
English

FUJITSU Software BS2000

SNMP Management (NET-SNMP) for
BS2000

Valid for: NET-SNMP V5.7 and SNMP-AGENTS V1.1

User Guide

*

Edition April 2020

Table of Contents

 SNMP . 6
1 Preface . 7

1.1 Contents of the manual . 8
1.2 Target group . 9
1.3 Summary of contents . 10
1.4 Notational conventions . 11
1.5 Changes compared to the previous version . 12
1.6 README file . 13

2 Overview . 14
2.1 Basic features of the SNMP management architecture 15
2.2 SNMP management in BS2000 - embedding and functionality 17

2.2.1 Product structure . 18
2.2.2 Structure of the SNMP collection in BS2000 . 20

2.2.2.1 SNMP daemon (snmpd) . 21
2.2.2.2 Agents . 22
2.2.2.3 User interface for the SNMP management of BS2000 23
2.2.2.4 Parallel operation of SNMP V6.x and NET-SNMP 24

2.3 Security considerations when using SNMP . 25
2.3.1 Recommendations for general network and system security 26
2.3.2 Recommendations for using the SNMP service safely 27

2.3.2.1 Community strings for receiving SNMP requests 28
2.3.2.2 Advanced security options for receiving SNMP requests 29
2.3.2.3 Community strings and controlling access to MIB objects 30
2.3.2.4 Community strings and sender addresses . 31
2.3.2.5 Recipient’s addresses for SNMP traps . 32
2.3.2.6 Community string for SNMP traps . 33

3 Installation and configuration . 34
3.1 Software requirements . 35
3.2 Installation in BS2000 OSD/BC . 36

3.2.1 Installation defaults . 37
3.2.2 Delivery scope of NET-SNMP . 38
3.2.3 Installing products manually . 39
3.2.4 Uninstallation . 40

3.3 SNMP configuration in BS2000 . 41
3.3.1 Listening addresses in BS2000 . 42
3.3.2 SNMP general configuration (snmp.conf) . 43

3.3.2.1 Client behavior . 44

3.3.2.2 SNMPv3 settings . 46
3.3.2.3 Server behavior . 48
3.3.2.4 MIB handling . 49
3.3.2.5 Output configuration . 50

3.3.3 AgentX configuration (agentx.conf) . 53
3.3.4 Command line arguments . 54

3.4 Configuring NET-SNMP . 56
3.4.1 Configuring SNMP daemon snmpd (snmpd.conf) . 57

3.4.1.1 Agent behavior . 58
3.4.1.2 AgentX options . 59
3.4.1.3 SNMPv3 configuration . 60
3.4.1.4 SNMPv3 authentication . 61
3.4.1.5 Access control . 62
3.4.1.6 System Group . 65
3.4.1.7 Active monitoring . 66

3.4.2 DisMan Event MIB . 67
3.4.3 DisMan Schedule MIB . 71
3.4.4 Arbitrary Extension Commands . 72
3.4.5 Configuration example . 73
3.4.6 Reconfiguring the daemon . 75
3.4.7 Configuring SNMP trap daemon snmptrapd (snmptapd.conf) 76

3.4.7.1 snmptrapd behavior . 77
3.4.7.2 Access Control . 78
3.4.7.3 Notification Processing . 79
3.4.7.4 Logging . 80
3.4.7.5 Format Specifications . 81

3.5 SNMP-AGENTS configuration . 83
3.5.1 Application Monitor agent configuration . 84

3.5.1.1 Statements for the configuration file . 85
3.5.1.2 Change in the configuration file during the current session 94

3.5.2 Configuring the Console Monitor agent . 95
3.5.2.1 Positive message filter . 97
3.5.2.2 Structure of the positive message filter . 99
3.5.2.3 Negative message filter . 102
3.5.2.4 Modifying the configuration file during operation . 103

3.5.3 Configuring the Storage agent . 104
3.5.4 Configuring the openUTM agent . 106

3.5.4.1 Preparation . 107
3.5.4.2 Configuring the openUTM agent for monitoring several UTM applications . . .
108
3.5.4.3 Runtime environment . 109

3.5.4.4 Diagnostic documents . 110
3.5.5 Configuring the openSM2 agent . 112
3.5.6 Configuring the HSMS agent . 113
3.5.7 TCP-IP-AP configuration . 114

4 Operations . 115
4.1 rc scripts . 116
4.2 SDF commands and procedures . 119

4.2.1 SDF commands without any parameters . 120
4.2.2 SDF commands with parameter “AGENT-NAME” . 124
4.2.3 SDF command - example view . 128

4.3 NET-SNMP daemons and SNMP tools . 129
4.3.1 SNMP daemon snmpd . 130
4.3.2 SNMP trap daemon snmptrapd . 132
4.3.3 SNMP tools snmpwalk, snmpget, snmpset and snmptrap 133

4.4 Starting and stopping the agents of SNMP-AGENT . 135
4.4.1 Agents-specific options for starting agents manually 136
4.4.2 Starting BCAM, FTP and SESAM/SQL agents manually 139

5 NET-SNMP functions . 140
5.1 Support of MIB-II (RFC 1213) . 141
5.2 Other MIBs supported by NET-SNMP . 142
5.3 Functionality of the Event services . 143
5.4 Functionality of the Scheduling services . 145

6 SNMP-AGENTS functions . 147
6.1 Application Monitor agent . 148
6.2 Console Monitor agent . 149

6.2.1 Acquiring console messages . 150
6.3 Host Resources agent . 151
6.4 HSMS agent . 152
6.5 openFT agent . 153
6.6 openSM2 agent . 154
6.7 openUTM agent . 155
6.8 Spool agent . 156
6.9 Storage agent . 157

7 BCAM, SESAM/SQL and FTP agents functions . 158
7.1 BCAM agent . 159
7.2 FTP agent (from TCP-IP-AP package) . 160
7.3 SESAM/SQL agent . 161

8 Example for operating the management station . 162
9 Appendix: Procedure in the event of errors . 166

9.1 Format of the logging entries . 167

9.2 Configuring logging files of agents . 168
9.3 Debug options . 169

10 Glossary . 171
11 Related publications . 176

 6

SNMP

 7

1 Preface

The delivery unit NET-SNMP V5.7 of the BS2000 operating system and the product SNMP-AGENTS V1.0 provide
the basic functionality for linking BS2000 systems into SNMP-based management environments. NET-SNMP V5.7
and SNMP-AGENTS V1.0 provide network, system and application management capability via SNMP.

These components are supplemented by the product-specific agents BCAM, FTP (as part of interNet Services,
delivered via TCP-IP-AP) and SESAM/SQL.

 8

1.1 Contents of the manual

This manual describes the embedding of NET-SNMP and SNMP-AGENTS as well as the BCAM, FTP and SESAM
/SQL agents into BS2000 systems, the installation and configuration steps required for operation, and operation
itself. The agents required for monitoring, together with their MIBs, are described in detail.

In addition, detailed information about secure operation of SNMP management is described.

 9

1.2 Target group

This manual is aimed at network operators and system administrators who integrate the BS2000 systems into an
SNMP-based network, system and application management, or those who wish to operate such a system. Prior
knowledge of the BS2000 operating system and the basic TCP/IP terms is assumed.

 10

1.3 Summary of contents

This manual is structured as follows:

Chapter 2: Overview

This chapter leads into the SNMP architecture, introduces fundamentals and describes the embedding into
BS2000.

Chapter 3: Installation and configuration

The installation requirements and installation itself are described in this chapter. The configuration steps on the
BS2000 system are also shown in detail.

Chapter 4: Operation

Chapter 4 describes the POSIX scripts for automatic startup and shutdown of the SNMP daemon and the
agents, as well as the possibilities of starting daemons and agents in a manual way.

Chapter 5: NET-SNMP functions

This chapter describes the groups in MIB-II (RFC 1213) and additional groups, which can be managed via the
SNMP daemon. It also describes the implementation of DISMAN Monitoring (referred as the Event Services) and
DISMAN Scheduling, which are also included in NET-SNMP as part of the SNMP daemon.

Chapter 6: SNMP-AGENTS functions

This chapter describes the functionality and operation of the agents in SNMP-AGENTS including an overview of
the respective MIBs.

Chapter 7: BCAM, FTP and SESAM/SQL agents.

This chapter describes the functionality and operation of the BCAM and interNet Services agents.

Note: The SESAM/SQL agent is described in the SESAM/SQL documentation.

Chapter 8: Example for operating the management station

Appendix

The Appendix contains details on the procedures to be taken in the event of error.

 11

1.4 Notational conventions

This manual uses the following symbols and formatting to emphasize particularly important sections of text:

Italics

for file names, names of management windows and parameters, menu titles and menu items, as well as
commands and variables included in continuous text.

<angled brackets>

designate variables, which have to be replaced by current values.

fixed-width text

for the representation of system inputs and outputs and file names in examples.

command

In the syntax description of commands, those parts that must be input unchanged (names of commands
and parameters) are shown bold.

for general informationi

for warnings!

 12

1.5 Changes compared to the previous version

SNMP has been re-implemented in BS2000 with several components: NET-SNMP, SNMP-AGENTS and the
product-specific agents of BCAM, FTP and SESAM/SQL. These components replace the EMANATE-based
products SBA-BS2, SSC-BS2, SSA-OUTM-BS2 and SSA-SM2-BS2.

In the following text, the previous implementation of SNMP in BS2000 will be referred to as "SNMP V6.x", the new
solution will be called "NET-SNMP/SNMP-AGENTS".

This has led to the following changes in comparison to the SNMP Management V6.0A User Guide:

New product structure and new core software

SNMP components:

NET-SNMP V5.7 is a component of the BS2000 OSD/BC operating system. NET-SNMP V5.7 is based on the
open source software Net-SNMP (BSD license).

It contains the parts of MIB-II including the groups that are needed for openNet Server and interNet Services (IP,
TCP, UDP). It also contains the functionality of both Event and Scheduling services, implemented by the Event

and Scheduler agents of the previous SNMP versions V6.x.

SNMP-AGENTS is an optional product, which contains the following agents:

Application Monitor

Console Monitor

Host Resources

HSMS

openFT

openSM2

openUTM

Spool & Print Services

Storage

The product-specific agents of BCAM (private BCAM MIB), FTP and SESAM/SQL have also been re-
implemented.

Agents no longer included

The following agents are no longer offered:

Supervisor Agent

AVAS

HIPLEX-AF

OMNIS

HTML Agent

Other changes

Manual start of the agents is now only possible using POSIX commands. Automatic start/stop scripts are still
available, so it is possible to have an automatic start and stop of the agents on the POSIX startup/shutdown.

 13

1.6 README file

The functional changes to the current product version and revisions to this manual are described in the product-
specific Readme file.

Readme files are available to you online in addition to the product manuals under the various products at
. You will also find the Readme files on the Softbook DVD.http://manuals.ts.fujitsu.com

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D). You can view this
information on screen using the command or an editor. SHOW-FILE

The command shows the /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>

user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and using a product version
are contained in the associated Release Notice. This Release Notice is available online at

.http://manuals.ts.fujitsu.com

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

 14

2 Overview

SNMP stands for imple etwork anagement rotocol and was developed as a protocol for network management S N M P
services in TCP/IP networks. The original task of SNMP was only the monitoring and administration of LAN
components such as bridges, routers, hubs, etc. in heterogeneous networks with TCP/IP protocols. In the
meantime, the application range of SNMP has been extended to include system and application management.
SNMP does not stand for the protocol alone, but rather for the complete corresponding management system, in the
same way that the term TCP/IP designates the complete network rather than just the protocol as such.

 15

2.1 Basic features of the SNMP management architecture

The management platform is the central component of an SNMP installation. The management platform provides a
well-structured display of the components it manages and offers easy operation. The network and all of its systems
and applications can be monitored and controlled from the management platform. SNMP is not fixed to a particular
platform.

The SNMP manager, also referred to as management station, resides in the management platform. The SNMP
manager is an application that communicates with partner applications, the SNMP agents via SNMP over a TCP/IP
network. Each managed component has an agent that provides the SNMP manager with current information about
the component. The initiative for controlling the activities mainly rests with the SNMP manager, which ensures that
the components to be managed only have to cope with a small volume of management tasks.

The basis for managing the components concerned is an exact description of the parts of these components that
are to be administered (objects) in the MIB (Management Information Base). The MIB is the informational backbone
of each Management Agent. It contains information on the characteristics, such as name, syntax, access rights and
state, of each separate component. Specific MIBs are supplied by many hardware and software component
manufacturers. The MIB coding is carried out in ASN.1 (Abstract Syntax Notation One). ASN.1 has been ratified by
the ISO as a standard for the presentation layer (see ISO/IEC 8824 and 8825).

Figure 1: Communication between SNMP manager and agents

 16

SNMP protocol elements

The information is transported over the network by means of function-dependent SNMP protocol elements.
SNMPv1 only requires four different protocol elements for requesting, setting and displaying values that contain the
relevant management information (object values). A fifth protocol element, trap, is used by the agents for
asynchronous reporting of important events.

Protocol element Type Function

GetRequest-PDU 0 Read request from the manager for a specific
defined object

GetNextRequest-PDU 1 Read request from the manager for the next
(unknown) object

GetResponse-PDU 2 Reply from the agent with the requested values

SetRequest-PDU 3 Write request from the manager to a specific,
defined object

Trap-PDU 4 Asynchronous report from the agent when
special
events occur

SNMPv1 protocol elements

The structure of the actual SNMP message is quite simple. It consists of the SNMP header and PDU (Protocol Data
Unit). The SNMP header contains a version ID and the Community Name.

The PDU consists of the field for the PDU type and a list of

variables to be read (for GetRequest and GetNextRequest) or

the variable to be set (for SetRequest).

Each variable consists of the name of the object monitored and the associated value. The list of variables that
belong to an SNMP message is referred to as variable bindings (short "varbinds").

SNMPv3 provides additional security carried out via security parameters. For details, please refer to
.section “Access control”

i

 17

2.2 SNMP management in BS2000 - embedding and functionality

Solutions with different targets are offered for connecting BS2000 to an SNMP management system.

The products NET-SNMP V5.7 (part of OSD/BC as of V11.0) and SNMP-AGENTS V1.1 offer the capability of
integrating BS2000 systems directly into SNMP-based management platforms such as Nagios or Icinga. Some
examples are presented in the . Both NET-SNMP and chapter “Example for operating the management station”
SNMP-AGENTS allow network, system and application management via an implementation of the SNMP
protocol in BS2000 .

The BCAM, FTP (as part of TCP-IP-AP product) and SESAM/SQL agents supplement the functionality of SNMP-
AGENTS, adding more possibilities for BS2000 management. These agents are deployed with their
corresponding products. The configuration and functionality of the agents are described in this manual as well.

Figure on the next page gives an overview of the SNMP integration of BS2000.2

Figure 2: Overview of the systems that SNMP can handle

As a service, Fujitsu Technology Solutions offers the integration into diverse SNMP management
systems. For more information; please contact your sales representative.

i

 18

2.2.1 Product structure

Figure 3: SNMP management structure in BS2000

NET-SNMP

NET-SNMP is supplied with BS2000 and contains the SNMP daemon , the SNMP trap daemon snmpd snmptrapd
and the SNMP client tools (, and). The SNMP daemon also contains the functionality of snmpwalk snmpget snmpset
both Event and Scheduling services, implemented in the Event and Scheduler agents of the previous SNMP
versions V6.x.

 19

The SNMP daemon is the BS2000 communication partner for the management station, which handles the SNMP
protocol. It also controls the communication with the agents and offers access to diverse groups of the MIB-II
(System, SNMP, Interface, ICMP, IP, TCP, UDP) and the objects of other standardized SNMP MIBs (RFC

2272 - 2275), thereby allowing monitoring of the system and the values relevant to SNMP.

The Event Services allows you to monitor MIB objects of other agents and perform simple actions, as soon as
specific conditions (trigger tests) have been satisfied.

The Scheduling Services enables modifications to be made to objects periodically or at defined times.

SNMP-AGENTS

SNMP-AGENTS V1.0 includes a set of agents for BS2000-specific management tasks.

The Application Monitor agent monitors user applications, BCAM applications, tasks, job variables, BS2000
subsystems and the log files of BS2000, POSIX and NFS. DCAM applications, log files and subsystem states
can be monitored cyclically. Logically associated objects in a business process can be grouped together by the
Application Monitor agent and monitored either separately or as a group.

The Console Monitor agent is used for console monitoring. On the one hand, it allows you forward console
messages as trap notifications and precisely define the quantity of the messages to be recorded. On the other,
you can also issue BS2000 SDF commands from the management station and query the results.

The Host Resources agent supplies information about the host, devices, pubsets, file systems and the installed
software and notifies changes.

The HSMS agent allows you to read and modify global HSMS data. It also supplies detailed information on
HSMS tasks. The scope of the tasks can be restricted by the selection criteria"state" and "origin".

The openFT (BS2000) agent supplies information about FT system parameters and statistics of the session. It
also has the additional functions of starting and stopping the FT, diagnosis control, generating new public keys
for encryption and changing the status of an FT partner.

The performance monitoring agent openSM2 supplies real-time values of monitoring CPU utilization, I/O rates
and memory consumption provided by the SM2 subsystem.

The openUTM agent offers the monitoring and control of selected UTM applications, e.g. information on UTM
objects, modifying application properties and system parameters, or terminating an UTM application.

The agent for spool and print services monitors the SPOOL and RSO devices and supplies information about
print jobs.

The agent for storage management supplies information about pubsets and disks. The agent is also able to
monitor the state of the selected pubsets and disks.

BCAM, FTP (TCP-IP-AP) and SESAM/SQL agents

These products are delivering product-specific agents, which are supplementing the functionality of SNMP-
AGENTS:

The BCAM agent supplies information about NEA, ISO and TCP/IP protocols and represents them on the
transport system.

The FTP agent supplies information related to data transfers based on the FTP protocol. It also allows controlling
the local FTP daemons by changing their state and parameters.

The SESAM/SQL agent provides statistical information with regards to the available database handlers. It also
provides the SESAM/SQL Performance Monitor measurements output.

 20

2.2.2 Structure of the SNMP collection in BS2000

BS2000 is connected to SNMP via a LAN connection that uses TCP/IP protocols. A network management agent
that can handle the SNMP protocol elements is installed in BS2000. The functionality of the SNMP agent is split into
the SNMP daemon and a number of agents. The advantages of this solution include reliability and user-friendliness
with regard to maintenance and modification overhead.

The basis of this solution is the port of the open source software Net-SNMP (released under BSD license) into
BS2000. As open source software, Net-SNMP is available on many platforms of different manufacturers.

 21

2.2.2.1 SNMP daemon (snmpd)

The current requirements for the SNMP agents in an end system go beyond normal network management. They
extend over system and application management up to the
management of middleware (transaction systems and databases). Because of the manifold requirements, with large
end systems in particular, the desire arises to be able to employ a number of task-specific agents: this is supported
by the structuring into master and agents.

The SNMP daemon is hierarchically above the agents. It provides basic functionality, such as handling the SNMP
protocol, user access and security management, as well as connectivity to other agents. Note that the SNMP
daemon can also be run as a stand-alone agent without being connected to any other agents. The SNMP daemon
is therefore also responsible for outputting and setting the values of the various objects found in the MIB-II groups,
as well as the ones found in other standardized MIBs (RFC 2272 - 2275).

The option of being able to start and stop agents separately simplifies the updating and use of individual agents
without having to run the complete management system down. It also allows interrupt-free management of the
remaining system if a component fails, as well as the parallel processing of different agent jobs.

The management station only communicates with the SNMP daemon. The SNMP daemon and agents
communicate with each other via an asynchronous message interface. The asynchronous message interface
guarantees high master agent performance with job processing because it is not blocked while processing lengthy
jobs, but instead can process further SNMP requests in parallel.

 22

2.2.2.2 Agents

The agents are only functional if the SNMP daemon is working. In the initialization phase, the agent signs on to the
master agent via AgentX socket and passes its MIB to the SNMP daemon.

Agents are event-oriented. The agent goes into a wait loop after initialization. It leaves the loop on arrival of an
event that it must process. Requests from the SNMP daemon, timer expiry or the arrival of an agreed signal, are
examples of events. The agent goes back into its wait loop after it has processed all existing events.

 23

2.2.2.3 User interface for the SNMP management of BS2000

The standard protocol SNMP enables the connection of BS2000 systems to any management platform that
supports SNMP. This is the case for all market-relevant management platforms. The management platforms of the
various manufacturers offer a variety of features.

As a service, Fujitsu Technology Solutions offers the integration into diverse SNMP management systems, see
.chapter “Example for operating the management station”

 24

2.2.2.4 Parallel operation of SNMP V6.x and NET-SNMP

SNMP V6.x and NET-SNMP can be present simultaneously on the same system. This means that an earlier
installation of SNMP V6.x can still be used, where the following should be considered:

It‘s possible to use the tools of NET-SNMP, such as , and for interacting with SNMP V6.snmpget snmpwalk snmpset
x's daemon if the SNMP calls use the -v1 option.snmpdm

Mixed operation is not possible, i.e. the agents included in SNMP-AGENTS cannot be operated together with
SNMP V6.x and the agents included in SNMP V6.x cannot be operated together with NET-SNMP.

Only one instance of the FTP agent (either the old one or new one) can be run at the same time because
the old FTP agent and new one communicate with the FTP Server using the same port.
By the default, SNMP binds to UDP port 161 and starts listening for requests on that port. Therefore, if
parallel operation of SNMP V6.x and NET-SNMP is expected, one of them should be configured to use a
different communication port.

i

 25

2.3 Security considerations when using SNMP

This chapter provides notes and recommendations on how to implement secure use of the SNMP-based BS2000
management system with security in mind. It is not however intended as a set of instructions on security analysis or
on how to draw up security guidelines. Both of these important subjects go beyond the context of the present
manual.

For functional details of how to set the configuration parameters of the SNMP agent in BS2000 with security in
mind, see .section “Advanced security options for receiving SNMP requests”

 26

2.3.1 Recommendations for general network and system security

With the SNMP protocol you communicate across the internet. However, this exposes the participating systems to
the potential attacks and risks associated with the public internet.

The security functions implemented in the SNMP agent are based on the fact that its configuration and program
files are only accessible to privileged users, usually an administrator. The installation creates these files with the
correct privileges.

Recommendation

Put the BS2000 systems and management platform which are to be managed in a subnetwork over which
you have exclusive control, for instance, behind a firewall. In this way, you can control access to your
systems more easily and more centrally and counter any possible attacks.

i

Recommendation

Check the configuration and program files of the SNMP agent in the BS2000 system at regular intervals
to ensure they are only accessible to privileged users.

i

 27

2.3.2 Recommendations for using the SNMP service safely

NET-SNMP is delivered with a default SNMP configuration, which allows an easy setup and first usage.

As with every default configuration, it has to be adopted to the users company and security policies for productive
usage.

You should be particularly careful from a security point of view with the following configuration parameters:

Community strings for receiving SNMP requests (SNMP protocol version 1 and 2c)

Community strings and access control of MIB objects

Advanced security options for receiving SNMP requests (SNMPv3)

Community strings and sender addresses

Recipient’s addresses for SNMP traps

Recommendation

Change the minimum configuration of the SNMP agent and the corresponding settings on the
management platform in accordance with the guidelines of your security manual.

i

 28

2.3.2.1 Community strings for receiving SNMP requests

In SNMP protocol version 1 and 2c, a "community" denotes a group comprising one or more management platforms
and several SNMP agents handled by these platforms.

Every community is identified by a community string. The community string is a nonencrypted component of every
SNMP request and identifies the sender of the request as a member of the community concerned. Authorization for
a read or write request which a management platform sends to an SNMP agent is controlled with this community
string.

The community string makes a simple authentication mechanism available in SNMP. Management platforms and
SNMP agents may only communicate with one another if they belong to the same community: the SNMP agent will
only accept SNMP requests from management platforms whose community strings are known to it, i.e.
preconfigured.

Since the community string is sent in non-encrypted form with the SNMP message, it is always at a risk of being
used without authorization. This can be problematic for using SNMP with security in mind. On the other hand, most
communities use the preset community string "public" in any case.

Recommendation

Select suitable communities corresponding to the organization of your systems and operations and assign
suitable community strings to them. Change the community string in accordance with the guidelines of
your manual: in a similar way, for instance, as for passwords. Note that you must modify the community
string in all participating systems in the community.

i

Recommendation

If the environment of your SNMP agents and management platform(s) allows you to do so, use the user-
specific authentication available with the SNMPv3 protocol.

i

 29

2.3.2.2 Advanced security options for receiving SNMP requests

SNMPv3 introduces advanced security model - USM (User-based security model) - which contains a list of users
and their attributes. The USM is described by RFC 2574.

Each user has a name (called a) an authentication type () and a privacy type (securityName authProtocol
) as well as associated keys for each of these (and).privProtocol authKey privKey

Authentication is performed by using a user's to sign the message being sent. The can be authKey authProtocol
either MD5 or SHA at this time. (and) are generated from a passphrase that must be at least 8 authKeys privKeys
characters in length.

Authentication is performed by using a user's to encrypt the data portion the message being sent. The privKey
 can be either AES or DES.privProtocol

Messages can be sent unauthenticated, authenticated, or authenticated and encrypted by setting the securityLevel
to use.

 30

2.3.2.3 Community strings and controlling access to MIB objects

Community strings can be given the access rights "read-only", "read-write" etc. In accordance with these access
rights, SNMP requests containing this community string may read objects defined as "read-only" and read and
change objects defined as "read-write". If there are no further precautions, accessible objects can be read or all all
changeable objects can be read and changed.

Recommendation

Use the option of assigning selective read or write privileges to specific community strings, for:

MIB branches

objects

object instances (in tables)

Recommendation

If the environment of your SNMP agents and management platform(s) allows you to do so, use the user-
specific authorization available in the SNMPv3 protocol.

i

 31

2.3.2.4 Community strings and sender addresses

You can explicitly preconfigure the IP addresses of the authorized management platforms. In this way, you force the
SNMP agent to only accept SNMP requests from these systems.

The management platforms must have fixed IP addresses to do this. It is not possible to dynamically assign them
with the Dynamic Host Configuration Protocol (DHCP).

Recommendation

Check the sender addresses of the management platforms by configuring their IP addresses in the SNMP
agent.

i

 32

2.3.2.5 Recipient’s addresses for SNMP traps

You can explicitly predefine the IP addresses of the authorized management platforms to which an SNMP agent is
to send SNMP traps. The management platforms must have constant IP addresses to do this. It is not possible to
dynamically assign them with the Dynamic Host Configuration Protocol (DHCP).

Recommendation

Predefine the receiver’s addresses of the management platforms to receive SNMP traps. To do this,
configure the IP addresses of these management platforms in the SNMP agent.

i

 33

2.3.2.6 Community string for SNMP traps

You can configure the community string which, an SNMP agent sends to the management platform as part of an
SNMP trap. The management platform will then only accept SNMP traps with this community string.

Recommendation

Select suitable communities corresponding to the organization of your systems and operations. Change
the community string in accordance with the guidelines of your manual: in a similar way, for instance, as
for passwords. Note that you must change the community string in all participating systems in the
community.

i

 34

3 Installation and configuration

BS2000-SNMP management consists of the following products for use on the BS2000 system:

NET-SNMP V5.7 (is a delivery component of BS2000 OSD/BC as of V11.0)

SNMP-AGENTS V1.0

BCAM V24.0

TCP-IP-AP V5.3 (FTP agent)

SESAM\SQL V9.1

 35

3.1 Software requirements

Common software requirements for NET-SNMP, SNMP-AGENTS, BCAM, TCP-IP-AP,
SESAM/SQL

BS2000 OSD/BC V11.0 or higher with appropriate software configuration

POSIX A45 or higher.

Software requirements for NET-SNMP V5.7

openNet Server V4.0 or higher

Software requirements for SNMP-AGENTS V1.0

NET-SNMP V5.7 or higher

SDF-P-BASYS V2.5 or higher

When using single agents the following is required:

JV V15.1 or higher (Application Monitor agent)

openFT (BS2000) V12.1 or higher (openFT agent)

SPOOL V4.9 or higher (Spool agent)

HSMS V11.0 or higher (HSMS agent)

SM2 V20.0 or higher (openSM2 agent

openUTM V6.4 or higher (openUTM agent)

More information can be found in the release notices of BS2000 OSD/BC and the corresponding products.

 36

3.2 Installation in BS2000 OSD/BC

NET-SNMP is a component of the BS2000 OSD/BC operating system. The necessary files are located on the
BS2000 system after BS2000 OSD/BC has been installed. To make NET-SNMP executable, it still requires a
packet installation in POSIX. This can be performed either manually or via an automatic POSIX package installation
using IMON.

To complete the installation manually, please refer to .Installing products manually

As an optional products, SNMP-AGENTS, TCP-IP-AP (part of interNet Services), BCAM and SESAM/SQL are not
installed on a BS2000 system by default.

The installation is carried out by the installation monitor IMON. Where necessary, the IMON installation performs
BS2000-specific jobs such as creation of subsystem catalog entries, POSIX installation, etc.

For more information, please refer to the latest IMON manual.

To complete the installation for one of the SNMP products manually, please refer to section“Installing products
.manually”

It must be noted that an entry for the SNMPAGT subsystem is generated in the system catalog.

Deleting the SINLIB after installation leads to errors as the agents also require the SINLIB during
operation.

i

Using IMON is the preferable way to install products. It is not recommended to perform manual
installation for any of the products.

i

 37

3.2.1 Installation defaults

All SNMP products are facilitating for logging. Logging options could be changed globally by editing syslog snmp.
 or individually for each daemon/agent by editing the appropriate rc file (auto start/stop script passing command conf

line arguments):

The rc files located in are invoked during startup of the POSIX subsystem and follow the standard etc/rc2.d
naming convention of starting with the letter "S".

The rc files located in are invoked during shutdown of the POSIX subsystem and follow the standard etc/rc0.d
naming convention of starting with the letter "K".

The folder is used for storing the MIB files of installed products./usr/share/snmp/mibs

/etc/snmp is used for storing configuration files and backed up starting rc files.

The following table summarizes the delivery scope of the SNMP-related products.

Product Path to the
binaries

Binary Config files rc scripts

NET-SNMP /opt/net-snmp snmpd
snmptrapd
snmpwalk
snmpget
snmpset

snmpd.conf
snmp.conf
snmptrapd.conf

S90net-snmp
K11net-snmp

SNMP-AGENTS /opt/snmp-agents appMonAgent
consoleAgent
openFTAgent
openSM2Agent
spoolAgent
storageAgent
hostAgent
hsmsAgent
utmAgent

none S91snmp-agents
K11snmp-agents

TCP-IP-AP ftpAgent none S91snmpftp
K11snmpftp

BCAM bcamAgent none S91snmpbcam
K11snmpbcam

SESAM/SQL sesAgent none S91snmpsesam
K11snmpsesam

 38

3.2.2 Delivery scope of NET-SNMP

The following binaries are shipped with NET-SNMP:

snmpd (SNMP daemon)

snmptrapd (SNMP trap daemon)

SNMP tools , , snmpwalk snmpget snmpset

In addition, the following example configuration files are supplied for the daemons and tools:

snmpd.conf: configuration file for the SNMP daemon snmpd

snmptrapd.conf: configuration file for the trap daemon snmptrapd

snmp.conf: general configuration file for SNMP daemons and tools

The rc file can also be used for restarting (reconfiguring) the SNMP daemon that /etc/rc2.d/S90net-snmp
is started during POSIX startup.

This can be done by issuing the following command under privileged user:

/etc/rc2.d/S90net-snmp restart

i

 39

3.2.3 Installing products manually

Installation is carried out via the POSIX installation program, which is started by the START-POSIX-INSTALLATION
command. For this, the POSIX must have been started. For more details, please refer to the POSIX (BS2000)
manual "Basics for Users and System Administrators".

For convenience, during installation informational messages are outputted.

NET-SNMP output example

New configuration file was created </etc/snmp/snmp.conf.new>.
Please, review it and apply to snmp.conf if needed.
New configuration file was created </etc/snmp/snmpd.conf.new>.
Please, review it and apply to snmpd.conf if needed.
New configuration file was created </etc/snmp/snmptrapd.conf.new>.
Please, review it and apply to snmptrapd.conf if needed.
NET-SNMP v057 is INSTALLED:
Binaries are located in /opt/net-snmp with symlinks to the /usr/bin
Daemons binary links are in /usr/sbin
PATH for the config files: /etc/snmp
PATH for the MIB files: /usr/share/snmp/mibs

 40

3.2.4 Uninstallation

SNMP products are also uninstalled via IMON or manually by means of POSIX installation program (START-POSIX-
INSTALLATION).

The following items are deleted during uninstallation:

Symbolic links in and/or /usr/sbin /usr/bin

The corresponding object files in and/or /opt/net-snmp /opt/snmp-agents

The and/or directory(ies)/opt/net-snmp /opt/snmp-agents

The rc scripts are deleted, but starting scripts (from only) are backed up in order to keep the user's /etc/rc2.d
configuration. The backed up rc-scripts can be found in the folder under name of type /etc/snmp

.ORIGINAL_NAME.bkp

Neither the MIB files nor the configuration files are deleted.

 41

3.3 SNMP configuration in BS2000

The work to be carried out in BS2000 is described in the sections listed below. For general recommendations,
please refer to .section “Recommendations for using the SNMP service safely”

Configuration can be useful for controlling the fundamental nature of all of the SNMP applications. This could be
achieved by using one of the available configuration methods in the following order of preference:

Command line arguments

Environment variables (MIBS and MIBDIRS)

Configuration files with extension or (will be read the last) from the following directories:.conf .local.conf

/etc/snmp (searched the first)

/usr/local/share/snmp

/usr/local/lib/snmp

~/.snmp

/var/net-snmp (searched the latest)

There are a couple of the SNMP configuration files available for different parts of NET-SNMP:

<NAME_OF_BINARY>.conf or <NAME_OF_BINARY>.local.conf

controls parameters and capabilities of the specific binary.

Example:
 -> snmpd snmpd.conf

 -> utmAgent utmAgent.conf

 -> snmpwalk snmpwalk.conf

snmp.conf or snmp.local.conf

NET-SNMP general configuration file.

agentx.conf or agentx.local.conf

master/agent configuration for AgentX

snmpapp.conf or snmpapp.local.conf

SNMP tools configuration (, ...)snmpwalk snmpget

Each application may use multiple methods of configuration. In fact, most applications understand how to read the
contents of the files.snmp.conf

Note, however, that configuration directives understood in one file may not be understood in another file.
Applications support a switch on the command line that will list the configuration files it will look for and the -H
directives in each one that the corresponding understands.

 42

3.3.1 Listening addresses in BS2000

By default, listens for incoming SNMP requests on UDP port 161 on all IPv4 addresses. However, it is snmpd
possible to modify this behavior by specifying one or more listening addresses as arguments to . A listening snmpd
address takes the form:

[<transport-specifier>:]<transport-address>

At its simplest, a listening address may consist only of a port number, in which case listens on that UDP port snmpd
on all IPv4 interfaces.

Otherwise, the part of the specification is parsed according to the following:<transport-address>

transport-address format

udp (default) hostname[:port] or IPv4-address[:port]

tcp hostname[:port] or IPv4-address[:port]

unix pathname

udp6 or udpv6 or udpipv6 hostname[:port] or IPv6-address[:port]

tcp6 or tcpv6 or tcpipv6 hostname[:port] or IPv6-address[:port]

Note that strings are not case-insensitive so that, for example, "tcp" and "TCP" are equivalent. <transport-specifier>
Here are some examples, along with their interpretation:

127.0.0.1:161

listen on UDP port 161, but only on the loopback interface. This prevents being queried remotely.snmpd

TCP:1161

listen on TCP port 1161 on all IPv4 interfaces.

unix:/tmp/local-agent

listen on the Unix domain socket agent./tmp/local

/tmp/local-agent

is identical to the previous specification, since the Unix domain is assumed if the first character of the
 is '/'.<transport-address>

udp6:10161

listen on port 10161 on all IPv6 interfaces.

Note that not all the transport domains listed above will always be available; for instance, hosts with noIPv6 support
will not be able to use udp6 transport addresses, and attempts to do so will result in the error "Error opening
specified endpoint".

 43

3.3.2 SNMP general configuration (snmp.conf)

Client behavior

SNMPv3 settings

Server behavior

MIB handling

Output configuration

 44

3.3.2.1 Client behavior

defDomain application domain

The transport domain that should be used for a certain application type unless something else is specified.

defTarget application domain target

The target that should be used for connections to a certain application if the connection should be in a specific
domain.

defaultPort PORT

defines the default UDP port that client SNMP applications will attempt to connect to. This can be overridden
by explicitly including a port number in the AGENT specification. See the manual page for more snmpcmd(1)
details.
If not specified, the default value for this token is 161.

defVersion (1|2c|3)

defines the default version of SNMP to use.
This can be overridden using the option.-v

defCommunity STRING

defines the default community to use for SNMPv1 and SNMPv2c requests. This can be overridden using the -c
option.

alias NAME DEFINITION

creates an aliased tied to NAME for a given transport definition. The alias can be referred to using an alias:
NAME. E.g., a line of "alias here udp:127.0.0.1:6161" would allow you to use a destination host of "alias:here"
instead of "udp:127.0.0.1:6161". This becomes more useful with complex transport addresses involving IPv6
addresses, etc.

dumpPacket yes

defines whether to display a hexadecimal dump of the raw SNMP requests sent and received by the
application. This is equivalent to the option.-d

doDebugging (1|0)

turns on debugging for all applications run if set to 1.

debugTokens TOKEN[,TOKEN...]

defines the debugging tokens that should be turned on when is set. This is equivalent to the doDebugging -D
option.

16bitIDs yes

restricts requestIDs, etc to 16-bit values.

The SNMP specifications define these ID fields as 32-bit quantities, and the Net-SNMP library typically
initializes them to random values for security. However certain (broken) agents cannot handle IDvalues greater

than 2 . This option allows interoperability with such agents.16

 45

clientaddr [<transport-specifier>:]<transport-address>

specifies the source address to be used by command line applications when sending SNMP requests.This
value is also used by when generating notifications.snmpd

clientSendBuf INTEGER

is similar to , but applies to the size of the buffer used when sending SNMP requests.clientRecvBuf

noRangeCheck yes

disables the validation of varbind values against the MIB definition for the relevant OID.

noTokenWarnings

disables warnings about unknown config file tokens.

reverseEncodeBER (1|yes|true|0|no|false)

controls how the encoding of SNMP requests is handled.

The default behavior is to encode packets starting from the end of the PDU and working backwards. This
directive can be used to disable this behavior, and build the encoded request in the (more obvious) forward
direction.

 46

3.3.2.2 SNMPv3 settings

defSecurityName STRING

defines the default security name to use for SNMPv3 requests. This can be overridden using the option.-u

defSecurityLevel noAuthNoPriv|authNoPriv|authPriv

defines the default security level to use for SNMPv3 requests. This can be overridden using the option.-l

If not specified, the default value for this token is .noAuthNoPriv

defPassphrase STRING
defAuthPassphrase STRING
defPrivPassphrase STRING

define the default authentication and privacy passphrases to use for SNMPv3 requests. These can be
overridden using the and options respectively.-A -X

The value will be used for the authentication and/or privacy passphrases if either of the other defPassphrase
directives are not specified.

defAuthType MD5|SHA
defPrivType DES|AES

define the default authentication and privacy protocols to use for SNMPv3 requests. These can be overridden
using the and options respectively.-a -x

If not specified, SNMPv3 requests will default to MD5 authentication and DES encryption.

defContext STRING

defines the default context to use for SNMPv3 requests. This can be overridden using the option.-n

If not specified, the default value for this token is the default context (i.e. the empty string "").

defSecurityModel STRING

defines the security model to use for SNMPv3 requests. The default value is , which is the only widely usm
used security model for SNMPv3.

defAuthMasterKey 0xHEXSTRING
defPrivMasterKey 0xHEXSTRING
defAuthLocalizedKey 0xHEXSTRING
defPrivLocalizedKey 0xHEXSTRING

define the (hexadecimal) keys to be used for SNMPv3 secure communications.

authPriv is only available if the software has been compiled to use the OpenSSL libraries.i

If the software has not been compiled to use the OpenSSL libraries, then only MD5 authentication is
supported. Neither SHA authentication nor any form of encryption will be available.

i

 47

SNMPv3 keys are frequently derived from a passphrase, as discussed in the section above. defPassphrase
However for improved security a truly random key can be generated and used instead (which would normally
has better entropy than a password unless it is amazingly long). The directives are equivalent to the short-form
command line options , , , and .-3m -3M -3k -3K

Localized keys are master keys which have been converted to a unique key which is only suitable for on
particular SNMP engine (agent). The length of the key needs to be appropriate for the authentication or
encryption type being used:

auth keys: MD5=16 bytes, SHA1=20 bytes;
priv keys: DES=16bytes (8 bytes of which is used as an IV and not a key), and AES=16 bytes.

 48

3.3.2.3 Server behavior

persistentDir DIRECTORY

defines the directory where and store persistent configuration settings.snmpd snmptrapd

If not specified, the persistent directory defaults to ./var/net-snmp

noPersistentLoad yes
noPersistentSave yes

disable the loading and saving of persistent configuration information.

tempFilePattern PATTERN

defines a filename template for creating temporary files, for handling input to and output from external shell
commands. Used by the and functions.mkstemp() mktemp()

If not specified, the default pattern is ./tmp/snmpdXXXXXX

This will break SNMPv3 operations (and other behavior that relies on changes persisting across
application restart). Use with care!

i

 49

3.3.2.4 MIB handling

mibdirs DIRLIST

specifies a list of directories to search for MIB files. Note that this value can be overridden by the MIBDIRS
environment variable, and the option.-M

mibs MIBLIST

specifies a list of MIB modules (not files) that should be loaded. Note that this list can be overridden by the
MIBS environment variable, and the option.-m

mibfile FILE

specifies a (single) MIB file to load, in addition to the list read from the token (or equivalent configuration). mibs
Note that this value can be overridden by the MIBFILES environment variable.

showMibErrors (1|yes|true|0|no|false)

whether to display MIB parsing errors.

commentToEOL (1|yes|true|0|no|false)

whether MIB parsing should be strict about comment termination. Many MIB writers assume that ASN.1
comments extend to the end of the text line, rather than being terminated by the next "--" token. This token can
be used to accept such (strictly incorrect) MIBs. Note that this directive was previous (mis-)named

, but with the reverse behavior from that implied by the name. This earlier token is still strictCommentTerm
accepted for backwards compatibility.

mibAllowUnderline (1|yes|true|0|no|false)

whether to allow underline characters in MIB object names and enumeration values. This token can be used to
accept such (strictly incorrect) MIBs.

mibWarningLevel INTEGER

the minimum warning level of the warnings printed by the MIB parser.

 50

3.3.2.5 Output configuration

Most of options from this paragraph can also be configured via command line arguments.

logTimestamp (1|yes|true|0|no|false)

Whether the commands should log timestamps with their error/message logging or not. Note that output will
not look as pretty with timestamps if the source code that is doing the logging does incremental logging of
messages that are not line buffered before being passed to the logging routines. This option is only used when
file logging is active.

printNumericEnums (1|yes|true|0|no|false)

Equivalent to . Removes the symbolic labels from enumeration values:-Oe

$ snmpget -c public -v 1 localhost ipForwarding.0
IP-MIB::ipForwarding.0 = INTEGER: forwarding(1)
$ snmpget -c public -v 1 -Oe localhost ipForwarding.0
IP-MIB::ipForwarding.0 = INTEGER: 1

printNumericOids (1|yes|true|0|no|false)

Equivalent to . Displays the OID numerically:-On

.1.3.6.1.2.1.1.3.0 = Timeticks: (14096763) 1 day, 15:09:27.63

dontBreakdownOids (1|yes|true|0|no|false)

Equivalent to . Display table indexes numerically, rather than trying to interpret the instance sub-identifiers -Ob
as string or OID values:

$ snmpgetnext -c public -v 1 localhost vacmSecurityModel
SNMP-VIEW-BASED-ACM-MIB::vacmSecurityModel.0."wes" = xxx
$ snmpgetnext -c public -v 1 -Ob localhost vacmSecurityModel
SNMP-VIEW-BASED-ACM-MIB::vacmSecurityModel.0.3.119.101.115 = xxx

escapeQuotes (1|yes|true|0|no|false)

Equivalent to . Modifies index strings to escape the quote characters:-OE

Those options are relevant only for binaries from NET-SNMP product.i

 51

$ snmpgetnext -c public -v 1 localhost vacmSecurityModel
SNMP-VIEW-BASED-ACM-MIB::vacmSecurityModel.0."wes" = xxx
$ snmpgetnext -c public -v 1 -OE localhost vacmSecurityModel
SNMP-VIEW-BASED-ACM-MIB::vacmSecurityModel.0.\"wes\" = xxx

This allows the output to be reused in shell commands.

quickPrinting (1|yes|true|0|no|false)

Equivalent to . Removes the equal sign and type information when displaying varbind values:-Oq

SNMPv2-MIB::sysUpTime.0 1:15:09:27.63

printValueOnly (1|yes|true|0|no|false)

Equivalent to . Display the varbind value only, not the OID:-Ov

$ snmpget -c public -v 1 -Oe localhost ipForwarding.0

INTEGER: forwarding(1)

dontPrintUnits (1|yes|true|0|no|false)

Equivalent to . Do not print the UNITS suffix at the end of the value.-OU

numericTimeticks (1|yes|true|0|no|false)

Equivalent to . Display TimeTicks values as raw numbers:-Ot

SNMPv2-MIB::sysUpTime.0 = 14096763

printHexText (1|yes|true|0|no|false)

Equivalent to . If values are printed as Hex strings, display a printable version as well.-OT

hexOutputLength integer

Specifies where to break up the output of hexadecimal strings. Set to 0 to disable line breaks. Defaults to 16.

suffixPrinting (0|1|2)

The value 1 is equivalent to ; displays the MIB object name (plus any instance or other sub identifiers):-Os

sysUpTime.0 = Timeticks: (14096763) 1 day, 15:09:27.63

The value 2 is equivalent to ; displays the name of the MIB, as well as the object name:-OS

SNMPv2-MIB::sysUpTime.0 = Timeticks: (14096763) 1 day, 15:09:27.63

This is the default OID output format.

oidOutputFormat (1|2|3|4|5|6)

Maps options as follows: -O
, , , 4, . -Os=1 -OS=2 -Of=3 -On= -Ou=5

The value 6 has no matching option. It suppresses output.-O

‘-Of’

Include the full list of MIB objects when displaying an OID:

 52

iso.org.dod.internet.mgmt.mib-2.system.sysUpTime.0

‘-Ou’

display the OID in the traditional UCD-style (inherited from the original CMU code). That means removing
a series of "standard" prefixes from the OID, and displaying the remaining list of MIB object names (plus
any other sub identifiers):

system.sysUpTime.0 = Timeticks: (14096763) 1 day, 15:09:27.63

extendedIndex (1|yes|true|0|no|false)

Equivalent to . Display table indexes in a more "program like" output, imitating a traditional array-style -OX
index format:

$ snmpgetnext -c public -v 1 localhost ipv6RouteTable
IPv6-MIB::ipv6RouteIfIndex.63.254.1.0.255.0.0.0.0.0.0.0.0.0.0.0.64.1 =
INTEGER: 2
$ snmpgetnext -c public -v 1 -OE localhost ipv6RouteTable
IPv6-MIB::ipv6RouteIfIndex[3ffe:100:ff00:0:0:0:0:0][64][1] = INTEGER: 2

noDisplayHint (1|yes|true|0|no|false)

Disables the use of DISPLAY-HINT information when parsing indices and values to set.

 53

3.3.3 AgentX configuration (agentx.conf)

Relevant tokens are:

agentxsocket

AgentX bind address

agentxperms

AgentX socket permissions

agentxRetries

AgentX Retries

agentxTimeout

AgentX Timeout (seconds)

The description could be found in .section “AgentX options”

 54

3.3.4 Command line arguments

Configuration directives from configuration files (relative to the given binary) could be passed via command line too.
For this specify it like this:

--CONF_DIRECTIVE="VALUE1[VALUE2...]"

Example:

snmpd --rwcommunity="public "

There are also command line arguments, which are binary specific and can be retrieved via calling the binary with --
 directive. Some of them could not be configured via configuration files. Next table will explore some important help

options, which could be used by master, agents and SNMP tools.

Option Description

General options

-m MIBLIST use MIBLIST instead of the default MIB list

-M DIRLIST use DIRLIST as the list of locations to look for MIBs

-d Dump (in hexadecimal) the raw SNMP packets sent and received.

-D[TOKEN[,...]] Turn on debugging output for the given TOKEN(s). For specific available tokens,
please refer to .section “Debug options”

-H Display a list of configuration file directives understood by the command and
then
exit.

-f do not fork from the shell

-p FILE store process id in FILE

-L Logging options

-Le Log messages to the standard error stream.

-Lf FILE Log messages to the specified file.

-Lo Log messages to the standard output stream.

-Ls FACILITY Log messages via , using the specified facility: 'd' for LOG_DAEMON,'u' syslog
for
LOG_USER,'0'-'7' for LOG_LOCAL0 - LOG_LOCAL7)

-LE pri Log messages of priority 'pri' and above to standard error.

-LS pri similar as previous, but logging to syslog

-LE p1-p2 Log messages with priority between ‘p1’ and 'p2' (inclusive) to standard error.

-LS p1-p2 similar as previous, but logging to syslog

 55

Daemons specific options

-c FILE[,...] read FILE(s) as configuration file(s)

-C do not read the default configuration files

-x ADDRESS use ADDRESS as AgentX address

-X run as an AgentX master

snmpd specific options

-a log addresses

-q print information in a more parsable format

snmptrapd options

-a ignore authentication failure traps

-n use numeric addresses instead of attempting hostname lookups (no DNS)

-t Prevent traps from being logged to syslog

For and the priority specification comes before the file or facility token. The priorities recognized are:-LF -LS

Priority levels Means

0 or ! LOG_EMERG

1 or a LOG_ALERT

2 or c LOG_CRIT

3 or e LOG_ERR

4 or w LOG_WARNING

5 or n LOG_NOTICE

6 or i LOG_INFO

7 or d LOG_DEBUG

By default, output is logged to the at a priority level of LOG_INFO.syslog

 56

3.4 Configuring NET-SNMP

Configuring SNMP daemon snmpd (snmpd.conf)

Agent behavior

AgentX options

SNMPv3 configuration

SNMPv3 authentication

Access control

System Group

Active monitoring

DisMan Event MIB

DisMan Schedule MIB

Arbitrary Extension Commands

Configuration example

Reconfiguring the daemon

Configuring SNMP trap daemon snmptrapd (snmptapd.conf)

snmptrapd behavior

Access Control

Notification Processing

Logging

Format Specifications

 57

3.4.1 Configuring SNMP daemon snmpd (snmpd.conf)

The Net-SNMP daemon uses one or more configuration files to control its operation and the management
information provided. For instance () knows how to understand configuration directives in both the snmpd snmpd.

 and the filesconf snmp.conf

Next chapters will provide general information about daemon’s configuration carried out via file. As NET-snmpd.conf
SNMP is an open source project, more information and examples could be found at the informational web-services
and man pages.

Some of the open source NET-SNMP functionality is not available on BS2000, therefore it is recommend
to check information from WEB with current manual.

i

 58

3.4.1.1 Agent behavior

Although most configuration directives are concerned with the MIB information supplied by the agent, there are a
handful of directives that control the behavior of considered simply as a daemon providing a network service.snmpd

agentaddress [<transport-specifier>:]<transport-address>[,...]

defines a list of listening addresses, on which to receive incoming SNMP requests. See section “Listening
 details.addresses in BS2000”

The default behavior is to listen on UDP port 161 on all IPv4 interfaces.

Due to the technical reasons IPv6 ports cannot match IPv4 ports, e.g.:

agentaddress udp:161,tcp:161 - will work

agentaddress udp:161,udp6:161 - will not work

agentaddress udp:161,udp6:163 - will work

agentgroup {GROUP|#GID}

changes to the specified group after opening the listening port(s). This may refer to a group by name
(GROUP), or a numeric group ID starting with '#' (#GID).

agentuser {USER|#UID}

changes to the specified user after opening the listening port(s). This may refer to a user by name (USER), or
a numeric user ID starting with '#' (#UID).

leave_pidfile yes

instructs the agent to not remove its file on shutdown. Equivalent to specifying on the command line.pid -U

maxGetbulkRepeats NUM

Sets the maximum number of responses allowed for a single variable in a request. Set to 0 to enable getbulk
the default and set it to -1 to enable unlimited. Because memory is allocated ahead of time, sitting this to
unlimited is not considered safe if your user population cannot be trusted. A repeat number greater than this
will be truncated to this value.

This is set by default to -1.

maxGetbulkResponses NUM

Sets the maximum number of responses allowed for a request. This is set by default to 100. Set to 0 to getbulk
enable the default and set it to -1 to enable unlimited. Because memory is allocated ahead of time, setting this
to unlimited is not considered safe if your user population cannot be trusted.

In general, the total number of responses will not be allowed to exceed the number maxGetbulkResponses
and the total number returned will be an integer multiple of the number of variables requested times the
calculated number of repeats allow to fit below this number.

Also note that processing of is handled first.maxGetbulkRepeats

You can specify more than ore listening address.i

 59

3.4.1.2 AgentX options

The Net-SNMP and supplementary products support the AgentX protocol (RFC 2741) in both master and agent
roles. Use of this mechanism requires that the daemon has agentx module explicitly enabled (e.g. via the snmpd.

 file).conf

There are two directives specifically relevant to running as an AgentX master:

master agentx

will enable the AgentX functionality and cause the agent to start listening for incoming AgentX registrations.
This can also be activated by specifying the command line option (to specify an alternative listening socket).-x

agentXPerms SOCKPERMS [DIRPERMS [USER|UID [GROUP|GID]]]

Defines the permissions and ownership of the AgentX Unix Domain socket, and the parent directories of this
socket. SOCKPERMS and DIRPERMS must be octal digits (see). By default this socket will only be chmod(1)
accessible to agents which have the same userid as the agent.

There is one directive specifically relevant to running as an AgentX agent:

agentXPingInterval NUM

will make the agent try and reconnect every NUM seconds to the master if it ever becomes (or starts)
disconnected.

The remaining directives are relevant to both AgentX master and agents:

agentXSocket [<transport-specifier>:]<transport-address>[,...]

defines the address the master agent listens at, or the agent should connect to. The default is the Unix Domain
socket . Another common alternative is ./var/agentx/master tcp:localhost:705

agentXTimeout NUM

defines the timeout period (NUM seconds) for an AgentX request. Default is 1 second.

agentXRetries NUM

defines the number of retries for an AgentX request. Default is 5 retries.

Specifying an AgentX socket does not automatically enable AgentX functionality (unlike the command -x
line option).

i

 60

3.4.1.3 SNMPv3 configuration

SNMPv3 requires an SNMP agent to define a unique "engine ID" in order to respond to SNMPv3requests. This ID
will normally be determined automatically, using two reasonably non-predictable values:

a (pseudo-)random number and

the current time in seconds.

This is the recommended approach.

However the capacity exists to define the in other ways:engineID

engineID STRING

specifies that the should be built from the given text STRING.engineID

engineIDType 1|2|3

specifies that the should be built from the IPv4 address (1), IPv6 address (2) or MAC address (3). engineID
Note that changing the IP address (or switching the network interface card) may cause problems.

engineIDNic INTERFACE

defines which interface to use when determining the MAC address. If Type 3 is not specified, then engineID
this directive has no effect.

The default is to use .eth0

 61

3.4.1.4 SNMPv3 authentication

SNMPv3 was originally defined using the User-Based Security Model (USM), which contains a private list of users
and keys specific to the SNMPv3 protocol.

To use the USM based SNMPv3-specific users, you'll need to create them explicitly:

createUser [-e ENGINEID] username (MD5|SHA) authpassphrase [DES|AES]

 [privpassphrase]

MD5 and SHA are the authentication types to use. DES and AES are the privacy protocols to use. If the privacy
passphrase is not specified, it is assumed to be the same as the authentication passphrase. Note that the users
created will be useless unless they are also added to the VACM access control tables, see .section “Access control”

CAUTION!The minimum passphrase length is 8 characters.!

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=83647093#Accesscontrol(snmp_en,#50)-50-242

 62

3.4.1.5 Access control

snmpd supports the View-Based Access Control Model (VACM) as defined in RFC 2575, to control who can
retrieve or update information. To this end, it recognizes various directives relating to access control.

Traditional Access Control

Most simple access control requirements can be specified using the directives / (for SNMPv3) or rouser rwuser
/ (for SNMPv1 or SNMPv2c).rocommunity rwcommunity

rouser [-s SECMODEL] USER [noauth|auth|priv [OID | -V VIEW [CONTEXT]]]rwuser [-s SECMODEL] USER
[noauth|auth|priv [OID | -V VIEW [CONTEXT]]]

specify an SNMPv3 user that will be allowed read-only (GET and GETNEXT) or readwrite (GET, GETNEXT
and SET) access respectively.
By default, this will provide access to the full OID tree for authenticated (including encrypted) SNMPv3
requests, using the default context.

An alternative minimum security level can be specified using (to allow unauthenticated requests), or noauth priv
(to enforce use of encryption). The OID field restricts access for that user to the subtree rooted at the given
OID, or the named view. An optional context can also be specified, or "context*" to denote a context prefix. If
no context field is specified (or the token "*" is used), the directive will match all possible contexts.

rocommunity COMMUNITY [SOURCE [OID | -V VIEW [CONTEXT]]]rwcommunity COMMUNITY [SOURCE [OID | -
V VIEW [CONTEXT]]]

specify an SNMPv1 or SNMPv2c community that will be allowed read-only (GET and GETNEXT) or read-write
(GET, GETNEXT and SET) access respectively.

By default, this will provide access to the full OID tree for such requests, regardless of where they were sent
from.

The SOURCE token can be used to restrict access to requests from the specified system(s); see for com2sec
the full details.

The OID field restricts access for that community to the subtree rooted at the given OID, or named view.
Contexts are typically less relevant to community-based SNMP versions, but the same behavior applies here.

rocommunity6 COMMUNITY [SOURCE [OID | -V VIEW [CONTEXT]]]rwcommunity6 COMMUNITY [SOURCE [OID
| -V VIEW [CONTEXT]]]

are directives relating to requests received using IPv6 (if the agent supports such transport domains). The
interpretation of the SOURCE, OID, VIEW and CONTEXT tokens are exactly the same as for the IPv4
versions.

In each case, only one directive should be specified for a given SNMPv3 user, or community string. It is not
appropriate to specify both and directives referring to the same SNMPv3 user (or equivalent rouser rwuser
community settings). The directive provides all the access of (as well as allowing SET support). rwuser rouser
The same holds true for the community-based directives.

More complex access requirements (such as access to two or more distinct OID subtrees, or different views
for GET and SET requests) should use one of the other access control mechanisms. Note that if several
distinct communities or SNMPv3 users need to be granted the same level of access, it would also be more
efficient to use the main VACM configuration directives (see below).

 63

VACM Configuration

The full flexibility of the VACM is available using four configuration directives -
, , and . These provide direct configuration of the underlying VACM tables.com2sec group view access

com2sec [-Cn CONTEXT] SECNAME SOURCE COMMUNITYcom2sec6 [-Cn CONTEXT] SECNAME SOURCE
COMMUNITY

map an SNMPv1 or SNMPv2c community string to a security name, either from a particular range of source
addresses or globally ("default"). A restricted source can either be a specific hostname (or address), or a
subnet; represented as IP/MASK (e.g.10.10.10.0/255.255.255.0), or IP/BITS (e.g. 10.10.10.0/24), or the IPv6
equivalents.

The same community string can be specified in several separate directives (presumably with different source
tokens), and the first source/community combination that matches the incoming request will be selected.
Various source/community combinations can also map to the same security name.

If a CONTEXT is specified (using), the community string will be mapped to a security name in the named -Cn
SNMPv3 context. Otherwise the default context ("") will be used.

com2secunix [-Cn CONTEXT] SECNAME SOCKPATH COMMUNITY

is the Unix domain sockets version of .com2sec

group GROUP {v1|v2c|usm|tsm|ksm} SECNAME

maps a security name (in the specified security model) into a named group. Several directives can group
specify the same group name, allowing a single access setting to apply to several users and/or community
strings.

Note that groups must be set up for the two community-based models separately: a (or singlecom2sec
equivalent) directive will typically be accompanied by two directives.group

view VNAME TYPE OID [MASK]

defines a named "view" - a subset of the overall OID tree. This is most commonly a single subtree, but several
 directives can be given with the same view name (VNAME), to build up a more complex collection of view

OIDs. TYPE is either or , which can again define a more complex view (e.g. by excluding included excluded
certain sensitive objects from an otherwise accessible subtree).

MASK is a list of hex octets (optionally separated by '.' or ':') with the set bits indicating which sub identifiers in
the view OID to match against. If not specified, this defaults to matching the OID exactly (all bits set), thus
defining a simple OID subtree.

Examples

view iso1 included .iso 0xf0
view iso2 included .iso
view iso3 included .iso.org.dod.mgmt 0xf0

These directives would all define the same view, covering the whole of the subtree (with the third iso(1)
example ignoring the sub identifiers not covered by the mask).

More usefully, the mask can be used to define a view covering a particular row (or rows) in a table, by
matching against the appropriate table index value, but skipping the column sub-identifier:

view ifRow4 included .1.3.6.1.2.1.2.2.1.0.4 0xff:a0

 64

Note that a mask longer than 8 bits must use ':' to separate the individual octets.

access GROUP CONTEXT {any|v1|v2c|usm|tsm|ksm} LEVEL PREFX READ WRITE NOTIFY

maps from a group of users/communities (with a particular security model and minimum security level, and in a
specific context) to one of three views, depending on the request being processed.

LEVEL is one of , , or . PREFX specifies how CONTEXT should be matched against the context noauth auth priv
of the incoming request, either exact or prefix.

READ, WRITE and NOTIFY specifies the view to be used for GET*, SET and TRAP/INFORM requests
(although the NOTIFY view is not currently used). For or access, LEVEL will need to be .v1 v2c noauth

Typed-View Configuration

The final group of directives extends the VACM approach into a more flexible mechanism, which can be applied to
other access control requirements. Rather than the fixed three views of the standard VACM mechanism, this can be
used to configure various different view types. As far as the main SNMP agent is concerned, the two main view
types are read and write, corresponding to the READ and WRITE views of the main directive.access

authcommunity TYPES COMMUNITY [SOURCE [OID | -V VIEW [CONTEXT]]]

is an alternative to the / directives. TYPES will usually be or rocommunity rwcommunity read read/write
respectively. The VIEW specification can either be an OID subtree (as before), or a named view (defined using
the directive) for greater flexibility. If this is omitted, then access will be allowed to the full OID tree. If view
CONTEXT is specified, access is configured within this SNMPv3 context. Otherwise the default context ("") is
used.

authuser TYPES [-s MODEL] USER [LEVEL [OID | -V VIEW [CONTEXT]]]

is an alternative to the / directives. The fields TYPES, OID, VIEW and CONTEXT have the same rouser rwuser
meaning as for .authcommunity

authgroup TYPES [-s MODEL] GROUP [LEVEL [OID | -V VIEW [CONTEXT]]]

is a companion to the directive, specifying access for a particular group (defined using the authuser group
directive as usual). Both and default to authenticated requests - LEVEL can also be authuser authgroup
specified as or to allow unauthenticated requests, or require encryption respectively. Both noauth priv authuser
and directives also default to configuring access for SNMPv3/USM request. Use the flag to authgroup -s
specify an alternative security model (using the same values as for access above).

authaccess TYPES [-s MODEL] GROUP VIEW [LEVEL [CONTEXT]]

also configures the access for a particular group, specifying the name and type of view to apply. The MODEL
and LEVEL fields are interpreted in the same way as for . If CONTEXT is specified, access is authgroup
configured within this SNMPv3 context (or contexts with this prefix if the CONTEXT field ends with '*').
Otherwise the default context ("") is used.

setaccess GROUP CONTEXT MODEL LEVEL PREFIX VIEW TYPES

is a direct equivalent to the original directive, typically listing the view types as or as access read read/write
appropriate. All other fields have the same interpretation as with access.

 65

3.4.1.6 System Group

Most of the scalar objects in the 'system' group can be configured via the file in this way:snmpd.conf

sysLocation STRING
sysContact STRING
sysName STRING

set the system location, system contact or system name (, and) for the sysLocation.0 sysContact.0 sysName.0
agent respectively. Ordinarily these objects are writable via suitably authorized SNMP SET requests. However,
specifying one of these directives makes the corresponding object read-only, and attempts to SET it will result
in a error response.notWritable

sysServices NUMBER

sets the value of the object. For a host system, a good value is 72 (application + end-to-end sysServices.0
layers). If this directive is not specified, then no value will be reported for the object.sysServices.0

sysDescr STRING
sysObjectID OID

sets the system description or object ID for the agent. Although these MIB objects are not SNMP-writable,
these directives can be used by a network administrator to configure suitable values for them.

 66

3.4.1.7 Active monitoring

The usual behavior of an SNMP agent is to wait for incoming SNMP requests and respond to them; if no requests
are received, an agent will typically not initiate any actions.

This section describes various directives that can configure to take a more active role.snmpd

Notification Handling

trapcommunity STRING

defines the default community string to be used when sending traps. Note that this directive must be used prior
to any community-based trap destination directives that need to use it.

trapsink HOST [COMMUNITY]
trap2sink HOST [COMMUNITY]
informsink HOST [COMMUNITY]

define the address of a notification receiver that should be sent SNMPv1 TRAPs, SNMPv2cTRAP2s, or
SNMPv2 INFORM notifications respectively. If COMMUNITY is not specified, the most recent trapcommunity
string will be used.

If the transport address does not include an explicit port specification, then PORT will be used. If this is not
specified, the well-known SNMP trap port (162) will be used.

If several directives are specified, multiple copies of each notification (in the appropriate formats) will be sink
generated.

authtrapenable {1|2}

determines whether to generate authentication failure traps (- the default). Ordinarily the disabled(2)
corresponding MIB object () is read-write, but specifying this directive makes this snmpEnableAuthenTraps.0
object read-only, and attempts to set the value via SET requests will result in a error response.notWritable

v1trapaddress HOST

defines the agent address, which is inserted into SNMPv1 TRAPs. Arbitrary local IPv4address is chosen if this
option is omitted. This option is useful mainly when the agent is visible from outside world by specific address
only (e.g. because of network address translation or firewall).

 67

3.4.2 DisMan Event MIB

The directives described in can be used to configure where traps should be sent, but are section “Active monitoring”
not concerned with when to send such traps (or what traps should be generated). This is the domain of the Event
MIB - developed by the Distributed Management (DisMan) working group of the IETF. The directives are described
below:

iquerySecName NAME
agentSecName NAME

specifies the default SNMPv3 user name, to be used when making internal queries to retrieve any necessary
information (either for evaluating the monitored expression, or building a notification payload). These internal
queries always use SNMPv3, even if normal querying of the agent is done using SNMPv1 or SNMPv2c.

Note that this user must also be explicitly created () and given appropriate access rightscreateUser
(e.g.). This directive is purely concerned with defining which user should be used - not with actually rouser
setting this user up.

monitor [OPTIONS] NAME EXPRESSION

defines a MIB object to monitor. If the EXPRESSION condition holds (see below), then this will trigger the
corresponding event and either send a notification or apply a SET assignment (or both). Note that the event
will only be triggered once, when the expression first matches. This monitor entry will not fire again until the
monitored condition first becomes false, and then matches again. NAME is an administrative name for this
expression, and is used for indexing the (and related tables). Note also that such mteTriggerTable monitors
use an internal SNMPv3 request to retrieve the values being monitored (even if normal agent queries typically
use SNMPv1 or SNMPv2c). See the token described above.iquerySecName

EXPRESSION

There are three types of monitor expression supported by the Event MIB: , and existence Boolean
 tests.threshold

OID | ! OID | != OID

defines an monitor test. A bare OID specifies a test, which will fire when (an existence(0) present(0)
instance of) the monitored OID is created. An expression of the form ! OID specifies an) absent(1
test, which will fire when the monitored OID is detected. An expression of the form != OID specifies a

 test, which will fire whenever the monitored value(s) change. Note that there must be changed(2)
whitespace before the OID token.

OID OP VALUE

defines a monitor test. OP should be one of the defined comparison operators(!=, ==, <, Boolean(1)
<=, >, >=) and VALUE should be an integer value to compare against. Note that there must be
whitespace around the OP token. A comparison such as OID !=0 will not be handled correctly.

OID MIN MAX [DMIN DMAX]

defines a monitor test. MIN and MAX are integer values, specifying lower and upper threshold(2)
thresholds. If the value of the monitored OID falls below the lower threshold (MIN) orrises above the
upper threshold (MAX), then the monitor entry will trigger the corresponding event.

Note that the rising threshold event will only be re-armed when the monitored value falls below the lower
threshold (MIN). Similarly, the falling threshold event will be rearmed by the upper threshold (MAX).

 68

The optional parameters DMIN and DMAX configure a pair of similar threshold tests, but working with the delta
differences between successive sample values.

OPTIONS

There are various options to control the behavior of the monitored expression. These include:

-D

indicates that the expression should be evaluated using delta differences between sample values (rather
than the values themselves).

-d OID
-di OID

specifies a discontinuity marker for validating delta differences. A object instance will be used exactly -di
as given. A object will have the instance subidentifiers from the corresponding (wildcarded) expression -d
object appended. If the -I flag is specified, then there is no difference between these two options.

This option also implies .-D

-e EVENT

specifies the event to be invoked when this entry is triggered. If this monitor
option is not given, the monitor entry will generate one of the standard
notifications defined in the DISMAN-EVENT-MIB.

-I indicates that the monitored expression should be applied to the specified
OID
as a single instance. By default, the OID will be treated as a wildcarded
object,
and the monitor expanded to cover all matching instances.

-i OID
-o OID

define additional varbinds to be added to the notification payload when this monitor trigger fires. For a
wildcarded expression, the suffix of the matched instance will be added to any OIDs specified using -o,
while OIDs specified using -i will be treated as exact instances. If the flag is specified, then there is no -I
difference between these two options.

See for details of the ordering of notification payloads.strictDisman

-r FREQUENCY

monitors the given expression every FREQUENCY seconds. By default, the expression will be
evaluated every 600s (10 minutes).

-S

 69

indicates that the monitor expression should not be evaluated when the agent
first starts up. The first evaluation will be done once the first repeat interval
has
expired.

-s

indicates that the monitor expression should be evaluated when the agent first
starts up.This is the default behavior.

-u SECNAME

specifies a security name to use for scanning the local host, instead of the default . iquerySecName
Once again, this user must be explicitly created and given suitable access rights.

notificationEvent ENAME NOTIFICATION [-m] [-i OID | -o OID]*

defines a notification event named ENAME. This can be triggered from a given entry by specifying the monitor
option ENAME (see above). NOTIFICATION should be the OID of the NOTIFICATION-TYPE definition for -e
the notification to be generated.

If the option is given, the notification payload will include the standard varbinds as specified in the -m
OBJECTS clause of the notification MIB definition. This option must come after the NOTIFICATION OID (and
the relevant MIB file must be available and loaded by the agent). Otherwise, these varbinds must be listed
explicitly (either here or in the corresponding directive).monitor

The and options specify additional varbinds to be appended to the notification payload, after the -i OID -o OID
standard list. If the entry that triggered this event involved a wildcarded expression, the suffix of the monitor
matched instance will be added to any OIDs specified using , while OIDs specified using will be treated as -o -i
exact instances. If the flag was specified to the directive, then there is no difference between these -I monitor
two options.

setEvent ENAME [-I] OID = VALUE

defines a set event named ENAME, assigning the (integer) VALUE to the specified OID. This can be triggered
from a given entry by specifying the option ENAME (see above).monitor -e

If the entry that triggered this event involved a wildcarded expression, the suffix of the matched monitor
instance will normally be added to the OID. If the flag was specified to either of the or -I monitor setEvent
directives, the specified OID will be regarded as an exact single instance.

strictDisman yes

Notifications triggered by this initial evaluation will be sent before the trap.coldStarti

 70

The definition of SNMP notifications states that the varbinds defined in the OBJECT clause should come first
(in the order specified), followed by any "extra" varbinds that the notification generator feels might be useful.
The most natural approach would be to associate these mandatory varbinds with the entry, notificationEvent
and append any varbinds associated with the entry that triggered the notification to the end of this list. monitor
This is the default behavior of the Net-SNMP Event MIB implementation.

Unfortunately, the DisMan Event MIB specifications actually state that the triggerrelated varbinds should come
first, followed by the event-related ones. This directive can be used to restore this strictly-correct (but
inappropriate) behavior.

If no entries specify payload varbinds, then the setting of this directive is irrelevant.monitor

linkUpDownNotifications yes

will configure the Event MIB tables to monitor the for network interfaces being taken up or down, and ifTable
triggering a or notification as appropriate.linkUp linkDown

strictDisMan ordering may result in generating invalid notifications payload lists if the notificationEvent -n
flag is used together with (or) varbind options.monitor -o -i

i

 71

3.4.3 DisMan Schedule MIB

The DisMan working group also produced a mechanism for scheduling particular actions (a specified SET
assignment) at given times. This requires that the agent was built with support for the disman/schedule module
(which is included as part of the default build configuration for the most recent distribution).

There are three ways of specifying the scheduled action:

repeat FREQUENCY OID = VALUE

configures a SET assignment of the (integer) VALUE to the MIB instance OID, to be run every FREQUENCY
seconds.

cron MINUTE HOUR DAY MONTH WEEKDAY OID = VALUE

configures a SET assignment of the (integer) VALUE to the MIB instance OID, to be run at the times specified
by the fields MINUTE to WEEKDAY. These follow the same pattern as the equivalent fields.crontab(5)

The DAY field can also accept negative values, to indicate days counting backwards from the end of the month.

at MINUTE HOUR DAY MONTH WEEKDAY OID = VALUE

configures a one-shot SET assignment, to be run at the first matching time as specified by the fields MINUTE
to WEEKDAY. The interpretation of these fields is exactly the same as for the directive.cron

These fields should be specified as a (comma-separated) list of numeric values. Named values for the
MONTH and WEEKDAY fields are not supported, and neither are value ranges. A wildcard match can be
specified as '*'.

i

 72

3.4.4 Arbitrary Extension Commands

The earliest extension mechanism was the ability to run arbitrary commands or shell scripts. Such commands do
not need to be aware of SNMP operations, or conform to any particular behavior - the MIB structures are designed
to accommodate any form of command output.

exec [MIBOID] NAME PROG ARGS
sh [MIBOID] NAME PROG ARGS

invoke the named PROG with arguments of ARGS. By default the exit status and first line of output from the
command will be reported via the , discarding any additional output.extTable

The PROG argument for directives must be a full path to a real binary, as it is executed via the exec exec()
system call. To invoke a shell script, use the sh directive instead.

If MIBOID is specified, then the results will be rooted at this point in the OID tree, returning the exit statement
as MIBOID.100.0 and the entire command output in a pseudo-table based at MIBNUM.101, with one 'row' for
each line of output.

The agent does not cache the exit status or output of the executed program.

exec and extensions can only be configured via the file. They cannot be setup via SNMP SET sh snmpd.conf
requests.

extend [MIBOID] NAME PROG ARGS

works in a similar manner to the directive, but with a number of improvements. The MIB tables (exec
 etc) are indexed by the NAME token, so are unaffected by the order in which entries are nsExtendConfigTable

read from the configuration files. There are two result tables - one () containing the exit nsExtendOutput1Table
status, the first line and full output (as a single string) for each entry, and the other (extend

) containing the complete output as a series of separate lines.nsExtendOutput2Table

If MIBOID is specified, then the configuration and result tables will be rooted at this point in the OID tree, but are
otherwise structured in exactly the same way. This means that several separate directives can specify the extend
same MIBOID root, without conflicting.

The exit status and output is cached for each entry individually, and can be cleared (and the caching behavior
configured) using the .nsCacheTable

Can be configured dynamically, using SNMP SET requests to the NET-SNMP-EXTEND-MIB.

Entries in this table appear in the order they are read from the configuration file. This means that adding
new (or) directives and restarting the agent, may affect the indexing of other entries.exec sh

i

The layout of this "relocatable" form of (or) output does not strictly form a valid MIB structure. exec sh
This mechanism is being deprecated - please see the extend directive (described below) instead.

i

 73

3.4.5 Configuration example

Master behavior
listen for all incoming IPv4 connections on UDP port 161
listen for all incoming IPv6 connections on UDP port 163
agentAddress udp:161,udp6::163
enable AgentX master on agentXSocket
master agentx
it is better to use TCP/IP socket for agentx communication
if notifications are expected.
agentXSocket tcp:127.0.0.1:705
Access control
IPv4 connections
grant read-write perms on all OIDs from given IP with given community
rwcommunity snmpPriv 172.17.66.202
grant read-only perms on system group (OID) only from all IPs with given
community
rocommunity snmpPublic default system
IPv6 connections
grant read-write perms on all OIDs from all IPs with given community
rwcommunity6 snmpIPv6
All connections
grant read-only perms on all OIDs from all IPs with given user
createUser snmpdInternalUser MD5 "password"
rouser snmpdInternalUser
System Information
sysName AU1.BS2
sysLocation Augsburg Limited
sysContact admin@abg.com
Active Monitoring
send traps to the IP address with community name
trap2sink tcp:172.17.66.202:162 publicTraps
Event Services Configuration
don’t forget to configure traps, as without them some part of event
services
are pointless
set up credentials
iquerySecName snmpdInternalUser

This defines the traps to be sent (using notificationEvent), and explicitly
references# the relevant notification in the corresponding monitor entry :
notificationEvent linkUpTrap linkUp ifIndex ifAdminStatus ifOperStatus
notificationEvent linkDownTrap linkDown ifIndex ifAdminStatus ifOperStatus
monitor -r 60 -e linkUpTrap "Generate linkUp" ifOperStatus != 2
monitor -r 60 -e linkDownTrap "Generate linkDown" ifOperStatus == 2
Schedule Services Configuration
reload configuration once an hour, using:
repeat 3600 versionUpdateConfig.0 = 1
reload configuration on the gicen our each day:
cron 10 0 * * * versionUpdateConfig.0 = 1

 74

If you would like to use some other AgentX socket than tcp:127.0.0.1:705 or / it is better var/agentx/master
to specify it not in the , but in the (created in the), so all other agent will snmpd.conf agentx.conf /etc/snmp
configure themselves right. As is accessible only by master, while is accessible snmpd.conf agentx.conf
by master () and agents.snmpd

i

 75

3.4.6 Reconfiguring the daemon

In order to reconfigure (re-read configuration file) already running daemon one of two actions could be done:

If you have previously configured the community/user with write permissions you can set versionUpdateConfig.0
to by means of .‘1’ snmpset

Example:

snmpset –v2c –c writeComm SNMP_ADDR versionUpdateConfig.0 i 1

You can call the rc script under privileged user./etc/rc2.d/S90net-snmp

 76

3.4.7 Configuring SNMP trap daemon snmptrapd (snmptapd.conf)

Access control checks will be applied to all incoming notifications. will help us with configuring snmptrapd.conf
daemon’s operations and how incoming traps should be processed.

If is run without a suitable configuration file (or equivalent access control settings), then such snmptrapd
traps be processed. See the for more details.will not section “Access Control”

i

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=83647103#AccessControl(snmp_en,#60)-64-435

 77

3.4.7.1 snmptrapd behavior

snmpTrapdAddr [<transport-specifier>:]<transport-address>[,...]

defines a list of listening addresses, on which to receive incoming SNMP notifications. See the section
 for more information.“Listening addresses in BS2000”

The default behavior is to listen on UDP port 162 on all IPv4 interfaces.

doNotRetainNotificationLogs yes

disables support for the NOTIFICATION-LOG-MIB. Normally the program keeps a record of the snmptrapd
traps received, which can be retrieved by querying the and tables. This nlmLogTable nlmLogvariableTable
directive can be used to suppress this behavior.

doNotLogTraps yes

disables the logging of notifications altogether. This is useful if the application should only run snmptrapd
 hooks and should not log traps to any location.traphandle

doNotFork yes

do not fork from the calling shell.

pidFile PATH

defines a file in which to store the process ID of the notification receiver. By default, this ID is not saved.

 78

3.4.7.2 Access Control

It is necessary to explicitly specify who is authorized to send traps and informs to the notification receiver (and what
types of processing these are allowed to trigger). This uses an extension of the VACM model, used in the main
SNMP agent.

There are currently three types of processing that can be specified:

‘log’ - log the details of the notification - either in a specified file, to standard output (or), or via (or stderr syslog
similar).

‘execute’ - pass the details of the trap to a specified handler program

‘net’ - forward the trap to another notification receiver.

In the following directives, TYPES will be a (comma-separated) list of one or more of these tokens.Most commonly,
this will typically be , , to cover any style of processing for a particular category of notification. But it is log execute net
perfectly possible (even desirable) to limit certain notification sources to selected processing only.

authCommunity TYPES COMMUNITY [SOURCE [OID | -v VIEW]]

authorizes traps (and SNMPv2c INFORM requests) with the specified community to trigger the types of
processing listed. By default, this will allow any notification using this community to be processed. The
SOURCE field can be used to specify that the configuration should only apply to notifications received from
particular sources

authUser TYPES [-s MODEL] USER [LEVEL [OID | -v VIEW]]

authorizes SNMPv3 notifications with the specified user to trigger the types of processing listed. By default,
this will accept authenticated requests. (or). The LEVEL field can be used to allow authNoPriv authPriv
unauthenticated notifications (), or to require encryption (), just as for the SNMP agent.noauth priv

With both of these directives, the OID (or VIEW) field can be used to restrict this configuration to the processing -v
of particular notifications.

authGroup TYPES [-s MODEL] GROUP [LEVEL [OID | -v VIEW]]
authAccess TYPES [-s MODEL] GROUP VIEW [LEVEL [CONTEXT]]
setAccess GROUP CONTEXT MODEL LEVEL PREFIX VIEW TYPES

authorize notifications in the specified GROUP (configured using the directive) to trigger the types of group
processing listed.

createUser username (MD5|SHA) authpassphrase [DES|AES]

See the for a description of how to create SNMPv3users.section “SNMPv3 authentication”

disableAuthorization yes

will disable the above access control checks, and revert to the previous behavior of accepting all incoming
notifications.

 79

3.4.7.3 Notification Processing

Notifications can be forwarded on to another notification receiver, or passed to an external program for specialized
processing.

traphandle OID|default PROGRAM [ARGS ...]

invokes the specified program (with the given arguments) whenever a notification is received that matches the
OID token. For SNMPv2c and SNMPv3 notifications, this token will be compared against the snmpTrapOID
value taken from the notification. For SNMPv1 traps, the generic and specific trap values and the enterprise
OID will be converted into the equivalent OID (following RFC 2576).

Typically, the OID token will be the name (or numeric OID) of a NOTIFICATION-TYPE object, and the
specified program will be invoked for notifications that match this OID exactly. However this token also
supports a simple form of wildcard suffixing. By appending the character notification based within subtree
rooted at the specified OID. For example, an OID token of 1.3.6.1.4.1* would match any enterprise specific
notification (including the specified OID itself). An OID token of.1.3.6.1.4.1.* would work in much the same
way, but would not match this exact OID - just notifications that lay strictly below this root.

Note that this syntax does not support full regular expressions or wildcards -an OID token of the form oid.*.
subids is not valid.

If the OID field is the token then the program will be invoked for any notification not matching another default
(OID specific) entry.traphandle

Details of the notification are fed to the program via its standard input. Note that this will always use the
SNMPv2-style notification format, with SNMPv1 traps being converted as per RFC 2576, before being passed
to the program. The input format is as follows, one entry per line:

HOSTNAME

The name of the host that sent the notification

IPADDRESS

The IP address of the host that sent the notification.

VARBINDS

A list of variable bindings (varbinds) describing the contents of the notification, one per line. The first
token on each line (up until a space) is the OID of the varbind, and the remainder of the line is its value.
The formats of both of these are controlled by the directive (or similar configuration).outputOption

The first OID should always be , and the second should be SNMPv2-MIB::sysUpTime.0 SNMPv2-MIB::
. The remaining lines will contain the payload varbind list. For SNMPv1traps, the final OID will snmpTrapOID.0

be .SNMPv2-MIB::snmpTrapEnterprise.0

forward OID|default DESTINATION

forwards notifications that match the specified OID to another receiver listening on DESTINATION. The
interpretation of OID (and default) is the same as for the directive.traphandle

 80

3.4.7.4 Logging

format1 FORMAT
format2 FORMAT

specify the format used to display SNMPv1 TRAPs and SNMPv2 notifications respectively. Note that
SNMPv2c and SNMPv3 both use the same SNMPv2 PDU format.

See for the layout characters available.section “Format Specifications”

ignoreAuthFailure yes

instructs the receiver to ignore traps.authenticationFailure

logOption string

specifies where notifications should be logged to standard output, standard error, a specified file or via . syslog
See the for details.section “Output configuration”

outputOption string

specifies various characteristics of how OIDs and other values should be displayed. See the section “Output
 for details.configuration”

This currently only affects the logging of such notifications. traps will still be passed authenticationFailure
to trap handler scripts, and forwarded to other notification receivers. This behavior should not be relied
on, as it is likely to change in future versions.

i

 81

3.4.7.5 Format Specifications

snmptrapd interprets format strings similarly to). It understands the following formatting sequences:printf(

String Description

%% a literal %

%a the contents of the ield of the PDU (v1 TRAPs only)agent-addr f

%A the hostname corresponding to the contents of the agent-addr field of the PDU, if
available, otherwise the contents of the agent-addr field of the PDU(v1 TRAPs only).

%b PDU source address (Note: this is not necessarily an IPv4 address)

%B PDU source hostname if available, otherwise PDU source address (see note above)

%h current hour on the local system

%H the field from the varbindhour sysUpTime.0

%j current minute on the local system

%J the field from the varbindminute sysUpTime.0

%k current second on the local system

%K the field from the varbindseconds sysUpTime.0

%l current day of month on the local system

%L the field from the varbindday of month sysUpTime.0

%m current (numeric) month on the local system

%M the numeric field from the varbindmonth sysUpTime.0

%N enterprise string

%q trap sub-type (numeric, in decimal)

%P security information from the PDU (c for v1/v2c, and for v3)ommunity name user context

%t decimal number of seconds since the operating system epoch

%T the value of the varbind in secondssysUpTime.0

%v list of variable-bindings from the notification payload. These will be separated by a tab,
or by a comma and a blank if the alternate form is requested

%V specifies the variable-bindings separator. This takes a sequence of characters, up to
the
next % (to embed a % in the string, use \%)

%w trap type (numeric, in decimal)

 82

%W trap description

%y current year on the local system

%Y the field from the varbindyear sysUpTime.0

In addition to these values, optional fields and may also be specified, just as in , and a flag width precision printf(3)
. The following flags are supported:value

‘-‘ (left justify)

‘0’ (use leading zeros)

‘#’ (use alternate form)

The "use alternate form" flag changes the behavior of various format string sequences:

Time information will be displayed based on GMT (rather than the local time zone)

The variable-bindings will be a comma-separated list (rather than a tab-separated one)

The system uptime will be broken down into a human-meaningful format (rather than being a simple integer)

Examples

To get a message like you could use something like this:14:03 TRAP3.1 from humpty.ucd.edu

snmptrapd -P -F "%02.2h:%02.2j TRAP%w.%q from %A\n"

If you want the same thing but in GMT rather than local time, use

snmptrapd -P -F "%#02.2h:%#02.2j TRAP%w.%q from %A\n"

 83

3.5 SNMP-AGENTS configuration

Application Monitor agent configuration

Statements for the configuration file

Change in the configuration file during the current session

Configuring the Console Monitor agent

Positive message filter

Structure of the positive message filter

Negative message filter

Modifying the configuration file during operation

Configuring the Storage agent

Configuring the openUTM agent

Preparation

Configuring the openUTM agent for monitoring several UTM applications

Runtime environment

Diagnostic documents

Configuring the openSM2 agent

Configuring the HSMS agent

TCP-IP-AP configuration

 84

3.5.1 Application Monitor agent configuration

The Application Monitor agent allows monitoring of:

user applications

DCAM applications

BCAM applications

subsystems

job variables

log files

In addition, groups of associated statements can be managed as a unit (object).

The type and extent of the application monitoring are controlled individually via a configuration file located on
BS2000 file system. The name of the configuration file is notified to the application monitor agent in the start
command (in the rc file) via option. If there are errors in the configuration file, the start procedure is interrupted. If -c
no configuration file is specified, monitoring is restricted to subsystems only.

The following table describes agent specific command line arguments:

Option Defaults Description

-c <BS2:config-file> no-file; only
subsystems
are monitored

Apply given configuration file to start monitoring
selected objects.

-t <sec> 5 sec. Basic counter, which determines how often
objects
are checked:

Subsystems checked (5 * counter) sec
(default, each 25 sec)

Files checked (1 * counter) sec
(default, each 5 sec)

DCAM apps checked each (60 * counter) sec
(default, each 5 min)

 85

3.5.1.1 Statements for the configuration file

The configuration file contains information as to which applications, tasks, subsystems, job variables and log files
are to be monitored. Up to 256 user applications, BCAM applications, job variables and log files can be monitored,
as well as 128 DCAM applications. The user and BCAM applications and tasks to be monitored must be started
with job variables. There is no limit to the number of subsystems that can be monitored.

The entries in the configuration file are generated using SDF statements. The //REMARK can be used to store
comments in the configuration file. The last statement in the file must always be //END. Statements that come after
the END statement are ignored.

Monitoring Statement

Application ADD-APPLICATION-RECORD

DCAM application ADD-DCAM-APPLICATION-RECORD

Subsystem ADD-SUBSYSTEM-RECORD

Log file ADD-LOG-FILE-RECORD

Job variable ADD-JV-RECORD

Group of associated applications DEFINE-OBJECT

Monitoring intervals SET-TIMER-OPTIONS

ADD-APPLICATION-RECORD

The ADD-APPLICATION-RECORD statement states the BCAM and user applications to be monitored. Applications
are taken to be mean programs or tasks.

//ADD-APPLICATION-RECORD

APPLICATION-NAME = <composed-name_1 .. 54_with-underscore>

, = / <product-version>VERSION *NONE

, = / TYPE *BCAM *USER

, = <filename_1 .. 54>JV-NAME

, = / list-poss (6) : <name_1 .. 1>TRAP-CONDITION A

, <integer 0 .. 999> WEIGHT= / 0

APPLICATION-NAME=<composed-name_1..54_with-underscore>
Defines the application which the agent is to monitor.

VERSION= / <product-version>*NONE
Version number of the application
Default value: *NONE

TYPE=*BCAM / *USER
Type of application.

 86

JV-NAME = <filename_1 .. 54>
Job variable (MONJV), which is used to monitor the application or task.

TRAP-CONDITION= / list-poss (6) : <name_1 .. 1>A
States for which a trap is to be generated.

WEIGHT= / <integer 0 .. 999>0
Weight of the traps specific to the Application Monitor agents. When sending a (generic) trap, the Application
Monitor agent supplies the specified value for the trap object

appMonWeight and the trap number (see). If varioussection “Notification Processing”

weights are to be used in an application for various events, the associated ADD-APPLICATION-RECORD
statement must be specified several times in the configuration file.Default value: 0

ADD-DCAM-APPLICATION-RECORD

The ADD-DCAM-APPLICATION-RECORD statement states the DCAM and user applications to be monitored
cyclically. The monitoring interval for DCAM applications is 60 times the timer setting, i.e. 5 minutes by default. With
the // statement, you can set the monitoring interval to SET-TIMER-OPTIONS (Statements for the configuration file)
any multiple of the timer setting.

A maximum of 128 DCAM applications can be monitored.

//ADD-DCAM-APPLICATION-RECORD

APPLICATION-NAME = <name_1 .. 8>

, = / <name_1 .. 8>>HOST *OWN

, = / KEEP-CONNECTION *YES *NO

, = / <c-string> / <x-string>MSG *NONE

, = list-poss (2) : / TRAP-CONDITION *NOT-AVAILABLE *AVAILABLE

, WEIGHT= / <integer 0 .. 999>0

APPLICATION-NAME=<name_1..8>
Defines the DCAM application which the agent is to monitor.

HOST= / <name_1..8>*OWN
Host on which the DCAM application is running
Default value: *OWN

KEEP-CONNECTION= / *NO*YES
Defines whether the connection is to be cleared down
Default value: *YES

MSG= / <c-string> / <x-string> *NONE
Connection message

TRAP-CONDITION= / *AVAILABLE*NOT-AVAILABLE
Conditions under which a trap is generated.
Default value: *NOT-AVAILABLE

 87

WEIGHT= / <integer 0 .. 999>0
Weight of the traps specific to the Application Monitor agents. When sending a (generic) trap, the Application
Monitor agent supplies the specified value for the trap object - and the trap number (see appMon-Weight section

). “Notification Processing”
Default value: 0

ADD-SUBSYSTEM-RECORD

The ADD-SUBSYSTEM-RECORD statement defines the subsystems to be monitored. The monitoring interval for
DCAM applications is 5 times the timer setting, i.e. 25 seconds by default. With the //SET-TIMER-OPTIONS

 statement, you can set the monitoring interval to any multiple of the timer (Statements for the configuration file)
setting.

//ADD-SUBSYSTEM-RECORD

NAME = <structured-name 1 .. 8> / *ALL

, = / <product-version>VERSION *NONE

, = / list-poss (8) : / / / /TRAP-CONDITION *NONE *CREATED *NOT-CREATED *IN-DELETE *IN-CREATE

*IN-RESUME / / / *IN-HOLD *NOT-RESUMED *LOCKED

, WEIGHT= / <integer 0 .. 999>0

NAME=<structured-name 1..8> / *ALL
Defines the subsystem which the agent is to monitor.

VERSION= / <product-version>*NONE
Version number of the subsystem
Default value: *NONE

TRAP-CONDITION= / list-poss (8) : *CREATED / *NOT-CREATED / *IN-DELETE / *IN-CREATE / *IN-*NONE
RESUME / *IN-HOLD / *NOT-RESUMED / *LOCKED
States for which a trap is to be generated.
Default value: *NONE

Note:
If NAME=*ALL is specified, you should use TRAP-CONDITION=*NONE as otherwise performance problems may
arise.

WEIGHT= 0 / <integer 0 .. 999>
Weight of the traps specific to the Application Monitor agents. When sending a (generic) trap, the Application
Monitor agent supplies the specified value for the trap object

appMonWeight and the trap number (see). If varioussection “Notification Processing”

weights are to be used in an application for various events, the associated ADD-APPLICATION-RECORD
statement must be specified several times in the configuration file.Default value: 0

 88

ADD-LOG-FILE-RECORD

The ADD-LOG-FILE-RECORD statement defines the log files to be monitored. By default, the Application Monitor
agent sends a trap for each modification to a log file. However, it is possible to filter the traps/entries. With the //SET-

 statement, you can set the monitoring interval to any TIMER-OPTIONS (Statements for the configuration file)
multiple of the timer setting.

 89

//ADD-LOG-FILE-RECORD

NAME = <filename_1 .. 54> / <posix-pathname>

, APPLICATION-NAME = / <composed-name_1 .. 54_with-underscore>*NONE

, = / MONITORING *YES *NO

, = / FORMAT *EBCDIC *ASCII

, = / list-poss (8) : <c-string_1 .. 256_with-lower-case>PATTERN *NONE

, WEIGHT= / <integer 0 .. 999>0

NAME=<filename_1 .. 54> / <posix-pathname>
Defines the log file which the agent is to monitor.

APPLICATION-NAME= / <composed-name_1 .. 54_with-underscore>*NONE Name of the application.
Default value: *NONE

MONITORING=*YES / *NO
Specifies whether the log file is to be monitored.

FORMAT= / *ASCII*EBCDIC
Format of the log file.
Default value: *EBCDIC

PATTERN = / list-poss (8) : <c-string_1 .. 256_with-lower-case>*NONE
Specifies one or more search patterns. If no PATTERN is specified, all entries are recorded in a log file for each
trap.
The following wildcards are permitted:

? replaces any one character

* replaces any character string

[s] replaces precisely one character from the s string

[c1 - c2] replaces any character from the range c1 to c2

The "/" character (backslash) must be used as the escape character for special characters. A distinction is made
between uppercase and lowercase letters.
Default value: *NONE

WEIGHT= 0 / <integer 0 .. 999>

Weight of the traps specific to the Application Monitor agents. When sending a (generic) trap, the Application
Monitor agent supplies the specified value for the trap object

appMonWeight and the trap number (see).section “Notification Processing”

Default value: 0

 90

ADD-JV-RECORD

The ADD-JV-RECORD statement defines the job variables to be monitored. By default, the Application Monitor
agent sends each job variable modification as a trap. However, it is possible to filter the traps.

//ADD-JV-RECORD

JV-NAME = <filename_1 .. 54>

, = / <composed-name_1 .. 54_with-underscore>APPLICATION-NAME *NONE

, = / <c-string_1 .. 4 > / < x-string_1 .. 8>PASSWORD *NONE

, = / list-poss (8) : <c-string_1 .. 256_with-lower-case>PATTERN *NONE

, WEIGHT= / <integer 0 .. 999>0

JV-NAME = <filename_1 .. 54>
Defines the job variable which the agent is to monitor.

APPLICATION-NAME = / <composed-name_1 .. 54_with-underscore>*NONE Name of the application.
Default value: *NONE

PASSWORD = / <c-string_1 .. 4 > / <x-string_1 .. 8>*NONE
Read password of the job variables.
Default value: *NONE

PATTERN = / list-poss (8) : <c-string_1 .. 256_with-lower-case>*NONE
Defines one or more search patterns. If no PATTERN is specified, all JV changes are notified per trap.

The following wildcards are permissible:

? replaces any character

* replaces any number of characters

[s] replaces exactly one character in a string s

[c1 - c2] replaces any character in the range c1 to c2

The backslash character "/" must be specified for special characters. A distinction is made between uppercase and
lowercase.
Default value: *NONE

WEIGHT= 0 / <integer 0 .. 999>

Weight of the traps specific to the Application Monitor agents. When sending a (generic) trap, the Application
Monitor agent supplies the specified value for the trap object

appMonWeight and the trap number (see).section “Notification Processing”

Default value: 0

 91

DEFINE-OBJECT

Logically associated components in a process (applications, logfiles, subsystems and job variables) can be grouped
together using the statement DEFINE-OBJECT. All elements stated in the DEFINE-OBJECT statement must also
be defined in the configuration file with the corresponding ADD... statement.

If the specifications made for an element of the object in the DEFINE-OBJECT for ICON and ACKNOWLEDGE
contradict the corresponding specifications in the ADD... statement, the specifications made in the DEFINE-
OBJECT statement apply.

//DEFINE-OBJECT

OBJECT-NAME = <composed-name_1 .. 8_with-underscore>

, = / list-poss(5): <composed_name_1 .. 54_with-underscore>BCAM-APPLICATION *NONE

, = / list-poss(5): <composed_name_1 .. 54_with-underscore>USER-APPLICATION *NONE

, = / list-poss(5): <name_1 .. 8>DCAM-APPLICATION *NONE

, = / list-poss(5): <filename_1 .. 54> / <posix-pathname>LOG-FILE *NONE

, = / list-poss(5): <structured-name_1 .. 8>SUBSYSTEM *NONE

, = / list-poss(10): <filename_1 .. 54>JV *NONE

, MONITORING-TIME = / ... *ALWAYS *INTERVAL ()

*INTERVAL (...)

| , START-TIME = hh:mm

| , STOP-TIME = hh:mm

, list-poss(6): / / / / / / EXCEPT-DAYS = /*NONE MON TUE WED THU FRI SAT SUN

OBJECT-NAME = <composed-name_1 .. 8_with-underscore>
Name of the object

BCAM-APPLICATION = / list-poss(5): <composed_name_1 .. 54_withunderscore>*NONE

BCAM applications that belong to this object
Default value: *NONE

USER-APPLICATION = / list-poss(5): <composed_name_1 .. 54_withunderscore>*NONE

User applications that belong to this object
Default value: *NONE

DCAM-APPLICATION = / list-poss(5): <name_1 .. 8>*NONE
DCAM applications that belong to this object
Default value: *NONE

 92

LOG-FILE = / list-poss(5): <filename_1 .. 54> / <posix-pathname>*NONE

Log files that belong to this object
Default value: NONE

SUBSYSTEM = *NONE / list-poss(5): <structured-name_1 .. 8>
Subsystems that belong to this object
Default value: *NONE

JV = *NONE / list-poss(10): <filename_1 .. 54>
Job variables that belong to this object

MONITORING-TIME = / *INTERVAL (...) *ALWAYS
Specifies the monitoring time
Default value: *ALWAYS

*INTERVAL (...)
Defines the monitoring interval. If STOP-TIME is greater than START-TIME, the hours after midnight are
counted to the previous day when checking the EXCEPT-DAYS.

Example:
The monitoring time ranges from 20:00 to 3.00 hrs, except from Saturday and Sunday. Monitoring therefore
stops on Saturday at 3:00 in the morning and starts again on Monday at 20:00 in the evening.

START-TIME = HH:MM
Time when the object should be monitored

STOP-TIME = HH:MM
Time up to which the object should be monitored

EXCEPT-DAYS = / list-poss(6): MON / TUE / WED / THU / FRI / SAT / SUN*NONE Weekdays on which
the object is not to be monitored
Default value: *NONE

Example: Monitoring a MAREN systems

A MAREN system consists of the following components:

Subsystem MAREN

Control program MARENCP

Automatic assignment of free tape MARENUCP

In addition, each VSN reserved by the automatic tape assignment function is automatically stored in the job variable
TAPE.FILE.MAREN.

The following definition of a "MAREN" object combines these components:

//DEFINE-OBJECT OBJECT-NAME = MAREN
//, USER-APPLICATION = (MARENCP, MARENUCP)
//, SUBSYSTEM = MAREN
//, JV = TAPE.FILE.MAREN

 93

SET-TIMER-OPTIONS

The Application Monitor agent uses a timer. You specify the value for the timer when starting the Application
Monitor agent. The statement SET-TIMER-OPTIONS defines the monitoring interval (polling factor). The monitoring
interval defines the number of timer cycles which are to elapse before the next check is to be carried out.

//SET-TIMER-OPTIONS

FILES = / <integer>1

, = / <integer>SUBSYSTEMS 5

, = / <integer>DCAM-APPLICATIONS 60

FILES = / <integer>1
Defines the polling factor for files.
Default value: 1

SUBSYSTEMS = / <integer>5
Defines the polling factor for subsystems.
Default value: 5

DCAM-APPLICATIONS = / <integer>60
Defines the polling factor for DCAM applications.
Default value: 60

 94

3.5.1.2 Change in the configuration file during the current session

Changes to the current configuration file during a session can be made by the Application Monitor by setting the
 object.appMonConfFile0

Example

snmpset -v2c -cpublic SNMP_ADDR appMonConfFile.0 s "APPMON.CONF"

If there are syntax errors in , the original configuration is retained.appMonConfFile

 95

3.5.2 Configuring the Console Monitor agent

The Console Monitor has access to the console commands of $CONSOLE via UCON. The following preparation is
required to enable the Console Monitor to access the BS2000 console:

Create the operator ID <operator-id>

Granting the access rights for the operator user ID

Create the operator ID <operator-id>

/ADD-USER USER-ID=<operator-id>, -
 PROTECTION-ATTRIBUTE=*PAR(LOGON-PASSWORD=<pass>), -
 ACCOUNT-ATTRIBUTES=*PAR(ACCOUNT=<account-no>)

The logon attributes defined here must be specified in the rc file when starting the Console Monitor (see Console
).Monitor agent (Agents-specific options for starting agents manually)

Granting the access rights for the operator user ID

For operating with SECOS, access rights must additionally be granted for the operator ID to $CONSOLE:

/MOD-LOGON-PROTECTION USER-IDENTIFICATION=<operator-id>,

 OPERATOR-ACCESS-PROG=*YES(PASSWORD-CHECK=*YES)

The class 2 system parameter NBBAPRIV must be set to the default value N.

The following tables describe agent specific command line arguments:

Mandatory Options Description

-o <operid>

-y <op-role1> [,<op-role2>,, <op-role10>]

Specify Operator's ID

Specify Operator's role(-s); up to 10

or

-a <auth-file> Load credentials specified in file

Optional arguments Description

-k <password> Specify password to access $CONSOLE

-c <msg-filter> Load message filter

-n <negative-msg-filter> Load negative message filter

-A <auth-file> Outputs a prompt with which an
authentication
file can be generated. This file remains
encrypted with AES.

 96

-s <auth-file> Outputs the operator IDs and role(s) defined
in
the authentication file. If a password has been
defined, *SET is output, otherwise *NONE.

Defining message filters

The Console Monitor agent uses two filter options for selecting messages:

positive message filter
selects messages to be sent to the management station

negative message filter
selects messages not to be sent to the management station

 97

3.5.2.1 Positive message filter

The following two filter options are available for selection of messages to be sent to the management station:

Routing code (assigned to each console message)

Message key (uniquely identifies each message)

Routing code selection criterion

Each message is assigned a specific routing code. Operator roles contain the routing codes of the messages to be
sent to the management station. The operator roles are specified when starting the Console Monitor (see section

).The following statements show you how operator roles are “Agents-specific options for starting agentsmanually”
created and assigned to the operator ID. The SECURITY ADMINISTRATION privilege, which the user ID SYSPRIV
has as default, is required for issuing the following statements.

Create the operator role:

/CREATE-OPERATOR-ROLE OP-ROLE=<op-role-name>,

ROUTING-CODES=.......

-

Assign the operator role to the operator ID:

/MODIFY-OPERATOR-ATTR USER-ID=<operator-id>,

-

ADD-OPERATOR-ROLE=(<op-role-name1>,...,<op-role-namex>)

The operator ID must additionally be assigned the OPERATING privilege if SECOS is used:

/SET-PRIVILEGE PRIV=OPERATING,USER-ID=<operator-id>

Message code selection criterion

The codes of messages to be sent to the management station are stored in the positive message filter file. The
statements

msgid

QUESTION

TYPIO

provide three filter options. The name of the message filter file is made known to the Console Monitor when it is
started via the command argument or it can be entered in the MIB object during a session.-c consMonMsgFilter

If no message filter file is specified when the Console Monitor is started, all messages are output for which the
routing code is specified in the operator role.

If the message filter file contains no key, or no valid key, no traps are sent to the management station.

The following name conventions apply to the message filter file:

/BS2/<file> BS2000 file

[:<catid>:]$<userid>.<file> BS2000 file

*POSIX(<file>) POSIX file

 98

/<path>/<file> POSIX file

<file> The deciding factor in this case is the environment
in
which the agent was started.

 99

3.5.2.2 Structure of the positive message filter

msgid statement

<msgid [wgt] [SOURCE=src] [DEVICE=dev]

 [PATTERN=/pat1[/..patx]] [[ACKNOWLEDGE=YES]>

msgid

Specifies a message code.
The following wildcards are permitted for message code entries:

? replaces any character

* replaces any number of characters

[s] replaces exactly one character in a string s

[c1 - c2] replaces any character in the range c1 to c2

The backslash character "/" must be specified for special characters. A distinction is made between uppercase
and lowercase.

wgt

Specifies a message weight. A weight can be assigned to the message codes. The weight is prefixed to the
actual message in the trap string. This allows the user to set the importance of messages himself and transmit
this to the management station. The message code is assigned the value 0 as default if no weight is specified.
The entry is expected as an integer in the range 0 - 999.

src

Specifies a source name. The source is supplied with BS2-<source> in the trap string. The default value
 is used if no value is specified. You can set an alarm to a specific object in the network map with BS2Console

this entry. The entry is alphanumeric in the range 1 - 12.

pat

Specifies one or more search patterns (pattern).

? replaces any character

* replaces any number of characters

[s] replaces exactly one character in a string s

[c1 - c2] replaces any character in the range c1 to c2

The character "\" (backslash) must be specified to invalidate special characters. A distinction is made between
upper case and lower case.

dev

If DEVICE is specified, the Console Monitor agent sends this trap with the DEVICE entry as Community.

ACKNOWLEDGE=YES

 100

If you specify ACKNOWLEDGE=YES, the agent is informed that this trap must be acknowledged.

QUESTION statement

Question filters all messages that contain a question, i.e. expect an answer. If a question is encountered, the
Console Monitor first checks whether a pattern of QUESTION entries matches. If not, the MSGID entries or the
TYPIO entries are searched for the relevant message type.

<QUESTION [wgt] [SOURCE=src] [DEVICE=dev] [PATTERN=/pat1[/..patx]]

[ACKNOWLEDGE=YES]>

QUESTION

Message key of a console query

wgt

see above

src

see above

dev

see above

pat

see above

ACKNOWLEDGE=YES

see above

Example:

<QUESTION PATTERN=[0-9]*> Selection of all questions that start with a digit.

TYPIO statement

TYPE I/O messages are a special case. These include, for example, messages sent to the BS2000 console with
/SEND-MSG. Their reception is also controlled via the message filter file. The entry for a TYPE I/O message is as
follows:

<TYPIO [wgt] [SOURCE=src] [DEVICE=dev] [PATTERN=/pat1[/..patx]] [ACKNOWLEDGE=YES]>

wgt

see above

src

see above

dev

see above

 101

pat

see above

ACKNOWLEDGE=YES

see above

Example:

 <TYPIO PATTERN=/*abc*/xyz>
 <TYPIO PATTERN=/Hallo*>
 <TYPIO PATTERN=/?\?*>
All TYPE I/O messages that contain the string "abc", are
made up only of "xyz", start with "Hello" or have a
question mark as their second character, are sent to the
management station as a trap.

 102

3.5.2.3 Negative message filter

A negative message filter is also provided as of Console Monitor agent. The message code of the console
messages, which are not to be forwarded to the management station are stored in the negative message filter file.
Questions cannot be suppressed. The MIB object refers to the name of the negative consMonNegMsgFilter
message filter file. The name of the negative message filter file is defined with the option when the Console -n
Monitor is started. This definition can only be modified when the Console Monitor is started, not during a session.

The length of the entry must not exceed 179 characters.

<msgid> [PATTERN=/pat1[/..patx]]> [<msgid [PATTERN=/pat1[/..patx]]>] ...

For the description of and see " ".msgid pat Structure of the positive message filter

 103

1.

2.

3.5.2.4 Modifying the configuration file during operation

It is possible to modify the current message filter file during operation using the Console Monitor application by
setting the object.consMonMsgfilter

If the file contains syntax errors, processing continues with the original message filter file.consMonMsgFilter

Example: filtering console messages

The message EXC0858 should only be sent to the management platform if it contains neither the string "CLAQ" nor
the string "TEST". The trap should be sent with the trap number 99 and have "Hardware" entered as its source.

This is done as follows:

In the positive message filter, enter: <EXC0858 99 SOURCE=Hardware>

In the negative message filter, enter: <EXC0858 PATTERN = *CLAQ* / *TEST*>

 104

3.5.3 Configuring the Storage agent

You can use the storage management agent to monitor disks and pubsets. For this pass the configuration file via
the command line on the startup (configure it in the rc file):

"-c <BS2:config-file>".

It is possible to modify the configuration file during operation by setting the object. If storMgmtGlobalDataInputFile.0
the configuration file contains syntax errors, processing continues with the original message filter file.

The configuration is performed using an input file:

For monitoring the saturation level of individual public volumes (pubsets), the relevant PVS must be specified in
the input file of the agent. This is done using the ADD-PUBSET-RECORD statement.

To monitor the state of the selected ROBAR application, use the statement ADD-ROBAR-RECORD.

To monitor the reconfiguration state of the individual disks, the relevant disks must be specified in the input file of
the agent. This is done using the ADD-DISK-RECORD statement.

The //REMARK statement can be used to store comments in the configuration file.

The last statement in the configuration file should be the //END statement. Any statements that appear after the
//END statement are ignored.

A maximum of 128 pubsets and/or disks can be monitored.

ADD-PUBSET-RECORD - adding a pubset to be monitored

//ADD-PUBSET-RECORD

PUBSET= <cat_id 1..4>

, CHECK=SATURATION-LEVEL

, TRAP-COMMUNITY= / / <c-string 1..64>*STORAGE *PUBSET-NAME

PUBSET=<cat_id 1..4>
CAT-ID of the pubset to be monitored.

CHECK=SATURATION-LEVEL
Object to be monitored; currently on possible to specify the SATURATION-LEVEL (Default value).

TRAP-COMMUNITY= / *PUBSET-NAME / <c-string 1..64>*STORAGE Community string with which the trap is
sent.
If *PUBSET is defined, the <cat-id> is used as the Community Name.
If <c-string 1..64> is specified, this string is sent as the Community Name.Default value: *STORAGE

ADD-DISK-RECORD - adding a disk to be monitored

//ADD-DISK-RECORD

DISK-MN =<alphanum-name 1..4>

, CHECK=RECONFIGURATION-STATE

, TRAP-COMMUNITY= / / <c-string 1..64>*STORAGE *DISK-MN

 105

DISK-MN=<alphanum-name 1 ..4>
Mnemonic name for the device to be monitored

CHECK=RECONFIGURATION-STATE
Object to be monitored; currently on possible to specify the RECONFIGURATION-STATE (Default value).

TRAP-COMMUNITY= / *DISK-MN / <c-string 1..64>*STORAGE
Community string with which the trap is sent.
If *DISK-MN is defined, the name defined for DISK-MN is used as the Community Name.If <c-string 1..64> is
specified, this string is sent as the Community Name.
Default value: *STORAGE0

ADD-ROBAR-RECORD - adding a ROBAR application to be monitored

//ADD-ROBAR-RECORD

LOCATION =< composed-name_1..8_with-underscore>

, VERSION=*NONE / <product-version mandatory-man-corr> / <product-version without-man-corr>

, JV-NAME= <filename_1..54>

, TRAP-CONDITION = / list-poss (6) : <name_1 .. 1>A

LOCATION=< composed-name_1..8_with-underscore>
Location of the ROBAR application.

VERSION= / <product-version mandatory-man-corr> / *NONE
<product-version without-man-corr>
Version of the application to be monitored. If a version number is specified, the format specified here must be
identical to the format used when the subsystem was defined (release and correction status mandatory or not
allowed.

JV-NAME= <filename_1..54>
Job variable (MONJV), which is used to monitor this application.

TRAP-CONDITION = / list-poss (6) : <name_1 .. 1>A
States of a MONJV for which a trap is sent. The value A means all states.

 106

3.5.4 Configuring the openUTM agent

The following section describes the activities required for putting the openUTM agent into operation.

 107

3.5.4.1 Preparation

The agent communicates with a UTM application via UPIC(BS2000). UPIC requires a side information file (upicfile)
to link the agent to the UTM application. This file must be named upicfile and be cataloged in BS2000. Normally,
there are four parts to the entry in the :upicfile

An identifier; in this case, HD as the identifier for a link between UPIC(BS2000) and UTM(BS2000).

The communication partner of the application, which should be set to SNMP4UTM for the currently selected
UTM application.

The partner name presented by the main BCAM name of the application. It is recommended to specify
application's host machine, separated from the name by ".".

The transaction code; this entry is not necessary in this case because as the agent specifies the transaction
code with the call.Set_TP_Name

The file can be edited under BS2000. The end-of-line character is represented in BS2000 by a semicolon upicfile
(";") as there is no <newline> character in BS2000 (see example). This means that if an edited line contains a
semicolon, UPIC interprets this as the end of the line and puts the remainder on the next line (up to the next
semicolon). This also applies to comment lines.

Example

Side Information file:

*symbolic destination names for (BS2000) application ZENTRBS2;
;*application is running on BSENGINE;
HDSNMP4UTM ZENTRBS2.BSENGINE;

The UTM agent reports to the UPIC communication system with the local name SNMPUPIC. The name
SNMP4UTM should be defined as the communication partner of the application with the KDCDEF PTERM or
TPOOL statement.

Since the UTM agent requires the appropriate authorization to issue UTM administration commands, a UTM user ID
must be defined with or and passed to the UTM agent with help of respective job STATUS=ADMIN PERMIT=ADMIN

variables, see . If no JVs will be created, agent will use default credentials from section “Runtimeenvironment”
SNMP-AGENTS.

openUTM uses the following TACs for monitoring with SNMP:

KDCWADMI for reading information

KDCLPAP, KDCLTAC, KDCSHUT, KDCPOOL, KDCSWITCH, KDCPTERM, KDCTCL, KDCLTAC, KDCUSER
for setting and modifying object parameters.

Please ensure that these TACs are generated in the UTM application with the required administration authorization.

 108

3.5.4.2 Configuring the openUTM agent for monitoring several UTM applications

To monitor several openUTM applications state, a configuration file is required in which every monitored openUTM
application must be specified.

The configuration file can be passed to the agent on the startup (in the rc file) via the command line argument:

-c <BS2:config-file>.

It is possible to modify the configuration file during operation by setting the . If the utmGlobalConfFile.0 object
configuration file contains syntax errors, processing continues with the original message filter file.

Entries in the configuration file are generated with the SDF statement
//ADD-APPLICATION-RECORD. With the statement //REMARK, comments can be stored in the configuration file.
The file must be terminated with the statement //END.

ADD-APPLICATION-RECORD

The statement //ADD-APPLICATION-RECORD identifies the UTM applications to be monitored.

//ADD-APPLICATION-RECORD

APPLICATION-NAME = <structured-name 1 .. 8>

, = / <full-filename_1 .. 54>FILEBASE *SAME

, = / <name_1 .. 8>USER-ID TSOS

, = list-poss (3): TRAP-CONDITION / *NORMAL-TERMINATED / *RUNNING*ABNORMAL-TERMINATED

APPLICATION-NAME=<structured-name 1 .. 8>
Defines the UTM application which the agent is to monitor.

FILEBASE= / <full-filename_1 .. 54>*SAME
Basic name of the A-parts of the KDCFILE.
*SAME is the default value.

USER-ID= / <name 1 .. 8>TSOS
ID under which the UTM application is started.
TSOS is the default value.

TRAP-CONDITION= list-poss (3): /*ABNORMAL-TERMINATED
*NORMAL-TERMINATED / *RUNNING
Conditions under which a trap is to be generated.
*ABNORMAL-TERMINATED is the default value.

 109

3.5.4.3 Runtime environment

The UPIC program is controlled via job variables in the BS2000 system.
UPIC evaluates the following job variables:

Job variable Link name Meaning

UPICPATH *UPICPAT The job variable UPICPATH defines the file directory under
which the side information file is stored. If the job variable
is
not set, the current file directory is used for the search.
If the agent is started under POSIX, the job variable
UPICPATH must be supplied the value "BS2/$<userid>2,
since UPIC would otherwise try to open the in the upicfile
POSIX file system.

UPICFILE *UPICFIL Specifies the right-hand part of the name of the side
information file. If this variable is not set, the file name is
set
to upicfile. The complete file name is composed of
UPICPAT.UPICFIL.If neither UPICPAT nor UPICFIL is set,
the file name is "$progid.UPICFILE".

UPIC4SNMP.
USER

--- UTM user ID used by the openUTM agent to issue
administration commands. If the job variable is not set,
USER=SNMPADM is used.

UPIC4SNMP.
PASS

--- Password for the UTM user ID. If the job variable is not
set,
USER=SNMPUPIC is used.

UPICTRACE *UPICTRA The job variable UPITRACE controls the trace generation
(see).section “Diagnostic documents”

UPICLOG *UPICLOG The job variable UPICLOG defines the name of the logging
file. If this definition is missing, the name is
"##.USR.TMP.UPICL<tsn>".

Note that the assignment is lost after LOGOFF.

 110

3.5.4.4 Diagnostic documents

Besides the trace file, of the openUTM agent, there are other files which may be helpful in the event of an error:

UPIC-Trace file

UPIC-Logging file

SYSLOG file

UPIC-Trace file

The carries system UPIC enables trace information to be generated for all interface calls. You can control this
procedure by setting the job variable . The call interprets the contents of the job UPICTRACE Enable_UTM_UPIC
variable. If the job variable is set, the parameters ad the user data are logged project-specific in a file up to a size of
128 bytes.

Activating the UPIC trace

The UPIC-Trace is activated as follows:

/SET-JV-LINK LINK-NAME=*UPICTRA,JV-NAME=UPICTRACE

/MODIFY-JV UPICTRACE,VALUE='-S[X] [-R wrap] [-Dprefix]'

Meaning:

-S Detailed logging of call, the associated arguments and user data up to a
maximum length of 128 bytes (mandatory data)

-SX Additional internal information at the interface to the transport system
are
logged.

-R wrap The decimal number specified by defines the maximum size of the wrap
temporary trace file.
Default value: 128.

-Dprefix The trace files are created with the following names:

prefix.UPICT<tsn>

prefix.UPICU<tsn>

If is not specified, "##.USR.TMP" is used as prefix.prefix

Deactivating the UPIC trace

The UPIC-Trace is deactivated using the following two commands:

/DELETE-JV UPICTRACE

/MODIFY-JV UPICTRACE,VALUE=''

UPIC logging file

If the UTM application terminates a conversation normally, an UTM error message is written to the UPIC open open
logging file. The UPIC logging file is only opened to write the error message (mode) and then closed again.append

 111

SYSLOG file

When an application is started, UTM creates an application-specific log file SYSLOG. This file logs events open
which occur during the application runtime in the form of UTM- messages.open

 112

3.5.5 Configuring the openSM2 agent

The following section describes the activities required for putting the openSM2 agent into functional state. Without
those steps openSM2 agent is useless and returns no-data(-1) state for most of the objects.

Prerequisites:

SM2 subsystem is created.

SM2 measurement is configured and enabled. This could be done by executing the following statements in
BS2000:

/EXEC $SM2
*call-admin-part
%//set-periodic-task-parameter log-tasks=*none
%//start-measurement-program per
%//start-measurement-program utm
%//call-eval-part
*end

If openUTM performance monitoring is expected, openSM2 monitoring has to be activated for the
respective UTM applications, e.g. by using the UTM administration command KDCAPPL SM2=ON.

i

 113

3.5.6 Configuring the HSMS agent

In order to put agent into the working state it is mandatory to pass the name of the system's SYS-LIB.HSMS. It
should be done via the following command line argument:

'-l <SYSLIB.HSMS>'

Example

hsmsAgent -l \$SYSHSMS.SYSLIB.HSMS.110 &

 114

3.5.7 TCP-IP-AP configuration

This section describes prerequisites for starting the FTP daemon via .ftpAgent

First, the SYSENT.TCP-IP-AP.053.FTPD start procedure must exist. This file contains startup parameters for the
FTP daemon.

Starting new the FTP daemon with given port and FTAC level is possible using only if two options are set snmpset
up inside the SYSDAT.TCP-IP-AP.053.FTPD.OPT:

FTAClevel | -B

childName | -C

After that you can start the daemon with default like this:FTACLevel (0)

snmpset [OPTIONS] ftpServerPort.portNumber i portNumber

where is a new server port for controlling the connection to the FTP clients.portNumber

For more information, please refer to the latest "interNet Services - System Administrator Guide".

 115

4 Operations

The delivery unit NET-SNMP contains the SNMP daemon (), the SNMP trap daemon, the SNMP client tools snmpd
and the functionality of both Event and Scheduling services.

With SNMP-AGENTS, a set of agents for system and administration tasks is supplied.

In addition, the products BCAM, SESAM/SQL and TCP-IP-AP provide product-specific agents, which supplement
the functionality of SNMP-AGENTS.

This chapter describes startup and shutdown of the separate components in BS2000/OSD as well as commands
used to retrieve information. The final section provides information on the procedure in the event of errors.

Important!

None of the agents are "daemonized" by default and it is recommended to start them in the
background by adding "&" at the end of statement.

It is recommended to start agents manually. The best practice is to use rc scripts to start/stop the not
SNMP products.

i

 116

4.1 rc scripts

rc scripts are installed for all SNMP related products, which permits automatically starting one or more agents
during POSIX startup or an automatic stop when POSIX is terminated. In order to enable the automatic startup of
NET-SNMP or any of its agents, their respective rc files should be modified to match your configuration.

The RC script for the NET-SNMP master agent starts 'snmpd' as follows:

 _OPTIONS="-LS0-6d -p /var/run/snmpd.pid -q"

 snmpd $_OPTIONS

The default configuration file for snmpd can be found in:

 /etc/snmp/snmpd.conf

Usage for net-snmp package (snmpd):

 /etc/rc2.d/S90net-snmp start|restart|stop|status

Examples for SNMP daemon:

 /etc/rc2.d/S90net-snmp start

 /etc/rc2.d/S90net-snmp stop

 /etc/rc2.d/S90net-snmp restart

 /etc/rc2.d/S90net-snmp status

Usage for snmp-agents package:

In order to start any of the SNMP agents, the master agent (snmpd) has to be started first.

 /etc/rc2.d/S91snmp-agents start|restart|stop|status [appMonAgent|consoleA
gent|openFTAgent|openSM2Agent|spoolAgent|storageAgent|hostAgent|hsmsAgent|utmAge
nt]

Examples for SNMP agents:

If the S91snmp-agents script is executed with only one of the mandatory parameters (start/stop/restart/status), the
designated action will be performed for all agents:

 /etc/rc2.d/S91snmp-agents start

 117

 appMonAgent is started
 log file is: /var/adm/appMonAgent.log
 consoleAgent is already started
 openFTAgent is started
 log file is: /var/adm/openFTAgent.log
 openSM2Agent is started
 log file is: /var/adm/openSM2Agent.log
 spoolAgent is started
 log file is: /var/adm/spoolAgent.log
 storageAgent is started
 log file is: /var/adm/storageAgent.log
 hostAgent is started
 log file is: /var/adm/hostAgent.log
 hsmsAgent is started
 log file is: /var/adm/hsmsAgent.log
 utmAgent is started
 log file is: /var/adm/utmAgent.log

If the agent name is given as the second argument, the S91snmp-agents will start/stop/restart/status only the
chosen agent:

 /etc/rc2.d/S91snmp-agents start consoleAgent

 consoleAgent is started
 log file is: /var/adm/consoleAgent.log

In order to add custom parameters please change _CUSTOM_XXX_CONFIG variable in the S91snmp-agents
script where XXX is the name of the agent, for example "console", "ftp", "host"...

Example for hsmsAgent

_CUSTOM_hsms_config="-l \$SYSHSMS.SYSLIB.HSMS.120"

Example for consoleAgent

_CUSTOM_console_config="-o tsos -y sysadm"

Some agents need mandatory configuration in the rc files, like passing configuration files and/or
credentials. Keep in mind the limitations described in of section “Paralleloperation Parallel operation
SNMP V6.x and NET-SNMP”.

i

 118

Note

Using plain-text passwords is not safe. The Console Agent facilitates the usage of authentication files, which are
AES-encrypted. In order to create such file proceed as follows:

Call "consoleAgent -A"

Follow the prompt

Edit rc file by passing argument with absolute PATH to the created .-a auth-file

 119

4.2 SDF commands and procedures

The SDF commands introduced in this new version execute SDF-P procedures which are wrappers for the RC-
scripts available on POSIX.

For the NET-SNMP and SNMP-AGENTS packages the procedures are located in: SYSSPR.NET-SNMP.xxx,
SYSSPR.SNMP-AGENTS.xxx. Note that the agents for BCAM (bcamAgent), SESAM (sesAgent) and FTP
(ftpAgent) are part of their respective products (SINLIB.BCAM.xxx, SINLIB.SESAM-SQL.xxx.SNMP-SA and SINLIB.
TCP-IP-AP.xxx) and not part of SNMP-AGENTS.

SDF commands without any parameters (snmp_en, #83.2)

SDF commands with parameter “AGENT-NAME” (snmp_en, #83.3)

SDF command - example view (snmp_en, #83.4)

This chapter describes the new features introduced in this version.i

 120

4.2.1 SDF commands without any parameters

All commands are available from domain NETWORK-MANAGEMENT and they require NET-ADMINISTRATION
privilege.the following message will be displayed

START-NET-SNMP - possible outputs:

If snmpd is not running and START-NET-SNMP is executed a message will be displayed (also displayed on the
operator console):

snmpd is started
log file is on POSIX file system: /var/adm/snmpd.log
return code : CMD0001

If snmpd is running and START-NET-SNMP is executed a message will be displayed:

snmpd is already started
return code : CMD0001

STOP-NET-SNMP - possible outputs:

If snmpd is running and STOP-NET-SNMP is executed a message will be displayed (also displayed on the operator
console):

snmpd successfully terminated
return code : CMD0001

If snmpd is not running and STOP-NET-SNMP is executed a message will be displayed:

snmpd is not running
return code : CMD0001

If the STOP command cannot be successfully executed:

unable to stop snmpd
return code : NET0002

RESTART-NET-SNMP - possible outputs:

The snmpd application has to be started before any of the other SNMP agents (including ftpAgent,
bcamAgent, sesAgent). If snmpd has not been started using either the RC scripts of the START-NET-
SNMP command and the user tries to run the START-SNMP-AGENT command, the following message
will be displayed: snmpd has to be started first: START-NET-SNMP

i

 121

If snmpd is not running and RESTART-NET-SNMP is executed a message will be displayed:

snmpd is not started: START-NET-SNMP
return code : NET0003

If snmpd is running and RESTART-NET-SNMP is executed a message will be displayed also displayed on the
operator console):

snmpd is restarted
log file is on POSIX file system: /var/adm/snmpd.log
return code : CMD0001

SHOW-NET-SNMP-STATUS

If snmpd is not running and SHOW-NET-SNMP-STATUS is executed a message will be displayed:

snmpd is not running
return code : CMD0001

If snmpd is running and SHOW-NET-SNMP-STATUS is executed a message will be displayed:

snmpd is running
log file is on POSIX file system: /var/adm/snmpd.log
return code : CMD0001

If the application crashed, is cancelled or killed:

snmpd is dead please remove pid file from posix file system: /var/run/snmpd.pid
return code : CMD0001

If application is running on POSIX, but has not been launched by the RC scripts or by the START-NET-SNMP
command:

snmpd is running but it has not been started by START-NET-SNMP
log file is on POSIX file system: /var/adm/snmpd.log
return code : CMD0001

Available exit codes when NET-SNMP package is installed:

Command name Exit codes

START-NET-SNMP NET0001

CMD0001

 122

STOP-NET-SNMP NET0001

NET0002

CMD0001

RESTART-NET-SNMP NET0001

NET0003

CMD0001

SHOW-NET-SNMP-STATUS NET0001

CMD0001

START-SNMP-AGENT NET0001

CMD0001

NET0003

NET0006

NET0007

NET0008

STOP-SNMP-AGENT NET0001

CMD0001

NET0004

NET0006

NET0007

NET0008

RESTART-SNMP-AGENT NET0001

CMD0001

NET0005

NET0006

NET0007

NET0008

SHOW-SNMP-AGENT-STATUS NET0001

CMD0001

NET0006

NET0007

NET0008

 123

Explanation of exit codes:

CMD0001: No error

NET0001: SNMP is not installed

NET0002: Unable to stop snmpd

NET0003: snmpd is not running: START-NET-SNMP

NET0004: Unable to stop net-snmp agent

NET0005: NET-SNMP agent is not running

NET0006: BCAM package is not installed

NET0007: SESAM package is not installed

NET0008: TCP-IP-AP package is not installed

Regarding NET0001 error

Error NET0001 will be returned in case of all possibilities different than CMD0001 or NET0002-NET0008.
This means if the error appears, the return code NET0001 POSIX subsystem is not installed

will be returned. If error with and appears, also NET0001 will be returned.RC=CCM0999 SC2=127

i

 124

4.2.2 SDF commands with parameter “AGENT-NAME”

These commands are available on the NETWORK-MANAGEMENT domain and require NET-ADMINISTRATION
permission.

Usage:

START-SNMP-AGENT AGENT-NAME=*ALL
STOP-SNMP-AGENT AGENT-NAME=*ALL
RESTART-SNMP-AGENT AGENT-NAME=*ALL
SHOW-SNMP-AGENT-STATUS AGENT-NAME=*ALL

AGENT-NAME accepts values: , , , , , , , , , *ALL APPMON CONSOLE OPENFT OPENSM2 SPOOL STORAGE HOST HSMS

, , or . If given command is run with parameter – the command will be performed for OPENUTM BCAM SESAM FTP *ALL

all agents.

Each commands in addition can return errors from NET0006 to NET0008 or NET0001 (descriptions are listed in
previous chapter).

Possible outputs:

START-SNMP-AGENT

If snmpdhas not been started by the RC script or by the START-NET-SNMP command:

snmpd is not running: START-NET-SNMP
return code : NET0003

If [agentName] is not running and START-SNMP-AGENT is executed a message will be displayed (also displayed
on the operator console):

[agentName] is started
log file is on POSIX file system: : /var/adm/[agentName].log
return code : CMD0001

If [agentName] is running and START-SNMP-AGENT is executed a message will be displayed:

The agents bcamAgent, sesAgent and ftpAgent are part of other products: BCAM, SESAM-SQL.*.SNMP-
SA, TCP-IP-AP. If those packages are not installed, START/STOP/RESTART/SHOW-STATUS command
for SNMP-AGENTS package will return errors described in “Exit codes for NET-SNMP package”

i

[agentName] mentioned in command/procedure output will be a name of currently processed subagent's
file name: appMonAgent, consoleAgent, openFTAgent, openSM2Agent, spoolAgent, storageAgent,
hostAgent, hsmsAgent, utmAgent, bcamAGent, sesAgent, ftpAgent

i

 125

[agentName] is already started
return code : CMD0001

STOP-SNMP-AGENT

If [agentName] is running and STOP-SNMP-AGENT is executed a message will be displayed (also displayed on
the operator console):

[agentName] successfully terminated
return code : CMD0001

If [agentName] is not running and STOP-SNMP-AGENT is executed a message will be displayed:

[agentName] is not running
return code : NET0005

If STOP command will not be executed with success

unable to stop [agentName]
return code : NET0004

RESTART-SNMP-AGENT

If [agentName] is not running and RESTART-SNMP-AGENT is executed a message will be displayed:

[agentName] is not running
return code : NET0005

If [agentName] is running and RESTART-SNMP-AGENT is executed a message will be displayed (also displayed
on the operator console):

[agentName] is restarted
log file is on POSIX file system:/var/adm/[agentName].log
return code : CMD0001

SHOW-SNMP-AGENT-STATUS

If [agentName] is not running and SHOW-SNMP-AGENT-STATUS is executed a message will be displayed:

[agentName] is not running
return code : NET0005

If [agentName] is running and SHOW-SNMP-AGENT-STATUS is executed a message will be displayed:

[agentName] is running
log file is on POSIX file system: :/var/adm/[agentName].log
return code : CMD0001

 126

If application crashed or was kill -9 or cancelled:

[agentName] is dead please remove pid file from posix file system: /var/run/[agentName].pid
return code : CMD0001

If application is running on posix but has not been run by RC scripts or START-SNMP-AGENT command:

[agentName] is running but it has not been started by START-SNMP-AGENT
log file is on POSIX file system: /var/adm/[agentName].log
return code : CMD0001

Behaviour of commands for AGENT-NAME=*ALL regarding return codes:

If a particular command is executed with parameter *ALL and at least one agent returns error different than
CMD0001, the return code will be set up to the code returned by this agent. Code NET0001 is common for all
agents so will be return by all agents or not return at all. So for example if for RESTART-SNMP-AGENT one of
agent return NET0005 the return code will be NET0005 even if rest of agents return CMD0001. For example:

/RESTART-NET-SNMP-AGENT AGENT-NAME=*ALL
appMonAgent is restarted
log file is on POSIX file system: /var/adm/appMonAgent.log
NET0005 consoleAgent is not started
openFTAgent is restarted
log file is on POSIX file system: /var/adm/openFTAgent.log
openSM2Agent is restarted
log file is on POSIX file system: /var/adm/openSM2Agent.log
spoolAgent is restarted
log file is on POSIX file system: /var/adm/spoolAgent.log
storageAgent is restarted
log file is on POSIX file system: /var/adm/storageAgent.log
hostAgent is restarted
log file is on POSIX file system: /var/adm/hostAgent.log
NET0005 hsmsAgent is not running
utmAgent is restarted
log file is on POSIX file system: /var/adm/utmAgent.log
bcamAgent is restarted
log file is on POSIX file system: /var/adm/bcamAgent.log
sesAgent is restarted
log file is on POSIX file system: /var/adm/sesAgent.log
ftpAgent is restarted
log file is on POSIX file system: /var/adm/ftpAgent.log

/show-ret
%Returncode:
%Subcode2 = 0
%Subcode1 = 64
%Maincode = NET0005

If more than one error occurs for *ALL parameter (this is possible only if one of SESAM, BCAM, FTP packages is
not installed) only the last error will be returned.

 127

 128

4.2.3 SDF command - example view

DOMAIN : NETWORK-MANAGEMENT COMMAND: START-SNMP-AGENT
OPERANDS : =*ALL

--
NAME = *ALL
 *ALL or *APPMON or *CONSOLE or *OPENFT or *OPENSM2 or
 *OPENSM2 or *SPOOL or *STORAGE or *HOST or *HSMS or
 *OPENUTM
 Chose net-snmp agent which will be run.

--

NEXT = *EXECUTE
 *EXECUTE"F3" / Next-cmd / *CONTINUE / *EXIT"K1" / *EXIT-ALL"F1" /
 *TEST"F2"

 129

4.3 NET-SNMP daemons and SNMP tools

SNMP daemon snmpd (snmp_en, #85)

SNMP trap daemon snmptrapd (snmp_en, #86)

SNMP tools snmpwalk, snmpget, snmpset and snmptrap (snmp_en, #87)

This manual includes only basic instructions for running NET-SNMP daemons and tools. For more details
about usage and configuration consult the publicly available Net-SNMP documentation on: http://www.net-
snmp.org/

i

http://www.net-snmp.org/
http://www.net-snmp.org/

 130

4.3.1 SNMP daemon snmpd

Before the is started for the first time, the file in the BS2000 system must be matched snmpd /etc/snmp/snmpd.conf
to the configuration used (see).section “System Group”

In order to start the SNMP daemon, the BS2000 user ID must possess the POSIX User ID 0 (SYSROOT).

snmpd configuration examples

Examples

When migrating from Emanate SNMP to NET-SNMP, please note that, for testing purposes, it is possible
to run both daemons at the same time, as long as they're started on different ports. This, however, is not
recommended, as this configuration might lead to unpredictable behavior from either agent.

i

NET-SNMP comprises the functionality of MIB-II, Event Services and Scheduling Services. This
functionality can be used as soon has been started.snmpd

i

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=61801731

 131

1.

2.

snmpd -LS0-4d -Lf /var/adm/snmpd.log -p /var/run/snmpd.pid -a &

-LS0-4d

Logging to the syslog with maximum log level LOG_WARNING.

-Lf /var/adm/snmpd.log

Log to the specified file.

-p /var/run/snmpd.pid

Saves daemon’s PID to file.

-a Log the source addresses of incoming requests.

-q Print information in a format which is simple to parse.

This will read standard from folder.snmpd snmpd.conf /etc/snmp

snmpd –C –c /etc/snmp/example.conf &

-C
Don’t use default configuration file.

-c
Load given configuration file.

snmpd –C --rwcommunity=public --master=agentx –x tcp:705 tcp:1111

&

-C
Don’t use default configuration file.

--rwcommunity=public
Set read\write community "public".

--master=agentx
Enable AgentX protocol.

-x tcp:705
Listen for AgentX connections on address.

tcp:1111
Listen for SNMP’s requests on address.

 132

1.

2.

4.3.2 SNMP trap daemon snmptrapd

By default, listens for incoming SNMP requests in UDP port 162 for all IPv4 addresses. You can modify snmptrapd
the setting by changing its configuration file (by default,) or by passing command line arguments. snmptrapd.conf
For more information on this, please refer to .section “Configuring SNMP trap daemon snmptrapd (snmptapd.conf)”

Snmptrapd configuration examples

snmptrapd -C -c ./trap.conf -Lo &

-C
Don't use default configuration file.

-c
Load given configuration file.

-Lo
Log to the stdout.

snmptrapd -C -Lo --authcommunity="log public" udp:1162 &

--authcommunity="log public"
Log all traps with trapcommunity "public".

udp:1162
Listen for trap notifications from all IPs on given socket.

snmptrapd should be started prior to the .snmpdi

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=61801738

 133

1.

2.

4.3.3 SNMP tools snmpwalk, snmpget, snmpset and snmptrap

snmpwalk

snmpwalk allows you to retrieve subtrees.

For more information on this subject, please consult the instructions page, available on the official Net-snmpwalk
SNMP open-source repositories.

Example

The following command will retrieve all of the variables under :system

snmpwalk -Os -c public -v 1 zeus system

-Os

(parsing option) Print only last symbolic element of OID (OID = object identifier).

-c public

where is the community name.public

-v 1

Will use 1st version of the SNMP protocol (community based).

zeus

Name of the target system.

system

OID name of the network entity.

snmpget and snmpset

snmpget is used to query for information on a network entity.

snmpset is used to set information on a network entity.

Examples

snmpget -c public zeus system.sysDescr.0

Will return value of OID if available.sysDescr.0

snmpset -c private -v 1 test-hub system.sysContact.0 s dpz@noc.rutgers.edu

Will set OID to the string value .sysContact.0 dpz@noc.rutgers.edu

test-hub
Name of the target system.

system.sysContact.0

OID of the object for which the value is to be set.

s type of variable that is to be set (here: string)

dpz@noc.rutgers.edu

New value.

mailto:dpz@noc.rutgers.edu
mailto:dpz@noc.rutgers.edu
mailto:dpz@noc.rutgers.edu

 134

snmptrap

snmptrap allows you to send an SNMP notification.

For more information on this subject, please consult the instructions page, available on the official Net-snmptrap
SNMP open-source repositories.

Example

The following command will send a notification for OID :sysDescr.0

snmptrap -v 1 -c public zeus sysDescr.0

-v 1

Will use 1st version of the SNMP protocol (community based).

-c public

where is the community name.public

zeus

Name of the target system.

sysDescr.0

OID which you want to send as notification.

 135

4.4 Starting and stopping the agents of SNMP-AGENT

The SNMP-AGENTS V1.0 delivery unit comprises the following agents:

appMonAgent - Application Monitor Agent for monitoring subsystems, BCAM and user applications as well as

job variables and logging files

consoleAgent - Console Monitor Agent for monitoring the console

hostAgent - Host Resources Agent to get information about the system, devices, file systems, and the installed

software.

hsmsAgent - HSMS Agent for monitoring the storage management system HSMS

openFTAgent - openFT Agent for monitoring the openFT file transfers

openSM2Agent - openSM2 Agent for monitoring the performance

utmAgent - openUTM Agent for monitoring UTM applications

spoolAgent - Spool Agent for monitoring SPOOL and RSO devices

storageAgent - Storage Agent for monitoring disks and pubsets

The agents can be started/stopped using rc scripts, see . This is the recommended practice.section “rc scripts”

In addition, it is possible to start the agents individually in POSIX using its program name, see also section “Agents-
.specific options for starting agents manually”

Prerequisites

Prerequisites for starting the agents manually are:

an operational LAN connection between BS2000 system and management platform

a started POSIX subsystem

an installed SNMPAGT subsystem

the SNMP daemon is running.snmpd

The SYSROOT privilege is required to start the agents:

It is recommended to start agents manually. The best practice is to use rc scripts to perform start/stop not
of the SNMP products.

i

 136

4.4.1 Agents-specific options for starting agents manually

This section describes only agent-specific options. All other agents could be started without specifying any
additional options, by calling them as simple binary using its program name.

Application Monitor agent

appMonAgent [-c <inputfile>]
 [-t <int>]
 [-r <old-file> <new-file>]

-c <BS2:inputfile>

You may specify a configuration file when you start the Application Monitor agent (see section
). If no configuration file is specified, all the subsystems recognized “Statements for the configuration file”

by the BS2000 system when the Application Monitor agent was started are monitored. The configuration
file, which is defined by < , must be stored in the BS2000 file system.inputfile>

-t <int>

Interval at which the agent checks for requests from the command program. The default interval is set to
five seconds.

File monitoring is carried out when the interval has expired.
The monitoring interval for subsystems is calculated as five times the value set for the timer interval, i.e.
25 seconds in the standard case.
It may happen that changes of state in applications or job variables may not be not notified until the timer
interval has expired.
The monitoring interval for DCAM applications is calculated as 60 times the value set for the time interval,
i.e. 5 minutes in the standard case.

-r <BS2:old-file> <BS2:new-file>

Converts the "old" configuration file (existing in SDF format) to the configuration file <new-file> with the
new format.

Console Monitor agent

consoleAgent -o <operid>
 -y <op-role1> [,<op-role2>,, <op-role10>] | -a <auth-file>
 [-k <password>]
 [-c <BS2:msg-filter>]
 [-n <BS2:negative-msg-filter>]
 [-r <proc>]

The agent needs credentials for console logging. These can be passed in two ways:

directly via the options , and (optional)-o -y -k

or via the authentication file using option -a

I.e. you have to specify either or - , and optionally .-a o -y -k

i

 137

The Console Monitor agent has further functions, see .Additional functions of the ConsoleMonitor agent

Description of the options:

-o <operid>

defines the operator ID

Mandatory operand if is not specified.-a

-y <op-role1> [,<op-role2>,, <op-role10>]

Name of the operator role containing the relevant routing code for console monitoring.

Mandatory operand if is not specified.-a

-a <auth-file>

Using you can alternatively specify the complete path name of the authentication file where -a <auth-file>
the role(s) and the password are defined.

Example: ./etc/snmp/.conMonAuth

Mandatory operand if and are not specified.-y -o

-k <password>

Definition of the password which authorizes the agent to access $CONSOLE. No specification (default
value) means that no password is required.

-k may not be specified together with .-a

-c <BS2:msg-filter>

Path name of the file containing the filter configuration of the agent. No

specification (default value) means that all messages will generate trap.

-n <BS2:negative-msg-filter>

Path name of the file containing the negative filter configuration of the agent. No specification (default
value) means that no message will be filtered out.

Additional functions of the Console Monitor agent

consoleAgent -A <auth-file>

Outputs a prompt with which an authentication file can be generated. This file remains encrypted with AES.

consoleAgent -s <auth-file>

Outputs the operator IDs and role(s) defined in the authentication file. If a password has been defined, *SET is
output, otherwise *NONE.

<auth-file> is the absolute path to the authentication file.

<auth-file> must be created before the agent is started. This can be done by the option, see below.-Ai

 138

HSMS agent

Starting the HSMS agent in the POSIX shell:

hsmsAgent -l <HSMS-library>

Description of the option:

-l <HSMS-library>

Path name of HSMS-SYSLIB, mandatory option.

openUTM agent for monitoring UTM applications

utmAgent [-c <BS2:inputfile>]

Description of the option:

-c <BS2:inputfile>

When the agent is started, a configuration file can be specified (see section“Configuring the openUTM
).agent”

Storage agent

Starting the storage agent in the POSIX shell:

storageAgent [-c <BS2:inputfile>]

Description of option:

-c < inputfile>BS2:

BS2000 configuration file describing the pubsets, disks or ROBAR applications are to be monitored.

 139

4.4.2 Starting BCAM, FTP and SESAM/SQL agents manually

These agents are part of the respective products and are supplementing functions of SNMP-AGENTS product as
follows:

bcamAgent - agent for monitoring and managing openNet Server parameters

ftpAgent - agent for monitoring and managing FTP servers

sesAgent - agent for monitoring SESAM/SQL databases

All of the presented agents don't have any agent-specific options, therefore they could be ran as the simple binary.

It is not recommended to start agents manually. The best practice is to use rc scripts to perform start/stop
of the SNMP products.

i

 140

5 NET-SNMP functions

Support of MIB-II (RFC 1213) (snmp_en, #92)

Other MIBs supported by NET-SNMP (snmp_en, #93)

Functionality of the Event services (snmp_en, #94)

Functionality of the Scheduling services (snmp_en, #95)

 141

5.1 Support of MIB-II (RFC 1213)

NET-SNMP supports the SNMP management defined in RFC 1213 using the following MIB-II groups:

System group for monitoring the system

SNMP group for SNMP monitoring

Interface group

IP group

ICMP group

TCP group

UDP group

It also provides a series of standardized and proprietary MIBs for SNMP administration.

in addition, NET-SNMP supports individual objects of other MIBS which are relevant for SNMP management in
BS2000.

The values (definition, access, ...) for the MIB groups can be displayed via a MIB browser.

 142

5.2 Other MIBs supported by NET-SNMP

SNMP framework MIB (SNMP engine)

The SNMP engine is defined in RFC 2271.

Objects of other MIBs supported by NET-SNMP

Besides the MIBs for the system and SNMP management, NET-SNMP also supports the other objects of the MIBs
relevant for SNMP management in BS2000 systems listed below.

Standardized MIBs

MIB root OID of the MIB

SNMP-MPD-MIB snmpMPDMIB

SNMP-TARGET-MIB snmpTargetMIB

SNMP-NOTIFICATION-MIB snmpNotificationMIB

NET-SNMP-EXTEND-MIB netSnmpExtendMIB

SNMPv2-MIB snmpMIB

IF-MIB ifMIB

NOTIFICATION-LOG-MIB notificationLogMIB

DISMAN-EVENT-MIB dismanEventMIB

DISMAN-SCHEDULE-MIB schedMIB

NET-SNMP-AGENT-MIB netSnmpAgentMIB

SNMP-USER-BASED-SM-MIB snmpUsmMIB

SNMP-FRAMEWORK-MIB snmpFrameworkMIB

SNMP-VIEW-BASED-ACM-MIB snmpVacmMIB

NET-SNMP-VACM-MIB netSnmpVacmMIB

 143

5.3 Functionality of the Event services

The Event services implements the Event MIB (RFC 2981). The Event MIB is divided into the following two
sections, which define the Event services range of functions:

Trigger section

Event section

These sections are configured with tables in the file according to the directives specified in snmpd.conf section
.“DisMan Event MIB”

Trigger section

The trigger section defines the MIB objects to be monitored and the conditions (trigger tests) with which an event is
triggered, e.g.

mteTriggerValueID specifies the OID of the MIB object to be checked.

mteTriggerTest specifies the conditions to be tested, e.g.

existence: whether the MIC object specified in TriggerValueID exists.

boolean: whether the value of this MIB object matches a value defined in the BooleanTable
(TriggerBooleanValue).

threshold: whether this value is above or below a threshold value defined in the ThresholdTable.

mteTriggerSampleType specifies whether the reference value is to be interpreted as an absolute value
(absolute) or as a difference (delta) from a value determined during a previous query.

mteTriggerFrequency specifies the time interval (in seconds) between two contiguous queries.

Depending on the type of test, entries may require a further table:

mteTriggerExistenceTable: Object exists / disappears / changes value.

mteTriggerBooleanTable: Benchmark test of the object or delta value with the reference value.

mteTriggerThresholdTable: Object or delta value falls above / below threshold value.

If the test result is positive, a search is made in the EventTable for an appropriate entry for the action to be carried
out.

Event section

The Event section defines which action - SNMP trap and/or SNMP SetRequest - is to be triggered in response to a
successful trigger test, in the object EventAction:

notification (SNMP trap): The OID of the trap to be sent is defined in the EventNotificationTable.

set (SNMP SetRequest): The OID of the MIB object and the value to be set are defined in the EventSetTable.

Notifications

The Event MIB offers the following traps, which can be sent in response to triggered events.

mteTriggerFired reports that the trigger monitoring an object has been triggered.

mteTriggerRising reports that the threshold value has been exceeded.

mteTriggerFalling reports that the value has fallen below the threshold value.

 144

Objects passed with a notification are entered in the and specified in the corresponding entry in the:Objects Table

Trigger Table

ExistenceTable / Boolean Table / Threshold Table and / or

Notification Table

The following notifications should be used only to help diagnose a problem, that has appeared in the error counters
and cannot be found otherwise:

mteTriggerFailure reports that an attempt to check a trigger has failed.

mteEventSetFailure reports that an attempt to do a set in response to an event has failed.

 145

5.4 Functionality of the Scheduling services

Scheduling services implement the Scheduler MIB (RFC 2591), which supports the following types of scheduling:

Periodic scheduling

Scheduling on the basis of calendar dates

One-shot scheduling

Scheduling services configuration should be performed in the according to the directives from snmpd.conf section
.“DisMan Schedule MIB”

Periodic scheduling

Periodic scheduling is based on specific time intervals between two consecutive SNMP set operations initiated by
the Scheduler services. A time interval is defined by the number of seconds elapsing between two continuous
SNMP statements.

Scheduling on the basis of calendar dates (calendar scheduling)

Scheduling on the basis of calendar dates initiates actions on specific week days or days in a month. A calendar
time is specified by giving the month, day, weekday, hour and minute.

You can specify a number of values for each date and thus define complex scheduling operations. The scheduling
can for instance initiate a specific action every 15 minutes on a given weekday.

Date specifications based on months, days and weekdays can be defined using the following BITS type scheduler
MIB objects:

schedMonth

schedDay

schedWeekDay

Setting several bits in one of these MIB objects has the effect of a logical OR. If, for instance, you set the bits
Monday (1) and Friday (5) in , the scheduling initiates the actions specifically on Mondays and schedWeekDay
Fridays.

The cross-object combination of bit fields from , and has the effect of a schedMonth schedDay schedWeekDay
logical AND. If, for instance, you set the bits June (5) and July (6) in and the bit fields Monday (1) and schedMonth
Friday (5) in , the scheduling is limited to initiating actions exclusively on Mondays and Fridays in schedWeekDay
the months of June and July.

When specifying dates, you can implement wildcard functionality if you set all bits to "1".

One-shot scheduling

One-shot scheduling is similar to scheduling on the basis of calendar dates. The only difference is that one-shot
scheduling is automatically deactivated once an action has been initiated.

 146

Actions

Actions initiated by scheduling model SNMP set operations on MIB objects whose OID is configured in the object
. The value to be set is specified in the object . Actions defined in this MIB are limited to schedVariable schedValue

INTEGER type objects. This restriction does not however reduce the usability of the scheduler MIB. Simple
scheduling is thus possible, e.g. scheduling the activation/deactivation of resources with a corresponding status MIB
object (e.g.).ifAdminStatus

 147

6 SNMP-AGENTS functions

The agents from SNMP-AGENTS implement the functionality described by the following MIB files:

FJ-Application-Monitoring-MIB.txt

FJ-Console-Monitoring-MIB.txt

FJ-HOST-RESOURCES-MIB.txt

FJ-HSMS.txt

FJ-OPENFT-MIB.txt

FJ-OPENSM2-MIB.txt

FJ-SPOOL-MIB.txt

FJ-Storage-Management-MIB.txt

FJ-UTM-MIB.txt

The MIBS for the agents are located in the directory and can be displayed via a MIB /usr/share/snmp/mibs

browser and thus are not described in detail.

 148

6.1 Application Monitor agent

The Application Monitor agent allows monitoring of:

user applications

BCAM applications

DCAM applications

subsystems

job variables and

log files

Logically associated components of a process (applications, log files, subsystems and job variables) can be
monitored together as a group.

The term applications are taken to mean programs and tasks here. The type and extent of application monitoring is
controlled individually with the configuration file. Please see the corresponding section on section “Statements for

 for information on configuration file creation.the configuration file”

Log files

Monitoring via log files is provided for those applications that cannot send a trap to the management station
themselves. Instead of this, these applications deposit messages in a log file that is monitored by the Application
Monitor. The Application Monitor agent evaluates these messages and sends filtered messages to the management
station as a trap.

BS2000 log files must be of type ISAM and must be shareable (SHAREUPD=YES). NFS or POSIX log files can be
in ASCII or EBDIC format. The default format is EBDIC, ASCII format must be marked in the configuration file. The
file name entry in the configuration file must contain the user ID for BS2000 or the absolute path name in the case
of
NFS / POSIX. The agent cannot otherwise discriminate between BS2000 and
NFS / POSIX files.

By default, log files are checked every 5 seconds by the agent. This value can be changed in the start command
using the option. If the agents detect changes to the files, a trap is sent to the management station for new -t
messages, if they are matching the given pattern. When no pattern was specified, all message will trigger traps.

 149

6.2 Console Monitor agent

The Console Monitor agent is the agent for monitoring the console interface. It is used for acquiring console
messages and entering console commands.

 150

1.

2.

6.2.1 Acquiring console messages

Console messages are received by the Console Monitor agent and sent to the
management station singly with the computer name and time as trap. The number of messages you will have to
deal with will depend on the number, utilization and size of the computers monitored by the Console Monitor agent.
It will, however, very seldom be meaningful to pass all console messages on to the management station. The
Console Monitor agent therefore provides two options for filtering console messages. Positive and negative
message filters are provided.

Positive message filter

Each console message is assigned a specific routing code. You define the messages to be output on the
management station by selecting specific routing codes which are defined in operator roles.

The message codes of console messages, query or TYPE I/Os can also be used as selection criteria to define
which messages are sent to the management station. The relevant message codes are stored in a message
filter file and this is evaluated by the Console Monitor agent when it is started and during a session if the file is
updated

Negative message filter

The Console Monitor agent allows you to suppress certain messages when logging on to UCON.

Creating the message filter file, which must be specified when the agent is started, is described in section “Agents-
. The message filter file can be modified during a session by writing the specific options for starting agents manually”

 MIB object (positive message filter) and via the command program; the negative message filter consMonMsgFilter
 cannot be modified during operation.consMonNegMsgFilter

If the newly assigned message filter file cannot be opened, it is rejected with the return code and the General error
old file is used. No traps are sent to the management station if the message filter file contains either no message
codes or no valid ones. The negative message filter cannot be modified during a session.consMonNegMsgFilter

 151

6.3 Host Resources agent

The Host Resources agent supplies information about the system, devices, and file system, as well as about the
installed software according to Standard RFC 1514.

 152

6.4 HSMS agent

The HSMS agent allows you to read and change global HSMS data. It also supplies detailed information on HSMS
requests and their states. You can restrict the scope of the information displayed using the selection criteria "state"
and "origin". The HSMS agent itself does not send any traps.

All HSMS requests that are processed by the respective BS2000 host are displayed in a table. The HSMS agent
determines this information by evaluating an OPS variable.

The number of requests displayed can be restricted depending on the

processing state of the requests

host from which the request originates

To ensure that the agent can continue displaying the requests even after they have terminated, the
requests must not be deleted by command. Requests with the status are, however, deleted COMPLETED
automatically by an implicit recovery at the start of each HSMS session.

!

 153

6.5 openFT agent

The file transfer agent is used for

starting and stopping openFT (BS2000)

acquiring system parameter information

changing the encryption public key

statistic data output

diagnosis control

outputting partner information

FT is started and stopped via the openFT agent by setting the value of to and ftStartandStop.0 START STOP
respectively.

 154

6.6 openSM2 agent

The performance agent for openSM2 supplies information on openSM2 itself, i.e. on subsystem status, version,
measurement interval size and sampling cycle.

The actual measurement values correspond to the SM2 report groups and provide information on

CPU utilization

I/O activities

main memory and virtual address space utilization

main memory occupation by the four standard task categories

input/output operations to peripheral devices during a measurement interval

application-specific data of UTM applications

resource usage of separate tasks

measurement values for VM2000 systems

BCAM traffic statistics

channels utilization

 155

6.7 openUTM agent

The openUTM agent provides the following services:

monitoring and controlling selected openUTM applications

information on system parameters, physical and logical terminals, terminal pools, transaction codes, transaction
classes, user data, connections and statistic data

modifying application properties and system parameters

locking/unlocking UTM data terminals

changing the configuration file

terminating an UTM application

 156

6.8 Spool agent

The SPOOL and RSO devices are monitored by the spool agent, which supplies information about devices and
print jobs. The spool agent is supplied with a proprietary MIB that consists of the device group and the job.

 157

6.9 Storage agent

The agent for storage management supplies information about pubsets and disks as well as on the availability of
the storage management products HSMS, MAREN and ROBAR. Correspondingly, a proprietary MIB is supplied
with the agent, which contains the following information in addition to the global data of the storage management
agent:

general information about HSMS, MAREN and ROBAR

resource information,

display of all pubsets in a table

display of all disks in a table

There are configurable monitoring possibilities for the following parameters (see section“Configuring the Storage
):agent”

changes of pubset saturation level

state of disk reconfiguration

 158

7 BCAM, SESAM/SQL and FTP agents functions

This chapter describes the functionality of the BCAM, SESAM/SQL and FTP agents. FTP is part of interNet
Services and delivered via TCP-IP-AP.

 159

7.1 BCAM agent

The BCAM agent implements a private MIB FJ-BCAM-MIB which defines monitoring of:

BCAM memory usage

BCAM trace setting

Applications configured in BCAM

Connections

Routers, routes and network connections

Hosts

Mapping of addresses to applications

 160

7.2 FTP agent (from TCP-IP-AP package)

The FTP agent implements a private MIB FJ-FTP-MIB, which allows monitoring and controlling the FTP server. The
following information is provided:

notification about the start or shutdown of an FTP server

server-specific data about various parameters and statuses of the server

connection data

The following server controlling options are available:

start the FTP server

set the FTAC level (when the FTP server is started)

shut down the FTP server

activate/deactivate a socket trace

activate/deactivate debugging

save the log file

increase the maximum possible number of parallel connections

modify the timeout value for connections

set the FTAC job class (FTACJob)

 161

7.3 SESAM/SQL agent

The SESAM/SQL agent supplies information about SESAM/SQL databases, DBHs and DCNs, which are used to
process these databases.

 162

8 Example for operating the management station

This chapter provides an integration Example in NagiosXi. It describes how a value from a BS2000 server can be
read out and monitored via SNMP.

A simple example will be shown, because there is large number of values and different parameters for each of
these values.

Go to the NagiosXI URL and use the () tab to navigate to the Konfigurieren Configure
configuration wizard overview page. There choose the ():SNMPWizard SNMPWizard

Define the BS2000 to be monitored using the IP address ().Geräte-Adresse

If required/desired choose an alias/display name for the server:

Select the SNMP version, the port and the SNMP community:

 163

From the Management Information Base (MIB) select the required/desired object (s) using the Object Identifier
(OID):

Choose the monitoring interval:

Set, if someone should be notified in case of problems:

 164

Specify the people and groups, who need to be notified:

Optional service groups can be used and host parents can be selected:

Click on the bottom (), to save configuration:Anwenden Apply

 165

Under (you can KonfigurierenCore Config Manager Dienstleistungen Configure Core Config Manager Services)
check the configuration. Click on the bottom ().Test Ankunft Befehl Test arrival command

If the command is processed correctly, SNMP OK and an appropriate value should be returned.

What the individual values m ean, can be looked up in the MIB.

Under (ZuhauseHost Status Hosteintrag - Leistungsdiagramme (Graphsymbol) HomeHost Status Host Entry -
) you can view the performance charts for your host:Performance Diagrams (graph icon)

Using the blue arrows in the upper left corner, these can be attached to dashboards.

 166

9 Appendix: Procedure in the event of errors

Each agent keeps trace files in which error messages are logged as standard.

 167

9.1 Format of the logging entries

By default, each agent stores its logging entries in the file . The entries of this logging file have the /var/adm/syslog
following basic format:

<date> <time> keyword <daemon>[pid]: <message text>

<date> <time>

Time stamp of the logging entry.

keyword

Keyword for classifying the message (e.g. LOG_INFO, LOG_NOTICE, LOG_DEBUG and LOG_ERR).

daemon[pid]

Process name (daemon name) of the agent with the information on the corresponding process ID (PID). If
there a is no valid PID available for the message output (e.g. in the case of a message output during starting
the daemon), an empty bracket expression is output.

message text

Plain text of the message.

 168

9.2 Configuring logging files of agents

Logging of agents is configurable and will be performed to the POSIX file which is specified when starting the agent.

Examples:

bcamAgent -Lf /var/adm/bcam.log

will start and write the logging entries to the file.bcamAgent /var/adm/bcam.log

bcamAgent -Ls d

will start and write the logging entries to the default logging file with daemon facility.bcamAgent /var/adm/syslog

 169

9.3 Debug options

All SNMP related products are supporting the debug arguments, which could be configured either by snmp.conf
(see) or passed by the command line arguments .section “Client behavior” -D[TOKEN[,...]]

The following tokens available:

in all SNMP products:

agentx
init_mib
mib_init
parse-file
parse-mibs
read_config
recv
snmp
transport
trap

in snmpd only:

disman
dumpv
dumph
exec
mteTrigger
run
snmpd

snmptls
snmpusm
snmpv3
usm
usmUser

in SNMP-AGENTS as well as in BCAM, FTP and SESAM/SQL agents:

DEBUG (be careful, as it's printing a lot of diagnostic information)

Also, each agent has its separate debugging token, which can be found in the next table:

Agent Token

appMonAgent appMon

bcamAgent bcam

consMonAgent console

spoolAgent spool

fjSpool

ftpAgt ftp

 170

ftpAgent

hostAgent host

hsmsAgent hsms

openFTAgent openFT

openSM2Agent openSM2

sesAgent sesam

storageAgent storage

utmAgent utm

 171

10 Glossary

agent

The agent is also known as the management agent. It is the implementation of
a management protocol that exchanges management information with a
management station. An agent is a program that runs on a system or device
and
reports the current information about the system/device to a manager or
corresponding management application.

alarm A group of states and state transitions. The states correspond to entities of an
object type with attribute values that are specified by the network administrator.
Whenever the monitored object type of a device or line changes into a state
that
the administrator has defined as an alarm state, the management platform
reports the event by displaying a corresponding icon and changing the color of
the alarm and device icons.

attribute An attribute is part of an object type definition in an MIB module. It defines one
characteristic in an object type. If an object type contains more than one
instance, the attributes define the columns and the entities the rows in the
object
type table. The table entries are the instance values for the attribute.
See also and .object type object instance

characteristic

This can be either an object type or a characteristic string. Both can belong to one characteristic
group. A characteristic string is a characteristic (but not an object type) that is added to a
characteristic group by the manufacturer or network administrator for the purpose of restricting the
scope of polls and alarms. A characteristic string defines the menu and submenus that are available
in the device overview under the button. objects
It also defines the applications that are available in the device view under the button.applications

community string

A simple password that is shown in the network map when a device icon is added. The agent that
runs on the device requires this password from the manager before information about the device is
made available.

connection

The object instance that describes a (line) connection to a network
management device.

connection instance

 172

An object instance of a connection to a device. See .object instance
Both ends of a line icon can be assigned to one device. This connection has
two
aspects. Firstly, it is a graphical representation of part of the physical network;
secondly, it is an object type of the device (e.g. an object type for connection or
junction information).

device A network system, router, hub or other addressable equipment within the
network, but not a line, tap or network map icon.

event report

Event reports indicate errors, state changes and similar important events in the
system. They occur asynchronously (spontaneously), are
commandindependent, object-oriented and are delivered to an arbitrary
network
management station within the network, according to the requester principle.

gateway A gateway connects heterogeneous networks.

HTML HTML (HyperText Markup Language) is a standardized markup language that
consists of a subset of the SGML Standard (Standard Generalized Markup
Language). HTML documents can be exchanged between any computer
systems using the standardized HTTP communications protocol.

HTTP HTTP (HyperText Transfer Protocol) is the communications protocol used
between systems in the World Wide Web (WWW). HTTP enables documents
to be exchanged between any computer systems / applications.

Internet Communication architecture characterized by the user of TCP and IP, having
developed from the ARPA network in the USA. Extensions are controlled by
the
IAB with the aid of the RFC process.

IP address

Representation of a connection point in the Internet:
IPv4: 4 bytes (32 bits), IPv6: 16 bytes.

major trap number

The SNMP Standard (RFC 1157) defines seven trap categories with the numbers
0 to 6. These numbers are designated as major trap numbers.

management station

A system in the network on which a management application runs.

manufacturer-specific extensions

Additional SNMP management objects for a device that are supplied by a
manufacturer for the agents of this device. They are also frequently known as
manufacturer’s MIB.

 173

MIB MIB stands for "Management Information Base". This designates a data
model
that describes the network elements to be administered with network
management (managed nodes), in an abstract form. This data model consists
of the formal descriptions of object types (object classes) that are constructed
according to the RFC 1157 conventions.

MIB-II MIB-II is a standard MIB whose use is obligatory in the Internet. It offers an
adequate data model for managing devices. MIB-II is standardized and is
defined in RFC 1213.
It is an extension of MIB-I (RFC 1156).

network management protocol

The protocol for exchanging management information.

network map

A collection of lines and icons that are arranged into a group of interconnected network maps. The
corresponding network map background maps that display a network and its subnetworks are
optional.

network map file

A text file that contains the configuration information for its network: the file names of background
maps for network and subnetwork maps; the file names and positions of icons for systems, routers,
hubs and lines; configuration information for polls, masks and alarms; characteristic groups. This file
is also called the " Map Database" or "Map_db" file.

network map icon

An icon that displays a network map in a group of nested network maps. The
icon is displayed in the next higher network map. Network map icons can
also
be user-defined.

object In an MIB: an object type or attribute.
On the graphical interface: device, line, tap, poll, mask or alarm, or a specific
instance of this.

object instance

Represents the characteristics (attribute values) of a device. The entities are managed by the device
agents.
The object instance is specified by the instance identifier or index.

object identifier (OID)

A notation that designates the position of an object in an MIB tree. For example,
1.3.6.1.4.1.231.1.3.2 (.1.3.2) specifies an RM600 system. iso.org.dod.internet.private.enterprise.fj
There are also MIB names for the object identifier (e.g. for a Cisco router).cisco

object type

http://iso.org.dod.internet.private.enterprise.fj

 174

A class of object entities of the same type, that is defined by a formal
description. There may be one or more entities on one device for an object
type.
The object type is in the form of a table if more than one instance is possible for
an object type on one device. Each row of this table represents one object
instance and the columns the attributes of the object type.
Object class is another name for object type.

ping A protocol with which the IP levels connectivity from one IP address to another
is checked.

poll Cyclic request for information about MIB object types. The network
administrator can carry out configuration.

poll cycle

The poll cycle is the parameter that defines how often SNMP contacts an
agent
on a device in order to call up information from the MIB of this device.

protocol A number of rules with which systems communicate with each other
See also and .SNMP ping

RFC Request for comments. The series of documents that describe the Internet
protocol and related standards.

SNMP SNMP stands for "Simple Network Management Protocol". SNMP is a standard
protocol for network management in TCP/IP networks.

state Alarm state: an element in an alarm definition (see).alarm
MDC state: the window shows a code under the Domain Table View state
entry.
This code describes whether a local or remote Client Manager sends or
receives a domain.

state transition

Alarm change of state that is activated by a trigger.

subnetwork

A physical network within an IP network.

subnetwork icon

An icon in a root or subnetwork map that represents a nested subnetwork map
one level below the current network or subnetwork map.

tap A tap represents the connection point between a device and the network in a
network map. A tap can be created, configured and deleted, but it cannot be
managed.

 175

TCP/IP TCP/IP stands for "Transmission Control Protocol/Internet Protocol", i.e. the
Internet protocol. A number of rules that define how systems communicate with
each other in an open (not manufacturer-bound) environment. This is normally
a large communication infrastructure (Internet).

trap Under SNMP, traps are problem reports that are sent automatically by an agent.

trigger A trigger is a message that is sent by the poll or mask system to the alarm
system. An alarm executes a state transition when a specific trigger is received.

URL URL (Uniform Resource Locator) is a character string which users enter in their
Web browser to access a WWW document.
The URL for the WWW contains the address of the required Website and
consists of the following components: protocol, computer address (host domain
name or IP address), port number if required, path and file name if required,
and
(optionally) details of a place within the document text.

variable Under SNMP, a variable is the result of linking an object instance name with an
assigned value.

 176

11 Related publications

You will find the manuals on the internet at . You can order printedhttp://manuals.ts.fujitsu.com
copies of those manuals which are displayed with an order number.

BS2000 manuals

openNet Server V4.0
BCAM V24.0A Volume 1/2
User Guide

openNet Server V4.0
SNMP-Management for openNet Server
User Guide

interNet Services V3.4B (BS2000)
Administrator Guide

interNet Services V3.4B (BS2000)
User Guide

BS2000 OSD/BC V11.0
DSSM V4.3
Subsystem Management
User Guide

HSMS (BS2000)
HSMS Functions
User Guide

openFT (BS2000)
Command Interface
User Guide

openFT (BS2000)
Installation and Operation
System Administrator Guide

openUTM
Generating Applications
User Guide

http://manuals.ts.fujitsu.com

 177

openSM2
Software Monitor
User Guide

SPOOL V4.6A (BS2000)
User Guide

RSO V3.5A / V3.6A(BS2000)
Remote SPOOL Output
User Guide

SESAM/SQL-Server V9.1 (BS2000)
Database Operation
User Guide

POSIX (BS2000)
Basics for Users and System Administrators
User Guide

IMON V3.2 (BS2000)
Installation Monitor
User Guide

Other related publications

Douglas Steedman
Abstract Syntax Notation One (ASN.1): The Tutorial and Reference
Isleworth, 1990
(ISBN 1-871802-06-7)

Marshall T. Rose
The Simple Book: An Introduction to Management of TCP/IP-based Internets
Prentice-Hall
(ISBN 0-13-812611-9)

Ordering RFCs
If the Requests for Comments (RFCs) referred to in the text are available under the URL

.https://www.rfc-editor.org/

https://www.rfc-editor.org/

	SNMP
	Preface
	Contents of the manual
	Target group
	Summary of contents
	Notational conventions
	Changes compared to the previous version
	README file

	Overview
	Basic features of the SNMP management architecture
	SNMP management in BS2000 - embedding and functionality
	Product structure
	Structure of the SNMP collection in BS2000
	SNMP daemon (snmpd)
	Agents
	User interface for the SNMP management of BS2000
	Parallel operation of SNMP V6.x and NET-SNMP

	Security considerations when using SNMP
	Recommendations for general network and system security
	Recommendations for using the SNMP service safely
	Community strings for receiving SNMP requests
	Advanced security options for receiving SNMP requests
	Community strings and controlling access to MIB objects
	Community strings and sender addresses
	Recipient’s addresses for SNMP traps
	Community string for SNMP traps

	Installation and configuration
	Software requirements
	Installation in BS2000 OSD/BC
	Installation defaults
	Delivery scope of NET-SNMP
	Installing products manually
	Uninstallation

	SNMP configuration in BS2000
	Listening addresses in BS2000
	SNMP general configuration (snmp.conf)
	Client behavior
	SNMPv3 settings
	Server behavior
	MIB handling
	Output configuration

	AgentX configuration (agentx.conf)
	Command line arguments

	Configuring NET-SNMP
	Configuring SNMP daemon snmpd (snmpd.conf)
	Agent behavior
	AgentX options
	SNMPv3 configuration
	SNMPv3 authentication
	Access control
	System Group
	Active monitoring

	DisMan Event MIB
	DisMan Schedule MIB
	Arbitrary Extension Commands
	Configuration example
	Reconfiguring the daemon
	Configuring SNMP trap daemon snmptrapd (snmptapd.conf)
	snmptrapd behavior
	Access Control
	Notification Processing
	Logging
	Format Specifications

	SNMP-AGENTS configuration
	Application Monitor agent configuration
	Statements for the configuration file
	Change in the configuration file during the current session

	Configuring the Console Monitor agent
	Positive message filter
	Structure of the positive message filter
	Negative message filter
	Modifying the configuration file during operation

	Configuring the Storage agent
	Configuring the openUTM agent
	Preparation
	Configuring the openUTM agent for monitoring several UTM applications
	Runtime environment
	Diagnostic documents

	Configuring the openSM2 agent
	Configuring the HSMS agent
	TCP-IP-AP configuration

	Operations
	rc scripts
	SDF commands and procedures
	SDF commands without any parameters
	SDF commands with parameter “AGENT-NAME”
	SDF command - example view

	NET-SNMP daemons and SNMP tools
	SNMP daemon snmpd
	SNMP trap daemon snmptrapd
	SNMP tools snmpwalk, snmpget, snmpset and snmptrap

	Starting and stopping the agents of SNMP-AGENT
	Agents-specific options for starting agents manually
	Starting BCAM, FTP and SESAM/SQL agents manually

	NET-SNMP functions
	Support of MIB-II (RFC 1213)
	Other MIBs supported by NET-SNMP
	Functionality of the Event services
	Functionality of the Scheduling services

	SNMP-AGENTS functions
	Application Monitor agent
	Console Monitor agent
	Acquiring console messages

	Host Resources agent
	HSMS agent
	openFT agent
	openSM2 agent
	openUTM agent
	Spool agent
	Storage agent

	BCAM, SESAM/SQL and FTP agents functions
	BCAM agent
	FTP agent (from TCP-IP-AP package)
	SESAM/SQL agent

	Example for operating the management station
	Appendix: Procedure in the event of errors
	Format of the logging entries
	Configuring logging files of agents
	Debug options

	Glossary
	Related publications

