
English

C/C++ V4.0A

C/C++ Compiler

User Guide

*

Edition June 2020

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: .bs2000services@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN ISO

.9001:2015

Copyright and Trademarks
Copyright © Fujitsu Technology Solutions GmbH.2020

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:bs2000services@ts.fujitsu.com

Table of Contents

 C/C++ Compiler . 7
1 Preface . 8

1.1 Brief product description . 9
1.2 Summary of contents and target group . 10
1.3 Changes since the previous version . 11
1.4 Notational conventions . 12

1.4.1 General notational conventions . 13
1.4.2 SDF notational conventions . 14

2 Overview of the C/C++ development system . 22
2.1 From source program to program execution . 23
2.2 General requirements for compilation, linkage and program execution . . . 25
2.3 General features of the C/C++ compiler . 26
2.4 Specific CRTE components required for C/C++ . 27

2.4.1 Include libraries . 28
2.4.2 Module libraries . 29

2.5 Editing source programs . 32
2.6 POSIX support . 34

2.6.1 Compiler I/O in the POSIX file system . 35
2.6.2 Use of POSIX library functions . 37

2.7 Introductory examples . 38
2.7.1 Example 1: Compiling, linking, and starting a C program 39
2.7.2 Example 2: Compiling, linking, and starting a C++ program 42
2.7.3 Example 3: Compiling a C source program that is located in a POSIX file and

 uses POSIX library functions . 45
3 Compilation . 47

3.1 General aspects of the compiler run . 49
3.1.1 Input sources and output destinations of the compiler 50
3.1.2 Construction of default names . 53
3.1.3 Default names for output containers . 54
3.1.4 Rules for constructing module names . 57
3.1.5 Structure of compiler messages . 59

3.2 Controlling the compiler . 62
3.2.1 Calling the compiler (START-CPLUS-COMPILER) . 63
3.2.2 Description of compiler statements . 65

3.2.2.1 Overview of statements . 66
3.2.2.2 Basic principles and general input rules . 69
3.2.2.3 BIND . 71

3.2.2.4 CHECK-SYNTAX . 74
3.2.2.5 COMPILE . 76
3.2.2.6 Notes on input via SYSDTA . 80
3.2.2.7 END . 82
3.2.2.8 MODIFY-BIND-PROPERTIES . 83
3.2.2.9 Interaction between the MODIFY-BIND-PROPERTIES and BIND statements
 . 93
3.2.2.10 MODIFY-CIF-PROPERTIES . 94
3.2.2.11 MODIFY-DIAGNOSTIC-PROPERTIES . 97
3.2.2.12 MODIFY-INCLUDE-LIBRARIES . 103
3.2.2.13 MODIFY-LISTING-PROPERTIES . 108
3.2.2.14 MODIFY-MODULE-PROPERTIES . 118
3.2.2.15 MODIFY-OPTIMIZATION-PROPERTIES . 124
3.2.2.16 The optimization process . 129
3.2.2.17 MODIFY-RUNTIME-PROPERTIES . 133
3.2.2.18 MODIFY-SOURCE-PROPERTIES . 135
3.2.2.19 MODIFY-TEST-PROPERTIES . 148
3.2.2.20 PREPROCESS . 149
3.2.2.21 RESET-TO-DEFAULT . 153
3.2.2.22 SHOW-DEFAULTS . 154
3.2.2.23 SHOW-PROPERTIES . 155

3.3 Controlling the global listing generator . 156
3.3.1 Calling the listing generator (START-CPLUS-LISTING-GENERATOR) 157
3.3.2 Description of statements . 158

3.3.2.1 Overview of statements and input rules . 159
3.3.2.2 END . 160
3.3.2.3 GENERATE-LISTING . 161
3.3.2.4 MODIFY-LISTING-PROPERTIES . 163

4 Linkage and program execution . 171
4.1 Linkage . 172

4.1.1 Dynamic linking and loading with DBL . 173
4.1.2 Linking with BINDER . 175
4.1.3 Shareable C/C++ programs . 178
4.1.4 Restriction on linking C++ programs . 179

4.2 Program execution . 180
4.2.1 Parameter input at program start . 181
4.2.2 Redirecting standard I/O files . 182
4.2.3 Input of parameters for the main function . 184
4.2.4 Definition of the main function with parameters . 186
4.2.5 The advanced interactive debugger AID . 187
4.2.6 Requirements for symbolic debugging . 189

5 Linkage to functions and languages . 192
5.1 Linkage conventions specific to C and C++ . 193
5.2 Linkage between C and C++ . 194

5.2.1 Common types . 195
5.2.2 Calling C functions in C++ . 196
5.2.3 Calling C++ functions in C . 197
5.2.4 Problems and restrictions . 198

5.3 Linkage between different C++ language modes . 199
5.4 Notes on linkage to ILCS programs in other languages 200

6 C language support of the compiler . 202
6.1 Overview of the C language modes . 203
6.2 Implementation-defined behavior based on the ANSI/ISO C standard 211
6.3 Deviations from ANSI/ISO C . 220

6.3.1 Extensions to ANSI/ISO C . 221
6.3.2 Restrictions to ANSI/ISO C . 224

6.4 Pragmas . 226
6.4.1 aligned pragma . 227
6.4.2 pack pragma . 229
6.4.3 ETPND pragma . 230
6.4.4 Pragmas to control the layout of listings . 232

6.4.4.1 LISTING pragma . 233
6.4.4.2 PAGE pragma . 234
6.4.4.3 SPACE pragma . 235
6.4.4.4 TITLE pragma . 236

6.4.5 inline pragma . 237
6.4.6 int_to_unsigned pragma . 238
6.4.7 weak pragma . 239
6.4.8 ident pragma . 240
6.4.9 VIRTUAL_FUNCTION_TAB pragma . 241
6.4.10 Pragmas to control template instantiation . 242
6.4.11 deprecated pragma . 244
6.4.12 STDC pragma . 245
6.4.13 __printf_args pragma . 246
6.4.14 __scanf_args pragma . 247

7 C++ language support of the compiler . 248
7.1 Overview of the C++ language modes . 249
7.2 Implementation-defined behavior based on the ANSI/ISO C++ standard . . . 253
7.3 Template instantiation . 257

7.3.1 Fundamentals . 258
7.3.2 Automatic instantiation . 260
7.3.3 Generating explicit template instantiation statements (ETR files) 264

7.3.3 Generating explicit template instantiation statements (ETR files) 264
7.3.4 Implicit inclusion . 269
7.3.5 extern inline functions . 270

7.4 Deviations from ANSI/ISO C++ . 271
7.4.1 Extensions to ANSI-/ISO-C++ . 272
7.4.2 Restrictions to ANSI-/ISO-C++ . 273
7.4.3 extern inline vs. static inline . 274

7.5 Variations in the Cfront C++ mode . 280
8 The C++ libraries and C++ runtime system . 284

8.1 The C++ library for the language mode C++ 2017 . 285
8.2 The C++ library for the language mode C++ V3 . 287
8.3 The C++ library for the Cfront C++ language mode C++ V2 289
8.4 The C++ V3 library Tools.h++ . 291
8.5 The C++ runtime system . 293

8.5.1 Initialization . 294
8.5.2 Exception handling . 295

8.5.2.1 Additional runtime functions . 296
8.5.2.2 C signal handling and C++ exception handling . 300
8.5.2.3 longjmp support . 301
8.5.2.4 Linking old C modules with C++ V3 and C++ 2017 modules 303

9 Appendix . 304
9.1 Description of listings . 305

9.1.1 Source/error listing . 306
9.1.2 Map listing . 308
9.1.3 Cross-reference listing . 311
9.1.4 Object listing . 315

9.2 Predefined preprocessor names . 318
9.3 Concept of a name adapter module in the C runtime system 321
9.4 The II-UPDATE tool . 322

10 Related publications . 330

 7

C/C++ Compiler

 8

1 Preface

This chapter provides information concerning the following topics:

Brief product description

Summary of contents and target group

Changes since the previous version

Notational conventions

General notational conventions

SDF notational conventions

 9

1.1 Brief product description

C/C++ provides users with a versatile compiler that supports both the C and C++programming languages with
different language modes (see and)."C language support of the compiler" "C++ language support of the compiler"

Programmers who are developing C and C++ programs are also supported by a global listing generator which,
among other things, can be used to create listings for multiple modules (e.g. cross-reference listings, project
listings).

Both the C/C++ compiler and the supplementary development tools can be operated and controlled via a
convenient SDF user interface.

In order to generate and execute C/C++ programs, you will also need the ommon un ime nvironment CRTE, C R T E
which is supplied with the following components:

headers and modules for the C library (ANSI C functions, POSIX functions as defined in XPG4 spec1170,
BS2000-specific extensions) and

headers and modules for various C++ libraries (i.e. the C++ V2.1 compatible C++ library, the standard C++
library and the Tools.h++ library).

 10

1.2 Summary of contents and target group

This User Guide describes how C/C++ programs are processed with the C/C++ compiler and other components of
the C/C++ Development System in a BS2000 system environment (SDF) under the BS2000 operating system.

It is intended for users who are familiar with the programming languages C and C++ as well as the BS2000
operating system.

The following topics are dealt with here:

Preparing and compiling source programs

Creating listings with the global listing generator

Linking, loading and starting

Executing C/C++ programs (parameter input, debuggers)

Linkage to functions and languages

C language support of the compiler (overview of C language modes, implementation defined behavior, #pragma

directives, extensions to the ANSI/ISO C standard)

C++ language support of the compiler (overview of C++ language modes,implementation defined behavior)

Brief description of the C++ libraries supplied with CRTE

You can also develop programs in a POSIX environment by using the , , and commands. cc c89 CC cclistgen

These commands are described in a separate manual under the title “POSIX Commands of the C/C++ Compiler” [1
], which serves as the main reference source for POSIX commands.
For more detailed information on the features and functionality of the compiler (beyond the scope of POSIX control),
see also the following sections and chapters in this User Guide:

section “The optimization process”

section “Structure of compiler messages”

chapter “C language support of the compiler”

chapter “C++ language support of the compiler”

chapter “Linkage to functions and languages”

chapter “The C++ libraries and C++ runtime system”

In the text, references to other publications are given using short titles. The full title of each publication is listed in
the “References” section.

 11

1.3 Changes since the previous version

The changes in this manual compared to the C/C++ V3.2D User Guide mainly affect the new language modes C11
and C++ 2017 and the changes to compiler options due to them.

The most important point is the default setting of the compiler. If the language mode is not specified explicitly, it
always uses the most modern implemented language standard. This was and is the case with version 3. For
Version 3 the (then) most modern standard was C89. Now the compiler supports C11 and this is also the default.
This is similar for C ++. The version 3 had as (at that time) most modern standard a preliminary version of C++ 98,
the current compiler supports C++ 17.

The new compiler now supports 10 language modes, 5 for C and 5 for C++. For better handling of this variety, the
syntax for specifying the language mode has been redesigned. The options used in Version 3 will continue to be
recognized and mapped to new options. The mapping is:

MODIFY-SOURCE-PROPERTIES LANGUAGE=

*C(MODE=*ANSI) *C(MODE=*1990,STRICT=*NO)

*C(MODE=*STRICT-ANSI) *C(MODE=*1990,STRICT=*YES)

*CPLUSPLUS(MODE=*ANSI) *CPLUSPLUS(MODE=*V3,STRICT=*NO)

*CPLUSPLUS(MODE=*STRICT-ANSI) *CPLUSPLUS(MODE=*V3,STRICT=*YES)

*CPLUSPLUS(MODE=*CPP) *CPLUSPLUS(MODE=*V2)

For MODIFY-SOURCE-PROPERTIES the option VIRTUAL-FUNCTION-TAB has been moved to the end and made
hidden. The last operand with unchanged position is INSTANTIATION.

With the support of the new language modes, the recognition of questionable source constructs has also been
revised. In some situations, messages are now different than C/C++ V3.2D. The error weight, the error number and
the text may have changed. There are a few situations where either C/C++ V3.2 gives a message or C/C++ V4.0
but not both.

 12

1.4 Notational conventions

All notational conventions used in this manual to represent commands, statements and compiler options are
explained in detail in the two subsections below:

General notational conventions

SDF notational conventions

 13

1.4.1 General notational conventions

The following general notational conventions are used in this manual to indicate the format of BS2000 commands
and program statements:

*STD All uppercase letters, digits, and special characters that are not part of the
“metalanguage” denote keywords or constants and must be entered
exactly
as shown.

-R msg_id Uppercase and lowercase letters, digits, and special characters in
denote constants and must be entered exactlytypewritten text

as shown.

name Lowercase letters in denote variables that must be replaced byitalics
current values at the time of input (see also <name>).

<name> In SDF formats, variables are additionally enclosed in angle brackets.

YES
NO

Underlining denotes the default value, i.e. the value that is automatically
used if no specification is made.

{ YES / }NO
{ OFF | ON }

Braces enclose alternatives, i.e. one of the specified values must be
selected. The alternatives are separated by a slash or a vertical line.

No entry is required if the underlined default value is desired.

[] Square brackets enclose options that may be omitted.

() Parentheses are constants and must be specified.

'BLANK' This symbol indicates that at least one whitespace character is necessary
for the syntax.

... Ellipses signify repetition, which means that the preceeding unit can be
repeated several times in succession.

For informative texts.
i

 14

1.4.2 SDF notational conventions

The following tables describe the notational conventions used to represent SDF commands and statements of the C
/C++ compiler and the global listing generator.

Table 1: Special characters

The special characters and notational conventions used in SDF statement formats are explained in the table below:

Format Meaning Examples

UPPERCASE Uppercase letters indicate keywords
(names of commands, statements, and
operands, keyword values).
Some keywords start with *.

START-CPLUS-COMPILER

COMPILE

ELEMENT = *STD-ELEMENT

= The equals sign connects an operand
name with the corresponding operand
values.

LISTING = *NONE

< > Angle brackets indicate variables, the
values of which are defined by data
types and their suffixes
(see the following tables).

VERSION = <text 1..24>

Underline Underlining indicates default values of
operands, i.e. values which are
automatically used when no explicit
specification is made.

SUMMARY = *YES / *NO

/ A slash separates alternative operand
values.

TEST-SUPPORT = *YES / *NO

(...) Parentheses indicate operand values
which introduce a structure.

LIBRARY = *LINK(...)

[] Square brackets indicate optional
operand values that introduce
structures. The structure that follows may
be
specified without the introductory
operand value.

SOURCE = [*YES](...)

Indentation Indentation indicates dependence on
the higher- ranking operand.

LIBRARY = <filename> / *LINK(...)

*LINK(...)

| LINK-NAME =

 15

| Vertical lines denote associated
operands in a structure. The top and
bottom of the line indicate the
beginning and end of a structure.
Further structures may occur within a
structure. The number of vertical lines
before an operand corresponds to the
depth within the structure.

*LIBRARY-ELEMENT(...)

| LIBRARY =

| ,ELEMENT =

| | VERSION =

, A comma precedes further operands of
the same level within the structure.

,SOURCE = *NO

,SUMMARY = *NO

list-poss(n):
list-poss:

A list can be generated from the
operand values following list-poss. If
(n) is specified, the list may contain at
most n elements.
If the list contains more than one
element, it must be enclosed within
parentheses.
In this manual, (n) is indicated only if a
compiler-specific maximum number is
involved.
list-poss without (n) means that the
maximum SDF default value of 2000
applies.

list-poss (127): *STD / BY-SOURCE /

<c-string>

list-poss: <filenname> / *LINK(...)

 16

Table 2: Data types

Variable operand values are indicated in SDF by data types. Each data type represents a specific value range. The
number of data types is restricted to those described in the table below.

The following descriptions of data types apply to all statements. Consequently, only the operands which deviate
from the definitions given here are explained in the individual operand descriptions.

Data type Character set Meaning

alphanum-name A...Z
0...9
$, #, @

c-string EBCDIC characters A sequence of EBCDIC characters enclosed in
single quotes. C may precede the characters.
Single quotes within the c-string must be
duplicated.
The data type c-string is provided with the suffix
with-low, which means that a distinction is made
between uppercase and lowercase letters.
Examples of valid representations:
'abc' , C'_abc' , 'ABC' , 'printf("macro-text\ n")'.

composed-name A...Z
0...9
$,#,@
hyphen
period

Name or version of a PLAM library element.
composed-name is provided with the suffix
with-under (underscore) (see also).Table 3

filename A...Z
0...9
$,#,@
hyphen
period

Link name or fully-qualified name of a cataloged
file
or a PLAM library. The maximum length for link
names is 8 characters; the maximum length for
fully-qualified names including the cat-id and
user-id is 54 characters (or 41 characters
excluding
the cat-id and user-id).

Input Format:

linkname

:cat:$user.{ datei / datei(nr) / gruppe /
gruppe{ (*abs) / (+rel) / (-rel) } }

 17

linkname

The first and last character must not be a
hyphen or period; maximum of 8
characters; must contain at least A...Z.

 18

Data type Character Set Meaning

filename
(continuation)

:cat:

Optional catalog identifier;
character set restricted to A...Z and 0...9;
maximum of 4 characters;
must be enclosed in colons;
the default value is the catalog identifier
assigned to the user ID in accordance with
the entry in the user catalog (also called
the JOIN entry).

$user.

Optional user ID;
character set is A...Z, 0...9, $, #, @;
maximum of 8 characters;
must not begin with a digit;
$ and the period must be included;
the default value is the own user ID.

$.

(special case)
System default identifier.

file

File or job variable name; first and last
character must not be a hyphen or period;
maximum of 41 characters; must contain
at least A...Z.

#file
@file

(special case)
or @ as the first character indicates
temporary files or job variables,
depending on system generation.

file(no)

Tape file name
no: version number;
character set is A...Z, 0...9, $, #, @.
Parentheses must be included.

 19

Data type Character Set Meaning

filename
(continuation)

group

Name of a file generation group
(see "file" for character set)

group{ (*abs) / (+rel) / (-rel) }

(*abs):
Absolute generation number (1-9999);
* and parentheses must be included..

(+rel) / (-rel):

Relative generation number (0-99);
sign and parentheses are required.

integer 0...9,+,- + or - are possible only as the first character.

name A...Z
0...9
$,#,@

C/C++ name for DEFINE / UNDEFINE in the
MODIFY-SOURCE-PROPERTIES statement.
The data type name is provided with the suffix
underscore (see also).Table 3
Lowercase letters cannot be represented with
name; must be used for this purpose.c-string
Maximum length: 125 characters

posix-filename A...Z
0...9
special characters

String with a maximum length of 255 characters;
consists of either one or two periods, or alphanumeric
characters and special characters; all special
characters must be escaped with a preceding
\ (backslash); the / character is not allowed.
A distinction is made between uppercase and
lowercase letters

posix-pathname A...Z
0...9
special characters
structural identifiers:
slashes

Input format: [/]part [/.../part]1 n

where part is a posix-filename;1

up to1023 characters; up to 247 characters for
source and header files.
The data type posix-pathname is provided with the
suffix mandatory-quotes and must therefore always
be enclosed within single quotes.

x-string Hexadecimal:
00...FF

Sequence of hexadecimal values enclosed within
single quotes; must be preceded by the letter X.

 20

1.

2.

Table 3: Data type suffixes

Data type suffixes denote further input specifications for data types. These suffixes place restrictions on the value
range or extend it. The following suffixes are used in their abbreviated form in the manual:

cat-id cat

correction-state corr

generation gen

lower-case low

manual-release man

underscore under

user-id user

version vers

The following descriptions of suffixes apply to all statements. Consequently, only the operands which deviate from
the definitions given here are explained in the individual operand descriptions.

Suffix Meaning

x..y
For data type integer: interval

x: Minimum value permitted for integer. x is an integer which may be given a sign.

y: Maximum value permitted for integer. y is an integer which may be given a sign.

For other data types: length

x: Minimum length for the operand value; x is an unsigned integer.

y: Maximum length for the operand value; y is an unsigned integer.

with Extends the options for specifying a data type.

-low A distinction is made between uppercase and lowercase letters.

-under The underscore (_) is permitted as an additional character.

without Restricts the options for specifying a data type.

-cat Specifying a catalog identifier is not permitted..

-corr Eingabeformat: [[C]'][V][m]m.na[']
No correction status may be included in the product-version data type.

-gen Specifying a file generation or file generation group is not permitted.

 21

-man Input format: [[C]'][V][m]m.n[']
Neither the release status nor the correction status may be included in the
product-version data type.

-user Specifying a user identifier is not permitted.

-vers Specifying a version (siehe file(no)) is not permitted for tape-files.

mandatory Makes certain entries mandatory for a data type

-quotes Specifications for the data types posix-filename and posix-pathname must be
enclosed within single quotes.

 22

2 Overview of the C/C++ development system

This chapter provides information concerning the following topics:

From source program to program execution

General requirements for compilation, linkage and program execution

General features of the C/C++ compiler

Specific CRTE components required for C/C++

Include libraries

Module libraries

Editing source programs

POSIX support

Compiler I/O in the POSIX file system

Use of POSIX library functions

Introductory examples

Example 1: Compiling, linking, and starting a C program

Example 2: Compiling, linking, and starting a C++ program

Example 3: Compiling a C source program that is located in a POSIX file and uses POSIX library functions

 23

1.

2.

3.

2.1 From source program to program execution

Three steps are necessary to convert a C/C++ source program into an executable program:

Preparation of the source program and header files

The source program may be in a cataloged BS2000 file, a PLAM library element (oftype S), or a POSIX file.
Header files may be located in PLAM library elements (type S), in POSIX files, or also in cataloged files if the
source program itself is located in a cataloged file. The standard headers for the C and C++ library functions
(excluding POSIX functions) are located by default in the CRTE libraries $.SYSLIB.CRTE, $.SYSLIB.CRTE.
CPP and $.SYSLIB.CRTE.CXX01; the standard headers for POSIX library functions are located in the library $.
SYSLIB.POSIX-HEADER.

Compilation

The source program must be compiled into machine language. The compiler generates all modules only in LLM
format and optionally saves them in PLAM library elements (of type L) or in POSIX object files.

Linkage

The modules generated during compilation are linked with modules from the C runtime system and the C++
runtime system (if C++ library functions are used) to create an executable unit.
Modules created in the modes C++ V3 or C++ 2017 should not be linked with a direct call to BINDER, but only
with the compiler statements MODIFY-BIND-PROPERTIES and BIND.

The following overview illustrates these basic steps and indicates where other relevant information can be found in
this manual.

 24

 25

2.2 General requirements for compilation, linkage and program execution

In order to compile, link and execute a program successfully, you will need the following components:

Calling programs of the C/C++ compiler and global listing generator

SDF C/C++ syntax file

DMS/PLAM/BINDER message files

C/C++ message file

In addition, you will also need the Common Runtime Environment CRTE from version V10.1A resp. V11.1A, which
is supplied with the components below:

C and C++ runtime modules

ILCS runtime modules

Standard headers for C library functions (excluding the POSIX functions) and for C++ library functions

The preparatory steps required to enable SDF control and the message files are described in the release notice for
C/C++ V3.2D.

Notes on the installation and operation of CRTE can be found in the release notice for CRTE and in the CRTE User
Guide [].4

In principle, the C/C++ compiler can be used with any BS2000/OSD version as of V10.0. Note, however, that many
of its features described in this manual are based on higher operating system versions and may also require some
additional software products:

Compiler I/O in the POSIX file system and the use of POSIX library functions: POSIX-HEADER from V10.1A
resp. V11.1A.

For more details on software requirements, see also the release notice for C/C++ V4.0AD.

 26

2.3 General features of the C/C++ compiler

Supported C and C++ language standards

The following C and C++ standards are supported by the C/C++ compiler:

ANSI/ISO C with the ISO C Addendum 1 (1994), also called C89

ISO/IEC C (2011), also called C11

ISO/IEC C++ (2017), also called C++ 2017

Compatibility

The following language modes are offered by the compiler to enable the migration or porting of older C and C++
applications:

Kernighan&Ritchie C,

Cfront C++ V3.0.3, also called C++ V2

the version of C++ offered by C/C++ V3.2 also called C++ V3

the preprocessor dialect based on Reiser cpp and Johnson pcc

Portable software

To develop portable software, the compiler also supports “strict” C and C++ modes. All deviations from the
corresponding language standards are diagnosed in these modes.

 27

2.4 Specific CRTE components required for C/C++

This section provides you with a quick overview of the CRTE “containers” that are relevant for programming in C++
and C. More explicit details on the functionality, scope and use of the C++ libraries provided with the CRTE are
presented in the chapter .“The C++ libraries and C++ runtime system”

Detailed information on the general concept of CRTE can be found in the CRTE User Guide [].4

See also the various reference manuals and publications for C and C++ library functions listed in the References
section.

 28

2.4.1 Include libraries

The SYSLIB.CRTE library

This library contains:

Standard headers (type S) for C library functions (ANSI C and BS2000-specific extensions)

Standard headers (type S) for classes and functions of the standard C++ library for the language mode C++ V3

Standard headers (type S) for classes and functions of the C++ V3 library Tools.h++

This library does not include:

Standard headers for the use of POSIX library functions. Following the installation of POSIX-HEADER (release
unit of BS2000/OSD-BC), these headers are made available in the SYSLIB.POSIX-HEADER library.

Standard headers of the standard-C++ library according to the standard C ++ 2017; these are part of the library
.SYSLIB.CRTE.CXX01

Standard headers of the Cfront-compatible C++ library functions for complex math and stream-oriented I/O.
These headers are located in the SYSLIB.CRTE.CPP library.

The SYSLIB.CRTE.CXX01 library

This library contains the standard headers for classes and functions of the C++ library according to the standard C
.++ 2017

See also the section .“The C++ library for the language mode C++ 2017”

The SYSLIB.CRTE.CPP library

This library contains the standard headers for classes and functions of the Cfront-compatible C++ library for
complex math and stream-oriented I/O. These headers are used by the compiler in the Cfront C++ mode.
See also the section .“The C++ library for the Cfront C++ language mode C++ V2”

 29

2.4.2 Module libraries

The SYSLNK.CRTE library

This library contains:

Individual modules of the C runtime system (object modules of type R)

These modules can be linked statically or dynamically. The C runtime system can also be linked dynamically,
provided the SYSLNK.CRTE.PARTIAL-BIND library (for the standard partial bind linking method) or the SYSLNK.
CRTE.COMPL library (for the complete partial bind linking method) is specified instead of the SYSLNK.CRTE
library when linking with BINDER.

The C runtime system is always required in order to run C/C++ programs. Among other things, it contains the
code for all the C library functions, the central I/O routines for the implementation of C++ I/O functions, and
additional routines for the implementation of operating system interfaces.

Many entry names of the C runtime system begin with “IC@”, “ICS” or “ICX”.

Name adapter modules for new C library functions (object modules of type R and LLMs of type L)

Adapter modules belong to the non-preloadable components of the C runtime system and must consequently be
linked into the application program. They are contained both in the SYSLNK.CRTE library and in the SYSLNK.
CRTE.PARTIAL-BIND library.

Detailed technical information on these adapter modules can be found in the section“Concept of a name adapter
.module in the C runtime system”

The C runtime system as a dynamically loadable prelinked module (LLM, type L).

This prelinked module is dynamically loaded into the user address space at runtime if the library SYSLNK.CRTE.
PARTIAL-BIND is specified instead of the SYSLNK.CRTE library and if the dynamically loadable C runtime
system has not been preloaded.

The SYSLNK.CRTE.PARTIAL-BIND and SYSLNK.CRTE.COMPL libraries

These libraries allow C programs to be linked without unresolved external references and enable the C runtime
system to be loaded dynamically only at the time of execution. Connection modules, which are linked instead of the
C runtime module and satisfy all unresolved external references of a C program to the C runtime system, are
included in the libraries for this purpose. These libraries also contain all the other modules that are required in order
to link a C program without any unresolved external references to the CRTE (e.g. ILCS modules and name adapter
modules).

SYSLNK.CRTE.PARTIAL-BIND is needed for the standard partial bind linking method while SYSLNK.CRTE.
COMPL is used for the complete partial bind linking method. For details concerning the partial bind linking method
as well as for differences between standard partial bind and complete partial bind see the CRTE user guide [].4

The C runtime system itself is available in the form of a dynamically loadable prelinkedmodule in the library
SYSLNK.CRT and is dynamically loaded into the user address space at runtime if the program cannot be
connected to the preloaded C runtime system.

Since only the connection modules are linked and not the entire C runtime system, the finished (i.e. fully-linked)
program or module is significantly smaller in size and requires much less disk storage space than when statically
linking C runtime modules from the library SYSLNK.CRTE. Furthermore, this also results in faster load times if the
C runtime system is preloaded.

See also the CRTE user guide [] for more technical information.4

 30

The SYSLNK.CRTE.CPP and SYSLNK.CRTE.CFCPP libraries

These libraries contain the modules of the Cfront-compatible C++ runtime system (LLMs, type L).

SYSLNK.CRTE.CPP contains the modules of all C++ library functions for complex math and standard I/O that are
available in the Cfront C++ mode of the compiler. The entry names begin with “ICP”.

SYSLNK.CRTE.CFCPP contains the modules for the internal runtime routines that are needed in the Cfront C++
mode of the compiler to implement initialization, storage management, etc. The entry names begin with “IPP”.

The modules can be linked statically or dynamically with BINDER or DBL, respectively. Note that modules from the
SYSLNK.CRTE.CFCPP library must be linked with precedence before the modules from the SYSLNK.CRTE.CPP
library.

See also section ."The C++ library for the Cfront C++ language mode C++ V2"

The SYSLNK.CRTE.POSIX library

This library contains a “linkage option” module, which must be linked whenever the POSIX functions of the C
runtime system are to be used. This module must always be linked with precedence before the modules in the
library SYSLNK.CRTE,
SYSLNK.CRTE.PARTIAL-BIND or SYSLNK.CRTE.COMPL When linking with BINDER, this library should
preferably be linked by means of an INCLUDE statement (without specifying the module name), since the use of
RESOLVE statements, by contrast, would require the linkage order to be strictly observed. This also applies when
linking with the BIND statement of the compiler, which means that the INCLUDE option should be used in the
MODIFY-BIND-PROPERTIES statement.

The SYSLNK.CRTE.STDCPP and SYSLNK.CRTE.RTSCPP libraries

These libraries contain the modules of the C++ V3 runtime system (LLMs, type L).

SYSLNK.CRTE.STDCPP contains the modules for the standard C++ library, which can be used in the C++ V3
mode of the compiler.

SYSLNK.CRTE.RTSCPP contains the modules for the internal runtime routines that are needed in the C++ V3
mode of the compiler to implement, among other things,
the C++ exception handling and the C++ runtime type information (RTTI).

The modules can be linked statically with the BIND statement of the compiler or dynamically with DBL.

See also section .“The C++ library for the language mode C++ V3”

The SYSLNK.CRTE.TOOLS library

This library contains the modules (LLMs, type L) for the C++ V3 library Tools.h++, which can be used in the C++ V3
mode of the compiler.

The modules can be linked statically with the BIND statement of the compiler or dynamically with DBL.

See also section .“The C++ V3 library Tools.h++”

The SYSLNK.CRTE.CPP-COMPL library

This library contains adapters for the SYSLNK.CRTE.STDCPP, SYSLNK.CRTE.RTSCPP and SYSLNK.CRTE.
TOOLS libraries.

 31

The SYSLNK.CRTE.CXX01 library

This library contain the modules of the C++ 2017 runtime system (LLMs, type L).

See also section . "The C++ library for the language mode C++ 2017“

 32

2.5 Editing source programs

Storage methods for source programs and header files

The C/C++ compiler processes source programs and header files which are stored asfollows:

Source programs stored as

cataloged SAM and ISAM files (with KEYPOS=5 and KEYLEN <= 16)

PLAM library elements of type S

POSIX source files

Header files stored as

cataloged files if the source program is itself a cataloged file

PLAM library elements of type S

POSIX source files

The file editor EDT

The file editor EDT is available in BS2000 for editing a C/C++ source program. EDT can process cataloged SAM
/ISAM files, PLAM library elements and POSIX files.

EDT converts lowercase letters to uppercase letters by default. Since source program texts in C/C++ usually
contain a large number of lowercase letters, automatic conversion to uppercase must be prevented by issuing the
command LOWER ON after EDT is called.

The following table provides an overview of the most important EDT statements for processing files and library
elements.
The file editor EDT is described in detail in the manual “EDT (BS2000/OSD)” [].15

SAM files

@READ‘file‘ Read contents of a SAM file into the current work file.

@WRITE‘file‘ Write contents of the current work file to a SAM file

ISAM files

@GET‘file‘ Read contents of an ISAM file into the current work file

@SAVE‘file‘ Write contents of the current work file to an ISAM file

@OPEN‘file‘ Physically open ISAM file

@CLOSE Close an ISAM file opened with @OPEN

PLAM library elements

@OPEN LIB=lib(ELEM=elem) Open library element in the current work files

@COPY LIB=lib(ELEM=elem) Read contents of a library element into the current work file

@WRITE LIB=lib(ELEM=elem) Write contents of the current work file to a library element

 33

@CLOSE Close a library element opened with @OPEN

POSIX files

@XOPEN FILE=pathname,MODE=
ANY/UPDATE/NEW/REPLACE

Open and read an existing POSIX file or create a new
POSIX
file

@CLOSE Close a POSIX file opened with @XOPEN

@XCOPY FILE=pathname Read contents of a POSIX file into the current work file

@XWRITE FILE=pathname,MODE=
ANY/UPDATE/NEW/REPLACE

Write contents of a current work file to a POSIX file

EDT statements for processing files and library elements (extract)

By default, PLAM library elements are stored by EDT as elements of type S with the highest version number (X’FF’).

Key assignments

In order to program in C and C++, the user requires a number of special characters, some of which may not be
available on all keyboards. For example, keyboards with the German character set have “umlauts” assigned instead
of some characters specifically required for C and C++.
The following table lists the different key assignments and their (international) hexadecimal codes. This information
can be used to create a user-specific keyboard configuration if required.

Identifier / Functions in C
and
C++

“English”
keyboard

“German”
keyboard

Hexadecimal
code

left angle bracket < < 4C

right angle bracket > > 6E

logical OR | ö 4F

logical exclusive OR ^ ^ 6A

underscore _ _ 6D

left square bracket [Ä BB

right square bracket] Ü BD

backslash \ Ö BC

left brace { ä FB

right brace } ü FD

bit complement ~ ß FF

 34

2.6 POSIX support

This section provides information concerning the following topics:

Compiler I/O in the POSIX file system

Use of POSIX library functions

 35

2.6.1 Compiler I/O in the POSIX file system

The C/C++ compiler supports the BS2000 file system (DMS files, PLAM libraries, etc.) as well as the POSIX file
system. All inputs and outputs of the compiler in a compilation, preprocessor or syntax analysis
run can also be effected via POSIX files. This includes, in particular:

the input of source programs (see the SOURCE option in the COMPILE, PREPROCESS and CHECK-SYNTAX
statements)

the input of header files (see the USER-INCLUDE-LIBRARY and STD-INCLUDE-LIBRARY options in the
MODIFY-INCLUDE-LIBRARY statement)

the output of LLMs (see the MODULE-OUTPUT option in the COMPILE statement)

the output of recompilable source programs (see the OUTPUT option in the PREPROCESS statement)

the output of compiler listings (see the OUTPUT option in the MODIFY-LISTING-PROPERTIES statement)

the output of message lists (see the OUTPUT option in the MODIFY-DIAGNOSTIC-PROPERTIES statement)

the output of CIF information (see the OUTPUT option in the MODIFY-CIF-PROPERTIES statement)

Arbitrary combinations, i.e. the input and output of both BS2000 as well as POSIX files in the same compilation run,
are also possible.

Storage of source programs and header files

Source programs and header files may exist in EBCDIC and ASCII codes. EBCDIC is the default in the POSIX file
system; ASCII is the default for file systems on remote UNIX computers or PCs. All files of a file system (POSIX file
system or attached remote file systems) must, however, be in the same respective (default) codeset. The compiler
checks the codeset of a file system centrally, not for each individual file. Files of an ASCII file system are internally
converted to EBCDIC for the compilation.

In contrast to program development in the POSIX shell (see the manual “POSIX commands of the C/C++ Compiler
[1]), the file names of source programs need not always contain one of the standard suffixes “.c”, “.C” or “.i”.

Output of LLMs

The LLMs generated by the compiler can be written to POSIX object files (“.o” files). These LLM object files can
only be processed meaningfully in the POSIX subsystem (by using the command cc, c11, c89 or CC; see the
manual “POSIX commands of the C/C++ Compiler []). The generated object file format (LLM) is not supported on 1
UNIX systems.

Other compiler outputs

Expanded recompilable source programs
The result of a preprocessor run can be written to a POSIX source file (“.i” file in C, “. ” file in C++). This file can I

be processed further in the POSIX shell with the command , or and in the BS2000 environment via the cc c89 CC

SDF interface of the C/C++ compiler.

Compiler listings
Compiler listings can be written to a POSIX list file (“.lst” file). This list file can be printed in the POSIX shell with
the command and in the BS2000 environment with the SDF command PRINT-DOCUMENT.bs2lp

 36

Diagnostic messages
Error messages of the compiler can be written to a POSIX file (“.diag” file). This file can be read with a file editor
such as EDT in the POSIX shell (command) and in the BS2000 environment (see note on EDT on edt "Editing

).source programs"

CIF information
The local CIF information for individual modules that is used to create global listings can be stored in a POSIX
file (“.cif” file). These CIF files can be processed further in the POSIX shell with the command (see cclistgen

the manual “POSIX Commands of the C/C++ Compiler []”) and via the SDF interface of the global listing 1
generator in the BS2000 environment (see START-CPLUS-LISTING-GENERATOR, "Controlling the global

).listing generator"

Output codeset

The output codeset of the files (EBCDIC or ASCII) is determined by the codeset of the target file system. The
compiler stores files in EBCDIC code in the POSIX file system and in ASCII code in file systems on UNIX
computers.

Only EBCDIC execution code is generated. For example, the names of external entries are only stored in EBCDIC
code.

Description of the term <posix-pathname>

When <posix-pathname> is specified as an input or output, the following can be specified:

a file name with no path specification

a relative path to a file

an absolute path to a file

a relative path to a directory

an absolute path to a directory

If no absolute path exists, the name/path is interpreted relative to the user’s home directory.

All directories in the path must already exist.

When an input file is requested, no directory may be specified.
When an input directory is requested, no file may be specified.

It only makes sense to specify an output file when a single source is processed. When multiple sources are
processed, it is generally not permissible to specify an output file.
When the file name is created, it must be borne in mind that meaningful further processing of the output file in the
POSIX subsystem is possible only if the name has a suitable suffix. When a directory is specified, the compiler itself
determines the name of the output file (see section .“Default names for output containers”

 37

1.

2.

3.

2.6.2 Use of POSIX library functions

With CRTE a C runtime system is provided, that supports C library functions with BS2000 functionality as well as
POSIX functionality.

The library functions with BS2000 functionality include all ANSI-defined functions and about fifty BS2000-specific
extensions.
Only these functions may be used in the following cases:

if no POSIX subsystem is available, or

if no preparatory steps are taken (see below) at compile and link time in a BS2000 operating system with an
available POSIX subsystem.

The library functions with BS2000 functionality are described in the manual “C Library Functions” [].2

The following functions of the C runtime system, which were introduced for the first time with CRTE V2.0, are library
functions with POSIX functionality: all functions required by the XPG4 standard and about thirty UNIX-specific
extensions. For more information on these functions and all functions with BS2000 functionality, see the manual “C
Library Functions for POSIX Applications” [].3

Compilation and linkage of programs that use POSIX library functions

The following steps are required in order to use library functions with POSIX functionality when developing
programs in the BS2000 environment (SDF):

The library SYSLIB.POSIX-HEADER, which contains the standard headers for POSIX functions, must be
specified in addition to the CRTE library SYSLIB.CRTE in the search for standard headers at compilation.

//MOD-INCLUDE-LIB STD-INCLUDE-LIB=(*STANDARD-LIBRARY,&(INSTALLATION-PATH

(’SYSLIB’,’POSIX-HEADER’,DEFAULT=’$.SYSLIB.POSIX-HEADER’)))

The directive must always be set before the preprocessor encounters the first _OSD_POSIX #include

directive in the program. This can be ensured by a global setting for the entire compilation run with the
SOURCE-PROPERTIES statement instead of a definition in the source program with the directive.#define

//MODIFY-SOURCE-PROPERTIES DEFINE=_OSD_POSIX

When linking, the link option library SYSLNK.CRTE.POSIX must be linked with precedence before the library
SYSLNK.CRTE, SYSLNK.CRTE.PARTIAL-BIND or SYSLNK.CRTE.COMPL. When linking with BINDER, it is
advisable to use an INCLUDE statement for the link option library (without specifying the module name), since
the use of RESOLVE statements, by contrast, would require the appropriate order to be strictly observed. In the
case of the BINDER statement, for example:

//INCLUDE-MODULES *LIB(LIB=$.SYSLNK.CRTE.POSIX,ELEM=*ALL)

This also applies when linking with the BIND statement of the compiler, i.e. the INCLUDE option should be
used in the MODIFY-BIND-PROPERTIES statement:

//MOD-BIND-PROP INCLUDE=*LIB-ELEM(LIB=&(INSTALLATION-PATH('SYSLNK.POSIX',

'CRTE',DEFAULT='$.SYSLNK.CRTE.POSIX')),ELEM=*ALL)

When developing programs in the POSIX environment, by contrast, no special preparatory steps are required in
order to use the POSIX library functions (see also the manual “POSIX Commands of the C/C++ Compiler” []).1

 38

2.7 Introductory examples

Using three simple examples, this section demonstrates how C/C++ programs are compiled, linked, and executed
in BS2000. The examples are based on the assumption that the C/C++ compiler and the C and C++ runtime
systems were installed by default under the user ID TSOS.

Example 1: Compiling, linking, and starting a C program

Example 2: Compiling, linking, and starting a C++ program

Example 3: Compiling a C source program that is located in a POSIX file and uses POSIX library functions

 39

2.7.1 Example 1: Compiling, linking, and starting a C program

The C source program is contained in the cataloged file HELLO. The compiler generates an LLM and places it in
the library PLAM.TEST. This module is then linked by different methods:
Variant 1: with the BIND statement of the compiler
Variant 2: with BINDER
Variant 3: with DBL

Source program file HELLO

#include <stdio.h>
int main(void)
{
 printf("Hello, I am a C program\n");
 return 0;
}

The source program was written using EDT and saved in a file named HELLO.

Runtime listing for compilation, linkage and execution

(IN) indicates user inputs
(OUT) indicates system program messages
(IN) /START-CPLUS-COMPILER —— (1)
(OUT) % BLS0523 ELEMENT ’SDFCC’, VERSION ’04.0A10’, TYPE ’L’ FROM LIBRARY
 ’:P401:$TSOS.SYSLNK.CPP.040’ IN PROCESS
(OUT) % BLS0524 LLM ’SDFCC’, VERSION ’04.0A10’ OF ’2020-04-02 13:40:11’
 LOADED
(OUT) % BLS0551 COPYRIGHT (C) 2020 Fujitsu Technology Solutions GmbH. ALL
 RIGHTS RESERVED
(OUT) % CDR9992 : BEGIN C/C++ VERSION 04.0A10
(IN) //MODIFY-SOURCE-PROP LANGUAGE=*C ——————————————————————————————— (2)
(IN) //COMPILE SOURCE=HELLO,MODULE-OUTPUT=*LIB-ELEM(LIB=PLAM.TEST) —— (3)
(OUT) % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CDR9937 : MODULES GENERATED, CPU TIME USED = 0.0030 SEC

Variant 1: Linking with the BIND statement

(IN) //MOD-BIND-PROP INCLUDE=*LIB(LIB=PLAM.TEST,ELEM=HELLO),-
 //RUNTIME-LANG=*C,STDLIB=*STATIC ——————————————————————————————— (4)
(IN) //BIND OUTPUT=*LIB(LIB=PLAM.TEST1,ELEM=HELLO) —————————————————— (5)
(OUT) % BND3102 SOME WEAK EXTERNS UNRESOLVED
(OUT) % BND1501 LLM FORMAT: '1'
(OUT) % BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS:
 'UNRESOLVED EXTERNAL'
(IN) //END ——— (6)
(OUT) % CDR9936 END; SUMMARY: NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CCM0998 CPU TIME USED: 1.9967 SECONDS

Variant 2: Linking with BINDER

 40

(IN) /START-BINDER —— (7)
(OUT) % BND0500 BINDER VERSION 'V02.7A12' STARTED
(IN) //START-LLM-CREATION INT-NAME=XY
(IN) //INCLUDE-MODULES *LIB(LIB=PLAM.TEST,ELEM=HELLO)
(IN) //RESOLVE-BY-AUTOLINK LIB=$.SYSLNK.CRTE
(IN) //SAVE-LLM LIB=PLAM.TEST1,ELEM=HELLO,MAP=*NO
(OUT) % BND3102 SOME WEAK EXTERNS UNRESOLVED
(OUT) % BND1501 LLM FORMAT: '1'
(IN) //END
(OUT) % BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS:
 'UNRESOLVED EXTERNAL'

Variant 3: Linking, loading and starting with DBL

(IN) /ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=$.SYSLNK.CRTE —————— (8)
(IN) /START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM(LIBRARY=PLAM.TEST,-
 /ELEMENT-OR-SYMBOL=HELLO),DBL-PARAMETERS=*PARAM(-
 /RESOLUTION=*PARAM(ALTERNATE-LIBRARIES=*BLSLIB##))
(OUT) % BLS0524 LLM 'HELLO', VERSION ' ' OF '2020-04-02 13:33:56' LOADED
(OUT) Hello, I am a C program
(OUT) % CCM0998 CPU TIME USED: 0.0021 SECONDS

Starting programs linked with variants 1 and 2

(IN) /START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM(LIBRARY=PLAM.TEST1,-
 /ELEMENT-OR-SYMBOL=HELLO) —————————————————————————————————————— (9)
(OUT) % BLS0524 LLM 'XY', VERSION ' ' OF '2020-04-02 13:33:50' LOADED
(OUT) Hello, I am a C program
(OUT) % CCM0998 CPU TIME USED: 0.0028 SECONDS

(1) The compiler is started.

(2) The MODIFY-SOURCE-PROPERTIES statement is used to set the language mode C (the default setting is
language mode C++).

(3) The COMPILE statement is issued with selected options to begin compilation. The SOURCE option
specifies the name of the source program to be compiled, and the MODULE-OUTPUT option specifies a
PLAM library as the output destination. The name of the object module to be generated is derived from that
of the source program (HELLO).

(4) The MODIFY-BIND-PROPERTIES statement specifies the modules to be linked and other conditions for the
subsequent linkage run with the BIND statement of the compiler. The INCLUDE option (which corresponds
to the BINDER statement INCLUDE-MODULES) specifies the LLM HELLO, which was generated earlier
and placed in the library PLAM.TEST. The RUNTIME-LANGUAGE option specifies that the program to be
linked is a C program (C++ is the default). Due to this option, all additional modules of the C runtime system
which are required for C programs are automatically linked with the autolink mechanism. The *STATIC entry
in the STDLIB option instructs the compiler to load the C runtime system from the library $.SYSLNK.CRTE
instead of the library $.SYSLNK.CRTE.PARTIAL-BIND (the default).

 41

(5) The BIND statement is issued to start the linkage run. The OUTPUT option (which corresponds to the
BINDER statement SAVE-LLM) causes the fully-linked LLM to be stored under the name HELLO as an
element of type L in the PLAM library PLAM.TEST1. The BINDER message “SOME WEAK EXTERNS
UNRESOLVED” refers to the ILCS module IT0INITS. This module contains WEAK-EXTERN references to
all languages potentially required for ILCS. In this example, only the C language is involved, so the other
references remain unresolved.

(6) The END statement terminates the compiler run.

(7) The HELLO module that was generated at compilation in the PLAM library PLAM.TEST is linked with
BINDER.

(8) The HELLO module, which was generated at compilation and placed in the PLAM library PLAM.TEST, is
dynamically linked, loaded and started with DBL.

(9) The finished program HELLO, which was fully linked with the BIND statement of the compiler (see variant 1)
and with BINDER (see variant 2) and placed in the library PLAM.TEST1, is loaded and started. The entry
ALT-LIB=*BLSLIB## (see variant 3), which is required for dynamic linking with DBL, is not needed in this
case.

 42

2.7.2 Example 2: Compiling, linking, and starting a C++ program

The C++ source program consists of two PLAM library elements PROG1 and PROG2. The compiler generates
LLMs and writes them to the PLAM library SYS.PROG.LIB. These modules are then linked with the BIND statement
of the compiler.

Source program element PROG1

#include <iostream.h>
extern void invoke(void);
int main(void)
{
 cout << "main(prog1)" << '\n';
 invoke();
 return 0;
}

Source program element PROG2

#include <iostream.h>
void invoke(void)
{
 cout << "invoke(prog2)" << '\n';
}

The source program extracts shown above were produced using EDT and then written separately to the PLAM
library PLAM.EXP with explicit WRITE statements of the form:WRITE L=PLAM.EXP(E=element-name)

 43

Runtime listing for compilation, linkage and execution

(IN) indicates user inputs
(OUT) indicates system program messages
(IN) /START-CPLUS-COMPILER —— (1)
(OUT) % BLS0523 ELEMENT ’SDFCC’, VERSION ’04.0A10’, TYPE ’L’ FROM LIBRARY
 ’:P401:$TSOS.SYSLNK.CPP.040’ IN PROCESS
(OUT) % BLS0524 LLM ’SDFCC’, VERSION ’04.0A10’ OF ’2020-04-02 13:40:11’
 LOADED
(OUT) % BLS0551 COPYRIGHT (C) 2020 Fujitsu Technology Solutions GmbH. ALL
 RIGHTS RESERVED
(OUT) % CDR9992 : BEGIN C/C++ VERSION 04.0A10
(IN) //MOD-SOURCE-PROP LANGUAGE=*CPLUS(V3-COMPATIBLE) ——————————————— (2)
(IN) //MOD-BIND-PROP RUNTIME-LANGUAGE=*CPLUS(*V3-COMPATIBLE) ———————— (2)
(IN) //COMPILE SOURCE=(*LIB(LIB=PLAM.EXP,ELEM=PROG1),-
 //*LIB(LIB=PLAM.EXP,ELEM=PROG2)) ——————————————————————————————— (3)
(OUT) % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CDR9937 : MODULES GENERATED, CPU TIME USED = 0.0030 SEC
(OUT) % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CDR9937 : MODULES GENERATED, CPU TIME USED = 0.0020 SEC
(IN) //MOD-BIND-PROP INCLUDE=(*LIB(LIB=SYS.PROG.LIB,ELEM=PROG1),-
 //*LIB(LIB=SYS.PROG.LIB,ELEM=PROG2)) ——————————————————————————— (4)
(IN) //BIND OUTPUT=*LIB(LIB=PLAM.EXP1,ELEM=PROG) ———————————————————— (5)
(OUT) % BND1501 LLM FORMAT: ’4’
(OUT) % BND3102 SOME WEAK EXTERNS UNRESOLVED
(OUT) % BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS:
 'UNRESOLVED EXTERNAL'
(IN) //END —— (6)
(OUT) % CDR9936 END; SUMMARY: NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CCM0998 CPU TIME USED: 1.9967 SECONDS
(IN) /START-EXECUTABLE-PROG*L(LIB=PLAM.EXP1,E-O-S=PROG) ————————————— (7)
(OUT) % BLS0523 ELEMENT 'PROG', VERSION '@', TYPE 'L' FROM LIBRARY
 ':2OS2:$USERIDXY.PLAM.EXP1' IN PROCESS
(OUT) % BLS0524 LLM '$LIB-ELEM$PLAM$EXP1$$PROG$$$UPPE', VERSION ' '
 OF '2020-04-02 14:22:01' LOADED
(OUT) main(prog1)
(OUT) invoke(prog2)
(OUT) % CCM0998 CPU TIME USED: 0.0018 SECONDS

(1) The compiler run is started.

(2) The language mode is set for compiling and linking.

(3) The COMPILE statement is issued to start compiling the C++ source program elements PROG1 and
PROG2. The name off the PLAM library and that of the library element to be compiled are specified
individually in the SOURCE option in the form of a list. By default, the compiler places the generated LLMs in
the library SYS.PROG.LIB. The names of the LLMs are derived from the names of the source program
elements (PROG1, PROG2).

(4) The MODIFY-BIND-PROPERTIES statement specifies which modules are to be linked in the following
linkage run. The INCLUDE option (which corresponds to the BINDER statement INCLUDE-MODULES)
specifies the names of the LLMs to be linked, i.e. the LLM containing the function (PROG1) and the main

additional LLM with the subroutine (PROG2). All other C and C++ runtime library modules required for C++
V3 programs are linked in automatically (with the autolink mechanism, see)."MODIFY-BIND-PROPERTIES"

 44

(5) The linkage run is started with BIND statement. The OUTPUT option (which corresponds to the BINDER
statement SAVE-LLM) causes the generated LLM to be saved under the name PROG as an element of type
L in a PLAM library.The BINDER message “SOME WEAK EXTERNS UNRESOLVED” refers to the ILCS
module IT0INITS. This module contains WEAK-EXTERN references to all potential languages for ILCS.
Only the C and C++ languages are involved in this example, so the other references remain unresolved. For
more information on the LLM format generated by BINDER (Format 4 in this example), please refer to the
OUTPUT-FORMAT option of the BIND statement ()."BIND"

(6) The compiler run is terminated with the END statement.

(7) The fully-linked program is loaded and started with the START-EXECUTABLE-PROGRAM command.

 45

2.7.3 Example 3: Compiling a C source program that is located in a POSIX file and uses
POSIX library functions

The C source program exists as a POSIX source file with the name in the directory . hello.c /USERIDXY/source

The program uses POSIX library functions. The compiler generates an LLM and writes it to a POSIX object file with
the default name . This object file is stored in the directory of the source program. The object file is then hello.o

processed further in the POSIX shell environment.

Source program file hello.c

#include <stdio.h>
FILE *fp;
int main(void)
{
 printf("Hello, I am a C program\n");
 fp = fopen("/USERIDXY/posixfiles/hello", "w");
 fputs("hello", fp);
 fclose(fp);
 return 0;
}

The source program was created with EDT and saved with the statement @XWRITE FILE=/USERIDXY/source
/hello.c.

Runtime listing for compilation, linkage and execution

(IN) indicates user inputs
(OUT) indicates system program messages
(IN) /START-CPLUS-COMPILER —— (1)
(OUT) % BLS0523 ELEMENT ’SDFCC’, VERSION ’04.0A10’, TYPE ’L’ FROM LIBRARY
 ’:P401:$TSOS.SYSLNK.CPP.040’ IN PROCESS
(OUT) % BLS0524 LLM ’SDFCC’, VERSION ’04.0A10’ OF ’2020-04-02 13:40:11’
 LOADED
(OUT) % BLS0551 COPYRIGHT (C) 2020 Fujitsu Technology Solutions GmbH. ALL
 RIGHTS RESERVED
(OUT) % CDR9992 : BEGIN C/C++ VERSION 04.0A10
(IN) //MOD-SOURCE-PROP LANG=*C,DEFINE=_OSD_POSIX ———————————————————— (2)
(IN) //MOD-INCL-LIB STD-INCL=($.SYSLIB.POSIX-HEADER,*STANDARD-LIB) —— (3)
(IN) //COMPILE SOURCE='/USERIDXY/source/hello.c',-
 //MODULE-OUTPUT=*SOURCE-LOC ———————————————————————————————————— (4)
(OUT) % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CDR9937 : MODULES GENERATED, CPU TIME USED: 0.3829 SECONDS
(IN) //END —— (5)
(OUT) % CDR9936 END; SUMMARY: NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CCM0998 CPU TIME USED: 0.3829 SECONDS

 46

(IN) /START-POSIX-SHELL ——— (6)
(OUT) POSIX Basisshell 10.0A45 created Jun 14 2016
 POSIX Shell 10.0A45 created Jul 12 2016
 Copyright (C) Fujitsu Technology Solutions 2009
 All Rights reserved
 Last login: Thu Mar 26 10:45:44 2020 on term/002
(IN) cd source —— (7)
(IN) ls hello* —— (8)
(OUT) hello.c hello.o
(IN) cc hello.o ——— (9)
(IN) a.out —— (10)
(OUT) Hello, I am a C program

(1) The compiler run is started.

(2) The MODIFY-SOURCE-PROPERTIES statement activates the C language mode (the C++ mode is set by
default) and sets the define required for the use of POSIX library functions._OSD_POSIX

(3) The library containing the standard headers for POSIX library functions is assigned with the MODIFY-
INCLUDE-LIBRARY statement in addition to the CRTE library $.SYSLNK.CRTE (*STANDARD-LIBRARY).

(4) The COMPILE statement is issued to start the compilation run. The absolute path name of the POSIX
source file to be compiled is specified with the SOURCE option. POSIX file names must always be
enclosed within single quotes. The operand value *SOURCE-LOCATION in the MODULE-OUTPUT option
causes the compiled module to be written to a POSIX object file with the default name and stored hello.o

in the directory of the source program.

(5) The compiler run is terminated with the END statement.

(6) Since POSIX object files can only be processed further in the POSIX subsystem, the POSIX command
START-POSIX-SHELL is used to switch from the BS2000 system environment (SDF) to the POSIX
environment (shell). The call places the user in the home directory of the current BS2000 user ID
(USERIDXY).

(7) The POSIX command is used to change to the directory in which the source program and the cd source

object file generated by the compiler are located.

(8) On entering the POSIX command , the source file and the object file are listed.ls hello.c hello.o

(9) The POSIX command links the object file into an executable unit and places it in an cc hello.o

executable POSIX file with the default name . The command is described in detail in the manual a.out cc

“POSIX Commands of the C/ C++ Compiler” [].1

(10) The program is executed.

 47

3 Compilation

This chapter provides information concerning the following topics:

General aspects of the compiler run

Input sources and output destinations of the compiler

Construction of default names

Default names for output containers

Rules for constructing module names

Structure of compiler messages

Controlling the compiler

Calling the compiler (START-CPLUS-COMPILER)

Description of compiler statements

Overview of statements

Basic principles and general input rules

BIND

CHECK-SYNTAX

COMPILE

Notes on input via SYSDTA

END

MODIFY-BIND-PROPERTIES

Interaction between the MODIFY-BIND-PROPERTIES and BIND statements

MODIFY-CIF-PROPERTIES

MODIFY-DIAGNOSTIC-PROPERTIES

MODIFY-INCLUDE-LIBRARIES

MODIFY-LISTING-PROPERTIES

MODIFY-MODULE-PROPERTIES

MODIFY-OPTIMIZATION-PROPERTIES

The optimization process

MODIFY-RUNTIME-PROPERTIES

MODIFY-SOURCE-PROPERTIES

MODIFY-TEST-PROPERTIES

PREPROCESS

RESET-TO-DEFAULT

SHOW-DEFAULTS

SHOW-PROPERTIES

 48

Controlling the global listing generator

Calling the listing generator (START-CPLUS-LISTING-GENERATOR)

Description of statements

Overview of statements and input rules

END

GENERATE-LISTING

MODIFY-LISTING-PROPERTIES

 49

3.1 General aspects of the compiler run

This section provides information concerning the following topics:

Input sources and output destinations of the compiler

Construction of default names

Default names for output containers

Rules for constructing module names

Structure of compiler messages

 50

3.1.1 Input sources and output destinations of the compiler

Input of source programs and header files

Output of modules and listings

 51

Output of CIF information, diagnostics and preprocessor output

 52

 53

3.1.2 Construction of default names

If no output files are explicitly specified for the compilation results, the compiler generates default names by deriving
them from the respective source program name.

The section below describes the rules by which the compiler constructs “Default names for output containers”
default names for output containers of the following compilation results: preprocessor output, messages,
listings and CIF information.

The rules for constructing module names are described in the section .“Rules for constructing module names”

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=83642712#Defaultnamesforoutputcontainers(C/C++-Compiler4.0A10,#28)-48-206

 54

1.

2.

3.

4.

5.

6.

3.1.3 Default names for output containers

This section summarizes the rules by which the compiler constructs default names for output containers of the
following compilation results:

Result of a preprocessor run (PREPROCESS)

Compiler listings (MODIFY-LISTING-PROPERTIES)

Diagnostic messages (MODIFY-DIAGNOSTIC-PROPERTIES)

CIF information (MODIFY-CIF-PROPERTIES)

Default names are generated, i.e. derived from the source program name, when the following entries are made in
the OUTPUT options listed above:

OUTPUT=*STD-FILE
OUTPUT=*SOURCE-LOCATION
OUTPUT=*LIB-ELEM(LIB=...,ELEM=*STD-ELEMENT)
OUTPUT=<posix-pathname> (name of a POSIX file directory)

Construction of default names for cataloged BS2000 files

The output is placed in cataloged BS2000 files with default names

whenever OUTPUT=*STD-FILE is specified;

if OUTPUT=*SOURCE-LOCATION is specified and the source program is read from a BS2000 file or SYSDTA.

The following source program name components, if present, are not used to construct the default file name
and are therefore dropped:

name components for the catid and userid in BS2000 file and library names.Exception: If the source
program entered with OUTPUT=*SOURCE-LOCATION is catalogued as a BS2000 file, then catid and
userid will be kept.

directory names in POSIX pathnames

the suffixes , , , and if the source program exists as a cataloged BS2000 file or .C .CPP .CXX .CC .I

PLAM library element

the suffixes , , , , , , , , , , and if the source program .c .C .cpp .CPP .cxx .CXX .cc .CC .c++ .C++ .i .I

exists as a POSIX file

If the source program exists as a cataloged BS2000 file or a POSIX file, the remaining portion of the name is
truncated from the right to 33 characters.

For OUTPUT=*STD-FILE only:

If the source program exists as a PLAM library element, the library and element names are combined with a
hyphen and used in the default name as shown below:libraryname-elementnameIf this name (including the
hyphen) exceeds 33 characters, the library name and, if required, also the element name, are both truncated
to 16 characters from the right, starting with the library name.

Special characters not allowed in file names are always converted to “$”. The permitted special characters
are $, @, #, . (period) and - (hyphen).

Lowercase letters (in POSIX source file names) are converted to uppercase.

The name truncated to 33 characters is then extended with the appropriate suffix, i.e.: , , or .I .LST .CIF .

.DIAG

 55

1.

2.

3.

4.

5.

Summary

Source program input from

Contents *SYSDTA BS2000 file PLAM library POSIX file

PREPROCESS CSTDEXP.I file.I lib-elem.I file.I

LISTING CSTDLST.LST file.LST lib-elem.LST file.LST

DIAGNOSTIC CSTDDIAG.DIAG file.DIAG lib-elem.DIAG file.DIAG

CIF CSTDCIF.CIF file.CIF lib-elem.CIF file.CIF

Default names for cataloged BS2000 files, depending on input source and contents

Construction of default names for PLAM library elements

The output is placed in PLAM library elements with default names

if OUTPUT=*LIB-ELEM(ELEMENT=*STD-ELEMENT) is specified;

if OUTPUT=*SOURCE-LOCATION is specified and the source program exists as a PLAM library element.

If the output location is specified as OUTPUT=*LIB-ELEM(LIB=*STD-LIBRARY), the elements are written to the
PLAM library with the default name SYS.PROG.LIB.

The following source program name components, if present, are not used to construct the default element
name and are therefore dropped:

name components for the catid and userid in BS2000 file and library names

directory names in POSIX path names

the suffixes , , , nd if the source program exists as a cataloged BS2000 file or .C .CPP .CXX .CC a .I

PLAM library element

the suffixes , , , , , , , , , , and if the source program .c .C .cpp .CPP .cxx .CXX .cc .CC .c++ .C++ .i .I

exists as a POSIX file

The remaining portion of the source program name is truncated from the right to 59 characters.

Special characters not allowed in element names are always converted to “$”. The permitted special characters
are $, @, #, . (period), - (hyphen), and _ (underscore).

Lowercase letters (in POSIX source file names) are converted to uppercase.

The name truncated to 59 characters is then extended with the appropriate suffix , , or ..I .LST .CIF .DIAG

Summary

Source program input from

Contents *SYSDTA BS2000 file PLAM library POSIX file

PREPROCESS CSTDEXP.I, S file.I, S elem.I, S file.I, S

LISTING CSTDLST.LST, P file.LST, P elem.LST, P file.LST, P

DIAGNOSTIC CSTDDIAG.DIAG, D file.DIAG, D elem.DIAG, D file.DIAG, D

 56

1.

2.

3.

CIF CSTDCIF.CIF, H file.CIF, H elem.CIF, H file.CIF, H

Default names for PLAM library elements, depending on input source and contents

Construction of default names for POSIX files

The output is placed in POSIX files with default names

if OUTPUT=*SOURCE-LOCATION is specified, and the source program exists as a POSIX file;

if OUTPUT=<posix-pathname> is specified, and if <posix-pathname> specifies the name of a POSIX file
directory (without file name).

The following suffixes in source program names, if present, are not used to construct default names and are
therefore dropped: , , , or for BS2000 files) and , , , , , , .C .CPP .CXX .CC .I (.c .C .cpp .CPP .cxx .CXX

, . , , , or (for POSIX files)..cc CC .c++ .C++ .i .I

The name is extended with the appropriate suffix, i.e.: (C compilation), (C++ compilation), , .i .I .lst .cif

or ..diag

Lowercase letters and other special characters are accepted unaltered. No name truncation occurs.

 57

1.

2.

3.

4.

3.1.4 Rules for constructing module names

As far as module names are concerned, a distinction must be made between the element name (i.e. the name of
the “container”) under which the module is stored as a library element and the internal module and CSECT names.

If the name of the module is not explicitly specified in the MODULE-OUTPUT option of the COMPILE statement, the
element name and the internal module/CSECT names are derived from the name of the source program.

If the name of the module is explicitly specified in the MODULE-OUTPUT option of the COMPILE statement, the
element name and the internal module / CSECT names are constructed from that name.

Construction of element names from LLMs in PLAM libraries

Derivation from the source program name

The following parts of the source program name, if present, are not used to construct the element name and
are therefore dropped: <cat-id>, <user-id>, and the suffixes , . , . , . or (for BS2000 files) .C CPP CXX CC .I

and , , , , , , , , , , or (for POSIX files)..c .C .cpp .CPP .cxx .CXX .cc .CC .c++ .C++ .i .I

If the remaining portion of the source program name exceeds 59 characters, it is truncated from the right to
59 characters.

Special characters not permitted for element names are always converted to “$”. The permitted special
characters are $, @, #, . (period), - (hyphen), and _ (underscore). Lowercase letters in POSIX file names are
converted to uppercase.

If the source program is read from SYSDTA, the element name is “CSTDMOD”. This applies even if
SYSTDA was assigned to a cataloged file or a library element with the ASSIGN-SYSDTA command.

Derivation from the explicitly specified name

In this case, the specified name is accepted as the element name without changes, i.e. the suffix , , .C .CPP .

, or , if present, is not removed. Similarly, no truncation of the name occurs, i.e. the name can have a CXX .CC .I

length of up to 64 characters.

Special Note
To enable further processing with DBL, the maximum permissible length for the element names of LLMs is currently
32 characters. This applies to the LLM specified in the START-EXECUTABLE-PROGRAM command (module
containing the function) as well as all LLMs to be dynamically linked.main

LLMs that have element names which exceed 32 characters must therefore be linked with BINDER.

Construction of LLM object file names in the POSIX file system

Derivation from the source program name

The name of the LLM object file is derived from the name of the POSIX source file as follows: only the suffix , .c .

 , , , , , , , , , or , if present, is removed from the name of the C .cpp .CPP .cxx .CXX .cc .CC .c++ .C++ .i .I

POSIX source file, and the suffix is appended to the remaining portion. No truncation of names or conversion .o

of special characters to the dollar sign “$” and of uppercase to lowercase letters occur.

Derivation from the explicitly specified name

The specified name is accepted without changes. Note, however, that LLM object files must be provided with the
suffix to enable further processing with the appropriate link editors in the POSIX subsystem..o

 58

1.

2.

3.

4.

5.

1.

2.

Construction of the internal module and CSECT names of LLMs

Derivation from the source program name

The following parts of the source program name, if present, are not used to construct the module/CSECT
name and are therefore dropped: <cat-id>, <user-id> and the suffixes , , , or (for .C .CPP .CXX .CC .I

BS2000 files), and , , , , , , , , , , or (for POSIX files)..c .C .cpp .CPP .cxx .CXX .cc .CC .c++ .C++ .i .I

If the remaining portion of the source program name exceeds 30 characters, it is truncated from the right to
30 characters.

Special characters that are not permitted for internal LLM names are always converted to “$”. The permitted
special characters are $, @, # , - (hyphen), and _ (underscore). Lowercase letters in POSIX file names are
converted to uppercase.

If the source program is read from SYSDTA, “CSTDMOD” is used as a basis for constructing the name. This
also applies if SYSDTA is assigned to a cataloged file or a library element by means of an ASSIGN-SYSDTA
command.

The core name obtained by applying rules 1 through 4 is then used to construct the final module and CSECT
names by appending a 2-character suffix, i.e. “&@” or “&#”:

Module name <core-name>&@

Code CSECT <core-name>&@

Data CSECT <core-name>&#

Derivation from the explicitly specified name

The complete specified name is used to construct the module/CSECT name, i.e. the suffix , , , .c .C .cpp .

, , , , , , , or , if present, is not removed.CPP .cxx .CXX .cc .CC .c++ .C++ .i .I

The truncation of the name from the right to 30 characters, the conversion of invalid special characters to the
dollar sign “$”, and the appending of suffixes occurs as described for the derivation from the source program
name.

Construction of the names of ii files

An instantiation information file (ii file) is created for each of the source files used by a template, as long as one
does not already exist.
The name of this ii file is derived from the associated object and is formed by adding the suffix .ii.
For example, the compiled version of would have the ii file , unless an object name other than hugo.C hugo.o.ii

 is specified.hugo.o

The ii file is located in that library in which the object file itself is stored.

 59

1.

2.

3.

3.1.5 Structure of compiler messages

The compiler issues the following types of messages:

Information messages that notify the user about the general compilation process (e.g. the start and termination
messages from the compiler and messages such as ’MODULES GENERATED’).

Error messages (of the frontend compiler) that directly refer to the compiled source program (e.g. syntax and
semantic errors).

These consist of

the actual error message line

the invalid source program line (optional)

a flag ^ to indicate the error location (optional)

Error messages not related to the source program (e.g. disk full, error on opening files, etc.).

Information and error messages are output to one or more of the following destinations during compilation:

at the terminal and/or

optionally to files or libraries.

The output destination for these messages can be controlled with the MODIFY-DIAGNOSTIC-PROPERTIES
statement ()."MODIFY-DIAGNOSTIC-PROPERTIES (C/C++-Compiler, #44)"
Error messages that refer to the source program are also documented in the source/error listing (controlled by the
MODIFY-LISTING-PROPERTIES statement; see)."MODIFY-LISTING-PROPERTIES (C/C++-Compiler, #46)"

General format of the compiler messages:

Error message line:

message-number [message-weight]: filename / line-number: message-text

Optional for error messages referring to the source program:

Invalid source program line

^ marker to indicate the error location

The file name and line number are omitted in error messages (with a message weight of FATAL or ERROR) which
do not refer to the source program. In information messages, the message weight is also omitted.

message-number

The 7-digit message number consists of a 3-digit message class, which identifies the compiler
component, and a 4-digit message number.

Message class Components

CFE Frontend of the compiler:
scanner, preprocessor, parser, listing generator, message facility

CDR Compiler driver, II-UPDATE

 60

UMP Intermediate language module ULS, optimizer, inliner

BEM Backend

SIS Compiler I/O interface (PROSOS),
Object format (module) generator (OFG),
Diagnostic information generator for AID (DIG)

BND BINDER (when linking with the BIND statement of the compiler)

CCM C runtime system

[]message weight

Indicates the message weight, i.e. the severity of the error that has occurred:

[NOTE] Inconsequential errors, e.g. "ugly" or superfluous constructs which usually have no
impact on subsequent program behavior.
Notes are not issued automatically unless the options or -R minweight,notes

MINIMAL-MSG-WEIGHT=*NOTE are specified.

[WARNING] Errors for which the compiler will generate a module, but which could lead to situations
resulting in deviant program behavior.

[ERROR],
[*ERROR]

Errors for which no module is generated. The compiler will attempt to continue the
compilation until the number of errors specified with the or MAX-ERROR--R limit,n
NUMBER= option is reached. Errors of the frontend compiler that can either be n
reduced to the severity of a WARNING/NOTE with the or CHANGE--R warning/note

MSG-WEIGHT =*WARNING()/*NOTE() option and warnings that were upgraded to the
severity of an ERROR with the or CHANGE-MSG-WEIGHT=*ERROR() -R error

option are flagged with an asterisk.

[FATAL] Fatal errors leading to abortion of the compilation

[INTERNAL] Compiler errors, also leading to abortion of the compilation

filename

Name of the file or library element with the invalid source program code

line-number

Indicates the source program line in which the error occurred.

message-text

Text of the error message; can be output in English or German.

Invalid source program line with a marker to indicate the error location

 61

-R show_column or SHOW-COLUMN=*YES is the default setting, which means that the original source

program line is shown with the error location marked
(with) in addition to the diagnostic message itself. If or SHOW-COLUMN=*NO is ^ -R no_show_column

specified, the marked source program line is not output.

Example

//MODIFY-SOURCE-PROP LANG=*C(MODE=1990,STRICT=*YES)
//MODIFY-DIAGNOSTIC-PROP CHANGE-MSG-WEIGHT=*ERROR(CFE1064)
//COMPILE SOURCE=TEST.C
% CFE1064 [*ERROR]: TEST.C / 1: declaration does not declare anything
 struct { int a; };
 ^
% CFE1020 [ERROR]: TEST.C / 3: identifer "abc" is undefined
 abc def;
 ^
% CFE2095 [*ERROR]: USER.H / 3: too few arguments in invocation of macro "M"
 int i = M(3);
 ^

The error number CFE1064 was originally a warning, but was upgraded to the ERROR class with the option
CHANGE-MSG-WEIGHT=*ERROR(CFE1064).
The class of errors that are not originally output with an asterisk (e.g. CFE1020 in this case) cannot be changed.
Error number CFE2095 is an example of an error that is generated in strict C89 mode, but can be downgraded to
the message weight of a warning with CHANGE-MSG-WEIGHT=*WARNING(CFE2095). The same error number is
assigned the error class WARNING in extended C89 mode.

The HELP-MSG command can be used to obtain a more detailed explanation of all the error messages:

HELP-MSG MSG-ID=msgid[/],LANGUAGE=D E

The compiler messages can be output in English or German. The default setting depends on system generation.
The following command can be used to change the task-specific default:

MODIFY-MSG-ATTRIBUTES TASK-LANGUAGE = D / E

 62

3.2 Controlling the compiler

As in the case of many other BS2000 programs (BINDER, LMS, etc.), the C/C++ compiler can be called as an
independent program and controlled via a convenient SDF command interface. This provides the user with all the
facilities offered by the product SDF (System Dialog Facility) for the input of program statements, i.e.: various levels
of guided and unguided dialogs, input from procedure or command files, etc.

A detailed explanation of the SDF dialog interface with examples on the various forms of SDF control can be found
in the manual "SDF Dialog Interface, User Guide" [].12

 63

3.2.1 Calling the compiler (START-CPLUS-COMPILER)

/START-CPLUS-COMPILER Abbreviations:

SRCPC, CPLUS-COMPILER, CPC

MONJV= / <filename 1..54>*NONE

,CPU-LIMIT= / <integer 1..32767>*JOB-REST

MONJV = / <filename 1..54>*NONE
The compiler run can be monitored by means of a BS2000 job variable.
<filename> assigns a monitoring job variable in which the compiler indicates runtime errors that may occur.

Two values are entered into a job variable by the operating system:

a status indicator with a length of 3 bytes, and
a return code with a length of 4 bytes.

The status indicator specifies whether the last statement was executed correctly. In case of a fatal error it is set to
"$A ", in other cases it is set to "$T ".

The compiler issues messages with different weight. The return code specifies the most severe message weigth
issued.

message weight return code

no error 0000

[NOTE] 1001

[WARNING] 1002

[ERROR] 2003

[FATAL] 3005

The two parts are independent. Here are two examples with unusal results:

/START-CPLUS-COMPILER
//COMPALE MUELL
//END

This example writes "$A 0000" into the job variable. The syntax error in the SDF statement results in "$A ". Since
the compiler did not issue any message, the return code is "0000".

/START-CPLUS-COMPILER
//COMPILE FATAL.C
//STEP
//COMPILE GOOD.C
//END

This example writes "$T 3005" into the job variable. The success in the second compilation results in "$T ". The
fatal in the first compilation results in "3005".

 64

CPU-LIMIT = / <integer 1..32767>*JOB-REST
This option can be used to define the maximum CPU time for the compiler run. The value entered here corresponds
to the CPU-LIMIT operand of the START-EXECUTABLE-PROGRAM command.

 65

3.2.2 Description of compiler statements

This section provides information concerning the following topics:

Overview of statements

Basic principles and general input rules

BIND

CHECK-SYNTAX

COMPILE

Notes on input via SYSDTA

END

MODIFY-BIND-PROPERTIES

Interaction between the MODIFY-BIND-PROPERTIES and BIND statements

MODIFY-CIF-PROPERTIES

MODIFY-DIAGNOSTIC-PROPERTIES

MODIFY-INCLUDE-LIBRARIES

MODIFY-LISTING-PROPERTIES

MODIFY-MODULE-PROPERTIES

MODIFY-OPTIMIZATION-PROPERTIES

The optimization process

MODIFY-RUNTIME-PROPERTIES

MODIFY-SOURCE-PROPERTIES

MODIFY-TEST-PROPERTIES

PREPROCESS

RESET-TO-DEFAULT

SHOW-DEFAULTS

SHOW-PROPERTIES

 66

3.2.2.1 Overview of statements

For more information on the principle of “executing” and “modifying” compiler statements, see the notes in the
.section “Basic principles and general input rules”

Executing statements
BIND

Start the linkage and/or prelinker run

CHECK-SYNTAX

Start syntax analysis

COMPILE

Start the compilation run (including module generation)

PREPROCESS

Start the preprocessor run

Modifying and defining statements
The following list shows the various MODIFY statements together with the executing statement(s) for which they
are evaluated (in parentheses).

MODIFY-BIND-PROPERTIES

Options to control the linkage and/or prelinker run (BIND)

MODIFY-CIF-PROPERTIES

Options to output CIF information (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-DIAGNOSTIC-PROPERTIES

Options to control message output (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-INCLUDE-LIBRARIES

Options to specify header files (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-LISTING-PROPERTIES

Options to output listings (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-MODULE-PROPERTIES

Options to control object and module attributes (COMPILE)

MODIFY-OPTIMIZATION-PROPERTIES

Optimization options (COMPILE)

MODIFY-RUNTIME-PROPERTIES

Runtime options (COMPILE)

MODIFY-SOURCE-PROPERTIES

Frontend options (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-TEST-PROPERTIES

Debugging options (COMPILE)

 67

Informative statements
SHOW-DEFAULTS

Show default settings of the compiler

SHOW-PROPERTIES

Show current option values of MODIFY statements

RESET-TO-DEFAULT
Reset option values of MODIFY statements to the default settings of the compiler

END
Terminate the compiler run

 68

Standard SDF statements

Besides the C/C++-specific statements listed above, the following standard SDF statements may also be used
during a compiler run. A detailed description of these SDF statements can be found in the manual "SDF Dialog
Interface, User Guide" [].12

EXECUTE-SYSTEM-CMD

Execute a system command during the compiler run

HELP-MSG-INFORMATION

Write text of a system or compiler message to SYSOUT

HOLD-PROGRAM

Stop the compiler run, e.g. to enter system commands. Control is returned to the statement mode of the
compiler with the command RESUME-PROGRAM

MODIFY-SDF-OPTIONS

Enable/disable user syntax file and change SDF settings

REMARK

Enter comments in a sequence of statements

RESET-INPUT-DEFAULTS

Reset task-specific default values

RESTORE-SDF-INPUT

Show previously entered statements of commands

SHOW-INPUT-DEFAULTS

Show task-specific default values

SHOW-INPUT-HISTORY

Show contents of input buffer

SHOW-SDF-OPTIONS

Show information on all active syntax files and SDF options for the current task

SHOW-STMT

Show SDF syntax for a statement

STEP

Define restart point within a command/procedure file

WRITE-TEXT

Display text

 69

3.2.2.2 Basic principles and general input rules

Executing and modifying compiler statements

The compiler run is started with the command START-CPLUS-COMPILER and is terminated with END
statement. During each compiler run, a number of different compilation and/or linkage runs may be started with
appropriate "executing" statements (see). These compilation and linkage runs can be "Overview of statements"
controlled by means of MODIFY statements, which must always precede the executing statements to be used.
These MODIFY statements remain in effect even after the executing statements have been completed (see the

 for details).example

The operand value *UNCHANGED and default settings of the compiler

When using the compiler in SDF interactive mode with guidance, the operand value *UNCHANGED is frequently
displayed for many operands in the SDF statement menus of the compiler.

The value *UNCHANGED is an SDF default value that is always used in the current compiler statement (and
displayed on the screen) whenever no explicit specification for an operand is made.
*UNCHANGED simply means that the operand value that was defined with an earlier compiler statement still
applies to the operand involved. If no such value was specified in the entire compiler run, e.g. immediately after
starting the compiler, *UNCHANGED refers to the default value of the compiler, and this default value remains in
effect until some other operand value is specified with a compiler statement. In this manual, all default values of
the compiler are in the individual statement description. Some operands have a dynamic default, underlined
depending on the language mode. In this case no operand value is underlined.
The currently applicable operand values for compiler statements can be listed with the SHOW-PROPERTIES
statement. In this case, the actual operand value is displayed instead of *UNCHANGED.

Aliases

Most of the compiler statements have aliases, which may be used instead of the names displayed in the guided
dialog. These aliases are listed for each statement at the start of the corresponding statement description.

Spin-off mechanism

Executing statements that do not succeed trigger the spin-off mechanism. All statements up to the next STEP
are ignored in such cases.

Input/Output library elements

The version specification VERSION=@ is rejected, since this is not a valid value for the LMS version.

Example

/START-CPLUS-COMPILER
//MODIFY-SOURCE-PROPERTIES DEFINE=_OSD_POSIX —————————————————————————— (1)
//MODIFY-LISTING-PROPERTIES SOURCE=*YES ——————————————————————————————— (2)
//MODIFY-INCLUDE-LIBRARIES STD-INCLUDE-LIBRARY=
 (*STANDARD-LIBRARY, $.SYSLIB.POSIX-HEADER)——————————————————————————— (3)
//COMPILE SOURCE=HELLO1.CC —— (4)
//MODIFY-SOURCE-PROPERTIES LANG=*C ———————————————————————————————————— (5)
//COMPILE SOURCE=HELLO2.C ——— (6)
//END
/

The MODIFY-SOURCE-PROPERTIES statement (1) only sets a define. So the default settings of the compiler, e.g.
the latest C++ language mode , apply to all other LANGUAGE=*CPLUSPLUS(MODE=*LATEST, STRICT=*NO)
operands.

 70

On the first compiliation (4) the preceding MODIFY statements are evaluated, and the following steps are performed
as a result:

The define _OSD_POSIX is set (1).

The header libraries $.SYSLIB.CRTE, $.SYSLIB.CRTE.CXX01 and $.SYSLIB.POSIX-HEADER are searched (3).

The source program HELLO1.CC is compiled (4) in the extended C++ 2017 language mode (1) and a source
/error listing is output to SYSLST (2).

Before the second compilation (6), the C language mode is set in a new MODIFY-SOURCE-PROPERTIES
statement (5). The operands MODE and STRICT are not specified, so they are per default *C(MODE=*LATEST,
STRICT=*NO). Apart from this change, all other entries in the earlier MODIFY statements remain in effect when
compiling the C source program HELLO2.C. The following steps are performed:

The define _OSD_POSIX is set (1).

The header libraries $.SYSLIB.CRTE and $.SYSLIB.POSIX-HEADER are searched (3).

The source program HELLO2.C is compiled (6) in the extended C11 language mode (5) and a source/error listing
is output to SYSLST (2).

Please note that *STANDARD-LIBRARY in (3) is resolved differently in the two compiles. This operand value
depends on the language mode. The mapping of that value to a list of libraries is done at the compile statement
(4,6), not the statement MODIFY-INCLUDE-LIBRARIES (3).

 71

3.2.2.3 BIND

Alias: LINK

This statement starts a linkage run and, in the case of C++ V3 and C++ 2017 objects, also activates the prelinker
for automatic template instantiation. The input sources and other conditions for the linkage and prelinker runs are
defined in the preceding MODIFY-BIND-PROPERTIES statements.

BIND

ACTION= list-poss: / *PRELINK *MODULE-GENERATION

,OUTPUT= / *LIBRARY-ELEMENT(...)*NONE

*LIBRARY-ELEMENT(...)

| LIBRARY= <filename 1..54> / *LINK(...)

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| | VERSION= / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT

,OUTPUT-FORMAT= *UNCHANGED / (...)*LLM

*LLM(...)

| EXTERNAL-NAMES= *UNCHANGED / / *SHORT / *EXTENDED*STD

,ADD-OPTION= *UNCHANGED / / <c-string 1..1800 with-low>*NONE

ACTION = list-poss: / *PRELINK *MODULE-GENERATION
The *PRELINK specification is only relevant in the modes C++ V3 and C++ 2017 and affects the automatic template
instantiation by the prelinker.

If the ACTION option is not specified, the following default applies:

ACTION = (*PRELINK,*MODULE-GENERATION)

This causes both a prelinker and a linkage run to be performed in the modes C++ V3 and C++ 2017. The result
comprises individual modules in which all templates are instantiated and a linked module. Note that the *PRELINK
specification is ignored in the C modes and in the Cfront C++ mode, so only a linkage run is performed in these
modes.

If ACTION=*PRELINK is specified, only a prelinker run is performed. The result consists of individual modules in
which all templates are instantiated. Specifications in the OUTPUT and OUTPUT-FORMAT options, if any, are
ignored.

If ACTION=*MODULE-GENERATION is specified, only a linkage run is performed.

 72

OUTPUT = * / *LIBRARY-ELEMENT(...)NONE
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=) under which the linked
module is to be stored. These values are passed to BINDER (as a MODULE-CONTAINER operand) in a SAVE-
LLM statement. If no further specifications are made with the ADD-OPTION option, the remaining operands of the
SAVE-LLM statement are set to the corresponding defaults for BINDER.
The option is the default. But because this does not create a link object, this option can only sensibly be *NONE

used with (see above, ACTION =).

LIBRARY =<filename 1..54>
The module is written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> can be used (instead of a cataloged library name) to specify a valid link name for the library.
The link name must already have been assigned to the PLAM library with the ADD-FILE-LINK command
before the compiler is called.

ELEMENT = <composed-name 1..64 with-under>(...)
The module is written to the element with the assigned name under the PLAM library specified with LIBRARY=.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is used by the compiler.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the highest existing version
number by 1, assuming that the highest existing version ID ends with a digit that can be incremented. If
the version ID cannot be incremented, the compiler run is aborted with an error message.
See the statement for an example.COMPILE

VERSION = <composed-name 1..24 with-under>
The element is assigned the specified version.

OUTPUT-FORMAT = *LLM(EXTERNAL-NAMES = *UNCHANGED / / *SHORT /*EXTENDED)*STD

This option controls how symbol names in EEN (Extended External Name) format are handled by BINDER. The
entries made here are passed on to BINDER as the FOR-BS2000-VERSION operand of the SAVE-LLM statement.

EENs, i.e. external C++ symbols with untruncated names, are generally contained in modules that were generated
with the compiler in the mode C++ V3 or C++ 2017.
Untruncated external C symbols are generated only if the following option is specified at compilation: MODIFY-
MODULE-PROPERTIES C-NAMES=*UNLIMITED (see).MODIFY-MODULE-PROPERTIES
In this case, even longer external C symbols are not truncated by the compiler to 32 characters. Modules with EENs
are stored by the compiler in LLM Format 4. The modules of the C++ libraries and of the CRTE runtime systems
used in the modes C++ V3 or C++ 2017 are also provided in LLM Format 4.

If the modules generated by the compiler do not include any EENs, i.e. are in LLM Format 1, this option has no
effect, since the BINDER generates an input format corresponding to LLM Format 1.

 73

EXTERNAL-NAMES = *UNCHANGED
The specification in the last BIND statement applies.

EXTERNAL-NAMES = *STD
By default, BINDER generates LLM Format 4. The EENs remain in the result module without being truncated.
LLMs in Format 4 can be partially linked, i.e. first linked with unresolved external references to EENs and then
processed further as desired by means of BINDER or DBL.

EXTERNAL-NAMES = *SHORT
This entry is needed if BINDER is to generate LLM Format 1.

EXTERNAL-NAMES = *EXTENDED
This entry is supported fo compatibility reasons only.

Summary of generated LLM formats

Input format SDF option EXTERNAL-NAMES = Output format

LLM 1 No entry / *STD / *SHORT / *EXTENDED LLM 1

LLM 4 (EEN) No entry / *STD / *EXTENDED LLM 4

*SHORT LLM 1

ADD-OPTION = *UNCHANGED / / <c-string 1..1800 with-low>*NONE

<c-string> can be used to specify further operands of the BINDER statement SAVE-LLM in addition to the MODULE-
CONTAINER operand (see OUTPUT option) and the FOR-BS2000-VERSION operand (see OUTPUT-FORMAT
option). If more than one operand is specified, they must be separated by commas as follows:

...’operand1,operand2, ’

The operands are directly passed through to BINDER without SDF analysis.
The following operands of the BINDER statement SAVE-LLM are obtained from the MODIFY-BIND-PROPERTIES
statement and must therefore not be specified with ADD-OPTION: TEST-SUPPORT (to save LSD information) and
MAP (to generate a map listing).

Automatic template instantiation

The operands specified with ADD-OPTION are currently not considered during the automatic template
instantiation by the prelinker, but only during subsequent linkage with BINDER. The operands should not affect
the type, number or order of the modules to be linked, since different preconditions during the prelinker and
linkage runs could result in duplicates or unresolved external references.

Example

//BIND OUTPUT=*LIB(LIB=PLAM.BSP,ELEM=HELLO),ADD-OPT=’OVERWRITE=*NO,

NAME-COLLISION=*WARNING’

 74

3.2.2.4 CHECK-SYNTAX

Alias: DO-SYNTAX-CHECK

The compilation run is terminated after checking the syntax of one or more source programs. No object code is
generated.

CHECK-SYNTAX

SOURCE= *SYSDTA / list-poss: <filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= <filename 1..54> / *LINK(...)

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| | VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

SOURCE =
This option specifies one or more source programs for which a syntax check is to beperformed.
A source program can be read from the system file SYSDTA, a cataloged BS2000 file, a PLAM library or a POSIX
file.
Note that if the source program is entered from SYSDTA, only one source program can be read per CHECK-
SYNTAX statement.

SOURCE = *SYSDTA
Input is accepted from the system file SYSDTA. SYSDTA is assigned to the terminal in interactive mode but can be
reassigned to a cataloged file or a PLAM library element with the ASSIGN-SYSDTA command (see also "Notes on

).input via SYSDTA (C/C++-Compiler, #39)"

SOURCE = <filename 1..54>
<filename> is used to specify the name of a cataloged BS2000 file.

SOURCE = <posix-pathname>
Only a file name is permitted as <posix-pathname>. See for a description of "Compiler I/O in the POSIX file system"
the term <posix-pathname>.

SOURCE = *LIBRARY-ELEMENT(...)

This option is used to specify a PLAM library and an element in it.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

 75

<filename> is the link name for a PLAM library. The link name must be assigned to the library name by
means of the ADD-FILE-LINK command before the compiler is called.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of an element from the PLAM library specified earlier.
The element must be of type S.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element with the highest
existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

Note
 for template instantiation does take place (unlike to the COMPILE statement).Implicit inclusion not

 76

3.2.2.5 COMPILE

This statement compiles one or more source programs and generates a module for each compilation unit.

COMPILE

SOURCE= *SYSDTA / list-poss: <filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= <filename 1..54> / *LINK(...)

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| | VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

,MODULE-OUTPUT= *SOURCE-LOCATION / <posix-pathname> / (...)*LIBRARY-ELEMENT

*LIBRARY-ELEMENT(...)

| LIBRARY= / *SOURCE-LIBRARY / <filename 1..54> / *LINK(...)*STD-LIBRARY

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= (...) / <composed-name 1..64 with-under>(...)*STD-ELEMENT

| *STD-ELEMENT(...)

| | VERSION = / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT

| <composed-name 1..64 with-under>(...)

| | VERSION= / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT

SOURCE =
This option specifies one or more source programs to be compiled.
A source program can be read from the system file SYSDTA, a cataloged BS2000 file, a PLAM library or a POSIX
file.
Note that if the source program is entered from SYSDTA, only one source program can be read per COMPILE
statement.

SOURCE = *SYSDTA

Input from the system file SYSDTA is only possible in the C modes and in the Cfront C++ mode of the compiler. In
the modes C++ V3 and C++ 2017 the value *SYSDTA is rejected with a corresponding error message. SYSDTA is
assigned to the terminal in interactive mode but can be reassigned to a cataloged file or a PLAM library element
with the ASSIGN-SYSDTA command (see also)."Notes on input via SYSDTA"

 77

SOURCE = <filename 1..54>
<filename> is the name of a cataloged BS2000 file.

SOURCE = <posix-pathname>
Only a file name is permitted as <posix-pathname>. See for a description of "Compiler I/O in the POSIX file system"
the term <posix-pathname>.

SOURCE = *LIBRARY-ELEMENT(...)
This option is used to specify a PLAM library and an element in it.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> is used to specify a link name for a PLAM library. The link name must already have been
assigned to the library name with the ADD-FILE-LINK command before the compiler is called.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of an element from the PLAM library specified earlier.
The element must be of type S.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element with the highest
existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

MODULE-OUTPUT =
This option allows the user to control the library and/or name under which the generated modules are stored.

MODULE-OUTPUT = *SOURCE-LOCATION
The module is written to the same location as the source program. If the source program is a PLAM library element,
the module is placed in the library of the source program. If the source program is a POSIX file, the module is
written as an object file (“.o” file) into the directory of the source program.

The element or object file name is derived from the name of the source program (see section “Rules for
).constructing module names”

The module cannot be written to a file. In Posix, it must always be possible to read the library or write-only

object file.
The *SOURCE-LOCATION specification is invalid if the source program is read from acataloged BS2000 file or via
SYSDTA (see)."Notes on input via SYSDTA"

MODULE-OUTPUT = <posix-pathname>
The module is written as an LLM object file in the POSIX file system.

Both a file name and a directory are permitted as <posix-pathname>. See "Compiler I/O in the POSIX file system"
for a description of the term <posix-pathname>.

 78

When a file name is specified, the object file is stored under this name. Specification of a file name is illegel when
compiling multiple source programs with one COMPILE statement.

When a directory name is specified, an object file for each compiled source program is written under the default dir
name to the directory (see also section).sourcefile.o dir “Rules for constructing module names”

The directories specified with <posix-pathname> must already exist.
When constructing file names, it must be noted that object files can only be meaningfully processed further (i.e.
linked) in the POSIX subsystem if the name contains the suffix or a suffix defined with the option of the /.o -Y F cc

/ / commands (see also the manual “POSIX Commands of the C/C++ Compiler” []).c11 c89 CC 1

MODULE-OUTPUT = (...)*LIBRARY-ELEMENT

This option specifies the PLAM library (LIBRARY=) and the element name(ELEMENT=) under which the
module is to be stored.

LIBRARY = *STD-LIBRARY
Modules are stored in the library SYS.PROG.LIB by default.

LIBRARY = *SOURCE-LIBRARY
The module is written to the PLAM library which contains the source program.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a cataloged BS2000 file, a
POSIX file or via SYSDTA.

LIBRARY =<filename 1..54>
The module is written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> can be used (instead of a cataloged library name) to specify a valid link name for the library.
The link name must already have been assigned to the library name with the ADD-FILE-LINK command
before the compiler is called.

ELEMENT = (...)*STD-ELEMENT

The element name is derived from the name of the source program (see section “Rules for constructing module
).names”

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is used by the compiler.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the highest existing version
number by 1, assuming that the highest existing version ID ends with a digit that can be incremented. If the
version ID cannot be incremented, the compiler run is aborted with an error message.

Warning: You may not specify in the modes C++ V3 and C++ 2017.*INCREMENT

Example

Highest existing version Version generated by *INCREMENT

 79

ABC1
ABC9
ABC09
003
None

ABC2
Error
ABC10
004
001

VERSION = <composed-name 1..24 with-under>

The element is assigned the specified version.

ELEMENT = <composed-name 1..64 with-under>(...)
The module is written under the assigned name to the PLAM library specified with LIBRARY= . This specification is
invalid when compiling multiple source programs with one COMPILE statement.

To enable further processing with DBL, element names of LLMs must not exceed a maximum of 32 characters (see
section).“Rules for constructing module names”

VERSION = / *INCREMENT /*UPPER-LIMIT
<composed-name 1..24 with-under>
The version can be specified as described above for
ELEMENT=*STD-ELEMENT(...).

Warning: You may not specify in the modes C++ V3 and C++ 2017.*INCREMENT

 80

1.

2.

3.2.2.6 Notes on input via SYSDTA

For compatibility reasons, input of a source program via the system file SYSDTA can be enabled in the C language
modes and in the Cfront C++ language mode of the compiler. The following option must be specified for this
purpose:

SOURCE=*SYSDTA

Input via SYSDTA is not possible in the modes C++ V3 and C++ 2017.

In interactive mode, SYSDTA is assigned to the terminal by default. Although source programs could basically be
entered from the terminal, it would not be very practical, since the source would not be available later.

This means that if *SYSDTA is specified with the SOURCE option, SYSDTA must be assigned to a cataloged file or
a PLAM library element. The appropriate command for this purpose is as follows:

/ASSIGN-SYSDTA TO-FILE = {dateiname | *LIB-ELEM(LIB=bibliothek,ELEM=element)}The

assignment can be made by the following methods:

Assigning SYSDTA before calling the compiler

Example

/ASSIGN-SYSDTA TO-FILE=source
/START-CPLUS-COMPILER

The assigned source must include all required MODIFY statements and the COMPILE statement before the
actual source code:

//MODIFY-SOURCE-PROP LANG=*C
//MODIFY-...
//COMPILE SOURCE=*SYSDTA,...
#include ...
main() {
...
}

Assigning SYSDTA after calling the compiler

Example

/START-CPLUS-COMPILER

//MODIFY-SOURCE-PROP LANG=*C

//MODIFY-...

//EXECUTE-SYSTEM-CMD (ASSIGN-SYSDTA TO-FILE=source)

The required MODIFY statements are specified before reassigning SYSDTA and are hence not needed in the
assigned source. Following the EXECUTE statement, no further SDF statements may be specified. The
assigned source must include at least the COMPILE statement before the actual source code:

//COMPILE SOURCE=*SYSDTA,...
#include ...
main() {
...
}

 81

When the end of the source file is reached, the compiler run terminates. SYSDTA cannot be reassigned again
within a compiler run.

Note that the input source continues to be SYSDTA even though the source program has been assigned with the
ASSIGN-SYSDTA command. Consequently, the source program name “CSTD” is used as the basis for generating
default names (see also the output parameter *SOURCE-LOCATION or ELEMENT=*STD-ELEMENT).
Furthermore, when a library element is assigned with the ASSIGN-SYSDTA command instead of the SOURCE
option, the *SOURCE-LIBRARY specification has no effect.

 82

3.2.2.7 END

This statement ends the compiler run.

END

 83

3.2.2.8 MODIFY-BIND-PROPERTIES

Aliases: SET-BIND-PROPERTIES
MODIFY-LINK-PROPERTIES
SET-LINK-PROPERTIES

This statement specifies the input sources and other conditions for the prelinker and linkage run that is started
thereafter with a BIND statement.

MODIFY-BIND-PROPERTIES

START-LLM-CREATION= *YES / *NO

,INCLUDE= *UNCHANGED / * / list-poss: *LIBRARY-ELEMENT(...)NONE

*LIBRARY-ELEMENT(...)

| LIBRARY= <filename 1..54> / *LINK(...)

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= *ALL(...) / <composed-name 1..64 with-under>(...)

| *ALL(...)

| | VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

| <composed-name 1..64 with-under>(...)

| | VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

| ,ADD-OPTION= *UNCHANGED / / <c-string 1..1800 with-low>*NONE

,RESOLVE= *UNCHANGED / [*AUTOLINK](...) / *NONE

*AUTOLINK(...)

| LIBRARY= list-poss(40) : <filename 1..54> / *LINK(...)

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,INSTANTIATE= / *YES / *IGNORE*NO

| ,ADD-OPTION= *UNCHANGED / / <c-string 1..1800 with-low>*NONE

,ADD-PRELINK-FILES= *UNCHANGED / * / list-poss: *LIBRARY-ELEMENT(...) / *LIBRARY(...)NONE

*LIBRARY-ELEMENT(...)

| LIBRARY= <filename 1..54> / *LINK(...)

| *LINK(...)

 84

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= *ALL(...) / <composed-name 1..64 with-under>(...)

| *ALL(...)

| | VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

| <composed-name 1..64 with-under>(...)

| | VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

*LIBRARY(...)

| LIBRARY-NAME= <filename 1..54> / *LINK(...)

| *LINK(...)

| | LINK-NAME= <filename 1..8>

,MAX-INSTANTIATE-ITER= / *UNCHANGED / <integer 0..100>30

,TEMPLATE-DEF-LIST= *UNCHANGED / *YES / *NO

,ADD-STATEMENT= *UNCHANGED / / list-poss: <c-string 1..1800 with-low>*NONE

,RUNTIME-LANGUAGE= *UNCHANGED / *C / (...)*CPLUSPLUS

*CPLUSPLUS(...)

| MODE= *UNCHANGED / *LATEST / *2017 / *V2-COMPATIBLE / *V3-COMPATIBLE

,STDLIB= *UNCHANGED / / *DYNAMIC-COMPLETE / *STATIC / *NONE*DYNAMIC

, = *UNCHANGED / *YES / TOOLSLIB *NO

,TEST-SUPPORT= *UNCHANGED / *YES / *NO

,LISTING= *UNCHANGED / / *SYSLST / <filename 1..54>*NONE

START-LLM-CREATION = *YES / *NO
The option START-LLM-CREATION=*YES is analogous to the BINDER statement START-LLM-CREATION, which
begins a new link process and creates a new LLM in the work area. *YES is the default setting of the compiler and
is automatically used if the MODIFY-BIND-PROPERTIES statement involved is the first such statement issued
since calling the compiler.

Starting with the second MODIFY-BIND-PROPERTIES statement, START-LLM-CREATION is automatically set to
the SDF default value *NO. This value remains in effect for all subsequent MODIFY-BIND-PROPERTIES
statements (and even across multiple BIND statements) until it is explicitly changed to *YES.
As long as this value is set to *NO, the specifications made for INCLUDE and RESOLVE libraries remain in effect
for all subsequent linkage runs.
For more information on the interaction between the MODIFY-BIND-PROPERTIES and BIND statements, see also
section .“Interaction between the MODIFY-BIND-PROPERTIES and BIND statements”

 85

INCLUDE =
This option, which is analogous to the MODULE-CONTAINER operand of the BINDER statement INCLUDE-
MODULES, specifies the modules to be linked.

Automatic template instantiation

The modules specified with the INCLUDE option are always instantiated by the prelinker. In cases where the
same library is also specified in the RESOLVE option, it is important to ensure that the template instantiation is
not disabled there (see RESOLVE option, INSTANTIATE = *NO / *IGNORE,)."MODIFY-BIND-PROPERTIES"

INCLUDE = *UNCHANGED
The values specified in the MODIFY-BIND-PROPERTIES statements since the last START-LLM-CREATION=*YES
apply.

INCLUDE = *NONE
The operand *NONE only deletes the corresponding INCLUDE chain, but does not trigger the complete action like
for START-LLM-CREATION=YES. NONE is the default value of the compiler, i.e. the value after starting the
compiler of after a RESET-TO-DEFAULT.

INCLUDE = list-poss: *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=) under which the module to
be linked is stored.
Multiple *LIBRARY-ELEMENT entries may be specified here in a list. These entries areconverted internally into
multiple INCLUDE-MODULES statements of the BINDER in the same order as the *LIBRARY-ELEMENT entries in
the list.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> is used to specify a link name for a PLAM library. The link name must already have been
assigned to the library name with the ADD-FILE-LINK command before the compiler is called.

ELEMENT = *ALL(...)
All modules from the PLAM library specified with LIBRARY= are linked.

VERSION = *HIGHEST-EXISTING

If the element specification contains no version ID, the compiler uses the element with the highest
existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of a module from the PLAM library specified with
LIBRARY=.

 86

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element with the highest
existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

ADD-OPTION = *UNCHANGED / / <c-string 1..1800 with-low>*NONE
<c-string> can be used to specify further operands of the BINDER statement INCLUDE-MODULES in addition
to the MODULE-CONTAINER operand. If more than one operand is specified, they must be separated by
commas as follows:

 ... ’ operand1 , operand2 , ’

The operands are directly passed through to BINDER without SDF analysis. See the BIND statement for an
input example ()."BIND (C/C++-Compiler, #36)"

Automatic template instantiation

The operands specified with ADD-OPTION are currently not considered during the automatic template
instantiation by the prelinker, but only during subsequent linkage with BINDER. The operands should not
affect the type, number or order of the modules to be linked, since different preconditions during the
prelinker and linkage runs could result in duplicates or unresolved external references.

RESOLVE =
This option, which is analogous to the BINDER statement RESOLVE-BY-AUTOLINK, specifies the libraries from
which unresolved external references are to be satisfied by BINDER (when using the autolink mechanism).

The C/C++ runtime libraries of the CRTE must not be specified with the RESOLVE option. These libraries are
implicitly linked in the correct order and with the correct versions in accordance with the entries in the RUNTIME-
LANGUAGE-MODE, STDLIB, TOOLSLIB and RUNTIME-ENVIRONMENT options.

Automatic template instantiation

In contrast to the INCLUDE option, the template instantiation can be controlled with the RESOLVE option. By
default, modules within RESOLVE libraries are not instantiated by the prelinker. See also the INSTANTIATE
specification.

RESOLVE = *UNCHANGED
The values specified in the MODIFY-BIND-PROPERTIES statements since the last START-LLM-CREATION=*YES
apply.

RESOLVE = [*AUTOLINK](...)

LIBRARY = list-poss(40): <filename 1..54> / *LINK(LINK-NAME = <filename 1..8>)

This option can be used to specify the cataloged file name or link name of a PLAM library to be searched when
using the autolink mechanism. If multiple libraries are specified in a list, this is equivalent to a RESOLVE-BY-
AUTOLINK statement with a list of RESOLVE libraries. The list may contain a maximum of 40 libraries (binder
restriction).

 87

INSTANTIATE = / *YES / *IGNORE*NO
This option is only relevant for automatic template instantiation by the prelinker. It controls whether the libraries
specified with the RESOLVE option are to be instantiated (*YES), not instantiated (*NO by default), or
completely ignored (*IGNORE) by the prelinker. Whereas libraries for which *NO or *YES is specified are
taken into account at instantiation, i.e., are searched for existing definitions, libraries for which *IGNORE is set
are not even looked at by the prelinker and are only taken into account in the subsequent linkage process.

ADD-OPTION = *UNCHANGED / / <c-string 1..1800 with-low>*NONE
<c-string> can be used to specify further operands of the BINDER statement RESOLVE-BY-AUTOLINK in
addition to the LIBRARY operand. If more than one operand is specified, they must be separated by commas
as follows:

 ... ’ operand1 , operand2 , ’

The operands are directly passed through to BINDER without SDF analysis. See the BIND statement for an
input example ()."BIND"

Automatic template instantiation

The operands specified with ADD-OPTION are currently not considered during the automatic template
instantiation by the prelinker, but only during subsequent linkage with BINDER. The operands should not
affect the type, number or order of the modules to be linked, since different preconditions during the
prelinker and linkage runs could result in duplicates or unresolved external references.

RESOLVE = *NONE
The operand *NONE only deletes the corresponding RESOLVE chain, but does not trigger the complete action like
for START-LLM-CREATION=YES. NONE is the default value of the compiler, i.e. the value after starting the
compiler of after a RESET-TO-DEFAULT.

ADD-PRELINK-FILES =
This option is only relevant for automatic template instantiation by the prelinker. This option can be used to specify
entire PLAM libraries or individual library modules, which are taken into account by the prelinker when determining
the instances to be generated as follows:

If the specified library contains the definition of a template entity (function or static data element), no instance
that is a duplicate of that entity is generated.

No instantiations are performed in the specified library itself. In other words, if the library requires instances for
template entities (external references), these are not generated.

If the BIND statement is used to start both a prelinker and a linkage run, the libraries or modules specified with ADD-
PRELINK-FILES are not considered for linkage.

Problem

If the same library is specified in both the RESOLVE and the INCLUDE option, the following must be
observed:As soon as INSTANTIATE=*NO (the default setting) or *IGNORE is specified for a library
in a RESOLVE option, the prelinker will not perform any template instantiations for all elements of
that library, even if the elements have been explicitly been linked with the INCLUDE option.

i

 88

The modules in the libraries and contain references to the same template instances. If the PLAM.X PLAM.Y

modules of these two libraries are both preinstantiated in the BIND statement with the ACTION=*PRELINK option,
this will result in duplicates.

In such cases, the prelinker must be given a hint that symbols are defined elsewhere and that no instances should
hence be generated. This can be done by using the ADD-PRELINK-FILES option.

Solution

To begin with, the modules of the library are preinstantiated:PLAM.X

//MODIFY-BIND-PROPERTIES INCLUDE=*LIB-ELEM(LIB=PLAM.X,ELEM=*ALL)

//BIND ACTION=*PRELINK

This is followed by the preinstantiation of the modules in the library , but the option ADD-PRELINK-FILES is PLAM.Y

used here to inform the prelinker that the library needs to be considered and that no duplicates for PLAM.X PLAM.X

should be generated.

//MODIFY-BIND-PROPERTIES INCLUDE=*LIB-ELEM(LIB=PLAM.Y,ELEM=*ALL),
//ADD-PRELINK-FILES=*LIBRARY(LIB=PLAM.X)
//BIND ACTION=*PRELINK

ADD-PRELINK-FILES = *UNCHANGED
The values specified in the MODIFY-BIND-PROPERTIES statements since the last START-LLM-CREATION=*YES
apply.

ADD-PRELINK-FILES = *NONE
The operand *NONE only deletes the corresponding ADD-PRELINK-FILES chain, but does not trigger the complete
action like for START-LLM-CREATION=YES. NONE is the default value of the compiler, i.e. the value after starting
the compiler of after a RESET-TO-DEFAULT.

ADD-PRELINK-FILES = list-poss: *LIBRARY-ELEMENT(...)
Like the INCLUDE option (or the INCLUDE-MODULES statement of BINDER), this option specifies library elements
to be considered by the prelinker at preinstantiation.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> is used to specify a link name for a PLAM library. The link name must already have been
assigned to the library name with the ADD-FILE-LINK command before the compiler is called.

ELEMENT = *ALL(...)
All modules from the PLAM library specified with LIBRARY= are considered at preinstantiation.

VERSION = *HIGHEST-EXISTING
If the element entry does not contain a version ID, the highest possible version is used by the compiler.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

 89

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of a module from the PLAM library specified with
LIBRARY=.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element with the highest
existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

ADD-PRELINK-FILES = list-poss: *LIBRARY(...)

The specified libraries are treated by the prelinker in the same way as RESOLVE libraries, i.e. only those library
modules which could potentially be used to satisfy unresolved external references when actually linking the program
are considered at preinstantiation.

LIBRARY-NAME = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> is used to specify a link name for a PLAM library. The link name must already have been
assigned to the library name with the ADD-FILE-LINK command before the compiler is called.

MAX-INSTANTIATE-ITER = / *UNCHANGED / <integer 0..100>30
This option is only relevant for automatic template instantiation by the prelinker. It defines the maximum number or
prelinker iterations. The default value is 30. If a value of 0 isspecified for <integer>, the number of prelinker
iterations is unlimited.

TEMPLATE-DEF-LIST = *UNCHANGED / *YES / *NO
This option is used to switch a communication technology on and off between the front end and prelinker during the
internal post-compilation phase via a definition list (see also)."Automatic instantiation"

ADD-STATEMENT = *UNCHANGED / / list-poss: <c-string 1..1800 with-low>*NONE <c-string> can be used to
specified an additional BINDER statement. Multiple BINDER statements can be specified as a list of c-strings as
follows:

 , (’ statement1 ’,’ statement2 ’ ’ ’)

The operands are directly passed through to BINDER without SDF analysis.

Automatic template instantiation

The BINDER statements specified with ADD-STATEMENT are currently not considered during the automatic
template instantiation by the prelinker, but only during subsequent linkage with BINDER. The operands should
not affect the type, number or order of the modules to be linked, since different preconditions during the
prelinker and linkage runs could result in duplicates or unresolved external references.

RUNTIME-LANGUAGE =

 90

This option causes the appropriate C/C++ runtime system of the CRTE to be automatically linked in accordance
with the defined C or C++ language mode.

RUNTIME-LANGUAGE = *UNCHANGED
The value specified in the last MODIFY-BIND-PROPERTIES statement applies.

RUNTIME-LANGUAGE = *C
The C runtime system is linked.
The STDLIB option defines the method by which the C runtime system is linked. The RUNTIME-ENVIRONMENT
option determines whether the RISC version (“SRULNK”) of the C runtime system is to be used instead of the /390
version (“SYSLNK”).

RUNTIME-LANGUAGE = (...)*CPLUSPLUS
Apart from the C runtime system, which is always required, additional C++ libraries and runtime systems of the
CRTE are linked.
The STDLIB option specifies the mode in which these CRTE libraries are linked.

MODE = *UNCHANGED / / *2017 / *V2-COMPATIBLE / *V3-COMPATIBLE*LATEST

Depending on the language modes the compiler used to create the user modules, the appropriate CRTE
libraries will be required when linking.

*UNCHANGED:

The value specified in the last MODIFY-BIND-PROPERTIES statement applies.

*LATEST:

This is the latest supported standard and may change in future compiler versions. In this a short cut
version of the compiler, the specification is the same as *2017.

*2017:

Needs the C++ 2017 runtime system and library (SYSLNK.CRTE.CXX01).

*V2-COMPATIBLE:

Needs the Cfront C++ runtime system (SYSLNK.CRTE.CFCPP) and Cfront C++ library for complex math
and stream-oriented I/O (SYSLNK.CRTE.CPP).
This specification corresponds to the specification *CPP of the C/C++ V3 compiler.

*V3-COMPATIBLE:

Needs the C++ V3 runtime system (SYSLNK.CRTE.RTSCPP) and library (SYSLNK.CRTE.
STDCPP). The linkage of the Tools.h++ library, which can be used in the C++ V3 mode, is controlled by
means of a separate option.TOOLSLIB

*ANSI resp. *STRICT-ANSI This specification corresponds to the specification of the C/C++ V3 compiler.

STDLIB = *UNCHANGED / / *DYNAMIC-COMPLETE / *STATIC / *NONE*DYNAMIC

This option defines how external references to the C/C++ libraries of the CRTE corresponding to the RUNTIME-
LANGUAGE options are resolved.
The *DYNAMIC and *STATIC entries currently have a different effect only when linking the C runtime system.
The C++ libraries are treated identically for both the *DYNAMIC and *STATIC specifications, i.e. are always linked
fully (and “statically”).

 91

*UNCHANGED:

The value specified in the last MODIFY-BIND-PROPERTIES statement applies.

*DYNAMIC:

All external references to the CRTE libraries are resolved. In the case of the C runtime system only an
adapter module from the SYSLNK.CRTE.PARTIAL-BIND library is linked in permanently. The preloaded
C runtime system is connected to the program only at runtime.

*DYNAMIC-COMPLETE:

This option represents a variant of dynamic linkage that uses the complete partial bind libraries of CRTE.

This specification is not allowed in the C++ 2017 mode.

The external references are resolved at runtime from the SYSLNK.CRTE.COMPL library. In the C++ V3
mode, i.e. when RUNTIME-LANGUAGE=*CPLUSPLUS(MODE= I) is specified, the *V3-COMPATIBLE
SYSLNK.CRTE.CPP-COMPL library is used instead of the SYSLNK.CRTE.RTSCPP and SYSLNK.CRTE.
STDCPP libraries.

*STATIC:

All external references to the CRTE libraries are resolved. In the case of the C runtime system, all
individual modules from the SYSLNK.CRTE library are linked in permanently.

*NONE:

The external references to the CRTE libraries remain open and are subsequently resolved either in a later
linkage run (i.e. permanently with BINDER or the BIND statement) or directly at runtime via dynamic
linkage with DBL.

TOOLSLIB = *UNCHANGED / *YES / *NO
If *YES is specified, the library Tools.h++ (SYSLNK.CRTE.TOOLS), which can only be used in C++ V3, is
included. When the STDLIB=DYNAMIC-COMPLETE option is specified, the SYSLNK.CRTE.CPP-COMPL
library is used instead of the SYSLNK.CRTE.TOOLS library.
If *NO is specified, the external references to the Tools.h++ library remain unresolved.

TEST-SUPPORT = *UNCHANGED / *YES / *NO

This option controls whether the LSD information generated at compilation is to be saved in the linked module
for subsequent use with the Advanced Interactive Debugger AID. The value is passed as the TEST-SUPPORT
operand of the BINDER statement SAVE-LLM.

In the CFRONT-C++ mode the STDLIB=DYNAMIC-COMPLETE option is reset to STDLIB=DYNAMIC. In
particular, the complete partial bind method is not supported in the CFRONT-C++ mode. You will find a
complete description of the complete partial bind libraries in the "CRTE" manual [].4

i

The following must be observed when external references (STDLIB=*NONE) are left unresolved:The
standard C++ library (SYSLNK.CRTE.STDCPP or SYSLNK.CRTE.CXX01) is not taken into account
during the automatic template instantiation by the prelinker, which means that duplicate definitions could
potentially exist. You will find more detailed information on this problem in section “Automatic instantiation”
.

i

 92

LISTING = *UNCHANGED / / *SYSLST / <filename 1..54>*NONE
This option, which is analogous to the MAP operand of the BINDER statement SAVE-LLM, can be used to
request the standard listings of BINDER. These listings are output to the system file SYSLST or to a cataloged
file specified with <filename>.

When START-LLM-CREATION=*YES is specified, the listing is reset to *NONE.

 93

3.2.2.9 Interaction between the MODIFY-BIND-PROPERTIES and BIND statements

Several MODIFY-BIND-PROPERTIES statements may be collectively involved in a linkage run. The libraries
specified with the RESOLVE, INCLUDE and ADD-PRELINK-FILES options, for example, are collected and remain
in effect even for subsequent BIND statements untill the option START-LLM-CREATION is set to *YES.

When START-LLM-CREATION=*YES is specified, the listing is reset to *NONE.

START-LLM-CREATION is automatically set to *YES only on the first call to the MODIFY-BIND-PROPERTIES
statement after calling the compiler or after a RESET-TO-DEFAULT statement. Starting with the second MODIFY
statement, the default value is *NO.

A list of libraries within a RESOLVE option has the same effect as a list of libraries within a RESOLVE-BY-
AUTOLINK statement of BINDER. Additional MODIFY-BIND-PROPERTIES statements with a RESOLVE option are
issued as independent RESOLVE-BY-AUTOLINK statements of BINDER and are processed separately.

 94

3.2.2.10 MODIFY-CIF-PROPERTIES

Aliases: SET-CIF-PROPERTIES
MODIFY-INFO-FILE-PROPERTIES
SET-INFO-FILE-PROPERTIES

This statement can be used to instruct the compiler to create a CIF (Compiler Information File), which may include
information on some or all compiler listings. For each compiled source program, the CIF is written to a separate file,
which can then be processed further with the global listing generator (see "Controlling the global listing generator)"
 for details).

MODIFY-CIF-PROPERTIES

CONSUMER= *UNCHANGED / / *ALL / list-poss(9): *BY-LISTING-PROPERTIES / *OPTIONS /*NONE

*SOURCE / *PREPROCESSING-RESULT / *DATA-ALLOCATION-MAP /

*CROSS-REFERENCE / *PROJECT-INFORMATION / *ASSEMBLER-CODE /

*SUMMARY

,INCLUDE-INFORMATION= *UNCHANGED / *NONE / *ALL / *USER-INCLUDES-ONLY

,OUTPUT= *UNCHANGED / *NONE / *STD-FILE / / <filename 1..54> /*SOURCE-LOCATION

<posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= / *SOURCE-LIBRARY / <filename 1..54>*STD-LIBRARY

| ,ELEMENT= (...) / <composed-name 1..64 with-under>(...)*STD-ELEMENT

| *STD-ELEMENT(...)

| | VERSION= / <composed-name 1..24 with-under>*UPPER-LIMIT

| <composed-name 1..64 with-under>(...)

| | VERSION= / <composed-name 1..24 with-under>*UPPER-LIMIT

CONSUMER = *UNCHANGED
The value specified in the last MODIFY-CIF-PROPERTIES statement applies.

CONSUMER = *NONE
No permanent CIF is created.
When local listings are requested (with MODIFY-LISTING-PROPERTIES), a temporary CIF is created (with prefix
#T) to generate these listings. This CIF is deleted at TASK end.

CONSUMER = *ALL
The created CIF contains information on all listings that can be generated, depending on which compiler
components (PREPROCESS, CHECK-SYNTAX, COMPILE) are run.

CONSUMER = list-poss(9): *BY-LISTING-PROPERTIES / *OPTIONS / *SOURCE / *PREPROCESSING-
RESULT / *DATA-ALLOCATION-MAP / *CROSS-REFERENCE / *PROJECT-INFORMATION / *ASSEMBLER-
CODE / *SUMMARY

 95

A CIF containing information on the specified listings is created.

*BY-LISTING-PROPERTIES: CIF information is created for all listings requested with the MODIFY-LISTING-
PROPERTIES statement.

INCLUDE-INFORMATION = *UNCHANGED / *NONE / *ALL / *USER-INCLUDES-ONLYThis option can be used
to control whether and from which header files CIF information is to be generated for the source, preprocessor and
cross-reference listings. By default, only the user-defined headers and not the standard headers are taken into
account.

OUTPUT = *UNCHANGED
The value specified in the last MODIFY-CIF-PROPERTIES statement applies.

OUTPUT = *NONE
No permanent CIF is created.

OUTPUT = *STD-FILE
The CIF is written to a cataloged BS2000 file. The name of this file is derived from the name of the source program
as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDCIF.CIF file.CIF lib-elem.CIF file.CIF

If the source program is located in a PLAM library, the library and element name of the source are combined with a
hyphen (lib-elem) and used in the default file name. The rules by which the compiler constructs default names are
described in detail in the section .“Default names for output containers”

OUTPUT = *SOURCE-LOCATION
The output destination and name of the CIF are derived from the location and name of the source program as
follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Output
destination

BS2000 file BS2000 file Library of source Directory of source

Default name CSTDCIF.CIF file.CIF elem.CIF (type H) file.cif

The rules by which the compiler constructs default names are described in detail in the section “Default names for
.output containers”

OUTPUT = <filename 1..54>
The CIF is written to a cataloged BS2000 file with the specified name. This entry is invalid when compiling multiple
source programs.

OUTPUT = <posix-pathname>

The CIF is written to a POSIX file.

Both a file name and a directory are permitted as <posix-pathname>. See "Compiler I/O in the POSIX file system (C
 for a description of the term <posix-pathname>./C++-Compiler, #18)"

 96

When a file name is specified, the CIF is stored under this name. Specification of a file name is invalid when
compiling multiple source programs with one statement.

When a directory name is specified, the CIF for each compiled source program is written under the default name dir
 to the directory (see also section).sourcefile.cif dir “Default names foroutput containers”

The directories specified with <posix-pathname> must already exist.
CIF files can be processed further in the POSIX subsystem with the global listing generator .cclistgen

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=) under which the CIF is to
be stored. The elements are stored as elements of type H.

LIBRARY = *STD-LIBRARY
The CIF is written to the library SYS.PROG.LIB by default.

LIBRARY = *SOURCE-LIBRARY
The CIF is written to the PLAM library which contains the source program.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a cataloged BS2000 file, a
POSIX file or via SYSDTA.

LIBRARY = <filename 1..54>
The CIF is written to a PLAM library with the specified name.

ELEMENT = *STD-ELEMENT(...)
By default, the element name of the CIF is derived from the name of the source program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDCIF.CIF file.CIF elem.CIF file.CIF

The rules by which the compiler constructs default names are described in detail in the section “Default names
for output containers”.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is used by the compiler.

VERSION = <composed-name 1..24 with-under>
The CIF is written to the element with the specified version ID.

ELEMENT = <composed-name 1..64 with-under>(...)

The CIF is written to a library element (type H) with the specified name. This specification is invalid compiling
multiple source programs.

VERSION = / *UPPER-LIMIT <composed-name 1..24 with-under>
The version can be specified as described above for .ELEMENT=*STD-ELEMENT(...)

 97

3.2.2.11 MODIFY-DIAGNOSTIC-PROPERTIES

Alias: SET-DIAGNOSTIC-PROPERTIES

This statement can be used to create a user-defined list of compiler messages and to specify various output
destinations for it. In addition, it can be used to define error message weights and error conditions for aborting
compilation.

MODIFY-DIAGNOSTIC-PROPERTIES

MINIMAL-MSG-WEIGHT= *UNCHANGED / *NOTE / / *ERROR / *FATAL*WARNING

,CHANGE-MSG-WEIGHT= *UNCHANGED / list-poss: *NOTE(...) / *WARNING(...) / *ERROR(...)

*DEFAULT(....)

*NOTE(...)

| MSGID= list-poss: <alphanum-name 7..7>

*WARNING(...)

| MSGID= list-poss: <alphanum-name 7..7>

*ERROR(...)

| MSGID= list-poss: <alphanum-name 7..7>

*DEFAULT(...)

| MSGID= *ALL / list-poss: <alphanum-name 7..7>

,SUPPRESS-MSG= *UNCHANGED / / list-poss: *USE-BEFORE-SET / <alphanum-name 7..7>*NONE

,MAX-ERROR-NUMBER= *UNCHANGED / / <integer 1..255>50

,ANSI-VIOLATIONS= *UNCHANGED / / *ERROR*WARNING

,SHOW-COLUMN= *UNCHANGED / / *NO*YES

,SHOW-INCLUDES= *UNCHANGED / *YES / *NO

,VERBOSE= *UNCHANGED / / list-poss: *VERSION / *MESSAGES*NO

,GENERATE-ETR-FILE= *UNCHANGED / / *ALL-INSTANTIATIONS / *ASSIGNED-INSTANTIATIONS*NO

 98

, = *UNCHANGED / list-poss(10): / *SYSLST / *STD-FILE / *SOURCE-LOCATION /OUTPUT *SYSOUT

*TO-LISTING /<filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= / *SOURCE-LIBRARY / <filename 1..54> / *LINK(...)*STD-LIBRARY

| *LINK(...)

| LINK-NAME= <filename 1..8>

| ,ELEMENT= (...) / <composed-name 1..64 with-under>(...)*STD-ELEMENT

| *STD-ELEMENT(...)

| VERSION= / <composed-name 1..24 with-under>*UPPER-LIMIT

| <composed-name 1..64 with-under>(...)

| VERSION= / <composed-name 1..24 with-under>*UPPER-LIMIT

MINIMAL-MSG-WEIGHT = *UNCHANGED / *NOTE / / *ERROR / *FATAL*WARNING

This option can be used to specify the minimum message weight for which compiler messages are to be included in
the message listing.

CHANGE-MSG-WEIGHT =

This option can be used to change the default message weight for diagnostic messages that are output by the
frontend compiler (beginning with CFE). All information is collected, even across multiple instructions.

CHANGE-MSG-WEIGHT = *UNCHANGED
The specification in the last MODIFY-DIAGNOSTIC-PROPERTIES statement applies.

CHANGE-MSG-WEIGHT = list-poss: *NOTE(...) / *WARNING(...) /*ERROR(...)

The default message weight . upgraded to the message weight is changed to the specified weight Notes can be
ERROR, and warnings can be downgraded to NOTE or upgraded to ERROR. Errors can be downgraded to the
weight of a NOTE, but only if they were flagged with an asterisk in the original message: . The message [*ERROR]

weight for fatal errors cannot be changed.

MSGID = list-poss: <alphanum-name 7..7>
<alphanum-name> is the 7-digit message key of the compiler message for which the message weight is to be
changed.

CHANGE-MSG-WEIGHT = *DEFAULT(...)
The message weight is reset to its original value.

MSGID = list-poss: <alphanum-name 7..7>
<alphanum-name> is the 7-digit message key of the compiler message for which the message weight is to be
reset to its original value.

MSGID = *ALL
All message weights are to be reset to their original value.

 99

SUPPRESS-MSG = *UNCHANGED / / list-poss: *USE-BEFORE-SET / <alphanum-name 7..7>*NONE
This option can be used to suppress compiler messages with the message weights NOTE and WARNING, thus
restricting the listed messages to the ones most important to the user.

*UNCHANGED

The specification in the last MODIFY-DIAGNOSTIC-PROPERTIES statement applies.

*NONE

All compiler messages are output according to the value of .MINIMAL-MSG-WEIGHT

*USE-BEFORE-SET

The output of warnings is suppressed if local variables are used in the program before being assigned a auto

value.

<alphanum-name 7..7>

specifies the message key of a compiler message (NOTE or WARNING) to be suppressed.

Example

SUPP-MSG=(CFE2802,CFE9095)

MAX-ERROR-NUMBER = *UNCHANGED / / <integer 1..255>50
This option can be used to specify after how many errors the compiler run is to be aborted (notes and warnings are
counted separately).

UNCHANGED

The specification in the last MODIFY-DIAGNOSTIC-PROPERTIES statement applies.

50

The compiler aborts any compilation in which more than 49 errors occur.

<integer 1..255>

specifies after how many errors the compiler run is to be aborted.

ANSI-VIOLATIONS = *UNCHANGED / / *ERROR*WARNING

This optionis effective only with the specification of LANGUAGE=...(STRICT=YES) (see MODIFY-SOURCE-
).PROPERTIES

*WARNING is the default setting, which means that warnings are issued on detecting the use of language
constructs which deviate from the relevant C or C++ standard, but which are not a serious violation of the language
rules defined therein (e.g. implementation specific language extensions; see also section “Extensions to ANSI/ISO

 and section).C” “Extensions to ANSI-/ISO-C++”

If *ERROR is specified here, errors are reported in such cases. Serious violations automatically result in errors.

SHOW-COLUMN = *UNCHANGED / / *NO*YES
This option determines whether the diagnostic messages of the compiler are generated in short or long form.

UNCHANGED

 100

The specification in the last MODIFY-DIAGNOSTIC-PROPERTIES statement applies.

*YES

The original source program line is shown with the error location marked (with) in addition to the diagnostic ^

message itself.

*NO

The marked source program line is not output.

SHOW-INCLUDES = *UNCHANGED / *YES / *NO
If *YES is specified, the names of header files used by the preprocessor are output.

VERBOSE = *UNCHANGED / / list-poss: *VERSION / *MESSAGES*NO

UNCHANGED

The specification in the last MODIFY-DIAGNOSTIC-PROPERTIES statement applies.

*VERSION:

For each edited file the message CDR9402 is output. In link processes, the used CRTE version and the
names of the CRTE libraries are also output.

*MESSAGES

This value is currently meaningful only in the language modes C++ V3 and C++ 2017. It causes additional
information on automatic template instantiation by the prelinker to be written to SYSOUT.

GENERATE-ETR-FILE = *UNCHANGED / * / *ALL-INSTANTIATIONS /*ASSIGNED-INSTANTIATIONSNO
This option can be used to create an ETR file (ETR=Explicit Template Request) which contains the instantiation
statements for the templates used (see section section “Generating explicit template instantiation statements (ETR

). The file name is derived from the name of the object file and has the suffix .etr.files)”

The default for this option is *NO. This does not create an ETR file. If *ALL-INSTANTIATIONS is specified, all used
instances are recorded. If *ASSIGNED-INSTANTIATIONS is specified only those instances assigned to this file by
the prelinker, and are thus contained in the ii file.

OUTPUT = *UNCHANGED / list-poss(10): / *SYSLST / *STD-FILE / *SOURCE-LOCATION / *SYSOUT
<filename 1..54> / <posix-pathname> /*LIBRARY-ELEMENT(...)

The OUTPUT option can be used to request the concurrent output of the message listing at different output
destinations.

OUTPUT = *SYSOUT
Compilation messages are written to the terminal (system file SYSOUT) by default.

In addition to the output destinations specified in this option information messages of the compiler
(messages without message weight) are also output to SYSOUT. All other messages are only output to
the specified output destinations.

i

 101

OUTPUT = *SYSLST
The message listing is written to the temporary system file SYSLST and is sent from there to the printer at the end
of the task (at LOGOFF).

OUTPUT = *STD-FILE
The message listing is written to a cataloged BS2000 file. The name of this file is derived from the name of the
source program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDDIAG.DIAG file.DIAG lib-elem.DIAG file.DIAG

If the source program is located in a PLAM library, the library and element name of the source are combined with a
hyphen (lib-elem) and used in the default file name. The rules by which the compiler constructs default names are
described in detail in the section .“Default names for output containers”

OUTPUT = *SOURCE-LOCATION
The output destination and name of the message listing are derived from the location and name of the source
program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Output
destination

BS2000 file BS2000 file Library of source Directory of source

Default name CSTDDIAG.DIAG file.DIAG elem.DIAG (type D) file.diag

The rules by which the compiler constructs default names are described in detail in the section “Default names for
.output containers”

OUTPUT = *TO-LISTING

The diagnostic output is appended to the end of the listing file as an own sublisting. The message list is sorted
according to the message weight but information messages (messages without message weight) are not included in
the message list. The name of the output file is defined by the value of the option OUTPUT in MODIFY-LISTING-

. The restrictions given there for the modes C++ V3 and C++ 2017 must be taken into account.PROPERTIES

OUTPUT = <filename 1..54>

The message listing is written to a cataloged BS2000 file with the specified name. This specification is not
meaningful when compiling multiple source programs, since the file is overwritten in each case.

OUTPUT = <posix-pathname>
The message listing is written to the POSIX file system.

Both a file name and a directory are permitted as <posix-pathname>. See "Compiler I/O in the POSIX file system)"
for a description of the term <posix-pathname>.

When a file name is specified, the message listing is stored under this name.

When a directory name is specified, the message listing for each compiled source program is written under the dir
default name to the directory (see also section).sourcefile.diag dir “Default names for output containers”

The directories specified with <posix-pathname> must already exist. Note that the specification of a file name is not
meaningful when compiling multiple source programs, since the file is overwritten in each case.

 102

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=) under which the message
listing is to be stored. The elements are saved as elements of type D.

LIBRARY = *STD-LIBRARY
The message listing is stored in the library SYS.PROG.LIB by default.

LIBRARY = *SOURCE-LIBRARY
The message listing is written to the PLAM library which contains the source program.The *SOURCE-
LIBRARY specification is invalid if the source program is read from a cataloged BS2000 file, a POSIX file or
via SYSDTA.

LIBRARY = <filename 1..54>
The message listing is stored in a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

A link name can also be specified instead of the cataloged library name. This link name must already
have been assigned to the PLAM library (with the ADD-FILE-LINK command) before the compiler is
called.

ELEMENT = *STD-ELEMENT(...)
By default, the element name of the message listing is derived from the name of the source program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDDIAG.DIAG file.DIAG elem.DIAG file.DIAG

The rules by which the compiler constructs default names are described in detail in the section “Default names
for output containers”.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is used by the compiler.

VERSION = <composed-name 1..24 with-under>
The message listing is stored in the element with the specified version ID.

ELEMENT = <composed-name 1..64 with-under>(...)
The message listing is written to a library element (type D) with the specified name. Note that the specification of an
element name is not meaningful when compiling multiple source programs, since the element is overwritten in each
case.

VERSION = / <composed-name 1..24 with-under>*UPPER-LIMIT
The version can be specified as described above for .ELEMENT=*STD-ELEMENT(...)

 103

3.2.2.12 MODIFY-INCLUDE-LIBRARIES

Aliases: MODIFY-INCLUDE-SEARCH
SET-INCLUDE-LIBRARIES
SET-INCLUDE-SEARCH

This statement specifies which include (or header) libraries and file directories are to be searched by the compiler. It
also defines the order in which these libraries and directories are searched.

MODIFY-INCLUDE-LIBRARIES

USER-INCLUDE-LIBRARY= *UNCHANGED / list-poss: / /*SOURCE-LIBRARY *STANDARD-LIBRARY

<filename 1..54> / <posix-pathname> / *LINK(...)

*LINK(...)

LINK-NAME= <filename 1..8>

,STD-INCLUDE-LIBRARY= *UNCHANGED / list-poss: /*USER-INCLUDE-LIBRARY

*STANDARD-LIBRARY / *SOURCE-LIBRARY / <filename 1..54> /

<posix-pathname> / *LINK(...)

*LINK(...)

| LINK-NAME= <filename 1..8>

,CURRENT-LIBRARY= *UNCHANGED / / *NO*YES

USER-INCLUDE-LIBRARY =
This option can be used to assign PLAM libraries or POSIX directories which contain user-defined header files
(requested with ...). Depending on the setting of the option, the library or #include " " CURRENT-LIBRARY

directory containing the source or header file listed in the include directive ... is searched first, i.e., #include " "

before the libraries and directories specified with USER-INCLUDE-LIBRARY.

If the USER-INCLUDE-LIBRARY option is not specified, the following default is used:

USER-INCLUDE-LIBRARY = (*SOURCE-LIBRARY, *STANDARD-LIBRARY)

If header files are enclosed in quotes in the directive (), the compiler will search for #include #include "name"
these elements in the library or directory of the source program first, and then in the CRTE libraries containing the
standard header files. The CRTE library $.SYSLIB.CRTE is assigned for the search in all language modes. In the
language mode Cfront C++ the CRTE library $.SYSLIB.CRTE.CPP is searched prior to $.SYSLIB.CRTE. In the
language mode C++ 2017 the CRTE library $.SYSLIB.CRTE.CXX01 is searched prior to $.SYSLIB.CRTE.

If the option is specified, the above default is deactivated, and the compiler searches only in the libraries/directories
explicitly specified. In other words, if the source program library or directory and the CRTE libraries are to be
searched for header files, the *SOURCE-LIBRARY or *STANDARD-LIBRARY options must be explicitly specified.
The libraries/directories are searched in the order in which they are specified.

 104

USER-INCLUDE-LIBRARY = *UNCHANGED
The values specified in the last MODIFY-INCLUDE-LIBRARY statement apply. If no values have been changed
since starting the compiler, the default settings of the compiler (*SOURCE-LIBRARY, *STANDARD-LIBRARY)
apply.

USER-INCLUDE-LIBRARY = *SOURCE-LIBRARY
The library or directory containing the source program is searched for the required header file. The *SOURCE-
LIBRARY specification has no effect if the source program is in a cataloged BS2000 file or, in general, when source
programs are entered via SYSDTA (see also)."Notes on input via SYSDTA"

USER-INCLUDE-LIBRARY = *STANDARD-LIBRARY
The CRTE library $.SYSLIB.CRTE is assigned for the search in all language modes. In the language mode Cfront
C++ the CRTE library $.SYSLIB.CRTE.CPP is searched prior to $.SYSLIB.CRTE. In the language mode C++ 2017
the CRTE library $.SYSLIB.CRTE.CXX01 is searched prior to $.SYSLIB.CRTE.

USER-INCLUDE-LIBRARY = <filename 1..54>
<filename> identifies the name of the PLAM library in which the required user-defined header files are to be
searched.

USER-INCLUDE-LIBRARY = <posix-pathname>
<posix-pathname> designates the name of the POSIX directory in which the required user-defined header files are
to be searched. See for a description of the term <posix-pathname>."Compiler I/O in the POSIX file system"

USER-INCLUDE-LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

A link name can also be specified instead of a cataloged PLAM library name. <filename> designates the link
name of the assigned header library. This link name must already have been assigned to the PLAM library
(with the ADD-FILE-LINK command) before the compiler is called.

STD-INCLUDE-LIBRARY =
This option can be used to specify the PLAM libraries and POSIX directories which contain the required standard
headers (requested with ...).#include < >

STD-INCLUDE-LIBRARY = *UNCHANGED
The values specified in the last MODIFY-INCLUDE-LIBRARY statement apply. If no values have been changed
since starting the compiler, the default settings of the compiler (*USER-INCLUDE-LIBRARY, *STANDARD-
LIBRARY) apply.

STD-INCLUDE-LIBRARY = *USER-INCLUDE-LIBRARY

The search order for standard header files is derived from specifications in the USER-INCLUDE-LIBRARY option.
Only the libraries/directories which are explicitly specified in that option are taken into account, not the entries for
*SOURCE-LIBRARY and *STANDARD-LIBRARY.

STD-INCLUDE-LIBRARY = *STANDARD-LIBRARY
The CRTE library $.SYSLIB.CRTE is assigned for the search in all language modes. In the language mode Cfront
C++ the CRTE library $.SYSLIB.CRTE.CPP is searched prior to $.SYSLIB.CRTE. In the language mode C++ 2017
the CRTE library $.SYSLIB.CRTE.CXX01 is searched prior to $.SYSLIB.CRTE.
See also the notes on .standard header files for POSIX library functions

STD-INCLUDE-LIBRARY = <filename 1..54>
<filename> designates the name of the PLAM library that is to be searched for the required standard header files.

 105

STD-INCLUDE-LIBRARY = <posix-pathname>
<posix-pathname> designates the name of the POSIX directory in which the required header files are to be
searched. See for a description of the term <posixpathname>."Compiler I/O in the POSIX file system"
This specification is not meaningful for standard headers of the CRTE, since they are obtained from the CRTE
libraries.

STD-INCLUDE-LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

A link name can also be specified instead of the cataloged PALM library name. <filename> designates the link
name of the assigned header library. This link name must already have been assigned to the PLAM library
(with the ADD-FILE-LINKcommand) before the compiler is called.

CURRENT-LIBRARY = *UNCHANGED / / *NO*YES
This option determines the search for header files requested with the ... directive.#include " "

*YES: By default, when searching for headers, the library or directory of the source or header containing the
 directive is searched first, followed by the directories/libraries specified with the USER-INCLUDE-#include

LIBRARY option. This corresponds to the behavior of the compiler in POSIX.
If the source program is contained in a cataloged BS2000 file, header files are searched for in the cataloged
BS2000 files.

*NO: If *NO is set, only the directories/libraries specified in the USER-INCLUDE-LIBRARY option are searched.
This corresponds to the behavior of the earlier C and C++ V2.2 compilers.

Standard header files for POSIX library functions

The standard header files required for the use of the POSIX library functions are not contained in the library $.
SYSLNK.CRTE. They are located in the library
$.SYSLIB.POSIX-HEADER, which is supplied with the product BS2000/OSD BC. This library must always be
specified in addition to the library $.SYSLNK.CRTE if the program uses POSIX functions. Furthermore, the

 directive must be set before the occurrence of the first directive in the program. This is _OSD_POSIX #include

guaranteed, for example, if the DEFINE option of the MODIFY-SOURCE-PROPERTIES statement is used for the
definition at compilation.

Examples of the MODIFY-INCLUDE-LIBRARY statement

Example 1

The source program is located in a PLAM library named PLAM.SOURCE, and extended C11 is set as the language
mode.

The source program contains the directive

#include "incl.h"

The user makes the following entries:

//MODIFY-INCLUDE-LIBRARIES USER-INCL-LIB=(*STANDARD-LIBRARY,LIB1,-
//*LINK(LIB2),*SOURCE-LIBRARY,’/home/user-incl’)

Since the CURRENT-LIBRARY option is not specified, CURRENT-LIBRARY=*YES applies.

 106

Search procedure:

The following libraries/directories are searched in sequence for the header:"incl.h"

PLAM.SOURCE (Due to the option CURRENT-LIBRARY=*YES, the library of
the
source program containing the directive)#include

$.SYSLIB.CRTE (Standard header library)

LIB1 (Library with the name LIB1)

LIB2 (Library with the link name LIB2)

PLAM.SOURCE (Source program library)

/home/user-incl (POSIX directory with the name /home/user-incl)

Example 2

The source program is located in a PLAM library named PLAM.SRC, and Cfront C++ is set as the language mode.

The user makes the following entries:

//MODIFY-INCLUDE-LIBRARIES USER-INCLUDE-LIBRARY = ($XYZ.LIB,-
//*SOURCE-LIBRARY, LIB1),STD-INCLUDE-LIBRARY = (*USER-INCLUDE-LIBRARY,-
//*STANDARD-LIBRARY),CURRENT-LIBRARY = *NO

In this case, the search for header files will proceed as follows:

#include "..."

$XYZ.LIB
PLAM.SRC
LIB1

#include <...>

$XYZ.LIB
LIB1
$.SYSLIB.CRTE.CPP
$.SYSLIB.CRTE

Example 3

The source program is located in the POSIX directory , and extended C11 is set as the language /home/xy/src

mode.

The user makes the following entries:

//MODIFY-INCLUDE-LIBRARIES -
//USER-INCLUDE-LIBRARY=(*SOURCE-LIBRARY, ’/home/xy/incl1’, *STANDARD-LIBRARY),-
//STD-INCLUDE-LIBRARY=(*STANDARD-LIBRARY, $.SYSLIB.POSIX-HEADER,-
//*USER-INCLUDE-LIBRARY,’/home/xy/incl2),CURRENT-LIBRARY=*NO

In this case, the search for header files will proceed as follows:

 107

#include "..."

/home/xy/src
/home/xy/incl1
$.SYSLIB.CRTE

#include <...>

$.SYSLIB.CRTE
$.SYSLIB.POSIX-HEADER
/home/xy/incl1
/home/xy/incl2

 108

3.2.2.13 MODIFY-LISTING-PROPERTIES

Alias: SET-LISTING-PROPERTIES

This statement can be used to select which compiler listings are to be generated by the compiler. It can also be
used to define the layout of the listings and their output destinations. The structure of the compiler listing is
explained in the section with the help of examples.“Description of listings”

MODIFY-LISTING-PROPERTIES

OPTIONS= *UNCHANGED / *YES / *NO

,SOURCE= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| MINIMAL-MSG-WEIGHT= *NOTE / / *ERROR / *FATAL*WARNING

,PREPROCESSING-RESULT= *UNCHANGED / / *YES*NO

,DATA-ALLOCATION-MAP= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| STRUCTURE-LEVEL= *UNCHANGED / / *MAX / <integer 0..256>*NONE

,CROSS-REFERENCE= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| PREPROCESSING-INFO= *UNCHANGED / *YES / *NO

| ,TYPES= *UNCHANGED / *YES / *NO

| ,VARIABLES= *UNCHANGED / / *NO*YES

| ,FUNCTIONS= *UNCHANGED / / *NO*YES

| ,LABELS= *UNCHANGED / / *NO*YES

| ,TEMPLATES= *UNCHANGED / *YES / *NO

| ,ORDER= *UNCHANGED / / list-poss(6): *PREPROCESSING-INFO / *TYPES / *STD

| *VARIABLES / *FUNCTIONS / *LABELS / *TEMPLATES

,PROJECT-INFORMATION= *UNCHANGED / *YES / *NO

,ASSEMBLER-CODE= *UNCHANGED / *YES / *NO

,SUMMARY= *UNCHANGED / *YES / *NO

,LAYOUT= *UNCHANGED / (...) / *FOR-ROTATION-PRINT(...)*FOR-NORMAL-PRINT

*FOR-NORMAL-PRINT(...)

| LINE-SIZE= *UNCHANGED / / <integer 120..255>*STD

 109

| ,LINES-PER-PAGE= *UNCHANGED / / <integer 11..255>*STD

*FOR-ROTATION-PRINT(...)

| LINE-SIZE= *UNCHANGED / / <integer 120..255>*STD

| ,LINES-PER-PAGE= *UNCHANGED / / <integer 11..255>*STD

,INCLUDE-INFORMATION= *UNCHANGED / *NONE / *ALL / *USER-INCLUDES-ONLY

,LISTING-PRAGMAS= *UNCHANGED / *IGNORED / / *SELECT(...)*INTERPRETED

*SELECT(...)

| PAGE= *UNCHANGED / *YES / *NO

| ,TITLE= *UNCHANGED / *YES / *NO

| ,SPACE= *UNCHANGED / *YES / *NO

| ,LIST= *UNCHANGED / *YES / *NO

,INITIAL-TITLE-TEXT= *UNCHANGED / / <c-string 1..256 with-low>*NONE

,OUTPUT= *UNCHANGED / / *SYSOUT / *STD-FILE / *SOURCE-LOCATION /*SYSLST

<filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= / *SOURCE-LIBRARY / <filename 1..54> / *LINK(...)*STD-LIBRARY

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= (...) / <composed-name 1..64 with-under>(...)*STD-ELEMENT

| *STD-ELEMENT(...)

| | VERSION= / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT

| <composed-name 1..64 with-under>(...)

| | VERSION= / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT

OPTIONS = *UNCHANGED / *YES / *NO
*YES: The compiler creates a comprehensive listing of all predefined and user-specified compiler options.

SOURCE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

SOURCE = *NO

No source/error listing is generated.

 110

1.

2.

SOURCE = *YES(...)
A source/error listing is generated (not for PREPROCESS).

MINIMAL-MSG-WEIGHT = *NOTE / / *ERROR / *FATAL*WARNING
This operand can be used to specify the minimum message weight for which errormessages are to be
included in the source/error listing.

Warning:
This suboption is used to limit the number of messages output as compared to the similar MODIFY-
DIAGNOSTIC-PROPERTIES suboption, e.g. from WARNING to ERROR.
If MINIMAL-MSG-WEIGHT = *WARNING (default setting) was specified for MODIFY-DIAGNOSTIC-
PROPERTIES, you will not be able to output notes with MODIFY-LISTING-PROPERTIES.

Examples

To output error messages in the source listing with a message weight of NOTE:

MODIFY-DIAGNOSTIC-PROPERTIES MINIMAL-MSG-WEIGHT=*NOTE
MODIFY-LISTING-PROPERTIES SOURCE=*YES(MINIMAL-MSG-WEIGHT=*NOTE)

Write all error messages with a minimum message weight of NOTE to the system file SYSOUT, and error
messages with a minimum message weight of WARNING to the source listing:

MODIFY-DIAGNOSTIC-PROPERTIES MINIMAL-MSG-WEIGHT=*NOTE
MODIFY-LISTING-PROPERTIES SOURCE=*YES(MINIMAL-MSG-WEIGHT=*WARNING)

(Default)

PREPROCESSING-RESULT = *UNCHANGED / / *YES *NO
*UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

*NO

The compiler does not generate a preprocessor listing.

*YES

The compiler generates a preprocessor listing.

DATA-ALLOCATION-MAP = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

DATA-ALLOCATION-MAP = *NO
The compiler does not generate a map listing.

When the value given in MAX-ERROR-NUMBER is reached, no further source program information will
be output in the source/error listing. In this case the listing can no longer be used as a reliable guide to
current error status.

i

 111

DATA-ALLOCATION-MAP = *YES(...)
The compiler generates a map listing (only for COMPILE).

STRUCTURE-LEVEL = *UNCHANGED / / *MAX / <integer 0..256>*NONE

*UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

*NONE

Structure elements are not included in the map listing.

*MAX

Only the structure elements up to a maximum nesting level (256) are included in the map listing.

<integer 0..256>

Only the structure elements up to the nesting level specified by <integer> are included in the map listing.
If a nesting level of 0 is specified, no structure elements are output (equivalent to STRUCTURE-
LEVEL=*NONE).

Structure elements are represented with indentation and bracketing {}. Elements with a nesting level of 16 or
higher are indented no further.

CROSS-REFERENCE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

CROSS-REFERENCE = *NO
The compiler does not create a cross-reference listing.

CROSS-REFERENCE = *YES(...)
The compiler creates a cross-reference listing (not for PREPROCESS). This listing always contains a FILETABLE
section with the names of all files, libraries, and elements that are used as sources by the compiler.
The cross-reference listing is created for each compilation unit, i.e. for the local module. If a global (multi-module)
cross-reference listing is required, the MODIFY-CIF-PROPERTIES statement can be used to create CIF information
for subsequent processing with the global listing generator.

PREPROCESSING-INFO = *YES / *NO

The cross-reference listing may optionally include a list of names processed by thepreprocessor.

TYPES = *UNCHANGED / *YES / *NO
The cross-reference listing may optionally include a list of user-defined types (typedefs, structure, union, class
and enumeration types).

VARIABLES = *UNCHANGED / / *NO*YES
The cross-reference listing contains a list of variables (can be suppressed with *NO).

FUNCTIONS = *UNCHANGED / / *NO*YES
The cross-reference listing contains a list of functions (can be suppressed with *NO).

 112

LABELS = *UNCHANGED / / *NO*YES
The cross-reference listing contains a list of labels (can be suppressed with *NO).

TEMPLATES = *UNCHANGED / *YES / *NO
The cross-reference listing optionally contains a list of templates (only for C++ V3 or C++ 2017 compilations).

ORDER = *UNCHANGED / / list-poss(6): *PREPROCESSING-INFO / *TYPES /*STD *VARIABLES /
 *FUNCTIONS / *LABELS / *TEMPLATES

This option specifies the order in which the individual parts of the cross-referencelisting are shown.
*STD

The default is the order shown after list-poss above.

PROJECT-INFORMATION = *UNCHANGED / *YES / *NO

*UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

*YES

The compiler creates a project listing (only for COMPILE) showing the names originally used in the source
program and corresponding names internally generated by the compiler for the linkage editor. This is important
especially in the case of C++ compilations because the generated names of functions also contain the types of
their parameters in code form.
The project listing is created for each compilation unit, i.e. for the local module. If a global (multi-module)
project listing is required, the MODIFY-CIF-PROPERTIES statement can be used to create CIF information for
subsequent processing with the global listing generator.

*NO

The compiler does not create such a list.

ASSEMBLER-CODE = *UNCHANGED / *YES / *NO

*UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

*YES

The compiler generates an object code listing (only for COMPILE).

*NO

The compiler does not create such a list.

SUMMARY = *UNCHANGED / *YES / *NO

*UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

*YES

The compiler creates a listing containing statistical data on the compiler run.

 113

*NO

The compiler does not create such a list.

LAYOUT =

This option can be used to define the page length (number of lines per page) and the page width (number of
characters per line) for the compiler listings.

If a line width of 120 characters is selected, all the listings will have narrower headers and footers. Text lines are
wrapped only in the table listings (option, cross-reference and map listings). Overlong text lines in the source,
preprocessor and object code listings may be truncated when the listings are printed.

When a BS2000 output file is specified, the first column of every line is reserved to control the line feed.
When the output is sent to a POSIX file, the appropriate POSIX control characters for line and page feeds are
generated. The result is that the line length in the POSIX output file is up to 3 characters larger than the selected
line width specification.

LAYOUT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

Listings in landscape format.

LAYOUT = (...)*FOR-NORMAL-PRINT

Listings in landscape format.

LINE-SIZE = *UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.
This also applies if that specification was made at *FOR-ROTATION-PRINT.

LINE-SIZE = *STD
132 characters per line are output.

LINE-SIZE = <integer 120..255>
120 to 255 characters per line are output.

LINES-PER-PAGE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.
This also applies if that specification was made at *FOR-ROTATION-PRINT.

LINES-PER-PAGE = *STD
64 lines per page are printed.

LINES-PER-PAGE = <integer 11..255>
11 to 255 lines are printed per page.
The lower limit is fixed at 11 lines so that at least the listing header and footer and one line of text can be
printed.

LAYOUT = *FOR-ROTATION-PRINT(...)
Listings in portrait format.
In order to print such listings, the ROTATION parameter must be specified in the PRINT-FILE command.

 114

LINE-SIZE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.
This also applies if that specification was made at *FOR-NORMAL-PRINT.

LINE-SIZE = *STD
120 characters per line are output.

LINE-SIZE = <integer 120..255>

120 to 255 characters per line are output.

LINES-PER-PAGE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.
This also applies if that specification was made at *FOR-NORMAL-PRINT.

LINES-PER-PAGE = *STD
84 lines per page are printed.

LINES-PER-PAGE = <integer 11..255>
11 to 255 lines are printed per page.
The lower limit is fixed at 11 lines so that at least the listing header and footer and one line of text can be
printed.

INCLUDE-INFORMATION = *UNCHANGED / *NONE* / ALL / *USER-INCLUDES-ONLY
This option is used to specify which header files (if any) are to be shown in the source, preprocessor and cross-
reference listings. By default, only the user-defined header files are shown, not the standard headers.

LISTING-PRAGMAS =
This operand controls which existing directives (if any) in the source text are to be interpreted when #pragma

creating source and preprocessor listings.
A description of directives can be found in the section .#pragma “Pragmas to control thelayout of listings”

LISTING-PRAGMAS = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LISTING-PRAGMAS = / *IGNORED*INTERPRETED
All directives are interpreted (*INTERPRETED) or ignored (*IGNORED).#pragma

LISTING-PRAGMAS = *SELECT(...)
One or more of the following directives to control listings are interpreted (*YES) or ignored (*NO).#pragma

PAGE = *UNCHANGED / *YES / *NO
Directive []:#pragma PAGE text
for a page feed and optional line in the listing header

TITLE = *UNCHANGED / *YES / *NO
Directive :#pragma TITLE text
for a line in the listing header

 115

SPACE = *UNCHANGED / *YES / *NO
Directive []:#pragma SPACE n
to insert blank lines

LIST = *UNCHANGED / *YES / *NO

Directive [] or [] :#pragma LIST ING ON #pragma LIST ING OFF

to suppress the output of source text lines

INITIAL-TITLE-TEXT = *UNCHANGED / / <c-string 1..256>*NONE
This operand can be used to specify if an additional line is to appear in the header of the listing and the text that is
to be entered in it. In contrast to pragmas, which only apply to source and preprocessor listings, the INITIAL-TITLE-
TEXT specification applies to all compiler listings.
In the case of source and preprocessor listings, TITLE and PAGE pragmas (if any) override the INITIAL-TITLE-
TEXT specification.

OUTPUT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

OUTPUT = *SYSLST
The listings are written to the temporary system file SYSLST by default and are sent from there to the printer at the
end of the task (at LOGOFF). Output to SYSLST is not supported in the modes C++ V3 and C++ 2017 and is
rejected with a corresponding error message.

OUTPUT = *SYSOUT
The listings are written to the system file SYSOUT, which is assigned to the terminal ininteractive mode. Output to
SYSLST is not supported in the modes C++ V3 and C++ 2017 and is rejected with a corresponding error message.

OUTPUT = *STD-FILE
The listings are written to a cataloged BS2000 file. The name of this file is derived from the name of the source
program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDLST.LST file.LST lib-elem.LST file.LST

If the source program is located in a PLAM library, the library and element name of the source are combined with a
hyphen (lib-elem) and used in the default file name. The rules by which the compiler constructs default names are
described in detail in the section .“Default names for output containers”

OUTPUT = *SOURCE-LOCATION
The output destination and name are derived from the location and name of the source program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Output destination BS2000 file BS2000 file Library of source Directory
of
source

Default name CSTDLST.LST file.LST elem.LST (type P) file.lst

 116

The rules by which the compiler constructs default names are described in detail in the section “Default names for
.output containers”

OUTPUT = <filename 1..54>
The listings are written to a cataloged BS2000 file with the specified name. Note that this specification is not
meaningful when compiling multiple source programs, since the file is overwritten in each case.

OUTPUT = <posix-pathname>
The listings are written to the POSIX file system.

Both a file name and a directory are permitted as <posix-pathname>. See "Compiler I/O in the POSIX file system (C
 for a description of the term <posix-pathname>./C++-Compiler, #18)"

When a file name is specified, the listings are stored under this name.

When a directory name is specified, the listings for each compiled source program are written under the default dir
name to the directory (see also section).sourcefile.lst dir “Defaultnames for output containers”

The directories specified with <posix-pathname> must already exist.
The specification of a file name is not meaningful when compiling multiple source programs, since the file is
overwritten in each case.

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=) under which the expanded
program is to be stored. The elements are stored as elements of type P.

LIBRARY = *STD-LIBRARY
The listings are written to the library SYS.PROG.LIB by default.

LIBRARY = *SOURCE-LIBRARY
The listings are written to the PLAM library which contains the source program.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a cataloged BS2000 file, a
POSIX file or via SYSDTA.

LIBRARY = <filename 1..54>
The listings are written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

A link name can also be specified instead of the library name. <filename> designates the link name of the
assigned library. This link name must already have been assigned to the PLAM library (with the ADD-
FILE-LINK command) before the compiler is called.

ELEMENT = (...)*STD-ELEMENT

By default, the element name of the listing is derived from the name of the sourceprogram as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDLST.LST file.LST elem.LST file.LST

The rules by which the compiler constructs default names are described in detail in the section “Default names for
.output containers”

 117

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is used by the compiler.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the highest existing version
number by 1, assuming that the highest existing version ID ends with a digit that can be incremented. If the
version ID cannot be incremented, the compiler run is aborted with an error message.
See the statement for an example.COMPILE

Warning: You may not specify *INCREMENT in the modes C++ V3 and C++ 2017.

VERSION = <composed-name 1..24 with-under>
The element is assigned the specified version.

ELEMENT = <composed-name 1..64 with-under>(...)
The listings are written to a library element (type P) with the specified name. Note that the specification of an
element name is not meaningful when compiling multiple source programs, since the element is overwritten in each
case.

VERSION = / *INCREMENT / *UPPER-LIMIT
 <composed-name 1..24 with-under>

The version can be specified as described above for
ELEMENT=*STD-ELEMENT(...).

Warning: You may not specify *INCREMENT in the modes C++ V3 and C++ 2017.

 118

3.2.2.14 MODIFY-MODULE-PROPERTIES

Alias: SET-MODULE-PROPERTIES

This statement is used to define the properties of the module to be generated.

MODIFY-MODULE-PROPERTIES

SHAREABLE-CODE= *UNCHANGED / / [*YES] (...)*NO

*YES(...)

| PUBLIC-SLICING=*UNCHANGED / / *NO*YES

,LINKAGE= *UNCHANGED / *ILCS-OUT / *ILCS-INLINE

,WORKSPACE= *UNCHANGED / / *TO-STACK*TO-STATIC-AREA

,SUBROUTINE-CALL= *UNCHANGED / / *LAB*BASR

,ETPND-GENERATION= *UNCHANGED / / [*YES] (...)*NO

*YES(...)

| DATE-FORMAT= *UNCHANGED / / *WITH-JULIAN-DATE*CALENDAR-DATE-ONLY

,LOWER-CASE-NAMES= *UNCHANGED / *YES / *NO

,SPECIAL-CHARACTERS= *UNCHANGED / / *KEEP*CONVERT-TO-DOLLAR

,STRING-LITERALS= *UNCHANGED / / *READ-ONLY*WRITEABLE

,CONSTANTS= *UNCHANGED / / *READ-ONLY*WRITEABLE

,C-NAMES= *UNCHANGED/ / *UNLIMITED / *SHORT*STD

,FP-ARITHMETICS= *UNCHANGED / / *IEEE-FORMAT*390-FORMAT

SHAREABLE-CODE =
This option controls whether or not the generated code is shareable.

SHAREABLE-CODE = *UNCHANGED
The settings of the last MODIFY-MODULE-PROPERTIES statement are used.

SHAREABLE-CODE = *NO
The compiler does not generate shareable code.
*NO is the default setting.

SHAREABLE-CODE = [*YES] (PUBLIC-SLICING = ...)
The compiler creates shareable code in the form of an LLM with a shareable code CSECT and a non-shareable
data CSECT.

PUBLIC-SLICING =
PUBLIC SLICING defines whether or not the object generated immediately after the attribute PUBLIC is
distributed in slices.

 119

*UNCHANGED

The settings of the last MODIFY-MODULE-PROPERTIES statement are used.

*YES

The object will be distributed in slices immediately after the attribute PUBLIC.*YES is the default setting.

*NO

The object is placed in a slice.

LINKAGE = *UNCHANGED / *ILCS-OUT / *ILCS-INLINE
Function calls in the generated module are handled via ILCS by default. This option can be used to specify whether
the ILCS entry code for function calls is to be directly inserted at the calling point ("inline”) or whether it is to be
accessed “out-of-line” in the runtime system.

*UNCHANGED

The settings of the last MODIFY-MODULE-PROPERTIES statement are used.

*ILCS-OUT

The ILCS entry code for function calls is accessed “out-of-line” in the runtime system. This reduces the volume
of code in the module.

*ILCS-INLINE

By default, the ILCS entry code is generated inline. This causes the generated object to execute faster.

WORKSPACE = *UNCHANGED / * / TO-STATIC-AREA *TO-STACK
This option affects some optimization steps of the compiler.

WORKSPACE =*UNCHANGED

*UNCHANGED

The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

*TO-STATIC-AREA

The following optimizations are performed by the compiler:

An auxiliary storage area is created in the static data area and supplied with constant values.

In the case of innermost functions (i.e. those without further calls), data that is only valid within the function
(auto variables) is not placed on the stack, but is stored together with the static data in the data module.

These optimization measures eliminate the need to maintain a separate stack for innermost functions and thus
reduce the function entry code, and consequently the runtime of the generated object.

*TO-STACK

The above optimizations are suppressed.

POSIX objects are always generated with PUBLIC-SLICING = *NO.
With very large programs it is a good idea to set PUBLIC-SLICING=*NO. This will avoid the use of the
long run times needed to read objects with slices.

i

 120

All data (doublewords for conversions as well as auto variables and tempos of innermost functions) is mapped
on the stack.
If a function includes conversions, some of the conversions may require a doubleword to be placed on the
stack and supplied dynamically (requiring an additional instruction) before each such conversion.

SUBROUTINE-CALL = *UNCHANGED / / *LAB *BASR
This option controls the implementation of subroutine entries via Assembler instructions.

*UNCHANGED

The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

*BASR

The BASR instruction is generated by default.

*LAB

The LAB entry generates the machine-independent Assembler instructions LAand B. Programs with this
instruction sequence are executable on all 7500 systems.

Warning: This option is not permitted in the modes C++ V3 and C++ 2017.

ETPND-GENERATION =
This option serves to delete the # directive used to generate an ETPND area (see pragma "ETPND pragma (C/C++-

) or to specify the date format of the ETPND area.Compiler, #94)"

ETPND-GENERATION = *UNCHANGED
The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

ETPND-GENERATION = *NO
By default, no ETPND area is created.

ETPND-GENERATION = *YES(...)

DATE-FORMAT = *UNCHANGED / / *WITH-JULIAN-DATE*CALENDAR-DATE-ONLY

*UNCHANGED

The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

*CALENDAR-DATE-ONLY

The date format in the ETPND area is assigned the form:8-byte calendar date - 4-byte load address.

*WITH-JULIAN-DATE

The following date format is generated in the ETPND area:6-byte calendar date - 3-byte Julian date - 4-
byte load address.

LOWER-CASE-NAMES = *UNCHANGED / / *YES *NO
This option for converting lowercase letters to uppercase affects all external symbols in the C language modes and
in the Cfront C++ mode, but only the symbols declared with in the modes C++ V3 and C++ 2017. extern "C"

When external C++ symbols are coded in the modes C++ V3 and C++ 2017, lowercase letters are always retained.

*UNCHANGED

 121

The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

*NO

By default, lowercase letters are converted to uppercase when generating entry names.

*YES

Lowercase letters are retained when generating entry names.

SPECIAL-CHARACTERS = *UNCHANGED / / *KEEP*CONVERT-TO-DOLLAR

This option for converting the underscore affects all external symbols in the C language modes, but only the
symbols declared with directives (not the entry names of the C library functions) in the C++ language extern "C"

modes. When external C++ symbols are coded, underscores are always retained.

*UNCHANGED

The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

*CONVERT-TO-DOLLAR

By default, underscores are converted to dollar signs when generating entry names.

*KEEP

Underscores are retained when generating entry names.

Notes on LOWER-CASE-NAMES and SPECIAL-CHARACTERS

The (default) conversion of lowercase to uppercase and of underscores to dollar signs is required whenever
the generated LLM is to be linked with objects in which the entry names have been converted accordingly.
These are:

Object modules.

LLMs generated with the C V2.0 compiler.

LLMs generated with the C/C++ compiler, in cases where the entry names were converted accordingly.

Objects created with other language translators (e.g. COBOL, ASSEMBLER).

The C library functions are only available in full when the options LOWER-CASE-NAMES and SPECIAL-
CHARACTERS are present in one of the following combinations:

SPECIAL-CHARACTERS=*CONVERT-TO-DOLLAR and
LOWER-CASE-NAMES=*NO

SPECIAL-CHARACTERS=*KEEP and LOWER-CASE-NAMES=*YES

STRING-LITERALS = *UNCHANGED / / *READ-ONLY*WRITEABLE
This option determines whether string literals (e.g. "abc") are placed in the data module (*WRITEABLE) or in the
code module (*READ-ONLY).

CONSTANTS = *UNCHANGED / / *READ-ONLY*WRITEABLE
This option determines whether constants (i.e. objects declared with the qualifier) are stored in the data const

module (*WRITEABLE) or the code module (*READ-ONLY).

 122

C-NAMES = *UNCHANGED / / *UNLIMITED / *SHORT*STD
This option determines the length of external C names and affects all external symbols in the C language modes
and only the symbols declared in the C++ language modes (not the entry names of C library extern "C"

functions).
This option also works with static functions.

*UNCHANGED

The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

*STD

By default, external C names can have a maximum length of 32 characters. Longer names are truncated by
the compiler to 32 characters. When generating shareable code, only 30 characters may be used.

*UNLIMITED

No name truncation occurs. In this case, the compiler generates entry names in EEN format. EEN names can
have a maximum length of 32000 characters. Modules containing EEN names are stored by the compiler in
LLM Format 4. More details on the subsequent processing of LLMs in Format 4 can be found under the
OUTPUT-FORMAT option of the statement.BIND
The *UNLIMITED value is not supported in the Cfront C++ mode.

*SHORT

External C names are truncated by the compiler to 8 characters, which corresponds to the handling of external
names within object modules. This option is required if external names exceeding 8 characters in length are
used in the program and if the module generated by the C/C++ compiler is to be linked with object modules
that were created with the earlier C/C++ compilers or with compilers for other ILCS languages (e.g. COBOL85).

FP-ARITHMETICS = *UNCHANGED / / *IEEE-FORMAT*390-FORMAT
This option determines whether the C/C++ compiler generates floating-point numbers and operation codes in /390
format or IEEE format. This option effects all variables and constants of the float, double, and long double data
types in C/C++ programs.

*UNCHANGED

The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

*390-FORMAT

The C/C++ compiler creates code for constants and operationsin the /390 format (/390 floating-point
arithmetics).
*390-FORMAT is the default setting.

*IEEE-FORMAT

The C/C++ compiler creates code for constants and operations in IEEE format (IEEE floating-point arithmetics).

Important!

There are no precautions when binding objects which have been compiled with different floating-point
arithmetics. This characteristic can lead to unexpected results when these programs are run.

 123

The same C/C++ program can produce different results depending on whether the IEEE format or the /390
format is used for floating-point data types and operations. The reasons for this are as follows:

IEEE floating-point numbers use a different internal notation from /390 floating-point numbers.

An IEEE has the same size and representation as a . The layout of structures with a long double double

 therefore depends on this option.long double

IEEE floating-point operations use different semantics from /390 floating-point operations even on the same
type of operation. This is the case for example in rounding. IEEE format uses "Round to Nearest" as default
whereas /390 format uses "Round to Zero" as default.

Requirements:

If you are using IEEE floating-point arithmetics, you must not declare the C library functions explicitly in your
source program. C library functions should be declared indirectly by including the corresponding CRTE headers
(see the "C Library Functions" manual []). Otherwise compilation error ‘CFE1079[ERROR]..: Typangabe 2
erwartet /expected a type specifier‘ can occur.

For CRTE function that works with floating-point numbers in your program, you must use the each and every
corresponding or matching include file. If you do not do this, the CRTE functions will not be able to process the
floating-point numbers correctly. You should ensure that you include the include file <stdio.h> for the function

 with .printf() #include <stdio.h>

Important!

C++ library functions do no support the IEEE format and must therefore be replaced with C functions where
necessary.

In the CRTE runtime environment, some C library functions use the IEEE format for floating-point arithmetics. If
you are using the IEEE floating-point arithmetics, you should specify the MODIFY-MODULE-PROPERTIES
statement as follows:

MODIFY-MODULE-PROPERTIES -
 ...
 FP-ARITHMETICS=*IEEE-FORMAT, -
 LOWER-CASE-NAMES=*YES, -
 SPECIAL-CHARACTERS=*KEEP, -
 ...

 124

3.2.2.15 MODIFY-OPTIMIZATION-PROPERTIES

Alias: SET-OPTIMIZATION-PROPERTIES

This option can be used to activate or deactivate some or all of the optimizations performed by the compiler.
For more details on the effects of optimization, see the section starting on "The optimization process (C/C++-

.Compiler, #49)"

MODIFY-OPTIMIZATION-PROPERTIES

LEVEL= *UNCHANGED / *LOW / (...) / *VERY-HIGH(...)*HIGH

*HIGH(...) / *VERY-HIGH(...)

| ,LOOP-UNROLLING= *UNCHANGED / *NO / [](...)*YES

| *YES(...)

| | FACTOR= / <integer 1..100>4

,INLINING= *UNCHANGED / *NO / [*YES](...)

*YES(...)

| USER-FUNCTIONS= *UNCHANGED / list-poss(127): / *BY-SOURCE *STD /

| <c-string 1..255 with-low>

,BUILTIN-FUNCTIONS= *UNCHANGED / / *ALL / list-poss(11): <c-string 1..125 with-low>*NONE

LEVEL = *UNCHANGED
The value specified in the last MODIFY-OPTIMIZATION-PROPERTIES statement applies.

LEVEL = *LOW
With this optimization level, no standard optimizations are performed, so debugging with AID is possible.
LEVEL=*LOW is automatically set instead of the *HIGH or *VERY-HIGH specification when the TEST-
SUPPORT=*YES option has also been set.

LEVEL = (...) / *VERY-HIGH(...)*HIGH
If *HIGH or *VERY-HIGH is specified, all standard optimizations are performed (see “Standard optimizations (The

”). The only difference between these two levels is the fact that every optimization strategy is optimization process)
internally executed only once for *HIGH, but several times for *VERY-HIGH. Consequently, if the “highly-optimized”
level *VERY-HIGH is set, the overall compile time is much greater than the compile time for the *HIGH optimization
level.

The parameters of the *HIGH or *VERY-HIGH structure can be used to individually control the expansion of loops.
Debugging with AID is not possible with this optimization level.

LOOP-UNROLLING = *UNCHANGED / *NO / *YES(FACTOR = /<integer 1..100>...)4

This option controls the expansion of loops. Multiple expansion of the body of a loop reduces the execution
time for the iterations of the loop. Expanding the body of the loop provides an opportunity for further
optimization; however, the repetition of code also implies an increase in the size of the generated object.

 125

1.

2.

By default, the optimizer expands the body of a loop 4 times.

Where required, a separate expansion factor can be selected with <integer>. Specifying an expansion
factor does not, however, ensure that the loop expansion will be carried out in all cases. In order to ensure
that the expansion is carried out correctly, you should concentrate on optimizing the loop structure and the
specified expansion factor.

Loop expansion can be suppressed with *NO.

For further details, see .“Expansion of loops” (The optimization process)

INLINING =
This option controls the inline substitution of user-defined functions. As in the case of the inline substitution of some
C library functions from the standard library (see BUILTIN-FUNCTIONS), each call to an inline function is replaced
by the corresponding function code. Consequently, no call and return code sequence is required, and better
execution time is achieved. This optimization measure is, however, associated with an increase in the size of the
generated module due to the repetition of code.

For further details, see the section on .“Inline substitution of user-defined functions” (The optimization process)

Standard settings of the compiler

If the INLINING option is not specified, the following default settings apply for the C and C++ language modes,
respectively:

C modes (MODIFY-SOURCE-PROPERTIES LANGUAGE=*C):

INLINING=*NO
No inline substitution is performed.

C++ modes (MODIFY-SOURCE-PROPERTIES LANGUAGE=*CPLUSPLUS):

INLINING=*YES(USER-FUNCTIONS=*BY-SOURCE)
Inline substitution is performed for all C++-specific inline functions (i.e. functions with the attribute and inline

member functions defined within classes).

INLINING = *UNCHANGED
The value specified in the last MODIFY-OPTIMIZATION-PROPERTIES statement applies.

INLINING = *NO

No user-defined functions are generated inline by the optimizer. *NO is the default setting in the C language modes
if no INLINING option has been specified.
In addition, *NO is also automatically assumed by the compiler instead of *YES(...) values if the option TEST-
SUPPORT=*YES has also been set.

INLINING = *YES(USER-FUNCTIONS = *UNCHANGED / list-poss: / *BY-SOURCE / <c-string 1..255 with- *STD
low>)

*UNCHANGED

The value specified in the last MODIFY-OPTIMIZATION-PROPERTIES statement applies.

*STD

 126

If only *STD is specified, the optimizer selects functions for inline substitution on the basis of its own criteria.
*STD implies *BY-SOURCE, which means that even inline pragmas and C++-specific inline functions are
considered by the optimizer when searching for suitable candidates to be inlined (see also *BY-SOURCE).
*STD is the default when INLINING=*YES is specified.

*BY-SOURCE

If only *BY-SOURCE is specified, only the following user-defined functions are substituted inline:

In the C modes: all C functions specified with the following directive:#pragma #pragma inline function-
name
The inline pragma is not supported in the C++ language modes.
See also section .“inline pragma”

In the C++ modes: all C++ functions with the attribute and all C++ functions defined within classes.inline

*BY-SOURCE is the default in the C++ language modes if no INLINING option is specified.

<c-string>

<c-string> can be used to specify the name of a user-defined function to be inlined by the optimizer. The
specification of user-selected functions with <c-string> is only supported in the C language modes, since C++
has its own language elements for the inline substitution of functions. <c-string> implies the specification of
*BY-SOURCE, which means that even inline pragmas are considered by the optimizer (see also *BY-
SOURCE in the C modes).

list-poss

*STD, <c-string> and - for compatibility reasons - even *BY-SOURCE may also be specified together, in which
case the optimizer will first attempt the inline substitution of the function(s) specified with *BY-SOURCE and/or
<c-string> and then select other functions for inline substitution (provided *STD is also specified) according to
its own criteria. Note that *BY-SOURCE need not be specified here, since it is implicitly assumed whenever
*STD or <c-string> is specified at the same time.

The meaningful combinations are therefore:

*STD, <c-string>
<-c-string>, <c-string>, ...

Example of the INLINING option

//MODIFY-OPTIMIZATION-PROP -
//LEVEL=*HIGH,INLINING=*YES(USER-FUNCT=(*STD,’funct1’,’funct2’))

See for further details.“Inline substitution of user-defined functions” (The optimization process)

BUILTIN-FUNCTIONS = *UNCHANGED / / *ALL /list-poss: <c-string 1..125 with-low>*NONE

This option can be used to specify the C library functions for which the implementation in the CRTE can be
assumed. This permits better optimization of the program.

 127

*UNCHANGED

The value specified in the last MODIFY-OPTIMIZATION-PROPERTIES statement applies.

*NONE

No library function call is specially optimized.

*ALL

All calls for known library functions are handled separately.

<c-string>

Calls for this function are handled separately.

The compiler achieves the greatest effect through inline substitution of a function. In this case the function code is
directly inserted at the point of call. This eliminates some of the time-consuming administrative tasks of the runtime
system (e.g. saving and restoring registers, return from the function, etc.) and thus reduces the overall execution
time of the program.

The following C library functions can be expanded inline:.

strcpy

strcmp

strncmp

strlen

strcat

memcpy

memcmp

memset

abs

fabs

labs

Notes

Inlined functions cannot be replaced by other functions at link time and cannot be used as checkpoints when
debugging with AID.

Non-inlined functions are retained as a call. However, optimizations are possible which cannot be achieved in the
user functions. For example, the compiler can use the information that the function has no side isdigit()

effects.

If a function is defined by the user with a name which the compiler knows, conflicts can occur with this option.
The function written by the user will generally have a different implementation from the function in the CRTE.
Warning CFE2067 is issued instead of the definition in order to indicate the conflict.

Note that the features of the CRTE implementation are used in every compilation unit. However, the warning is
only output in the compilation unit containing the private definition.

The default settings of the MODIFY-OPTIMIZATION-PROPERTIES statement and possible modifications are
repeated in summarized form in the table below.

*HIGH(...) / *VERY-HIGH(...) *LOW

Standard optimizations *YES *NO

 128

LOOP-UNROLLING *YES
(controllable)

*NO

BUILTIN-FUNCTIONS *NONE
(controllable)

INLINING (in C) *NO
(controllable)

INLINING (in C++) *YES(USER-FUNCTIONS=*BY-SOURCE)
(controllable)

 129

1.

2.

3.

3.2.2.16 The optimization process

In the description that follows, the term “standard optimizations” is used to collectively refer to all optimization
measures that can only be activated or deactivated globally, i.e. which cannot be controlled individually.

In contrast to the standard optimizations, some optimization steps such as loop expansion, and inlining can be
individually controlled. Selective control is provided in these cases because, among other things, the benefits of
such optimization (e.g. quicker execution times) may need to be weighed against other disadvantages (e.g. an
increase in the size of the generated module or longer compilation times).
In some cases, setting the LOOP-UNROLLING and INLINING options may actually degrade performance. It is
therefore advisable to determine the best settings for eachapplication by running some tests.

Standard optimizations

The C++ compiler performs the following optimizations:

evaluation of constant expressions at compile time

optimization of subscript computation in loops

elimination of superfluous assignments

propagation of constant expressions

elimination of redundant expressions

optimization of branches to unconditional branch instructions

The term “base block” is fundamental to the concept of optimization and refers to a maximum, unbranched
command sequence. Such a command sequence has precisely one entry point and one exit.
Base blocks are the units via which most optimization steps with the C++ compiler are implemented.

Evaluation of constant expressions at compile time

By evaluating expressions for which operand values are known during compilation, the execution of commands
is relocated from the program run to the compiler run. Consequently, the program executes faster.
Evaluations at compile time involve integer arithmetics and relational operations.

Example

Before optimization

I = 1 + 2;

I = 2 * 4;

1 <= 5;

After optimization

I = 3;

I = 8;

<TRUE>

Elimination of superfluous assignments

If an assignment to a variable v is followed by a change in the value of v without the original value ever being
used, this assignment is eliminated. Assignments to variables whose values are of no further consequence to
the program run are also eliminated.

Example

Before optimization

i = 5;

i = 3;

After optimization

i = 3;

Propagation of constant expressions

 130

3.

4.

5.

6.

a.

If a variable whose value is already known at the time of compilation is used in an expression, this variable will
be replaced by the appropriate value.

Example

Before optimization

a = 3;

i = a;

After optimization

a = 3;

i = 3;

This optimization also has a bearing on other optimization techniques. After the successful propagation of a
variable, the original assignment may be deleted, or a new constant expression that has already been
evaluated at compile time may appear.

Elimination of redundant expressions

If the value of an expression occurring within a base block is already known at the time of compilation as a
result of an earlier calculation, then this expression is redundant. To avoid a repeat calculation, the expression
is assigned to a new variable and replaced by this new variable wherever it occurs.

Example

Before optimization

a = b * c + 20;

e = b * c - 10;

After optimization

h = b * c;

a = h + 20;

e = h - 10;

Optimization of subscript computation in loops

If an array element is subscripted in a loop via an iteration variable, the multiplication required in order to
compute the address of the array element is reduced to additions.As a rule, the address of the array element is
calculated as

base address + index * length of an array element

Before entering a loop, the optimizer supplies an address variable with the address of the array element that
was referenced during the first iteration. With every following iteration, this address variable is then incremented
with a fixed length of one array element.

This optimization technique is especially rewarding in the case of multidimensional arrays, since one
multiplication step can be eliminated per dimension under optimum conditions.

Optimization of branches to unconditional branch instructions

In branch instructions that have an unconditional branch as their destination, the branch address of the
unconditional branch is substituted for the original branch address. This also helps eliminate superfluous code, i.
e. code which specifies addresses that cannot be accessed.

Example

Before optimization

 goto lab1;
 ...
lab1:
 goto lab2;
 ...
lab2:

After optimization

 goto lab2;
 ...
lab1:
 goto lab2;
 ...
lab2:

 131

Inline substitution of user-defined functions

The inline substitution of a function eliminates the need to call the function at runtime, since the function code is
integrated into the source code at the point of call. This reduces the administrative overhead and code required for
function calls and returns (e.g. saving and restoring registers, allocating stacks, writing parameters to the transfer
area, etc.) and can thus produce substantial savings in execution time. In addition, the inlining of functions
enhances the effect of the standard optimizations due to the larger context.
Inlined functions are deleted.static

Inline substitution does, however, increase the size of the generated modules. It may produce extremely large
functions with an increasing number of variables as potential recipients of registers that cannot all be supplied due
to the limited number of registers available. This fact must be weighed against the advantages of this method of
optimization.

Inline substitution is particularly suitable for small functions where the overhead for the function call and return
constitutes a substantial part of the actual function code.

Functions with the following attributes can never be expanded inline:

functions with a variable number of parameters (cf. va_... macros in <stdarg.h>)

functions containing setjmp calls

recursive functions

Expansion of loops

Loop expansion reduces the number of iterations in a loop by repeating, i.e. “expanding” the body of the loop
(statement block) one or more times. Since each iteration of a loop requires loop control statements to test the
value of the current iteration and to branch accordingly, a reduction in the number of iterations also improves
execution time.

For example, if the body of a loop is doubled (expansion factor 2), the overhead for loop control statements is
reduced by half. In general, the following rule applies: an expansion factor of reduces the overhead for loop n
control statements to 1/ .n
The size of the generated module is, however, increased by the repetition of code. By default, the optimizer uses an
expansion factor of 4.

Expanding the body of a loop also creates the potential for new optimization. For example, the extended base
blocks can be made more efficient by the propagation of constant expressions or the elimination of redundant
expressions.

Example of a loop expansion with expansion factor 4

Before expansion:

i = 0;
while(i < 80) {
 a[i] = b[i+1];
 i++;
 }

After expansion:

 132

i = 0;
while(i < 80) {
 a[i] = b[i+1];
 i++;
 if(!(i < 80)) goto end;
 a[i] = b[i+1];
 i++;
 if(!(i < 80)) goto end;
 a[i] = b[i+1];
 i++;
 if(!(i < 80)) goto end;
 a[i] = b[i+1];
 i++;
 }
end:

Optimizations in the body of the loop are also possible here.

 133

3.2.2.17 MODIFY-RUNTIME-PROPERTIES

Alias: SET-RUNTIME-PROPERTIES

This statement can be used to influence runtime behavior when compiling the module containing the function. main

When compiling other modules these settings have no effect.

MODIFY-RUNTIME-PROPERTIES

PARAMETER-PROMPTING= *UNCHANGED / *YES / *NO

,STACK-SIZE= / *UNCHANGED / <integer 8..99999>64

,STATISTIC-MESSAGES= *UNCHANGED / / *NONE*CPU-TIME

,PROGRAM-INTERRUPT= *UNCHANGED / / *NONE*INTEGER-OVERFLOW

, = *UNCHANGED / / *EBCDICENVIRONMENT-ENCODING *STD

PARAMETER-PROMPTING = *UNCHANGED / *YES / *NO
*YES: The executable program is to simulate the UNIX environment, in other words:

the program with parameters can be called using START-EXECUTABLE-PROGRAM, or

a parameter line should appear after the program is started to allow the input of parameters for the function main

or redirection of , t or (see also).stdin stdou stderr section“Parameter input at program start”

*NO: The executable program is started without the parameter line being requested.

If the program is started from the POSIX shell, the entries in the
PARAMETER-PROMPTING option will be meaningless, since
parameters are always entered from the command line in this case.

STACK-SIZE = / *UNCHANGED / <integer 8..99999>64
This option can be used to determine the amount of space to be reserved for the first segment of the C runtime
stack.
64: The default value is 64 kilobytes.
<integer>: Between 8 and 99999 kilobytes of storage space can be reserved.

STATISTIC-MESSAGES = *UNCHANGED / / *NONE*CPU-TIME
When a program is terminated, the CPU time used is reported by default. This message can be suppressed by
specifying *NONE.

PROGRAM-INTERRUPT = *UNCHANGED / / *NONE*INTEGER-OVERFLOW

This operand can be used to set the program mask when compiling programs that contain the functionmain

*INTEGER-OVERFLOW corresponds to the ILCS program mask X’0C’.

*NONE corresponds to the program mask X’00’.

This option does not affect the selection of generated commands. The result is that permitting INTEGER-
OVERFLOWs does not necessarily mean that an overflow is triggered in all cases.

i

 134

The effects of these two program masks are as follows:

INTEGER-OVERFLOW NONE

fixed-point overflow permitted suppressed

decimal overflow permitted suppressed

exponent overflow suppressed suppressed

null mantissa suppressed suppressed

ENVIRONMENT-ENCODING = *UNCHANGED / / *EBCDIC*STD
These options controll the manner in which external strings (arguments of and environment variables) are main

handled.
*STD is the default value. This causes the external strings to be coded in the manner specified in the MODIFY-
SOURCE-PROPERTIES LITERAL-ENCODING option.
The *EBCDIC option is offered for reasons of compatibility and causes external strings to be coded in EBCDIC even
when MODIFY-SOURCE-PROPERTIES=*ASCII or *ASCII-FULL is specified.

No changes in the ILCS program mask are permitted if mixed languages are used!i

 135

3.2.2.18 MODIFY-SOURCE-PROPERTIES

Alias: SET-SOURCE-PROPERTIES

This statement can be used to define the properties of a source program and to control the behavior of the
preprocessor and the C and C++ frontends.

MODIFY-SOURCE-PROPERTIES

/* Options to select the language mode */

LANGUAGE= *UNCHANGED / *C(...) / (...)*CPLUSPLUS

*C(...)

| MODE= *UNCHANGED / / *1990 / *2011 / *LATEST

*KERNIGHAN-RITCHIE

| STRICT = *UNCHANGED / / *YES*NO

*CPLUSPLUS(...)

MODE= *UNCHANGED / / *2017 /*LATEST

*V2-COMPATIBLE / *V3-COMPATIBLE

| STRICT = *UNCHANGED / / *YES*NO

/* Preprocessor options */

,DEFINE= / *UNCHANGED / list-poss: <c-string 1..125 with-low> / <name 1..125 with-under> /*NONE

*SUBSTITUTE(...)

*SUBSTITUTE(...)

| IDENTIFIER= <c-string 1..125 with-low> / <name 1..125 with-under>

| ,TOKEN-STRING= <c-string 1..125 with-low> / <name 1..125 with-under>

,UNDEFINE= / *UNCHANGED / *ALL / list-poss: <c-string 1..125 with-low> /*NONE

<name 1..125 with-under> /

,ASSERT= / *UNCHANGED / list-poss: *SUBSTITUTE(...)*NONE

*SUBSTITUTE(...)

| IDENTIFIER= <c-string 1..125 with-low> / <name 1..125 with-under>

| ,TOKEN-STRING= <c-string 1..125 with-low> / <name 1..125 with-under>

,PREINCLUDE= *UNCHANGED / / <c-string 1..1024 with-low>*NONE

,COMMENTS= *UNCHANGED / *YES / *NO

,PREPROCESSING-MODE= *UNCHANGED / / *KR*ANSI

 136

,IMPLICIT-INCLUDE= *UNCHANGED / / *NO*YES

/* Common frontend options in C and C++ */

,SIGNED-CHARACTER= *UNCHANGED / *YES / *NO

,AT-ALLOWED= *UNCHANGED / / *NO*YES

,DOLLAR-ALLOWED= *UNCHANGED / / *NO*YES

,ENUM-TYPE= *UNCHANGED / / *LONG*VALUE-DEPENDENT

,SIGNED-FIELDS= *UNCHANGED / / *UNSIGNED*SIGNED

,PLAIN-FIELDS= *UNCHANGED / / *UNSIGNED*SIGNED

,PRESERVING= *UNCHANGED / / *LONG*UNSIGNED

,ALTERNATIVE-TOKENS= *UNCHANGED / *YES / *NO

,EXTERNAL-DEFINITION= *UNCHANGED / / *UNIQUE /*BY-SOURCE-LANGUAGE

*MULTIPLY-ALLOWED

,LONGLONG= *UNCHANGED / / *NO*YES

,END-OF-LINE-COMMENTS= *UNCHANGED / *YES / *NO

,LITERAL-ENCODING= *UNCHANGED / / *ASCII / *ASCII-FULL / *EBCDIC / *EBCDIC-FULL*NATIVE

/* C++ specific options */

,INSTANTIATION= *UNCHANGED / *NONE / / *LOCAL / *ALL*AUTO

,USE-STD-NAMESPACE= *UNCHANGED / *YES / *NO

,USE-STD-NAMESPACE= *UNCHANGED / *YES / *NO

,KEYWORD-BOOL= *UNCHANGED / *YES / *NO

,KEYWORD-WCHAR= *UNCHANGED / *YES / *NO

,LOOP-INIT= *UNCHANGED / *OLD / *NEW

, = *UNCHANGED / *OLD / *NEWSPECIALIZATION

Options to select the language mode

LANGUAGE =
This option specifies in which programming language (C or C++) the sources to be compiled were written.
The default setting of the compiler is LANGUAGE=*CPLUSPLUS(MODE=*LATEST, STRICT=*NO).

LANGUAGE = *C(...)
The source program is a C program.

MODE = *UNCHANGED / / *1990 / *2011 / *KERNIGHAN-RITCHIE*LATEST

 137

The operand MODE determines the language mode:

*UNCHANGED:

The value specified in the last MODIFY-SOURCE-PROPERTIES statement with LANGUAGE=*C applies.

*LATEST:

This is a short cut for latest supported standard. It is the default setting. It is currently mapped to *2011.
.This mapping might change in a future compiler version

*1990:

C89 mode
The compiler supports C code, as defined in the ANSI-/ISO-C standard from 1990. The same standard is
also known as ANSI C89.
This value corresponds to the specification *ANSI resp. *STRICT-ANSI of the C/C++ V3 compiler.

__STDC_VERSION__ has the value 199409L.

*2011:

C11 mode
The compiler supports C code, as defined in the C-standard of 2011.

 has the value 201112L.__STDC_VERSION__

*KERNIGHAN-RITCHIE:

K&R-C-mode
The compiler accepts C code, as defined by Kernighan&Ritchie in the reference manual ("The C
Programming Language", First Edition). It also supports C language elements of the ANSI C standard
that are semantically identical to the Kernighan&Ritchie "definition" of the C language (e.g. function
prototypes, ,). This simplifies the conversion of a K&R C source to ANSI C. All C library const volatile

functions of the CRTE (i.e. ANSI functions, POSIX and X/OPEN functions, UNIX extensions) are
available for use.
As far as the preprocessor behavior is concerned, ANSI/ISO C is the default. If desired, the option

=*KR can be specified to convert the preprocessor behavior to K&R C (as PREPROCESSING-MODE
required when porting old C sources from a UNIX system, for example).

__STDC_VERSION__ is not defined. The operand STRICT has no effect, i.e. STRICT=*NO always

applies.

STRICT = *UNCHANGED / / *YES*NO
:*NO

Some required diagnostics are omitted, the name space is not restricted to names that are specified by
the standard and some extensions are included.

 has the value 0, is not defined.__STDC__ _STRICT_STDC

*YES:

The namespace is restricted to the names defined in the standard, and only the C library functions
defined in the ANSI/ISO standard are available. Certain extensions (such as the asm keyword) and some
commonly expected header file declarations are not available

 138

Deviations from the standard result in compiler messages (mostly warnings). If desired, the output of
errors can be forced in such cases by specifying the option ANSI-VIOLATIONS=*ERROR (see "MODIFY-

).DIAGNOSTIC-PROPERTIES"

__STDC__ has the value 1, is defined._STRICT_STDC

LANGUAGE = (...)*CPLUSPLUS
The source program is a C++ program. This is also the default setting of the compiler before the programming
language is defined for the first time with the LANGUAGE option.

MODE = *UNCHANGED / / *2017 / *V2-COMPATIBLE / *V3-COMPATIBLE*LATEST
The operand MODE determines the language mode:

*UNCHANGED:

The value specified in the last MODIFY-SOURCE-PROPERTIES statement with
LANGUAGE=*CPLUSPLUS applies.

*LATEST:

This is a short cut for latest supported standard. It is the default setting. It is currently mapped to *2017.
.This mapping might change in a future compiler version

*2017:

C++ 2017 mode
The compiler supports C++ code, as defined in the C++-standard of 2017.

 has the value 201703L and the value .__cplusplus __STDC_VERSION__ 199409L

*V2-COMPATIBLE:

Cfront-C++ mode
The compiler supports the C++ language elements of Cfront V3.0.3. Cfront V3.0.3 was first released with
the C++ compiler V2.1.
The Cfront compatible C++ library with complex math and stream-oriented I/O is available.
More information on the Cfront C++ library can be found in the section .“The Cfront C++library”
C++ sources must be compiled with MODE=*V2-COMPATIBLE if their modules are to be linkable with
C++ V2.1/V2.2 modules.

This value corresponds to the specification *CPP of the C/C++ V3 compiler.

__cplusplus has the value 1 and the value 199409L. The operand __STDC_VERSION__ STRICT has

no effect, i.e. STRICT=*NO always applies.

*V3-COMPATIBLE:

C++ V3 mode
The compiler supports C++ code like the C/C++ compiler version 3.2.

This value corresponds to the specification *ANSI resp. *STRICT-ANSI of the C/C++ V3 compiler.

__cplusplus has the value 2 (if STRICT=*NO) resp. 199612L (if STRICT=*YES) and

 __STDC_VERSION__ has the value 199409L.

STRICT = *UNCHANGED / / *YES*NO

 139

*NO:

Some required diagnostics are omitted, the name space is not restricted to names that are specified by
the standard and some extensions are included.

 has the value 0, is not defined.__STDC__ _STRICT_STDC

*YES:

The namespace is restricted to the names defined in the standard, and only the C library functions
defined in the ANSI/ISO standard are available. Certain extensions (such as the asm keyword) and some
commonly expected header file declarations (stdio.h, stdlib.h etc.) are not available.

Deviations from the standard result in compiler messages (mostly warnings). If desired, the output of
errors can be forced in such cases by specifying the option ANSI-VIOLATIONS=*ERROR (see "MODIFY-

).DIAGNOSTIC-PROPERTIES"

__STDC__ has the value 1, is defined._STRICT_STDC

Preprocessor options

DEFINE = *NONE
Only the names and values that are specified by directives in the program or are predefined by the #define

compiler are considered valid for the current compiler run.

DEFINE = *UNCHANGED
The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

DEFINE = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> is used to define a name. This definition has the same effect as the following statement in a
program:

#define name 1

Such names are queried in the program with, for example, the preprocessor directives , or #ifdef #ifndef #if

, . See also the example below. When POSIX library functions are used, the defined() #if ! defined()

_OSD_POSIX directive must be set before the occurrence of the first directive in the program. The #include

easiest way to do this is by means of a definition at the time of compilation.

DEFINE = *SUBSTITUTE(...)
This substructure is used to define macros and symbolic constants (analogous to a directive for replacing #define

text). See also the example below.

IDENTIFIER = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> designates the name to be replaced in the source program by the value or text specified
with TOKEN-STRING.

TOKEN-STRING = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> specifies the value or text to be substituted in the source program for the name indicated
by IDENTIFIER.

Note

If data in the DEFINE option is inconsistent with any directives in the source program, the entries in #define

the source program will always be given precedence!

 140

Example: DEFINE option

MODIFY-SOURCE-PROP DEFINE=('mch_file',DEBUG,_OSD_POSIX,*SUB('host',BS2000),*SUB

(LAN,'C++'))

Values set with DEFINE must be enclosed in single quotes if they contain characters other than uppercase A to Z,
the digits 0 to 9, or the special characters $, #, @, and _ (see also the table on "SDF notational conventions (C/C++-

).Compiler, #8)"

The above entries in the DEFINE option correspond to the following directives in the source program:#define

#define mch_file 1
#define DEBUG 1
#define _OSD_POSIX 1
#define host BS2000
#define LAN C++

UNDEFINE = *NONE
The DEFINE entries (see above) remain unmodified by default.

UNDEFINE = *UNCHANGED
The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

UNDEFINE = *ALL
All DEFINE entries are deleted.

UNDEFINE = <c-string 1..125 with-low> / <name 1..125 with-under>

The names specified with DEFINE <c-string> / <name> are deleted.

ASSERT = *NONE / *UNCHANGED / list-poss: *SUBSTITUTE(...)
This option can be used to define an assertion, as if by a preprocessor directive (see #assert "Extensions to ANSI

)./ISO C "

ASSERT= *SUBSTITUTE(...)

IDENTIFIER = <c-string 1..125 with-low> / <name 1..125 with-under>

<c-string> / <name> designates the name of the assertion.

TOKEN-STRING = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> specifies the value or text to be substituted for the assertion designated by IDENTIFIER.

PREINCLUDE = *UNCHANGED / / <c-string 1..1024 with-low>*NONE
The pre-include option specifies an include file which is to be included at the start of the source program via an
imaginary #include statement. The preprocessor searches for this include file in the USER-INCLUDE paths.

The include file specified via the PREINCLUDE option will be handled like an include file which is specified inside
an #include statement at the beginning of the source program.

If several include files are to be pre-included then the corresponding #include statements should be collected
together in a single include file and this include file should then be specified via the PREINCLUDE option.

 141

COMMENTS = *UNCHANGED / *YES / *NO
This option can be used to specify whether the expanded and recompilable source program created by the
preprocessor may also contain comments.

PREPROCESSING-MODE = *UNCHANGED / / *KR*ANSI

*UNCHANGED

The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

*ANSI

This is the default setting in all C and C++ language modes of the compiler. Inother words, preprocessor
behavior in accordance with the ANSI/ISO C standard is also supported in the K&R C mode by default.

*KR

The obsolete preprocessor behavior based on Reiser s cpp and Johnson s pcc can be turned on with *KR.

IMPLICIT-INCLUDE = *UNCHANGED / / *NO*YES
This option only affects C++ templates. It determines whether or not the definition of a template is included implicitly
(see the).section “Implicit inclusion”

Common frontend options in C and C++

SIGNED-CHARACTER = *UNCHANGED / *YES / *NO

*UNCHANGED

The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

*NO: The data type is by default.char unsigned

*YES: is treated as a in expressions and conversions.Note that the use of this option may char signed char

result in portability problems!

AT-ALLOWED = *UNCHANGED / / *NO*YES
Determines whether the "at" sign ’ ’ is allowed (*YES) or not allowed (*NO) in names.@

DOLLAR-ALLOWED = *UNCHANGED / / *NO *YES
Determines whether the "dollar" sign ’ ’ is allowed (*YES) or not allowed (*NO) in names.$

ENUM-TYPE = *UNCHANGED / / *LONG*VALUE-DEPENDENT
This option controls the handling of data.enum

*UNCHANGED

The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

*VALUE-DEPENDENT: depending on the range of values, data is represented as , , or .enum char short long

The Cfront-C++ library contains declarations with the “at” sign (@) (see "The standard C++ library (C/C++-
).Compiler, #120)"

i

 142

*LONG: data is always treated as objects of type .enum long

SIGNED-FIELDS = *UNCHANGED / / *UNSIGNED*SIGNED

*UNCHANGED

The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

*SIGNED: By default, bit fields are treated as .signed signed

*UNSIGNED: bit fields are always interpreted as . This option is only offered for compatibility signed unsigned

reasons with older C versions and is only meaningful in K&R C mode.

PLAIN-FIELDS = *UNCHANGED / / *UNSIGNED*SIGNED
This option controls whether integer bit fields (, ,) are treated as (*SIGNED) or short int long signed unsigned

(*UNSIGNED) types. is the default.signed

PRESERVING = *UNCHANGED / / *LONG*UNSIGNED
This option controls whether arithmetic operations with operands of type and return a result long unsigned int

of type (*LONG) in accordance with K&R mode (first edition; see section 6.6 in the appendix) or of type long

 (*UNSIGNED) in accordance with ANSI/ISO C.unsigned long

ALTERNATIVE-TOKENS = *UNCHANGED / *YES / *NO

This option controls whether alternative tokens are to be recognized by the compiler.This includes:

digraph sequences (e.g. for) in the C and C++ modes and<: [

additional keywords for operators (e.g. for , for), which are only valid in the C++ language and && bitand &

mode.

*YES is the default for the modes C11, C++ V3 and C++2017.
*NO is the default for all other modes.

EXTERNAL-DEFINITION =
This option controls how the compiler reserves memory for the externally visible variables of a module. This is
important if the program consists of several modules that are to be subsequently linked into an object program.

EXTERNAL-DEFINITION = *UNCHANGED
The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

EXTERNAL-DEFINITION = *BY-SOURCE-LANGUAGE
The value of the EXTERNAL-DEFINITION option depends on the information in the language mode options:

LANGUAGE=*C(MODE=*KERNIGHAN-RITCHIE): MULTIPLY-ALLOWED
LANGUAGE=*C(MODE=*1990/*2011): UNIQUE
LANGUAGE=*CPLUSPLUS(): UNIQUE

 143

EXTERNAL-DEFINITION = *UNIQUE
Externally visible variables may be defined in precisely one module only and must be declared in all other modules
as . The memory space for such variables is set up in the data module of the object in which the variable extern

has been defined. If the variable is defined in more than one module, an appropriate error message will be issued at
the time of linking.

EXTERNAL-DEFINITION = *MULTIPLY-ALLOWED
This option is used for programs in which an externally visible variable is defined in more than one module, but is to
be assigned to precisely one memory area. To achieve this, the variable must not be statically initialized in any
definition. The compiler sets aside the memory for this variable in the COMMON area so that later, after linkage,
only one memory area is assigned to the multiply defined variable.
If the variable is initialized statically in the definition, the memory area is created not in the COMMON area but in the
data area. Assignment to precisely one memory area is then not possible!

This specification is not allowed in the C++ language modes.

LONGLONG = *UNCHANGED / / *NO*YES

This option determines whether the data type is recognized by the compiler.long long

*UNCHANGED

The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

*YES

By default, the data type is recognized and the preprocessor define is set.long long _LONGLONG

*NO

The use of the data type results in an error. This setting is only allowed in strict C89 mode and long long

strict C++ V3 mode.

END-OF-LINE-COMMENTS = *UNCHANGED / *YES / *NO

This option determines whether the compiler accepts C++ comments (//...) in C programs as well. C++ comments
can only be allowed in the extended C89 mode (MODE=*1990, STRICT=*NO). They are not allowed in the other C
modes (strict C89 and K&R) and are always valid in the C++ modes and in C11 mode.

*UNCHANGED

The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

*YES

The compiler accepts C++ comments in extended C89 mode.

*NO

The compiler does not accepts C++ comments in extended C89 mode (default setting).

LITERAL-ENCODING = *UNCHANGED / / *ASCII / *ASCII-FULL / *EBCDIC / *EBCDIC-FULL*NATIVE
This option determines whether the C/C++ compiler object code for EBCDIC characters and EBCDIC literal strings
creates characters and literal strings in EBCDIC or ASCII format (ISO 8859-1).

 144

In C/C++, literal strings can contain binary coded characters as octal or hexadecimal escape sequences with the
following syntax:

octal escape sequences: \[0-7] [0-7] [0-7]

hexadecimal escape sequences: \x[0-9A-F] [0-9A-F]

Whether or not the C/C++ compiler escape sequences are converted into ASCII format depends on the value
specified for the option LITERAL-ENCODING =

LITERAL-ENCODING = *UNCHANGED
The settings of the last MODIFY-SOURCE-PROPERTIES statement apply.

LITERAL-ENCODING = *NATIVE
The C/C++ compiler leaves the character and literal string code in the EBCDIC format, i.e. it transfers the
characters and strings into the object code without converting them.
*NATIVE is the default setting.

LITERAL-ENCODING =*ASCII
The C/C++ compiler encodes the characters and literal strings in ASCII format. Escape sequences will not be
converted into ASCII format.

LITERAL-ENCODING =*ASCII-FULL

The C/C++ compiler encodes the characters and literal strings in ASCII format. Escape sequences converted will be
into ASCII format.

LITERAL-ENCODING =*EBCDIC
The C/C++ compiler leaves the character and literal string code in the EBCDIC format, i.e. it transfers the
characters and strings into the object code without converting them.

LITERAL-ENCODING=*EBCDIC has the same effect as LITERAL-ENCODING=*EBCDIC-FULL or LITERAL-
ENCODING=*NATIVE

LITERAL-ENCODING =*EBCDIC-FULL
The C/C++ compiler leaves the character and literal string code in the EBCDIC format, it transfers the characters
and strings into the object code without converting them.

LITERAL-ENCODING=*EBCDIC-FULL has the same effect as LITERAL-ENCODING=*EBCDIC or LITERAL-
ENCODING=*NATIVE

Requirements:

If your are using ASCII notation for characters and literal strings, you must not declare C library functions
explicitly in your source program. C library functions should be declared indirectly by including the corresponding
CRTE headers. Otherwise the compilation error ‘CFE1079[ERROR]..: Typangabe erwartet / expected a type
specifier‘ can occur.

 145

If you select the ASCII or ASCII_FULL options, you should note the following. For CRTE function each and every
(C library function) in your program that works with characters or strings, you must use the corresponding or
matching include file. If you do not do this, the CRTE functions will not be able to process the character strings
correctly. You should ensure that you include the include file <stdio.h> for the function with .printf() <stdio.h>

In the CRTE runtime environment, some C library functions work with ASCII character strings.

If you are using ASCII character strings, you should specify the
MODIFY-SOURCE-PROPERTIES statement as follows:

MODIFY-SOURCE-PROPERTIES -
 ...
 LITERAL-ENCODING=ASCII[-FULL] -
 ...

You must also specify the MODIFY-MODULE-PROPERTIES statement with the following entries:

MODIFY-MODULE-PROPERTIES -
 ...
 LOWER-CASE-NAMES=*YES, -
 SPECIAL-CHARACTERS=*KEEP, -
 ...

Caution:

C++ library functions do not support ASCII format and must therefore possibly be replaced by C functions.

C++ specific frontend options

INSTANTIATION = *UNCHANGED / *NONE / / *LOCAL / *ALL*AUTO
This option is only relevant in the language modes C++ V3 and C++ 2017. It controls how templates with external
linkage are instantiated. This includes function templates as well as (non-static and non-inline) functions and static
variables that are members of template classes. These templates types are combined under the generic term
"template entity" below.

All instantiations requested explicitly with the instantiation directive or with the instantiation template declaration
pragma are always created by the compiler for each compilation unit in #pragma instantiate template-entity
all instantiation modes.

The remaining template entities are instantiated as follows:

*NONE

No instantiations other than those requested explicitly are created.

*AUTO (default setting):

Instantiation is performed across all compilation units by means of a prelinker. This prelinker is activated with
the BIND statement (see). The principle of automatic instantiation is discussed "BIND (C/C++-Compiler, #36)"
in detail in the .section “Automatic instantiation”

*LOCAL:

 146

Instantiations are created per compilation unit, i.e. all template entities that are used in a compilation unit are
instantiated. The generated functions are given internal linkage. This mode provides a very simple mechanism
for getting started with template programming. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run correctly. This method does, however,
result in multiple copies of instantiated functions and is therefore not suitable for production use. Note that
there may also be problems due to multiple copies of local static variables. For the same reasons, this method
is also not suitable if one of the templates contains a variable.static

Warning:

The template contains a variable in order to represent an empty string. If you use the basic_string static

 option and the type from the library, this empty string is no longer recognized. Try to avoid *LOCAL string

using this combination as it can lead to serious problems.

*ALL:

Instantiations are created per compilation unit, i.e. all template entities that are declared or referenced in a
compilation unit are instantiated. All member functions and static variables of a template class are instantiated,
regardless of whether or not they are used.
Template functions are instantiated even if they have only been declared.

USE-STD-NAMESPACE = *UNCHANGED / *YES / *NO
This option determines the use of C++ library functions for which names have been defined in the standard std

namespace.

*YES is the default setting in extended C++ V3 mode. The compiler behaves as if the following lines were entered
at the start of a compilation unit:

namespace std{}

using namespace std;

*NO is the default setting in strict C++ V3 mode and in mode C++ 2017 and the only possible behavior in Cfront
C++ mode.

If USE-STD-NAMESPACE=*NO is set in the mode C++ V3 or C++ 2017, the source program must contain the
statement otherwise, the names must be qualified appropriately before the first call to a using namespace std;

C++ library function.

KEYWORD-BOOL = *UNCHANGED / *YES / *NO

This option can be used to define whether is recognized as a keyword.bool

*YES is the default behavior in mode C++ V3 and the only allowed behavior in mode C++ 2017. In this case, the
preprocessor macro is defined._BOOL

*NO is the default setting and the only possible behavior in the Cfront C++ mode.

KEYWORD-WCHAR = *UNCHANGED / *YES / *NO
This option can be used to define whether is recognized as a keyword.wchar_t

*YES is the default behavior in mode C++ V3 and the only allowed behavior in mode C++ 2017. In this case, the
preprocessor macro is defined._WCHAR_T

 147

*NO is the default setting and the only possible behavior in the Cfront C++ mode.

LOOP-INIT = *UNCHANGED / *OLD / *NEW
This option defines how an initialization statement in and loops is to be treated.for while

*OLD is the default behavior in the Cfront-C++ mode and specifies that an initialization statement has the same
scope as the entire loop.

*NEW is the default behavior in mode C++ V3 and the only allowed behavior in mode C++ 2017. It specifies the
new ANSI C++-conformant scope rule, which surrounds the entire loop in its own implicitly generated scope.

SPECIALIZATION = *UNCHANGED / *OLD / *NEW
This option is only relevant in the modes C++ V3 and C++ 2017. It is used to specify whether template
specializations need the new syntax .template<>

*NEW is the default behavior in mode C++ V3 and the only allowed behavior in mode C++ 2017. In this case, the
compiler does not define the macro __OLD_SPECIALIZATION_SYNTAX.

If *OLD is specified, the compiler implicitly defines the macro with the value 1.__OLD_SPECIALIZATION_SYNTAX

 148

3.2.2.19 MODIFY-TEST-PROPERTIES

Alias: SET-TEST-PROPERTIES

This statement controls whether information is generated for the AID debugger.

MODIFY-TEST-PROPERTIES

TEST-SUPPORT= *UNCHANGED / *YES / *NO

TEST-SUPPORT = *YES
Debugging information is generated for AID.
In order to debug without any restrictions with AID, the optimization and inline substitution of user-defined functions
must be suppressed (see). The compiler assumes INLINING=*NO for all MODIFY-OPTIMIZATION-PROPERTIES
configurations. The optimization level is reset to *LOW.

TEST-SUPPORT = NO
No debugging information is generated for AID.
However, call hierarchies can be traced back (e.g. by specifying %SDUMP %NEST after the program terminates).

 149

3.2.2.20 PREPROCESS

Alias: DO-PREPROCESSING

This statement can be used to end the compilation of one or more source programs on completion of the
preprocessor phase. During the preprocessing, an expanded and recompilable source program can be generated
for each compilation unit.

PREPROCESS

SOURCE= *SYSDTA / list-poss: <filename 1..54>/ <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= <filename 1..54> / *LINK(...)

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| | VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

,OUTPUT= *NONE / / *SOURCE-LOCATION / <filename 1..54>/*STD-FILE

<posix-pathname> / (...)*LIBRARY-ELEMENT

*LIBRARY-ELEMENT(...)

| LIBRARY= / *SOURCE-LIBRARY / <filename 1..54> / *LINK(...)*STD-LIBRARY

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= (...) / <composed-name 1..64 with-under>(...)*STD-ELEMENT

| *STD-ELEMENT(...)

| | VERSION = / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT

| <composed-name 1..64 with-under>(...)

| | VERSION= / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT

SOURCE =
This option specifies one or more source programs to be compiled.
A source program can be read from the system file SYSDTA, a cataloged BS2000 file, a PLAM library or a POSIX
file.
Note that if the source program is entered from SYSDTA, only one source program can be read per PREPROCESS
statement.

SOURCE = *SYSDTA

 150

Input is accepted from the system file SYSDTA. SYSDTA is assigned to the terminal in interactive mode but can be
reassigned to a cataloged file or a PLAM library element with the ASSIGN-SYSDTA command (see also "Notes on

).input via SYSDTA"

SOURCE = <filename 1..54>
<filename> is the name of a cataloged BS2000 file.

SOURCE = <posix-pathname>
Only a file name is permitted as <posix-pathname>. See for a description of "Compiler I/O in the POSIX file system"
the term <posix-pathname>.

SOURCE = *LIBRARY-ELEMENT(...)
This option is used to specify a PLAM library and an element in it.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> is used to specify a link name for a PLAM library. The link name must already have been
assigned to the library name with the ADD-FILE-LINK command before the compiler is called.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of an element from the PLAM library specified earlier.
The element must be of type S.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element with the highest
existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

OUTPUT =
This option can be used to specify if and where the result of the preprocessor runis to be stored.

OUTPUT = *NONE
No expanded and recompilable source program is generated. The result of the preprocessor run (expansions and
error messages, if any) can only be checked byrequesting a preprocessor listing.

OUTPUT = *STD-FILE

The expanded program is written by default to a cataloged BS2000 file. The name of this file is derived from the
name of the source program as follows:

Output *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDEXP.I file.I lib-elem.I file.I

 151

If the source program is located in a PLAM library, the library and element name of the source are combined with a
hyphen (lib-elem) and used in the default file name. The rules by which the compiler constructs default names are
described in detail in the .section“Default names for output containers”

OUTPUT = *SOURCE-LOCATION
The output destination and name of the expanded program are derived from the location and name of the source
program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Output
destination

BS2000 file BS2000 file Library of source Directory of source

Default name CSTDEXP.I file.I elem. (type S)I file.i (C source)
file. (C++ sourceI

The rules by which the compiler constructs default names are described in detail in section “Default names for
.output containers”

OUTPUT = <filename 1..54>
The expanded program is written to a cataloged BS2000 file with the specified name. This specification is invalid
when compiling multiple source programs.

OUTPUT = <posix-pathname>
The expanded program is written to a POSIX file system.

Both a file name and a directory are permitted as <posix-pathname>. See "Compiler I/O in the POSIX file system"
for a description of the term <posix-pathname>.

When a file name is specified, the expanded program is stored under this name. Specification of a file name is
invalid when compiling multiple source programs with one statement.

When a directory name is specified, the expanded program for each source program is written under the default dir
name (C source) or (C++ source) to the directory (see also section sourcefile.i sourcefile.I dir “Default names for

).output containers”

The directories specified with <posix-pathname> must already exist.
When constructing file names, it must be noted that expanded source programs can only be meaningfully
processed further in the POSIX subsystem if the name contains the suffix or or a suffix defined with the .i .I -Y F

option of the / / / commands (see also the manual “POSIX Commands of the C/C++ Compiler” []).cc c11 c89 CC 1

OUTPUT = *LIBRARY-ELEMENT(...)

This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=) under which the expanded
program is to be stored. The elements are stored as elements of type S.

LIBRARY = *STD-LIBRARY
The expanded program is written by default to the library SYS.PROG.LIB.

LIBRARY = *SOURCE-LIBRARY
The expanded program is written to the PLAM library which contains the sourceprogram.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a cataloged BS2000 file, a
POSIX file or via SYSDTA.

 152

LIBRARY = <filename 1..54>
The expanded program is written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> can be used to specify a valid link name for the PLAM library.
The link name must already have been assigned to the library name with theADD-FILE-LINK command
before the compiler is called.

ELEMENT = *STD-ELEMENT(...)
By default, the element name of the expanded program is derived from the name of the source program as
follows:

Output *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDEXP.I file.I elem.I file.I

The rules by which the compiler constructs default names are described in detail in the section “Default names
for output containers”.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is used by the compiler.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the highest existing version
number by 1, assuming that the highest existing version ID ends with a digit that can be incremented. If
the version ID cannot be incremented, the compiler run is aborted with an error message.
See the COMPILE statement () for an example."COMPILE"

VERSION = <composed-name 1..24 with-under>The compiler uses the version specified.

ELEMENT = <composed-name 1..64 with-under>(...)<composed-name> designates the fully-qualified
element name of the expanded program. This specification is invalid when compiling multiple source programs.

VERSION = / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT
The version can be specified as described above for ELEMENT=*STD-ELEMENT(...).

 153

3.2.2.21 RESET-TO-DEFAULT

This statement resets the current option values in the corresponding MODIFY statements to the default values of
the compiler, i.e., the values that take effect immediately after the START-CPLUS-COMPILER command.

RESET-TO-DEFAULT

SELECT= *UNCHANGED / / list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /*ALL

*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND

SELECT = *UNCHANGED
The value specified in the last RESET-TO-DEFAULT statement applies.

SELECT = *ALL
The option values of all MODIFY statements are reset to the default values of the compiler.

SELECT = list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /*RUNTIME / *TEST /
*DIAGNOSTIC / *LISTING / *CIF / *BIND
Only the option values of the specified MODIFY statements are reset to the default values of the compiler. For
example, *INCLUDE stands for MODIFY-INCLUDE-LIBRARIES, *SOURCE for MODIFY-SOURCE-PROPERTIES,
etc.

In addition to the options of MODIFY-BIND-PROPERTIES statement, *BIND also resets the ACTION and OUTPUT-
FORMAT options of the BIND statement to the default values of the compiler.

Information on default values of the compiler can also be obtained by means of the SHOW-DEFAULTS statement
(see). In this manual, the default values of the compiler are ."SHOW-DEFAULTS" underlined

 154

3.2.2.22 SHOW-DEFAULTS

This statement can be used to show the default values of the compiler, i.e., the values which apply to the
corresponding MODIFY statements immediately after calling the START-CPLUS-COMPILER command and which
remain in effect until a value is explicitly changed. These default values can also be set with the RESET-TO-
DEFAULT statement.

SHOW-DEFAULTS

SELECT= *UNCHANGED / / list-poss(10):*INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /*ALL

*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND

,OUTPUT= *UNCHANGED / / *SYSLST*SYSOUT

SELECT = *UNCHANGED
The value specified in the last SHOW-DEFAULTS statement applies.

SELECT = *ALL
Information on all MODIFY statements is shown.

SELECT = list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /*RUNTIME / *TEST /
*DIAGNOSTIC / *LISTING / *CIF / *BIND
Information is shown only for the specified MODIFY statements.
For example, *INCLUDE stands for MODIFY-INCLUDE-LIBRARIES, *SOURCE for MODIFY-SOURCE-
PROPERTIES, etc.

OUTPUT = *UNCHANGED / / *SYSLST*SYSOUT
The information is output via SYSOUT (default setting) or SYSLST.

Note
Some options of the MODIFY-SOURCE-PROPERTIES statement are displayed with the option value __unset__.
These are options that can have different default values (so-called “alternative defaults”), depending on the
language mode.

 155

3.2.2.23 SHOW-PROPERTIES

This statement can be used to view the currently set option values in the selected or all MODIFY statements. In the
output indirect values are replaced by real ones if possible.

SHOW-PROPERTIES

SELECT= *UNCHANGED / / list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /*ALL

*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND

,OUTPUT= *UNCHANGED / / *SYSLST*SYSOUT

SELECT = *UNCHANGED
The value specified in the last SHOW-PROPERTIES statement applies.

SELECT = *ALL
Information on all MODIFY statements is shown.

SELECT = list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /*RUNTIME / *TEST /
*DIAGNOSTIC / *LISTING / *CIF / *BIND
Information is shown only for the specified MODIFY statements.
For example, *INCLUDE stands for MODIFY-INCLUDE-LIBRARIES, *SOURCE for MODIFY-SOURCE-
PROPERTIES, etc.

OUTPUT = *UNCHANGED / / *SYSLST*SYSOUT
The information is output via SYSOUT (default setting) or SYSLST.

Note
The outputs of the SHOW-PROPERTIES and SHOW-DEFAULTS statements are virtually identical on starting the
compiler and just after a RESET-TO-DEFAULT statement, except for the fact that SHOW-PROPERTIES displays
the actual value (in accordance with the predefined language mode) instead of the option value __unset__.

 156

3.3 Controlling the global listing generator

The global listing generator is called with the START-CPLUS-LISTING-GENERATOR command. The input source
for the listing generator consists of CIF information, which is created by the compiler for each compilation unit and
stored in PLAM library elements (type H), in cataloged BS2000 files or in POSIX files (see "MODIFY-CIF-

). All listings generated by the global listing generator are written to a single output file, which may PROPERTIES"
be the system file SYSLST, by default, or the output file specified with the OUTPUT option. The listing generator
uses the CIF information stored for local cross-reference and project listings to create global (i.e. multi-module)
crossreference and project listings. The remaining listings are generated per source file.

 157

3.3.1 Calling the listing generator (START-CPLUS-LISTING-GENERATOR)

/START-CPLUS-LISTING-GENERATOR Abbreviations: S-CP-L-G, CPLUS-LISTING-GENERATOR, CPLG

MONJV= / <filename 1..54>*NONE

,CPU-LIMIT = / <integer 1..32767>*JOB-REST

MONJV = / <filename 1..54>*NONE
<filename> is used to assign a monitoring job variable in which the listing generator can indicate runtime errors that
may occur. The status indicators and return codes used here are identical to those of the C/C++ compiler (see

)."Calling the compiler (START-CPLUS-COMPILER)"

 158

3.3.2 Description of statements

This section provides information concerning the following topics:

Overview of statements and input rules

END

GENERATE-LISTING

MODIFY-LISTING-PROPERTIES

 159

3.3.2.1 Overview of statements and input rules

The following statements can be used to control the global listing generator:

The modification statement MODIFY-LISTING-PROPERTIES defines the type, layout and output destination of
the listing to be generated.

The execution statement GENERATE-LISTING defines the input sources and starts the actual generation of the
listing.

The END statement terminates the global listing generator.

The SDF standard statements (analogous to controlling the compilers; see)"Overview of statements"

The MODIFY-LISTING-PROPERTIES statement must precede the GENERATE-LISTING statement. If no MODIFY-
LISTING-PROPERTIES statement is specified, no listings are generated (in accordance with the default setting).
The general rules for the SDF statement interface of the compiler are also applicable to the global listing generator
(see).“Basicprinciples and general input rules”

 160

3.3.2.2 END

This statement ends the listing generator run.

END

 161

3.3.2.3 GENERATE-LISTING

Aliases: DO-LISTING-GENERATION, LIST

This statement defines the input sources for the global listing generator and starts the generation of the listing. The
scope, layout and output destination of listings depend on the specifications in a preceding MODIFY-LISTING-
PROPERTIES statement.

GENERATE-LISTING

CIF-FILE= list-poss: <filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= / <filename 1..54> / *LINK(...)*STD-LIBRARY

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| | VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

CIF-FILE = <filename 1..54>
<filename> specifies the name of a cataloged BS2000 file containing the CIF information.

CIF-FILE = <posix-pathname>
<posix-pathname> specifies the name of a POSIX file containing the CIF information. See "Compiler I/O in the

 for a description of the term <posix-pathname>.POSIX file system (C/C++-Compiler, #18)"

CIF-FILE = *LIBRARY-ELEMENT(...)
This option is used to specify a PLAM library and one or more of its (type H) elements containing the CIF
information.

LIBRARY = *STD-LIBRARY
The listing generator processes CIF elements contained in the library SYS.PROG.LIB by default.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

<filename> is used to specify a link name for a PLAM library. The link name must be assigned to the
library name by means of the ADD-FILE-LINK command before the listing generator is called.

ELEMENT = <composed-name 1..64 with-under>(...)

<composed-name> identifies the fully-qualified name of a CIF element from the PLAM library specified earlier. The
element must be of type H.

 162

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the listing generator uses the element with the highest
existing version.

VERSION = <composed-name 1..24 with-under>
The listing generator uses the element with the specified version.

 163

3.3.2.4 MODIFY-LISTING-PROPERTIES

Alias: SET-LISTING-PROPERTIES

This statement can be used to select which listings are to be generated by the listing generator. It can also be used
to define the layout and the output destinations for theselistings. Apart from a few deviations in the OUTPUT option,
the syntax of this statementis identical to the compiler statement of the same name.

MODIFY-LISTING-PROPERTIES

OPTIONS= *UNCHANGED / *YES / *NO

,SOURCE= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| MINIMAL-MSG-WEIGHT= *NOTE / / *ERROR / *WARNING
*FATAL

,PREPROCESSING-RESULT= *UNCHANGED / / *YES*NO

,DATA-ALLOCATION-MAP= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| STRUCTURE-LEVEL= *UNCHANGED / / *MAX / *NONE
<integer 0..256>

,CROSS-REFERENCE= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| PREPROCESSING-INFO= *UNCHANGED / *YES / *NO

| ,TYPES= *UNCHANGED / *YES / *NO

| ,VARIABLES= *UNCHANGED / / *NO*YES

| ,FUNCTIONS= *UNCHANGED / / *NO*YES

| ,LABELS= *UNCHANGED / / *NO*YES

| ,TEMPLATES= *UNCHANGED / *YES / *NO

| ,ORDER=*UNCHANGED / / list-poss(6): *STD
*PREPROCESSING-INFO / *TYPES / *VARIABLES /

| *FUNCTIONS / *LABELS / *TEMPLATES

,PROJECT-INFORMATION= *UNCHANGED / *YES / *NO

,ASSEMBLER-CODE= *UNCHANGED / *YES / *NO

,SUMMARY=
*UNCHANGED / *YES / *NO

 164

OPTIONS= *UNCHANGED / *YES / *NO

,SOURCE= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| MINIMAL-MSG-WEIGHT= *NOTE / / *ERROR / *FATAL*WARNING

,PREPROCESSING-RESULT= *UNCHANGED / / *YES*NO

,DATA-ALLOCATION-MAP= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| STRUCTURE-LEVEL= *UNCHANGED / / *MAX / <integer 0..256>*NONE

,CROSS-REFERENCE= *UNCHANGED / / [*YES](...)*NO

*YES(...)

| PREPROCESSING-INFO= *UNCHANGED / *YES / *NO

| ,TYPES= *UNCHANGED / *YES / *NO

| ,VARIABLES= *UNCHANGED / / *NO*YES

| ,FUNCTIONS= *UNCHANGED / / *NO*YES

| ,LABELS= *UNCHANGED / / *NO*YES

| ,TEMPLATES= *UNCHANGED / *YES / *NO

| ,ORDER=*UNCHANGED / / list-poss(6): *PREPROCESSING-INFO / *TYPES /*STD

| *VARIABLES / *FUNCTIONS / *LABELS / *TEMPLATES

,PROJECT-INFORMATION= *UNCHANGED / *YES / *NO

,ASSEMBLER-CODE= *UNCHANGED / *YES / *NO

,SUMMARY= *UNCHANGED / *YES / *NO

,LAYOUT= *UNCHANGED / (...) / *FOR-ROTATION-PRINT(...)*FOR-NORMAL-PRINT

*FOR-NORMAL-PRINT(...)

| LINE-SIZE= *UNCHANGED / / <integer 120..255>*STD

| ,LINES-PER-PAGE= *UNCHANGED / / <integer 11..255>*STD

*FOR-ROTATION-PRINT(...)

| LINE-SIZE= *UNCHANGED / / <integer 120..255>*STD

| ,LINES-PER-PAGE= *UNCHANGED / / <integer 11..255>*STD

,INCLUDE-INFORMATION= *UNCHANGED / *NONE / *ALL / *USER-INCLUDES-ONLY

,LISTING-PRAGMAS= *UNCHANGED / *IGNORED / / *SELECT(...)*INTERPRETED

 165

*SELECT(...)

| PAGE= *UNCHANGED / *YES / *NO

| ,TITLE= *UNCHANGED / *YES / *NO

| ,SPACE= *UNCHANGED / *YES / *NO

| ,LIST= *UNCHANGED / *YES / *NO

,INITIAL-TITLE-TEXT= *UNCHANGED / / <c-string 1..256 with-low>*NONE

,OUTPUT= *UNCHANGED / / *SYSOUT / <filename 1..54> / <posix-pathname> /*SYSLST

*LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= / <filename 1..54> / *LINK(...)*STD-LIBRARY

| *LINK(...)

| | LINK-NAME= <filename 1..8>

| ,ELEMENT= <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| | VERSION= / *INCREMENT / <composed-name 1..24 with-under>*UPPER-LIMIT

OPTIONS = *UNCHANGED / *YES / *NO
*YES: The listing generator creates a listing of all default and user-defined compiler options.

SOURCE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

SOURCE = *NO
No source/error listing is generated.

SOURCE = *YES(...)

A source/error listing is generated.

MINIMAL-MSG-WEIGHT = *NOTE / / *ERROR / *FATAL*WARNING
This option can be used to specify the minimum message weight for which error messages are to be included
in the source listing.

Note that the CIF information only contains the messages which were output during the compile. That was
controlled with the compiler statement . MODIFY-DIAGNOSTIC-PROPERTIES This suboption can only limit
the number of messages output compared to the CIF information, for example from WARNING to ERROR.
If MODIFY-DIAGNOSTIC-PROPERTIES for MINIMAL-MSG-WEIGHT = *WARNING (default setting) was
specified in the compilation, MODIFY-LISTING-PROPERTIES cannot achieve that notes are output.

For examples see the compiler statement . MODIFY-DIAGNOSTIC-PROPERTIES

 166

PREPROCESSING-RESULT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

PREPROCESSING-RESULT = *NO
The listing generator does not create a preprocessor listing.

PREPROCESSING-RESULT = *YES(...)
The listing generator creates a preprocessor listing.

COMMENTS = / *NO*YES
Comments from the source file are included in the preprocessor listing (can be suppressed with *NO).

DATA-ALLOCATION-MAP = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

DATA-ALLOCATION-MAP = *NO
The listing generator does not create a map listing.

DATA-ALLOCATION-MAP = *YES(...)

The listing generator creates a preprocessor listing.

STRUCTURE-LEVEL = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

STRUCTURE-LEVEL = *NONE
Structure elements are not included in the map listing.

STRUCTURE-LEVEL = *MAX
Structure elements up to the maximum nesting level (256) are included in the map listing.

STRUCTURE-LEVEL = <integer 0..256>
Only the structure elements up to the nesting level specified by <integer> are included in the map listing. If the
specified as the nesting level is 0, no structure elements are included (corresponds to STRUCTURE-
LEVEL=*NONE).

CROSS-REFERENCE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

CROSS-REFERENCE = *NO
The listing generator does not create a cross-reference listing.

CROSS-REFERENCE = *YES(...)
The listing generator creates a "global" cross-reference listing, i.e. a cross-reference listing for multiple modules.
This listing always contains a FILETABLE section with the names of all files, libraries, and elements that are used
as sources by the compiler.

When the value given in MAX-ERROR-NUMBER (controlled via MODIFY-DIAGNOSTIC-PROPERTIES)
is reached, no further source program information will be output in the source/error listing. In this case the
listing can no longer be used as a reliable guide to current error status.

i

 167

PREPROCESSING-INFO = *UNCHANGED / *YES / *NO
The cross-reference listing may optionally include a list of names processed by the preprocessor.

TYPES = *UNCHANGED / *YES / *NO
The cross-reference listing may optionally include a list of user-defined types (typedefs, structure, union, class
and enumeration types).

VARIABLES = *UNCHANGED / / *NO*YES
The cross-reference listing contains a list of variables (can be suppressed with *NO).

FUNCTIONS = *UNCHANGED / / *NO*YES
The cross-reference listing contains a list of functions (can be suppressed with *NO).

LABELS = *UNCHANGED / / *NO*YES
The cross-reference listing contains a list of labels (can be suppressed with *NO).

TEMPLATES = *UNCHANGED / *YES / *NO
The cross-reference listing may optionally contain a list of templates.

ORDER = / list-poss(6): *PREPROCESSING-INFO / *TYPES /*VARIABLES / *FUNCTIONS / *STD
*LABELS / *TEMPLATES

This option specifies the order in which the individual parts of the cross-reference-listing are shown.

*STD: The default is in the order shown after list-poss above.

PROJECT-INFORMATION = *UNCHANGED / *YES / *NO
*YES: The listing generator creates a project listing showing a comparison of all external names originally used in
the source program and the names internally generated by the compiler for the linkage editor.

ASSEMBLER-CODE = *UNCHANGED / *YES / *NO
*YES: The listing generator creates an object code listing.

SUMMARY = *UNCHANGED / *YES / *NO
*YES: The listing generator creates a listing containing statistical data on the compiler run.

LAYOUT =
This option can be used to define the page width (number of characters per line) and the page length (number of
lines per page) for the listings.

If a line width of 120 characters is selected, all the listings will have narrower headers and footers. Text lines are
wrapped only in the table listings (option, cross-reference and map listings). Overlong text lines in the source,
preprocessor and object code listings may be truncated when the listings are printed.

When a BS2000 output file is specified, the first column of every line is reserved to control the line feed.
When the output is sent to a POSIX file, the appropriate POSIX control characters for line and page feeds are
generated. The result is that the line length in the POSIX output file is up to 3 characters larger than the selected
line width specification.

 168

LAYOUT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LAYOUT = (...)*FOR-NORMAL-PRINT

Listings in landscape format.

LINE-SIZE = *UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.
This also applies if that specification was made at *FOR-ROTATION-PRINT.

LINE-SIZE = *STD
132 characters per line are output.

LINE-SIZE = <integer 120..255>
120 to 255 characters per line are output.

LINES-PER-PAGE = *UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.
This also applies if that specification was made at *FOR-ROTATION-PRINT.

LINES-PER-PAGE = *STD
64 lines per page are output.

LINES-PER-PAGE = <integer 11..255>
11 to 255 lines are printed per page.
The lower limit is fixed at 11 lines so that at least the listing header and footer and one line of text can be
printed.

LAYOUT = *FOR-ROTATION-PRINT(...)
Listings in portrait format.
In order to print such listings, the ROTATION parameter must be specified in the PRINT-FILE command.

LINE-SIZE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.
This also applies if that specification was made at *FOR-NORMAL-PRINT.

LINE-SIZE = *STD
120 characters per line are output.

LINE-SIZE = <integer 120..255>
120 to 255 characters per line are output.

LINES-PER-PAGE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.
This also applies if that specification was made at *FOR-NORMAL-PRINT.

LINES-PER-PAGE = *STD
84 lines per page are output.

 169

LINES-PER-PAGE = <integer 11..255>
11 to 255 lines are printed per page.
The lower limit is fixed at 11 lines so that at least the listing header and footer and one line of text can be
printed.

INCLUDE-INFORMATION = *UNCHANGED / *ALL / *NONE / *USER-INCLUDES-ONLY
This option is used to specify which header files (if any) are to be shown in the source, preprocessor and cross-
reference listings. By default, only the user-defined header files are shown, not the standard headers. Note that this
option can only restrict the information created on the include files at compilation, include file that are explicitly or
implicitly determined using the operand of the same name in the MODIFY-CIF-PROPERTIES statement.

LISTING-PRAGMAS =
This option controls which existing directives (if any) in the source text are to be interpreted when creating #pragma

source and preprocessor listings.
A description of the directives can be found in the section .#pragma “Pragmas to control the layout of listings”)

LISTING-PRAGMAS = *UNCHANGED

The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LISTING-PRAGMAS = / *IGNORED*INTERPRETED
All a directives are interpreted (*INTERPRETED) or ignored (*IGNORED).#pragm

LISTING-PRAGMAS = *SELECT(...)
One or more of the following directives to control listings are interpreted (*YES) or ignored (*NO).#pragma

PAGE = *UNCHANGED / *YES / *NO
Directive []:#pragma PAGE text
for a page feed and optional line in the listing header

TITLE = *UNCHANGED / *YES / *NO
Directive :#pragma TITLE text
for a line in the listing header

SPACE = *UNCHANGED / *YES / *NO
Directive []:#pragma SPACE n
to insert blank lines

LIST = *UNCHANGED / *YES / *NO
Directive [] or [] :#pragma LIST ING ON #pragma LIST ING OFF

to suppress the output of source text lines

INITIAL-TITLE-TEXT = *UNCHANGED / / <c-string 1..256>*NONE
This option can be used to specify if an additional line is to appear in the header of the listing and the text that is to
be entered in it. In contrast to pragmas, which only apply to source and preprocessor listings, the INITIAL-TITLE-
TEXT option applies to all compiler listings. If the text is longer than the line length defined with the LINE-SIZE
option (see compiler statement), it is split into multiple lines of appropriate "MODIFY-LISTING-PROPERTIES"
length.
In the case of source and preprocessor listings, TITLE and PAGE pragmas (if any) override the INITIAL-TITLE-
TEXT specification.

 170

OUTPUT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

OUTPUT = *SYSLST
The listings are written to the temporary system file SYSLST by default and are sent from there to the printer at the
end of the task (at LOGOFF).

OUTPUT = *SYSOUT
The listings are written to the system file SYSOUT, which is assigned to the terminal ininteractive mode.

OUTPUT = <filename 1..54>

The listings are written to a cataloged BS2000 file with the specified name.

OUTPUT = <posix-pathname>
The listings are written to a POSIX file.
Only a file name is permitted as <posix-pathname>. See for a description of "Compiler I/O in the POSIX file system"
the term <posix-pathname>.

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=) under which the listings
are to be stored. The element is stored as element of type P.

LIBRARY = *STD-LIBRARY
The listings are stored in the library SYS.PROG.LIB by default.

LIBRARY = <filename 1..54>
The listings are written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>

A link name can also be specified instead of the library name.
<filename> designates the link name of the assigned library. This link name must already have been
assigned to the PLAM library (with the ADD-FILE-LINK
command) before the listing generator is called.

ELEMENT = <composed-name 1..64 with-under>(...)
The listings are written to a PLAM library element (type P) with the specified name.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is used by the listing
generator.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the highest existing version
number by 1, assuming that the highest existing version ID ends with a digit that can be incremented. If
the version ID cannot be incremented, the generation of the listing is aborted with an error message.
See the statement for an example.COMPILE

VERSION = <composed-name 1..24 with-under>
The element is assigned the specified version.

 171

4 Linkage and program execution

This chapter provides information concerning the following topics:

Linkage

Dynamic linking and loading with DBL

Linking with BINDER

Shareable C/C++ programs

Restriction on linking C++ programs

Program execution

Parameter input at program start

Redirecting standard I/O files

Input of parameters for the main function

Definition of the main function with parameters

The advanced interactive debugger AID

Requirements for symbolic debugging

 172

1.

2.

4.1 Linkage

The result produced by the C/C++ compiler on compiling a source program consists of a link-and-load module or
LLM. This module already consists of machine code, but cannot be executed on the computer until all generated
modules have been combined (i.e. linked) with other modules to create an executable unit.
The additionally required modules are usually modules of the runtime system, but other modules (e.g. modules of
subroutines in other languages or separately compiled C/C++ program segments) can also be linked in, if required.
These additional modules may include modules that were compiled by different compilers at various times.

The main function of the is to select the modules required for the loadable unit from various sources linkage editor
(files, libraries) and link them to one another. Linkage basically means that the linkage editor supplements each
module with the addresses that refer to areas external to the module (external references).

Before the unit generated during the linkage phase can be run, a must load it into memory so that the loader
processor can access the code and execute it.

The following functional units are available in the system of BS2000 for performing the Binder-Loader-Starter
linking and loading tasks:

Dynamic binder loader DBL

The dynamic binder loader DBL combines three steps into a single operation by linking modules (object
modules, LLMs) into a temporary loadable unit, loading it immediately into memory and then starting it.

Linkage editor BINDER

BINDER links modules (object modules, LLMs) to form a logically and physically structured loadable unit. This
unit is called a link-and-load module (Link and Load Module, LLM). BINDER stores an LLM as a type-L element
in a PLAM library.

There are two ways of linking programs with BINDER:

directly, i.e. by calling BINDER with the START-BINDER command, and

implicitly, i.e. with the compiler statements BIND and MODIFY-BIND-PROPERTIES

The above compiler statements are not dealt with here, since they are described in detail the sections and "BIND"
 in chapter ."MODIFY-BIND-PROPERTIES" "Compilation"

Modules generated in the compilers C modes or Cfront-C++ mode, can be linked dynamically with the DBL,
statically with the BINDER and with the statement of the compiler (i.e. implicitly with the BINDER).BIND

C++ V3 and C++2017 modules have to be linked with the statement of the compiler. See also section BIND
."Restriction on linking C++ programs"

The C and C++ runtime modules needed for linking C/C++ programs are a component of the CRTE runtime system.
An overview of all C/C++-specific CRTE libraries is provided in section “Specific CRTE components required for C

. More detailed information, with appropriate notes on linking the C++ runtime libraries, in particular, can be /C++”
found in chapter .“The C++ libraries and C++ runtime system”

 173

1.

4.1.1 Dynamic linking and loading with DBL

When the dynamic binder loader DBL is used, modules are temporarily linked into a loadable unit, which is then
loaded into memory and executed, all in one operation. The generated load unit is automatically deleted after the
program run.

The mode of operation of DBL is described in detail in the “Dynamic Binder Loader / Starter” manual [13 (Related
].publications)

Since the C/C++ compiler always generates modules only in LLM format, theSTART-EXECUTABLE-PROGRAM
always must be used when linking and loading with DBL.

With this command, object modules and LLMs can be processed. Alternative libraries to be searched (runtime
libraries and possibly other libraries) are assigned with the link name BLSLIBnn (00 nn 99). This is done with the
ADD-FILE-LINK command before the linkage editor is called. For example:

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=PLAM.USER
/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE

To ensure that DBL searches these alternative libraries, the following entry must be made in the RESOLUTION
parameter of the START-EXECUTABLE-PROGRAM command:

..ALTERNATE-LIBRARIES=*BLSLIB##

The linkage run with DBL is initiated by means of the START-EXECUTABLE-PROGRAM or LOAD-EXECUTABLE-
PROGRAM command.
If the START-EXECUTABLE-PROGRAM command is used, the program is executed immediately. With the LOAD-
EXECUTABLE-PROGRAM command, however, you have the option of entering additional commands (e.g.
debugging commands).

 /{START-EXECUTABLE-PROGRAM / LOAD-EXECUTABLE-PROGRAM}

 FROM-FILE=*LIBRARY-ELEMENT(LIBRARY= ,ELEMENT-OR-SYMBOL=bibliothek mainmod),

 DBL-PARAMETERS=*PARAMETERS(RESOLUTION=*PARAMETERS(ALTERNATE-

LIBRARIES=*BLSLIB##))

LIB= ,ELEM=library mainmod

DBL accesses the specified PLAM library. The name of the module containing the function must be main

specified as the element name.

RESOLUTION=*PARAMETERS (ALTERNATE-LIBRARIES=*BLSLIB##)

This entry is always required when LLMs are to be linked dynamically.

Load and start function of DBL

Any LLM that has been fully linked with BINDER (i.e. with all external references resolved) can be loaded and
started with DBL without assigning alternative libraries as follows:

START-EXECUTABLE-PROGRAM FROM-FILE=*LIBRARY-ELEMENT(*LIBRARY=library,

ELEMENT-OR-SYMBOL=module)

Recommended BLSLIBnn order for assigning CRTE libraries

C programs

 174

1.

2.

3.

4.

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=user-library

/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE

Cfront C++ programs

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=user-library
/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE.CFCPP

/ADD-FILE-LINK LINK-NAME=BLSLIB03,FILE-NAME=$.SYSLNK.CRTE.CPP

/ADD-FILE-LINK LINK-NAME=BLSLIB04,FILE-NAME=$.SYSLNK.CRTE

C++ V3 programs (using the Tools.h++ library)

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=user-library

/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE.TOOLS

/ADD-FILE-LINK LINK-NAME=BLSLIB03,FILE-NAME=$.SYSLNK.CRTE.STDCPP

/ADD-FILE-LINK LINK-NAME=BLSLIB04,FILE-NAME=$.SYSLNK.CRTE.RTSCPP

/ADD-FILE-LINK LINK-NAME=BLSLIB05,FILE-NAME=$.SYSLNK.CRTE

C++ 2017 programs

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME= user-library
/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE.CXX01

/ADD-FILE-LINK LINK-NAME=BLSLIB03,FILE-NAME=$.SYSLNK.CRTE

Achtung!

Templates are not instantiated when linking and loading C++ V3 or C++ 2017 programs with the DBL. All
instances must be pre-instantiated using the statement BIND ACTION=*PRELINK.

!

 175

4.1.2 Linking with BINDER

BINDER enables object modules and LLMs to be linked into an LLM and stored as a type-L element in a PLAM
library. BINDER is described in detail in the “BINDER” manual [].14

Note that modules generated in the language modes C++ V3 or C++ 2017 cannot be linked with a direct call to
BINDER. These modules can only be linked with the compiler statement (see also section BIND “Restriction on

).linking C++ programs”

Control statements for BINDER (selection)

Steueranweisungen für den BINDER (Auswahl)

/START-BINDER —— (1)

//START-LLM-CREATION INT-NAME= name ——————————————————————————————— (2)

//INCLUDE-MODULES -

// MOD-CONTAINER=*LIB(LIB= bibliothek ,ELEM={ mainmod / *ALL } ————— (3)

[//INCLUDE-MODULES MOD-CONTAINER=*LIB(LIB=..., ELEM=...)] ———————— (4)

[//INCLUDE-MODULES -

// MOD-CONTAINER=*LIB(LIB=$.SYSLNK.CRTE.POSIX,ELEM=*ALL)] ————— (5)

[//RESOLVE-BY-AUTOLINK LIB=..., [SYMBOL-NAME= externverweis]] ——————— (6)

[//RESOLVE-BY-AUTOLINK LIB=

 {([$.SYSLNK.CRTE.CFCPP,$.SYSLNK.CRTE.CPP,]$.SYSLNK.CRTE) /

 ([$.SYSLNK.CRTE.CFCPP,$.SYSLNK.CRTE.CPP,]$.SYSLNK.CRTE.PARTIAL-BIND)]}(7)

[//MODIFY-SYMBOL-VISIBILITY ..., VISIBLE=*NO] ———————————————————— (8)

//SAVE-LLM MOD-CONTAINER=*LIB(LIB= bibliothek , ELEM= element) ———————— (9)

//END —— (10)

(1) BINDER is invoked.

(2) This statement generates a new LLM with the internal name in the work area. The generated LLM is name
saved with the SAVE-LLM statement (see 9) as a type-L element in a PLAM library.

(3) mainmod is the name of the LLM that contains the function. is the name of the PLAM library in main library
which the object modules are stored. If *ALL is specified, all the modules from the specified input source
are linked.

(4) Further INCLUDE-MODULE statements can be used to link in additional modules from various libraries.

(5) The library SYSLNK.CRTE.POSIX must always be linked if POSIX library functions are used. Since this
“linkage option” library must be linked with precedence before the C runtime system, the INCLUDE-
MODULES statement should always be used for linkage.

 176

(6) The RESOLVE-BY-AUTOLINK statements inform BINDER of the external references (=module names)
and the corresponding libraries (or only the libraries) that are to be searched with the autolink mechanism
for external references that are still unresolved. RESOLVE-BY-AUTOLINK statements for user-defined
libraries and modules must always be specified before those for runtime libraries (see 7).

(7) The respective CRTE runtime libraries to be linked are specified in a list.

All modules of the C runtime system that are required by the program are linked in permanently with a
RESOLVE on the SYSLNK.CRTE library.

The RESOLVE on the library SYSLNK.CRTE.PARTIAL-BIND links in a connection module instead of the C
runtime system. All external references to the C runtime system are satisfied from this module. The C
runtime system itself is loaded dynamically at runtime. The fully linked module requires far less disk storage
space than when statically linking C runtime modules from the library SYSLNK.CRTE. Furthermore, the
program executes faster.

If no RESOLVE-BY-AUTOLINK statement is specified, the external references to the runtime system
remain unresolved. The runtime modules are then dynamically linked and loaded at runtime (see section

).“Dynamic linking and loading with DBL”

(8) The MODIFY-SYMBOL-VISIBILITY statement can be used to mask external symbols for subsequent
linkage runs. The symbols remain visible by default. See also .“Masking symbols”

(9) This statement stores the current LLM generated with START-LLM-CREATION as a type-L element in a
PLAM library.

(10) The END statement terminates the BINDER run.

In the INCLUDE-MODULES and RESOLVE-BY-AUTOLINK statements, LIB=*BLS-LINK may also be specified
instead of the library name (LIB=). In this case, the libraries to be searched must be assigned with the link library
name BLSLIB (00 99). This is done with the ADD-FILE-LINK command before BINDER is called. For nn nn
example:

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=PLAM.USER1

/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=PLAM.USER2

If all external references have been resolved, any LLM generated with BINDER can be loaded and started with DBL
without assigning alternative libraries as follows:

START-EXECUTABLE-PROGRAM *LIBRARY-ELEMENT(LIB= library ,ELEM= modul)

Masking symbols

In contrast to TSOSLNK, symbols (CSECTs, ENTRYs) are not masked by default when linking with BINDER and
thus remain visible for subsequent linkage runs with BINDER or DBL.

This affects dynamic linking with DBL and can, among other things, have the following consequences:
If a PLAM library contains individual modules generated by the compiler as well as LLMs with a linked-in runtime
system, then external references to the runtime system will be resolved from any prelinked module and not from the
runtime library when the individual modules are linked dynamically. This results in several “DUPLICATES” warnings
from DBL. Due to the autolink mechanism, the library in which the individual module resides is searched first, before
the runtime libraries assigned with the link name BLSLIB .nn

 177

To ensure that external references are always resolved from the current runtime library at link time rather than some
arbitrary module,

the individual modules and prelinked modules must be maintained in different libraries,

or the symbols must be masked with the MODIFY-SYMBOL-VISIBILITY statement when linking with BINDER.

 178

4.1.3 Shareable C/C++ programs

In the case of large programs, it is often advantageous to ensure that all individual program sections to be accessed
concurrently by several users (or tasks) are made shareable.

The following compiler option must be specified at compilation in order to generate shareable programs:

//MODIFY-MODULE-PROP SHAREABLE-CODE=*YES

For each compilation unit, the compiler generates one LLM containing a non-shareable data CSECT and a
shareable code CSECT. The code CSECT is marked with the attribute PUBLIC.

A subsequent linkage run creates a PUBLIC slice from the code CSECT and a PRIVATE slice from the data
CSECT.

The PUBLIC slice is declared shareable by the system administrator with the ADD-SHARED command, and only
the PRIVATE slice is subsequently loaded with the START-EXECUTABLE-PROGRAM command.

Example

/START-CPLUS-COMPILER
//MOD-SOURCE-PROP LANG=*C
//MOD-MODULE-PROP SHAREABLE-CODE=*YES
//COMPILE SOURCE=MODUL1.C,MODULE-OUTPUT=*LIB-ELEM(LIB=A.TEST)
//COMPILE SOURCE=MODUL2.C,MODULE-OUTPUT=*LIB-ELEM(LIB=A.TEST)
//END
/START-BINDER
//START-LLM-CREATION INT-NAME=TEST,//
 SLICE-DEFINITION=BY-ATTRIBUTE(PUBLIC=*YES)
//INCLUDE-MODULES LIB=A.TEST,ELEM=(MODUL1)
//INCLUDE-MODULES LIB=A.TEST,ELEM=(MODUL2)
//SAVE-LLM LIB=B.TEST,ELEM=TEST
//END
/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=$.SYSLNK.CRTE
/START-EXECUTABLE-PROGRAM FROM-FILE=*LIBRARY-ELEMENT(/
 LIB=B.TEST,ELEM=TEST),/
 DBL-PAR=*PAR(RESOLUTION=*PAR(ALTERNATE-LIBRARIES=*BLSLIB##))

 179

4.1.4 Restriction on linking C++ programs

It is only when using the statement of the compiler that the correct linkage of C++ V3 or C++2017 program BIND
can be guaranteed. This is because, among other things, the automatic template instantiation by the prelinker is
performed with the statement (see also).BIND "Template instantiation"

 180

4.2 Program execution

This section provides information concerning the following topics:

Parameter input at program start

Redirecting standard I/O files

Input of parameters for the main function

Definition of the main function with parameters

The advanced interactive debugger AID

Requirements for symbolic debugging

 181

4.2.1 Parameter input at program start

By default, a C/C++ program is executed immediately as soon as it is invoked with the START-EXECUTABLE-
PROGRAM command.
The PARAMETER-PROMPTING option of the MODIFY-RUNTIME-PROPERTIES statement (see "MODIFY-

) can be used to control whether the standard I/O files are to be redirected before RUNTIME-PROPERTIES"
program execution and whether parameters can be passed to the function.main

PARAMETER-PROMPTING = *NO

By default, the program is executed immediately after it is started with the START-EXECUTABLE-PROGRAM
command, i.e. without a preceding dialog step for the input
of parameters. Only the name of the program is passed to the function.main

PARAMETER-PROMPTING = *YES

After it is started with the START-EXECUTABLE-PROGRAM command, the program issues the message:

CCM0001 enter options :

*

The START-EXECUTABLE-PROGRAM or SRX command also enables the parameters to be transferred at the
same time:
/START-EXECUTABLE-PROGRAM..,PROGRAM-PARAMETERS=‘...‘

As in the command line of the UNIX operating system, one or more parameter lines can now be used

to redirect the standard I/O files for C (, ad) and C++ (, , and ; see stdin stdout stderr cin cout cerr clog

), and"Redirecting standard I/O files"

to pass parameters to the function (see).main "Input of parameters for the main function"

To ensure that these parameters can be addressed in the program, the function must include two formal main

parameters, which are usually named (argument count) and (argument vector). See argc argv "Definition of the
.main function with parameters"

The individual entries (for redirection and parameters) must be separated in the parameter line by whitespace main

characters.

If one parameter line is not sufficient for the input, the line can be terminated with a backslash (\), and the next
parameter can be entered at the start of the following line. As with the whitespace character, the backslash (\) is
interpreted here as a delimiter between two parameters (see also for "Input of parameters for the main function"
further meanings of \).

Example

*par1 par2 par3\

*par4

 182

4.2.2 Redirecting standard I/O files

At the start of program execution, the standard I/O files are assigned to the following BS2000 system files:

stdin/cin

stdout/cout

stderr/cerr/clog

SYSDTA

SYSOUT

SYSOUT

These default values can be modified in the parameter line. The dummy parameters and must be input output
replaced by currently applicable values.

<input

The standard input (,) is to be read in from .stdin cin input

>output

The standard output (,) is to be written to .stdout cout output
If the file already exists, it is overwritten; if not, it is created as a new file.

>>output

The standard output (,) is to be appended to .stdout cout output
If the file does not exist, it is created as a new file.

2>output

The standard error output (, ,) is to be written to .If the file already exists, it is stderr cerr clog output
overwritten; if not, it is created as a new file.

2>>output

The standard error output (, ,) is to be appended to .If the file does not exist, it is stderr cerr clog output
created as a new file.

The following current values can be inserted for or :input output

(SYSDTA)
designates the system file SYSDTA. This specification can only be used for .input

(SYSOUT)
(SYSLST)
designate the system files SYSOUT and SYSLST. These entries are only valid for .output

filename
designates the name of a cataloged BS2000 file. This specification is valid for both and .input output

*POSIX()filename
 designates the name of a POSIX file. This redirection specification is valid for both and filename input output

and is only possible if the POSIX link option library is linked (see point 3 in section "Use of POSIX library
).functions"

Files to be used as input files must already exist.

If an output file does not exist, it is created as a new file. If it already exists, it will either be overwritten (> or 2>)
or extended by the addition of new output (>> or 2>>).

 183

Note
The redirection of standard I/O files affects all I/O functions that read from standard input or write to standard output
by default, as well as all functions that use the file pointers / or the file descriptors 0/1 as arguments. stdin stdout

No redirection takes place for I/O operations on files that were explicitly opened with the names “(SYSDTA)”,
“(SYSOUT)”, or “(SYSTERM)”.

 184

4.2.3 Input of parameters for the main function

Input data that is in the parameter line but does not serve to redirect the standard I/O files (see "Redirecting
) is passed to the function as parameters (i.e. actual arguments). In the program, these standard I/O files)" main

parameters can be processed as strings that are terminated with the null byte (\0).

In the explanation given below, the dummy parameters in italics must be replaced by currently applicable values:

%pattern

All file names that correspond to the specified pattern are passed as parameters.

pattern is a fully or partially qualified file name with wildcard syntax.

For compatibility reasons, further parameters can also be specified in order to control which files are selected,
e.g.:

file and catalog attributes (FCBTYPE, SHARE, etc.)

creation and access date (CRDATE, EXDATE, etc.)

These parameters must be specified in the syntax of the ISP command FSTAT.

For example, the following specification supplies the names of all files that were created today with the suffix .

.C

%*.c,cr=t

string’ or "string"

string may contain any characters, including whitespace characters. These characters are passed to the
program in an unchanged state and without the delimiting quotes (’ or "). If the single or double quote that is
used as a delimiter appears in the string, it must be preceded by a backslash (\). For example: ’\’quotation\’’ or
"\"quotation\"".

The end-of-line character () can also be passed to the program by terminating the line (with a backslash) \n

within the string and entering any further characters as well as the closing quote in the continuation line. For
example:
’Part 1\
Part 2’

other-parameters

The character or characters are passed to the program directly. Whitespace characters and the backslash at
the end of the line are treated as delimiters between two parameters.

If characters with a special meaning when passing parameters (e.g. % or >) are to be transferred to the
program, they must be preceded by a backslash. In such a case, the backslash is removed, and the character
itself is transferred. This method can also be used to cancel the special meaning of the backslash. Thus, \\
stands for a backslash without special meaning.

To enable the transfer of lowercase letters via procedure parameters, any uppercase letter that is preceded by
a backslash is converted to the corresponding lowercase letter.

Effect of the backslash (summary):

\letter

 185

The letter is passed as a lowercase letter. This makes it possible to pass lowercase letters even in cases
where the BS2000 command interpreter automatically converts lowercase into uppercase (e.g. in procedure
parameters).

\end-of-line

Backslash immediately followed by end-of-line.

Outside quoted strings, the backslash is interpreted as a delimiter between two parameters. Consequently,
additional parameters can be entered in continuation lines.

Within quoted strings, the end-of-line loses its special meaning and is passed to the program as an end-of-line
character ().\n

\other-character

The backslash is removed, and the is passed. This method can be used to cancel the special other-character
meaning of specific characters.

Examples

Input: Passed parameters:
\AB\C "aBc"
%exp. All file names with the prefix EXP.
'string with \ "string with \nnewline"
newline'

 186

4.2.4 Definition of the main function with parameters

Two formal parameters are required in the function in order to enable the program to address data that has main

been entered in the parameter line (see):"Input of parameters for the main function"

int main(int argc, char *argv[])

The names of the parameters (,) may be freely selected, but these are the names commonly used in the argc argv
UNIX operating system.

The first parameter indicates the number of parameters that have been passed (including the program name).argc

The second parameter is a pointer to an array of char pointers (strings). The program name (in argv[0]) and all argv
entered parameters are stored in it as strings that are terminated with the null byte (\0).

Example

The following example outputs the program name and all entered parameters.

#include <stdio.h>
int main(int argc, char *argv[])
{
 int i;
 printf("Program name: %s\n", argv[0]);
 for (i=1; i<argc; ++i)
 printf("%d. parameter is: %s\n", i, argv[i]);
 return 0;
}

 187

4.2.5 The advanced interactive debugger AID

C and C++ programs can be tested using the Advanced Interactive Debugger AID.

This User Guide only provides a brief description of AID. A complete description of the debugger can be found in
the manual “AID, Debugging of C/C++ programs” [].9

AID offers the following features:

It enables “symbolic” debugging, i.e. symbolic names from the source program may be specified in commands
instead of hexadecimal addresses, provided LSD information is generated during compilation and passed to the
loaded program.

It is not always necessary to load this information for the complete program together with that program. AID
allows the LSD information to be dynamically loaded for each translation unit if the associated object modules
are stored with the LSD information in a PLAM library. This means that resources can be used more efficiently:

Program memory is freed, since LSD information needs to be loaded only when required for debugging

A program which is found to be error-free in the debugging session does not need to be recompiled or
relinked (without LSD information) before being used.

If a program needs to be debugged when in productive use, the required LSD information will already be
available without having to recompile and relink the program.

It offers functions which, in particular, enable:

program execution to be traced and logged on a symbolic level (TRACE function)

program execution to be interrupted at fixed points or on the occurrence of defined events so that AID or
BS2000 commands (so- called “subcommands”) can be executed

the contents of variables to be output in a format that takes data definitions of the source program into account

the contents of variables to be changed

call hierarchies to be traced even without LSD informations (%SDUMP %NEST).

In addition to the diagnosis of loaded programs, it supports the analysis of memory dumps in disk files.

It can be used in batch mode and in interactive mode. Note, however, that the interactive dialog mode is
recommended for debugging programs, since the sequence of commands need not be defined in advance but
can be adapted to suit the particular situation.

The following types of symbols can be addressed in C:

simple (scalar) types

arrays and elements of arrays

structures/unions and their components

enumeration constants (enum)

bit fields

pointers

functions

labels

Note, however, that preprocessor constants and macros (#DEFINEs), typedef names, enum, structure and union
types (labels), and inline substituted functions cannot be referenced.

In addition, the following types of symbols can be addressed in C++:

 188

functions and data elements within classes

overloaded functions and operators

references

templates

namespaces

Source references are used to refer to individual statement lines and block references to the start of blocks:

S'[<UNIQUE-no.> -] <line-no.> [: <rel.statement-no.>]' or

BLK = '[<UNIQUE-no.> -] <line-no.> [: <rel.block-no.>]'

The UNIQUE number and line number also appear in the source/error listing.

 189

4.2.6 Requirements for symbolic debugging

For debugging at symbolic level, AID enables variables to be addressed with the names defined in the source
program and source references to be used to refer to individual statement lines. LSD information must be made
available to AID for this purpose.

The generation and transfer of this information is controlled in each of the following steps by specifying appropriate
operands in the control statements or commands:

compiling with the C++ compiler

linking and loading with the dynamic binder loader

linking with BINDER

linking with the compiler statement BIND

Compiling with the C/C++ compiler

The generation of LSD information is controlled with the following option:

//MODIFY-TEST-PROPERTIES TEST-SUPPORT = / *YES*NO

*NO *NO is the default value, which means that the compiler does not generate LSD information.
Even without LSD information, it is possible to trace the call hierarchies. In other words, %SDUMP %
NEST can always be used if the program is aborted.

*YES The compiler generates LSD information.
However, this is only possible for non-optimized programs. If optimization happens to be set (see the

 statement), the compiler treats the request for debugging MODIFY-OPTIMIZATION-PROPERTIES
support as the higher priority, switches the optimization level to *LOW, and issues an appropriate
message.

Linking, loading and starting

Once the LSD information has been generated during compilation, it is possible to

load it together with the overall program or

dynamically load it on request for each translation unit if the associated modules are maintained in a PLAM
library.

The table below shows which operands have to be specified in both cases in order to transfer LSD information:

Method of
linking/loading

Loading LSD information
with the overall program:

Dynamic loading of LSD
information
by AID (%SYMLIB):

Linking, loading
and starting with
DBL

LOAD-EXECUTABLE-PROGRAM ...,

TEST-OPTIONS=*AID

or

START-EXECUTABLE-PROGRAM ...,

TEST-OPTIONS=*AID

LOAD-EXECUTABLE-PROGRAM ...,

[TEST-OPTIONS=*NONE]

or

START-EXECUTABLE-PROGRAM ...,

[TEST-OPTIONS=*NONE]

 190

1.

2.

Linking with
BINDER

START-LLM-CREATION ...,

INC-DEF=*PAR(...,

TEST-SUPPORT=*YES)

or
INCLUDE-MODULES ...,

TEST-SUPPORT=*YES

START-LLM-CREATION ...,

[INC-DEF=*PAR(...,

TEST-SUPPORT=*NO)]

or

INCLUDE-MODULES ...,

[TEST-SUPPORT=*NO]

Linking with the
BIND statement

MODIFY-BIND-PROP ...,

TEST-SUPPORT=*YES

MODIFY-BIND-PROP ...,

[TEST-SUPPORT=*NO]

Loading and
starting with DBL

LOAD-EXECUTABLE-PROGRAM ...,

TEST-OPTIONS=*AID

or

START-EXECUTABLE-PROGRAM ...,

TEST-OPTIONS=*AID

LOAD-EXECUTABLE-PROGRAM ...,

[TEST-OPTIONS=*NONE]

or

START-EXECUTABLE-PROGRAM ...,

[TEST-OPTIONS=*NONE]

A program to be tested should be loaded with the LOAD-EXECUTABLE-PROGRAM command so that AID
commands can be subsequently entered.
A program that is to be processed with AID only if an error occurs can be loaded and started with the START-
EXECUTABLE-PROGRAM command.

Note on linking the C runtime systems

If the modules from the CRTE library SYSLNK.CRTE.PARTIAL-BIND are linked, and the C runtime system itself is
loaded dynamically only at runtime (which reflects the default setting when linking with the BIND statement of the
compiler), the following restriction applies when debugging with AID: in the case of some program errors, e.g. due
to invalid parameter passing to C library functions, AID cannot display the call hierarchy fully, since the last function
before the error occurred may be missing. This restriction can be eliminated by linking the C runtime system
statically. The following entry is required for this purpose when linking with the BIND statement of the compiler:
MODIFY-BIND-PROPERTIES STDLIB=*STATIC.

Name of the translation unit in the S qualification

For LLMs, the so-called “source module name” is specified. This name is derived from the name of the source
program by the C/C++ compiler as follows:

The <cat-id> and <user-id> name components, if present, are not used.

If the file or element name of the source program exceeds 32 characters, it is truncated from the right to 32
characters.

If the source module name contains periods, it must be specified in the S qualification using the n’name’ notation.

Example

The file name of the source program is HELLO.C.

The S qualification in the %TRACE command, for example, would be:

 191

/%t 1 in s=n’hello.c’

 192

5 Linkage to functions and languages

The C++ compiler complies with the conventions of the program communications interface ILCS (Inter-Language
Communication Services). In other words, it normally creates ILCS objects at compilation.

These objects can be linked to objects in other languages, provided such objects also comply with ILCS
conventions.

A detailed description of the inter-language communication services (ILCS) and the general conventions for linkage
to other languages can be found in the CRTE User Guide [].4

This chapter contains supplementary details with respect to special conventions that must be observed for linkage
between C and C++ programs.

 193

5.1 Linkage conventions specific to C and C++

Some of the specific conventions to be observed in C/C++ in addition to the ILCS conventions described in the
CRTE User Guide are outlined below.

Parameter passing by value

In C/C++, parameters are passed “by value” (as defined in the respective language standards). The parameter list
therefore contains the values of the individual parameters. This form of parameter passing is possible only if all
objects to be linked are C and C++ objects.

The internal structure of the parameter list is described in section “Implementationdefined behavior based on the
.ANSI/ISO C standard”

The following actions are necessary for linkage to objects in other languages:

When a routine in some other language is called, the address of the data element to be transferred must be
specified (e.g. &par). Technically speaking, the address of the data element is then passed “by value”.

If a C/C++ routine is called from a routine in another language, the formal parameters in C and C++ must be
declared as pointers to the data elements to be transferred, e.g. f(T *par).

Passing of floating-point numbers

The following points must be noted with respect to the passing of floating-point numbers when specifying linkage
from K&R C to C89, C11 or C++ objects:
In K&R mode, values are always passed as . In the other modes, values are only passed as float double float

 if no prototype declaration exists; otherwise, they are actually passed as values.double float

In C++ mode, values are always passed unconverted.float

The proper transfer of floating-point numbers between K&R C and C89, C11 or C++ can only be guaranteed if
floating-point parameters are declared in the C89, C11 or C++ program.double

Passing function return values

In the case of a structure function, the result structure is copied to the parameter list, and a pointer to the parameter
list is supplied in R1.

 194

5.2 Linkage between C and C++

The C programming language is the foundation for C++. One of the main advantages of C++ is that libraries written
in C can also be easily used.

External names, however, are handled differently in C and C++ implementations. In contrast to C, external names in
C++ are coded so they can be used by BINDER.

To enable the common use of functions and data in C++ and C (or other languages), the coding of external names
must therefore be suppressed. The appropriate language element in C++ for this purpose is as follows:

extern "C" declaration;

or

extern "C" {

declarations

}

The above declarations are required in the C++ program for all functions and data that are defined in extern "C"

C++ as well as those which are defined in C (or other languages).

When standard C library functions are called from C++ source programs, only the corresponding standard header
elements (e.g. stdio.h) need to be specified, since they already contain the declarations for all C extern "C"

library functions.

To provide linkage between C and C++, only C89 or C11 objects should be used.
Linkage between C++ objects and K&R C objects is also technically possible, but may create problems in some
cases (different restrictions apply to function declarations; parameters are passed differently, etc.).float

 195

5.2.1 Common types

In order to use data and functions in C and C++, they must have the same or comparable types. C++ contains the
same set of basic data types as C; however, since C++ is a true superset of C, it also contains more types than C.

The following C++ types may be used for linkage between C++ and other languages:

fundamental types: , , , , , , , char short int long, long long float double long double void

qualifiers: , , unsigned const volatile

pointers to common types

arrays of common types (passed as pointers)

structures and unions
These must not contain the following components in C++: member functions, constructors, destructors, base
classes, and access specifiers. The structure and union components must have common types, i.e. must be
syntactically identical.

simple enumerations

functions with common argument and result types
Ellipses (...) are permitted.

The following types must not be used if linkage to other languages is required:

reference types

pointers to members of classes, unions, or structures

classes

structures and unions containing member functions, constructors, destructors, base classes, or access specifiers

enumerations with explicit type or scope: enum E1 : int; enum struct E2;

types defined locally in a class

member functions

templates

std::nullptr_t

bool

_Complex, (a C11 feature)_Imaginary

varable length arrays (a C11 feature)

 196

5.2.2 Calling C functions in C++

C functions can be used in C++ without any problems, provided each C function is declared in C++ with an extern

“C” directive and its complete prototype.

Example:

C source:

/* file = C_file.c */
int error_level;
void error(int number, char *text)
{
 printf("Error %d, Reason: %s\n", number, text);
}

C++ source:

// file = C++_file.C
extern "C" int error_level;
extern "C" void error(int, char *);
int main(void)
{
 error_level = 100;
 error(error_level, "TEST");
 return 0;
}

The C++ source contains “ ” declarations for all the C identifiers used in it.extern C

 197

5.2.3 Calling C++ functions in C

C++ functions can be used in C only if they have a type that can also be represented in C.

Depending on whether or not the C++ source is available, there are different ways to achieve linkage between
functions.

If the C++ source code is available, the C++ function can be declared there with an directive; however, extern “C”

it must be declared with in every C++ extern “C”

source fragment that calls the function!
In the calling C source code, a “plain” declaration is required for the C++ function.extern

If the C++ source is not available or a general new declaration and recompilation is too cumbersome, an additional
function level can be inserted. This is done by writing a so-called “wrapper” function in C++ and defining it as

. The wrapper function can then be called in C without restrictions.extern “C”

Example

C++ function to be called:

int hidden(int i)
{
 // ...
}

Wrapper function:

extern int hidden(int);
extern "C" int wrapper(int i)
{
 return hidden(i);
}

C source fragment that calls the wrapper function:

extern int wrapper(int);
int main(void)
{
 printf("%d\n", wrapper(100));
 return 0;
}

This technique can also be used if a C++ function contains a parameter with a type that does not directly match a C
type. In the case of a C++ function with a reference type parameter, for example, a wrapper function with a
parameter of type pointer could be written and called instead.

 198

5.2.4 Problems and restrictions

The combined usage of C and C++ in a program system is subject to the following restrictions:

Free store management

The and operators in C++ provide a separate facility for free store management. Storage space new delete

management in C, by contrast, is achieved by the functions and . These two methods must be malloc free not

combined.

The effect of using to free storage that was requested with (or using on storage that was delete malloc free

requested with) is undefined.new

Standard I/O files

C++ offers a new interface for file processing. The C++ standard files , , and correspond to cin cout cerr clog

the standard I/O files , and in C.stdin stdout stderr

Note that if the corresponding standard files are used in both C and C++, the behavior of the program cannot be
guaranteed.

If the standard I/O files for C and C++ are to be used in combination in the same C++ program, the C++ function
must be called (see the manual “C++ Library Functions” []).ios::sync_with_stdio() 5

 199

5.3 Linkage between different C++ language modes

The supported by the compiler fall into 3 groups: C++ language modes

C++ V2 (Cfront C++)

C++ V3

C++ 2017

Modules within a group can be linked together without any problems.

Modules from two different groups cannot be combined. If a function is defined in a module of one group and called
in a module of another group, these functions are not linked to each other when binding. An open reference is
created.

 200

5.4 Notes on linkage to ILCS programs in other languages

Linkage to C++

In C++, external names are encoded for the link editor (BINDER).

If a combination of functions and data in C++ and some other ILCS language is being used, the encoding of
external names must be suppressed. The C++ language construct for this purpose is:

extern "C" declaration;

or

extern "C" {

declarations

}

Note that declarations are needed in the C++ program not only for the data and functions defined in extern "C"

C++, but also for those defined in the other ILCS language.

Shared file processing

Shared files must be opened both in the C/C++ section and in the other language section. Control over their
processing is implemented internally via different FCBs.

Since processing of a shared file is accomplished using different FCBs, alternate reading of the file into the C
section and the other language section is not possible. All characters of the file are supplied both to the C section
and to the other language section.

Calling the main function

Calling a function is possible. MAIN must be then used as the entry address.main

If there are several modules with functions in a library, the desired function can be selected by explicitly main main

linking in the appropriate module (by using an INCLUDE statement instead of RESOLVE).

It is not possible to redirect the standard I/O files or pass parameters to the function.main

Shared STXIT event handling

ILCS distinguishes between implicit language-specific event handling and event handling that can be enabled and
disabled explicitly.
Implicit language-specific event handling is restricted to the STXIT events ERROR and PROCHK, while explicit
enabling and disabling is possible for all STXIT events.

STXIT routines explicitly enabled by routines in different languages are managed in parallel, i.e. when an event
occurs, the enabled routines of all languages involved are called (in the order in which they were enabled).
Implicit event handling is rendered ineffective by an explicitly enabled routine.

 201

C/C++ has no implicit language-specific event handling. Explicit enabling and disabling is possible using the C
library functions and .signal cstxit

Enabling event handling routines for the STXIT event classes ERROR and PROCHK causes implicit event handling
by other languages to be deactivated. On exiting from the C/C++ language environment, the event handling
routines for ERROR and PROCHK should therefore be explicitly disabled in order to reactivate implicit event
handling by other languages.
With the C library function , the routines are disabled by assigning SIG_DFL.signal

 202

6 C language support of the compiler

The compiler supports the C language scope as defined by Kernighan & Ritchie as well as the ANSI/ISO standard.

The Kernighan & Ritchie definition is documented in:

“The C Programming Language” by B.W. Kernighan and D.M. Ritchie, First Edition, Prentice Hall, 1978

The ANSI/ISO definition is documented in:

„International Standard ISO/IEC 9899 : 1990, Programming languages - C“

„International Standard ISO/IEC 9899 : 1990, Programming languages - C /Amendment 1 : 1994“

„International Standard ISO/IEC 9899 : 2011, Programming languages - C“

The following sections, which are intended as a supplement to the vendor-independent literature listed above,
describe the implementation and machine-specific characteristics of this compiler and the various extensions to the
standard C language definitions above.

Section compares the C language modes of the compiler and points out the Overview of the C language modes
most important differences between them.
Section describes implementation-defined Implementation-defined behavior based on the ANSI/ISO C standard
behavior based on the ANSI/ISO standard.
Section describes the C language extensions to the definition in the ANSI/ISO standard.Extensions to ANSI/ISO C
Section describes the directives supported by this compiler.Pragmas #pragma

 203

6.1 Overview of the C language modes

In accordance with the different language standards defined for C, the compiler supports five C compilation modes:

K&R C mode (POSIX option -X kr, SDF option MODE=KERNIGHAN-RITCHIE)

The compiler accepts C code based on the language definition by Kernighan & Ritchie as well as some ANSI-
specific extensions.

Extended C89 mode (POSIX option -X 1990 -X nostrict, SDF option MODE=1990, STRICT=NO)

The compiler accepts C code based on the ANSI C89 definition resp. the ISO C standard from 1990 (including
ISO C Amendments 1) in extended mode.

Strict C89 mode (POSIX option -X 1990 -X strict, SDF option MODE=1990, STRICT=YES)

The compiler accepts C code based on the ANSI C89 definition resp. the ISO C standard from 1990 (including
ISO C Amendments 1) in strict mode.

Extended C11 mode (POSIX option -X 2011 -X nostrict, SDF option MODE=2011, STRICT=NO)

The compiler accepts C code based on the ISO C standard from 2011 in extended mode.

Strict C11 mode (POSIX option -X 2011 -X strict, SDF option MODE=2011, STRICT=YES)

The compiler accepts C code based on the ISO C standard from 2011 in strict mode.

The following table contains an overview of the language elements defined in the ANSI/ISO C standard and
indicates which of those elements are supported in the language modes modes.

Key to the entries in the table:

X Fully supported in strict and extended language mode

o Supported syntactically, but not semantically

- Not supported

 204

Lexical elements

C language elements Language definition Compilation mode

C11 C89 K&R C11 C89 K&R

Multibyte characters X X - X X X

Trigraph sequences

??= #

??([

??/ \

??)]

??’ ^

??< {

??! |

??> }

??- ~

X X - X X X

Digraph sequences 1)

<: [

 :>]

<% {

%> }

%: #

%:%: ##

X X - X X X

Escape sequences

\a X X - X X -

\b X X X X X X

\e, \E - - - X X X

\f X X X X X X

\n X X X X X X

\r X X X X X X

\t X X X X X X

\v X X - X X X

\’ X X X X X X

\" X X - X X X

\? X X - X X X

 205

\\ X X X X X X

\ octdigits X X X X X X

\u decdigits

\U decdigits

X - - X - -

\x hexdigits X X - X X X

Lengths of identifiers

internal 63 31 8 all characters are significant

external 31 6 <8 30/32/32K 2)

Keywords 3)

Constants

integer X X X X X X

float X X X X X X

character X X X X X X

L'character' X X - X X X

u'character'

U'character'

X - - X - -

string X X X X X X

L"string" X X - X X X

u"string"

U"string"

X - - X - -

enum X X X X X X

Suffixes

integer L,l X X X X X X

integer U, u X X - X X X

integer LL, ll X - - X X X

float F, f X X - X X X

float L,l X X - X X X

Lexical elements

Notes

 206

Digraph sequences1)

Digraph sequences are defined in the ISO C Amendment 1 and are recognized in the C compilation modes
only if the POSIX option or the SDF option ALTERNATIVE-TOKENS=*YES is -K alternative_tokens

set. In language mode C11 thea are activated by default.

Length of external names2)

For more information see , sub-item "Implementation-defined behavior based on the ANSI/ISO C standard"
"Identifiers".

Reserved keywords3)

asm continue extern int signed union

auto default float long sizeof unsigned

break do for register static void

case double goto restrict struct volatile

char else if return switch while

const enum inline short typedef

The keyword is reserved in K&R mode and in extended C mode. However, since the inline substitution of asm

Assembler code is not yet supported, the use of this keyword will result in an error. The keyword is not asm

reserved in the strict C mode.

The and keywords are only defined and available in mode C11.inline restrict

Data type declarations

C language elements Language definition Compilation mode

C11 C89 K&R C11 C89 K&R

Type specifiers

void 1) X X - X X X

void * 1) X X - X X X

char X X X X X X

short X X X X X X

int X X X X X X

long X X X X X X

long long X - - X X X

float X X X X X X

 207

double X X X X X X

long double X X - X X X

signed X X - X X X

unsigned X X X X X X

array [] X X X X X X

structure 2) X X X X X X

union 2) X X X X X X

(*) X X X X X X

enum X X X X X X

() X X X X X X

Type qualifiers

const X X - X X o

volatile X X - X X o

Initialization

auto aggregate X X - X X X

Storage classes

typedef X X X X X X

extern X X X X X X

static X X X X X X

auto X X X X X X

register X X X X X X

Bitfield types

int X X X X X X

signed int X X X X X X

_Bool X - - X X X

all integral - - - X X X

Data type declarations

Notes

void1)

 208

1.

2.

3.

The type signifies an empty set of values. It can be used in the following three ways:void

Result type of functions which do not return a value.

A pointer to void points to an object of any data type.

The number of parameters and the data types of the parameters can be specified in a function declaration
(see Prototyping). If is used instead of the parameter list, then the function has no parameters.void

 structure, union2)

In accordance with ANSI C, structures and unions may be mutually assigned (if of the same type), passed to
functions as parameters, and returned as exit values of functions.
These options are also supported in K&R mode.

Conversion rules

C language elements Language definition Compilation mode

C11 C89 K&R C11 C89 K&R

value preserving X X - X X -

sign preserving - - X - - X

Conversion rules

One important difference between ANSI and K&R lies in the area of implicit arithmetic conversions.

In K&R C, operands of an expression are converted using the “unsigned preserving” rule, i.e. extending an operand
of type or produces a result of type . If types unsigned char unsigned short unsigned int unsigned

appear in an expression together with other types, the result is always .unsigned

In ANSI C, by contrast, the “value-preserving” rule applies, i.e. the result type depends on the size of the operand
type. Extending an operand of type or thus produces a result of type if unsigned char unsigned short int

 is large enough to represent all values of the smaller type. Otherwise, the result is an .int unsigned int

Due to this difference, the results of arithmetic expressions could differ in some cases and thus lead to different
program behavior. This must be taken into account when moving from K&R C to ANSI C.

Functions

C language elements Language definition Compilation mode

C11 C89 K&R C11 C89 K&R

Definition "old“ 1) X X X X X X

Definition "new“ X X - X X X

Prototyping 2) X X - X X o

Parameter type matching 3) X X - X X -

Functions

Notes

 209

 Definition of functions1)

In contrast to K&R, ANSI has introduced a new syntax for the definition of formal function parameters, but also
allows the “old-style” (K&R) syntax.
Both definition types are also supported in K&R mode.

Prototyping2)

In contrast to K&R, ANSI defines function prototypes. These are function declarations in which the number and
types of individual parameters are also specified. This enables the compiler to compare the types of current
parameters with those of formal parameters in the declaration and to adapt them to the formal parameters as
required.

Prototype declarations are syntactically allowed in K&R mode, but have no semantic significance

Parameter type matching3)

The advantage of prototyping is that the parameters specified in the function declaration are not subject to
standard conversion rules. A parameter that is declared there as will also be passed as , without float float

first being converted to . If K&R and ANSI objects are to be combined, floating-point parameters double

should always be declared .double

The automatic matching of parameter types is not supported in K&R mode.

Preprocessor directives

C language elements Language definition Compilation mode

C11 C89 K&R C11 C89 K&R

(stringizing) X X - X X X

(token pasting) X X - X X X

#assert / #unassert - - - X X X

#define X X X X X X

defined X X - X X X

#elif X X - X X X

#else X X X X X X

#endif X X X X X X

#error X X - X X X

#include X X X X X X

#if X X X X X X

#ifdef X X X X X X

#ifndef X X X X X X

 210

#ident - - - o o o

#line X X X X X X

#line (old style) - - X X X X

#pragma X X - X X X

#pragma STDC X - - o o o

#undef X X X X X X

(null directive) X X - X X X

Preprocessor directives

Predefined macro names

C language elements Language definition Compilation mode

C11 C89 K&R C11 C89 K&R

__LINE__ X X - X X X

__FILE__ X X - X X X

__DATE__ X X - X X X

__TIME___ X X - X X X

__STDC__ X X - X X X

__STDC_VERSION__ 1) X X - X X -

Predefined macro names

Notes

__STDC_VERSION__1)

For more information see ."Predefined preprocessor names"

 211

6.2 Implementation-defined behavior based on the ANSI/ISO C standard

Identifiers

In principle, both internal and external names can have any length. In the case of internal names, all characters are
significant. For external names, the compiler evaluates a maximum of 32 characters by default (see the rules
below). In accordance with ANSI/ISO C, the following characters are allowed when constructing names: the digits 0
to 9, the uppercase letters A to Z, the lowercase letters a to z, and the underscore _. Furthermore, as an extension
to ANSI/ISO C, the “dollar” character $ and the “at” sign @ are also allowed in names by default, but this can be
turned off with the appropriate options (, and DOLLAR-ALLOWED=*NO, AT--K no_dollar -K no_at

ALLOWED=*NO).
Multibyte characters are not supported in identifiers. In mode C11, however, universal character names can be
used. These have the form \u0123 or \U01234567. Not all sequences of digits are allowed.

The following applies to external names:

By default, i.e. when the options and C-NAMES=*STD are set,external names can have a -K c_names_std

maximum length of 32 characters. Longer names are truncated by the compiler to 32 characters.
Up to 30 characters may be used when generating shared code (with the and SHAREABLE--K share

CODE=*YES options).

If the options and C-NAMES=*UNLIMITED are set, no name truncation occurs. The -K c_names_unlimited

compiler generates entry names in the EEN format. EEN names can have a maximum length of 32000
characters.

By default, lowercase letters are converted to uppercase, and underscores (_) are converted to the dollar
character ($). These conversions can be suppressed by specifying the appropriate options (-K

, or LOWER-CASE-NAMES=*YES, SPECIAL-CHARACTERS=*KEEP) so that llm_case_lower -K llm_keep

lowercase letters and underscores are retained in external names.

External names must not begin with “I”.

If the identifier contains universal character names, these are mapped as a character sequence in the external
name. The backslash is replaced by a minus sign. The letter u or U and the digits are retained.

The above rules also apply to external names that are declared as in C++ and also for static functions.extern "C"

main function

The compiler allows the return types and for the function. The return type void always leads to a int void main

compiler message (usually a warning).

Two formal parameters are provided for the function to allow arguments to be passed to a program in a call:main

int main(int argc, char *argv[])

The first parameter shows the number of passed arguments. Since the first argument argv[0] is conventionally argc
the program name, the number of arguments is at least 1.

The second parameter is a pointer to an array of strings. It holds the program name (in argv[0]) and all argv
arguments entered in the program call in the form of strings terminated with the null byte (\0).

As an extension to ANSI/ISO C, it is also possible to declare a third parameter for the char * envp [] main

function (see)."Extensions to ANSI/ISO C"

 212

More details on passing parameters to functions can be found in section main “Input of parameters for the main

.function”

Characters

By default, the data type is treated as by the compiler (see also the , and char unsigned -K uchar -K schar

SIGNED-CHARACTER=*NO/*YES options).

The value of an EBCDIC character is always positive.
The value of ’\377’ (octal) or ’\xFF’ (hexadecimal) is thus 255.
If a character constant contains a numeric value that is not included in the EBCDIC character set, behavior is
undefined.

The value of a character constant that contains more than one character (e.g. ’ab’) is computed from the EBCDIC
value of the character as a number to the base 256. The first (right) character is multiplied by 1, the second
character by 256, the third character by256 * 256, the fourth character by 256 * 256 * 256.

For example, ’abcd’ produces the value ’a’ * 256 + ’b’ * 256 + ’c’ * 256 + ’d’ 3 2

(= 2172814212).

The value of a multibyte character constant in the form L’ab’ is identical to the value of a character constant in the
form ’ab’ in this implementation.

If a character constant contains five or more characters, an error occurs, and no code is generated.
The assignment of to occurs modulo 256.int char

Multibyte characters

In this implementation, multibyte characters always have a length of 1 byte, and values are always 32-bit wchar_t

integer values.

Pointers

A pointer is represented in 4 bytes and is aligned on a word boundary. The difference between two pointers is of
type ().int ptrdiff_t

Arrays

In C, arrays usually have fixed limits; the size of an array in such cases is already known at compile time. The VLA
(variable length array) from C11 are an exception. These can only occur on block scope.
An array name in C is always treated as a pointer that points to the first element of the array.

The elements are sequentially stored in memory; the first element has the index zero. In the case of multi-
dimensional arrays, the elements are stored in memory in such a way that the last index is the first to vary. Like the
array itself, each element is aligned in accordance with the element type.

Structures

In structures, components occupy space in the order of their declaration. Each component is aligned in accordance
with its type. The structure itself is aligned on the maximum alignment size required for a component. The size of
the structure is a multiple of this alignment so that arrays can be constructed from these structures. See also

 and the preprocessor directive “Internal representation of data types (alignment and representation in registers)”
 on .#pragma aligned "aligned pragma"

 213

Example

 Size: Alignment: Offset:
struct { char a; 1 byte byte boundary 0 (word boundary)
 short b; 2 bytes half-word boundary 2
 char c; 1 byte byte boundary 4
 long d; 4 bytes word boundary 8
 char e; 1 byte byte boundary 12
 }; 16 (structure end)

Bitfields

Bitfields are stored from left to right in a maximum of 32 bits (one word).

Bitfields can be defined as follows:

int unsigned int signed int
long unsigned long signed long
short unsigned short signed short
char unsigned char signed char

Bitfields without the or keyword are represented in accordance with the base type, i.e. as unsigned signed char

 and , and as . If or is specified explicitly, the bitfields are unsigned int long short signed signed unsigned

represented accordingly. This default behavior can be modified by means of the following options: , -K schar -K

 and or SIGNED-FIELDS=*UNSIGNED, PLAIN-signed_fields_unsigned -K plain_fields_unsigned

FIELDS=*UNSIGNED, SIGNED-CHARACTER=*YES.

If the bitfield fits in the current byte, half-word, word or double-word, the specified number of bits are placed in it
without being aligned; otherwise, the bitfield is aligned on a byte, halfword, word or double-word boundary in
accordance with its base type (see example below).

Example

struct
{
 unsigned short a : 7;
 unsigned short b : 5;
 unsigned short c : 5;
 unsigned short d : 8;
} x;

 214

Enumerations (enum)

Without an explicit value assignment, the numbers 0, 1, etc. are sequentially assigned to the constants when an
enumeration type is defined. If a value is explicitly assigned to aconstant, the following constants automatically
receive a correspondingly higher value.

By default, an enumeration type is represented as , or , depending on the threshold limits (highest char short long

and lowest values). Regardless of the actual storage space requirements, data can always be represented as enum

 by using the or ENUM-TYPE=*LONG compiler options .long -K enum_long

Type qualifier volatile

volatile prevents optimization on accessing a variable. This means that instead of using the old contents, new

values are always read from storage. For all assignments, including redundant ones, the appropriate value is
directly written to storage. In contrast to
non- objects, which are subject to extensive optimization and are typically held in registers, the volatile

implementation guarantees that all references to objects will always point to values in storage.volatile

volatile is only accepted syntactically in K&R mode.

size_t

In this implementation, size_t corresponds to .unsigned int

ptrdiff_t

In this implementation, ptrdiff_t corresponds to .int

Conversion of data types

integer --> integer

When an unsigned integer value is converted to a signed integer type of the same size, the bit pattern is
retained. If the value cannot be accommodated, the result corresponds to the subtraction of the largest possible
number + 1 from the given size.

If a conversion of an integer value to a smaller integer type is involved, and the value cannot be accommodated,
the bit pattern is retained and the higher-valued bits are truncated.

floating-point number --> integer

When a floating-point number is converted to an integer, the number is truncated toward zero.

Example

(int)(-1.5) is -1

(int)(1.5) is 1

The result is undefined if the floating-point number to be converted is too large to be represented as an integer
value.

integer --> floating-point number

The conversion of an integer to a floating-point type that cannot accept the correct value is accomplished by
rounding.

floating-point number --> floating-point number

The conversion of a floating-point number to a smaller floating-point number (e.g. to) is double float

accomplished by rounding.

 215

integer <--> pointer

When an integer is converted to a pointer, and vice versa, the bit pattern is not changed (simple reinterpretation).

Sign of division remainder

The remainder of an integral division always has the same sign as the dividend.

Example

(-5) / 2 is -2, (-5) % 2 is -1
5 / (-2) is -2, 5 % (-2) is 1

Logical and arithmetic right shift

If the left operand is unsigned, the right shift is logical (padding of 0 bits); otherwise, arithmetic (padding of signed
bits).

Example

(-8) >> 1 is -4

Bitwise operations on signed integer values

Bitwise operations (operators ~, <<, &, ^, and |) are executed as unsigned integers on interpretation; however, the
result is signed.

Declarators

Any number of declarators may be used to declare a type.

switch statement

Any number of branches may be used per statement.case switch

Preprocessor directives

#include

#include directives cannot be specified with a sequence of <name> or “name” headers. Only the first name is
accepted.

The compiler accepts #include directives in which the names of headers contain slashes (/) for directories even
in the case of PLAM library elements. Every slash in the names of user-defined and standard headers is
internally converted to a period for the search in PLAM libraries.
Consequently, in source programs which are ported out of POSIX or UNIX system, for example, the slashes
need not be converted to periods.

Example

#include <sys/types.h>

The compiler looks for the standard header SYS.TYPES.H in the CRTE library $.SYSLIB.CRTE.

There are no restrictions with respect to the nesting of header files.

#pragma

See section .“Pragmas”

 216

__DATE__, __TIME__

If the date and time of compilation are not available, these macros are defined asfollows:

__DATE__

__TIME__

"Jan 1 1970"

"01:00:00"

Size and value ranges for elementary data types

Type Bit Value ranges

char 8 0 .. 255

signed char 8 -128 .. 127

short 16 -32768 .. 32767

unsigned short 16 0 .. 65535

int 32 -2147483648 .. 2147483647 (-2 .. 2 -1)31 31

unsigned int 32 0 .. 4294967295 (0 .. 2 -1)32

long 32 same as int

unsigned long 32 same as unsigned int

long long 64 -9223372036854775808 .. 9223372036854775807 (-2 .. 2 -1)63 63

unsigned long long 64 0 .. 18446744073709551615 (0 .. 2 -1)64

float 32 10 .. 0.79*10-75 76

double 64
124

same as float

long double 124 same as float

Internal representation of data types (alignment and representation in registers)

This section illustrates how individual C data types are internally represented in memory.

For scalar types, additional details are provided on their representation in registers. On the one hand, this defines
how the variables are represented with the storage class; on the other, it illustrates how the value of register

such a variable is interpreted in expressions.

Data type Size Alignment Representation in registers

char, unsigned char,
signed char

1 byte byte boundary right aligned

short, unsigned short 2 bytes half-word boundary right aligned

 217

int, unsigned int 4 bytes word boundary as in memory

long, unsigned long 4 Byte word boundary as in memory

long long,
unsigned long long

8 bytes double-word boundary no representation in registers

pointer 4 bytes word boundary as in memory

float 4 bytes word boundary left aligned

double 8 bytes double-word boundary no conversion is required for
representation

long double 16 bytes double-word boundary represented by a pair of floating point
registers

Data type Size and alignment

Enumerations Represented as char, short or long with corresponding alignment, depending on limits.

Arrays Size and alignment correspond to element type.

Structures Size and alignment for individual components based on above rules; overall alignment based on
maximum alignment for components.

Bitfields If the alignment boundary for the base type is not exceeded, the specified number of bits is
created without alignment; otherwise, the bits are aligned in accordance with the base type.

Implementation-defined limits

Most limits depend on the available system resources (e.g. on virtual memory). Only the following limits are
implementation-defined:

Characteristic Maximum value

Number of parameters in a macro definition 2 -124

Number of arguments in a macro call 2 -124

sizeof limit 231

Storage classes

This section summarizes how storage space is assigned to variables, depending on their storage class.

Storage class register

 218

Variables can be declared as register variables with . This is a hint to the compiler that the variables are register

used relatively often and should therefore be held in registers. This saves the high overhead of accessing storage
when reading and writing such variables. Note, however, that the optimization mechanism of the compiler may
ignore such hints and implement variables as register variables in accordance with its own algorithm.

Storage class auto (default)

Storage space is reserved in an Automatic Data Area for local variables with the (predefined) storage class .auto

Parameters in the parameter list

Function parameters are passed in the order of their appearance in a parameter list.

All ... parameters are represented as ; all other integer parameters (,) as unsigned unsigned char short int:

right-justified in one word each, aligned on a word boundary, and padded on the left with sign bits () or zeros (int

...) where necessary. Pointers occupy one word.unsigned

Depending on the language mode, floating-point numbers are passed differently.
In K&R mode, floating-point numbers (,) are always passed in double precision, i.e. as a double-float double

word aligned on a double-word boundary.
In C89 or C11 mode, values are passed in double precision only if no prototype declaration is present. float

Otherwise, values are passed in single precision, i.e. as a word aligned on a word boundary.float

In C++ mode, values are always passed in single precision, since prototype declarations must be present.float

long double is passed in two double-words, aligned on a double-word boundary.

Structure parameters are aligned on a word or double-word boundary as required. The size of a structure is padded
in accordance with the maximum alignment requirement for a component. For example, if a structure contains only

 and components, the size will be a multiple of 2 bytes.short char

Arrays cannot be passed as values. A pointer to the first array element is passed.

Static variables

The compiler reserves storage space for the following types of static variables already at the time of compilation:

local static variables

global static variables

global external variables

The difference between these storage classes lies in their scope:

Local static variables are variables that are defined with the storage class specifier within a function. static

They are only recognized in the function in which they are defined.

Global static variables are variables that are defined with the storage class specifier outside a function. static

They are only recognized within a compilation unit.

Global external variables are variables that are defined outside a function without the storage class static

specifier. These variables can also be accessed in other compilation units, provided they are declared there with
the storage class specifier.extern

Functions without a prototype

If a function without a prototype is called and there is parameter information present, then an error may be output in
some cases. An error is output when an “old style” definition or a prototype in the K&R mode is found.

 219

If the argument and the parameter are of different types (according to their customary type extensions) and one of
the following arises, then an error is output:

Parameter and argument are of different sizes

Parameter and argument have different alignments

The parameter is of type float, double or long double

The argument is of type float, double or long double

The error can be downgraded to a warning. If this is done, the call made at runtime will generally fail.

 220

6.3 Deviations from ANSI/ISO C

This section provides information concerning the following topics:

Extensions to ANSI/ISO C

Restrictions to ANSI/ISO C

 221

6.3.1 Extensions to ANSI/ISO C

The extensions described below do not conform to the language features described in the ANSI/ISO standard and
could thus result in potentially non-portable source programs if used.

Special character $ and @ in identifiers

By default, the “dollar” symbol $ and the “at” sign @ are permitted in internal and external names. This can be
suppressed by means of options (see “Identifiers” (Implementation-defined behavior based on the ANSI/ISO C

).standard)

main function with three parameters

In addition to the two parameters and (see argc argv "Implementation-defined behavior based on the ANSI/ISO C
), a third parameter may be declared, where is a pointer to standard (C/C++-Compiler, #89)" char *envp[] envp

an array of strings that is supplied with information on the system environment. See the manual “C Library
Functions for POSIX Applications” [] for details.3 (Related publications)

Scope of functions

extern declarations of functions within blocks apply to the entire compilation unit. If multiple declarations extern

are available for the same function, they are tested for a match.

Write access to string literals

In this implementation, string literals can be overwritten by default. This ensures that the literals do not overlap.
Identical literals are stored in separate areas.
The and STRING-LITERALS=*READ-ONLY options can be used to specify read-only access for string -K rostr

literals.

Conversion of function pointers

The cast operator can be used to convert pointers to objects to pointers to functions, and vice versa. In the case of
implicit conversions, warnings are issued by the compiler.

Non-integer bitfields

All integral types (except) can be used as bitfields (see also long long “Bitfields” (Implementation-defined

). The standard only defines the types , and behavior based on the ANSI/ISO C standard) int unsigned int

.signed int

The asm keyword

The keyword is reserved in K&R mode and in extended C mode. However, since the inline substitution of asm

Assembler code is not yet supported, the use of this keyword will result in an error. The keyword is not asm

reserved in the strict C mode.

 222

Multiple definitions of external variables

If there are so-called “tentative” definitions for the same object (i.e. external declarations of variables without the
attribute or) in several compilation units, these must always be of the same type. Different type extern static

declarations for the same external object are not recognized by the compiler. Multiple initializations of external
variables will result in errors on linkage. This behavior can be controlled with options (, -K external_multiple -

 and EXTERNAL-DEFINITION=*UNIQUE/*MULTIPLY-ALLOWED).K external_unique

Empty macro arguments

When calling macros, it is also possible to pass empty arguments.

Example

#define F(a,b) f(a)+f(b);
F(1) /* produces f(1)+f(); */
F(,1) /* produces f()+f(1); */

Predefined macros

For compatibility reasons, some predefined macros do not begin with the underscore (_) character (see the section
).“Predefined preprocessor names”

Additional preprocessor directives

The following additional preprocessor directives are accepted by the compiler: (old format), , #line #ident

 and .#assert #unassert

#line directive (old format):

#'BLANK'digit-sequence'BLANK'[header-file]

This directive is identical to the directive, except for the fact that the keyword is omitted.#line line

#ident directive:

#ident'BLANK'"string"

The directive, which is equivalent to the , is accepted syntactically, but does cause any #ident #pragma ident

changes in the generated object. The compiler does not issue any notes or warnings, since these directives are
used internally in system headers.

#assert directive:

#assert'BLANK'name[(token-sequence)]

The directive can be used to define an assertion. Assertions are independent of macro definitions.#assert

 223

name is the name of the assertion, and is the value to which the assertion applies.token-sequence
A single may be one of the following lexical units: name, keyword, constant, string, operator, separatortoken
/punctuation character. If no is specified, the assertion is considered defined as in the case of a token-sequence
symbolic constant, but no value is assigned.

The statement can be used to test whether an assertion applies to a value:#if

#if #name(non-empty-token-sequence)

name is the name of the assertion, and is the value to be tested. For example, the non-empty-token-sequence
following test for the predefined assertion would return the value “true”:compiler

#if #system(bs2000)

The predefined assertions are described in the appendix under “Predefined preprocessor assertions (#assert)”
.(Predefined preprocessor names)

#unassert directive:

#unassert'BLANK'name[(token-sequence)]

The directive has the same syntax as and can be used to remove any assertion.#unassert #assert

If a is specified, only the assertion for that value is removed; otherwise, i.e. if no is token-sequence token-sequence
specified, the entire assertion is deleted.

 224

6.3.2 Restrictions to ANSI/ISO C

The following language elements are not supported by the compiler described here, or only to a limited extent.

Data type long long

Bitfields and expressions in statements of type are not supported.switch long long

Alignment

The compilers offers three ways to increase an alignment: , the keyword in C11 and #pragma aligned _Alignas

the keyword in C++17. These can be used to increase the alignment for struct members only. There is no alignas

effect on variables.

Declarations without type

In language mode C11, each declaration must have an explicit type. The type could be missing in C89, then int

was assumed. If the type is missing, an error occurs in mode C11 that can be downgraded to a warning.

Example

% CFE1260[*ERROR]: x.c / 3: explicit type is missing ("int" assumed)

 const var1 = 7;

 ^

% CFE1077[*ERROR]: x.c / 5: this declaration has no storage class or type

specifier

 var2;

 ^

% CFE1260[*ERROR]: x.c / 7: explicit type is missing ("int" assumed)

 extern function (int a);

 ^

% CFE1260[*ERROR]: x.c / 9: explicit type is missing ("int" assumed)

 function2 (int a);

 ^

Unicode

The term Unicode means a standard that specifies a binary representation for many characters in the world. The
standard specifies more than 100,000 different characters. The standard defines several representations, the best
known are UTF-8 and UTF-16. In these representations, most characters are represented by more than 1 byte.
The C11 standard has created language elements to describe these characters in the source code: characters with
\u, types for Unicode characters and literals in Unicode. These language resources are supported by the C/C++ 4.0
compiler.
However, it should be noted that the functions of the CRTE only support characters and strings from normal
EBCDIC or ASCII. It is assumed that each character is represented in a byte. This means that the CRTE functions
are not suitable for processing Unicode strings.

 225

Floating point format IEEE

The compiler does not support the IEC 60559 standard. The compiler allows you to store float constants in the IEEE
format, however, some configuration functions are missing. The values infinity and NaN are also not supported
meaningfully. Using these values can lead to strange behavior.

Thread support

The C/C++ compiler does not support a specific thread package. In detail, this means that the headers <threads.h>
and <stdatomic.h> are not available. The keywords and lead to an error message in _Thread_local _Atomic

mode C11. The predefines and are set.__STDC_NO_THREADS__ __STDC_NO_ATOMICS__

Complex numbers

The C/C++ compiler does not support the complex numbers mentioned in the C11 standard. In detail, this means
that the header <complex.h> is not supported. The <complex.h> header in the CRTE is used for complex numbers
in C++, its use in C leads to an error message. The keywords and lead to an error _Complex _Imaginary

message in mode C11. The predefine is set.__STDC_NO_COMPLEX__

C11 Appendix K

The C11 standard, Appendix K, describes functions that fall under the term "Bounds-checking interfaces". These
functions are not offered.

C11 Appendix L

The C11 standard, Appendix L, describes functions that fall under the term "Analyzability". These functions are not
offered.

 226

6.4 Pragmas

This section describes the directives which are defined as implementation dependent in the ANSI/ISO #pragma

standard and which are accepted by the compiler:

aligned pragma

pack pragma

ETPND pragma

Pragmas to control the layout of listings

LISTING pragma

PAGE pragma

SPACE pragma

TITLE pragma

inline pragma

int_to_unsigned pragma

weak pragma

ident pragma

VIRTUAL_FUNCTION_TAB pragma

Pragmas to control template instantiation

deprecated pragma

STDC pragma

__printf_args pragma

__scanf_args pragma

 227

6.4.1 aligned pragma

The pragma can be used to align data elements within classes, structures and unions on a larger number aligned

of bytes than the default minimum alignment set for the compiler.
This pragma can be used in all language modes of the compiler.

#pragma aligned'BLANK'n

n is a number of bytes, which is specified in steps to the power of 2 up to a maximum of 8, and optionally entered in
decimal, octal or hexadecimal notation. The permitted values (in decimal notation) are 1, 2, 4, 8 and16 (still
permitted by the syntax).

Notes
For the sake of simplicity, the following notes only refer to structures, but are also analogously applicable to classes
and unions.

Pragmas that specify fewer bytes than the minimum alignment intended for thecorresponding data type (see
table below) are not permitted and are ignored.

Data type Minimum
alignment

(number of bytes)

char 1

short 2

int 4

long 4

long long 8

float 4

pointer 4

double 8

long double 8

The data element to be aligned may also be a bitfield, in which case the bitfield is created in a new base field
with the required alignment.

In the case of elements, the pragma is ignored.static

The pragma must be placed in the structure definition immediately before the data element to be aligned.
Otherwise, it will be ignored.

If multiple pragmas precede a data element, the one with the largest alignment specification is considered.

If a pragma precedes the declaration of several structure elements, it is applied to only the first declared element.

The alignment of a structure is based on the maximum alignment of its elements.

If a structure appears as an element in another structure, the pragma preceding it applies to the alignment of the
entire structure, and not the alignment of its elements.

 228

A pragma that precedes a structure element that represents an array applies to the alignment of the entire array
(i.e. the first array element), and not the remaining array elements.

Aligned pragmas and pack pragmas (see) can be active at the same time for a specified structure "pack pragma"
element. In this case, the aligned pragmas take precedence.

Example

...
class bsp1
 {
 int a; // Aligned on 4 bytes.
#pragma aligned 8
 int b,c; // b is aligned on 8 bytes.
 // c is aligned on 4 bytes!
 // The maximum alignment of an element
 // of class bsp1 is thus equal to 8 bytes.
 // Class bsp1 is therefore aligned on
 // 8 bytes.
 int d; // Aligned on 4 bytes.
 };
class bsp2
 {
public:
double dens; // Aligned on 8 bytes.
#pragma aligned 4 // Is ignored. Since the maximum alignment
 // of an element of the structure stru1 is
 // 8 bytes, stru1 is also aligned on 8 bytes.
 // A corresponding warning is issued.
 struct
 {
 int istru11; // Aligned on 4 bytes.
 double dstru12; // Aligned on 8 bytes.
 } stru1; // Aligned on 8 bytes (see above).
 struct
 {
 short s1; // Aligned on 2 bytes.
 short s2; // Aligned on 2 bytes.
 } stru2; // Aligned on 2 bytes, since the maximum
 // alignment of an element equals 2 bytes.
#pragma aligned 4
 char c; // Aligned on 4 bytes.
 char c1; // Aligned on 1 byte.
#pragma aligned 8
 short ar1[16]; // The array is aligned on 8 bytes,
 // but not the individual array elements.
 ...
 }
...

 229

6.4.2 pack pragma

This pragma controls structure layout. The alignment of the structural elements in all structures is reduced to the
number specified in the pragma. This has the effect of reducing the size of the structure. The scope of a pack
pragma extends as far as the next pack pragma..

#pragma pack ([n])

n can be specified as a decimal, octal or hexadecimal number. The permitted values (in decimal notation) are 1, 2,
4 and 8.

Default value: 8

Attention!

Using pack pragmas has the effect of increasing run time since accessing unaligned structure elements takes
longer than accessing aligned structure elements.

You should note that using the address of a structure element is not without risks. Attempting to access a
structure element by using its address can cause a dump.

 230

6.4.3 ETPND pragma

This pragma can be used to create a documentation area in each module (code and data CSECT) of the generated
LLM. This area contains general information on the translation unit (e.g. the version number or creation date), but
no data on the function of the module. If desired, a patch area can be reserved for corrections that may be required
at a later stage.

Format:

#pragma ETPND { CODE | DATA }

 [,VER=] version

 [,DATE=] datum

 [,COMPNR=] compnr

 [,PATCH=] anzahl

 [,MODULLENGTH=]CODElänge

CODE
DATA

The ETPND area is created in the code or data module.

version Module version as a decimal value in the range [0..999]. If this entry is
omitted, 0 is assumed.

date Date of creation, in the form yyyymmdd, yyyy-mm-dd or yymmdd.
If the six-digit format is specified, the year must be between 1960 and 2059.
The two missing digits for the year (19 or 20) are added as appropriate.
The date must lie between 1.1.1905 and 1.1.2035.

Overflows in months or days, if present, are converted to the canonical
form. An entry of 19961335 (35.13.1996), for example, would thus correspond
to 19970204 (4.2.1997).

If no creation date is specified, the compiler uses the date of compilation.

compno Component number as a decimal value in the range [0..99999999]. If this
entry is omitted, 0 is assumed.

number Size of the patch area in bytes. The value must not exceed 4294967295
(0xFFFFFFFF). If this entry is omitted, an area of 200 bytes is reserved in
the code module, and no area (0) is reserved in the data module.
If PATCH=0 is specified, no patch area is reserved in the code module
either. The value may be specified as a decimal, octal or hexadecimal
number.

length Length of the module including that of the ETPND area (24+7 bytes due to
alignment on a double-word boundary) in bytes; this operand can be used
to terminate a module on a page boundary. The value must not exceed
4294967295 (0xFFFFFFFF). If the value specified for is less than the length
actual length of the module; the operand will be ignored. The value may be
specified as a decimal, octal or hexadecimal number.

Notes

 231

An ETPND pragma cannot be used to specify values for both MODULLENGTH and PATCH at the same time. If
the ETPND pragma contains both entries, MODULLENTGH is ignored.

Only one ETPND pragma may be specified per module (i.e. per code and data CSECT). If multiple ETPND
pragmas are specified for the same module, only the last pragma specified is used.

 232

6.4.4 Pragmas to control the layout of listings

The layout of source, error, and preprocessor listings can be controlled from within the source text by means of
 directives. Other listings generated by the compiler cannot be controlled by pragmas.#pragma

The , and LISTING-PRAGMAS=... options can be used to -K pragmas_interpreted -K pragmas_ignored

globally specify which of the pragmas that appear in the source text are to be interpreted or ignored.

 233

6.4.4.1 LISTING pragma

The LISTING pragma can be used to suppress the output of source text lines.

#pragma LIST[ING] { OFF | ON }

If is specified, all source text lines that follow this directive are suppressed in the listing.LIST OFF

LIST ON cancels the effect of , i.e. all subsequent source text lines are shown in the listing.LIST OFF

Source text lines in a header file are not shown in the listing if the corresponding directives are enclosed #include

within and directives.#pragma LIST OFF #pragma LIST ON

Error messages of the compiler that are related to source text lines for which output has been suppressed are
inserted at the point at which the source text in question would normally appear. In such cases, the appropriate line
number and the file or element name are also shown.

Example

Source text:

98 ...
99 ... <-- Message related to line 99
100 ...
101 #pragma LIST OFF
102 #include "msg.h"
 1 ...
... <-- Messages related to suppressed lines
 45 ...
103 #pragma LIST ON
104 ...

Source/Error listing::

98 ...
99 ...
****> CFE2234 [ERROR] : ...
100 ...
101 #pragma LIST OFF
****> CFE1004 [NOTE] : msg.h / 13: ...
****> CFE1386 [WARNING] : msg.h / 37: ...
103 #pragma LIST ON
104 ...

 234

6.4.4.2 PAGE pragma

The PAGE pragma generates a page feed and can optionally be used like the TITLE pragma to define an additional
line of text to be entered in the header of the listing.

#pragma PAGE[text]

text Any string that is enclosed within quotes and consists of printable
characters. Control characters such as , , etc. are not permitted.\n \t

The directive without generates a page feed.#pragma PAGE text

The directive generates a page feed with the line specified by text appearing as an additional #pragma PAGE text
line in the header of the listing. All other conditions for the output of text lines are the same as those for the TITLE
pragma.

 235

6.4.4.3 SPACE pragma

The SPACE pragma can be used to generate blank lines in the listing.

#pragma SPACE[n]

n is a non-negative integer. The above directive inserts blank lines inton
the listing. can be specified as a decimal, octal or hexadecimal number.n

If is omitted, one blank line is inserted.n

 236

6.4.4.4 TITLE pragma

The TITLE pragma can be used to define additional text to be included in the default header generated for the
listing.

#pragma TITLE text

text Any string that is enclosed within quotes and consists of printable
characters. Control characters such as , , etc. are not permitted.\n \t

If the text to be added exceeds the maximum line length defined with the or LINE-SIZE=... options, it is -N output

split into multiple lines of appropriate length.

The text in the TITLE pragma appears only as of the second page in the header of the listing and overwrites any
text defined with the INITIAL-TITLE-TEXT option. The first page of the listing contains either a blank line or the text
defined with the INITIAL-TITLE-TEXT option.

The defined text remains in effect until the next TITLE or PAGE pragma or until the end of the file.

Invalid characters (e.g. control characters) also result in a warning and are replaced by blanks.

If the generation of multiple additional text lines in the header of a listing makes theminimum prescribed number of
11 lines per page (see the options and LINES-PER-PAGE) insufficient for the output of at least one -N output

line of source text in addition to the header and footer, the listing generator issues a warning and selects a
correspondingly higher number of lines.

 237

6.4.5 inline pragma

The inline pragma is used to specify the names of the user-defined C functions to besubstituted inline by the
compiler.

#pragma inline name

name Name of a C function to be substituted inline.

The given C functions are substituted inline only if the following options are specified:
 or in POSIX and INLINING=*YES in SDF. The inline pragma is not supported in the -F inline_by_source -F i

C++ modes, since C++ has built-in mechanisms for inlining functions.

 238

6.4.6 int_to_unsigned pragma

#pragma int_to_unsigned name

The pragma is supported because it may be contained in older C sources, typically those ported from a UNIX
system. It only works in K&R mode and instructs the compiler to treat a function with the result type name

 as if its result type were still .unsigned int

The declaration of the function with the result type must appear before the directive, e.g.:name unsigned #pragma

unsigned int function(const char*);

#pragma int_to_unsigned function

 239

6.4.7 weak pragma

#pragma weak name

This pragma declares as a global symbol with the linkage attribute “weak external reference” (WXTRN). For name
more information on WXTRNs, see the manual “BINDER” [].Symbols that are declared as may remain 14 weak

unresolved at linkage. This means that if a reference to cannot be resolved, BINDER will only issue an name
information message. Weak external references are resolved only on explicit inclusion (INCLUDE-MODULES).
They are not resolved when modules are included with the autolink mechanism (RESOLVE-BY-AUTOLINK).
Note that external C++ names cannot be declared as .weak

 240

6.4.8 ident pragma

#pragma ident "string"

This pragma is only accepted syntactically by the compiler, since it may be contained in older C sources, typically
those ported from a UNIX system.

 241

6.4.9 VIRTUAL_FUNCTION_TAB pragma

#pragma VIRTUAL_FUNCTION_TAB = {GLOBALLY_DEFINED | EXTERNALLY_DECLARED}

This pragma can be used to control the generation of the virtual function table in C++ mode. This table is generated
implicitly if a class has at least one virtual function.

Usually the compiler determines a module which contains the definition of the table. In other modules only an
external reference is generated. For this, it is checked whether the class has a virtual function that is neither inline
nor a pure virtual function. The module in which the first of these functions is defined is then taken.

However, there are classes for which this heuristic fails. This pragma works for these classes:

If the pragma is not specified, the table is created as a static variable.

If GLOBALLY-DEFINED is specified, the table is defined as an external variable in this module.

If EXTERNALLY-DECLARED is specified, only an external reference to the table is generated. It must then be
defined in another module.

 242

6.4.10 Pragmas to control template instantiation

#pragma { instantiate | do_not_instantiate | can_instantiate } argument

With C++ translations, the instantiation of individual templates or even a group of templates can be controlled with
the following pragmas:

The pragma causes the template entity that is specified as an argument to be created. This instantiate

pragma can be used in all instantiation modes.

The pragma suppresses the instantiation of the template entity specified as an do_not_instantiate

argument. The typical candidates for this pragma are template entities for which specific definitions
(specializations) have been provided. This pragma can be used in all instantiation modes.

The pragma is a hint to the compiler that the template entity specified as an argument can, can_instantiate

but need not, be created in the compilation unit. This pragma is required in connection with libraries and is only
evaluated in automatic instantiation mode.

The following arguments can be specified with the pragmas:

Argument Examples

a template class name A<int>

a member function name A<int>::f

a static data member name A<int>::i

a member function declaration void A<int>::f(int, char)

a template function declaration char * f(int, float)

When a template class name is specified as an argument (e.g. A<int>), the net effect is the same as if the pragma

were specified for each member function and for each static data member of that template class. When instantiating
an entire class, individual member functions or static data members can be excluded from the instantiation process
by using the do_not_instantiate pragma.

Example

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

In order to instantiate templates, the appropriate template definitions must be available in the current compilation
unit. If an instantiation is requested explicitly with the pragma, and no template definition or only a instantiate

specific definition (specialization) is available, an error message (ERROR) is issued.

Example

 243

template <class T> void f1(T); // no body provided
template <class T> void g1(T); // no body provided
template <> void f1(int) { } // specific definition
int main()
{
 int i;
 double d;
 f1(i);
 f1(d);
 g1(i);
 g1(d);
}
#pragma instantiate void f1(int) // error - specific definition
#pragma instantiate void g1(int) // error - no body provided

f1(double) and will not be instantiated either (due to the missing template definitions), but no g1(double)

error message will be issued during the compilation in this case. The missing template definitions will,
however, result in a linker error at link time.

If a member function name (e.g.) is specified as a pragma argument, it must not be an overloaded A<int>::f

function. Overloaded member functions can be instantiated by providing the complete member function declaration,
as in
#pragma instantiate char * A<int>::f(int, char *)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function, or a pure
virtual function.

 244

6.4.11 deprecated pragma

#pragma deprecated

This pragma has to be placed before a declaration. The declared symbol will be marked as deprecated. This has
the same effect as the C++ attribute . Usage of such a symbol will result in a warning.[[deprecated]]

 245

6.4.12 STDC pragma

The standard C11 defines 3 pragmas. They are used to control some aspects of floating point arithmetics. The C
/C++ compiler accepts these pragmas syntactically in the language modes C11 and C++ 2017, but they have no
effect. All compilations occur as if the following values are set:

#pragma STDC CX_LIMITED_RANGE ON

#pragma STDC FENV_ACCESS OFF

#pragma STDC FP_CONTRACT ON

 246

6.4.13 __printf_args pragma

This pragma can be used for additional parameter checks. As an example:

#pragma __printf_args

void my_printf(int arg1, const char *format, ...);

void foo()

{

 my_printf(5, "falsches Argument %s\n", 42);

}

The pragma must be placed directly in front of a function declaration. This function is then assumed to be like
. It has to have a variable number of arguments. The last argument before the ellipsis is assumed to be a printf

format string. That format string has the same semantics as in the function .printf

When a call to that function has a string literal as format string, the remaining arguments are checked against the
conversion specifiers in the format string. Any mismatch is reported with a warning.

The example will give such a warning. The conversion specifier "%s" expects a , but the argument has type char *

.int

 247

6.4.14 __scanf_args pragma

This pragma can be used for additional parameter checks. As an example:

#pragma __scanf_args

void my_scanf(int arg1, const char *format, ...);

void foo()

{

 int i;

 my_scanf(5, "wrong argument %d\n", i);

}

The pragma must be placed directly in front of a function declaration. This function is then assumed to be like scanf

. It has to have a variable number of arguments. The last argument before the ellipsis is assumed to be a format
string. That format string has the same semantics as in the function .scanf

When a call to that function has a string literal as format string, the remaining arguments are checked against the
conversion specifiers in the format string. Any mismatch is reported with a warning.

The example will give such a warning. The conversion specifier "%d" expects a , but the argument has type int *

. The call is missing an address operator "&".int

 248

7 C++ language support of the compiler

The compiler optionally supports the language scope compatible with the previous version C/C++ V3.2 as well as
scope defined in the current C++ standard ISO/IEC 14882:2017.

The previous language modes are described in detail in the 2nd and 3rd edition of “The C++ Programming
Language” by Bjarne Stroustrup. The current standard can be ordered from DIN (Deutsche Institut für Normung).

The following sections describe the vendor-specific and implementation-defined language features of C++. They are
intended as a supplement to the C++ language definitions given in the manuals.

 249

7.1 Overview of the C++ language modes

In accordance with the different language definitions for C++, the compiler supports five C++ compilation modes:

Cfront C++ mode (POSIX option -X V2-COMPATIBLE. SDF option MODE=*V2-COMPATIBLE)

The compiler accepts C++ code compatible with Cfront V3.0.3.

extended C++ V3 mode (POSIX option -X V3-COMPATIBLE -X nostrict, SDF option MODE=*V3-COMPATIBLE,
STRICT=*NO)

The compiler accepts C ++ code similar to the C/C++ V3 compiler in extended mode.

strict C++ V3 mode (POSIX option -X V3-COMPATIBLE -X strict, SDF option MODE=*V3-COMPATIBLE,
STRICT=*YES)

The compiler accepts C ++ code similar to the C/C++ V3 compiler in strict mode.

extended C++ 2017 mode (POSIX option -X 2017 -X nostrict, SDF option MODE=*2017,STRICT=*NO)

The compiler accepts C ++ code in accordance with the 2017 C++ standard in extended mode.

strict C++ 2017 mode (POSIX option -X 2017 -X strict, SDF option MODE=*2017,STRICT=*YES)

The compiler accepts C ++ code in accordance with the 2017 C++ standard in strict mode.

The following table contains an overview of the main differences between the various C++ language modes.

Features / Language attributes Cfront C++ C++ V3 C++ 2017

Reserved keywords 1)

overload yes no no

Exception handling
, , catch throw try

no 2) yes yes

Templates

template

no 2) yes yes

Language features from C++ 1998

Runtime type information (RTTI)
typeid, dynamic_cast

no 3) yes yes

Arrays: new/delete

new[], delete[]

no yes yes

Name space

namespace, using

no yes yes

Template parameter typename no yes yes

Constructor type explicit no yes yes

 250

Data type wchar_t no yes 4) yes

Data type bool no yes 5) yes

Storage class mutable yes yes yes

Casting keywords

const_cast, reinterpret_cast, static_cast

yes yes yes

export 6) no no yes

extern functionsinline no no yes

Symbol search in the namespaces of an argument class (Koenig-
Lookup)

no no yes

Language features from C++ 2017

Alignment control

alignas, alignof

no no yes

Semantic of auto storage
class

storage class type

Unicode support:

literals u"x", U"x", u8"x", u'x', U'x', u8'x',

char16_t, char32_t

no no yes

Computation at compile time

constexpr

no no yes

decltype no no yes

long long yes yes yes

noexcept 7) no no yes

nullptr no no yes

register (was banned in C++17) yes yes no

static_assert no no yes

thread_local no no yes 8)

Trigraph (i,e,.)??< yes yes no

predefined preprocessor names

__STDC_VERSION__ ==199409L ==199409L ==199409L

 251

__cplusplus ==1 ==2 (extended)

==199612L
(strict)

==201703L

Overview of differences between the various C++ language modes

Reserved keywords1)

All keywords listed in chapter , “C language support of the compiler” (Overview of the C language modes)
except , are also reserved in the C++ language modes. C++-restrict In addition there are the following

specific keywords. keywords are not reserved in all C++ language modes (see table above).Bold

alignas constexpr mutable public try

alignof decltype namespace reinterpret_cast typeid

asm delete new static_assert typename

bool dynamic_cast noexcept static_cast using

catch explicit nullptr template virtual

char16_t export operator this wchar_t

char32_t false overload thread_local

class friend private throw

const_cast inline protected true
Reservierte names in C++

The following keywords may be used as alternative tokens for C operators. They may or may not be reserved,
depending on the settings of the , or -K alternative_token -K no_alternative_token

ALTERNATIVE-TOKENS=*YES/*NO options.
By default, they are “not reserved” in the Cfront C++ mode and “reserved” in the modes C++ V3 and C++ 2017.

and && not_eq !=

and_eq &= or ||

bitand & or_eq |=

bitor | xor ^

compl ~ xor_eq ^=

not !

K in C++eyword operators

Exception handling, Templates2)

Exception handling and templates are not supported in the Cfront-C++ mode. Howerver, the keywords , catch

, und .throw try template are not freely available and lead to an error message when used

 252

Runtime type information (RTTI)3)

In the Cfront-C++ mode the keyword is active. dynamic_cast It is checked whether the operation addressed

in this way requires real runtime information or whether it can be done using the static type information. If the
static information is sufficient, the appropriate code is generated. If dynamic information is required, an error
message is issued.

Data type 4) wchar_t

In the mode C++ V3 modes the keyword is reserved depending on the options wchar_t -K

, resp. KEYWORD-WCHAR=*YES/*NO . wchar_t_keyword -K no_wchar_t_keyword -

 resp. KEYWORD-WCHAR=*YES is the default.K wchar_t_keyword

Data type 5) bool

In the C++ V3 modes the keywords , und are reserved depending on the options , bool true false -K bool

 bzw. KEYWORD-BOOL=*YES/*NO. resp. KEYWORD-BOOL=*YES is the default.-K no_bool -K bool

 export6)

The use of the word export leads to a message in all C++ modes. It is an error in C++ 2017, a warning in other
modes. The semantics behind the keyword is not offered by the C/C++ compiler.

 noexcept: exception handling as part of a type7)

In C++ it is possible to specify for a function whether it throws exceptions or not. As of C++ 2017, only the
specification yes/no is allowed, and this specification is part of the type of the function. Previously, a list of
types that could be thrown could be specified. This list was checked dynamically and was not part of the type
of function.

 8) thread_local

The standard C++ 2017 defines as a keyword. It can be used in the context of threads. Since thread_local

the C/C++ compiler does not support thread implementation, the keyword is recognized as such and rejected
with an error message.

 253

1.

2.

7.2 Implementation-defined behavior based on the ANSI/ISO C++ standard

All of the implementation-defined features based on the ANSI/ISO C standard that have already been described in
chapter “C language support of the compiler” (Implementation-defined behavior based on the ANSI/ISO C standard)
are also applicable in the C++ language modes and are therefore not listed individually here.

Only the implementation-defined C++ language features that extend beyond the scope of the C language are
described below. can be found in the tabular Which C ++ language features are supported in which C++ modes
overview on ."Overview of the C++ language modes"

Identifiers with external linkage

Compilation in the Cfront C++ mode
External C++ names are truncated by the compiler to 32 characters. When generating shared code (with the
options or SHAREABLE-CODE=*YES), the maximum permissible length is restricted to 30 -K share

characters.
Lowercase letters are converted to uppercase by default, but can be retained in external names with the option -

 or LOWER-CASE-NAMES=*YES.K llm_case_lower

Compilation in the modes C++ V3 or C++ 2017
All characters are significant for the construction of external C++ names. No name truncation and no conversion
from lowercase to uppercase occurs. The compiler generates entry names in the EEN format, which can have a
length of up to 32000 characters. Longer names result in an error.

To enable processing by the link editor, names with external C++ linkage are transformed internally by the compiler
so that they only contain permitted characters and are unique (name mangling). This internal name mangling
process differs in the Cfront C++ mode and in the other C++ modes. A list of the originally used external C++
names and those which were generated internally by the compiler for the linkage editor can be obtained with the
option or PROJECT-INFORMATION=*YES.-N project

Linkage of the main function

The function has external C linkage.main

Data type bool

The size of type is defined as .bool sizeof(bool) == 1

reinterpret_cast

The destination object contains the same bit pattern as the expression evaluated by , but reinterpret_cast

might not be a valid object of the desired type (e.g.).reinterpret_cast<float>(int)

The following conversions are possible:

A pointer can be explicitly converted to an integral type that is large enough to hold it. Depending on whether
the destination type is or , the value of the result obtained from the conversion may or may signed unsigned

not be signed.

The value of an integral type can be explicitly converted to a pointer.

 254

Allocation overhead for new arrays

For each allocated array, a structure is reserved at the start of the memory block allocated for that array. This
structure contains two members, one for the size of the array (in bytes) and one for the number of size_t

elements in the array (this field is encoded in order to detect whether the structure has been overwritten).

The asm keyword

The keyword is an extension to the ANSI/ISO C standard, but is defined as a normal reserved keyword in the asm

ANSI C++ standard. However, since the inline substitution of assembler code is not supported, any attempt to use
this keyword will result in an error message.

Linkage specification

The supported linkage specifications are “C++” and “C”.

The default linkage specification is "C++". Names with external C++ linkage are transformed internally by the
compiler to enable processing by the linkage editor (name mangling). This internal name transformation is done
differently in the different C ++ modes.

In the case of names with external C linkage, no internal name mangling is performed. C linkage can be used to link
and call functions written in C or in a language that behaves like C on its name mangling interface.

A pointer to a C function is compatible with a pointer to a C++ function of the same type if the argument types are C-
compatible PODs. In C++ 2017, these are two different types. In the extended C++ 2017 mode there is an implicit
conversion between two function types that only differ in the linkage.

Linkage of templates

Only templates with C++ linkage are supported.

Template instantiation

See ."Template instantiation"

Reference types

The reference for an value is bound to a temporary object created by the compiler.Internally, the C++ data type
 is treated as a pointer (see reference "Implementation-defined behavior based on the ANSI/ISO C standard (C

)./C++-Compiler, #89)"

Allocation of non-static data elements of a class

The allocation of memory for these data elements occurs in the strict order of their declarations, i.e. without taking
the access specifiers , or into account.public private protected

Bitfields within classes

Bitfields within classes are handled in the same way as bitfields within structures. This applies to the allocation and
alignment as well as the handling of “plain” bitfields without the or attribute.signed unsigned

 255

Constructors and destructors for global and local static objects

C++ supports the initialization and finalization of objects with constructors and destructors. Constructor and
destructor calls can be applied on both dynamic as well as global and local static objects.

Constructors and destructors for dynamic objects

Constructors for dynamic objects are called when objects are created with the operator, on entering functions new

or local blocks, on processing actual parameters, and when temporary objects are created.

Destructors for dynamic objects are called in the reverse order of their construction, e.g. on exiting a function (
,), block, etc.return exit

If temporary objects are created for an expression, the destructors are called at the end of the expression. This
applies in particular to function parameters.

Constructors and destructors for global and local static objects

The type and order of constructor and destructor calls for global and local static objects is “implementation-defined”.
Seen from a technical viewpoint, this means the following:

Constructor calls are collected in one function per compilation unit, and the address of each such function is stored
in a specially marked variable in the data section of the program. During the initialization of the runtime system, a
list of these variables is generated, and the constructors are called before the function. Destructors are called main

on exiting a program normally, i.e. on calling , , or from the function, but not on exit _exit bs2exit return main

calling .abort

Seen from the user s perspective, the following points must be observed when using global and local static objects
with constructors and destructors:

The redirection of standard I/O files (see) has no effect "Redirecting standard I/O files (C/C++-Compiler, #72)"
within global and local static objects.

The order in which constructors are called is totally undefined and may actually vary even when running the
same program. It is therefore crucial to ensure that no dependencies between the individual constructor calls
exist.

The names of the special variables for constructor function addresses (see above) begin with ICP. This prefix
and the initial letter in general must not be used when constructing user-defined external names, since this I

produces errors in constructor handling.

ESD information must not be suppressed when linking.

The data of the program must be in class-6 memory.

In the case of shared code, all code segments to call constructors are loaded dynamically.

No inter-language linkage is permitted within a destructor (only linkage to other languages).

No code may be “unloaded”; otherwise, on exiting the program, this would result in destructors being called for
code that no longer exists.

In the case or true subsystems for which data and code are loaded dynamically with an explicit call, the runtime
system must be reinitialized. During this process, the table of constructors is extended, and the new constructors
are called.

Exception handling

Thrown exceptions

 256

The memory for exception objects is taken from a preallocated storage, which can be extended by calls to .malloc

Handling of exceptions

In some situations, the terminate () function is called implicitly. The C++ standard leaves open the question in two
situations whether destructors are called for automatic objects:
If no suitable exception handler is found, the destructors are not called.
If there is a function on the stack that specifies , only some of the destructors are called.noexcept(true)

These destructors could be executed with the function , (see unwind_exit() "Additional runtime functions").

The unexpected() function

The thrown exception object which causes the function to fail is destroyed by calling a destructor unexpected()

and is replaced by a new object.bad_exception

More details on exception handling can be found on ."Exception handling"

Return type of operator->

The return type of is not checked any more at the point where the function is declared, but is now operator->()

only checked at the point where it is used as an “->” operator. (This check was performed later on just for elements
of class templates in versions up to V3.0C.)

Classes and Ellipsis

Functions can be declared with variable argument lists (e.g.). An object of a class can be a int foo(int, ...);

parameter if the appropriate argument is the ellipsis. In this case the object is copied byte by byte. Any constructor
that may exist is ignored. Any existing destructor is not called for the parameter.

 257

7.3 Template instantiation

This section provides information concerning the following topics:

Fundamentals

Automatic instantiation

Generating explicit template instantiation statements (ETR files)

Implicit inclusion

extern inline functions

 258

7.3.1 Fundamentals

The C++ language includes the concept of templates. A template is a description of a class or function that serves
as a model for a family of derived classes or functions. For example, one can write a template for a class, Stack

and then use a stack of integers, a stack of floats, or a stack of any user-defined type. These stacks could then be
typically written in the source as , and . From a single source description Stack<int> Stack<float> Stack<X>

of the template for a stack, the compiler can create instantiations of the template for each of the types required.

The instantiation of a class template is always created as soon as it is required during compilation. The
instantiations of template functions and member functions or static data members of a class template (referred to as

 below), by contrast, need not be created immediately. This is due to the following reasons:template entities

In the case of template entities with external linkage (functions and static data members), it is important to have
only one copy of the instantiated template entity throughout the program.

The C++ standard allows to write a specialization for a template entity, which means that the programmer can
supply a specific version to be used instead of the instantiation generated from the template for a specific data
type.
Since the compiler cannot know, when compiling a reference to a template entity in mode C++ V3, if a
specialization for that entity is available in another compilation unit, it cannot create the instantiation immediately.

The C++ standard dictates that template functions which are not referenced should not be compiled and should
be checked for errors. Consequently, a reference to a template class should not automatically instantiate all the
member functions of that class.

Note that some template entities such as inline functions are always instantiated when used.

From the requirements listed above, it is evident that if the compiler is responsible for the entire instantiation (i.e. if
the instantiation is done “automatically”), these instantiations can only be performed meaningfully on a program-
wide basis. In other words, the compiler cannot make decisions about the instantiation of template entities until it
has seen the source code of all compilation units in the program.

The C/C++ compiler provides an instantiation mechanism by which automatic instantiation is carried out at link time
(with the aid of a “prelinker”). This mechanism is discussed in detail in section .“Automatic instantiation”

More explicit control over the instantiation process is available to the programmer via different instantiation modes
that can be selected using options and by means of directives.#pragma

The options to select instantiation modes are:
MODIFY-SOURCE-PROP INSTANTIATION=*NONE / / *LOCAL / *ALL(see *AUTO "MODIFY-SOURCE-

).PROPERTIES"

The instantiation of individual templates or even a template group can be controlled with the pragmas:
, and (see instantiate do_not_instantiate can_instantiate "Pragmas to control template

).instantiation"

Important notes
The default template instantiation method of this compiler (i.e. automatic instantiation by the prelinker and implicit
inclusion) is also the recommended method and should generally be used. Deviations from this default method via
control options should be restricted to exceptional cases and should only be attempted if the entire application is
known in detail, including every template that is defined and used.

Implicit inclusion must not be disabled (with IMPLICIT-INCLUDE=*NO) when using templates from the C++ V3
library (SYSLNK.CRTE.STDCPP). Otherwise, the required definitions will not be found.

 259

Instantiation modes INSTANTIATION=*AUTO: In this case, there is a high risk that unresolved external !=

references (*NONE), duplicates (*ALL) or runtime errors (*LOCAL) may occur.

 260

1.

2.

3.

4.

7.3.2 Automatic instantiation

The C/C++ compiler supports automatic instantiation (INSTANTIATION=*AUTO) by default in the language modes
C++ V3 and C++ 2017. This enables you to compile source code and link the generated objects without being
concerned about any required instantiations.

Note that the discussion which follows refers to the automatic instantiation of template entities for which there is no
explicit instantiation request () and no pragma.template declaration instantiate

Requirements

For each instantiation, the compiler expects a source file that contains both a reference to the required instantiation
and the definition of the template entity as well as all types required for the instantiation of that template entity. The
latter two requirements can be satisfied by the following methods:

Each file that declares a template entity also contains either the definition of the entity or includes another file .h

containing the definition.

Implicit inclusion
When the compiler sees a template declaration in a file and discovers a need to instantiate that entity, it looks .h

for a source file with the same base name as the file and a suffix that satisfies the conventions for C++ source .h

file names (, , or). This file is then implicitly included by the compiler on instantiation at the .C .CPP .CXX .CC

end of each compilation unit without a message being issued. Further details see the .section“Implicit inclusion”

The programmer makes sure that the files that define template entities also contain the definitions of all required
types and adds C++ code or instantiation pragmas in those files to request the instantiation of the template
entities therein.

First instantiation without a definition list

The definition list method can also be used as an alternative to the following procedure (see "First instantiation with
).the help of the definition list (temporary repository)"

The following steps are performed internally during automatic instantiation:

Create instantiation information files
The first time that one or more source files are compiled with the COMPILE statement, no template entities are
instantiated. For each source file that makes use of a template, an associated instantiation information file is
created if no such file exists. This instantiation information file is placed in the PLAM library of the module to be
generated and is assigned the base name of the module with the suffix by default (see the .II section“Rules

). For example, if a source programfor constructing module names”

named were to be compiled (without explicitly specifying a module name), the file would be ABC.CC ABC.II

generated as the instantiation information file. This file must not be modified by the user.

Create modules
The created modules contain information on which instantiations could have been created and on those
possibly required when compiling a source file.

Assign template instantiations
When the modules are linked with the BIND statement, the prelinker is called before the actual linking takes
place. The prelinker examines the modules, looking for references and definitions of template entities and for
additional information about entities that could be instantiated. If the prelinker cannot find a definition for a
required template entity, it looks for a module that indicates that it could instantiate that template entity. When it
finds such a module, it assigns the instantiation to it.

 261

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

6.

7.

Update the instantiation information file
All instantiations that were assigned to a given module are recorded by name in the associated instantiation
information file.

Recompile
The compiler is internally called again to recompile each file for which the instantiation information file was
changed.

Create new modules
When the compiler compiles a file, it reads the instantiation information file for that compilation unit and
generates a new module with the required instantiations (i.e. template definitions).

Repetition Steps to are repeated until all instantiations which are required and which can be generated have 3 6
been created.

Linkage
The modules are linked together.

First instantiation with the help of the definition list (temporary repository)

Since the method above (see) needs to recompile some files more than "First instantiation without a definition list"
once, an option was added to accelerate the entire process.

When this option is used, the files are generally only recompiled once. Most of the instantiations are assigned to the
first few files to be recompiled in this process. This results in disadvantages in some cases since the object size
increases due to this (although other objects decrease in size to balance this out).

Steps 3-5 above are modified. The resulting algorithm appears as follows:

Create instantiation information filesThe first time that one or more source files are compiled with the COMPILE
statement, no template entities are instantiated. For each source file that makes use of a template, an
associated instantiation information file is created if no such file exists. This instantiation information file is
placed in the PLAM library of the module to be generated and is assigned the base name of the module with
the suffix by default (see the). For example, if a source .II section“Rules for constructing module names”

program named were to be compiled (without explicitly specifying a module name), the file ABC.CC ABC.II

would be generated as the instantiation information file. This file must not be modified by the user.

Create modulesThe created modules contain information on which instantiations could have been created and
on those possibly required when compiling a source file.

Assign template instantiations to a source fileIf there are references for template entities for which there are no
definitions in the set of modules, then a file that could instantiate one of the template entities is selected. All
template entities that can be instantiated in this file are assigned to the file.

Update the instantiation information fileThe set of instantiations that were assigned to the file are recorded by
name in the associated instantiation file.

Store the definition listA definition list is stored internally in memory. It contains a list of all definitions found in all
modules that relate to templates. This list can be read in and changed during recompilation.

NoteThis list is not stored in a file.

RecompileThe compiler is internally called again to recompile the corresponding source files.

 262

7.

8.

9.

Create new modulesWhen the compiler recompiles a file, it reads the instantiation information file for that
compilation unit and generates a new module with the required instantiations.When the compiler obtains an
opportunity during compilation to instantiate additional template entities that are not mentioned in the definition
list and were not found in the libraries resolved, then it will also instantiate these (e.g. for templates that are
contained in templates). It sends the list of instantiations that it obtained during recompilation to the prelinker so
that the prelinker can assign it to the file.

This process results in faster instantiations and reduces the necessity of recompiling an existing file more than
once during the prelinking process.

Repetition Steps 3 to 7 are repeated until all instantiations that are required and can be generated have been
created.

LinkageThe modules are linked together.

Further development

Once a program has been correctly linked, the associated instantiation information files contain all the names of the
defined and required instantiations. From then on, whenever source files are compiled, the compiler will consult the
instantiation information file and do the instantiations therein as in a normal compilation run. In other words, except
in cases where the set of required instantiations changes, the prelinker will find all required instantiations stored in
the modules, so no further instantiation adjustments are needed. This applies even if the entire program is
recompiled.

If a specialization of a template entity has been provided somewhere in the program, the prelinker will treat it as a
definition. Since this definition will satisfy any references to the template entity, the prelinker will see no need to
request an instantiation for that template entity. If a specialization is added to a program that has already been
compiled, the prelinker will remove the assignment of the instantiation from the corresponding instantiation
information file.

The instantiation information file must not be modified (e.g. renamed or deleted) by the user, except in the following
case: if a source file in which a definition was changed and another source file in which a specialization was added
are being compiled in sequence in the same compiler run, and the compilation of the first file (with the changed
definition) has aborted with an error, the associated instantiation information file must be deleted manually to allow
the prelinker to regenerate it.

Interaction between the compilation and prelinker runs

Since the automatic template instantiation by the prelinker can, among other things, also involve subsequent
compilations, the conditions under which the compilation occurs (COMPILE) play an important role in the prelinker
run (BIND ACTION=*PRELINK,...) as well. Technically speaking, all options relevant for the compilation, code
generation and compiler outputs are entered in the corresponding instantiation information files and interpreted
during the automatic template instantiation. In order to ensure that the follow-up compilations and other updates
function correctly during instantiation, the following points, in particular, must be observed:

The input of source programs via SYSDTA and the output of listings to SYSLST or SYSOUT are not supported
and are rejected with a corresponding error message.

All I/O files and libraries of the compilation run must also be locatable and accessible in the prelinker run and
should hence be neither renamed nor deleted. If the prelinker run occurs in some other environment (e.g. user
ID), fully-qualified file names must be used in the compilation, i.e., names including the <cat-id> and <user-id>
for BS2000 files and PLAM libraries, and absolute path names (beginning with /) for POSIX files.

 263

1.

2.

The *INCREMENT option is not permitted for the following output files:

module element name

cif element name

listing element name

Warning: Compilation is aborted in this case.

When you specify an explicit version string for ’module name’, an ii-element file with the same version string is
searched for, read in and written. (If an existing ii-element with a different version string is to be used, then this
element must be copied and stored under a new name before it can be linked and before the template
instantiation starts.) This behavior is not compatible with the C++ Compiler V3.0.

Prelinking and dynamic linkage

The prelinker does the automatic instantiation only in the individual modules generated by the compiler, since it
requires the unique assignment between the module and the instantiation file (file) for this purpose. The .II

prelinker is activated only with the BIND statement of the compiler (ACTION=*PRELINK). If only
ACTION=*MODULE-GENERATION is specified in the BIND statement, no template instantiation is performed.

When generating the finished program (via static or dynamic linkage), all “prelinked modules” of the the BIND
statement and all dynamically linked modules that require instances of template entities must either

already contain these instances (which may be achieved by explicit instantiation and/or the preinstantiation of
modules with the BIND statement (ACTION=*PRELINK)

or provide appropriate headers with pragmas.can_instantiate

During the preinstantiation with the BIND statement, it is absolutely essential to ensure that the C++ libraries and
C++ runtime systems of the CRTE (standard C++ library, C++ runtime system, Tools.h++ library) are also
considered by the prelinker, since duplicate definitions may otherwise be created. The libraries are automatically
taken into account if the STDLIB option of the MODIFY-BIND-PROPERTIES statement is set to *DYNAMIC or
*STATIC and the TOOLSLIB option is set to *YES. If the CRTE libraries are to be linked in dynamically themselves,
duplicate definitions can be prevented as follows:

The first step is to preinstantiate the modules, taking the used CRTE libraries into account:

//MODIFY-BIND-PROPERTIES STDLIB=*DYNAMIC / *STATIC [,TOOLSLIB=*YES], ...//BIND

ACTION=*PRELINK, ...

All modules with unresolved external references to the used CRTE libraries can then be linked in a second step:

//MODIFY-BIND-PROPERTIES STDLIB=*NONE [,TOOLSLIB=*NO], ...//BIND ACTION=*MODULE-

GENERATION, ...

If the prelinker and linkage runs are to be executed concurrently, the ADD-PRELINK-FILES option must be used.
The main disadvantage of this method is that the names of the CRTE libraries would then need to be specified
explicitly.
In the case of a standard installation of the CRTE and in mode C++ V3, for example, this is achieved as follows:

//MODIFY-BIND-PROPERTIES ADD-PRELINK-FILES=(*LIB(LIB=$.SYSLNK.CRTE.STDCPP),*LIB

(LIB=$.SYSLNK.CRTE.RTSCPP)

 [,*LIB(LIB=$.SYSLNK.CRTE.TOOLS)]),- STDLIB=*NONE, ...//BIND ACTION=(*PRELINK,

*MODULE-GENERATION), ...

 264

1.

2.

7.3.3 Generating explicit template instantiation statements (ETR files)

In some cases, for example, when automatic instantiation cannot be used effectively, the programmer has the
option of using explicit (manual) instantiation in order to extend the sources as required.
To make this process easier, it is possible to create an ETR file (ETR - Explicit Template Request) which contains
the instantiation statements for the templates used and which can be incorporated into a source.
The options for creating this ETR file can be specified with the GENERATE-ETR-FILE operand of the SDF
statement MODIFY-DIAGNOSTIC-PROPERTIES (see)."MODIFY-DIAGNOSTIC-PROPERTIES "
The important options are ..., which outputs all relevant information and ..., which only outputs *ALL *ASSIGNED
part of this information.

The templates taken into account during the ETR analysis can be divided into the following classes:

Templates that are instantiated explicitly in the compilation unit. These are output with “ALL”.

Templates that are assigned by the prelinker to the compilation unit and then instantiated within the compilation
unit. These can be output using both “ALL” and “ASSIGNED”.

Templates that are used in the compilation unit and that can be instantiated here. These are output with “ALL”.

Templates that are used in the compilation unit, but cannot be instantiated here. These are output with “ALL”.

The contents of an ETR file have the following format:

Comments in the header will indicate that the file is a generated file.

Four logical lines are created for each template (see the example below):

a comment line containing the text ’The following template was’

a comment line containing the type of the instance (for example, ’explicitly instantiated’)

a comment line containing the external name of the instance. This name is the same as the entry in the ii file
(see section) and can also be obtained from the binder listing or the binder error listing“The II-UPDATE tool”

a line which describes the explicit instantiation for this instance

Notes

If the lines described above are too long, they will be wrapped in the usual C++ fashion using “Backslash newline”
.

The sequence of the output templates is not defined. If recompilation takes place or a source is modified, the
sequence may change.

The fourth logical line is particularly interesting when copying to a source.

The comments are always in English.

The following two scenarios describe sensible uses of an ETR file:

The compiler is called during development using the INSTANTIATION=*AUTO option of the SDF statement
MODIFY-SOURCE-PROPERTIES and the GENERATE-ETR-FILE=*ASSIGNED option of the SDF statement
MODIFY-DIAGNOSTIC-PROPERTIES.
The instantiation statements output to the ETR files are incorporated into the appropriate sources. Productive
operation is then activated using the INSTANTIATION=*NONE or *AUTO option in the SDF statement MODIFY-
SOURCE-PROPERTIES the next time the compiler is called.
The advantage of this method is the considerable reduction in the time it takes to complete prelinking during
productive operation.

 265

2. The compiler is called during development using the INSTANTIATION=*NONE and GENERATE-ETR-
FILE=*ALL-INSTANTIATIONS option (of the SDF statements as described above).
After linking the developer checks each unresolved external reference to see whether it is a template, and if it is
a template, when it can be instantiated. Particularly helpful in this case are the output external names. Then,
the developer selects a source for the instantiation and inserts the instantiation statements there. In addition,
the correct header files must also be included.
This method requires a considerable amount of manual work. But you do not subsequently need to call the
prelinker.
This procedure offers you precise control over the placing of instances (which is important when using
components with high performance requirements).

Example 1

For a single ETR file compiled using two files, and :x.c y.c

The following statements are used for compilation:

//MOD-DIAG GEN-ETR=ALL
//COMPILE (X.C, Y.C), *LIB(OLIB), MODULE-OUTPUT=*SOURCE-LOCATION

Source x.c:

template <class T> void f(T) {}
template <class T> void g(T);
template void f(long);
void foo()
{
 f(5);
 f(’a’);
 g(5);
}

Source y.c:

template <class T> void f(T) {}
void bar()
{
 f(5):
}

ETR-File x.etr (is in the OLIB library as a type S member):

 266

// This file is generated and will be changed when the module is compiled

// The following template was
// explicitly instantiated
// __1f__tm__2_l__FZ1Z_v&_
template void f(long);

// The following template was
// used in this module and can be instantiated here
// __1f__tm__2_i__FZ1Z_v&_
template void f(int);

// The following template was
// used in this module and can be instantiated here
// __1f__tm__2_c__FZ1Z_v&_
template void f(char);

// The following template was
// used in this module
// __1g__tm__2_i__FZ1Z_v&_
template void g(int);

ETR-File y.etr (is in the OLIB library as a type S member):

// This file is generated and will be changed when the module is compiled

// The following template was
// used in this module and can be instantiated here
// __1f__tm__2_i__FZ1Z_v&_
template void f(int);

The user can now decide in which source they wish to make explicit instantiations (this decision must always be
made for entries with “used in this module and can be instantiated here“), for example, insertion of template

 and in (see the Source in Example 2).void f(int) template void f(char) x.c

Then you will subsequently not need to use automatic template instantiation.

Example 2

This example uses two file and in a library called .x.c y.c test

Source x.c

template <class T> void f(T){}
template <class T> void g(T);
template void f(long);
void foo()
{
 f(5);
 f(’a’);
 g(5);
}

Source y.c:

 267

template <class T> void f(T) {}
void bar()
{
 f(5):
}

These programs are compiled using the following statements and the prelinking carried out:

//mod-source-prop instantiation=*auto
//mod-diagnostic-prop generate-etr-file=*assigned-instantiations
//compile *lib-elem(test, X.C), module-output=*source-location
//compile *lib-elem(test, Y.C), module-output=*source-location
//mod-bind-prop start-llm-creation=*yes
//mod-bind-prop include=*lib-elem(test,X)
//mod-bind-prop include=*lib-elem(test,Y)
//bind action=*prelink

This creates a file called in the library :x.etr test

// This file is generated and will be changed when the module is compiled

// The following template was
// instantiated automatically by the compiler
// __1f__tm__2_i__FZ1Z_v&_
template void f(int);

// The following template was
// instantiated automatically by the compiler
// __1f__tm__2_c__FZ1Z_v&_
template void f(char);

The important lines are inserted in the file x.c, which creates the file x1.c:

template <class T> void f(T){}
template <class T> void g(T);
template void f(long);
void foo()
{
 f(5);
 f(’a’);
 g(5);
}
template void f(int);
template void f(char);

Then you can carry out production using the following commands:

//mod-source-prop instantiation=*none
//mod-diagnostic-prop generate-etr-file=*no
//compile *lib-elem(test,X1.C), module-output=*source-location
//compile *lib-elem(test,Y.C), module-output=*source-location

 268

Example 3

The following example shows the four classes of template that can be output. The same assumptions are made as
for example 1.
The following commands are input:

//mod-source-prop instantiation=*auto
//mod-diagnostic-prop generate-etr-file=*no
//compile *lib-elem(test,Y.C), module-output=*source-location
//mod-bind-prop start-llm-creation=*yes
//mod-bind-prop include=*lib-elem(test,y)
//bind action=*prelink (this will assign y to f(int))
//mod-diagnostic-prop generate-etr-file=*all-instantiations
//compile *lib-elem(test,X.C), module-output=*source-location
//mod-bind-prop start-llm-creation=*yes
//mod-bind-prop include=*lib-elem(test,X)
//mod-bind-prop include=*lib-elem(test,Y)
//bind action=*prelink

This creates an ETR file in the library called :x.etr test

// This file is generated and will be changed when the module is compiled

// The following template was
// explicitly instantiated
// __1f__tm__2_l__FZ1Z_v&_
template void f(long);

// The following template was
// used in this module and can be instantiated here
// __1f__tm__2_i__FZ1Z_v&_
template void f(int);

// The following template was
// instantiated automatically by the compiler
// __1f__tm__2_c__FZ1Z_v&_
template void f(char);

// The following template was
// used in this module
// __1g__tm__2_i__FZ1Z_v&_
template void g(int);

 269

7.3.4 Implicit inclusion

The implicit inclusion of source files is a method of finding definitions of template entities. This method is enabled for
the compiler by default (see also the option IMPLICIT-INCLUDE on) and can "MODIFY-SOURCE-PROPERTIES"
be disabled with IMPLICIT-INCLUDE=*NO. When disabling implicit inclusion please check the notes in section

."Fundamentals"

When implicit inclusion is enabled, the compiler looks for the definition of a template entity in accordance with the
following principle:
If a template entity is declared in a header file named and no definition for it is available in the basename.H
compiled source code, the compiler will assume that the definition for that template entity is contained in a source
file

which is located as a source program element in the same PLAM library as the header file and

which has the same base name as the header file and a standard suffix that is valid for C++ source files, i.e.: .C

, , or (e.g.)..CPP .CXX .CC basename.CC

Let us assume, for example, that a template entity is declared in the header file in the library ABC::f XYZ.H PLAM.

. If the instantiation of is requested on compilation, but no definition of exists in the compiled T ABC::f ABC::f

source code, the compiler will search the library for a source file with the base name and a standard PLAM.T XYZ

suffix that applies to C++ source files, i.e.: , , or (e.g.). If such a file exists, it will be .C .CPP .CXX .CC XYZ.CC

treated as if it were included at the end of the source file.

 270

7.3.5 extern inline functions

The language mode C++ 2017 supports functions (see). They have a extern inline "extern inline vs. static inline"
similar problem as template units: a single address. The function must be assigned to a single module.

Extern inline functions are handled mostly like template units. They will get an entry in the instantiation information
file. The automatic instantiation assignes the function to a module.

The effect is that automatic instantiation has to be performed even when no template is used.

Inline expansion is still possible, This see “Inline substitution of user-defined functions” (The optimization process).
optimization is possible in all modules.

Extern inline functions differ from template units:

The pragmas , und may not be used for extern instantiate do_not_instantiate can_instantiate

inline functions.

Implicit inclusion is not relevant. All types used in an extern inline function must have been declared. This is the
same as for other functions.

An extern inline function is checked in each module where it is defined.

The current compiler (version 4.0A10) does not allow to choose the module an extern inline function is assigned
to.

The current compiler (version 4.0A10) does not put extern inline functions into ETR files.

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=74003768

 271

7.4 Deviations from ANSI/ISO C++

This section provides information concerning the following topics:

Extensions to ANSI-/ISO-C++

Restrictions to ANSI-/ISO-C++

extern inline vs. static inline

 272

7.4.1 Extensions to ANSI-/ISO-C++

The extensions described below are accepted in the C++ 2017 language mode, except when the option -R

 or ANSI-VIOLATIONS=*ERROR has been set in the strict C++ 2017 mode. Note that all strict_errors

extensions to ANSI/ISO C (see section) are also supported in the C++ modes.“Extensions to ANSI/ISO C”

A qualified name may be used in the declaration of a class member:

struct A {
 int A::f(); // ANSI requires int f();
};

In the extended C++ 2017 mode an implicit conversion between functions with "C" und "C++" linkage exists:

extern "C" void f();
void (*pf)() = &f;

In the extended C++ 2017 mode an implicit conversion from string literals to the type (in C++ 2017 string char*

literals are of type):const char *

char *p1 = "abc";
char *p2 = x ? "abc" : "def";

The preprocessor macro c_plusplus is defined in addition to the standard-compliant macro __cplusplus. No

warning is issued.

 273

7.4.2 Restrictions to ANSI-/ISO-C++

Some language features are not supported. The restrictions regarding , alignment, unicode and the long long

float format IEEE described in are also restrictions in C++.restrictions to ANSI/ISO C

Thread support

The C/C++ compiler does not support a specific thread package. In detail, this means that the headers <thread>,
<mutex>, <shared_mutex>, <condition_variable> and <future> are not available. The Keyword thread_local

leads to an error message in mode C++2017. The predefine is not set.__STDCPP_THREADS__

Atomics

C/C++ 4.0 does not support the atomic types. Some of their usage has to have support in the thread library. Using
the keywords associated with atomic types will give an error message. The header file <atomic> is not available.
C/C++ 4.0 does have support for some essential atomic features. Details are available on special request.

Headers <execution> and <memory_resource>

The C/C++ compiler 4.0 does not support the headers and . The classes <execution> <memory_resource>

which should be declared in those headers are not supported.

Mathematical special functions

The mathematical special functions (C++ 2017 standard, chapter 29.9.5) are not supported. These are some
advanced mathematical functions, for example Laguerre and Legendre.

 274

7.4.3 extern inline vs. static inline

An inline function can be interpreted as or . This question is important when local static static inline extern inline
variables are used in the function or when the address of such a function is used in a comparison.

 and at the end of this section illustrate the problem.Examples 1 2

From the programmer’s viewpoint, a static inline function behaves in exactly the same way as a static function. The
function itself and all the elements declared in the function are local to the current compilation unit. The function
itself does not interact in any way with elements of other compilation units; these must be produced by other
(external) functions.

An extern inline function behaves like a normal external function. The body of the function must occur in every
compilation unit which uses it. It must, however, always be identical. The behavior can be described by means of a
comparison: it is as if the body were the only definition in an additional compilation unit and this function were called
in all the other compilation units.

In addition to the definition above, the optimizer is also informed that an inline expansion is desirable. However, the
meaning must be retained when this optimzation is implmented.

The view of the C++ standard

If a function is declared with the keyword , it is implicitly regarded as extern inline. A static inline must be inline

declared with the keywords and .static inline

A member function which is defined within a class is implicitly regarded as extern inline.

Implementation in language mode C++ 2017

The language mode C++ 2017 supports extern inline functions as required by the standard, see "extern inline
.functions"

Implementation in language modes Cfront C++ and C++ V3

In the language modes Cfront C++ and C++ V3 the compiler does not know the concept of an extern inline function.
It interprets all inline functions as static inline.
This affects both the functions declared with the keyword and also the member functions defined within a inline

class.

The following sections apply only to the language modes Cfront-C ++ and C ++ V3.

The problematical constructs

In many cases it is irrelevant whether a function is interpreted as static inline or extern inline. To permit this, one of
three constructs must be used. The situation is problematical only when the function is used in multiple compilation
units.

The functions affected are those which are conceived as extern inline (see). These functions are almost Example 3
always contained in a header file, together with a body. Templates or member functions can be concerned here.

In the case of templates it must be borne in mind that the C/C++ compiler includes other sources if this function is
not disabled. In this context, see the options //MODIFY-SOURCE-PROPERTIES IMPLICIT-INCLUDE = and –K

 which are active in the default case (see).implicit_include Example 4

 275

Local static variables

In such a situation a local variable exists several times over in the compiler implementation, while the static

standard requires a single occurrence. Whether this leads to a problem depends on the reason why the variable
was defined as local (see).static EExample 5
If a single occurrence is indeed expected, a problem exists. Whether this will result in runtime errors depends
very much on the actual usage.
The situation is different if the reason is the lifetime of the memory. A great deal of code sets up a string
internally in order to return it as the return value. No variable can be used here because the memory is auto

released when the value is returned. However, a local remains valid until the function is called again. static

This is frequently used when texts are edited for output. In this case the variable is duplicated, but this has
practically no effect on the program run.

Comparison of addresses

An extern inline function has an unambiguous address, a static inline function one address per compilation unit.
This is not relevant as long as the addresses are only used to call the function.
Things become critical when such addresses are compared with each other. However, this tends to happen only
rarely. It would be conceivable when registering callback functions in which each function should only be entered
once.

String literal

This construct only returns a problem in exceptional cases. The standard does not define whether string literals
with the same content also have the same address. It is also very unusual to use the address of a string literal in
comparisons or similar functions.

Example 1: A problematical situation

 276

// file bsp.h
 #include <stdio.h>
 class BSP {
 public:
 inline int mf1(void);
 };
 inline int BSP::mf1(void)
 {
 static int i = 1;
 return i++;
 }
 extern void f();
// file bsp1.c
 #include “bsp.h”
 void f()
 {
 BSP bsp;
 printf (“Value 1: %d\n”, bsp.mf1());
 }
// file bsp2.c
 #include “bsp.h”
 void g()
 {
 BSP bsp;
 printf (“Value 2: %d\n”, bsp.mf1());
 }
 int main()
 {
 f();
 g();
 return 0;
 }

Explanation

The function is critical, as is the variable which it contains. According to the standard this should only exist mf1 i

once. The two calls in and should therefore apply to the same variable. The required output isbsp1.c bsp2.c

Value 1: 1

Value 2: 2

However, in the implementation of the C/C++ compiler the function is processed separately in and bsp1.c bsp2.c

. A different variable is addressed with the call in from the call in . Both variants are initialized with bsp2.c bsp1.c

1.

The output is then

Value 1: 1

Value 2: 1

Example 2: A problematical situation with templates

 277

// file tmpl.h
 #include <stdio.h>
 template <class T>
 inline int tmpl(T t)
 {
 static int i = 1;
 return i++;
 }
 extern void f();
// file tmpl1.c
 #include “tmpl.h”
 void f()
 {
 printf (“Value 1: %d\n”, tmpl(5));
 }
// file tmpl2.c
 #include “tmpl.h”
 void g()
 {
 printf (“Value 2: %d\n”, tmpl(7));
 }
 int main()
 {
 f();
 g();
 return 0;
 }

Explanation

The same notes apply as for , but a template is involved here rather than a member function. The output Example 1
expected by the standard is

Value 1: 1

Value 2: 2

The output supplied by the C/C++ compiler is

Value 1: 1

Value 2: 1

Example 3: Functions affected

 278

// file bf.h
 inline int f1(T) { } // affected
 int f2(T); // not affected
 static inline int f3(T) { } // not affected
 // as explicitly static
 template <class T> inline int tf1(T) { } // affected
 template <class T> int tf2(T); // not affected
 template <class T> static inline int tf3(T) { } // not affected
 // as explicitly static
 class BSP {
 public:
 inline int mf1(void); // affected
 int mf2(void) { } // affected
 int mf3(void); // not affected
 };
 inline int BSP::mf1(void) { }

Example 4: Implicit include

// file ii.h
 template <class T> inline int ii(T);
// file ii.c
 template <class T> inline int ii(T) // this function is affected,
 // although it is contained in a
 // .c file
 {
 static int i;
 return i++;
 }

Example 5: Problematical static variables

Usage is only presented as problematical/not problematical here. To become a real problem, the function must be a
problematical inline function.

inline void no_recursion (void)
{
 static int active = 0; // problematical
 active ++;
 if (active > 1)
 {
 illegal_recursion ();
 } else {
 do_something ();
 }
 active --;
}

This is problematical because the recursion is not reliably detected.

 279

inline char * debug_text ()
{
 static char buffer [200]; // not problematical
 sprintf (buffer, "...", ...);
 return buffer;
}

This is not problematical because the content of the buffer is always used before the next call. There is normally
nobody who saves and accepts the address, which means that its content changes reliably.

inline void f (void)
{
 static int actions = 0; // (see below)
 actions++;
 if (actions > 200)
 {
 actions = 0;
 optimize_datastructures (); // Only cleaning up, no relevant
 // change
 }
 do_something ();
}

Whether this is problematical depends very much on the function. If it is really thae optimize_datastructures

case that only optimization is being performed there, the program runs correctly despite actions being duplicated.
However, the performance is different because is no longer called on a regular optimize_datastructures

basis.

 280

7.5 Variations in the Cfront C++ mode

The behavior of the compiler in the Cfront C++ mode is compatible with Cfront C++ V3.0, i.e. the compiler supports
many of the corresponding function attributes and specific features. The Cfront C++ mode is supported so that
existing code containing extensions to Cfront version V3.0 can be compiled without manual intervention. It does not
guarantee full compatibility with the C++ compiler V2.2.

Consequently, note that if a program produces an error when compiled with the
C++ V2.2 compiler, it is possible that the C/C++ V4.0 compiler may produce a different error or no error at all in the
Cfront C++ mode. Some of the special aspects to be noted for the Cfront C++ mode are described below.

const qualifiers on the parameter may be dropped in some contexts, as in this example:this

struct A {
 void f() const;
};
void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a function of type may be put into a pointer to a non- const const

type, since a call using the pointer is permitted to modify the object, and the function pointed to will actually not
modify the object. An assignment in the reverse direction would not be safe.

Conversion operators specifying conversion to are allowed.void

A declaration may introduce a new type. A declaration that omits the elaborated type specifier friend friend

is allowed in the C++ mode, but is also allowed to introduce a new type name in the Cfront mode.

struct A {
 friend B;
};

The third operator of the

? operator is a conditional expression instead of an assignment expression.

A reference to a pointer type may be initialized from a pointer value without using a temporary variable even if
the reference pointer type has supplementary type qualifiers in addition to those present in the pointer value. For
example:

int *p;

const int *&r = p; // No temporary used

A reference variable may be initialized with 0.

Since the accessibility of types is not checked in the Cfront mode, access errors for types are issued as warnings
instead of errors.

When calling overloaded functions, a null pointer must be written as a string in the form "0". Other notations such
as variables with the value 0 or constants in the form '\0' are not interpreted as a null pointer by the const

compiler in the case of overloaded functions.

No warning is issued when an function has default argument expressions.operator()()

 281

An alternate form of declaring pointer-to-member-function variables is supported. This is illustrated in the
example below:

struct A {
 void f(int);
 static void sf(int);
 typedef void A::T3(int); // nonstd typedef decl
 typedef void T2(int); // std typedef
};
typedef void A::T(int); // nonstd typedef decl
T* pmf = &A::f; // nonstd ptr-to-member decl
A::T2* pf = A::sf; // std ptr to static mem decl
A::T3* pmf2 = &A::f; // nonstd ptr-to-member decl

In this example, names a routine type for a nonstatic member function of class that takes an argument T A int

and returns . The use of such types is restricted to nonstandard pointer-to-member declarations. The void

declarations of and in combination are equivalent to a single standard pointer-to-member declaration in T pmf

the form:

void (A::* pmf)(int) = &A::f;

A non-standard pointer-to-member declaration that appears outside of a class declaration, such as the
declaration of , is normally invalid and would cause an error to be issued. For declarations that appear within a T

class declaration, such as , this feature changes the meaning of a valid declaration.A::T3

protected

class members are not checked when the address of a member is specified.protected

class B { protected: inti; };
class D : public B {void mf(); };
void D::mf() {
 int B::* pmi1 = &B::i; // Error except in Cfront mode
 int D::* pmi2 = &D::i; // OK
}

Note that the checking of class members for other operations (i.e. everything except the declaration protected

of pointer-to-member addresses) is handled as defined by the standard in Cfront mode.

The destructor of a derived class may implicitly call the constructor of a base class.private

class A {
 ~A();
};
class B : public A {
 ~B();
};
B:: ~B(){} // Error except in Cfront mode

 282

When disambiguation requires deciding whether something is a parameter declaration or an argument
expression, the pattern is treated as an argument. For example:type-name-or-keyword (identifier...)

class A { A(); };
double d;
A x(int(d));
A(x2);

According to the standard, is interpreted as a parameter declaration (with redundant parentheses), int(d)

which means that is a function. In the Cfront C++ mode, is interpreted as an argument, so is a x int(d) x

variable.

Note that the declaration is also interpreted differently in the Cfront C++ mode as compared to the A(x2);

standard. The standard dictates that it should be interpreted as the declaration of an object named , but in the x2

Cfront C++ mode it is interpreted as a of to type .cast x2 A

A similar deviation from the standard can be seen in the interpretation of the following declaration:

int xyz(int());

According to the standard, this declares the function , which takes a parameter that is a function without xyz

arguments and returns an . In the Cfront mode, this is interpreted as the declaration of an object that is int

initialized with the value 0.

Bitfields

A named bitfield may have a size of 0. The declaration is treated as if no name were declared.

Plain bitfields, i.e. bitfields declared with the type , are always .int unsigned

The name for a type specifier may be a name that is a synonym for a class name:typedef

typedef class A T;
class T *pa; // No error in Cfront mode

No warning is issued on duplicate size and sign (or) type specifiers:signed unsigned

short short int i; // No warning in Cfront mode

An extra comma is allowed after the last argument in an argument list:

f(1,2,);

A constant pointer-to-member function may be cast to a pointer-to-function. Only a warning is issued:

struct A {int f();};
main() {
 int (*p)();
 p = (int (*)())A::f; // OK, with warning
}

Arguments of class types that allow bitwise copy construction but also have destructors are passed by value (like
C structures), and the destructor is not called on the “copy”. In the other modes, the class object is copied to a
temporary object; the address of the temporary object is passed as the argument, and the destructor is called on
the temporary object after the call returns. In practice, this is not much of a problem, since classes that allow
bitwise copying usually do not have destructors.

 283

If an unnamed class appears in a

typedef declaration, the name may be used as the class name.typedef

typedef struct {int i, j; } S;

struct S x; // No error in Cfront mode

A name may be used in an explicit destructor call:typedef

struct A { ~A(); };
typedef A B;
int main() {
 A *a;
 a->~B(); // Permitted in Cfront mode
}

Two member functions may be declared with the same parameter types when one is static and the other is
nonstatic with a function qualifier. For example:

class A {
 void f(int) const;
 static void f(int); // no error in Cfront mode
}

When two functions have the same name and very similar parameter types, they cannot be used together. This
is the case when the parameter types differ only in the following aspects:

char vs. signed char;

f(char);

f(signed char);

Array limits

f(char(*x)[15]);

f(char(*x)[18]);

A const qualification of a typedef

typedef char c;
f(const c*);
f(c*);

Indirect or combined use of these aspects

f(char*,int);
f(signed char*,int);
typedef char c;
g(char,c*);
g(signed char,const c*);

If both functions are defined nevertheless, this is interpreted as a duplicate. No message is issued during
compilation.

 284

8 The C++ libraries and C++ runtime system

The following C++ libraries are provided with CRTE:

a C++ library for the language mode C++ 2017

a C++ library for the language mode C++ V3

a C++ library for the Cfront C++ language mode C++ V2

a V7.0C++ V3 library Tools.h++

 285

8.1 The C++ library for the language mode C++ 2017

The standard C++ library can only be used in the C++ 2017 mode of the compiler. This library includes the following
interfaces (based on the chapters of the C++ standard of 2017):

Some auxiliary classes (Chapter 23), i.a. Allocator, function objects, smart pointer, pairs, tuples and more.

String classes (Chapter 24), especially a string of char elements that can handle EBCDIC well,

Classes for treatment of (Chapter 25)locale ,

Container classes (Chapter 26), especially bitset, deque, queue, vector, list, map, multimap, set,

Iterators (chapter 27),

generic algorithms (Chapter 28), i.a. search, sort, minimum, maximum, partition,

permute,

numeric classes (Chapter 29), including complex numbers or arithmetic-value arrays,

Input and Output (Chapter 30), in this library the implementation is template-based,

regular expressions (chapter 31).

The classes for atomic operations (Chapter 32) and threads (Chapter 33) are not offered.

The include files for the interfaces mentioned above are contained in the library SYSLIB.CRTE.CXX01, the modules
SYSLNK.CRTE.CXX01.in the library

All names of the C++ library are defined in namespace .std

Another component of the C ++ library are the include files listed below (also contained in SYSLIB.CRTE.CXX01),
in which all ANSI C library functions are defined in the namespace . std

The names of these include files are derived from the names of the ANSI C include files as follows: The name is
preceded by the letter , the suffix is omitted.c .h

<cassert> <cinttypes> <csetjmp> <cstddef> <ctgmath>

<cctype> <ciso646> <csignal> <cstdint> <ctime>

<cerrno> <climits> <cstdalign> <cstdio> <cuchar>

<cfenv> <clocale> <cstdarg> <cstdlib> <cwchar>

<cfloat> <cmath> <cstdbool> <cstring> <cwctype>

Using the library

Program development in BS2000 environment (SDF)

During compilation, the library SYSLIB.CRTE.CXX01 must be searched for standard includes. This is ensured if the
option STD-INCLUDE-LIBRARY=*STANDARD-LIBRARY is specified in the MODIFY-INCLUDE-LIBRARY
statement for the search for the standard includes (default).

The program must be linked with the BIND statement of the compiler. The (default) specification RUNTIME-
LANGUAGE=*CPLUSPLUS (MODE=* LATEST/* 2017) is required in the MODIFY-BIND-PROPERTIES statement.

For more details see ."MODIFY-BIND-PROPERTIES"

 286

Program development in POSIX environment

To insert the include files and bind the modules, the command must specify the CC++ 2017 mode (). CC -X 2017 -

 is preset for the command. For further details see the manual "POSIX Commands of the C/C++ X 2017 CC

Compiler" [].1

Documentation

The standard C++ library is documented in the common C++ literature.

 287

8.2 The C++ library for the language mode C++ V3

This C++ library can only be used in the C++ V3 mode of the compiler. This library includes the following interfaces:

A string class

<string>

Container classes
<bitset>

<deque>

<list>

<map>

<queue>

<set>

<stack>

<vector>

Iterators

<iterator>

Generic algorithms

<algorithm>

Numeric classes and operations

<complex>

<numeric>

I/O classes

<iostream.h>

<fstream.h>

<strstream.h>

<stdiostream.h>

<iomanip.h>

The I/O classes are not standard-compliant and correspond to the Cfront V3.0.3-compatible I/O library iostream.

The header files for the above interfaces are contained in the library SYSLIB.CRTE, and the modules are contained
in the library SYSLNK.CRTE.STDCPP.

All names of the C++ library, except for the I/O classes, are available in the namespace.std

The following header files (also contained in SYSLIB.CRTE), in which all ANSI C library functions are defined in the
 namespace, constitute a further component of the C++ library. The names of these header files are derived std

from the names of the corresponding C headers as follows: each name is preceded by the letter , and the suffix c .h

is dropped.

<cassert> <ciso646> <csetjmp> <cstdio> <ctime>

<cctype> <climits> <csignal> <cstdlib> <cwchar>

<cerrno> <clocale> <cstdarg> <cstring> <cwctype>

<cfloat> <cmath> <cstddef>

Using the library

 288

Program development in the BS2000 environment (SDF)

The library SYSLIB.CRTE must be searched for standard headers at compilation. This can be ensured by
specifying the search for standard headers with the option STD-INCLUDE-LIBRARY= *STANDARD-LIBRARY
(default) in the MODIFY-INCLUDE-LIBRARY statement.

The program must be linked with the BIND statement of the compiler, and the entry RUNTIME-
LANGUAGE=*CPLUSPLUS(MODE=*V3-COMPATIBLE) must be specified in the MODIFY-BIND-PROPERTIES
statement.

For further details see ."MODIFY-BIND-PROPERTIES"

Program development in the POSIX environment

In order to include header files and link in the required modules, the C++ V3 mode () must be -X V3-COMPATIBLE

specified in the command. For more details, see also the manual “POSIX Commands of the C/C++ Compiler”.CC

Documentation

This C++ library is described in detail in the following manual: “Standard C++ Library V1.2, User s Guide and
Reference” [] (one volume).6

A description of the I/O classes compatible with Cfront V3.0.3 can be found in the “Cfront C++ Library”, Reference
Manual [].5

 289

8.3 The C++ library for the Cfront C++ language mode C++ V2

The C++ library compatible with Cfront V3.0.3 can only be used in the Cfront C++ mode of the compiler. This library
includes the following interfaces:

A class for complex math

<complex.h>

Classes for stream-oriented I/O

<iostream.h>

<fstream.h>

<strstream.h>

<stdiostream.h>

<iomanip.h>

<generic.h>

<new.h>

The header files for the above interfaces are contained in the library SYSLIB.CRTE.CPP, and the modules are
located in the library SYSLNK.CRTE.CPP.

Using the library

Program development in the BS2000 environment (SDF)

In the search for standard headers at compilation, the library SYSLIB.CRTE.CPP must be searched before the
library SYSLIB.CRTE. This can be ensured by specifying the search for standard headers with the option STD-
INCLUDE-LIBRARY= *STANDARD-LIBRARY (default) in the MODIFY-INCLUDE-LIBRARY statement.

When linking with the BIND statement of the compiler, only the following entry must be specified in the MODIFY-
BIND-PROPERTIES statement:
RUNTIME-LANGUAGE=*CPLUSPLUS(MODE=*V2-COMPATIBLE).

Program development in the POSIX environment

In order to include header files and link in the required modules, only the language mode option -X V2-

 needs to be specified in the command. Note, however, that this option must be specified for both COMPATIBLE CC

compilation and linkage:

CC -X V2-COMPATIBLE -c x.C y.C

CC -X V2-COMPATIBLE x.o y.o

Compilation

Linkage

The headers of the Cfront C++ library contain declarations which use the "at" sign (@). You should note
that it will not be possible to use the Cfront C++ library where *NO is specified in the option AT-
ALLOWED=... in the MODIFY-SOURCE-PROPERTIES statement.

i

If you use the Cfront C++ library, you cannot use the option .-K no_ati

 290

Documentation

The Cfront C++ library is described in detail in the following manual:
“C++ V2.1 (BS2000) C++ Library Functions“ [].5

 291

8.4 The C++ V3 library Tools.h++

The Tools.h++ V7.0 library can only be used in the C++ V3 mode of the compiler.

This library offers a broad spectrum of “foundation classes”, i.e.:

string classes with pattern-matching mechanisms

classes to handle the date and time

virtual streams

file and file manager classes

container classes (collectable) with the option of implementing persistence and associated iterator classes:

Smalltalk-like container classes (without template usage)

template container classes to store values (...)RWTVal

template container classes to store pointers (...)RWTPtr

classes for internationalization

The header files for the above interfaces are contained in the library SYSLIB.CRTE, and the modules are contained
in the libraries SYSLNK.CRTE.TOOLS.

Using the library

Program development in the BS2000 environment (SDF)

The library SYSLIB.CRTE must be searched for standard headers at compilation. This can be ensured by
specifying the search for standard headers with the option STD-INCLUDE-LIBRARY= *STANDARD-LIBRARY
(default) in the MODIFY-INCLUDE-LIBRARY statement.

The program must be linked with the BIND statement of the compiler, and the following options must be specified in
the MODIFY-BIND-PROPERTIES statement:
RUNTIME-LANGUAGE=*CPLUSPLUS(MODE=*V3-COMPATIBLE) and TOOLSLIB=*YES.

For further details see ."MODIFY-BIND-PROPERTIES"

Program development in the POSIX environment

In order to include header files and link in the required modules, the C++ V3 mode () must be -X V3-COMPATIBLE

specified in the command.CC

Furthermore, when linking the program, the option must also be specified. For more details, see also -l RWtools

the manual “POSIX Commands of the C/C++ Compiler” [].1

Documentation

The C++ V3 library Tools.h++ is described in detail in the following manuals:
“Tools.h++ V7.0, User s Guide” and
“Tools.h++ V7.0, Class Reference”

 292

Information on the documentation

In order to make the library independent of incompatible future versions of the standard library, it is not tools.h++
based on the standard library (i.e. the RW_NO_STL directive has been placed in the central configuration header w
/compiler.h).
Certain classes are therefore not available or only available with restrictions. These are identified accordingly in the
“Tools.h++ Class Reference” manual [], e.g.8
“RWTValMap requires the Standard C++ Library.”
When the associated headers are used, a error message is issued, e.g.#error

“Cannot include header if RW_NO_STL macro is defined for your compiler”

or

“You must have both Standard Library and Exceptions to use this class.”

Some classes implement functions which are linked to particular systems:

header rw/xdrstrea.h; class RWXDRistream and RWXDRostream

These classes can be used in BS2000/POSIX, but not in BS2000 native.

header rw/winstrea.h; class RWCLIPstreambuf

The “Tools.h++ Class Reference” manual [] contains the following information on this:8
“Class RWCLIPstreambuf is a specialized streambuf that gets and puts sequences of characters to Microsoft
Windows global memory. It can be used to exchange data through Windows clipboard facility.”
As neither the concept of a “Microsoft Windows global memory” nor that of a “Windows clipboard” exists in
Windows, this class is not available here.

 293

8.5 The C++ runtime system

This section provides information concerning the following topics:

Initialization

Exception handling

Additional runtime functions

C signal handling and C++ exception handling

longjmp support

Linking old C modules with C++ V3 and C++ 2017 modules

 294

8.5.1 Initialization

Exceptions thrown during the initialization of global objects result in a call to and thus cause the terminate

program to abort without diagnostics. If desired, you can use to specify some other exception-set_terminate

handling routine to be used in the event of an unforeseen program abort. This function must, however, be called
before initializing the global objects.

The C++ runtime system offers the following solution to specify functions to be used as the “initial current handler”:

You can link your own function of type into your __initial_terminate_handler terminate_handler

program. This function is declared in the C++ runtime system. If is weak __initial_terminate_handler

defined, the function will then be called as the “initial handler” to terminate exception processing.

You can also use the functions and with the __initial_unexpected_handler __initial_new_handler

same mechanism. These routines are of type and , respectively.unexpected_handler new_handler

You must include the header file for the and <exception> __initial_terminate_handler

 interfaces and the header file for the .__initial_unexpected_handler <new> __initial_new_handler

 295

8.5.2 Exception handling

This section provides information concerning the following topics:

Additional runtime functions

C signal handling and C++ exception handling

longjmp support

Linking old C modules with C++ V3 and C++ 2017 modules

 296

8.5.2.1 Additional runtime functions

Besides the runtime functions defined by the language standard, the C++ runtime system offers a number of useful
functions with which programs can be made more reliable. Note, however, that programs which use these functions
are not ANSI C++-compliant and are hence not portable.
The following additional functions are available: , , and unwind_exit get_caught_object_typeid can_throw

.can_rethrow

These functions are all part of the namespace._SNI_extensions

The EO_flag_set data type used for the arguments is also defined in the _SNI_extensions namespace.

Data Type EO_flag_set

The data type is used to display properties of an exception object.EO_flag_set

 is defined differently in the language modes C++ V3 and C++ 2017.EO_flag_set

EO_flag_set in language mode C++ 2017

In the language mode C++ 2017 is defined as follows:EO_flag_set

namespace _SNI_extensions {
 typedef unsigned int EO_flag_set;
}

The following flag values are defined for data items of type :EO_flag_set

EO_NO_FLAGS : not a pointer type / no flag set
EO_IS_POINTER : pointer type
EO_POINTER_TO_CONST : pointer to a constant object
EO_POINTER_TO_VOLATILE : pointer to a volatile object
EO_LAST : last element of a flag array

EO_flag_set in language mode C++ V3

In the language mode C++ V3 is defined as follows:EO_flag_set

namespace _SNI_extensions {
 typedef unsigned char EO_flag_set;
}

The following flag values are defined for data items of type :EO_flag_set

EO_NO_FLAGS : not a pointer type
EO_IS_POINTER : pointer type
EO_POINTER_TO_CONST : pointer to a constant object
EO_POINTER_TO_VOLATILE : pointer to a volatile object

 297

unwind_exit - Unwind stack before exiting program

The function, like , is used to terminate a program. In contrast to , however, a call to unwind_exit exit exit

 causes the following additional actions to be performed before the program is exited:unwind_exit

All objects on the runtime stack that have not yet been deleted are destroyed.automatic

All exception objects that have not been exited are destroyed.

This is followed by the destruction of global objects as in the case of .exit

Note that neither nor will destroy objects on the heap that have not been released.exit unwind_exit

If a destructor called by ends with an exception, is called implicitly. It is therefore unwind_exit terminate

advisable to call in the as well. This will guarantee that the destructors for all unwind_exit terminate_handler

 and exception objects are eventually called in any case. This cannot result in an endless loop.automatic

The function can be called from any part of the program (like), especially from a unwind_exit exit

. Like , it is supplied with an exit status as an argument (and with the same effect).terminate_handler exit

The prototype of the function is declared in the header:unwind_exit <exception>

#include <exception>
namespace _SNI_extensions {
 void unwind_exit(int status);
}

get_caught_object_typeid - Determine type of caught exception object

The function can be used to determine the type of a caught exception object. It get_caught_object_typeid

returns the type of the exception object that was most recently caught and was not finished. If no caught and
unfinished exception object exists, an exception of type is thrown.bad_typeid

The function can be called in any handler (, get_caught_object_typeid terminate_handler

,) to obtain information about the type of the caught exception object. unexpected_handler catch() { }

This can be useful in diagnosing program runtime errors.

The type of the caught exception object is returned as a reference to a object. The class type_info type_info

and the prototype of the function are declared in the header:get_caught_object_typeid <typeinfo>

The function is defined differently in the language modes C++ V3 and C++ 2017.get_caught_object_typeid

get_caught_object_typeid in language mode C++ 2017

The prototype of the function get_caught_object_typeid is declared in the header file as follows<typeinfo>

#include <typeinfo>
namespace _SNI_extensions {
 const type_info &get_caught_object_typeid(EO_flag_set *pflags, EO_flag_set **ppflags);
}

If the arguments to are non-zero, they are interpreted as addresses to receive get_caught_object_typeid

information on whether the caught object is a pointer.

 298

The behavior depends on whether the exception object is not a pointer, a simple pointer or a pointer to a pointer.

If the exception object is not a pointer, its type is returned as a reference to a object. will be type_info *pflags

set to EO_NO_FLAGS. will be set to zero.*ppflags

If the exception object is a pointer to a non-pointer, the type pointed to is returned. will be set to *pflags

, , EO_IS_POINTER (EO_IS_POINTER | EO_POINTER_TO_CONST) (EO_IS_POINTER |

 or EO_POINTER_TO_VOLATILE) (EO_IS_POINTER | EO_POINTER_TO_CONST |

 depending on type attributes (and/or). will be set to EO_POINTER_TO_VOLATILE) const volatile *ppflags

zero.

If the excpetion object is a pointer to a pointer, the first non-pointer type after the pointer chain is returned. *pflags

will be set to EO_NO_FLAGS. An array is built to describe the attributes of each pointer in the chain. To indicate
 the flag value is used, to indicate the flag value const EO_POINTER_TO_CONST volatile

 is used. The last element of the array has the additional flag value EO_LAST. EO_POINTER_TO_VOLATILE

 will be set to point to this array.*ppflags

As an example: if the exception object is of type " " the array volatile char * *const *

 is built.{ EO_POINTER_TO_CONST, EO_NO_FLAGS, EO_POINTER_TO_VOLATILE|EO_LAST }

get_caught_object_typeid in language mode C++ V3

The prototype of the function is declared in the header file as followsget_caught_object_typeid <typeinfo>

#include <typeinfo>
namespace _SNI_extensions {
 const type_info &get_caught_object_typeid(EO_flag_set *pflags);
}

If the exception object is not a pointer, its type is returned as a reference to a object. If the exception type_info

object is a pointer, the type pointed to is returned. If the argument to is non-zero, it get_caught_object_typeid

is interpreted as an address to receive information on whether the caught object is a pointer, and if it is, also the
type attributes applicable to the object pointed to (). As an example: when a was values see above const char *

thrown, the typeid of will be returned and will be set to char *pflags (EO_IS_POINTER |

 .EO_POINTER_TO_CONST)

can_throw - Check for terminate or unexpected on throwing an object

The function (predicate) checks whether an exception of the specified type can be thrown without can_throw

resulting in a call to or .terminate unexpected

#include <typeinfo>
namespace _SNI_extensions {
 bool can_throw(const std::type_info &typeid_to_check,
 EO_flag_set flags = EO_NO_FLAGS);
}

typeid_to_check must be a non-pointer type of an exception object.

flags can be used to specify whether the type of exception to be actually checked is a pointer or whether it is a

 or ()const volatile values see above

 299

If the argument is not specified, (not a pointer type) is set by default.flags EO_NO_FLAGS

can_rethrow - Check for terminate or unexpected on rethrowing an object

The function (predicate) checks whether an exception can be rethrown () without resulting in can_rethrow throw;

a call to or .terminate unexpected

#include <typeinfo>
namespace _SNI_extensions {
 bool can_rethrow(void);
}

 300

8.5.2.2 C signal handling and C++ exception handling

According to the C++ language definition, the use of C++ exception handling is not allowed in C signal routines. If a
C signal routine is nonetheless reached by the runtime system during stack processing triggered by an exception,
the system behaves as if the end of the stack were reached. Consequently, it is not possible to throw an exception
from a signal routine or to rethrow an exception that was caught with before the signal routine was called. In catch

such cases, is invoked instead.terminate

The function (see) does not destroy all objects when called from unwind_exit "Additional runtime functions"

signal routines. All objects which were not deleted before the call to the signal routine and all exception automatic

objects that had not yet terminated are not destroyed in this case. However, the program still terminates with .exit

 301

8.5.2.3 longjmp support

After a call, the following actions are performed by the C++ runtime system for each function that is longjmp

skipped:

All objects that were constructed in the function but not deleted are destroyed.automatic

All exception objects which were caught in the function but which have not terminated are destroyed.

Note, however, that these destructors are not invoked for the target function of the call itself. longjmp

Consequently, in a function containing a call, no object should be constructed, destroyed or caught setjmp

between the call and the entry of the routine aborted by the . This can be achieved by relocating setjmp longjmp

all code for constructors, destructors and catching exceptions to a separate function. Furthermore, in order to
prevent this function from being inlined, it must be called via an external function pointer. Consider the following
example:

Example

Instead of using the code of the function in Version 1, the code of Version 2 is to be used:f()

/* Version 1 */

#include <setjmp>
jmp_buf target;
void g();
class X { ~X(); };
void g()
{
 longjmp(target, 1);
}
void f()
{
 if (setjmp(target) == 0)
 {
 X x; // No destruction for longjmp call by g()
 g();
 }
}

/* Version 2 */

void f1()
{
 X x; // Destruction for longjmp call by g()
 g();
}
extern void (*f1p)() = f1;
void f()
{
 if (setjmp(target) == 0)
 {
 (*f1p)(); // f1() is not inlined here
 }
}

 302

longjmp and signal routines

When is called from a signal routine, no destructors for and exception objects are executed longjmp automatic

in the function in which the signal occurred.

 303

8.5.2.4 Linking old C modules with C++ V3 and C++ 2017 modules

C modules generated with the C or C++ Compiler V2.2 can be linked with C++ V3 and C++ 2017 modules. Note,
however, that the following restrictions apply with respect to stack handling by the C++ runtime system:

No exception may be thrown if there is still an active C V2.2 function between the call to and the throw

exception handler () which catches the exception.catch

No exception may be rethrown if there is still an active C V2.2 function between the call to and the throw;

exception handler () that has caught the rethrown exception.catch

No across a C V2.2 funtion may be executed from a C++ function.longjmp

 304

9 Appendix

This chapter provides information concerning the following topics:

Description of listings

Source/error listing

Map listing

Cross-reference listing

Object listing

Predefined preprocessor names

Concept of a name adapter module in the C runtime system

The II-UPDATE tool

 305

9.1 Description of listings

The listing generators of the compiler produce the following listings, depending on what is requested in the MODIFY-
LISTING-PROPERTIES statement:

Listing Options of the MODIFY-LISTING-PROPERTIES statement

Option listing OPTIONS

Source/error listing SOURCE

Preprocessor listing PREPROCESSING-RESULT

Map listing DATA-ALLOCATION-MAP

Cross-reference listing CROSS-REFERENCE

Project listing PROJECT-INFORMATION

Object code listing ASSEMBLER-CODE

Summary listing SUMMARY

The following listings are described below by means of examples:
source/error, map, cross-reference, and object listings.

In some listings spaces have been removed to avoid line breaks.

 306

9.1.1 Source/error listing

The source/error listing is requested with the SOURCE option of the MODIFY-LISTING-PROPERTIES statement.

*** SOURCE - ERROR - LISTING ** BS2000 C/C++ COMPILER 04.0A10 DATE:2020-04-02 PAGE: 1
 SOURCENAME:*BS2000(MAINPROG) TIME=17:37:07

 EXP INC FILE SRC BLOCK
 LIN LEV NO LIN LEV
 1 0 0 1 0 #include <stdio.h>
 1746 0 0 2 0 #include "incl1.h" __
 1747 1 10 1 0 class A |
 1748 1 10 2 0 { |
 1749 1 10 3 0 int i; |
 1750 1 10 4 0 public: | (1)
 1751 1 10 5 0 A(int x = 1) : i(x) {}; |
 1752 1 10 6 0 void foo() { printf("A::foo called\n"); }; |
 1753 1 10 7 0 } a; __|
 1754 0 0 3 0 #include "incl2.h"
 1755 1 11 1 0 class B : public A
 1756 1 11 2 0 {
 1757 1 11 3 0 int i;
 1758 1 11 4 0 public:
 1759 1 11 5 0 B(int x = 2) : i(x) {};
 1760 1 11 6 0 void foo() { printf("B::foo called\n"); };
 1761 1 11 7 0 } b;
 1762 0 0 4 0 extern "C" int jj;
 1763 0 0 5 0 extern int ii;
 1764 0 0 6 0
 1765 0 0 7 0 int main(void)
 1766 0 0 8 0 {
 1767 0 0 9 1 char *string = "AbCdEfG";
 1768 0 0 10 1 float xx = 1.0;
 1769 0 0 11 1 int ii = 1;
 1770 0 0 12 1 int jj = 2;
 1771 0 0 13 1 A* aptr = &a;
 1772 0 0 14 1 A* bptr = &b;
 1773 0 0 15 1
 1774 0 0 16 1 printf("%d\n", ii);
 1775 0 0 17 1 printf("%d\n", jj);
 1776 0 0 18 1 printf("%s\n", string);
 1777 0 0 19 1 printf("%f\n", xx);
 1778 0 0 20 1 a.foo();
 1779 0 0 21 1 aptr->foo();
 1780 0 0 22 1 b.foo();
 1781 0 0 23 1 bptr->foo();
 1782 0 0 24 1
 1783 0 0 25 1 return 0;
 1784 0 0 26 1 }

(1) The contents of header elements, depending on what is specified in the INCLUDE-INFORMATION option of
the MODIFY-LISTING-PROPERTIES statement (only the user-defined header elements in this case).

 307

Explanation

EXP, LIN

Serial line number in the source listing, including all lines of the header elements used in the source
program. The lines from the header elements are always included in the count, regardless of whether or
not they are displayed in the source listing (see the INCLUDE-INFORMATION optio.

INC, LEV

Nesting level of the header elements.

FILE, NO

Number of the file (source file or header element) for which the respective contents are mapped in the
source listing. This number (starting with 0 for the source file) is incremented by 1 for each or #include

 directive. At the end of each header element, the number is reset to the value of the file containing #line

the associated directive. This number is relevant for the source reference for debugging with #include

AID if header elements contain executable statements or if directives are interspersed with #line

executable statements in source programs.Only the user-defined header elements, i.e. (10) incl1.h

and (11), are expanded in the example. The standard header element and the other incl2.h stdio.h

 directives contained in it are assigned the numbers 1 to 9 (see also the FILETABLE section in #include

the cross-reference listing).

SCR, LIN

Original line number in the source file or header element, taking directives into account.#line

BLOCK, LEV

Nesting level of the statement blocks.

 308

9.1.2 Map listing

The map listing is requested with the DATA-ALLOCATION-MAP option of the MODIFY-LISTING-PROPERTIES
statement. It provides information on all the symbolic addresses used in the program (names of variables and
functions).

******** MAP - LISTING ******** BS2000 C/C++ COMPILER 04.0A10 DATE:2020-04-02 PAGE: 3
 SOURCENAME:*BS2000(MAINPROG) TIME=17:37:33

name stcl/type size slice offs xoffs enuval stroffs xstroffs
a nospec 4 1 104 0x0068 - - -
 class
aptr auto 4 1 24 0x0018 - - -
 pointer to class
b nospec 8 1 108 0x006C - - -
 class
bptr auto 4 1 28 0x001C - - -
 pointer to class
ii extern 4 - - - - - -
 signed int
ii auto 4 1 16 0x0010 - - -
 signed int
jj extern 4 - - - - - -
 signed int
jj auto 4 1 20 0x0014 - - -
 signed int
main nospec 0 1 48 0x0030 - - -
 entry_var
string auto 4 1 8 0x0008 - - -
 pointer to char
x param 4 - - - - - -
 signed int
x param 4 - - - - - -
 signed int
xx auto 4 1 12 0x000C - - -
 float
A nospec 4 - - - - - -
 class
B nospec 8 - - - - - -
 class

Explanation

name Name of the symbolic address.

 309

stcl storage class: Storage class of the symbolic address.
The following specifiers are used

auto Variables at block level, excluding static variables

extern External variables and functions that are defined in a different module

member Elements of classes, structures or unions
Enumeration values

param Function parameters

reg Variables declared with the keyword register

static Static variables at block level, i.e. that are valid at block level

statmem Static element of a class

typedef typedef Name

nospec No storage class was specified

type Data type of the symbolic address (in a separate line under the storage class).
Most entries are obvious. Special values are:

ass_proc assignment Operator

bit bitfield

entry_var function

enum enumeration type

enum_val enumeration value

lab_const label

mem_pointer pointer to member

opr_func operator function

tmpl Template

tmpl_inst Template Instanz

tmpl_par_cl Template Parameter

size Size of the variable in memory (in bytes).

slice A slice is an area (code or data fragment) with a length of 4096 bytes that can be addressed via a base
register.

The digit specifies in which slice of the data module the variable is located.

offs Relative address within a slice (decimal).

 310

xoffs Relative address within a slice (hexadecimal).

enuval For members of an enumeration type (enum), enuval specifies the value of the member.

stroffs Byte position of the symbolic address within a structure (decimal).

xstroffs Byte position of the symbolic address within a structure (hexadecimal).

 311

9.1.3 Cross-reference listing

The cross-reference listing is requested with the CROSS-REFERENCE option of the MODIFY-LISTING-
PROPERTIES statement.

It consists of the following parts:

The FILETABLE section contains the names of all files or libraries/elements that were used by the compiler as a
source (source program or header element). A number is assigned to each of these names. These numbers are
referenced in the other sections of the cross-reference listing.

The PREPROCESSING-INFO section contains a list of the names processed by the preprocessor in #include

and directives (macros, header element names, etc.).#define

The TYPES section contains a list of the user-defined types (typedefs, classes, structure, union, and
enumeration types).

The VARIABLES section contains a list of variables.

The FUNCTIONS section contains a list of functions.

The LABELS section contains a list of labels.

The TEMPLATES section contains a list of templates (in language modes C++ V3 and C++ 2017 only).

The names in the individual lists are sorted in alphabetical order.

The PREPROCESSING-INFO, TYPES and TEMPLATES sections are not included in the cross-reference listing by
default and must be explicitly specified with PREPROCESSING-INFO=*YES, TYPES=*YES or
TEMPLATES=*YES, respectively.

FILETABLE section of the cross-reference listing

******* XREF - LISTING ******** BS2000 C/C++ COMPILER 04.0A10 DATE:2020-04-02 PAGE: 1
 FILETABLE SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

 SOURCE FILE 0 = *BS2000(:2OSC:$TST30B.MAINPROG)
 INCLUDE FILE 1 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,STDIO.H(V04.3A10),S)
 INCLUDE FILE 2 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,IOBUF.H(V04.3A10),S)
 INCLUDE FILE 3 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,POSFILE.H(V04.3A10),S)
 INCLUDE FILE 4 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,STDIO.BS21.H(V04.3A10),S)
 INCLUDE FILE 5 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,STDIO.COMMON.H(V04.3A10),S)
 INCLUDE FILE 6 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,STDIO.BS22.H(V04.3A10),S)
 INCLUDE FILE 7 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,CGLOBALS.H(V04.3A10),S)
 INCLUDE FILE 8 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,IOBUF.H(V04.3A10),S)
 INCLUDE FILE 9 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,ERRNO.H(V04.3A10),S)
 INCLUDE FILE 10 = *LIBRARY-ELEMENT(:2OSC:$TST30B.PLAM.INCL,INCL1.H(*UPPER-LIMIT),S)
 INCLUDE FILE 11 = *LIBRARY-ELEMENT(:2OSC:$TST30B.PLAM.INCL.INCL2.H(*UPPER-LIMIT),S)

File number in global cross-reference listings

In a cross-reference listing that was created with the global listing generator from multiple CIF files (see section
), the file number is indicated in the form (), where is the sequential “Controlling the global listing generator” n m n

number of the source and header files (analogous to the local cross-reference listing; see above) used for each
compilation unit (= CIF file), and is the number of the respective compilation unit. The numbering of compilation m
units begins with 0.

 312

PREPROCESSING-INFO section in the cross-reference listing

******* XREF - LISTING ******** BS2000 C/C++ COMPILER 04.0A10 DATE:2020-04-02 PAGE: 2
 PREPRO SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

 56/12:5
 *LIBRARY-ELEMENT(:2OSC:$TST30B.PLAM.INCL,INCL1.H(*UPPER-LIMIT),S) / include file
 2%0
 *LIBRARY-ELEMENT(:2OSC:$TST30B.PLAM.INCL,INCL2.H(*UPPER-LIMIT),S) / include file
 3%0

'.'applied ':'def ':^'undef '%'included

TYPES section in the cross-reference listing

******* XREF - LISTING ******** BS2000 C/C++ COMPILER 04.0A10 DATE:2020-04-02 PAGE: 3
 TYPES SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

a0000270 / struct of size 16 (0x10)
std / namespace
A / class of size 4 (0x4) ----------------- (1)
 1/7:10 1/18.11 13/3.0 14/3.0 ----------------- (2)
 public baseclass of class 'B'
 i / member, signed int, private ----------------- (3)
 A / inline constructor(signed int), public
 foo / member, inline function(void) ret void, public
B / class of size 8 (0x8)
 1/7:11
 A / baseclass, public
 i / member, signed int, private
 B / inline constructor(signed int), public
 foo / member, inline function(void) ret void, public

'.'used ':'def '&'decl

Explanation

(1) Name and description of the user-defined type, possibly with a size specification (decimal and hexadecimal).

(2) From left to right:
source program line and column in which the type appears,
abbreviation symbol for usage of the type,
number of the source file or (header) element from the FILETABLE.

For example, 14/3.0 means that a variable of type class A is defined in line 14, column 3 of the source
program mainprog (0), and that the type is used (.).

(3) In the case of structured types, the respective components of these types are also described (indented).
The data members of structures, classes, and unions are listed only in the TYPES section (they are not
variables).
Members of functions are repeated in the FUNCTIONS section.

 313

(3) Bei strukturierten Typen werden auch die Komponenten dieser Typen (jeweils eingerückt) beschrieben.

Die Datenelemente von Strukturen, Klassen und Unions werden ausschließlich im TYPES-Teil
aufgelistet (sind keine Variablen). Die Funktionselemente erscheinen noch einmal im FUNCTIONS-Teil.

VARIABLES section in the cross-reference listing

******* XREF - LISTING ******** BS2000 C/C++ COMPILER 04.0A10 DATE:2020-04-02 PAGE: 4
 VARIABLES SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

a / class 'A' ------------------ (1)
 7/3=10 7/3:10 13/14&0 20/3&0 ------------------ (2)
aptr / automatic, pointer to class 'A',
 local in main(void) ret signed int, init value = &a
 13/6=0 13/6:0 21/3.0
b / class 'B'
 7/3=11 7/3:11 14/14&0 22/3&0
bptr / automatic, pointer to class 'A',
 local in main(void) ret signed int, init value = &b
 14/6=0 14/6:0 23/3.0
i / member, signed int,
 member of class 'A'
 3/10:10 5/21=10
i / member, signed int,
 member of class 'B'
 3/10:11 5/21=11
ii / automatic, signed int,
 local in main(void) ret signed int, init value = 1
 11/7=0 11/7:0 16/18.0
ii / extern, signed int
 5/12:%0
jj / extern, signed int
 4/16:%0
jj / automatic, signed int,
 local in main(void) ret signed int, init value = 2
 12/7=0 12/7:0 17/18.0
string / automatic, pointer to char,
 local in main(void) ret signed int, init value = "AbCdEfG"
 9/9=0 9/9:0 18/18.0
x / param of constructor A::A, signed int
 5/12:10 5/23.10
x / param of constructor B::B, signed int
 5/12:11 5/23.11
xx / automatic, float,
 local in main(void) ret signed int, init value = 1
 10/9=0 10/9:0 19/18.0

'='write '.'read '*='indir-write '*.'indir-read '&'read-addr ':'def '%'decl ':%'extdecl
'%%'use

Explanation

(1) Name, storage class and data type of the variables.

 314

(2) From left to right:source program line and column in which the variable appears, abbreviation symbol for
usage of the variable, and number of the source file or (header) element from the FILETABLE

For example, 7/3:10 means that the variable a is defined (:) in line 7, column 3 of the header element
 (10).incl1.h

FUNCTIONS section in the cross-reference listing

******* XREF - LISTING ******** BS2000 C/C++ COMPILER 04.0A10 DATE:2020-04-02 PAGE: 5
 FUNCTIONS SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

foo / public member of class 'B', inline function(void) ret void -- (1)
 6/11:11 22/5.0 -- (2)
foo / public member of class 'A', inline function(void) ret void
 6/11:10 20/5.0 21/9.0 23/9.0
main / function(void) ret signed int
 7/5:0
A / public member of class 'A', inline constructor(signed int)
 5/6:10 7/3.10 5/26.11
B / public member of class 'B', inline constructor(signed int)
 5/6:11 7/3.11

'.'call ':'def '&'decl '%'extdecl ':^'forward '&.'read-addr

Explanation

(1) Name of the function, its scope, signature (type of parameters and return type), and storage class.
For member functions, additional information on the access rights (e.g. public) and the class or union in
which it is contained.

(2) From left to right:
source program line and column in which the function appears,
abbreviation for usage at that position,
number of the source file or (header) element from the FILETABLE.

For example, 6/11:11 means that the function is defined (:) in line 6, column 11 of the header element foo

 (11).incl2.h

 315

9.1.4 Object listing

The object listing is requested with the ASSEMBLER-CODE option of the MODIFY-LISTING-PROPERTIES
statement.

It contains

the hexadecimal representation of object code generated by the code generator,

the object code in Assembler notation,

comments concerning the object code in Assembler notation,

the source program lines in C/C++ notation as comments.

The overall listing is arranged into separate sections for code and data modules. Each module listing is divided into
areas. The beginning of a given module or area listing is indicated by comment lines in the Assembler source
program.

 316

***** ASSEMBLER - LISTING ***** BS2000 C/C++ COMPILER 04.0A10 DATE:2020-04-02 PAGE: 1
 SOURCENAME:*BS2000(MAINPROG) TIME=17:37:22
__
 1 ******************************
 2 * CODE MODULE
 3 *
 4 * OPTIMIZER: ON
 5 * SHARED CODE: OFF
 6 * OBJECT FORMAT: LLM
 7 ******************************
 000000 8 MAINPROG\&@ CSECT READ
 000000 9 MAINPROG\&@ AMODE ANY
 000000 10 MAINPROG\&@ RMODE ANY
 11 ******************************
 12 * CODE AREA (main)
 13 ******************************
 000000 14 ENTRY MAIN
 000000 15 MAIN DS 0A
 000000 16 USING *,15
 000000 90 EF D00C 17 STM 14,15,12(13)
 000004 90 2C D01C 18 STM 2,12,28(13)
 000008 58 90 D04C 19 L 9,76(0,13)
 00000C 98 AB F068 20 LM 10,11,#DC#CONT#10 104(15)
 000010 58 E0 9018 21 L 14,24(0,9)
 000014 41 00 E0D8 22 LA 0,216(0,14)
 000018 55 00 9010 23 CL 0,16(0,9)
 00001C 47 20 F044 24 BC 2,#OFLOW#10 68(0,15)
 000020 50 00 9018 25 ST 0,24(0,9)
 000000 00 00 26 #OFLOWOK#10 EQU *
 000024 50 E0 900C 27 ST 14,12(0,9)
 000028 58 00 F088 28 L 0,#DC#SAVID#10 136(0,15)
 00002C 50 00 E000 29 ST 0,0(0,14)
 000030 58 00 F08C 30 L 0,#DC#EHL#10 140(0,15)
 000034 50 00 E050 31 ST 0,80(0,14)
 000038 50 D0 E004 32 ST 13,4(0,14)
 00003C 50 90 E04C 33 ST 9,76(0,14)
 000040 18 DE 34 LR 13,14
 000042 07 FA 35 BCR 15,10
 .
 .
 .
 000094 58 80 F084 69 L 8,132(0,15)
 70 ***** LINE 7: (*BS2000(:2OSC:$TST30B.MAINPROG))
 71 ***** int main(void)
 000098 72 @0000001 DS 0H
 73 ***** LINE 8
 74 ***** {
 000098 75 @0000002 DS 0H
 000098 58 F0 B024 76 L 15,36(0,11) <17> <17>
 00009C 41 00 0000 77 LA 0,0(0,0)
 0000A0 0D EF 78 BASR 14,15
 79 ***** LINE 16
 80 ***** printf("%d\n", ii);
	________			____________________________		____________
 (1) (2) (3) (4) (5)

 317

Explanation

(1) Location counter, in hexadecimal notation

(2) Object code, in hexadecimal notation

(3) Line number of the Assembler code

(4) Assembler code (symbolic address, Assembler mnemonics, operands) and source program line as a
comment

(5) Explanation of the Assembler code

 318

9.2 Predefined preprocessor names

When the C/C++ compiler is used for compilation in the SDF environment (COMPILE, CHECK-SYNTAX, and
PREPROCESS statements), some preprocessor macros and assertions are predefined, depending on which
language mode is selected and which additional options are specified.

For a few macros the value is fixed. It cannot be changed, neither on the command line nor in the source (via
 or). These macros are: , , and #define #undef __cplusplus __STDC__ __STDC_VERSION__

.__SNI__STDCplusplus

Predefined preprocessor macros (defines)

The options specified below are all part of the MODIFY-SOURCE-PROPERTIES statement:

_BOOL In the language modes C++ V3 and C++ 2017 with the option KEYWORD-
BOOL=*YES

__CGLOBALS_PRAGMA Always set

__cplusplus In all C++ language modes:

== 1 in Cfront C++ mode
== 2 in extended C++ V3 mode
== 199612L in strict C++ V3 mode
== 201703L in C++ 2017 mode

c_plusplus In all C++ language modes

__CFRONT_V3 In language mode Cfront C++

__EDG_NO_IMPLICIT_INCLUSION

In the modes C++ V3 and C++ 2017, if implicit inclusion has been disabled
with the option IMPLICIT-INCLUDE=*NO within the framework of template
instantiation

__EXISTCGLOB Always set

__HALF_TAG_LOOKUP Always set

_IEEE Option FP-ARITHMETICS=*IEEE in MODIFY-MODULE-PROPERTIES
statement

LANGUAGE_C Always set

_LANGUAGE_C Always set

__LITERAL_ENCODING_ASCII

Option LITERAL-ENCODING=*ASCII[-FULL]

__LITERAL_ENCODING_EBCDIC

Option LITERAL-ENCODING=*EBCDIC[-FULL]/*NATIVE

 319

_LONGLONG Option LONGLONG=*YES

__OLD_SPECIALIZATION_SYNTAX

== 1 with the option SPECIALIZATION=*OLD

__SHORT_NAMES Is defined, if C-NAMES=*SHORT is specified

__SIGNED_CHARS__ Option SIGNED-CHARACTER=*YES

__SMALL_VA_DCL Always set

__SNI In all C modes and in Cfront C++ mode

__SNI_HOST_BS2000 Always set

__SNI_HOST_BS2000_POSIX Never set (reserved for compilation in POSIX)

__SNI__STDCplusplus in all C++ language modes:

== 0 in extended language modes (STRICT=*NO)
== 1 strict language modes (STRICT=*YES)

__SNI_TARG_BS2000 Always set

__SNI_TARG_BS2000_POSIX Never set (reserved for compilation in POSIX)

__STDC__ Always set:

== 0 in extended language modes (STRICT=*NO)
== 1 in strict language modes (STRICT=*YES)

__STDC_HOSTED__ Always set

__STDC_NO_ATOMICS__ Always set

__STDC_NO_COMPLEX__ Always set

__STDC_NO_THREADS__ Always set

__STDCPP_DEFAULT_NEW_ALIGNMENT__

Always set

== 8U

__STDC_UTF_16__ Always set

__STDC_UTF_32__ Always set

__STDC_VERS_CRTE__ Undefined in K&R C mode

== 199409L in language modes C89, Cfront C++ and C++ V3

== 201112L in language modes C11 and C++ 2017

 320

__STDC_VERSION__ Undefined in K&R C mode

== 199409L in language mode C89 and in all C++ language modes

== 201112L in language mode C11

_STRICT_STDC in strict language modes (STRICT=*YES)

_WCHAR_T Option KEYWORD-WCHAR=*YES (default in den language modes C++ V3
and C++ 2017)
If this option is not set (e.g. in C modes or in Cfront C++ mode), is _WCHAR_T

defined in various standard headers to issue a for .typedef wchar_t

_WCHAR_T_KEYWORD Option KEYWORD-WCHAR=*YES (default in language modes C++ V3 and
C++ 2017)

Predefined preprocessor assertions (#assert)

The options specified below are all part of the MODIFY-SOURCE-PROPERTIES statement:

data_model(bit32) Always set

cpu(7500) On generating /390 code

machine(7500) On generating /390 code

system(bs2000) Always set

 321

9.3 Concept of a name adapter module in the C runtime system

One of the problems with regard to C library functions is the fact that these functions are addressed on the source
program level with predefined names (e.g. ,), while BS2000 naming conventions require entry printf fopen

names beginning with the prefix “IC”. Furthermore, C library functions also need to be replaceable by user-defined
functions, where entry names can be constructed from the function names without the prefix “IC”.

Up until CRTE Version 1.0B, this problem was solved with the aid of a table that enabled the compiler to recognize
the function names and convert them accordingly. Consequently, changes in the C runtime system were always
associated with changes in the compiler. For reasons of compatibility, this technique has been retained for the
existing C library functions in the C runtime system (functions of the C90 standard and approx. 50 BS2000-specific
extensions). For all POSIX functions that were added by name as of CRTE V2.0A and all functions to be added in
future, the problem is now solved on a compiler-independent basis by means of name adapter modules. These
adapter modules contain the entry names derived from the function name minus the prefix “IC” and call the actual
“standard” function with the entry name IC....

The following adapter modules are available for each C library function:

An object module (OM) with the function name (possibly abbreviated to 8 characters) as an entry name in which
lowercase letters have been converted to uppercase, and the underscore to a dollar character, e.g. FPATHKON
for the function .fpathkonv

This is only relevant when linking object modules generated with the earlier C/C++ compilers (until V2.2). As of C
/C++ V3.0 and higher, only modules in LLM format are generated.

Up to four LLMs in which the unabbreviated function name is contained as the entry name, but once in lowercase
or uppercase, and once with the underscore retained or converted (cf. the LOWER-CASE-NAMES and SPECIAL-
CHARACTERS options in the statement).MODIFY-MODULE-PROPERTIES
For example, two LLMs exist for the function containing the entry names and fpathkonv FPATHKONV

, respectively.fpathkonv

Adapter modules belong to the non-preloadable components of the C runtime system and must consequently be
linked into the application program. They are contained both in the SYSLNK.CRTE library and in the SYSLNK.
CRTE.PARTIAL-BIND library.

If a user-defined function is to be called instead of the standard library function, the corresponding user module
must be linked with precedence before the SYSLNK.CRTE or SYSLNK.CRTE.PARTIAL-BIND library. The user
module can be either an object module or an LLM (with or without conversion of the lowercase letters and
underscores).

 322

9.4 The II-UPDATE tool

When binding or recompiling programs in C++ V3 or C++ 2017 the system accesses existing ii information
(ii=instantiation information). This information contains, among other things, the names of source files/libraries and
source elements, of include libraries and lists or CIF files/libraries/elements. If these files, libraries and/or elements
are renamed or located under a different ID (or another cat-id), then these changes also be made in the ii files.must

ii files, also known as ii elements, are created by the compiler from programs that contain templates.
II-UPDATE is a compiler-independent tool with an SDF interface. If a source or include library has been renamed,
the tool is able to make these changes automatically in the ii file without the need to recompile. It is only possible to
adjust the ii elements of a library per call of the tool.single

Entries in ii elements which contain the names of BS2000 or POSIX files or POSIX directories cannot be changed,
but II-UPDATE can display these without error. This applies both for source, include, CIF and for listing entries.

The SDF syntax file of the II-UPDATE is not activated automatically. You have to activate it once per session, using
the command /MODIFY-SDF-OPTIONS *ADD($.SYSSDF.CPP.040.IU.USER).

START-II-UPDATE

 323

CONTAINER= *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

| LIBRARY= <filename 1..54>

| ,ELEMENT= *ALL / <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| VERSION= / <composed-name 1..24 with-under>*HIGHEST-EXISTING

,OLD-NAME= *LIBRARY-ELEMENT(...) / *LIBRARY(...)

* LIBRARY-ELEMENT(...)

| LIBRARY= <filename 1..54>

| ,ELEMENT= <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| | VERSION= / <composed-name 1..24 with-under>*DEFAULT

*LIBRARY(...)

| LIBRARY= <filename 1..54>

,NEW-NAME= *LIBRARY-ELEMENT(...) / *LIBRARY(...)

* LIBRARY-ELEMENT(...)

| LIBRARY= *SAME / <filename 1..54>

| ,ELEMENT= *SAME / <composed-name 1..64 with-under>(...)

| <composed-name 1..64 with-under>(...)

| | VERSION=* / <composed-name 1..24 with-under>UNCHANGED

*LIBRARY(...)

| LIBRARY= <filename 1..54>

,CONTEXT= *INCLUDE / *CIF / *SOURCE / *LISTING / *ALL

,ACTION= list-poss(2): / *SHOW*REPLACE

CONTAINER = *LIBRARY-ELEMENT(...)
This option is used to specify which ii elements in which object library are to be adapted.

LIBRARY = <filename 1..54>
<filename> is the name of a PLAM library.

 324

ELEMENT = *ALL
All the ii elements in the PLAM library specified using LIBRARY= are to be adapted. Theses are elements of
type S having a name with suffix ".II".

ELEMENT = <composed-name 1..64 with-under>(...)

<composed-name> identifies the fully qualified name of an ii element from the PLAM library specified using
LIBRARY=.

VERSION = *HIGHEST-EXISTING
If the ii element information does not contain a version number, II-UPDATE uses the ii element with the
highest version.

VERSION = <composed-name 1..24 with-under>
II-UPDATE uses the ii element with the specified version.

OLD-NAME = *LIBRARY-ELEMENT(...) / *LIBRARY
This option is used to specify the original library name or original library element names (for example, from the
source library elements) that is to be modified in an ii file. The name must be specified in exactly the same way as
in the ii file, i.e. if required with and (see also example 6).cat-id userid

LIBRARY-ELEMENT (...)

LIBRARY = <filename 1..54>

<filename> is the name of the PLAM library that has changed or in which a change has been made.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully qualified name of an element that has changed.

VERSION = *DEFAULT
Regardless of context, the version value of the ii element is accepted.

VERSION = <composed-name 1..24 with-under>
Identifies the version of the element that has changed.

LIBRARY = <filename 1..54>
<filename> is the name of a PLAM library that has changed.

NEW-NAME = *LIBRARY-ELEMENT(...) / *LIBRARY
This option is used to specify the new library or element name that is to be substituted for that specified in OLD-
NAME.

LIBRARY-ELEMENT(...)

LIBRARY = *SAME / <filename 1..54>

If *SAME is specified, the name of the PLAM library as entered in the OLD-NAME parameter is used.
<filename> is the new name of the PLAM library that is specified under OLD-NAME.

ELEMENT = *SAME / <composed-name 1..64 with-under>(...)

 325

If *SAME is specified, the name of the element as entered in the OLD-NAME parameter is used.
<composed-name> is the changed, fully qualified name of an element that was specified under OLD-
NAME.

VERSION = *UNCHANGED
The existing version of the library elements (in the ii element) should not be changed.

VERSION = <composed-name 1..24 with-under>
The new version name of the element.

LIBRARY = <filename 1..54>
<filename> is the new name of the PLAM library as specified under OLD-NAME.

Note
Only the same type of OLD-NAME / NEW-NAME combinations are supported, for example,OLD-NAME =
*LIBRARY / NEW-NAME = *LIBRARY or
OLD-NAME = *LIBRARY-ELEMENT / NEW-NAME = *LIBRARY-ELEMENT

CONTEXT =
Specify the entries of the ii information which should be handled. The entries correspond to compiler statements.

CONTEXT = *INCLUDE
Handle entries corresponding to //MODIFY-INCLUDE-LIBRARIES.

If *INCLUDE is specified, the adaption of the library is only carried out if OLD-NAME and NEW-NAME are both
library names. If OLD-NAME and NEW-NAME are library element names, then adaptation would not take place for
*INCLUDE.

CONTEXT = *CIF
Handle entries corresponding to //MODIFY-CIF-PROPERTIES OUTPUT=.

CONTEXT = *SOURCE
Handle entries corresponding to //COMPILE SOURCE=.

CONTEXT = *LISTING
Handle entries corresponding to //MODIFY-LISTING-PROPERTIES OUTPUT=.

CONTEXT = *ALL
Handle all entries.

Note
A message is output indicating the total number or replacements carried out for the various contexts.

ACTION =
This option enables II-UPDATE to be instructed to replace or output all library or library element names of an ii
element which can potentially be replaced.

ACTION = *REPLACE
Replacements are performed. Only the replacements which are performed are output.

ACTION = *SHOW
No replacements are performed. All possible replacements are output, however. The names of libraries and
elements which would not be replaced are also output.

 326

ACTION = (*SHOW, *REPLACE)
Replacements are performed. In addition to the replacements which were performed, the replacements which were
not performed are also output.

Note
The specified context is taken into account in all cases. II-UPDATE remains compatible to older versions with
regard to call, replacement and output behavior.

The following examples will provide further information about the points mentioned above.

Example 1

The include library has been renamed in . The following statement carries out the INC-LIB-V1 INC-LIB-V2
appropriate changes to all the ii elements in the library.MY-OBJ-LIB

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB, *ALL),-
/OLD-NAME=*LIBRARY(INC-LIB-V1),-
/NEW-NAME=*LIBRARY(INC-LIB-V2),-
/CONTEXT=*INCLUDE

Example 2

The source library has been renamed in .MY-SOURCE-LIB.V1 MY-SOURCE-LIB.V2
The following statement makes the appropriate changes to the library element in the library:EL.O.II MY-OBJ-LIB

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB, EL.O.II),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB.V1),-
/NEW-NAME=*LIBRARY(MY-SOURCE-LIB.V2),-
/CONTEXT=*SOURCE

Example 3

The source libraries MY-SOURCE-LIB1 and MY-SOURCE-LIB2 contain a program system. The associated objects
are located in the libraries MY-OBJ-LIB1 and MY-OBJ-LIB2. The source libraries are to be renamed in SOURCE-
LIB1-V1 and SOURCE-LIB2-V2. The assumption has been made that each source library makes use of the other
(include):

/MODIFY-FILE-ATTRIBUTES MY-SOURCE-LIB1, SOURCE-LIB1-V1
/MODIFY-FILE-ATTRIBUTES MY-SOURCE-LIB2, SOURCE-LIB2-V1

The ii files/elements are adapted using the following statements:

 327

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB1, *ALL),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB1),-
/NEW-NAME=*LIBRARY(SOURCE-LIB1-V1),-
/CONTEXT=*ALL

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB1, *ALL),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB2),-
/NEW-NAME=*LIBRARY(SOURCE-LIB2-V1),-
/CONTEXT=*INCLUDE

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB2, *ALL),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB1),-
/NEW-NAME=*LIBRARY(SOURCE-LIB1-V1),-
/CONTEXT=*INCLUDE

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB2, *ALL),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB2),-
/NEW-NAME=*LIBRARY(SOURCE-LIB2-V1),-
/CONTEXT=*ALL

Example 4

Using the program system described in Example 3 but this time, instead of renaming the source libraries, we are
going to move the source library element from the library to the MY-ELEM.C MY-SOURCE-LIB1 MY-SOURCE-LIB2
library and both the associated object and the associated ii element to the MY-ELEM.O MY-ELEM.O.II MY-OBJ-

library:LIB2

/LMS
//O-L MY-SOURCE-LIB1,*U
//COP-EL (,MY-ELEM.C,S),(MY-SOURCE-LIB2,MY-ELEM.C)
//DEL-EL (,MY-ELEM.C,S)
//O-L MY-OBJ-LIB1,*U
//COP-EL (,MY-ELEM.O,L),(MY-OBJ-LIB2,MY-ELEM.O)
//COP-EL (,MY-ELEM.O.II,S),(MY-OBJ-LIB2,MY-ELEM.O.II)
//DEL-EL (,MY-ELEM.O.L)
//DEL-EL (,MY-ELEM.O.II,S)
//END

The ii files/elements are adapted using the following statements:

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB2, MY-ELEM.O.II),-
/OLD-NAME=*LIB-ELEM(MY-SOURCE-LIB1, MY-ELEM.C),-
/NEW-NAME=*LIB-ELEM(MY-SOURCE-LIB2, MY-ELEM.C),-
/CONTEXT=*SOURCE

Example 5

The source libraries and contain a program system (see Example 3). The MY-SOURCE-LIB1 MY-SOURCE-LIB2
associated listing libraries and are to be renamed to or MY-LISTING-LIB1 MY-LISTING-LIB2 LISTING-LIB1-V1

:LISTING-LIB2-V1

 328

/MODIFY-FILE-ATTRIBUTES MY-LISTING-LIB1, LISTING-LIB1-V1
/MODIFY-FILE-ATTRIBUTES MY-LISTING-LIB2, LISTING-LIB2-V1

The ii files/elements are adapted using the following statements:

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB1,*ALL),-
/OLD-NAME=*LIBRARY(MY-LISTING-LIB1),-
/NEW-NAME=*LIBRARY(LISTING-LIB1-V1),-
/CONTEXT=*LISTING

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB2,*ALL),-
/OLD-NAME=*LIBRARY(MY-LISTING-LIB2),-
/NEW-NAME=*LIBRARY(LISTING-LIB2-V1),-
/CONTEXT=*LISTING

Example 6

The include library was renamed . The following string of HELLO-MAP.INCLIB HELLO-MAP.INCLIB.NEW
statements is initially used to determine the exact notation of the library which is to be renamed (ACTION=*SHOW;
in this case the values of the and parameters are of no significance); subsequently the old-name new-name
replacements are performed using ACTION=(*SHOW, *REPLACE):

/START-II-UPDATE CONTAINER=*LIB-ELEM(HELLO-MAP.OLIB1,*ALL),-
/OLD-NAME=*LIBRARY(OLIB),-
/NEW-NAME=*LIBRARY(NLIB),-
/CONTEXT=*ALL,-
/ACTION=*SHOW

Output:

% BLS0523 ELEMENT 'II-UPDATE', VERSION '04.0A10', TYPE 'L' FROM LIBRARY ': 2OSG:
$TSOS.SYSLNK.CPP.040' IN PROCESS
% BLS0524 LLM 'II-UPDATE', VERSION '04.0A10' OF '2020-04-02 14:33:19' LOADED
% BLS0551 COPYRIGHT (C) 2020 Fujitsu Technology Solutions GmbH. ALL RIGHTS RESERVED
% CDR9992 BEGIN II-UPDATE VERSION 04.0A10
% CDR9810 Processing ii-element *LIBRARY-ELEMENT(:2OSC:$MTZ.HELLO-MAP.OLIB1,
HELLO-MAP-HP.II(*UPPER-LIMIT),S)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$TSOS.SYSLIB.CRTE)
% CDR9819 source lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.SLIB1)
% CDR9810 Processing ii-element *LIBRARY-ELEMENT(:2OSC:$MTZ.HELLO-MAP.OLIB1,
HELLO-MAP-UP.II(*UPPER-LIMIT),S)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$TSOS.SYSLIB.CRTE)
% CDR9819 source lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.SLIB1)
% CDR9814 Summary: 0 include / 0 source / 0 cif / 0 listing replaced
% CCM0998 CPU TIME USED: 0.1485 SECONDS

 329

/START-II-UPDATE CONTAINER=*LIB-ELEM(HELLO-MAP.OLIB1,*ALL),-
/OLD-NAME=*LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB),-
/NEW-NAME=*LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB.NEW),-
/CONTEXT=*ALL,-
/ACTION=(*REPLACE,*SHOW)

Output:

% BLS0523 ELEMENT 'II-UPDATE', VERSION '04.0A10', TYPE 'L' FROM LIBRARY
':2OSG:$TSOS.SYSLNK.CPP.040' IN PROCESS
% BLS0524 LLM 'II-UPDATE', VERSION '04.0A10' OF '2020-04-02 14:33:19' LOADED
% BLS0551 COPYRIGHT (C) 2020 Fujitsu Technology Solutions GmbH. ALL RIGHTS RESERVED
% CDR9992 BEGIN II-UPDATE VERSION 04.0A10
% CDR9810 Processing ii-element *LIBRARY-ELEMENT(:2OSC:$MTZ.HELLO-MAP.OLIB1,
HELLO-MAP-HP.II(*UPPER-LIMIT),S)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$TSOS.SYSLIB.CRTE)
% CDR9811 include lib replaced: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB) -->
*LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB.NEW)
% CDR9819 source lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.SLIB1)
% CDR9810 Processing ii-element *LIBRARY-ELEMENT(:2OSC:$MTZ.HELLO-MAP.OLIB1,
HELLO-MAP-UP.II(*UPPER-LIMIT),S)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$TSOS.SYSLIB.CRTE)
% CDR9811 include lib replaced: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB) -->
*LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB.NEW)
% CDR9819 source lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.SLIB1)
% CDR9814 Summary: 2 include / 0 source / 0 cif / 0 listing replaced
% CCM0998 CPU TIME USED: 0.2243 SECONDS

 330

10 Related publications

The manuals are available as online manuals, see .https://bs2manuals.ts.fujitsu.com

[1] C/C++ V4.0A (BS2000/OSD)
 POSIX Commands of the C/C++ Compiler

User Guide

[2] C Library Functions (BS2000/OSD)
Reference Manual

[3] C Library Functions for POSIX Applications (BS2000/OSD)
Reference Manual

[4] CRTE (BS2000/OSD)
 Common RunTime Environment

User Guide

[5] C++ (BS2000)
C++ Library Functions
Reference Manual

[6] Standard C++ Library V1.2
User‘s Guide and Reference

[7] Tools.h++ V7.0
User‘s Guide

[8] Tools.h++ V7.0
Class Reference

[9] AID (BS2000/OSD)
 Debugging of C/C++ Programs

User Guide

[10] AID (BS2000)
 Advanced Interactive Debugger

 Core Manual
User Guide

[11] BS2000/OSD-BC
Commands
User Guide

[12] SDF (BS2000/OSD)
SDF Dialog Interface
User Guide

[13] BLSSERV
 Dynamic Binder Loader / Starter

User Guide

https://bs2manuals.ts.fujitsu.com

 331

[14] BINDER
 Binder in BS2000/OSD

User Guide

[15] EDT V17.0 (BS2000/OSD)
 Statements

User Guide

[16] LMS (BS2000)
 SDF Format

User Guide

[17] BS2000/OSD-BC
 Executive Macros

User Guide

[18] BS2000/OSD-BC
 Introductory Guide to DMS

User Guide

[19] JV (BS2000/OSD)
 Job Variables

Reference Manual

[20] POSIX (BS2000/OSD)
 POSIX Basics for Users and System Administrators

User Guide

[21] POSIX (BS2000/OSD)
Commands
User Guide

Other reference literature and standards

[22] The C Programming Language
by Brian W. Kernighan und Dennis M. Ritchie

[23] The C++ Programming Language
(Second and Third Edition)
by Bjarne Stroustrup

[24] „International Standard ISO/IEC 9899 : 1990, Programming languages - C“

[25] „International Standard ISO/IEC 9899 : 1990, Programming languages - C /
Amendment 1 : 1994“

[26] „International Standard ISO/IEC 9899 : 2011, Programming languages - C“

[27] „International Standard ISO/IEC 14882 : 1998, Programming languages - C++“

[28] „International Standard ISO/IEC 14882 : 2017, Programming languages - C++“

	C/C++ Compiler
	Preface
	Brief product description
	Summary of contents and target group
	Changes since the previous version
	Notational conventions
	General notational conventions
	SDF notational conventions

	Overview of the C/C++ development system
	From source program to program execution
	General requirements for compilation, linkage and program execution
	General features of the C/C++ compiler
	Specific CRTE components required for C/C++
	Include libraries
	Module libraries

	Editing source programs
	POSIX support
	Compiler I/O in the POSIX file system
	Use of POSIX library functions

	Introductory examples
	Example 1: Compiling, linking, and starting a C program
	Example 2: Compiling, linking, and starting a C++ program
	Example 3: Compiling a C source program that is located in a POSIX file and uses POSIX library functions

	Compilation
	General aspects of the compiler run
	Input sources and output destinations of the compiler
	Construction of default names
	Default names for output containers
	Rules for constructing module names
	Structure of compiler messages

	Controlling the compiler
	Calling the compiler (START-CPLUS-COMPILER)
	Description of compiler statements
	Overview of statements
	Basic principles and general input rules
	BIND
	CHECK-SYNTAX
	COMPILE
	Notes on input via SYSDTA
	END
	MODIFY-BIND-PROPERTIES
	Interaction between the MODIFY-BIND-PROPERTIES and BIND statements
	MODIFY-CIF-PROPERTIES
	MODIFY-DIAGNOSTIC-PROPERTIES
	MODIFY-INCLUDE-LIBRARIES
	MODIFY-LISTING-PROPERTIES
	MODIFY-MODULE-PROPERTIES
	MODIFY-OPTIMIZATION-PROPERTIES
	The optimization process
	MODIFY-RUNTIME-PROPERTIES
	MODIFY-SOURCE-PROPERTIES
	MODIFY-TEST-PROPERTIES
	PREPROCESS
	RESET-TO-DEFAULT
	SHOW-DEFAULTS
	SHOW-PROPERTIES

	Controlling the global listing generator
	Calling the listing generator (START-CPLUS-LISTING-GENERATOR)
	Description of statements
	Overview of statements and input rules
	END
	GENERATE-LISTING
	MODIFY-LISTING-PROPERTIES

	Linkage and program execution
	Linkage
	Dynamic linking and loading with DBL
	Linking with BINDER
	Shareable C/C++ programs
	Restriction on linking C++ programs

	Program execution
	Parameter input at program start
	Redirecting standard I/O files
	Input of parameters for the main function
	Definition of the main function with parameters
	The advanced interactive debugger AID
	Requirements for symbolic debugging

	Linkage to functions and languages
	Linkage conventions specific to C and C++
	Linkage between C and C++
	Common types
	Calling C functions in C++
	Calling C++ functions in C
	Problems and restrictions

	Linkage between different C++ language modes
	Notes on linkage to ILCS programs in other languages

	C language support of the compiler
	Overview of the C language modes
	Implementation-defined behavior based on the ANSI/ISO C standard
	Deviations from ANSI/ISO C
	Extensions to ANSI/ISO C
	Restrictions to ANSI/ISO C

	Pragmas
	aligned pragma
	pack pragma
	ETPND pragma
	Pragmas to control the layout of listings
	LISTING pragma
	PAGE pragma
	SPACE pragma
	TITLE pragma

	inline pragma
	int_to_unsigned pragma
	weak pragma
	ident pragma
	VIRTUAL_FUNCTION_TAB pragma
	Pragmas to control template instantiation
	deprecated pragma
	STDC pragma
	__printf_args pragma
	__scanf_args pragma

	C++ language support of the compiler
	Overview of the C++ language modes
	Implementation-defined behavior based on the ANSI/ISO C++ standard
	Template instantiation
	Fundamentals
	Automatic instantiation
	Generating explicit template instantiation statements (ETR files)
	Implicit inclusion
	extern inline functions

	Deviations from ANSI/ISO C++
	Extensions to ANSI-/ISO-C++
	Restrictions to ANSI-/ISO-C++
	extern inline vs. static inline

	Variations in the Cfront C++ mode

	The C++ libraries and C++ runtime system
	The C++ library for the language mode C++ 2017
	The C++ library for the language mode C++ V3
	The C++ library for the Cfront C++ language mode C++ V2
	The C++ V3 library Tools.h++
	The C++ runtime system
	Initialization
	Exception handling
	Additional runtime functions
	C signal handling and C++ exception handling
	longjmp support
	Linking old C modules with C++ V3 and C++ 2017 modules

	Appendix
	Description of listings
	Source/error listing
	Map listing
	Cross-reference listing
	Object listing

	Predefined preprocessor names
	Concept of a name adapter module in the C runtime system
	The II-UPDATE tool

	Related publications

