln2 inc2

Current line number
and current increment

Entries in the three-
level stack

@ @

ln3 inc3

ln2 inc2
ln1 inc1
– –

ln2 inc2

ln 1 inc1
– –
– –

ln1 inc1

– –
– –
– –

ln1 inc1

– –
– –
– –

Current line number
and current increment

Entries in the three-
level stack

@ @ @
TOO MANY POPS

Effect of the @ statement with 3 stack entries

Effect of the @ statement with less than 3 stack entries

@+ EDT statements

206 U1884-J-Z125-9-76

@+ Increment current line number

@+ increments the current line number by the current increment value. If sequential mode
(see @EDIT) is switched off, the incremented line number becomes the new current line
number. If sequential mode is on, the incremented line number becomes the new current
line number only if there is no other line between it and the old current line number. If there
is a line between the previous line number and the incremented line number, the number of
this intermediate line becomes the new current line number. This means that existing lines
cannot be skipped in sequential mode.

text Any character string.
If the first non-blank character in this string is

1. not the EDT statement symbol (@), then any blanks following the : are
regarded as part of the text.
The following processing guidelines apply:

– "text" is placed at the beginning of line ln
– any tab characters are interpreted
– the current line number is incremented by the current increment

value.

2. the EDT statement symbol (@), then any blanks following the : are
ignored. If the next character is

– not the EDT statement symbol, then "text" is interpreted as an
EDT statement and executed immediately

– the EDT statement symbol, then "text" is treated as a text line as
described in 1), above.

3. the user escape symbol, then the external statement routine is executed
(cf. @USE).

"text" may also be @+, which makes it possible to chain this statement to
itself any desired number of times.

Operation Operands L mode

@+ [:text]

EDT statements @–

U1884-J-Z125-9-76 207

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@– Decrement current line number

@– decrements the current line number by the current increment value. If sequential mode
(see @EDIT) is off, the current line number is decremented by the current increment value.
If sequential mode is on, the current line number is decremented by the current increment
value only if there is no other line with a number between the previous and decremented
line numbers. If a line number exists between these two values, it becomes the new current
line number. If there are several lines with numbers between the previous and decremented
line numbers, the number of the line immediately before the current line becomes the new
current line number.

text Any character string.
If the first non-blank character in this string is

1. not the EDT statement symbol (@), then any blanks following the : are
regarded as part of the text. The following processing guidelines apply:

– "text" is placed at the beginning of line ln
– any tab characters are interpreted
– the current line number is decremented by the current

increment value.

2. the EDT statement symbol (@), then any blanks following the : are
ignored.
If the next character is

– not the EDT statement symbol, then "text" is interpreted as an
EDT statement and executed immediately

– the EDT statement symbol, then "text" is treated as a text line as
described in 1), above.

3. the user escape symbol, then the external statement routine is executed
(cf. @USE).

"text" may also be @–, which makes it possible to chain this statement to
itself as many times as desired.

Operation Operands L mode

@– [:text]

@: EDT statements

208 U1884-J-Z125-9-76

@: Define statement symbol

This statement permits the user to define a new statement symbol.

In this statement, the current statement symbol must always be specified (even in F mode);
":edtsymb" is not permitted.

edtsymb Special character to be used as the new statement symbol.
This must not be a colon or the same as the current range symbol (see
@RANGE).

If "edtsymb" is not a special character, @: is rejected with the error message:
% EDT3952 INVALID SYMBOL

In the case of @: the statement symbol is mandatory, even in F mode. Indirect operand
specification is not permitted.

Unambiguity of the statements can only be guaranteed if "edtsymb" is not any of the
following:

– +, - or the user escape symbol (see @USE)
– <, >, # or the semicolon (;) in F mode
– $, %, #, * or ? if the statement name is not specified for @SET or a statement is

specified in the "text" operand.

Example

 3. @print --- (01)
 1.0000 This statement permits the user to define any desired character
 2.0000 as the new statement symbol.
 3. @:! -- (02)
 3. @print --- (03)
 4. !print --- (04)
 1.0000 This statement permits the user to define any desired character
 2.0000 as the new statement symbol.
 3.0000 @print
 4.

(01) @PRINT displays the contents of the work file.

(02) ! is defined as the new statement symbol.

(03) @PRINT is now not regarded as a statement, but as text.

(04) !PRINT displays the contents of the work file.

Operation Operands F mode / L mode

@: edtsymb

EDT statements @AUTOSAVE

U1884-J-Z125-9-76 209

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@AUTOSAVE Automatic saving

@AUTOSAVE is used to activate or deactivate the automatic saving of unsaved work files.

name Freely selectable identifier for the autosave files which does not exceed
eight characters in length
Default: EDT

n Time interval in minutes between a manual or automatic save and the next
automatic save. The minimum value is 0, and the maximum value is 255.
Default: 5
If TIME=0 is set, a save is performed after each dialog step.

ON Switches automatic saving on. A save operation writes the contents of all
updated and otherwise unsaved virtual files into separate ISAM files. The
line numbers are saved as an ISAM key.

OFF Switches off the AUTOSAVE function and deletes the autosave files.

The @AUTOSAVE statement can be issued in all work modes except batch mode, and can
even be issued in an EDTSTART procedure. If issued in batch mode, the statement is
ignored and no message is output. Only in interactive mode are autosaves executed.

An autosave saves all work files which have been updated since the last save operation.
Autosaves are always executed after a dialog step, i.e. before the next input request, when
the following conditions are satisfied:

– The AUTOSAVE function has been switched on.

– The defined time interval since the last save operation has elapsed.

– A work file has not been saved explicitly by the user since the last save operation.

At the beginning of an EDT session, the AUTOSAVE function is always deactivated.

Whenever AUTOSAVE is activated, it saves all work files which are not empty and which
have been updated and not yet written back.

Operation Operands F mode / L mode

@AUTOSAVE [ID=name] [[,] TIME=n] [ON]

OFF

@AUTOSAVE EDT statements

210 U1884-J-Z125-9-76

The names of the save files are formed as follows:

S.name.yyyy-mm-dd.hhmmss.SAVEnn

The yyyy-mm-dd.hhmmss specification is the point in time at which the AUTOSAVE
function was switched on.

The nn specification is the number of the current work file.

An associated autosave file is deleted

– when the work file is empty (e.g. @DELETE)

– when the contents of the work file are saved as a file or library element. The possible
statements are: @WRITE, @SAVE, @XWRITE and @CLOSE.

All autosave files are deleted

– when @AUTOSAVE OFF is issued

– when the EDT session is terminated by means of @HALT, @END, @EXEC or @LOAD

– when the user returns to the main program.

The autosave files are retained

– when EDT terminates abnormally

– when the user exits EDT by means of K2 or @SYSTEM without return.

ISAM files which are really opened are not autosaved.

Restoration of the individual work files can be initiated with:

@GET 'S.name.yyyy-mm-dd.hhmmss.SAVEnn' NORESEQ
i

EDT statements @BLOCK

U1884-J-Z125-9-76 211

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@BLOCK Set or reset block mode

This statement switches the EDT blocked I/O mode (block mode) on or off. In block mode,
the user can, with a single input:

– create several lines
– enter several statements, which are then processed sequentially.

Each line or statement must be terminated with the (terminal-specific) end-of-line character.
The maximum number of characters which can be entered in one block is the number which
can be displayed on one screen page. Each line in the block must not exceed 256
characters in length. For printer terminals, the maximum block size is 1020 characters.

If the entered block of statements contains an invalid statement, then this statement is
output, together with the line number and an error message, at the time at which it would
have been executed. The rest of the statement block is then executed.

ON This operand is mandatory only if AUTOFORM is to be used.

AUTOFORM Creates blank lines read from the keyboard in line mode or from a POSIX
file by means of @XOPEN or @XCOPY and places one end-of-line
character X’0D’ in each blank line.
Data lines containing X’0D’ are written into the file as lines of length 0 when
written by means of @XWRITE and @CLOSE following @XOPEN.
If BLOCK mode is switched on without AUTOFORM, lines of length 0 are
suppressed.

OFF Resets block mode and also the AUTOFORM function.

If an input entered in block mode contains the statement @BLOCK OFF,
any subsequent statements or text lines in the block are ignored.

By default, block mode is on when EDT is started. This statement is ignored within EDT
procedures.

Operation Operands F mode / L mode

@BLOCK
@BK

[ON [,] [AUTOFORM]]

OFF

@BLOCK EDT statements

212 U1884-J-Z125-9-76

Block mode on 816x Data Display Terminals

Block mode may be used on 816x Data Display Terminals only if a freely selectable
character ’a’ is defined as the end-of-line character by means of the command
MODIFY-TERMINAL-OPTIONS LINE-END-CHARACTER = C’a’.

The default end-of-line character on these terminals is C’\’. [LZE] on an 8160 Data
Display Terminal can be used as the end-of-line character if this terminal is actually
generated as an 8160.

If the user specifies, by means of MODIFY-TERMINAL-OPTIONS LINE-END-
CHARACTER = NONE, that no end-of-line character is to be defined, errors may occur.

EDT statements @CHECK

U1884-J-Z125-9-76 213

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@CHECK Check lines

This statement causes each line in a virtual file or a file opened by means of @OPEN which
is created or updated by an EDT statement to be logged. Each affected line is displayed on
the screen. @CHECK can also be used to control the checking of line lengths.

ON Activates check mode. After this, any line in the virtual file or in a file opened
by means of @OPEN which is created or updated by one of the following
statements is displayed on the screen:
@COLUMN, @COPY, @CREATE, @MOVE, @ON, @PREFIX, @SUFFIX

OFF Deactivates check mode. This does not affect the checking of line lengths.

cl Specifies the line length for line length checking. EDT checks the length of
each line which is entered or which is created by one of the following state-
ments:
@+, @–, @IF, @LN, @SET, @UPDATE

If a line is longer than the specified length, it is still created, but EDT issues
the message CHECK LINE LENGTH to inform the user that the defined line
length has been exceeded. The default value for cl is 256 (the maximum
permissible line length); the minimum value for cl is 1.

The value for cl can also be changed by means of @TABS.

@CHECK is effective only in L mode. Switching to F mode deactivates check mode.

If only ON or OFF is specified, the current value for cl is not changed.

If only cl is specified, the current check mode remains unchanged.

It is possible to change the current value for cl by means of @CHECK OFF,cl. If cl is not
specified, its value remains unchanged, i.e. @CHECK OFF does not reset cl to its default
value of 256. If the user wishes to do this, he/she must enter @CHECK OFF, 256.

Operation Operands L mode

@CHECK
 [,] [cl]

[ON]

OFF

@CLOSE EDT statements

214 U1884-J-Z125-9-76

@CLOSE Close and write file or library element

@CLOSE is used to

– close the ISAM file opened earlier
– write the current work file to disk or tape and close the library element
– close a POSIX file opened earlier with @XOPEN.

The work file is deleted.

Before @CLOSE is entered, a file or a library element must have been opened with
@OPEN or @XOPEN.

NOWRITE The work file is simply deleted (not written back to disk or tape). The previ-
ously opened file or library element is closed without changes. In the case
of a file opened by means of @OPEN in work file 0 (see @OPEN, format 1),
NOWRITE has no effect.

If specified without operands, @CLOSE has the following effect:

– real processing:
closes the file opened with @OPEN, deletes work file 0 and deletes the local entry for
the file name;

– files and library elements opened with @OPEN format 2:
writes back and deletes the current work file and closes the file or library element that
was opened;

– POSIX files opened with @XOPEN:
writes the work file back into the POSIX file system with the same code as it was read
in with.

Any secondary keys of a NKISAM file opened with @OPEN format 2 are re-defined after
the file is closed. If the fields of a secondary key have been modified inconsistently in the
data area, this key is not set, and an error message is issued.

Operation Operands F mode / L mode

@CLOSE [NOWRITE]

EDT statements @CLOSE

U1884-J-Z125-9-76 215

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

A file opened by means of @OPEN is also closed correctly (implicit @CLOSE) if, instead
of @CLOSE, a @HALT, @LOAD, @EXEC statement or another @OPEN is entered.

After @CLOSE, EDT releases all memory space which is no longer in use.

Output of a new file version number after @CLOSE

If a file version number (ver) is specified in @OPEN, format 1, but "AS ’file’" is not specified,
the new version number is 1 higher than the old version number.

After execution of @CLOSE, both the current line number and the increment value
are set to 1. Any entries which existed in the three-level EDT stack (cf. @) are
deleted.

i

@CODE EDT statements

216 U1884-J-Z125-9-76

@CODE Convert character codes

@CODE permits the user to define replacement codes for characters which cannot be
displayed on certain terminals. With the aid of a code table, he/she can specify which output
code is to be used for the character which is entered.

This code conversion applies only to output in the data window and in the statement line.
The contents of the mark column are not converted.

A standard form of the code table exists in the module CODTAB in EDT’s dynamically
loadable library (see also chapter “Installation notes” on page 593ff). This standard code
table can be output on the screen or modified with @CODE. The code table does not take
effect until the code functions have been switched on with one of the three formats of
@CODE.

Format Statement Meaning

1 @CODE ln,SHOW Display the code table in a screen line.
Transfer the code table from a screen line to
module CODTAB.
Display and modify the code table.
Activate code conversion.

2 @CODE ln Activate code conversion, using the code table
in the specified record (ln).

3 @CODE SHOW | ON | OFF Display the code table.
Activate code conversion.
Deactivate code conversion.

EDT statements @CODE

U1884-J-Z125-9-76 217

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

The default code table:

The code positions for characters which cannot be displayed are set to X’07’ and are
displayed on the screen as smudge characters (on the 3270 Data Display Terminal: X’41’).
The code table should be unique, i.e. a code other than X’07’ should not appear more than
once. It is the user’s responsibility to make sure that the code table is not ambiguous. EDT
does not check the table for ambiguous codes.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 & - 0

1 / a j A J 1

2 b k s B K S 2

3 c l t C L T 3

4 d m u D M U 4

5 e n v E N V 5

6 f o w F O W 6

7 ~ g p x G P X 7

8 h q y H Q Y 8

9 i r z I R Z 9

A ‘ ! ^ :

B . $, # [{

C < * % @ \ |

D () _ ’] }

E + ; > =

F ? „

@CODE EDT statements

218 U1884-J-Z125-9-76

 The default code table in module CODTAB carries out the following code conversions:

Using format 2, the user can create a code table without having to know the internal coding
for a given character in the computer.

Effect when specified together with LOWER OFF

Output (file → screen):

The record is converted on the basis of the code table. Lowercase letters are converted
to smudge characters for screen output. The record is displayed on the screen.

Input (screen → file):

Any lowercase letters which are entered are converted to uppercase letters Code
conversion is carried out on the basis of the current code table.

The code for the tab character must not be converted.

@CODE and extended character sets

It is not a good idea to use both XHCS and @CODE. The @CODE statement in, however,
still supported and co-exists with XHCS.

The @CODE statement does not change the coded character set (CCS) selected in EDT.
For this reason, all files including library elements are supplied with the coded character set
name (CCSN) as a code attribute. The selected CCSN is also used for input/output via
WRTRD, WROUT and RDATA.

Keyboard Character File

X’FB’ (ä) { X’AB’

X’4F’ (ö) | X'AC'

X’FD’ (ü) } X'AD'

X’BB’ (Ä) [X’8B’

X’BC’ (Ö) \ X’8C’

X’BD’ (Ü)] X’8D’

X’FF’ (ß) - X’67’

i

EDT statements @CODE

U1884-J-Z125-9-76 219

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@CODE (format 1) Display code table and activate code function

A record containing a code table is displayed in a suitable format on the screen and can be
modified. Code conversion is activated.

ln The line number of a record, which must be 256 bytes long. The line number
can also be specified as a line number variable or as a symbolic line
number.
If a record with the specified line number exists, it is transferred to module
CODTAB as the default code table.
If there is no record with the specified line number, a record with this number
and a length of 256 bytes is created and the default code table from module
CODTAB is transferred to this record.

SHOW The code table is displayed in a suitable format on the screen, screen can
be modified. Code conversion is activated.

Note, that the code table must remain unambiguous, i.e. each
character other than NULL may appear only in the code position.
NULL may appear in several code positions and causes the code X´07´
(smudge character on the screen) to be placed in each position

The modified code table is then included in the work file as a record with line
number “ln”.

@CODE (format 2) Deactivate code function

Code conversion is activated, using the record with the specified line number as the code
table.

ln The line number of the record containing the code table to be used. This
record must exist and must be 256 bytes long. The line number can also be
specified as a line number variable or as a symbolic line number.

Operation Operands F mode / L mode

@CODE ln, SHOW

Operation Operands F mode / L mode

@CODE ln

@CODE EDT statements

220 U1884-J-Z125-9-76

@CODE (format 3) Activate or deactivate code function

This format activates or deactivates code conversion or permits the user to display and
modify the code table.

ON Activates code conversion with the current code table (initially the code
table from module CODTAB). If the code table is switched by means of
@CODE SHOW, the newly selected table becomes the current table after
the next @CODE ON.

SHOW Displays the current code table, which can then be modified as in format 1.
Code conversion is activated only by a subsequent @CODE ON.
The modified code table is deleted if EDT is terminated or if @CODE OFF
is entered.

OFF Deactivates code conversion and deletes the current code table.

When EDT is started, the default setting is OFF.

Example

The text in lines 1.00 and 2.00 contains some German “umlaut” characters, which are
displayed as smudges. Hexadecimal mode is active.

Operation Operands F mode / L mode

@CODE [ON] | SHOW | OFF

 1.00 MIT DIESER BUNG M CHTEN WIR IHNEN ERKL REN, WIE SIE....................
 DCE4CCCECD48CEDC4D8CCECD4ECD4CCDCD4CDDD8DCD64ECC4ECC
 49304952590D245704C38355069909855505923B955B06950295
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 2.00 DIE CODE-ANWEISUNG BEN TZEN K NNEN.
 CCC4CDCC6CDECCEEDC4CCD8EECD4D8DDCD44
 4950364501565924570255D395502C5555B0
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 3.00 ..
 00
 00
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--

code show ; code on...0001.00:001(0)

EDT statements @CODE

U1884-J-Z125-9-76 221

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@CODE SHOW is used to display the current code table on the screen. This is to be
modified and code conversion is to be activated.

Position 8C of the code table is now set to the \ character, which means that the umlauts
are displayed as follows:

Ä → X'8B' → [
Ö → X'8C' → \
Ü → X'8D' →]

Since code conversion was activated by means of @CODE ON, the umlauts are now repre-
sented by the characters [, \ and].

*** C O D E - M O D E

 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0 . † & - 0
 1 / a j A J 1
 2 b k s B K S 2
 3 c l t C L T 3
 4 d m u D M U 4
 5 e n v E N V 5
 6 f o w F O W 6
 7 ~ g p x G P X 7
 8 h q y H Q Y 8
 9 i r z I R Z 9
 A ` ! ^ :
 B . $, # [{
 C < * % @ \
 D () '] }
 E + ; > =
 F ? "

 PRESS K1 OR DUE FOR RETURN

 1.00 MIT DIESER]BUNG M\CHTEN WIR IHNEN ERKL[REN, WIE SIE....................
 DCE4CCCECD48CEDC4D8CCECD4ECD4CCDCD4CDDD8DCD64ECC4ECC
 49304952590D245704C38355069909855505923B955B06950295

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 2.00 DIE CODE-ANWEISUNG BEN]TZEN K\NNEN......................................
 CCC4CDCC6CDECCEEDC4CCD8EECD4D8DDCD
 4950364501565924570255D395502C5555
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 3.00 ..
 00
 00
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7-

@CODE EDT statements

222 U1884-J-Z125-9-76

Printout of the two converted lines:

1.00 MIT DIESER ÜBUNG MÖCHTEN WIR IHNEN ERKLÄREN, WIE SIE
2.00 DIE CODE-ANWEISUNG BENÜTZEN KÖNNEN.

Translation of German text:

This exercise shows you how to use the @CODE statement.

EDT statements @CODENAME

U1884-J-Z125-9-76 223

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@CODENAME Switch explicitly to different CCSN

This statement selects the desired coded character set (CCS) for the EDT session.

In systems in which the XHCS subsystem is not installed, @CODENAME is rejected with
an error message.

name Name of the coded character set.

If name is omitted, a switch is made to the coded character set EDF03IRV.

The following conditions must be met before a switchover to the desired coded character
set can be made:

– The coded character set name (CCSN) must be included in the list of CCSNs valid for
the data display terminal.

– The EDT work files must not contain data with a different CCSN (i.e. all EDT work files
are empty).

– The coded character set (CCS) must not be an ISO code and must not be a 7-bit code
other than EDF03IRV.

If these conditions are not met, @CODENAME is rejected and the currently selected CCSN
remains valid.

A statement specifying a switchover to the currently valid CCSN is ignored.

@CODENAME may not be specified in @INPUT and @DO procedures.

Operation Operands F mode / L mode

@CODENAME [name]

@COLUMN EDT statements

224 U1884-J-Z125-9-76

@COLUMN Insert text or delete blanks at end of line

@COLUMN inserts a character string into existing lines, starting at a specified column. The
user can specify whether or not the new string is to overwrite any existing text in the lines.

This statement also searches the lines from right to left, starting at column 256, and deletes
all blanks it finds. The search is terminated when the first non-blank character is found. If a
line contains only blanks, it is deleted by this statement (see note below).

cl The column at which the insert or overwrite function is to begin.

range The line range, specified as:
– one or more line numbers separated by commas (e.g. 4,6,15)
– one or more line ranges separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30)

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

CHANGE Specifies that the text beginning at column cl is to be overwritten by the new
character string.

INSERT Specifies that the new character string is to be inserted in the existing text,
starting at column cl.

: If neither CHANGE nor INSERT is specified, this must be specified in order
to separate “range” from “string”.

string The character string which is to overwrite the existing text or is to be
inserted.
This may be specified either
– explicitly, enclosed in single quotes, or
– implicitly, in the form of a line number, a line number variable or a string

variable (in each case with a domain if desired).

If the column at which the text is to be inserted is to the right of the current end-of-line, the
intervening columns are filled with blanks.

Operation Operands F mode / L mode

@COLUMN
cl ON range [:] string

[CHANGE]

INSERT

EDT statements @COLUMN

U1884-J-Z125-9-76 225

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

– This statement can be used to delete empty lines or to delete blanks at the end
of existing lines. If, for example, the user knows that the lines can never be
longer than 80 characters, he/she could delete all blanks at the end of each line
by means of @COLUMN 81 ON & ’ ’. This would first insert a blank in column
81 of each line, but the subsequent “search and delete blanks” operation would
then delete it, together with any blanks to the right of it.

– Shifting or inserting whole blocks of columns is not supported by @COLUMN.
However, the problem can be solved with the aid of a simple EDT procedure
(see the examples in chapter “EDT procedures” on page 141ff).

Example

The contents of line 2.00 are to overwrite the contents of line 1.00, starting at column 3.

The character string ’567’ is to be inserted in line 1.00, starting at column 5.
No characters in line 1.00 are overwritten.

i

 1.00 126790..
 2.00 348...
 3.00 ..

column 3 on 1:2 ..0001.00:001(0)

 1.00 123480..
 2.00 348...
 3.00 ..

column 5 on 1 insert '567'..0001.00:001(0)

 1.00 123456780...
 2.00 348...
 3.00 ..

@COMPARE, format 1 EDT statements

226 U1884-J-Z125-9-76

@COMPARE Compare work files line-by-line

@COMPARE, which has two formats, permits the user to compare all or part of the contents
of two work files with each other.

@COMPARE (format 1) Compare two work files

@COMPARE causes EDT to compare all or part of the contents of two work files with each
other.

The user can specify that the results are to be

– displayed on the screen,
– placed in a work file, or
– printed on SYSLST.

procno1, procno2
The numbers (0 to 22) of the two work files which are to be compared. If one
of these files is work file 0 and contains a file opened by means of @OPEN,
format 1, @COMPARE is rejected with an error message. If procno1 or
procno2 is omitted, the current work file is used by default.

rng*1 The line range in work file 1 (procno1), specified as:
– a single line (e.g. 6) or
– several consecutive lines (e.g. 8-20).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

rng*2 The line range in work file 2 (procno2), specified as:
– a single line (e.g. 6) or
– several consecutive lines (e.g. 8-20).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

Operation Operands F mode / L mode

@COMPARE [procno1] :rng*1 WITH [procno2] :rng*2

[,[int1] [(int2)] [LIST [ln [(inc)]]]]

EDT statements @COMPARE, format 1

U1884-J-Z125-9-76 227

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

int1 Specifies how many lines EDT is to examine in order to find a line range
which is identical in both files. If EDT examines int1 lines without finding at
least int2 consecutive lines which are identical in both files, it aborts the
compare operation.

The following applies to int1 and int2: . The default value
for int1 is 10.

int2 Specifies how many consecutive lines in both files must be identical before
EDT regards the ranges formed by these lines as identical.

The following applies to int1 and int2: . The default value
for int2 is 1.

LIST If ln is not specified, EDT prints the results of the comparison on SYSLST.
For each line where no match is found, EDT prints the line number and the
first 51 characters of the line.

If ln is specified, EDT writes the result into the current work file,
providing this file is not one of the files being compared.

If LIST is omitted, EDT displays the results on the screen.

If both LIST and ln are omitted, EDT simply displays the numbers of the
lines for which it finds no match. The first 51 characters of each such line
are not displayed.

ln EDT is to write the results of the comparison into the current work file (see
the LIST operand). ln specifies the number of the line which is to contain the
first line of the result. EDT writes the result into the file in the same format
as it uses for screen display.

inc The increment value for the line numbers which follow line ln. If this operand
is omitted, EDT uses the increment value implied by the value specified for
ln.

EDT starts the comparison at the beginning of the specified line ranges. If it finds a pair of
non-matching lines, it skips one or more lines in one or both files; the number of lines
skipped may be different in the two files. If EDT then finds int2 consecutive lines which are
identical in both files, it aligns the two files on these line pairs for subsequent comparison.

int2 int1 65535≤ ≤

int2 int1 65535≤ ≤

@COMPARE, format 1 EDT statements

228 U1884-J-Z125-9-76

1. A line pair is identical if the contents and the lengths of the two lines are the same. The
line numbers are ignored by the compare function.

2. If the same value is specified for int1 and int2, EDT will find no matching line ranges in
the two files if at least one line pair in the files is not identical.

3. EDT informs the user of the results of the comparison by means of the following
messages:

● Messages for intermediate results; further messages follow

EXTRA LINES IN 1ST FILE
 ln
 .
 .
 .
 ln

In file 1 EDT has skipped the lines whose numbers are listed. It has not skipped
any lines in file 2. The lines skipped in file 1 are followed by int2 lines which are
identical with int2 consecutive lines in file 2.

1 ≤ number of line numbers listed ≤ int1 - int2

EXTRA LINES IN 2ND FILE
 ln
 .
 .
 .
 ln

In file 2 EDT has skipped the lines whose numbers are listed. It has not skipped
any lines in file 1. The lines skipped in file 2 are followed by int2 lines which are
identical with int2 consecutive lines in file 1.

1 ≤ number of line numbers listed ≤ int1 - int2

NON-MATCHING LINES
 ln
 .
 .
 .
 ln

In file 1 EDT has skipped the lines whose numbers are listed in column 1 and
in file 2 the lines whose numbers are listed in column 2. The lines skipped in the
two files are followed by int2 pairs of identical lines.

1 ≤ number of line numbers listed in each column ≤ int1 - int2.

EDT statements @COMPARE, format 1

U1884-J-Z125-9-76 229

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

● Messages upon completion of the comparison

EXTRA LINES IN 1ST FILE
 ln
 .
 .
 .
 ln
REACHED LIMIT ON BOTH FILES

EDT has found int2 consecutive lines in file 1 which match the last int2 lines in
file 2. It has listed the numbers of the lines which were “left over” in file 1 at the
end of the comparison.

1 ≤ number of line numbers listed ≤ int1

EXTRA LINES IN 1ST FILE
 ln
 .
 .
 .
 ln
REACHED 2ND FILE LIMIT

EDT has found int2 consecutive lines in file 1 which match the last int2 lines in
file 2. At the end of the comparison, there were more than int1 lines left in file 1.
EDT has listed the numbers of the first int1 lines which were “left over” at the
end of the comparison.

EXTRA LINES IN 2ND FILE
 ln
 .
 .
 .
 ln
REACHED LIMIT ON BOTH FILES

EDT has found int2 consecutive lines in file 2 which match the last int2 lines in
file 1. It has listed the numbers of the lines which were “left over” in file 2 at the
end of the comparison.

1 ≤ number of line numbers listed ≤ int1

@COMPARE, format 1 EDT statements

230 U1884-J-Z125-9-76

EXTRA LINES IN 2ND FILE
 ln
 .
 .
 .
 ln
REACHED 1ST FILE LIMIT

EDT has found int2 consecutive lines in file 2 which match the last int2 lines in
file 1. At the end of the comparison, there were more than int1 lines left in file 2.
EDT has listed the numbers of the first int1 lines which were “left over” at the
end of the comparison.

NON-MATCHING LINES
 ln ln
 . .
 . .
 . .
 ln ln
NOTHING SEEMS TO MATCH

EDT has listed the numbers of the last int1 lines which it has examined in the
two files. Since there are not at least int2 identical line pairs in this range, has
EDT aborted the comparison. In neither of the two files has EDT reached the
end of the line range specified for the comparison.

NON-MATCHING LINES
 ln ln
 . .
 . .
 . .
 ln ln
REACHED LIMIT ON BOTH FILES

EDT has reached the end of the line ranges specified for comparison in the two
files. Column 1 contains the numbers of the last lines in file 1, column 2 the
numbers of the last lines in file 2. There are not at least int2 consecutive lines
which are identical in both files.

1 ≤ number of line numbers listed in each column ≤ int1

EDT statements @COMPARE, format 1

U1884-J-Z125-9-76 231

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

NON-MATCHING LINES
 ln ln
 . .
 . .
 . .
 ln ln
REACHED 1ST FILE LIMIT

EDT has reached the end of the line range in file 1 specified for the comparison.
Column 1 contains the numbers of the last lines in the range in file 1. Within
these lines, there are not at least int2 consecutive lines which match int2
consecutive lines in file 2 (relative to the int1 lines in file 2 whose numbers are
listed in column 2).

NON-MATCHING LINES
 ln ln
 . .
 . .
 . .
 ln ln
REACHED 2ND FILE LIMIT

EDT has reached the end of the line range in file 2 specified for the comparison.
Column 2 contains the numbers of the last lines in the range in file 2. Within
these lines, there are not at least int2 consecutive lines which match int2
consecutive lines in file 1 (relative to the int1 lines in file 1 whose numbers are
listed in column 1).

1 ≤ number of line numbers listed in column 2 ≤ int1

 REACHED LIMIT ON BOTH FILES AT SAME TIME

EDT has reached the end of the ranges specified for comparison in both files.
The last int2 lines in both files are identical.

@COMPARE, format 1 EDT statements

232 U1884-J-Z125-9-76

Example

 1. @PROC 1
 1. @READ 'PROC-FILE.1' -- (01)
 7. @PRINT
 1.0000 AAAAAA
 2.0000 BBBBBB
 3.0000 CCCCCC
 4.0000 UUUUUU
 5.0000 VVVVVV
 6.0000 WWWWWW
 7. @END
 1. @PROC 2
 1. @READ 'PROC-FILE.2' -- (02)
 8. @PRINT
 1.0000 AAAAAA
 2.0000 BBBBBB
 3.0000 ZZZZZZ
 4.0000 AAAAAA
 5.0000 BBBBBB
 6.0000 CCCCCC
 7.0000 UUUUUU
 8. @END
 1. @COMPARE 1:1-6 WITH 2:1-7, 5(2) ------------------------------ (03)
EXTRA LINES IN 2ND FILE
 3.0000
 4.0000
 5.0000
EXTRA LINES IN 1ST FILE
 5.0000
 6.0000
REACHED LIMIT ON BOTH FILES
 1. @COMPARE 1:1-6 WITH 2:1-7, 5(3) ------------------------------ (04)
NON-MATCHING LINES
 1.0000 1.0000
 2.0000 2.0000
 3.0000 3.0000
 4.0000 4.0000
 5.0000 5.0000
NOTHING SEEMS TO MATCH
 1. @COMPARE 1:1-6 WITH 2:1-7, 6(3) ------------------------------ (05)
EXTRA LINES IN 2ND FILE
 1.0000
 2.0000
 3.0000
EXTRA LINES IN 1ST FILE
 5.0000

EDT statements @COMPARE, format 1

U1884-J-Z125-9-76 233

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

 6.0000
REACHED LIMIT ON BOTH FILES
 1.

(01) The SAM file PROC-FILE.1 is read into work file 1.

(02) The SAM file PROC-FILE.2 is read into work file 2.

(03) If examination of five lines in each file does not result in at least two consecutive
matching line pairs, the comparison is to be aborted. All lines in both files are
compared.

(04) The @COMPARE statement used in step (03) is modified slightly and entered
again. This time, at least three consecutive matching line pairs must be found. Since
this does not occur, EDT aborts the comparison.

(05) The @COMPARE statement used in step (04) is modified slightly and entered
again. This time, the comparison is to be aborted only after six lines have been
compared without success. The comparison is executed for all lines of both files.

@COMPARE, format 2 EDT statements

234 U1884-J-Z125-9-76

@COMPARE (format 2) Compare two work files line by line

@COMPARE compares the contents of two work files line by line. EDT places the results
of the comparison in a third work file, which is cleared before the results are stored.

The results returned by EDT are:

– a header line containing the file name. The header line may also display the following:
– the name of a library element opened with @OPEN format 2 or of a file,
– the name of a POSIX file opened with @XOPEN or
– a local @FILE entry, if one exists.

– the line number and content of each record which occurs in only one of the two files
being compared. Records exceeding 239 characters in length are truncated. The
position of a given record’s line number in column 1 or in column 2 under the
LINE#(adatnr) header indicates which of the two files being compared contains that
record.

– the line numbers of records which are identical in the two files (e.g. 0001.00=0006.00).
If several consecutive records in the two files are identical (range of identical lines), only
the first and last pairs of line numbers of each range are shown (see example).

procno1 The number of the first work file to be compared.

If procno1 is omitted, the current work file is used by default.

procno2 The number of the second work file to be compared. Specification of
procno2 is mandatory.

At least one work file (procno1 or procno2) must be specified.

LIST If LIST is specified, the results are placed in work file procno3; if procno3 is
omitted, the results are output to SYSLST. If LIST is omitted, the results are
placed in work file 9 in F mode, displayed on the screen in L mode, or output
to SYSOUT for procedures.

procno3 The work file which is to be used to hold the results of the comparison. This
file is cleared before it is used.

procno4 The work file which EDT is to use as a scratch file. This file is cleared before
it is used. If procno4 is omitted, work file 10 is used by default.

Different work files must be specified for procno1, procno2, procno3 and procno4.

Operation Operands F mode / L mode

@COMPARE [[procno1] [WITH]] procno2 [LIST [procno3]] [,procno4]

EDT statements @COMPARE, format 2

U1884-J-Z125-9-76 235

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

If all of the lines to be compared are equal or different, the following messages are issued:

% EDT0291 ALL LINES ARE EQUAL
% EDT0290 ALL LINES ARE DIFFERENT

If the results are output in procno3, the following message is issued:

% EDT0297 COMPARE RESULT IN WORK FILE (procno3)

If one of the two files being compared is the work file into which the results are to be written,
the following message is output:

% EDT5350 COMPARE RESULT CANNOT BE SHOWN

The results of the comparison cannot be displayed because the file which was specified to
receive the results is occupied.

If one of the files being compared is work file 0, @OPEN, format 1 must not be used to really
open any ISAM file.

@COMPARE causes all record marks to be deleted.

Querying comparison results

To enable users to query the comparison results within procedures, EDT sets not only the
messages % EDT0290 and % EDT0297, but also the EDT error (for information on
querying error switches, see @IF formats 1 and 3).

Differentiation:

Before @COMPARE is used to compare files, it is necessary to issue @RESET to reset the
EDT error switch and to delete work file procno3.

If, in either of the files to be compared, the fourth digit after the decimal point is not
0 (e.g.: 0.0009), @COMPARE is aborted with the message % EDT5352
@COMPARE ABORTED - PLEASE RENUMBER. The reason for this is that this
digit in the line number is reserved for internal use.

EDT error switch Work file procno3

% EDT0291 not set empty

% EDT0290 set empty

% EDT0297 set not empty

i

@COMPARE, format 2 EDT statements

236 U1884-J-Z125-9-76

Example

Switch from work file 2 to work file 1.

Compare work file 2 with work file 1 and place the results in work file 3. Then switch to work
file 3.

 1.00 X...
 2.00 Y...
 3.00 Z...
 4.00 G...
 5.00 H...
 6.00 A...
 7.00 B...
 8.00 C...
 9.00 J...
 10.00 K...
 11.00 D...
 12.00 E...
 13.00 ..
 14.00 ..
 15.00 ..
 16.00 ..
 17.00 ..
 18.00 ..
 19.00 ..
 20.00 ..
 21.00 ..
 22.00 ..
 23.00 ..
1 ..0001.00:001(2)

 1.00 A...
 2.00 B...
 3.00 C...
 4.00 D...
 5.00 E...
 6.00 F...
 7.00 G...
 8.00 H...
 9.00 I...
 10.00 J...
 11.00 K...
 12.00 ..
 13.00 ..
 14.00 ..
 15.00 ..
 16.00 ..
 17.00 ..
 18.00 ..
 19.00 ..
 20.00 ..
 21.00 ..
 22.00 ..
 23.00 ..
compare 2 with 1 liste 3; 3......................................0001.00:001(1)

EDT statements @COMPARE, format 2

U1884-J-Z125-9-76 237

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Work file 3 contains the results of comparing work file 2 with work file 1.

 0.10 LINE#(1) FILENAME:..
 0.20 LINE#(2) FILENAME:..
 0.30 0001.00 X..
 0.40 0002.00 Y..
 0.50 0003.00 Z..
 0.60 0004.00 G..
 0.70 0005.00 H..
 0.80 0001.00=0006.00...
 0.90 0003.00=0008.00...
 1.00 0004.00 D..
 1.10 0005.00 E..
 1.20 0006.00 F..
 1.30 0007.00 G..
 1.40 0008.00 H..
 1.50 0009.00 I..
 1.60 0010.00=0009.00...
 1.70 0011.00=0010.00...
 1.80 0011.00 D..
 1.90 0012.00 E..
 2.90 ..
 3.90 ..
 4.90 ..
% EDT0297 RESULT OF COMPARE IN PROCFILE 3
..0000.10:001(3)

@CONTINUE EDT statements

238 U1884-J-Z125-9-76

@CONTINUE Define branch destination

@CONTINUE is used to create a line in an EDT procedure to which a branch can be
executed by means of @GOTO. Execution of this statement does not cause any further
processing action, which means that it can be used (like @NOTE) for inserting comment
lines in EDT procedures.

comment Any desired comment.

The main use for this statement is to define a last line in an EDT or INPUT procedure. Such
a line is mandatory only if an EDT procedure is started as an external loop by means of a
loop symbol (e.g. @DO 5,!=%,$). In such cases, it is always necessary to branch to the end
of the procedure in order to start the next pass.

Example

 6. @PRINT
 1.0000 WITH EDT
 2.0000 ANYONE WHO KNOWS
 3.0000 THE STATEMENTS CAN
 4.0000 WRITE HIS PROGRAM ONE
 5.0000 PROCEDURE AT A TIME
 6. @PROC 1
 1. @1.00
 1.00 @ @CON OBJECTIVE: IF A LINE CONTAINS 'W' --------------------- (01)
 1.01 @ @CON DISPLAY IT ON THE SCREEN
 1.02 @ @ON * FIND 'M'
 1.03 @ @IF .FALSE. GOTO 2
 1.04 @ @PRINT *
 1.05 @2.00
 2.00 @ @CONTINUE -- (02)
 2.01 @END
 6. @DO 1,*=1,$ -- (03)
 1.0000 WITH EDT
 2.0000 ANYONE WHO KNOWS
 4.0000 WRITE HIS PROGRAM ONE
 6.

(01) Here, @CONTINUE is used for inserting comments.

(02) Here, @CONTINUE is mandatory, since there must be a last line in the procedure
to which a branch can be executed.

(03) The procedure is started in work file 1 by means of @DO and a loop symbol.

Operation Operands L mode / @PROC

@CONTINUE [comment]

EDT statements @CONTINUE

U1884-J-Z125-9-76 239

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@ CONVERT Convert data lines to uppercase/lowercase

This statement can be used to convert a line range to uppercase or lowerecase letters, as
appropriate. In contrast to the @LOWER statement, it is the existing contents of the current
work file that are converted, and not the input.

range Line range consisting of one or more lines. This line range can be specified
either symbolically or by means of variables for the line numbers (#L0 to
#L20). Furthermore, specification of character string variables (#S0 to
#S20) is also possible.

All data lines within "range" in the current work file are converted. If nothing
is specified for "range", the entire work file is converted.

TO= Determines the direction in which conversion takes place and thus also
determines the conversion table. This keyword can be omitted if no line
range is specified.

UPPER EDT converts the lowercase letters a, ..., z to the uppercase letters A, ..., Z.
The conversion table used is the one used when @LOWER OFF is input.
If XHCS is installed on the system, the conversion table associated with the
coded character set (CCS) is used for conversion. If XHCS is not available,
EDT uses a default table based on EBCDIC.DF.03. The German umlaut
characters ä, ö and ü are not converted in this case.

LOWER The uppercase letters A, ..., Z are converted to the lowercase letters
 a, ..., z. The conversion table is created by inverting the table used for
conversion in the other direction (lowercase to uppercase).

Either UPPER or LOWER must be issued.

Special characters, digits and arithmetic characters are not affected.

Interaction with @CODE

Activating the code function (@CODE) has no affect on data conversion.

Operation Operands F mode / L mode

@CONVERT [[range] T[O]=] {UPPER | LOWER}

@COPY, format 1 EDT statements

240 U1884-J-Z125-9-76

@COPY Copy data

@COPY has two formats, which offer the following copy facilities:

– copying a line or a line range from any work file into the current work file (format 1)
– copying a program library element (format 2).

Unlike @MOVE, the @COPY statement leaves the line range being copied (the source)
unchanged.

@COPY (format 1) Copy a line or range of lines

A line or a line range is copied from any work file into the current work file.

It is not possible to copy from a work file which is currently being executed as an EDT
procedure (see @DO), i.e. which is an active work file.

If lines are to be copied from the current work file, the operands TO and ln1 must always be
specified. If lines are to be copied from another work file and these operands are omitted,
the copied lines retain the line numbers they had in the source file.

rng A line range, specified as:
– a single line number (e.g. 6)
– several consecutive line numbers (e.g. 8-20)

The line range may also be specified using the current line range symbol
(see @RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

The symbolic line numbers are based on the current work file, i.e. the values
of the symbolic line numbers correspond to the line numbers in the current
work file and not in the work file from which the copy is being made.

procno The number (0-22) of the work file from which the lines are to be copied.

ln1 The number of the first line of the target range.
EDT calculates the numbers of the subsequent lines in the target range by
incrementing this line number by the increment value specified for this
range. The minimum value is 0.0001, the maximum 9999.9999.
If inc is not specified, EDT uses the increment value implied by the number
of decimal places in the line number: for example, 5 implies an increment of
1 and 5.0 implies an increment value of 0.1.
ln1 may also be specified as a line number variable or symbolically.

Operation Operands F mode / L mode

@COPY rng [(procno)] [TO ln1 [(inc)] [:] [ln2]] [,...]

EDT statements @COPY, format 1

U1884-J-Z125-9-76 241

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

inc The current increment value for the target range.
The minimum value is 0.0001, the maximum 9999.9999.

: This delimiter may be omitted if inc is specified, as this clearly separates the
operands ln1 and ln2.

ln2 The number of the last line in the target range.
@COPY copies line by line. When this upper limit is reached, the copy
operation is terminated, even if there are still lines in the source range which
have not been copied. The minimum value is 0.0001, the maximum
9999.9999. ln2 may also be specified as a line number variable or symbol-
ically.
If ln2 is not specified, the copy operation may overwrite lines which the user
wanted to keep.

Duplicating line ranges

@COPY can be used to duplicate a range of lines if the source and target ranges overlap
(see example 2).

If inc is set too large, or if ln2 is not specified, lines in the target range may inadvertently be
overwritten.

Transferring without changing the line numbers

When transferring lines from other work files into the current one, the line numbers are
retained as long as “TO ln1 ...“ is not specified.

When transferring from the current work file, "TO ln1" must always be specified.

Current increment value and line number

@COPY does not change the current increment value. The operand inc simply determines
the increment used between the copied records. It does not refer to the current increment
value.

The current line number is changed in L mode only if a line with a number greater than the
currently highest line number is created.

@COPY, format 1 EDT statements

242 U1884-J-Z125-9-76

Example 1

The three @COPY statements are to copy as follows:

line 1 → line 7
line 2 → line 5 and
line range 1 - 3

→ a line range starting at line 30.1 with the explicit increment value 5

Example 2

@COPY can be used to duplicate line ranges if the source and target ranges overlap.
In this example, line 1 is to be duplicated.

This statement copies the line range comprising lines 1 and 2 into the range starting at line
number 1.5 with the implicit increment value 0.1.
EDT first copies line 1 into line 1.5. This new line lies within the specified source range, and

 1.00 NOW..
 2.00 WE CAN...
 3.00 COPY..
 4.00 ...

copy 1 to 7 ; copy 2 to 5 ; copy 1-3 to 30.1 (5)..................0001.00:001(0)

 1.00 NOW..
 2.00 WE CAN...
 3.00 COPY..
 5.00 WE CAN...
 7.00 NOW..
 30.10 NOW..
 35.10 WE CAN...
 40.10 COPY..
 41.10 ...

 1.00 111...
 2.00 222..
 3.00 333...
 4.00 444..
 5.00 555...
 6.00 ..

copy 1-2 to 1.5...0001.00:001(0)

EDT statements @COPY, format 1

U1884-J-Z125-9-76 243

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

is therefore copied into line 1.6 (the implicit increment value is 0.1). Similarly, line 1.6 is
copied into line 1.7, ... , 1.9 into 2.0 (overwriting the contents of line 2). Finally, line 2.0 is
copied into line 2.1.

The line range 3 to 5 is to be copied into the line range 4.1 to 5 with the implicit
increment value 0.1.
EDT first copies line 3 into line 4.1 and line 4 into line 4.2. Both of these lines are within the
specified source range, which means that line 4.1 is copied into line 4.3, line 4.2 into
4.4, ... , 4.8 into 5.0 (overwriting the contents of line 5). Lines 4.9 and 5.0 are not copied, as
the upper limit of the target range has been reached.

 1.00 111...
 1.50 111...
 1.60 111...
 1.70 111...
 1.80 111...
 1.90 111...
 2.00 111...
 2.10 111...
 3.00 333...
 4.00 444..
 5.00 555...
 6.00 ..
 7.00 ..
 8.00 ..
 9.00 ..
 10.00 ..
 11.00 ..
 12.00 ..
 13.00 ..
 14.00 ..
 15.00 ..
 16.00 ..
 17.00 ..
copy 3-5 to 4.1 : 5...0001.00:001(0)

 1.00 111...
 1.50 111...
 1.60 111...
 1.70 111...
 1.80 111...
 1.90 111...
 2.00 111...
 2.10 111...
 3.00 333...
 4.00 444..
 4.10 333...
 4.20 444..
 4.30 333...
 4.40 444..
 4.50 333...
 4.60 444..
 4.70 333...
 4.80 444..
 4.90 333...
 5.00 444..
 6.00 ..
 7.00 ..
 8.00 ..
..0001.00:001(0)

@COPY, format 2 EDT statements

244 U1884-J-Z125-9-76

@COPY (format 2) Copy a library element or file

This format of the @COPY statement copies a complete library element or file into the
current work file and then closes the library element or file.

LIBRARY = path1 ([E[LEMENT]=]elemname [(vers)][,elemtyp])
The name of the library and of the desired element.

ELEMENT = elemname [(vers)][,elemtyp]
The name of the desired element, without a library name.
In this case, the library name must have been preset by means of @PAR.

path1 The library name. path1 may also be specified by means of a string variable.
If path1 is omitted, the default library specified by means of @PAR
LIBRARY is used.

elemname The element name. elemname may also be specified by means of a string
variable.

vers The version number of the desired element (see the “LMS” manual [14]). If
vers is not specified or if *STD is specified, the highest available version of
the element is selected.

elemtyp The element type. elemtyp may also be specified by means of a string
variable.
Permissible type entries: S, M, P, J, D, X, *STD or a user-defined type
names with appropriate base type. If no type is specified, the value preset
in @PAR ELEMENT-TYPE will be used.

Operation Operands F mode / L mode

@COPY

[ln]

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])
ELEMENT=elemname [(vers)][,elemtyp]
FILE=path2

BEFORE

AFTER

EDT statements @COPY, format 2

U1884-J-Z125-9-76 245

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Users who specify a user-defined type name are responsible for ensuring
that its associated base type corresponds to one of the permissible types S,
M, P, J, D or X.

*STD Default value
Type S is the default value when EDT is started. Any other valid type speci-
fication can be defined as the default value by means of @PAR.

FILE = path2 This operand is used to copy a BS2000 file.

path2 Name of the file to be copied.
path2 may also be specified by means of a string variable.

BEFORE The library element or file is inserted before the specified line number.
If @PAR RENUMBER=ON is specified, any existing line numbers are
renumbered as necessary.
If @PAR RENUMBER=OFF is specified, it is not possible to copy an
element before line number 0.01.

AFTER The library element or file is inserted after the specified line number.
It is not possible to copy an element after line number 9999.99.

ln The number of the first line in the target range.

EDT calculates the numbers of the following lines in the target range by
incrementing this line number by the current increment value for this range.
The minimum value is 0.0001, the maximum 9999.9999.
ln can also be specified as a line number variable or symbolically.
If ln is omitted, the element is copied at the end of the current work file.

Type Contents

S
M
P
J
D
X

Source programs
Macros
Data edited for printing
Procedures
Text data
Data in any format

@COPY, format 2 EDT statements

246 U1884-J-Z125-9-76

Calculation of line numbers

As they are inserted, the records are numbered in one of three ways:

1. Standard numbering with standard increment 1.0000
(e.g. 21.0000, 22.0000, 23.0000 ... 99.0000) or

2. Numbering with a preset increment
as defined in @PAR INCREMENT or

3. Automatic numbering and renumbering,
if the selected increment is too large to permit inclusion of the records to be copied. EDT
then selects an increment which is smaller, by a factor of 10, than the standard (case 1)
or specified (case 2) increment, and attempts to number the copied records with this
increment.
This is repeated until the copied records can be included successfully or until EDT
selects the minimum increment of 0.01.

Renumbering if @PAR RENUMBER=ON is specified:
If the copied records cannot be included with the minimum increment of 0.01, EDT
automatically renumbers the lines following the target range with the increment
value 0.01.

If EDT cannot find sufficient space, no records are inserted into the work file and an
error message is issued. When copying into an empty work file, EDT calculates the line
number for the first line by adding the standard increment or the specified increment
(@PAR INCREMENT) to an initial line number of 0.

If @PAR INCREMENT is entered with an increment < 0.01, it should be noted that the line
numbers of lines which have been read in, copied or inserted are not shown fully in F mode
(6-digit line number display).
If these incomplete line numbers are then used in @COPY statements, unpredictable
results may be produced.

If a line is created with a line number greater than the previously highest line number, the
current line number is changed.

EDT statements @COPY, format 2

U1884-J-Z125-9-76 247

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Interaction with XHCS

If the XHCS subsystem is installed, the coded character set name (CCSN) of the file or
library element is taken into account in a @COPY statement.

The @COPY statement is only executed if the CCSN of the file (library element) is the same
as the CCSN currently selected in EDT or all work files are empty and the coded character
set can be displayed on the data display terminal.

Example

COPY L = MACLIB (E=XYZ,M) AFTER 12.3

Element XYZ of macro library MACLIB is copied completely into the current work
file after line 0012.3000.

COPY E = PERSONNEL (@), D

The element PERSONNEL with the highest version number (see the “LMS” manual
[14]) is copied from a program library previously assigned by means of
PAR L=libname into the current work file. It is placed at the end of this file.
PERSONNEL is a library element of type D.

@CREATE, format 1 EDT statements

248 U1884-J-Z125-9-76

@CREATE Create text lines

@CREATE is used to write a freely selectable character string into any line or string
variable.

The character string can be

– included in the statement (format 1) or
– entered from the screen (format 2).

@ CREATE (format 1) Create lines

This format of the statement writes the specified character string into a line or a string
variable. If appropriate, the existing contents of the line or of the string variable are
overwritten. Unlike @SET, format 6 the @CREATE statement does not change the current
line number, even if it is used to create a line with a higher number.

line The number of the line into which the string is to be written.
A string variable or a line number variable may also be specified.

: This delimiter needs to be specified only if "ln" cannot be clearly distin-
guished from “string”.

string[,...] The string to be written into the line or string variable.
This may be specified either
– explicitly, enclosed in single quotes, or
– implicitly, in the form of a line number, a line number variable or a string

variable (in each case with a domain if desired).

Any combination of the above possibilities may be entered.

If “string” is not specified, a line consisting of one blank is created.
If several strings are specified, they are chained together in the order in
which they are specified.

@CREATE cannot process tab characters.

Operation Operands F mode / L mode

@CREATE line [:] [string[,...]]

EDT statements @CREATE, format 1

U1884-J-Z125-9-76 249

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example

Line 3 is created by means of the @CREATE statement.

Line 3 is created again with the old contents of line 3, chained to the new string ’AND MAKE
IT LONGER’.

Line 4 is created by chaining line 1, the string ’ CHAINED WITH ’, line 2 and line 1, in this
order.

 1.00 THIS IS THE FIRST LINE...
 2.00 THIS IS THE SECOND LINE..
 3.00..

create 3 'create line 3 using @create'..............................0001.00:001(0)

 1.00 THIS IS THE FIRST LINE...
 2.00 THIS IS THE SECOND LINE..
 3.00 CREATE LINE 3 USING @CREATE..
 4.00 ...

create 3:3, ' and make it longer'.................................0001.00:001(0)

 1.00 THIS IS THE FIRST LINE...
 2.00 THIS IS THE SECOND LINE..
 3.00 CREATE LINE 3 USING @CREATE AND MAKE IT LONGER.........................
 4.00 ...

create 4:1, ' chained with ',,2,1; edit long on...................0001.00:001(0)

@CREATE, format 1 EDT statements

250 U1884-J-Z125-9-76

In order to display the whole of line 4 in the data window, EDIT LONG ON is entered.

Line 4 is created again; it contains columns 1 to 12 of line 1, the word ’FOURTH’ and
columns 19 to 23 of line 2, chained together in this order.

After this, the standard format of the work window is activated.

 THIS IS THE FIRST LINE...
 THIS IS THE SECOND LINE..
 CREATE LINE 3 USING @CREATE AND MAKE IT LONGER.................................
 THIS IS THE FIRST LINE CHAINED WITH THIS IS THE SECOND LINETHIS IS THE FIRST LI
 NE...

create 4:1:1-12:,'fourth',2:19-23: ; index on 0001.00:001(0)

 1.00 THIS IS THE FIRST LINE...
 2.00 THIS IS THE SECOND LINE..
 3.00 CREATE LINE 3 USING @CREATE AND MAKE IT LONGER.........................
 4.00 THIS IS THE FOURTH LINE..
 5.00 ...

EDT statements @CREATE, format 2

U1884-J-Z125-9-76 251

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@CREATE (format 2) Read character strings

This format of @CREATE transfers a character string from the screen to a line or a string
variable.

This statement is intended solely for EDT procedures (@DO and @INPUT procedures).

line The number of the line to which the string from the screen is to be trans-
ferred. A character string variable or a line number variable may also be
specified.

string[,...] The string to be written into the line or string variable.
This may be specified either
– explicitly, enclosed in single quotes, or
– implicitly, in the form of a line number, a line number variable or a string

variable (in each case with a domain if desired).

When @CREATE is executed, a message is displayed, requesting the user to enter a
character string. If the “string” operand was specified, this is displayed as the request for
input; otherwise, an asterisk (*) is displayed.
The character string entered by the user is placed in the specified line or string variable.

Tab characters are not processed by this statement.

– If the “string” operand is specified, format 2 of the @CREATE statement calls
the Executive macro WRTRD.

– If “string” is omitted or if @CREATE-READ is issued as part of a batch task, the
RDATA macro is used.

Example 1

 6. @PRINT
 1.0000 HELLO
 2.0000 JUST WATCH
 3.0000 HOW THIS WORKS
 4.0000 LINE
 5.0000 IS TO BE
 6. SET #S1 = ' DISPLAYED *** '
 6. @PROC 1

Operation Operands L mode / @PROC

@CREATE line READ [string [,...]]

i

@CREATE, format 2 EDT statements

252 U1884-J-Z125-9-76

 1. @ @CREATE #S2 READ '*** WHICH ',4,5,#S1 ---------------------- (01)
 2. @ @SET #L2 = SUBSTR #S2 -------------------------------------- (02)
 3. @ @PRINT #L2
 4. @END
 6. @DO 1
*** WHICH LINE IS TO BE DISPLAYED *** 2 -------------------------------- (03)
 2.0000 JUST WATCH
 6.

(01) @CREATE-READ is to create the string variable #S2. First, it displays the text,
which consists of *** WHICH, the contents of lines 4 and 5 and the string variable
#S1.

(02) The line number variable #L2 is created from the contents of string variable #S2.

(03) The user replies to the question on the screen.

Example 2

 1. @ @CREATE #S0 READ '*** WHICH PROCEDURE FILE IS TO ----------- (01)
DISPLAY THE TIME ? ***'
 2. @ @SET #I0 = SUBSTR #S0
 3. @ @PROC #I0
 4. @ @@SET #S1 = TIME
 5. @ @@CREATE #S2: '*** IT IS NOW ',#S1,' ***' ------------------ (02)
 6. @ @@PRINT #S2 N
 7. @ @END
 8. @ @DO #I0
 9. @SAVE 'TEST.CREATE-READ'
 9. @INPUT 'TEST.CREATE-READ'
*** WHICH PROCEDURE FILE IS TO DISPLAY THE TIME ? *** 1 ---------------- (03)
*** IT IS NOW 110939 ***
 9.

(01) The text @CREATE #S0.... is entered. This text is interpreted as a statement only
in step (03).

(02) This creates the procedure line which is to record the current time in #S1.

(03) By means of @INPUT, the statements saved in TEST.CREATE-READ are
executed. This shows how @CREATE..READ can be used outside work files.

EDT statements @DELETE, format 1

U1884-J-Z125-9-76 253

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@DELETE Delete work files, library elements and record marks

@DELETE has three formats, which provide the following deletion facilities:

– delete all or part of a work file (format 1)
– delete a program library element or a POSIX file (format 2)
– delete record marks (format 3).

If an ISAM file has been opened by means of @OPEN, all or part of this file can be deleted
on the disk (format 1). Its catalog entry is not deleted.

@DELETE (format 1) Delete a work file

This format can be used in a work file to delete:

– the entire work file
– single lines and/or line ranges in the file
– domains (column ranges).

If D is entered with no operands in the F mode statement line, it is rejected with an error
message. This is done to prevent the user from inadvertently deleting the entire work file by
entering the short form of the statement.

rng The line range in the work file, specified as:
– a single line (e.g. 6) or
– several consecutive lines (e.g. 8-20).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

If rng is omitted, the entire work file is deleted.

domain A domain, specified as:
– a single column number (e.g. 10-10) or
– a range of consecutive column numbers (e.g. 15-25).

If only one column number is specified, the remainder of the line after this
column is deleted.
If the first column number is greater than the line length, the line is not
changed.

Operation Operands F mode / L mode

@DELETE [rng [:domain]] [,...]

@DELETE, format 1 EDT statements

254 U1884-J-Z125-9-76

The second column number
– must not be less than the first column number
– may be greater than the actual line length.

If no domain is specified, the entire line is deleted.

If the work file is not empty, @DELETE also deletes the local entry for the file name (see
@FILE, @GET, @READ).

If a work file is completely deleted, both the current line number and the increment are set
to 1, and the entries in EDT’s three-level stack are deleted.
Any save file which may have been created will also be deleted.

Example

The range from line number 1 to line number 2 is deleted from the work file.

 1.00 111...
 1.50 111...
 1.60 111...
 1.70 111...
 1.80 111...
 1.90 111...
 2.00 111...
 2.10 111...
 3.00 333...
 4.00 444..
 4.10 333...
 4.20 444..
 4.30 333...
 4.40 444..
 4.50 333...
 4.60 444..
 4.70 333...
 4.80 444..
 4.90 333...
 5.00 444..
 6.00 123456789012..
 7.00 ..
 8.00 ..
delete 1-2 ...0001.00:001(0)

EDT statements @DELETE, format 1

U1884-J-Z125-9-76 255

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Columns 7 to 10 (inclusive) are to be deleted from each record in the work file.

 2.10 111...
 3.00 333...
 4.00 444..
 4.10 333...
 4.20 444..
 4.30 333...
 4.40 444..
 4.50 333...
 4.60 444..
 4.70 333...
 4.80 444..
 4.90 333...
 5.00 444..
 6.00 123456789012..
 7.00 ..
 8.00 ..
 9.00 ..
 10.00 ..
 11.00 ..
 12.00 ..
 13.00 ..
 14.00 ..
 15.00 ..
delete & : 7-10...0002.10:001(0)

 2.10 111...
 3.00 ..
 4.00 44..
 4.10 ..
 4.20 44..
 4.30 ..
 4.40 44..
 4.50 ..
 4.60 44..
 4.70 ..
 4.80 44..
 4.90 ..
 5.00 44..
 6.00 12345612..
 7.00 ..
..0002.10:001(0)

@DELETE, format 2 EDT statements

256 U1884-J-Z125-9-76

@DELETE (format 2) Delete library elements

Delete an element from a program library or a file.

path1 The library name. path1 may also be specified by means of a string variable.

elemname The element name. elemname may also be specified by means of a string
variable.

vers The version number of the desired element (see the “LMS” manual [14]). If
vers is not specified or if *STD is specified, the highest available version of
the element is selected.

elemtyp The element type.elemtype may also be specified by means of a string
variable.
Permissible type entries: S, M, P, J, D, X, R, C, H, L, U, F, *STD or user-
defined type names with appropriate base type. If no type is specified, the
value preset in @PAR ELEMENT-TYPE will be used.

Users who specify a user-defined type name are responsible for ensuring
that its associated base type corresponds to one of the permissible types S,
M, P, J, D, X, R, C, H, L, U or F.

Operation Operands F mode / L mode

@DELETE

Type Contents

S
M
P
J
D
X
R
C
H
L
U
F

Source programs
Macros
Data edited for printing
Procedures
Text data
Data in any format
Object modules
Load modules
Created by ASSEMBH
Created by BINDER
Created by IFG
Created by IFG

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])

FILE=path2

EDT statements @DELETE, format 3

U1884-J-Z125-9-76 257

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

*STD Default value
Type S is the default value when EDT is started. Any other valid type speci-
fication can be defined as the default value by means of @PAR ELEMENT-
TYPE.

path2 Name of the BS2000 file (fully qualified file name) to be deleted.
path2 may also be specified by means of a string variable.

Example

DELETE LIBRARY = PROGLIB (ELEMENT = TESTOLD (2))

Version 2 of library element TESTOLD (type S) is to be deleted from library
PROGLIB.

@DELETE (format 3) Delete record marks

This format of the @DELETE statement deletes record marks (see section “Description of
the record marks in F mode” on page 136).

MARK Record marks in the current work file are to be deleted.

m The number(s) of the record mark(s) to be deleted, where

1 ≤ m ≤ 9

Record marks may also be specified via integer variables.
If m is omitted, all record marks (1 to 9) in the current work file are deleted.

Record marks with special functions (record marks 13, 14, 15) are not deleted (e.g. record
mark 15 for write protection, which can be set as a subroutine in EDT).

Operation Operands F mode / L mode

@DELETE MARK [m, [...]]

@DELIMIT EDT statements

258 U1884-J-Z125-9-76

@DELIMIT Define text delimiter characters

This statement permits the user to define a set of characters which are to act as delimiters
when searching for a character string with the aid of @ON (see @ON).

The “=” character must be specified in each case, since otherwise D will be interpreted as
@DELETE.

R Resets the text delimiter set back to the default set defined in EDT, namely
the blank (X’40’) and the characters +.!*();–/,?:’=" .

str1 The new set of text delimiters.

str2 A set of delimiter characters which is to be added to (+) or deleted from (–)
the existing delimiter set.

If no operand is specified, the text delimiter set will be empty, which means that a
subsequent search for delimiters using @ON will only find a hit if the record is absolutely
identical with the string that is being sought.

Operation Operands F mode / L mode

@DELIMIT
=

R
str1
+|– str2

EDT statements @DIALOG

U1884-J-Z125-9-76 259

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@DIALOG Switch to F mode screen dialog

If RDATA input is being used (BS2000 procedures) or if EDT is called as a subroutine (see
the description of the CMD function in the manual “EDT Subroutine Interfaces” [1]),
@DIALOG switches to F mode screen dialog.

The screen dialog is terminated by means of @END, @HALT, @RETURN or [K1], and the
processing sequence interrupted by @DIALOG is resumed.

The @DIALOG statement is

– ignored in F mode or in batch operations
– rejected with an error message in the case of L mode in EDT procedures (@DO) or in

an INPUT file (@INPUT) or with WRTRD input.

If the screen dialog is called from a BS2000 procedure, the statements @SYSTEM without
operands and @EDIT ONLY are disabled.

The user can switch to the operating system only by means of [K2].

After termination of the screen dialog, all current values which are still needed (work
file, library) should be set again, since the user of the F mode dialog may have
changed them.

Example

BS2000 procedure PROC.DIALOG

/BEGIN-PROCEDURE LOGGING=A,PARAMETERS=YES(-
/ PROCEDURE-PARAMETERS=(&FILE1=,&FILE2=),-
/ ESCAPE-CHARACTER='&')
/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/MODIFY-JOB-SWITCHES ON=5--- (01)
/START-PROGRAM $EDT
@PROC 1 -- (02)
@READ '&FILE1' --- (03)
@PAR LOWER=ON,SCALE=ON --- (04)
@DIALOG -- (05)
@PROC 1 -- (06)
@WRITE '&FILE2' -- (07)
@HALT -- (08)

Operation Operands F mode / L mode

@DIALOG

i

@DIALOG EDT statements

260 U1884-J-Z125-9-76

/MODIFY-JOB-SWITCHES OFF=5
/ASSIGN-SYSDTA TO-FILE=*PRIMARY
/END-PROCEDURE

(01) Task switch 5 is set before EDT is loaded, in order to select L mode. EDT reads the
input from SYSDTA with the aid of RDATA.

(02) EDT switches to work file 1.

(03) A file, whose name is requested during execution of the procedure, is to be read.

(04) Lowercase letters and the scale display are activated.

(05) EDT switches to F mode screen dialog and displays the work window on the screen.
All F mode and L mode statements may be entered during the dialog. The F mode
screen dialog is terminated by means of @END, @HALT or @RETURN or by hitting
[K1], and the processing sequence which was interrupted by @DIALOG is
resumed.

(06) Work file 1 is again selected as the current work file. This is necessary because the
user may have selected another work file during the F mode screen dialog.

(07) The contents of work file 1 are written back into a SAM file, whose name is
requested during execution of the procedure.

(08) EDT is terminated.

The procedure “PROC.DIALOG” is started and requests the name of the file to be read.
EDT then switches to F mode screen dialog.

 /call-procedure name=proc.dialog
 %/PROCEDURE-A,(&FILE1=,&FILE2=),SUBDTA=&
 %/ASSIGN-SYSDTA TO-FILE=*SYSCMD
 %/MODIFY-JOB-SWITCHES ON=5
 %/START-PROGRAM $EDT
 % BLS0500 PROGRAM 'EDT', VERSION '16.5A' OF 'yy-mm-dd' LOADED.
 PROGRAM EDT/16.5A00 STARTED
 %PROC 1
 %@READ '&FILE1'
 %&FILE1=bsp.dialog

EDT statements @DIALOG

U1884-J-Z125-9-76 261

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

As specified in step 04, lowercase letters and the scale display are activated. The F mode
screen dialog is terminated by means of @HALT and the procedure interrupted by
@DIALOG is resumed.

Later in the procedure, the name of the file into which the work file is to be written is
requested. Depending on the actions in the F mode screen dialog, other messages may
also be displayed.

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 If RDATA input is being used (BS2000 procedures) or if..................
 2.00 EDT is called as a subroutine (see SMD function), @DIALOG...............
 3.00 switches to F mode screen dialog..
 4.00 The work window is displayed on the screen. All F mode and..............
 5.00 L mode statements may be entered during the dialog......................
 6.00 ..

halt..0001.00:001(1)

 %@WRITE 'bsp.dialog'
 %@HALT
 %&FILE1=bsp.dialog1
 % EDT8000 EDT NORMAL END
 %/MODIFY-JOB-SWITCHES OFF=5
 %/ASSIGN-SYSDTA TO-FILE=*PRIMARY
 %/END-PROCEDURE
 /

@DO, format 1 EDT statements

262 U1884-J-Z125-9-76

@DO Start EDT procedure

@DO can be used

– to start EDT procedures, i.e. to process the contents of a work file (1 - 22) line by line
(format 1). The lines may contain text or EDT statements.

– to control which lines of a procedure are to be displayed on the screen before they are
executed (format 2).

@DO (format 1) Start EDT procedures

@DO, format 1, starts an EDT procedure, i.e. causes the text lines and EDT statements
stored in the specified work file (1 - 22) to be executed sequentially.

procno The number of the work file (1-22) whose contents are to be used by EDT
as input. procno must be specified either as an integer (1 ≤ procno ≤ 22) or
as an integer variable which contains the number of the work file to be
executed.

param The parameters to be passed to the procedure which is to be
executed. These parameters must be defined within the procedure by
means of @PARAMS (see @PARAMS). They are separated from each
other by a comma. If @PAR LOWER=ON is activated, lowercase letters can
also be passed (no conversion into uppercase letters).

The positional parameters must be specified before the keyword param-
eters and entered precisely in the order in which they were defined in the
@PARAMS statement. Keyword parameters may be entered in any order.

The number of parameters is limited only by the maximum length of an EDT
statement, namely 256 characters.

spec Loop symbol. This can be used as an operand in EDT statements in the
procedure wherever a line number is required. When the procedure is
executed, EDT then uses the current value of this loop symbol.

The loop symbol must be a special character, otherwise the @DO
statement is rejected with the error message: % EDT3952 INVALID
SYMBOL

Operation Operands F mode / L mode / @PROC

@DO procno [,] [(param [,...])] [spec] [=ln1,ln2 [, [-] ln3]] [PRINT]

EDT statements @DO, format 1

U1884-J-Z125-9-76 263

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

In order to avoid errors and unpredictable results, the following characters
should not be used as the loop symbol:

% $? * (: # + - . < = > ’ ;

If the procedure is started in F mode, the semicolon (;) must not be used as
the loop symbol.

Suitable loop symbols are:

! “ { } [] | /

If the loop symbol is not specified, it is regarded as undefined. If the operand
sequence ln1,ln2,[–]ln3 is not specified, the loop symbol has the value 1.

=ln1,ln2,[–]ln3
These operands control multiple execution of a procedure (see example 3).

Before the procedure is executed for the first time, the loop symbol is set by
EDT to the starting value ln1. After each pass, EDT increments or decre-
ments (minus sign before ln3) the value of the loop symbol by ln3. The
default value for ln3 is 1. The loop is executed until the value of the loop
symbol becomes greater than or less than ln2, in which case it is termi-
nated.

The procedure is executed at least once, since the condition is checked
after each pass (REPEAT UNTIL).

Line number symbols (e.g. %,$) may also be specified for ln1, ln2 and ln3.
EDT then uses the value which this symbol has when @DO is executed.
The number of passes is thus not affected by changing the value of this
symbol during execution of the procedure.

The default value for ln1,ln2 and ln3 is 1.

PRINT Each line of the procedure is output before it is executed.

Specifying PRINT causes all error messages to be output and the EDT error
switch to be set. Normally, error messages which do not affect execution of
the procedure (such as % EDT0901 NO MATCH IN RANGE or % EDT4932
LINE NUMBER NOT FOUND) are not output and the EDT error switch is
not set by such messages.

@DO, format 1 EDT statements

264 U1884-J-Z125-9-76

Rules for specifying EDT parameters

1. The value of a parameter is determined by all characters, including blanks, specified
between the commas.

2. If a parameter value contains a single quote or closing parenthesis, the value must be
enclosed in single quotes. Single quotes within the parameter value must be entered
twice. If @QUOTE was used to assign the function of the single quote to a different
character, it does not apply to the a single quotes enclosing the parameter value.

3. If no value is specified for a parameter, then this parameter contains an empty string.

Specifying no value means that:

– for positional parameters, there is no value specified between the delimiter
characters (parenthesis and comma);

– for keyword parameters, the equals sign is followed by a comma or a parenthesis.

Aborting EDT procedures

EDT procedures can be interrupted at any time by means of [K2]. Control is passed to the
operating system, where the user can

– resume execution of the procedure by means of RESUME-PROGRAM or

– return to EDT by means of SEND-MESSAGE TO=PROGRAM, thus aborting the
procedure.

If a @RUN statement or user statement (see @USE) is being processed, the procedure
cannot be aborted by means of SEND-MESSAGE TO=PROGRAM.

An invalid statement will not abort the procedure.

EDT statements @DO, format 1

U1884-J-Z125-9-76 265

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 1

 1. @SET #S0 = 'TEST OF PROCEDURE FILE 1'
 1. @PROC 1 -- (01)
 1. @ @SET #S1 = #S0:1-4: -- (02)
 2. @ @CREATE #S2: ' '*4,#S0:5-9:
 3. @ @CREATE #S3: ' '*9,#S0:10-24:
 4. @ @CREATE #S4: ' '*24
 5. @ @PRINT #S1.-#S4
 6. @ @PRINT #S0
 7. @END --- (03)
 1. @DO 1 -- (04)
 #S01 TEST
 #S02 OF
 #S03 PROCEDURE FILE 1
 #S04
 #S00 TEST OF PROCEDURE FILE 1
 1.

(01) Switch to work file 1.

(02) The EDT statements are written into work file 1. When the procedure is called using
@DO, these statements will create the string variables #S1 to #S4 and then display
them together with #S0.

(03) @END switches back from work file 1.

(04) The procedure in work file 1 is called.

@DO, format 1 EDT statements

266 U1884-J-Z125-9-76

Example 2

 1. @PROC 2 -- (01)
 1. @ @PARAMS &STRING -- (02)
 2. @ @SET #S1 = '+++++++++++'
 3. @ @SET #S2 = &STRING --- (03)
 4. @ @PRINT #S2
 5. @END
 1. @DO 2(#S1) PRINT --- (04)
 1. @SET #S1 = '+++++++++++'
 1. @SET #S2 = #S1
 1. @PRINT #S2
 #S02 +++++++++++
 1. @DO 2('#S1') PRINT --- (05)
 1. @SET #S1 = '+++++++++++'
 1. @SET #S2 = #S1
 1. @PRINT #S2
 #S02 +++++++++++
 1. @DO 2('#S1') PRINT --- (06)
 1. @SET #S1 = '+++++++++++'
 1. @SET #S2 = '#S1'
 1. @PRINT #S2
 #S02 #S1
 1.

(01) Switch to work file 2.

(02) The first line in this file is a @PARAMS statement, which permits the positional
parameter &STRING to be used several times within this file.

(03) #S2 is to receive a value which is unknown when work file 2 is created, and is to be
requested when the procedure is executed by means of @DO 2(...).

(04) The value #S1 in parentheses causes &STRING to be replaced by the value #S1
wherever it occurs in the statements in work file 2. PRINT causes the statements to
be output before they are executed.

(05) The value ’#S1’ is now passed for the positional parameter &STRING. Since the
first and last characters of this parameter value are single quotes, they are
suppressed when the parameter value is replaced in work file 2. Due to the PRINT
operand, this can be seen in the output. This, therefore, has the same effect as step
(04).

(06) The only difference from (05) is that the parameter value now has a leading blank
and a trailing blank, but this is sufficient to cause the single quotes to be included
as part of the parameter value.

EDT statements @DO, format 1

U1884-J-Z125-9-76 267

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 3

 1. *
 2. @PROC 3 -- (01)
 1. @ @CREATE $+1: $,'*' --- (02)
 2. @END --- (03)
 2. @DO 3,!=1,15 --- (04)
 2. @PRINT
 1.0000 *
 2.0000 **
 3.0000 ***
 4.0000 ****
 5.0000 *****
 6.0000 ******
 7.0000 *******
 8.0000 ********
 9.0000 *********
 10.0000 **********
 11.0000 ***********
 12.0000 ************
 13.0000 *************
 14.0000 **************
 15.0000 ***************
 16.0000 **************** --- (05)
 2.

(01) Switch to work file 3.

(02) A single EDT statement is written into work file 3.

(03) Return to work file 0.

(04) Work file 3 is now executed, using the exclamation mark (!) as the loop symbol.
Work file 3 is executed 15 times. It is possible, but not mandatory, to refer to line
numbers via the loop symbol; in this example, it is not done. The operand sequence
!=1,15 is equivalent to entering @DO 3 15 times without this operand sequence.

(05) The output shows that 15 new lines have been created.

@DO, format 1 EDT statements

268 U1884-J-Z125-9-76

Example 4

 5. @PRINT
 1.0000 1111111
 2.0000 2222222
 3.0000 3333333
 4.0000 4444444
 5. @SET #S4 = '-----------------'
 5. @PROC 4 -- (01)
 1. @ @PRINT !.-.$ --- (02)
 2. @ @PRINT #S4 N
 3. @END
 5. @DO 4,!=$,%,-1 --- (03)
 4.0000 4444444

 3.0000 3333333
 4.0000 4444444

 2.0000 2222222
 3.0000 3333333
 4.0000 4444444

 1.0000 1111111
 2.0000 2222222
 3.0000 3333333
 4.0000 4444444

 5.

(01) Switch to work file 4.

(02) A line number is addressed with the aid of the loop symbol !.

(03) Work file 4 is started several times. In the first pass, the highest existing line number
is used for the loop symbol ! and this value is decremented by 1 (operand ln3 is -1)
in each subsequent pass until the loop symbol reaches the value of the lowest
existing line number (%).

EDT statements @DO, format 1

U1884-J-Z125-9-76 269

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 5

 1. @PROC 4 -- (01)
 1. @READ 'PROC-FILE.4' -- (02)
 6. @PRINT
 1.0000 @PARAMS &A
 2.0000 ABC
 3.0000 EFG
 4.0000 @ON 1 CHANGE 'ABC' TO '&A'
 5.0000 @5: &A
 6. @END --- (03)
 1. @DO 4 ('A,'B') --- (04)
INVALID VALUE
 1. @DO 4 ('A,''B')
 6. @PRINT
 1.0000 A,'B --- (05)
 2.0000 EFG
 5.0000 A,''B
 6.

(01) Switch to work file 4.

(02) Read the SAM file ’PROC-FILE.4’ into work file 4.

(03) Return to work file 0.

(04) EDT rejects a parameter value containing a single apostrophe.

(05) During execution of the work file, lines are written into the main file. In line 1, EDT
suppresses one of the two consecutive apostrophes; in line 3, it accepts the
parameter value without changing it.

@DO, format 2 EDT statements

270 U1884-J-Z125-9-76

@DO (format 2) Activate or deactivate logging

With this format, the PRINT option of @DO, format 1, can be deactivated or activated
anywhere within a procedure.

N EDT no longer logs the lines of the procedure before they are executed.

P EDT logs all subsequent lines of the procedure before they are executed.

This statement is used primarily for debugging EDT procedures. A typical example of its use
would be to check whether or not a specific part of a procedure is actually executed.

Example

 1. @PROC 5 -- (01)
 1. @ @SET #S5 = 'A'
 2. @ @DO N -- (02)
 3. @ @CREATE #S6: 'B'*6,#S5
 4. @ @CREATE #S7: #S6,'C',#S6
 5. @ @DO P
 6. @ @PRINT #S5.-#S7 -- (03)
 7. @ @DELETE #S5.-#S7
 8. @END --- (04)
 1. @DO 5 PRINT -- (05)
 1. @SET #S5 = 'A'
 1. @DO N
 1. @PRINT #S5.-#S7
 #S05 A
 #S06 BBBBBBA
 #S07 BBBBBBACBBBBBBA
 1. @DELETE #S5.-#S7
 1.

(01) Switch to work file 5.

(02) EDT stops logging the procedure lines before they are executed.

(03) EDT resumes logging of the procedure lines before execution.

(04) Switch back to work file 0.

(05) Start the procedure in work file 5, logging the lines before they are executed.

Operation Operands @PROC

@DO N | P

EDT statements @DROP

U1884-J-Z125-9-76 271

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@DROP Delete work files

@DROP deletes some or all of the work files 1-22 and releases the virtual memory pages
they occupied.

@DROP may be used only in work file 0, i.e. it must not be used in EDT procedures.

procno The number of the work file (1-22) which is to be deleted. Any number of
work files may be specified.

ALL All work files (1-22) are to be deleted and the virtual memory pages they
occupy are to be released.

– @DROP removes the local file name.

– Open library elements should be closed beforehand (see @CLOSE).

Example 1

 1. @PROC USED --- (01)
<03> 1.0000 TO 3.0000
<05> 1.0000 TO 1.0000
<08> 1.0000 TO 1.0000
<10> 1.0000 TO 1.0000
<14> 1.0000 TO 1.0000
 1. @DROP 10 --- (02)
 1. @PROC USED
<03> 1.0000 TO 3.0000
<05> 1.0000 TO 1.0000 --- (03)
<08> 1.0000 TO 1.0000
<14> 1.0000 TO 1.0000
 1. @DROP 8,5 -- (04)
 1. @PROC USED
<03> 1.0000 TO 3.0000 -- (05)
<14> 1.0000 TO 1.0000
 1.

Operation Operands F mode / L mode

@DROP procno
[,...]

i

@DROP EDT statements

272 U1884-J-Z125-9-76

(01) Display the numbers of the work files currently in use. In this case, these are the
work files 3, 5, 8, 10, 14.

(02) Delete work file 10 and release its memory space.

(03) @PROC USED shows that only work files 3, 5, 8, 14 are now still in use.

(04) @DROP can also be used to delete and release several work files at once; in this
example, work files 5 and 8 are deleted and their memory space released.

(05) Only work files 3 and 14 are now still in use.

Example 2

 1. @PROC USED --- (01)
<03> 1.0000 TO 3.0000
<14> 1.0000 TO 1.0000
 1. @DROP ALL -- (02)
 1. @PROC USED
% EDT0907 NO PROCEDURE FILES DECLARED ---------------------------------- (03)
 1.

(01) Display the numbers of all work files which are in use.

(02) Delete all (1-22) work files and release their memory space.

(03) None of the work files is now still in use.

EDT statements @EDIT

U1884-J-Z125-9-76 273

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@EDIT Switch edit mode

This statement is used

– to switch from L mode to F mode and vice versa (@EDIT FULL SCREEN, @EDIT
ONLY)

– to suppress the output of the current line number

– to switch between reading from SYSDTA with RDATA and WRTRD (@EDIT ONLY,
@EDIT)

– to display the contents of the current line before it is edited (@EDIT .. PRINT)

– to activate sequential mode (see @+, @–), (@EDIT .. SEQUENTIAL)

– to define the maximum line length (i.e. the right-hand margin) on printer terminals
(@EDIT .. cl).

If no operands are specified, EDT switches to L mode.

FULL SCREEN
causes EDT to switch to F mode.

@EDIT FULL SCREEN is ignored in batch mode and in F mode.

If this statement is encountered within an EDT procedure (@DO) or within
an INPUT file (@INPUT file), it is rejected with an error message.

If @EDIT FULL SCREEN is entered within a statement block (@BLOCK
mode) in a dialog, any following statements in the block are ignored.

@DIALOG can also be used to switch to F mode (see @DIALOG).

ONLY If in F mode, EDT switches to L mode. Output of the current line number is
suppressed (* is output instead). EDT uses the macro RDATA instead of
WRTRD. Whereas WRTRD reads only from the screen, RDATA reads data
from the system file SYSDTA.

If @EDIT is entered without ONLY, the current line number is again
displayed, and input is again performed via the WRTRD macro.

Operation Operands F mode / L mode

@EDIT FULL SCREEN

[ONLY] [PRINT] [SEQUENTIAL] [cl]

@EDIT EDT statements

274 U1884-J-Z125-9-76

PRINT Causes the line number and the contents of the line to be displayed before
the line number or * is displayed.

SEQUENTIAL
Normally, the current line number is incremented by the current
increment value when text is entered in a line or @+ is entered (or decre-
mented if @– is entered).
This may result in existing lines, namely the lines between the old and the
new current line number, being skipped without being noticed by the user.

If SEQUENTIAL is specified, the current line number is incremented or
decremented as described above only if there are no intervening lines.
Otherwise, the number of the first intervening line becomes the current line
number.

cl The maximum line length for a printer terminal. The value specified for cl
must be at least 50 and must not exceed 256.

EDT takes the default value of 72 for the line length from the system setting
(which can be changed via the LINE-LENGTH operand of the MODIFY-
TERMINAL-OPTIONS command.

PRINT can be particularly useful in batch mode. The contents of each line are
logged before and after it is processed if

– @EDIT PRINT and @LOG ALL are specified,

– the file is positioned to the desired line number by means of a statement before
text input and

– line contents are not updated by statements, but only by the input of new line
contents.

Interaction with XHCS

 If the XHCS subsystem is installed, the coded character set name (CCSN) of SYSDTA is
checked with @EDIT ONLY when a switch is to be made to SYSDTA. Switchover to
SYSDTA via @EDIT ONLY is not possible unless the CCSN of SYSDTA matches the
current CCSN. If there is no match, an error message is issued in interactive mode and
reading continues with WRTRD (@EDIT without ONLY); in batch mode, EDT terminates.

i

EDT statements @ELIM

U1884-J-Z125-9-76 275

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@ELIM Delete ISAM file

This statement deletes all or part of an ISAM file on disk. If the entire file is deleted, the file
name remains in the catalog (unlike deleting with @UNSAVE). It is also possible to delete
the virtual file and the disk file simultaneously.

The file is open only during execution of @ELIM.

file The name of the file to be deleted.

If this is omitted, the local @FILE entry is used as the file name, if it exists;
if not, the global @FILE entry is used (see also @FILE).

ver The version number of the file.

This may consist of up to three digits or an asterisk (*). * designates the
current version number. If a number is entered, @ELIM is executed only if
this is the current version number; otherwise, the current version number is
simply displayed.

range* A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

The values of the symbolic line numbers do not refer to the file specified by
“file”, but to the current work file.

BOTH The specified line range is to be deleted in both the ISAM file and the virtual
file.

The most important differences between @ELIM and @UNSAVE are:

– @ELIM does not delete the catalog entry for the file
– @ELIM can be used only for ISAM files.

Operation Operands F mode / L mode

@ELIM ['file'] [(ver)] range* [BOTH]

@ELIM EDT statements

276 U1884-J-Z125-9-76

Example

The ISAM file ’XMPL.ELIM’ is read into work file 0, using the ISAM keys as the line
numbers.

Line range 5-7 is to be deleted from the ISAM file ’XMPL.ELIM’ and also from work file 0.

If the ISAM file is read in by means of @GET without NORESEQ, the line ranges to be
deleted from the ISAM file and from the work file will not necessarily be the same.

Work file 0 is cleared and the ISAM file ’XMPL.ELIM’ is read in again.

This shows that the line range from 5 to 7 has also been deleted from the ISAM file.

 23.00 ..
get 'bsp.elim' noreseq ...0001.00:001(0)

 1.00 ONE..
 2.00 TWO..
 3.00 THREE..
 4.00 FOUR...
 5.00 FIVE...
 6.00 SIX..
 7.00 SEVEN..
 8.00 EIGHT..
 9.00..

elim 'bsp.elim' 5-7 both ...0001.00:001(0)

 1.00 ONE..
 2.00 TWO..
 3.00 THREE..
 4.00 FOUR...
 8.00 EIGHT..
 9.00 ...

delete ; get 'bsp.elim' noreseq...................................0001.00:001(0)

 1.00 ONE..
 2.00 TWO..
 3.00 THREE..
 4.00 FOUR...
 8.00 EIGHT..
 9.00 ...

EDT statements @END

U1884-J-Z125-9-76 277

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@END Terminate processing of current work file

@END terminates processing of the current work file. EDT switches back to the work file in
which processing of the current work file was initiated by means of the @PROC statement.

comment A comment of the user’s choice.
A comment may be specified only in L mode.

Response in L mode

If @END is entered in a work file other than work file 0, the program returns to the work file
from which processing with @PROC was initiated.

Entering @END in interactive mode in work file 0 causes EDT to display first the message
% EDT4939 @END WITHOUT @PROC, and then confirmation queries % EDT0900 and
% EDT0904, or if there are no work files to be saved, only the % EDT0904 query.

The EDT0904 query is not suppressed by activating task switch 4 prior to the EDT session.

Response in F mode or in a screen dialog following @DIALOG

If @END is entered in a work file,

– the EDT session is terminated,

– the program returns to a system procedure and

– continues with a subroutine call.

If there are any work files which have not yet been saved, EDT displays the message
% EDT0900 EDITED FILE(S) NOT SAVED! , followed by the query
% EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO).

If you enter Y, the unsaved virtual files are lost, and EDT is terminated.

The confirmation query is not displayed if F mode was called with @DIALOG.

Operation Operands F mode / L mode / @PROC

@END [comment]

@END EDT statements

278 U1884-J-Z125-9-76

Example 1

 1. @PROC 1 -- (01)
 1. @ @SET #S1 = DATE
 2. @ @SET #S2 = TIME --------------------------------------- (02)
 3. @ @PRINT #S1.-#S2 N
 4. @END --- (03)

(01) Switch to work file 1.

(02) An EDT procedure is entered in work file 1.

(03) Return to work file 0. The procedure in work file 1 can now be called by means of
@DO 1.

Example 2

 1. @PROC 7 -- (01)
 1. @PROC -- (02)
<07>
 1. @ @SET #S7 = 'THIS IS PROC 7'
 2. @ @PRINT #S7
 3. @PROC 8 -- (03)
 1. @ @SET #S8 = 'THIS IS PROC 8'
 2. @PROC USED
<01> 1.0000 TO 3.0000 --- (04)
<07> 1.0000 TO 2.0000
 2. @END --- (05)
 3. @PROC -- (06)
<07>
 3. @END --- (07)
 1. @PROC -- (08)
<00>

(01) Switch to work file 7.

(02) Display the number of the current work file.

(03) Switch to work file 8.

(04) When the work files currently in use are displayed, work file 8 is not included in the
output, since it has not yet been terminated by means of @END.

(05) EDT returns to work file 7 (which is where the branch to work file 8 was executed
by means of @PROC).

(06) Displaying the current work file number confirms that EDT is now in work file 7.

(07) Return to work file 0.

(08) Displaying the current work file number again shows that EDT has returned to work
file 0, i.e. the main file.

EDT statements @ERAJV

U1884-J-Z125-9-76 279

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@ERAJV Delete job variables

@ERAJV deletes job variable entries from the catalog. If the subsystem “job variable
support” is not installed, this statement is rejected with an error message.

str Selects the job variables to be deleted. All specifications are permitted
which can be entered in the BS2000 command DELETE-JV as long as a
length of 54 is not exceeded.

The job variable name can also be partially qualified or the job variable can
be addressed via its link name. ’*str*’ can also be specified. EDT then
selects the names itself according to the wildcard syntax (analogous to the
BS2000 command SHOW-FILE-ATTRIBUTES).

Otherwise, the operand is not checked by EDT, i.e. it is transferred to the
system unchanged.

If more than one job variable name fulfills the condition and the ALL
parameter has not been specified, EDT issues an additional query in inter-
active mode asking how processing is to continue. In batch mode, the
statement is not executed in this case.

ALL If ALL is specified, all job variables to which the name applies are removed
from the catalog without a request for confirmation.

If no job variable with the appropriate name is found or if a DELETE-JV command is
rejected by the system, EDT reports an error and sets the EDT switch for DMS errors.
DMS errors can be queried in EDT procedures using @IF, format 1.

Operation Operands F mode / L mode

@ERAJV str [ALL]

@EXEC EDT statements

280 U1884-J-Z125-9-76

@EXEC Start program

The @EXEC statement

– terminates the EDT session and
– loads and starts the specified program.

@EXEC is one of the EDT statements that is relevant to security (see section “Data
protection” on page 71). In uninterruptible system procedures in interactive mode and in the
case of input from a file, the statement will be rejected (unless it is read from
SYSDTA=SYSCMD).

string A character string specifying the name of the program to be loaded and
started.
The string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

If there are still work files which have not been saved, the numbers of these files are
displayed after the message:

% EDT0900 EDITED FILE(S) NOT SAVED!

This is accompanied by one of the following items, if available:

– a local @FILE entry
– defined explicitly by @FILE LOCAL, or
– defined implicitly by @READ, @GET, @OPEN (format 1),

– the library and element name of
– a library element opened by means of @OPEN (format 2)

– or the file name of
– a SAM or ISAM file opened with @OPEN (format 2) or
– a POSIX file opened with @XOPEN.

The user then receives the following query:

% EDT0904 TERMINATE EDT? REPLY (Y=YES, N=NO)

Operation Operands F mode / L mode / @PROC

@EXEC string

EDT statements @EXEC

U1884-J-Z125-9-76 281

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

N: In F mode the work window is displayed again. The user can close any files with
unsaved data and write them back.

Y: Virtual files with unsaved data are lost. EDT is terminated and the specified program
started.

If a file was opened for real processing via @OPEN, this query is suppressed. EDT closes
the file by means of an implicit @CLOSE.

The save query can be suppressed by setting task switch 4 before EDT is called.

Example

EDT is to be terminated and LMS is to be loaded and started.

Since the work file has not been saved, EDT asks (as for @HALT) whether it is really to be
terminated. This is done, and LMS loaded and started, only if the user replies to the
message with Y.

 1.00 The @EXEC statement..
 2.00 - terminates the EDT session and......................................
 3.00 - loads and starts the specified program..............................
 4.00 ...

exec '$lms'...0001.00:001(0)

 % EDT0900 EDITED FILE(S) NOT SAVED!
 LOCAL FILE (0) :
 % EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?y
 % BLS0500 PROGRAM 'LMS', VERSION 'V3.0A' OF 'yy-mm-dd' LOADED.
 LMS0310 LMS VERSION V03.0A00 LOADED
 CTL=(CMD) PRT=(OUT)
 $

@FILE EDT statements

282 U1884-J-Z125-9-76

@FILE Preset file name

@FILE is used to preset a file name for @GET, @READ, @WRITE, @SAVE, @OPEN and
@ELIM.

There is

– a local @FILE entry, which is specific to one work file,
– a global @FILE entry, which is valid for all work files.

If no file name is specified in a @GET, @READ, @WRITE, @SAVE or @ELIM statement,
the local @FILE entry is used, if one exists; otherwise, the global @FILE entry is used as
the file name.

Only the global @FILE entry is evaluated for the @OPEN statement (format 1).

string A character string specifying the file name.

The string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

ver The version number of the file.

This may consist of up to three digits or an asterisk (*). * designates the
current version number. If LOCAL is specified, no version number may be
specified.

LOCAL The specified file name is registered as the file name specific to the current
work file (explicit local entry). If no explicit local entry exists when @READ
’file’ or @GET ’file’ is executed, the file name specified in this statement
becomes the local file name (implicit local entry).

If LOCAL is not specified, the specified file name becomes the global @FILE entry.

The local @FILE entry is deleted by

– entering @FILE LOCAL without “string”
– completely deleting the work file by means of @DELETE, format 1
– using @CLOSE to close a file which was opened by means of @OPEN.

The global @FILE entry is deleted by entering @FILE without any operands.

Operation Operands F mode / L mode

@FILE [string [(ver)]] [LOCAL]

EDT statements @FILE

U1884-J-Z125-9-76 283

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example

For the following @GET and @SAVE statements, the file name ’XMPL.FILE’, including the
asterisk as the version number, is preset as the file name.
The file ’XMPL.FILE’ is then read by means of @GET.

Lines 1 and 2 are deleted from the work file and the contents of the work file are then written
back into the file ’XMPL.FILE’ by means of @SAVE.

 23.00 ..
file 'xmpl.file' (*) ; get

 1.00 ONE..
 2.00 TWO..
 3.00 THREE..
 4.00 FOUR...
 5.00 FIVE...
 6.00 ...

% EDT0902 FILE 'XMPL.FILE' VERSION 002
delete 1-2 ; save ..0001.00:001(0)

 3.00 THREE...
 4.00 FOUR..
 5.00 FIVE..
 6.00 ..

% EDT0903 FILE 'XMPL.FILE' IS IN THE CATALOG, FCBTYPE = ISAM
y EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)0001.00:001(0)

 3.00 THREE...
 4.00 FOUR..
 5.00 EIGHT...
 6.00 ..

% EDT0902 FILE 'XMPL.FILE' VERSION 003
..0003.00:001(0)

@FSTAT EDT statements

284 U1884-J-Z125-9-76

@FSTAT Display catalog information

With the aid of @FSTAT, the user can determine which files exist under a specific user ID
and query the attributes of these files.

The information can be

– displayed on the screen or
– written into a work file.

The list is sorted alphabetically.

The keyword TO can be omitted only if ’pfile’ is specified.

pfile Selects the files to be displayed. “pfile” is equivalent to the operand
“pathname” in the BS2000 command SHOW-FILE-ATTRIBUTES. EDT
does not check this operand, but passes it to the operating system without
modification. Here it is possible to specify any or all of the entries that can
be specified for the FILE-NAME operand of the system command.

If no file which matches the path specification is found, EDT reports an
error. In EDT procedures, the EDT error switch can be interrogated by
means of @IF, format 1.

If a CATID is specified in the “file” operand, the list of file names is output
with the catalog and user IDs (see SHORT).

Istr-var Selection of the files to be output can also be specified via a string variable
(#S1-#S20).

ln The line number at which the file names (catalog information) are to be
written into the current work file. The minimum value is 0.0001, the
maximum 9999.9999. ln may also be specified by means of a line number
variable (#L0 to #L20) or symbolically (e.g. %,$).

If ln is not specified, the information
– is displayed on the screen in L mode
– is output to SYSOUT in batch mode
– is written into work file 9, which is cleared beforehand, in F mode.

Operation Operands F mode / L mode

@FSTAT
 [[TO] ln [(inc)]] []

['pfile']

str-var

SHORT

LONG [ISO4]

EDT statements @FSTAT

U1884-J-Z125-9-76 285

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

inc The increment value to be used for generating subsequent line numbers. If
inc is omitted, the implicit increment value is used.

SHORT Only a list of file names with the catalog and user IDs is output.

If the specified path name is fully qualified, the file name is output in the form
in which it was entered.

LONG In addition to the file names, further catalog information is output.

If ln was not specified and @PAR INFORMATION=ON is activated, a
header line describing the catalog information is displayed in F mode.

ISO4 The creation date (CR-DATE) is specified in the form YYYY-MM-DD.

If neither SHORT nor LONG is specified in @FSTAT, the catalog information is output analo-
gously to the input form. For example: the input @FSTAT ’$USERID.file’ results in output
of the file name with the user ID. If the file name is specified in partially qualified form,
@FSTAT outputs a list of file names without catalog ID and user ID (for reasons of
comaptibilty).

If LONG is specified in F mode, the length of the output line for each file is 89 characters,
thus exceeding the maximum work window width of 80 characters (if @PAR INDEX=OFF
applies).

If ln is specified and a line is created with a line number greater than the previously
highest line number, the current line number is changed.

Column Header Meaning

1-7
8
9-62
63-69
71-78
80
81
83-86
88
89

SIZE
P
FILENAME
LAST PP
CR-DATE
S
A
FCB
R
W

Number of PAM pages
File on private or public volume
File name with catalog ID and user ID
Last page
Date created (YY-MM-DD)
SHARE attribute (Y/N)
ACCESS attribute (W/R)
FCB type (SAM/ISAM/PAM/BTAM)
READ-PASS attribute (Y/N)
WRITE-PASS attribute (Y/N)

i

@FSTAT EDT statements

286 U1884-J-Z125-9-76

Example

This requests full information about all files whose names include the string ’XMPL’.
EDIT LONG is specified so that all the information can be seen in the data window.

The information is placed in work file 9.

 23.00 ..
fstat '*xmpl*' long ; edit long

 0000003 :N:$USER.XMPL.FSTAT 0000003 94-01-12 N
 W ISAM NN..
 0000021 :N:$USER.XMPL.FSTAT.1 0000021 89-01-11 N
 W SAM NN..
 0000015 :N:$USER.XMPL.FSTAT.XMPL 0000015 94-01-10 N
 W SAM NN..
 0000006 :N:$USER.PROG.XMPL 0000006 94-01-12 Y
 R PAM NY..

..0001.00:001(9)

EDT statements @GET

U1884-J-Z125-9-76 287

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@GET Read ISAM file

@GET reads or copies all or part of an ISAM file from disk or tape into the current work file.

The file is physically open only during execution of @GET. Processing is executed on the
internal copy of the original ISAM file.

By default, EDT assumes that the ISAM file contains variable-length records (for
information on reading a file with fixed-length records, see section “Processing ISAM files
with nonstandard attributes” on page 50ff).

If the ISAM key is to be interpreted as a line number, it is imperative that NORESEQ be
specified.

file The name of the desired file.
If there is no local @FILE entry for this file name, then the specified file
name is stored as this entry. If the operand “file” is omitted, the local @FILE
entry is used as the file name, if one exists; otherwise, the global @FILE
entry is used (see @FILE). If the specified ISAM file does not exist, @GET
is rejected with an error message.

If the file link name EDTISAM has been assigned to a file, it is sufficient to
enter ’/’ in order to read this file (see section “File processing” on page 49ff).

ver The version number of the file.

This may consist of up to three digits or an asterisk (*). * designates the
current version number. If * is specified, the current version number is
displayed before the read operation. If an incorrect version number is
specified, the correct version number is displayed and this file is then read.

range* A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

If range* is omitted, all lines of the file are read.

Operation Operands F mode / L mode

@GET ['file'] [(ver)] [range*] [:col:] [NORESEQ]

@GET EDT statements

288 U1884-J-Z125-9-76

col A column range, specified as:
– one or more columns, separated by commas (e.g. 10,15,8)
– one or more column ranges, separated by commas (e.g. 15-25,18-23)
– a combination of columns and column ranges (e.g. 10,14-29,23-50,17).

If no column range is specified, the entire contents of each line are read.

Repetitions and overlapping columns and column ranges are permitted.

NORESEQ The line numbers are formed from the ISAM keys of the ISAM file being
read. This may result in existing lines being overwritten.

The line numbers in the F mode work window are only 6 digits long. For this
reason, only the first 6 positions of the ISAM keys are displayed.

After processing, the file can be written back to disk or tape by means of @SAVE.

If the specified file is a SAM file, a @READ statement is executed internally for this
file. This is indicated by a message. range* and NORESEQ are ignored.

Interaction with XHCS

If the XHCS subsystem is installed, the coded character set name (CCSN) of the file is
taken into account in a @GET statement for BS2000/OSD V1.0 and higher.

The @GET statement is only executed if the CCSN of the file is the same as the CCSN
currently selected in EDT or all work files are empty and the coded character set can be
displayed on the data display terminal.

i

EDT statements @GETJV

U1884-J-Z125-9-76 289

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@GETJV Read value of job variable

Using @GETJV, the value of a job variable can be:

– displayed on the screen
– written to a work file
– assigned to a character string variable.

If the subsystem “job variable support” is not installed, the statement is rejected with the
error message % EDT5259 JVS NOT IN SYSTEM.

string Character string specifying a fully qualified job variable name.

“string” can be specified as follows:
– explicitly as a character string in single quotes
– implicitly via a line number, a line number variable or a string variable,

always with the appropriate column range.

If “string” is not specified, the job variable with the link name *EDTLINK is
addressed.

line Number of the line to which the value of the job variable is to be written.
“line” can also be specified via line number variables (#L0-#L20), via
symbolic line numbers (e.g. %,$), or as a string variable (#S0-#S20). If “line”
is omitted, the value of the job variable is displayed on the screen.

If line is specified and a line is created with a line number greater than the previously highest
line number, the current line number is changed.

Operation Operands F mode / L mode

@GETJV [string] [=line]

@GETJV EDT statements

290 U1884-J-Z125-9-76

Example

 1. @GETJV '$SYSJV.DATE' = 1 -------------------------------------- (01)
 1. @GETJV '$SYSJV.DATE' = #S01 ----------------------------------- (02)
 1. @CREATE 2 : 'TODAY IS THE '
 1. @CREATE 2 : 2,#S01:7-8:,'.',#S01:4-5:,'.',#S01:1-2: -------- (03)
 1. @PRINT
 1.0000 90-09-24267
 2.0000 TODAY IS THE 24.09.90

(01) The current date is written in line 1.

(02) The current date is stored in the string variable #S01.

(03) Line 2 is created by means of @CREATE.

EDT statements @GETLIST

U1884-J-Z125-9-76 291

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@GETLIST Read elements of list variable

@GETLIST is used to read some or all of the elements of a list variable into the current work
file.

In systems where the SDF-P subsystem is not installed, @GETLIST is rejected and an
error message is issued.

string A character string specifying the name of the list variable.
string may be entered
– explicitly, i.e. as a character string enclosed in single quotes, or
– implicitly, i.e. by means of a line number, a line-number variable or a

string variable (each can be specified with a column range).

The elements of the list variable must be of the STRING type; if they are not,
the statement will be aborted and an error message issued.

range* A range of lines consisting of:
– one or more line numbers separated in each case by a comma

(e.g. 4,6,15)
– one or more line ranges separated in each case by a comma

(e.g. 5-10,17-19)
– a combination of individual lines and line ranges

(e.g. 4,7-23,8,15-30)

A range of lines can also be specified by means of the current line-range
symbol (see @RANGE), symbolic line numbers (e.g. %,$) or line-number
variables.
It is not permissible to specify string variables.

range* gives users the possibility of reading in only some of the elements of
a list variable. In this case, a one-to-one correspondence between element
numbers and line numbers is to be imagined, in which 0.0001 stands for the
1st element in the list, 0.0002 stands for the 2nd, and so forth. The elements
which are read in are appended to the contents of the work file or to file
opened with @OPEN. There, the elements are given the line number
yielded by the current line number and the current increment.
range* refers to the element numbers. For example, entering 0.0001-0.0005
reads in the first 5 elements of the list.

If no entry is specified for range*, all of the elements are read in.

Operation Operands F mode / L mode

@GETLIST string [range*] [:col:]

@GETLIST EDT statements

292 U1884-J-Z125-9-76

col columns or column ranges
If no column range is specified, the full length of the element is read in.
If the content of the element exceeds 256 characters in length, only the first
256 characters are read in, and a warning is issued.
Column and column-range entries may overlap and/or occur multiple times.
If the list element is empty or comes to an end before the first column
specified, no line is created for it in the work file.

If the maximum line number is reached, the statement is aborted and an error message
issued.

Assignment of line numbers

The current line number and the current increment determine the line numbers which are
assigned. If the work file is empty, the current line number and the current increment are 1
by default.

In SDF-P V2.0, EDT needs an additional buffer of 8 memory pages, which it requests from
the system.

EDT statements @GETVAR

U1884-J-Z125-9-76 293

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@GETVAR Read S variable

Using @GETVAR, the contents of an S variable of the type STRING can be

– displayed on the screen
– assigned to a string variable as a value (max. 256 characters).

In systems in which the SDF-P subsystem is not installed, @GETVAR is rejected with an
error message.

string Character string specifying the name of a simple S variable.
“string” can be specified as follows:
– explicitly, enclosed in single quotes, or
– implicitly via a line number, a line number variable or a string variable (in

each case with a column range, if required).

line Number of the line into which the value of the STRING-type S variable is to
be written.
line can also be specified by means of line-number variables (#L00 through
#L20), symbolically (e.g. %,$) or as a string variable (#S00 through #S20).

int-var Integer variable (#I0 through #I20) which is to receive the contents of the S
variable.
If the S variable is not of the INTEGER type, processing of the statement is
aborted and an error message issued.

If no entry is specified for int-var or for line, the contents of the S variable will be output on
the screen if in interactive mode, or to SYSLST if in batch mode.

If a line is created with a line number greater than the previously highest line number, the
current line number is changed.

SYSEDT The string variables #S00 to #S20 are assigned the contents of the
S variables SYSEDT-S00 to SYSEDT-S20 If the SYSEDT operand is
specified, no messages as to whether this assignment was successful or
unsuccessful are issued, and no EDT5341 message is generated if the
contents of the S variables are longer than 256 characters. No error
switches are set.

Operation Operands F mode / L mode

@GETVAR string [=line | =int-var]

SYSEDT

@GOTO EDT statements

294 U1884-J-Z125-9-76

@GOTO Branch to line number in procedure

@GOTO is used within a procedure to branch to a specified line within this procedure.

ln The target line number (e.g. 5).
The minimum value is 0.0001, the maximum 9999.9999.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %,$).

The line to which @GOTO refers must exist in the associated procedure. If this is not the
case, error message % EDT4974 LINE NOT IN PROCEDURE FILE is issued.

If @GOTO is to be used to branch to lines in an EDT procedure, it is advisable always to
specify the line numbers of these lines by means of @ln.

Example

 1. @SET #I3 = 1 --- (01)
 1. @PROC 3
 1. @1 --- (02)
 1. @ @IF #I3 > 5 RETURN --- (03)
 2. @ @STATUS = #I3
 3. @ @SET #I3 = #I3+1
 4. @ @GOTO 1
 5. @END
 1. @DO 3 -- (04)
#I03= 0000000001
#I03= 0000000002
#I03= 0000000003
#I03= 0000000004
#I03= 0000000005
 1.

(01) The integer variable #I3 is set to 1.

(02) Specification of the line number of the line which is to be the destination of a
@GOTO branch.

(03) When the procedure in work file 3 is executed, the value of integer variable #I3 is to
be incremented by 1 and displayed until this value is greater than 5. This is
implemented by means of a loop in which the last statement is a @GOTO to return
to the beginning of the loop.

(04) The procedure in work file 3 is executed.

Operation Operands @PROC

@GOTO ln

EDT statements @HALT

U1884-J-Z125-9-76 295

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@HALT Terminate EDT

@HALT terminates

– the EDT run
– the screen dialog after @DIALOG
– EDT as a subroutine, with or without passing a text.

@HALT causes:

– termination of the EDT run
– in a screen dialog if this was initiated by means of the command START-EDT,

START-PROGRAM $EDT or START-PROGRAM *MOD($EDTLIB,EDTC)
– in BS2000 system procedures in which EDT was called
– in the case of a subroutine call if it is entered in the CMD function (see the section

on “IEDTCMD” in the manual “EDT Subroutine Interfaces” [1]) while processing a
statement sequence

– termination of the screen dialog after @DIALOG
– with a return to a system procedure
– with continuation of the subroutine call.

ABNORMAL If EDT was called as a main program, it is terminated abnormally. In proce-
dures, processing resumes at the next JOB-STEP or in an ERROR-BLOCK.

If EDT was called as a subroutine, the character string is passed as part of
the message to the calling program and a special return code is set.

message A character string which is passed to the calling program if EDT was called
as a subroutine. This begins with the first non-blank character after @HALT
and extends to the end of the statement.
In F mode, EDT also detects the end of the statement by a semicolon (;) in
“message”.
There must be at least one blank between @HALT and “message”.
The length of “message” in F mode is limited by the statement length in the
statement line (maximum of two continuation lines).
However, no more than 80 characters can be passed to the calling program.

This operand may be specified only if EDT is called as a subroutine;
otherwise, @HALT message will be rejected with an error message.

Operation Operands F mode / L mode

@HALT [ABNORMAL] [message]

@HALT EDT statements

296 U1884-J-Z125-9-76

If there are still work files which have not been saved, the numbers of these files are
displayed after the message: % EDT0900 EDITED FILE(S) NOT SAVED!

This is accompanied by one of the following items, if available:

– a local @FILE entry
– defined explicitly by @FILE LOCAL, or
– defined implicitly by @READ, @GET, @OPEN (format 1),

– the library and element name of
– a library element opened by means of @OPEN (format 2) or

– the file name of
– a SAM or ISAM file opened with @OPEN (format 2) or
– a POSIX file opened with @XOPEN.

The user then receives the following query:

% EDT0904 TERMINATE EDT? REPLY (Y=YES, N=NO)

N: In F mode the work window is displayed again. The user can close any files with
unsaved data and write them back.

Y: Virtual files with unsaved data are lost. EDT is terminated.

The save query can be suppressed by setting task switch 4 before EDT is called. The
message is likewise not issued if F mode was called by means of @DIALOG.

Example

 % EDT0900 EDITED FILE(S) NOT SAVED!
 LOCAL FILE (0) :
 LOCAL FILE (1) :
 LOCAL FILE (4) : L= EDT164
 E= HALT,X
 % EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?

EDT statements @IF, format 1

U1884-J-Z125-9-76 297

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@IF Query strings, line numbers, integers and switches

@IF can be used to

– query whether an EDT or DMS error occurred in a preceding (format 1)

– compare strings, line numbers or integers with each other (format 2)

– determine whether a previous @ON statement has found a hit (format 3)

– query the settings (on or off) of the 32 task switches and 32 user switches (format 4).

@IF (format 1) Query error switches

This format of @IF checks whether EDT or DMS errors have occurred. Depending on the
result, a specified input string is processed or ignored.

EDT errors occur as the result of, for example, the entry of an incorrect EDT statement. The
DMS error switch can either be set for statements involving files accesses (e.g. @WRITE
format 1) or indicate errors in system accesses.

text Any character string.

If the first non-blank character in this string is

1. not the statement symbol, then any blanks following the : are regarded
as part of the text.
The following processing guidelines apply:

– “text” is placed in the current line;
– the current line number is incremented by the current increment

value;
– any tab characters are interpreted.

Operation Operands L mode / @PROC

@IF

 : text

ERRORS
NO ERRORS

DMS ERRORS
NO DMS ERRORS

@IF, format 1 EDT statements

298 U1884-J-Z125-9-76

2. the statement symbol, then any blanks following the : are ignored.
If the next character is

– not the statement symbol, then “text” is interpreted as an EDT
statement and executed immediately;

– the statement symbol, then “text” is treated as a text line as
described in 1), above.

If “text” is not specified, @IF has no effect.

ERRORS text is executed if the EDT error switch has been set.

NO ERRORS text is executed if the EDT error switch has not been set.

DMS ERRORS
text is executed if the DMS error switch has been set.

NO DMS ERRORS
text is executed if the DMS error switch has not been set.

– The error switches must be reset before the statement which is to be checked
is executed (see @RESET).
If this is not done, @IF may return an incorrect result because earlier state-
ments may have set the EDT or DMS error switch.

– Within EDT procedures (@DO), @IF ERRORS must not be used to check for
hits after @ON. Instead, format 3 of @IF must be used.

i

EDT statements @IF, format 2

U1884-J-Z125-9-76 299

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@IF (format 2) Query strings, line numbers and numbers

This format of @IF compares

– line contents or string variables
– line numbers or line number variables
– integer variables.

If the result of the comparison is positive, @IF

– branches to a line within the procedure (GOTO ln) or
– aborts execution of the current procedure (RETURN).

If the result of the comparison is negative, EDT continues execution of the procedure at the
line following the @IF statement.

S Mandatory only if string1 and string2 contain line numbers without column
numbers. In such cases, EDT cannot determine whether the contents of the
lines are to be compared or simply the line numbers.

@IF#L1 = #L2..., for example, compares the line numbers #L1 and #L2. If,
in contrast, the user wishes to compare the contents of lines #L1 and #L2,
he/she must specify @IF S #L1 = #L2.

string1
string2 The strings to be compared with each other.

The strings may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

For example, the string ’HUGO’ is permissible. If the character string
variable #S18 contains the text ’ABCD456DEF’, then specifying the string
’456ABCE’ is equivalent to specifying #S18:5-7,1-3,9:.

Operation Operands @PROC

@IF

[S] string1 rel string2
ln1 rel ln2
[I] int1 rel int2

GOTO ln

RETURN

@IF, format 2 EDT statements

300 U1884-J-Z125-9-76

ln1
ln2 The line numbers to be compared with each other. The contents of the lines

are not compared. The minimum value is 0.0001, the maximum 9999.9999.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %,$).

I Needs to be specified only if a number is entered for int1 (otherwise, EDT
does not know whether this is a line number or an integer).

int1
int2 The integers to be compared with each other.

Each of the operands may be a (positive or negative) integer or an integer
variable (#I0,...,#I20).

rel Relational operators:

ln could be either %+3L or %+3.
If followed by the relational operator LE, this could lead to
interpretation problems. It is therefore advisable to make a habit of using the
mathematical symbols for the relational operators.

GOTO ln If the result of the comparison is positive, control is passed to the specified
line number (ln) in the procedure.

RETURN If the result of the comparison is positive, the current procedure is aborted.

Symbol Meaning

GT or > greater than

LT or < less than

GE or >= greater than or equal to

LE or <= less than or equal to

EQ or = equal to

NE or <> not equal to

EDT statements @IF, format 2

U1884-J-Z125-9-76 301

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Comparison of strings

The way in which two strings are compared depends on the lengths of these strings. (Note
that a string with a length of zero is permitted.)

Case 1: Both strings are the same length

The corresponding characters of the two strings are compared with each other, working
from left to right.
The result of this will either be a pair of characters which do not match or the two strings are
regarded as identical. If the characters in any one position of the two strings are not the
same, then the two strings are not identical. EDT interprets characters as binary numbers
on the basis of their EBCDIC codes and the string with the higher binary number is
regarded as greater than the other string.

Case 2: The two strings are different lengths

Basically, the comparison is executed as in case 1. When EDT has compared all of the
characters in the shorter string with the corresponding characters in the longer string and
has found no non-matching pairs, the longer string is regarded as the greater. If a non-
matching pair is found before the end of the shorter string is reached, EDT interprets the
non-matching characters as binary numbers on the basis of their EBCDIC codes. The string
whose character has the higher binary number is regarded as greater than the other string.

If the two strings are different lengths, they can never be equal.

@IF, format 2 EDT statements

302 U1884-J-Z125-9-76

Example 1

 4. @PRINT
 1.0000 PLEASE DO NOT LAUGH
 2.0000 AT THIS EXAMPLE
 3.0000 PLEASE DO NOT LAUGH
 4. @SET #S0 = 'FIRST LINE = LAST LINE
 4. @SET #S1 = 'FIRST LINE NOT EQUAL TO LAST LINE -------------- (01)
 4. @SET #I9 = 2
 4. @PROC 3
 1. @ @IF S%+#I9 = $-2L GOTO 4 ----------------------------------- (02)
 2. @ @PRINT #S1 N
 3. @ @RETURN
 4. @ @PRINT #S0 N
 5. @END
 4. @DO 3 -- (03)
FIRST LINE = LAST LINE
 4. @ON 1 DELETE 'NOT'
 4. @DO 3 -- (04)
FIRST LINE NOT EQUAL TO LAST LINE
 4.

(01) The string variables #S0 and #S1 and the integer variable #I9 are set to certain
values.

(02) When the procedure in work file 3 is executed, the contents of the lines (not the line
numbers) are compared with each other.

(03) Execution of the procedure in work file 3 causes lines 3 (%+#I9) and 1
($-2L, i.e. 3-2) to be compared. Since the contents of these lines are identical, EDT
branches to line 4 in work file 3.

(04) Since the contents of line 1 have now been changed, EDT no longer branches to
line 4 of work file 3.

EDT statements @IF, format 2

U1884-J-Z125-9-76 303

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 2

 1. @SET #S4 = 'M' --- (01)
 1. @PROC 4
 2. @ @PRINT #S4 N --- (02)
 2. @ @CREATE #S4: 'M',#S4
 3. @ @IF #S4 < 'M'*8 GOTO 1
 4. @END
 1. @DO 4
M
MM
MMM
MMMM
MMMMM
MMMMMM
MMMMMMM
 1.

(01) The string variable #S4 is set to the character ’M’.

(02) The following procedure is entered in work file 4: display the contents of #S4 and
then insert the letter ’M’ in front of the current contents of #S4.

If the contents of #S4 are less than ’MMMMMMMM’, execute the loop again.

@IF, format 2 EDT statements

304 U1884-J-Z125-9-76

Example 3

 9. @PRINT
 1.0000 ABC
 2.0000 WHO
 3.0000 ABC
 4.0000 WANTS
 5.0000 ABC
 6.0000 TO TRY
 7.0000 ABC
 8.0000 HIS HAND?
 9. @PROC 6
 1. @ @IF ! <> 'ABC' GOTO 3 -------------------------------------- (01)
 2. @ @CREATE !: '*' * 20
 3. @ @CONTINUE
 4. @END
 9. @DO 6,!=%,$ -- (02)
 9. @PRINT
 1.0000 ********************
 2.0000 WHO
 3.0000 ********************
 4.0000 WANTS
 5.0000 ********************
 6.0000 TO TRY
 7.0000 ********************
 8.0000 HIS HAND?
 9.

(01) In work file 6, the line numbers are addressed via the loop symbol !. If the line
addressed by ! does not contain ’ABC’, this line is to be left unchanged. Otherwise,
the line contents are to be replaced by ’********************’.

(02) Work file 6 is executed, addressing all lines of the current work file in consecutive
order via the loop symbol !.

EDT statements @IF, format 2

U1884-J-Z125-9-76 305

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 4

 4. @PRINT
 1.0000 PLEASE DO NOT LAUGH
 2.0000 AT THIS EXAMPLE
 3.0000 IT IS TOO SIMPLE
 4. @SET #S0 = 'RESULT POSITIVE'
 4. @SET #S1 = 'RESULT NEGATIVE' ----------------------------- (01)
 4. @SET #I9 = 1
 4. @PROC 1 -- (02)
 1. @ @IF %+#I9 = $-1L GOTO 4 ------------------------------------ (03)
 2. @ @PRINT #S1 N
 3. @ @RETURN
 4. @ @PRINT #S0 N
 5. @END
 4. @DO 1 -- (04)
RESULT POSITIVE
 4. @SET #I9 = 2
 4. @DO 1 -- (05)
RESULT NEGATIVE
 4.

(01) The string variables #S0 and #S1 are set to the desired values. Integer variable #I9
is set to 1.

(02) Open work file 1.

(03) After a subsequent @DO 1, this line compares the line numbers % + #I9 and $ - 1L
with each other.

% addresses the first line number - in this case 1.

$ addresses the last line number - in this case 3.

$–1L addresses the last line number but one - in this case 2.

(04) The procedure in work file 1 is executed. At this time, the specified relationship
% + #I9 = $ - 1L is true, since 1+1 = 3–1 is true.

(05) At this time, the specified relationship % + #I9 = $ - 1L is not true, since
1+2 = 3–1 is false.

@IF, format 2 EDT statements

306 U1884-J-Z125-9-76

Example 5

 4. @PRINT
 1.0000 PLEASE DO NOT LAUGH
 2.0000 AT THIS EXAMPLE
 3.0000 IT IS TOO SIMPLE
 4. @SET #L3 = 5
 4. @PROC 2
 1. @ @IF %+6-#L3 <> $-* RETURN ---------------------------------- (01)
 2. @ @CREATE $+1: 'OR PERHAPS NOT'
 3. @ @PRINT
 4. @END
 4. @$-1
 2. @DO 2 -- (02)
 2. @1
 1. @DO 2 -- (03)
 1.0000 PLEASE DO NOT LAUGH
 2.0000 AT THIS EXAMPLE
 3.0000 IT IS TOO SIMPLE
 4.0000 OR PERHAPS NOT
 1.

(01) If, when work file 2 is executed, the specified condition is not true (<> means not
equal to), the procedure is aborted at this point.

(02) Work file 2 is executed. Since * = $ - 1 = 2, the expression
% + 6 - #L3 <> $ - * is equivalent to 1+6–5 <> 3–2 and thus true. Execution of the
work file is therefore aborted.

(03) At this time, * = 1, which means that the condition % + 6 - #L3 <> $ - * is false, since
1+6–5 = 3–1. As a result, the remaining statements in work file 2 are executed.

EDT statements @IF, format 2

U1884-J-Z125-9-76 307

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 6

 1. @SET #I3 = 1 --- (01)
 1. @PROC 7
 1. @ @IF #I3 > 5 RETURN
 2. @ @STATUS = #I3 -------------------------------------- (02)
 3. @ @SET #I3 = #I3+1
 4. @ @GOTO 1
 5. @END
 1. @DO 7 -- (03)
#I03= 0000000001
#I03= 0000000002
#I03= 0000000003
#I03= 0000000004
#I03= 0000000005
 1.

(01) Integer variable #I3 is set to 1.

(02) The procedure in work file 7 is to display (@STATUS = #I3) and increment (#I3 + 1)
the value of integer variable #I3 until this value exceeds 5 for the first time.

(03) Work file 7 is executed.

@IF, format 3 EDT statements

308 U1884-J-Z125-9-76

@IF (format 3) Query @ON hits or empty work files

Format 3 of @IF checks whether EDT found a hit when @ON was last executed.
Depending on the result of this check, EDT

– branches to the specified line in the procedure (GOTO ln),
– aborts execution of the current procedure (RETURN), or
– continues execution of the procedure in the line following the @IF statement.

.TRUE. GOTO ln or RETURN is executed if the last @ON statement
executed detected a hit.

If rel and cl are specified, the branch is not executed immediately. First, EDT
compares the number of the column in which the hit was detected with the
column number specified for cl. If the result of this comparison is positive,
GOTO ln or RETURN is executed.

rel Relational operators:

cl A column number (integer between 1 and 256 or an integer variable). This
number is compared with the number of the column in which the last @ON
statement found the first hit.

.FALSE. GOTO ln or RETURN is executed if no hit was detected by the last @ON
statement executed.

.EMPTY. GOTO ln or RETURN is executed if the current work file is empty, i.e.
contains no data lines.

Operation Operands @PROC

@IF

Symbol Meaning

GT or > greater than

LT or < less than

GE or >= greater than or equal to

LE or <= less than or equal to

EQ or = equal to

NE or <> not equal to

.TRUE. [rel cl]

.FALSE.

.EMPTY.

GOTO ln

RETURN

EDT statements @IF, format 3

U1884-J-Z125-9-76 309

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

ln A line number (e.g. 5).
The minimum value is 0.0001, the maximum 9999.9999.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %,$).

If the specified condition is not fulfilled, EDT continues execution of the procedure in the line
following the @IF statement.

Example 1

 5. @PRINT
 1.0000 WHICH
 2.0000 WAY TO
 3.0000 THE MAIN
 4.0000 STATION?
 5. @PROC 8
 1. @ @ON ! FIND 'T'
 2. @ @IF .FALSE. GOTO 4 --------------------------------------- (01)
 3. @ @CREATE !: '*'*20
 4. @ @CONTINUE
 5. @END
 5. @DO 8,!=%,$ -- (02)
 5. @PRINT
 1.0000 WHICH
 2.0000 ********************
 3.0000 ********************
 4.0000 ********************
 5.

(01) In work file 8, the line numbers are addressed via the loop symbol !. If one of the
lines addressed in this manner does not contain the letter I, it is to remain
unchanged. Otherwise, the contents of the line are to be changed to
’*******************’.

(02) Work file 8 is executed, addressing all lines of the main file in sequential order with
the aid of the loop symbol !.

@IF, format 3 EDT statements

310 U1884-J-Z125-9-76

Example 2

 5. @PRINT
 1.0000 WHICH
 2.0000 WAY TO
 3.0000 THE MAIN
 4.0000 STATION?
 5. @PROC 9
 1. @ @ON ! FIND 'AI'
 2. @ @IF .TRUE. = 6 GOTO 4
 3. @ @GOTO 5 ------------------------- (01)
 4. @ @SUFFIX ! WITH ' RAILWAY'
 5. @ @CONTINUE
 6. @END
 5. @DO 9,!=%,$ --- (02)
 5. @PRINT
 1.0000 WHICH
 2.0000 WAY TO
 3.0000 THE MAIN RAILWAY
 4.0000 STATION?
 5.

(01) In the procedure in work file 9, the line numbers are addressed via the loop symbol
!. If one of the lines addressed in this manner contains the string AI in columns 6
and 7, then the string RAILWAY is to be appended to this line. Otherwise, the
contents of the line are to remain unchanged.

(02) The procedure in work file 9 is executed, addressing the lines of the main file in
sequential order with the aid of the loop symbol !.

EDT statements @IF, format 4

U1884-J-Z125-9-76 311

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@IF (format 4) Query task and user switches

Format 4 of @IF checks which task or user switches are on or off (see @SETSW and
section “Task switches” on page 69ff). Depending on the result of this check, EDT

– branches to the specified line in the procedure (GOTO ln),
– aborts execution of the procedure (RETURN), or
– continues execution of the procedure in the line following the @IF statement.

ON EDT checks whether the specified switch is on.

OFF EDT checks whether the specified switch is off.

U If “U” is specified, the user switches are queried; if not, the task switches are
queried.

int Number of the switch to be checked. This must be specified as an integer
between 0 and 31 (or as an integer variable). If the U parameter is specified
before the switch number, the user switch int under the user’s own ID is
checked instead of the specified task switch int.

ln A line number (e.g. 5).
The minimum value is 0.0001, the maximum 9999.9999.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %, $).

Operation Operands @PROC

@IF
 = [U] int

ON

OFF

GOTO ln

RETURN

@IF, format 4 EDT statements

312 U1884-J-Z125-9-76

Example

 1. @SET #S2 = 'SWITCH 15 IS OFF'
 1. @SET #S3 = 'SWITCH 15 IS ON'
 1. @PROC 8
 1. @ @IF ON = 15 GOTO 4
 2. @ @PRINT #S2 N
 3. @ @RETURN -- (01)
 4. @ @PRINT #S3 N
 5. @END
 1. @SETSW OFF = 15 -- (02)
 1. @DO 8 -- (03)
SWITCH 15 IS OFF
 1. @SETSW ON = 15 --- (04)
 1. @DO 8 -- (05)
SWITCH 15 IS ON
 1.

(01) The procedure in work file 8 is to display string variable #S3 if task switch 15 is on
or string variable #S2 if this switch is off.

(02) This resets task switch 15.

(03) The procedure in work file 8 is executed.

(04) Switch 15 is set.

(05) Work file 8 is executed.

EDT statements @INPUT, format 1

U1884-J-Z125-9-76 313

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@INPUT Define input mode or start procedure

@INPUT can be used to

– read in and process part or all of an @INPUT procedure from a SAM or ISAM file
(format 1)

– start an @INPUT procedure from a file or library element (format 2)

– define the input mode for input in L mode (format 3).

@INPUT (Format 1) Start an @INPUT procedure from a SAM or ISAM file

This format starts an @INPUT procedure: the contents of a SAM or ISAM file are read into
the user address space and the statements and text lines in this input are processed
immediately.

file The name of the SAM or ISAM file to be read in and processed.

ver The version number of the file.
This may consist of up to three digits or an asterisk (*). * designates the current
version number. If an incorrect version number is specified, the @INPUT procedure
is still read in and processed.

range* The line range in the SAM or ISAM file which is to be processed. If range* is omitted,
all lines in the file are processed.

Operation Operands F mode / L mode

@INPUT
'file' [(ver)] [range*] [:col:] [][PRINT]

RECORDS

KEY

@INPUT, format 1 EDT statements

314 U1884-J-Z125-9-76

The line range may also be specified using the current line range symbol
(see @RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. However, their values do not refer to the file specified by
“file”, but to the current virtual file or file opened by means of @OPEN.

col A column range, specified as:
– one or more columns, separated by commas (e.g. 10,15,8)
– one or more column ranges, separated by commas (e.g. 15-25,18-23)
– a combination of columns and column ranges (e.g. 10,14-29,23-50,17).

If no column range is specified, the full length of each line is read in.

file is a

ISAM file SAM file

range* may be: range* may be:

– a single line, e.g. 5
– a contiguous line range,

e.g 6-12
– a string of lines and/or line

ranges, separated by
commas, e.g. 6-12, 5, 19.
Lines or line ranges may
be specified more than
once, e.g.
5, 5, 8-10, 9.

– a single line, e.g. 5 or .0005
– a contiguous line range, e.g. 6-12 or .0006-.0012

Is RECORDS specified?

Yes No

The line range to be read
is to be addressed with
the aid of the logical line
numbers.
The logical line number of
the first line is 0.0001,
that of the second line
0.0002, etc.

Specification of range* is
meaningful only if the
INPUT file was created by
means of @WRITE with
the KEY operand. In such
a file, the first eight
characters in each line
contain the number which
the line had in the virtual
file. range* refers to these
numbers, i.e. EDT inter-
prets the first eight
characters in each line as
a line number, not as part
of the line contents. Line
number 5,for example,
refers to the line which
starts with 00050000.

EDT statements @INPUT, format 1

U1884-J-Z125-9-76 315

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

KEY Must be specified for SAM files written using @WRITE with the KEY
operand. The first 8 characters in each line of such a file contain the number
which this line had in the virtual file. If KEY is specified in @INPUT, these 8
characters are regarded as a line number, not as part of the line contents,
when the file is read in. If KEY were not specified, EDT would regard all
characters in each line of the INPUT file as text characters.

RECORDS Must be specified for SAM files is the user wishes to select a line range with
the aid of the logical line numbers.

PRINT Causes each line read from the SAM or ISAM file to be displayed.

By specifying range* and col, it is possible to select parts of the @INPUT procedure.

@INPUT must not be used in @INPUT or @DO procedures.

Processing of an @INPUT procedure is terminated if
– a @RETURN statement is found,
– the results of a comparison in an @IF statement with the RETURN operand are positive

or
– a DMS error occurs during execution of a statement.

Any keys contained in the file are not checked for errors. The line number is calcu-
lated from the first eight characters in each line of a SAM file. If the calculated line
number is less than the specified line range, or if no key can be formed from these
eight characters, this line is ignored. If the calculated line number is greater than the
specified line range, this line and all succeeding lines are ignored.

Interaction with XHCS

If the XHCS subsystem is installed, the coded character set name (CCSN) of the file is
taken into account in an @INPUT statement.

The @INPUT statement is only executed if the CCSN of the file is the same as the CCSN
currently selected in EDT or all work files are empty and the coded character set can be
displayed on the data display terminal.

i

@INPUT, format 1 EDT statements

316 U1884-J-Z125-9-76

Example

6. @PRINT
1.0000 @DELETE
2.0000 THIS IS LINE 1
3.0000 THIS IS THE SECOND LINE
4.0000 @PRINT 1
5.0000 @PRINT 2
6. @WRITE 'SAM-INP' KEY -- (01)
6. @SAVE 'ISAM-INP' -- (02)
6. @INPUT 'SAM-INP' & -- (03)
1.0000 THIS IS LINE 1
2.0000 THIS IS THE SECOND LINE
3. @INPUT 'ISAM-INP' 1-3,5,4 --------------------------------------- (04)
2.0000 THIS IS THE SECOND LINE
1.0000 THIS IS LINE 1
3.

(01) The contents of the work file are written into a SAM file, placing a key formed from
the line number at the beginning of each line.

(02) The contents of the work file are written again, but this time as an ISAM file.

(03) The entire file SAM-INP is to be read in and processed. Since this file was created
using @WRITE with the KEY operand, either KEY or range* (in this case: &) must
be specified. Otherwise, the stored keys will not be converted into line numbers.

(04) Lines 1-3, 5, 4 (in this order) of file ISAM-INP are to be read and processed.

EDT statements @INPUT, format 2

U1884-J-Z125-9-76 317

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@INPUT (Format 2) Start an @INPUT procedure from a library or file

This format starts an @INPUT procedure from a library or from a file. A library element or
a file is read into the user address space. The statements and text lines read in are
processed immediately.

LIBRARY = path1 ([E[LEMENT]=]elemname [(vers)][,elemtyp])
The name of the library and of the desired element.

ELEMENT = elemname [(vers)][,elemtyp]
The name of the desired element, without a library name. In this case, the
library name must have been preset by means of @PAR.

path1 The library name.
path1 may also be specified by means of a string variable.
If path1 is omitted, the default library specified by means of @PAR
LIBRARY is used.

elemname The element name. elemname may also be specified by means of a string
variable.

vers The version number of the desired element (see the “LMS” manual [14]). If
vers is not specified or if *STD is specified, the highest available version of
the element is selected.

elemtyp The element type. elemtyp may also be specified by means of a string
variable.
Permissible type entries: S, M, P, J, D, X, *STD or user-defined type names
with appropriate base type. If no type is specified, the value preset in @PAR
ELEMENT-TYPE will be used.

Operation Operands F mode / L mode

@INPUT

[PRINT]

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])
ELEMENT=elemname [(vers)][,elemtyp]
FILE=path2

@INPUT, format 2 EDT statements

318 U1884-J-Z125-9-76

Users who specify a user-defined type name are responsible for ensuring
that its associated base type corresponds to one of the permissible types S,
M, P, J, D or X.

*STD
Type S is the default value when EDT is started. Any other valid type speci-
fication can be set as the default value by means of @PAR.

FILE = path2 This operand is used to read in a BS2000 file.

path2 Name of the file to be read in as the @INPUT procedure.
path2 may also be specified by means of a string variable.

PRINT If PRINT is specified, each line is displayed on the screen as it is read in.

@INPUT must not be used in @INPUT or @DO procedures.

Processing of an @INPUT procedure is terminated if
– a @RETURN statement is found,
– the results of a comparison in an @IF statement with the RETURN operand are positive

or
– a DMS error occurs during execution of a statement.

Calculation of line numbers

As they are inserted, the records are numbered in one of three ways:

1. Standard numbering with standard increment 1.0000
(e.g. 21.0000, 22.0000, 23.0000 ... 99.0000)

2. Numbering with a preset increment
as defined in @PAR INCREMENT

3. Automatic numbering and renumbering,
if the selected increment is too large to permit inclusion of the records to be inserted.
EDT then selects an increment which is smaller, by a factor of 10, than the standard
(case 1) or specified (case 2) increment, and attempts to number the copied records
with this increment. This is repeated until the copied records can be included
successfully or until EDT selects the minimum increment of 0.01.

Type Element contents

S
M
P
J
D
X

Source programs
Macros
Data edited for printing
Procedures
Text data
Data in any format

EDT statements @INPUT, format 2

U1884-J-Z125-9-76 319

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Renumbering if @PAR RENUMBER=ON is specified:
If the copied records cannot be included with the minimum increment of 0.01, EDT
automatically renumbers the lines following the target range with the increment value
0.01.

If EDT cannot find sufficient space, no records are inserted into the work file and an
error message is issued. When copying into an empty work file, EDT calculates the line
number for the first record by adding the standard increment or the specified increment
(@PAR INCREMENT) to an initial value of 0.

– If @PAR INCREMENT is entered with an increment < 0.01, it should be noted
that the line numbers of lines which have been read in, copied or inserted are
not shown fully in F mode (6-digit line number display). If these incomplete line
numbers are then used in @INPUT statements, unpredictable results may be
produced.

– If this statement is entered in L mode and results in the creation of a line with a
number higher than that of the highest existing line number, the current line
number is changed.

Interaction with XHCS

If the XHCS subsystem is installed, the coded character set name (CCSN) of the file (library
element) is taken into account in an @INPUT statement.

The @INPUT statement is only executed if the CCSN of the file (library element) is the
same as the CCSN currently selected in EDT or all work files are empty and the coded
character set can be displayed on the data display terminal.

i

@INPUT, format 3 EDT statements

320 U1884-J-Z125-9-76

@INPUT (Format 3) Define EDT input mode

By means of @INPUT, format 3, the user specifies that EDT is to interpret text input as:

– a sequence of printable characters,
– a sequence of hexadecimal characters (EBCDIC or ISO), or
– a sequence of binary characters.

CHAR EDT is to interpret all text inputs as a sequence of printable characters.

HEX,X EDT is to interpret all text inputs as a sequence of hexadecimal
characters. If an odd number of hexadecimal characters is entered, a zero
is inserted on the left.
Since the maximum length of an input line is 256 (hexadecimal) characters,
the maximum number of (text) characters in one line is 128.

ISO EDT is to interpret the hexadecimal input as ISO code (ASCII). The data
itself is then added as EBCDIC to the work file.
The conversion table corresponds to the correlation of Coded Character Set
EDF03IRV to ISO646 international 7-bit code (or EDF041 to ISO8859-1).
If ISO is not specified, EDT expects input in EBCDIC.

BINARY EDT is to interpret all text inputs as a sequence of binary characters.
If the number of characters entered is not a multiple of 8, the
appropriate number of zeros is inserted on the left.
Since the maximum length of an input line is 256 (binary) characters, the
maximum number of (text) characters in one line is 32.

The default value when EDT is started is CHAR.

Statements must always be entered as a sequence of printable characters.

Operation Operands L mode

@INPUT [CHAR]
HEX|X [ISO]
BINARY

i

EDT statements @LIMITS

U1884-J-Z125-9-76 321

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@LIMITS Display line numbers

Entering @LIMITS causes EDT to output the following information for the current work file:

– the lowest line number assigned,
– the highest line number assigned and
– the number of lines.

The output is directed to SYSOUT.

Example

 4. @PRINT
 1.0000 A
 2.0000 B
 3.0000 C
 4. @LIMITS
 1.0000 TO 3.0000 3 LINES -------------------------------- (01)

 4. @COPY 1-3 TO 99.01 --- (02)

 100.03 @LIMITS
 1.0000 TO 99.0300 6 LINES -------------------------------- (03)

 100.03

(01) The lowest and highest line numbers are displayed.

(02) Lines 1-3 are moved to 99.01, 99.02 and 99.03.

(03) Now the lowest and highest line numbers are 1.0000 and 99.0300, respectively. The
number of lines is 6.

Operation Operands F mode / L mode

@LIMITS

@LIST EDT statements

322 U1884-J-Z125-9-76

@LIST Print contents of work file

With the aid of @LIST, any desired parts of a work file can be printed on a printer.

rng A line range, specified as:
– a single line (e.g. 6)
– several contiguous lines (e.g. 8-20).

The line range may also be specified by means of the current range symbol
(see @RANGE), via symbolic line numbers (e.g. %,$) or using line number
variables. String variables (#S0 to #S20) may also be used.

If rng is omitted, the entire file is printed. rng must be specified if X, N, C int,
P int, I or S is used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, each line is printed from this column
to the end of the line. If the first column number is greater than the line
length, this line is ignored.
The second column number
– must not be less than the first column number
– may be greater than the actual line length.

If no domain is specified, the entire line is printed.

X The lines are to be printed in hexadecimal form. A maximum of 128
characters in each line are printed.

N Line numbers are to be suppressed in the output.

C The first character in each line controls the printing but is not itself printed.

Operation Operands F mode / L mode

@LIST [rng [:domain] [X] [N] [C [int]|P int] [I] [S]] [,...]

EDT statements @LIST

U1884-J-Z125-9-76 323

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

P Controls the form feed function.

int Number between 0 and 256

C int If a number between 1 and 256 is specified, EDT inserts a form feed after
printing int lines. If 0 is specified for int, no check is performed. If int is spec-
ified without C, a form feed is inserted after exactly int lines, or if int=0, no
form feed is inserted.

P int A form feed is inserted after exactly int lines. If 0 is specified for int, no form
feed is inserted.
If P is used, rng must be specified.

I Printing starts immediately.
I is permitted in interactive mode only.
If I is not specified, output is directed to SYSLST and, if SYSLST is not as-
signed to a file, printing does not begin until after LOGOFF.

S Suppresses the empty lines which normally precede the first printed line.

Example

 6. @PRINT
 1.0000 THE @LIST STATEMENT
 2.0000 PERMITS THE CONTENTS
 3.0000 OF A WORK FILE TO BE
 4.0000 TRANSFERRED TO PAPER
 5.0000 IN ANY DESIRED FORM.
 6. @LIST -- (01)
 6. @LIST 4-5 N -- (02)
 6. @LIST & X -- (03)
 6. @LIST & I -- (04)
% SCP0810 SPOOLOUT OF FILE
':A:$USER0001.S.SPS.5660.01.23.89023.115714'ACCEPTED
: TSN: '5666', PNAME: 'NAME'
 6.

Contents of the
first character

Control function

X’C1’ Form feed before printing

X’40’ or X’00’ 1 line feed before printing

X’41’ or X’01’ 2 line feeds before printing

X’42’ or X’02’ 3 line feeds before printing

X’4F’ or X’0F’ 16 line feeds before printing

@LIST EDT statements

324 U1884-J-Z125-9-76

(01) The entire contents of the work file are to be printed. Printing is to be started after /
LOGOFF.

Printed output

 1.0000 THE @LIST STATEMENT
 2.0000 PERMITS THE CONTENTS
 3.0000 OF A WORK FILE TO BE
 4.0000 TRANSFERRED TO PAPER
 5.0000 IN ANY DESIRED FORM.

(02) Lines 4 and 5 are to be printed after LOGOFF, with the line numbers suppressed.

Printed output

 TRANSFERRED TO PAPER
 IN ANY DESIRED FORM.

(03) All lines are to be printed in hexadecimal format after /LOGOFF.

Printed output

1.0000 D4C9E340C4C5D4407CD3C9E2E360D2D6D4D4C1D5C4D6
2.0000 E6C9D9C440C4C5D940C9D5C8C1D3E3
3.0000 C5C9D5C5D940C1D9C2C5C9E3E2C4C1E3C5C9
4.0000 C9D540D1C5C4C5D940C7C5E6E4C5D5E2C3C8E3C5D5
5.0000 C6D6D9D440E9E440D7C1D7C9C5D940C7C5C2D9C1C3C8E34B

(04) All lines are to be printed immediately.

Printed output

 1.0000 THE @LIST STATEMENT
 2.0000 PERMITS THE CONTENTS
 3.0000 OF A WORK FILE TO BE
 4.0000 TRANSFERRED TO PAPER
 5.0000 IN ANY DESIRED FORM.

EDT statements @LOAD

U1884-J-Z125-9-76 325

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@LOAD Load program

The @LOAD statement

– terminates the EDT session and
– loads the specified program.

@LOAD is one of the EDT statements that is relevant to security (see section “Data
protection” on page 71). In uninterruptible system procedures in interactive mode and in the
case of input from a file, the statement will be rejected (unless it is read from
SYSDTA=SYSCMD).

string A character string specifying the name of the program to be loaded.
The string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

If there are still work files which have not been saved, the numbers of these files are
displayed after the message: % EDT0900 EDITED FILE(S) NOT SAVED!
This is accompanied by one of the following items, if available:

– a local @FILE entry
– defined explicitly by @FILE LOCAL, or
– defined implicitly by @READ, @GET, @OPEN (format 1),

– the library and element name of
– a library element opened by means of @OPEN (format 2)

– or the file name of
– a SAM or ISAM file opened with @OPEN (format 2) or
– a POSIX file opened with @XOPEN.

The user then receives the following query:

% EDT0904 TERMINATE EDT? REPLY (Y=YES, N=NO)?

N: In F mode the work window is displayed again. The user can close any files with
unsaved data and write them back.

Operation Operands F mode / L mode

@LOAD string

@LOAD EDT statements

326 U1884-J-Z125-9-76

Y: Virtual files with unsaved data are lost. EDT is terminated and the specified program
started.

If a file was opened in real mode by means of @OPEN, this query is not displayed, since
EDT closes the file by means of an implicit @CLOSE statement.

The save query can be suppressed by setting task switch 4 before EDT is called.

Example

EDT is to be terminated and LMS loaded.

Since the work file has not been saved, EDT asks, just as for @HALT, whether it is really to
be terminated.

Since @LOAD, rather than @EXEC, was specified, the slash is used to indicate that further
system commands are expected. LMS is started only when the RESUME-PROGRAM
command is entered.

 1.00 The @LOAD statement..
 2.00 - terminates the EDT session and......................................
 3.00 - loads the specified program...
 4.00 ...

load '$lms'...0001.00:001(0)

 % EDT0900 EDITED FILE(S) NOT SAVED!
 LOCAL FILE (0) :
 % EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)?y
 % BLS0500 PROGRAM 'LMS', VERSION 'V3.0A' OF 'yy-mm-dd' LOADED.
 /resume-program
 % LMS0310 LMS VERSION V03.0A00 LOADED
 CTL=(CMD) PRT=(OUT)
 $

EDT statements @LOG

U1884-J-Z125-9-76 327

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@LOG Control logging in batch mode

@LOG controls the logging of inputs made in batch operation and in interactive mode.

The output may be directed to:

– SYSLST (a high-speed printer),
– SYSLSTnn or a file assigned to SYSLSTnn or
– a list variable.

ALL EDT is to log all L-mode inputs (text and statements) which are entered via
RDATA or at the display terminal.
Inputs made in an F-mode dialog are logged in the statement line (in the
case of statement sequences, separated into individual statements).

COMMANDS Only statements are to be logged.

NONE Nothing is to be logged.

When EDT is called in batch mode, the default depends on task switch 4:
– If SETSW ON=4, @LOG NONE is set.
– If SETSW OFF=4, @LOG COMMANDS is set.

If EDT is called in a mode other than batch mode, @LOG NONE is set.

SYSLST Directs the log to SYSLST. This is the default.

SYSLST nn nn = 1,...99
Directs the log to the file assigned to SYSLSTnn.

LIST-VAR Directs the log to a list variable.

chars A string specifying the name of a list variable. This S variable must have
been defined beforehand, e.g. with DECLARE-VARIABLE chars, MULTI-
ELEMENT=LIST. The individual elements of the list must be of the ANY or
the STRING type. The individual log lines are appended to the list.

If none of the SYSLST, SYSLSTnn or VAR operands is specified, the output destination
remains unchanged.

This statement is also executed in test mode.

Operation Operands F mode / L mode

@LOG
[] []

ALL
COMMANDS
NONE

SYSLST
SYSLST nn
LIST-VAR=chars

@LOWER EDT statements

328 U1884-J-Z125-9-76

@LOWER Specify uppercase and lowercase display

@LOWER is used to specify whether or not EDT is to convert lowercase letters in the input
into uppercase letters.

The setting selected by means of @LOWER is valid for all work files, regardless of the work
window in which the statement was entered.

ON EDT makes a distinction between uppercase and lowercase letters. All
character strings are processed exactly as they are entered.

OFF EDT converts the lowercase letters a, ..., z in the input into the
uppercase letters A, ..., Z and displays them on the screen. This also
applies to strings entered as operands in EDT statements. The German
umlaut characters ä, ö and ü are not converted; they are reproduced in the
work file in lowercase form.

In F mode, any lowercase letters in work files are displayed as smudge
characters when the file is displayed. In L mode, lowercase letters are
displayed in printable form.

The default value when EDT is started is OFF. If @LOWER is entered without an operand,
@LOWER ON is set.
If @LOWER is used within an input block (see @BLOCK), the conversion mode is changed
only when all statements in the block have been processed. @LOWER should therefore
always be specified at the end of such an input block.

If XHCS is installed in the system, the conversion table associated with the coded character
set (CCS) is used for converting lowercase letters into uppercase letters.

Processing of lowercase letters in EDT statements

– If @LOWER OFF is specified, screen entries are converted from lowercase letters to
uppercase letters in all processing modes.
In the case of inputs from SYSDTA files, @INPUT files or procedure files or inputs read
via the subroutine interface, EDT expects statements in uppercase letters.

– If @LOWER ON is specified, only lowercase letters in the ’string’ and ’xpath’ operands
are not converted to uppercase letters in F mode dialog. In all other processing modes
(L mode, procedure mode, etc.) lowercase letters in the operands string, text, param
and xpath are not converted.

Operation Operands F mode / L mode

@LOWER [ON] | OFF

EDT statements @MOVE

U1884-J-Z125-9-76 329

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@MOVE Move line ranges

@MOVE is used to move a line or a range of lines to a specified line range, deleting the
original line(s) afterwards. The lines can be moved within the current work file or from any
other work file to the current work file.

It is not possible to move lines from a work file which is currently being executed as an EDT
procedure, i.e. from an active work file (see @DO).

The operands TO and ln1 must always be specified if the lines to be moved are in the
current work file. If lines are to be moved from another work file to the current work file,
omission of TO and ln1 causes the lines to retain their line numbers.

rng A line range, specified as:
– a single line (e.g. 6)
– several contiguous lines (e.g. 8-20).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

The symbolic line numbers refer to the current work file, i.e. the values of
the symbolic line numbers correspond to the line numbers of the current
work file and not of the work file from which data is transferred.

procno The number (0-22) of the work file from which the lines are to be moved.
If procno is omitted, the lines to be moved are assumed to be in the current
work file.

ln1 The number of the first line of the target range.
EDT calculates the numbers of the following lines in the target range by
incrementing this line number by the increment value specified for this
range. The minimum value is 0.0001, the maximum 9999.9999.
If inc is not specified, EDT uses the increment value implied by the number
of decimal places in the line number: for example, 5 implies an increment of
1 and 5.0 implies an increment value of 0.1.

ln1 may also be specified as a line number variable or symbolically.

Operation Operands F mode / L mode

@MOVE rng [(procno)] [TO ln1 [(inc)] [:] [ln2]] [,...]

@MOVE EDT statements

330 U1884-J-Z125-9-76

inc The increment value for the target range.
The minimum value is 0.0001, the maximum 9999.9999.

: This delimiter may be omitted if inc is specified, as this clearly separates the
operands ln1 and ln2.

ln2 The number of the last line in the target range.

@MOVE moves line by line. When this upper limit is reached, the move
operation is terminated, even if there are still lines in the source range which
have not been moved. The minimum value is 0.0001, the maximum
9999.9999. ln2 may also be specified as a line number variable or symbol-
ically.
If ln2 is not specified, the move operation may overwrite lines which the user
wanted to keep.

The entire source range is moved to the new location before it is deleted.

If the source and target ranges overlap, each line is moved and deleted separately.

Current increment value and line number

@MOVE does not change the current increment value. The operand inc simply determines
the increment used between the moved records. It does not refer to the current increment
value.

If the specified increment value (inc) is too large, the move operation may overwrite existing
lines in the target range.

The current line number is changed in L mode only if a line with a number greater than the
currently highest line number is created.

Example

 1.00 THIS LINE IS NOT MOVED...
 2.00 LINE 2 AND LINE 3..
 3.00 AND LINE 4 ARE MOVED...
 4.00 SEVERAL TIMES..
 5.00 ...

set 90:this line is never overwritten.............................0001.00:001(0)

EDT statements @MOVE

U1884-J-Z125-9-76 331

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

This creates a new line 90.

Lines 2 to 4 are to be moved to the range starting at line 20, using the implicit increment
value of 1.

Lines 20, 21 and 22 have been created with the implicit increment value of 1 and lines 2, 3
and 4 have been deleted.

Lines 20-22 are now to be moved to lines 100, 105 and 110.

 1.00 THIS LINE IS NOT MOVED..
 2.00 LINE 2 AND LINE 3...
 3.00 AND LINE 4 ARE MOVED..
 4.00 SEVERAL TIMES...
 90.00 THIS LINE IS NEVER OVERWRITTEN..
 91.00 ..

move 2-4 to 20..0001.00:001(0)

 1.00 THIS LINE IS NOT MOVED..
 20.00 LINE 2 AND LINE 3...
 21.00 AND LINE 4 ARE MOVED..
 22.00 SEVERAL TIMES...
 90.00 THIS LINE IS NEVER OVERWRITTEN..
 91.00 ..

move 20-22 to 100 (5)...0001.00:001(0)

 1.00 THIS LINE IS NOT MOVED...
 90.00 THIS LINE IS NEVER OVERWRITTEN...
 100.00 LINE 2 AND LINE 3..
 105.00 AND LINE 4 ARE MOVED...
 110.00 SEVERAL TIMES..
 111.00 ...

move 100-.$ to 82(5) : 89...0001.00:001(0)

@MOVE EDT statements

332 U1884-J-Z125-9-76

The range from line 100 to the end of the file (100–.$) is to be moved to the range starting
at line 82, using the explicit increment value of 5. Specifying the upper limit value of 89
ensures that line 90 is not overwritten.

Line 110 was not moved, since the new line would have exceeded the specified limit value.

 1.00 THIS LINE IS NOT MOVED..
 82.00 LINE 2 AND LINE 3...
 87.00 AND LINE 4 ARE MOVED..
 90.00 THIS LINE IS NEVER OVERWRITTEN..
 110.00 SEVERAL TIMES...
 111.00 ..

EDT statements @NOTE

U1884-J-Z125-9-76 333

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@NOTE Place comment in EDT procedure

@NOTE is used to place comments in EDT procedures; it does not cause any further action
when executed.

comment Comment, freely selectable text.

Operation Operands L mode / @PROC

@NOTE [comment]

@ON EDT statements

334 U1884-J-Z125-9-76

@ON Process file with search string

@ON examines a specified line range for the presence of the specified search string. There
are 11 formats of the @ON statement for processing the data lines in which the search
string is found. The various formats execute the following actions if the string is found:

Output and marking

Format 1: Outputs the line which contains the search string on the screen (in
interactive mode) or on the printer (in batch mode); see page 342ff.

Format 2: Displays, on the screen, the number of the column in which the search
string begins or the length of each line in the specified line range; see
page 346ff.

Format 3: Checks if the search string exists in the specified range and, if so, records
the number of the first line in which the string was found (the first hit); see
page 350ff.

Format 4: Marks the line containing the search string with a record mark (preparation
for format 5); see page 352ff.

Copying with or without record marks

Format 5: Copies the lines with the specified record mark; see page 355ff.

Format 6: Copies the lines which contain the specified search string; see page 358ff.

Replacing and inserting strings

Format 7: Replaces the string identified by the search string with another string; see
page 361ff.

Format 8: Replaces or inserts a string before or after the search string; see
page 364ff.

Deleting strings

Format 9: Deletes the specified search string from the text; see page 368ff.

Format 10: Deletes the text between the beginning or end of the line and the specified
search string; see page 371ff.

Format 11: Deletes the line containing the specified search string; see page 373ff.

EDT statements @ON

U1884-J-Z125-9-76 335

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Specification of the search string in @ON

The search string may be specified in the @ON statement:

– directly, in the form of a string enclosed in single or double quotes, or

– indirectly, in the form of a line number, a line number variable or a string variable.

The simplest search string is a sequence of constants (e.g. ’ABC’). Any substring with the
same text value found in the search object satisfies the search criterion.

Search string taking account of uppercase/lowercase notation

In the @SEARCH-OPTION statement it is possible to specify whether the search for
specific strings is to distinguish between uppercase and lowercase letters. This setting for
the search string "search" in @ON is valid for formats 1 to 4 and 6 to 8 (for a description of
format 5 see page 355ff).

Example

Use of wildcards in the search string

In addition to constants, variables (known as wildcards) can be specified. The following two
wildcards are used:

asterisk (Default value *); this replaces a string of any length, even an empty one.
The search is satisfied by the shortest possible substring in the line that is
searched. Two or more adjacent asterisks are handled in the same way as
a single asterisk, e.g.: ’ABC**F’ is equivalent to ’ABC*F’.

slash (Default value /); this replaces precisely one character.

If the keyword PATTERN is specified, the wildcards are interpreted as variable characters
and pattern matching is performed (see the example for @ON, format 6).

If there is no keyword PATTERN, the wildcards are treated as simple constants.

@SEARCH-OPTION CASELESS-
SEARCH

@ON & FIND PATTERN "s*"

sets the default value OFF for search type
CASELESS-SEARCH, i.e. a distinction is made
between uppercase and lowercase notation; the
search finds every word beginning with s or S.

@SEARCH-OPTION CASELESS-
SEARCH

@ON & C‘SEEK‘ TO ’SEEK‘

sets the default value OFF for search type
CASELESS-SEARCH, i.e. a distinction is made
between uppercase and lowercase notation.
All strings ’seek’ in all possible uppercase and
lowercase variations are converted to SEEK.

@ON EDT statements

336 U1884-J-Z125-9-76

Example

More than one wildcard may be used in each search string. A search string consisting
exclusively of wildcards is also permitted. The wildcards can also be redefined by means of
@SYMBOLS.

Negative search

If the keyword NOT is specified, those records which do not contain the search string are
selected (see the example for @ON, format 1).

Indirect specification of the search string

– The search string is stored in a line whose line number must be specified.

– The search string is stored in a line whose number is stored in a line number variable
(#L0 to #L20). This line number variable is then specified in the @ON statement.

– The search string (e.g. ’ABC’) is assigned (see @SET) to a string variable (#S1 to
#S20). This string variable is then specified in the @ON statement.

@SET #S0 = 'AB*C//D'
@ON & PRINT PATTERN #S0

When specified indirectly, the search string is always treated as if it were enclosed in single
quotes. Double quotes cannot be used.

on & print ’AB*C’ displays all the lines containing exactly the string AB*C.

on & print pattern ’AB*C’ displays those lines containing the strings ABC, ABXC,
ABCDEFG, ABXXXXXXC etc.

EDT statements @ON

U1884-J-Z125-9-76 337

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Significance of the search string delimiters

If @QUOTE is used to define some other character to be used instead of single quotes, the
above rules apply to this new character.

When an EDT session is started, the following text delimiters are available:

Blank (X’40’) and +.!*();–/,?:’=”

The set of text delimiters can be modified by means of @DELIMIT.

The left-hand delimiter of the search string is

Single quotes Double quotes

The right-hand delimiter of the
search string is

The right-hand delimiter of the
search string is

Single quotes Double quotes Single quotes Double quotes

EDT detects a hit if EDT detects a hit if EDT detects a hit if EDT detects a hit if

– the search string
exists

– the search string
exists and

– the search string
exists and

– the search string
exists and

– if is followed by a
text delimiter or is
at the end of the
line

– it is preceded by
a text delimiter or
begins at the
beginning of the
line

– it is preceded by
a text delimiter or
begins at the
beginning of the
line

– if is followed by a
text delimiter or is
at the end of the
line

Example:
1. ABCD
2. A,BCD
3. ABC,D
4. A,BC,D
@ON &... ' BC' ...
detects hits in all 4
lines.

Example:
1. ABCD
2. A,BCD
3. ABC,D
4. A,BC,D
@ON &... ' BC”...
detects hits only in
lines 3 and 4.

Example:
1. ABCD
2. A,BCD
3. ABC,D
4. A,BC,D
@ON &... “BC' ...
detects hits only in
lines 2 and 4.

Example:
1. ABCD
2. A,BCD
3. ABC,D
4. A,BC,D
@ON &... “BC”...
detects a hit only in
line 4.

@ON EDT statements

338 U1884-J-Z125-9-76

Use of the delimiters in a search string with wildcards

The search string can be enclosed between:

If the wildcard asterisk occurs next to a double quote in the search string, the hit string
extends to the next text delimiter. If there is no text delimiter, the hit string contains the rest
of the line.

If the wildcard asterisk is next to a single quote, the hit string contains the shortest possible
character string.

Example

Line contains xxx_abcd_yyy

If a search string is to contain the text delimiters, " must be entered for ’, and "" must be
entered for ".

Example

’This is a ""random”" string.’
(The following string is sought: This is a “random” string.)

single quotes single quotes and
double quotes

double quotes

@ON & P PATTERN ' ABC*' @ON & P PATTERN ' ABC*”
@ON & P PATTERN “ABC*'

@ON & P PATTERN “ABC*”

Search string Hit string

' abc*”
' abc*'

abcd (because _ is the next text delimiter)
abc (because the shortest possible substring is used)

EDT statements @ON

U1884-J-Z125-9-76 339

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

How EDT searches for the specified string

The order in which EDT searches the lines for a string and the type of search executed
depend on the following operands:

range The line range (or several subranges) to be searched

domain The column range to be searched

F EDT stops searching after the first hit

ALL EDT finds all hits in a line

int EDT searches for the “int”th hit in a line

R EDT searches the lines from right to left (reverse)

By default, the lines are searched from left to right. EDT searches the lines in the order in
which they are specified in the “range” operand. The following diagrams show how the
actions of EDT depend on the operands F, range, int and ALL.

Is operand F specified?

Yes No

Are there several line ranges (or line numbers) separated
by commas, specified for range?

Each line of the specified
range(s) is searched.

Yes No

If EDT finds the specified
search string, it stops
searching the current line
range: the remaining lines in
this range are not searched.
EDT continues the search in
the next range specified (if
any).

If EDT finds the specified
search string, it stops
searching. The remaining
lines are not searched.

@ON EDT statements

340 U1884-J-Z125-9-76

Is operand int specified?

Yes No

EDT signals a hit only when it finds the
"int"th occurrence of the search string in the
line being examined.

Example:
1. AAAAA
@ON 1 ' AA' ,3 will detect a hit in columns 3
and 4.

Is operand ALL specified?

Yes No

When EDT finds the
search string, it
executes the action
specified by @ON.
After this, it
continues the search
at the column which
originally followed
this search string.

EDT stops
examining a line as
soon as it finds the
first occurrence of
the search string.Is operand ALL specified?

Yes No

When EDT finds the
search string, it
executes the action
specified by @ON.
After this, it continues
the search at the
column
which originally
followed this search
string.
Any further occur-
rence of the search
string which EDT
finds in the line is
regarded as a hit.

EDt stops examining
a line as soon as it
finds the first occur-
rence of the search
string.

EDT statements @ON

U1884-J-Z125-9-76 341

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Recording a hit

EDT records whether or not it has found a hit:

Checking for hits via @IF

@IF (see @IF, format 3) can be used to check if the last @ON statement executed has
found a hit.

The message NO MATCH IN RANGE can be interrogated only if the procedure was called
by means of @DO...PRINT, since the EDT error switch is set only if the message is actually
displayed on the screen.

Recording the hit location

– The number of the line in which EDT found the first hit is recorded in line number
variable #L0 and under the line number symbol ?. If the hit is found in a string variable,
the current values of #L0 and ? remain unchanged.

– The number of the column in which the first occurrence of the search string begins is
placed in integer variable #I0 and the number of the column in which it ends is placed
in integer variable #I1. This also applies to a hit detected within a string variable.

Example

The line contains XXX_ABCD_YYY

In the case of a hit in L mode, the hit can be displayed on the screen by means of @PRINT
#L0:#I0–#I1:. If no hit is found, the values of ?, #L0, #I0 and #I1 remain unchanged.

Recording a hit in a negative search

For the first record in which the search string does not occur, the start position of the
checked column range is stored in integer variable #I0 and the end position is stored in
integer variable #I1.

If the end position of the column range exceeds the record length, the record length is
stored in #I1.

Search string Hit string Contents of I0 or #I1

’ABC*“ ABCD #I0 = 5; #I1 = 8

’ABC*’ ABC #I0 = 5; #I1 = 7

“*BCD’ ABCD #I0 = 5; #I1 = 8

’*BCD’ BCD #I0 = 6; #I1 = 8

@ON, format 1 EDT statements

342 U1884-J-Z125-9-76

@ON (Format 1) Display lines containing the search string

This format of @ON causes EDT to output the contents of each line in which the search
string was found. The output is sent to the screen (SYSOUT) in interactive mode or to the
printer (SYSLST) in batch mode.

range A line range, specified as:
– one or more line numbers, separated by comma (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL Only effective if the E operand is specified. All hits in a line are highlighted.

F Only the first hit line is output. If the E operand is specified, either the first
or all hits in the first hit line are highlighted.

R The lines are searched from right to left. Normally, they are searched from
left to right.
If R is specified, PRINT must be specified at least as PR.

NOT A hit is recognized if the search string is not contained in the
specified column range of a line (negative search).

Operation Operands F mode / L mode

@ON range [:domain] PRINT [ALL] [F] [R] [NOT] [PATTERN]

search [,int] [S] [N] [E]

EDT statements @ON, format 1

U1884-J-Z125-9-76 343

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit.

S Suppresses the empty line which otherwise precedes the first line to be
output.

N The hit lines are to be output without line numbers.

E Highlights the search string in the output to the screen. If the ALL operand
is also specified, all hits in the hit lines are highlighted, otherwise only the
first occurence or the int-th (if the int operand is specified) from the left or
from the right (if the R operand is specified).

Example

The first line containing the string ’HIT’ is to be output.

 1.00 ALL LINES IN...
 2.00 WHICH A HIT OCCURS...
 3.00 ARE TO BE OUTPUT;..
 4.00 IF THERE IS NO...
 5.00 HIT IN THE LINE RANGE,...
 6.00 NOTHING IS OUTPUT..
 7.00 ...

on & print f 'hit'..0001.00:001(1)

 2.0000 WHICH A HIT OCCURS
 PLEASE ACKNOWLEDGE

@ON, format 1 EDT statements

344 U1884-J-Z125-9-76

All lines which contain the string ’HIT’ are to be output.

If there are several hits, the values of line number variable #L0 and of integer variables #I0
and #I1 apply to the first hit which was found, i.e. to ’HIT’ in line 2.

All lines in which the string ’HIT’ occurs in or after column 2 are to be output.

 1.00 ALL LINES IN...
 2.00 WHICH A HIT OCCURS...
 3.00 ARE TO BE OUTPUT;..
 4.00 IF THERE IS NO...
 5.00 HIT IN THE LINE RANGE,...
 6.00 NOTHING IS OUTPUT..
 7.00 ...

on & print 'hit'..0001.00:001(1)

 2.0000 WHICH A HIT OCCURS
 5.0000 HIT IN THE LINERANGE
PLEASE ACKNOWLEDGE

create 100: #l0 :#i0-#i1:...0001.00:001(1)

 1.00 ALL LINES IN...
 2.00 WHICH A HIT OCCURS...
 3.00 ARE TO BE OUTPUT;..
 4.00 IF THERE IS NO...
 5.00 HIT IN THE LINE RANGE,...
 6.00 NOTHING IS OUTPUT..
 100.00 HIT..
 101.00 ...

on &:2 print 'hit'..0001.00:001(1)

EDT statements @ON, format 1

U1884-J-Z125-9-76 345

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

The lines in which the string ’I’ appears at least three times are to be output.

All lines in which the string ’HIT’ does not occur are to be output.

 2.0000 WHICH A HIT OCCURS
 PLEASE ACKNOWLEDGE

 1.00 ALL LINES IN...
 2.00 WHICH A HIT OCCURS...
 3.00 ARE TO BE OUTPUT;..
 4.00 IF THERE IS NO...
 5.00 HIT IN THE LINE RANGE,...
 6.00 NOTHING IS OUTPUT..
 100.00 HIT..
 101.00 ...

on & print 'I',3..0001.00:001(1)

 5.0000 HIT IN THE LINE RANGE,
 PLEASE ACKNOWLEDGE

 1.00 ALL LINES IN...
 2.00 WHICH A HIT OCCURS...
 3.00 ARE TO BE OUTPUT;..
 4.00 IF THERE IS NO...
 5.00 HIT IN THE LINE RANGE,...
 6.00 NOTHING IS OUTPUT..
 100.00 HIT..
 101.00 ...

on & print not 'hit'..0001.00:001(1)

 1.0000 ALL LINES IN
 3.0000 ARE TO BE OUTPUT;
 4.0000 IF THERE IS NO
 6.0000 NOTHING IS OUTPUT.
 PLEASE ACKNOWLEDGE

@ON, format 2 EDT statements

346 U1884-J-Z125-9-76

@ON (Format 2) Display the starting column of the search string

This format of @ON causes EDT to display, on the screen, the line numbers and numbers
of the columns in which the occurrences of the search string begin. If “search” is omitted,
EDT displays the line number and length of each line in the specified line range.

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number,
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL After each hit, EDT is to continue examining the remainder of the line.

F Only the first hit of each specified line range is displayed.

If neither ALL nor F is specified, the first hit in each line is displayed.

R The lines are to be searched from right to left instead of in the
default direction (left to right).

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

Operation Operands F mode / L mode

@ON range [:domain] COLUMN [ALL] [F] [R] [PATTERN]

[search [,int]]

EDT statements @ON, format 2

U1884-J-Z125-9-76 347

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit.

Example

The length of each line is to be displayed.

 1.00 HOW LONG IS LINE 1 ?...
 2.00 AND LINE 2 ?...
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?.......................................
 4.00 ...

on & column...0001.00:001(1)

 1.0000 020
 2.0000 012
 3.0000 032
 PLEASE ACKNOWLEDGE

 1.00 HOW LONG IS LINE 1 ?...
 2.00 AND LINE 2 ?...
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?.......................................
 4.00 ...

on 3 column r 'e '..0001.00:001(1)

@ON, format 2 EDT statements

348 U1884-J-Z125-9-76

The column number at which the string ’E ’ occurs for the first time in line 3 (searching from
the right) is to be displayed.

The numbers of all columns in which the string ’E ’ occurs in line 3 are to be displayed.

For all lines containing the string ’O’ at least twice, the column number of the hit (second
occurrence of the search criterion) is to be displayed.

 1.0000 028
 PLEASE ACKNOWLEDGE

 1.00 HOW LONG IS LINE 1 ?...
 2.00 AND LINE 2 ?...
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?.......................................
 4.00 ...

on 3 column all 'e '..0001.00:001(1)

 1.0000 013 028
 PLEASE ACKNOWLEDGE

 1.00 HOW LONG IS LINE 1 ?...
 2.00 AND LINE 2 ?...
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?.......................................

on & column 'o',2...0001.00:001(1)

 1.0000 006
 3.0000 007
 PLEASE ACKNOWLEDGE

EDT statements @ON, format 2

U1884-J-Z125-9-76 349

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

The numbers of all lines and columns in which the string ’E’ occurs are to be displayed.

 1.00 HOW LONG IS LINE 1 ?...
 2.00 AND LINE 2 ?...
 3.00 WHO KNOWS THE LENGTH OF LINE 3 ?.......................................
 4.00 ...

on & column all 'e'...0001.00:001(1)

 1.0000 016
 2.0000 008
 3.0000 013 016 028
 PLEASE ACKNOWLEDGE

@ON, format 3 EDT statements

350 U1884-J-Z125-9-76

@ON (Format 3) Find the line number of the first hit

This format of @ON determines whether the specified search string occurs within the
specified range and, if so, where it occurs for the first time. The line number of the hit is
placed in #L0 and the column numbers in #I0 and #I1.

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number,
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL After each hit, EDT is to continue examining the remainder of the line.

F Examination of the line range is terminated after the first hit has been found.
The remaining lines in the range are not examined.

Specification of ALL or F is permitted in this format of @ON, but is
meaningless, since only the first hit is recorded.

R The lines are to be searched from right to left instead of in the default
direction (left to right).

NOT A hit is recognized if the search string is not contained in the specified
column range of a line (negative search).

Operation Operands L mode / @PROC

@ON range [:domain] FIND [ALL] [F] [R] [NOT] [PATTERN]

search [,int]

EDT statements @ON, format 3

U1884-J-Z125-9-76 351

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “nits occurrence of the specified search string in a line is to be regarded
as a hit.

Example

 1. ************************ ----------------------------------- (01)
 2. E1**E2**E3**E4**E5**E6**
 3. @ON & FIND 'E',4 --- (02)
 3. @PRINT #L0:#I0 --- (03)
 2.0000 E4**E5**E6**
 3.

(01) Two lines are created in the virtual file.

(02) The fourth occurrence of ’E’ in each line is to be found. EDT shows no external
reaction; however, if there is a hit, it places the number of the hit line in #L0, the
starting column of the hit in #I0 and the final column of the hit in #I1.

(03) This prints the first hit line, starting at the first column of the hit.

@ON, format 4 EDT statements

352 U1884-J-Z125-9-76

@ON (Format 4) Mark records containing the search string

This format causes all records which contain the search string to be marked with the
specified record mark (m). In F mode the work window is positioned to the first record
containing a hit.

Existing record marks (such as those set by a previous @ON statement) remain
unchanged. They can, if desired, be deleted by means of @DELETE MARK.

The resulting record marks can be used for copying (@ON format 5) or for positioning within
the work file (see “+/– Position within work file”, page 120ff, format 2).

range* A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL After each hit, EDT is to continue examining the remainder of the line. This
operand may be specified, but is meaningless, since a record can be
marked only once.

F Examination of each line range is to be terminated after the first hit.

Operation Operands F mode / L mode

@ON range* [:domain] FIND [ALL] [F] [R] [NOT] [PATTERN]

search [,int] MARK [m]

EDT statements @ON, format 4

U1884-J-Z125-9-76 353

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

R The lines are searched from right to left. Normally they are searched from
left to right.

NOT A hit is recognized if the search string is not contained in the
specified column range of a line (negative search).

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit.

MARK m The records are to be marked with record mark m (1, ..., 9). MARK m does
not need to be specified in F mode: the records are then marked with mark
number 1.

If the statement is issued for a file opened by means of @OPEN, no records are
marked; the work window is simply positioned to the first record containing a hit.
Explicit specification of MARK m is rejected with an error message.

i

@ON, format 4 EDT statements

354 U1884-J-Z125-9-76

Example

The records containing the string ’ST’ are to be marked with mark number 2. EDT will
automatically position the file to the first record containing a hit.

The work window is positioned to line 3, since this contains the first hit.

+(2) scrolls to the next record marked with 2.

 1.00 BERGER THOMAS 10, HIGH RD. DURHAM...............................
 2.00 DUCK DONALD 8, WALT RD. DISNEYLAND...........................
 3.00 GREEN JENNIFER 16, LOW ST. POUGHKEEPSIE.........................
 4.00 STUBBS LARRY P.O. BOX 99 MUNICH...............................
 5.00 HOPPER MANUELA 3, POST ST. GRANTHAM.............................
 6.00 ...

on & find 'str.' mark 2...0001.00:001(1)

 3.00 GREEN JENNIFER 16, LOW ST. POUGHKEEPSIE.........................
 4.00 STUBBS LARRY P.O. BOX 99 MUNICH...............................
 5.00 HOPPER MANUELA 3, POST ST. GRANTHAM.............................
 6.00 ...

+(2)..0003.00:001(1)

 4.00 STUBBS LARRY P.O. BOX 99 MUNICH...............................
 5.00 HOPPER MANUELA 3, POST ST. GRANTHAM.............................
 6.00 ...

EDT statements @ON, format 5

U1884-J-Z125-9-76 355

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@ON (Format 5) Copy marked records

All records with the specified record mark are copied into the specified work file.

A work file currently being executed as an EDT procedure (see @DO), i.e. an active work
file, cannot be used as the output file.

Only the marked records are checked to see if they contain the mark m.

range* A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

domain Column range.

This operand may be specified, but it is meaningless since EDT searches
only for record marks.

ALL After it has found a hit, EDT is to examine the remainder of the line.
This operand is permitted, but it is meaningless, since a line is copied only
once.

F Only the first record containing the specified mark in each specified line
range is copied.
If F is specified together with NOT, the first marked record not containing the
mark m in each specified line range is copied.

NOT All marked lines not containing the mark m are copied.

MARK m The number (1, ..., 9) of the record mark.

procno The number (0-22) of the work file into which the records are to be copied.
procno must not be the current work file. If hits are found and OLD is not
specified, the contents of procno are deleted before the new lines are
copied into it. If no hits are found, the contents of procno remain unchanged.
An active work file (see @DO) cannot be specified as the output file.

Operation Operands F mode / L mode

@ON range* [:domain] FIND [ALL] [F] [NOT] MARK m [COPY TO]

(procno) [KEEP] [OLD]

@ON, format 5 EDT statements

356 U1884-J-Z125-9-76

KEEP The marked lines are to retain their line numbers as they are copied. If
KEEP is omitted, EDT creates the lines in the output file, starting with the
current line and using the current increment value.

OLD The contents of the target file procno are not deleted before copying. Any
existing lines in procno with the same line numbers are overwritten. If hits
are found and OLD is omitted, the contents of procno are deleted before the
new lines are copied to it.

If no record is marked or no record with the specified mark is found, EDT issues the
message: % EDT0901 NO MATCH IN RANGE

If this format of @ON is entered in work file 0 and an ISAM file has been opened in
real mode by means of @OPEN, the statement is rejected with the error message:
% EDT4935 MAIN FILE OPENED REAL.

Example 1

Line range 1 to 5 is to be searched for record mark 2 and all records with this mark are to
be copied into work file 3, retaining their original line numbers.
EDT is then to switch to work file 3.

i

 1.00 BERGER THOMAS 10, HIGH RD. DONCASTER............................
 2.00 DUCK DONALD 8, WALT ST. DISNEYLAND...........................
 3.00 GREEN JENNIFER 16, LOW ST. POUGHKEEPSIE.........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH...............................
 5.00 STUBBS MANUELA 3, POST ST. GRANTHAM.............................
 6.00 ...

on 1-5 find mark 2 copy to (3) keep ; 3...........................0001.00:001(1)

EDT statements @ON, format 5

U1884-J-Z125-9-76 357

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 2

All the lines which are not marked are to be copied. As a first step, all lines must be marked
with a record mark (e.g. 9) that has not yet been assigned (@ON, format 4). Then all those
lines which do not have the record mark (e.g. 1 to 3) are copied (@ON, format 5).

 @ON & FIND PATTERN '*' MARK 9
 @ON & FIND NOT MARK 1 COPY TO (1) KEEP
 @PROC 1
 @ON & FIND NOT MARK 2 COPY TO (2) KEEP
 @PROC 2
 @ON & FIND NOT MARK 3 COPY TO (3) KEEP
 @PROC 3

Work file 1 contains all lines which do not have record mark 1.
Work file 2 contains all lines which do not have record mark 1 or 2.
Work file 3 contains all lines which do not have record mark 1 or 2 or 3.

 3.00 GREEN JENNIFER 16, LOW ST. POUGHKEEPSIE.........................
 4.00 HOPPER LARRY P.O. BOX 99 MUNICH...............................
 5.00 ...

..0003.00:001(3)

@ON, format 6 EDT statements

358 U1884-J-Z125-9-76

@ON (Format 6) Copy records containing the search string

All records with the specified search string are copied into the specified work file.
If hits are found, the contents of the target file procno are deleted before copying by default.
If no hits are found or OLD is specified, the contents remain unchanged.

A work file currently being executed as an EDT procedure (see @DO), i.e. an active work
file, cannot be used as the output file.

range* A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number,
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL After each hit, EDT is to continue examining the remainder of the line. This
operand may be specified, but it is meaningless, since a record is copied
only once.

F In each specified line range, only the first search string found is copied.

R The lines are to be searched from right to left. Normally, they are
searched from left to right.

Operation Operands F mode / L mode

@ON range* [:domain] FIND [ALL] [F] [R] [NOT] [PATTERN]

search [,int] [COPY [TO]] (procno) [KEEP] [OLD]

EDT statements @ON, format 6

U1884-J-Z125-9-76 359

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

NOT A hit is recognized if the search string is not contained in the specified line
range of a line (negative search).

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit.

procno The number (0-22) of the work file into which the records are to be copied.
procno must not be the current work file. If hits are found and OLD is not
specified, the contents of procno are deleted before the new lines are
copied into it. If no hits are found, the contents of procno remain unchanged.
An active work file (see @DO) cannot be specified as the output file.

KEEP The marked lines are to retain their line numbers as they are copied. If
KEEP is omitted, EDT creates the lines in the output file, starting with the
current line and using the current increment value.

OLD The contents of the target file procno are not deleted before copying. Any
existing lines in procno with the same line numbers are overwritten. If hits
are found and OLD is omitted, the contents of procno are deleted before the
new lines are copied to it.

Example

All records containing the string ’ST.’ are to be copied into work file 5 and renumbered there.
EDT is then to switch to work file 5.

 1.00 BERGER THOMAS 10, HIGH RD. DERBY................................
 2.00 DEACON DENNIS 8, MOON RD. DERBY................................
 3.00 GREEN JENNIFER 16, LOW ST. POUGHKEEPSIE.........................
 4.00 HOPPER LARRY 44, HOPE ST. BRADFORD.............................
 5.00 SMITH DORIS 3, POST RD. DERBY................................
 6.00 ...

on & find 'str.' copy to (5) ; 5..................................0001.00:001(1)

@ON, format 6 EDT statements

360 U1884-J-Z125-9-76

EDT switches to work file 1.

All records of people whose first names begin with “D” and end with “S” are copied into work
file 6. EDT then switches to work file 6.

 1.00 GREEN JENNIFER 16, LOW ST. POUGHKEEPSIE.........................
 2.00 HOPPER LARRY 44, HOPE ST. BRADFORD.............................
 3.00 ...

1...0001.00:001(5)

 1.00 BERGER THOMAS 10, HIGH RD. DERBY................................
 2.00 DEACON DENNIS 8, MOON RD. DERBY................................
 3.00 GREEN JENNIFER 16, LOW ST. POUGHKEEPSIE.........................
 4.00 HOPPER LARRY 44, HOPE ST. BRADFORD.............................
 5.00 SMITH DORIS 3, POST RD. DERBY................................
 6.00 ...

on & :10-20: find pattern 'm*a' copy to (6) ; 6...................0001.00:001(1)

 1.00 DEACON DENNIS 8, MOON RD. DERBY................................
 2.00 SMITH DORIS 3, POST RD. DERBY................................
 3.00 ...

..0001.00:001(6)

EDT statements @ON, format 7

U1884-J-Z125-9-76 361

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@ON (Format 7) Replace the search string

This format of @ON causes the search string to be replaced by another string in the event
of a hit. The number of hits and the number of hit lines can be written into
integer variables (V switch).

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL After each hit, EDT is to continue examining the remainder of the line after
replacing the search string with the new string.

F The search and replace of each specified line range is terminated after the
first hit line.
If neither ALL nor F is specified, the first occurrence of the search string in
each line will be replaced.

R The lines are to be searched from right to left instead of in the
default direction (left to right).

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

Operation Operands F mode / L mode

@ON range [:domain] CHANGE [ALL] [F] [R] [PATTERN]

search [,int] [TO] string [V]

@ON, format 7 EDT statements

362 U1884-J-Z125-9-76

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit. A value between 1 and 256 may be specified for int; the
default value is 1.

string A character string, which may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

“string” replaces the search string. If an empty string (’’) is specified, the
search string is deleted.

V Only effective if the ALL operand is also specified. The number of hit lines
is written into integer variable #I2 and the number of hits into integer variable
#I3.
#I2 and #I3 remain unchanged if ALL or V is not specified.

EDT statements @ON, format 7

U1884-J-Z125-9-76 363

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example

The first @ON is to search for the third occurrence of the character ’I’ in line 2 and replace
it with the string from columns 19 to 21 of line 1, i.e. ’STU’.

The second @ON is to search for the first occurrence of the string ’IS’ in line 2 and replace
it with the empty string, i.e. to delete it (this is an alternative to @ON, format 9).

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 ABCDEFGHIJKLMNOPQRSTUVWXYZ..
 2.00 WHO ISIS AS IBBORN AS A MULE ?..
 3.00 ..

on 2 change 'i',3 to 1:19-21 ; on 2 change 'is' to ''.............0001.00:001(1)

 1.00 ABCDEFGHIJKLMNOPQRSTUVWXYZ...
 2.00 WHO IS AS STUBBORN AS A MULE ?...
 3.00 ...

@ON, format 8 EDT statements

364 U1884-J-Z125-9-76

@ON (Format 8) Replace or insert before or after the search string

This format of @ON provides two possibilities for modifying the contents of a line. The
specified new string

– either CHANGEs the text between the beginning of the line and the search string
(PREFIX) or the text between the search string and the end of the line (SUFFIX), or

– is INSERTed before (PREFIX) or after (SUFFIX) the search string.

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number,
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL After each hit, EDT is to continue examining the remainder of the line after
replacing the text before or after the search string or inserting the new string
before or after the search string, as appropriate.

F Examination of each line range specified is to be terminated after the first
hit.

Operation Operands F mode / L mode

@ON range [:domain] FIND [ALL] [F] [R] [PATTERN]

search [,int] string
CHANGE

INSERT

PREFIX

SUFFIX

EDT statements @ON, format 8

U1884-J-Z125-9-76 365

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

If neither ALL nor F is specified, the first hit in each line is processed.

R The lines are to be searched from right to left instead of in the
default direction (left to right).

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit.

CHANGE The text between the beginning of the line and the search string or between
the search string and the end of the line is to be replaced by the specified
new string.

INSERT The specified new string is to be inserted before or after the search string.

PREFIX The character string specified for “string” replaces the text between the
beginning of the line and the search string or is inserted before the search
string.

SUFFIX The character string specified for “string” replaces the text between the
search string and the end of the line or is inserted after the search string.

string A character string, which may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

“string” replaces the text before or after the search string or is
inserted before or after the search string, as appropriate.

If PREFIX or SUFFIX is written in full and a character string is specified for
“string”, there must be a blank between PREFIX or SUFFIX and the single
quote.

@ON, format 8 EDT statements

366 U1884-J-Z125-9-76

Example 1

All shareable files under the user ID USER2 whose names begin with the partially qualified
name ’XMPL.’ are to be listed.

The character string ’@read ’$user2.’ is to be prefixed to each partially qualified name
’XMPL.’.

The four files ’XMPL.1’ to ’XMPL.4’ are read into work file 1, one after the other.

 23.00 ...
 fstat '$user2.xmpl.'...0001.00:001(1)

 1.00 XMPL.1..
 2.00 XMPL.2..
 3.00 XMPL.3..
 4.00 XMPL.4..
 5.00 ..

on & find 'xmp1.' insert prefix '@read ''$ser2.'..................0001.00:001(9)

 1.00 @READ '$USER2.XMPL.1..
 2.00 @READ '$USER2.XMPL.2..
 3.00 @READ '$USER2.XMPL.3..
 4.00 @READ '$USER2.XMPL.4..
 5.00 ..

1 ; do 9..0001.00:001(9)

EDT statements @ON, format 8

U1884-J-Z125-9-76 367

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 2

In the line range 1 to 2, a search from right to left for the fourth occurrence of the string ’11’
is to be effected and ++++ is to be inserted after the hit.

In line 1, the search string occurred for the fourth time (counted from the right) in columns
14-15. In line 2, the search string occurred for the first time in columns 24-25, for the second
time in columns 23-24, for the third time in columns 22-23, and for the fourth time (hit) in
columns 19-20. The string ’++++’ was inserted after the hit.

Now, a search is to be made in the entire work file, starting at column 4, for the third occur-
rence of the string ’111’. If a hit occurs, the subsequent text is to be replaced with ####.

In line 1, the search string was not found.
In line 2, the search string occurred for the first time (counting from column 4) in
columns 7-9, for the second time in columns 8-10, and for the third time (hit) in
columns 12-14. The line portion after the hit was replaced with the string ’####’.

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 A11B11C11D11E11F11G11H11..
 2.00 A1111B1111C1111D1111E1111...
 3.00 ..

on 1-2 find r '11',4 insert suffix '++++'.........................0001.00:001(1)

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
 1.00 A11B11C11D11E11++++F11G11H11..
 2.00 A1111B1111C1111D1111++++E1111...
 3.00 ..

on &:4 find '111',3 change suffix '####'..........................0001.00:001(1)

 1.00 A11B11C11D11E11++++F11G11H11..
 2.00 A1111B1111C111####..
 3.00 ..

@ON, format 9 EDT statements

368 U1884-J-Z125-9-76

@ON (Format 9) Delete the search string

In the case of a hit, this format of @ON deletes the search string, leaving the remainder of
the line unchanged.

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL After each hit, EDT is to continue examining the remainder of the line after
deleting the search string it has found.

F Examination of each line range specified is to be terminated after the first
hit.

If neither ALL nor F is specified, the first hit in each line is deleted.

R The lines are to be searched from right to left instead of in the
default direction (left to right).

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

Operation Operands F mode / L mode

@ON range [:domain] DELETE [ALL] [F] [R] [PATTERN]

search [,int]

EDT statements @ON, format 9

U1884-J-Z125-9-76 369

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit.

Example

Each line in the work file is to be searched from right to left for the search string
’XXXYYYZZZ’. The first occurrence of this string is to be deleted and the search is then to
be terminated.

In line 1, the first occurrence of the search string from the right began in column 29. This
string was deleted.

 1.00 XXXYYYZZZ *** XXXYYYZZZ ### XXXYYYZZZ %%%...............................
 2.00 AAA XXXYYYZZZ BBB XXXYYYZZZ CCC XXXYYYZZZ...............................
 3.00 ..

on & delete f r 'xxxyyyzzz'......................................0001.00:001(1)

 1.00 XXXYYYZZZ *** XXXYYYZZZ ### %%%..
 2.00 AAA XXXYYYZZZ BBB XXXYYYZZZ CCC XXXYYYZZZ...............................
 3.00 ..

on & delete all 'xxxyyyzzz'......................................0001.00:001(1)

@ON, format 9 EDT statements

370 U1884-J-Z125-9-76

Now, the entire work file is to be searched for the search string ’XXXYYYZZZ’ and this string
is to be deleted wherever it occurs.

 1.00 *** ### %%%..
 2.00 AAA BBB CCC...
 3.00 ..

EDT statements @ON, format 10

U1884-J-Z125-9-76 371

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@ON (Format 10) Delete the line contents before or after the search string

In the case of a hit, this format of @ON deletes all text between the beginning of the line
and the search string (PREFIX) or between the search string and the end of the line
(SUFFIX).

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL After each hit, EDT is to continue examining the remainder of the line after
deleting the text before or after the search string, as appropriate.

F Examination of each line range specified is to be terminated after the first
hit.

R The lines are to be searched from right to left instead of in the
default direction (left to right).

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

Operation Operands F mode / L mode

@ON range [:domain] FIND [ALL] [F] [R] [PATTERN]

search [,int] DELETE
PREFIX

SUFFIX

@ON, format 10 EDT statements

372 U1884-J-Z125-9-76

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit.

PREFIX All the text between the beginning of the line and the search string is
deleted.

SUFFIX All the text between the search string and the end of the line is deleted.

Example

In a line range encompassing all the lines of the file (%.-.$), all text preceding the fourth
occurrence of the string ’ABABAB’(’AB’*3,4) in any line is to be deleted.

In line 1, the search string occurred for the fourth time at column 22. In line 2, the occur-
rences of the search string overlap:
it was found for the first time at column 1, the second time at column 3, the third time at
column 5, and the fourth time (the actual hit) at column 7.

 1.00 ABABAB ABABAB ABABAB ABABAB...
 2.00 ABABABABABABABABABABABAB..
 3.00 ..

on %.-.$ find 'ab'*3 , 4 delete prefix............................0001.00:001(1)

 1.00 ABABAB..
 2.00 ABABABABABABABABAB..
 3.00 ..

EDT statements @ON, format 11

U1884-J-Z125-9-76 373

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@ON (Format 11) Delete the line containing the search string

This format of @ON deletes the entire line in which the search string is found.

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is searched from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number,
– may be greater than the actual line length.

If no column range is specified, the entire line is searched.

ALL This may be specified, but it is meaningless for this format of @ON.

F Only the first record found in each specified line range is deleted.

If neither ALL nor F is specified, the first hit in each line is deleted.

R The lines are to be searched from right to left instead of in the
default direction (left to right).

NOT A hit is recognized if the search string is not contained in the
specified column range of a line (negative search).

PATTERN The characters currently specified in “search” for * (asterisk) and / (slash)
are interpreted as wildcards.

Operation Operands F mode / L mode

@ON range [:domain] FIND [ALL] [F] [R] [NOT] [PATTERN]

search [,int] DELETE

@ON, format 11 EDT statements

374 U1884-J-Z125-9-76

search The search string, specified either:
– directly, in the form of a string enclosed in single quotes, or
– indirectly, in the form of a line number, a line number variable or a string

variable (in each case, with a column range if desired) (e.g. 5:2-6: or #L2
or #S5:2-3:). The line with the specified number or the specified variable
must then contain the desired search string.

int The “int”th occurrence of the specified search string in a line is to be
regarded as a hit.

Example

All lines in the entire work file which contain the search string ’ABC’ at least three times are
to be deleted.

Lines 1, 2 and 3 were deleted.

Now, all lines in the entire work file which contain the character ’A’ in or after column 7 are
to be deleted.

 1.00 1 ABC 2 ABC 3 ABC 4 ABC 5 ABC..................................
 2.00 1 ABC 2 ABC 3 ABC 4 ABC..
 3.00 1 ABC 2 ABC 3 ABC..
 4.00 1 ABC 2 ABC..
 5.00 1 ABC..
 6.00 1...
 7.00 ..

on & find 'abc',3 delete..0001.00:001(1)

 4.00 1 ABC 2 ABC..
 5.00 1 ABC..
 6.00 1...
 7.00 ..

on & : 7 find 'a' delete..0004.00:001(1)

EDT statements @ON, format 11

U1884-J-Z125-9-76 375

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Line 4 was deleted.

Next, all lines in the entire work file which contain two consecutive blanks (’ ’) are to be
deleted.

Line 5 was deleted.

 5.00 1 ABC..
 6.00 1...
 7.00 ..

on & find ' '*2 delete..0004.00:001(1)

 6.00 1...
 7.00 ..

@OPEN EDT statements

376 U1884-J-Z125-9-76

@OPEN Open and read file or library element

@OPEN has two formats with the following functions:

– Open and read an ISAM file for real processing (format 1).

– Copy a file into an ISAM file (format 1).

– Open and read a program library element or a file (format 2). The library element or file
is read into the current work file, where it can then be processed.

@OPEN (Format 1) Processing an ISAM file on disk (real processing)

The ISAM file is not read into the memory area of EDT. Instead, only that part of the file
which is currently being processed, i.e. the contents of one work window, is read into the
current work file, which must be empty. Any changes to the file contents are written back to
the disk file as soon as the [DUE] key is hit. Until closed by means of @CLOSE at the end
of processing, the file remains physically open.

Copying files and real processing of SAM files

With the aid of @OPEN, a SAM or ISAM file which is to be processed (“file1”) can be copied
into an ISAM file. The copy of the file (“file2”) is then opened.
A SAM file which is to be processed in real mode can thus be copied into an ISAM file and
opened by means of @OPEN before it is processed. See also the section “Real processing
of SAM files” on page 378ff. below.

file1 A file name. If this file name does not yet exist, a file with this name is
cataloged. file1 can be omitted if a file name has been previously defined by
means of @FILE. If no file name has been previously defined by means of
@FILE, file1 must be specified to prevent the @OPEN statement being
rejected with an error message.

ver The version number of the file.
This may consist of three digits or an asterisk (*), where * designates the
current version number.

KEY This is used only with SAM files created by means of @WRITE and KEY.
KEY specifies that the keys stored in the SAM file are to be interpreted as
line numbers, and not as part of the line contents.

Operation Operands F mode / L mode

@OPEN ['file1'] [(ver)] [[KEY] [AS 'file2' [OVERWRITE]]]

EDT statements @OPEN

U1884-J-Z125-9-76 377

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

file2 A file name. If this file name does not yet exist, a file with this name is
cataloged. If file2 is specified, file1 is copied into file2 and file2 is then
opened.
If OVERWRITE is not specified and file2 exists and is not empty, a warning
message is issued. @OPEN is then executed only if
– the user responds to the warning message by entering Y,
– file1 is not empty, and
– file name file2 is not the same as file1.

OVERWRITE Suppresses the warning message % EDT0296 OVERWRITE FILE? REPLY
(Y=YES; N=NO)? which is issued if file2 exists. Any file with this name is
then overwritten. If file2 does not exist, OVERWRITE has no effect.

ISAM files can be processed in real mode only in work file 0. The work file must be empty.

After an @OPEN statement, the statements @RUN, @RENUMBER and @COMPARE are
rejected. Records of really opened files cannot be marked (e.g. @ON format 4) and are not
autosaved (see @AUTOSAVE).

If an incorrect version number is specified in an @OPEN statement, the current version
number is simply displayed; the file is not actually opened.
If the current version number or * is specified in @OPEN, this version number is
incremented by 1 to form the new version number and displayed after @CLOSE.

Closing a file opened by means of @OPEN

– @CLOSE closes the file and deletes the work file and the entry for the local file name.
Subsequent inputs thus refer to the work file (virtual file), not to the disk file.

– A second @OPEN implicitly initiates a @CLOSE: the first file is closed and the work file
deleted before the second file is opened.

@OPEN EDT statements

378 U1884-J-Z125-9-76

Real processing of ISAM files

The line numbers in the work file are taken from the ISAM keys in the ISAM file opened by
means of @OPEN.

EDT does not check if there are any lines with more than 256 characters. When such a line
is read in, the characters in columns 257 upwards are lost.

If file2 is specified, a copy of the original file is made by means of an implicit COPY-FILE
command. The copy (file2) is then opened and processed; the original (file1) is not opened.

Real processing of ISAM files with an ISAM key length of less than 8 bytes

Before EDT is called, the key length must be specified in the following system command:

/SET-FILE-LINK LINK-NAME = EDTMAIN, FILE-NAME = filename, -
/ ACCESS-METHOD = ISAM(KEY-LENGTH = keylength)

EDT can then be called and the file opened by means of @OPEN. In this case, it is not
possible to specify ´\´ instead of the file name.

It is advisable, after the file has been closed, to cancel the assignment of the file link name
again, using the system command

/REMOVE-FILE-LINK LINK-NAME = EDTMAIN

By default, EDT expects or generates ISAM keys with a length of 8 bytes.

If a shorter key length is defined, any existing ISAM key is truncated from the left. If, for
example, the key length is specified as 4, the line number 1234.5678 is interpreted as the
ISAM key 5678. This means that duplicate ISAM keys may result: it is the user’s
responsibility to ensure that the keys are unique if he/she wants to use ISAM keys with a
length of less than 8 characters.

Processing of ISAM files with fixed-length records (RECORD-FORMAT=FIXED) is not
supported.

Real processing of SAM files

A SAM file file1 which is to be processed in real mode must be copied into an ISAM file file2
before it can be processed. This is done by specifying “AS ’file2’" in the @OPEN statement.
EDT then copies SAM file file1 into ISAM file file2 and opens the latter.
Copying is actually executed by means of an implicit @READ for file1 followed by a @SAVE
with the second file name. The file link name for the first file is EDTSAM, that for the second
file EDTMAIN.

EDT statements @OPEN

U1884-J-Z125-9-76 379

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

The ISAM key for the first line in file2 is the current line number which existed before
@OPEN was executed. The ISAM keys of the following lines are formed by incrementing
this key by the current increment value which existed before @OPEN was executed (see
@ln or @SET, format 6).

Interaction with XHCS

If the XHCS subsystem is installed, the coded character set name (CCSN) of the file is
taken into account in an @OPEN statement.

The @OPEN statement is only executed if the CCSN of the file is the same as the CCSN
currently selected in EDT or all work files are empty and the coded character set can be
displayed on the data display terminal.

@OPEN EDT statements

380 U1884-J-Z125-9-76

@OPEN (format 2) Open and read into the current work file

 @OPEN (format 2) is used to open a library element or a SAM or ISAM file and read it into
the current work file.

Files with nonstandard file attributes can be opened without a SET-FILE-LINK command
having been issued beforehand.

@OPEN (format 2) can be issued in work files 0 through 22.

If more than one operand is specified, the operands must be separated by a blank or a
comma.

LIBRARY = path1 ([E[LEMENT]=]elemname [(vers)][,elemtyp])
The name of the library and of the desired library element.

ELEMENT = elemname [(vers)][,elemtyp]
The name of the desired library element, without a library name. The library
name must have been defined previously by means of @PAR.
After successful execution of @OPEN, the library name is output.

path1 The library name.
path1 may also be specified by means of a string variable.
If path1 is omitted, the default library specified by means @PAR LIBRARY
is used.

elemname The element name.
elemname may also be specified by means of a string variable.

vers The version number of the desired element (see the “LMS” manual [14]). If
vers is not specified or if *STD is specified, the highest available version of
the element is selected.

elemtyp The element type.
elemtyp may also be specified by means of a string variable.
Permissible type entries are: S, M, P, J, D, X, *STD or user-defined type
names with appropriate base type. If no type is specified, the value preset
in @PAR ELEMENT-TYPE will be used.

Operation Operands F mode / L mode

@OPEN

[,MODE=ANY | UPDATE | NEW | REPLACE]

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])
ELEMENT=elemname [(vers)][,elemtyp]
FILE=path2 [,TYPE=ISAM | SAM | CATALOG]

EDT statements @OPEN

U1884-J-Z125-9-76 381

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Users who specify a user-defined type name are responsible for ensuring
that its associated base type corresponds to one of the permissible types S,
M, P, J, D or X.

*STD
Type S is the default value when EDT is started. Any other valid type speci-
fication can be defined as the default value by means of @PAR.

FILE = path2 Opens and reads in a BS2000 file.

path2 Fully qualified file name of the file to be opened.
path2 may also be specified by means of a string variable.

TYPE Defines the access method of the file.

= SAM Default value. The file to be opened is a SAM file.

= ISAM The file to be opened is an ISAM file.

= CATALOG
The attributes are adopted from the existing file’s catalog entry.

The access method is determined by the FCBTYPE attribute of the catalog
entry.
Files with nonstandard attributes can be processed (this is equivalent to
@READ and @WRITE following an assignment to the link name EDTSAM,
or to @GET and @SAVE following an assignment to the link name EDTI-
SAM). Files which can be read with SET-FILE-LINK LINK-NAME=EDTSAM,
ACCESS-METHOD=ISAM cannot be opened with @OPEN.

MODE Defines the open mode for the library element or file.

= ANY Default value. An existing or new library element or file can be opened.

= UPDATE An existing library element or file is to be opened for processing.

= NEW A new library element or file is to be created.
The specified element name must not already exist in the specified library
or file.

Type Contents

S
M
P
J
D
X

Source programs
Macros
Data edited for printing
Procedures
Text data
Data in any format

@OPEN EDT statements

382 U1884-J-Z125-9-76

= REPLACE
The contents of an existing element or file are to be replaced. The contents
are not read into the work file.

If there is already a library element or file open in another work file, an error message is
issued.

Calculation of line numbers when reading the file

The records are numbered in one of three ways as they are read in:

1. Default numbering with the default increment 1.0000
(e.g. 1.0000, 2.0000, 3.0000 ... 999.0000)

2. Numbering with a defined increment
as defined by means of @PAR INCREMENT

3. Automatic numbering if @PAR RENUMBER=ON is set:
This is done if the increment is too large to permit the entire file to be read in.
EDT selects an increment which is smaller by a factor of 10 than the default (1.) or
defined (2.) increment. Records which have already been read are renumbered with
this smaller increment and the line numbers of further lines read in are calculated with
this increment.
If necessary, the increment is reduced by further factors of 10 until the entire file can be
read in or until EDT determines that the entire file cannot be read with the smallest
permissible increment of 0.0001 (when the read operation is aborted with an error
message).

If the increment is < 0.01, the following should be noted:
In F mode, the line numbers of records which are read in, copied or inserted are not
displayed in full (since the line number display is only 6 positions long). If these
incomplete line numbers are used in EDT statements (@COPY, etc.), errors may occur.

The current line number is set to the value for the last line read in plus the current
increment value.

If the library containing the desired element is part of a file generation group, the
library element type must be defined beforehand by means of @PAR ELEMENT-
TYPE= elemtyp.

i

EDT statements @OPEN

U1884-J-Z125-9-76 383

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Interaction with XHCS

If the XHCS subsystem is installed, the coded character set name (CCSN) of the file is
taken into account in an @OPEN statement.

The @OPEN statement is only executed if the CCSN of the file (library element) is the same
as the CCSN currently selected in EDT or all work files are empty and the coded character
set can be displayed on the data display terminal.

Example

OPEN LIBRARY = PROGLIB (ELEMENT = TEST)

Element TEST of program library PROGLIB is opened and read into the current
work file, which must be empty.

OPEN ELEMENT = PROC.EX(3), J

Before this statement is entered, the program library containing the element
PROC.EX must be defined by means of @PAR LIBRARY = libname. Element
PROC.EX, which contains a procedure (element type J), is opened and version 3
of this element is read into the current work file. The element remains open.

OPEN E=.#S1

The element name is stored in the string variable #S1. The period preceding the
variable name must be specified in order to prevent confusion between file names
and element names.

@P-KEYS EDT statements

384 U1884-J-Z125-9-76

@P-KEYS Define programmable keys

@P-KEYS is used to

– define the programmable keys on the keyboard (@P-KEYS)
– display the EDT default settings for the programmable keys (@P-KEYS SHOW).

SHOW The functions of the programmable keys defined by EDT using the @P-
KEYS statement are displayed.
This operand is supported in interactive mode on all data display terminals
which are compatible with type 8160.

The programmable keys are defined as follows:

– If the screen layout is changed by means of @PAR SPLIT, or the format is
changed on a 9763 Data Display Terminal by means of @VDT, the @P-KEYS
statement must be entered again.

– On the 3270 Data Display Terminal, the P-KEYS statement is rejected with an
error message.

Operation Operands F mode / L mode

@P-KEYS [SHOW]

*** MEANING OF THE P-KEYS ***
P1 : position CURSOR to 1st command line
P2 : position CURSOR to 2nd command line
P3 :
P4 : skip to next page in first window
P5 : skip to previous page in first window
P6 : skip to next page in first window for corrections
P7 : skip to next page in second window
P8 : skip to previous page in second window
P9 : skip to next page in second window for corrections
P10: skip to the next mark in the first window
P11: skip to the previous mark in the first window
P12: position CURSOR eight characters to the right
P13: skip to the next mark in the second window
P14: skip to the previous mark in the second window
P15:
P16:
P17:
P18:
P19:
P20:
--
 PRESS DUE1 FOR RETURN

i

EDT statements @PAGE

U1884-J-Z125-9-76 385

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@PAGE Execute form feed

This statement executes a form feed on SYSLST.

@LIST is used to set the maximum number of lines printed per page to a value between 1
and 256. @PAGE cancels this setting and resets to the default value of 65.

Operation Operands F mode / L mode

@PAGE

@PAR EDT statements

386 U1884-J-Z125-9-76

@PAR Enter default parameters

@PAR defines the default values for various file processing functions, namely:

Switching the following functions on and off:

– EDIT LONG mode (EDIT LONG)

– hexadecimal mode (HEX)

– lowercase or uppercase conversion (LOWER)

– overwrite mode (EDIT FULL)

– write protection on record level (PROTECTION) (only for the EDT program interface)

– column counter display (SCALE)

– information line display (INFORMATION)

– line number display (INDEX)

– screen optimization (OPTIMIZE)

– automatic renumbering (RENUMBER)

– two screen work windows (SPLIT)

Presetting values for:

– the work file to which @PAR applies (fwkfv/GLOBAL)

– the record separator character (SEPARATOR)

– the default code type (CODE)

– the default element type for a library element (ELEMENT TYPE)

– the increment value for line numbers (INCREMENT)

– the default library name (LIBRARY)

– the maximum record length in the F mode data window (LIMIT)

– the structure symbol for structure scrolling (STRUCTURE)

– the default for a program name (SDF-PROGRAM)

EDT statements @PAR

U1884-J-Z125-9-76 387

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

For the operands EDIT LONG, HEX, LOWER, EDIT FULL, PROTECTION, SCALE and
INFORMATION, the preset value is not the same as the default value. The default value for
these operands is ON.

If no operands are specified, all global and work file-specific values are given the same
values as after calling EDT.
The work files for which the operands specified via @PAR are valid can be found in the table
under “Effects of the default values” on page 395.

The commas in front of the operands are only entered if 2 or more operands in a @PAR
statement are to be specified.

Operation Operands F mode / L mode

@PAR [fwkfv | GLOBAL]

[,] [EDIT[[-] LONG] [=ON] | =OFF]
[,] [HEX [=ON] | =OFF]
[,] [LOWER [=ON] | =OFF]
[,] [EDIT[-]FULL [=ON] | =OFF]
[,] [PROTECTION [=ON] | =OFF]
[,] [SCALE [=ON] | =OFF]
[,] [INFORMATION [=ON] | =OFF]

[,] [INDEX [=ON] | =OFF]
[,] [OPTIMIZE [=ON] | =OFF]
[,] [RENUMBER [=ON] | =OFF]

[,] [SPLIT =n fwkfv | =OFF]
[,] [SEPARATOR ='char' | =OFF]
[,] [CODE =EBCDIC | =ISO]
[,] [[ELEMENT] [-] TYPE =elemtyp | =*STD]
[,] [INCREMENT =inc]
[,] [LIBRARY =path]
[,] [LIMIT =cl]
[,] [STRUCTURE ='char']
[,] [SDF-PROGRAM =structured-name | =*NONE]
[,] [SDF-NAME-TYPE = INTERNAL | = EXTERNAL]

@PAR EDT statements

388 U1884-J-Z125-9-76

fwkfv The work file variable ($0-$9) specifies which work file (0-9) @PAR refers.

The OPTIMIZE operand always refers to all 10 work files (0-9).
The SDF-PROGRAM and SEPARATOR operands always refer to all 23
work files (0-22).
The SPLIT operand refers either to the current work file (if you are working
in work files 0-9) or to the work file used before switching to L mode (if you
are working in work files 10-22).

The work file(s) to which @PAR refers if no work file variable is specified can
be found in the table under “Effects of the default values” on page 395.

If fwkfv is specified as an operand, it must be the first to be specified.

GLOBAL GLOBAL specifies that @PAR is to refer to all work files.

The operands CODE, ELEMENT-TYPE, INCREMENT, LIBRARY, LIMIT,
LOWER, RENUMBER, SDF-PROGRAM and SEPARATOR refer to work
files 0 to 22.
The operands EDIT-FULL, EDIT-LONG, HEX, INDEX, INFORMATION,
OPTIMIZE, PROTECTION, SCALE and STRUCTURE refer to work files 0
to 9, as they are only relevant in F mode.
The SPLIT operand refers either to the current work file (if you are working
in work files 0-9) or to the work file used before switching to L mode (if you
are working in work files 10-22).

The work file(s) to which @PAR refers if no work file variable is specified can
be found in the table under “Effects of the default values” on page 395.

If GLOBAL is specified as an operand, it must be the first to be specified.

EDIT LONG Specifies whether records with more than 80 characters (3270 Data Display
Terminal: 77 characters) are to be displayed in full in the work window.

=ON The records are to be displayed in full (maximum length 256 characters).

=OFF A maximum of 80 characters are displayed in the work window (3270 Data
Display Terminal: 77 characters). This is the default value when EDT is
started.

HEX Switches hexadecimal mode on or off. In hexadecimal mode, each record
is displayed in four lines on the screen. The first line contains the characters
as they are normally displayed (or smudge characters if they cannot be
displayed). Lines 2 and 3 contain the hexadecimal codes for the characters
in line 1. The two digits of the hexadecimal code are displayed
vertically below each character. Line four contains a scale (column counter)
as a separator between the records.

EDT statements @PAR

U1884-J-Z125-9-76 389

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

=ON Switches hexadecimal mode on.
If @PAR CODE=ISO, the hexadecimal value of the EDT data is output in
ISO code (ASCII). Entries in the hexadecimal lines must be made in ISO
code.

=OFF Switches hexadecimal mode off. This is the default value when EDT is
started.

LOWER Specifies whether EDT is to convert lowercase letters entered from the
keyboard into uppercase letters.

=ON EDT makes a distinction between uppercase and lowercase letters.
All text and strings are processed exactly as they are entered.

=OFF EDT converts lowercase letters in the input into uppercase letters.
Lowercase letters in a file are displayed on the screen as smudge
characters.
This is the default value when EDT is started.
For further details, see @LOWER.

EDIT FULL Specifies whether the data window and the mark column are to be set to
overwritable at the same time. Overwrite mode is only effective if the line
number display is activated (@PAR INDEX=ON).

=ON The data window and the mark column are set to overwritable at the same
time. It is possible to mark a line and to modify data in this line at the same
time. Data can thus be copied by means of an O mark to a line which has
not yet been created.

When the user changes to hexadecimal mode (@PAR HEX=ON) or to EDIT
LONG mode (@PAR EDIT LONG=ON) or when he/she switches off the line
number display (@PAR INDEX=OFF), this setting is not canceled, but
merely deactivated.

As long as write protection (@PAR PROTECTION=ON) is set, entry of
@PAR EDIT FULL=ON is ignored.

=OFF Default processing mode; data can be written to either the mark column or
the data section of a screen line.

PROTECTION Write protection is activated at record level. This operand is only effective if
used with the EDT subroutine interface. Records can then be write-
protected or made overwritable from the user program by entering the
appropriate mark (see the manual “EDT Subroutine Interfaces” [1]).

=ON Appropriately-marked records in F mode dialog are write-protected, while
all others are automatically set to overwritable.
If EDIT FULL has been set, it is reset.

@PAR EDT statements

390 U1884-J-Z125-9-76

=OFF The default value specified by the user program (write-protected or
overwritable) has no effect.
The value OFF is preset when EDT is called.

SCALE Displays a column counter (scale) in the data window (not valid in EDIT
LONG mode).

=ON The column counter appears as the first line after any information line
present and displays the current column numbers of the work window (e.g.
after horizontal shifting of the work window).

If a tab has been defined (see @TABS), a further screen line is displayed,
in which the current positions of the tabs are indicated by “I”.
If a tab character has been defined (see @TABS), it is shown in the mark
column position.

=OFF Switches off the column counter and, if appropriate, the tab display scale.
The default value is OFF when EDT is called.

INFORMATION
Displays in the data window an information line containing one of the
following (not valid in EDIT LONG mode):
a local @FILE entry
– explicitly defined by means of @FILE, or
– implicitly defined by means of @READ, @GET, @OPEN,

the library and element name of
– a library element opened with @OPEN (format 2),

the POSIX file name of
– a POSIX file opened with @XOPEN (if the file name is too long, its be-

ginning is abbreviated with ...) or

a header line in work file 9 if
– @FSTAT LONG, @STAJV LONG or @SHOW is issued without a desti-

nation entry in the F-mode dialog and the content has not been
changed.

=ON The information line appears as the first line in the work window, i.e. before
a scale, if one has been activated. If none of the above-mentioned names
and no header line is defined, the name field remains empty.

=OFF The information line is switched off.
The value OFF is preset when EDT is called.

INDEX Switches the line number display on and off. This causes the screen format
to change.

EDT statements @PAR

U1884-J-Z125-9-76 391

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

=ON Switches the line number display on (default EDT format). Each line on the
screen contains the 6-digit line number, one blank and 72 characters (3270
Data Display Terminal: 69 characters).

=OFF Switches the line number display off. Each line on the screen contains 80
characters (3270 Data Display Terminal: 77 characters).
The first column in each line can be overwritten (mark column).

@PAR INDEX=ON deactivates of EDIT LONG mode.

In the case of the 3270 Data Display Terminal, the field separator characters
occupy one space on the screen. As a result the section available for data
is reduced by one space.

OPTIMIZE Switches screen optimization on and off.
Before executing a screen output, EDT compares the contents of the new
screen and the old screen. By default, it then outputs only that text which
has been changed, in order to optimize the output performance; any
unchanged text in the old screen contents is left unchanged.

=ON Only the modified lines are to be output (default value).

=OFF The complete contents of the work window are to be output.

RENUMBER Switches automatic line renumbering on and off. This becomes
effective after the statements @OPEN and @COPY (format2), @XCOPY,
@XOPEN, @SDFTEST, @SEPARATOR, and after the statement codes C,
M and R. See also “Calculation of line numbers” in the descriptions of the
@COPY and @OPEN statements.

=ON The lines of a work file are to be renumbered as required (default value).
EDT does this if, when a file (or library element) is read in or when lines are
copied or inserted, the increment is too large to permit correct execution of
the statement.

=OFF Switches off automatic line renumbering.

The line numbers of a file are not changed by EDT. If @OPEN or @COPY
cannot be executed because the increment is too large to accommodate all
the lines, EDT issues a corresponding message.

SPLIT Specifies that a second work window is to be displayed on the screen.
The file in which this statement is entered (the current work file) is displayed
in the upper work window and the work file specified by fwkfv is displayed
in the lower work window.

=n fwkfv Specifies that a second work file is to be displayed, as follows:
n: the number (2 ≤ n ≤ 22) of lines in the lower work window.
fwkfv: a work file variable ($0 to $9) which specifies which work file is to be
displayed in the lower work window.

@PAR EDT statements

392 U1884-J-Z125-9-76

The file position (line and column number) remains unchanged when @PAR
is entered.
During further processing with EDT, the positions of the two work files can
be changed independently.

=OFF Removes one work window from the screen and expands the other window
to the full screen size of 24 lines (default work window).
The work window in whose statement line this statement is entered is
expanded to fill the screen.
If @PAR SPLIT = OFF is entered in the upper work window when the lower
work window contains statements, @PAR SPLIT is rejected with an error
message.

SEPARATOR Defines the record separator character:
– for "splitting a record" (see page 119) or
– to be used as the default value for the @SEPARATE statement

=’char’ A freely selectable alphanumeric or special character which is to be used as
the record separator. It must be enclosed in single quotes. The single
quotes can be redefined by means of @QUOTE.
Different characters must be defined for the record separator and the tab
character.

The defined record separator character can be output by means of the
statement @STATUS=SYMBOLS.

=OFF Resets the record separator definition. This is the default value, i.e. no
record separator character is defined.

CODE Default code type.
Defines the default for the CODE operand in the statements @XOPEN,
@XCOPY and @XWRITE. In hexadecimal mode (@PAR HEX=ON or HEX
ON), this default determines how EDT data is displayed in the data window.
When EDT is called up, the value is preset to EBCDIC.

=EBCDIC For hexadecimal output, the hexadecimal value of the EDT data is output as
EBCDIC code in the data window.
This defines EBCDIC as the default value for the CODE operand in the
statements @XOPEN, @XCOPY and @XWRITE.

=ISO For hexadecimal output, the hexadecimal value of the EDT data is output as
ISO code in the data window. This code corresponds to ASCII code. The
display shows how the data is stored in POSIX files if it is written back with
@XWRITE (CODE=ISO).
This defines ISO as the default value for the CODE operand in the state-
ments @XOPEN, @XCOPY and @XWRITE.

EDT statements @PAR

U1884-J-Z125-9-76 393

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

ELEMENT-TYPE
Specifies the default element type.
This element type is assumed if a @COPY, @DELETE, @OPEN, @INPUT
or @WRITE statement is entered without an element type.

=elemtyp Permissible type entries are: S, M, P, J, D, X, R, C, H, L, U, F, *STD or user-
defined type names with appropriate base type. elemtyp may also be
specified in the form .str-var.

*STD Type S is the default value when EDT is started.
If the default element type has been changed, @PAR ELEMENT-TYPE =
*STD returns to the original default type.

INCREMENT

= inc Specifies the increment value for line numbers for @OPEN format 2,
@COPY format 2, @INPUT format 2, @XCOPY und @XOPEN . In F
mode, this defines the increment value for line numbers of screen lines
which do not contain any data. The default increment value is 1.

If @PAR INCREMENT is specified with an increment < 0.01, then, in F
mode, the line numbers of records which are read in, copied or inserted are
not displayed in full (since the line number display is only 6 positions long).
If these incomplete line numbers are used in EDT statements (@COPY,
etc.), errors may occur.

LIBRARY

=path Default library name.
The elements of this library are accessed if only an element name is
specified in a @COPY, @OPEN, @WRITE or @INPUT statement. If no

Type Contents

S
M
P
J
D
X
R
C
H
L
U
F

Source programs
Macros
Data edited for printing
Procedures
Text data
Data in any format
Object modules
Load modules
Created by ASSEMBH
Created by BINDER
Created by IFG
Created by IFG

@PAR EDT statements

394 U1884-J-Z125-9-76

library name is specified in a @SHOW statement, the directory of this PLAM
library is output.
path may also be specified in the form .str-var.

LIMIT

= cl Specifies the maximum record length in the F mode data window. If a record
longer than this is entered, it is truncated and the message % EDT2267
LINE TRUNCATED AFTER nnn CHARACTERS is issued. Indirect changes
to records by EDT statements, etc. are not subjected to this test. The
permissible value range for cl is 1...256; the default value is 256.

STRUCTURE

= ’char’ The structure symbol is the escape character for structure scrolling (see the
section “+/– Position work window by structure depth” on page 114ff). It
must be enclosed in single quotes. The single quotes can be redefined by
means of @QUOTE. This symbol identifies records which are to be
evaluated during structure scrolling.
If a structure symbol other than a blank is defined, only those
records containing at least this structure symbol are evaluated.
If a blank is entered for the structure symbol, all records are evaluated.
The default value for the structure symbol is ’@’ (e.g. for Columbus source
programs).

SDF-PROGRAM
Default program name for the @SDFTEST statement and the t statement
code.
Data lines beginning with // are considered to be statements of this program.

SDF-A can be used to determine the internal program name if it does not
match the name of the program.:

=structured-name
Name of a program.
The name is valid globally, for all work files.

=*NONE Cancels any previous definition.
*NONE is the default when EDT is started.

SDF-NAME-TYPE
Defines the name type of the pre-defined program name in the
@PAR SDF-PROGRAM statement and the default name type in the
@SDFTEST statement.

=INTERNAL
Program name is internal name, maximum 8 characters.
The internal program name can be determined with SDF-A, if it does not
correspond to the name of the program.

EDT statements @PAR

U1884-J-Z125-9-76 395

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

=EXTERNAL
Program name is external name, maximum 30 characters
(e.g. LMS, SDF-A, HSMS).

INTERNAL is the default when EDT is started.

The setting of SDF-NAME-TYPE is always effective for all EDT work files (0-22).

Effects of the default values

The following table shows the work files for which the operands specified with @PAR are
valid. The determining factor is whether GLOBAL, a work file variable (fwkfv: $0 to $9) or
neither of these was specified in the @PAR statement.

Operand @PAR

GLOBAL fwkfv without
GLOBAL / fwkfv

EDIT-FULL
Work files 0-9 Specified

work file
in work file 0-9:
current work file;
in work file 10-22:
has no effect

EDIT-LONG

HEX

INDEX

INFORMATION

PROTECTION

SCALE

STRUCTURE

CODE
Work files 0-22 Specified

work file
Current work fileELEMENT-TYP

INCREMENT

LIBRARY

LIMIT

LOWER

RENUMBER

OPTIMIZE Work files 0-9

SDF-PROGRAM Work files 0-22

SEPARATOR

SPLIT in work file 0-9: current work file;
in work file 10-22: work file before switching to L mode

@PARAMS EDT statements

396 U1884-J-Z125-9-76

@PARAMS Define EDT parameters

@PARAMS defines all symbolic parameters which are used within a procedure.

Parameters in EDT procedures

The parameters can be regarded as character variables which are replaced by the
appropriate values before a procedure is executed.
A parameter begins with the character &, which is followed by a letter and by up to six further
letters or digits. Lowercase letters may also be used, but it should be noted that EDT distin-
guishes between uppercase and lowercase letters, which means, for example, that &A and
&a are two different parameters. The parameter names used in a procedure are valid only
within this work file.

EDT parameters are

– defined by means of @PARAMS in the first line of an EDT procedure and
– set to the desired values by means of @DO when the procedure is called.

A distinction is made between positional parameters and keyword parameters.

Positional parameters are set in the order in which they occur to the values specified in the
@DO statement (see @DO).
In keyword parameters, the parameter name is followed by an equals sign and the parameter
value. Keyword parameters are also set to the values specified in the parameter list of the
@DO statement. If no value is specified here, the default value predefined in the
@PARAMS statement is used. The value of a parameter is determined by all the characters
which are entered, including any blanks. If no value is specified for a positional parameter
or for a keyword parameter which has no default value, the parameter is set to an empty
string.
If a parameter value contains commas or closing parenthesis marks, the parameter must
be enclosed in single quotes. To create a single quote in a parameter value enclosed in
single quotes, it is necessary to enter the single quote twice (see also the example). If a
@QUOTE statement assigning the function of the single quote to a different character has
been issued, it does not apply to the single quotes enclosing the parameter value.

Example

Line in procedure file Parameter entry Created line

@ON &F‘&SEARCH‘
@SET #S1=&STR
&DATA
@P RANGE

&SEARCH=A‘‘B
STR= ‘TEXT‘
&DATA=‘A‘B
&RANGE=‘3,7‘

@ON &F‘A‘‘B‘
@SET #S1= ‘TEXT‘
‘A‘B
@P 3,7

EDT statements @PARAMS

U1884-J-Z125-9-76 397

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

formal A formal (symbolic) parameter.

In @PARAMS, EDT ignores blanks which occur
– in, before or after a formal positional parameter
– anywhere before the equals sign in a formal keyword parameter.

The following, for example, @PARAMS & A B C, &LINE= is equivalent to
@PARAMS &ABC,&LINE=

This applies only to @PARAMS. In the @DO statement, no blanks are
permitted in the parameter name.

If no default value is to be defined for a keyword parameter, a comma must
be entered (or the @PARAMS statement terminated) immediately after the
equals sign.

,... This indicates that several formal parameters may be entered,
separated from each other by commas. If both positional and keyword
parameters are specified, the positional parameters must be entered first.

Positional parameters must be specified in the same order in the
@PARAMS statement and the @DO statement. Keyword parameters may
be specified in any order in either statement.

The maximum number of formal parameters in a @PARAMS statement is
limited only by the maximum length of an EDT statement (256 characters).

If parameters are to be used in a procedure, the @PARAMS statement must be entered in
the first line of this procedure. @PARAMS statements elsewhere in the procedure are
ignored.

Replacing the parameters by their values

The parameter values specified in the @DO statement are assigned to the formal
parameters in the procedure by the @PARAMS statement. If @PARAMS is omitted, no
current values are assigned to the parameters. The same applies to parameters which are
not specified in the @PARAMS statement. If a keyword parameter is not specified in the
@DO statement, it receives the default value specified for it in the @PARAMS statement.

The parameters may be used anywhere in the procedure and may be chained with strings
and other parameters.
If there is a period between the formal parameter and the following string or following formal

Operation Operands @PROC

@PARAMS formal [,...]

@PARAMS EDT statements

398 U1884-J-Z125-9-76

parameter, this period does not appear in the result of the chaining operation. EDT
interprets the period as an indicator that chaining is to be executed. If a parameter value is
to be chained to a following string which begins with a letter, a digit or a period, the period
between the formal parameter and this string must always be entered.
In the following examples, it is assumed that the parameter @PARAM has the value A.

If, in exceptional cases, a formal parameter specified in @PARAMS is not to be replaced by
its current value in the procedure, then the & character must be duplicated. When the
procedure is executed, one of these & characters is removed.

Example

@PARAMS &PRINTER=

&&PRINTER=&PRINTER

@DO...(PRINTER=L2) results in the following line in the procedure:

&PRINTER = L2

When a formal parameter is replaced by its current value in a procedure, the
resulting line may be longer than 256 characters and an error message will be
issued when the procedure is executed.

Entry in the procedure line Generated character

&PARAM(BC)
&PARAM.(BC)
&PARAM..(BC)
&PARAM..BC
&PARAM.2BC
&PARAM,.2B
BC&PARAM
BC,&PARAM
B2&PARAM
&PARAM.&PARAM
&PARAM&PARAM
&PARAM..&PARAM

A(BC)
A(BC)
A.(BC)
A.BC
A2BC
A,.2B
BCA
BC,A
B2A
AA
AA
A.A

i

EDT statements @PARAMS

U1884-J-Z125-9-76 399

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 1

 7. @PRINT
 1.0000 THE OUTPUT
 2.0000 FROM THIS
 3.0000 PROCEDURE
 4.0000 IS DETERMINED
 5.0000 IN THE @DO
 6.0000 STATEMENT
 7. @SET #S3 = '*** AS YOU SEE ***'
 7. @PROC 1
 1. @ @PARAMS &LINES --- (01)
 2. @ @PRINT &LINES -- (02)
 3. @END
 7. @DO 1(2-4) --- (03)
 2.0000 FROM THIS
 3.0000 PROCEDURE
 4.0000 IS DETERMINED
 7. @DO 1(#S3),PRINT
 7. @PRINT #S3 --- (04)
 #S03 *** AS YOU SEE ***
 7. @DO 1(2,4N) -- (05)
 % EDT4963 TOO MANY OPERANDS
 7. @DO 1('2,4N') -- (06)
 2.0000 FROM THIS
IS DETERMINED
 7.

(01) In work file 1, the positional parameter &LINES is defined in line 1.

(02) This parameter appears in the @PRINT statement. The lines which are actually
displayed thus depend on the parameter value specified in the @DO statement.

(03) Work file 1 is executed. Before this is done, however, the value range 2-4 is
assigned to the parameter &LINES.

(04) The replacement of the parameter by its value is easily seen if the procedure
statements are displayed on the screen before they are executed, since they
already contain the parameter value at this time.

(05) If the user attempts, for example, to display line 2 with a line number and line 4
without a line number, the comma which is part of the necessary parameter value
is regarded as the separator between two parameters, and the @DO statement is
rejected.

(06) It is also possible to enclose the parameter value in single quotes. In this case,
everything between the single quotes is passed to the parameter &LINES, which
means that commas can also be passed as part of the parameter value.

@PARAMS EDT statements

400 U1884-J-Z125-9-76

Example 2

 1. @PROC 2
 1. @ @PARAMS &STRVAR1,&STRVAR2,&CONTENT1=**** ------------------- (01)
 2. @ @SET &STRVAR1 = '&INHALT1'
 3. @ @SET #S2 = '&STRVAR1'
 4. @ @SET #S3 = &STRVAR1
 5. @ @SET &STRVAR2 = &STRVAR1
 6. @ @SET #S4 = 'VON &STRVAR1 BIS &STRVAR2'
 7. @ @PRINT &STRVAR1,&STRVAR2,#S2,#S3,#S4
 8. @END
 1. @DO 2(#S0,#S1) --- (02)
 #S00 ****
 #S01 ****
 #S02 #S0
 #S03 ****
 #S04 FROM #S0 TO #S1
 1. @DO 2(#S15,#S13,CONTENT1=RHUBARB) ---------------------------- (03)
 #S15 RHUBARB
 #S13 RHUBARB
 #S02 #S15
 #S03 RHUBARB
 #S04 FROM #S15 TO #S13
 1.

(01) Two positional parameters and one keyword parameter are defined in work file 2.

(02) The values for the positional parameters must be specified in @DO in the order in
which these parameters were defined in the @PARAMS line. In this case,
&STRVAR1 is set to #S0 and STRVAR2 is set to #S1 when the procedure is
executed. Since nothing is specified for the keyword parameter &CONTENT1, the
default value (****) is used when the procedure is executed.

(03) This time, a parameter value is specified in @DO for the keyword parameter
&CONTENT1 and replaces the default value.

EDT statements @PARAMS

U1884-J-Z125-9-76 401

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 3

 1. @PROC 3
 1. @ @PARAMS &A,&B,&C,&X=111,&Y=222,&Z=333 ---------------------- (01)
 2. @ @CREATE #S10: '&A','&B','&C','&X','&Y','&Z'
 3. @ @PRINT #S10
 4. @END
 1. @DO 3 (AAAAA,BB,CCCCCCC) ------------------------------------- (02)
 #S10 AAAAABBCCCCCCC111222333
 1. @DO 3 (AA,BBBB,C,Y=****,X=########) -------------------------- (03)
 #S10 AABBBBC########****333
 1.

(01) Three positional parameters and three keyword parameters are defined in work
file 3.

(02) Work file 3 is executed. Since no values have been specified for the keyword
parameters, the default values are used.

(03) Here, values are specified for two of the keyword parameters. Note that the values
for these keyword parameters are not specified in the same order as the definitions
of these parameters in the @PARAMS line.

@PREFIX EDT statements

402 U1884-J-Z125-9-76

@PREFIX Insert string as prefix

@PREFIX inserts the specified string as a prefix at the beginning of each line in the
specified line range (see also the @SUFFIX statement, for a description of appending
strings to lines).

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

string The string to be inserted as a prefix at the beginning of each line in the
specified line range.
The string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

Example

The string ’ ONCE ’ is to be inserted as a prefix in lines 4 and 5.

Operation Operands F mode / L mode

@PREFIX range WITH string

 1.00 AND..
 2.00 ONCE...
 3.00 AGAIN..
 4.00 AGAIN..
 5.00 AGAIN..
 6.00 ...

prefix 4-5 with ' ONCE ' ...0001.00:001(0)

EDT statements @PREFIX

U1884-J-Z125-9-76 403

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

.

The contents of line 1 are to be inserted as a prefix in lines 4 and 5.

Five blanks are to be inserted as a prefix in lines 4 and 5.

The contents of line 4 are to be inserted as a prefix in lines 4 and 5.

 1.00 AND..
 2.00 ONCE...
 3.00 AGAIN..
 4.00 ONCE AGAIN..
 5.00 ONCE AGAIN..
 6.00 ...

prefix 4-5 with 1 ..0001.00:001(0)

 1.00 AND..
 2.00 ONCE...
 3.00 AGAIN..
 4.00 AND ONCE AGAIN...
 5.00 AND ONCE AGAIN...
 6.00 ...

prefix 4-5 with ' '*5 ..0001.00:001(0)

 1.00 AND...
 2.00 ONCE..
 3.00 AGAIN...
 4.00 AND ONCE AGAIN...
 5.00 AND ONCE AGAIN...
 6.00 ..

prefix 4-5 with 4 ..0001.00:001(0)

 1.00 AND..
 2.00 ONCE...
 3.00 AGAIN..
 4.00 AND ONCE AGAIN AND ONCE AGAIN................................
 5.00 AND ONCE AGAIN AND ONCE AGAIN................................
 6.00 ...

@PRINT EDT statements

404 U1884-J-Z125-9-76

@PRINT Print or display lines or string variables

IIn L mode, @PRINT prints or displays the lines in the specified range or the contents of
specified string variables. In F mode, only the contents of string variables can be printed or
displayed.

In interactive mode, the output is sent to the screen (SYSOUT); in batch mode, it is sent to
the printer (SYSLST).

rng A line range, specified as:
– a single line (e.g. 6)
– several contiguous lines (e.g. 8-20).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

rng must be specified if X, N, V or S is used.

If rng is omitted, the entire work file is output one section at a time (as for V).

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

If only one column number is specified, the line is output from this column
to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number,
– may be greater than the actual line length.

If no column range is specified, the entire line is output.

X The output is to be in hexadecimal format. In this case, the maximum length
of a line to be output must not exceed 128 characters. If X is used, rng must
be specified.

N Suppresses the line numbers or string variable names, as appropriate, in
the output. rng must be specified.

Operation Operands F mode / L mode

@PRINT [rng [:domain] [X] [N] [S] [V | E]] [,...]

EDT statements @PRINT

U1884-J-Z125-9-76 405

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

S This is meaningful only in batch mode and suppresses the first empty line
which normally precedes the first output line when the output is directed to
the printer. If S is used, rng must be specified.

V This is meaningful only for working at the screen and causes EDT to display
the specified range of lines one section at a time. Following output of the first
section, EDT always requests a paging input, even if the last line of the
specified line range has already been output. In subsequent empty page in-
puts (only DUE), EDT operates in the same way as when + is entered.

The display terminal being used determines how many physical lines
(screen lines) there are in a given section. The value prescribed by the sys-
tem (screen size) can be changed with @VDT.

E Like V except for the following difference:
If the first section contains the last line of the specified line range, the
@PRINT function is terminated after outputting that line. In subsequent
empty page inputs (only DUE), EDT operates in the same way as when * is
entered.

Output of work file contents

If rng is specified, this entire range is output. The output is interrupted only if the overflow
monitor of the operating system (MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL
= USER-ACKNOWLEDGE) is active.
After an output interrupt via % PLEASE ACKNOWLEDGE, output of the line range can be
aborted by means of [K2] and RESUME-PROGRAM. Positioning within the line range is not
possible.

Like a @PRINT statement without rng, an entry of V or E causes EDT to display the range
one section at a time. The number of screen lines set by the system or by means of @VDT
are displayed.
If neither V nor E is specified in a @PRINT statement without rng, EDT operates as if V had
been specified.
After displaying each section, EDT requests the entry of *, +, – or 0, by means of which the
user can abort the output or specify what is to be displayed next.

@PRINT EDT statements

406 U1884-J-Z125-9-76

When only [DUE] is entered, EDT’s response depends on the operand V or E, or on the
most recent paging input *, + or +int.

* EDT displays the section immediately following the one which has just been
displayed. If the new section contains the last line of the specified range, the
@PRINT function is terminated after this line has been displayed.
In subsequent empty page inputs (only DUE), EDT operates in the same
way as when * is entered.
If the section displayed previously overshot the upper or lower limit of the
requested line range, entering * terminates the @PRINT function immedi-
ately, without any further output.

+ EDT displays the section immediately following the one which has just been
displayed, even if some or all of the lines lie outside the specified line range.
In this way, it is possible to display any lines desired up to the end of the file.
In subsequent empty page inputs (only DUE), EDT operates in the same
way as when + is entered.

+int EDT displays the section which starts int lines after the last line which has
just been displayed, even if some or all of the lines in this section lie outside
the specified line range. In this way, it is possible to display any lines desired
up to the end of the file.
In subsequent empty page inputs (only DUE), EDT operates in the same
way as when + is entered.

– EDT displays the section immediately preceding the one which has just
been displayed, even if some or all of the lines in this section lie outside the
specified line range. In this way, it is possible to display any lines desired
back to the beginning of the file.
In subsequent empty page inputs (only DUE), EDT operates in the same
way as when + is entered.

–int EDT displays the section which starts int lines before the first line which has
just been displayed, even if some or all of the lines in this section lie outside
the specified line range. In this way, it is possible to display any lines desired
back to the beginning of the file.
In subsequent empty page inputs (only DUE), EDT operates in the same
way as when + is entered.

0 Terminates output of the line range.

If a line in the current work file would extend over several screen lines, EDT will not split this
line between two sections of the output. This may mean that one screen contains less than
the maximum possible number of lines.

EDT statements @PRINT

U1884-J-Z125-9-76 407

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

If EDT was called as an independent program by means of START-PROGRAM or LOAD-
PROGRAM, the user may enter a statement instead of *, +, +int, –, –int or 0. This causes
the @PRINT function to be terminated and this statement to be executed. Note, however,
that a sequence of statements must not be entered in this case, even if block mode is active.
If EDT was called as a subroutine, it will accept a statement as input when the @PRINT
function has not been completed only if bit 20 in function byte 2 of the parameter list is not
set (see the “EDT Subroutine Interfaces” manual [1]).

@PROC, format 1 EDT statements

408 U1884-J-Z125-9-76

@PROC Switch work files

@PROC has two formats, which provide the following functions in L mode:

– switching to another work file (format 1)

– displaying information about the free and used work files and/or about the current work
file (format 2).

@PROC (format 1) Switch work files

This format of @PROC is used in L mode to switch to another work file.

procno The number of a work file in which EDT procedures can be executed (1 to
22) or an integer variable which contains one of these values.

comment A comment of the user’s choice.
This makes it possible to insert a comment even when a strict syntax check
(@SYNTAX) is to be run.

The work file to which the user switched using this format of @PROC remains the current
work file until

– the user returns to the previous work file by means of @END or

– a further @PROC or @SETF (procno) statement is entered to switch to another work
file.

@PROC switches to another work file without terminating the old one(s) (nested work files).
@SETF (procno), on the other hand, terminates all older work files before switching to the
new one.

If the specified work file is empty, the current line number is 1 and the current increment is
also 1.

If the specified work file already contains data or statements, the current line number and
the current increment have the values which existed when the user last exited from this work
file.

Operation Operands L mode / @PROC

@PROC procno [comment]

EDT statements @PROC, format 1

U1884-J-Z125-9-76 409

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 1

 5. @PRINT
 1.0000 AAAA
 2.0000 BBBAADAFD
 3.0000 AAA
 4.0000 CCCCCCCCCCCCCCCCC
 5. @PROC 6
 1. @ @SET #I6 = LENGTH !
 2. @ @SET #L6 = !
 3. @ @DO 10
 4. @ @DO 12
 5. @ @CREATE #S6: 'LINE ',#S12,' IS ',#S10,' CHARACTERS LONG'
 6. @ @PRINT #S6 N
 7. @END --- (01)
 5. @PROC 10 --- (02)
 1. @ @SET #S10 = CHAR #I6
 2. @ @ON #S10:2-2: DELETE '0'
 3. @ @IF .TRUE. GOTO 2
 4. @END
 5. @PROC 12 --- (03)
 1. @ @SET #S12 = CHAR #L6
 2. @END
 5. @DO 6 !=%,$
 LINE 1.0000 IS 4 CHARACTERS LONG
 LINE 2.0000 IS 9 CHARACTERS LONG
 LINE 3.0000 IS 3 CHARACTERS LONG
 LINE 4.0000 IS 17 CHARACTERS LONG
 5.

(01) The user switches to work file 6, which contains 6 EDT statements, including a
@DO 10 and a @DO 12. At the moment, these two work files do not exist, and
entering @DO 6 would result in an error.

(02) A procedure is defined in work file 10. Its task is to convert the value in #I6 into
printable form and place it in #S10 and then to delete any leading zeros.

(03) A procedure is defined in work file 12 to convert the contents of line number variable
#L6 into printable form and to place them in #S12.

@PROC, format 1 EDT statements

410 U1884-J-Z125-9-76

Example 2

 1. @SET #I4 = 1
 1. @PROC #I4 -- (01)
 1. @4.00
 4.00 @ @SET #I4 = #I4 + 1 --- (02)
 4.01 @ @IF #I4 > 4 GOTO 8
 4.02 @ @PROC #I4
 4.03 @ @PROC -- (03)
 4.04 @ @GOTO 4
 4.05 @8.00
 8.00 @ @SET #I4 = #I4 - 1
 8.01 @ @END --- (04)
 8.02 @ @IF #I4 = 2 RETURN
 8.03 @ @PROC -- (05)
 8.04 @ @GOTO 8
 8.05 @END
 1. @DO #I4 -- (06)
 <02>
 <03>
 <04>
 <03>
 <02>
 1.

(01) It is possible to switch to another work file with the aid of an integer variable, whose
value must lie between 1 and 22.

(02) When work file 1 is executed, EDT switches to work files 2 to 4, the number of the
desired work file being passed in #I4.

(03) @PROC is used to check which work file is currently being used. Since the work file
is selected via #I4, the response to this inquiry will be equal to the value of #I4 each
time the work file is executed.

(04) A single @END is used to switch back to work file 0 in all cases.

(05) After closing, the procedure again asks which work file is currently being used. This
results in the work file numbers 3 and 2.

(06) Execution of a work file can also be started with the aid of an integer variable.

EDT statements @PROC, format 2

U1884-J-Z125-9-76 411

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@PROC (format 2) Output information

With this format of @PROC, the user can request the following information:

– the number of the current work file (@PROC)
– the numbers of all free work files (@PROC FREE)
– the numbers of all used work files (@PROC USED)

FREE The numbers of the work files (1-22) which have not yet been used are
displayed.

USED The numbers of the work files (1-22) which have already been used are
displayed, together with the lowest and highest line number for each such
file.

If no work files apart from work file 0 have been used, EDT issues a message.

If no operand is specified, the number of the current work file is displayed on the screen.

Example 1

 1. @PROC -- (01)
 <00>
 1. @PROC 15 --- (02)
 1. @PROC -- (03)
 <15>
 1. @END --- (04)
 1. @PROC -- (05)
 <00>

(01) This statement asks which is the current work file: the response is the number <00>,
i.e. the main file.

(02) This switches to work file 15.

(03) When the number of the current work file is requested, the answer is now, of course,
15.

(04) Switches back to work file 0.

(05) The response is now again 0.

Operation Operands L mode / @PROC

@PROC [FREE | USED]

@PROC, format 2 EDT statements

412 U1884-J-Z125-9-76

Example 2

 1. @DROP ALL -- (01)
 1. @PROC USED --- (02)
% EDT0907 NO PROCEDURE FILES DECLARED
 1. @PROC 13
 1. A
 2. @END
 1. @PROC USED --- (03)
 <13> 1.0000 TO 1.0000

(01) All work files are released.

(02) The user asks which work files have been defined.

(03) After defining work file 13, the user again asks which work files are defined.

Example 3

 1. @DROP ALL -- (01)
 1. @PROC FREE --- (02)
% EDT0907 NO PROCEDURE FILES DECLARED
 1. @PROC 13
 1. A
 2. @END
 1. @PROC FREE --- (03)
 01 02 03 04 05 06 07 08 09 10 11 12 14 15 16 17 18 19 20 21 22

(01) All work files are released.

(02) The user asks which work files have not yet been defined.

(03) After defining work file 13, the user again asks which work files have not been
defined.

EDT statements @QUOTE

U1884-J-Z125-9-76 413

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@QUOTE Redefine delimiter for strings

Wherever a string has to be specified in a statement (as a search or replacement string, a
file name, etc.), this string must be enclosed in single quotes. The @QUOTE statement
defines characters which replace these quotes.

spec Special character which replaces the single quote character (’).

char Character which replaces the double quotes character (").

spec and char must be different.

Double quotes are used only in @ON statements, namely together with text delimiters (see
@DELIMIT and @ON). Single quotes are likewise used in @ON statements, but also in
other statements.

If spec is not a special character, @QUOTE is rejected with the following error message:
% EDT3952 INVALID SYMBOL

A typical application for this statement is where @ON is to be used to find a string
which contains a single or double quotes character.

Operation Operands F mode / L mode

@QUOTE
@QE

spec, char
spec
,char

i

@RANGE EDT statements

414 U1884-J-Z125-9-76

@RANGE Define line range symbol

@RANGE defines a new symbol for a line and column range. The existing range symbol
becomes invalid.

r The symbol for the range to be defined.

rng A line range, specified as:
– a single line (e.g. 6)
– several contiguous lines (e.g. 8-20).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables.
String variables (#S0 to #S20) may also be used.

domain A column range, specified as:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25).

This column range is only valid in conjunction with @ON.

If only one column number is specified, the column range extends from this
column to the end of the line.
If the first column number is greater than the line length, this line is ignored.
The second column number
– must not be less than the first column number
– may be greater than the actual line length.

If no domain is specified, the column range is assumed to be 1-256.

Only one range symbol exists at any one time. The default range symbol is the & character
and the corresponding default range is 0.0001-9999.9999.

If no operand is specified, the current range symbol is canceled. There is then no current
range symbol until a new one is defined again by means of @RANGE. The column range
is not changed.

If r is not a special character, @RANGE is rejected with the following error message:
% EDT3952 INVALID SYMBOL

Operation Operands F mode / L mode

@RANGE [=r =rng [:domain]]

EDT statements @READ

U1884-J-Z125-9-76 415

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@READ Read SAM file

@READ is used to read all or part of a SAM file from disk or tape into the current work file.

The file is open only during the execution of the @READ statement. By default, EDT
assumes that the SAM file contains variable-length records (see section “Processing SAM
files with nonstandard attributes” on page 52).

file A file name.
If there is no local @FILE entry for the file name, the name specified here
is stored as this entry. If the “file” operand is omitted, the local @FILE entry,
if one exists, is used as the file name; otherwise, the global @FILE entry is
used (see the description of the @FILE statement). If neither a local nor a
global @FILE entry nor the SAM file exists, @READ is rejected with an
error message.

If the file link name EDTSAM is assigned to a file, this file can be read by
simply specifying / (see section “File processing” on page 49ff).

ver The version number of the file to be read.
This may consist of up to three digits or an asterisk (*). * designates the
current version number.
If * is specified, the current version number is displayed. If an incorrect
version number is specified, the correct version number is displayed and
this file is then read.

range* A line range, specified as:
– one or more line numbers, separated by commas

(e.g. 4,6,15 or 0.0004,0.0006,0.0015)
– one or more line ranges, separated by commas

(e.g. 5-10,17-19 or 0.0005-0.0010,0.0017-0.0019)
– a combination of line numbers and line ranges

(e.g. 4,7-23,8 or 0.0004,0.0007-0.0023,0.0008).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. The values of symbolic line numbers refer to the current
work file.
String variables must not be used.

Operation Operands F mode / L mode

@READ
['file'] [(ver)] [range*] [:col:] [] [STRIP]

RECORDS

KEY

@READ EDT statements

416 U1884-J-Z125-9-76

If range* is specified without RECORDS, EDT regards the first 8 characters
in each line as the line number, and not as part of the line contents. In this
case, for example, 1 would refer to the line which begins with the string
00010000.

If range* is specified together with RECORDS, then range* refers to the
logical line numbers. In this case, for example, 0.0001-0.0005 would read
the first 5 lines from the file.

If range* is not specified, all lines in the file are read.

col A column range, specified as:
– one or more columns, separated by commas (e.g. 10,15,8)
– one or more column ranges, separated by commas (e.g. 15-25,18-23)
– a combination of columns and column ranges (e.g. 10,14-29,23-50,17).

Columns and column ranges may be repeated and may overlap each other.

If no column range is specified, the full length of each line is read.

KEY EDT is to interpret the first 8 characters in each line as a key. Each record
moved to the current work file or to a file opened by means of @OPEN
receives this key as its line number. The key is not regarded as part of the
line contents.
EDT checks that the first 8 characters in each line contain a valid key, i.e.
that only the digits 0 to 9 appear here. If the key is not valid, @READ is
rejected with an error message.

RECORDS Permits the user to read a specified portion of a SAM file which has no keys.
In this case, a virtual relationship between record numbers and line
numbers is used, where 0.0001 stands for the first record in the file, 0.0002
for the second record, etc. The records read from the file are appended to
the contents of the work file or of the file opened by means of @OPEN.
Their line numbers in this file are calculated from the current line number
and the current increment in this file.
If STRIP is not specified, RECORDS may be abbreviated as R.

STRIP Deletes all trailing blanks from each line which is read in. If a line contains
only blanks, all blanks except for the first one are removed.

If KEY or range* is specified without RECORDS, any lines which are shorter than 8
characters are ignored.

Line numbers or column numbers may be repeated in the specification for range* and col,
respectively; this causes the specified lines or columns to be read in more than once.

EDT statements @READ

U1884-J-Z125-9-76 417

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Assignment of line numbers

The line numbers are assigned on the basis of the current line number and the current
increment. In an empty work file, the current line number and the current increment are, by
default, both 1. Either of these values can be changed by means of @SET ln (inc). (See
@SET, format 6.)

Example

SET 0.01;READ ’file’.

Before the file is read, the current line number is set to 0.01 and the increment is set
(implicitly) to 0.01.

If the user attempts to read an ISAM file by means of @READ, EDT displays an
error message and sets the switch for an EDT error. However, EDT still reads the
specified file, since a @GET is issued internally for this file.
If “file” is specified, the abbreviation ’R’ can still be used for @READ in F mode;
otherwise @REA[D] must be used.

Interaction with XHCS

If the XHCS subsystem is installed, the coded character set name (CCSN) of the file is
taken into account in a @READ statement.

The @READ statement is only executed if the CCSN of the file is the same as the CCSN
currently selected in EDT or all work files are empty and the coded character set can be
displayed on the data display terminal.

Example

The file TEST.SAM.F is to be read in.

The attempt to read file TEST.SAM.F is rejected with error message EDT4200.

In order to display the catalog entry for the file, the user switches to system mode:

i

 23.00 ..
read 'test.sam.f'...0000.00:001(1)

 22.00 ..
% EDT4200 'OPEN': DMS ERROR CODE: '0DC2'
system..0000.00:001(1)

@READ EDT statements

418 U1884-J-Z125-9-76

The SHOW-FILE-ATTRIBUTES command is used to request and display the
catalog entries for file TEST.SAM.F. The file has a fixed record length of 20 bytes.

By means of the SET-FILE-LINK command, the file link name EDTSAM is assigned to file
TEST.SAM.F and a fixed record length of 20 bytes is specified for this file.

The RESUME-PROGRAM command switches back to program mode; EDT is still loaded.

The file TEST.SAM.F is to be read in.

/show-file-attributes test.sam.f,information=all
%00000114 :1OSN:$USER.TEST.SAM.F
% ------------------------------- HISTORY -------------------------------
% CRE-DATE = 1994-08-30 ACC-DATE = 1994-10-07 CHANG-DATE = 1994-08-30
% CRE-TIME = 07:22:23 ACC-TIME = 10:34:09 CHANG-TIME = 07:22:26
% ACC-COUNT = 20 S-ALLO-NUM = 7
% ------------------------------- SECURITY -------------------------------
% READ-PASS = NONE WRITE-PASS = NONE EXEC-PASS = NONE
% USER-ACC = OWNER-ONLY ACCESS = WRITE ACL = NO
% AUDIT = NONE DESTROY = NO EXPIR-DATE = 1994-08-29
% SP-REL-LOCK= NO EXPIR-TIME = 23:00:00
% ------------------------------- BACKUP -------------------------------
% BACK-CLASS = A SAVED-PAG = COMPL-FILE VERSION = 1
% MIGRATE = ALLOWED
% ------------------------------- ORGANIZATION -------------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 20
% ------------------------------- ALLOCATION -------------------------------
% SUPPORT = PUB S-ALLOC = 18 HIGH-US-PA = 114
% EXTENTS VOLUME DEVICE-TYPE EXTENTS VOLUME DEVICE-TYPE
% 8 1OSN.4 D3480
% NUM-OF-EXT = 8
%PLEASE ACKNOWLEDGE

 %:10SN: PUBLIC: 1 FILE RES= 3 FREE= 2 REL= 0 PAGES
 /set-file-link link-name=edtsam,file-name=test.sam.f, -
 / record-format=fixed(record-size=20)
 /resume-program

 23.00 ..
read 'test.sam.f'...0000.00:001(1)

EDT statements @READ

U1884-J-Z125-9-76 419

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Assigning the file link name EDTSAM has made it possible to read in the file TEST.SAM.F.

The work file is now to be deleted and the file TEST.SAM.F is to be read in again. Instead
of the file name TEST.SAM.F, the user may simply specify ’/’.

The file TEST.SAM.F has been read in again.

The current work file is now to be written into the file TEST.SAM.NEW.

As long as the file link name EDTSAM is assigned to a file, it is not possible to write into any
other file.
The assignment of the file link name EDTSAM to the file TEST.SAM.F is now canceled and
the current work file is to be written into the file TEST.SAM.NEW.
A new SAM file is now created.

 1.00 THIS SAM FILE..
 2.00 HAS A FIXED..
 3.00 RECORD LENGTH;...
 4.00 EACH RECORD IS...
 5.00 20 BYTES LONG..
 6.00 ...

delete ; read '/'...0001.00:001(1)

 1.00 THIS SAM FILE..
 2.00 HAS A FIXED..
 ´ 3.00 RECORD LENGTH;..
 4.00 EACH RECORD IS...
 5.00 20 BYTES LONG..
 6.00 ...

write 'test.sam.new'..0001.00:001(1)

 22.00 ..
% EDT4900 A FILE COMMAND IS IN EFFECT
system '/remove-file-link edtsam' ; write 'test.sam.new'..........0000.00:001(1)

@RENUMBER EDT statements

420 U1884-J-Z125-9-76

@RENUMBER Renumber lines

@RENUMBER is used to renumber the lines created in a virtual file. The line number at
which renumbering is to start and the desired increment may be specified.

The new current line number is equal to the highest line number after renumbering plus the
current increment. In the screen window in which @RENUMBER was entered the file
section in the data window remains untouched; all that changes is the number display.

ln The line number (e.g. 5) at which renumbering is to start.
The minimum value is 0.0001, the maximum value 9999.9999.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %,$).

inc The increment for calculating the new line numbers. The minimum value is
0.0001, the maximum value 9999.9999. If ln and inc are omitted, the default
increment is 1.

If no operand is specified, the default values for the line number and the increment are
both 1.

@RENUMBER must not be used for a file opened by means of @OPEN.

The line present in the copy buffer are not renumbered (see section “Statement codes in F
mode”, “C Mark for copying” on page 90ff. and “R Mark for copying (without clearing copy
buffer)” on page 103ff.).

If this statement is issued in interactive mode and would entail the loss of some lines
because they would exceed the highest permissible line number, the following message will
be output:

% EDT0910 '@RENUMBER': LINES WILL BE LOST
% EDT0911 CONTINUE PROCESSING? REPLY (Y=YES; N=NO)

N: @RENUMBER is not executed.

Y: @RENUMBER is executed and the following message is output:

% EDT2904 MAXIMUM LINE NUMBER WHEN PROCESSING '@RENUMBER'.
SOME LINES ARE LOST.

Operation Operands F mode / L mode

@RENUMBER [ln [(inc)]]

EDT statements @RENUMBER

U1884-J-Z125-9-76 421

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

The F-mode window continues to display the same section, unless the lines in the work
window are lost in the course of renumbering. In this case, the work window is positioned
at the last line.

Calculation of the increment

If ln is specified and inc is omitted, the increment depends on the number of decimal
positions in the value specified for ln. ln = 2, for example, results in an increment of 1, while
ln = 2.4 implies an increment of 0.1, ln = 2.40 implies 0.01, etc.

– The entries in the three-level EDT stack (see also @) are not modified by the
@RENUMBER statement. After renumbering, however, the use of these stack
entries will in most cases not be advisable.

– Information on the number of lines in the current work file can be requested with
@LIMITS.

i

@RESET EDT statements

422 U1884-J-Z125-9-76

@RESET Reset EDT and DMS error switches

@RESET resets the EDT and DMS error switches (see also @IF, format 1).

Operation Operands F mode / L mode / @PROC

@RESET

EDT statements @RETURN

U1884-J-Z125-9-76 423

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@RETURN Terminate screen dialog and abort procedures

@RETURN can be used to

– terminate EDT
– terminate the screen dialog after @DIALOG
– abort procedures (@DO and @INPUT procedures)
– terminate the screen dialog if EDT was called as a subroutine.

message Freely selectable text.
The end of the statement is also the end of the message text. There must
be at least one blank between @RETURN and “message”.

“message” may be used only if EDT was called via the subroutine interface.

If there are still work files which have not been saved, the numbers of these files are
displayed after the message: % EDT0900 EDITED FILE(S) NOT SAVED!

This is accompanied by one of the following items, if available:

– a local @FILE entry
– defined explicitly by @FILE, or
– defined implicitly by @READ, @GET, @OPEN,

– the library and element name of
– a library element opened by means of @OPEN (format 2) or

– the file name of
– a SAM or ISAM file opened with @OPEN (format 2) or
– a POSIX file opened with @XOPEN.

The user then receives the following query:

% EDT0904 TERMINATE EDT? REPLY (Y=YES, N=NO)?

N: In F mode the work window is displayed again; in L mode the prompting message.
The user can close any files with unsaved data and write them back.

Y: Virtual files with unsaved data are lost. EDT is terminated and the specified program
started.

The save query can be suppressed by setting task switch 4 before EDT is called.

Operation Operands F mode / L mode

@RETURN [message]

@RETURN EDT statements

424 U1884-J-Z125-9-76

@RETURN after a screen dialog started using START-PROGRAM $EDT

If the screen dialog was started using START-PROGRAM $EDT, @RETURN has the same
effect as @HALT. EDT is terminated.

@RETURN after a screen dialog started using @DIALOG

If the screen dialog was started using @DIALOG, @RETURN causes the operation
interrupted by @DIALOG (L mode dialog or reading from SYSDTA) to be resumed.

EDT does not issue the save query.

@RETURN after a screen dialog when EDT was called as a subroutine

If @RETURN is entered after EDT has been called as a subroutine, control is returned to
the user program which called EDT.

A message can be passed to the calling program by means of the “message” operand and
the calling program can evaluate this message when it again receives control. The
message text is passed in the message field of control block EDTGLCB (see the manual
“EDT Subroutine Interfaces” [1]).

@RETURN in EDT procedures

If @RETURN is used in @DO or @INPUT procedures, execution of the procedure is
aborted and control is returned to the point where the procedure call was issued.

Example 1

 1. @PROC 6 -- (01)
 1. @ @SET #S1 = 'THIS IS #S1'
 2. @ @SET #S2 = 'THIS IS #S2'
 3. @ @PRINT #S1
 4. @ @RETURN -- (02)
 5. @ @PRINT #S2
 6. @END --- (03)
 1. @DO 6 -- (04)
 #S01 THIS IS #S1

(01) Work file 6 is opened for processing.

(02) If this statement is encountered during execution of the procedure in work file 6, all
subsequent statements will be ignored.

(03) Processing of work file 6 is terminated.

(04) The procedure is executed.

EDT statements @RETURN

U1884-J-Z125-9-76 425

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 2

 1. AAAA
 2. BBBB
 3. CCCC
 4. @PROC 7 -- (01)
 1. @ @PRINT ! --- (02)
 2. @ @RETURN -- (03)
 3. @END
 4. @DO 7,!=%,$ -- (04)
 1.0000 AAAA
 4.

(01) The procedure is created in work file 7.

(02) During execution of the statements in the procedure, the line addressed via the loop
symbol ! is to be output.

(03) Execution of the statements in the procedure is aborted at this point, regardless of
whether or not the loop symbol ! has already reached the specified upper limit.

(04) The procedure is called with the limits 1 and 3 (%=1, $=3) specified for the loop
symbol !. However, due to the @RETURN statement in the procedure, the loop
symbol value is never incremented.

@RUN EDT statements

426 U1884-J-Z125-9-76

@RUN Call user program as subroutine

@RUN loads a user program as a subroutine and starts it. The user program must exist in
the form of an object module in a library (see the manual “EDT Subroutine Interfaces” [1]).
Unlike program calls using @LOAD or @EXEC, EDT remains loaded and the contents of
the virtual files are retained.
If a user program that can only run in 24-bit addressing mode is to be executed, EDT must
be loaded via the driver module EDTC (section “Calling EDT” on page 33ff).
The user program called in this manner may process the lines in the current work file, in
which @RUN was entered.
@RUN is one of the EDT statements that is relevant to security (see section “Data
protection” on page 71). In uninterruptible system procedures in interactive mode and in the
case of input from a file, the statement will be rejected (unless it is read from
SYSDTA=SYSCMD).

entry The name
– of a control section (CSECT),
– of an entry point (ENTRY) in a program.

The corresponding object module or load unit is loaded. “entry” may also be
specified by means of a string variable.

modlib The name of the library in which the object module or load unit is stored.
modlib may also be specified by means of a string variable. If this operand
is omitted, the system searches for the module or load unit in the module
library with the default name EDTRUNLB.

string A string which is to be passed to the program being called.
The string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

If “string” is specified, EDT passes
– the address of the first byte of the string in register 2
– the string length minus 1 in register 3.

UNLOAD Specifies that the module is to be unloaded when control is returned to EDT.
This may be used if the name of the module is the same as the name of its
entry point (ENTRY).

@RUN must not be used if there is a file which has been opened by means of @OPEN.

Operation Operands F mode / L mode

@RUN (entry [,modlib]) [:string] [[,]UNLOAD]

EDT statements @SAVE

U1884-J-Z125-9-76 427

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SAVE Write as ISAM file

@SAVE writes all or part of the contents of the current work file to disk as an ISAM file.

The ISAM file is open only during execution of the @SAVE statement.

file A file name.
If the operand “file” is omitted, the explicit local @FILE entry is used as the
file name; if this does not exist, the global @FILE entry is used, and if this
does not exist either, then the implicit local @FILE entry is used (see also
@FILE). Otherwise, @SAVE is rejected with an error message.
If the file link name EDTISAM is assigned to a file, the user may simply
specify ’/’ in order to write this file back to disk (see section “File processing”
on page 49ff).

ver The version number of the file.
This may consist of up to three digits or an asterisk (*). * designates the
current version number. If an incorrect version number is specified, the
correct version number is displayed.
Version numbers are intended to prevent the inadvertent overwriting of files.
A new version number is generated when a file is created for the first time
or when an existing file is updated: the version number of a new file is 1 and
the version number of an updated file is incremented by 1.
The highest possible version number is 255; if a further update is executed,
the new version receives the version number 0.

range* A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

If range* is omitted, all lines of the current work file are written into the ISAM
file.

Operation Operands F mode / L mode

@SAVE ['file'] [(ver)] [range*] [:col:]

[]
UPDATE

[RENUMBER [ln [(inc)]]] [OVERWRITE]

@SAVE EDT statements

428 U1884-J-Z125-9-76

col A column range, specified as:
– one or more columns, separated by commas (e.g. 10,15,8)
– one or more column ranges, separated by commas (e.g. 15-25,18-23)
– a combination of columns and column range (e.g. 10,14-29,23-50,17).

Columns and column ranges may be repeated and may overlap each other.

If no column range is specified, the full length of each line is written to the
ISAM file.

UPDATE This is meaningful only if there is already an ISAM file with the
specified name.
UPDATE causes the lines to be saved to be inserted into the ISAM file. EDT
overwrites only those lines in the ISAM file whose numbers also exist within
the specified range* in the work file, virtual file or file opened by means of
@OPEN. All other lines in the ISAM file remain unchanged.

RENUMBER The lines to be saved are to be renumbered.
The line numbers in the work file, virtual file or file opened by means of
@OPEN remain unchanged.
If RENUMBER is not specified, the ISAM keys are generated from the line
numbers of the lines to be saved. When the file is again read into the work
file, virtual file or file opened by means of @OPEN, these line numbers are
retained if the operand NORESEQ is specified in the @GET statement.

ln The starting value for the ISAM keys in the file to be written. The
minimum value us 0.0001, the maximum value 99.9999. If inc is omitted, the
increment is implied by the number of decimal positions in ln. 5, for example,
implies an increment of 1, while 5.0 implies an increment of 0.1.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %,$).
If ln is not specified, the starting value for the ISAM key is 0001.0000.

inc The increment for the ISAM key.
The minimum value is 0.0001, the maximum value 9999.9999. If ln and inc
are omitted, the increment for the ISAM key is 1.

OVERWRITE Suppresses the query OVERWRITE FILE? (Y/N).
Any existing file with the same name is overwritten. If there is no file with the
specified name, OVERWRITE has no effect.

If neither UPDATE nor OVERWRITE is specified, and there is already a file with the same
name, EDT asks:

% EDT0903 FILE 'file' IS IN THE CATALOG, FCBTYPE = fcbtype
% EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)

EDT statements @SAVE

U1884-J-Z125-9-76 429

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

If the user responds with

N @SAVE is not executed;

Y @SAVE is executed and the existing file is overwritten as an ISAM file by the
contents of the current work file.

In the case of variable-length records (RECORD-FORMAT=VARIABLE; section
“Processing ISAM files with nonstandard attributes” on page 51), the records as of position
257 are lost when the file is written back.

Interaction with XHCS

If the XHCS subsystem is installed, the @SAVE statement also transfers a coded character
set name (CCSN) as a code attribute after the file has been written back.

@SAVE assigns the CCSN currently valid in EDT regardless of whether the file already
exists and what CCSN it has.

@SDFTEST EDT statements

430 U1884-J-Z125-9-76

@SDFTEST Start SDF syntax check on data lines

@SDFTEST

– passes the contents of a line or line range to SDF for a syntax check,
– transfers the string returned by SDF to the data area and
– can be used to set a program name for checking statements.

In batch mode, this statement is ignored instead of being executed.

range* A line range consisting of one or more lines and/or line ranges which can
also be specified using symbols.
String variables cannot be specified.
All lines of the line range which begin with a / are passed together with their
continuation lines to SDF for a syntax check.
A continuation line is expected when a line ends with – (apart from any
blanks or null characters).
A maximum of 255 continuation lines are permitted.
If range* is not specified, all the lines of the work file are checked.

PROGRAM Data lines beginning with // are also passed to SDF as statements.

=structured-name
Name of the program whose statements are to be checked. To check the
syntax, SDF uses the current syntax hierarchy in which the statements of
the program must be described.
If this operand is not specified, EDT uses the program name set by an
earlier @SDFTEST statement with PROGRAM=structured-name or preset
using @PAR SDF-PROGRAM=structured-name. If no name has been
preset, an error message is issued.

INTERNAL
Program name is internal name, maximum 8 characters
(e.g. $LMSSDF, BINDER, $SDAEDXT).

Operation Operands F mode / L mode

@SDFTEST
[range*] [PROGRAM [=structured-name []]]

INTERNAL

EXTERNAL

EDT statements @SDFTEST

U1884-J-Z125-9-76 431

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

EXTERNAL
Program name is external name, maximum 30 characters
(e.g. LMS, SDF-A, HSMS).

If the PROGRAM operand is not specified, the specified line range is checked only in regard
to command syntax, i.e. lines which do not being with a single / are not checked.

After SDF has checked the syntax, the format of the command or statement returned by
SDF is written back to the same location in the data area, depending on the setting of the
SDF options. Where necessary, continuation lines are inserted or deleted.

If the INTERNAL or EXTERNAL operand is omitted, the name type set with a previous
@SDFTEST with INTERNAL or EXTERNAL is used. If there was no such previous
statement, the name type used is the one set with @PAR SDF-NAME-TYPE = <type>. The
default type is INTERNAL when EDT is started.

Note
The external program name can only be specified with SDF versions as of V04.4. If the
external program name is specified while an earlier SDF version is in use (explicitly in the
@SDFTEST statement or in the @PAR SDF-NAME-TYPE statement), the following EDT
message is output when @SDFTEST is called, and processing is terminated:
% EDT5323 SDF: EXTERNAL PROGRAM NAME NOT SUPPORTED

Continuation lines in the output

If the output is more than 71 characters long, it extends into one or more continuation lines.
The continuation character is set in the 72nd column. Where necessary, subsequent lines
are renumbered.

In F-mode, the following message is issued:
% EDT0285 SDF: SYNTAX TESTED. '0' ERROR(S) IN RANGE.

Response when SDF detects a syntax error

If GUIDANCE=MIN/MED/MAX is set and SDF detects an error during the check, the
program branches to SDF’s guided correction dialog, and the user can correct the
command or statement.

If no correction dialog is possible because GUIDANCE=NO/EXPERT is set or if the user
aborts the dialog by pressing [F1], EDT issues the following error message:
% EDT4310 SDF: SYNTAX ERROR AT LINE (&00)

If there are more data lines to be processed, the user is then asked whether processing is
to be continued:
% EDT0911 CONTINUE PROCESSING? REPLY(Y=YES; N=NO)

Y: the program continues with the processing of further lines.
N: processing is aborted.

@SDFTEST EDT statements

432 U1884-J-Z125-9-76

In F mode, the faulty line is displayed at the top of the screen.

 The @STATUS=SDF statement can be used to query the names of the currently
set syntax files and the predefined internal program name.

The program name can be preset with the @PAR SDF-PROGRAM=... statement. Speci-
fying a program name explicitly in @SDFTEST overwrites the presetting.

SDF-A can be used to determine the internal program name if it does not match the name
of the program.

If the GUIDANCE setting is MIN, MED or MAX, passwords and other operands defined with
OUTPUT=SECRET-PROMPT are replaced with P.

Ampersand (&) replacement is accepted only in operand values, not in marks or in
command, statement or operand names. Partial replacement of operand values is not
possible.

i

EDT statements @SEARCH-OPTION

U1884-J-Z125-9-76 433

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SEARCH-OPTION Set default value for searching with @ON

The @SEARCH-OPTION statement sets a default value stipulating whether or not a search
for strings with @ON is to distinguish between uppercase and lowercase letters.

ON The search with @ON does not consider whether the characters in the
search string match in terms of uppercase and lowercase notation. In other
words, if you are searching for ’string’, the strings ’String’ , ’STRING’ and
’STrIng’ are also reported as hits.

OFF When searching for a character, a distinction is made between uppercase
and lowercase notation. This is preset when starting EDT.

The allocation of uppercase and lowercase letters corresponds to the conversion table for
@LOWER OFF.

If XHCS is installed in the system, the conversion table associated with the coded character
set (CCS) is used for the allocation of uppercase and lowercase letters.

If XHCS is not installed or if a 7-bit terminal is being used, EDT performs conversion on the
basis of EBCDIC.DF.03. In this case, no allocation is made for the German umlaut
characters ä, ö, ü and Ä, Ö, Ü.

Activating the coding function (@CODE) has no influence on the allocation of uppercase
and lowercase letters.

Operation Operands F mode / L mode

@SEA[RCH]-
OPTION

CASELESS-SEA[RCH] {=ON | =OFF}

@SEPARATE EDT statements

434 U1884-J-Z125-9-76

@SEPARATE Perform line break

The @SEPARATE statement breaks a line or range of line into several parts.

The point at which the break takes place is specified:

– by a separator character
– by a column position
– by the record separator character (SEPARATOR) preset by means of the @PAR

statement

range* Line range for which a line break is to be performed.

It is also possible to specify the line range by the current line range symbol
(see @RANGE), by symbolic line numbers (e.g. %, $) or by line number
variables.
Character string variables must not be specified.

If range* is not specified, the line break covers all lines in the file.

AT Definition of the point where the line break takes place.

If AT is not specified, the record separator character preset by the @PAR
SEPARATOR statement determines where the line break is implemented. If
no record separator character is preset, an error message is issued.

’char’ A freely selectable character used as the separator character to determine
where the line break is implemented.
The character must be specified in single quotes. The quotes can be
redefined by means of @QUOTE.

There can be more than one separator character in a single line.

Lines are shortened to before char. The part following char is inserted in the
file as a new line.
If char is the last character in a line or if it is followed by further separator
characters, line numbers are reserved but no empty records (record length
= 0) are created.

Operation Operands F mode / L mode

@SEPARATE
[range*] [AT]

'char'
X'hex'
cl

EDT statements @SEPARATE

U1884-J-Z125-9-76 435

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

X’hex’ A freely selectable character in hexadecimal format which is used as the
separator character to determine where the line break is implemented.

Lines are shortened to before hex. The part following hex is inserted in the
file as a new line.
If hex is the last character in a line or if it is followed by further separator
characters, line numbers are reserved but no empty records (record length
= 0) are created.

cl Column number.
Any characters after this position are separated from the line and inserted
in the file as a new line.

If the line is shorter than cl, the line is not changed. This also applies in the
case of cl=1.

Calculation of line numbers

When lines are inserted, they are numbered according to one of three methods:

1. Default numbering with the default increment 1.0000
(e.g. 21.0000, 22.0000, 23.0000 ... 99.0000) or

2. Numbering with a fixed increment as defined by @PAR INCREMENT or

3. Automatic numbering and renumbering
if the selected increment was too large to accommodate the new lines. In such cases,
EDT selects an increment that is smaller by a factor of ten than the default increment
(see 1 above) or than the defined increment (see 2. above). When renumbering, this
smaller increment is used.
This procedure is repeated until all the lines have been successfully inserted or until
EDT has selected the minimum increment of 0.01.

Renumbering with @PAR RENUMBER=ON:

If it is still not possible to insert the lines using the smallest possible increment (0.01),
EDT automatically renumbers the lines that already exist after the target point using the
same increment.

If it is not possible to find enough space, no lines are inserted and an error message is
output.

If existing lines are not to be renumbered, @PAR RENUMBER=OFF must be set.

If a line with a number greater than the highest existing line number is created, the current
line number is updated.

@SEPARATE EDT statements

436 U1884-J-Z125-9-76

Example 1

A printout is to be made narrowe:

@SEPARATE 5-100 AT 41

(Lines 5 to 100 are shortened to a length of 40 characters. The remaining portions of each
line are inserted in the file after the newly shortened line.)

Example 2

Records contain end-of-record characters which are to be evaluated:

@SEPARATE & AT X’15’

EDT statements @SEQUENCE

U1884-J-Z125-9-76 437

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SEQUENCE Generate or check line numbers

The @SEQUENCE statement:

– writes a number into each line in a specified line range. These numbers are in
ascending order (format 1).

– writes the associated line number into each line of a specified line range (format 2).
– examines the contents of the specified column(s) in each line of a specified line range.

It interprets the string in the column(s) as a binary number on the basis of the EBCDIC
codes for the characters and checks whether these binary numbers are in ascending
order (format 3).

@SEQUENCE (format 1) Number lines

@SEQUENCE, format 1, causes EDT to write a number into each line of the specified line
range. These numbers are in ascending order.

EDT overwrites any characters which already exist in the columns into which it writes the
numbers.

rng A line range, specified as:
– a single line (e.g. 6)
– several contiguous lines (e.g. 8-20).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

If rng is not specified, EDT writes a number into each line of the virtual file
or the file opened by means of @OPEN.

cl The column into which the first digit of the number is to be written. If cl is
omitted, EDT places the first digit of the number in column 73.

n1 The decimal integer which EDT is to write into the first line of the specified
line range. n1 may have up to 8 digits and the numbers written into the
following lines have the same number of digits as n1. The value of n1 is
freely selectable.
If n1 is not specified, EDT writes the number 00000100 into the first line of
the line range.

Operation Operands F mode / L mode

@SEQUENCE [rng] [:[cl] [:[[n1] (n2)]]]

@SEQUENCE, format 2 EDT statements

438 U1884-J-Z125-9-76

n2 An integer specifying the increment for the following lines. The
number written into each line consists of the number in the previous line
plus this increment.
If n2 is not specified, EDT uses an increment of 100.

@SEQUENCE (format 2) Adopt line numbers

@SEQUENCE, format 2, causes EDT to write the associated line number into each line of
the specified line range. This line number is written as an 8-digit number without a decimal
point. If necessary, the number is padded on the right and left with zeros.

In line 12.345, for example, EDT writes the number 00123450. When writing the number,
EDT overwrites any other characters which already exist in the 8 columns it uses for the line
number.

rng* A line range, specified as:
– a single line (e.g. 6)
– several contiguous lines (e.g. 8-20).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.

If rng* is not specified, EDT writes the associated number into each line of
the virtual file or the file opened by means of @OPEN.

cl The column into which the first digit of the number is to be written. If cl is
omitted, EDT places the first digit of the number in column 73.

Operation Operands F mode / L mode

@SEQUENCE [rng*] : [cl] : LINE

EDT statements @SEQUENCE, format 3

U1884-J-Z125-9-76 439

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example

The associated line number is to be written into each line of the work file, starting at column
20.

The line numbers are written as 8-digit numbers without a decimal point, starting at column
20. Wherever necessary, leading and trailing zeros are added.

@SEQUENCE (format 3) Check line numbers

@SEQUENCE, format 3, causes EDT to examine the contents of one or more columns in
each line of the specified line range. EDT interprets the string in these columns as a binary
number on the basis of the EBCDIC code for each character in the string. If any of the
columns to be examined lies to the right of the end of the line, EDT assumes that this
column contains the value X’40’.

EDT checks whether the binary numbers in the lines are in ascending order: it displays each
line in which it finds a binary number which is less than or equal to the binary number in the
preceding line.

 0.00 THE LINE...
 1.11 NUMBER...
 88.76 SEQUENCE...
 88.76 IS...
 5555.00 OFTEN..
 9876.54 IMPORTANT..
 9877.54 ...

sequence :20: line ...0000.00:001(0)

 0.00 THE LINE 00000035..
 1.11 NUMBER 00011110..
 88.76 SEQUENCE 00887610..
 88.76 IS 00887620..
 5555.00 OFTEN 55550000..
 9876.54 IMPORTANT 98765432..
 9877.54 ...

@SEQUENCE, format 3 EDT statements

440 U1884-J-Z125-9-76

rng A line range, specified as:
– a single line (e.g. 6)
– several contiguous lines (e.g. 8-20).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

If rng is not specified, EDT checks each line in the main file.

cl The column containing the first digit of the number to be checked. If cl is
omitted, EDT starts checking at column 73.

int Specifies how many columns (1-8) are to be checked. If int is omitted, EDT
checks eight columns.

Example

EDT is to check all lines in the file to determine whether the contents of columns 1 and 2
are in ascending order.

EDT displays all lines which are not in ascending order.

Operation Operands F mode / L mode

@SEQUENCE [rng] : [cl] : CHECK [int]

 1.00 15 LINE 1..
 2.00 20 LINE 2..
 3.00 21 LINE 3..
 4.00 16 LINE 4..
 5.00 18 LINE 5..
 6.00 01 LINE 6..
 7.00 99 LINE 7..
 8.00 97 LINE 8..

sequence & :1: check 2 ...0001.00:001(0)

 4.0000 16 LINE 4
 6.0000 01 LINE 6
 8.0000 97 LINE 8
PLEASE ACKNOWLEDGE

EDT statements @SEQUENCE, format 3

U1884-J-Z125-9-76 441

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Here, only the contents of the first column of line 1 to 4 are to be checked.

The sequence is 1 (line 1), 2 (line 2), 2 (line 3) and 1 (line 4). Note, in particular, that two
lines with the same number are regarded as not being in ascending order, as in line 3 in this
example.

 1.00 15 LINE 1..
 2.00 20 LINE 2..
 3.00 21 LINE 3..
 4.00 16 LINE 4..
 5.00 18 LINE 5..
 6.00 01 LINE 6..
 7.00 99 LINE 7..
 8.00 97 LINE 8..

sequence 1-4 :1: check 1 ...0001.00:001(0)

 3.0000 21 LINE 3
 4.0000 16 LINE 4
PLEASE ACKNOWLEDGE

@SET, formats 1 to 6 EDT statements

442 U1884-J-Z125-9-76

@SET Supply values for EDT variables

@SET consists of 6 formats, offering the following functions:

Assigning values to integer variables (format 1)

– assigns an integer expression to an integer variable
– assigns a printable number as an integer to an integer variable
– assigns the contents of a line number variable as an integer to an integer variable
– assigns the length of a line to an integer variable
– assigns the EBCDI code of a character string to an integer variable

Assigning values to string variables (format 2)

– assigns a string to a string variable
– assigns a line number, the contents of an integer variable or the name of a string

variable to a string variable
– converts the contents of an integer variable into a printable number and places the

result in a string variable
– converts a line number into printable form and stores the result in a string variable
– places the name of a string variable in a string variable

Assigning values to line number variables (format 3)

– assigns a line number to a line number variable
– converts the contents of an integer variable into a line number and assigns this value to

a line number variable
– assigns a printable number as a line number to a line number variable
– assigns the internal representation of a character string to a line number variable

Placing values in lines (format 4)

– places the contents of an integer variable in a line in printable form
– writes the name of a string variable into a line
– converts the contents of a line number variable into printable form and places it in a line

Specifying date and time (format 5)

– places the date or the time of day in a string variable
– places the date or the time of day in a line

Specifying the new current line number and increment (format 6)

– specifies a new current line number and the increment

EDT statements @SET, format 1

U1884-J-Z125-9-76 443

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SET (Format 1) Assigning values to integer variables

This format of @SET is used to

– assign an integer expression to an integer variable.
– assign a printable number as an integer to an integer variable.
– convert the contents of a line number variable into an integer and assign it to the

specified integer variable as a value.
– determine the length of a line and assign it to an integer variable as a value. If the

specified line does not exist, the integer variable is assigned the value 0.
– assign the EBCDI code of a specified character string to an integer variable.

int-var The integer variable (#I0 to #I20) to which a value is to be assigned.

+/– Arithmetical operators for the processing of the specified int values.

int An unsigned integer (e.g. 5, 0 or 17) or one of the integer variables #I0 to
#I20 which is to be assigned (after any specified arithmetical operations
with other int values) to the integer variable int-var. If the arithmetic opera-
tions result in a value that exceeds either of the permissible limits for an
integer variable (231- 1,-231), EDT issues the error message OVERFLOW
ERROR.

... Indicates that several int values, linked by + or –, may be specified. The only
restriction is the maximum line length of 256 characters.

string A character string. This string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

Any blanks in the string are suppressed during conversion.

Operation Operands F mode / L mode / @PROC

@SET

int-var =

[+|–] int [+|– int] [...]
SUBSTR string
ln-var
LENGTH line
STRING string

@SET, format 1 EDT statements

444 U1884-J-Z125-9-76

SUBSTR string
Specifies that EDT is to assign a printable number to an integer variable.
The printable number 17, for example, is assigned as the integer 17.

If “string” does not contain a number, @SET is rejected with an error
message. Any plus or minus sign in the string is taken into account during
conversion. If there is no sign, EDT assumes that the sign is +.

ln-var Specifies one of the 21 line number variables (#L0 to #L20).
The maximum possible value for a line number variable is 9999.9999, the
minimum 0.0001. For conversion into an integer, the contents of the line
number variable are multiplied by 10000 and leading zeros added so that
the resulting number has 10 digits. This is necessary so that the digits after
the decimal point in a line number are taken into account. The line number
1.23 is converted into the integer 12300. After adding leading zeros, the
value 0000012300 is assigned to the integer variable.

LENGTH Specifies that EDT is to place the length of a line in an integer variable.

line The line number of the line whose length is to be placed in the
integer variable (e.g. 15.34 or #S11 or #S11 + #I1).

STRING string
Specifies that EDT is to place the EBCDI code of a string in the form of an
integer in an integer variable.
Example: string = ’1’, internal representation X’F1’, the value assigned to
int-var is thus 241. The EBCDI code of “string” is assigned to the integer
variable. If “string” has less than four characters, leading zeros are placed
in int-var. If “string” has more than four characters, only the first four
characters are used.

EDT statements @SET, format 1

U1884-J-Z125-9-76 445

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 1

Assign an integer expression to an integer variable.

 1. @SET #I0 = -1 -- (01)
 1. @SET #I1 = #I0 + 1001 -- (02)
 1. @SET #I2 = #I1 + #I1 -#I0 + 3 - #I0 -------------------------- (03)
 1. @SET #I3 = #I2 + #I2 + #I2 + #I2 + #I2 ----------------------- (04)
 1. @STATUS = I -- (05)
#I00=-0000000001 #I01= 0000001000 #I02= 0000002005
#I03= 0000010025 #I04= 0000000000 #I05= 0000000000
#I06= 0000000000 #I07= 0000000000 #I08= 0000000000
#I09= 0000000000 #I10= 0000000000 #I11= 0000000000
#I12= 0000000000 #I13= 0000000000 #I14= 0000000000
#I15= 0000000000 #I16= 0000000000 #I17= 0000000000
#I18= 0000000000 #I19= 0000000000 #I20= 0000000000

(01) The value –1 is assigned to the integer variable #I0.

(02) The expression #I0 + 1001 is assigned to #I1. Since #I0 contains –1, #I1 is set to
–1 + 1001, i.e. 1000.

(03) The same integer variable may be specified several times in one expression.

(04) Multiplication can be implemented by adding a variable to itself the required number
of times.

(05) The contents of the integer variables are to be displayed.

Example 2

Assign a printable number as an integer to an integer variable.

 1. @CREATE 2:'AA1234567890BB'
 1. @CREATE #S2: 'AT 16.05 WE GO HOME' ----------------- (01)
 1. @SET #I6 = 3
 1. @SET #L1 = 2
 1. @SET #I7 = SUBSTR X'F0F1F2F3' -------------------------------- (02)
 1. @SET #I8 = SUBSTR B'11110001'*6 ------------------------------ (03)
 1. @SET #I9 = SUBSTR 2:3: --------------------------------------- (04)
 1. @SET #I10 = SUBSTR 2:5-8,4,3,3,3: ---------------------------- (05)
 1. @SET #I11 = SUBSTR #S2: 4-5, 7-8: ---------------------------- (06)
 1. @SET #I12 = SUBSTR '123'*3 ----------------------------------- (07)
 1. @SET #I13 = SUBSTR #S5-#I6:8,8,8,8,8,8,8: -------------------- (08)
 1. @SET #I14 = SUBSTR #L1:3-6,3-6: ------------------------------ (09)
 1. @STATUS = I -- (10)
#I00= 0000000000 #I01= 0000000000 #I02= 0000000000
#I03= 0000000000 #I04= 0000000000 #I05= 0000000000
#I06= 0000000003 #I07= 0000000123 #I08= 0000111111
#I09= 0000000001 #I10= 0034562111 #I11= 0000001605

@SET, format 1 EDT statements

446 U1884-J-Z125-9-76

#I12= 0123123123 #I13= 0005555555 #I14= 0012341234
#I15= 0000000000 #I16= 0000000000 #I17= 0000000000
#I18= 0000000000 #I19= 0000000000 #I20= 0000000000
 1.

(01) Values are placed in line 2, string variable #S2, integer variable #I6 and line
number variable #L1.

(02) X’F0F1F2F3’ is equivalent to the printable number 0123 and this number is
assigned to the integer variable #I7.

(03) B’11110001’*6 is equivalent to X’F1’*6, to ’1’*6 and also to the printable number
111111. This value is placed in #I8.

(04) Column 3 of line 2 contains the printable digit 1 and #I9 is set to this value.

(05) The printable digits in columns 5 to 8, column 4 and column 3 (repeated 3 times) in
line 2, chained together, result in the printable number 34562111 and #I10 is set to
this value.

(06) Columns 4 to 5 and 7 to 8 of string variable #S2 result in the printable number 1605,
which is assigned to integer variable #I11.

(07) ’123’*3 is equivalent to ’123123123’; this number is assigned to #I12.

(08) #I6 contains the value 3, which means that #S5–#I6 addresses string variable #S2.
If the contents of column 8 of string variable #S2 are repeated 7 times, the result is
the number 5555555, which is assigned to #I13.

(09) Line 2 is addressed via line number variable #L1. Columns 3 to 6 of line 2, repeated
twice, result in the printable number 12341234, which is assigned to #I14.

(10) The contents of integer variables #I0 to #I20 are displayed.

EDT statements @SET, format 1

U1884-J-Z125-9-76 447

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 3

Convert the contents of a line number variable into an integer and assign this integer to an
integer variable.

 1. @SET #L0 = 0.0001 --- (01)
 1. @SET #I15 = #L0 -- (02)
 1. @STATUS = #I15 --- (03)
#I15= 0000000001
 1. @SET #L1 = 55.5555 -- (04)
 1. @SET #I16 = #L1 -- (05)
 1. @STATUS = #I16 --- (06)
#I16= 0000555555
 1. @SET #L2 = 9999.9999 -- (07)
 1. @SET #I17 = #L2 -- (08)
 1. @STATUS = #I17 --- (09)
#I17= 0099999999
1.

(01) Line number variable #L0 is set to 0.0001.

(02) Integer variable #I15 is set to the value of #L0 multiplied by 10000, i.e. 1.

(03) The contents of #I15 are displayed.

(04) #L1 is set to 55.5555.

(05) #I16 is set to the value of mL1 multiplied by 10000.

(06) The value of #I16, namely 555555, is displayed.

(07) #L2 is set to 9999.9999.

(08) #I17 is set to 99999999.

(09) The contents of #I17 are displayed.

@SET, format 1 EDT statements

448 U1884-J-Z125-9-76

Example 4

Assign the length of a line to an integer variable.

 1. @CREATE 15.34: 'AB'*23
 1. @PRINT 15.34 ------------ (01)
 15.3400 AB
 1. @SET #I10 = LENGTH 15.34
 1. @STATUS = #I10 ---------------------------------- (02)
#I10= 0000000046
 1. @DELETE 15.34
 1. @SET #I10 = LENGTH 15.34 ---------------------------------- (03)
 1. @STATUS = #I10
#I10= 0000000000

(01) Line 15.34 is created and displayed.

(02) #I10 is set to the length of line 15.34 and its contents are then displayed.

(03) Line 15.34 is deleted.
#I10 is again set to the length of line 15.34 (which has now been deleted) and its
contents are again displayed.

Example 5

Assign the EBCDI code of a character string to an integer variable.

 1. @CREATE 1: '1234567' --------------------------------------- (01)
 1. @CREATE #S5: 'CBA'
 1. @SET #I0 = STRING X'34'
 1. @SET #I1 = STRING 'A'
 1. @SET #I2 = STRING X'7D5'
 1. @SET #I3 = STRING B'00001111' ------------------------------ (02)
 1. @SET #I4 = STRING 1:3,2:
 1. @SET #I5 = STRING #S5:3,3:
 1. @SET #I6 = STRING 1:2-3,1:
 1. @STATUS = I -- (03)
#I00= 0000000052 #I01= 0000000193 #I02= 0000002005
#I03= 0000000015 #I04= 0000062450 #I05= 0000049601
#I06= 0015922161 #I07= 0000000000 #I08= 0000000000
#I09= 0000000000 #I10= 0000000000 #I11= 0000000000
#I12= 0000000000 #I13= 0000000000 #I14= 0000000000
#I15= 0000000000 #I16= 0000000000 #I17= 0000000000
#I18= 0000000000 #I19= 0000000000 #I20= 0000000000

(01) Line 1 and string variable #S5 are created.

(02) The integer variables #I0 to #I6 are set in various ways.

(03) The contents of all integer variables are displayed.

EDT statements @SET, format 2

U1884-J-Z125-9-76 449

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SET (Format 2) Assigning values to string variables

This format of @SET is used to:
– assign a character string to a string variable. The previous value of the string variable

is overwritten, i.e. deleted.
– assign the contents of an integer variable, a line number or the name of a string variable

to a string variable. EDT writes the value to the string variable as it is represented inter-
nally.

– convert the contents of an integer variable into a printable number and place the result
in a string variable starting at a specific column.

– place the printable form of a line number stored in a line number variable in a string
variable starting at a specified column.

– place the name of a string variable in a string variable starting at a specified column.

str-ln Specifies one of the 21 string variables #S0, #S1,..., #S20. The specification may
be direct, i.e. the name of the string variable, or indirect, i.e. a string variable name
plus or minus an offset. The entry #S0 + 3L, for example, is equivalent to #S3, and
#S16–2L is equivalent to #S14. The offset may also be specified as an integer
variable. If, for example, #I12 contains 10, then #S3 + #I12 is equivalent to #S3 +
10L, or #S13.

cl Specifies the column in the string variable starting at which the value is to be written.
The default value for cl is 1.
If a string variable is assigned the contents of an integer variable, the value for cl
must not exceed 246.
If a string variable is assigned the contents of a line number variable, the value for
cl must not exceed 248.
If a string variable is assigned the contents of a string variable, the value for cl must
not exceed 253.

string The string to be assigned to the string variable.
The string may be specified:

Operation Operands F mode / L mode / @PROC

@SET

str-ln

= string

= INTERNAL

[,cl] = CHAR

int-var
ln
str-var

int-var
ln-var
str-var

@SET, format 2 EDT statements

450 U1884-J-Z125-9-76

– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string variable

(in each case with a column range, if required).

int-var
The integer variable (#I0 to #I20) whose contents are to be written into str-ln.

ln A line number (e.g. 5).
The minimum value is 0.0001, the maximum 9999.9999.
ln may also be specified as a line number variable (#L0 to #L20) or symbolically
(e.g. %,$).

ln-var
The line number variable (#L0 to #L20) whose value is to be placed in str-ln. The
maximum possible value of ln-var is 9999.9999, the minimum 0.0001.

str-var
The string variable (#S0 to #S20) whose name is to be placed in str-ln.

INTERNAL
– The value of an integer variable is stored internally as a 4-byte binary number

and this binary number is placed unchanged in the first four bytes of the string
variable. If, for example, an integer variable has the value 359, it actually
contains the corresponding binary number
B’0000 0000 0000 0000 0000 0001 0110 0111’, i.e. X’00 00 01 67’. This is what
is then placed in the first four bytes of the string variable.

– A line number is always kept in a 4-byte field (8 half-bytes). Each half-byte
contains one of the eight digits which form the line number. The contents of this
4-byte field are placed unchanged in the first four bytes of the string variable.
The line number 47.11, for example, is stored internally as X’00471100’ and this
is what is actually placed in the first four bytes of the string variable.

– The name of a string variable is stored internally as four printable characters
and EDT places these characters unchanged in the first four bytes of str-ln. If,
for example, #S1 is specified for the name of the string variable, EDT
writes #S01, or X’7BE2F0F1’, into the first four bytes of str-ln.

CHAR
Specifies that EDT is to
– convert the contents of an integer variable into a printable number and place

this in a string variable. Conversion results in an 11-character printable number,
where the first character is a blank (for a positive number) or a minus sign (for
a negative number).

– convert the line number stored in a line number variable into printable form and
to place it in the form IIII.IIII in string variable str-ln, starting at column cl. In order
to obtain 9 printable characters in all cases, any necessary blanks (nonprintable
zeros) are inserted on the left.

EDT statements @SET, format 2

U1884-J-Z125-9-76 451

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

– place the name of string variable str-var in string variable str-ln, starting at
column cl. The name of str-var is converted to the form #Sdd, where dd lies in
the range 00, 01, ..., 20.

Example 1

Assign a string to a string variable.

 1. @CREATE 1: '-'*40 -- (01)
 1. @SET #S1 = 1
 1. @SET #S2 = '2'
 1. @SET #S3 = '3'*15
 1. @SET #S4 = B'11110000'*20 ---------------------------------- (02)
 1. @SET #S5 = X'F4'*16
 1. @SET #S6 = 'HA'*7
 1. @SET #S7 = #S6:2
 1. @SET #S9-1L = #S1+4L
 1. @SET #I7 = 10 -- (03)
 1. @SET #S19-#I7 = #S18-#I7 ------------------------------------- (04)
 1. @PRINT #S1.-#S9 -- (05)
 #S01 --
 #S02 2
 #S03 333333333333333
 #S04 00000000000000000000
 #S05 4444444444444444
 #S06 HAHAHAHAHAHAHA
 #S07 A
 #S08 4444444444444444
 #S09 4444444444444444

(01) Line 1 is created with 40 ’–’ characters in it.

(02) Values are assigned to string variables #S1 through #S7:
#S1 is set to the contents of line 1.
#S2 is set to ’2’.
#S3 is set to 15 ’3’ characters.
#S4 is set to 20 times B’11110000’, i.e. X’F0’ or character ’0’.
#S5 is set to 16 times the character X’F4’ or character ’4’.
#S6 is set to 7 repetitions of the string ’HA’.
#S7 is set to the contents of column 2 in #S6.
#S9 - 1L, i.e. #S8, is set to the contents of #S1 + 4L, i.e. #S5.

(03) The integer variable #I7 is set to 10.

(04) #S19 - - #I7, i.e. #S19 - 10L (or #S9) is set to the contents of #S18 - #I7, i.e. #S8.

(05) The contents of string variables #S1 through #S9 are displayed.

@SET, format 2 EDT statements

452 U1884-J-Z125-9-76

Example 2

Assign the contents of an integer variable, a line number or the name of a string variable
(internal format) to a string variable.

 1. @SET #I0 = 19 -- (01)
 1. @SET #S0 = INTERNAL #I0 -------------------------------------- (02)
 1. @SET #I1 = -1 -- (03)
 1. @SET #S1 = INTERNAL #I1 -------------------------------------- (04)
 1. @SET #S3 + #I1 = INTERNAL 25.4356 ---------------------------- (05)
 1. @SET #L3 = 2222.2222 --- (06)
 1. @SET #S10 - 7L = INTERNAL #L3 + 11.11 ------------------------ (07)
 1. @78.7878 --- (08)
 78.7878 @SET #S4 = INTERNAL * -- (09)
 78.7878 @SET #S5 = INTERNAL #S0 -------------------------------------- (10)
 78.7878 @SET #S6 = INTERNAL #S19 ------------------------------------- (11)
 78.7878 @PRINT #S0.-#S6 X,#S5,#S6 ------------------------------------ (12)
 #S00 00000013
 #S01 FFFFFFFF
 #S02 00254356
 #S03 22333322
 #S04 00787878
 #S05 7BE2F0F0
 #S06 7BE2F1F9
 #S05 #S00
 #S06 #S19
 78.7878

(01) Integer variable #I0 is set to 19, i.e. X’13’.

(02) #S0 is set to the internal representation of the contents of #I0, i.e. X’00000013’.

(03) #I1 is set to - - 1. In hexadecimal form, this is expressed as X’FFFFFFFF’.

(04) #S1 is set to the internal representation of the contents of #I1.

(05) #S3 + #I1 is equivalent to #S3 - 1L, i.e. #S2. #S2 is thus set to the internal
representation of the contents of line 25.4356.

(06) Line number variable #L3 is set to 2222.2222.

(07) #S10 - 7L is equivalent to #S3, and this string variable is set to the internal
representation of the contents of line #L3 + 11.11, i.e. line 2222.2222 + 11.11 =
2233.3322.

(08) 78.7878 is made the current line number.

(09) #S4 is set to the internal representation of the contents of the current line.

(10) #S5 is set to the internal representation of the contents of string variable #S0.

EDT statements @SET, format 2

U1884-J-Z125-9-76 453

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

(11) #S6 is set to the internal representation of the contents of string variable #S19.

(12) The contents of string variables #S0, ..., #S6 are displayed in hexadecimal form and
the contents of #S5 and #S6 are also displayed in normal text mode.

Example 3

Assign the contents of an integer variable (printable number) to a string variable.

 1. @SET #I0 = 11223344
 1. @SET #I1 = 55667788 --------------------------------------- (01)
 1. @SET #I2 = -99999999
 1. @SET #I3 = 5
 1. @CREATE #S16 : '@'*40 -- (02)
 1. @SET #S16 = CHAR #I0 --- (03)
 1. @SET #S17-1L,14 = CHAR #I1 ----------------------------------- (04)
 1. @SET #S11 + #I3,27 = CHAR #I2 -------------------------------- (05)
 1. @PRINT #S16
 #S16 0011223344@@ 0055667788@@-0099999999@@@ --------------------- (06)

(01) Values are assigned to the integer variables #I0, #I1, #I2 and #I3.

(02) String variable #S16 is set to 40 times the character ’@’.

(03) The integer in #I0 is converted to a printable number and placed in #S16, starting
at column 1.

(04) The integer in #I1 is converted to a printable number and placed in
#S17 - 1L, i.e. in #S16.

(05) Since #I3 = 5, #S11 + #I3 is the same as #S11 + 5L, i.e. #S16. The integer in #I2 is
thus to be converted and placed in #S16, starting at column 27.

(06) The contents of string variable #S16 are displayed.

Example 4

Assign the contents of a integer variable (printable number) to a string variable by means
of a positional operand.

 1. @SET #I5 = 18
 1. @SET #I6 = -27 -- (01)
 1. @SET #I7 = 333333
 1. @PROC 7 -- (02)
 1. @ @PARAMS &INTVAR ---(03)
 2. @ @SET #S0 = CHAR &INTVAR ------------------------------------ (04)
 3. @ @ON #S0:2-2: DELETE '0' ------------------------------------ (05)
 4. @ @IF .TRUE. GOTO 3 ---(06)
 5. @ @CREATE #S1: 'THE CONTENTS OF &INTVAR ARE ',#S0 ------------ (07)
 6. @ @PRINT #S1 N --- (08)

@SET, format 2 EDT statements

454 U1884-J-Z125-9-76

 7. @END --- (09)
 1. @DO 7(#I5) --- (10)
THE CONTENTS OF #I5 ARE 18
 1. @DO 7(#I6) --- (11)
THE CONTENTS OF #I6 ARE -27
 1. @DO 7(#I7) --- (12)
THE CONTENTS OF #I7 ARE 333333

(01) Integer variables #I5, #I6 and #I7 are set to various values.

(02) EDT switches to work file 7.

(03) Positional parameter &INTVAR is defined.

(04) #S0 is set to the printable value of the integer variable specified in the
@DO statement.

(05) Since column 1 of #S0 contains the sign, the leading (printable) zeros start in
column 2. The first of these is deleted.

(06) This loop deletes all leading zeros, one at a time.

(07) If there are no further leading zeros, string variable #S1 is created.

(08) #S1 is displayed without a line number.

(09) EDT returns to work file 0.

(10) The procedure in work file 7 is executed, with integer variable #I5 specified as the
parameter.

(11) This time, #I6 is passed as the parameter.

(12) Finally, #I7 is passed as the parameter.

Example 5

Assign the line number (printable number) stored in a line number variable to a string
variable.

 1. @SET #I0 = 6
 1. @SET #I1 = 28
 1. @SET #L0 = 0.0045 -------------------------------------- (01)
 1. @SET #L1 = 9999.9999
 1. @SET #L2 = 55.55
 1. @CREATE #S5 : '*'*40 --- (02)
 1. @SET #S5,3 = CHAR #L0 -- (03)
 1. @SET #S3+2L,15 = CHAR #L1 ------------------------------------ (04)
 1. @SET #S11-#I0,#I1 = CHAR #L2 --------------------------------- (05)
 1. @PRINT #S5 --- (06)
 #S05 ** 0.0045***9999.9999**** 55.5500****

EDT statements @SET, format 2

U1884-J-Z125-9-76 455

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

(01) Integer variables #I0 and #I1 and the line number variables #L0, #L1 and #L2 are
set to various values.

(02) #S5 is created and consists of 40 ’*’ characters.

(03) The printable form of the line number stored in #L0 is placed in #S5, starting at
column 3.

(04) #S3 + 2L again addresses #S5 and the printable form of the line number in #L1 is
thus placed in #S5, starting at column 15.

(05) #S11 - #I0 is equivalent to #S11 - 6L, which in turn is the same as #S5. The printable
form of the line number in #L2 is thus placed in #S5, starting at column 28.

(06) The contents of string variable #S5 are displayed.

Example 6

Assign the name of a string variable to a string variable.

 1. @SET #I0 = 19
 1. @SET #S0 = INTERNAL #I0
 1. @PRINT #S0 X
 #S00 00000013 ------------------- (01)
 1. @SET #S3 = '*'*40
 1. @PRINT #S3
 #S03 **
 1. @SET #S3 , 10 = CHAR #S0
 1. @PRINT #S3 ------------------- (02)
 #S03 *********#S00***************************

(01) Integer variable #I0 and string variables #S0 and #S3 are set to various values and
displayed.

(02) @SET, format 2, converts the name of #S0 to #S00 and places this new name in
#S3, starting at column 10. #S3 is then displayed.

Example 7

Assign the name of a string variable to a string variable by means of positional and keyword
parameters.

 1. @CREATE #S18 : '-'*40 -- (01)
 1. @PRINT #S18
 #S18 -- --------------------- (02)
 1. @PROC 7 -- (03)
 1. @ @PARAMS &STRVAR1,&STRVAR2,&COLUMN=1 ------------------------ (04)
 2. @ @SET &STRVAR1,&COLUMN = CHAR &STRVAR2 ---------------------- (05)
 3. @ @PRINT &STRVAR1 -- (06)
 4. @END --- (07)
 1. @DO 7(#S18,#S16) --- (08)

@SET, format 2 EDT statements

456 U1884-J-Z125-9-76

 #S18 #S16------------------------------------
 1. @DO 7(#S17+1L,#S20,COLUMN=20) -------------------------------- (09)
 #S18 #S16---------------#S20-----------------
 1. @DO 7(#S18,#S18,COLUMN=14) ----------------------------------- (10)
 #S18 #S16---------#S18--#S20-----------------
 1. @SET#I12 = 26 -- (11)
 1. @SET#I13 = 12
 1. @DO 7(#S6+#I13,#S0,COLUMN=#I12) ------------------------------ (12)
 #S18 #S16---------#S18--#S20--#S00-----------

(01) String variable #S18 contains 40 ’–’ characters.

(02) The contents of #S18 are displayed.

(03) EDT switches to work file 7.

(04) Two positional parameters (&STRVAR1 and &STRVAR2) and one keyword
parameter (&COLUMN) are defined.

(05) When the procedure is executed, @SET format 18 is used. The values for the
parameters must be specified in the @D0 7 statement.

(06) This displays the contents of a string variable.

(07) EDT returns to work file 0.

(08) The statements of the procedure in work file 7 are executed, with &STRVAR1 being
replaced by #S18 and &STRVAR2 by #S16. The default value (preset to 1) is used
for &COLUMN.

(09) #S17 + 1L addresses string variable #S18 and the value 20 is specified for keyword
parameter &COLUMN.

(10) Note, in this case, that the two positional parameters have the same value. This
means that the name of the string variable itself is placed in the string variable.

(11) #I12 and #I13 are set to the specified values.

(12) #S6 + #I13 is equivalent to #S6 + 12L, i.e. #S18. The integer variable #I12 is used
for keyword parameter &COLUMN.

EDT statements @SET, format 3

U1884-J-Z125-9-76 457

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SET (Format 3) Assigning values to line number variables

This format of @SET is used to

– assign a line number to a line number variable.
– convert the integer value in an integer variable into a line number and assign it to a line

number variable.
– assign a printable number as a line number to a line number variable.
– assign the internal representation of a string to a line number variable. This internal

representation consists of 8 hexadecimal digits. It is assumed that the decimal point of
the line number lies between the 4th and 5th digit.

ln-var The line number variable (#L0 to #L20) to which a value is to be
assigned. The maximum possible value of ln-var is 9999.9999, the
minimum 0.0001.

ln A line number (e.g. 5). The minimum possible value is 0.0001, the maximum
9999.9999.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %,$).

int-var The integer variable (#I0 to #I20) whose contents are to be converted and
assigned to ln-var. The permissible value range for int-var is 1 to 99999999,
resulting in the line numbers 0.0001 to 9999.9999. For conversion, the
integer is divided by 10000 and the result is assigned to the line number
variable. This is necessary in order to permit any possible line number to be
generated.

string A character string.
The string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

SUBSTR string
Specifies that EDT is to assign a printable number to the specified line
number variable. “string” must be a printable number greater than ’0’.

Operation Operands F mode / L mode / @PROC

@SET

ln-var =

ln
int-var

SUBSTR string
STRING string

@SET, format 3 EDT statements

458 U1884-J-Z125-9-76

STRING string
Specifies that EDT is to interpret the internal representation of a string as a
line number. The EBCDIC code of “string” is assigned to the line number
variable. “string” may contain only characters whose EBCDIC codes consist
exclusively of digits. If “string” has less than four characters, leading zeros
are inserted. If “string” has more than four characters, only the first four
characters are used.

If integer variables are used within operand ln, it should be noted that, for example,
the expression #L5 = #L6 + #I7 does not form the sum of the values of #L6 and #I7.
Instead, the result in #L5 will point to the line which is #I7 lines after the line
specified in #L6. If, for example, #I7 contains the value 7, #L5 = #L6 + #I7 is equiv-
alent to #L5 = #L6 + 7L.

Example 1

Assign a line number to a line number variable.

 1. @DELETE
 1. @1:AAAAA
 2. @C1-10 TO 2.5 (0.5)
 11.5 @PRINT
 1.0000 AAAAA
 2.5000 AAAAA
 3.0000 AAAAA
 3.5000 AAAAA
 4.0000 AAAAA
 4.5000 AAAAA
 5.0000 AAAAA
 5.5000 AAAAA
 6.0000 AAAAA --------------------------------------- (01)
 6.5000 AAAAA
 7.0000 AAAAA
 7.5000 AAAAA
 8.0000 AAAAA
 8.5000 AAAAA
 9.0000 AAAAA
 9.5000 AAAAA
 10.0000 AAAAA
 10.5000 AAAAA
 11.5 @SET #I10 = 4
 11.5 @SET #I11 = 7
 11.5 @SET #L0 = 1 --- (02)
 11.5 @SET #L1 = #L0 + #L0 --- (03)
 11.5 @SET #L2 = % --- (04)
 11.5 @SET #L3 = #L2 + 1 --- (05)

i

EDT statements @SET, format 3

U1884-J-Z125-9-76 459

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

 11.5 @SET #L4 = #L2 + 1L -- (06)
 11.5 @SET #L5 = #L3 + #L4 --- (07)
 11.5 @SET #L6 = #L4 + #I11 -- (08)
 11.5 @SET #L7 = #L6 - #I10 -- (09)
 11.5 @SET #L8 = $-2L -- (10)
 11.5 @SET #L9 = $+$ --- (11)
 11.5 @SET #L10 = $-% -- (12)
 11.5 @STATUS = L -- (13)
#L00= 1.0000 #L01= 2.0000 #L02= 1.0000
#L03= 2.0000 #L04= 2.5000 #L05= 4.5000
#L06= 6.0000 #L07= 4.0000 #L08= 9.5000
#L09= 21.0000 #L10= 9.5000 #L11= 0.0000
#L12= 0.0000 #L13= 0.0000 #L14= 0.0000
#L15= 0.0000 #L16= 0.0000 #L17= 0.0000
#L18= 0.0000 #L19= 0.0000 #L20= 0.0000

(01) Several lines are created in the virtual file and values are assigned to integer
variables #I10 and #I11.

(02) #L0 is set to 1.

(03) #L1 is set to #L0 + #L0, i.e. 1 + 1 = 2.

(04) #L2 is set equal to the first existing line number, i.e. 1.

(05) #L3 is set to #L2 + 1, i.e. 1 + 1 = 2.

(06) #L4 is set to #L2 + 1L, thus addressing the line number after the one specified in
#L2. Since #L2 has the value 1, and the line following line 1 has the line number 2.5,
#L4 is set to 2.5.

(07) #L5 is set to the sum of #L3 and #L4 and is thus 2 + 2.5 = 4.5.

(08) #L6 is set to #L4 + #I11.
This is not the sum of 2.5 and 7, but is equivalent to the expression
#L4 + 7L, or the 7th line number after line #L4. Since #L4 = 2.5, #L6 is set to 6.

(09) As in (08), #L7 is set to #L6 - #I10, which is equivalent to #L6 - 4L, i.e. 4.

(10) #L8 is set to the number of the third line from the end of the file, since $ refers to the
last line, $–1L the one before the last and $–2L the third line from the end. #L8 is
thus set to 9.5.

(11) #L9 is set to $ + $ - i.e. 10.5 + 10.5 = 21.

(12) #L10 is set to $ - % = 10.5 - 1 = 9.5.

(13) The values of the line number variables are displayed.

@SET, format 3 EDT statements

460 U1884-J-Z125-9-76

Example 2

Assign the contents of an integer value as a line number to a line number variable.

 1. @SET #I0 = 1
 1. @SET #L0 = #I0 --- (01)
 1. @STATUS = #L0
#L00= 0.0001
 1. @SET #I1 = 20000
 1. @SET #L1 = #I1 --- (02)
 1. @STATUS = #L1
#L01= 2.0000
 1. @SET #I2 = 12345678
 1. @SET #L2 = #I2 -- (03)
 1. @STATUS = #L2
#L02=1234.5678
 1.

(01) #I0 is set to 1.
#L0 is set to #I0/10000, i.e. 0.0001 and its contents are displayed.

(02) #I1 is set to 20000.
#L1 is set to #I1/10000, i.e. 2.0000 and its contents are displayed.

(03) #I2 is set to 12345678.
#L2 is set to #I2/10000, i.e. 1234.5678 and its contents are displayed.

EDT statements @SET, format 3

U1884-J-Z125-9-76 461

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 3

Assign a printable number as a line number to a line number variable.

 1. @CREATE 1: 'ABC1.23.4.5.67' ---------------------------------- (01)
 1. @CREATE #S0: ' .5'
 1. @SET #L0 = SUBSTR X'F1F2F3' ---------------------------------- (02)
 1. @SET #L1 = SUBSTR '123.456' ---------------------------------- (03)
 1. @SET #L2 = SUBSTR B'11110111'*4 ------------------------------ (04)
 1. @SET #L3 = SUBSTR 1:11-13,6-7: ------------------------------- (05)
 1. @SET #L4 = SUBSTR #S0 -- (06)
 1. @SET #L5 = SUBSTR '9'*3 -------------------------------------- (07)
 1. @STATUS = L -- (08)
#L00= 123.0000 #L01= 123.4560 #L02=7777.0000
#L03= 5.6230 #L04= 0.5000 #L05= 999.0000
#L06= 0.0000 #L07= 0.0000 #L08= 0.0000
#L09= 0.0000 #L10= 0.0000 #L11= 0.0000
#L12= 0.0000 #L13= 0.0000 #L14= 0.0000
#L15= 0.0000 #L16= 0.0000 #L17= 0.0000
#L18= 0.0000 #L19= 0.0000 #L20= 0.0000
 1.

(01) Line 1 and string variable #S0 are created.

(02) X’F1F2F3’ is identical to the printable string ’123’. This number is assigned to #L0.

(03) #L1 is set to 123.4560.

(04) B’11110111’*4 is equivalent to X’F7’*4, i.e. ’7777’; #L2 is thus set to 7777.0000.

(05) Columns 11, 12, 13, 6, 7 (in this order) of line 1 result in the value ’5.623’; #L3 is
thus set to 5.6230.

(06) #S0 contains ’.5’. Since blanks are ignored when converting, #L4 is set to 0.5000.

(07) ’9’*3 is equivalent to ’999’ and #L5 is set to 999.0000.

(08) The values of all line number variables are displayed.

@SET, format 3 EDT statements

462 U1884-J-Z125-9-76

Example 4

Assign the internal representation of a character string as a line number to a line number
variable.

 1. @CREATE 1: X'01020304050607' --------------------------------- (01)
 1. @CREATE #S0: B'01111001'*20 ---------------------------------- (02)
 1. @SET #L0 = STRING X'34' -------------------------------------- (03)
 1. @SET #L1 = STRING B'00000110' -------------------------------- (04)
 1. @SET #L2 = STRING ' '*2 -------------------------------------- (05)
 1. @SET #L3 = STRING 1:5,4: ------------------------------------- (06)
 1. @SET #L4 = STRING 1:1-2,2-4: --------------------------------- (07)
 1. @SET #L5 = STRING #S0:6: ------------------------------------- (08)
 1. @STATUS = L -- (09)
#L00= 0.0034 #L01= 0.0006 #L02= 0.4040
#L03= 0.0504 #L04= 102.0203 #L05= 0.0079
#L06= 0.0000 #L07= 0.0000 #L08= 0.0000
#L09= 0.0000 #L10= 0.0000 #L11= 0.0000
#L12= 0.0000 #L13= 0.0000 #L14= 0.0000
#L15= 0.0000 #L16= 0.0000 #L17= 0.0000
#L18= 0.0000 #L19= 0.0000 #L20= 0.0000
 1.

(01) Line 1 is created with a 7-character (nonprintable) string.

(02) String variable #S0 consists of 20 repetitions of the nonprintable character X’79’.

(03) #L0 is set to line number 0.0034.

(04) #L1 is set to line number 0.0006 since B’00000110’ = X’06’.

(05) #L2 is set to line number 0.4040 since ’ ’*2 = X’40’*2 = X’4040’.

(06) Since columns 5 and 4 of line 1 contain X’05’ and X’04’, #L3 is set to 0.0504.

(07) Columns 1, 2, 2, 3, 4 (in this order) of line 1 form the value X’0102020304’. Since
not more than four columns are used to form the contents of #L4, the last column
(4) is ignored and #L4 is set to 102.0203.

(08) Column 6 of #S0 contains B’01111001’, i.e. X’79’ and #L5 is thus set to 0.0079.

(09) The values of all line number variables are displayed.

EDT statements @SET, format 4

U1884-J-Z125-9-76 463

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SET (Format 4) Placing values in lines

This format of @SET is used to

– convert the contents of an integer variable into printable form and place the result in the
line specified by the line number variable.

– write the name of a string variable into a line, starting at a specified column. The number
is specified by means of a line number variable.

– convert the contents of a line number variable into printable form and place the result in
a line addressed by a second line number variable.

ln-var A line number variable (#L0 to #L20) which specifies the line where EDT is
to write the contents of int-var, str-var or ln-var1 in printable form. The
maximum possible value of ln-var is 9999.9999, the minimum 0.0001.

cl Specifies the column in the line starting at which the value is to be written.
The default value for cl is 1.

If cl > 1 is specified, the columns from the beginning of the line up to cl-1 are
filled with blanks.
– If an integer is written to a line, the value for cl must not exceed 246.
– If the name of a string variable is written to a line, the value for cl must

not exceed 253.
– If the value of a line number variable is written to a line, the value for cl

must not exceed 248.

CHAR int-var Specifies that EDT is to convert the value in int-var into printable form and
place it, starting at column cl, in the line specified by ln-var. int-var is an
integer variable (#I0 to #I20). Conversion of the integer variable results in a
printable number with 11 characters: the first character is the sign of the
number and the remaining characters are the digits of the number. The sign
for a non-negative number is a blank, that for a negative number a minus
sign (–). Since 11 characters are generated in all cases, the positions after
the sign are filled, if necessary, with printable leading zeros.

Operation Operands F mode / L mode / @PROC

@SET
ln-var [,cl] = CHAR

int-var
str-var
ln-var1

@SET, format 4 EDT statements

464 U1884-J-Z125-9-76

CHAR str-var Specifies that EDT is to write the name of a string variable into a specified
line.
str-var is one of the 21 string variables (#S0 to #S20). EDT writes this name
into the line specified by ln-var. The name of the string variable is converted
to the form #Sdd, where dd lies in the range 00, 01, ..., 20.

CHAR ln-var1 Specifies that EDT is to convert the contents of the line number variable ln-
var1 into printable form and to write the result into a specified line.
ln-var1 is a line number variable (#L0 to #L20) whose contents are to be
placed in the specified line. Conversion of the value of a line number
variable always results in 9 printable characters in the form IIII.IIII where
each I represents a printable digit. Leading zeros are replaced by blanks.

Example 1

Place the contents of an integer variable in the line specified by means of a line number
variable.

 1. @SET #I18 = 1234 --- (01)
 1. @SET #I19 = 5678
 1. @SET #I20 = #I18 + #I19
 1. @CREATE 5: 'XXXXXXXXXXX PLUS YYYYYYYYYYY IS ZZZZZZZZZZZ'
 1. @SET #L18 = 5
 1. @SET #L18 = CHAR #I18 -- (02)
 1. @PRINT 5
 5.0000 0000001234 PLUS YYYYYYYYYYY IS ZZZZZZZZZZZ
 1. @SET #L18,17 = CHAR #I18 ------------------------------------- (03)
 1. @PRINT 5
 5.0000 0000001234 PLUS 0000001234Y IS ZZZZZZZZZZZ
 1. @SET #L18,18 = CHAR #I19
 1. @PRINT 5
 5.0000 0000001234 PLUS 0000005678 IS ZZZZZZZZZZZ
 1. @SET #L18,33 = CHAR #I20 ------------------------------------- (04)
 1. @PRINT 5
 5.0000 0000001234 PLUS 0000005678 IS 0000006912
 1.

(01) Integer variables #I18, #I19 and #I20 and line number variable #L18 are provided
with values and line 5 is created.

(02) The number in #I18 is converted to printable form and placed in the line addressed
by #L18, starting at column 1.

(03) The number in #I18 is converted to printable form and placed in the line addressed
by #L18, starting at column 17.

(04) Finally, the number in #I20 is converted to printable form and placed in the line
addressed by #L18, starting at column 33.

EDT statements @SET, format 4

U1884-J-Z125-9-76 465

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 2

Place the name of a string variable in the line specified by means of a line number variable.

 1. @SET #L1 = 666.66 -- (01)
 1. @SET #L1 = CHAR #S20 --- (02)
 1. @PRINT #L1
 666.6600 #S20
 1. @SET #L1,30 = CHAR #S13 -------------------------------------- (03)
 1. @SET #L1,15 = CHAR #S7 --------------------------------------- (04)
 1. @PRINT #L1
 666.6600 #S20 #S07 #S13
 1.

(01) #L1 is set to 666.6600.

(02) The new line 666.6600 is created and the text ’#S20’ is written into it, starting at
column 1.

(03) The characters ’#S13’ are to be stored in the line addressed by #L1, starting at
column 30.

(04) The internal representation of the line number of #S7 is ’#S07’, and this string is
placed in line 666.66, starting at column 15.

Example 3

Place the contents of a line number variable (ln-var2) in the line specified by means of a line
number variable (ln-var1).

 1. @DELETE
 1. @SET #L3 = 57.45 ¸ --- (01)
 1. @SET #L4 =99.99 Õ
 1. @SET #L3 = CHAR #L4 -- (02)
 1. @PRINT
 57.4500 99.9900
 1. @SET #L3,20 = CHAR #L3 --------------------------------------- (03)
 1. @PRINT
 57.4500 99.9900 57.4500
 1.

(01) Values are assigned to the line number variables #L3 and #L4.

(02) EDT writes the contents of #L4 in printable form in a line which did not previously
exist, starting at column 1.

(03) EDT writes the contents of #L3 in printable form in an existing line, starting at
column 20. Note that, as in this case, ln-var1 and ln-var2 may be the same.

@SET, format 5 EDT statements

466 U1884-J-Z125-9-76

@SET (Format 5) Specifying date and time

This format of @SET is used to

– place either the date or the time of day in a string variable, starting at a specified
column.

– place either the date or the time of day in the line whose number is specified in the line
number variable.

str-ln Specifies one of the 21 string variables #S0, #S1,..., #S20. The specification
may be direct, i.e. the name of the string variable, or indirect, i.e. a string
variable name plus or minus an offset. The entry #S0 + 3L, for example, is
equivalent to #S3, and #S16–2L is equivalent to #S14. The offset may also
be specified as an integer variable. If, for example, #I12 contains 10, then
#S3 + #I12 is equivalent to #S3 + 10L, or #S13.

ln-var A line number variable (#L0 to #L20) which specifies the line into which EDT
is to write the date or time. The maximum possible value for ln-var is
9999.9999, the minimum 0.0001.

cl The column starting at which the date or time is to be placed.
The default column is 1.
The value for cl must not exceed 246 or 251, respectively.

DATE Specifies that EDT is to write the date in the specified string variable or line,
as appropriate. If ISO is not specified, EDT writes the date in the format mm/
dd/yyjjj, where mm is the month, dd is the day of the month, yy is the year
and jjj is the day of the year.

ISO Specifies that EDT is to write the date in the format yy-mm-ddjjj.

ISO4 Specifies that EDT is to write the date in the format yyyy-mm-ddjjj.

TIME Specifies that EDT is to write the time in the specified string variable or line,
as appropriate. EDT writes the time in the format hhmmss, where hh is the
hours, mm is the minutes, and ss is the seconds.

Operation Operands F mode / L mode / @PROC

@SET
 [,cl] =

str-ln

ln-var

DATE [ISO[4]]

TIME

EDT statements @SET, format 5

U1884-J-Z125-9-76 467

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 1

Place the date in the form mm/dd/yyjjj and the time in the form hhmmss in a string variable.

 1. @PROC 3 -- (01)
 1. @ @DELETE #S0.-.#S4 -- (02)
 2. @ @SET #S0 = DATE -- (03)
 3. @ @SET #S1 = TIME -- (04)
 4. @ @CREATE #S2: '*'*10, ' THE DATE IS ',#S0:4-5: -------------- (05)
 5. @ @CREATE #S2: #S2,'.',#S0:1-2:,'.',#S0:7-8:,' ','*'*11
 6. @ @CREATE #S3: '*'*15,' THE TIME IS ','*'*16
 7. @ @CREATE #S4: '***** ',#S1:1-2:,' HOURS ',#S1:3-4:,' MINUTES AND '
 8. @ @CREATE #S4: #S4,#S1:5-6:,' SECONDS *****'
 9. @ @PRINT #S2.-.#S4N -- (06)
 10. @END --- (07)
 1. @DO 3
************ THE DATE IS 29.09.90 ************ ------------------------- (08)
**************** THE TIME IS *****************
***** 14 HOURS 25 MINUTES AND 14 SECONDS *****

(01) EDT switches to work file 3.

(02) The contents of string variables #S0, #S1, #S2, #S3 and #S4 will be deleted at this
point in the procedure, i.e. each will contain precisely one blank.

(03) The date is placed in #S0, starting at column 1.

(04) The time is placed in #S1, starting at column 1.

(05) String variables #S2, #S3 and #S4 are used to set up the date and the time with the
appropriate texts.

(06) When procedure file 3 is executed, the contents of string variables #S2, #S3 and
#S4 will be displayed at this point.

(07) EDT returns to work file 0.

(08) When the procedure in work file 3 is executed, the date and time will be displayed,
accurate to the nearest second.

@SET, format 5 EDT statements

468 U1884-J-Z125-9-76

Example 2

Place the date in the form yyyy-mm-ddjjj in a line specified by means of a line number
variable.

 1. @CREATE 2.5: '-'*40 -- (01)
 1. @SET #L13 = 2.5 -- (02)
 1. @SET #L13,15 = DATE ISO4 ------------------------------------- (03)
 1. @PRINT 2.5
 2.5000 --------------1992-05-05126----------------------------------- (04)
 1.

(01) Line 2.5 is created.

(02) Line number variable #L13 is set to 2.5.

(03) The date is to be placed in the line addressed by #L13, starting at column 15.

(04) Line 2.5 is displayed.

EDT statements @SET, format 6

U1884-J-Z125-9-76 469

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SET Specify new current line number and increment

@SET (Format 6)

This format of @SET is used to specify a new current line number and a new current
increment. It is also possible to specify an input text for EDT.

The keyword “S[ET]” must always be specified in F mode. @ln entered without “SET” will
be rejected with an error message.

ln The new current line number (e.g. 5).
The minimum value is 0.0001, the maximum 9999.9999. If no value is
specified for inc, ln also implicitly defines the new current increment, e.g. 5
defines an increment of 1 and 5.0 defines an increment of 0.1.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %, $).

inc The new current increment value.
The minimum value is 0.0001, the maximum 9999.9999. If ln and inc are
omitted, the increment is 1.

text Any character string.
If the first non-blank character in this string is

1. not the EDT statement symbol or user escape symbol, then any blanks
following the : are regarded as part of the text. The following processing
guidelines apply:

– "text" is placed at the beginning of line ln
– any tab characters are interpreted
– the current line number is incremented by the current

increment value.

2. the EDT statement symbol, then any blanks following the : are ignored.
If the next character is

– not the EDT statement symbol, then "text" is interpreted as an
EDT statement and executed immediately

– the EDT statement symbol, then "text" is treated as a text line as
described in 1), above.

3. the user escape symbol, then the external statement routine is executed
(see @USE).

Operation Operands F mode / L mode

@SET ln [(inc)] [:text]

@SET, format 6 EDT statements

470 U1884-J-Z125-9-76

Unlike @ (q.v.), @SET does not create a new stack entry.

Example

Line 105 is to be created. Since the text after the colon does not begin with @, it is stored
as the contents of line 105.

The work file is to be deleted and the file XMPL.TXT is to be read in, starting at line 105 and
with an increment of 0.3. @LOWER ON causes the lowercase letters in the file to be
displayed correctly.

 23.00 ..
set 105(0.3):read 'xmpl.text'.....................................0000.00:001(1)

 105.00 READ 'XMPL.TEXT'..
 106.00 ..

delete ; lower on ; set 105(0.3):@read 'xmpl.text'................0105.00:001(1)

 105.00 @SET defines a new current line number and a new current increment......
 105.30 A text input for EDT may also be specified. This input may be an........
 105.60 EDT statement, which is then executed immediately. The input may........
 105.90 also be any other string, which then becomes the contents of the........
 106.20 specified new line. After this, the current line number is..............
 106.50 incremented by the current increment value..............................
 107.80 ..

EDT statements @SETF

U1884-J-Z125-9-76 471

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SETF Position window

@SETF is used

– to switch to another work file or

– to position the window vertically or horizontally:
– in the current work file
– in any work file (0 to 9) without leaving the current work file
– in any work file and switch to this work file
– in all work files (0 to 9) at the same time.

is permissible only in F mode. At least one operand must be specified.

fwkfv A work file variable ($0..$9) which specifies the work file to be
positioned. The current work file remains unchanged.

fwkfnr The work file (0..9) which is to be positioned. Before this is done, EDT
switches to this work file.
If only (wkflno) is specified, EDT simply switches to this work file, which
becomes the current work file.

GLOBAL All 10 work files (0 to 9) are positioned at the same time. In @DO and
@INPUT procedures, @SETF GLOBAL is rejected with an error message.

vpos The new (relative) vertical position. This may be specified as +[n], ++,– –[n],
– – or as +([m,..]), ++([m,..]), –([m,..]) and – –([m,..]).
m is one of the 9 possible record marks to which the cursor is to be
positioned. More than one record mark can be specified.
Marks with special functions (e.g. mark 15 for write protection) are not
evaluated here.

cl The new (absolute) horizontal position, i.e. the number of the column which
is to be displayed as the first column of the work file in the window.
Values between 1 and 256 are permitted.

hpos The new (relative) horizontal position.This may be specified as >[n], <[n] or
<<.

Operation Operands F mode / L mode

@SETF
[] [] []

fwkfv
GLOBAL
(fwkfnr)

ln

vpos

:cl:

hpos

@SETF EDT statements

472 U1884-J-Z125-9-76

If only the first operand is specified, then

@SETF (fwkfnr) simply switches to the new work file; previous work files are first
terminated;

@SETF fwkfv positions the specified work file to line 1, column 1;

@SETF positions the current work file to line 1, column 1;

@SETF GLOBAL positions all work files to line 1, column 1.

In procedures (@DO and @INPUT procedures), the window can be positioned with
@SETF ? after an @ON statement.

The previous operands FIRST and LAST must be replaced by the symbolic line numbers
% and $, respectively.

Example

EDT is to position the work window to line 7, column 3 in work file 1.

 23.00 ..
setf (1) 7 :3: ...0000.00:001(2)

 7.00 @SETF is used...
 8.00 ...
 9.00 1. to switch to another work file or....................................
 10.00 ...
 11.00 2. to position the window vertically or horizontally:...................
 12.00 ...
 13.00 - in the current work file,..
 14.00 - in any work file (0 to 9) without leaving the current work file,.
 15.00 - in any work file and switch to this work file,...................
 16.00 - in all work files (0 to 9) at the same time......................
 17.00 ...

EDT statements @SETJV

U1884-J-Z125-9-76 473

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SETJV Catalog job variable and assign value

@SETJV can be used to:

– enter a job variable in the catalog
– assign a value to a job variable.

If the subsystem "job variable support" is not installed, this statement is rejected with an
error message.

string1 Character string specifying a fully qualified job variable name. If the job
variable has not yet been entered in the catalog, it is cataloged via the
standard functions of the DCLJV macro.
string1 can be specified:
– explicitly as a character string in single quotes
– implicitly via a line number, a line number variable (#L0-#L20) or a string

variable (#S0-#S20), with the appropriate column range in each case.
The job variable is assigned the link name *EDTLINK and can be
addressed via this name.
If string1 is not specified, the job variable is addressed via the link name
*EDTLINK. In this case, string2 must be specified.

string2[,...] Character string to be assigned as a value to the job variable.
The length of the job variable value is determined by the length of the edited
character string. If the edited string contains more than 256 characters, only
the first 256 characters are assigned as the value. EDT then outputs an
error message.
If string2 is specified more than once, chaining takes place in the specified
order. string2 can be specified:
– explicitly as a string in single quotes
– implicitly via a line number, a line number variable (#L0-#L20) or a string

variable (#S0-#S20), with the appropriate column range in each case.

Tab characters are not processed by @SETJV.

Example: see the example for @STAJV

Operation Operands F mode / L mode

@SETJV [string1] = string2 [,...]

string1

@SETLIST EDT statements

474 U1884-J-Z125-9-76

@SETLIST Extend list variable

@SETLIST can be used to

– delete a list (/FREE-VAR)
– add an individual element to a list
– add all the data lines in a line range to a list
– add the marked data lines in a line range to a list.

string A character string specifying the name of the list variable.
string can be entered
– explicitly, i.e. as a character string enclosed in single quotes, or
– implicitly, i.e. by means of a line number, a line-number variable or a string

variable (each can be specified with a column range).

range*
A range of lines consisting of:
– one or more line numbers separated in each case by a comma (e.g. 4,6,15)
– one or more line ranges separated in each case by a comma (e.g. 5-10,17-19)
– a combination of individual lines and line ranges (e.g. 4,7-23,8,15-30))

A range of lines can also be specified by means of the current line-range symbol
(see @RANGE), symbolic line numbers (e.g. %,$) or line-number variables.
It is not permissible to specify string variables.

If no line range is specified, the statement acts on all of the lines in the current work
file.

MARK
The statement is to act only on the marked lines of the specified line range.

m m = 1,...,9
Number of the record mark which is to be used as a criterion for selecting lines. If
m is not specified, the statement acts only on lines marked with 1.

str-var Name of a string variable containing a string which is to be added as an element.

col One or more columns or column ranges
Column and column-range entries may overlap and/or occur multiple times.
If no entry is specified for this operand, the statement acts on the entire line.

Operation Operands F mode / L mode

@SETLIST
string [:col:][,]

[MODE=APPEND | PREFIX | OVERWRITE]

[range*] [MARK [m]]

str-var

EDT statements @SETLIST

U1884-J-Z125-9-76 475

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

MODE
Specifies how the list is to be extended.

=PREFIX
Adds the strings to the beginning of the list, i.e. the strings are inserted one after
another as elements in front of the first element.
If the file is empty or there are no lines in the specified line range, EDT issues the
message % EDT2903 FILE IS EMPTY.

=APPEND
Adds the strings to the end of the list, i.e. the strings are inserted as elements after
the last element.
If the file is empty or there are no lines in the specified line range, EDT issues the
message % EDT2903 FILE IS EMPTY.

=OVERWRITE
A /FREE-VARIABLE is executed before the write operation is performed. The
elements are then appended one after another in the same way as with APPEND.
If the file is empty or there are no lines in the specified line range, only
/FREE-VARIABLE is executed, and message % EDT0211 (FREE-VARIABBLE
COMMAND PROCESSED FOR S-VARIABLE) is issued in F mode.

If the MODE operand is not specified, MODE=APPEND is assumed.
If, apart from a list name or some range specification, no other operands are specified, it is
necessary to enter a comma in front of the MODE operand to distinguish it from MARK as
in, for example, @SETLIST 'LISTE',M=O.
The list variable must be declared beforehand with
/DECLARE-VARIABLE chars, MULTIPLE-ELEMENTS=LIST and TYPE=STRING or
TYPE=ANY.
The length of a newly added list element is detemined by the number of line or string-
variable characters specified in the column range.
If the line or string variable is shorter than the column entry, it is padded with blanks.
If no column range is specified, the element length is determined by the length of the line
or the string variable.
Line and column numbers may occur multiple times in range* or col entries, which results
in those lines or columns being read in multiple times.

Assignment of line numbers

Line numbers are assigned without regard to the current line number and current increment.
In an empty work file, the current line number and current increment are 1 by default. Both
values can be changed with @SET ln (inc) (see @SET, format 6).

@SETSW EDT statements

476 U1884-J-Z125-9-76

@SETSW Set switches

@SETSW is used to set or reset user and task switches.

ON = The specified switches are to be set.

OFF = The specified switches are to be reset.

int1 The switch which is to be set or reset. This must be an integer in the range
0 through 31 or a integer variable (#I0-#I20).

If the parameter U is specified before int1, the entry refers to a user switch
of the user’s own user ID, otherwise it refers to a task switch.

int2 All switches between int1 and int2 are to be set or reset. int2 must be an
integer in the range 0 through 31 or an integer variable (#I0-#I20). The type
of switch depends on what is specified for int1.

@SETSW is used mainly in EDT procedures. @IF, format 4, can be used to check whether
or not a task switch or a user switch of the user’s own ID has been set.

It is possible to set or reset both user switches and task switches within the same @SETSW
statement.

Example 1

@SETSW ON = U1-6,12-20,U31 (user switches 1 to 6 and 31 and task switches 12 to 20
are set).

Operation Operands F mode / L mode

@SETSW
 [U] int1 [-int2] [,...]

[ON=]

OFF=

EDT statements @SETSW

U1884-J-Z125-9-76 477

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example 2

 1. @SET #S2 = 'SWITCH 15 IS OFF'
 1. @SET #S3 = 'SWITCH 15 IS ON'
 1. @PROC 9
 1. @ @IF ON = 15 GOTO 4 --- (01)
 2. @ @PRINT #S2 N
 3. @ @RETURN
 4. @ @PRINT #S3 N
 5. @END
 1. @SETSW OFF = 15 -- (02)
 1. @DO 9 -- (03)
SWITCH 15 IS OFF
 1. @SETSW ON = 15 --- (04)
 1. @DO 9 -- (05)
SWITCH 15 IS ON
 1.

(01) A procedure is created in work file 9. If task switch 15 is on, this procedure displays
string variable #S3; otherwise, it displays string variable #S2.

(02) Task switch 15 is reset.

(03) The procedure in work file 9 is executed.

(04) Task switch 15 is set.

(05) The procedure in work file 9 is executed.

@SETVAR EDT statements

478 U1884-J-Z125-9-76

@SETVAR Declare S variable and assign value

@SETVAR can be used to:

– declare an S variable (TYPE=ANY)
– assign a value to a declared S variable (TYPE=STRING, TYPE=INTEGER).

@SETVAR is rejected with an error message in systems in which the SDF-P subsystem
has not been installed,

string Character string specifying the name of a simple S variable.

string1 Character string which is assigned as a value to the STRING-type S
variable specified by "string".
"string" can be specified:
– explicitly as a character string in single quotes
– implicitly via a line number, a line number variable or a string variable (in

each case with a column range, if required).

int-var Integer variable (#I0-#I20) containing a value which is to be assigned to the
INTEGER-type S variable specified by "string".

If neither string1 nor int-var is specified, an S variable of the ANY type is declared.

SYSEDT The S variables SYSEDT-S00 to SYSEDT-S20 are assigned the contents of
the string variables #S00 to #S20. If SYSEDT is specified, no messages as
to whether this assignment was successful or unsuccessful are issued. No
error switches are set.

MODE Specifies whether the S variable must have been previously declared.

= ANY A value is assigned to an existing S variable or to a new S variable.

= NEW The S variable must be new, i.e. not yet declared. If int-var is specified, the
S variable is defined with TYPE=INTEGER; otherwise, the S variable is
defined with TYPE=STRING.

= UPDATE The S variable must already have been declared.

If an S variable with SCOPE=TASK is to be generated, this must be done with the SDF-P
command DECLARE-VARIABLE.

Operation Operands F mode / L mode

@SETVAR
 [,MODE=ANY | NEW | UPDATE]

string [=string1 | =int-var]

SYSEDT

EDT statements @SHOW, format 1

U1884-J-Z125-9-76 479

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SHOW Display directory

Format 1 of the @SHOW statement is used to display the directory of a program library or
user catalog.

Format 2 of @SHOW is used to output a list of the coded character set names (CCSN)
available in the system.

@SHOW (Format 1) Displaying a directory

The list of all elements in the library or user catalog (the directory) is either
– placed in work file 9,
– placed in the current work file,
– displayed on the screen in L mode, or
– output to SYSOUT in batch mode.

path1 The name of the program library.
path1 may also be specified by means of a string variable.

elemtype An element type. elemtype may also be specified by means of a string
variable.
EDT displays a directory listing the elements of the specified type. If no
element type is specified, the entire library directory is displayed.

Permissible type entries are: S, M, P, J, D, X, R, C, H, L, U, F, *STD or user-
defined type names with appropriate base type.

Users who specify a user-defined type name are responsible for ensuring
that its associated base type corresponds to one of the permissible types S,
M, P, J, D, X, R, C, H, L, U or F.

Operation Operands F mode / L mode

@SHOW

[[TO] ln [(inc)]]

[LIBRARY=path1 [,[TYPE=]elemtyp]]
TYPE=elemtyp
FILES[=ppath]

[SHORT]

LONG [ISO4]

@SHOW, format 1 EDT statements

480 U1884-J-Z125-9-76

*STD
Type S is the default value when EDT is started. The element type set by
means of @PAR has no effect in this statement.

ln The number of the line at which the directory is to start in the current work
file. ln may also be specified as a symbolic line number or as a line
number variable.
EDT calculates the numbers of the following lines in the target range by
incrementing this line number with the increment value specified for this
range. The minimum value is 0.0001, the maximum 9999.9999.
If inc is not specified, EDT uses the increment value implied by the number
of decimal places in the line number: for example, 5 implies an increment of
1 and 5.0 implies an increment value of 0.1.

If ln is not specified, the directory is
– displayed on the screen in L mode,
– output to SYSOUT in batch mode,
– written into work file 9 in F mode; this work file is cleared before the

directory is written.

If the display of an information line is activated (@PAR INFORMATION =
ON), the line with the names of the entries is not written to the work file as
the first line but as a write-protected header line.

inc The increment for calculating the line numbers. If inc is not specified, the
increment implied by the line number specification is used.

ppath Specifies the names of the files to be output.
ppath may also be specified by means of a string variable.

Type Contents

S
M
P
J
D
X
R
C
H
L
U
F

Source programs
Macros
Data edited for printing
Procedures
Text data
Data in any format
Object modules
Load modules
Created by ASSEMBH
created by BINDER
created by IFG
created by IFG

EDT statements @SHOW, format 1

U1884-J-Z125-9-76 481

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

SHORT Default value.
Library elements:
The line length is 72. If type names have more than 4 characters, element
names more than 32 characters or version designations more than 12 char-
acters, an entry will consist of two lines.

Files:
Corresponds to the output for @FSTAT when the SHORT operand is spec-
ified.

LONG Library elements:
Each entry is a single line. The length of a line is 120 characters. LONG is
particularly well-suited for processing EDT procedures.

The name of the library is included in the header.

Files:
Corresponds to the output for @FSTAT when the LONG operand is
specified.

LONG ISO4 Library elements:
The ISO4 operand is ignored, since output is automatically in the form
YYYY-MM-DD, even if the operand is not specified.

Files:
Corresponds to the output for @FSTAT when the LONG ISO4 operand is
specified.

Only the highest variant of each element is shown. The variant has the function of a write-
protection counter, i.e. the variant number of a library element is incremented by 1
whenever the element is written to.

If an element has versions with different numbers, all versions are shown.

@SHOW is rejected if

– there are no elements of the specified type
– the specified library does not exist or is not a program library
– there is still a library element which has been opened by means of @OPEN in work

file 9.

Column Header Meaning

1-8
9-72
73-96
97-106
107-116

TYP
ELEMENT
VERSION
VAR
DATE

Element type
Element name
Version number
Variant number
Date of last update

@SHOW, format 1 EDT statements

482 U1884-J-Z125-9-76

– The current line number is changed if a line with a number higher than the
existing highest line number is created.

– @ is displayed as the version number for the element with the highest version
number.

Example

The entire directory of library ’EDT.LIB.XMPL’ is to be written into the current work file,
starting at column 100 and with an increment of 10.

All elements of type D in the directory of library EDT.LIB.XMPL are to be written into the
current work file, starting at line 1000 and with an increment of 10.

i

 1.00 @SHOW DISPLAYS THE DIRECTORY OF A LIBRARY. THE NAME OF THE..............
 2.00 LIBRARY MUST BE SPECIFIED IN THE OPERAND OF THE STATEMENT...............
 3.00 ..

show library=edt.lib.xmpl 100(10)0001.00:001(0)

 1.00 @SHOW DISPLAYS THE DIRECTORY OF LIBRARY. THE NAME OF THE LIBRARY........
 2.00 MUST BE SPECIFIED IN THE OPERAND OF THE STATEMENT.
 100.00 TYP E L E M E N T VERSION VAR DATE
 110.00 C PROG1 @ 0004 1989-01-11
 120.00 D E.TEXT1 @ 0006 1988-12-05
 130.00 D E.TEXT2 @ 0013 1988-12-05
 140.00 D E.TEXT3 100 0011 1988-12-13
 150.00 D E.TEXT3 101 0121 1988-12-20
 160.00 D E.TEXT3 102 0007 1989-01-11
 170.00 J ASSEMB @ 0099 1989-01-11
 180.00 J FILE-TRANSFER @ 0045 1989-01-11
 190.00 J PROC1 1 0001 1988-12-05
 200.00 D THIS-IS-AN-ELEMENT-WITH-A-VERY-L @ 0000 1994-08-17
 210.00 ONG-NAME
 220.00 D THIS-IS-AN-ELEMENT-WITH-A-VERY-L VERY-OLD.VER 0000 1994-08-17
 230.00 ONG-VERSION SION
 240.00 FREE THIS-IS-AN-ELEMENT-WITH-A-FREE-T @ 0000 1994-08-17
 250.00 TYPX YPE-NAME
 251.00 ..
 252.00 ..
 253.00 ..
 254.00 ..
 255.00 ..
show library=edt.lib.xmpl,d 1000(10) ; #10000100.00:001(0)

EDT statements @SHOW, format 1

U1884-J-Z125-9-76 483

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

SHOW LIBRARY = EDT.LIB, R

This writes the names of all elements of type R in library EDT.LIB into work file 9.

1000.00 TYP E L E M E N T VERSION VAR DATE
1010.00 D E.TEXT1 @ 0006 1988-12-05
1020.00 D E.TEXT2 @ 0013 1988-12-05
1030.00 D E.TEXT3 100 0011 1988-12-13
1040.00 D E.TEXT3 101 0121 1988-12-20
1050.00 D E.TEXT3 102 0007 1989-01-11
1060.00 D THIS-IS-AN-ELEMENT-WITH-A-VERY-L @ 0000 1994-08-17
1070.00 ONG-NAME
1080.00 D THIS-IS-AN-ELEMENT-WITH-A-VERY-L VERY-OLD.VER 0000 1994-08-17
1090.00 ONG-VERSION SION
1091.00 ..

@SHOW, format 2 EDT statements

484 U1884-J-Z125-9-76

@SHOW (Format 2) Displaying the coded character set names

Format 2 of @SHOW is used to display a list of the coded character set names available in
the system. In addition, a partial code is indicated by a ’P’, an EBCDI code by an ’E’ and an
ISO code by an ’I’.

This statement is rejected with an error message in systems in which the XHCS subsystem
is not installed.

ln The number of the line at which the list is to start in the current work file. ln
may also be specified as a line number variable (#L0-#L20) or as a symbolic
line number (e.g. %,$).

If ln is not specified, the list is
– displayed on the screen in L mode,
– output to SYSOUT in batch mode,
– written into work file 9 in F mode; this work file is cleared before the list

is written.

If ln is not specified and @PAR INFORMATION=ON is set, EDT will display
a header line for describing the displayed information in F mode.

inc The increment for calculating the line numbers. If inc is not specified, the
increment implied by the line number specification is used.

Operation Operands F mode / L mode

@SHOW CCS [[TO] ln [(inc)]]

Column Meaning

1-8
10
12
14

CCSN
P, if partial code
E (EBCDIC) or I (ISO)
*, if the coded character set can be displayed on the data
display terminal.

EDT statements @SORT

U1884-J-Z125-9-76 485

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@SORT Sort lines in line range

@SORT is used to sort contiguous line ranges in the current work file, in ascending or
descending order, byte-by-byte.

@SORT uses a combination of "quicksort" and "bubblesort". The data is sorted by
changing the concatenation of the records.

rng* The line range within which the data is to be sorted. It can comprise the
following:
– a single line (e.g. 6)
– several contiguous lines (e.g. 8-20)

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables.
String variables must not be used.
If no line range is specified, all the records or the line range specified by
@RANGE, as appropriate, are sorted.

domain The column range containing the characters according to which sorting is
to be performed. domain consists of:
– a single column (e.g. 10-10)
– a contiguous column range (e.g. 15-25)

If only one column number is specified, sorting is performed according to
the characters between this column and the end of the line. If the first
column number is greater than the length of the line, this line is ignored and
is regarded as lexicographically "less than" others.
Sorting is performed byte-by-byte from left to right. If, during the sort
operation, the end of a line is reached, this line is regarded as
lexicographically "less than" others which are identical but longer.
The second column number
– must not be less than the first column number,
– may be greater than the actual line length.

If no range is specified, sorting is performed according to the whole line.

Operation Operands F mode / L mode

@SORT
[rng*]

[:domain]

:R (clrng)

[A]

D

@SORT EDT statements

486 U1884-J-Z125-9-76

R The column specification in clrng is interpreted starting at the end of the
record in the direction of the beginning of the record.

clrng Column range, is counted from end of record. The same conventions as for
domain are valid.

A Default value. Sorting is performed in ascending order.

D Sorting is performed in descending order.

Example

@SORT &:1-15

sorts all the records in the current work file in ascending order according to
the columns 1 to 15.

@SORT %-.%+19L :R(1-8) D

sorts the first 20 records of the current work file in descending order
according to the contents of the last eight columns.

@SORT 20-.$:#I1-#I2

sorts the records from line number 20 to the end of the current work file in
ascending order. The column range which determines the sorting is
specified by means of the integer variables #I1 and #I2.

EDT statements @STAJV

U1884-J-Z125-9-76 487

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@STAJV Output information on job variables

By means of @STAJV, the user can query which job variables exist under a particular user
ID and which attributes these job variables have.

The information can be:

– displayed on the screen
– written to a work file.

If the subsystem "job variable support" is not installed, this statement is rejected with an
error message.

string Selects the job variables to be output.
"string" can be specified:
– explicitly as a character string in single quotes
– implicitly via a line number, a line number variable (#L0-#L20) or a string

variable (#S0-#S20), with the appropriate column range in each case.

All entries are permitted which can also be used in the BS2000
command SHOW-JV-ATTRIBUTES as long as a maximum length of 54
characters is not exceeded. ’*...*’ can also be specified. EDT itself will then
make a selection from the job variables of the user’s own ID according to the
wildcard syntax (analogous to the BS2000 command SHOW-FILE-
ATTRIBUTES).
The operand is not checked by EDT, i.e. it is passed to the system
unchanged.

If "string" is not specified, all job variables of the user’s own ID are output.

If no job variable with the corresponding name is found, EDT reports an
error and sets the EDT switch for DMS errors. DMS errors can be queried
in EDT procedures by means of @IF, format 1.

If "string" is not specified as fully qualified or as a link name, EDT also
requires a buffer of 8 PAM pages before it can process the
statement correctly. It requests this buffer by means of the REQM macro. If
these pages cannot be provided by the system, the @STAJV statement is
rejected with an error message.

If "string" is specified as fully qualified, the catalog ID is only included in the
output if it is already part of "string".

Operation Operands F mode / L mode

@STAJV
[string] [TO ln [(inc)]]

[SHORT]

LONG [ISO4]

@STAJV EDT statements

488 U1884-J-Z125-9-76

ln Number of the line starting at which the job variable information is written to
the current work file. The minimum value is 0.0001, the maximum value
9999.9999. ln can also be specified via line number variables (#L0-#L20) or
via symbolic line numbers (e.g. %, $).
If ln is not specified, the information is
– displayed on the screen in L mode
– output to SYSOUT in batch mode
– written into work file 9 in F mode; this work file is cleared before the JV

information is written.

inc Increment separating the line numbers following ln.
If inc is not specified, the implicitly defined increment is used.

SHORT Only the job variable names, including catalog and user IDs, are output
(default value).

LONG In addition to the job variable names (including catalog and user IDs),
further catalog information is output.

If ln was not specified and @PAR INFORMATION=ON applies, a header
line describing the catalog information is output in F mode.

When LONG is specified in F mode, the output length for each job variable
name is 80 characters.

ISO4 The creation date (CR-DATE) is specified in the form YYYY-MM-DD.

– The current line number is changed if a line is created with a number greater
than the previously highest number.

– Any attempt to query the status of system job variables ($SYSJV.) will be
rejected.The following query is, however possible:
@SYSTEM ’SHOW-JV-ATTR JV-NAME($SYSJV.)’ TO 1

Header Meaning

SIZE
M
JOBVARIABLE NAME
CR-DATE
S
A
R
W

Length of the current value in characters
Monitoring job variable (‚ *‘)
Job variable name
Creation date (YY-MM-DD)
SHARE attribute (Y/N)
ACCESS attribute (W/R)
READ-PASS attribute (Y/N)
WRITE-PASS attribute (Y/N)

i

EDT statements @STAJV

U1884-J-Z125-9-76 489

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example

The job variable TODAY is assigned the character string in line 2.

The information line is activated and the line number display is switched off. @STAJV is
used to write information on the job variable TODAY into work file 9.

Information on the job variable is displayed.

 1.00 90-06-27178..
 2.00 GOOD MORING, TODAY IS THE 27.06.1990...................................
 3.00 ...

setjv 'today'=2...0001.00:001(0)

 1.00 90-06-27178..
 2.00 GOOD MORING, TODAY IS THE 27.06.1990...................................
 3.00 ...

par global,information=on,index=off;stajv 'today' long............0001.00:001(0)

SIZE M JOBVARIABLE NAME CR-DATE S A R W
0000038 $EW.TODAY 90-06-27 Y W N N
 ...
 ...

..0001.00:001(9)

@STATUS EDT statements

490 U1884-J-Z125-9-76

@STATUS Show current EDT settings and variable contents

@STATUS is used to display the defined EDT modes and the contents of various EDT
constants and variables.

ALL All information on the following parameters is output: TIME, BUFFER, SIZE,
SYMBOLS, DELIM, VDT, MODES and FILE. The user ID and the task
sequence number (TSN) are also output.

If ALL is specified, any other operands in the statement have no effect.

TIME This displays
– the current time
– the duration of the current EDT session
– the total CPU time used
– the CPU time used since the last @STATUS statement was entered.

Operation Operands F mode / L mode

@STATUS [=ALL] |

[=
TIME |
BUFFER |
SIZE |
SYMBOLS |
DELIM |
VDT |
MODES |
FILE |
PAR[(procnr)] |
LINEV |
INTV |
ln-var |
int-var |
SDF |
CCS |
LOG |

 SEARCH-OPTION]
[,...]

[TO ln [(inc)]]

EDT statements @STATUS

U1884-J-Z125-9-76 491

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

BUFFER This displays
– the current buffer size
– the column number at which the check for valid line length is to begin

(@CHECK)
– on data display terminals, the right-hand margin.

In batch mode, only the column number is shown.

SIZE Displays the total number of virtual pages needed to store the work files at
the moment.

SYMBOLS This displays
– the current statement symbol; this can be changed using @: (q.v.)
– the current text delimiter; this can be changed using @QUOTE (q.v.)
– the current wildcard symbols; these can be changed by means of

@SYMBOLS (q.v.)
– the current range symbol and the currently defined range (see

@RANGE)
– the current filler character in hexadecimal form (see @SYMBOLS)
– the current record separator character (see @PAR SEPARATOR).

DELIM This displays the current set of text delimiter characters (see @DELIMIT).

VDT This displays the number of lines and columns on the screen in L mode (see
@VDT). With the 9763 Data Display Terminal, the current screen format is
also output (see @VDT).

MODES This displays the settings defined using @BLOCK, @CHECK, @LOWER,
@INPUT, @TABS FORWARD, @EDIT and @VTCSET.
EDT also displays the setting of the syntax check in L mode, the execution
mode (see @SYNTAX) and the values that can be set with @AUTOSAVE.

FILE This displays the global file name defined by the last @FILE statement. If a
version number was also specified in @FILE, this is also displayed.

if a POSIX file was opened with @XOPEN, the name of the file is displayed.

If a local @FILE entry has been implicitly or explicitly defined, or if a library
element or file has been opened by means of @OPEN (format 2), the name
of the file or the library and element names are output.

FILE is ignored if neither a global nor a local @FILE entry has been
specified.

@STATUS EDT statements

492 U1884-J-Z125-9-76

PAR(procno) Displays the following:
– the local @FILE entry, the library element which was opened (with libra-

ry name and type) or the name of the POSIX file which was opened,
analogous to @STATUS = FILE (see @FILE LOCAL)

– the name of any default library or type (see @PAR LIBRARY or @PAR
ELEMENT-TYPE)

– the values set with @PAR LIMIT and INC.

For work files 0 to 9, the following are also output:
– the type of representation in the F mode screen: @PAR LOWER, @PAR

HEX, @PAR EDIT LONG, @PAR CODE (see @PAR)
– the current structure symbol (see @PAR STRUCTURE) and the values

set by means of @PAR LIMIT and @PAR INCREMENT
– information on screen services (see @PAR SCALE,

@PAR INFORMATION, @PAR PROTECTION)
– window-specific default values for position and representation (see

@PAR INDEX, @PAR EDIT FULL, @SETF).
If not defined, the position is 0.

procno Number of the work file (0-22).

LINEV Displays the contents of all line number variables #L0 to #L20.

INTV Displays the contents of all integer variables #I0 to #I20.

ln-var The contents of the named line number variable are output.

int-var The contents of the named integer variable are output.

ln Number of the line as of which the information is written to the current work
file.
If a line is created with a number greater than the previous highest line
number, the current line number is changed.

If ln is not specified, the result is
– output to the screen in L mode
– output to SYSOUT in batch mode
– written to work file 9 in F mode. The contents of work file 9 are cleared

beforehand.

inc Increment between the line numbers following ln. If inc is not specified, the
implicitly defined increment is used.

SDF Either the internal or external program name is output with @STATUS=SDF,
depending on the setting. In addition, the setting of the current name type
is also output.

EDT statements @STATUS

U1884-J-Z125-9-76 493

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

CCS The following is output:
– the name of the predefined CCS
– the name of the currently selected coded character set (CCSN).

If the XHCS subsystem is not installed in the system, CCS is ignored.

LOG Displays the values set for logging (see @LOG).

SEARCH-OPTION
Outputs the default values for the search function (@ON) defined by means
of @SEARCH-OPTION.

If no operand is specified, the default value is ALL.

If any operand, except ALL, is specified, the equals sign must also be specified.
There must be no comma between the equals sign and the first operand.

If @SYNTAX TEST=ON has been issued to activate the test mode for L-mode input and the
@STATUS statement is entered in L mode, any TO ln(inc) entry is ignored, i.e. output is
directed to SYSOUT instead.

It is possible to use ln-var and int-var simultaneously or repeatedly in the same
@STATUS statement. i

@SUFFIX EDT statements

494 U1884-J-Z125-9-76

@SUFFIX Append string to lines

@SUFFIX appends a string to the end of one or more existing lines (see also the @PREFIX
statement, inserting a string as a prefix).

range A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 to #S20) may also be used.

string The string to be appended.
The string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

Example

The string ONCE is to be appended to lines 4 and 5.

Operation Operands F mode / L mode

@SUFFIX range WITH string

 1.00 AND..
 2.00 ONCE...
 3.00 AGAIN..
 4.00 AND..
 5.00 AND..
 6.00 ...

suffix 4-5 with ' ONCE ' ...0001.00:001(0)

EDT statements @SUFFIX

U1884-J-Z125-9-76 495

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

The contents of line 3 are to be appended to lines 4 and 5.

First, 5 blanks are appended to lines 4 and 5. The contents of line 4 are then appended to
these two lines.

 1.00 AND..
 2.00 ONCE...
 3.00 AGAIN..
 4.00 AND ONCE...
 5.00 AND ONCE...
 6.00 ...

suffix 4-5 with 3 ..0001.00:001(0)

 1.00 AND..
 2.00 ONCE...
 3.00 AGAIN..
 4.00 AND ONCE AGAIN...
 5.00 AND ONCE AGAIN...
 6.00 ...

suffix 4-5 with ' '*5 ; suffix 4-5 with 40001.00:001(0)

 1.00 AND..
 2.00 ONCE...
 3.00 AGAIN..
 4.00 AND ONCE AGAIN AND ONCE AGAIN......................................
 5.00 AND ONCE AGAIN AND ONCE AGAIN......................................
 6.00 ...

@SYMBOLS EDT statements

496 U1884-J-Z125-9-76

@SYMBOLS Define symbols

@SYMBOLS can be used to:

– redefine the wildcard symbols asterisk (’*’) and slash (’/’) for specifying the search string
for the @ON statement (e.g. in order to search for the * and / characters)

– redefine the current filler character for an area in the data window between the end of
the record and the end of the screen line.

ASTERISK Defines the wildcard symbol for any length of character string, even an
empty one.

=’*’ Default value.

=’spec1’ Special character which defines the wildcard symbol for any length of
character string, even an empty one.

SLASH Defines the wildcard character.

=’/’ Default value.

=’spec2’ Special character which defines the wildcard symbol.

FILLER Defines the filler character to be inserted in F mode between the end of the
record and the end of the screen line.

=X’00’ Default value.

=X’hex’ Any character in hexadecimal representation. Non-printable characters are
represented as smudge characters.

=’char’ Any character which defines the filler character.

spec1 and spec2 must be different from each other and different to the characters defined
by means of @QUOTE.

If spec1 or spec2 are not special characters, @SYMBOLS is rejected with the error
message: % EDT3952 INVALID SYMBOL

Operation Operands F mode / L mode

@SYMBOLS [,] [ASTERISK [='*' | ='spec1']
[,] [SLASH [='/' | ='spec2']
[,] [FILLER] [=X'00' | =X'hex' | ='char']

EDT statements @SYMBOLS

U1884-J-Z125-9-76 497

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Filler characters at the end of a screen line are not included in the file. Filler characters
within a record are converted into blanks when a screen line is entered for the first time or
is modified.

In the F mode screen, the filler character between the end of the record and the end of the
screen line is by default X’00’ (null character). This ensures that the end of the record is
recognizable and prevents blanks at the end of the record from being cut off inadvertently.

The use of [LZE] and [LZF] to delete a complete record is subject to certain limitations:

– [LZE] deletes all characters in a record as of the specified position.

– [LZF] deletes only the rest of the line; any characters in the next record are moved up.

A complete record in a column position other than 1 must be deleted explicitly via
@DELETE or via statement code D.

The corresponding form of representation up to EDT V16.2 is set by means of @SYMBOLS
FILLER = ’ ’.

Screen lines which consist only of filler characters other than ’ ’ are not entered in the file.
Screen lines which consist only of filler characters = ’ ’ are created as records consisting of
two blanks.

@SYNTAX EDT statements

498 U1884-J-Z125-9-76

@SYNTAX Set syntax check and execution mode

@SYNTAX can be used to

– set the type of syntax check to be performed and

– activate or deactivate a test mode

for line-mode input (read with @EDIT, @EDIT ONLY or from SYSDTA).

SECURITY

= HIGH The syntax check used in L mode is the same as that used in F mode.
Main differences to LOW:
– blanks in keywords are no longer skipped
– comments at the end of a statement are permitted only if specified in the

syntax description (e.g. @NOTE,@PROC, @END)

= LOW Compatible syntax check of L mode.
This setting tolerates scattered comments in statements from the EDT V15
statement set. This type of comment does not preclude ambiguity, i.e. error
situations are not always detected.

If the SECURITY operand is not specified, the current setting remains unchanged.

The @STATUS statement can be used to output the current syntax setting.

TESTMODE

= ON Subjects statements to a syntax check without executing them (and without
executing filter routines). Data lines entered in a line-mode dialog are not
transferred to the work file. Inputs beginning with more than one statement
symbol (e.g. @@...) are subjected to a syntax check.
The following statements are executed:

– @LOG, @SYNTAX and redefinition of the EDT escape character (@:)
– @STATUS, albeit with output to SYSOUT
– @HALT and @RETURN, with implicit resetting of test mode

The following statements and operands are not checked:

– external statements (statements with the user escape character)
– The <text> operand in the statements @SET, format 6, @IF, format 1

and @+, @–

Operation Operands F mode / L mode

@SYNTAX
[SECURITY] [[,] TESTMODE]

[=HIGH]

=LOW

[=ON]

=OFF

EDT statements @SYNTAX

U1884-J-Z125-9-76 499

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

In these cases the following message is output in interactive mode:
% EDT0110 TESTMODE: SYNTAX CANNOT BE TESTED

If there are no errors, an acknowledgment is output in interactive mode:
% EDT0100 TESTMODE: NO SYNTAX ERROR

For the purposes of the syntax check, the statement @3:@... should be split
into the two statements @SET3 and @... .

= OFF Deactivates test mode. If @HALT or @RETURN is issued to terminate
DIALOG mode, test mode is also deactivated.

If the TESTMODE operand is not specified, the execution mode still applies.

Example:

@SYNTAX SEC,TEST

This statement gives the user the possibility of checking old EDT procedures to determine
whether or not they comply with the syntax described in the manual. Statements that fail to
comply with this syntax should be corrected.

Data records and statements input via the LU15 interface are not affected by the setting of
the test mode. This statement is not supported if EDT is called up only via the old line-mode-
subroutine interface.

Logging in test mode

In L mode, not only the faulty statement, but also the the location at which the error was
detected is marked with : .
If SECURITY=LOW is set in L mode and characters are skipped in the syntax check, EDT
issues message % EDT0120 TESTMODE: CHARACTER(S) SKIPPED as a warning and
marks the skipped characters with : .

Default value

SECURITY=LOW is the default
– in batch mode,
– in an L-mode dialog with system switch 5 set and
– at the LU15 interface.

In all other cases, the default value is SECURITY=HIGH. At the beginning of an EDT
session, the test mode is deactivated.

@SYSTEM EDT statements

500 U1884-J-Z125-9-76

@SYSTEM Enter system commands

@SYSTEM can be used

– to interrupt the EDT session and branch to the operating system (as with [K2])
– to execute an operating system command without interrupting the EDT session.

@SYSTEM is one of the EDT statements that is relevant to security (see section “Data
protection” on page 71). In uninterruptible system procedures in interactive mode and in the
case of input from a file, the statement will be rejected (unless it is read from
SYSDTA=SYSCMD).

string A string specifying the system command to be executed.
The string may be specified:
– explicitly, enclosed in single quotes, or
– implicitly in the form of a line number, a line number variable or a string

variable (in each case with a column range, if required).

The command is executed immediately and control is then returned to EDT.
The system commands EXIT-JOB, LOGOFF, HELP-SDF, CALL-
PROCEDURE, START-PROGRAM and LOAD-PROGRAM and all user
commands defined via SDF-A and implemented by means of command
procedures abort or terminate the EDT session and unload EDT.

The command may be specified with or without a slash at the beginning.
The default value LOWER OFF means that lowercase letters are converted
to uppercase; in LOWER mode this does not happen.

Only commands which may be entered using the CMD macro may be used.
If a command is not permitted at the CMD interface or in the current SDF
syntax file (as of SDF V4.1), it is rejected with an error message.
See the "Executive Macros" manual [8] for details on the CMD macro and
the permissible commands.

If "string" is not specified, control is passed to the operating system. The
RESUME-PROGRAM command causes the EDT session to be resumed
where it was interrupted by means of the @SYSTEM statement. In uninter-
ruptible system procedures, this is not possible in interactive mode.

Operation Operands F mode / L mode

@SYSTEM [string [TO ln [(inc)]]]

EDT statements @SYSTEM

U1884-J-Z125-9-76 501

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

ln When ln is entered, any system command which is not output with
MODE=PHYS or MODE=FORM is transferred to the current file,
beginning at line number ln.
In this case, EDT requires an additional buffer, which it requests via the
REQM macro.
ln can also be specified by line number variables (#L0-#L20) or symbolically
(e.g. %, $).

inc Increment between the line numbers following ln. If inc is not specified, the
implicitly defined increment is used.

The current line number is changed if a line is created whose number is higher than the
previous highest line number.

If a file has been opened by means of @OPEN for real processing, the user should never
terminate the EDT session by means of @SYSTEM, since the file will then not be closed.

Instead of using @SYSTEM ’START-PROGRAM...’ or @SYSTEM ’LOAD-PROGRAM...’,
users should use @EXEC or @LOAD because EDT closes any files that are still open and
deletes any autosave files that exist before executing these latter statements (see
@AUTOSAVE).

In the case of the error message %EDT4300 ERROR AT SYSTEM COMMAND, the output
of error messages includes the message code derived from the command return code.

@TABS EDT statements

502 U1884-J-Z125-9-76

@TABS Set tabs

@TABS is used to

– define a tab character and up to 8 positions (columns)
– display the current tab character and the appropriate columns
– evaluate the tab characters in work files and in string variables
– define up to 8 positions for the hardware tabulator
– activate and deactivate the hardware tabulator function.

The tab character is not evaluated in batch mode and in EDT procedures (@DO and
@INPUT procedures) in the case of input from RDATA or when processing an EDT
procedure.

tab The character for the software tabulator, which EDT is to interpret as the tab
character from now on.
The semicolon (;) must not be used as a tab character in F mode since it is
interpreted as a statement delimiter. "tab" must be followed by ":" whenever
it stands for one of the characters C, F or V, or for a digit.

cl1,cl2,... The numbers, separated by commas, of up to 8 columns to which the cursor
can be positioned using this tab character. EDT positions to these columns
in the precise order in which they are specified here; the column numbers
must therefore be entered in ascending order. Any value between 1 and 255
may be specified.

If the positional operand :: is specified, the values refer to the
software tabulator.
If :: is not specified, the values erefer to the hardware tabulator. In this case,
EDT checks whether the values have been specified in ascending order,
and rejects @TABS with an error message if this is not the case.

Operation Operands F mode / L mode

@TABS
:: [tab [[:]cl1 [,cl2,...]] [[cl]]]

RANGE [=range]

[cl1[,cl2,...]] {ON | OFF}

[::] VALUES

CHECK

FORWARD

EDT statements @TABS

U1884-J-Z125-9-76 503

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

CHECK If EDT positions the cursor to a column, it does not normally check whether
this column already contains text which was entered before the tab
character; any such text is overwritten.

CHECK causes EDT to issue a warning message on the screen in such
cases. In addition, it causes the evaluation of tab characters (@TABS
RANGE statement) to be aborted when positioning in the reverse direction.
The current line and all following lines are not affected by this.

FORWARD Prevents backward positioning. EDT still moves to the tab positions in the
specified order; if, however, the new tab position lies on or before the last
column into which text was written, EDT skips this tab position and moves
to the next one.

CHECK and FORWARD are both off when EDT is started.

cl (Only in L mode).
cl changes the value for checking the line length (1 ≤ cl ≤ 256). EDT checks
each text input to determine whether it is longer than cl columns. The
default value for cl is 256. If a text input consists of more than cl columns,
the line is still created (with a maximum length of 256 characters), but EDT
displays a warning message on the screen.

The value for checking the line length can also be changed by means of
@CHECK (L mode).

If the user switches to F mode, the value for cl is changed back to 256. There
is a corresponding function in F mode (see @PAR LIMIT).

RANGE The software tab characters are evaluated in the specified line range in
accordance with the current definition.

The operands tab, cl1, cl2,..., CHECK and FORWARD of the previous
@TABS statement are taken into account.

The maximum line length is 256 characters.

range Line range consisting of:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30)

A line range may also be specified using the current line range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables (#S0 bis #S20) may also be used.

If "range" is not specified, all lines in the file are processed.

@TABS EDT statements

504 U1884-J-Z125-9-76

ON If positions for the hardware tabulator have already been defined in the
same statement or in a previous one, the function is activated, i.e. the cursor
positions itself to the next defined column by means of ò. The default value
is ON.

OFF The hardware tabulator function is deactivated. The defined positions are
retained and can be reactivated by means of @TABS ON.

VALUES The current software tabulator character and the associated tab
positions are displayed.
If the hardware tabulator has been defined, only the tabulator positions are
displayed.
If no tab character is defined, the statement is ignored.

In batch mode, output is directed to SYSLST.

If @TABS:: is specified without further operands, the tabulator is set as not defined
(regardless of whether it is a hardware or software tabulator).

If @PAR EDIT LONG = ON is set, the hardware tabulator can only be used to position to
positions encompassed by the screen width; positions lying outside this range are ignored.

The hardware tabulator is not supported on the 3270 Data Display Terminal.

If the hardware tabulator is set and activated, [EFG] and [AFG] can only be used to insert
and delete text within the specified tab positions. When working with strings that overshoot
the field boundaries, it is advisable to switch temporarily to @TABS OFF.

Within statements, tab characters are recognized and processed as such only if they are
specified in the "text" operand (see @SET, format 6).

If a text which has been entered contains more tab characters than the number of defined
tab positions, EDT treats the surplus tab characters as normal text characters.

Column justification with the aid of the tabulator function is implemented only when new
records are entered. If, for example, a record is inserted via copying, at least one character
must be overwritten, modified or inserted.

The main application of @TABS is to permit files, such as source code files, to be
created with specific information in specific columns. In a file for Assembler
programs, for example, a suitable setting is @TABS::[:10,16,40 CHECK 71. CHECK
ensures that a message is issued if excessively long names are entered
(FORWARD instead of CHECK would not achieve the desired effect). Specifying a
maximum line length of 71 is a good idea, since it prevents inadvertent overwriting
of column 72, which is reserved for the continuation character.

i

EDT statements @TABS

U1884-J-Z125-9-76 505

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Example: software tabulator

[is defined as the tab character and the tab positions are 10, 16 and 40.

The text is entered with tab characters. Note that only three tab positions were defined, but
the first text line contains four tab characters.

As can be seen, the text is aligned on columns 10, 16 and 40. The fourth tab character is
regarded by EDT as a normal text character, since only three tab positions were defined.

Example: hardware tabulator

The same result (except for the CHECK function) is achieved when @TABS 10,16,40 is
entered as a statement and positioning is implemented by ò.

Example

The characters /t in a UFS file are edited so that EDT aligns this file on a column boundary.

@XCOPY F=/edt/table
@ON & C A X’05’ TO ’!’
@TABS ::!:8,16,24,32,40 FORWARD
@TABS RANGE=&

 23.00 ..
tabs ::[: 10, 16, 40 ...0000.00:001(0)

 1.00 [balr[14,15[subruotine [then return]
 2.00 sprung[dc[c' all correct' ...
 3.00 ...

 1.00 BALR 14,15 SUBROUTINE [THEN RETURN]..
 2.00 LABEL DC C ' ALL CORRECT'..
 3.00 ...

@TMODE EDT statements

506 U1884-J-Z125-9-76

@TMODE Display task information

@TMODE provides the user with information about the task under which EDT is running.
The information is returned in the form of a message.

The following information is returned about the task under which EDT is running:

Example

Information about the task is requested.

Operation Operands F mode / L mode

@TMODE

TSN the task sequence number

USERID the user ID specified in the LOGON command

ACCOUNT the account number of the task

CPU-TIME the CPU time used

DATE the date (YYYY-MM-DD)

TIME the time of day

STATEMENT SYMBOL the current statement symbol (e.g. @)

TERMINAL the terminal type

 23.00 ..
tmode...0000.00:001(0)

 22.00 ..
% EDT0300 0LQA USER1 12345 1.2647 2007-07-30 15:12:19 @ 9763
..0000.00:001(0)

EDT statements @UNLOAD

U1884-J-Z125-9-76 507

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@UNLOAD Unload module

@UNLOAD is used to unload modules which have been loaded using @RUN or @USE.

name The name of the object module or load unit which is to be unloaded.

If the module cannot be unloaded, @UNLOAD is rejected with an error message and the
EDT error switch is set.

Possible reasons:

– incorrect module name specified
– module is already unloaded
– module is loaded in shareable mode
– "name" is not a module name, but the name of a CSECT or ENTRY.

Operation Operands F mode / L mode

@UNLOAD (name)

@UNSAVE EDT statements

508 U1884-J-Z125-9-76

@UNSAVE Delete file

@UNSAVE deletes a specified file.

 x

file The name of the file to be deleted.
"/" must not be specified, even if a file link name has been defined by means
of a SET-FILE-LINK command.

ver The version number of the file.
This may consist of up to three digits or an asterisk (*). * designates the
current version number. If * is specified, the current version number is
displayed on the screen before the file is deleted. If an incorrect version
number is specified, the correct version number is displayed, but the file is
not deleted.

Unlike @ELIM, @UNSAVE also deletes the catalog entry for the file.

Operation Operands F mode / L mode

@UNSAVE 'file' [(ver)]

i

EDT statements @UPDATE, format 1

U1884-J-Z125-9-76 509

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@UPDATE Update records

@UPDATE updates or corrects records, adds records to the file, or displays records, edited
for correction, on the screen. The statement has three formats.

@UPDATE (format 1) Update records

Existing records are updated or deleted, either completely or only within a specified column
range.
New records are created.

ln The number of the line to be updated or created.
The minimum value is 0.0001, the maximum 9999.9999.
ln may also be specified as a line number variable (#L0 to #L20) or symbol-
ically (e.g. %, $).

domain Column range consisting of:
– one individual column (e.g. 10-10)
– one contiguous column range (e.g. 15-25)

whose contents are replaced by the string specified after the semicolon (;).
If the line does not yet exist, or if it is shorter than specified by the first
column number, it is filled with blanks up to this point.

If only one column number is specified, the second column number is
assumed to be 256.
If no column range is specified, the default domain defined by means of
@UPDATE, format 3, is used. The default column range when EDT is
started is 1-256.

text The string specified after ";" replaces the text in "domain". "text" may also
be an empty string.

Tab characters in "text" are not evaluated.

"text" may also begin with the statement symbol (@ or any user-defined
symbol) without being regarded as a statement.

This statement does not change the current line number unless the last line of the file is
deleted by specifying an empty string for "text".

Operation Operands L mode

@UPDATE ln [:domain] ; text

@UPDATE, format 1 EDT statements

510 U1884-J-Z125-9-76

Figure 10: Updating a line using @UPDATE, format 1

The text entered using @UPDATE (b) replaces precisely the text a2 in the specified column
range clrng. Since the new text b is longer than the old text a2, the following text a3 in the
record is moved to the right. If the new text were shorter than the old text, the remaining text
in the record would be moved to the left to fill the resulting gap.

Text entered

Old line

new line

Old text which is
replaced by "text"

cl1 cl2

Domain

b

a1 a2 a3

a1 b a3

EDT statements @UPDATE, format 2

U1884-J-Z125-9-76 511

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@UPDATE (format 2) Display edited records

A section of a file is displayed on the screen in edited form for input by means of @UPDATE,
format 1.

This format is ignored in batch mode and rejected in EDT procedures.

ln This line and the following lines are displayed in edited form.
All lines up to the end of the file or - if the file is too large - one "screenful"
of lines are displayed.
The number of lines displayed in one screen is the default value set by the
system for the display terminal being used or the number set by the user by
means of the @VDT statement.

domain Column range consisting of:
– one individual column (e.g. 10-10)
– one contiguous column range (e.g. 15-25)

whose contents are output.

If only one column number is specified, the second column number is
assumed to be 256.
If no column range is specified, the default domain defined by means of
@UDPATE, format 3, is used. Lines which are shorter than the first column
number are skipped in the output. The default domain when EDT is started
is 1-256.

A prerequisite for working with @UPDATE, format 2, is that block mode is active. If the user
has switched block mode off (BLOCK ON is the default value), this statement switches block
mode on internally. The message BLOCK ON is displayed to indicate that this has been
done.

@UPDATE, format 2, must always be the last statement in a statement block, since all
remaining statements in the statement block which have not yet been executed are lost. The
end-of-line indicator (logical end of line) must be set if it has been overwritten.

or, if a column range other than the default set by means of @UPDATE, format 3, is
specified:

Operation Operands L mode

@UPDATE [ln] [:domain]

@Uxxxx.xxxx;text<

@Uxxxx.xxxx:yyy-yyy;text<

@UPDATE, format 2 EDT statements

512 U1884-J-Z125-9-76

@ The current statement symbol.

xxxx.xxxx The EDT line number.

yyy-yyy The column range.

text The file contents, edited in accordance with the input mode.

< The logical end of line.

If one screen is insufficient to display all lines from ln to the end of the file, the current line
number is displayed in the last screen line in the format:

This indicates that a new line with the line number xxxx.xxxx will be created if data is
entered. Further lines will then be created with numbers determined by the current
increment value.

The input block following the output is processed without restrictions. It may consist of
modified @UPDATE statements, new statements, or new data. Scrolling with * + - 0 is not
possible, since these are not true statements and are therefore regarded, within an input
block, as data records.

[K1] or an empty input may be used to scroll towards the end of the file.

This statement changes the value of the line number symbol ? (the line number of the first
line in which a hit was found after @ON). This symbol always points to the first line of the
next file section to be displayed. (If the end of the file is reached, it contains the highest
existing line number.)

Consequently, if ? is entered for ln in @UPDATE, the next file section will be displayed in
edited form.

If the file section which is displayed contains characters which cannot be repre-
sented in character mode @INPUT CHAR, corrections must be implemented in
hexadecimal mode.

In character mode, such lines are displayed as:

z The device-specific smudge character.

Nonprintable characters in "text" are also displayed as z (the device-specific smudge
character). @N for @NOTE causes the statement to be ignored in an input block.

@Nxxxx.xxxx

@Nxxxx.xxxxztext<
or
@Nxxxx.xxxx:yyyztext<

i

EDT statements @UPDATE, format 3

U1884-J-Z125-9-76 513

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@UPDATE (format 3) Define default column range

@UPDATE, format 3 can be used to define a default column range for formats 1 and 2 of
@UPDATE.

domain Column range consisting of:
– one individual column (e.g. 10-10)
– one contiguous column range (e.g. 15-25)

whose contents are output.

If only one column number is specified, the second column number is
assumed to be 256.
If no column range is specified, the default column range 1-256, set when
EDT is started, is used.

Operation Operands L mode

@UPDATE COLUMN [domain]

@USE EDT statements

514 U1884-J-Z125-9-76

@USE Define external statement routines

With the aid of @USE, the user can

– define external statement routines (see the "EDT Subroutine Interfaces" manual [1])
and

– define escape symbols with which the statement routines can be called.

@USE is one of the EDT statements that is relevant to security (see section “Data
protection” on page 71). In uninterruptible system procedures in interactive mode and in the
case of input from a file, the statement will be rejected (unless it is read from
SYSDTA=SYSCMD).

usersymb The user escape symbol for the external statement routine. This may be any
character except the statement symbol, a semicolon (;) or a blank.
If EDT is called as a subroutine (CMD function, version 2), an empty string
may also be defined as the escape symbol (special "statement filter" appli-
cation, see the description of the external statement routines in the "EDT
Subroutine Interfaces" manual [1]). The enclosing single quotes can be
redefined by means of @QUOTE.

entry The entry point of the external statement routine. entry may also be
specified by means of a string variable in the form <str-var>. The module or
load unit is loaded immediately.

* The entry point name of the statement routine is displayed when the
external statement is entered (see the "EDT Subroutine Interfaces" manual
[1]). The module is not loaded until the external statement is entered.

modlib The name of the library in which the module or load unit is stored.
modlib may also be specified by means of a string variable in the form
<str-var>.
If the module or load unit is not found in the specified library, the system first
searches for it in the alternate libraries BLSLIBxy and then in the private
tasklib or in the system tasklib $TASKLIB, as appropriate.
If no library is specified, the system first searches the private tasklib and
then the system tasklib $TASKLIB.
If the module is not found, an error message is issued.

Operation Operands F mode / L mode

@USE
COMMAND = 'usersymb' [([,modlib])]

entry

*

EDT statements @USE

U1884-J-Z125-9-76 515

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Up to five different escape symbols can be defined.

If (entry[,modlib]) is not specified, the statement routine defined previously by the specified
symbol is deactivated.

The module or load unit can be unloaded using @UNLOAD. The associated escape symbol
is then invalidated.

See the "EDT Subroutine Interfaces" manual [1] for details of the interface to the external
statement routine.

EDT-specific entries and module names are rejected with the following error message:
% EDT4933 MODULE LOADING NOT POSSIBLE

Example 1

Entry point defined by means of @USE

Entry name : JOBVAR
Syntax : CATJV <name>
 ERAJV <name>
 GETJV <name>,<ln>
 SETJV <name>,<ln>
Declaration : @USE COMMAND = '*' (JOBVAR,PRIVLIB)
Application : *CATJV JV.TEST ==> Call module JOBVAR with parameter
 'CATJV JV.TEST'
 *SETJV JV.TEST,3 ==> Call module JOBVAR with parameter
 'SETJV JV.TEST,3'

Example 2

Entry point defined by means of an external statement

Declaration : @USE COMMAND = '*' (*,PRIVLIB)
Application : *SORT 20-100 ==> Call module SORT with parameter
 '20-100'
 *HELP EDT5100 ==> Call module HELP with parameter
 'EDT5100'

@VDT EDT statements

516 U1884-J-Z125-9-76

@VDT Control screen output

@VDT changes the number of lines displayed at one time during output, one screen at a
time, of a virtual file or of a file opened by means of @OPEN (see @PRINT V).

int Specifies how many lines are to be displayed in one screen in F mode. The
specified value must be less than or equal to the default value defined by
the system for the data display terminal being used. If int is omitted, EDT
uses the default value defined by the system.

F1 Specifies the default value preset by the system (24 lines and 80 columns).

F2 Specifies the screen format with 27 lines and 132 columns.
The F2 operand cannot be specified unless the 9763 Data Display Terminal
supports this screen format. Otherwise it is either rejected with an error
message (F mode) or ignored (L mode).

If F1 or F2 is specified without int, the appropriate line number for L mode
is set at the same time.

@VDT without parameters applies globally to all work files.

When EDT is called up in F mode, the standard format is preset. If the user switches over
to L mode, the format setting is retained until the first @VDT statement is issued.

At the start of an EDT session, the user can issue @STATUS=VDT to find out how many
lines are displayed in the standard format for the display terminal being used.

The operand F1 or F2 is only accepted with the 9763 Data Display terminal. In F mode it is
rejected with the message % EDT4945 NOT POSSIBLE ON THIS TERMINAL and in L
mode it is ignored.

In F mode, @VDT terminates the processing of a statement line, i.e. anything left in the
statement line is not processed.

If EDT is interrupted using [K2], the preset screen format is reconstructed via [K3] after
RESUME-PROGRAM has been entered to return to F mode. Upon an interruption in
L mode, the preset screen format is reactivated after a return by means of SEND-
MESSAGE TO=PROGRAM.

– @VDT sets up the current window with the desired format, which remains valid
until the next time the statement is called.

– @VDT implicitly leads to @PAR SPLIT = OFF.
– In batch tasks, the @VDT statement is ignored.

Operation Operands F mode / L mode

@VDT [int] [,] [F1 | F2]

i

EDT statements @VTCSET

U1884-J-Z125-9-76 517

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@VTCSET Control screen output

@VTCSET specifies whether line mode control characters (see the "Executive Macros"
manual [8], macro WRTRD, operand MODE=LINE) in file contents are to be evaluated
during output or converted to device-specific smudge characters.

ON Specifies that output is not to be checked and control characters are thus
not to be converted into smudge characters.

OFF Specifies that line mode control characters in the file are to be
converted into device-specific smudge characters during output. All
characters which cannot be displayed are also converted to
smudge characters.

This statement has no effect for outputs sent to SYSLST (@LIST) in batch tasks.

Operation Operands F mode / L mode

@VTCSET [ON] | OFF

@WRITE, format 1 EDT statements

518 U1884-J-Z125-9-76

@WRITE Write file or library element

@WRITE has two formats with the following functions:

– writing the contents of the current work file into a SAM file (format 1)
– writing the contents of the current work file into a library element (format 2).

@WRITE (format 1) Writing the contents of the current work file into a SAM file

@WRITE writes all or part of the virtual file or the file opened by means of @OPEN into a
SAM file on disk or tape.

The SAM file is physically open only during execution of the @WRITE statement.

file The file name.
If no file with this name already exists, a file with this name is cataloged. If
"file" is omitted, the explicit local @FILE entry is used as the file name; if this
does not exist, the global @FILE entry is used; if this does not exist either,
the implicit local @FILE entry is used (see also @FILE); otherwise,
@WRITE is rejected with an error message.
If the file link name EDTSAM is assigned to a file, it is sufficient to enter ’/’
in order to write into this file (see section “File processing” on page 49ff).

ver The version number of the file.
This may consist of up to three digits or an asterisk (*). * designates the
current version number.

range* A line range, specified as:
– one or more line numbers, separated by commas (e.g. 4,6,15)
– one or more line ranges, separated by commas (e.g. 5-10,17-19)
– a combination of line numbers and line ranges (e.g. 4,7-23,8,15-30).

The line range may also be specified using the current range symbol (see
@RANGE), by means of symbolic line numbers (e.g. %,$) or via line
number variables. String variables must not be used.
If range* is not specified, all lines in the file are written to the SAM file.

Operation Operands F mode / L mode

@WRITE
['file'] [(ver)] [range*] [:col:] [KEY] []

UPDATE

OVERWRITE

EDT statements @WRITE, format 1

U1884-J-Z125-9-76 519

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

col A column range, specified as:
– one or more columns, separated by commas (e.g. 10,15,8)
– one or more column ranges, separated by commas (e.g. 15-25,18-23)
– a combination of columns and column ranges (e.g. 10,14-29,23-50,17).

Columns and column ranges may be repeated and may overlap each other.
If no column range is specified, the full length of each line is stored.

KEY When the SAM file is written, each line is preceded by an 8-character key
which is formed from the line number. This permits the file to be read again
later with precisely the same line numbers (see @READ with operand KEY.)

UPDATE This is meaningful only if there is already a SAM file with the specified
name.
UPDATE causes the lines which are to be stored to be appended to the end
of the existing SAM file.

If UPDATE is not specified, the entire SAM file is overwritten, i.e. its old
contents are deleted.

OVERWRITE Suppresses the query OVERWRITE FILE? (Y/N). An existing file with the
same name is overwritten without further checks. If the specified file does
not exist, OVERWRITE has no effect.

If neither UPDATE nor OVERWRITE is specified and a file with the same name already
exists, EDT issues the messages:

% EDT0903 FILE 'file' IS IN THE CATALOG, FCBTYPE = fcbtype
% EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)

If the user responds with

N @WRITE is not executed;

Y @WRITE is executed and the existing file is overwritten with the contents of the
current work file as a SAM file.

In the case of variable-length records (RECORD-FORMAT = VARIABLE) records are lost
as of position 257 during the write operation.

If * is specified as the version number, the current version number is displayed on
the screen (after the file has been written to disk, not during the save query). A new
version number is created when a file is created for the first time or when an existing
file is updated. In the second case, the existing version number is incremented by
1, while a new file receives the version number 1 when it has been written to disk.
The version number is incremented each time the file is updated, up to a maximum
of 255; the next new version number is then 0. Version numbers are provided in

i

@WRITE, format 1 EDT statements

520 U1884-J-Z125-9-76

order to preclude the inadvertent overwriting of files. If, namely, an incorrect version
number is specified, the correct version number is displayed on the screen, but the
current work file is not written to the disk.

Interaction with XHCS

If the XHCS subsystem is installed, the @WRITE statement transfers a coded character set
name (CCSN) as a code attribute after the file has been written back.

@WRITE assigns the CCSN currently valid in EDT, regardless of whether the file already
exists and what CCSN it has.

Example

 1. A VERY SHORT FILE -- (01)
 2. @WRITE 'TEST.@WRITE.1' --------------------------------------- (02)
 2. @FILE 'TEST.@WRITE.1' -- (03)
 2. @WRITE UPDATE -- (04)
 2. @DELETE -- (05)
 1. @READ -- (06)
 3. @PRINT
 1.0000 A VERY SHORT FILE
 2.0000 A VERY SHORT FILE -- (07)
 3.

(01) One line is written into the virtual file.

(02) This line is written to disk as the file TEST.@WRITE.1.

(03) The file name TEST.@WRITE.1 is declared by means of @FILE.

(04) @WRITE now refers to the file name declared in step (03). UPDATE causes the
contents of the virtual file - still the line created in step (01) - to be appended to the
file TEST.@WRITE.1.

(05) The contents of the virtual file are deleted.

(06) The file TEST.@WRITE.1 is read into the virtual file (again, no file name needs to
be entered).

(07) As we can see, the line was appended to the file in step (04).

EDT statements @WRITE, format 2

U1884-J-Z125-9-76 521

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

@WRITE (format 2)
Writing the contents of the current work file into a library element or file

@WRITE writes the contents of the current work file into a library element or file.
The contents of the work file are retained (cf. @CLOSE). If the library or library element
does not yet exist, the library or library element or the file is created by means of @WRITE.

At least one operand must be specified.

If more than one operand is specified, the operands must be separated from each other by
commas or blanks.

LIBRARY = path1 (ELEMENT=elemname [(vers)][,elemtype])
The name of the library and the element.

ELEMENT = elemname [(vers)][,elemtype]
The name of the element, without a library name.
In this case, the library name must have been set previously by means of
@PAR ELEMENT-TYPE.

path1 The library name.
path1 may also be specified by means of a string variable.
If path1 is omitted, the default library name specified by means of @PAR
LIBRARY is used.

elemname The element name.
elemname may also be specified by means of a string variable.

vers The version number of the desired element (see the "LMS" manual [14]).
If vers is not specified or if *STD is specified, the element with the highest
possible version (X’FF’, represented as @) is created or replaced.

elemtyp The element type.
elemtyp may also be specified by means of a string variable.
Permissible type entries are: S, M, P, J, D, X, *STD or user-defined type
names with appropriate base type. If no type is specified, the type set in
@PAR ELEMENT-TYPE is used.

Operation Operands F mode / L mode

@WRITE
[]

[,MODE=ANY | UPDATE | NEW | REPLACE]

LIBRARY=path1 ([ELEMENT=]elemname [(vers)][,elemtyp])
ELEMENT=elemname [(vers)][,elemtyp]
FILE=path2 [,TYPE=ISAM | SAM]

@WRITE, format 2 EDT statements

522 U1884-J-Z125-9-76

Users who specify a user-defined type name are responsible for ensuring
that its associated base type corresponds to one of the permissible types S,
M, P, J, D or X.

*STD
Type S is the default value when EDT is started. Any other permissible type
designation may be specified as the default value by means of @PAR.

FILE = path2 Stores the work file in a BS2000 file.

path2 Fully qualified file name.
path2 may also be specified by means of a string variable.

TYPE Defines the access method of the file.

= SAM Default value. The file to be saved as a SAM file.

= ISAM The file to be saved as an ISAM file.

MODE Defines the open mode for the library element or file.
The work file is written to

= ANY a new or existing library element or file. If the library element or file does not
yet exist, it is created by means of @WRITE.

= NEW a new library element or file, i.e. there is at present no library element or file
with this name. The new library element or file is created by means of
@WRITE. The contents of the current work file are written to the library
element or file, as appropriate. The library element is then closed (implicit
@OPEN and @CLOSE).

= REPLACE
an existing library element or file, the contents of this element or file being
cleared before the work file is stored, or a new library element or file created
by means of @WRITE.

= UPDATE
an existing library element or file, the contents of this element or file being
cleared before the work file is stored. If an existing library element or file has

Type Contents

S
M
P
J
D
X

Source programs
Macros
Data edited for printing
Procedures
Text data
Data in any format

EDT statements @WRITE, format 2

U1884-J-Z125-9-76 523

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

been opened using @OPEN (format 2), @WRITE only stores intermediate
states. The library element or file remains open until it is closed using
@CLOSE.

If an existing library element or file has been opened using @OPEN (format 2), the path,
elemname and elemtype or path2 operands may be omitted if the MODE operand is
specified. The contents of the library element or file are replaced by the contents of the work
file. The library element or file remains open until it is closed using @CLOSE.

Since MODE = ANY is the default value, any existing library elements or files will be
overwritten without a warning message.

Example

@WRITE LIBRARY = PROGLIB (ELEMENT = SYNT)

The current work file will be written into element SYNT of program library PROGLIB.

@WRITE ELEMENT = PROC.TSCHO, J

The current work file will be written into element PROC.TSCHO with element type J
(contains a procedure). The library in which the element PROC.TSCHO is to be stored
must have been defined previously by means of @PAR LIBRARY.

Interaction with XHCS

If the XHCS subsystem is installed, the @WRITE statement transfers a coded character set
name (CCSN) as a code attribute after the file or library element has been written back.

@WRITE assigns the CCSN currently valid in EDT, regardless of whether the file or library
element already exists and what CCSN it has.

!

@XCOPY EDT statements

524 U1884-J-Z125-9-76

@XCOPY Read POSIX file

@XCOPY is used to copy a POSIX file stored in the POSIX file system into the current work
file.

This function is supported as of BS2000/OSD V2.0. POSIX must be activated as
subsystem.

FILE Copies the data of a POSIX file into the work file.

xpath Path name of the POSIX file relative to the home directory.
Subdirectories may be specified, provided the entry does not exceed the
maximum length of 256 characters.
xpath may also be specified as a string variable.

CODE Specifies the code in which the file data exists. If no entry is made for the
CODE operand, the default set with @PAR CODE is used.

=EBCDIC EDT is to interpret the data as EBCDI code.
The data is not converted when read or written; instead, it is transferred in
binary form.
The X’15’ symbol is evaluated as the record separator.

=ISO EDT is to interpret the data as ISO code.
When read, the data is converted to EBCDIC.
The X’0A’ symbol is evaluated as the record separator.

If the POSIX file name contains lowercase letters, @PAR LOWER=ON must be
activated before @XCOPY is entered.

Calculation of line numbers when reading the file

1. Default numbering with the default increment 1.0000 or

2. Numbering with a fixed increment as defined by @PAR INCREMENT or

3. Automatic numbering with @PAR RENUMBER=ON
(see "Calculation of line numbers when reading the file" in the section on the @OPEN
statement).

The current line number is changed if a line is created whose number is higher than the
previous highest line number.

Operation Operands F mode / L mode

@XCOPY FILE=xpath [,CODE=EBCDIC | ISO]

i

EDT statements @XCOPY

U1884-J-Z125-9-76 525

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

Interaction with XHCS

If the current work file is to be written into a BS2000 file with a certain CCS name (by means
of @WRITE, @SAVE), the CCS name must be set using the @CODENAME statement
before the @XCOPY statement is issued.
If this was not done, the user must enter the CCS name with the SET-FILE-ATTRIBUTE
command after the BS2000 file has been written.

@XOPEN EDT statements

526 U1884-J-Z125-9-76

@XOPEN Open and read POSIX file

@XOPEN can be used to

– open a POSIX file stored in the POSIX file system,
– read the POSIX file into the current work file or
– create a new POSIX file in the POSIX file system.

This function is not supported until BS2000/OSD-BC V2.0. POSIX must be activated as
subsystem.

FILE Opens and reads in a POSIX file.

xpath Path name of a POSIX file in relation to the home directory.
Subdirectories may be specified, provided the entry does not exceed the
maximum length of 256 characters.
xpath may also be specified as a string variable.

CODE Specifies the code in which the data exists and how the data is to be saved
when it is written into the file. If no entry is made for the CODE operand, the
default set with @PAR CODE is used.
In the work file, the data is always in EBCDI code.

=EBCDIC EDT is to interpret the data as EBCDI code.
The data is not converted when read or written; instead, it is transferred in
binary form.
The X’15’ symbol is evaluated as the record separator.

=ISO EDT is to interpret the data as ISO code.
When read, the data is converted to EBCDIC.
If written back to the same POSIX file using @XWRITE or @CLOSE, the
data of the work file is converted into the appropriate ISO variant.
The X’0A’ symbol is evaluated as the record separator.

Operation Operands F mode / L mode

@XOPEN FILE=xpath [,CODE=EBCDIC | ISO]

[,MODE=ANY | UPDATE | NEW | REPLACE]

EDT statements @XOPEN

U1884-J-Z125-9-76 527

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

MODE Specifies the open mode for the file

= ANY Default value
Opens an existing or a new file for processing.

= UPDATE
Opens an existing file for processing.

= NEW Creates a file in the current directory;
the file must not exist already.

=REPLACE
Replaces the contents of the existing file. The contents are not read into the
work file.

If the file has already been opened in another work file or the current work file is not empty,
an error message is issued.

If the POSIX file name contains lowercase letters, @PAR LOWER=ON must be
activated before @XOPEN is entered.

Calculation of line numbers when reading the file

1. Default numbering with the default increment 1.0000 or

2. Numbering with a fixed increment as defined by @PAR INCREMENT or

3. Automatic numbering with @PAR RENUMBER=ON
(see "Calculation of line numbers when reading the file" in the section on the @OPEN
statement).

After the file has been read, the current line number is set to the value of the last line read,
plus the current increment.

Interaction with XHCS

If the current work file is to be written into a BS2000 file with a certain CCS name (by means
of @WRITE, @SAVE), the CCS name must be set using the @CODENAME statement
before the @XCOPY statement is issued.
If this was not done, the user must enter the CCS name with the SET-FILE-ATTRIBUTE
command after the BS2000 file has been written.

Terminating EDT

If, when EDT is being terminated (@HALT, @END, @RETURN), a file is opened with
@XOPEN and save confirmation % EDT0900 is displayed, the POSIX file name will be
displayed in the form 'X=xpath'.

i

@XWRITE EDT statements

528 U1884-J-Z125-9-76

@XWRITE Save contents of current work file to POSIX file

@XWRITE is used to write the contents of the current work file to a POSIX file in the POSIX
file system. The work file continues to exist. If the destination file does not yet exist, it is
created.

This function is not supported until BS2000/OSD-BC V2.0. POSIX must be activated as
subsystem.

FILE Writes the data into a POSIX file.

xpath Path name of the POSIX file relative to the home directory.
Subdirectories may be specified, provided the entry does not exceed the
maximum length of 256 characters.
xpath may also be specified as a string variable.

CODE Specifies the code in which the data is to be saved. If no entry is made for
the CODE operand, the default set with @PAR CODE is used.

=EBCDIC The data is not converted when written; instead, it is transferred from the
work file in binary form.
The X’15’ symbol is evaluated as the record separator.

=ISO =ISOThe data in the work file is converted into the appropriate ISO code
and written into the POSIX file.
The X’0A’ symbol is evaluated as the record separator.

MODE Specifies the open mode for the file.

=ANY Default value. Writes the work file into a new or existing file. If the file does
not yet exist, it is created.

=UPDATE Writes the work file into an existing file, overwriting any previous contents.
If the specified file was opened with @XOPEN, the file’s code remains
unchanged, i.e. any entry for the CODE operand is ignored.

=NEW Writes the work file into a newly created file,
i.e. a file which must not have existed already.

Operation Operands F mode / L mode

@XWRITE FILE=xpath [,CODE=EBCDIC | ISO]

[,MODE=ANY | UPDATE | NEW | REPLACE]

EDT statements @XWRITE

U1884-J-Z125-9-76 529

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

=REPLACE
Writes the work file into an existing file, overwriting any previous contents.
The code in which the data is stored may be changed.

If the POSIX file name contains lowercase letters, @PAR LOWER=ON must be
activated before @XWRITE is entered.

If a file was opened with @XOPEN, the specification of the file name in @XWRITE
may be omitted if the MODE operand is specified. The contents of the file are
replaced with the contents of the work file. The file remains open until the @CLOSE
statement is issued.

Since MODE=ANY is the default, existing files are overwritten without warning if no
MODE entry is specified.

i

!

@ZERO-RECORDS EDT statements

530 U1884-J-Z125-9-76

@ZERO-RECORDS Setting empty line mode

This statement enables empty lines to be handled when reading data from a file (POSIX,
SAM, ISAM or library member) to an EDT work file or when data is written from an EDT
work file to a file (POSIX, SAM, ISAM or library member).

ON Has the effect that lines of length 0 or lines of length 8 are written into the
EDT work file with the end-of-line character X’0D’ as contents in the follo-
wing cases.

Lines of length 0
– When reading from a POSIX file with @XOPEN or @XCOPY
– When reading from a SAM file with @READ, @OPEN or @COPY
– When reading from a library member with @OPEN or @COPY

Lines of length 8
– When reading from an ISAM file with standard properties

(see section “File processing” on page 49) with @GET, @OPEN or
@COPY

– When reading from a SAM file with @READ and the KEY operand

Has the effect that lines in the EDT work file that consist of just the end-of-
line character X’0D’ are written as lines of length 0 or length 8 in the follo-
wing cases.

Lines of length 0
– When writing to a POSIX file with @WRITE or @CLOSE
– When writing to a SAM file with @WRITE (format 1 or 2) or @CLOSE
– When writing to a library member with @WRITE (format 2) or

@CLOSE

Lines of length 8
– When writing to an ISAM file with standard properties with

@SAVE, @WRITE (format 2) or @CLOSE
– When writing to a SAM file with @WRITE and the KEY operand

Operation Operands F mode / L mode

@ZERO-RECORDS [ON] | OFF

EDT statements @ZERO-RECORDS

U1884-J-Z125-9-76 531

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
12

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
6

OFF – Has the effect that lines of length 0 are not written into the EDT work file
when reading from a POSIX file, SAM file or a library member, and lines
of length 8 are not written into the EDT work file when reading from an
ISAM file with standard properties.

– Has the effect that lines in the EDT work file that only consist of the end-
of-line character X’0D’ are also written as lines consisting of the charac-
ter X’0D‘ when writing to POSIX files, SAM files and library members.

– Has the effect that lines in the EDT work file that only consist of the end-
of-line character X’0D’ are also written as lines consisting of the record
key and the end-of-line character X’0D’ when writing to ISAM files with
standard properties.

If the @ZERO-RECORDS statement is specified without operands, empty line mode is
enabled.

Notes

– Empty line mode is disabled by default when EDT is started.

– When EDT is started from the POSIX shell (edt command), AUTOFORM mode
(@BLOCK ON, AUTOFORM) is enabled. For POSIX files, this mode has the same ef-
fect as empty line mode.

– The current setting of empty line mode can be displayed using the @STATUS=MODES
statement.

– In real processing of ISAM files (@OPEN format 1), switching empty character mode
on or off has a direct effect on the subsequent changes to the file. When a SAM file with
@OPEN format 1 is to be processed (AS operand), the required empty character mode
must be set before the @OPEN statement.

Tips for handling empty lines in EDT

Fill empty lines overwrite the X’0D’ character with new contents

Create empty lines enable hexadecimal mode (HEX ON)
insert line (e.g. with statement code 1)
insert X’0D’ as the first character

Delete empty lines as other EDT lines (statement code D, @DELETE).

@ZERO-RECORDS EDT statements

532 U1884-J-Z125-9-76

U1884-J-Z125-9-76 533

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

7 EDT messages
EDT0001 (&00) STARTED

EDT0100 TESTMODE: NO SYNTAX ERROR

Meaning
Test mode is set. There was no syntactical error. The statements have not been processed.
Error switch: not set.

EDT0110 TESTMODE: SYNTAX CANNOT BE TESTED

Meaning
Test mode is set. The syntax of the statement can only be tested at run time.
Possible reasons: indirect operands, operands in variables or user statements.
The statement has not been processed.
Error switch: not set.

EDT0120 TESTMODE: CHARACTER(S) SKIPPED
(B) Routing code: * Weight: 99

Meaning
Test mode is set. The syntax check in line mode skipped one or more characters. A strict
syntax check with the option SECURITY=HIGH would possibly find an error.
Error switch: not set.

Response
See your EDT manual for the correct syntax of the statement. Correction to the therein
described form will ensure processing in following EDT versions. The support of this
statement is not guaranteed.

EDT messages

534 U1884-J-Z125-9-76

EDT0160 FILE ’(&00)’ WRITTEN

EDT0170 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ REPLACED AND WRITTEN

EDT0171 FILE ’(&00)’ REPLACED AND WRITTEN

EDT0172 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ CREATED AND WRITTEN

EDT0173 FILE ’(&00)’ CREATED AND WRITTEN

EDT0178 FILE ’(&00)’ CLOSED

EDT0190 WORK FILE (&00) EMPTY

EDT0192 FILE ’(&00)’ OPENED REAL IN WORK FILE (&01)
(B) Routing code: * Weight: 99

EDT0193 WORK FILE (&00) CLEARED

EDT0194 FILE ’(&00)’ CREATED AND OPENED REAL IN WORK FILE (&01)

EDT0195 FILE ’(&00)’ REPLACED AND OPENED REAL IN WORK FILE (&01)

EDT0200 CCS CHANGED TO ’(&00)’
(B) Routing code: * Weight: 99

Meaning
By reading or opening a file or library element with the attribute (&00), EDT uses this Coded
Character Set.
Error switch: not set.

EDT0210 ELEMENT(S) ADDED TO S-VARIABLE ’(&00)’
(B) Routing code: * Weight: 99

Meaning
The SDF-P list variable (&00) has been extended by appending or prefixing one or more
elements to the list.
Error switch: not set.

EDT0211 /FREE-VARIABLE COMMAND PROCESSED FOR S-VARIABLE ’(&00)’
(B) Routing code: * Weight: 99

Meaning
The contents of the SDF-P variable (&00) have been destroyed. In the given statement
@SETLIST with operand MODE=NEW the specified range did not contain any line or
column.
Error switch: not set.

EDT messages

U1884-J-Z125-9-76 535

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT0227 ISAM FILE ’(&00)’ CREATED AND OPENED IN WORK FILE (&01)

EDT0228 ISAM FILE ’(&00)’ REPLACED AND OPENED IN WORK FILE (&01)

EDT0229 ISAM FILE ’(&00)’ OPENED IN WORK FILE (&01)

EDT0230 FILE ’(&00)’ OPENED IN CURRENT WORK FILE (&01)

EDT0231 FILE ’(&00)’ CREATED AND OPENED IN CURRENT WORK FILE (&01)

EDT0232 FILE ’(&00)’ REPLACED AND OPENED IN WORK FILE (&01)

EDT0235 FILE ’(&00)’ WRITTEN AND CLOSED

EDT0236 FILE ’(&00)’ CLOSED UNCHANGED

EDT0242 FILE ’(&00)’ COPIED

EDT0243 UFS FILE ’(&00)’ COPIED

EDT0244 ALLOW WRITE ACCESS FOR READ ONLY FILE? REPLY (Y=YES; N=NO)

Meaning
This query is issued following a @XOPEN or a @XWRITE statement if the file is read only
and the current user id is TSOS.
Error switch: not set.

Response
Y: the file will be overwritten / opened for writing
N: the file will not be overwritten / opened for writing.

EDT0258 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ OPENED

EDT0259 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ CREATED AND OPENED

EDT0264 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ WRITTEN AND CLOSED

EDT0265 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ CLOSED UNCHANGED

EDT0266 WORK FILE EMPTY: MEMBER ’(&00)’ CLOSED UNCHANGED

Meaning
The work file specified in the CLOSE or WRITE statement is empty.
The member (&00) has been closed but not written back.

EDT0268 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ OPENED FOR REPLACEMENT

EDT0274 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ COPIED

EDT0281 /DELETE-FILE COMMAND PROCESSED FOR FILE ’(&00)’

Meaning
The file has been erased from catalog.

EDT messages

536 U1884-J-Z125-9-76

EDT0282 DELETE PROCESSED FOR MEMBER ’(&00)’

Meaning
The member has been deleted from library.

EDT0285 SDF: SYNTAX TESTED. (&00) ERROR(S) IN RANGE
(B) Routing code: * Weight: 99

Meaning
At the processing of statement @SDFTEST (&00) errors have been detected.
Error switch: not set.

EDT0290 ALL LINES ARE DIFFERENT

Meaning
All lines to be compared are different.
Error switch: EDT.

EDT0291 ALL LINES ARE EQUAL

Meaning
All lines to be compared are equal.
Error switch: not set.

EDT0292 COPY BUFFER CLEARED

Meaning
Acknowledgement following an ’*’ in the mark column.
Error switch: not set.

EDT0293 FILE NOT WRITTEN

Meaning
Either N has been specified in response to an OVERWRITE inquiry, or an error occurred
when the file was written back.
Error switch: not set.

EDT0294 MAXIMUM LINE NUMBER

Meaning
When generating the screen, line number 9999 is exceeded.
No additional blank lines are provided at the end of the file.
For more detailed information on when the maximum line number (9999.9999) is generated
see the "EDT" manual.
Error switch: not set.

EDT0295 OLD COPY BUFFER CLEARED, NEW COPY BUFFER FILLED

Meaning
An R mark is followed by a C or M mark.
The copy buffer created by means of R mark(s) has been cleared.
Error switch: not set.

EDT messages

U1884-J-Z125-9-76 537

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT0296 OVERWRITE FILE? REPLY (Y=YES; N=NO)

Meaning
This query is issued following a @WRITE or a @SAVE statement if the file already exists.
Error switch: not set.

Response
Y: the file will be overwritten
N: the file will not be overwritten.

EDT0297 COMPARE RESULT IN WORK FILE (&00)

Meaning
The result of a successfully processed @COMPARE statement (format 2) is output to work
file (&00).
Error switch: EDT.

EDT0298 ERASE ALL JOB VARIABLES ’(&00)’? REPLY (Y=YES; N=NO)

Meaning
This query is issued following a @ERAJV statement, if the name was specified partially
qualified or in wildcard syntax and this refers to more than one job variable.
Error switch: not set.

Response
Y: all job variables concerned will be erased from the catalog.
N: the statement will be aborted and no job variable will be erased.

EDT0299 JOB VARIABLES NOT ERASED

Meaning
Message EDT0298 (ERASE ALL JOB VARIABLES?) was answered with N.
Error switch: not set.

EDT0300 (&00)

Meaning
Following a @TMODE statement, the task attributes are displayed from left to right in this
order:
TSN - task sequence number
USER ID - user ID in the /LOGON command
ACCOUNT - account number of the task
CPU TIME - CPU time used
DATE - date (YYYY-MM-DD)
TIME - time
’@’SYMBOL - actual statement symbol
TERMINAL - type of terminal.

EDT messages

538 U1884-J-Z125-9-76

EDT0600 LOGICAL LINELENGTH > LENGTH OF SCREENLINE
(B) Routing code: * Weight: 99

Meaning
At initiation time the logical linelength could not be fitted to the length of the screenline.
Error switch: not set.

EDT0610 BUFFER SIZE UNCHANGED
(B) Routing code: * Weight: 99

Meaning
The buffer for output to the screen could not be changed by EDT.
Error switch: not set.

EDT0650 UNABLE TO SUPPORT NATIONAL TERMINAL. STANDARD WILL BE USED
(B) Routing code: * Weight: 99

Meaning
The connected DSS is a national 7-bit terminal, but EDT can only support it with standard
functions. Possible reasons:
- The DSS has been generated with wrong parameters or a variant has been

used EDT cannot support yet.
- There is problem at XHCS or VTSU.

Response
Try to generate the DSS in a different way.

EDT0651 CCS ’(&00)’ INCOMPATIBLE WITH TERMINAL. STANDARD WILL BE USED

Meaning
A file or library element which was to be read or opened had the catalog
attribute (&00), or the CCS (&00) was asked for at a @CODENAME statement.
But on this terminal only files with a CCS attribute EDF03IRV or without a CCS attribute can
be edited.

Response
Use the /MODIFY-FILE-ATTRIBUTE command to change or erase the CCS
attribute of the file.
The statement @CODENAME should not be used on this terminal.

EDT0800 STATEMENT ’(&00)’ ONLY SUPPORTED UP TO THIS VERSION

Meaning
Statement ’(&00)’ will not be supported in this form in the next version of EDT.

Response
Please consult the "EDT" manual and replace statement (&00) by the correct one.

EDT messages

U1884-J-Z125-9-76 539

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT0900 EDITED FILE(S) NOT SAVED!

Meaning
A @HALT statement has been entered in order to terminate EDT, but some
dates have not yet been saved.
EDT will output a list of work files whose dates have not yet been saved.
Error switch: not set.

EDT0901 NO MATCH IN RANGE

Meaning
No match exists for the first string in the @ON statement.
If this error occurs while an EDT procedure (@DO) or an INPUT file is being processed, this
message is not displayed and the EDT error switch is not set unless logging has been
activated by means of the PRINT operand.
Error switch: EDT (see ’Meaning’).

EDT0902 FILE (&00) VERSION (&01)

Meaning
In the statement @WRITE, @SAVE,... a version number or * was explicitly specified by the
user. The version was correct and EDT outputs the current version number.

EDT0903 FILE ’(&00)’ IS IN THE CATALOG, FCBTYPE = (&01)

EDT0904 TERMINATE EDT? REPLY (Y=YES; N=NO)

Meaning
EDT inquires whether EDT is to be terminated.
Error switch: not set.

Response
Y: EDT will be terminated
N: EDT will not be terminated.

EDT0905 EDITED MEMBER TO BE ADDED? REPLY (Y=YES; N=NO)

Meaning
Before returning control to LMS, EDT inquires whether the edited work file is to be saved
by LMS.

EDT0906 REPEAT ATTEMPT? REPLY (Y=YES; N=NO)

Meaning
If there is not enough virtual memory space to process the statement, the statement can be
repeated after appropriate measures have been taken.

Response
Y: The attempt will be repeated.
N: The statement will be aborted.

EDT messages

540 U1884-J-Z125-9-76

EDT0907 NO PROCEDURE FILES DECLARED

Meaning
A @DROP ALL statement has been issued by the user but no procedure file has been
declared.

EDT0909 AUTOSAVE ABORTED. ERASE SAVING FILES? REPLY(Y=YES; N=NO)
(B) Routing code: * Weight: 99

Meaning
The writing of the backup files could not be performed. The autosave function had to be
aborted.
Possible reasons: no virtual address space available, a not foreseen DMS error.
Error switch: not set.

Response
Y: existing saving files will be erased.
N: existing saving files will not be erased.

EDT0910 ’@RENUMBER’: LINES WILL BE LOST
(B) Routing code: * Weight: 99

Meaning
A @RENUMBER statement has been entered in order to renumber the lines.
If EDT renumbers in the asked way, the maximum line number (9999.9999) would be
reached and the rest of the file would be deleted.

Response
Get information about the number of lines in the work file by entering the statement @LIMIT
before asking to renumber.

EDT0911 CONTINUE PROCESSING? REPLY (Y=YES; N=NO)
(B) Routing code: * Weight: 99

Meaning
At the processing of a statement an error has been detected.
EDT inquires whether it should continue processing.

Response
Y: Processing of the statement will be continued.
N: The statement will be aborted.

EDT0914 RECORD SIZE > 256. ONLY 256 CHARACTERS WILL BE WRITTEN.

Meaning
Only 256 characters are written for each record, the rest of the records becomes undefined.

EDT0999 (&00)

Meaning
Message from external routine.

EDT messages

U1884-J-Z125-9-76 541

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT1115 ’COPY’: NO RECORD EXISTS IN SPECIFIED RANGE

Meaning
The record range specified in the COPY statement cannot be copied, as the records do not
exist.

EDT1137 SPECIFIED WORK FILE IGNORED IN CONJUNCTION WITH ’SPLIT’

Meaning
In the @PAR statement the work file variable (wkflvar) has been specified as the first
operand. The actions initiated by the @PAR statement are to be performed only with regard
to the specified work file, but the effect of the operand SPLIT is global.

EDT1150 NAME OF PLAM LIBRARY MEMBER TRUNCATED AFTER 64 CHARACTERS

EDT1151 VERSION OF PLAM LIBRARY MEMBER TRUNCATED AFTER 24 CHARACTERS

EDT1174 FILE ATTRIBUTES IGNORED

Meaning
By means of the @WRITE statement (format 2) an internal work file is written back to the
associated external BS2000 file. File attributes cannot be defined by means of the
@WRITE statement, as they have already been defined for the external file.
The specified file attributes are ignored.

EDT1180 CODE ATTRIBUTE IGNORED
(B) Routing code: * Weight: 99

Meaning
By means of the XWRITE statement the actual work file is written back to the UFS file
opened before by means of XOPEN. The CODE attribute was ignored, as there is already
one defined for that file.
By asking to write the file with MODE=UPDATE that attribute cannot be changed.
Error switch: not set.

Response
A change of the code can be performed in the following way:
Write back the work file with MODE=REPLACE und requested CODE-Operand
and then close the file by issuing @CLOSE NOWRITE.

EDT1190 WORK FILE (&00) IS EMPTY. COPY OPERATION NOT PERFORMED

EDT1226 SPECIFIED FCBTYPE IGNORED: ’(&00)’ IS ASSUMED

Meaning
The FCB type specified in the @OPEN or @WRITE statement (format 2) does not match
the catalog entry. The specified type is ignored and the FCBTYPE (&00) is taken over from
the catalog.

EDT messages

542 U1884-J-Z125-9-76

EDT1227 CCS ATTRIBUTE CANNOT BE SET.
(B) Routing code: * Weight: 99

Meaning
The file has been created or updated, but the CCS attribute cannot be set.
Possible reasons are i.g. that the file belongs to a foreign userid or is situated in a remote
system (by use of RFA).

EDT1243 FILE ’(&00)’ TO BE COPIED IS EMPTY

EDT1244 FILE ’(&00)’ EMPTY

EDT1245 JV IS EMPTY
(B) Routing code: * Weight: 99

Meaning
An attempt has been made to get the value of a JV by a @GETJV statement, but the entire
JV is empty, i.e. the length of the value string is zero.
Error switch: EDT.

EDT1253 (SOME) RECORD(S) TRUNCATED

Meaning
Records longer than 256 bytes are truncated when being read into the internal work file.

EDT1254 NO MARKS SET FOR FILE TO BE PROCESSED IN REAL MODE

Meaning
No marks can be set for files processed in real mode (i.e. that have been read in by means
of @OPEN format 1).
Error switch: EDT.

EDT1901 ISAM FILE. ’@GET’ STATEMENT PROCESSED

Meaning
A @READ statement has been entered for an ISAM file. EDT automatically processes a
@GET statement.
Error switch: EDT.

EDT1902 SAM FILE. ’@READ’ STATEMENT PROCESSED

Meaning
A @GET statement has been entered for a SAM file. EDT automatically processes a
@READ statement.
Error switch: EDT.

EDT1903 INPUT TRUNCATED

Meaning
More than 256 characters have been read for one line.
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 543

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT1904 SOME LINES > 256

Meaning
Some lines read by means of a @GET or @READ statement are longer than 256 bytes.
The lines concerned are truncated after 256 characters.
Error switch: EDT.

EDT1905 INPUT TOO LONG. CORRECT INPUT

Meaning
The following conditions cause a termination error when reading:
- input for a @CREATE...READ statement >256 bytes, or
- input >284 subsequent to a @PRINT statement and input request *+-0, or
- input of a statement with indirect operands and the sum of characters of

operation string and the length of the string variable exceeds 256.
Error switch: not set.

EDT1906 TOO MANY NAMES. LIST INCOMPLETE

Meaning
The 15 pages provided for FSTAT are not sufficient to accommodate all the file names, or
the 8 pages provided for STAJV are not sufficient to accommodate all the names of job
variables, or the 8 pages provided for CMD are not sufficient to accommodate all the lines
to be output to the buffer.
The list (of names) is not complete.
Error switch: EDT.

EDT1907 MODULE CANNOT BE UNLOADED

Meaning
The module specified in the @RUN statement or in the @UNLOAD statement could not be
unloaded. Either an incorrect module name has been specified or the module has already
been unloaded.
Error switch: EDT.

EDT1936 MODIFIED LINE >256 CHARACTERS

Meaning
An edited line became too long as a result of modification. This error can be caused by an
@ON, @PREFIX, @SUFFIX, @COL or @CREATE statement.
Moreover, an extended line containing formal operands may have become too long in a
procedure. The line is truncated after 256 characters.
In a @SETJV statement, when the extended string for the value of a job variable became
too long, only the first 256 characters are taken over as the value.
Error switch: EDT.

EDT messages

544 U1884-J-Z125-9-76

EDT2169 WORK FILE (&00) IS EMPTY. WRITE OPERATION NOT PERFORMED

Meaning
The statement @WRITE (format 2) or @XWRITE could not be performed, for the work file
(&00) is empty.
Error switch: not set.

EDT2266 WORK FILE IS EMPTY: MEMBER ’(&00)’ CLOSED UNCHANGED

Meaning
As the work file specified in the @CLOSE or @WRITE statement (format 2) is empty, the
member (&00) has been closed but not saved.

EDT2267 LINE TRUNCATED AFTER (&00) CHARACTERS

Meaning
As the modified record is longer than the LIMIT specified in the @PAR statement, it is
truncated.
(&00): maximum permissible record length.
Error switch: not set.

EDT2301 COPY BUFFER OVERFLOW

Meaning
The copy buffer cannot hold more than 256 line numbers.
Error switch: not set.

EDT2900 A KEY WAS ZERO AND HAS BEEN SET TO 0.0001

Meaning
A key with the value 0 has been detected during processing of a @GET or @READ
statement (with the KEY function). The key is set to 0.0001 by EDT.
Error switch: EDT.

EDT2901 DATA LOSS DUE TO TABULATOR FUNCTION. CHECK LINE LENGTH

Meaning
Some text is lost due to tabulator definition.
Error switch: EDT.

EDT2902 CHECK TAB COLUMNS

Meaning
The CHECK function was specified in the @TABS statement. CHECK detected that the line
which has just been entered with tabs causes reverse positioning, i.e. text was overwritten.
Error switch: EDT.

Response
Check the line, as it probably contains an error.

EDT messages

U1884-J-Z125-9-76 545

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT2903 FILE IS EMPTY

Meaning
The file specified in the statement is empty. This message is displayed under one of the
following conditions:
- an empty file on disk is accessed by means of a @READ, @GET, @INPUT,

or @ELIM statement
- the work file is empty and a @SAVE, @WRITE, @XWRITE or @SETLIST

statement has been specified or a procedure file specified in a @COMPARE statement
is empty.

Error switch: EDT.

EDT2904 MAXIMUM LINE NUMBER WHEN PROCESSING ’@RENUMBER’. SOME LINES ARE LOST

Meaning
The maximum permissible line number (9999.9999) has been reached during processing
of a @RENUMBER statement. EDT does not permit duplicate line numbers in a work file.
The rest of the file has been erased.
Error switch: EDT.

EDT3002 OPERAND ERROR

Meaning
EDT reports that the statement contains either an invalid operand or a syntax error.

Response
Correct and re-enter the statement.

EDT3003 ’(’ MISSING

Response
Insert the missing bracket and re-enter the statement.

EDT3004 ’)’ MISSING

Response
Insert the missing bracket and re-enter the statement.

EDT3040 INVALID NAME OR NAME MISSING
(B) Routing code: * Weight: 99

Meaning
The string contains more than 8 characters or does not fullfill the syntax of the operand or
is missing.
Error switch: EDT.

EDT messages

546 U1884-J-Z125-9-76

EDT3050 INVALID SYSLST-NUMMER
(B) Routing code: * Weight: 99

Meaning
The SYSLST number issued in the statement @LOG is invalid.
Only values between 1 and 99 are valid.
Error switch: EDT.

EDT3065 NUMBER OF LINES OR ’OFF’ OR ’O’ EXPECTED

Meaning
The operand SPLIT of the @PAR statement must contain
- either the number of lines of the second window and the name of the work file to be

 displayed in the second window, or
- OFF or O in order to set the screen back to one window.

Response
Correct and re-enter the statement.

EDT3066 WRONG COLUMN NUMBER

Meaning
A wrong column number has been specified in the @SETF statement.
The statement has not been processed.

Response
Correct and re-enter the statement.

EDT3067 UPPER RANGE LIMIT INVALID OR MISSING

Meaning
The upper range limit required in a COPY or DELETE statement has either not been
specified at all, or it is invalid. The statement has not been processed.

Response
Correct and re-enter the statement.

EDT3068 POSITION INVALID OR MISSING

Meaning
The specification of POSITION in the @SETF statement is mandatory.
The statement could not be processed.

Response
Correct and re-enter the statement.

EDT messages

U1884-J-Z125-9-76 547

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT3069 STRING TO BE INSERTED IS MISSING

Meaning
The statement has not been processed because the string to be inserted is missing.

Response
Correct and re-enter the statement.

EDT3070 ’EDIT-LONG’ EXPECTED

Meaning
The operand specified in the @PAR statement is wrong.
Correct form of the operand: @PAR EDIT-LONG =

Response
Correct and re-enter the statement.

EDT3071 ’ON’, ’OFF’ OR ’O’ EXPECTED

Meaning
EDT expects the ON, OFF, or O operand in a given statement.
Possible error cause:
- one of the @PAR statement operands contains an error; ON, OFF or O is missing after

an equals sign
- an attempt has been made to define more than 8 positions in the @TABS statement,

but only ON, OFF or O is permitted here.

Response
Correct and re-enter the statement.

EDT3072 NUMBER INVALID OR MISSING

Meaning
The format of the specified numeric value is incorrect, or the value has not been specified
at all. The statement has not been processed.

Response
Correct and re-enter the statement.

EDT3073 TARGET POSITION IS INVALID OR MISSING

Meaning
The statement has not been processed because the target position in the COPY or INSERT
statement is missing or invalid.

Response
Correct and re-enter the statement.

EDT messages

548 U1884-J-Z125-9-76

EDT3074 ’KEEP’ OPERAND EXPECTED IN ’COPY’ STATEMENT

Meaning
The COPY statement has not been processed because the operand KEEP is missing.

Response
Correct and re-enter the statement.

EDT3075 RECORD RANGE CANNOT BE SPECIFIED

Meaning
The statement has not been processed because no record range can be specified in the
statement.

Response
Correct and re-enter the statement.

EDT3076 ’COPY KEEP’ PERMISSIBLE ONLY FOR ISAM FILES

Meaning
The KEEP operand in the COPY statement can only be specified for ISAM files. The
statement has not been processed.

EDT3077 OPERAND ’STRUCTURE=’ INCORRECT

Meaning
In the @PAR statement the symbol for STRUCTURE is either missing or not given in single
quotes.

Response
Correct and re-enter the statement.

EDT3078 SPECIFIED NUMBER INVALID (VALID RANGE: 1..256)

Meaning
The specified value for LIMIT in the @PAR statement or the factor n in the repetition
statement # is not within the permissible range.

Response
Correct and re-enter the statement.

EDT3079 COLUMN ’0’ NOT PERMISSIBLE

Meaning
The statement has not been processed because ’0’ cannot be specified as a column
number.

Response
Correct and re-enter the statement.

EDT messages

U1884-J-Z125-9-76 549

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT3080 SPECIFIED COLUMN INVALID, OR ’:’ MISSING IN COLUMN RANGE

Meaning
The statement has not been processed because the character ’:’ is missing in the specified
column range, or the specified range is invalid.

Response
Correct and re-enter the statement.

EDT3081 LINE NUMBER > 9999.9999

Meaning
The specified line number is too high. The maximum permissible line number is 9999.9999.

Response
Correct and re-enter the statement.

EDT3082 LINE NUMBER 0 INVALID

Meaning
The statement has not been processed, as 0 cannot be specified as a line number.

Response
Correct and re-enter the statement.

EDT3085 ’(&00)’ NOT POSSIBLE FOR PLAM ELEMENT TYPE ’(&01)’

Meaning
PLAM library elements of the type (&01) cannot be used with statement (&00).
e.g. (&01): R, C, H, L, U, F or equal free typename
with (&00): @COPY, @OPEN, @WRITE or @INPUT statement (all format 2).

EDT3086 INVALID PLAM TYPE

Meaning
The PLAM type specified in the statement is invalid.
Valid PLAM types: S, M, J, P, D, X, R, C, H, L, U, F and equal free typenames. A free
typename must not start with $ or SYS and consists of 2 to 8 characters.

EDT3087 INVALID JOB VARIABLE NAME

Meaning
The string used to specify a job variable name is incompatible with the syntax of a job
variable name, or the job variable name in a @SETJV or @GETJV statement was not fully
qualified, or it was an invalid request by an @ERAJV statement.

Response
Correct and re-enter statement.

EDT messages

550 U1884-J-Z125-9-76

EDT3088 INVALID NAME OF S-VARIABLE
(B) Routing code: * Weight: 99

Meaning
The string used to specify a SDF-P variable in a @GETVAR or @SETVAR statement is
incompatible with the syntax of a SDF-P variable.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3089 INVALID NAME OF UFS FILE
(B) Routing code: * Weight: 99

Meaning
A string used for specifying the name of a UFS file did not follow the syntax of a file name
in the POSIX file system or one of the directories issued, does not exist.
Error switch: EDT.

EDT3093 INVALID STRUCTURED NAME OR STRUCTURED NAME MISSING

Meaning
The string contains more than 30 characters or does not fulfil the syntax of the operand or
is missing.
Error switch: EDT.

EDT3101 INVALID STATEMENT

Meaning
The first character in the statement is invalid. The statement has not been processed.

EDT3106 SPECIFIED WORK FILE INVALID. (VALID RANGE: 0..9)

Response
Correct and re-enter the statement.

EDT3110 EQUATION MARK EXPECTED. STATEMENT NOT PROCESSED

Response
Correct and re-enter the statement.

EDT3111 ’TYPE’ OPERAND IS MISSING

Meaning
In the OPEN or WRITE statement, the TYPE operand has been specified without a valid
operand value.

Response
Correct and re-enter the statement.

EDT messages

U1884-J-Z125-9-76 551

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT3112 ’TYPE’ OPERAND ALREADY DEFINED

Meaning
In the OPEN or WRITE statement, an attempt was made to specify the TYPE operand a
second time.

Response
Correct and re-enter the statement.

EDT3116 ’CODE’ OPERAND MISSING OR INVALID
(B) Routing code: * Weight: 99

Meaning
In the @XOPEN, @XWRITE or @XCOPY statement, the CODE operand has been
specified without a valid operand value.

Response
Correct and re-enter the statement.

EDT3117 ’MODE’ OPERAND MISSING OR INVALID

Meaning
In one of the statements @OPEN (format 2), @WRITE (format 2), @XOPEN, @XWRITE
or @SETVAR the MODE operand has been specified without a valid operand value.

Response
Correct and re-enter the statement.

EDT3118 ’MODE’ OPERAND ALREADY DEFINED

Meaning
In the OPEN or WRITE statement, an attempt was made to specify the MODE operand a
second time.

Response
Correct and re-enter the statement.

EDT3119 WORK FILE ALREADY DEFINED

Meaning
In the OPEN or WRITE statement, an attempt was made to define the work file a second
time.

Response
Correct and re-enter the statement.

EDT messages

552 U1884-J-Z125-9-76

EDT3120 FILE NAME ALREADY DEFINED

Meaning
In the OPEN or WRITE statement, an attempt was made to define the file name a second
time.

Response
Correct and re-enter the statement.

EDT3121 LIBRARY NAME MISSING OR FORMAT OF SPECIFIED LIBRARY NAME INVALID

Response
Correct and re-enter the statement.

EDT3122 FILE NAME MISSING OR FORMAT OF SPECIFIED FILE NAME INVALID

Response
Correct and re-enter the statement.

EDT3123 NO VALID NAME OF PLAM MEMBER

Meaning
When processing a PLAM library, no valid member name has been specified.

Response
Correct and re-enter the statement.

EDT3124 VERSION NUMBER MISSING OR INVALID

Meaning
The version number of a PLAM library member has not been specified or the specified
version number contains invalid characters.

Response
Correct and re-enter the statement.

EDT3125 ’OPEN REAL’ PERMISSIBLE ONLY FOR ISAM FILES

Meaning
It is not possible to process the specified file in OPEN REAL mode because that mode is
permitted only for ISAM files.

Response
Process the specified file in virtual memory.

EDT3126 FILE ATTRIBUTES CANNOT BE SPECIFIED

Meaning
It is not possible to specify file attributes in the relevant statement, therefore the statement
has not been processed.

EDT messages

U1884-J-Z125-9-76 553

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT3127 NAME OF WORK FILE IS INVALID OR MISSING

Meaning
The statement has not been processed because no name has been specified for the work
file, or because the specified name is invalid.

Response
Correct and re-enter the statement.

EDT3128 PLAM LIBRARY NAME INVALID OR MISSING

Response
Correct and re-enter the statement.

EDT3129 NO FILE ATTRIBUTES CAN BE DEFINED FOR PLAM LIBRARIES

Meaning
When processing a PLAM library an attempt was made to define the file attribute
FCBTYPE=ISAM or SAM. The statement has not been processed.

Response
Correct and re-enter the statement.

EDT3132 PLAM TYPE IS MISSING OR INVALID

Meaning
The TYPE attribute of the PLAM member has not been specified in the statement, or the
specified attribute is invalid.

Response
Correct and re-enter the statement.

EDT3133 NUMBER OF PLAM VERSION INVALID

Response
Correct the version number and re-enter the statement.

EDT3134 ’*STD’ EXPECTED

Meaning
When processing a PLAM library, ’*’ has been specified for the type or the version.

Response
Replace ’*’ by ’*STD’ and re-enter the statement.

EDT3135 MODUL NAME MISSING

Meaning
The @UNLOAD statement has not been processed for the name of the modul has not been
specified.

Response
Correct and re-enter the statement.

EDT messages

554 U1884-J-Z125-9-76

EDT3136 ’INCREMENT=0’ NOT PERMISSIBLE

Meaning
The specification INCREMENT=0 in the @PAR statement is not permitted.
The statement has not been processed.

Response
Correct and re-enter the statement.

EDT3138 ONLY ONE CHARACTER POSSIBLE AS SYMBOL

Meaning
In a statement more than one character has been specified as a symbol:
- for the separator or structure symbol in @PAR, or
- for the ASTERISK, SLASH or FILLER symbol in @SYMBOLS.

Response
Correct and re-enter the statement.

EDT3170 SYNTAX ERROR IN LINE NUMBER
(B) Routing code: * Weight: 99

Meaning
The operand which is supposed to be a line number is syntactically incorrect.

Response
Correct and re-enter the statement.

EDT3171 NO EDT V15 OR EDT V16.0 STATEMENTS IN ’CONTROL’ MODE

Meaning
It is not possible to process EDT statements for V15 or V16.0 in control mode.

EDT3172 MODULE NAME TOO LONG

Meaning
The modul name specified in an @UNLOAD statement was longer than 8 characters.
Error switch: EDT.

EDT3173 NUMBER OF WORK FILE FOR COMPARE OPERATION MISSING OR INVALID

Meaning
Error switch: EDT.

EDT3174 NAME TOO LONG

Meaning
A string used for specifying a file or jobvariable name consists of more than 54 characters.
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 555

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT3175 SYNTAX ERROR IN SPECIFIED RANGE

EDT3176 STATEMENT SYMBOL INVALID OR TOO LONG

Meaning
The statement symbol in the @USE statement must be specified within single quotes and
must consist of exactly one character.

Response
Correct and re-enter the statement.

EDT3177 ENTRY NAME TOO LONG

Meaning
The entry name is longer than the permissible maximum of 8 characters.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3178 LIBRARY NAME TOO LONG

Meaning
The library name is longer than the permissible maximum of 54 characters.

Response
Correct and re-enter the statement.

EDT3179 ENTRY NAME MISSING

Meaning
If external statement routines are used as statement filters in the @USE statement, a
constant entry name must be specified.

Response
Correct and re-enter the statement.

EDT3180 JOKER SYMBOL EQUALS QUOTE

Meaning
Possible reasons:
- The value specified in the @SYMBOLS statement for the ASTERISK or SLASH

character is invalid as it is the same as one of the QUOTE characters.
- An @ON statement with keyword PATTERN could not be processed, as QUOTE1 or

QUOTE2 is the same as the ASTERISK or SLASH character.
Error switch: EDT.

Response
Choose different symbols for ASTERISK, SLASH, QUOTE1 and QUOTE2.

EDT messages

556 U1884-J-Z125-9-76

EDT3181 BOTH JOKER SYMBOLS ARE THE SAME

Meaning
An attempt was made to redefine one of the joker symbols by means of a @SYMBOLS
statement. The statement was not processed because different symbols must be defined
for ASTERISK and SLASH.
Error switch: EDT.

Response
Choose different symbols for ASTERISK and SLASH, and re-enter the @SYMBOLS
statement.

EDT3182 CCSN TOO LONG

Meaning
A string used for specifying a coded character set name consists of more than 8 characters.
Error switch: EDT.

Response
Correct and re-enter statement.

EDT3183 LINE NUMBER EXPECTED

Meaning
A valid line number has to be specified after the keyword TO in statement @FSTAT,
@STAJV,...

EDT3901 ILLEGAL BINARY CONSTANT

Meaning
A string with a ’B’ in front of the first single quote is errored.
Only the digits ’0’ and ’1’ are valid characters, and the string must not be empty.
Error switch: EDT.

EDT3902 ILLEGAL HEX CONSTANT

Meaning
A string with an ’X’ in front of the first single quote is errored. Only the digits 0 to 9 and the
letters A to F are valid characters, and the string must not be empty.
Error switch: EDT.

EDT3903 INVALID RANGE

Meaning
Either the line numbers in the specified range are invalid or a dash (-) is not followed by a
second line number.
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 557

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT3904 INVALID SUBSTRING

Meaning
A @SET statement contains an invalid substring. All substrings must comply with the
syntax ln or +/-int.
Error switch: EDT.

EDT3905 INVALID VARIABLE

Meaning
A line number, string or integer variable has been specified incorrectly.
Error switch: EDT.

EDT3906 LINE NUMBER INVALID

Meaning
The value of a line number is invalid with regard to either
- the integer in the statement @SET ln-var=int-var, or
- the first line number variable in the statement @SET ln-var,cl=... , or
- the destination of the output in the statement @GETJV.
Moreover, a line number can be too high for the specified KEYLEN of a file opened by
means of an @OPEN statement.
Error switch: EDT.

EDT3907 EMPTY STRING NOT PERMISSIBLE

Meaning
A string specified direct or indirect (i.g. by means of a EDT string variable or a SDF-P
variable) is empty. But that is not permissible for this statement.
Error switch: EDT.

EDT3908 STRING MISSING OR INVALID

Meaning
A string is missing in a statement or is invalid. The two most common error causes are:
- a string is missing in a statement containing a random file name (file) and no @FILE

statement is in effect
- a string requiring two single quotes contains only one.
Error switch: EDT.

EDT messages

558 U1884-J-Z125-9-76

EDT3909 @PARAMETER ERROR

Meaning
Some of the most common error causes are:
- the line number or increment is invalid
- one or more operands are missing in the statement
- invalid ON/OFF
- the number of a procedure file is ’0’
- the value in @SETSW statement is greater than 31.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT3910 DUPLICATE FORMAL OPERAND
(B) Routing code: * Weight: 99

Meaning
A formal operand (&id) has been specified at least twice in the @PARAMS statement.
Error switch: EDT.

EDT3911 DUPLICATE KEYWORD
(B) Routing code: * Weight: 99

Meaning
A keyword has been specified at least twice in a @DO statement.
Error switch: EDT.

EDT3922 INVALID COLUMN (RANGE)
(B) Routing code: * Weight: 99

Meaning
The value specified for a column is invalid, or the specified column (range) is syntactically
incorrect.
Error switch: EDT.

EDT3951 PROCEDURE NUMBER > 22

Meaning
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 559

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT3952 INVALID SYMBOL
(B) Routing code: * Weight: 99

Meaning
In some statements a special character has to be choosen for a symbol:
- in defining a new statement symbol ("@:"), or
- for the loop symbol in @DO, or
- for the range symbol in @RANGE, or
- for the first operand ("single quote") in @QUOTE, or
- for the joker symbols in @SYMBOLS.

Response
Choose a valid special character as symbol.

EDT3991 SYNTAX ERROR IN EXTERNAL STATEMENT

Meaning
The external routine reports a syntax error in the specified statement.

Response
Correct and re-enter the statement.

EDT3999 (&00)

Meaning
Syntax error in an external statement.
(&00): Message returned by the external routine.

Response
Correct and re-enter the statement.

EDT4100 (&00)

Meaning
EDT message of Version 16.0.
For more detailed information see the "EDT" manual.

EDT4200 ’(&00)’: DMS ERROR CODE: ’(&01)’

Meaning
All DMS errors are output in this form:
(&00): DMS macro (OPEN, etc.) during whose processing the error occurred.
(&01): hexadecimal error code.

For more detailed information about the DMS error enter the ISP command /
HELP DMS(&01) or the SDF command /HELP-MESS DMS(&01) in system mode,
or see the BS2000 manual "System Messages" or one of the BS2000 DMS
manuals.

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT messages

560 U1884-J-Z125-9-76

EDT4201 ’(&00)’: JVS ERROR CODE: ’(&01)’

Meaning
All JVS errors are output in this form:
(&00): JVS macro (STAJV, etc.) during whose processing the error occurred
(&01): Hexadecimal error code.

For more detailed information about the JVS error enter the ISP command /
HELP JVS(&01) or the SDF command /HELP-MESS JVS(&01) in system mode,
or see the BS2000 manual "System Messages" or the BS2000 JVS manual.

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4202 ’(&00)’: SDF-P ERROR CODE: ’(&01)’

Meaning
All SDF-P errors are output in this form:
(&00): SDF-P macro (PUTVAR, etc.) during whose processing the error occured.
(&01): Hexadecimal error code.

For more detailed information about the SDF-P error enter the ISP command /
HELP SDP(&01) or the SDF command /HELP-MESS SDP(&01) in system mode,
or see the BS2000 manual "System Messages" or the BS2000 SDF-P manual.

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4203 ’(&00)’: XHCS ERROR CODE: ’(&01)’

Meaning
All XHCS errors are output in this form:
(&00): XHCS macro (NLSCODE, etc.) during whose processing the error occured
(&01): Hexadecimal error code.

For more detailed information about the XHCS error enter the ISP command /
HELP XHC(&01) or the SDF command /HELP-MESS XHC(&01) in system mode,
or see the BS2000 manual "System Messages" or the BS2000 XHCS manual.

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4204 ’(&00)’: TIAM ERROR CODE: ’(&01)’
(B) Routing code: * Weight: 99

Meaning
All TIAM errors are output in this form:
(&00): TIAM-Macro (WRLST, etc.) during whose processing the error occured
(&01): Hexadecimal error code.

For more detailed information about the TIAM error see the BS2000 manual "TIAM"
or the BS2000 manual "Macro Calls".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT messages

U1884-J-Z125-9-76 561

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT4205 ’(&00)’: BLS ERROR CODE: ’(&01)’
(B) Routing code: * Weight: 99

Meaning
All errors of the Binder Loader System are output in this form:
(&00): BLS macro (BIND) during whose processing the error occured
(&01): Hexadecimal error code.

For more detailed information about the BLS error see the BS2000 manual "Binder
Loader System" or the BS2000 manual "Macro calls".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4206 POSIX-CALL ’(&00)’: ERROR ’(&01)’
(B) Routing code: * Weight: 99

Meaning
All errors reported by POSIX-calls are output in this form:
(&00): Function which returns an error
(&01): error code returned in C-variable errno.

For more detailed information about the error see the BS2000 manual
"C library functions" or the BS2000 manual "POSIX".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4207 ’(&00)’: SDF ERROR CODE: ’(&01)’
(B) Routing code: * Weight: 99

Meaning
All errors of SDF-macros are output in this form:
(&00): SDF-Macro (CMDSTA, etc.) during whose processing the error occured
(&01): Hexadecimal error code.

For more detailed information about the SDF error see the BS2000 manual
"SDF-A".

Processing of an @INPUT file is aborted due to this error.
Error switch: DMS.

EDT4300 ERROR AT SYSTEM COMMAND: ERROR CODE ’(&00)’
(B) Routing code: * Weight: 99

Meaning
The command specified in the @SYSTEM statement is rejected by the CMD macro with
the returncode X’10’ or X’14’.
For more detailed information about the error cause enter the ISP command /HELP (&00)
or the SDF command /HELP-MESS (&00) in system mode, or see the BS2000 manual
"System Messages".
Error switch: DMS.

EDT messages

562 U1884-J-Z125-9-76

EDT4310 SDF: SYNTAX ERROR IN LINE (&00)
(B) Routing code: * Weight: 99

Meaning
While checking the syntax of data lines with @SDFTEST a syntax error has been detected
in line (&00) and could not be corrected in a SDF error dialog.
Error switch: EDT.
Enable SDF guided error dialog, e.g. by @SY’/MOD-SDF-OPTION GUIDANCE=MIN’.

EDT4900 /SET-FILE-LINK IS IN EFFECT

Meaning
A /SET-FILE-LINK command with a link name used by EDT (EDTSAM, EDTISAM, or
EDTMAIN) is active. However, the file name specified in the EDT statement (@GET,
@READ, @INPUT, @OPEN, @ELIM, @WRITE or @SAVE) does not match the one
specified in the /SET-FILE-LINK command. The statement is not processed.
Error switch: EDT.

EDT4901 ONE INPUT FILE IS ALREADY ACTIVE

Meaning
Two @INPUT statements cannot be active in EDT at the same time.
Error switch: EDT.

EDT4903 BOTH OPERANDS IN ’@QUOTE’ STATEMENT ARE THE SAME

Meaning
If both operands (q1 and q2) are specified in the @QUOTE statement, they must be
different.
Error switch: EDT.

EDT4904 BTAM FILES NOT SUPPORTED

Meaning
An attempt was made to process a BTAM file by means of a @GET, @SAVE, @READ,
@WRITE, @INPUT, @OPEN or @ELIM statement. However, EDT does not support BTAM
files.
Error switch: EDT.

EDT4906 ’(&00)’ NOT POSSIBLE FOR CURRENT PROCEDURE FILE

Meaning
The statement (&00) refers to the current procedure file and therefor is impossible to be
executed (i.g. @DO, @DROP).
Error switch: EDT.

EDT4907 ’@DROP’ NOT POSSIBLE DURING PROCEDURE FILE PROCESSING
(B) Routing code: * Weight: 99

Meaning
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 563

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT4908 INVALID COMMAND

Meaning
The command specified in the @SYSTEM statement either contains an error or cannot be
passed by the CMD macro.
Error switch: DMS.

Response
Correct and re-enter the statement or
branch to system mode by means of @SY.

EDT4909 PROCEDURE FILE ALREADY ACTIVE

Meaning
A @PROC statement has been specified for the current procedure file.
Error switch: EDT.

EDT4910 S-VARIABLE MUST BE OF TYPE LIST
(B) Routing code: * Weight: 99

Meaning
The SDF-P variable specified in a @LOG, @GETLIST or @SETLIST statement
is not of type LIST or has not been declared yet.
Error switch: EDT.
If the variable has not been declared yet, perform the system command
/DECL-VAR NAME=..,MULT-ELEM=LIST before re-entering the statement.

EDT4912 EAM OPEN ERROR

Meaning
An EAM file cannot be opened during a @LIST statement in conjunction with
the ’I’ operand.
Error switch: EDT.

EDT4913 EAM WRITE ERROR

Meaning
A write error has occurred while writing to an EAM file (@LIST statement in conjunction with
the ’I’ operand).
Error switch: EDT.

EDT4914 EDT OR FILE FORMAT ERROR WITH INTERRUPT WEIGHT=60

Meaning
Data errors can occur when an attempt is made to access a disk file with invalid keys. When
searching for the key, EDT always uses the first eight characters of the record. If this results
in an invalid line number, data errors can be the consequence.
For more detailed information on the error cause see the "EDT" manual.
Error switch: EDT, DMS.

EDT messages

564 U1884-J-Z125-9-76

EDT4916 FILE NOT IN CATALOG

Meaning
A file name specified in a @FSTAT, @GET, @READ, @INPUT, @ELIM, @SAVE,
@WRITE, @COPY, or @UNSAVE statement does not exist in the catalog.
If this error occurs in an @FSTAT statement, the DMS error switch is also set for reasons
of compatibility. Processing of @INPUT files is, however, not aborted.
In new EDT procedures only the EDT error switch should be checked.
Error switch: EDT, DMS (see meaning text).

EDT4918 FORMAL OPERAND MISSING

Meaning
A formal operand (&id) has been expected but not found in a @PARAMS statement.
Error switch: EDT.

EDT4919 REQM ERROR FOR (&00) BUFFER

Meaning
During processing of a @FSTAT, @STAJV, @ERAJV, @LIST I or @SYSTEM statement
using the (&00) macro, the required pages of virtual address space could not be provided
by REQM for the (&00) buffer.
E.g.: for FSTAT 15 pages, for STAJV 8 pages, for EAM 1 page, for CMD 8 pages.
Error switch: EDT.

EDT4920 STATEMENT ILLEGAL DURING PROCEDURE FILE PROCESSING

Meaning
One of the following statements was to be processed while a procedure file was being
processed: @INPUT, @UPDATE (format 2), @CODENAME or @SETF GLOBAL.
Error switch: EDT.

EDT4921 STATEMENT ILLEGAL DURING ’@INPUT’ PROCESSING

Meaning
The @UPDATE statement (format 2), @CODENAME or @GOTO has been read from a
file opened by means of @INPUT.
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 565

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT4923 INVALID FILE NAME

Meaning
The file name specified in a @FSTAT, @GET, @READ, @INPUT, @OPEN, @ELIM,
@WRITE, @SAVE, @UNSAVE, @COPY or @DELETE statement does not comply with
the conventions governing the definition of the file names.
Possible error cause: the file name specified in single quotes or in a string variable has a
leading blank.
If this error occurs in the processing of @FSTAT statement the DMS error switch is also set.
Processing of @INPUT files is, however, not aborted.
In new EDT procedures only the EDT error switch should be checked.
Error switch: EDT, DMS (see ’Meaning’ text).

EDT4924 INVALID FORMAL OPERAND

Meaning
A @PARAMS statement contains an invalid operand (&id).
Error switch: EDT.

EDT4925 STATEMENT ONLY PERMITTED IN WORK FILE 0
(B) Routing code: * Weight: 99

Meaning
The @OPEN (format 1) statement is not permissible in a procedure file.
A file can only be opened in real mode in work file 0.
Error switch: EDT.

EDT4926 INVALID KEY

Meaning
In the @GET ’...’ N, @READ ’...’ KEY, or @ELIM ’...’ statement an attempt was made to
access a record using an invalid key. Processing of the statement has been aborted.
Processing of the @INPUT files has been aborted in case of DMS errors.
In batch mode or if EDT is reading in data from SYSDTA by means of RDATA, EDT termi-
nates and the following message is displayed:
’EDT8001EDT TERMINATED ABNORMALLY’.
Error switch: EDT, DMS.

EDT4927 INVALID KEY IN FILE OPENED IN REAL MODE

Meaning
An ISAM file has been opened in real mode (@OPEN) and an attempt has been made to
access a record by means of an invalid key. Processing of the statement has been aborted,
and the file currently being processed has been closed. Processing of @INPUT files is
aborted as in the case of DMS errors. In batch mode or if EDT is reading from SYSDTA by
means of RDATA, EDT terminates and the following message is displayed:
’EDT8001 EDT TERMINATED ABNORMALLY’.
Error switch: EDT, DMS.

EDT messages

566 U1884-J-Z125-9-76

EDT4928 INVALID VALUE

Meaning
A @PARAMS keyword or a @DO operand has an invalid value. The most common
error cause is an unpaired single quote.
Error switch: EDT.

EDT4929 ISAM ’RECORD-FORMAT=FIXED’ NOT SUPPORTED

Meaning
An attempt has been made to process a file with fixed record length using the @OPEN
statement and the /SET-FILE-LINK command with LINK-NAME=EDTMAIN.
Error switch: EDT.

EDT4930 ’KEY-POSITION <>1’ AND ’RECORD-FORMAT=FIXED’ NOT SUPPORTED

Meaning
In a @GET or @SAVE statement an ISAM file has been assigned by means of a
/SET-FILE-LINK ..,LINK-NAME=EDTISAM,ACCESS-METHOD=ISAM(REC-
FORM=FIXED..) command, but the file does not have ’KEY-POSITION=1’.
Error switch: EDT.

EDT4931 KEY-LENGTH TOO BIG

Meaning
A @GET, @SAVE, @ELIM or @OPEN statement has been issued for a file with
KEY-LENGTH >8.
Error switch: EDT.

EDT4932 LINE NUMBER NOT FOUND

Meaning
- A line number has been specified for a string, but the line is not in the procedure file or

the file is empty. If the error occurs while an EDT procedure or an @INPUT file is being
processed, this message is not displayed unless logging has been explicitly activated
by means of the PRINT operand. In this case the EDT error switch is not set either.

- The range of lines specified in the @COMPARE statement is invalid. In this case the
error message is always displayed, the EDT error switch is set.

Error switch: EDT (see ’Meaning’ text).

EDT4933 MODULE LOADING NOT POSSIBLE

Meaning
It is not possible to load the module (e.g. IEDTCALL) by means of the @RUN or @USE
statement.
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 567

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT4934 MAIN FILE IS SAM

Meaning
The first file name specified in the @OPEN statement is the name of a SAM file. A copy of
the SAM file can be processed in real mode by specifying ’@OPEN <file1> AS <file2>’.
Error switch: EDT.

EDT4935 MAIN FILE OPENED REAL

Meaning
An attempt was made to process a statement that is not permissible as long as the main
file is opened real by means of @OPEN (format 1) (e.g. @RENUMBER).
Error switch: EDT.

EDT4936 ’KEY-POSITION <>5’ AND ’RECORD-FORMAT=VARIABLE’ NOT SUPPORTED
(B) Routing code: * Weight: 99

Meaning
It is not possible to process a file with that catalog properties by means of
@OPEN (Format 2).
Error switch: EDT.

EDT4937 NO MORE SPACE FOR OPERAND VALUES

Meaning
A current operand value or a formal keyword value consisting of n characters uses (n+1)
bytes of a virtual memory page reserved for procedure file arguments (values). With the
exception of empty operands, this message is displayed if a value causes more than
4096 bytes to be used.
For more detailed information on the error see the "EDT" manual.
Error switch: EDT.

EDT4938 NO MORE SPACE FOR OPERANDS

Meaning
A formal operand of length n (including the ’&’ character) is using (n+4) bytes on a page of
the virtual memory reserved for formal operands of procedure files. If an operand causes
more than 4096 bytes to be used, this message is displayed.
The page for formal operands will not be allocated if no operands are used. It will be
returned after all procedure files have been dropped by means of the @DROP statement,
or if no more @INPUT files are active.
For more detailed information on the error see the "EDT" manual.
Error switch: EDT.

EDT4939 ’@END’ WITHOUT ’@PROC’ STATEMENT

Meaning
An @END statement has been specified but there is no procedure file which has to be
ended, that means that the current work file is work file 0.
Error switch: EDT.

EDT messages

568 U1884-J-Z125-9-76

EDT4940 POSITION VALUES NOT ASCENDING

Meaning
The values in a @TABS statement to define the positions of the hardware tabulators must
be in ascending order.
Error switch: EDT.

Response
Correct and re-enter the statement.

EDT4941 NO POSITIONS DEFINED

Meaning
Tabulators cannot be used until the positions have been defined.
Error switch: EDT.

Response
Define the positions using the @TABS statement.

EDT4942 STATEMENT ONLY POSSIBLE IN PROCEDURE FILE

Meaning
A @RETURN, @GOTO or @IF statement can only be executed while a procedure file is
being processed.
Error switch: EDT.

EDT4943 CHANGE OF CCS NOT POSSIBLE - WORK FILES NOT EMPTY
(B) Routing code: * Weight: 99

Meaning
A change of the coded character set is only possible, if all work files are empty. Either a
@CODENAME statement was issued, or a file with a CCS name different from the actual
was to be input or opened (@READ, @OPEN,..).
Error switch: EDT.
Re-enter statement after closing opened files and deleting work files.

EDT4944 @PARAMS STATEMENT MISSING

Meaning
The @DO statement contains operands, but there is no @PARAMS statement in the
procedure file, or it is not the first statement in the procedure file.
Error switch: EDT.

EDT4945 NOT POSSIBLE ON THIS TERMINAL

Meaning
The @UPDATE statement in format 2 has been specified on a printer, or an attempt was
made to change the screen dimension with a @VDT statement for a terminal other than a
9763.
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 569

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT4946 OVERFLOW ERROR

Meaning
The result of an arithmetic operation using a @SET statement (format 1) exceeds the
highest positive or negative value of an integer variable (2^31-1,-2^31).
Error switch: EDT.

EDT4947 PAM FILE NOT SUPPORTED

Meaning
An attempt was made to process a PAM file by means of a @GET, @READ, @INPUT,
@OPEN, @ELIM, @SAVE or @WRITE statement. PAM files are not supported by EDT.
Error switch: EDT.

EDT4948 POSITIONAL OPERAND AFTER KEYWORD OPERAND

Meaning
In a @DO statement a positional operand has been specified after a keyword operand.
Error switch: EDT.

EDT4949 PROCEDURE FILE IS EMPTY

Meaning
An EDT procedure started by means of a @DO statement is empty. The procedure file has
been defined by means of a @PROC and an @END statement, but it contains neither data
records nor EDT statements.
Error switch: EDT.

EDT4950 PROCEDURE FILE IS UNDEFINED

Meaning
In a @DO or @COMPARE statement a procedure file has been specified that has not been
defined in a @PROC statement.
Error switch: EDT.

EDT4951 WORK FILE IS EMPTY. STATEMENT NOT PROCESSED

Meaning
The statement refers to a line number which cannot be found as the work file is empty.

EDT messages

570 U1884-J-Z125-9-76

EDT4954 REQM ERROR. PLEASE RECEIPT WITH "Y"

Meaning
The attempt by EDT to allocate additional memory is rejected with a return code, or the
ENTRLINE routine has been called by an EDT subroutine (@RUN), but no virtual memory
is available.
Error switch: not set.

Response
Y: EDT returns to the next free line number.
Else: The message will be repeated.
If this message is output during processing of an EDT procedure, the processing can be
ended by issuing K2 and /INTR.

EDT4955 PROCEDURE FILE(S) NOT YET TERMINATED

Meaning
A @DROP statement is not permitted while procedure files are stored in the procedure
stack, i.e. another @PROC statement has been specified before a preceding procedure
was terminated.
Error switch: EDT.

EDT4956 SYSDTA EOF

Meaning
EDT issued a read instruction, but an end-of-file condition occurred.
If ’EOF’ is reported by RDATA (@EDIT ONLY mode), the EDT will switch to WRTRD
(@EDIT mode). If ’EOF’ is reported by WRTRD or in batch mode, EDT will issue a BKPT.
Then the EOF condition can be reset, and processing can be continued by means of the
/RESUME-PROGRAM command.
Error switch: EDT.

EDT4957 SYSDTA NOT ASSIGNED OR READ ERROR

Meaning
The RDATA macro supplied the return code X’14’ or X’18’. The EDT run will be aborted and
the message ’EDT8001EDT TERMINATED ABNORMALLY’ displayed.
Error switch: EDT.

EDT4958 @SYSTEM STATEMENT INCORRECT

Meaning
The command specified in the @SYSTEM statement contains an invalid operand or
returned an DMS error. It is rejected by the CMD macro with return code X’10’.
Error switch: DMS.

EDT messages

U1884-J-Z125-9-76 571

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT4959 PROCEDURE FILE ALREADY ACTIVE

Meaning
A @PROC statement for a procedure file already activated by a @DO statement is not
permissible.
Error switch: EDT.

EDT4960 TIAM MACRO ERROR

Meaning
One of the macros WROUT, WRTRD, RDATA or MSG7 reported an error with return code
X’04’ or X’08’.
EDT terminates with the message ’EDT800 EDT TERMINATED ABNORMALLY’.
In the case of the return code X’08’ an area dump is output additionally.
Error switch: not set.

EDT4961 TOO MANY PROCEDURE FILES ACTIVE

Meaning
Error in the @DO statement: more than 22 procedure files are being processed at the same
time.
Error switch: EDT.

EDT4962 TOO MANY FILES

Meaning
No more memory is available for nested (not closed by @END) definitions of procedure files
or INPUT files.
Error switch: EDT.

EDT4963 TOO MANY OPERANDS

Meaning
There are more current operands in the @DO statement than formal operands in the
@PARAMS statement.
Error switch: EDT.

EDT4964 TOO MANY POP OPERATIONS

Meaning
A @ statement has been specified to pop in a three-stage procedure stack.
This means that there are more pop than push operations, or that there are never three
push operations in the stack. (Control returns to the start only if the range is full.)
Error switch: EDT.

EDT4965 TOO MANY POSITIONAL OPERANDS

Meaning
There are more positional operands in a @DO statement than have been specified in a
@PARAMS statement.
Error switch: EDT.

EDT messages

572 U1884-J-Z125-9-76

EDT4966 ’UPDATE’ FOR ISAM FILE NOT POSSIBLE

Meaning
A @WRITE statement with the UPDATE function has been specified for an ISAM file.
Error switch: EDT.

EDT4967 ’UPDATE’ FOR SAM FILE NOT POSSIBLE

Meaning
A @SAVE statement with the UPDATE function has been specified for a SAM file.
Error switch: EDT.

EDT4968 WORK FILE NOT EMPTY

Meaning
There were still some lines in the work file when an @OPEN statement was specified.
@OPEN is only permitted if the work file is empty.
Error switch: EDT.

EDT4969 WRONG VERSION: (&00) (&01)

Meaning
A file name has been specified in a statement withe a wrong version number. In this
message EDT displays the correct version number of the file. If the file is only to be read,
the statement will be processed. In the case of write access, the statement will not be
processed. If a statement containing a wrong version number (write and read access) is
read from an @INPUT file, the procedure will be aborted.
Error switch: DMS.

EDT4971 FIRST FILE EMPTY OR NOT CATALOGED

Meaning
An AS file has been specified in an @OPEN statement but the first file is either empty or
not cataloged.
Error switch: EDT.

EDT4972 @ELIM STATEMENT FOR SAM FILE ILLEGAL

Meaning
Error switch: EDT.

EDT4973 @UPDATE STATEMENT IN BINARY MODE NOT POSSIBLE

Meaning
After activation of binary mode by means of the @INPUT statement, an @UPDATE
statement (format 2) has been specified for corrections.
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 573

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT4974 LINE NOT IN PROCEDURE FILE

Meaning
The line number specified in a @GOTO statement does not exist in the procedure file.
Error switch: EDT.

EDT4975 BIND NOT SUCCESSFUL

Meaning
In the specified module library, DLL could not find any module with the ENTRY or CSECT
name specified in a @RUN statement.
Error switch: EDT.

EDT4976 STATEMENT INHIBITED FOR USER

Meaning
A statement was given by the user (@RUN, @LOAD, etc.) which is not permitted by the
calling program.

EDT4977 ’RECORD-FORMAT=UNDEFINED’ ILLEGAL

EDT4978 INVALID IN F-MODE

EDT4980 ILLEGAL OR UNKNOWN CCS NAME

Meaning
The CCSN specified in a @CODENAME statement or the CCSN of a file or library element
to be read (@READ, @OPEN, @COPY, @INPUT) is illegal or unknown.
Error switch: EDT.

EDT4981 RECORD-SIZE > 256. FILE NOT WRITTEN

EDT4982 REQUESTED JV NOT CATALOGED

Meaning
The name of the job variable specified in a @GETJV, @STAJV, or @ERAJV statement has
not been found in the catalog.
Error switch: EDT, DMS.

EDT5065 INVALID RANGE: LOWER LIMIT > UPPER LIMIT

Meaning
The first line number specified in the range is higher than the second one.

Response
Correct and re-enter the statement.

EDT5078 RECORD WITH SAME KEY EXISTS: ’INSERT’ NOT POSSIBLE

Meaning
The key specified in the ’INSERT <...> AT’ statement already exists.
It is not possible to insert a new record.
Correct the record key and re-enter the statement.

EDT messages

574 U1884-J-Z125-9-76

EDT5079 STRING TO BE INSERTED IS EMPTY. ’INSERT’ NOT POSSIBLE

Meaning
It is not possible to insert an empty string by means of the INSERT statement.

EDT5080 OPERANDS ’$0’..’$9’, ’FIRST’, ’LAST’ NOT SUPPORTED

Meaning
The specified operands <wkflvar>, FIRST (or FI) or LAST (or LA) are invalid here.

Response
Instead of @SETF FI use @SETF or @SETF %.
Instead of @SETF LA use @SETF $.
Correct and re-enter statement.

EDT5121 ’CLOSE REAL’ STATEMENT VALID ONLY IN WORK FILE 0

Response
Process the file to be closed real in work file 0.

EDT5122 NO FILE NAME

Meaning
No file name has been specified, or the format of the specified file name is invalid.

Response
Enter the file name in the form F=<filename>, L=<libname>, or E=<elemname>.

EDT5123 ’CLOSE REAL’ NOT POSSIBLE: ’(&00)’ IS NOT OPENED REAL

Meaning
(&00): file.

Response
Re-enter the statement without the operand REAL.

EDT5124 ’OPEN REAL’ STATEMENT VALID ONLY IN WORK FILE 0

Response
Process the file to be opened real in work file 0.

EDT5125 ’OPEN REAL’ VALID ONLY FOR ISAM FILES

Meaning
It is not possible to process the file with OPEN REAL because the file is not an ISAM file.

Response
Process the specified file in virtual memory.

EDT messages

U1884-J-Z125-9-76 575

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT5126 ’(&00)’ NOT POSSIBLE: WORK FILE 0 IS OPEN

Meaning
The file or library element could not be opened because an ISAM file has been opened real
in work file 0 by means of the statement @OPEN (format 1).
A subsequent @OPEN (format 2) or @XOPEN is rejected.
Error switch: EDT.

Response
Enter the @CLOSE statement in order to close the file opened by means of the @OPEN
statement.

EDT5170 TEXT IN HALT STATEMENT NOT PERMISSIBLE IN CONTROL MODE

EDT5171 NO EDT V15 OR EDT V16.0 STATEMENTS IN ’CONTROL’ MODE

Meaning
It is not possible to process EDT statements for V15 or V16.0 in control mode.

EDT5177 NO FILE TO CLOSE

EDT5179 PLAM MEMBER MISSING. STATEMENT NOT PROCESSED

EDT5180 ’@CLOSE’ OR ’@CLOSE NOWRITE’ EXPECTED

Meaning
An attempt was made to process a file or library element by means of the @OPEN or
@XOPEN statement, although another file or library element is already open in that work
file. Because of the same reason a @DROP of this work file is not possible.

Response
Close the processed file or library element by means of @CLOSE or @CLOSE NOWRITE
and re-enter the statement.

EDT5181 NO LIBRARY NAME DEFINED

Meaning
The statement could not be processed because the library name has not been defined.

EDT5182 ’CLOSE REAL’ NOT POSSIBLE FOR PLAM MEMBERS

Response
Close the opened PLAM member by means of @CLOSE or @CLOSE NOWRITE.

EDT5183 ’CLOSE REAL’ INVALID FOR SAM FILES

Response
Close the SAM file by means of @CLOSE or @CLOSE NOWRITE.

EDT messages

576 U1884-J-Z125-9-76

EDT5188 NUMBER OF LINES NOT PERMISSIBLE

Meaning
The number specified in the SPLIT operand of the @PAR statement for the number of lines
in the second work window would mean that one of the two work windows would contain
less than 2 lines.

EDT5189 ’(&00)’ NOT POSSIBLE: A FILE IS OPENED IN WORK FILE 9

Meaning
A @SHOW statement was issued but cannot be performed, for a file is opened in
work file 9.

Response
Close the file opened in work file 9.

EDT5191 ’(&00)’ NOT POSSIBLE. WORK FILE (&01) IS NOT EMPTY

Meaning
Statement (&00) (e.g. @OPEN format 2, @XOPEN,...) can only be processed, if the work
file (&01) is empty.
Error switch: EDT.

Response
Select another work file or delete the specified work file and re-enter the statement.

EDT5221 READ ERROR ((&00)): DMS ERROR CODE: ’(&01)’

Meaning
The @OPEN or @COPY statement (format 2) has not been processed due to a read error
of the access method (&00).
(&01): DMS error code.

For more detailed information about the DMS error enter the ISP command /
HELP DMS(&01) or the SDF command /HELP-MESS DMS(&01) in system mode,
or see the BS2000 manual "System Messages" or one of the BS2000 DMS
manuals.

EDT5224 INVALID ACCESS-METHOD

Meaning
The file specified in a @COPY, @OPEN or @WRITE statement (format 2) cannot be
processed by EDT because of the access-method.
At present, EDT can only process SAM and ISAM files.

Response
Convert the specified file into a SAM or ISAM file.

EDT messages

U1884-J-Z125-9-76 577

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT5225 INVALID RECORD-FORMAT

Meaning
The RECORD-FORMAT of a file specified in a @COPY, @OPEN or @WRITE statement
(format 2) cannot be processed by EDT.
At present, EDT supports only files with variable record format.

Response
Convert the specified file to a file with RECORD-FORMAT=VARIABLE.

EDT5226 ’@OPEN’ NOT POSSIBLE: RECORD SIZE > 256
(B) Routing code: * Weight: 99

Meaning
A file with fixed record size larger than 256 bytes cannot be handled by means of @OPEN.
The contents of the records would get lost from column 257 on.
Error switch: EDT.

EDT5233 SET ERROR (ISAM): DMS ERROR CODE: ’(&00)’

Meaning
The @COPY statement (format 2) has not been processed due to a SET error.
(&00): DMS error code.

For more detailed information about the DMS error enter the ISP command /
HELP DMS(&00) or the SDF command /HELP-MESS DMS(&00) in system mode,
or see the BS2000 manual "System Messages" or one of the BS2000 DMS
manuals.

EDT5237 WRITE ERROR ((&00)): DMS ERROR CODE: ’(&01)’

Meaning
The @CLOSE or @WRITE statement has not been processed due to a write error in the
access method (&00).
(&01): DMS error code.

For more detailed information about the DMS error enter the ISP command /
HELP DMS(&01) or the SDF command /HELP-MESS DMS(&01) in system mode,
or see the BS2000 manual "System Messages" or one of the BS2000 DMS
manuals.

EDT5241 FILE ’(&00)’ FOR COPY OPERATION DOES NOT EXIST

Meaning
The file specified in the COPY statement does not exist. The statement has not been
processed.
(&00): File name.

EDT messages

578 U1884-J-Z125-9-76

EDT5244 ’COPY’ STATEMENT WITH ’KEEP’ ONLY VALID FOR ISAM FILES

EDT5245 INVALID RECORD KEY

Meaning
It is not possible to read an ISAM file with an alphanumeric record key.

EDT5246 SECONDARY KEY(S) INCOMPLETLY SET
(B) Routing code: * Weight: 99

Meaning
The NKISAM file has been closed. While setting the secondary keys afterwards an error
has been reported.
Error switch: EDT.
Check data of secondary keys.

EDT5250 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’(&01)’

Meaning
The PLAM function (&01) (i.g. DETACH, ATTACH,..) called when processing the statement
supplied the error code (&00). The statement has not been processed.

EDT5251 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’CLOSE’

Meaning
The PLAM function CLOSE called when processing the CLOSE statement supplied the
error code (&00). The statement has not been processed.

EDT5252 MAXIMUM LINE NUMBER

Meaning
The line number 9999.9999 has been reached. When input from a file or a SDF-P variable
the number of records or list elements is too high.
Error switch: EDT.

EDT5253 SPECIFIED FILE IS NOT A PLAM LIBRARY

Meaning
The file specified in the operand LIBRARY of a @OPEN, @COPY, @DELETE, @INPUT or
@SHOW statement or predefined in a @PAR statement cannot be accessed by PLAM.

EDT5254 (&00) NOT IN SYSTEM

Meaning
The specified statement could not be processed because the subsystem (&00) is not
available in the system.
Error switch: EDT, DMS.

EDT messages

U1884-J-Z125-9-76 579

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT5255 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’GETA’

Meaning
The PLAM function GETA called when processing the statement supplied the
error code (&00). The statement has not been processed.

EDT5256 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’ATTACH’ / DMS ERROR CODE ’(&01)’

Meaning
During statement processing the called PLAM function ATTACH reported
the error code (&00). The statement has not been processed.
(&01): DMS error code.

For more detailed information about the DMS error enter the ISP command /
HELP DMS(&01) or the SDF command /HELP-MESS DMS(&01) in system mode,
or see the BS2000 manual "System Messages" or one of the BS2000 DMS
manuals.

EDT5257 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’OPEN’

Meaning
The PLAM function OPEN called when processing the OPEN statement supplied
the error code (&00). The statement has not been processed.

EDT5258 FILE ’(&00)’ ALREADY EXISTS

Meaning
The file (&00) specified in the @OPEN statement (format 2) already exists.
The statement has not been processed.

EDT5259 CCS ’(&00)’ INCOMPATIBLE WITH TERMINAL

Meaning
A file or library element which was to be read or opened had the catalog attribute (&00), or
the CCS (&00) was asked for at a @CODENAME statement.
It is not possible to change the Coded Character Set to (&00), because the terminal cannot
be set to this.
Error switch: EDT.

EDT5261 ’DELETE’ NOT PROCESSED. LIBRARY ’(&00)’ DOES NOT EXIST

EDT5263 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’PUTA’

Meaning
The PLAM function PUTA called when processing the statement supplied the
error code (&00).
The member has been closed but was not written back.

EDT messages

580 U1884-J-Z125-9-76

EDT5266 LIBRARY ’(&00)’ LOCKED

Meaning
The specified library (&00) is read-protected.
The statement has not been processed.

EDT5267 SPECIFIED LIBRARY ’(&00)’ DOES NOT EXIST

EDT5268 MEMBER ’(&00)’ IS LOCKED

Meaning
The specified member could not be accessed, as it is either protected or has already been
opened.

EDT5270 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ NOT FOUND FOR UPDATE OPERATION

Meaning
The member (&00) in library (&01) specified in the @OPEN statement could not be found.
The statement has not been processed.

Response
Check PLAM typ of required member.

EDT5271 S-VARIABLE NOT FOUND FOR UPDATE
(B) Routing code: * Weight: 99

Meaning
A @SETVAR statement was issued with the operand MODE=UPDATE, but the specified
variable has not been defined.
Error switch: EDT.

EDT5272 S-VARIABLE ALREADY DECLARED
(B) Routing code: * Weight: 99

Meaning
A @SETVAR statement was issued with the operand MODE=NEW, but the specified
variable has already been defined.
Error switch: EDT.

EDT5273 MEMBER ’(&00)’ IN LIBRARY ’(&01)’ ALREADY EXISTS

Meaning
The member (&00) in the library (&01) specified in the @OPEN statement with operand
MODE=NEW already exists. The statement has not been processed.
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 581

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT5274 S-VARIABLE NOT DECLARED
(B) Routing code: * Weight: 99

Meaning
A @GETVAR, @GETLIST or @SETLIST statement could not be processed, because the
specified variable has not been defined jet.
Error switch: EDT.

EDT5275 ’COPY’ NOT POSSIBLE: MEMBER ’(&00)’ DOES NOT EXIST

Meaning
The @COPY statement has been not processed because the member specified in the
statement does not exist.

Response
Check PLAM typ of required member.

EDT5278 FILE ’(&00)’ PROTECTED BY PASSWORD

Response
Contact the file owner.

EDT5279 FILE ’(&00)’ LOCKED

Meaning
The specified file is either read-protected or has already been opened.

EDT5281 FILE ’(&00)’ DOES NOT EXIST

EDT5282 FILE ’(&00)’ IS EMPTY OR LOCKED

Meaning
The specified file has last-page pointer 0.
Possible reasons are:
- The file is empty.
- The file is assigned to SYSLST or SYSOUT.

Response
Re-enter statement later.

EDT5283 ERROR CODE ’(&00)’ IN PLAM FUNCTION ’DELETE’

Meaning
When attempting to delete a PLAM member the PLAM DELETE macro issued
error code (&00).

EDT messages

582 U1884-J-Z125-9-76

EDT5284 MEMBER ’(&00)’ DOES NOT EXIST

Meaning
The @DELETE statement for member (&00) could not be processed because the specified
member does not exist.

Response
Re-enter the statement with the correct member name and PLAM typ.

EDT5285 ’SHOW’: PLAM ERROR CODE ’(&00)’

Meaning
When processing the @SHOW statement, a PLAM macro issued the error code (&00).

EDT5286 INVALID USER TYPE
(B) Routing code: * Weight: 99

Meaning
The requested library element is not editable. The specified user type is not equivalent to
one of the following PLAM types: S,M,P,J,D,X.
Error switch: EDT.

EDT5287 NO MEMBERS OF SPECIFIED TYPE OR LIBRARY IS EMPTY

Meaning
The @SHOW statement has not been processed because no members exist of the
specified type, or the library is empty.

EDT5289 JV LINK NAME NOT DEFINED

Meaning
An attempt was made to access a JV by calling it by link name, but a job variable with this
link name is not defined.
Error switch: EDT, DMS.

EDT5290 BUFFER TOO SMALL

Meaning
EDT has readied a buffer for the output of a system macro:
e.g. for FSTAT 15 pages and for STAJV 8 pages of virtual memory space.
However, this buffer was too small to hold the complete output, with the result that
processing of the macro was rejected with an appropiate return code.
Error switch: EDT.

Response
Reduce the scope of the output by issuing the statement (@FSTAT, @STAJV or
@ERAJV) with a partially qualified file or job variable name, or in case of @SDFTEST,
change the options for SDF.

EDT messages

U1884-J-Z125-9-76 583

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT5291 SYSDTA EOF

Meaning
When attempting to read the next statement from SYSDTA the end of the file (EOF) has
been reached.

Response
Terminate EDT normally by means of the HALT statement.

EDT5293 REQM ERROR

Meaning
No virtual memory is available for file processing.

EDT5294 RELM ERROR

Meaning
An error has occurred while releasing virtual memory.

EDT5300 INTERNAL EDT ERROR ’(&00)’

Meaning
Internal EDT runtime error.
(&00): Error code.

Response
Contact the system support service.

EDT5310 UFS FILE ’(&00)’ DOES NOT EXIST
(B) Routing code: * Weight: 99

Meaning
The specified file (&00) of the UFS-filesystem cannot be dealt with, for it does not exist.
Error switch: EDT.

EDT5311 UFS FILE ALREADY EXISTS
(B) Routing code: * Weight: 99

Meaning
The file specified in @XOPEN or @XWRITE cannot be handled withthe operand
MODE=NEW, for it already exists in the UFS-file system.
Error switch: EDT.

EDT5312 INVALID ACCESS TO UFS-FILE
(B) Routing code: * Weight: 99

Meaning
The file whose name was specified in a @XOPEN, @XCOPY or @XWRITE statement
could not been opened for reading for the access was denied.
Error switch: EDT.

EDT messages

584 U1884-J-Z125-9-76

EDT5313 UNABLE TO CREATE UFS FILE ’(&00)’

Meaning
The UFS file &00 could not be opened with MODE=NEW, for a directory is missing.
Error switch: EDT.

EDT5320 SDF: NO PROGRAM NAME FOR TEST OF STATEMENTS DEFINED
(B) Routing code: * Weight: 99

Meaning
The user issued @SDFTEST PROGRAM or marked a line starting with ’//’ with t, but has
not defined an internal program name yet.
Error switch: EDT.

Response
Issue @SDFTEST with operand PROGRAM=name or define an internal program name
with @PAR SDF-PROGRAM=name.

EDT5321 SDF: PROGRAM NAME UNKNOWN
(B) Routing code: * Weight: 99

Meaning
The internal program name which was to be used in the statement
@SDFTEST PROGRAM is not known in any active syntax file.
Error switch: EDT.

EDT5322 SDF: TEST OPERATION ABORTED
(B) Routing code: * Weight: 99

Meaning
Processing of @SDFTEST or the statement t has been aborted.
Possible reason: more than 255 continuation lines.
Error switch: EDT.

EDT5323 SDF: EXTERNAL PROGRAM NAME NOT SUPPORTED

Meaning
Specification of external program name in @SDFTEST or PAR SDF-PROGRAM statement
is not supported with actual SDF version.
Error switch: EDT

Response
Use internal program name instead.

EDT5340 S-VARIABLE EMPTY
(B) Routing code: * Weight: 99

Meaning
The variable specified in a @GETVAR statement is declared but has not set to any value.

EDT messages

U1884-J-Z125-9-76 585

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT5341 S-VARIABLE LONGER THAN 256 CHARACTERS
(B) Routing code: * Weight: 99

Meaning
The @GETVAR statement could not be performed, for the value of the specified variable is
string longer than 256 characters.
Error switch: EDT.

EDT5342 WRONG TYPE OF S-VARIABLE
(B) Routing code: * Weight: 99

Meaning
The @GETVAR or @SETVAR statement could not be processed, for the type of the
specified variable does not match the operand on the right side of the equation mark.
Error switch: EDT.
A SDF-P variable of type INTEGER can only be put to an integer variable and vice versa.

EDT5343 WRONG TYPE OF LIST ELEMENT
(B) Routing code: * Weight: 99

Meaning
The statement @GETLIST or @SETLIST could not be processed for the elements of the
specified list variable are not of type STRING.
Error switch: EDT.

EDT5350 COMPARE RESULT CANNOT BE SHOWN

Meaning
The output file is one of the work files to be compared.
Error switch: EDT.

EDT5351 COMPARE OPERATION ABORTED

Meaning
While processing the @COMPARE statement (format 2), an unrecoverable error occurred
causing the compare operation to be aborted.
Error switch: not set.

EDT5352 COMPARE OPERATION ABORTED, RENUMBER

Meaning
Processing of the @COMPARE statement (format 2) has been aborted. The last byte of a
line number used internally during comparison is not ’0’. The work files must be renumbered
before the compare operation can be tried again.
Error switch: EDT.

EDT5353 UNRECOVERABLE FORMAT ERROR ON SCREEN DISPLAY

Meaning
Error switch: not set.

EDT messages

586 U1884-J-Z125-9-76

EDT5354 STRUCTURE SYMBOL ’(&00)’ NOT FOUND

Meaning
The structure symbol (&00) does not exist in the specified line.
No positioning has been performed.
(&00): structure symbol.

Response
Correct and re-enter the statement.

EDT5356 K-LINE NOT COPIED BECAUSE OF TERMINAL CONTROL CHARACTERS

Meaning
K-line cannot be copied to the statement line because it contains screen control characters.
Error switch: not set.

EDT5357 LINE DOES NOT EXIST

Meaning
The line specified in format 2 of the @CODE statement by <lineno> does not exist.
Error switch: EDT.

EDT5358 LINE SHORTER THAN 256 BYTES

Meaning
The line specified in format 1 of the @CODE statement by <lineno> is shorter than
256 bytes.
Error switch: EDT.

EDT5359 MAXIMUM LINE NUMBER. COPY INCOMPLETE

Meaning
Processing of the COPY statement is aborted because the maximum permissible line
number has been exceeded.
(See also error message: EDT5252 MAXIMUM LINE NUMBER.)
Error switch: EDT.

EDT5360 NO COPY. BUFFER EMPTY

Meaning
The copy buffer is empty, therefore A/B/O cannot be processed.
Error switch: not set.

EDT5362 <TEXT> SPECIFICATION ILLEGAL IN CURRENT STATEMENT

EDT5364 NO INSERT: MAXIMUM LINE NUMBER

Meaning
New data lines cannot be inserted by means of a statement or a statement code because
this would cause the maximum permissible number of lines to be exceeded. (See also error
message: EDT5252 MAXIMUM LINE NUMBER.)
Error switch: EDT.

EDT messages

U1884-J-Z125-9-76 587

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT5365 NO INSERT: RENUMBERING INHIBITED

Meaning
The required lines cannot be inserted without renumbering the existing lines. Renumbering
is, however, inhibited as the operand RENUMBER=NO has been specified in a @PAR
statement.
Error switch: EDT.

EDT5366 NO P-KEYS ON THIS TERMINAL

Meaning
The @P-KEYS statement has been called on an 8161 or 3270 Data Display Terminal.
Error switch: not set.

EDT5368 SECOND STATEMENT LINE NOT EMPTY

Meaning
SPLIT OFF or @PAR with operand SPLIT=OFF has been specified in the first statement
line of the screen, even though the second statement line contains a statement.
Error switch: not set.

EDT5371 TARGET FILE IS CURRENT WORK FILE

Meaning
The statement has not been processed because the target file is identical with the current
work file.

EDT5372 ENTRY DOES NOT EXIST IN SPECIFIED LIBRARY OR TASKLIB

Meaning
The specified entry does not exist and could therefore not be loaded dynamically.

Response
Correct and re-enter the statement, or create the library.

EDT5373 NO MORE THAN 5 ’USE’ ENTRIES ARE PERMITTED

Meaning
5 is the maximum permissible number of entries that can be specified in a @USE
statement.

Response
Delete a USE entry by means of the @USE statement and define a new entry.

EDT5375 NO ’USE’ ENTRY DEFINED WITH SPECIFIED SYMBOL

Meaning
The specified USE entry has not been defined and thus cannot be deleted.

Response
Correct and re-enter the statement.

EDT messages

588 U1884-J-Z125-9-76

EDT5376 COMMAND BUFFER EMPTY

Meaning
The SHIH command has not been processed because no commands have been stored
previously in the command buffer.

EDT5380 SOME JOB VARIABLES NOT ERASED

Meaning
An attempt was made to erase all JVs whose name was specified as partially qualified or
contained a specified substring, but some of these JVs could not be erased.
Possible reasons:
- the job variable is only open for read access
- the job variable is protected as a monitoring job variable.
Error switch: EDT.

EDT5400 NOT SUPPORTED ON THIS INTERFACE

Meaning
This form of the statement is not possible at this interface.

Response
Use other form of the statement, e.g.:
- @PAR HEX=ON instead of HEX ON (cf. the @PAR statement);
- the statements @READ, @WRITE, @SET or @SAVE for the processing of DMS files.

EDT5402 ENTER AT LEAST 2 CHARACTERS FOR ’@DELETE’

Meaning
In F mode at least two characters (@D or DE) have to be specified if the @DELETE
statement is entered without any operands.

EDT5409 STATEMENT ILLEGAL IN THIS ENVIRONMENT

EDT5410 UNDEFINED ERROR IN USER PROGRAM

Meaning
EDT received an undefined return code from an user program.

Response
Correct the user program.

EDT5419 (&00)

Meaning
EDT received an undefined return code from an user program.
(&00): Message returned by the external routine.

EDT messages

U1884-J-Z125-9-76 589

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT5450 NATIONAL EDT: INTERNAL ERROR. RETURNCODE = X’(&00)’ AT CCS (&01)
(B) Routing code: * Weight: 99

Meaning
Processing of the user defined CCS (&01) was aborted on a national terminal due to an
internal error.
(&00): Error code.

Response
Contact the system support service.

EDT5500 STATEMENT PROCESSING INTERRUPTED BY /INTR
(B) Routing code: * Weight: 99

Meaning
A statement sequence was to be processed in F-Mode dialog. The processing was inter-
rupted by the user by means of a /SEND-MESSAGE TO=PROGRAM or /INTR command.
Erros switch: not set.

Response
The rest of the statement sequence, which has not been processed, is output to the
command line.

EDT5991 RUNTIME ERROR IN EXTERNAL STATEMENT
(B) Routing code: * Weight: 99

Meaning
The external routine reports a runtime error in the execution of the specified statement.

EDT5999 (&00)
(B) Routing code: * Weight: 99

Meaning
The external routine reports a runtime error in the execution of the specified statement.
(&00): Message returned by the external routine.

EDT8000 EDT TERMINATED

Meaning
EDT termination message in the case of a normal program termination.

EDT8001 EDT TERMINATED ABNORMALLY

Meaning
EDT termination message in the case of an abnormal program termination (program error).

Response
Contact the system administrator.

EDT messages

590 U1884-J-Z125-9-76

EDT8002 (&00) TO EDT UNSUCCESSFULLY. RETURNCODE = X’(&01)’

Meaning
An error has occurred during the dynamic loading of EDT. The macro (&00) rejected the
loading with returncode (&01).
Error switch: not set.

EDT8003 NO VIRTUAL MEMORY AVAILABLE

Response
Release virtual memory.

EDT8005 ERROR ON EDT INITIALIZATION

Meaning
Error switch: not set.

EDT8006 ERROR ON INSTALLATION OF EDT

Meaning
The main module EDTF in the linkage library of EDT cannot be called because it has an
invalid version number.

Response
Check and correct the installation of EDT.

EDT8100 EDT INTERRUPTED BY USER
(B) Routing code: * Weight: 99

Meaning
This message is issued for information in SDF-P procedures.
EDT is loaded, but has been interrupted by @SYSTEM (without Operand) or by an
explicit K2.
Error switch not set.

EDT8101 USER TERMINATED EDT ABNORMALLY
(B) Routing code: * Weight: 99

Meaning
The user terminated EDT by the statement ’@HALT ABNORMAL’.

EDT8200 STXIT ROUTINE FOR RUNOUT ACTIVATED
(B) Routing code: * Weight: 99

Meaning
The end of the program run time has been reached, therefor EDT is terminated.

EDT8292 UNRECOVERABLE RDATA ERROR. PROGRAM ABORTED

Response
Contact the system administrator.

EDT messages

U1884-J-Z125-9-76 591

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
13

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
7

EDT8300 INTERNAL EDT ERROR ’(&00)’

Meaning
EDT program error.

Response
Contact the system administrator.

EDT8900 NO VIRTUAL ADDRESS SPACE AVAILABLE

Meaning
During loading, EDT requests 4 pages in the virtual address space for data and variables
by means of REQM. If REQM encounters an error, this message is displayed and EDT is
terminated. If EDT is called as a subroutine, return code X’10’ is supplied right-justified in
register 15.

EDT8901 ERROR RECOVERY FAILED. EDT ABORTED

Meaning
The interrupt error recovery after a data error could not be completed successfully.
Error switch: not set.

EDT8902 ’@HALT’ STATEMENT PROCESSED

Meaning
A data error or an unrecoverable error occurred in an EDT batch job.
Error switch: EDT.

EDT8910 EDT INTERRUPTED AT LOCATION ’(&00)’, INTERRUPT WEIGHT=(&01)
(B) Routing code: * Weight: 99

Meaning
The program interruption was caused by the event "program check" or "unrecoverable
program error" at location (&00). Detailed information about the error cause is given by the
interrupt weight (&01).
Error switch: not set.

Response
Contact the system administrator.

EDT messages

592 U1884-J-Z125-9-76

U1884-J-Z125-9-76 593

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
14

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
8

8 Installation notes
This section is intended solely for the system administrator.

Installing EDT in BS2000/OSD V1.0

Installation ID: defluid

If the ACS subsystem is active, it is not necessary to copy the module $.SYSLNK.EDT.166
to $EDTLIB.

The contents of the alias catalog in the file SYSACF.EDT.166 must be transferred to the
system-global alias catalog. In the alias catalog, the alias name $EDTLIB is defined for the
file name $.SYSLNK.EDT.166.

Installation of EDT using IMON

As of BS2000/OSD V2.0, EDT supports the installation monitor IMON.

If EDT is installed under a user ID other than Defluid, the file name SYSLNK.EDT.166 in the
ACF file must be replaced by the installation name before SYSACF.EDT.166 is added to the
global alias catalog and the ACS subsystem is activated.

The REP file SYSREP.EDT.166 must be shareable (SHARE), otherwise the corrections will
not be included when dynamically loading EDT.

For performance reasons EDT should be loaded as a subsystem. During activation, care
should be paid to the order in which the subsystems are started, i.e. the EDTCON
subsystem must be started before the EDT subsystem.

Product components Installation notes

594 U1884-J-Z125-9-76

8.1 Product components

File name Function BS2000 version

EDT Phase (load module) for EDT as of OSD V1.0

SYSLNK.EDT.166 EDT module library as of OSD V1.0

SYSLIB.EDT.166 User macro library as of OSD V1.0

SYSMES.EDT.166 System message file (MSGMAKER) as of OSD V1.0

SYSSSC.EDT.166.110 Subsystem declarations for SSCM V1.0 OSD V1.0

SYSSSC.EDT.166.120 Subsystem declarations for SSCM V2.0 as of OSD V2.0

SYSSII.EDT.166 Structure and installation information as of OSD V2.0

SYSRMS.EDT.166 Correction depot for RMS as of OSD V1.0

SYSNRF.EDT.166 NOREF file as of OSD V1.0

SYSREP.EDT.166 REP file as of OSD V1.0

SYSFGM.EDT.166.D Release notice (German) as of OSD V1.0

SYSFGM.EDT.166.E Release notice (English) as of OSD V1.0

SYSSDF.EDT.166 Syntax file for SDF (START-EDT
command)

as of OSD V2.0

SYSACF.EDT.166 ALIAS catalog as of OSD V1.0

SINPRC.EDT.166 Procedure for installing a private version as of OSD V1.0

Installation notes Product components

U1884-J-Z125-9-76 595

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
14

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
8

SYSLNK.EDT.166

The module library SYSLNK.EDT.166 contains the following modules:

The module EDTSSLNK is present in loadable form in SYSLNK.EDT.166 and has the
following structure:

EDTSSLNK START 0,PUBLIC,READ
 DC V(EDT)
 DC V(EDTF)
 DC V(EDTC)
 DC V(EDTXS)
 DC V(EDTFXS)
 DC V(EDTCXS)
 DC V(EDTGLE)
 END

Module Function

EDTSTRT Driver for START-EDT

EDT Main module for EDT

EDXCODIR Dynamically loadable module for CODE statement

EDXPKEY Dynamically loadable module for PKEY statement

EDXUFS Dynamically loadable module for POSIX accesses

IEDTGLE Lonkage module for EDT as a subroutine

CODTAB Code table for CODE statement

EDTSSLNK DSSM dynamically loadable module

EDTCON Linkage module for EDT

EDCNATA Dynamically loadable module for national application

EDTILCS Dynamically loadable module for runtime system

Product components Installation notes

596 U1884-J-Z125-9-76

SYSSII.EDT.166

This file contains the structure and installation information. The product components are
assigned logical names (logical IDs) which can be used in IMON to specify the location for
installation.

IMON is not supported by EDT prior to BS2000/OSD V2.0.

SINPRC.EDT.166

SINPRC.EDT.166 contains a procedure which can be used to install a private version of
EDT under any desired user ID. A private version should be installed for testing purposes
only, and not lead to the coexistence of two versions of EDT.

For more detailed information on the SINPRC.EDT.166 procedure, please see the release
notice.

Release Item Logical ID

EDT
SYSLNK.EDT.166
SYSLIB.EDT.166
SYSMES.EDT.166
SYSSSC.EDT.166.xxx
SYSSII.EDT.166
SYSRMS.EDT.166
SYSREP.EDT.166
SYSNRF.EDT.166
SYSFGM.EDT.166.D
SYSFGM.EDT.166.E
SYSSDF.EDT.166
SINPRC.EDT.166
*DUMMY.EDTSTART

SYSPRG
SYSLNK
SYSLIB
SYSMES
SYSSSC
SYSSII
SYSRMS
SYSREP
SYSNRF
SYSFGM.D
SYSFGM.E
SYSSDF
SINPRC
SYSDAT.EDTSTART

Installation notes EDTSTART start procedure

U1884-J-Z125-9-76 597

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
14

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
8

8.2 EDTSTART start procedure

As of BS2000/OSD V2.0, IMON can be used to install a start procedure valid under all user
IDs for each EDT version capable of co-existence. The administrator can freely select the
location at which the procedure file is to be installed.

The logical ID SYSDAT.EDTSTART is defined for the procedure file in the SYSSII file.

The installation file name is made known to the installation monitor by means of the SET-
INSTALLATION-PATH command. EDT retrieves this information with the IMON function
GETINSP, and the path defined is used in place of $EDTSTART.

If no file is assigned to the logical ID SYSDAT.EDTSTART, EDT uses the start-up procedure
$EDTSTART.

8.3 EDT as a subsystem

EDT consists of two subsystems:

– EDT and
– EDTCON.

The EDT subsystem (consisting of the EDT module) can be loaded in the upper address
space.

The EDTCON subsystem (consisting of the modules EDTCON, IEDTGLE and EDTSSLNK)
is loaded in the lower address space.

If EDT is to execute as either a main program or a subroutine in 24-bit address mode, the
EDTCON module either creates a link to an EDT loaded in the lower address space or loads
a private EDT dynamically in the lower address space.

As of BS2000/OSD V2.0, EDTCON has to be started first with START-SUBSYSTEM
SUBSYSTEM-NAME=EDTCON,SYNCHRONOUS=*YES. Then EDT can be started with
START-SUBSYSTEM SUBSYSTEM-NAME=EDT.

With earlier versions of the operating system, the order in which the components are started
makes no difference.

Installation notes for the module CODTAB Installation notes

598 U1884-J-Z125-9-76

8.4 Installation notes for the module CODTAB

The module CODTAB contains the following code table:

When a message is output on the terminal, this code table converts the print codes for ä,
ö, ü, Ä, Ö, Ü and ß into codes for the corresponding characters on the keyboards of the most
commonly used data display terminals. The input table which permits conversion of these
keyboard characters back to the print codes for ä, ö, ü, Ä, Ö, Ü, ß during message input is
derived from this output table.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 & - 0

1 / a j A J 1

2 b k s B K S 2

3 c l t C L T 3

4 d m u D M U 4

5 e n v E N V 5

6 f o w F O W 6

7 ~ g p x G P X 7

8 h q y H Q Y 8

9 i r z I R Z 9

A ‘ ! ^ :

B . $, # [{

C < * % @ \ |

D () _ ’] }

E + ; > =

F ? „

Installation notes Installation notes for the module CODTAB

U1884-J-Z125-9-76 599

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ä

rz
 2

00
7

 S
ta

n
d

10
:3

6.
14

P
fa

d:
 X

:\K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.k

0
8

It is assumed that the following codes for the umlauts and the ß character are valid for the
keyboard and the printer:

Individual characters can be added to this table or modified as follows:

In this example, parentheses are to be changed to square brackets on the printer. It is
assumed that “left parenthesis” has the code X’4D’ on the keyboard, and the “right paren-
thesis” has the code X’5D’. The character “square brackets left” has code X’63’ on the
printer and the character “square brackets right” has code X’64’.

The table can now be modified using the UPDR statement of LMSCONV:

*COR 63, X'4D'
*COR 64, X'5D'
*COR 4D, X'07'
*COR 5D, X'07'

or using LMS:

/START-LMS
//MODIFY-ELEMENT ELEM=*LIB(ÖIB=$EDTLIB,ELEM=CODTAB,TYPE=R),WRITE-MODE=*ANY
//ADD-REP-RECORD ADD=X‘63‘,NEW-CONTENT=X‘4D‘
//ADD-REP-RECORD ADD=X‘64‘,NEW-CONTENT=X‘5D‘
//ADD-REP-RECORD ADD=X‘4D‘,NEW-CONTENT=X‘07‘
//ADD-REP-RECORD ADD=X‘5D‘,NEW-CONTENT=X‘07‘
//END-MODIFY
END

In order to avoid multiple assignments, the user must fill positions X’4D’ and X’5D’ of the
code table with smudges (X’07’). The table is not checked for multiple assignments.

For major modifications to the code table, it may be better for the user to generate his/her
own code table and to replace the module CODTAB in the library SYSLNK.EDT.166 by his/
her own module with the same name. A source must therefore be created and translated
by the assembler. The resulting object module can then be placed in the library
SYSLNK.EDT.166 with the aid of the LMS program.

Keyboard Character File

X'FB'
X'4F'
X'FD'
X'BB'
X'BC'
X'BD'
X'FF'

ä
ö
ü
Ä
Ö
Ü
ß

{
|
}
[
\
]
–

X'AB'
X'AC'
X'AD'
X'8B'
X'8C'
X'8D'
X'67'

Installation notes for the module CODTAB Installation notes

600 U1884-J-Z125-9-76

Example of the source program

CODTAB CSECT
CODTAB AMODE ANY
CODTAB RMODE ANY
 TITLE 'EDTF.V2 *** CODTAB *** '
 SPACE
*MODULE CONTAINS ONLY CONVERSION TABLES
*
*KEYBOARD * CHAR. * FILE

* X'FB' * (ä) { * X'AB'
* X'4F' * (ö) | * X'AC'
* X'FD' * (ü) } * X'AD'
* X'BB' * (Ä) [* X'8B'
* X'BC' * (Ö) \ * X'8C'
* X'BD' * (Ü)] * X'8D'
* X'FF' * (ß) - * X'67'
*

 EJECT
 SPACE
* CONVERSION TABLE FOR "CODE MODE" - INPUT PROCESSING
* CONVERSION TABLE FOR "LOWER ON " MODE
* THE CONVERSION TABLE FOR LOWER OFF IS DERIVED FROM
* THIS TABLE.
CODTAB1 DC X'00070707070707070707070707070707'
 DC X'07070707070707070707070707070707'
 DC X'07070707070707070707070707070707'
 DC X'07070707070707070707070707070707'
 DC X'400707070707070707074A4B4C4D4E07'
 DC X'500707070707070707075A5B5C5D5E5F'
 DC X'60610707070707FF07076A6B6C6D6E6F'
 DC X'070707070707070707077A7B7C7D7E7F'
 DC X'0781828384858687888907BBBCBD0707'
 DC X'07919293949596979899070707070707'
 DC X'0707A2A3A4A5A6A7A8A907FB4FFD0707'
 DC X'07070707070707070707070707070707'
 DC X'07C1C2C3C4C5C6C7C8C9070707070707'
 DC X'07D1D2D3D4D5D6D7D8D9070707070707'
 DC X'0707E2E3E4E5E6E7E8E9070707070707'
 DC X'F0F1F2F3F4F5F6F7F8F9070707070707'

 SPACE 3
 END CODTAB

U1884-J-Z125-9-76 601

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
är

z
2

00
7

 S
ta

n
d

10
:3

6
.1

5
P

fa
d:

 X
:\

K
ur

t a
n

S
te

fa
n\

E
D

T
_1

6
_6

B
_

en
g_

A
n

w
\e

d
t1

6b
st

m
.li

t

Related publications
[1] EDT V16.6 (BS2000/OSD)

Subroutine Interface
User Guide

[2] EDT V16.6A (BS2000/OSD)
Statement Formats
Ready Reference

[3] EDT-ARA (BS2000/OSD)
Additional Information for Arabic
User Guide

[4] EDT-FAR (BS2000/OSD)
Additional Information for Farsi
User Guide

[5] SDF V4.0A (BS2000/OSD)
Introductory Guide to the SDF Dialog Interface
User Guide

[6] BS2000/OSD-BC V2.0A
Commands, Volume 1, A-L
User Guide

[7] BS2000/OSD-BC V2.0
Commands, Volume 2, M-SG
User Guide

[8] BS2000/OSD-BC V2.0A
Executive Macros
User Guide

[9] Assembler (BS2000)
Reference Manual

[10] ASSEMBH (BS2000)
User Guide

Related publications

602 U1884-J-Z125-9-76

[11] XHCS V1.0
(BS2000/OSD)
8-Bit Code Processing in BS2000/OSD
User Guide

[12] JV V11.2A (BS2000/OSD)
Job Variables
User Guide

[13] SDF-P V2.0A (BS2000/OSD)
Programming in the Command Language
User Guide

[14] LMS (BS2000)
SDF Format
User Guide

[15] POSIX (BS2000/OSD)
POSIX Basics for Users and System Administrators
User Guide

[16] POSIX (BS2000/OSD)
Commands
User Guide

U1884-J-Z125-9-76 603

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

Index

– statement 120
–– statement 120
- statement code 113

" within a character string 44
* statement code 87
+ statement 120
+ statement code 113
++ statement 120
< statement 122
<< statement 122
> statement 122
@ statement 208
@– statement 207
@+ statement 206
@AUTOSAVE statement 209
@BLOCK statement 211
@CHECK statement 213
@CLOSE statement 214
@CODE statement 216
@CODENAME statement 223
@COLUMN statement 224
@COMPARE statement 226
@CONTINUE statement 238
@CONVERT statement 239
@COPY statement 240
@CREATE statement 248
@DELETE statement 253
@DELIMIT statement 258
@DIALOG statement 259
@DO procedure in F mode 147
@DO procedure in L mode 149
@DO procedures 147
@DO statement 262

@DROP statement 271
@EDIT statement 273
@ELIM statement 275
@END statement 277
@ERAJV statement 279
@EXEC statement 280
@FILE entry

global 282
local 282

@FILE statement 282
@FSTAT statement 284
@GET statement 287
@GETJV statement 289
@GETLIST statement 291
@GETVAR statement 293
@GOTO statement 294
@HALT statement 295
@IF statement 297
@INPUT procedures 149

nested 150
start 317

@INPUT statement 313
@LIMITS statement 321
@LIST statement 322
@LOAD statement 325
@LOG statement 327
@LOWER statement 328
@MOVE statement 329
@NOTE statement 333
@ON statement 334
@OPEN statement 376
@PAGE statement 385
@PAR statement 386
@PARAMS statement 396
@P-KEYS statement 384

Index

604 U1884-J-Z125-9-76

@PREFIX statement 402
@PRINT statement 404
@PROC statement 408
@QUOTE statement 413
@RANGE statement 414
@READ statement 415
@RENUMBER statement 420
@RESET statement 422
@RETURN statement 423
@RUN statement 426
@SAVE statement 427
@SDFTEST statement 430
@SEARCH-OPTION statement 433
@SEPARATE statement 434
@SEQUENCE statement 437

format 2 438
@SET statement 442, 469
@SETF statement 471
@SETJV statement 473
@SETLIST statement 474
@SETSW statement 476
@SETVAR statement 478
@SHOW statement 479
@SORT statement 485
@STAJV statement 487
@STATUS statement 490
@SUFFIX statement 494
@SYMBOLS statement 496
@SYNTAX statement 498
@SYSTEM statement 500
@TABS statement 502
@TMODE statement 506
@UNLOAD statement 507
@UNSAVE statement 508
@UPDATE statement 509
@USE statement 514
@VDT statement 516
@VTCSET statement 517
@WRITE statement 518
@XCOPY statement 524, 526
@XWRITE statement 528
@ZERO-RECORDS statement 530

3270 DDT
special features 74

4-digit year specification 285
in catalog information 481, 488

7-bit code
XHCS 65

7-bit mode
XHCS 64

A
A, B, O

statement codes 88
aborting procedures 423
access to POSIX 54
actual parameters 158
AFG key 25
appending

strings 494
ASCII code 56
assigning

file link names 49
line numbers 417, 475

asterisk 335
define 496

automatic numbering 88
Autosave 209
AUTOSAVE statement 209

B
base type 60
batch mode 69, 138
binary characters

enter 320
binary operand 164
blank lines

delete 224
blanks

delete 224
blanks in the statement line 79
block mode

set 211
switch on 211

BLOCK statement 211

Index

U1884-J-Z125-9-76 605

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

branch
address 238
conditional 155, 299
unconditional 155, 294

branch destination
define 238

branching
procedures 197

buffer size
display 491

C
C statement code 90
calling

a procedure 146
EDT 21, 33
EDT as a main program 33
EDT as a subroutine 36
subroutines 426

catalog entry
delete 508

catalog information
4-digit year specification 285, 481, 488
query 284

cataloging
job variables 201, 473

CCS 63
explicit switchover 65
implicit switchover 65
select 223
switch 65, 223

CCSN 63
chaining two records together 95
changing

character 25
current increment 203
current line number 203

char operand 164
character

change 25
convert 216
correct 25
delete 25
insert 25, 93

nondisplayable 78
remove 25

character for line break 434
character set

coded 63
explicit switchover 65
extended 63
implicit switchover 65
switch 65

character string
insert 224

character strings
query 297
read in 251

chars operand 164
checking lines 213
cl operand 164
clearing copy buffer 87
CLOSE statement 214
closing a file 26
closing a library element 26, 214
clrng operand 164
code 63
code conversion 218

activate and deactivate 220
CODE statement 216
code table 216, 219

display 219
coded character set 63
coded character set name 63
CODENAME statement 223
CODTAB module 218, 598
col operand 164
column counter 390

display 131
column ranges

delete 253
COLUMN statement 224
command return code 39
comment operand 164
comments 333
COMPARE statement 226

Index

606 U1884-J-Z125-9-76

comparison
integer variables 300
line contents 299
line numbers 300
results 234
string variables 299
work files 194, 226, 234

conditional branches 155
constants

query 490
contents of integer variables

display 492
contents of line number variables

display 492
continuation line 79
continuation of statement line 79
controlling

screen output 516
conventions

ISAM and SAM files 49
POSIX file names 55

conversion
uppercase/lowercase 239

conversion tables
standard EDT 65

converting
characters 216
line number into integer 443

copy buffer 90, 103
clear 87

copy facilities 240
COPY statement 240
copying 240

a line 240
cataloged file 240
files 244
into another line range 240
into the statement line 96
into the work file 240
library element 244
line number assignment 88
line range 240
lines 192

lines containing search string 358
marked lines 355
marked records 355
program library element 240

copying and deleting marked lines 98
copying options 244
correcting a character 25
correcting data 25
corrections 25
CPU time

display 490
CREATE statement 248
creating

data records 509
files 24, 376
ISAM files 427
library elements 24, 376
lines 248
procedures 145
texts 191
work files 24

current line range symbol 46
cursor

position 24, 25

D
D statement code 92, 118
data

correct 25
enter 24, 44
input 24

data of any format
element type X 60

data records
create 509
display completely 388
modify 509
with more than 80 characters 126

data window 22, 76
bright 25
handling null characters 77
line 76
position 120
scroll 120

Index

U1884-J-Z125-9-76 607

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

send 26
set maximum input length 394
set to overwritable 25, 83
statement in 119
statement line 78

date 442
place in a line 466
place in variable 466
query 466

dd operand 164
declaring

S variables 478
decrementing

line number 207
default code table 217
default numbering 88
default parameters

enter 386
defaults

display 490
element type 393
file name 282
library name 393
query 491

defining
increment value 393
input length 394
input mode 313
line ranges 46
procedures 408
record separator character 392
statement symbol 208
structure symbol 394

DELETE statement 253
deleting

after search string 371
blank lines 224
blanks at end of line 224
column ranges 253
files 253, 508
ISAM files 275
job variables 201, 279
library elements 253
line containing search string 373

line ranges 253
lines 26, 193
record marks 83, 118, 136, 193, 253
records 92
S list variable 474
search string 368, 371
texts 193
work files 193, 253, 271

DELIMIT statement 258
delimiter symbol

define 413
delimiters

search string 337
delta elements 61
description of element types 60
description of syntax 161
destination 88
dialog

terminate 295
DIALOG statement 259
difference between two lines 100
directory

of library 59
directory of a library

display 479
directory of a user catalog

display 479
disk file 20
display

hexadecimal 128
Display statement buffer

statement 133
displaying

column counter 131
contents of integer variables 492
contents of line number variables 492
files 284
information on work files 408
starting column of search string 346
two work windows 134

DMS error switch 297
reset 422

DO statement 262
domain operand 164

Index

608 U1884-J-Z125-9-76

DROP statement 271
DUE key 26
duplicating

line ranges 241

E
E statement code 93
EBCDIC code of a string 443
EDIT FULL

@PAR 389
EDIT LONG

@PAR 388
EDIT LONG mode 76
EDIT LONG statement 126
EDIT statement 273
edited data

element type P 60
EDT

call 21, 33
call as a main program 33
call as a subroutine 36

EDT constants 490
EDT error switch 297

reset 422
EDT execution

in batch mode 274
on command procedures 274

EDT input sources 141
EDT management 185
EDT mode 490
EDT session

initialize a string variable 35
interrupt 37
terminate 37, 280, 295

EDT statements 44
EDTISAM 49
EDTMAIN 378
EDTSAM 49
edtsymb operand 164
EFG key 25
element 58
element designation in program libraries 59
ELEMENT TYPE

@PAR 393

element type 60
C, load modules 60
D, text data 60
F 60
H 60
J, procedures 60
L 60
M, macros 60
P, list elements 60
R, object modules 60
S, source programs 60
U 60
X, data of any format 60

elemname operand 164
elemtyp operand 164
ELIM statement 275
END statement 277
end-of-record character 76
entering data 24
entry operand 164
entry point (ENTRY) 426
ERAJV statement 279
error switches

reset 422
ESCAPE function 37
escape symbol

define 514
EXEC statement 280
executing

procedures 198, 262
execution mode 498
execution of an EDT procedure 146
explicit character set switchover 65
extended character set 63
Extended Host Code Support 63
extending

S list variable 474
external loops 156
external statement routines 514

Index

U1884-J-Z125-9-76 609

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

F
F keys 83
F mode 73

procedures in 145
record marks 136
statement codes 85
statements 137
switch to 259, 273

F1 key 83
F2 key 25, 83
F3 key 83
file link name

assign 49
EDTISAM 49
EDTSAM 49

file name
declare 282
preset 282
query defined 491

file operand 165
file processing

virtual 380
with search string 334

FILE statement 282
file version number 275, 282, 287, 313, 376, 427,

508, 518
files

close 26
compare 226, 234
copy 241, 244, 376
create 24, 376, 517, 518
delete 253, 275, 508
generate 24
open 376, 380, 415
process 187
read 287, 376, 380, 415
real processing 378
save 427, 517, 518
update 25

filler characters
data window 77
define 496

form feed 385
formal operand 165

formal parameters 158
fraction operand 165
freely selectable string

asterisk 335
freetyp operand 165
FSTAT statement 284
FULL-SCREEN mode 273
function keys 83
fwkfnr operand 165
fwkfnr statement 125
fwkfv operand 165

G
general statement format 45, 161
GET statement 287
GETJV statement 289
GETLIST statement 291
GETVAR statement 293
global @FILE entry 282
global file names

display 491

H
HALT statement 295
handling

line numbers 189
hardware tabulator 502
hd operand 165
HEX

@PAR 388
hex operand 165
HEX statement 128
hexadecimal

display 128
mode 388

hexadecimal characters
enter 320

hexadecimal code 128
hexadecimal mode 128

switch off 128
switch on 128

hit line
record 341

Index

610 U1884-J-Z125-9-76

hits
query 341
record 341

hpos operand 165
hpos-op operand 165

I
implicit character set switchover 65
inc operand 165
INCREMENT

@PAR 393
increment 421

change 203
current 205
effect on stack entry 205

increment size 421
define 469

increment value
define 393
set 203
store 203

incrementing
line number 206

INDEX
@PAR 390

INDEX statement 130
indirect specification

operands 45
search string 336

INFORMATION
@PAR 390

information
job variable 487
output 194

information line 390
initializing a string variable 35
input 42

data 24
define length of 394
format 45
in a procedure 145
in data window 22
in L mode 138
in mark column 22

in statement line 22
length 44, 79
mode 313
of statements 45

INPUT file 317
INPUT statement 313
insert area 100
insert mode 26
inserting

after search string 364
before search string 364
characters 25, 93
lines 26, 100
texts 191, 224

installation notes 593
int operand 165
integer variables 143

assign values to 442, 443
convert to strings 449
display values of 492
output values of 492

integers
convert into line numbers 457

interactive mode 69, 138, 259
internal loops 156
internal representation of a string 457
interrupting

an EDT session 37
EDT 197

int-var operand 165
ISAM files

conventions 49
create 376, 427
delete 275
process 376
read 25, 287
real processing 376, 378
store 24, 427
with fixed record length 50
write 427

ISAM key 50
ISO4 operand 481, 488

Index

U1884-J-Z125-9-76 611

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

J
J statement code 95
job variables 67, 144, 201

assign to a character string 289
assign values to 473
catalog 201, 473
delete 201, 279
delete entries 279
display information on 487
display on screen 289
link name 473
output 201
output information on 487
partially qualified name 279
read 201
read values 289
write information to work file 487
write to a work file 289

JV 67

K
K keys 84
K statement code 96
K1 key 84
K2 key 84
K3 key 84
key length 50
keyword parameters 158, 262, 396

L
L mode 138

input in 138
set 69
statements in 139
switch to 138

L mode statement symbol 44
L statement code 97
l statement code 100
last statement

repeat 78
letters

convert 328
LIBRARY

@PAR 393

library 58
define default name 393
element designation 59
process 59, 188
structure 59

library directories
display 479

library elements 58
close 26
copy 244
create 24, 376, 518, 521
delete 253
generate 24
open 376, 380
process 58, 61
query defined 492
read 25, 376, 380
save 214, 518
store 24, 521
update 25
write to disk, tape 214

LIMIT
@PAR 394

LIMITS statement 321
line

break 434
mark as destination 88
operand 166

line break 434
line containing search string

output 342
line feed 323
line length

determine 443
display 491
for a printer terminal 274
maximum 213
query 443

line length for printing 69
line number display 22, 76, 390

suppress 80
switch on and off 130

line number of first hit 350

Index

612 U1884-J-Z125-9-76

line number variables 144
assign line numbers to 457
assign values to 442, 463
display contents of 492
output values of 492

line numbering
automatic 391

line numbers 245, 318
adopt 437
assign 88, 417
assignment of 475
change 203
check 321, 437
check sequence 439
convert into integers 443
convert to strings 449
decrement 207
handling 189
increment 206, 248
lowest, highest 321
output 321
renumber 421
retain 391
set 203, 469
starting value 408
store 203
symbolic 46
write in a line 463

line range symbol 46
define 414

line ranges
copy 241
define 46
delete 253
duplicate 241
output 404
symbolic line numbers 46
transfer from 329

line scale 131
line-break character 434
lines

check 213
copy 90, 98, 192, 241
create 248

delete 26, 92, 98, 193
insert 26, 100
modify 116
move 192
number 437
output 194
place values in 442
renumber 391, 421
set to overwritable 116
sort 485
transfer 241

lines containing search string
copy 358

link name
file 49
job variable 473

linkname operand 166
list elements

element type P 60
LIST statement 322
list variable 68
ln operand 166
ln-sym operand 169
ln-var operand 169
load modules

element type C 60
LOAD statement 325
load unit 426
loading

program 325
subroutines 426

local @FILE entry
explicit 282
implicit 282

log control 327
LOG statement 327
logging

an EDT procedure 263
input in batch mode 327
new or updated lines 213
procedures 270

loops
external 156
internal 156

Index

U1884-J-Z125-9-76 613

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

LOWER
@PAR 389

LOWER statement 328
lowercase letters 328, 389

M
m operand 169
M statement code 98
m statement code 118
macros

element type M 60
main code 39
management

EDT 185
managing

procedures 198
mark 353
mark column 22, 75
marked lines

copy 98, 355
delete 98

marking
a line as destination 88
lines containing search string 352

marking for copying 90
without clearing copy buffer 103

memory
release 50
virtual 20

memory area 20
message level 39
message operand 169
messages

suppress 69
metasymbols 17
metasyntax 162
mode 490
modifying

data records 509
lines 116
texts 191
work windows 80

modlib operand 169

module
unload 507

module library 426
MOVE statement 329
moving

lines 192
work windows 105

N
n operand 169
n statement code 100
name operand 169
negative searches 336
nested @DO procedures 150
nested @INPUT procedures 150
new operating mode 25
notational conventions 17, 162
null characters

in the data window 77
in the statement line 79

number
of current work file 411
of displayed work file 79
query 297

number of work file
display 492

number of work files 125
numbering

automatic 88
default 88
lines 437
with defined increment 88

numbers
of used work files 411

O
object modules 426

element type R 60
ON statement 334
op operand 170
OPEN statement 376
open system 54

Index

614 U1884-J-Z125-9-76

opening
files 376, 380
library elements 376, 380
UFS file 526

operands
general information 45, 161
indirect specification of 45
overview 164

operating mode 73, 490
EDIT FULL 25, 76
F mode 73
L mode 138
switch 194, 273

operation
general information 45, 161

OPTIMIZE
@PAR 391

output 42
on the screen 404
optimize 391

outputting
catalog information 284
contents of variables 490
data records with more than 80

characters 126
files 284
information 194
job variables 201
last statements 124
line numbers 321
line ranges 404
lines 194
local file name 492
string variables 404
to printer 322
two work windows 391
work file contents 405

overview of statement codes 87
overview of statements 185
overwritable

set data window to 25
overwrite mode 389

P
P keys

define 384
program 384

PAGE statement 385
PAR statement 386
param operand 170
parameters

actual 158
defining 396
enter defaults 386
formal 158
keyword 158, 262, 396
positional 158, 262, 396
transfer 158

partially qualified job variable name 279
passing statements 23
path operand 170
pfile operand 170
P-KEYS statement 384
placing an integer in a line 463
positional parameters 158, 262, 396
positioning

horizontally in work file 122
in the work file 119, 120
the cursor 25
to record marks 121
to records with record marks 83
windows 471
work files 188, 189
work windows 105

POSIX 54
POSIX file system 54
POSIX files 54

open and read 526
process 57
read 524
save 528

ppath operand 170
PREFIX statement 402
prefixing

strings 402
principle of operation 20
PRINT statement 404

Index

U1884-J-Z125-9-76 615

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

printable characters
enter 320

printing 322
contents of work file 322

procedures 141
@DO 147
@INPUT 149
abort 423, 424
branch to 294
branch to a line 155
branches 155
branching in 197
call 146
comment 333
create 145, 408
element type J 60
execute 146, 198, 262
in F mode 145
log 270
loops 156
manage 198
multiple execution 156
nested 150
parameters 158
start 262, 313, 317
terminate 277, 424
within a BS2000 system procedure 153

processing
files 187
libraries 59, 188
library elements 61
real 378

processing sequence
in the mark column 85
screen 81
with split screen 81

procno operand 170
program

load 325
start 280
unload 507

programmable keys 384
PROTECTION

@PAR 389

public space 20

Q
querying

a hit 341
catalog information 284
character strings 297
numbers 297
switches 297

QUOTE statement 413

R
r operand 170
R statement code 103
range operand 170
RANGE statement 414
range symbol 46

define 414
range* operand 170
RDATA 69
READ statement 415
reading

character strings 251
files 25, 376, 380, 415
from SYSDTA with RDATA 69
into the work file 25
ISAM files 25, 287
job variables 201
library elements 25, 376, 380
S list variables 291
S variables 293
SAM files 25
UFS file 524

real processing 378
record marks 136

delete 118, 136, 193, 253
position to 121
process 83
search for 121
set 118, 136

record separator 119
record separator character

define 392

Index

616 U1884-J-Z125-9-76

recording
hit line 341
hits 341

records
chain together 95
copy 90
delete 92
display complete 126
split 119

rel operand 171
releasing

memory 50
storage space 70

RENUMBER
@PAR 391

RENUMBER statement 420
renumbering lines 391
replace character

slash 335
replacing

after search string 364
before search string 364
search string 361

RESET statement 422
resetting

error switches 422
restoring screen contents 84
return

conditional 299
unconditional 294

RETURN statement 423
rng operand 171
rng* operand 172
RS key 26
RUN statement 426

S
S list variable

delete 474
extend 474
read 291

S statement code 105
S variables 68, 144

assign 293

assign values to 478
define 478
output 293

SAM files
close 518
conventions 50
read 25, 415
real processing 378
store 24, 518
with fixed record length 50
write 518

SAVE statement 427
saving

ISAM files 427
library elements 214
UFS files 528

SCALE 131
@PAR 390

scale 390
display 131

SCALE statement 131
screen

lines 76
lines, display number of 491
output optimization 391
restore contents 84
split 80

screen dialog
terminate 295, 423

screen display
uppercase and lowercase 328

screen display of the 3270 Data Display
Terminal 74

screen output
control 516, 517

screen-oriented 22
SDF syntax check 430
SDFTEST statement 430
search operand 172
search string 334

default value for uppercase/lowercase 433
delete 368
delete after 371
delete before 371

Index

U1884-J-Z125-9-76 617

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

delimiters 337
indirect specification 336
processing with 334
replace 361
specify 335
uppercase/lowercase notation 335
wildcard 335

searches
display starting column 346
mark lines 352
output lines containing search string 342
record hits 341

searching 334
delete a line 373
for record marks 121
insert after search string 364
insert before search string 364
replace after search string 364
replace before search string 364
with negation 336

searching for
line number of first hit 350
strings 334

selecting
CCS 223
format of work window 130

semantics check 85
sending a data window 26
SEPARATE statement 434
SEPARATOR

@PAR 392
SEQUENCE statement 437
Set empty line mode

statement 530
SET statement 442, 469
SETF statement 471
SETJV statement 473
SETLIST statement 474
SETSW statement 476
setting

Autosave 209
block mode 211
execution mode 498
L mode 69

record marks 83, 118, 136
syntax check 498
tabs 502

SETVAR statement 478
SHIH statement 133
SHOW statement 479
slash

define 496
replace character 335

smudge character 78, 218
software tabulator 502
SORT statement 485
sorting lines 485
source programs 60

element type S 60
space

public 20
spec operand 173
special work files 48
specifying a search string 335, 336
SPLIT

@PAR 391
SPLIT statement 134
splitting

records 119
the screen 80
work windows 80, 391

stack entry 205
STAJV statement 487
START-EDT command 33
starting

@INPUT procedures 317
EDT 280
procedures 262, 313
subroutines 426

starting column of search string
display 346

statement
fwkfv 125

Index

618 U1884-J-Z125-9-76

statement code 23, 75, 85, 90
* 87
+/- 113
A, B, O 88
C 90
D 92, 118
E 93
J 95
K 96
L 97
M 98
m 118
n/l 100
overview 87
processing sequence 85
R 103
S 105
T 107
U 112
x 116

statement delimiter 78
statement format

general 45, 161
statement line 22, 78

continuation 79
copy into 96
handling of blanks 79
handling of null characters 79
maximum input length 79
statements in the 119

statement name 45
statement sequence 78
statement symbol 44

define 208
display 491

statements 23
enter 45
format 45
general information 44
in F mode 137
in L mode 139
in the statement line 119
output last 124
overview 185

pass 23
redisplay 124
redisplay last 78
separate 78

status display 22, 79
column number 79
line number 79
number of work file 79

STATUS statement 490
storage space

release 70
superfluous 70

storing
a new work file 24
a SAM file 24
an ISAM file 24

storing a library element 24
str operand 173
string operand 174
string variables 143

assign values to 442, 449
create 248
initialize 35
output 404

strings
append 494
delete 368, 371
EBCDIC 443
insert 364
insert as prefix 402
internal representation 457
replace 364
search for 334, 358

str-ln operand 175
strng operand 176
STRUCTURE

@PAR 394
structure

library 59
of work window 75

structure depth
positioning by 114

structure symbol 114
define 394

Index

U1884-J-Z125-9-76 619

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

structured-name operand 176
str-var operand 177
STXIT routine 37
subcode1 (SC1) 39
subcode2 (SC2) 39
subroutine

call 426
call EDT as a 36
load 426
start 426
user program as a 426

subsystem EDT 593
SUFFIX statement 494
suppressing

line number display 80
messages 69

switches
query 297
reset 422
set 476

switching
between L mode and F mode 273
CCS 223
character sets 65
operating mode 194
to F mode 259
to L mode 138
work files 125, 188, 189, 408

switching off
line number display 130

switching off hexadecimal mode 128
switching on

line number display 130
switching on hexadecimal mode 128
symbolic line numbers 46
symbols

define 496
line numbers 46
range 46

SYMBOLS statement 496
syntax check 85, 430, 498
syntax description 161, 162
SYNTAX statement 498

syntax test
by SDF 107

SYSDTA 69
system command

issue 500
SYSTEM statement 500

T
T statement code 107
tab character

define 502
tab operand 177
tabs

set 502
TABS statement 502
target positions 245
target range 245
task

USERID 506
task information

display 506
task sequence number 506

display 490
query 490

task switch 5 69
task switches 69

set 476
terminating

EDR 197
EDT session 280, 295
procedures 277
screen dialog 295, 423

terminating an EDT session 37
text

create 191
delete 193
enter 24
insert 191, 224
modify 191
operand 177

text corrections 25
text data

element type D 60

Index

620 U1884-J-Z125-9-76

text delimiters 258, 337
define 413
display 491

text input
binary characters 320
hexadecimal characters 320
printable characters 320

time of day 442
display 490
place in a line 466
place in variable 466
query 466

TMODE statement 506
transferring

line ranges 329
lines 241

TSN 506
display 490

U
U statement code 112
UFS files

open and read 526
read 524
save 528

umlauts 221
unconditional branches 155
UNLOAD statement 507
unloading

module 507
program 507

UNSAVE statement 508
UPDATE statement 509
updating

files 25
library elements 25

uppercase letters 328
uppercase/lowercase conversion 239
uppercase/lowercase notation 328

default value for search 433
USE statement 514
user catalog directories

display 479

user ID
display 490
query 490

USERID of task 506
usersymb operand 177

V
values

assign to job variables 473
read from job variables 289

variables 143
display contents of 490
integer variables 143
line number variables 144
query contents of 491
string 143

VDT statement 516
ver operand 178
vers operand 179
virtual file processing 380
virtual memory 20
vpos operand 179
vpos-op operand 179
VTCSET statement 517

W
wildcards 335

define 496
window

position 471
wkflnr statement 125
wkflvar statement 125
work area 20
work file concept 48
work files 20

compare 194, 226, 234
create 24
current 76
delete 193, 253, 271
display information on 408
display number of 411
free 411
number 79, 125
numbers of 492

Index

U1884-J-Z125-9-76 621

D
ok

us
ch

ab
lo

n
en

 1
9x

24
 V

e
rs

io
n

 7
.2

us
 fü

r
Fr

am
eM

ak
er

 V
7

.x
vo

m
 1

5.
01

.2
00

7
©

 c
o

gn
ita

s
G

m
b

H
 2

0
01

-2
0

07
26

. M
ar

ch
 2

00
7

 S
ta

n
d

10
:3

6.
15

P
fa

d
: X

:\K
u

rt
 a

n
S

te
fa

n
\E

D
T

_1
6_

6
B

_e
n

g_
A

nw
\e

dt
16

b
st

m
.s

ix

output contents of 405
position 188, 189, 471
position horizontally 122
position in 119, 120
print contents of 322
query 411
save 214
special 48
store 24
switch 125, 188, 189, 408, 471
used 411
variable 125
write to disk or tape 214

work window 20
data window 22, 76
description 75
divide 134
EDT 21
empty 22
general information 75
line number display 22, 76
mark column 22, 75
modify 80
move 105, 113
move horizontally 122
parts of 22
position 105, 113
position by structure depth 114
select format of 130
split 80, 134, 391
standard 75
statement code 75
status display 22
structure of 75

working with EDT 21
write protection 389
write protection at record level 389
WRITE statement 518
writing

ISAM files 427
library elements 214

X
x statement code 116
XCOPY statement 524, 526
XHCS 63
xpath operand 179
XPG4 54
XWRITE statement 528

Index

622 U1884-J-Z125-9-76

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Contents
	Preface
	Structure of the EDT documentation
	Target groups for the EDT manuals
	Structure of the “EDT Statements” manual
	Changes compared to EDT V16.6A
	Notational conventions

	Introduction to EDT
	Principle of operation of EDT
	Working with EDT
	The EDT screen
	Statements in EDT

	Updating files
	Example of how to process a file

	Using EDT
	Calling EDT
	Interrupting and terminating EDT
	EDT command return code
	Monitoring an EDT session with monitoring job variables

	Input and output
	Entering data (text)
	Entering statements
	Indirect specification of operands
	Symbolic line numbers
	Uniqueness of string variables

	Work file concept
	File processing
	Processing ISAM files with nonstandard attributes
	Processing SAM files with nonstandard attributes

	Processing POSIX files
	POSIX in BS2000
	EDT and POSIX
	Processing POSIX files
	Overwriting read-only files

	Library processing with EDT
	Element types supported by EDT
	Processing library elements using EDT

	SDF support for the writing of system procedures
	Extended Host Code Support (XHCS)
	XHCS and EDT
	XHCS in EDT interactive mode
	XHCS in EDT procedure mode

	Job variables
	SDF-P support
	Task switches
	Data protection
	Constraints on privileged user IDs
	Uninterruptible procedures

	EDT operating modes
	F mode
	Work window
	F keys
	K keys
	Statement codes in F mode
	Statement in the data window - split record
	Statements in the statement line
	Description of the record marks in F mode
	Statements in F mode

	L mode
	Input in L mode
	Statements in L mode

	EDT procedures
	EDT input sources
	EDT variables
	Creating, calling and executing EDT procedures
	@DO procedures
	@INPUT procedures
	Calling an EDT procedure in a BS2000 system procedure
	Unconditional and conditional branches
	External and internal loops
	Variable EDT procedures - parameters

	EDT statements
	Description of the syntax
	Overview of the EDT operands
	Overview of the EDT statements
	Description of the statements

	EDT messages
	Installation notes
	Product components
	EDTSTART start procedure
	EDT as a subsystem
	Installation notes for the module CODTAB

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

