
English

FUJITSU Software

openUTM V7.0

Generating Applications

User Guide

*

November 2019

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: .bs2000services@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN ISO

.9001:2015

Copyright and Trademarks
Copyright © Fujitsu Technology Solutions GmbH.2019

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:bs2000services@ts.fujitsu.com

Table of Contents

 Generating Applications . 11
1 Preface . 12

1.1 Summary of contents and target group . 14
1.2 Summary of contents of the openUTM documentation 15

1.2.1 openUTM documentation . 16
1.2.2 Documentation for the openSEAS product environment 19
1.2.3 Readme files . 20

1.3 Changes in openUTM V7.0 . 21
1.3.1 New server functions . 22
1.3.2 Discontinued server functions . 26
1.3.3 New client functions . 27
1.3.4 New functions for openUTM WinAdmin . 28
1.3.5 New functions for openUTM WebAdmin . 29

1.4 Notational conventions . 30
2 Introduction to the generation procedure . 32

2.1 Configuring the UTM application . 34
2.2 Generating application components - result of the KDCDEF run 35
2.3 The KDCFILE . 46

2.3.1 Administrative data . 49
2.3.2 Page pool . 50
2.3.3 Restart area . 53
2.3.4 Creating a new KDCFILE during operation . 55

2.4 Performance aspects - tuning . 56
2.4.1 Splitting the KDCFILE . 57
2.4.2 KDCFILE on raw-device (Unix and Linux systems) . 59
2.4.3 KDCFILE on a stripe set (Windows systems) . 62

3 Generating applications for distributed processing . 63
3.1 Distributed processing via the LU6.1 protocol . 64

3.1.1 Transport connections and SNA sessions . 65
3.1.2 Generation notes . 66
3.1.3 Procedure when generating LU6.1 connections . 68
3.1.4 LU6.1-LPAP bundles . 73
3.1.5 Usage of LU6.1-LPAP bundles for communication with an UTM cluster

 application on Unix, Linux and Windows systems . 75
3.2 Distributed processing via the OSI TP protocol . 79

3.2.1 OSI terms . 80
3.2.2 Generation of distributed processing based on OSI TP 85

3.2.3 OSI-LPAP bundles . 91
3.3 Coordinating the UTM and BCAM configurations (BS2000 systems) 94
3.4 Providing address information for the CMX transport system (Unix, Linux and

 Windows systems) . 95
3.4.1 Providing address information with KDCDEF . 96
3.4.2 Converting address information from TNS entries to KDCDEF 98

3.5 Providing address information for the SOCKET transport system (Unix, Linux
 and Windows systems) . 101

3.6 Network connection (Unix, Linux and Windows systems) 102
3.7 Computer names (Unix, Linux and Windows systems) 103

3.7.1 Specifying computer names in KDCDEF generation 104
3.7.2 KDCNAMEINFO tool . 105

4 Generating selected objects and functions of the application 106
4.1 Connecting clients to the application . 107

4.1.1 Connecting clients via LTERM partners . 108
4.1.2 LTERM pools . 111
4.1.3 LTERM bundle . 115
4.1.4 LTERM groups . 118
4.1.5 Connecting OpenCPIC clients . 121
4.1.6 Defining the client sign-on procedure . 122

4.1.6.1 Establishing an automatic connection . 123
4.1.6.2 Automatic sign-on under a specific user ID . 124
4.1.6.3 Generating sign-on services for clients . 125
4.1.6.4 Multiple sign-ons . 126

4.1.7 Specifying maximum waiting times for dialog prompting 127
4.1.8 Generating security functions . 128

4.1.8.1 Defining system access control . 129
4.1.8.2 Assigning administration authorizations . 130

4.1.9 Generating restart functionality . 131
4.1.10 USP headers for output messages to USP socket applications 132
4.1.11 Providing address information . 133

4.1.11.1 Providing address information for clients of type UPIC and APPLI on
 BS2000 systems . 135

4.1.11.2 Providing address information for clients of type UPIC and APPLI on Unix,
 Linux and Windows systems . 136

4.1.11.3 Additional information for LTERM pools on Unix, Linux and Windows
 systems . 138

4.1.12 Examples for the generation of a client/server combination 139
4.2 Generating printers (on BS2000, Unix and Linux systems) 144

4.2.1 Generating RSO printers (BS2000 systems) . 147
4.2.1.1 Entries for the KDCDEF generation . 148
4.2.1.2 Entries for RSO and SPOOL . 149

4.2.1.2 Entries for RSO and SPOOL . 149
4.2.1.3 Activating printers for openUTM . 152
4.2.1.4 Querying printer information . 153
4.2.1.5 Releasing printers in the event of an error . 154

4.2.2 Generating printer pools . 155
4.2.3 Bypass mode (BS2000 systems) . 156
4.2.4 Generating printer control LTERMs . 157

4.3 Generating service-controlled queues . 159
4.3.1 USER queues . 160
4.3.2 TAC queues . 161
4.3.3 Temporary queues . 162
4.3.4 Specifying the maximum waiting time for reading from service-controlled queues
 . 163
4.3.5 Limiting the maximum number of redeliveries to service-controlled queues . 164

4.4 UTM messages . 165
4.4.1 Messages in openUTM on BS2000 systems . 166
4.4.2 Messages in openUTM on Unix, Linux and Windows systems 168
4.4.3 User-specific message destinations . 170

4.5 Message distribution and multiplexing with OMNIS (BS2000 systems) 171
4.5.1 Multiplex connections . 172

4.5.1.1 Defining multiplex connections . 174
4.5.1.2 Confirming the connection shutdown by the partner 175

4.5.2 Statistics on multiplex connections . 176
4.5.3 Combination of multiplex connections and direct connections 177

4.6 Generating load modules, common memory pools and shared code (BS2000
 systems) . 178

4.6.1 Generating load modules . 179
4.6.2 Generating shared code and common memory pools 182

4.6.2.1 Shared code in system memory . 183
4.6.2.2 Shared code in common memory pools . 184

4.7 Code conversion . 186
4.8 Job control - priorities and process limitations . 188

4.8.1 Job processing via priority control . 191
4.8.2 Job processing via process limitation for TAC classes 193
4.8.3 Comparison of some of the properties of the two methods 194
4.8.4 Process priorities on BS2000 systems . 196

4.9 Authorization Concept . 197
4.9.1 Lock/key code concept . 198
4.9.2 Access list concept . 200
4.9.3 Data access control with distributed processing . 203

4.10 Message encryption on connections to clients . 205
4.10.1 Requirements . 206

4.10.2 Encryption methods . 207
4.10.3 Encrypting passwords and user data . 208

4.10.3.1 System access control . 209
4.10.3.2 Data access control . 210

4.10.4 Creating the RSA key pair and reading the public key 211
4.11 Defining database linking . 212

4.11.1 Linking databases on BS2000 systems . 213
4.11.2 Linking to a Resource Manager on Unix, Linux and Windows systems 214

4.12 Internationalizing the application - XHCS support (BS2000 systems) 216
4.12.1 Definitions of XHCS terms . 217
4.12.2 Defining the language environment - setting the locale 219
4.12.3 Character set names for edit profiles and formats . 221
4.12.4 Querying the language environment in a UTM program unit 222
4.12.5 Character sets for editing messages . 223

5 Notes on generating a UTM cluster application on Unix, Linux and Windows
 systems . 225

5.1 Generating a UTM cluster application . 226
5.1.1 UTM cluster files . 227
5.1.2 KDCDEF statements . 231
5.1.3 Initial KDCFILE . 232

5.2 Generating a reserve node application . 233
5.3 Using global memory areas . 234
5.4 Using users with RESTART=YES . 235
5.5 Special issues . 236
5.6 Special issues with LU6.1 connections . 237

6 The KDCDEF generation tool . 238
6.1 Creating the ROOT table source, the KDCFILE and UTM cluster files 239

6.1.1 Statements for controlling the KDCDEF run . 240
6.1.2 Statements for creating the ROOT table source . 241
6.1.3 Basic statements for creating a KDCFILE . 242

6.1.3.1 Creating the KDCFILE - additional statements for distributed processing via
 LU6.1 . 244

6.1.3.2 Creating the KDCFILE - additional statements for distributed processing via
 OSI TP . 245

6.1.3.3 Generating KDCFILE and UTM cluster files - additional statements for UTM
 cluster applications . 246

6.1.4 Effects of the KDCDEF statements on the generation objects 247
6.2 Calling KDCDEF and entering the control statements 251

6.2.1 Starting KDCDEF and executing a KDCDEF run . 252
6.2.1.1 BS2000 systems . 253
6.2.1.2 Unix and Linux systems . 254

6.2.1.3 Windows systems . 255
6.2.2 Order of the control statements . 256
6.2.3 Format of the control statements . 257
6.2.4 Continuation lines in control statements . 258
6.2.5 Syntax and plausibility checks . 259
6.2.6 KDCDEF logging . 260
6.2.7 Format and uniqueness of object names . 261

6.2.7.1 Reserved names . 262
6.2.7.2 Format of names . 263
6.2.7.3 Number of names . 264
6.2.7.4 Uniqueness of names and addresses . 267

6.2.8 Result of the KDCDEF run . 268
6.3 Inverse KDCDEF . 269

6.3.1 Starting inverse KDCDEF . 271
6.3.2 Result of inverse KDCDEF . 272
6.3.3 Creating KDCDEF control statements in upgrades . 274

6.4 Recommendations when regenerating an application 275
6.5 KDCDEF control statements . 277

6.5.1 ABSTRACT-SYNTAX - define the abstract syntax . 279
6.5.2 ACCESS-POINT - create an OSI TP access point . 281
6.5.3 ACCOUNT - define the accounting functions . 286
6.5.4 APPLICATION-CONTEXT - define the application context 288
6.5.5 AREA - define additional data areas . 291
6.5.6 BCAMAPPL - define additional application names . 293
6.5.7 CHAR-SET- assign names to code tables (BS2000 systems) 303
6.5.8 CLUSTER - define global properties of a UTM cluster application (Unix, Linux

 and Windows systems) . 304
6.5.9 CLUSTER-NODE - define a node application of a UTM cluster application (Unix,

 Linux and Window systems) . 312
6.5.10 CON - define a connection for distributed processing based on LU6.1 315
6.5.11 CREATE-CONTROL-STATEMENTS - create KDCDEF control statements 319
6.5.12 DATABASE - define a database system (BS2000 systems) 323
6.5.13 DEFAULT - define default values (BS2000 systems) 327
6.5.14 EDIT - define edit options (BS2000 systems) . 331
6.5.15 EJECT - initiate a page feed in the log . 335
6.5.16 END - terminate KDCDEF input . 336
6.5.17 EXIT - define event exits . 337
6.5.18 FORMSYS - define the format handling system (BS2000 systems) 339
6.5.19 HTTP-DESCRIPTOR - define a HTTP Descriptor . 340
6.5.20 KSET - define a key set . 343
6.5.21 LOAD-MODULE - define a load module (BLS, BS2000 systems) 344

6.5.22 LPAP - define an LPAP partner for distributed processing based on LU6.1 . 348
6.5.23 LSES - define a session name for distributed processing based on LU6.1 . 352
6.5.24 LTAC - define a transaction code for the partner application 354
6.5.25 LTERM - define an LTERM partner for a client or printer 361
6.5.26 MASTER-LU61-LPAP - define the master LPAP of an LU6.1-LPAP bundle 369
6.5.27 MASTER-OSI-LPAP - defining the master LPAP of an OSI-LPAP bundle . . 370
6.5.28 MAX - define UTM application parameters . 371
6.5.29 MESSAGE - define a UTM message module . 416
6.5.30 MPOOL - define a common memory pool (BS2000 systems) 419
6.5.31 MSG-DEST - define user-specific messages destinations 421
6.5.32 MUX - define a multiplex connection (BS2000 systems) 423
6.5.33 OPTION - manage the KDCDEF run . 425
6.5.34 OSI-CON - define a logical connection to an OSI TP partner 430
6.5.35 OSI-LPAP - define an OSI-LPAP partner for distributed processing based on

 OSI TP . 436
6.5.36 PROGRAM - define a program unit . 444
6.5.37 PTERM - define the properties of a client/printer and assign an LTERM partner
 . 447
6.5.38 QUEUE - reserve table entries for temporary messages queues 465
6.5.39 REMARK - insert a comment line . 466
6.5.40 RESERVE - reserve table locations for UTM objects 467
6.5.41 RMXA - define a name for an XA database connection (Unix, Linux and

 Windows systems) . 471
6.5.42 ROOT - define a name for the ROOT table source 473
6.5.43 SATSEL - define SAT logging (BS2000 systems) . 474
6.5.44 SESCHA - define session characteristics for distributed processing based on

 LU6.1 . 476
6.5.45 SFUNC - define function keys . 479
6.5.46 SHARED-OBJECT - define shared objects/DLLs (Unix, Linux and Windows

 systems) . 482
6.5.47 SIGNON - control the sign-on procedure . 484
6.5.48 SUBNET - define IP subnets . 489
6.5.49 TAC - define the properties of transaction codes and TAC queues 492
6.5.50 TACCLASS - define the number of processes for a TAC class 509
6.5.51 TAC-PRIORITIES - specify priorities of the TAC classes 515
6.5.52 TCBENTRY - define a group of TCB entries (BS2000 systems) 518
6.5.53 TLS - define a name for a TLS block . 519
6.5.54 TPOOL - define an LTERM pool . 520
6.5.55 TRANSFER-SYNTAX - define the transfer syntax . 533
6.5.56 ULS - define a name for a ULS block . 534
6.5.57 USER - define a user ID . 535
6.5.58 UTMD - application parameters for distributed processing 549

6.6 Dialog control - effects of generation parameters . 553
6.7 Example generation: ComfoTRAVEL . 555

6.7.1 KDCDEF input file DYNAMIC.RMS for UTM-D application RMS 556
6.7.2 KDCDEF statements for UTM-D application RMS . 559
6.7.3 KDCDEF input file DynamicTravel for UTM application TRAVEL 563
6.7.4 KDCDEF statements for UTM application TRAVEL . 565

6.8 KDCDEF messages . 568
7 Changing the configuration of an application dynamically 569

7.1 Reserving locations in the KDCFILE object tables . 570
7.2 Prerequisites for entering objects dynamically . 572

8 The tool KDCUPD - updating the KDCFILE . 575
8.1 Overview . 576

8.1.1 Supported upgrades . 577
8.1.2 Prerequisite for using KDCUPD . 578
8.1.3 Backing up data . 579
8.1.4 What data does KDCUPD transfer? . 580

8.1.4.1 Changing generation parameters . 582
8.1.4.2 Transfer of user data . 583

8.2 Update generation for standalone UTM applications 585
8.3 Update generation for UTM cluster applications (Unix, Linux and Windows

 systems) . 588
8.3.1 Offline update of a UTM cluster application . 589
8.3.2 Online update of a UTM cluster application . 593

8.3.2.1 Update generation of the KDCFILE . 594
8.3.2.2 Increasing the size of the cluster page pool . 596
8.3.2.3 Change to the application program . 597

8.3.3 Converting a UTM cluster application . 598
8.3.3.1 Conversion from a standalone UTM application to a UTM cluster application
599
8.3.3.2 Converting a UTM cluster application to a standalone UTM application . . 602

8.4 Update generation with transfer from 32-bit to 64-bit architecture 604
8.5 Control statements for KDCUPD . 605

8.5.1 CATID - define Catid of the old and the new KDCFILE 607
8.5.2 CHECK - check the consistency of the KDCFILE . 608
8.5.3 CLUSTER-FILEBASE - Specify the base names of the old and new UTM cluster

 files . 609
8.5.4 END - terminate input and start processing . 610
8.5.5 KDCFILE - specify the base name of the old and new KDCFILE 611
8.5.6 LIST - control the runtime log . 612
8.5.7 TRANSFER - control the data transfer of the user data 614

8.6 KDCUPD runtime log and messages . 618

9 Glossary . 620
10 Abbreviations . 653
11 Related publications . 658

 11

Generating Applications

 12

1 Preface

The IT infrastructure of today's companies as the heart and engine of the business must meet the requirements of
the digital age. At the same time, it has to cope with increased amounts of data as well as with stricter requirements
from the environment, e.g. compliance requirements. It must also be possible to integrate additional applications at
short notice. And all this under the aspect of guaranteed security.
Thus, essential requirements for a modern IT infrastructure consist of, among others

Flexibility and almost limitless scalability also for future requirements

high robustness with highest availability

absolute safety in all respects

Adaptability to individual needs

Causing low costs

To meet these challenges, Fujitsu offers an extensive portfolio of innovative enterprise hardware, software, and
support services within the environment of our enterprise mainframe platforms, and is therefore your

Reliable service provider, giving you longterm, flexible, and innovative support in running your company’s
mainframe-based core applications

Ideal partner for working together to meet the requirements of digital transformation

Longterm partner, by reason of continuous adjustment of modern interfaces required by a modern IT landscape
with all its requirements.

With openUTM, Fujitsu provides you a thoroughly tried-and-tested solution from the middleware area.

openUTM is a high-end platform for transaction processing that offers a runtime environment that meets all these
requirements of modern, business-critical applications, because openUTM combines all the standards and
advantages of transaction monitor middleware platforms and message queuing systems:

consistency of data and processing

high availability of the applications

high throughput even when there are large numbers of users (i.e. highly scalable)

flexibility as regards changes to and adaptation of the IT system

A UTM application on can be run as a standalone UTM application or Unix, Linux and Windows systems
sumultanously on several different computers as a UTM cluster application.

openUTM forms part of the comprehensive offering. In conjunction with the Oracle Fusion middleware, openSEAS
openSEAS delivers all the functions required for application innovation and modern application development.
Innovative products use the sophisticated technology of openUTM in the context of the product offering:openSEAS

BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA) and supports
standardized connection of UTM applications to Java EE application servers. This makes it possible to integrate
tried-and-tested legacy applications in new business processes.

Existing UTM applications can be migrated to the Web without modification. The UTM-HTTP interface and the
WebTransactions product, are two openSEAS alternatives that allows proven host applications to be used
flexibly in new business processes and modern application scenarios.

 13

The products BeanConnect and WebTransactions are briefly presented in the performance overview.
There are separate manuals for these products.

Wherever the term Linux system or Linux platform is used in the following, then this should be understood
to mean a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is in the following, this should be understood to
mean all the variants of Windows under which openUTM runs.

Wherever the term Unix system or Unix platform is used in the following, then this should be understood
to mean a Unix-based operating system such as Solaris or HP-UX.

i

 14

1.1 Summary of contents and target group

The openUTM manual “Generating Applications” is designed for use by application planners and developers as well
as operators of UTM applications.

This manual describes how to define the configuration for a UTM application using the UTM tool KDCDEF and how
to create the KDCFILE. Chapter 5 also goes into more detail about the generation of selected objects and functions
of the application.

Additional topics include the dynamic configuration of an application and the updating of the KDCFILE using the tool
KDCUPD.

To understand this manual you will need to be familiar with the operating system.

 15

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various related products.

 16

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help for the graphical administration workstation
openUTM WinAdmin and the graphical administration tool WebAdmin as well as release notes.
There are manuals and release notes that are valid for all platforms, as well as manuals and release notes that are
valid for BS2000 systems and for Unix, Linux and Windows systems.

All the manuals are available on the internet at . For the BS2000 platform, you will https://bs2manuals.ts.fujitsu.com
also find the manuals on the Softbook DVD.

The following sections provide a task-oriented overview of the openUTM V7.0 documentation.

You will find a complete list of documentation for openUTM in the chapter on related publications at the back of the
manual.

Introduction and overview

The manual gives a coherent overview of the essential functions, features and areas of Concepts and Functions
application of openUTM. It contains all the information required to plan a UTM operation and to design a UTM
application. The manual explains what openUTM is, how it is used, and how it is integrated in the BS2000, Unix,
Linux and Windows based platforms.

Programming

You will require the manual to create server Programming Applications with KDCS for COBOL, C and C++
applications via the KDCS interface or UTM-HTTP programming interface. This manual describes the KDCS
interface as used for COBOL, C and C++. This interface provides the basic functions of the universal transaction
monitor, as well as the calls for distributed processing. The manual also describes interaction with databases.
The UTM-HTTP programming interface provides functions that may be used for communication with HTTP
clients.

You will require the manual if you want to use the X/Open Creating Applications with X/Open Interfaces
interface. This manual contains descriptions of the openUTM-specific extensions to the X/Open program
interfaces TX, CPI-C and XATMI as well as notes on configuring and operating UTM applications which use X
/Open interfaces. In addition, you will require the X/Open-CAE specification for the corresponding X/Open
interface.

If you want to interchange data on the basis of XML, you will need the document entitled openUTM XML for
. This describes the C and COBOL calls required to work with XML documents.openUTM

For BS2000 systems there is supplementary documentation on the programming languages Assembler, Fortran,
Pascal-XT and PL/1.

Configuration

The manual is available to you for defining configurations. This describes for both Generating Applications
standalone UTM applications and UTM cluster applications on Unix, Linux and Windows systems how to use the
UTM tool KDCDEF to

define the configuration

generate the KDCFILE

and generate the UTM cluster files for UTM cluster applications

https://bs2manuals.ts.fujitsu.com/index

 17

In addition, it also shows you how to transfer important administration and user data to a new KDCFILE using the
KDCUPD tool. You do this, for example, when moving to a new openUTM version or after changes have been
made to the configuration. In the case of UTM cluster applications, it also indicates how you can use the KDCUPD
tool to transfer this data to the new UTM cluster files.

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the manual for the relevant Using UTM Applications
operating system (BS2000 or Unix, Linux and Windows systems). This describes how to link and start a UTM
application program, how to sign on and off to and from a UTM application and how to replace application programs
dynamically and in a structured manner. It also contains the UTM commands that are available to the terminal user.
Additionally, those issues are described in detail that need to be considered when operating UTM cluster
applications.

Administering applications and changing configurations dynamically

The manual describes the program interface for administration and the UTM Administering Applications
administration commands. It provides information on how to create your own administration programs for
operating a standalone UTM application or a UTM cluster application and on the facilities for administering
several different applications centrally. It also describes how to administer message queues and printers using
the KDCS calls DADM and PADM.

If you are using the graphical administration workstation or the Web application openUTM WinAdmin openUTM
, which provides comparable functionality, then the following documentation is available to you:WebAdmin

A and , which provide a comprehensive overview of the description of WinAdmin description of WebAdmin
functional scope and handling of WinAdmin/WebAdmin.

The respective , which provide context-sensitive help information on all dialog boxes and online help systems
associated parameters offered by the graphical user interface. In addition, it also tells you how to configure
WinAdmin or WebAdmin in order to administer standalone UTM applications and UTM cluster applications.

Testing and diagnosing errors

You will also require the manuals (there are separate manuals for Unix, Messages, Debugging and Diagnostics
Linux and Windows systems and for BS2000 systems) to carry out the tasks mentioned above. These manuals
describe how to debug a UTM application, the contents and evaluation of a UTM dump, the openUTM message
system, and also lists all messages and return codes output by openUTM.

Creating openUTM clients

The following manuals are available to you if you want to create client applications for communication with UTM
applications:

The describes the creation and operation of client applications openUTM-Client for the UPIC Carrier System
based on UPIC. It indicates what needs to be taken into account when programming a CPI-C application and
what restrictions apply compared with the X/Open CPI-C interface.

For detailed information on the integration of openUTM WebAdmin in SE Server's SE Manager, see
the SE Server manual .Operation and Administration

i

 18

The manual describes how to install and configure openUTM-Client for the OpenCPIC Carrier System
OpenCPIC and configure an OpenCPIC application. It indicates what needs to be taken into account when
programming a CPI-C application and what restrictions apply compared with the X/Open CPI-C interface.

The documentation for the product shipped with consists of the manual and openUTM-JConnect BeanConnect
a Java documentation with a description of the Java classes.

The manual describes how you can extend existing COBOL programs of a UTM application in BizXML2Cobol
such a way that they can be used as an XML-based standard Web service. How to work with the graphical user
interface is described in the .online help system

You can also use the software product WS4UTM (WebServices for openUTM) to provide services of UTM
applications as Web services. To do this, you need the manual. Working with the Web Services for openUTM
graphical user interface is described in the corresponding .online help system

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the manual Distributed
. This describes the CICS Transaction Processing between openUTM and CICS, IMS and LU6.2 Applications

commands, IMS macros and UTM calls that are required to link UTM applications to CICS and IMS applications.
The link capabilities are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and administration.

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix, Linux and Windows systems. The
functions of PCMX are described in the following documents:

CMX manual “Betrieb und Administration“ (Unix-Systeme) for Unix, Linux and Windows systems (only available
in German)

PCMX online help system for Windows systems

 19

1.2.2 Documentation for the openSEAS product environment

The manual briefly describes how openUTM is connected to the openSEAS product Concepts and Functions
environment. The following sections indicate which openSEAS documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect adapter implements the
connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications in Java applications.

The manual describes the product BeanConnect, that provides a JCA 1.5- and JCA 1.6-compliant BeanConnect
adapter which connects UTM applications with applications based on Java EE, e.g. the Oracle application server.

Connecting to the web and application integration

Alternatively, you can use the WebTransactions product instead of the UTM HTTP program interface. Then you will
need the manuals. The manuals will also be supplemented by JavaDocs.WebTransactions

 20

1.2.3 Readme files

Information on any functional changes and additions to the current product version described in this manual can be
found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the various products at
. For the BS2000 platform, you will also find the Readme files on the Softbook DVD.https://bs2manuals.ts.fujitsu.com

Information on BS2000 systems

When a Readme file exists for a product version, you will find the following file on the BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D). You can view this
information on screen using the command or an editor. /SHOW-FILE

The command shows the /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>

user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and using a product version
are contained in the associated Release Notice. These Release Notices are available online at https://bs2manuals.

.ts.fujitsu.com

https://bs2manuals.ts.fujitsu.com/index
https://bs2manuals.ts.fujitsu.com/index
https://bs2manuals.ts.fujitsu.com/index

 21

1.3 Changes in openUTM V7.0

The following sections provide more details about the changes in the individual functional areas.

 22

1.3.1 New server functions

UTM as HTTP-Server

A UTM application can also act as an HTTP server.

GET, PUT, POST and DELETE are supported as methods. In addition to HTTP, access via HTTPS is also
supported.

The following interfaces have been changed:

Generation

All systems:

KDCDEF statement BCAMAPPL:

operand T-PROT= with value SOCKETAdditional specification for the transport protocol for the

*USP: The UTM socket protocol is to be used on connections from this access point.

*HTTP: The HTTP protocol is to be used for connections from this access point.

*ANY: Both the UTM socket protocol and the HTTP protocol are supported on connections from
this access point.

 Additional specification for encryption for the operand T-PROT= with value SOCKET

SECURE: On connections from this access point, communication takes place using transport layer
security (TLS).

New operand USER-AUTH = *NONE | *BASIC. Herewith you can specify which authentication
mechanism HTTP clients must use for this access point.

KDCDEF statement HTTP-DESCRIPTOR:
This statement defines a mapping of the path received in an HTTP request to a TAC and additional
processing parameters can be specified.

BS2000 systems:

KDCDEF statement CHAR-SET:
With this statement, each of the four UTM code conversions provided by openUTM can be assigned up to
four character set names.

Programming

KDCS communication area (KB):
In the header of the KDCS communication area, there are new indicators for the client protocols HTTP, USP-
SECURE, and HTTPS in the field.kccp/KCCP

KDCS call INIT PU:

The version of the interface has been increased to 7.

To obtain the complete available information, the value 372 must be specified in the KCLI field.

New fields for requesting (KCHTTP/http_info) and returning (KCHTTPINF/httpInfo) HTTP-specific
information.

Administration interface KDCADMI

The data structure version of KDCADMI has been changed to version 11 (field in the parameter version_data
area).

 23

New structure in the identification area to support the HTTP descriptor.kc_http_descriptor_str

New structure in the identification area for supporting the HTTP character set.kc_character_set_str

New fields and in structure for the support of HTTP access points.secure_soc user_auth kc_bcamappl_str

UTM-HTTP program interface

In addition to the KDCS interface, UTM provides an interface for reading and writing HTTP protocol information
and handling the HTTP message body.
The functions of the interface are briefly listed below:

Function kcHttpGetHeaderByIndex()
This function returns the name and value of the HTTP header field for the specified index.

Function kcHttpGetHeaderByName()
The function returns the value of the HTTP header field specified by the name.

Function kcHttpGetHeaderCount()
This function returns the number of header fields contained in the HTTP request, that can be read by the
program unit.

Function kcHttpGetMethod()
 This function returns the HTTP method of the HTTP request.

Function kcHttpGetMputMsg()
This function returns the MPUT message generated by the program unit.

Function kcHttpGetPath()
This function returns the HTTP path of the HTTP request normalized with
KC_HTTP_NORM_UNRESERVED.

Function kcHttpGetQuery()
This function returns the HTTP query of the HTTP request normal with ized
KC_HTTP_NORM_UNRESERVED.

Function kcHttpGetRc2String()
Help function to convert a function result of type enum into a printable zero terminated string.

Function kcHttpGetReqMsgBody()
This function returns the message body of the HTTP request.

Function kcHttpGetScheme()
This function returns the schema of the HTTP request.

Function kcHttpGetVersion()
This function returns the version of the HTTP request.

Function kcHttpPercentDecode()
Function to convert characters in percent representation in strings to their normal one-character
representation.

Function kcHttpPutHeader()
This function passes an HTTP header for the HTTP response.

Function kcHttpPutMgetMsg()
This function passes a message for the program unit, which can be read with MGET.

Function kcHttpPutRspMsgBody()
This function passes a message for the message body of the HTTP response.

Function kcHttpPutStatus()
This function passes a .HTTP status code for the HTTP response

 24

Communication via the Secure Socket Layer (SSL)
BS2000 systems:

If a BCAMAPPL with T-PROT=(SOCKET,...,SECURE) has been generated for a UTM application, an
additional task is started with a reverse proxy when UTM starts the application. The reverse proxy acts as the
TLS Termination Proxy for the application and handles all SSL communication.

 :Unix, Linux and Windows systems

Another network process is available for secure access with TLS. of the type utmnetssl

If BCAMAPPL is generated with T-PROT=(SOCKET,...,SECURE) for a UTM application, a number of
 processes are started when UTM is started. The number of these processes depends on the value utmnetssl

LISTENER-ID of these BCAMAPPL objects. All TLS communication for the assigned BCAMAPPL port
numbers is handled in a process.utmnetssl

Encryption

The encryption functionality in UTM between a UTM application and a UPIC client has been revised. Security gaps
have been closed, modern methods have been adopted and delivery has been simplified as follows:

UTM-CRYPT variant

Previously, the encryption functionality in UTM was only available if the product UTM-CRYPT had been
installed. With UTM V7.0 this is no longer necessary. As of this version, the decision as to whether or not to use
the encryption functionality is made via generation or at the time of application start.

Security
A vulnerability has been fixed in the communication between a UTM application and a UPIC client.

Encryption Level 5 (Unix, Linux and Windows systems)

KDCDEF statements PTERM, TAC and TPOOL
The operand ENCRYPTION-LEVEL has an additional level 5, where the Diffie-Hellman method based on Elliptic
Curves is used to agree the session key and input/output messages are encrypted with the AES-GCM algorithm.

OSI-TP communication and port numbers

BS2000 systems:

KDCDEF statement OSI-CON
The operand LISTENER-PORT can also be specified on BS2000 systems.

 interface KDCADMIAdministration
In the structure , the port number is also displayed in the field on BS2000 systems.kc_osi_con_str listener-port

Subnets

In a UTM application, subnets can also be generated on BS2000 systems in order to restrict access to UTM
applications to defined IP address ranges. In addition, name resolution can be controlled via DNS.

The following interfaces have been changed for this purpose:

This means that encrypted communication with a UTM application V7.0 is only possible together with
UPIC client applications as of UPIC V7.0!

!

 25

Generation
BS2000 systems:

KDCDEF statement SUBNET:
The SUBNET statement can also be specified on BS2000 systems.

All systems:

KDCDEF statement SUBNET:

RESOLVE-NAMES=YES/NO can be used to specify whether or not a name resolution via DNS is to take
place after a connection is established.

If name resolution takes place, the real processor name of the communication partner is displayed via the
administration interface and in messages. Otherwise, the IP address of the communication partner and the
name of the subnet defined in the generation are displayed as the processor name.

Administration interface KDCADMI
The structures and kc_tpool_str contain a new field .kc_subnet_str resolve_names

Access data for the XA database connection

A modified but not yet activated user name for the XA database connection can be read by Administration
(KDCADMI):

Operation code KC_GET_OBJECT:
Data Structure : New field .kc_db_info_str db_new_userid

Reconnect for the XA database connection

If an XA action to control the transaction detects that the connection to the database has been lost, the system tries
to renew the connection and repeat the XA action.

Only if this is not successful, the affected UTM process . and the UTM application are terminated abnormally
Previously, the UTM application was terminated abnormally, .if a XA-Connection was lost without trying to reconnect

Other changes

XA messages
The messages regarding the XA interface were extended by the inserts UTM-Userid and TAC. The messages
K204-K207, K212-K215 and K217-K218 are affected.

UTM-Tool KDCEVAL
In the TRACE 2 record of KDCEVAL the type of the last order (bourse announcement) was recorded in the
WAITEND record (first two bytes can be printed).

 26

1.3.2 Discontinued server functions

In particular, the following functions has been discontinued:

KDCDEF utiliy
Several functions have been deleted and can no longer be generated in KDCDEF. If they are still specified, this
will be rejected with a syntax error in the KDCDEF run.

KDCDEF statement PTERM
Operand values 1 and 2 for ENCRYPTION-LEVEL

KDCDEF statement TPOOL
Operanden values 1 and 2 for ENCRYPTION-LEVEL

KDCDEF statement TAC
Operanden value 1 for ENCRYPTION-LEVEL

BS2000 systems

UTM Cluster:
UTM cluster applications are no longer supported on BS2000 systems.

Unix, Linux and Windows systems

TNS operation:
When starting a UTM application, the TNS generation is no longer read. The addressing information must be
stored completely during configuration with KDCDEF.

 27

1.3.3 New client functions

Encryption

The encryption functionality in openUTM-Client has been revised. Security gaps have been closed, modern
methods have been adopted and delivery has been simplified as follows:

UTM-CLIENT-CRYPT variant
Until now, the encryption functionality in openUTM-Client was only available if the product UTM-CLIENT-CRYPT
was installed. With openUTM Client V7.0 this is no longer necessary. As of this version, it is decided at runtime
whether the encryption functionality is available or not.

Security
A vulnerability has been fixed when communicating with a UTM application.

Encryption Level 5
The o V7.0 supports communication with UTM V7.0 applications ENCRYPTION-LEVEL 5 penUTM client when
was generated for the connections to the UPIC client.
With Level 5 the Diffie-Hellman method, based on Elliptic Curves, is used to agree on the session key. Input
/output messages are encrypted using the AES-GCM algorithm. AES-GCM is an authenticated encryption
algorithm designed to provide both data authenticity (integrity) and confidentiality.
Level 5 is supported by the on all platforms.openUTM-Client

Encryption BS2000
openUTM-Client (BS2000) uses openSSL instead of BS2000-CRYPT analogous to Unix, Linux and Windows
systems.

https://en.wikipedia.org/wiki/Authenticated_encryption

 28

1.3.4 New functions for openUTM WinAdmin

WinAdmin supports all new features of openUTM 7.0 relating to the program interface for the administration.

 29

1.3.5 New functions for openUTM WebAdmin

WebAdmin supports all new features of openUTM 7.0 relating to the program interface for the administration.

 30

1.4 Notational conventions

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this manual:

Representation Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote constants (names of calls, statements,
field names, commands and operands etc.) that are to be entered
in this format.

LOAD-MODE=STARTUP

lowercase
letters

In syntax diagrams and operand descriptions, lowercase letters
are used to denote place-holders for the operand values.

KDCFILE=filebase

lowercase
letters in
italics

In running text, variables and the names of data structures and
fields are indicated by lowercase letters in italics.

utm-installationpath is
the UTM installation
directory

Typewriter

font

Typewriter font (Courier) is used in running text to identify
commands, file names, messages and examples that must be
entered in exactly this form or which always have exactly this
name or form.

The call tpcall

{ } and | Curly brackets contain alternative entries, of which you must
choose one. The individual alternatives are separated within the
curly brackets by pipe characters.

STATUS={ ON | OFF }

[] Square brackets contain optional entries that can also be omitted. KDCFILE=(filebase

[, { SINGLE |

DOUBLE }])

() Where a list of parameters can be specified for an operand, the
individual parameters are to be listed in parentheses and
separated by commas. If only one parameter is actually specified,
you can omit the parentheses.

KEYS=(key1,key2,...

keyn)

Underscoring Underscoring denotes the default value. CONNECT= { YES |

 }NO

abbreviated
form

The standard abbreviated form of statements, operands and
operand values is emphasized in boldface type. The abbreviated
form can be entered in place of the full designation.

RANSPORTT -SEL

ECTOR=c‘C‘

. . . An ellipsis indicates that a syntactical unit can be repeated. It can
also be used to indicate sections of a program or syntax
description etc.

Start KDCDEF

...

OPTION

DATA=statement_file

...

END

 31

Symbols

 Indicates references to comprehensive, detailed information on the relevant topic.

Other

utmpath On Unix, Linux and Windows systems, designates the directory under which openUTM was installed.

filebase On Unix, Linux and Windows systems, designates the directory of the UTM application. This is the base
name generated in the KDCDEF statement MAX KDCFILE=.

$userid On BS2000 systems, designates the user ID under which openUTM was installed.

upic_dir The directory under which UPIC Client for UPIC Carrier System is installed on Unix, Linux, or Windows
system.

Indicates notes that are of particular importance.i

Indicates warnings.!

 32

2 Introduction to the generation procedure

Alongside the program units that provide the services and the formats (for formatted operation on BS2000 systems)
you must create the following application components for a UTM application:

KDCFILE configuration file
The KDCFILE contains the configuration of your application. openUTM stores all the administrative data required
to operate the application in the KDCFILE and reserves areas for the user data and for transaction management.
When operating the application, all tasks and work processes of the application access the KDCFILE. This
manual describes how to create the KDCFILE.

KDCROOT main routine
The program units you have created run under the control of KDCROOT. The ROOT tables are used as the
basis of the main routine KDCROOT.
The ROOT tables contain application-specific configuration data that is required by the main routine KDCROOT.
When operating an application, the main routine KDCROOT establishes the connection from openUTM to the
program units, the database and on BS2000 systems to the formatting system.
This manual also describes how to create the sources for the ROOT tables.

Figure 1: Structure of the UTM application program

In order to create the ROOT table source and the KDCFILE, you must first define the configuration of application.
This entire procedure is known as “generation”. To allow you to configure and generate the KDCFILE and the
ROOT table sources, openUTM provides the KDCDEF generation tool.

UTM applications can be operated in the form of a (one host) and, on Unix, Liniux and standalone application
Windows systems, also in the form of a (on more than one host).UTM cluster application

The KDCDEF generation tool is described in detail in section ."The KDCDEF generation tool"

Information on the KDCFILE can be found in section ."The KDCFILE"

The information on generation contained in this section applies "Introduction to thegeneration procedure"
both to standalone UTM applications and to UTM cluster applications. You will find additional information
on generating UTM cluster applications in section "Notes on generating a UTM cluster application on

.Unix, Linux and Windows systems"

You must create the application program using KDCROOT, user program units, interfaces and other application
components like the UTM system modules, the runtime systems of the programming languages, database
connection modules etc.

 33

More information about creating application programs using ROOT tables and application components
can be found in the corresponding openUTM manual “Using UTM Applications”.

Information about creating application program units can be found in the openUTM manuals
“Programming Applications with KDCS” and “Creating Applications with X/Open Interfaces”.

Information about creating formats on BS2000 systems can be found in the manuals for FHS.

 34

2.1 Configuring the UTM application

To execute the application program, you must define the following information for example:

the application properties

the UTM user IDs and data access control

the properties of clients and printers

the properties of partner applications (server applications)

the properties of services, i.e. of transaction codes and program units

message queues (user, TAC and temporary queues)

the structure of the application (subdivision into load modules for use with BLS, shared objects or DLLs)

reserved locations in UTM object tables for dynamic configuration

These properties combine to form the configuration, and are defined using the KDCDEF control statements. The
KDCDEF control statements serve as input for the generation tool KDCDEF.
The KDCDEF control statements are listed in accordance with their function group starting in section "Creating the

.ROOT table source, the KDCFILE and UTM cluster files"

The KDCFILE administrative file is used to store all configuration information and thus all administrative data
required to run the application.

 35

2.2 Generating application components - result of the KDCDEF run

You can generate the KDCFILE and the ROOT table sources in a single KDCDEF run or in separate KDCDEF runs.
The KDCDEF statement OPTION allows you to define the generation objects to be created by KDCDEF:

OPTION...,GEN={ KDCFILE | ROOTSRC | NO | ALL }

For UTM cluster applications on Unix, Linux and Windows systems, there is the additional option CLUSTER, see
."OPTION - manage the KDCDEF run"

The name of the ROOT tables is defined using the ROOT statement.

ROOT rootname

On BS2000 systems is the name of the ROOT table module.rootname

On Unix, Linux and Windows systems is a name component of the ROOT table source (ROOTSRC).rootname

KDCDEF reads the control statements from standard input or from a file.

On BS2000 systems standard input means SYSDTA (with the SDF command ASSIGN-SYSDTA you can assign
SYSDTA to a SAM or ISAM file, a library member of type S, a PLAM library, or *SYSCMD, for example)

On Unix, Linux and Windows systems standard input means (i.e. from the Unix or Windows command level).stdin

You will find a detailed description of how to start KDCDEF and pass the control statements to KDCDEF in section
."Calling KDCDEF and entering the control statements"

All KDCDEF statements are subjected to syntax and plausibility checks. If KDCDEF does not detect any serious
errors in this process, the files listed in are created for a standalone UTM application.figure 2

Figure 17 in chapter shows what files are created when you generate a UTM cluster application."UTM cluster files"

The following figure shows what files are created when you define a standalone UTM application.

Even if the OPTION statement is used in a KDCDEF run to cause only part of the configuration to be
(newly) created, you nevertheless specify the statements for the entire configuration for every generation
run. Only then is KDCDEF able to check the completeness and consistency of the generation statements.

KDCDEF always performs plausibility checks for all statements. If, for instance, only a ROOT source is to
be generated in a KDCDEF run, KDCDEF also checks the statements that only affect the KDCFILE.

This complete check allows inconsistencies that arise on creating the ROOT table module and the
KDCFILE that would otherwise only be detected when the application is started to be identified early and
consequential errors to be avoided.

i

 36

Figure 2: The result of the KDCDEF run (with OPTION ...,GEN=ALL) for a standalone UTM application.

KDCDEF statements for a minimal configuration

You must pass at least the following control statements to KDCDEF before you can run your UTM application.

You must execute additional KDCDEF statements for distributed processing, connecting specific clients and
printers, etc. You will find more information on this subject in the sections "Generating applications for distributed

, and .processing" "Connecting clients to the application" "Generating printers (on BS2000, Unix and Linux systems)"

The lines beginning with ’*’ are comments.

Minimal configuration for BS2000 systems:

**

 *

* Specify which part of the application program is to be created by KDCDEF

*

**

*

 OPTION GEN=...

**

*

* Specify the name of the Root table

*

**

*

ROOT applroot

 37

**

*

* Specify application parameters

*

**

*

* Application name with which communication partners

* can address the application

 MAX APPLINAME= sample

 * Specify the base directory of the application.

MAX KDCFILE= filebase

 * Define the maximum number of process of the UTM application

 MAX TASKS=2

**

*

* optional: Generate the database system (ORACLE in the example)

 *

**

 *

DATABASE TYPE=XA

**

*

* optional: Specify the formatting system used

 *

**

*

* the statement FORMSYS must only be specified if your UTM application

* is to run in formatted mode

FORMSYS TYPE=FHS

 38

**

*

* Connection points (LTERM partners) for clients/TS applications

*

**

*

* For example, generate open LTERM pools so that clients/TS applications

* can connect to the application

 * LTERM pools for the various types of client ------------------------------ (1)

 TPOOL LTERM= client, NUMBER=..., PTYPE=*ANY, PRONAM=*ANY

BCAMAPPL , T-PROT=ISOupicappl

 TPOOL LTERM= upic, NUMBER=..., PTYPE=UPIC-R, BCAMAPPL= , PRONAM=*ANYupicappl

 TPOOL LTERM= appli, NUMBER=..., PTYPE=APPLI, PRONAM=*ANY

BCAMAPPL sockappl, T-PROT=SOCKET, LISTENER-PORT=number

 TPOOL LTERM= socket, NUMBER=..., PTYPE=SOCKET, BCAMAPPL= , PRONAM=*ANYsockappl

**

*

 * Generate services

*

**

*

* Some own program units that initiate services and generate the

* corresponding transaction codes

* (for COMP=... enter the compiler used or the runtime system, mostly „ILCS“,)

 PROGRAM= userpu ,COMP=...

 TAC usertc ,PROGRAM= userpu. ...-- (2)

 39

**

*

* Administration

*

**

*

* Administration program KDCADM

PROGRAM KDCADM,COMP=ILCS)

* Generate administration command KDCSHUT so that the application

* can always be terminated normally

TAC KDCSHUT,PROGRAM=KDCADM ... --- (3)

* In applications with user IDs:

* user ID for the administrator

 USER admin ,PERMIT=ADMIN,PASS=....

* If administration will be done via WinAdmin/WebAdmin,

* then you need to submit the following TAC and PROGRAM statements

* and generate a connection for the UPIC client (an LTERM pool in this case)

* Furthermore, you should then generate the admin user ID with administration

* authorization and without the restart property or generate your own

* user ID with administration authorization and without the restart property

 * for administration using WinAdmin/WebAdmin.

* Administration program KDCWADMI

PROGRAM KDCWADMI,COMP=..

TAC KDCWADMI,PROGRAM=KDCWADMI,CALL=BOTH,ADMIN=Y

TPOOL LTERM=WADM,PTYPE=UPIC-R, PRONAM=*ANY, NUMBER=1 ------------------------(5)

**

*

* optional: Reserve space in the table for dynamic administration

 *

**

*

RESERVE OBJECT=...,NUMBER=... -- (4)

END

 40

Remarks

(1) For each of the client types (terminal, UPIC client, TS application) that are to connect to the application, you
must generate a separate LTERM pool. For terminals, a single LTERM pool is sufficient - depending on the
type of terminals that are to sign in to the application. You can also generate the LTERM pools so that all
clients of a particular type can log in - regardless of the computer on which they are located.

You can also implement client connections with the help of the LTERM/PTERM statements. In particular,
you must use LTERM/PTERM statements if the UTM application itself establishes connections to clients (e.
g. TS applications) or if a printer is to be generated.

For UPIC clients, HTTP clients and TS socket applications a separate BCAMAPPL statement with T-
PROT=ISO or (SOCKET, ...) is required.

(2) You can also assign several transaction codes to a program unit if the program unit performs several
different services.

(3) You can generate all administration commands that you will want to use in operation using additional TAC
statements. If you want to use your own administration programs for administration purposes, then you must
generate these programs with the corresponding PROGRAM and TAC statements.

(4) You can add additional objects to the application configuration during live operation with the help of the
administration (see the openUTM manual “Administering Applications”). You will need to create space in the
tables in the KDCFILE for these objects in the KDCDEF generation.

(5) The connection for a WinAdmin or WebAdmin client can also be generated with PTERM-/LTERM
statements instead of with a TPOOL statement - e.g. with a privileged LTERM, see openUTM manual
“Administering Applications”.

 41

Minimal configuration for Unix, Linux and Windows systems

**

*

* Specify which part of the application program is to be created by KDCDEF

 *

**

*

OPTION GEN=...

**

*

* Specify the name of the Root table

*

**

*

ROOT applroot

**

*

* Specify application parameters

*

**

*

* Application name with which communication partners

* can address the application

 MAX APPLINAME= sample

* Specify the base directory of the application.

* This directory is the directory in which the KDCFILE is stored,

* amongst other things.

 MAX KDCFILE= filebase

* Specify the key for the shared memory area

MAX CACHESHMKEY=..,IPCSHMKEY=...,KAASHMKEY=...

 [,OSISHMKEY=...,XAPTPSHMKEY=...] --------------------------- (1)

Define the semaphore key for the global application semaphore

 MAX SEMARRAY= number , number1

* Define the maximum number of process of the UTM application.

MAX TASKS=2

 42

**

 *

* optional: Generate the database system (in the example ORACLE)

*

 **

*

RMXA XASWITCH=xaoswd,SPEC=C

**

 *

* Connection points (LTERM partners) for clients/TS applications

*

 **

*

* For example, generate open LTERM pools so that clients/TS applications

* can connect to the application

* LTERM pools for the various client types --------------------------------- (2)

TPOOL LTERM= , PTYPE=UPIC-R, NUMBER=...clientr

 TPOOL LTERM= , PTYPE=UPIC-L, NUMBER=...clientl

TPOOL LTERM= , PTYPE=APPLI, NUMBER=...appli

BCAMAPPL , T-PROT=SOCKET, LISTENER-PORT=aockappl number

TPOOL LTERM= , PTYPE=SOCKET, BCAMAPPL= , NUMBER=...socket sockappl

TPOOL LTERM= , PTYPE=TTY, NUMBER=...term

**

*

* Generate services

*

**

*

* Some own program units that initiate services and generate the

 * corresponding transaction codes (for COMP=... enter the compiler used)

 PROGRAM= userpu ,COMP=...

 TAC usertc ,PROGRAM= userpu. ...-- (3)

 43

**

*

 * Administration

*

**

*

* Administration program KDCADM

PROGRAM KDCADM,COMP=C

* Generate administration command KDCSHUT so that the application

* can always be terminated normally

TAC KDCSHUT,PROGRAM=KDCADM ...-- (4)

* In applications with user IDs: user ID for the administrator

 USER admin ,PERMIT=ADMIN,PASS=....

* If administration will be done via WinAdmin/WebAdmin,

* then you need to submit the following TAC and PROGRAM statements

* and generate a connection for the UPIC client (an LTERM pool in this case)

* Administration program KDCWADMI

PROGRAM KDCWADMI,COMP=C

TAC KDCWADMI,PROGRAM=KDCWADMI,CALL=BOTH,ADMIN=Y

TPOOL LTERM=WADM,PTYPE=UPIC-R, NUMBER=1 ------------------------------------ (6)

**

 *

* optional: Reserve space in the table for dynamic administration

*

 **

*

RESERVE OBJECT=...,NUMBER=... -- (5)

END

 44

Remarks

(1) You only need to specify the shared memory key OSISHMKEY= and XAPTPSHMKEY=
if you generate objects for communication via OSI TP. The other shared memory areas are needed by every
UTM application, running on Unix, Linux or Windows systems.

(2) On Unix, Linux or Windows systems you must generate a separate LTERM pool for each type of client
(terminal, UPIC client, TS application) that is to be able to connect to the application. You can generate the
LTERM pools so that all clients of a particular type are able to sign on - regardless of the computer on which
they are located.

You can also configure client connections using the LTERM/PTERM statements. In particular, you must use
LTERM/PTERM statements if the UTM application itself establishes connections to clients (e.g. TS
applications) or if a printer is to be generated on Unix or Linux systems.

For HTTP clients and TS socket applications a separate BCAMAPPL staement with T-PROT=(SOCKET, ..)
is required.

(3) You can also assign several transaction codes to a program unit if the program unit performs several
different services.

(4) You can generate all administration commands that you will want to use in operation using additional TAC
statements. If you want to use your own administration programs for administration purposes, then you must
generate these programs with the corresponding PROGRAM and TAC statements.

(5) You can add additional objects to the application configuration during live operation with the help of the
administration (see the openUTM manual “Administering Applications”). You will need to create space in the
tables in the KDCFILE for these objects in the KDCDEF generation.

(6) The connection for a WinAdmin or WebAdmin client can also be generated with PTERM-/LTERM
statements instead of with a TPOOL statement - e.g. with a privileged LTERM, see openUTM manual
“Administering Applications”.

Regenerating existing UTM applications

If you want to generate a new ROOT table source and/or a new KDCFILE for an existing application (i.e.
KDCROOT and KDCFILE already exist), then you must note the following:

You must enter the information on objects that are entered dynamically in the KDCFILE during operation or whose
properties have been changed in the new KDCFILE. The “inverse KDCDEF“ function is provided for this purpose.
With this function you create the control statements from the configuration information of the current KDCFILE that
can be used immediately. You will need to call the CREATE-CONTROL-STATEMENTS control statement in the
KDCDEF run in order to do this.

Via the UTM administration you can also execute the inverse KDCDEF run while the application is running.

You will find more information on the “inverse KDCDEF“ function in section ."Inverse KDCDEF"

 45

Figure 3: KDCDEF run with inverse KDCDEF

 46

2.3 The KDCFILE

The KDCFILE contains all data required to run a UTM application. It is shared by all application processes during
runtime. In its most basic form, the KDCFILE consists of a single file (a PAM file on BS2000 systems). The
KDCFILE can also be distributed over several files. For security reasons, it can be duplicated.

The KDCFILE is logically divided into three areas:

Administrative data, see "Administrative data"

Page pool, see "Page pool"

Restart area, see "Restart area"

KDCDEF generation

The KDCFILE is generated during the KDCDEF run by specifying

OPTION...,GEN=KDCFILE or GEN=ALL

in the KDCDEF statement.

The following characteristics of the KDCFILE must be specified at the KDCDEF generation:

Data block size
Each area within the KDCFILE is organized in units of either 2K, 4K or 8K. These units are known as UTM
pages. You can define the block size of a UTM page using the following control statement:

MAX...,BLKSIZE={ 2K | 4K | 8K }

Whether a block size of 2K, 4K or 8K is to be favored depends on the sizes of the data areas (GSSB, LSSB, etc.)
and the lengths of the messages that your program uses. See also for more information."Page pool"

 47

Base name of the KDCFILE
You specify the base name (called the in the following) and single or dual-file operation of the KDCFILE filebase
with:

MAX..., KDCFILE={ filebase [, SINGLE | DOUBLE] }

In the case of dual-file operation, the contents of both KDCFILE files are always identical. If one of the files is
corrupted, it can be restored by simply copying the other file.

The name specified in is also the base name of additional files and file generations of the application (for filebase
example, the system and user log file). is therefore the base name of the application.filebase

The significance of the base name is different for each of the various platforms:filebase

BS2000 systems:

The full names of the files derived from have the following format:filebase

The total length of the file name must not exceed 54 characters. The base name can be up to 42 filebase
characters in length, including and . If no or is specified when defining the base name (userid catid catid userid

, the lengths of these fields must still be taken into consideration when determining the total filebase=prefix)
length of the file name.

If file generation groups (i.e. USLOG files, SYSLOG generation group) are not used in the application, can prefix
be up to 33 characters in length. Otherwise, must not exceed 26 characters.prefix

The KDCDEF generation tool then creates the following files:

filebase.KDCA in the case of single-file operation (SINGLE)

filebase.KDCA and .KDCB in the case of dual-file operation (DOUBLE)filebase

When splitting the KDCFILE, additional files are created, see ."Splitting the KDCFILE"

Unix, Linux and Windows systems:

filebase specifies the name of the base directory in which the KDCFILE is stored.

The KDCFILE is created by KDCDEF under the directory, where is the fully qualified name of a filebase filebase
directory which must be created the KDCDEF run.before

The KDCDEF generation tool creates the following files in the file directory:filebase

KDCA in the case of single-file operation (SINGLE)

KDCA and KDCB in the case of dual-file operation (DOUBLE)

 48

Size of the page pool
You can define the size of the page pool using the following control statement:

MAX...,PGPOOL=(number, warnlevel1, warnlevel2)

Further information can be found in section ."Page pool"

Size of the restart area
You can define the size of the buffer and the restart area using the following control statement:

MAX ...,RECBUF=(number,length)

Further information can be found in section ."Restart area"

During generation, the page pool and the restart area can be distributed over several files. Further information can
be found in section ."Splitting the KDCFILE"

Data security - dual-file operation of the KDCFILE

For security reasons, it may make sense to duplicate the KDCFILE (dual-file operation). If one of the files is
destroyed, then you can continue working with the other KDCFILE without losing data.

Dual-file operation of the KDCFILE does not have any significant effect on I/O times (these are certainly not
doubled), and therefore does not reduce performance.

With dual operation of the KDCFILE, it makes sense to store the two files on different volumes (disks). If one of the
volumes is physically damaged, this ensures that a viable copy is still available.

BS2000 systems:

You can create the files on the desired volumes by issuing appropriate /CREATE-FILE commands before the
KDCDEF run or by copying the files after the KDCDEF run. When generating the application, you can also use the
CATID parameter of the MAX statement to assign different CATIDs to the two files.

A copy of the KDCFILE is maintained when you specify
 MAX KDCFILE=(....,DOUBLE)

in the KDCDEF generation.

Unix and Linux systems:

On Unix and Linux systems you can store the two KDCFILEs on different disks. This is generally only possible with
the help of symbolic links (ln -s) to raw devices or across different file systems across different file systems. In this
manner, you have a copy of the file even if one of the two disks is physically destroyed.

A copy of the KDCFILE is maintained when you specify
 MAX KDCFILE=(....,DOUBLE)

in the KDCDEF generation.

Windows systems:

On Windows systems you can additional increase data security with the operating resources already available. For
example, you can use single-file operation for the KDCFILE () and create a MAX KDCFILE=(....,SINGLE)

mirrored image of the disk on which the KDCFILE is stored on another disk. During operation, all changes to the
KDCFILE are also made on the mirror disk. Even if one of the disks is physical destroyed, you can still continue
working with the other hard disk without losing data.

 49

2.3.1 Administrative data

The administrative data area contains configuration information, such as application runtime parameters, lists of all
objects that can be addressed by name, administrative data on the page pool and restart area, and tables of user
IDs, clients, LTERM partners, transaction codes, key and lock codes, and function keys.

All tasks and work processes of the application work with the administrative data and use the application to
exchange information.

The administrative data itself is initialized using the KDCDEF generation tool. When starting the application, it is
loaded into a shared memory, which can then be accessed by all tasks/work processes of the application.

On BS2000 systems this memory is located in a Common Memory Pool.

On Unix, Linux and Windows systems the administrative data is put into a shared memory segment.

In a UTM-S application, openUTM writes the administrative data (including any modifications made in the
meantime) back to the KDCFILE at certain intervals (Periodic Write). This also occurs at the end of the application
run. This version of the administrative data then forms the basis for the next application run.

In a UTM-F application, openUTM writes only certain modified administrative data back to the KDCFILE, e.g.
changed user passwords and configuration data incorporated by means of dynamic administration.

 50

2.3.2 Page pool

The page pool stores user data created during the application run. This includes:

LSSBs, GSSBs, TLS blocks, and ULS blocks

message queues, i.e. asynchronous messages (including time-driven messages) for clients, asynchronous
services and service-controlled queues, and the dead letter queue, among other items

buffered user log records (USLOG)

service data (KB program area, last dialog message, etc.)

dialog messages buffered after input as a result of TAC class or priority control

output messages to clients

A number of specific characteristics apply to UTM cluster applications on Unix, Linux or Windows systems, see
."Notes on generating a UTM cluster application"

The active UTM application accesses the page pool via the UTM cache, see KDCDEF generation, MAX statement,
CACHESIZE operand in section ."MAX - define UTM application parameters"

You can define the size of the page pool (number of UTM pages) during KDCDEF generation using the MAX
statement:

MAX...,PGPOOL=(number, warnlevel1, warnlevel2)

number Size of the page pool in UTM pages

warnlevel1 The first warning is output when the percentage utilization of the page pool reaches the value
specified here

warnlevel2 The second warning is output when the percentage utilization of the page pool reaches the value
specified here

The current utilization of the page pool can be queried by the administration, e.g. using the KDCINF PAGEPOOL
command (see openUTM manual “Administering Applications”) or by means of WinAdmin or WebAdmin.

The utility program KDCUPD provides another way of obtaining more detailed information about the type of the data
stored in the page pool. It is possible to display the number of pages used for each application object, e.g. for each
user. You will find more information on this subject in section ."The tool KDCUPD – updating the KDCFILE"

Estimating the necessary size of the page pool

Once the page pool size has been defined, it cannot be modified while the application is running. When designing a
UTM application, it is therefore necessary that you estimate the page pool size which will be required during
runtime. The page pool size cannot be modified until after the application has been terminated. This involves
regenerating the KDCFILE using the KDCDEF generation tool, whereby the existing user data is copied then from
the old KDCFILE to the new KDCFILE using the KDCUPD tool. Further information can be found in section "The

.tool KDCUPD – updating the KDCFILE"

When estimating the required page pool size, you must examine the behavior of the program units, identify which
data areas are stored in the page pool, and determine their size. The following must also be noted:

 51

The page pool is divided into UTM pages:
a UTM page is either 2KB, 4KB or 8KB in length, depending on the value of the BLKSIZE= parameter in the
MAX statement.

The following applies for the data areas GSSB, LSSB, TLS, and ULS:each of these data areas begins on a new
UTM page. Of each UTM page, 1994 bytes (in the case of a 2KB UTM page), 4042 bytes (in the case of a 4KB
UTM page) or 8138 bytes (in the case of a 8KB UTM page) are available for user data. The remaining space is
reserved by openUTM.

openUTM offers the option of compressing the user data of these areas, see the DATA-COMPRESSION
parameter of the MAX statement. This can reduce the number of UTM pages required.

The following applies to asynchronous messages:
Each message begins on a new UTM page. Of the first UTM page of a message, at least 1914 bytes (in the case
of a 2KB UTM page), 3962 bytes (in the case of a 4KB UTM page) or 8058 bytes (in the case of a 8KB UTM
page) are available for user data. Of each follow-up page occupied by the message, at least 2030 bytes (in the
case of a 2KB UTM page), 4078 bytes (in the case of a 4KB UTM page) or 8174 bytes (in the case of a 8KB
UTM page) are available for user data.

In future versions of openUTM, it is possible that less space will be provided for user data on each UTM page.
When programming, therefore, you should ensure that all the available space is not exhausted.

If an existing area is modified, openUTM stores the new area up to the end of the transaction at another location
in the page pool. The area is thus temporarily duplicated.

Figure 4: Dual-file operation of changed areas in the page pool

Page pool overflow warning

While the application is running, it is vital that the page pool does not become full as it is also required to back up
the dialog messages. For this purpose, openUTM provides the following protective measures:

There are two warning levels (percentages), which can be set during generation. If utilization of the page pool
exceeds or falls short of these values, openUTM outputs UTM message K040 or K041, so that the user can
respond with a MSGTAC routine.

Local asynchronous messages and LPUT calls to write records to the USLOG file are rejected if utilization of the
page pool has reached warning level 2.

You must also allow for the volume of FPUT and LPUT messages. Make sure that the page pool is not
too small.

i

 52

Asynchronous messages from a partner application via LU6.1 or OSI TP are rejected if utilization of the page
pool has reached warning level 2. The connection is cleared. When communicating via OSI TP, the message

 with the insert is output in both applications. The queued K119 OSI-TP error information DIA3=21

message is resent to the partner application at regular intervals determined by the value in MAX CONRTIME.

An asynchronous job issued by a terminal or TS application is reject with UTM message K101 if utilization of the
page pool has reached warning level 2.

 53

2.3.3 Restart area

KDCS calls in a program unit will result in modifications to the administrative data.
openUTM collects information on all changes made within a transaction - i.e. from the first INIT call to the end of the
transaction - in a process-specific storage area. On BS2000 systems this is a buffer in class 5 memory.

In a UTM-S application, openUTM uses the information in this buffer to create a restart data record at the end of the
transaction. It then writes this data record to the restart area of the KDCFILE. The data record describes the
modifications to the administrative data which were made as a result of the transaction. In the case of a warm start,
it is used by openUTM to trace the effect of the transaction. The size of the restart area determines the interval at
which modifications to the configuration data must be transferred to the administrative data area of the KDCFILE.

In a UTM-F application, restart data records are written only for transactions in which passwords were changed or in
which administrative data was modified by means of dynamic configuration.

The data records in the restart area are combined by openUTM, i.e. a UTM page in this area generally contains
several data records.

During KDCDEF generation, you can define the size of the buffer and the restart area using the following statement:

MAX ...,RECBUF=(number,length)

number Size of the restart area for each process in the KDCFILE, specified in UTM pages

length Size of the buffer for each process in the main memory, specified in bytes

Setting the length parameter

The parameter lets you reserve for each process a buffer area that is bytes long in main memory. length length
openUTM uses this area to buffer changes to administrative data while a transaction is still open and can therefore
still be rolled back.

For , you must calculate the space requirements of the application’s transactions in the buffer using default length
values:

In addition to the basic requirement of 40 bytes per transaction, you must also allow for the following:

up to 50 bytes per KDCS call, but 80 bytes per MCOM call.

up to 300 bytes per ADMI call.

In the case of distributed processing, the following additional requirements must be taken into consideration:

300 bytes per LU6.1 communication partner

200 bytes per OSI TP partner

 54

In the case of asynchronous administration by means of an FPUT call, please note that all FPUT NT calls from a
program unit to the same administration TAC are processed by the UTM administration program in a single
transaction. The individual administration commands require the following buffer space, which must be taken into
consideration in :length

0 bytes for each KDCHELP and KDCINF administration command

for all other administration command others
300 bytes on BS2000 systems
360 bytes on Unix, Linux and Windows systems

If RECBUF= is generated too small, i.e. if the buffer is not large enough for a transaction, openUTM rejects length
a KDCS call or rolls back the transaction or cancel the transaction abnormally.

Setting the number parameter

The parameter lets you reserve for each process a buffer area whose size is UTM pages in the number number
KDCFILE. openUTM uses this area to buffer changes to the administrative data of completed transactions until the
changed data is written to the KDCFILE in the next periodic write. A UTM page generally contains several data
records, since these generally occupy only slightly less space than the corresponding information in the buffer.
If is defined too low, KDCDEF automatically increases this to the minimum value.number

When combined with the restart records, the administrative data in the KDCFILE always represents the last valid
state of the application. When using UTM-S, openUTM automatically updates the administrative data in the
KDCFILE (Periodic Write) before a restart area becomes full during runtime. All pages containing administrative
data in which modifications have been made are written to the KDCFILE parallel to the transactions currently active.
All data records written previously to the restart areas thus become obsolete.

number should be set such that the space available in the restart area is at least a multiple of the buffer generated
using the parameter.length

In a UTM-F application, the volume of administrative data written back to the KDCFILE is much less, e.g. changed
user passwords and generation data modified by means of dynamic configuration. The parameter can number
therefore be set lower for UTM-F applications.

On 64-bit platforms you will need to double the memory requirement.i

If the restart area is large, the administrative data in the KDCFILE is updated less frequently during
runtime. When performing a warm start following termination of the application, however, large quantities
of data records from the restart areas must be incorporated in the KDCFILE, i.e. the warm start takes
longer. The opposite applies if the restart area is small: since administrative data is updated frequently
during runtime, the time required for warm start is reduced but impact slightly on the executing application.

i

 55

1.

2.

1.

2.

2.3.4 Creating a new KDCFILE during operation

To minimize the downtime for a UTM application during a new generation, it is also possible to create a new
KDCFILE for an application while the application is running. However, you must bear the following in mind:

BS2000 systems:

The base name of the new KDCFILE consists of the catalog ID, user ID and prefix and may not be the same as the
old (current) KDCFILE (the structure of the file name is described in section)."The KDCFILE"

To ensure this, use the following procedure:

In the MAX statement, enter the file name without the in the parameter. And under (see userid filebase prefix
) enter the same value as used for the generation of the “old” KDCFILE."The KDCFILE"

Start the KDCDEF run under a BS2000 user ID which is different to the one under which the application is
running (for example, use userid2, if the old KDCFILE is called :catid:$userid1.prefix.KDCA).

You can subsequently - when the application is not running - copy the KDCFILE to the and execute a userid1
KDCUPD run, if necessary. You can copy the KDCFILE using:

/COPY-FILE FROM-FILE=$userid2.filebase.KDCA,TO-FILE=$userid1.filebase.KDCA

Start the KDCDEF run under or in MAX KDCFILE= enter the base name with the user ID,. This will cause userid1
KDCDEF to interrupt the KDCDEF run with the message K404 "DMS error D5B1 on file ...".

Unix, Linux and Windows systems:

You must ensure that the directory in which the new KDCFILE will be written is not the same directory as the base
directory of the running UTM application.

To achieve this, proceed as follows:

Specify the base directory with “.” in the MAX statement, i.e. the KDCFILE will be written in the filebase
directory in which KDCDEF is started:

MAX KDCFILE=(.,S) or)MAX KDCFILE(.,D

You start KDCDEF in a directory other than the base directory of the UTM application.

You can then copy the KDCFILE to the base directory later and execute a KDCUPD run, if necessary.

If you start the KDCDEF run in the base directory or specify the fully qualified base directory in MAX KDCFILE= ,
then KDCDEF aborts the KDCDEF run with message U185.

 56

2.4 Performance aspects - tuning

An important factor in the performance of a UTM application is the efficiency with which openUTM can access the
KDCFILE, particularly in the case of high transaction rates. With a large configuration, i.e. a large KDCFILE, it is
recommended that you optimize the access times. This can be achieved in two ways:

splitting the KDCFILE (see below)

KDCFILE on raw-device (only on Unix and Linux systems, see "KDCFILE on raw-device (Unix and Linux
)systems)"

KDCFILE on stripe set (only on Windows systems, see)"KDCFILE on a stripe set in (Windows systems)"

On BS2000 systems, you can also use the HIPERFILE concept to optimize performance, see the manual "BS2000
OSD/BC - Introductory Guide to DMS".

 57

2.4.1 Splitting the KDCFILE

In order to improve the I/O behavior of your application, you can split the KDCFILE by swapping out the page pool
and/or the restart area of the KDCFILE. Splitting the page pool and restart area across several files is particularly
advantageous if you have very high transaction rates, since openUTM then distributes the number of access
operations to these areas across the various different files.

The administrative data is essentially stored in the main file KDCA. The swapped-out page pool or restart area can
be split between several files by means of generation. Provided this results in the use of numerous different
hardware paths, access times can be reduced considerably thereby enhancing performance.

Generation notes

You can use the following operands of the KDCDEF control statement MAX to define the areas of the KDCFILE to
be swapped out during generation, and to specify the number of files created for these areas:

Page pool files

MAX...,PGPOOLFS=number

Restart area files

MAX...,,RECBUFFS=number

In the case of dual-file operation, which is defined using the statement
, these files are also maintained twice.MAX...,KDCFILE=(....,DOUBLE)

File names

The individual files of the KDCFILE that are contained in the swapped out areas have the same base name filebase
as the main file KDCA and have the following names:

Page pool files: P01A, P02A, P03A,
If you are keeping a dual KDCFILE, the files P01B, P02B, P03B, ... are also created.

Restart area: R01A, R02A, R03A,
If you are keeping a dual KDCFILE, the files R01B, R02B, R03B, ... are also created.

Example

You want to set up your KDCFILE as follows:

Page pool distributed across two files.

Restart area located in a separate file.

Duplicated file names.

For the base names, the place holder is used in this example.FILEBASE

On Unix, Linux and Windows systems, is the directory in which the files are stored, and can be replaced, FILEBASE
for example, by (Unix and Linux systems) or (Windows systems)./home/userutm/base C:\userutm\base

In the KDCDEF generation you specify the following MAX statement:

MAX...,KDCFILE=(FILEBASE,DOUBLE),PGPOOLFS=2,RECBUFFS=1,...

 58

KDCDEF then generates the following files:

KDCFILE Original Copy

BS2000 systems: Main file containing administrative data FILEBASE.KDCA FILEBASE.KDCB

Page pool FILEBASE.P01A
.P02AFILEBASE

FILEBASE.P01B
.P02BFILEBASE

Restart area FILEBASE.R01A FILEBASE.R01B

Unix and Linux systems: Main file containing administrative data FILEBASE/KDCA FILEBASE/KDCB

Page pool FILEBASE/P01A
/P02AFILEBASE

FILEBASE/P01B
/P02BFILEBASE

Restart area FILEBASE/R01A FILEBASE/R01B

Windows systems: Main file containing administrative data FILEBASE\KDCA FILEBASE\KDCB

Page pool FILEBASE\P01A
\P02AFILEBASE

FILEBASE\P01B
\P02BFILEBASE

Restart area FILEBASE\R01A FILEBASE\R01B

 59

2.4.2 KDCFILE on raw-device (Unix and Linux systems)

You can improve the performance of a UTM application on Unix and Linux systems considerably by operating the
KDCFILE on raw-device, i.e. as a character based device file. To do this, create the KDCFILE on a separate disk
partition, in other words a partition on which no file system is stored.

Direct access to the KDCFILE via a device file without buffering in the system kernel requires less time and less
resources than access via the file system when the KDCFILE is stored as a normal file in the directory. The filebase
KDCFILE is stored as a contiguous data area on the disk partition. If the KDCFILE is stored as a file within a file
system, then the data of the KDCFILE is often stored by the system in such a way that it is distributed across
several storage areas which leads to increased access times.

Splitting the KDCFILE across several files (swapping out the page pool and restart area) requires you to use a
disk partition for each file.separate

Estimating the size of the required disk partition

To allow the system administrator to create a sufficiently large disk partition for your KDCFILE, you must calculate
the size of the KDCFILE. This depends on the following factors:

the number of generated objects addressed by name
(transaction codes, users, program units, clients and printers, key sets, remote communication partners,
connections for distributed processing, etc.)

the generated size of the page pool (see)"Page pool"

the generated size of the restart area (see)"Restart area"

the number of work processes

To determine the size of the partition required for your KDCFILE, use KDCDEF to generate the KDCFILE as the file
/KDCA. Then output the size of your KDCFILE using the command . Please note that future filebase ls -l

modifications to the configuration generally affect the size of the KDCFILE. As a precaution, you should therefore
select a larger disk partition.

Creating the raw special file

The disk partitioning is defined by the system administrator when installing the Unix or Linux system. Before system
installation, therefore, you must inform your system administrator that you require disk partitions in raw-device
format without file systems for your UTM applications. The system administrator can thus create several smaller
partitions during installation, which can then be combined to form the storage area for your KDCFILE depending on
requirements.

The raw partition of the database system used should be located on another disk.i

CAUTION!
Many disks contain administrative data in the first track. This area of the disk must therefore not be
included in the partition for the KDCFILE.

Do create a file system in the disk partition in which the KDCFILE is to be stored. Do mount the not not
disk partition using the command.mount

!

 60

Ask your system administrator to create a special file for accessing the disk partition. Make sure that access to the
KDCFILE takes place via a character-oriented special file (raw-device), i.e. the name of the special file must begin
with r and the identifier must be a c (first character output by the ls -l command).

The owner of the special file must the user ID under which the application runs. Read and write access to the
special file must be granted exclusively to the owner (access rights 600). Be careful when assigning access rights to
the KDCFILE, as these are the only means of protecting your KDCFILE against unauthorized access.

The command for the special filels -l

ls -l /dev/rxxxx

returns the following output:

crw------- 1 utmaw other 0,1030 Jul 14 15:13 /dev/rxxxx

Writing the KDCFILE to the special file

There are two options for creating the KDCFILE in the disk partition.

Delete the KDCFILE that you generated when determining the file size. Using the command, create a symbolic ln
reference between the special file and /KDCA. Regenerate the KDCFILE for your application using the filebase
KDCDEF generation tool. openUTM writes the KDCFILE directly to the special file.

rm filebase /KDCA

 ln -s /dev/rxxxx filebase /KDCA

 utmpath /ex/kdcdef

Copy the KDCFILE (generated when determining the file size) to the special file using the or command, cp dd
and then delete the KDCFILE /KDCA. filebase
Using the command, create a symbolic reference between the special file and /KDCA.ln filebase

cp filebase /KDCA /dev/rxxxx

 rm filebase /KDCA

 ln -s /dev/rxxxx filebase /KDCA

In both cases, after issuing the command, use the command to check whether a link exists between ln ls -l filebase
/KDCA and the special file:

ls -l /dev/rxxxx filebase /KDCA

Output:

crw------- 1 utmaw other 0,1030 Jul 14 15:13 /dev/rxxxx

lrwxrwxrwx 1 utmaw other 9 Jul 14 15:13 /KDCA -> /dev/rxxxxfilebase

Dual-file operation

If you require dual-file operation of the KDCFILE for security reasons, you will need two disk partitions. The disk
partitions should be located on different disks. Ideally, the disks should be operated by different controllers. The
system administrator must create a raw special file for each KDCFILE.

To ensure that openUTM can write each KDCFILE to the special file created for this purpose, you must create the
following symbolic references:

 61

ln -s /dev/rxxx1 filebase /KDCA

 ln -s /dev/rxxx2 filebase /KDCB

 62

2.4.3 KDCFILE on a stripe set (Windows systems)

You create the file directory on a stripe set (Windows software RAID level 0). In a stripe set, unused areas filebase
of matching size on different hard disks are combined to form a logical drive. The data in a KDCFILE on a stripe set
are therefore also distributed amongst various hard disks, resulting in faster access and therefore in higher
performance for the UTM application.

You must use stripe sets with parity (RAID Level 5) to achiever better data security. Stripe sets with parity can only
be used under the Windows Server operating system.

Please consult the Windows documentation for more information on stripe sets.

 63

3 Generating applications for distributed processing

This chapter provides a summary of the most important generation notes for applications with distributed processing
and describes how the UTM generation is coordinated with the generation of the transport system.

The term distributed processing is used to describe server-server communication using the LU6.1 and OSI TP
protocols. These protocols are used to implement global transaction processing. The OSI TP protocol also makes it
possible to communicate with OpenCPIC clients and LU6.2 applications. OpenCPIC clients are generated in the
same way as OSI TP partners, see chapter "Generation procedure for distributed processing based on OSI TP
". Specific hints for the generation of OpenCPIC clients can be found in section " ". Connecting OpenCPIC clients
More information about connecting to a LU6.2 application can be found in the openUTM manual “Distributed
Transaction Processing between openUTM and CICS, IMS and LU6.2 Applications”.

The basic principles of distributed processing are introduced in the openUTM manual “Concepts und
Functions”.

To generate applications with distributed processing, you must first ensure that the individual applications have
been generated without errors, and that the generation data of all applications involved has been coordinated. Since
the KDCDEF generation tool can only check the generation data of a single application for consistency and
syntactic accuracy, conflicts generally cannot be identified until the applications begin to interact with each other, e.
g. during connection setup.

You will find notes on generation when standalone UTM applications are to be linked to UTM cluster
applications on Unix, Linux or Windows systems in the sections "LU6.1-LPAP bundles of a standalone

 and .application with a UTM cluster application" "OSI-LPAP bundles"

 64

3.1 Distributed processing via the LU6.1 protocol

Before discussing the rules and recommendations for generating UTM applications with distributed processing, a
number of SNA terms relevant for configuration are explained below in context.

SNA terms are shown in in the next section. More information on SNA terms can be found in the openUTM italics
manual “Distributed Transaction Processing between openUTM and CICS, IMS and LU6.2 Applications”.

 65

3.1.1 Transport connections and SNA sessions

Communication between two applications is, from the openUTM point of view, carried out using transport
connections (in the sense of TRANSDATA), via which the SNA sessions are handled.

The sessions are identified using . The session names serve to restart interrupted communication session names
between two applications. If, prior to an interruption, communication via one of the possible transport connections is
taking place using a given session name, then when the session is restarted, it is started under the same session
name, but not necessarily using the same transport connection.

A session is defined using the KDCDEF control statement LSES, while its characteristics (e.g. the way in which it is
opened, controlled, and managed) are defined using the SESCHA control statement.

The session name can be likened to the USER name in UTM applications: a USER can also continue an interrupted
service on another terminal, thus using a different transport connection. In order to ensure that the session name in
two connected applications does not have to be the same, the session name is made up of two parts (symbolized
using the ’+’ character):

session-name = .local-session-name+remote-session-name

Each part of the session name is a maximum of 8 characters in length, thus the entire session name has maximum
length of 16 bytes. The refers to a common session in the local application, and the local-session-name remote-

 refers to the same session in the remote application. This means that the both the local and remote session-name
applications are required to know the session names of the partner application. The uses the local-session-name
USER name defined in the local application to create a common name for the local application, and the remote-

 uses the USER names defined in the remote application to create a common name for the remote sessionname
application.

At the start of a service, the “user ID" field in the KB header contains a local session name if the requester is a
remote LU6.1 application.

A session is exclusively occupied for the duration of the dialog between the job-sending application and the job-
receiving application (bracketing). In other words, another job-sending application will be required to:

wait until the session has been released or

repeat its job later, as it will be rejected at this time or

occupy a different free session and start its job from there. The prerequisite for this is that there are several
transport connections and sessions available for the remote application.

The opening and closing of a session is always controlled by one of the partner applications. This application is then
referred to as the or . However, the initiative for opening a session may come from primary logical unit PLU both
applications involved.

When opening a session, the partners agree on which application is to be responsible for for controlling the
reservation of the session by jobs. The application which shall control the session is known as the contention
winner, while the other application is referred to as the contention loser. In order to submit a job to the partner, the
contention winner can reserve a session without consulting the contention loser beforehand. The contention loser,
on the other hand, must request a session from the contention winner.

 66

1.

2.

3.

4.

5.

6.

3.1.2 Generation notes

When generating UTM applications that are to communicate using the LU6.1 protocol, you must bear the following
information in mind.

In each application, either one or two LPAP statements and the appropriate SESCHA, CON and LSES
statements must be generated for each of the partner applications.

Only one LPAP statement is required for a partner application if only one of the two applications is to be
sending jobs. However, if both applications are intended to send jobs to the partner application, then both
applications will require two LPAP statements.

An LPAP that is used mainly to send jobs is generated in its SESCHA statement using CONTWIN=NO; this
ensures that the local application becomes the contention winner for this LPAP. The corresponding LPAP in the
partner application must then be generated with CONTWIN=YES.

For each connection/each session, one CON or one LSES statement must be generated in each of the partner
applications.

For each CON statement, the CON name and the BCAMAPPL name in the one application must correspond to
the names in the partner application.
In the same way, for each LSES statement, the LSES name and the RSES name of the one application must
correspond to those in the partner application.

In the case of standalone applications, the same number of CON and LSES statements must be generated for
each LPAP; the number of CON or LSES statements determines the number of parallel connections to the
partner application that are possible via this LPAP. Other rules apply to UTM cluster applications on Unix, Linux
and Windows systems, see ."Special issues with LU6.1 connections"

All CON and LSES statements of an LPAP must address the same partner application and must also be
assigned to a single LPAP name in the partner application. It is not permitted to generate several CON
statements leading to different applications for one LPAP name.

It is also not permitted to generate several CON statements for a single LPAP which are assigned to different
LPAP statements via the corresponding CON statements in the partner application.

This generation error cannot be recognized by openUTM, but will lead to errors during connection or session
establishment and during session restart.

In order to establish several parallel connections between two applications, a UTM application opens several
transport system end points at the transport system. Each transport system end point of a UTM application is
generated using its own BCAMAPPL statement.

Unix, Linux and Windows systems
Please note the maximum number of connections that can be established at a time via one transport
system end point. For details see in section BCAMAPPL statement "BCAMAPPL - define additional

.application names"

!

 67

6.

Figure 5: Two applications with several transport connections

In the example above, A and B are the names of the applications as specified using the MAX APPLINAME=
statement; B1 and B2 are defined using separate BCAMAPPL statements.

Terminals are able to establish connections to application A using the application name A and to application B using
the application name B. But application A is able to connect to application B using the application names B, B1 or
B2.

BS2000 systems

From the network administration point of view, the UTM application B consists of several BCAM applications.
BCAM administration commands for one of the application names have an effect on the entire UTM application
B. So in other words, a BCAPPL APPLICATION=B,MODE=DEACTIVATE command not only terminates UTM
application B, but also signs the applications B1 and B2 off from BCAM.

Between two given transport system end points of both applications only a single transport connection can be
established. If two transport system end points are generated in one of the applications and three in the other, then
up to six parallel connections can be established between the two applications.

If both a contention winner LPAP and a contention loser LPAP are generated for a partner application (SESCHA
statement), then transport system end points (BCAMAPPL statement) are established via the contention winner
connections and should not be used simultaneously for the contention loser connections! This means that both
contention winner and contention loser LPAPs are generated in a single application, thus the BCAMAPPLs of this
application should be split into two disjunctive groups, where the BCAMAPPLs of the one group are assigned only
to contention winner connections and the BCAMAPPLs of the other group are only ever used for contention user
connections.

 68

1.

3.1.3 Procedure when generating LU6.1 connections

When generating two applications that are to communicate using the LU6.1 protocol, you should proceed as
described below.

LPAP and SESCHA statements

First you must decide whether the two applications are to be sending jobs to each other on an equally regular
basis, or whether one of the applications is to be sending jobs more frequently than the other.

In the first scenario, both applications must be generated with two LPAP statements each; in the second
scenario the applications require one LPAP statement each. In this case, that LPAP statement that is designed
to send more jobs than it receives is generated with SESCHA ...,CONTWIN=NO; the corresponding LPAP in
the partner application is generated with SESCHA ...,CONTWIN=YES. When you have two LPAP statements in
an application, one should be generated with SESCHA ... ,CONTWIN=NO and the other with SESCHA ...,
CONTWIN=YES.

LPAP statement in section "LPAP - define an LPAP partner for distributed processing based on LU6.
 1"

The following operands can be used to define an LPAP partner as the logical connection point for the
partner application.

lpapname

LPAP partner name; this is the logical name of the partner application via which the program units
of the local application and the partner application communicate. is only significant in lpapname
the local application.

SESCHA=

The session characteristics for communication between local application and partner application
as defined under in the SESCHA statement are assigned to the LPAP partner.sescha_name

PERMIT=

Specifies the level of authorization (right to carry out administration and preselection functions) of
the partner application.

QLEV=

Specifies the maximum number of asynchronous messages that are permitted to wait in the
Message Queue of the LPAP partner.

DEAD-LETTER-Q=

Specifies whether asynchronous messages to the LPAP partner that are deleted as they could not
be sent due to a permanent error are saved in the dead letter queue.

STATUS=

This defines whether the partner application is able to work with the local application immediately
the local application is started, or whether the administrator must first set the status to ON.

BUNDLE=

Makes the LPAP a slave LPAP of an LU6.1-LPAP bundle and specifies the associated master
LPAP.

 69

1.

2.

SESCHA statement in section "SESCHA - define session characteristics for distributed processing
 based on LU6.1"

You can use the following operands to define the session characteristics that are to be assigned to
one of the LPAP partners and therefore to the partner application that connects via this LPAP partner.

sescha_name

Defines the name under which the session characteristics are collected. This name is entered in
the LPAP statement in the operand SESCHA= to assign the session characteristics to a LPAP
partner.

CONTWIN=

Specifies whether the local application is the contention winner (NO) or contention loser (YES).
The contention winner application manages the session and controls the utilization of the session
by jobs.

Default: If PLU=N, the local application is the contention loser, otherwise it is the contention winner.

PLU=

Specifies which application is able to initiate the session, or in other words, whether the partner
application is the primary logical unit (PLU) (YES) or the local application (NO).
PLU=Y must be specified for one of the participating applications, and PLU=N for the other.

CONNECT=

Specifies whether the local application is to connect automatically to the partner application on
application startup (YES) or whether the connection to the partner application is to be carried out
by means of an administration command (NO).

Example

Application A sends jobs to Application B via LPAP B1 and application B sends jobs to application A via LPAP
A2.

Application A: Application B:

LPAP B1, SESCHA=B1

SESCHA B1, CONTWIN=NO, PLU=YES

LPAP B2, SESCHA=B2

SESCHA B2, CONTWIN=YES, PLU=NO

LPAP A1, SESCHA=A1

SESCHA A1, CONTWIN=YES, PLU=NO

LPAP A2, SESCHA=A2

SESCHA A2, CONTWIN=NO, PLU=YES

BCAMAPPL statements

The next thing to do is to specify how many parallel connections are to be generated between two LPAPs. In
accordance with the number you specify, the BCAMAPPL statement is used to generate additional transport
system endpoints for both applications. Only one connection may be established between each transport
system endpoint and the transport system endpoint of the partner application. Should, for example, nine parallel
connections be generated between two LPAPs, then at least three BCAMAPPL statements will be required on
each side.

If two LPAPs to the partner application are generated in an application, the BCAMAPPLs of this application
should be split into two disjunct groups. The first LPAP communicates using just the BCAMAPPLs of the first
group, and the second LPAP uses the BCAMAPPLs of the second group.

 70

2.

3.

BCAMAPPL statement in section "BCAMAPPL - define additional application names"
The following operands are used to define an additional application name for parallel connections to
the communication partner.

appliname

Additional (BCAM) name of the UTM application.

T-PROT
Specifies the transport protocol.
NEA is the default for BS2000, RFC1006 is the default for Unix, Linux and Windows systems.

If an application communicates with several partner applications, the BCAMAPPLs used to communicate with
the one application may also be used to communicate with the other applications.

CON and LSES statements

It is then necessary to assign one CON and one LSES statement to each LPAP statement for each parallel
connection via this LPAP. Each CON and each LSES statement must be generated in each of the participating
applications and both of these generations must correspond to each other.

Thus:

Each CON name in the one application corresponds to a BCAMAPPL name in the other application and vice
versa.

Each LSES name in the one application corresponds to an RSES name in the other application and vice
versa.

CON statement in section "CON - define a connection for distributed processing based on LU6.1"
The following operands can be used to assign the LPAP partner in the local application to the real
partner application.

remote_appliname

Name of the partner application with which communication is to take place via the logical
connection.

BCAMAPPL=

Refers to a name of the local application as specified in the control statement MAX or
BCAMAPPL. You cannot specify a BCAMAPPL name for which a T-PROT=SOCKET has been
generated.

LPAP=

Name of the LPAP partner application to which the connection is to be established. The name of
the LPAP partner via which the partner application connects must be defined using the statement
LPAP . lpapname
Specifying several CON statements with the same allows you to generate parallel lpapname
connections to the partner application.

PRONAM=

Name of the partner computer.

The CON statements that are used to describe the connection to the partner application in the local application
and the connection to the local application in the partner application refer to the connection. CON same
statements must therefore always be entered in pairs. When using parallel sessions, several CON statements
are generated for an LPAP partner.

 71

3.

In the example, the assignment is made between the LPAP partner B1 (as generated in application A) and the
LPAP partner A1 (as generated in application B):

LSES statement in section "LSES - define a session name for distributed processing based on LU6.
 1"

The following operands can be used to agree the same session names for the connection and assign
them to the LPAP partner.

local_sessionname

Name of the session in the local application.

RSES=

Name of the session in the partner application.

LPAP=

Name of the LPAP partner that is assigned to the partner application.
 is used for communication with the partner application that is assigned to the local_sessionname

LPAP partner in the local application.lpapname

Session names are agreed in the local application and partner application. LSES statements must therefore
always be entered in pairs. Since the session name is assigned to the LPAP partners, the LPAP partner
assignment defined in the LSES statement must be identical to that defined in the CON statements.

If two LPAP partners are assigned to each other, the LSES and RSES names agreed in the LSES statements
must match (see example below). In the case of parallel sessions, several LSES statements are entered with
different session names for an LPAP partner .lpapname

The previous example can now be extended as follows.

Example

 72

3.

Application A: Application B:

BCAMAPPL A11

BCAMAPPL A12

LPAP B1, SESCHA=B1

SESCHA B1, CONTWIN=NO, PLU=YES

BCAMAPPL B11

BCAMAPPL B12

LPAP A1, SESCHA=A1

SESCHA A1, CONTWIN=YES, PLU=NO

CON B11, BCAMAPPL=A11, LPAP=B1

CON B12, BCAMAPPL=A11, LPAP=B1

CON B11, BCAMAPPL=A12, LPAP=B1

CON B12, BCAMAPPL=A12, LPAP=B1

LSES SESA11, RSES=SESB11, LPAP=B1

LSES SESA12, RSES=SESB12, LPAP=B1

LSES SESA13, RSES=SESB13, LPAP=B1

LSES SESA14, RSES=SESB14, LPAP=B1

CON A11, BCAMAPPL=B11, LPAP=A1

CON A11, BCAMAPPL=B12, LPAP=A1

CON A12, BCAMAPPL=B11, LPAP=A1

CON A12, BCAMAPPL=B12, LPAP=A1

LSES SESB11, RSES=SESA11, LPAP=A1

LSES SESB12, RSES=SESA12, LPAP=A1

LSES SESB13, RSES=SESA13, LPAP=A1

LSES SESB14, RSES=SESA14, LPAP=A1

BCAMAPPL A21

BCAMAPPL A22

LPAP B2, SESCHA=B2

SESCHA B2, CONTWIN=YES, PLU=NO

BCAMAPPL B21

BCAMAPPL B22

LPAP A2, SESCHA=A2

SESCHA A2, CONTWIN=NO, PLU=YES

CON B21, BCAMAPPL=A21, LPAP=B2

CON B22, BCAMAPPL=A21, LPAP=B2

CON B21, BCAMAPPL=A22, LPAP=B2

CON B22, BCAMAPPL=A22, LPAP=B2

LSES SESA21, RSES=SESB21, LPAP=B2

LSES SESA22, RSES=SESB22, LPAP=B2

LSES SESA23, RSES=SESB23, LPAP=B2

LSES SESA24, RSES=SESB24, LPAP=B2

CON A21, BCAMAPPL=B21, LPAP=A2

CON A21, BCAMAPPL=B22, LPAP=A2

CON A22, BCAMAPPL=B21, LPAP=A2

CON A22, BCAMAPPL=B22, LPAP=A2

LSES SESB21, RSES=SESA21, LPAP=A2

LSES SESB22, RSES=SESA22, LPAP=A2

LSES SESB23, RSES=SESA23, LPAP=A2

LSES SESB24, RSES=SESA24, LPAP=A2

Notes

In the case of applications with distributed processing, the value specified in the statement MAX...,length
RECBUF=(,),... may have to be increased. Further information can be found in sectionnumber length "Restart

.area"

The behavior of an application can be influenced by the choice of timer (operand IDLETIME= of the SESCHA
statement, operands CONCTIME and PTCTIME of the UTMD statement).

 73

3.1.4 LU6.1-LPAP bundles

LU6.1=LPAP bundles allow messages to be distributed automatically across several LPAP partners. If a UTM
application has to exchange a very large number of messages with a partner application then load distribution may
be improved by starting multiple instances of the partner application and distributing the messages across the
individual instances. In an LU6.1-LPAP bundle, openUTM is responsible for distributing the messages to the partner
application instances. To achieve this, the program units in the APRO call must address the MASTER-LU61-LPAP.

One application scenario for distributing messages in this way is communication between a UTM application and a
UTM cluster application. This allows messages to the UTM cluster application to be distributed across the individual
node applications. You will find detailed information on this in section "LU6.1-LPAP bundles of a standalone

.application with a UTM cluster application"

An LU6.1-LPAP bundle consists of a master LPAP and multiple slave LPAPs. The slave LPAPs are assigned to the
master LPAP on generation. In normal circumstances, the individual slave LPAPs address different partner
applications.

Figure 6: Example of an LU6.1-LPAP bundle

Generating an LU6.1-LPAP bundle

MASTER-LU61-LPAP statement in section "MASTER-LU61-LPAP - Define the master LPAP of an LU6.
1-LPAP bundle"
Specifies the name and properties of the master LPAP in an LU6.1-LPAP bundle.

master-lpap-name

Name of the master LPAP.

STATUS=

Specifies whether messages can be sent to this LPAP bundle.

LPAP statement in section "LPAP - define an LPAP partner for distributed processing based on LU6.1"
The following properties must be specified to generate a slave LPAP:

lpap-name

Name of the slave LPAP.

 74

BUNDLE=master-lpap-name

Name of the master LPAP. The master LPAP specified here must be defined in a MASTER-LU61-LPAP
statement. If you specify BUNDLE, this LPAP becomes a slave LPAP of the specified master LPAP.

MASTER-LU61-LPAP master , ...
 LPAP slave-lpap , BUNDLE= master , ...

CONs of LPAPs belonging to an LU6.1-LPAP bundle

No physical connections (CONs) can be assigned to a master LPAP. This means that it cannot be specified as
the LPAP in a CON statement. The master LPAP always uses the connections assigned to the slave LPAPs.

Distribution of messages

For details, refer to the section ."Distributing messages" in chapter "LU6.1-LPAP bundles"

Display in the KB header

For details, refer to the section ."Information displayed in the KB header" in chapter "LU6.1-LPAP bundles"

 75

3.1.5 Usage of LU6.1-LPAP bundles for communication with an UTM cluster application
on Unix, Linux and Windows systems

Note the following when generating LU6.1 communication between a standalone partner application and a UTM
cluster application:

A partner application must generate one LPAP with a specific number of sessions and connections for each
node of the UTM cluster application with which it wants to communicate.

To address the UTM cluster application, an LU6.1-LPAP bundle whose slave LPAPs are assigned to the cluster
node should be generated in the partner application (see "MASTER-LU61-LPAP – Define the master LPAP of an

).LU6.1-LPAP bundle"

In the UTM cluster application, more sessions (LSES) than connections (CON) must be generated for the LPAP
that represents the partner application: One session per cluster node must be generated for each connection.

Each cluster node requires only exactly the number of connections assigned to each LPAP in the partner
application for the corresponding LPAP. However, because all cluster nodes have identical generations, the
sessions for all the LPAPs of the partner application must be generated in every cluster node.

During generation, the LU6.1 sessions must be explicitly assigned to the node applications. To do this, define the
reference name of the node application in the NODE-NAME parameter of the CLUSTER-NODE statement and
specify this name in the NODE-NAME parameter of the LSES statement. As a result, the "right" session is
selected when a session is established with a partner application.

Example:

The example below shows a generation in which the standalone application SA on the host HOSTSA is linked
to the UTM cluster application CA on the cluster nodes NODECAX, NODECAY and NODECAZ. 4 connections
between the standalone application and each of the node applications are generated. A MASTER-LU61-LPAP
is generated for the LPAPs that represent the node applications in the standalone application. This represents
the UTM cluster application.

 76

Standalone application SA on HOSTSA UTM cluster application CA on NODECAX/Y/Z

CLUSTER-NODE NODE-NAME=NODECAX -

, HOSTNAME=NODECAX, -

, FILEBASE=BASE1

CLUSTER-NODE NODE-NAME=NODECAY -

, HOSTNAME=NODECAY, -

, FILEBASE=BASE2

CLUSTER-NODE NODE-NAME=NODECAZ -

, HOSTNAME=NODECAZ, - ,

FILEBASE=BASE3

BCAMAPPL SA11

BCAMAPPL SA12

MASTER-LU61-LPAP MLPAPCA

LPAP LPAPCAX,SESCHA=SESCHCA-

, BUNDLE=MLPAPCA

LPAP LPAPCAY,SESCHA=SESCHCA-

, BUNDLE=MLPAPCA

LPAP LPAPCAZ,SESCHA=SESCHCA-

, BUNDLE=MLPAPCA

SESCHA SESCHCA, CONTWIN=NO,

PLU=YES

BCAMAPPL CA11

BCAMAPPL CA12

LPAP LPAPSA, SESCHA=SESCHSA

SESCHA SESCHSA, CONTWIN=YES, PLU=NO

CON CA11, PRONAM=NODECAX –

, BCAMAPPL=SA11, LPAP=LPAPCAX

CON CA12, PRONAM=NODECAX –

, BCAMAPPL=SA11, LPAP=LPAPCAX

CON CA11, PRONAM=NODECAX –

, BCAMAPPL=SA12, LPAP=LPAPCAX

CON CA12, PRONAM=NODECAX –

, BCAMAPPL=SA12, LPAP=LPAPCAX

CON SA11, PRONAM=HOSTSA –

, BCAMAPPL=CA11, LPAP=LPAPSA

CON SA11, PRONAM=HOSTSA –

, BCAMAPPL=CA12, LPAP=LPAPSA

CON SA12, PRONAM=HOSTSA –

, BCAMAPPL=CA11, LPAP=LPAPSA

CON SA12, PRONAM=HOSTSA –

, BCAMAPPL=CA12, LPAP=LPAPSA

CON CA11, PRONAM=NODECAY –

, BCAMAPPL=SA11, LPAP=LPAPCAY

CON CA12, PRONAM=NODECAY –

, BCAMAPPL=SA11, LPAP=LPAPCAY

CON CA11, PRONAM=NODECAY –

, BCAMAPPL=SA12, LPAP=LPAPCAY

CON CA12, PRONAM=NODECAY –

, BCAMAPPL=SA12, LPAP=LPAPCAY

 77

Standalone application SA on
HOSTSA

UTM cluster application CA on NODECAX/Y/Z

CON CA11, PRONAM=NODECAZ –

, BCAMAPPL=SA11, LPAP=LPAPCAZ

CON CA12, PRONAM=NODECAZ –

, BCAMAPPL=SA11, LPAP=LPAPCAZ

CON CA11, PRONAM=NODECAZ –

, BCAMAPPL=SA12, LPAP=LPAPCAZ

CON CA12, PRONAM=NODECAZ –

, BCAMAPPL=SA12, LPAP=LPAPCAZ

LSES SAA2CAX, RSES= CA12SA1-

, LPAP=LPAPCAX

LSES SAB2CAX, RSES= CA12SA2-

, LPAP=LPAPCAX

LSES SAC2CAX, RSES= CA12SA3-

, LPAP=LPAPCAX

LSES SAD2CAX, RSES= CA12SA4-

, LPAP=LPAPCAX

LSES CA12SA1, RSES= SAA2CAX-

, LPAP=LPAPSA -

, NODE-NAME=NODECAX

LSES CA12SA2, RSES= SAB2CAX-

, LPAP=LPAPSA -

, NODE-NAME=NODECAX

LSES CA12SA3, RSES= SAC2CAX-

, LPAP=LPAPSA

, NODE-NAME=NODECAX

LSES CA12SA4, RSES= SAD2CAX-

, LPAP=LPAPSA -

, NODE-NAME=NODECAX

LSES SAA2CAY, RSES= CA22SA1-

, LPAP=LPAPCAY

LSES SAB2CAY, RSES= CA22SA2-

, LPAP=LPAPCAY

LSES SAC2CAY, RSES= CA22SA3-

, LPAP=LPAPCAY

LSES SAD2CAY, RSES= CA22SA4-

, LPAP=LPAPCAY

LSES CA22SA1, RSES= SAA2CAY-

, LPAP=LPAPS -

, NODE-NAME=NODECAY

LSES CA22SA2, RSES= SAB2CAY-

, LPAP=LPAPSA -

, NODE-NAME=NODECAY

LSES CA22SA3, RSES= SAC2CAY-

, LPAP=LPAPSA -

, NODE-NAME=NODECAY

LSES CA22SA4, RSES= SAD2CAY-

, LPAP=LPAPSA -

, NODE-NAME=NODECAY

 78

Standalone application SA on
HOSTSA

UTM cluster application CA on NODECAX/Y/Z

LSES SAA2CAZ, RSES= CA32SA1-

, LPAP=LPAPCAZ

LSES SAB2CAZ, RSES= CA32SA2-

, LPAP=LPAPCAZ

LSES SAC2CAZ, RSES= CA32SA3-

, LPAP=LPAPCAZ

LSES SAD2CAZ, RSES= CA32SA4-

, LPAP=LPAPCAZ

LSES CA32SA1, RSES= SAA2CAZ-

, LPAP=LPAPSA -

, NODE-NAME=NODECAZ

LSES CA32SA2, RSES= SAB2CAZ-

, LPAP=LPAPSA -

, NODE-NAME=NODECAZ

LSES CA32SA3, RSES= SAC2CAZ-

, LPAP=LPAPSA -

, NODE-NAME=NODECAZ

LSES CA32SA4, RSES= SAD2CAZ-

, LPAP=LPAPSA -

, NODE-NAME=NODECAZ

 79

3.2 Distributed processing via the OSI TP protocol

Before discussing the rules and recommendations for generating UTM applications with distributed processing via
OSI TP, a number of OSI terms relevant for configuration are explained below. The OSI terms in this section are
shown in .italics

 80

3.2.1 OSI terms

If two partners wish to communicate with each other, the rules they must observe and the services they must
provide have been standardized in the OSI protocol (Open System Interconnection).

ISO (International Organization for Standardization) has also developed the , in which the OSI reference model
various communication tasks are distributed over . The services to be provided by each seven layers (instances)
layer are clearly defined. The seven layers form a hierarchical structure, where each layer can access the services
of the underlying layer. These services are made available to the overlying layer at .service access points

During communication, the application accesses the services of the communication system via one of these access
points:

If two applications wish to communicate and exchange data, they must be linked via a . A transport connection
transport connection can only be established between two in the network. It must therefore be addressable units
possible to identify each application by means of an which is unique throughout the network.address

In the OSI world, addresses are assigned to service access points rather than applications. Within the network, the
application is thus identified by means of the address of the access point via which it communicates.

Each service access point is assigned an address which is unique throughout the network. This consists of a
 and the address of the underlying access point.selector

The following diagram shows the format of addresses in the OSI reference model.

 81

Figure 7: Addresses of the service access points in the OSI reference model

In order to communicate with other applications in the network, a UTM application links to a service access point.
This link is generated using the ACCESS-POINT statement. The UTM application can then be accessed by its
partners in the network via the address of this access point.

 82

The format of the access point address via which the application is accessed depends on the access point
hierarchy. If the UTM application communicates on the basis of OSI TP, it links to an access point to the services of
layer 6. The address of the access point in the local system consists of the (selector of the transport selector

), the (selector of the), and the (selector of the transport layer session selector session layer presentation selector
). The network address of the access point thus comprises the network address of the system and presentation layer

the address of the access point in the local system.

The selectors of the individual layers must be unique in the local system. The system address is unique throughout
the entire network. When defining the access point address, you must consult your network administrator.

The selectors consist of . An octet is a byte (8 bits) in which the bit numbering and thus the order in which bits octets
are transferred is fixed.

Order of bit transfer in an octet

It is possible to establish several (also known as) to a certain communication parallel connections associations
partner. All connections to a remote partner are generated in a OSI-CON statement. The OSI-LPAP single
statement can be used to define the number of parallel connections to a particular partner. Each individual
connection must be assigned an , which is unique throughout the local system. The names of association name
associations with a remote partner are also generated in the OSI-LPAP statement.

Each connection between two partners is managed by one of the partners. This partner is known as the contention
, while the other partner is referred to as the . Jobs can be initiated by both partners. If both winner contention loser

partners submit a job at the same time, priority is given to the contention winner. The contention winner of a
connection should be the communication partner that starts jobs most frequently.

If several parallel connections exist between two partner, it is not necessary to define which partner is the
contention loser and which partner is the contention winner for each connection. You simply specify the number of
connections for which the individual partners act as the contention winner (OSI-LPAP statement). The partner that
starts jobs most frequently should be defined as the contention winner.

openUTM supports (ransaction rocessing ervice ser). This is an OSI TP user which provides TPSU-title T P S U
certain services within an application. In openUTM this is the sequence of program units which form a service. A
TPSU-title is a unique name within the application. In openUTM it is the TAC name of the first program unit of a
service. The is the TPSU-title of the job submitter and the is the TPSU-title initiating TPSU-title recipient TPSU-title
of the job receiver.

openUTM supports the (AET) defined by ISO. This is required if you are working with application entity title
transaction management (commit functional unit), or if a heterogeneous partner requires an AET in order to
establish a connection. In openUTM, the AET is specified for information purposes, but it is not used for addressing
the partner.

The to be used for communication purposes must be defined for each remote partner with which application context
the UTM application wishes to communicate via the OSI TP protocol.

The OSI terms and are described in further detail in the following sections.application entity title application context

 83

Application entity title (AET)

In the OSI world, communication partners are represented by application entities. An application entity is an
addressable unit in layer 7 of the OSI reference model (application layer). An example would be the access point of
a UTM application, via which an OSI TP communication partner can link to the UTM application. In the OSI TP
standard, each application entity is assigned an application entity title, which can be used to uniquely address the
application entity in the OSI network.

The ISO standard defines two forms of AET: the directory form and the object identifier form. The latter is supported
by openUTM. This is required if you are working with transaction management (commit functional unit), or if a
heterogeneous partner requires an AET in order to establish a connection. In the case of homogeneous
communication between UTM and UTM, the AET is also specified, but is not used for addressing the partner. It
consists of two parts:

the application process title (APT)

the application entity qualifier (AEQ)

Application process title (APT)

The APT is used to identify the application. In accordance with the ISO standard, it must be unique globally (i.e.
worldwide). For this reason, it should be assigned and registered by a standardization body, e.g. in Germany this is
the Deutsche Gesellschaft for Warenkennzeichnung GmbH (DGWK = Germany company for registering
trademarks).

An APT in object identifier form consists of up to 10 components:

(component1,component2,...,component10)

Some of the values for through have been standardized. Here, symbolic names have component1 component10
been assigned to certain numbers. The value range for depends on the value for . The component2 component1
table below lists the symbolic names and value ranges supported by openUTM:

component1 0:CCITT 1:ISO 2:JOINT-ISO-CCITT

component2 0:RECOMMENDATION

1:QUESTION

2:ADMINISTRATION

3:NETWORK-OPERATOR

0:STANDARD

1:REGISTRATION-AUTHORITY

2:MEMBER-BODY

3:IDENTIFIED-ORGANIZATION

Value range:
0 - 39

Value range:
0 - 39

Value range:
0 - 67 108 863

component3
through
component10

Value range:
0 - 67 108 863

Value range:
0 - 67 108 863

Value range:
0 - 67 108 863

The APT specified in openUTM need not be assigned by a standardization body, i.e. it is freely selectable.
However, it must meet the following two requirements:

it must be unique within the network

it must contain permitted values, as shown in the table above

Application entity qualifier (AEQ)

 84

The AEQ identifies an access point within an application. You can only assign AEQs to the access points of an
application if you have assigned an APT to the application itself.

The AEQ is a positive integer between 0 and 67108863.

The AEQ must be unique within the application, i.e. the application must not contain two access points with the
same AEQ. However, it is not necessary to assign an AEQ to all access points in the application.

When there are parallel associations and a connection is being established, the AEQ is checked to see if it is the
same one as used for the first association established.

Application context

The application context to be used for communication purposes must be coordinated with each partner application
with which your local application wishes to communicate via the OSI TP protocol.

The application context must be explicitly defined for each partner application. It determines the rules governing the
transfer of messages between the local application and partner application. openUTM supports the following
predefined application contexts:

UDTAC

UDTDISAC

XATMIAC

UDTCCR

UDTSEC

XATMICCR

If you are not using one of the application contexts listed above you can use the APPLICATION-CONTEXT
statement which is described the section to generate "APPLICATION-CONTEXT - define the application context"
further application contexts.

All the involved partners must agree the following when using an application context:

An , which defines how the user data is encoded for transfer. By default, openUTM supports the abstract syntax
following abstract syntaxes:

UDT (Unstructured Data Transfer)

XATMI

CCR

UTMSEC

See also the ABSTRACT-SYNTAX statement in section ."ABSTRACT-SYNTAX - define the abstract syntax"

A , which defines the format in which the user data is transferred. By default, openUTM supports transfer syntax
the transfer syntax Basic Encoding Rules (BER).

See also the TRANSFER-SYNTAX statement in section ."TRANSFER-SYNTAX - define the transfer syntax"

Both communication partners must generate the same abstract syntaxes as the application context used for
communication. If the application context generated locally is not identical to that generated in the partner,
openUTM rejects any attempts to establish the association with a corresponding message.

You only need to use the ABSTRACT-SYNTAX, TRANSFER-SYNTAX and APPLICATION-CONTEXT statements if
you are not using any of the standard application contexts made available by openUTM.

 85

3.2.2 Generation of distributed processing based on OSI TP

The following KDCDEF statements are provided for generating the communication partners of an application and
the connections to these partners:

Statement Function

ABSTRACT-
SYNTAX

Define the abstract syntax for the user data:

assign a unique object identifier

assign the transfer syntax for data transfer

ACCESS-POINT Define the name and address of the local OSI TP access point:

define the application entity qualifier (AEQ) of the local application (address component
of the application entity title)

APPLICATION-
CONTEXT

Define the application context for communication with the partner application:

assign the abstract syntax for the user data

assign a unique object identifier

LTAC Assign local TAC names for services in the partner application, under which these services
are then started locally

MASTER-OSI-
LPAP

Define the name and properties of the master LPAP in a OSI-LPAP bundle (see "OSI-
)LPAP bundles"

OSI-CON Define connections between the local application and the remote partner and assign these
to the OSI-LPAP partner:

specify a local OSI TP access point

specify the network address of the partner application

 86

Statement Function

OSI-LPAP Define an OSI-LPAP partner as the logical access point for the partner application:

specify the application entity title (i.e. APT and AEQ) of the partner application

specify the application context of the partner application

define the number of (parallel) connections to the partner and the names of
these connections

define the number of connections to be established automatically when the
application is started

define the number of connections for which the local application is to act as the
contention winner

define the access rights of the partner application in the local application

define the administration authorization level of the partner application

define maximum values for the message queue of the OSI-LPAP partner

define the status of the OSI-LPAP partner on connection setup

if necessary, make the OSI-LPAP a slave LPAP of a OSI-LPAP bundle and
specify the associated master LPAP

If necessary, specify whether asynchronous messages to the OSI-LPAP
partner that are deleted as they could not be sent due to a permanent error are
saved in the dead letter queue.

TRANSFER-SYNTAX Define the transfer syntax for data transfer:

assign a unique object identifier

UTMD Define global values and the address of the local UTM application:

define the application process title (APT) (address component of the
application entity title)

define the maximum waiting time for establishing an association

define the maximum waiting time for confirmation of asynchronous messages

The following additional parameters are available on Unix, Linux and Windows systems:

MAX XAPTPSHMKEY Define an authorization key for the XAPTP shared memory segment.

MAX OSISHMKEY Define an authorization key for the OSS shared memory segment

MAX OSI-SCRATCH-AREA Define the size of the working area for dynamic data storage

 87

To allow for communication based on the OSI TP protocol, you must perform the following steps:

Generate the application entity title (AET)

The statement UTMD...,APPLICATION-PROCESS-TITLE= is used to define the application process title (APT)
as the address component of the AET for your application. A remote partner that requires AETs must know this
APT in order to establish a connection.

The application entity title is assigned to the OSI-LPAP partner. In the OSI-LPAP statement, use the
APPLICATION-PROCESS-TITLE= operand to specify the APT and the APPLICATION-ENTITY-QUALIFIER=
operand to specify the AEQ of the access point for the partner application. The AEQ must already be generated
for the access point in the remote partner application.

Using the statement ACCESS-POINT...,APPLICATION-ENTITY-QUALIFIER=, define the application entity
qualifier (AEQ) as the address component of the AET for the access point of the local application. A partner
application must know the AEQ of the access point via which communication takes place with the local
application.

Define the application context for communication with the partner application

If you do not wish to work with one of the default application contexts listed in section , you can "OSI terms"
generate the application context to be used for communication with the partner application using the
APPLICATION-CONTEXT statement. This involves assigning defined abstract syntaxes and a unique object
identifier to the application context.

The ABSTRACT-SYNTAX statement serves to specify the abstract syntax used for the transfer of user data and
to assign a unique object identifier to this abstract syntax.

The transfer syntax (which defines how the user data is to be encoded and decoded for data transfer) is also
defined using the ABSTRACT-SYNTAX statement. The transfer syntax is identified by means of a unique object
identifier.

Define an access point to the OSI TP services for your UTM application, so that your application can be
addressed during communication based on OSI TP.

The ACCESS-POINT statement is used to specify the address of the access point within the local system, and to
assign a symbolic name for addressing the access point in the local UTM application.

The address defined in ACCESS-POINT must be unique within the UTM application and within the local system
(on BS2000 systems for each host). When defining the access point address, you must therefore consult your
system or network administrator.

A partner application that wishes to communicate with the local application on the basis of the OSI TP protocol
identifies the local UTM application using the access point address and the network address of your system. The
network address of the access point must be specified when generating the remote partner applications.

The following applies to UTM cluster applications:If you specify an APT with less than 10 elements in
the UTMD statement for an OSI-TP link then UTM adds an index (1, 2 etc.) to the APT generated for
each node application. This guarantees that the AET is unique. You are therefore recommended to
generate no more than 9 elements in UTM cluster applications.

i

Unix, Linux and Windows systems
Please note the maximum number of connections that can be established at a time via one access
point. For details see in section "ACCESS-POINT statement ACCESS-POINT - create an OSI TP

".access point

!

 88

Define a logical access point (OSI-LPAP partner) for each partner application and the connections between the
local application and partner application

This involves the definition of an OSI-LPAP statement and an OSI-CON statement. An OSI-LPAP statement
must be generated for each partner application. The OSI-CON statement defines the connections between the
UTM application and the communication partner. The definition is generated via the two access points (in the
local application and in the partner application) between which connections are to be established. The OSI-CON
statement is used to specify the network address of the remote access point and the name of the local access
point (defined in ACCESS-POINT). The OSI-LPAP statement is used to define the number and names of parallel
connections (associations) to the partner application. The address of the remote access point must match that of
the access point generated in the partner application.

If connections are to be established automatically as soon as both communication partners are available (i.e.
started), this must be specified when generating partners. In openUTM, this is achieved using the both
statement OSI-LPAP...,CONNECT=.

The partner started last then establishes the connection. With OSI-LPAP...,CONTWIN=, you can also define the
number of connections to the communication partner for which the local application is to act as the contention
winner.

Assign local transaction codes to the services of the partner applications, which are then used to address remote
services in the local application

Each of these transaction codes is defined using an LTAC control statement. The transaction code can be
assigned uniquely to the partner application via the LPAP partner using LTAC..., LPAP= . In osi-lpapname
addition, you must specify the transaction code of the program unit in the partner application using LTAC...,
RTAC=. Ask the operator of the partner application for this transaction code. If the name and type of the remote
TAC are specified incorrectly, this is not detected by the KDCDEF generation tool, since KDCDEF does not have
any information on the configuration of the partner application. The error is not detected until the local application
requests this LTAC.

You can also perform the following steps for communication based on OSI TP:

Define global values for all connections from the application to communication partners

Using the UTMD statement, you can restrict and define the time spent waiting for confirmation from the
communication partner, and specify the total number of jobs submitted to partner applications that can be
processed simultaneously in the local application (via OSI TP and LU6.1). By defining appropriate limit values,
you can prevent connections from becoming blocked or from being terminated prematurely. You can also ensure
that all tasks of the application are occupied by jobs from remote applications. The values defined here also
apply for communication based on LU6.1.

Generate replacement connections

Replacement connections can be generated by issuing two OSI-CON statements for the same connection. They
are used to interact alternatively with various partners without having to take this into consideration in the
program units. The two partners may be located in different systems. The replacement connection is generated
by assigning two OSI-CON statements with different partner addresses (remote access point addresses) to an
OSI-LPAP statement, thereby allocating two different partners to the same logical access point (LPAP partner).
However, both connections to the alternative partner applications must not be activated simultaneously. For this
reason, ACTIVE=YES may only be specified in one OSI-CON statement. You can switch to the replacement
connection to the alternative partner application using the KDCLPAP administration command.

 89

Define data access control for services of the partner application

Using the statement LTAC...,LOCK= or LTAC..., ACCESS LIST=, you can secure a partner application service
with a lock code. This service is then available locally only to those program units that are running under a user
ID (KCBENID) and have been started by a client (KCLOGTER) that have the appropriate authorization.

Define data access control for services of the local application

If you wish to restrict a partner application’s access to certain services of the local application, you can secure
critical services with a lock code or an access list. With the KSET statement, you can define a key set containing
the key codes for services that can be accessed by the partner application. This key set is assigned to the logical
access point of the partner application using the statement OSI-LPAP...,KSET=. The partner application can then
call only those TACs which are either not secured or for which the partner application has the appropriate
authorization.

Assign administration authorization for TACs of the partner application

In the OSI-LPAP statement, you can define whether the partner is to be granted administration authorization in
the local application. The authorization level is defined using OSI-LPAP...,PERMIT=.

Assign UTM SAT administration authorization for TACs of the partner application

Using OSI-LPAP...,PERMIT= you also can define whether the partner is to be granted UTM SAT administration
authorization in the local application.

The diagram below summarizes the areas in which the generation of the local application must be coordinated with
the generation of the partner application. A standard application context generated by openUTM is used. You must
not therefore enter an APPLICATION-CONTEXT statement.

For more information on generating applications with distributed processing, in particular via OSI TP, refer to the
example generation „ Travel“ in section .Comfo "Example generation: ComfoTRAVEL"

 90

Figure 8: Coordination during the generation of OSI TP applications

 91

3.2.3 OSI-LPAP bundles

OSI-LPAP bundles allow automatic distribution of messages over multiple OSI-LPAP partners. If a UTM application
exchanges a large number of messages with a partner application, it may make sense in terms of the load
balancing to start several instances of the partner application and distribute the messages among the separate
instances. In a OSI-LPAP bundle, openUTM takes care of distributing the messages to the instances of the partner
application.To achieve this, the program units in the APRO call must address the MASTER-OSI-LPAP.

One case of an application with this type of message distribution when a UTM application communicates via
BeanConnect with a JEE conform application server. If the application server is run as a cluster application, then
the messages sent to the application server should be distributed among the separate instances of the cluster (see
also the "BeanConnect for openUTM" manual).

A further application scenario is communication from a standalone UTM application to a UTM cluster application.
This allows messages to the UTM cluster application to be distributed across the individual node applications.

An OSI-LPAP bundle consists of one master LPAP and several slave LPAPs. The slave LPAPs are assigned to the
master LPAP during generation. In this case, OSI-CONs that belong to different slave LPAPs address the various
partner applications.

Figure 9: Example of a OSI-LPAP bundle

Generating OSI-LPAP bundles

MASTER-OSI-LPAP statement in section "MASTER-OSI-LPAP - Defining the master LPAP of an OSI-
LPAP bundle"
Defines the name and properties of the master LPAP in a OSI-LPAP bundle:

master-lpap-name

Name for the master LPAP.

APPLICATION-CONTEXT=

Application context to be used for the communication with the remote partner.

STATUS=

Specifies whether messages can be sent to this LPAP bundle.

Connecting a standalone UTM application to a UTM cluster application via an OSI-LPAP bundle works in
the same way as communication between two standalone UTM applications with OSI-LPAP bundles. No
special issues related to clusters need to be observed.

i

 92

OSI-LPAP statement in section "OSI-LPAP - define an OSI-LPAP partner for distributed processing
based on OSI TP"
The following properties must be specified for the generation of a slave LPAP:

lpap-name

Name of the slave LPAP.

BUNDLE=master-lpap-name

Name of the master LPAP. The master LPAP specified here must be defined in a MASTER-OSI-LPAP
statement. If you specify BUNDLE, this OSI-LPAP becomes a slave LPAP of the specified master LPAP.

MASTER-OSI-LPAP master , ...
 OSI-LPAP slave-lpap , BUNDLE= master , ...

APPLICATION-CONTEXT=

Application context to be used for the communication with the remote partner.

All slave LPAPs of a LPAP bundle must be assigned to the same application context as the master LPAP.

OSI-CONs of LPAPs in an OSI-LPAP bundle

Physical connections (OSI-CONs) must not be assigned to master LPAP. This means it may not be specified as
an OSI-LPAP in a OSI-CON statement. The master LPAP always uses the connections assigned to the slave
LPAPs.

All OSI-CONs of all slave LPAPs of a LPAP bundle must be assigned to the same local ACCESS-POINT.

Distributing messages

Program units can address a slave LPAP as well as a master LPAP with the APRO call. APRO calls to a slave
LPAP are not distributed by openUTM. APRO calls to a master LPAP are distributed as follows by openUTM:

openUTM addresses the slave LPAPs in sequence using APRO calls sent to a master LPAP.

openUTM always attempts in this case to find a slave LPAP to which a connection has already been
established and, if a queued message is to be sent to the partner (APRO AM), whose queue level has
not been reached yet.

If the first APRO call to a master LPAP in a transaction is APRO DM, then openUTM only returns the
return code 40Z/KD10 when there is no connection to any slave LPAP.

If the first APRO call to a master LPAP in a transaction is APRO AM, then openUTM only selects a slave
LPAP with a cleared connection when there is no connection yet to any of the slave LPAPs. In this case
the connection is initiated for the slave LPAP.

When searching for a slave LPAP with an established connection, a connection is initiated for every
slave LPAP found that does not have a connection yet.

All APRO calls sent to the MASTER-LPAP in a single transaction address the same slave LPAP.
For this reason, an APRO call for a second message to a partner application may be rejected if, for example, the
queue level for the slave LPAP has been exceed or the connection has been lost in the meantime.

The following information on distributing messages applies equally to LU6.1 and OSI TP.i

 93

Messages that have already been assigned to a slave LPAP are not reassigned in sequence to another slave
LPAP any more. Single exception:Asynchronous messages if MAX MOVE-BUNDLE-MSGS=YES was
generated. (default is NO).

If the connection for dialog messages is lost after the APRO call, then the dialog message is rejected just like for
"normal" LPAPs and the transaction is rolled back, if necessary.

Information displayed in the KB header

In services started for received messages, openUTM always displays the name of the LTERM or (OSI-)LPAP
through which the message was received in the KB header.

The following therefore applies for LPAP bundles:
In services started for messages received through a slave LPAP, the name of this slave LPAP is displayed in the
KB header and the name of the master LPAP.not

With INIT PU you can obtain information on whether the (OSI-)LPAP in the KB header is the slave LPAP of an
LPAP bundle as well as the name of the master LPAP.

The following information on the display in the KB header applies equally to LU6.1 and OSI TP.i

 94

3.3 Coordinating the UTM and BCAM configurations (BS2000 systems)

During distributed processing via LU6.1 and OSI TP network connections are required to enable applications to
communicate with each other. openUTM uses the services of the BCAM transport system for these network
connections.

To allow you to establish these network connections, addresses must be assigned to both communication partners.
These addresses must be unique throughout the network. The network type required for communication is defined
by means of appropriate entries in KDCDEF generation (BCAMAPPL T-PROT= statement) and in BCAM
generation. It is important to note that openUTM does not distinguish between ISO and TCP/IP networks (ISO and
RFC1006 entries for the T-PROT parameter are synonymous). This distinction must be made in BCAM generation
when defining connections between participating computers.

In the case of a connection via RFC1006, BCAM uses the number 102 as the partner’s listener port number by
default. If a different port number is to be used, e.g. because the transport system of the partner cannot use port
number 102, then the port number can be specified via the LISTENER-PORT operand in the PTERM and (OSI-)
CON statements.

 95

3.4 Providing address information for the CMX transport system (Unix, Linux
and Windows systems)

In the case of distributed processing via LU6.1 or OSI TP and when connecting clients of type PTYPE=APPLI and
UPIC-R, openUTM uses the CMX transport access system (Unix sytems and Windows systems). When
communicating using CMX, the connection is established using TCP/IP-RFC1006.

You must provide the address information for the transport system via the UTM generation.

Port number 102 for TCP/IP connections

The applications are accessed via port numbers in connections via TCP/IP-RFC1006.
Please note that using port number 102 for local transport system endpoints (BCAMAPPL, ACCESS-POINT) in
UTM applications on Unix, Linux, and Windows systems may require additional privileges (for example, root).

With openUTM V6.5, the TNS functionality was supported for the last time! As of openUTM V7.0 it is
necessary to store the complete address information with the UTM generation.

i

 96

3.4.1 Providing address information with KDCDEF

The address information is stored in the PRONAM, N-SEL, LISTENER-PORT operands, as well as in the T-PROT
and TSEL-FORMAT operands. You must note the following:

You must specify the TCP/IP host name for PRONAM or N-SEL, see "Specifying computer names in KDCDEF
. For actively established connections, openUTM determines the name from the IP address, and for generation"

passively established connections the IP address from the name.

You should enter a port number for LISTENER-PORT. The port number must always match the port number
used by the communication partner.

You must specify RFC1006 for T-PROT.

It is recommended to enter data for the TSEL-FORMAT operand. If you do not specify anything there, then
KDCDEF assigns one of the following values, depending on the OPTION statement:

for CHECK-RFC1006=YES, a default value based on the set of characters in the name of the corresponding
application or partner

for OPTION CECK-RFC1006=NO, the invalid value ’U’ or ’?’ (= undefined)

OSI TP connection

In the following example, port number is used in the local application and port number is used in the 10000 12000

remote application. The remote application is running on the computer named .CENTRAL1

ACCESS-POINT BSPOSITP -

,LISTENER-PORT=10000 -

,T-PROT=RFC1006 -

,TSEL-FORMAT=T -

,P-SEL=.., ,S-SEL=... ,T-SEL=... -

,...

OSI-CON OSICON01 -

,LOCAL-ACCESS-POINT=BSPOSITP -

,LISTENER-PORT=12000 -

,T-PROT=RFC1006 -

,N-SEL=CENTRAL1 -

,P-SEL=... ,S-SEL=... ,T-SEL=... -

,...

The specifications for P-SEL, S-SEL and T-SEL need to match the values specified in the generation of the partner
application (see the sample in section)."Generation procedure for distributed processing based on OSI TP"

LU6.1 connection

In the following example, port number is used in the local application and port number is used in the 10010 12010

remote application. The remote application is running on the computer named .CENTRAL2

BCAMAPPL BSPLU61 -

,LISTENER-PORT=10010 -

,T-PROT=RFC1006 -

,T-SEL-FORMAT=T -

,...

 97

CON LU61PART -

,BCAMAPPL=BSPLU61 -

,PRONAM=CENTRAL2 -

,LISTENER-PORT=12010 -

,T-PROT=RFC1006 -

,TSEL-FORMAT=T -

,...

PTYPE=APPLI connection

In the following example, port number is used in the local application and port number is used in the 10020 12020

remote application. The remote application is running on the computer named .CENTRAL3

BCAMAPPL BSPAPPLI -

,LISTENER-PORT=10020 -

,T-PROT=RFC1006 -

,T-SEL-FORMAT=T -

,...

PTERM APPLPART -

,PTYPE=APPLI -

,BCAMAPPL=BSPAPPL -

,PRONAM=CENTRAL3 -

,LISTENER-PORT=12020 -

,T-PROT=RFC1006 -

,TSEL-FORMAT=T -

,...

PTYPE=UPIC-R connection

In the following example, port number is used in the local application. The remote application is running on 10030

the computer named .CENTRAL4

BCAMAPPL BSPUPR -

,LISTENER-PORT=10030 -

,T-PROT=RFC1006 -

,T-SEL-FORMAT=T -

,...

PTERM UPRPART -

,PTYPE=UPIC-R -

,BCAMAPPL=BSPUPR -

,PRONAM=CENTRAL4 -

,T-PROT=RFC1006 -

,TSEL-FORMAT=T -

,...

In the KDCDEF call consistency checks are performed on the address information. The checks are performed
because the OPTION statement uses the operand CHECK-RFC1006=YES

 98

3.4.2 Converting address information from TNS entries to KDCDEF

If you have been providing the address information to date using TNS entries, then you have only entered in the
UTM generation the application name, possibly the host name of the communication partner, and the name of your
UTM application. You must specify these names in TNS as GLOBAL NAMES. The host name/IP address
associations are determined by the TNS entry.

When converting from TNS entries to KDCDEF, the only information you still need to specify is the port number.

It is recommended that you always administer the full generation information for a UTM application centrally. To do
this, proceed as follows:

Include the address information of the TNS entries that are of relevance for the UTM application in the KDCDEF
generation.

Delete these TNS entries, including those from the TNS directory.

Based on the LU6.1 connection from section the following presents "Providing address information with KDCDEF"
an example of the changes you will need to make when converting:

LU6.1 connection

In the following example, port number is used in the local application and port number is 10010 BSPLU61 12010

used in the remote application . The remote application is running on the computer named .LU61PART CENTRAL2

Before conversion

KDCDEF: BCAMAPPL BSPLU61

CON LU61PART -

,BCAMAPPL=BSPLU61 -

,PRONAM=CENTRAL2

,...

TNS entries: BSPLU61\

 TSEL RFC1006 T'BSPLU61'

 TSEL LANINET A'10010'

LU61PART.CENTRAL2\

 TA RFC1006 address of CENTRAL2 PORT 12010 T'LU61PART'

After conversion

When converting you must specify

for the local application name
the port number in the LISTENER-PORT parameter of the KDCDEF statement BCAMAPPL instead of the port
number in the TNS entry (TSEL LANINET).

for the remote partner
the processor name of the partner computer in the PRONAM parameter and the port number in the LISTENER-
PORT parameter of the KDCDEF statement CON instead of the address and port number in the transport
address of the TNS entry (TA).

 99

In order to be able to determine the IP address of the partner computer, the name must be known to the CENTRAL2

DNS.

KDCDEF: BCAMAPPL BSPLU61 -

,LISTENER-PORT=10010 -

 ,T-SEL-FORMAT=T -

,...

 CON LU61PART -

,BCAMAPPL=BSPLU61 -

,PRONAM=CENTRAL2 -

 ,LISTENER-PORT=12010 -

,TSEL-FORMAT=T -

,...

LU6.1 connection using symbolic names

In the following example, port number is used in the local application and port number is 10010 BSPLU61 12010

used in the remote application . The remote application is running on the computer named .LU61PART CENTRAL2

Before conversion

KDCDEF: BCAMAPPL LU61

CON LU61 -

,BCAMAPPL=LU61 -

,PRONAM=PROLU61

,...

TNS entries: LU61\

 TSEL RFC1006 T'BSPLU61'

 TSEL LANINET A'10010'

LU61.PROLU61\

 TA RFC1006 address of CENTRAL2 PORT 12010 T'LU61PART'

After conversion

In contrast to the example , you must also change the BCAMAPPL name and the CON name in “LU6.1 connection”
the TSEL parameters of the TNS entries. In this case this means you must use the real names instead of the
symbolic names.

When converting you must

change the name of the local application
in the BCAMAPPL parameter to the value you used in the local TNS entry (TSEL RFC1006).

for the local application name
as in the example , specify the port number in the LISTENER-PORT parameter of the “LU6.1 connection”
KDCDEF statement BCAMAPPL instead of the port number in the TNS entry (TSEL LANINET).

the name of the remote application
change the value in the CON statement to the value you used in the remote TNS entry (TA).

 100

for the remote partner
as in the example , the processor name of the partner computer in the PRONAM parameter “LU6.1 connection”
and the port number in the LISTENER-PORT parameter of the KDCDEF statement CON instead of the address
and port number in the transport address of the TNS entry (TA)

In order to be able to determine the IP address of the partner computer, the name must be known to the CENTRAL2

DNS.

KDCDEF: BCAMAPPL BSPLU61 -

,LISTENER-PORT=10010 -

 ,T-SEL-FORMAT=T -

,...

 CON LU61PART -

,BCAMAPPL=BSPLU61 -

,PRONAM=CENTRAL2 -

 ,LISTENER-PORT=12010 -

,TSEL-FORMAT=T -

,...

 101

3.5 Providing address information for the SOCKET transport system (Unix,
Linux and Windows systems)

In connections to a TS application with PTYPE=SOCKET, communication is performed via the socket interface
using native TCP/IP as the transport protocol. For these socket applications the address information will be
provided for the transport system via the UTM generation.
The address information is stored in the PRONAM and LISTENER-PORT operands as well as in T-PROT and
TSEL-FORMAT. In addition, the BCAMAPPL operand is also important. Note the following points in this context:

For PRONAM you must specify the TCP/IP host name, see "Specifying computer names in KDCDEF generation"
. openUTM determines the IP address from it.

You must enter a port number for LISTENER-PORT. The port number absolutely must match the port number
used by the communication partner. Specification of a LISTENER-PORT is mandatory.

You must specify SOCKET for T-PROT.

It is recommended to set a value in the TSEL-FORMAT operand.

In BCAMAPPL you must specify an application name for which T-PROT=SOCKET was generated.

PTYPE=SOCKET connection

In the following example, port number is used in the local application and port number is used in the 10010 12100

remote application . The remote application is running on the computer named .LU61PART CENTRAL5

BCAMAPPL BSPSOC -

,LISTENER-PORT=10100 -

,T-PROT=SOCKET -

,T-SEL-FORMAT=T -

,...

PTERM SOCPART -

,PTYPE=SOCKET -

,BCAMAPPL=BSPSOC -

,PRONAM=CENTRAL5 -

,LISTENER-PORT=12100 -

,T-PROT=SOCKET -

,TSEL-FORMAT=T -

,...

Unix, Linux and Windows systems
Please note the maximum number of connections that can be established at a time via one transport
system end point. For details see in section "BCAMAPPL statement BCAMAPPL - define additional

".application names

!

 102

3.6 Network connection (Unix, Linux and Windows systems)

During distributed processing, the UTM application is connected to the network via network processes. These
processes are responsible for handling connection setup requests and for managing data transfer via the
connection.

The main process of a UTM application starts one or more network processes, which can in turn establish utmmain
and manage numerous connections. Assignments between connections and processes are controlled through the
use of . All connections with the same listener ID are managed by threads of the same network process.listener IDs

There are particular network process types for CMX and socket connections. CMX connections use a process type
called , and socket connections use .utmnet utmnets or slutmnets

Listener IDs can be defined in the for access points and in the ACCESS-POINT statement BCAMAPPL
t for application names:statemen

LISTENER-ID=number

This assigns a listener ID to the access point or application name as administrative information.

Due to the different types of net processes, the listener IDs for CMX connections and the listener IDs for
Socket or SSL Socket connections are separate value ranges.

The connection is assigned to a network process by means of the listener ID allocated to the local application name
or the local access point. openUTM assigns the listener ID 0 to all application names and access points for which a
listener ID has not been explicitly defined. All of these connections are then served by a single network process.

Unix-, Linux- und Windows-Systeme

Please note that only a maximum of 1000 connections can be established per network process at a time.
If you need moreconnections in your application, you must define several local application names e.g.
local access points. For Details see in section BCAMAPPL statement "BCAMAPPL - define additional

 e.g. in section "application names" ACCESS-POINT statement ACCESS-POINT - create an OSI TP
".access point

!

 103

3.7 Computer names (Unix, Linux and Windows systems)

In openUTM, computer names up to 64 characters can be specified in the KDCDEF generation. The
KDCNAMEINFO tool is also available for determining the fully qualified computer name from the IP address.

 104

3.7.1 Specifying computer names in KDCDEF generation

When specifying the computer name, observe the following points:

In a “Fully Qualified Domain Name” (FQDN), if the section up to the first full stop (known as the “host name”) is
longer than eight characters, you have to specify the FQDN for PRONAM or N-SEL.

In all other cases, you can choose whether you specify the FQDN for PRONAM or N-SEL or just the section up
to the first dot, known as the “host name”.

We recommend using the KDCNAMEINFO utility program to determine the host name (see "KDCNAMEINFO
).tool"

The FQDN-name may be a maximum of 64 bytes long, so that you can specify it in the configuration of an UTM
application.

 105

3.7.2 KDCNAMEINFO tool

The KDCNAMEINFO tool determines the associated computer name for an IPv4 or IPv6 address and outputs it to
. You specify this computer name when generating your UTM application as the value for the parameter stdout

PRONAM or N-SEL. You can thus ensure that the specified host name / processor name in the UTM generation on
a Unix, Linux or Windows system matches the network configuration.

Calling KDCNAMEINFO

The tool is called as follows:

utmpath/ex/kdcnameinfo ip_address (Unix and Linux systems) or

utmpath\ex\kdcnameinfo ip_address (Windows systems)

ip_address is the IPv4 or IPv6 address of the partner system, with which the UTM application wants to
communicate. The following applies:

ip_address for IPv4 is specified using the traditional dot notation:

xxx.xxx.xxx.xxx

The individual xxx blocks are limited to three decimal places each. The content of the blocks is interpreted as a
decimal number.

ip_address for IPv6 is specified using the conventional colon notation:

x:x:x:x:x:x:x:x

Each represents a hexadecimal number between 0 and FFFF. The alternative notations for IPv6 addresses are x

permitted (see RFC2373).

If the IPv6 address contains an embedded IPv4 address in dot notation, the above rules apply to the blocks in
the IPv4 address, i.e. the blocks in the IPv4 address are then interpreted as a decimal number.

 106

4 Generating selected objects and functions of the application

This chapter describes how to configure certain objects of your UTM application and explains which KDCDEF
control statements or which of the individual operands are relevant for describing the objects. This applies to the
following UTM objects:

Clients ()"Connecting clients to the application"

Printers, printer control LTERMs, printer pools on BS2000, Unix and Linux systems ("Generating printers (on
) as well as RSO printers connected to a UTM application on BS2000 systems BS2000, Unix and Linux systems)"

()"Generating RSO printers (BS2000 systems)"

Service-controlled queues ()"Generating service-controlled queues"

Message modules ()"UTM messages"

Multiplex connections of a UTM application on BS2000 systems ("Message distribution and multiplexing with
)OMNIS (BS2000 systems)"

BLS load modules and common memory pools of a UTM application on BS2000 systems ("Generating load
)modules, common memory pools and shared code (BS2000 systems)"

In addition, several selected UTM functions are described here that affect KDCDEF control functions and whose
operands are significant to the use of these functions. This is true for the following functions:

Code conversion ()"Code conversion"

Job control using priorities and process constraints ()"Code conversion"

Access control functions ()"Data access control"

Encryption of messages on connections to clients ()"Message encryption on connections to clients"

Coupling of resource managers and databases ()"Defining database linking"

Internationalization of a UTM application on BS2000 systems ("Internationalizing the application - XHCS support
)(BS2000 systems)"

System access control using Kerberos on BS2000 systems ()"Defining system access control"

See also the openUTM manual “Concepts und Functions”.

 107

4.1 Connecting clients to the application

This section describes the generation of terminals, UPIC clients, HTTP clients, transport system applications and
OpenCPIC clients. Transport system applications are DCAM, CMX and socket applications as well as UTM
applications that are generated as transport system applications. These will subsequently be referred to as TS
applications.

The options that the UPIC clients offer are described in detail in the manual „openUTM-Client for the UPIC Carrier
System”.

Each client that wants to use the services of a UTM application must be known to the UTM application. A client is
known to a UTM application if it is assigned to a logical connection point defined in the configuration. There are
various different types of client:

For terminals, UPIC clients and TS applications, a logical connection point is known as an . LTERM partner
There are two methods of connecting to an LTERM partner:

You generate the client for an individual connection by defining the physical client using a PTERM statement
and then assigning an exclusive LTERM partner, see below. A client must always be generated with PTERM,
when connections to this client are to be established in the UTM application (e.g. to TS applications). You only
need to issue a PTERM statement to other clients when you want to assign the other client a specific logical
property, e.g. special access rights that you do not want to assign to any LTERM pool.

You define a pool of LTERM partners, also called an LTERM pool, see . You can connect "LTERM pools"
several clients using the LTERM pool.

For OpenCPIC clients, the logical connection point is known as the . It is possible to establish OSI LPAP partner
several parallel connections via an OSI LPAP partner.

The first two sections show the basic steps required to connect a client. The section "Defining the client sign-on
" through section go into more detail on certain services "Examples of the generation of a client/server cluster"

topics, including the signing-on process, security functions and addressing.

 108

4.1.1 Connecting clients via LTERM partners

If you wish to connect terminals, UPIC clients and TS applications individually, you will need to supply the following
generation statements for each client:

an LTERM statement for the logical connection point

a PTERM statement for the physical client.

UPIC clients and TS applications may also require a BCAMAPPL statement. Limits, maximum values and
parameters, which are to be set throughout the application for communication between clients and the UTM
application, are defined in the MAX statement.

LTERMs and PTERMs may also be created dynamically (objects KC_LTERM and KC_PTERM). Moreover, the
assignment of the client to the LTERM partner in the PTERM statement can be adapted dynamically at a later stage
using administration functions. For example, you can assign another client (of the same type) to an LTERM partner
during operation, or assign another LTERM partner – for which you may have defined different access rights – to a
client. See also the openUTM manual “Administering Applications”.

LTERM statement in section "LTERM - define an LTERM partner for a client or printer"
The most important properties for LTERM partners, via which clients can connect to an application, are
defined with the following operands:

ltermname

Name of the LTERM partner. Logical name via which the client, to which the LTERM partner is assigned, is
addressed by the program units of the application.

KSET=

Key set of the LTERM partner, i.e. an authorization profile that defines which parts of the application
program (which TACs) are available to the client connecting to the application via this LTERM partner.

LOCALE= (only BS2000 systems)

LTERM-specific language environment of the clients that connect to the application via this LTERM partner.
This language environment is also used by openUTM to output messages, as long as no user is signed on.

LOCK=

Lock code as system access control. The connection is only established when the client signs on to
openUTM with a user ID, for which a key set was generated, using a key code corresponding to this lock
code.

USAGE=D

Type of communication partner. In this case, dialog partners are connecting to the application via the
LTERM partner. Messages can be exchanged in both directions.

USER=

The user ID under which the client is automatically signed on when a connection has been established, see
. You are also able to define other characteristics for this user "Automatic sign-on under a specific user ID"

ID, see ."Generating security functions"

PTERM statement in section "PTERM - define the properties of a client/printer and assign an LTERM
partner"
The most important properties for physical clients are defined with the following operands:

 109

ptermname

Name of the client as generated in the system of the server application.

BS2000 systems (without Socket application):
The BCAM name of the client must be specified.

Socket applications:
If the connection is to be established from the local UTM application to the client, then any can be ptermname
selected. Otherwise, the name must have the format PRT .Here means the port number used by the nnnnn nnnnn
socket application to establish the connection.

See for more information."Providing address information"

BCAMAPPL=

Name of the local application via which the transport system establishes the connection between the client and
the UTM application. This name must be defined in a BCAMAPPL statement or using MAX ...APPLINAME=. If
you omit this operand, the name is taken from MAX ...APPLINAME=. Terminals may only use names that are
defined in MAX ... APPLINAME=.

ENCRYPTION-LEVEL=

For UPIC clients you specify the minimum encryption level that must be maintained on the connection to the
client. You can specify trustworthy for the client, which means that this client is permitted to work with the UTM
application without encryption. See also for more information on “Message encryption on connections to clients"
encryption.

LTERM=

The LTERM partner , via which the client connects to the UTM application, is assigned to the physical ltermname
client as a logical connection point.

PRONAM=

Symbolic name of the processor on which the client resides.

PTYPE=

Type of client connected via the LTERM partner. Here you specify whether the client is a transport system
application, a UPIC client or a terminal.

T-PROT=, TSEL-FORMAT= (only on Unix, Linux and Windows systems),LISTENER-PORT= (with
PTYPE=SOCKET also on BS2000 systems)

Components of the transport address of a remote UPIC client or a TS application see "Providing address
.information"

USAGE=D (only BS2000 systems)

USAGE=D defines that the communication partner is a dialog partner. Messages can be exchanged between the
UTM application and the client.

USP-HDR=

With a sockets applications this parameter controls which of the output messages that use the USP protocol,
openUTM is to create a protocol header for, see ."USP headers for outputmessages to socket connections"

BCAMAPPL statement in section "BCAMAPPL - define additional application names"
It is possible to define additional application names for UPIC clients and TS applications.

 110

appliname

Name of the local application used by the transport system to establish the connection between the client and
the UTM application. If this name is used for socket applications, it may not be used by a different type of partner.

SIGNON-TAC=

Specifies if and when a sign-on service takes place, when a client attempts to sign on under this application
name, see ."Generating sign-on services for clients"

TSEL-FORMAT=, LISTENER-ID= (only on Unix, Linux and Windows systems),LISTENER-PORT= (with
PTYPE=SOCKET also on BS2000 systems)
T-PROT=

For information about the components of the transport address under which client contacts the UTM application,
see " ".Providing address information

MAX statement in section "MAX - define UTM application parameters"
Default and maximum values, which are relevant for communication of clients with the UTM application,
are defined with the following operands:

CONN-USERS=

Controls the utilization of the application. The operand defines the maximum number of users who can
simultaneously work with the application. In the case of an application for which no user IDs are generated,
CONN-USERS= defines the maximum number of clients that can simultaneously connect to the application via
LTERM partners.

LOCALE= (on BS2000 systems only)

Defines the default language environment (locale) of the UTM application. The locale generated here is assigned
to the clients connected via LTERM partners or LTERM- pools as the default value for the language
environment. The default setting applies unless a specific locale is defined for these objects in the corresponding
LTERM or TPOOL statements. See also . "Defining the language environment – setting the locale"

 111

4.1.2 LTERM pools

A particular number of LTERM partners with the same logical properties are defined for an LTERM pool as logical
connection points for clients. Clients with the same technical properties (partner and processor type) can connect to
a UTM application via these LTERM partners. The assignment only applies for the duration of a session; there is no
static assignment between a client and an LTERM partner.

An LTERM pool must be configured in a TPOOL statement (in place of LTERM/PTERM statements). In addition, in
the same way as for a single connection, a BCAMAPPL statement may be necessary, see "Connecting clients via

. The settings in the MAX statement are also valid for LTERM pools, see LTERM partners" "Connecting clients via

.LTERM partners"

Various types of LTERM pools can be configured:

LTERM pools via which only clients of a particular type (PTYPE=), located on a particular processor
(PRONAM=), can connect to a UTM application.

LTERM pools, via which clients of a particular type can connect to a UTM application, regardless of the
processor on which they reside (open LTERM pools).

In UTM applications on BS2000 systems you can also generate the following types of LTERM pools:

LTERM pools for all terminals regardless of the terminal type, yet located on a particular processor.

LTERM pools for all terminals regardless of the terminal type and regardless of type of the computer on which it
is located.

TPOOL statement in section "TPOOL - define an LTERM pool"
The most important properties for LTERM pools are defined with the following operands:

BCAMAPPL=

Name of the local application via which the transport system establishes the connection between the client
and the UTM application. The name must be defined in a BCAMAPPL statement or using MAX ...
APPLINAME=.

CONNECT-MODE=

With CONNECT-MODE= you specify if a UPIC client or TS application may connect to the application
multiple times under the same name via the LTERM pool.

KSET=

Key set of the LTERM pool that uses key codes to define the access rights of the clients which connect to
the UTM application via the LTERM pool.

USER-KSET=

In UTM applications with user IDs the USER-KSET key set for UPIC clients and TS applications specify
limited system access rights (in comparison with KSET). The key set in USER-KSET takes effect when the
client does not pass a user ID to openUTM while establishing the connection/conversation or while in the
sign-on service.

LOCK=

System access control of the LTERM pool, i.e. lock code assigned for all LTERM partners of the pool. The
connection is only established if the client signs on to openUTM with a user ID whose key set has the
corresponding key code.

 112

ENCRYPTION-LEVEL=

For UPIC clients you specify the minimum encryption level that must be maintained on the connection to the
client. You can specify trustworthy for the client. See also "Message encryption on connections to clients"
for more information on encryption.

LTERM=

LTERM prefix from which unique LTERM partner names are created with LTERM partners of the number
LTERM pool.

NUMBER=

Number of LTERM partners configured for this LTERM pool. This also implicitly defines the maximum
number of clients that can connect to this LTERM pool at the same time.

PRONAM=

Name of processor which must contain the client connected via the LTERM pool.

PROTOCOL=

Specifies if the user services protocol is used or not.

PTYPE=

Type of client connected via the LTERM pool.

LOCALE=

LTERM-specific language environment that applies to all clients which connect to the application via
LTERM partners. This language environment is also used byopenUTM to output messages, as long as no
user is signed on.

LTERM pools and subnets

IP address ranges can be defined using the SUBNET statement. These address ranges are referred to as subnets.
Each subnet can be assigned to an LTERM pool using a TPOOL statement. All clients which set up a connection to
the UTM application from a subnet defined in this way are then allocated to this LTERM pool.

SUBNET statement in section "SUBNET - define IP subnets"
The properties for subnets are defined with the following operands:

mapped-name

Local name of the subnet. This name must be specified for PRONAM in the TPOOL statement.

BCAMAPPL=

Name of the local application to which the client can establish the connection to the UTM application. This
name must be defined in a BCAMAPPL statement or with MAX ...APPLINAME= and specified in the
TPOOL statement with BCAMAPPL=.

The client must use this local application name to connect to the UTM application using a TPOOL linked to
a SUBNET statement. This assigns it directly to the subnet and the associated LTERM pool. In this case no
name resolution via the DNS takes place.

When a client from the subnet uses a different local application name for connection setup, the client's host
name is determined via DNS, and the host name thus ascertained is used for the assignment to the
generated partner.

IPV4-SUBNET= or IPV6-SUBNET=

Defines the IPv4 or IPv6 subnet.

 113

1.

2.

3.

4.

5.

Assignment of client to an LTERM pool

For clients that want to connect to an application via an LTERM pool, please note that openUTM only assigns a
client to one LTERM pool. When selecting the LTERM pool, openUTM considers it more important to match the
processor name than the client type.

The table below shows the sequence in which openUTM attempts to assign a client to the generated PTERMs and
LTERM pools. The grayed out rows in the table represent LTERM pools that can only exist in a UTM application on
BS2000 systems. but not on Unix, Linux and Windows systems.

Assignment of a client KDCDEF statements: definition of client Remark

1. PTERM PTYPE=partnertype

PRONAM=processorname

2. TPOOL PTYPE=partnertype

PRONAM=processorname

3. TPOOL PTYPE=*ANY

PRONAM=processorname

only on BS2000 systems

4. TPOOL PTYPE=partnertype

PRONAM=*ANY

5. TPOOL PTYPE=*ANY

PRONAM=*ANY

only on BS2000 systems

When establishing a connection, it is first of all checked whether a PTERM statement exists for the client.
UTM first searches for a PTERM-entry using the short processor name of up to 8 characters as supplied by the
transport system in the connection request. If no matching PTERM-entry can be found, then UTM retrieves the
long processor name of the communication partner from the transport system which can be up to 64 characters
long, and searches for a PTERM-entry with this long processor name.
A client that was explicitly generated with a PTERM statement cannot connect to a UTM application via an
LTERM pool.

If an LTERM pool is generated for the processor name (PRONAM) and type (PTYPE) of a client, this client is
assigned to this LTERM pool.
PRONAM can also be the mapped name of a SUBNET statement if a subnet is generated for the IP address of
the client.

(only on BS2000 systems) If there is no LTERM pool with the processor name and type of the client, the client
is assigned to the LTERM pool with the same processor name and PTYPE=*ANY.

UTM first performs steps 2 and 3 using the short processor name of up to 8 characters as supplied by the
transport system in the connection request. If in neither one of the steps 2 and 3 a matching LTERM pool can
be found, then UTM retrieves the long processor name of the communication partner from the transport system
and repeats the search of steps 2 and 3 with this long processor name.

If no such LTERM pool exists, the client is assigned to an “open” LTERM pool with the same type and
PRONAM=*ANY, i.e. all clients of a type can connect to the UTM application, regardless of the processor on
which they reside.

 114

5. (only on BS2000 systems) If no such LTERM pool exists either, the client is assigned to an LTERM pool with
PTYPE=*ANY and PRONAM=*ANY.

If there is no LTERM pool of this type or if the capacity of the LTERM pool selected by openUTM is exceeded, the
connection setup request is rejected.

 115

4.1.3 LTERM bundle

With a LTERM bundle (connection bundle) you distribute queued messages to a logical partner application equally
among several parallel connections. The logical partner application can comprise several instances of the partner
application (e.g. a UTM cluster application). This type of distribution may make sense when a UTM application
sends a very large number of queued messages to a partner application, possibly leading to the overloading of one
transport connection.

You define a LTERM bundle using LTERM and PTERM statements as already described in the section "Connecting
. The following text describes the additional points you must note to work with LTERM clients via LTERM partners"

bundles.

A LTERM bundle consists of one master LTERM and several assigned slave LTERMs. The slave LTERMs, which
must be assigned using PTERM with PTYPE=APPLI or PTYPE=SOCKET, are assigned to a master LTERM
through generation.

Figure 10: Example of a LTERM bundle

FPUT/DPUT calls

FPUT calls sent by program units to the master LTERM are assigned to one of the slave LTERMs at the end of the
transaction:

openUTM first attempts to find a slave LTERM whose PTERM is connected. If openUTM cannot find such a
connection, then it searches for a slave LTERM that was generated with RESTART=YES.

If openUTM finds a slave LTERM, then all queued messages sent in this transaction to this master LTERM are
assigned to the slave LTERM.

If openUTM cannot find such a slave LTERM, then all asynchronous messages sent to the master LTERM are
rejected.

If a slave LTERM is generated with RESTART=NO and the connection is cleared or lost, then all messages
pending output on this LTERM are rejected.

Program units can also send FPUT and DPUT calls directly to the slave LTERMs. However, these messages are
not subject to the distribution algorithm described above.

Information displayed in the KB header

Messages can also be received through the slave LTERMs of a LTERM bundle. In services started for received
messages, openUTM always displays the name of the LTERM through which the message was received in the KB
header. The following therefore applies for LPAP bundles:
In services started for messages received through a slave LTERM, the name of this slave LTERM is displayed in
the KB header and the name of the master LTERM.not

 116

With the aid of the KDCS call INIT PU you can obtain information on whether the LTERM in the KB header is the
slave of an LTERM bundle as well as the name of the master LTERM (see the openUTM manual „Programming
Applications with KDCS”).

LTERM statement in section "LTERM - define an LTERM partner for a client or printer"
In addition to the properties for LTERM partners already listed (see "Connecting clients via LTERM

), the following operands must also be specified for LTERM bundles:partners"

BUNDLE=

Specifies the corresponding master LTERM in the definition of a slave LTERM. The master LTERM
specified her must have been generated in a preceding LTERM statement:

LTERM master , ...

LTERM slave1 , BUNDLE= master , ...
 LTERM slave2 , BUNDLE= master , ...

PTERM slave1 , LTERM= slave1 , PTYPE=APPLI|SOCKET, ...

 PTERM slave2 , LTERM= slave2 , PTYPE=APPLI|SOCKET, ...

RESTART=

Determines how queued messages are handled when the connection to the client is cleared. Messages
pending output on a LTERM that were generated with RESTART=NO may be rejected if necessary (see

).“FPUT/DPUT calls”

PTERM statement in section "PTERM - define the properties of a client/printer and assign an LTERM
partner"
In addition to specifying the properties for physical clients already listed (see "Connecting clients via

), the following operands must also be specified for the PTERMs assigned to the slave LTERM partners"
LTERMs in a LTERM bundle:

PTYPE=APPLI | SOCKET

All PTERMs in a LTERM bundle must be generated with PTYPE=APPLI or PTYPE=SOCKET. The same PTYPE
must be specified here for all PTERMs in a LTERM bundle.

USAGE=D (BS2000 systems only)

All PTERMs in a LTERM bundle must be generated with USAGE=D.

All LTERM parameters of slave LTERMs except for , USER, QAMSG, RESTART, and ltermname
STATUS must match the same parameters of the master LTERM. Otherwise they will be overwritten by
KDCDEF using the data specified in the master LTERM. No message is output in this case.

When assigning the asynchronous messages to a slave LTERM at the end of a transaction, the QAMSG
and RESTART settings are evaluated on the slave LTERM.

All slave LTERMs in a LTERM bundle should be generated identically. KDCDEF does not check this,
though.

i

 117

All PTERMs in a LTERM bundle should address the same partner application or a partner application of
the same type. KDCDEF does not check this, though.

i

 118

4.1.4 LTERM groups

In a LTERM group you assign one or more LTERMs a connection. The use of LTERM groups is of value if a UTM
application is to send queued messages to different partner applications depending on which functional area the
message belongs to. In this case, a separate LTERM must be assigned to each functional area in the partner
application.

The program units direct their FPUT and DPUT calls to the appropriate LTERM depending on the function. If the
partner application to function relationship is 1:1, then each LTERM is assigned one PTERM. If the partner
application to function relationship is n:1 and the assignment may change in some cases, then n LTERMs are
assigned to one PTERM.

An LTERM group consists of one or more alias LTERMs, called the group LTERMs, and one primary LTERM. You
define the group LTERMs using LTERM statements as described in the section "Connecting clients via LTERM

. Do not assign a PTERM to a group LTERM.partners"

The primary LTERM must be a normal LTERM or the master LTERM of a LTERM bundle. If the primary LTERM is
a normal LTERM, then a PTERM with PTYPE=APPLI or PTYPE=SOCKET must be assigned to it. You define the
primary LTERM as described in the section ."Connecting clients via LTERM partners"

Figure 11: Example of a LTERM group

LTERM groups can also be used in conjunction with LTERM bundles. In this case the primary LTERM is the master
LTERM of the LTERM bundle.

Figure 12: Example of a LTERM group in conjunction with a LTERM bundle

FPUT/DPUT calls

FPUT and DPUT calls sent by program units to an alias LTERM are processed as follows:

 119

In a LTERM group without a LTERM bundle:

FPUT and DPUT calls sent to an alias LTERM are sent by openUTM via the PTERM assigned to the primary
LTERM.

In a LTERM group whose primary LTERM is the master LTERM of a LTERM bundle:

If FPUT calls are sent to an alias LTERM in this kind of LTERM group, then all queued messages sent in the
transaction to alias LTERMs in the group are assigned by openUTM to exactly one of the slave LTERMs at the
end of the transaction.

This procedure guarantees that the recipient receives the messages in the same order as they would be
generated in a transaction for an LTERM group.

Program units can also send FPUT and DPUT calls directly to the primary LTERM.

Information displayed in the KB header

If the primary LTERM of a LTERM group is not the master LTERM of a LTERM bundle, then messages can also be
received via the primary LTERM. In services started for received messages, openUTM always displays the name of
the LTERM or LPAP from which the message was received in the KB header. The following also applies to LTERM
groups:
In services started for messages received via the primary LTERM, the name of the primary LTERM is displayed in
the KB header and the name of an alias LTERM.not

With the help of the KDCS call INIT PU you can obtain information on whether the LTERM in the KB header is the
primary LTERM of a LTERM group (see openUTM manual „Programming Applications with KDCS”).

LTERM statement in section "LTERM - define an LTERM partner for a client or printer"
In addition to the properties forLTERM partners already listed (see "Connecting clients via LTERM

), the following operands must also be specified for a LTERM group:partners"

GROUP=

Specifies the corresponding primary LTERM in the definition of an alias LTERM. The primary LTERM
specified here must have been generated in a preceding LTERM statement:

LTERM primary , ...

PTERM primary , LTERM= primary , PTYPE=APPLI | SOCKET, ...

LTERM alias1 , GROUP= primary , ...
 LTERM alias2 , GROUP= primary , ...

PTERM statement in section "PTERM - define the properties of a client/printer and assign an LTERM
 partner"

In addition to specifying the properties for physical clients already listed (see "Connecting clients via
), the following operands must also be specified for the PTERM assigned to the primary LTERM partners"

LTERM of a LTERM group:

All LTERM parameters of the alias LTERMs except for , USER, and STATUS must match the ltermname
same parameters of the primary LTERM. Otherwise they will be overwritten by KDCDEF using the data
specified in the primary LTERM. No message is output in this case.

Only the generation parameters of the primary LTERM are evaluated for a FPUT or DPUT call.

i

 120

PTYPE=APPLI | SOCKET

The PTERM in a LTERM group must be generated with PTYPE=APPLI or PTYPE=SOCKET.

USAGE=D (BS2000 systems only)

The PTERM in a LTERM group must be generated with USAGE=D.

 121

4.1.5 Connecting OpenCPIC clients

OpenCPIC clients are treated as OSI TP partners. For this reason, this section only describes the client-specific
features of OSI TP generation.

Generation

An OpenCPIC client is generated in a similar way to a server/server link, see "Distributed processing via the OSI TP
. The only difference is that LTAC statements are not required if it is just a client.protocol"

 122

4.1.6 Defining the client sign-on procedure

This section describes the interface between generation and the sign-on procedure for clients if the application is
generated with user IDs. The sign-on procedure is made up of the following two stages: establishing the

and .connection signing on

The connection is established using the application names as specified in the operand BCAMAPPL= or, for
OpenCPIC, specified in the operand LOCAL-ACCESS-POINT=.

Signing on to a UTM application

Signing on to a UTM application is carried out using a user ID. The following stages are required, regardless of
whether the default sign-on service is used or another sign-on service:

When using terminals, the terminal user must prove their authorization once a connection has been established.
To do this the user must enter at least one user ID. This user ID must be generated in a USER statement. This is
also called the .real user ID

TS applications, UPIC clients and HTTP clients are signed on after connection using a so-called connection
. This is a user ID which isuser ID

either a user ID implicitly generated by openUTM using the LTERM name if no user ID is specified in the
operand USER= of the LTERM statement,

or an explicit connection user ID, if a user ID is specified in the operand USER= which is generated with a
USER statement, see . This user ID cannot be used as a real "Automatic sign-on under a specific user ID"
user ID.

OpenCPIC clients are signed on under their once the association has been established. The association names
association names are formed using the names specified in the operand ASSOCIATION-NAMES= and a
sequential number, for example, ASSOC03, see "OSI-LPAP - define an OSI-LPAP partner for distributed
processing based on OSI TP"

UPIC clients, HTTP clients, TS applications and OpenCPIC clients which are signed on using a connection user ID
or using their association name can then subsequently sign on using a real user ID.

The execution of the sign-on service can be defined by the generation, for example, using automatic connection
establishment, automatic sign-on under a specific user ID, separate sign-on service or by permitting multiple sign-
ons.

Detailed information about the sign-on service can be found in the relevant section of the openUTM
manual “Using UTM Applications”. The individual steps required for a client to sign on to a UTM
application are described there.

i

 123

4.1.6.1 Establishing an automatic connection

Certain clients can be generated in such a way that openUTM attempts to establish a connection to the client as
soon as the application is started. This is possible when using:

OpenCPIC clients,

individually generated terminals and TS applications on BS2000 systems

individually generated TS applications on Unix, Linux and Windows systems.

An automatic connection can be established as follows:

For TS applications and terminals:

PTERM ... ,CONNECT=YES

For OpenCPIC clients:

OSI-LPAP ... ,CONNECT=n (n>0)

 124

4.1.6.2 Automatic sign-on under a specific user ID

You can explicitly assign all clients defined using LTERM/PTERM a user ID under which this client automatically
signs on once a connection is established. If you do so, the authorizations that apply to that client are the ones
assigned to the specified user ID, see . To do this you will need the following "Generating security functions"
generation statements:

LTERM ... USER=username
USER username ...

Terminals are then always signed on under this user ID. For TS applications and UPIC clients this user ID is a
connection user ID and can still be replaced by a real user ID, e.g. in a sign-on service, see below.

However, after signing off via KDCOFF BUT a user may sign-on again with another user ID.

 125

4.1.6.3 Generating sign-on services for clients

It is possible to program special sign-on services for terminals, UPIC clients and TS applications. A sign-on service
is linked to an application name. This means that you can assign a sign-on service to any application name.
Application names are defined using MAX APPLINAME= or in a BCAMAPPL statement.

If a client signs on using a specific application name, then the sign-on service assigned to this application name is
started. The application name under which the client has to sign on is specified in PTERM/TPOOL in the operand
BCAMAPPL.

Sign-on services are generated as follows:

The sign-on service for the default application name (as defined in
MAX ... APPLINAME) is generated using:

TAC KDCSGNTC, PROGRAM=signon-prog1
PROGRAM signon-prog1 ...

signon-prog1 is the name of the program unit that is initially run in the sign-on service.

If a default application name is generated for a sign-on service, this is then taken as the default value for all
application names generated using BCAMAPPL.

The sign-on service for an application name defined using BCAMAPPL is generated using:

BCAMAPPL appliname2...,SIGNON=signon-tac
TAC signon-tac, PROGRAM=signon-prog2
PROGRAM signon-prog2

signon-prog2 is the name of the program unit that is initially run in the sign-on service.

If sign-on services are also to be run for UPIC clients, you must specify the following in the SIGNON statement:

SIGNON ... UPIC=YES

If this setting is not made, no sign-on service is started for UPIC clients, not even if an appropriate sign-on
service has been generated for the application name.

More information about the programming can be found in the openUTM manual „Programming Applications with
KDCS”.

 126

4.1.6.4 Multiple sign-ons

When using user IDs, it is usually only possible for a single client to sign on to an application at any given time, a
second attempt to sign on under the same user ID is thus rejected.

If you want to enable multiple sign-ons for user IDs you must generate the following:

SIGNON ... MULTI-SIGNON=YES

This means that it is possible, at any given time, for several clients to sign on to an application under a single real
user ID without a restartable service context (USER ... RESTART=NO), but only of these clients username one
may be a terminal client.

OpenCPIC clients that have selected the functional unit "Commit", may perform a multiple sign-on under any real
user ID.

 127

4.1.7 Specifying maximum waiting times for dialog prompting

In the KDCDEF control statement MAX, you can specify the maximum waiting times for dialog prompting using the
operand TERMWAIT= and PGWTIME= as well as the IDLETIME= operand of the PTERM statement.

The operand PGWTTIME= is used to set the maximum permitted length of the interval between the output of a
dialog message to the client after a blocking call (for example, a PGWT call) and the subsequent dialog input. If
no input is made during this period of time, openUTM is forced to interrupt the service.

After a blocking call, the task / work process remains in a synchronous wait state until the next dialog entry and
cannot handle any other jobs until this time.

The operand TERMWAIT= is used to set the maximum permitted length of the interval between the dialog output
at a terminal after a PEND KP and the subsequent dialog input. If no input is made during this period of time,
openUTM is forced to interrupt the service.

After a PEND KP, any resources in the application maybe locked (e.g. database tables) and other users have to
synchronously wait for these locks to be released.

The operand IDLETIME= is used to limit the waiting time after PEND RE and PEND FI/ER/FR, or in other words,
after the end of a transaction.
Monitoring the waiting time after the end of a transaction is used for data protection purposes. Should a user
forget to sign off after completing work with the application, this function allows you to reduce the risk of
unauthorized persons may get access to the client and can work with the UTM application being forced without
to sign on.

The attention of the user must be drawn towards these relationships. The users must be shown the
critical points of the dialog interaction so that they are aware of the effect an input delay may have on the
performance of the application as a whole.

i

 128

4.1.8 Generating security functions

The security functions are made up of the following components:

System access control:
System access control is defined in the USER statement, see below.

Administration authorization:
Administration authorization is assigned in the USER statement or the OSI-LPAP statement, see "Assigning

.administration authorizations"

Data access control:
Data access control is specified using the operands KSET, USER-KSET or ASS-KSET of the USER, LTERM,
TPOOL or OSI-LPAP statement. Data access protection must be defined within the framework of a lock/key code
concept or of the access list concept and is described in detail in section . Data access "Data access control"
control for OpenCPIC clients is generated in the same way as described in section "Protection measures for job-

.receiving services" (Data access control with distributed processing)

Encryption:
openUTM is supporting message encryption for the communication with specific clients. The encryption level is
specified in the operand ENCRYPTION-LEVEL of the PTERM, TPOOL or TAC statement. A detailed description
of message encryption can be found in section .“Message encryption on connections to clients”

 129

4.1.8.1 Defining system access control

System access control is only relevant for real user IDs and is generated in the USER statement.

You define system access control by assigning a password to each user ID and by specifying a minimum length, a
certain level of complexity, and a minimum and a maximum validity period for the password.

USER userid-name,PASS=password,PROTECT-PW=complexity-level

On signing on, the user must pass the specified authorization data configured for to openUTM.userid-name

On BS2000 systems, a magnetic strip card can also be configured as an access requirement for a user ID.

In addition, on BS2000 systems an access check using Kerberos can be generated as an alternative to a password
and/or magnetic strip card.

Generating system access control using Kerberos (BS2000 systems)

The following generation statements are of significance for generating access control using the distributed
authentication service Kerberos:

LTERM KERBEROS-DIALOG=

If you specify LTERM KERBEROS-DIALOG=YES, a Kerberos dialog is carried out when a connection is
established for terminals that support Kerberos and that connect to the application directly via this LTERM
partner (not via OMNIS) (see)."LTERM - define an LTERM partner for a client or printer"

TPOOL KERBEROS-DIALOG=

If you specify TPOOL KERBEROS-DIALOG=YES, a Kerberos dialog is carried out when a connection is
established for terminals that support Kerberos and that connect to the application directly via this terminal pool
(not via OMNIS) (see)."TPOOL - define an LTERM pool"

USER PRINCIPAL=

When you specify USER PRINCIPAL=characterstring, the user is authenticated via Kerberos with the help of this
string (see)."USER - define a user ID"

openUTM stores the Kerberos information in the length resulting from the maximum lengths generated for MAX
PRINCIPAL-LTH and MAX CARDLTH (see). If the Kerberos "MAX - define UTM application parameters"
information is longer, it is truncated to this length and stored.

 130

4.1.8.2 Assigning administration authorizations

You can specify the administration authorizations for a user ID using the USER statement:

USER userid-name,PERMIT=ADMIN

On BS2000 systems you can also assign the UTM-SAT administration authorizations for a user ID (PERMIT
operand) and specify the type and range of the SAT logging (SATSEL operand):

USER userid-name,PERMIT=SATADM,SATSEL=...

You can assign administration authorization to an OSI TP-Partner, e.g. an OpenCPIC client in OSI-LPAP:

OSI-LPAP ... PERMIT=ADMIN

On BS2000 systems you can also assign the UTM-SAT administration authorizations for a client:

OSI-LPAP ... PERMIT=SATADM or PERMIT=(ADMIN,SATADM)

If the OSI TP-Partner signs on under a real user ID, then the data access rights that are generated for that user
ID are valid and not the data access rights of the OSI-LPAP.

 131

4.1.9 Generating restart functionality

The restart function for a client is linked to the user ID that the client has used to sign on to the UTM application.

Restart function for real user IDs

The restart function for real user IDs is specified in the RESTART operand of the USER statement.

USER userid-name...RESTART=YES | NO

If this is generated as RESTART=YES then the type of client and any generated sign-on services will also play a
role in service restart:

If a sign-on service has been generated for a client that signs on using this user ID, then this service will control
whether a service restart is performed or whether an open service is terminated abnormally, see the description
of the sign-on service in the openUTM manual „Programming Applications with KDCS”.

If a terminal or TS application does not sign on via a sign-on service, then openUTM always initiates a service
restart.

If a UPIC client does not sign on via a sign-on service then the UPIC client must explicitly initiate a service
restart, otherwise an open service is terminated abnormally see the manual „openUTM-Client for the UPIC
Carrier System”.

When using OpenCPIC clients, restart is only possible with cooperative processing (functional unit not equal to
"Commit"). The OpenCPIC client must explicitly initiate a service restart, otherwise an open service is

terminated abnormally, see manual “openUTM-Client for the OpenCPIC Carrier System”.

Restart function for connection user IDs

If individually generated TS applications sign on via implicit (created by openUTM) connection user IDs, then the
restart function is controlled by the RESTART operand in the LTERM statement:

LTERM ltermname ... RESTART=YES | NO

This parameter of the LTERM statement is irrelevant for the service restart if the TS application is signed on via an
explicitly generated connection user ID or a real user ID.

No service restart is possible for UPIC clients that do not sign on under a genuine user ID.
Explicitly generated connection user IDs to UPIC clients are generated in any case and without any
message with RESTART=NO.

i

 132

4.1.10 USP headers for output messages to USP socket applications

In order that a UTM application is able to communicate with the TS application via the socket interface, a UTM
socket protocol (USP) may be used on top of TCP/IP. openUTM uses this protocol to convert a bytestream received
via the socket interface into a message. The partner application must issue the protocol and prefix it with the input
message as the protocol header. openUTM does not usually create a protocol for output messages.

It is possible to set each generation option so that openUTM also prefixes a protocol header for output messages.
This is specified in the PTERM or TPOOL statement using the operand USP-HDR=:

USP-HDR=ALL ensures that openUTM prefixes all output messages of this connection (dialog, or asynchronous
message, K message) with a protocol header.

With USP-HDR=MSG the protocol header is prefixed for K messages only.

USP-HDR=NO means that no protocol header is prefixed for output messages.

The structure of the protocol header is described in the openUTM manual „Programming Applications with KDCS”.

 133

4.1.11 Providing address information

For TS applications, HTTP clients, UPIC clients and OpenCPIC clients, address information is required to establish
a connection. This information is stored in the UTM generation. For socket applications, there is no difference
between BS2000 systems and Unix, Linux or Windows systems. For other clients, the characteristics of the
transport system take effect. This information is therefore divided into separate paragraphs.

The address information for OpenCPIC clients is specified in the same way as for OSI TP partners in generell, see
chapter " ". The information supplied must match the Generation of distributed processing based on OSI TP
configuration of the OpenCPIC client.

Providing the address information for HTTP clients and TS applications of type SOCKET

When communicating with HTTP clients or TS applications via TCP/IP the socket interface is used directly.

The address information required for communication is provided in the UTM generation.

KDCDEF generation

The address information is stored in the operands LISTENER-PORT=, T-PROT= and PRONAM= of the
BCAMAPPL and TPOOL/PTERM statements.

BCAMAPPL statement

You must always specify a BCAMAPPL statement for socket applications. The following applies:

In LISTENER-PORT= you must always enter a port number under which the UTM application waits for
the requests of the socket application. The port number must correspond to the settings of the
communication partner.

In T-PROT= you must enter SOCKET.

Unix, Linux and Windows systems:
LISTENER-ID= assigns the connection an optional listener ID. You can use the listener ID to distribute
the management of network connections to different network processes. The values for the LISTENER-
ID of non-socket connections and socket connections may be assigned independently of each other.

PTERM statement

If you generate a socket partner individually, you will need to specify the following operands and parameters:

If the socket application is to establish the connection, the PTERM name must have the format PRT , nnnnn
where is the port number from which the socket application establishes the connection. The name may nnnnn
be supplemented by leading zeros.

In BCAMAPPL= enter the application name as defined in the BCAMAPPL statement.

In PRONAM= you must specify the TCP/IP host name.

For Unix, Linux and Windows systems, please consider also section "Specifying computer names in KDCDEF
".generation

In the LISTENER-PORT= operand, you must specify the port number at which the socket partner is waiting
for connection establishment requests.

TPOOL statement

If you want to connect a socket partner using a LTERM pool, then:

In PRONAM= you must specify the TCP/IP host name or the mapped name of a SUBNET statement.
If you specify the mapped name of a SUBNET statement for PRONAM, clients from any computers from this
subnet can sign on, provided they correspond to the type specified in PTYPE=.

 134

If you enter PRONAM=*ANY, then clients from any computer can sign on assuming they are of the same type
as specified in PTYPE= .

For Unix, Linux and Windows systems, please consider also section "Specifying computer names in KDCDEF
generation".

In BCAMAPPL= enter the application name as defined in the BCAMAPPL statement.

Example

The following example uses the port number 10100. The socket application is linked via the LTERM pool and runs
on the computer PCSOCK01.

BCAMAPPL BSPSOCK -

 ,LISTENER-PORT=10100 -

 ,T-PROT=SOCKET -

 ,...

TPOOL ...

 ,PTYPE=SOCKET -

 ,BCAMAPPL=BSPSOCK -

 ,PRONAM=PCSOCK01 -

 ,...

 135

4.1.11.1 Providing address information for clients of type UPIC and APPLI on BS2000 systems

For RFC1006 (or ISO) connections you must always generate a separate application name. This can be used for all
RFC1006 (or ISO) connections regardless of client type.

KDCDEF generation

BCAMAPPL statement

In T-PROT= enter either ISO or RFC1006 (these two values are treated identically on BS2000 systems).

PTERM statement

If you want to generate the clients individually, specify the following operands and parameters:

Under PTERM name, you must enter the name that was defined for this client when the network was
generated.

In BCAMAPPL= enter the application name defined in the BCAMAPPL statement.

In PRONAM= enter the name of the computer on which the client is running. This name is specified
when the network is generated.

In PTYPE= you must enter either UPIC-R or APPLI.

If you want the UTM application to actively establish the connection to clients of the APPLI type, in the
LISTENER-PORT parameter you must specify the port number on which the partner application listens
for connection requests.

TPOOL statement

If you want to link clients via the LTERM pool, then:

In BCAMAPPL= enter the application name that is defined in the BCAMAPPL statement.

In PRONAM= you can enter the name of the computer on which the clients are running.

If you specify PRONAM=*ANY the clients can sign on from any computer as long as it is of the type specified
in PTYPE=.

In PTYPE= you must enter either UPIC-R or APPLI.

 136

4.1.11.2 Providing address information for clients of type UPIC and APPLI on Unix, Linux and Windows
systems

On Unix, Linux and Windows systems it is possible to write your own BCAMAPPL statement for an application
name that is generated using MAX APPLINAME=. This statement can then be used to specify all the parameters as
required by the application.

To link clients via RFC1006, see section "Providing address information for the CMX transport system (Unix, Linux
. The KDCDEF generation must contain all the necessary address information.and Windows systems)"

KDCDEF generation for RFC1006

BCAMAPPL statement

appliname: You can select any application name, but the name must be unique within the network, as
KDCDEF uses it to create a T-selector.

If OPTION CHECK-RFC1006=YES then a port number must be specified for LISTENER-PORT.
In all other cases, the default value is 0 (no port number).

In T-PROT you must enter RFC1006.

In TSEL-FORMAT= enter the format indicator for the name that you have defined as the (see appliname
above). It is recommended that you always make an entry for the operand TSEL-FORMAT=.

PTERM statement

If you want to generate the client individually via a PTERM statement, enter the following:

As PTERM name use the T-selector of the client. The client on the client computer must be entered with this
T-selector as the local application.

In BCAMAPPL= enter the application name as defined above.

In LISTENER-PORT= enter the port number which the client is reached as output port on the client computer.

In PRONAM= you must enter the TCP/IP host name, see "Specifying computer names in KDCDEF generation
".

In PTYPE= you must specify wither UPIC-R or APPLI.

TPOOL statement

If you want to connect the client via an LTERM pool, enter the following:

In BCAMAPPL= enter the application name as defined above.

In PRONAM= you can enter the name of the computer on which the client is running. This must be the TCP/IP
host name, see " ".Specifying computer names in KDCDEF generation

If you enter PRONAM=*ANY the clients can sign on from any computer as long as it is of the same type
specified in PTYPE=.

If you specify the mapped name of a SUBNET statement for PRONAM, clients from any computers from this
subnet can sign on, provided they correspond to the type specified in PTYE=.

In PTYPE= you must enter either UPIC-R or APPLI.

Example

The following example uses the port number locally and the remote application has the port number . 10030 12030

The UPIC client runs on a computer called .PCUPR

 137

BCAMAPPL BSPUPR -

 ,LISTENER-PORT=10030 -

 ,T-PROT=RFC1006 -

 ,T-SEL-FORMAT=T -

 ,...

PTERM UPRPART -

 ,PTYPE=UPIC-R -

 ,BCAMAPPL=BSPUPR -

 ,PRONAM=PCUPR -

 ,LISTENER-PORT=12030 -

 ,T-PROT=RFC1006 -

 ,T-SEL-FORMAT=T -

 ,...

The statements for a TS application are created analogue, except that you must specify PTYPE=APPLI in PTERM.

 138

4.1.11.3 Additional information for LTERM pools on Unix, Linux and Windows systems

An LTERM pool can be used by any partner application on a specific computer to establish a connection to the
UTM application, if the partner application is of the appropriate type (PTYPE). If PRONAM=*ANY is generated in
the TPOOL statement, then partner applications of the generated type can connect to the UTM application from any
computer.

If you specify the mapped_name of a SUBNET statement for PRONAM, clients from any computers from this
subnet can sign on, provided they correspond to the type specified in PTYE=.

The TPOOL statement does not specify a name (station name) for this communication partner. The UTM
application determines this name from the transport address of the partner application that the partner application
has supplied when the connection is established.

The following procedure is used:

If a partner application is communicating with the UTM application, an attempt is made to find out the computer
name using the local Name Service.

If no name can be located for the computer the network process assigns it the name *ANY.

Then an attempt is made to obtain the T-selector from the transport address. If a T-selector is found then it is
used as the station name.

If no T-selector can be found, then the station name 'NET ' is used for the partner application. stands nnnnn nnnnn
for a number between 00000 and 99999 and is automatically incremented by openUTM.

It often makes sense to communicate with LTERM pools via TCP/IP connections, if LTERM pool is generated with
processor names (TPOOL ...,PRONAM=).

Unix, Linux and Windows systems

Please note the maximum number of connections that can be established at a time via one transport
system end point. For details see in section BCAMAPPL statement "BCAMAPPL - define additional

.application names"

!

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=58913445
https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=58913445

 139

4.1.12 Examples for the generation of a client/server combination

The following examples show how to connect a UPIC client which is running on a Windows PC to a UTM
application on BS2000 and on a Unix or Linux system.

Example 1: Connecting a UPIC client to openUTM on BS2000 systems

The UTM server application is located on a host with the name BS2HOST1, the client program is running on a PC
with the computer name PCCLT002. The transport connection is to be established via TCP/IP (address format
RFC1006).

UTM generation under the BS2000 system

*** Define BCAM application name for the UTM server application:***

BCAMAPPL SERVER, T-PROT=RFC1006

*** Generate client:***

PTERM UPICPT, PTYPE=UPIC-R, LTERM=UPICLT, BCAMAPPL=SERVER, -

 PRONAM=PCCLT002

LTERM UPICLT

*** Define TAC for the client:***

TAC TAC1, PROGRAM=SERVICE

The statement LTERM UPICLT means that openUTM implicitly uses a connection user ID called UPICLT.

Entries in the side information file (upicfile) of the UTM client

* UTM application under the BS2000 system

SDsamplaw SERVER.BS2HOST1 TAC1

* or, if you require automatic conversion of user data

* from ASCII to EBCDIC and vice versa

HDsamplaw SERVER.BS2HOST1 TAC1

Specification in the client program

Enable_UTM-UPIC "UPICPT"

Initialize_Conversation "samplaw"

Example 2: Connecting a UPIC client to openUTM on Unix, Linux or Windows systems

This example describes the TCP/IP RFC1006 connection of a UPIC client to a UTM application on a Unix, Linux or
Windows system. The example shows the coordination of the generation for both communication partners.

The UTM application is running on a computer with the name . The client is located on a Windows UXHOST01

system for which the name has been generated in the KDCDEF. The UTM application receives the local PCCLT001

port number 1230.

Generating the UTM server on the Unix, Linux or Windows system

BCAMAPPL UTMUPICR,LISTENER-PORT=1230,T-PROT=RFC1006,TSEL-FORMAT=T

PTERM UPICPT,PTYPE=UPIC-R,LTERM=UPICLT,BCAMAPPL=UTMUPICR,PRONAM=PCCLT001, \

 T-PROT=RFC1006,TSEL-FORMAT=T

LTERM UPICLT

The statement LTERM UPICLT means that openUTM implicitly uses a connection user ID called UPICLT.

 140

Entries in the side information file of the client computer

* Local application

LNUPICTTY UPICPT PORT=1240

* UTM application on Unix/Linux/Windows system with port 1230,

* TCP/IP host name=UXHOST01

SDsampladm UTMUPICR.UXHOST01 TAC1 PORT=1230

Specification in the client program

Enable_UTM_UPIC "UPICPT"

 Initialize_Conversation "sampladm"

Example 3: Connecting an OpenCPIC client

An OpenCPIC client is running on a Unix or Linux system with the host name UNIXPRO1. The client connects itself
via RFC1006 to a UTM application on BS2000 system and to a UTM application on Unix, Linux or Windows system.
The following is to apply:

In the UTM application on the BS2000 system, the client calls the transaction code TRAVEL02 and in the UTM
application on Unix, Linux or Windows system it calls the transaction code STATIST1.

It is to be possible to have up to 10 parallel connections to the BS2000 system, and up to 2 parallel logical
connections to Unix, Linux or Windows system.

The UTM application on the BS2000 system uses the local port number 102. The UTM application on Unix, Linux
or Windows system uses the local port number 12000.

The OpenCPIC client uses the local port number 13000.

 141

UTM generation on BS2000 system

UTMD APT = (2, 7, 16, 2)

ACCESS-POINT SERVER,

 T-PROT = RFC1006,

 P-SEL = *NONE,

 S-SEL = *NONE,

 T-SEL = C'UTMSERV1',

 AEQ = 1

OSI-CON CONNECTB,

 LOCAL-ACCESS-POINT = SERVER,

 P-SEL = *NONE,

 S-SEL = *NONE,

 T-SEL = C'CPICCLT1',

 N-SEL = C'UNIXPRO1',

 LISTENER-PORT = 13000,

 OSI-LPAP = OSILPAPB

OSI-LPAP OSILPAPB,

 APT = (2, 7, 16, 4),

 APPLICATION-CONTEXT = UDTSEC,

 AEQ = 1,

 ASS-NAMES=CPIC,

 ASSOCIATIONS=10,

 CONTWIN=0

TAC TRAVEL02 ...

 142

UTM generation on Unix, Linux or Windows system

UTMD APT = (2, 7, 16, 3)

ACCESS-POINT STATSERV,

 T-PROT = RFC1006,

 P-SEL = *NONE,

 S-SEL = *NONE,

 T-SEL = C'UTMSERV2',

 LISTENER-PORT = 12000,

 T-PROT = RFC1006,

 T-SEL-FORMAT = T,

 AEQ = 1

OSI-CON CONNECTX,

 LOCAL-ACCESS-POINT = STATSERV,

 P-SEL = *NONE,

 S-SEL = *NONE,

 T-SEL = C'CPICCLT1',

 N-SEL = C'UNIXPRO1',

 LISTENER-PORT = 13000,

 T-PROT = RFC1006,

 T-SEL-FORMAT = T,

 OSI-LPAP = OSILPAPX

OSI-LPAP OSILPAPX,

 APT = (2, 7, 16, 4),

 APPLICATION-CONTEXT = UDTSEC,

 AEQ = 1,

 ASS-NAMES=CPIC,

 ASSOCIATIONS=2,

 CONTWIN=0

TAC STATIST1 ...

 143

OpenCPIC generation

*** Entry for the local application

LOCAPPL OPENCPIC,

 APT = (2, 7, 16, 4),

 AEQ = 1

*** Connection to UTM application on BS2000 system

PARTAPPL UTMSBS20,

 APT = (2, 7, 16, 2),

 APPLICATION-CONTEXT = utm-secu,

 AEQ = 1,

 ASSOCIATIONS = 10,

 CONTWIN = (10,10),

 CONNECT = 10***

*** TAC in the UTM application on BS2000 system

SYMDEST TRAVEL,

 PARTNER-APPL = UTMSBS20,

 PARTNR-APRO = TRAVEL02

*** Connection to UTM application on Unix, Linux or Windows system

PARTAPPL UTMSUNIX,

 APT = (2, 7, 16, 3),

 APPLICATION-CONTEXT = utm-secu,

 AEQ = 1,

 ASSOCIATIONS = 2,

 CONTWIN = (2,2),

 CONNECT = 2

*** TAC in the UTM application on Unix, Linux or Windows system

SYMDEST STATIST,

 PARTNER-APPL = UTMSUNIX,

 PARTNR-APRO = STATIST1

TNS entries in the OpenCPIC client computer (tnsxfrm format)

OPENCPIC\

 PSEL V''

 SSEL V''

 TSEL RFC1006 T'CPICCLT1'

 TSEL LANINET A'13000'

UTMSBS20\

 PSEL V''

 SSEL V''

 TA RFC1006 ip-address-bs2 PORT 102 T'UTMSERV1'

UTMSUNIX\

 PSEL V''

 SSEL V''

 TA RFC1006 ip-address-unix PORT 12000 T'UTMSERV2'

 144

4.2 Generating printers (on BS2000, Unix and Linux systems)

Printers that are to be used by a UTM application are connected via LTERM partners that are configured with the
logical properties for printers. LTERM partners for printers are defined in the LTERM statement. Printers be cannot
connected via LTERM pools. Physical printers are defined with the PTERM statement, which is also where the
assignment is made to the LTERM partner.

The connection setup by openUTM can be defined either with PTERM...,CONNECT=YES or with LTERM...,PLEV=.
The connection can also be established using administration functions. See also the openUTM manual
“Administering Applications”.

LTERM statement in section "LTERM - define an LTERM partner for a client or printer"
The most important properties for LTERM partners via which printers can connect to an application are
defined with the following operands:

ltermname

Name of the LTERM via which the printer is connected to the UTM application.

CTERM=

Defines the printer control LTERM so that the user can administer printers, print jobs, and the print jobs in
the message queue of the LTERM partner.

PLEV=

Number of printer messages for which openUTM attempts to establish a connection to the printer assigned
to this LTERM partner.

If PLEV=1, a connection is established for each print job.

If PLEV= , the connection is established for the th print job (n=1 to 32767).n n

If PLEV=0, the connection setup is not initiated by pending print jobs, rather is initiated explicitly by the
administrator using the command KDCLTERM...ACT=CON or KDCPTERM.

The connection is shut down again as soon as there are no further messages for this printer.

PLEV= makes it easier for the user to use printers from various UTM applications (printer sharing). In this
case, the connection between a UTM application and the printer is only kept open while the print job is
being transmitted, in order to allow other applications to establish a connection. If there are unprocessed
print messages for a printer in the message queue of the LTERM partner when the UTM application
terminates, these print messages are retained until the next application start. Before terminating the
application, the administrator can initiate the processing of the outstanding print messages using the
command KDCAPPL SPOOLOUT=ON.

QAMSG=

Messages to printers can be buffered in the message queue of the LTERM partner, even if the printer is not
connected to the application.

USAGE=O

USAGE=O defines a printer as a communication partner which can connect to an application via the LTERM
partner. Messages can only be sent from the application to the printer.

Printers cannot be generated in UTM applications on Windows systems.i

 145

Each printer must be described in the configuration, i.e. for each printer, a PTERM statement is written with the
physical properties of the printer and the assignment is made to an LTERM partner. The assignment between the
printer and LTERM partner is static, i.e. the assignment applies until it is canceled using administration commands.
You can assign another printer (of the same type) to an LTERM partner during operation, e.g. in the event of a
printer fault.

PTERM statement in section "PTERM - define the properties of a client/printer and assign an LTERM
 partner"

The most important properties for printers are defined with the following operands:

ptermname

Name of the printer

BS2000 systems:
The BCAM name or the RSO name of the printer must be specified.

Unix and Linux systems:
The name of a printer group of the spool system must be specified. A printer group used by UTM
applications should comprise only printer. This is the only way to ensure that all parts of a message are one
output to the same printer if a message comprises message segments (see also the information on printer
pools).

CID=

The printer is assigned a printer ID via which the printer can be identified by a printer control printer_id
LTERM. The printer control LTERM attaches to the LTERM partner to which the printer is assigned.

CONNECT=

Specifies whether or not openUTM automatically establishes a connection to the printer when the
application starts. The printer is then explicitly occupied by the application until the next time the connection
is cleared down, even if there are no print jobs.

LTERM=

Name of the LTERM partner assigned to the printer and via which the printer is connected to ptermname
the UTM application.

PTYPE=

BS2000 systems:
Printer type or *RSO.

Unix and Linux systems:
Printer type.
To output the data, the printer process () calls the script. The call also passes parameters to utmprint utmlp

in addition to the data to be printed. By default, then passes the data to the lp command (see utmlp utmlp
PTYPE=PRINTER on)."PTERM - define the properties of a client/printer and assign an LTERM partner"

USAGE=O (only BS2000 systems)

The communication partner is a printer.

The maximum values and limits that are to apply throughout the application for printers are defined with the MAX
statement.

 146

MAX statement in section "MAX - define UTM application parameters"
The default and maximum values relevant throughout the application for printers are defined with the
following operands:

CONRTIME=

Time in minutes after which openUTM makes cyclical attempts to reestablish a logical connection.
openUTM attempts this for:

Printers to which openUTM establishes a connection as soon as the number of print jobs for this printer
exceeds the generated threshold value (LTERM...,PLEV>0). When the connection is aborted, the
number of print jobs must be greater than or equal to the threshold value if openUTM is to attempt to re-
establish the connection.

Printers to which openUTM automatically establishes a connection (PTERM...,CONNECT=YES),
provided that the connection was not terminated by the administration.

If no connection is established when the application starts or if the connection is interrupted during
operation, openUTM attempts to reestablish the connection at intervals of CONRTIME=.

PGPOOL=

A sufficiently large value must be specified for the PGPOOL operand so that the page pool can
accommodate all print messages in the event of a high print volume.

LOGACKWAIT=

Maximum time in seconds that openUTM is to wait for an acknowledgment from the output devices. This
acknowledgment is

for a printer, the logical print acknowledgment from the printer,

for an RSO printer, the acknowledgment from RSO,

with an FPUT call to another application, a transport acknowledgment.

 147

4.2.1 Generating RSO printers (BS2000 systems)

Via the OLTP interface of RSO (remote spool output), openUTM obtains access to all printers that support RSO, i.e.
including printers connected via LAN or PC. openUTM does not establish a transport connection to these printers,
rather serves them via the OLTP interface, i.e. openUTM reserves the printer for RSO and transfers the print job to
RSO.

 148

4.2.1.1 Entries for the KDCDEF generation

To print to an RSO printer from openUTM, the desired printer is defined in the generation under its RSO name as
an RSO printer in the PTERM statement. The printer must be defined and activated on the RSO side. This section
only lists the RSO specific statements and operands, the other printer-specific parameters are described on
"Generating printers (on BS2000, Unix and Linux systems)"

PTERM statement in section "PTERM - define the properties of a client/printer and assign an LTERM
partner"
RSO printers served by openUTM via the OLTP interface are defined with the following operands:

ptermname

For an RSO printer, the name of the printer must be specified here as it was defined in RSO (logical RSO
device name).

PTYPE=

PTYPE=*RSO is specified as the printer type. No particular printer type is specified for RSO printers.
openUTM obtains the printer type in accordance with the RSO device information in the RSO call.

PRONAM=

For an RSO printer, *RSO must be specified as the processor name.

If RSO printers are defined, REMOTE-BUFFER-SIZE in the SPOOL parameter file must be >= 32700 (=
value of MAX TRMSGLTH).

i

 149

4.2.1.2 Entries for RSO and SPOOL

In order for openUTM to use the OLTP interface of RSO, RSO and the software products required by RSO must be
installed. The RSO subsystem must be active. If you have specific questions, read the RSO manual:

Device definition

With the UTM tool SPSERVE, you open the SPOOL parameter file for the printer definition. The system
administrator must configure the printer in RSO for UTM print jobs:

ADD-SPOOL-DEVICE...ADMINISTRATOR=*ADMINISTRATOR(...),

 PROCESSING-CONTROL=*PAR(

 DISCONNETION=*YES

 RESET={*YES | *NO }

 CONTROLLER-START=AT-PRINTER-START)

If a new printer is configured, up to 8 RSO device managers can be entered with the parameter
ADMINISTRATOR=*ADMINISTRATOR(...). An RSO device manager can modify a device with MODIFY-SPOOL-
DEVICE or start a DEVICE with START-PRINTER-OUTPUT.

It is advisable to work with the parameter DISCONNECT=*YES, because with SOCKETS the printer shuts down
the connection when the time set on the printer has expired.

The parameter CONTROLLER-START must be set to AT-PRINTER-START.

If RESET=*YES, the settings of the printer menu are used. This also applies regardless of the device entry if
openUTM is working with formats. If “logical” formats are used (see note at the end of the section) then
openUTM behaves as if no formats are used.

If a format name is transferred by openUTM with an FPUT in the KCMF field, a RESET=*YES is sent by
default to the printer by FHS before the message, so that the menu setting of the printer comes into effect
before printing. In the printer menu you can set various fonts or CPI values, for example. In this case, RSO
processes a message with format names as per the setting CONTROL=TRANSPARENT.

If no format name is transferred by openUTM with an FPUT in the KCMF field, RSO only sends a RESET to
the printer before the message if RESET=*YES is entered in the device definition. If no RESET was sent to
the printer, the applicable values are the printer menu values currently set on the printer, which may have
been changed by a previous print job. RSO handles a printer message without format names as per the
setting CONTROL=PHYSICAL.

The commands ADD-SPOOL-FORM for form entries and ADD-SPOOL-CHARACTER for character sets have no
effect on UTM print jobs. If both UTM RSO print jobs and RSO SPOOLOUT are processed under the same logical
RSO device name, forms and character sets are only relevant for the latter. As the only printer control character,
RSO adds the RESET character string for UTM print jobs.

A UTM print job to an RSO printer is not placed in the SPOOL queue.

Sample device entry

Output of a device entry under which the printer is defined for RSO:

/show-spool-dev PGTP0041,inf=*all
DEVICE-NAME : PGTP0041
DEVICE-TYPE : 9021RP
-------------------------------- DEVICE-ACCESS ------------------------------
DEVICE-ACCESS : *TCP-ACCESS
ACCESS-TYPE : *TACLAN

 150

PROCESSOR-NAME : *NONE
STATION-NAME : *NONE
MNEMONIC-NAME : *NONE
PROGRAM-NAME : *NONE
INTERNET-ADDRESS : PGTP0041
PORT-NAME : 9100
LPD-PRINTER-NAME : *NONE
FROM-PORT-NUMBER : 0
TO-PORT-NUMBER : 0
------------------------------- TWIN-DEVICE-DEF -----------------------------
SLAVE-MNEMONIC-NAME : *NONE
ESD-SIZE : 0
----------------------------- DEVICE-INFORMATION ----------------------------
FORMS-OVERLAY-BUFFER: 32767
CHARACTER-SET-NUMBER: 64
ROTATION : NO
DUPLEX-PROCESSING : NO
FORMS-OVERLAY : NO
RASTER-PATTERN-MEM : *NONE
TRANSMISSION : IGN
FONT-TYPE : IGN
FACE-PROCESSING : NO
MAXIMUM-INPUT-TRAY : 1
MONJV : NO
NOTIFICATION : NO
ENCRYPTION : NO
UNICODE : NO
SUPP-FORMAT-NAME :
 TEXT
 PLAIN-TEXT
-------------------------------- ADMINISTRATOR ------------------------------
USER-IDENTIFICATION : *NONE
IDENTIFICATION : OEC MW 135
TERMINAL : PROCESSOR-NAME :
 STATION-NAME :
------------------------------ SPOOLOUT-CONTROL -----------------------------
SHIFT : 0
LINE-FEED-COMPRESS : YES
BLANK-COMPRESSION : YES
START-FORM-FEED : YES
FORM-FEED : *SINGLE-SHEET
 DEFAULT-TRAY-NUMBER : 1
 OUTPUT-TRAY-NUMBER : 0
SKIP-TO-NEXT-PAGE : BY-FORM-FEED
ESCAPE-VALUE : NONE
----------------------------- PROCESSING-CONTROL ----------------------------
CONTROLLER-RESERVED : NO
FORM-NAME : STD
DISCONNECTION : YES
BUFFER-SIZE : 1024
RESET : YES
REPEAT-MESSAGE : TYPE : SYS
 LIMIT : NO
 RETRY-TIME : GLB
RESTART-ACTION : LIMIT : NO
 RETRY-TIME : GLB
SYNCHRONIZATION : PRINTER
TIMEOUT-MAX : 2
PAGE-EJECT-TIMEOUT : NO

 151

BAND-IDENTIFICATION : *NONE
LOAD : NO
MODULO2 : NO
RECOVERY-RULES : *SYSTEM
POLLING : NO
PRINTER-PARAM-FILE : *SYSTEM
RESOURCE-FILE-PREFIX: *SYSTEM
CONTROLLER-START : AT-PRINTER-START
------------------------------ CHARACTER-SET-POS ----------------------------
POSITION-1 : N-U
POSITION-2 : N-U
POSITION-3 : N-U
POSITION-4 : N-U
POSITION-5 : N-U
POSITION-6 : N-U
POSITION-7 : N-U
POSITION-8 : N-U
POSITION-9 : N-U
POSITION-10 : N-U
POSITION-11 : N-U
POSITION-12 : N-U
POSITION-13 : N-U
POSITION-14 : N-U
POSITION-15 : N-U
POSITION-16 : N-U
-------------------------------- MISCELLANEOUS ------------------------------
REDIRECTION-DEVICE : *NONE
LANGUAGE-EXT-TYPE : *SYSTEM
LINE-SIZE : 150
CHARACTER-IMAGE : *NONE

Defining the RSO buffer size

To be able to print out messages of any length, the RSO buffer must be greater than or equal to the maximum
message length in openUTM. Since the maximum value for the UTM buffer size is 32 KB, the RSO buffer size in a
session in which openUTM is running, must be adapted to this value:

/MODIFY-SPOOL-PARAMETER...SPOOLOUT-OPTIONS=*PAR(REMOTE-BUFFER-SIZE=32)

Any modification will come into effect in the next SPOOL session.

VTSU codes

When UTM messages containing VTSU codes are output to printers connected directly via BCAM, openUTM calls
the VTSU program in order to convert VTSU codes into printer dependent escape sequences. If UTM messages
are output to RSO printers, the conversion of the VTSU codes is carried out by RSO. An extensive adaptation to the
known VTSU control characters was striven for in this case. Additional information can be found in the RSO manual.

 152

4.2.1.3 Activating printers for openUTM

Each printer used in an RSO session must be started with START-PRINTER-OUTPUT. A START-PRINTER-
OUTPUT statement can be contained in an ENTER file which is processed automatically when the RSO subsystem
starts, or the system administrator or RSO device manager uses this statement to explicitly start the printer after the
subsystem has started.

If you want to print to an RSO printer from openUTM, the printer must be released for openUTM:

/START-PRINTER-OUTPUT DEVICE-NAME=*RSO(NAME=devicename,

 ALLOWED-ACCESSES=‘UTM‘))

 or
 ALLOWED-ACCESSES=(‘RSO‘,‘UTM‘))

 153

4.2.1.4 Querying printer information

Printer information in openUTM

The administration command KDCINF can be used in openUTM to query the current printer status. If required, the
connection to the printer can be set up/shut down or locked using the administration commands KDCPTERM and
KDCLTERM or via the program interface for administration. See also the openUTM manual “Administering
Applications”.

Printer information in RSO

Using BS2000 information functions, users and RSO device managers can output the printer status of the RSO
printers with the following command:

/SHOW-SYSTEM-STATUS INFORMATION=*REMOTE(DEVICE=NAME)

 154

4.2.1.5 Releasing printers in the event of an error

If the automatic repetition of the print job by openUTM and RSO was not successful in the event of an error, the
RSO device manager can temporarily release the printer with the command

/STOP-PRINTER-OUTPUT DEVICE-NAME=RSO-PRINTER(NAME=rso-printer,STOP=IMMEDIATE)

so that the printer can then be reserved again for openUTM with the START-PRINTER-OUTPUT command.

The parameter TRACE=YES can be specified under $TSOS for diagnostic purposes. In this case, a trace is
generated and is stored under
$SYSSPOOL.SYSTRC.RSO. . . :devicename date time

/START-PRINTER-OUTPUT DEVICE-NAME=*RSO(NAME=devicename,

 TRACE=YES,

 ALLOWED-ACCESSES=(‘RSO‘,‘UTM‘))

See also the "RSO" manuals.

 155

4.2.2 Generating printer pools

A printer pool is made up of several printers (=printer groups on Unix and Linux systems) assigned to one LTERM
partner. A PTERM statement with the same for PTERM...,LTERM= is written for each printer in the pool. ltermname
openUTM distributes the print output as evenly as possible to the printers in the pool. Messages that are made up
of message segments are always output in full by openUTM to printer or printer group (on Unix and Linux one
systems) in the pool.

 156

4.2.3 Bypass mode (BS2000 systems)

With a locally connected printer, the term bypass mode is also used instead of spool mode. Bypass mode is
possible if the terminal can conduct dialog independently of the print output. Bypass mode must only be
implemented for terminal types 975x and 9763 or a corresponding emulation (see the manual "MT9750, 9750
Emulation on Windows")

 157

4.2.4 Generating printer control LTERMs

In the generation you can define printer control LTERMs so that users themselves can administer the default
printers and print job queues even without administration authorization, e.g. delete the current print job.

BS2000 systems

Each printer is assigned an LTERM partner, which is configured for an output medium (LTERM...,USAGE=O).
All output jobs for this printer are “sent” by openUTM to the message queue of the associated LTERM partner,
which thus becomes the print job queue. It is also possible to assign several printers to an LTERM partner
(printer pool). In this case, all printers work with this print job queue.

A print control LTERM is an LTERM partner which is configured as a dialog partner
(LTERM...,USAGE=D). Via this LTERM partner, a client or a terminal user can connect to the application in order to
administer printers and the associated print job queues.

You assign the printers to the respective printer control LTERM via the LTERM partner, i.e. for the LTERM partner
you specify the printer control LTERM to which the printers are assigned with LTERM...,CTERM=printercontrol-

.ltermname

To enable the printer control LTERMs to identify the printers assigned to them, you assign a control identification
(CID) to each printer in the PTERM statement. This CID must be unique within the area of a printer control LTERM,
because the printer control LTERM addresses the printers using the printer ID. It is particularly important for the
printer IDs to be unique in the case of printer groups. Each printer in the pool must be assigned a separate printer
ID which does not belong to any other printer in the printer control LTERM.

To restrict access to the printer control LTERM to a particular group of users, you can assign a lock code to the
printer control LTERM just like any other LTERM partner.

An acknowledgment procedure is used for the printers assigned to a printer control LTERM. This procedure can be
switched on and off as required for each individual printer. All printers assigned to a printer control always run in
automatic mode with their first application start after a regeneration.

For further information on printer administration, see the openUTM manual “Administering Applications”.

 158

Figure 13: Configuring a printer control LTERM and the associated printers

 159

4.3 Generating service-controlled queues

openUTM offers service-controlled queues, that is, message queues the processing of which is controlled by the
program units of the application. A program unit of a dialog or asynchronous service must read the message of a
service-controlled queue itself using the KDCS call DGET. A service may also be designed to wait for the arrival of
a message.

Since the messages are saved in the page pool, you must ensure that the page pool is configured at a sufficient
size.

openUTM provides three different service-controlled queue types:

USER queues (user-specific)

TAC queues (defined using TAC statements)

temporary queues (created using QCRE calls and deleted using QREL calls)

A general introduction to service-controlled queues and their application scenarios can be found in the
openUTM manual “Concepts und Functions”.

The implementation of the application scenarios is described in the openUTM manual „Programming
Applications with KDCS”. This also contains information about processing service-controlled queues
(reading, writing and deleting).

 160

4.3.1 USER queues

Each user of a UTM application is provided with a permanent message queue which is addressed using the user ID.

For USER queues it is possible to generate the data access control which prevents reading or writing by using Q-
READ-ACL or Q-WRITE-ACL (USER statement).

USER statement in section "USER - define a user ID"
The following operands are available for USER queues:

QLEV=

QLEV can be used to prevent the page pool becoming overloaded with messages for this USER.
QLEV specifies the maximum number of asynchronous messages that may be buffered in the USER queue
(default setting: 32767, i.e. no limit). If the specified value is exceeded, the subsequent behavior is
determined by the value in the QMODE parameter.

QMODE=

Determines the behavior of openUTM in the event that the USER queue has already exceeded the
maximum number of permitted messages that may be buffered and has thus reached the Queue level
(operand QLEV=). If the value STD is set all new DPUT calls are rejected, if WRAP-AROUND is set the
oldest message is overwritten by the new message.

Q-READ-ACL=

Specifies the read and delete authorizations in the USER queue for external users. If you do not specify Q-
READ-ACL= all users have read and delete authorization in the queue.

Q-WRITE-ACL=

Specifies the write authorization in the USER queue for external users.
If you do not specify Q-WRITE-ACL= all users have write authorization in the queue.

 161

4.3.2 TAC queues

By generating transaction codes with TYPE=Q (queue) you define permanent Message Queues with fixed names.

The TAC queue with the fixed name KDCDLETQ is called the dead letter queue. openUTM uses this TAC queue to
save queued messages sent to transaction codes, TAC queues, LPAP or OSI-LPAPM partners that can not be
processed or delivered (see)."TAC - define the properties of transaction codes and TAC queues"

TAC queues may be locked for reading or writing (see)."Access list concept"

TAC statement in section "TAC - define the properties of transaction codes and TAC queues"
The following operands are important for the generation of a queue defined using TAC statements:

tacname

Name of the TAC.

TYPE=Q

TYPE=Q must be specified for TAC queues. A Message Queue is generated. It is possible to use an FPUT
or DPUT call to write a message to a queue of this nature, or to use a DGET call to read a message from
the queue.

ADMIN=

Specifies whether access to this queue requires administration authorization.

DEAD-LETTER-Q=

Specifies whether queued messages in this message queue are to be saved in the dead letter queue if not
processed correctly when the maximum number of attempts to redeliver the message (MAX statement,
REDELIVERY parameter) has been reached.

QLEV=

QLEV can be used to ensure that the page pool is not overloaded by jobs for this TAC queue.
QLEV specifies the maximum number of asynchronous messages that may be in the Message Queue of
this transaction code.

QMODE=

Determines the behavior of openUTM in the event that the maximum permitted number of messages is
already saved in a queue and thus the queue level is reached.

Q-READ-ACL=

The key set defines the authorizations that permit reading or deletion of messages in this queue.

Q-WRITE-ACL=

The key set defines the authorizations that permit writing messages to this queue.

STATUS=

Specifies whether the message queue is locked or released when the application is started.

 162

4.3.3 Temporary queues

Temporary queues are created and deleted dynamically by program calls. The name of the queue may be
determined by the user or assigned by openUTM.

The maximum number of temporary queues is defined within the QUEUE statement.

QUEUE statement in section "QUEUE - reserve table entries for temporary messages queues"
The following operands are used to define temporary queues:

NUMBER=

Specifies the maximum number of temporary queues that may exist at any one time during an application
run (1 <= NUMBER <= 500 000).

QLEV=

QLEV can be used to prevent the page pool becoming overloaded with messages for this temporary queue.
QLEV specifies the default value for the maximum number of messages that may exist in a temporary
messages queue at any one time (default value: 32767, in other words an unlimited queue length).

QMODE=

Determines the behavior of openUTM in the event that the maximum permitted number of messages is
already saved in a temporary queue and thus the queue level is reached.

 163

4.3.4 Specifying the maximum waiting time for reading from service-controlled queues

At generation it is possible to set the maximum length of time that a service is permitted to wait for a message for a
queue. This maximum wait time may be defined separately for the dialog and asynchronous services (MAX
statement, QTIME operand). This ensures that a terminal user or client does not have to wait several minutes for
the system to react to an error in a UTM program unit, or that a resource remains blocked for too long.

MAX statement in section "MAX - define UTM application parameters"
The following operands are used to specify the maximum length of time that a service is permitted to wait
for a message in a service-controlled queue:

QTIME=

Specification of the maximum waiting time in seconds (default: 32767 seconds). You can define separate
maximum values for the waiting time for the dialog or asynchronous services.
If a greater waiting time is specified in a program unit run than specified in QTIME then openUTM resets the
waiting time to the value defined here.

 164

4.3.5 Limiting the maximum number of redeliveries to service-controlled queues

At generation you can define whether a message to a service-controlled queue is to be placed back in the queue if
the transaction in which the message was read is rolled back. You can also limit the number of redeliveries at
generation (MAX statement, REDELIVERY operand). This prevents, for example, endless loops if a program error
occurs.

MAX statement in section "MAX - define UTM application parameters"
The maximum number of redeliveries of messages to service-controlled queues is defined using the
following operand.

REDELIVERY= (...,number2)

number2 is the maximum number of redeliveries of messages to a service-controlled queue (0 <= number2
<= 255).

Values between 0 and 254 indicate the number of redeliveries. The value 255 means that the message can
be redelivered any number of times.

Default 255, i.e. the number of redeliveries is unlimited.

 165

4.4 UTM messages

openUTM generates UTM messages that inform about certain events or request dialog input. The UTM messages
are located in a message module which is supplied with openUTM (standard message module).

You can modify the messages of openUTM using the message tools KDCMTXT and KDCMMOD, and create own
message modules (user message modules) which are adapted to your own needs.

You can adapt the standard UTM messages by:

modifying UTM message texts (e.g. translation into other languages)

deleting or adding UTM message destinations

adding inserts to the message text or remove inserts from it

You must declare user message modules in the configuration using the MESSAGE statement.

The entire event reporting mechanism and the tools KDCMTXT and KDCMMOD are described in detail in
the openUTM manual ”Messages, Debugging and Diagnostics”.

 166

4.4.1 Messages in openUTM on BS2000 systems

The following components of UTM event reporting are included in the delivery package:

the German standard message module KCSMSGS

the English standard message module KCSMSGSE

the message definition file SYSMSH.UTM.070.MSGFILE

The message definition file contains the message texts in German and English and forms the basis for the creation
of user message modules.

You must declare user message modules in the configuration using the MESSAGE statement. If you do not issue a
MESSAGE statement, the German standard message module KCSMSGS is used to output messages

If you want to use the English standard message module in your application, you must replace the German
message module with the English message module in the library (see openUTM manual “Messages, Debugging
and Diagnostics on BS2000 Systems”).

In order to internationalize your application you can create multiple user specific message modules in a variety of
languages and include them in the configuration of a UTM application. In this way, UTM messages can be output to
a terminal user in a variety of

languages within any given UTM application. The language used to communicate with the user depends on the
locale (language identifier lang_id and territorial identifier terr_id) that you assign the user during generation as well
as on the availability of the user message module which has been assigned an appropriate locale during generation.

If more than one message module is assigned for a UTM application, then a locale must be assigned to each
message module.

MESSAGE statement in section "MESSAGE - define a UTM message module"
User message modules are defined with the following operands:

MODULE=

Name of the message module you want to incorporate in the configuration.

LIB=

Identifies the object module library from which the message module is loaded dynamically. If a generated
message module is not contained under the name in the library when modulename lmodname omlname
linking the application, the linkage editor reports that the module is missing. The message module can be
loaded dynamically.

LOCALE=

Defines the language environment (locale) of the message module if language specific message modules
have been created for specific message output. These national language message modules are used for
users and LTERM partners whose language and territorial identifiers match the locale defined here. For
further information, see ."Internationalizing the application – XHCS support(BS2000 systems)"

USER statement in section and "USER - define a user ID"
 in section LTERM statement "LTERM - define an LTERM partner for a client or printer"

With the following operand you specify the message module (and the language) which is used to output
messages to the user/client:

 167

LOCALE=

Language environment (locale) of the user/client.

Application message module and user message modules

If multiple message modules are used for an application, then a distinction is drawn between application and user
message modules. The application message module is the message module in whose MESSAGE statement the
locale specifications correspond to those in the MAX statement. The application message module has a special
significance within the application. The message destination specifications entered for the application message
module determine the destination for message output. The message destination specifications in the other message
modules have no significance. The application message module is used to output messages to the message
destinations SYSLST, SYSOUT and CONSOLE.

Messages to the destinations STATION, SYSLINE and PARTNER employ the message module whose and lang_id
 specifications (of the Locale) correspond to those of the user or LTERM partner for which the message is terr_id

output. Here, the user specification takes priority over the LTERM partner specification, i.e. if a user is signed on
when the message is output, openUTM uses the message module which corresponds to this user.

If a locale (,) for which there is no message module in the application has been generated for a user lang_id terr_id
or LTERM partner, then the user or LTERM partner is assigned a message module which corresponds with the

 and for which no has been generated. If no such message module is present, the application lang_id terr_id
message module is used to output messages to this user or LTERM partner.

MAX statement in section "MAX - define UTM application parameters"
With the following operand you specify the message module which is used as application message
module:

LOCALE=

The locale of the message module that is to be used as the application message module. A message
module with this locale must be generated with a MESSAGE statement.

 168

4.4.2 Messages in openUTM on Unix, Linux and Windows systems

The following components of UTM event reporting are included in the delivery package:

Standard message module of openUTM

The standard message module contains the message texts in English and standard settings for the message
destinations (e.g. terminals, SYSLOG file).
openUTM only generates the messages from the standard message module if no NLS message catalogs and no
user message modules exist for a language.

Unix and Linux systems

The standard message modules (K and P messages) and (U messages) are supplied kcsmsgs.o kcxmsgs.o

with openUTM on Unix and Linux systems:

kcsmsgs.o is contained in the library under the path .libwork utmpath /sys

kcxmsgs.o is reloaded from the library under by default.libxmsgs utmpath /sys

The expression “standard message module“ is used for both modules together.

Windows systems

The standard message modules and (U messages) are supplied with openUTM kcsmsgs.obj kcxmsgs.obj

on Windows systems:

kcsmsgs.obj is contained in the library under the path . libwork.dll utmpath /ex

kcxmsgs.obj is reloaded from the library under by default.libxmsgs.dll utmpath /ex

The expression “standard message module“ is used for both modules together.

Message definition file (in the)msgdescription utmpath

It contains the standard message texts in German and English, as well as the framework definitions for the UTM
messages (structures of messages).

CAUTION!
The standard message module must be linked in UTM application program.each

!

 169

NLS standard message catalogs (Unix and Linux systems) / message DLLs (Windows systems)

NLS standard message catalogs are supplied with openUTM in German and in English.

On Windows systems the message catalogs are implemented as message DLLs.

The message catalogs only contain the message texts. When structuring the messages from an NLS catalog,
openUTM uses the structure information and message destinations of the default message module, or if
available, the user message module.

Unix and Linux systems

On Unix and Linux systems, the NLS standard message catalogs are stored in the directories utmpath /nls

 . In this case, is the language ID for the corresponding language./msg/ xxx xxx

On Unix and Linux systems you can modify existing NLS message catalogs and create your own NLS message
catalogs for other languages.

You can set the language to be used for the messages to your preferred language in the LANG shell variable.

Windows systems

On Windows systems, the message DLLs are stored in the directories
 .utmpath \nls\msg\ xxx

On Windows systems you can change the existing message DLLs and create your own message DLLs for other
languages.

You can set the language to be used for the messages to your preferred language in the LANG shell variable.

In the simplest case, you operate your application with the standard UTM messages, i.e. you do not modify the
UTM messages nor the UTM message destinations. In this case, no additional specifications are required in the
KDCDEF generation. You must merely link the standard message module to the utm-directory/sys/kcsmsgs.o
application program.

If you use an own message module, you have to define it via the KDCDEF statement MESSAGE when generating
an application. This message module is then created using a C source file created by KDCMMOD.

MESSAGE statement in section "MESSAGE - define a UTM message module"
Use the following operand to define the message module when generating the application:

MODULE=

Name of the module that is to be created using the tool KDCMMOD.

To modify the messages, use the message tools KDCMTXT and KDCMMOD (see openUTM manual “Messages,
Debugging and Diagnostics on Unix, Linux and Windows Systems”).

 170

4.4.3 User-specific message destinations

In addition to the message destinations, CONSOLE, SYSOUT etc., there are also four so called user-specific
message destinations. The user can define up to four message destinations of their own. These message
destinations are named using USER-DEST- and may be user queues, TAC queues, asynchronous TACs or number
LTERM partners.

The new KDCDEF statement, MSG-DEST, is used to agree the user-specific message destinations.

MSG-DEST statement in section "MSG-DEST - define user-specific messages destinations"
Using the following operands you can agree a maximum of four user-specific message destinations:

msg-destination

Refers to the message destination with the specification USER-DEST- 1..4 . Message number (number=)
destinations must be assigned to the messages using the KDCMMOD.

NAME=

Specifies the name of a user or TAC queue or an asynchronous TAC or LTERM partner to which the
messages are to be sent (this name must be defined using a TAC, USER or LTERM statement).

DEST-TYPE=

Type of message destination (USER queue, TAC or LTERM).

If you want to forward K and P messages from your application to the WinAdmin or WebAdmin
administration workstation, you must specify a TAC queue or a USER queue here.

MSG-FORMAT=

Specifies the format of the messages that are to be sent. Only the inserts of a non printable format (FILE;
default) or the inserts and messages texts of a printable format (PRINT) are transferred.

Assigning the message destination USER-DEST-number

Messages that openUTM is to output to a message destination, USER-DEST- , must also be assigned to this number
message destination using the utility KDCMMOD (MODMSG statement).

This makes it, among other things, possible to display the K and P messages of your application to the
administrator at the WinAdmin or WebAdmin administration workstation (see also in the online help for
WinAdmin/WebAdmin, keyword „message collector“).
Messages indicating warning level violations cannot however always be delivered to their user-specific
message destination.

i

 171

4.5 Message distribution and multiplexing with OMNIS (BS2000 systems)

The services of the BS2000 software product OMNIS can be used for UTM applications on BS2000 systems.
OMNIS is a Session Manager that enables a terminal user to call the services of various UTM applications directly,
even if the UTM applications are distributed in the network. In this case, the terminal user need not know the
processor nor the UTM application in which the service is located. OMNIS automatically establishes a connection to
the “correct” UTM application and controls the assignment of messages (message distribution).

When implementing OMNIS, you can also use the multiplex function provided by openUTM on BS2000 systems: a
large number of terminals can be connected to a UTM application via a small number of transport connections.

Figure 14: Message distribution and multiplexing with OMNIS

See also the manuals “OMNIS/OMNIS-MENU Functions and Commands” and “OMNIS/OMNIS-MENU
Administration and Programming”.

 172

4.5.1 Multiplex connections

In normal dialog mode, one transport connection exists between a terminal and a UTM application on the
processor. In order for a user to be able to call the services of an application, the user must open a session with the
application, i.e. a communication

relationship between two addressable units in the network. A session setup generally means that the user must
provide identification to the application. This can also occur implicitly.

OMNIS now offers you the option of connecting simultaneously to several UTM applications, even on different
processors. However, you are only actually connected to one communication partner (namely OMNIS). The
Session Manager now transmits the input messages (user jobs) to the applications with which you are connected.

Transport connections and sessions exist on both links of the communication relationship, i.e. the link from user ->

Session Manager and from Session Manager application. This is illustrated in the diagram below:->

Figure 15: Transport connections and sessions when multiplexing

A is a connection between two programs or between one program and a terminal, via which transport connection
messages can be exchanged. A transport connection has a defined beginning (connection setup) and a defined end
(connection shutdown) and is known to the transport system.

A is one of several completely different data streams, which is maintained via a transport connection. A session
session has a defined start (session setup) and a defined end (session shutdown) and is known to the transport
system. In the special case of OMNIS and openUTM, a session is understood to be a communication relationship
between a UTM application and an OMNIS terminal, which begins with the logical opening of the session and ends
when the session is closed.

A one-to-one assignment between transport connection and session exists on the link from terminal Session ->

Manager.

 173

This one-to-one assignment is cancelled on the link from Session Manager application and several sessions can ->

be assigned to a transport connection. In this way, a number of terminals can “multiplex”, i.e. connect to an
application via a transport connection. In extreme cases, all sessions between the Session Manager and the
application can be processed via a single transport connection.

 174

4.5.1.1 Defining multiplex connections

Each multiplex connection must be described with a MUX statement. It is not possible to enter multiplex
connections dynamically.

When multiplexing, the communication between the Session Manager and the application takes place using the
PUTMMUX protocol. The task of this protocol is to enable several sessions to be processed via one transport
connection and to provide the Session Manager with status information on the UTM application on BS2000 system.

A PUTMMUX connection can exist between a UTM application on BS2000 system and OMNIS as the Session
Manager. PUTMMUX connections, also called “multiplex connections”, are defined by the MUX statement when
generating the UTM application.

MUX statement in section "MUX - define a multiplex connection (BS2000 systems)"
The most important properties for multiplex connections are defined with the following operands:

name

Name of the multiplex connection.

BCAMAPPL=

Local application name of the UTM application, used by the Session Manager to establish the connection to
the UTM application.

CONNECT=

Establishment of a transport connection to the Session Manager when the application starts.

MAXSES=

Maximum number of simultaneously active sessions between the Session Manager and the UTM
application.

When establishing a multiplex connection, openUTM and OMNIS negotiate which MUX protocol versions are
supported by both sides of the connection. If there are no MUX protocol versions supported by both partners, the
multiplex connection is not established (UTM messages K140 and K141).

The following restrictions apply with the current definition of the protocol:

connections between two UTM applications are not supported

printers are not supported

only the Session Manager can open a session to a UTM application.

The add-on product OMNIS-MENU is available if you are using OMNIS in menu-driven mode. OMNIS-MENU
enables you to communicate with various UTM applications via a user-friendly, menu-driven interface. For further
details, see the manuals “OMNIS/OMNIS-MENU Functions and Commands” and “OMNIS/OMNIS-MENU
Administration and Programming”.

 175

4.5.1.2 Confirming the connection shutdown by the partner

If a user is connected to a UTM application via a multiplex connection, each of the two partners – the UTM
application or the user – can request the closedown of this session. As a result of this request, the session switches
to the state ”DISCONNECT PENDING”. The session is not yet released. The session is not definitively closed until
the partner on the other side confirms the session closedown.

For a specific length of time (approx. 10 minutes) after the request for session closedown has been issued, the
session can be released by the closedown confirmation of the partner.Only after this time span has expired can the
administrator of the UTM application also release the session (administration command KDCPTERM).

From the output of the administration commands KDCINF PTERM and KDCPTERM, the administrator of the UTM
application can determine whether the session is in the state ”DISCONNECT PENDING”. See also the openUTM
manual “Administering Applications”.

 176

4.5.2 Statistics on multiplex connections

The administrator of the UTM application can use the command

KDCINF MUX,OPTION=MONITORING

to instruct openUTM to output statistics on multiplex connections. See also the openUTM manual “Administering
Applications”. The UTM administrator receives information on:

The utilization level of the multiplex connection.

Information is supplied on the number of input and output messages exchanged via multiplex connections since
the start of the application.

BCAM bottlenecks.

openUTM supplies information on the number of application messages that could not be accepted by BCAM
since the application start due to BCAM bottlenecks, and hence the number of messages openUTM must
request be sent again.

 177

4.5.3 Combination of multiplex connections and direct connections

If you are connecting terminals to your UTM application via direct connections as well as via multiplex connections
of the Session Manager, the messages are distributed as follows:

Figure 16: Combination of multiplex and direct connections

This means that messages via direct connections can overtake messages via multiplex connections. In particular
load situations, this leads to shorter response times on the direct connection if a data jam occurs on the multiplex
connections. There can be several reasons for this:

The volume of messages from the terminals is so high that the multiplex connections are overloaded.

All UTM processes are occupied with jobs and therefore cannot retrieve all incoming messages immediately.

There are two ways in which the UTM administrator can avoid the probability of a data jam:

Increase the number of multiplex connections and distribute the volume of messages evenly over these lines.

Increase the current number of UTM processes.

To guarantee the administrator the fastest possible access to the UTM application at all times, the administrator’s
terminal should be connected to the application via a direct connection.

 178

4.6 Generating load modules, common memory pools and shared code
(BS2000 systems)

This section describes how to generate program units, areas and load modules.

In the openUTM manual “Using UTM Applications on BS2000 Systems” you will find more information
and recommendations

on structuring an application program

on providing shared code in the system memory or in common memory pools

on the sequence in which modules are loaded and how the external references are resolved

on program exchange during live operation

 179

4.6.1 Generating load modules

It is only necessary to statically link part of the application to the application program (start LLM, see the openUTM
manual “Using UTM Applications on BS2000 Systems”). The other parts of the application program must then be
available in the form of dynamically loadable load modules.

As early as the KDCDEF generation you must specify at what point in time you want to load the application parts
that are not to statically linked, and to which part of the memory they are to be loaded. You also specify which
program units are to be exchangeable during live operation.

The individual load modules of the application must be generated with LOAD-MODULE statements for BLS
implementation. You also specify when the module is to be loaded and to where. The sequence with which you
generate the load modules determines the sequence in which the load modules are loaded (see LOAD-MODULE
statement in section and in the openUTM manual "LOAD-MODULE - define a load module (BLS, BS2000 systems)"
“Using UTM Applications on BS2000 Systems”, loading modules).

The assignment of objects (program units and shareable data areas) to load modules is likewise defined in the
generation. In the PROGRAM and AREA statements in which program units or shareable data areas are generated,
the name you assigned to the associated load module in the LOAD-MODULE statement must be specified in the
LOAD-MODULE operand.

The load modules are described at generation in the following manner:

LOAD-MODULE statement in section "LOAD-MODULE - define a load module (BLS, BS2000 systems)"

The properties for load modules are defined with the following operands:

lmodname

Name of the load module. This name is used to assign objects to load modules during generation (program
units, areas).

For load modules, you must only specify the names of OMs or LLMs. For performance reasons, openUTM
does not support dynamic loading using CSECT or ENTRY names.

CAUTION!
openUTM cannot verify whether the assignment defined with the LOAD-MODULE statement and the
LOAD-MODULE operand in the PROGRAM and AREA statements corresponds to the actual division of
the load modules in the libraries. When dynamically loading the load modules, openUTM relies on the
specifications made in the generation. You must therefore ensure that the link procedures you use for the
individual parts of the application program correspond with the specifications made in the generation.
Otherwise, openUTM cannot guarantee that a required program will be loaded in the working memory
with a particular load module.

!

 180

LOAD-MODE=

Specifies when a load module is to be loaded, and specifies the memory area to which it is to be loaded.
The load modules can be loaded in the standard context to the local task memory, to a common memory
pool or to the system memory.

The parts of the application program can be:

Linked statically to the application program (LOAD-MODE=STATIC)

The part of the application program that is loaded to the standard context of the application using the
command or START-EXECUTABLE-PROGRAM LOAD-EXECUTABLE-PROGRAM .

Dynamically loaded to the standard context of the local task memory when the application is started
(LOAD-MODE=STARTUP).

These should be program units that are continuously required by the UTM application, or which contain
external references to shareable parts of the application.

Loaded to the standard context of the local task memory at the first call (LOAD-MODE=ONCALL)

These should be program units that are not continuously required by the application.

Loaded to a common memory pool (LOAD-MODE=(POOL, ...))poolname,

The common memory pool must be generated with a MPOOL statement (see "Shared code in common
). memory pools"

The program units that should be loaded to the common memory pool are those that are required by all
processes of a UTM application, and which are shareable, for example, the shareable parts of your
program unit or also formats or data areas.
If an LLM contains public and private slices, the public slice is loaded in a common memory pool and the
private slice is loaded in the standard context in the local task memory. You can specify whether the non-
shareable part is to be loaded when the application is started (LOAD-MODE=(POOL, pool name,
STARTUP)) or only then when that program unit is called (LOAD-MODE=(POOL, pool name, ONCALL)).
For more information about the generation of shared code see also "Generating shared code and

.common memory pools"

Loaded to the system memory as a non-privileged subsystem.

These application parts must be loaded to the system memory by the BS2000 system administrator
before the application is started.

The private slice of a shareable part contained in nonprivileged subsystems can be linked to the static
part of an application program, either when the application is started or the first time it is called.
How to generate the non-shareable parts is described in the section ."Shared code in system memory"

LIB=

Specifies the library from which the load module is to be loaded

You can specify object module libraries (OML) or program libraries (PL) which contain type R or L elements.

VERSION=

Specifies which version of a load module is to be loaded

A program library can contain several versions of an element at the same time. You use the specification of
the version to define which version of an element is to be loaded.

 181

ALTERNATE-LIBRARIES=

Specifies whether autolink is to be used for linking

The shareable parts of the load module are always loaded without using the Autolink function. You can
control whether or not the Autolink function is to be used for loading with the LOAD-MODULE statement.

openUTM suppresses the BLS autolink function when loading dynamically and when exchanging programs,
if you specify ALTERNATE-LIBRARIES=NO. The load module then must only have open external
references to program components that already exist in the working memory when this module is loaded.
For load modules that are generated using POOL or STARTUP, the sequence of the LOAD-MODULE
statements at generation is critical for the resolving of open external references at loading. The sequence
with which you generate the load modules determines the sequence in which the load modules are loaded.

ALTERNATE-LIBRARIES=YES ensures that runtime system modules that are also required are
dynamically linked when an exchange is made. The autolink function may only be used for modules of the
runtime system but must be used for user specific modules because modules loaded with autolink are not
not unloaded in a subsequent exchange.

Modules that are neither program units of the application program nor data areas (AREA) (e.g. the modules of the
runtime systems of the programming languages) need not be declared as dynamically loaded modules with the
KDCDEF generation tool, even if these modules are not linked statically. You can statically link these modules to
larger load modules (LLM) and need only generate the name of the load module in the LOAD-MODULE statement.

The assignment of objects (PROGRAM, AREA statement) to load modules (LOAD-MODULE statement) is also
defined in the generation.

AREA statement in section "AREA - define additional data areas"
in section PROGRAM statement "PROGRAM - define a program unit"

The assignment to load modules is defined the following operand:

LOAD-MODULE=

Name of the load module (in the LOAD-MODULE statement), to which the program is linked.lmodname

Program units, modules, and data areas must be linked statically to the application program if the load
module to which they are assigned was generated with LOAD-MODE=STATIC or if they are not assigned to
any load module.

The administration modules (e.g the KDCADM administration program) are to be statically linked to the start
LLM or to one of their own load modules. This load module must be loaded when the application is started
(LOAD-MODE=STARTUP). The same applies to the START, SHUT, INPUT and FORMAT event exits and
the BADTAC, MSGTAC and SIGNON event services.

If specifications for objects in the statements AREA, LOAD-MODULE, MPOOL, PROGRAM and TAC are modified
in the generation, only one new KDCFILE need be created. The next application start must then be based on the
new KDCFILE.

 182

4.6.2 Generating shared code and common memory pools

Many compilers offer the option of creating a shareable part when compiling programs. This shareable part need
not necessarily be saved in a separate object module, rather can be contained with the non-shareable part in an
LLM, which is subdivided into a public and a private slice.

If parts of a program unit are to be shareable, this must be taken into account in the programming. For
further information, see the openUTM manual „Programming Applications with KDCS” or the appropriate
language supplement.

i

 183

4.6.2.1 Shared code in system memory

Using the interfaces provided on BS2000 systems, of the application program units and parts of shareable parts
the runtime systems can be loaded either as shareable programs in nonprivileged subsystems.

The shareable modules must be loaded in the memory by the administrator before the application is started. They
can be exchanged while the application is running.

Non-shareable parts of the program units must be created as follows:

The entry point of the program unit (it is in the non-shareable part or in the private slice) must be described in a
PROGRAM statement and assigned to a load module there using the LOAD-MODULE operand in the
PROGRAM statement.

The load module must be generated with a LOAD-MODULE statement with LOAD-MODE={STARTUP |
ONCALL}. The load module or its private slice is loaded dynamically into the local task memory (class 6 memory)
at the start of the application program. The links in the shared code are established dynamically using the
external references to the shareable modules.

The load modules (OM format) containing the shareable modules of the program unit and the load modules
containing the non-shareable program components must not occur together in a program library.

Example

PROGRAM NONSHARE,LOAD-MODULE=NAME1,COMP=ILCS

LOAD-MODULE NAME1,LIB=UTM.PLIB,LOAD-MODE=STARTUP,VERSION=001

NONSHARE is located in the non-shareable part (for LLMs in the private slice) of the program unit.

 184

4.6.2.2 Shared code in common memory pools

Objects that are not linked statically when linking the application program can be loaded into a common memory
pool. In a common memory pool you can dynamically load several load modules.

A common memory pool must be generated with the KDCDEF statement MPOOL.

MPOOL statement in section "MPOOL - define a common memory pool (BS2000 systems)"
The most important properties for common memory pools are defined with the following operands:

poolname

Name of the common memory pool. This name is used at generation to assign to a pool those load
modules whose Public Slice is to be loaded to the pool (see LOADE-MODULE statement).

SCOPE=

Specifies the scope of the pool (local application with SCOPE=GROUP or global application with
SCOPE=GLOBAL).
For each BS2000 user ID, BLS supports a maximum of eight common memory pools with SCOPE=GROUP
and eight common memory pools with SCOPE=GLOBAL.

PAGE=

Hexadecimal address in the form X’xxxxxxxx’.
If global common memory pools with the same contents/names are used in several UTM applications, the
parameter PAGE=X’xxxxxxxx’ must be specified with the same address in all applications. The address
entered using PAGE= is to be selected in such a way that the address area reserved is available in all these
applications.

SIZE=

Specifies the size of the common memory pool.
The size is specified in units of 64 KB. With 24-bit addressing, the size of a common memory pool is always
a multiple of 64 KB. With 31-bit addressing, the size of the common memory pool is calculated by * 1MB n
>= SIZE * 64 KB (where is selected as a minimum).n

Generating shareable objects that are to be loaded in a common memory pool

The following section describes how you generate shareable objects that are to be loaded in a common memory
pool if you are working with BLS.

For performance reasons, all shareable parts of an application program that are to be loaded in a common
memory pool should, as far as possible, be combined into load module.one

Only common memory pool should be defined with . A number of statically linked load one SCOPE=GROUP

modules can be loaded into this pool. This reduces the time required to set up and load the common
memory pools and thereby minimizes the time needed to start the application.

i

 185

The program’s shareable code module created by the compiler must be contained in an LLM or OM. LLMs with
slices can be generated with a single LOAD-MODULE statement:

LOAD-MODULE llm-name ,VERSION= version -
 poolname ,LOAD-MODE=(POOL, ,{STARTUP|ONCALL}-

 ,LIB= program-lib -

 ,ALTERNATE-LIBRARIES={YES|NO}

With this statement, the public slice of the LLM is loaded in the common memory pool , and the private poolname
slice is loaded dynamically either when the application starts (STARTUP) or when the program is called
(ONCALL). Additional PROGRAM statements are required for the programs of these LLMs that are called by
openUTM.

If a compiler created two separate object modules for the shareable and non-shareable part, then should link
these modules beforehand to an LLM with slices using the linker. You can then generate this LLM as described
above.

Alternately, you can also generate the shareable and non-shareable module using two LOAD-MODULE
statements. You should avoid this, if possible, because you cannot exchange these two modules without having
inconsistencies arise.

A shareable data area which is to be loaded in the common memory pool must be described with an AREA
statement. The area must then be contained in the load module which is generated as follows:

LOAD-MODULE ar-share ,VERSION= version -

 ,LOAD-MODE=(POOL, poolname ,NO-PRIVATE-SLICE) -

 ,LIB= libname

Areas that were assigned the PUBLIC attribute during compilation or by the linker can also be linked together
beforehand with other modules in one LLM with slices. This LLM can be generated in the following manner:

LOAD-MODULE llm-with-slices ,VERSION= version -

 ,LOAD-MODE=(POOL, poolname ,STARTUP)-

 ,LIB= libname

Example

The example assumes that the COBOL85 compiler was used for compiling and that the compiler has saved the
objects in an LLM.

The shareable modules of the COBOL program units PU1 and PU2, and the data module DATAMOD are to be
loaded in the local application pool LCPOOL. LCPOOL is to be loaded at address X’020000’, occupy 128 KB, and
be write-protected.

MPOOL LCPOOL,SIZE=2,SCOPE=GROUP,ACCESS=READ,PAGE=X'20000'

LOAD-MODULE LLM-LCPOOL,VERSION=1, -

 LOAD-MODE=(POOL,LCPOOL,STARTUP), -

 LIB= libname

PROGRAM PU1 ,LOAD-MODULE=LLM-LCPOOL,COMP=ILCS

PROGRAM PU2 ,LOAD-MODULE=LLM-LCPOOL,COMP=ILCS

AREA DATAMOD,LOAD-MODULE=LLM-LCPOOL

The object modules must be statically linked to the LLM-LCPOOL LLM before the application is started, i.e. you
must specify the option BY-ATTRIBUTES(PUBLIC=YES) in the BINDER statement START-LLM-CREATION,
whereby the LLM is divided into a public slice and a private slice. The LLM created in this way must be made
available in the library .libname

 186

4.7 Code conversion

During communication between the UTM application and a client or a partner application on a different platform, it is
possible that the two communication partners will be using different codes, as Unix, Linux and Windows systems
use ASCII-compatible codes and BS2000 systems use an EBDDIC code. To simplify communication between the
partners, you can initiate automatic code conversion for clients and partner applications via generation:

BS2000 systems: TS applications of type SOCKET and HTTP clients

Unix, Linux and Windows systems:

OpenCPIC clients and TS applications of type SOCKET and APPLI.

Server-server communication with LU6.1 and OSI TP partners

You must remember that only printable messages may be exchanged, as binary data may become errored if
converted.

You can use up to four different code conversion in a UTM application. openUTM provides code conversion tables
for this purpose.

The code conversion is controlled using the operand MAP of the PTERM, TPOOL, OSI-CON and SESCHA
statements, and - for HTTP clients - by use of the statements CHAR-SET and HTTP-DESCRIPTOR.

PTERM/TPOOL ... MAP= USER | SYSTEM | SYS1 | SYS2 | SYS3 | SYS4

OSI-CON ... MAP = USER | SYSTEM | SYS1 | SYS2 | SYS3 | SYS4

SESCHA ... MAP = USER | SYSTEM | SYS1 | SYS2 | SYS3 | SYS4

CHAR-SET SYS1 | SYS2 | SYS3 | SYS4,

HTTP-DESCRIPTOR ..., CONVERT-TEXT = *YES

Code conversion tables

openUTM converts the data using the code conversion tables provided. These tables convert the data as follows:

BS2000, Unix- and Linux systems:

SYS1/SYS/SYSTEM: ISO8859-i <-> EBCDIC.DF.04.i (EDF04i)

SYS2: ISO8859-1 <-> EBCDIC.DF.04.DRV (EDF04DRV)

SYS3: ISO646-IRV <-> EBCDIC.03.DF.03.IRV (EDF03IRV))

SYS4: ISO646-IRV <-> EBCDIC.03.DF.03.DRV (EDF03DRV).

Windows systems:

SYS1/SYS/SYSTEM: Windows-1252 <-> EBCDIC.DF.04.F (EDF04F)

SYS2: Windows-1252 <-> EBCDIC.DF.04.DRV (EDF04DRV)

SYS3: ISO646-IRV <-> EBCDIC.03.DF.03.IRV (EDF03IRV))

SYS4: ISO646-IRV <-> EBCDIC.03.DF.03.DRV (EDF03DRV).

The first code conversion is referred to below as the standard code conversion.

The first and second code conversion are conversions between two 8-bit codes. The third and fourth code
conversion are conversions between two 7-bit codes.

 187

The code conversion tables provided can be modified or replaced with custom tables. In this guide, conversion
between an EBCDIC code and an ASCII code is always assumed, although theoretically you can also convert
between any EBCDIC codes.

The conversion tables are located:

In the assembler source KDCEA on BS2000 systems,

In the C source kcsaeea.c on Unix, Linux and Windows systems.

The sources contain eight conversion tables for the four code conversions.

Additional information about code conversion can be found in the openUTM manual „Programming
Applications with KDCS”. There you also find hints how to operate modified code tables or own code
tables.

 188

4.8 Job control - priorities and process limitations

openUTM provides two methods with which you can control the distribution of released UTM processes amongst
the jobs ready for processing. This means that you can affect the order in which openUTM starts the processing of
jobs on transaction codes.

By using one of the methods for job control, you can:

give important jobs higher processing priority

prevent many jobs of the same type from running at the same time, thereby causing the processing of other jobs
to be delayed

prevent the blocking of job processing due to long-running jobs. Long-running jobs are services whose
processing takes an extremely long time, e.g. because their program units are searching through data or they
contain program waits (blocking calls such as PGWT).

in UTM cluster applications, prevent too many tasks from simultaneously accessing memory areas that are
available globally in the cluster.

With both methods you must assign TAC classes to the transaction codes that are subject to a specific job control.
You can then select one of the two methods for job control between TAC classes:alternatively

Priority control
The distribution the processes amongst the TAC classes is controlled by priorities. These priorities are used by
openUTM to determine when the outstanding jobs are to be processed. You turn priority control on with the
KDCDEF statement TAC-PRIORITIES.

Process limitations
You limit the number of the processes that are allowed to process jobs of a certain TAC class simultaneously, or
you specify how many processes are to remain free for processing jobs of other TAC classes. The process
number can be specified individually for every TAC class. The KDCDEF control statement TACCLASS is
provided for specifying the number of processes.

You cannot use the two methods together in an application, i.e. you must not use the control statements TAC-
PRIORITIES and TACCLASS together in the KDCDEF generation.

Assigning transaction codes to TAC classes

openUTM differentiates between a total of 16 TAC classes. There are 8 classes each available for dialog and
asynchronous transaction codes, classes 1 through 8 for dialog transaction codes and classes 9 through 16 for
asynchronous transaction codes.

You specify the assignment of the transaction codes to the TAC classes in the KDCDEF generation.

TAC statement in section "TAC - define the properties of transaction codes and TAC queues"
Operand TACCLASS=

openUTM makes the following assignments for transaction codes to which you have not explicitly assigned a TAC
class (no entry in TACCLASS=):

dialog transaction codes are not assigned to a TAC class

asynchronous transaction codes are assigned to TAC class 16

 189

You should combine the transaction codes of similar types of services into one TAC class. A TAC class then
represents a type of job in your application.

Which jobs are subject to job control?

Generally only jobs that have been placed in a job queue by openUTM are subject to job control.

Jobs for asynchronous transaction codes are always placed in a job queue first before openUTM selects them for
processing.

Jobs for dialog transaction codes, on the other hand, are only placed in a queue in bottleneck situations, e.g. when
the number of the available processes has been exhausted.
If the load on the application is low, then the dialog jobs are processed immediately because they will not block
each other significantly and buffering in the queue would appear to slow the system.

For this reason, the methods for job control for asynchronous jobs are always used, while the methods for job
control for dialog jobs are only used in bottleneck solutions.

In addition, the following jobs are not subject to job control:

Jobs for dialog transaction codes that are not assigned a TAC class. These jobs are always started immediately
after they have been received from the transport system.

Jobs for the transaction codes KDCSGNTC, KDCMSGTC and KDCBADTC with which the event services (sign-
on service, MSGTAC and BADTACS program) are started.

Distribution of resources amongst dialog, asynchronous and PGWT processing

In an initial stage of job processing you should - regardless of the methods used for job control - specify the
maximum number of processes of the application that are allowed to process asynchronous jobs at the same time
or to wait in Program Wait at the same time. In this manner you can prevent the dialog operation of your application
from slowing down due to the processing of such jobs.

MAX statement in section "MAX - define UTM application parameters"
The process numbers are with the following operands generated:

ASYNTASKS=(,)atask_number ...

With you specify the maximum number of the processes of the application that may atask_number
simultaneously process jobs for asynchronous TAC classes.

TASKS-IN-PGWT=

The maximum number of processes of the UTM application in which program units with blocking calls are
allowed to run simultaneously. You must specify TASKS-IN-PGWT > 0 if you want to assign the
PGWT=YES property to transaction codes or TAC classes.

The values specified for ASYNTASKS=(,...) and TASKS-IN-PGWT in the MAX statement are atask_number
maximum values. When starting the application and in application mode, you can lower the number of processes
via the administration to adapt to the current situation.

 190

Default setting

If you do not create any TAC classes, i.e. you do not specify the TACCLASS operand in the TAC statement, then
openUTM does not perform any special job control.
Program unit runs with blocking calls are not allowed then. Dialog jobs are processed in the order in which they
arrive in openUTM.

If you do not issue a TACCLASS or a TAC-PRIORITIES statement in the generation, then openUTM automatically
applies the methods used to limit the number of processes. All TAC classes are administrable, i.e. the UTM
administrator can specify numbers of processes for the TAC classes.

 191

4.8.1 Job processing via priority control

To activate job control via priorities you must issue the TAC-PRIORITIES statement in the KDCDEF generation. In it
you also specify the algorithms with which the individual dialog or asynchronous TAC classes are to be prioritized.

TAC-PRIORITIES statement in section "TAC-PRIORITIES - specify priorities of the TAC classes"
You specify the algorithms for the priority control with the following operands:

DIAL-PRIO=
Priority with which the available processes of the application are to be distributed amongst the dialog TAC
classes.

ASYN-PRIO=
Priority with which processes for the asynchronous TAC classes with ready asynchronous jobs or
interrupted asynchronous jobs are to be distributed.

You can select between the , a or the priority for both dialog and asynchronous TAC absolute relative same
classes.

The following is always true, regardless of which algorithm you select:

The TAC class 1 of the dialog TAC classes has a higher or the same priority as TAC class 2, and this has a
higher or the same priority as TAC class 3, etc.

For asynchronous TAC classes, class 9 has a higher or the same priority as TAC class 10, and this has a higher
or the same priority as TAC class 11, etc.

If is selected, then free processes of the application are always assigned the TAC class with the absolute priority
highest priority, meaning 1 (dialog) or 9 (asynchronously) as long as there are jobs waiting for this TAC class. Only
after there are no more jobs waiting in the TAC class with the highest priority are waiting jobs of the TAC class with
the next lower priority processed. When the load is high, absolute priorities leads to waiting jobs of a TAC class with
a lower priority not being processed for a long time. If you want to prevent this, then you should use relative
priorities.

If is selected, then jobs from TAC classes with higher priorities are processed more often than jobs relative priority
from TAC classes with lower priorities, i.e. free processes are more often assigned higher priority TAC classes (e.g.
1) than lower priority TAC classes if there are jobs ready and available for this. If there ar e jobs available for all
TAC classes, then class 1 is serviced twice as often as class 2, and class 2 is serviced twice as often as class 3
(and so on). The same is true for asynchronous TAC classes.

If is selected, then the same number of jobs (if there are any) from every TAC class are processed.same priorities

Jobs within the TAC classes, however, whose processing leads to program waits (TACs with PGWT=YES) are only
processed if the maximum number of processes allowed to process the PGWT jobs has not yet been reached.

Reserving processes for dialog jobs outside of the TAC classes

When using priority control for the TAC classes, you can limit the number of processes that process the jobs of the
TAC classes to keep some processes free for administrative tasks or internal UTM jobs.
This limitation is the same, however, for all asynchronous TAC classes and for all dialog TAC classes.

You limit the maximum number of processes for asynchronous TAC classes with
MAX ASYNTASKS=(,...) as described in chapter " ".atask_number Job control - priorities and process limitations

 192

You limit the number of processes for the dialog TAC classes with the FREE-DIAL-TASKS= operand of the TAC-
PRIORITIES statement.

The number of processes specified in FREE-DIAL-TASKS is reserved for the processing of jobs that do not belong
to any dialog TAC class. These jobs are asynchronous jobs and dialog jobs that are not assigned a dialog TAC
class, and in particular are internal UTM tasks (establishing connections, sending acknowledgments, starting the
MSGTAC routine, etc.). One of the internal UTM tasks is to pick up the incoming jobs for the UTM application at the
job market and, if necessary, enter these in the job queues of the application. These “reserved processes“ then help
to offload the job market. In particular, if many jobs sent to the application come from the network, then this will
prevent a backlog in the network that may reach all the way back to the communication partner.

The number of processes you should reserve for this task depends on your application. It is recommended to
reserve one or two processes for this task.

You can change the number of free processes via the administration.

See the openUTM manual “Administering Applications”; KDCADMI operation code
KC_MODIFY_OBJECT with object type KC_TASKS_PAR

Example

The following maximum number of processes is specified in the KDCDEF generation:

MAX TASKS=7,ASYNTASKS=2

TAC-PRIORITIES ...,FREE-DIAL-TASKS=3

If the application is then started with six processes (start parameter TASKS=6), then the following process numbers
are available:

Three processes for processing jobs for the dialog TAC classes 1 through 8 (determined by: TASKS – FREE-
DIAL-TASKS = 6 – 3 = 3)

Two (=ASYNTASKS) processes for processing jobs for the asynchronous TAC classes 9 through 16

One process for internal UTM tasks and dialog jobs for transaction codes that are not assigned any TAC class
(determined by: FREE-DIAL-TASKS – ASYNTASKS = 3 – 2 = 1)

For information on the use of TAC priorities in UTM cluster applications, see also the applicable
openUTM manual “Using UTM Applications on Unix, Linux and Windows systems”, section "Using global
memory areas" in the chapter "UTM cluster applications".

 193

4.8.2 Job processing via process limitation for TAC classes

Job control via process limitation is generated using the TACCLASS statement. Process limitation depends on the
TAC classes, i.e. you can issue a separate TACCLASS statement for every TAC class.

TACCLASS statement in section "TACCLASS - define the number of processes for a TAC class"
You can alternatively specify one of the two following operands to set up process limitation:

TASKS=

The maximum number of processes that are allowed to process jobs for this TAC class.

TASKS-FREE=

The minimum number of processes that are to be kept free for the processing of jobs from other TAC
classes or of jobs that are not assigned a TAC class.

In this method the number of the TAC class says nothing about the priority with which its jobs are processed. Only
the number of processes that you allow for this TAC class specifies how strongly the processing of the jobs is
suppressed as compared to other TAC classes.

This method can then be used sensibly when only a few different types of jobs (and therefore only a few TAC
classes) in a application and, for example, when you want to prevent long-running jobs from reserving all the
processes of an application and therefore unnecessarily slowing down the processing of other important jobs, e.g.
administration jobs.

For information on the use of TAC classes in UTM cluster applications, see also the applicable openUTM
manual “Using UTM Applications on Unix, Linux and Windows systems”, section "Using global memory
areas" in the chapter "UTM cluster applications".

 194

4.8.3 Comparison of some of the properties of the two methods

You can only use one of the two methods for job control in your UTM application. Which of the two possibilities you
should select for your application also depends on the sometimes different properties of the two methods.

Program units with blocking calls

Priority control

Transaction codes from program units that execute blocking calls may be assigned any TAC class as long as a
value > 0 is generated in the TASKS-IN-PGWT operand of the MAX statement. You must specify the operand
PGWT=YES in the TAC statement for transaction codes with blocking calls.

TAC ..., TACCLASS=number,PGWT=YES

This also allows you to process corresponding jobs with different priorities.

Process limitation

All transaction codes from program units that execute blocking calls must be assigned the same dialog or
asynchronous TAC class. You must generate these dialog or asynchronous TAC class as follows:

TACCLASS ...,PGWT=YES

The corresponding dialog or asynchronous jobs are thus handled in the same way.

Temporarily stopping the execution of certain asynchronous jobs

Both methods for job control provide a mechanism with which you can temporarily prevent the processing of certain
asynchronous jobs. These jobs are then received and accepted by openUTM and written in the message queue of
the corresponding transaction code. The processing of these jobs is only initiated after the “processing lock“ is
removed by the UTM administration.

To temporarily prevent the execution of jobs, set the status of the transaction code to KEEP. You can do this during
live operation via the UTM administration or do this during the generation of the transaction codes by specifying the
following:

TAC ...,STATUS=KEEP

openUTM processes the buffered jobs first when you set the status of the transaction code to ON.

See the openUTM manual “Administering Applications”; KDCADMI operation code
KC_MODIFY_OBJECT with object type KC_TAC or the administration command KDCTAC

When using the method, the execution of jobs can also be prevented for all transaction codes of process limitation
an asynchronous TAC class. In this case you must set the maximum number of processes that are available for
jobs of this TAC class to 0.

TACCLASS ...,TASKS=0

openUTM only processes the jobs if you increase the maximum number of processes again.

See the openUTM manual “Administering Applications”; KDCADMI operation code
KC_MODIFY_OBJECT with object type KC_TACCLASS or the administration command KDCTCL

You can use both mechanisms, for example, to collect jobs that are to be executed at a later point in time when the
load on the application is lower (e.g. at night).

 195

Change of process when processing jobs

Priority control

If a service consists of several program units (follow-up TAC after a PEND PA/PR), then a change of process
can always occur when processing the service, regardless of whether the current TAC and follow-up TAC belong
to the same TAC class or not.

Process limitation

For job control via process limitation, openUTM guarantees that no change of process will occur after a PEND PA
/PR and SP when the service TAC and follow-up TAC are assigned the same TAC class.

If the current TAC and follow-up TAC belong to different TAC classes, then a change of process can also occur
when using this method.

Change of process for asynchronous services

When a change of process occurs, an asynchronous service is inactive at first and does not reserve a UTM process
although it remains open.

You can limit the maximum number of simultaneously open asynchronous services. You must specify the following
in the MAX statement to do this:

MAX ...,ASYNTASKS=(...,).service_number

If of open asynchronous services exist, then no new asynchronous job that is ready is started. An service_number
interrupted open asynchronous service is selected from the next process that becomes free, and this service is
resumed.

In both cases you should limit the message queue of the transaction code(s) to prevent overloading the
page pool with too many buffered jobs. This is done for each TAC by:
TAC ...,QLEV=

i

 196

4.8.4 Process priorities on BS2000 systems

openUTM uses the methods described above for job control to select a job that is to be restarted or resumed. Jobs
that are currently being processed cannot be influenced with these methods.

You can use the scheduling mechanisms of BS2000 systems for prioritizing jobs to influence the priority of the
active jobs. The RUNPRIO operand of the TAC statement can be used for this purpose. With RUNPRIO you assign
a transaction code a process priority (Run-priority) in the KDCDEF generation. You can influence the speed with
which a running job is processed with the process priority. A job for a transaction code with a higher process priority
will be given preference when distributing the CPU resources in comparison to other jobs with lower priorities.

If you have generated a process priority for a transaction code, then openUTM sets the BS2000 process priority of
the process that is processing a job for this transaction code to the value generated in RUNPRIO.
You can specify a value between 30 (highest priority) and 255 (lowest priority) in RUNPRIO.

TAC statement in section "TAC - define the properties of transaction codes and TAC queues"
operand RUNPRIO

 197

4.9 Authorization Concept

When you have services that access security-relevant data, it is sensible to restrict access to a limited number of
authorized users. openUTM offers two possible methods of data access control which allow you to set different data
access authorizations in a UTM application:

access list concept (service-oriented)

lock/key code concept (user-oriented)

Both processes use, for the most part, the same generation interfaces.
The greatest difference lies in the way in which the UTM objects are seen: The access list concept allows you to
specify a list of codes for each service. These codes specify which user (types) are permitted to access the data.
The lock/key code concept allows you to define an (individual) lock code for each service and then assigns each
user the appropriate key codes.

Services whose TACs are not secured by a lock code or access list can be called by all users without restriction.

For detailed information about the access list and the lock/key code concepts see the openUTM manual
“Concepts und Functions”.

 198

4.9.1 Lock/key code concept

A lock code is a number which symbolizes a logical lock. The objects that are to be protected - for example, the
LTERM partner and the transaction codes assigned to the services - are assigned a lock code (TAC or LTERM
statement).
Key codes are defined for user IDs and for LTERM partners (USER or LTERM statement). Only when the key code
corresponds to the lock code of a protected object is access to this object permitted.
Since a user ID or LTERM partner usually has access to several services, they must also have several key codes.
The individual key codes are thus organized into key sets (KSET statement).

The lock/key code concept has the following significance:

It is only possible to sign on under a UTM user ID if the specified user ID is assigned a key code which
corresponds to the lock code of the LTERM partner via which sign-on is performed.

A user can only call a service when the key set of the current (UTM) user ID that of the LTERM partner both and
contain a key code that corresponds to the lock code of the transaction code.

KSET statement in section "KSET - define a key set"
You can use the following operands to define a key set.

keysetname

Name of the key set.

KEYS=

When assigning a key set to a user (USER):
Specification of one or more key codes (numeric) that are assigned to the user.

When assigning a key set to an LTERM partner (LTERM):
Specification of one or more key codes (numeric) that are assigned to the LTERM partner.

TAC statement in section "TAC - define the properties of transaction codes and TAC queues"
You can use the following operands to control access to the TAC.

tacname

Name of the TAC.

LOCK=

Specifies the lock code that is assigned as a form of logical combination lock to the TAC of a service.

A service that is protected by a lock code can only then be started if the key set of the user the key set and
of the LTERM partner both contain a key code that corresponds to the lock code.

This operand may not be specified in conjunction with the operand ACCESS-LIST=.

USER statement in section "USER - define a user ID"
You can use the following operands to assign a key set to a user.

username

UTM user ID.

 199

KSET=

Specifies the name of the key set that is assigned to the user ID. The key set must be defined using the
KSET statement. A maximum of one key set can be assigned to a user.
A user is only able to access a service whose first TAC is protected by a lock code if one of the key codes
in the key set of the user corresponds to the lock code. Otherwise access to the service is denied.

LTERM statement in section "LTERM - define an LTERM partner for a client or printer"
 in section TPOOL statement "TPOOL - define an LTERM pool"

You can use the following operands to assign a key set to an LTERM partner.

ltermname

Name of the LTERM partner (only for LTERM statement).

LTERM= , NUMBER=

Name of the LTERM partner (only for TPOOL statement).

KSET=

Specifies the name of the key set that is assigned to the LTERM partner. The key set must be defined using
the KSET statement. For the LTERM partners of a UPIC client or a TS application without an explicitly
generated connection user ID this key set is also the key set of the connection user ID.

USER-KSET= (only for TPOOL statement)

In LTERM pools for TS applications or UPIC clients this specifies the name of the key set that is assigned to
the connection user ID. This key set must be defined using the KSET statement. The access authorizations
are derived from the intersection of the key sets from KSET= and USER-KSET=.

LOCK=

The lock code that is assigned to the LTERM partner as the logical combination lock. Only valid for clients
(USAGE=D).

Only a (UTM) user for whom a key set has been generated with a key code that matches the lock code of
the LTERM partner can sign on to the application via an access-controlled LTERM partner.

 200

4.9.2 Access list concept

An access list is a number of access codes (numeric codes) that are assigned to a service. The access codes in the
access list defines user access to a service and can be interpreted as the roles of the users within the structure of
their organization (for example, general users, heads of department, system administrators).
If you use the administration tool WinAdmin or WebAdmin you can use meaningful names in place of numeric
codes.

An access list is defined using the KSET statement and assigned to a service using the TAC statement. The roles
for the user (USER) are also defined and assigned as a key set using a KSET statement. In the same way, it is also
possible to assign an LTERM partner a certain number of roles.

A user can only access a service (TAC) protected in this way if both the key set of the user and the key set of the
LTERM partner via which the user has signed on contains at least one of the roles that are contained in the access
list of the service.

The differences between the lock/key code and the access list concepts are described in detail in the
security function section of the openUTM manual “Concepts und Functions”.

KSET statement in section "KSET - define a key set"
The following operands can be used to define key sets or access lists.

keysetname

Name of the key set or access list.

KEYS=

When assigning an access list to a service (TAC):
Specification of one or more roles (as numerical values) that have access to the service protected by

.keysetname

When assigning a key set to a user (USER):
Specification of one or more roles (as numerical values) that are to be assigned to the user.

When assigning a key set to an LTERM partner (LTERM):
Specification of one or more roles (as numerical values) that may be performed when signing on via this
LTERM partner.

TAC statement in section "TAC - define the properties of transaction codes and TAC queues"
The following operands are used to control the accesses to the TAC.

tacname

Name of the TAC.

ACCESS-LIST=

Specifies the access list that controls access to this TAC. Only users whose key set contains at least one of
the roles contained in this access list and that sign on via a terminal that has also been assigned one of
these roles may access this TAC. ACCESS-LIST may not be specified in conjunction with LOCK.

When using WinAdmin or WebAdmin you may also assign roles with alphanumeric names.i

 201

USER statement in section "USER - define a user ID"
The following operands are used to assign a key set to a user.

username

UTM user ID.

KSET=

Specifies the name of the key set that the user ID is assigned to. The key set must be defined using the
KSET statement. Each user can be assigned a maximum of one key set.
If a user wishes to access a service that is protected with an access list then at least one of the roles of the
user must be contained in the access list. Otherwise access to the service will be denied.

LTERM statement in section "LTERM - define an LTERM partner for a client or printer"
 in section TPOOL statement "TPOOL - define an LTERM pool"

The following operands are used to assign a key set to an LTERM partner.

ltermname

Name of the LTERM partner (only for LTERM statement).

LTERM= , NUMBER=

Name of the LTERM partners (only for TPOOL statement).

KSET=

Specifies the name of the key set assigned to the LTERM partner. For the LTERM partner of a UPIC client
or a TS application without explicitly generated connection user ID this key set is the same as the key set of
the connection user ID. The key set must be defined using the KSET statement. Each LTERM partner may
be assigned a maximum of one key set.

USER-KSET= (only for TPOOL statement)

In LTERM pools, specifies the name of the key set for TS applications or UPIC clients that is assigned to
the connection user ID. The key set must be defined using the KSET statement. The access authorizations
are derived from the intersection of the key sets of KSET= and USER-KSET=.

Data access control for service-controlled queues using access lists

It is also possible to protected service-controlled queues from unauthorized read, delete or write access. To do this
an access list is defined (TAC/USER statement).

TAC statement in section "TAC - define the properties of transaction codes and TAC queues"
The following operands are used to control access for TAC queues.

tacname

Name of the TAC queue.

Access to the LTERM partner may not be protected using access lists. When using access lists to
provide data access control to services, you should not use access protection on the LTERM
partner, or in other words the parameter LOCK of the LTERM and TPOOL statements may not be
specified.

i

 202

Q-READ-ACL=

Q-WRITE-ACL=

Name of the access list that controls the read, delete and write access of a user to this queue. The access
list must be generated using a KSET statement.

A user only has read or write access to the TAC queue if the key set of the user and the key set of the LTERM
partner via which the user has signed on both contain at least one of the roles that are defined in the access list for
the TAC queue.
The key set must be generated for the user and the LTERM partner using the USER or LTERM statements.

USER statement in section "USER - define a user ID"
The following operands can be used to control the access for USER queues.

username

UTM user ID.

KSET=

Specifies the name of the key set to which the user ID is assigned.
The key set must be defined using the KSET statement. Each user may be assigned a maximum of one key
set.

Q-READ-ACL=

Q-WRITE-ACL=

Name of the access list via which the user is able to protect their own USER queues from read, delete or
write access. The access list must be generated using the KSET statement.

For more detailed information on Message Queues see ."Generating service-controlled queues"

The owner of a queue always has read, write and delete authorization for their queue, regardless
of whether the read/write authorizations are restricted for other users.

An external user only has read or write access to the USER queue of another user if the key set
of the external user and the key set of the LTERM partner via which the external user has signed
on each contain at least one of the roles defined in the access list for the USER queue.

If you do not specify Q-READ-ACL/Q-WRITE-ACL all users have read, delete and write
authorization within the queue.

i

 203

4.9.3 Data access control with distributed processing

You can use the data access control mechanisms of openUTM with distributed processing. The protection methods
are specified when the applications are generated. A distinction is made between the job-submitting and job-
receiving service.

Protection methods for job-submitting services

When generating an application you generally initially specify which services of a remote partner application may be
called. For each remote service that is to be used you must agree an LTAC local transaction code (LTAC
statement). Access is generally denied to remote services for which no LTACs have been agreed.

In order to further graduate the data access control you can also assign lock codes to individual LTACs (see "Lock
) or use access lists (see). /key code concept" "Access list concept"

A service of the local application can only address a remote service if the service was started under a user ID
(KCBENID) and from a client (KCLOGTER) that have the appropriate access permissions.

LTAC statement in section "LTAC - define a transaction code for the partner application"
The following operands are used to define which services of a remote partner application may be called
and which access authorizations are placed on the LTAC. The operands ACCESS-LIST and LOCK are
mutually exclusive.

ltacname

Name of a local TACs (LTAC) for the remote service program.

ACCESS-LIST=

Name of an access list. In order to be able to start the remote service program the key set of the user of a
local application must have been assigned at least one of the roles defined in the access list (as defined in
the USER statement).
The access list must be defined using a KSET statement.

LOCK=

Definition of the lock code for access to the remote service program. A service of the local application can
only address this remote service if the local service was started under a user ID (KCBENID) and from a
client (KCLOGTER) that have the appropriate access permissions.
ACCESS-LIST and LOCK cannot be specified simultaneously.

Protection measures for job-receiving services

You protect job-receiving services by assigning a key set to the logical access point of a partner application (LPAP
or OSI-LPAP). Only if this key set contains a key code or access code that corresponds to the lock code or access
list of the requested service is it possible for the process requested by the partner application to be started.

In order to be able to access a remote service, the service that is being called must be generated with a TAC and
the following conditions must be fulfilled:

If you enter neither ACCESS-LIST nor LOCK then the LTAC is not protected and any user of the local
application is able to address the remote service program.

i

 204

LU6.1 connections:

The key set for the partner as defined in LPAP ...,KSET= must contain a key code that corresponds to LOCK= or
ACCESS-LIST= of the TAC.

OSI TP connections:

If a partner attempts to sign on without a user ID, then the key set defined in OSI-LPAP ...KSET and OSI-
LPAP ...,ASS-KSET= must contain a code that correspond to LOCK= or ACCESS-LIST= of the TAC.

The access authorizations are derived from the intersection of the key sets of KSET= and ASS-KSET=. Thus
KSET= should always be a superset of ASS-KSET=.
You can define suitable restrictions on the key set defined with OSI-LPAP ...,ASS-KSET to ensure that
specific TACs cannot be called unless the partner specifies a real user ID.

If a partner attempts to sign on with a real user ID, then the key set of this user ID and that defined in OSI-
LPAP ... KSET= must contain a code that corresponds to LOCK= or ACCESS-LIST= of the TAC.

This also applies to a client/server link with OpenCPIC.

For more detailed information about data access control with distributed processing see openUTM
manual “Concepts und Functions”.

 205

4.10 Message encryption on connections to clients

Clients often access UTM services via open networks. This may give unauthorized persons the opportunity to read
data from the line and obtain passwords for UTM user IDs or sensible user data, for example. To prevent this,
openUTM supports the encryption of passwords and user data on connections to UPIC clients and on BS2000
systems additionally on connections to certain terminal emulations.

Encryption in openUTM not only serves to secure the data on the connection between the client and the server
application, but it can also be used to limit access for clients and access to certain services. Up to two encryption
levels are available for selection (AES-CBC or AES-GCM algorithm, see)."Data access control"

When communication with USP-socket applications or HTTP clients TLS connections can be used to allow for
encrypted exchange of messages between the communcsation partners. A transport system access point for TLS
connections is setup with the statement BCAMAPPL ..., T-PROT=(SOCKET, ..., SECURE), see chapter "

".BCAMAPPL - define additional application names

 206

4.10.1 Requirements

Connecting a UPIC client to a server application

The requirement for encryption between an openUTM server application and a UPIC client is the availablitiy of
cryptographic functions.

In openUTM server applications on BS2000 systems the encryption functionality is always available.

In openUTM server applications on Unix, Linux and Windows systems the encryption functionality is only
available after successful loading of an appropriate openSSL library.

As UPIC client an openUTM-Client for the UPIC carrier system must be used that supports the encryption
functionality. For UPIC clients on BS2000 this is always the case. For UPIC clients on Unix, Linux and Windows
systems the encryption functionality is only available after successfully loading an appropriate openSSL library.

Details on the use of the openSSL library in Unix, Linux and Windows systems can be found in the openUTM
manual "Using UTM Applications on Unix, Linux and Windows Systems".

Connecting a terminal emulation to a server application (BS2000 systems only)

The encryption of VTSU is offered for connections between UTM applications on BS2000 systems and terminal
emulations. VTSU-B uses a separate key management. The data and system access control mechanisms that
come in conjunction with encryption are in effect, however. openUTM receives information from VTSU via the
encryption level that was negotiated for the connection to the client.

The following requirements must be fulfilled:

One requirement is the use of VTSU-B and the VTSU-SEC selectable unit. Which of the current versions you
must use is described in the release notes for openUTM. You can consult the Release Notice for VTSU-SEC to
determine which VTSU parameters must be set.

A terminal emulation must be in use on the client that supports the encryption functions.

These communication partners are called VTSU partners in the following.

 207

4.10.2 Encryption methods

openUTM uses either a combination of the algorithms RSA (named after the authors Rivest, Shamir and Adleman)
and AES-CBC (Advanced Encryption Standard Cipher Block Chaining Mode), or a combination of Ephemeral
Elliptic Curve Diffie-Hellman (ECDHE) and AES-GCM (Advanced Encryption Standard Gallois Counter Mode). The
second combination is more modern and offers advanced security compared to the first combination, but is
currently only supported by openUTM on Unix, Linux and Windows systems.

RSA-AES-CBC cipher suite
With the combination RSA-AES-CBC, before transmission the AES key is encrypted with the public RSA key of the
UTM application. In order to do so openUTM generates an RSA key pair consisting of a public and a private secret
key.
For a UTM application RSA keys with a length of 1,024 and/or 2,048 bits can be generated.
BSI recommends using RSA keys with a length of at least 2,000 bits.

The public RSA key is transferred from the UTM application to the client when the connection is established. To
prevent man-in-the-middle (MiM) attacks on the communication, a user should also read out the public RSA key
of the application via administration, transfer it separately to the client and enter it into the client configuration.

For each new connection, the client generates a new 128-bit AES key, encrypts it with the public RSA key of the
server, and transmits it to the UTM application. The AES key is connection-specific, i.e. a separate key is
generated for each connection and this key is only used for this connection.

The UTM application decrypts the AES key using its private RSA key.

User data and passwords are encrypted on a connection with the symmetric AES key, i.e. client and UTM
application use the same AES key to encrypt and decrypt messages.

ECDHE-RSA-AES-GCM cipher suite (only for Unix, Linux and Windows systems)
The combination ECDHE-RSA-AES-GCM uses the elliptic curve based Diffie-Hellman method to generate an AES
session key. Each side generates a Diffie-Hellman key pair, transmits the public part of its key pair to the partner
and generates the common AES session key with its private key and the public key of the partner. This means that
in this procedure the AES session key is not transferred on the data connection.

The server also signs its public Diffie-Hellman key with the private RSA key of the UTM application. In this way, the
client can verify that the Diffie-Hellman public key sent from the server really belongs to the UTM application. Again,
as described above, to defend against man-in-the-middle attacks, the public RSA key should be made known to the
client separately.

The Ephemeral Diffie-Hellman method offers the user ; this means that even recorded Perfect Forward Secrecy
data cannot be decrypted later if the long-term key (RSA key) should later be cracked.

The AES-GCM algorithm is used to encrypt user data. One of the advantages of this method over AES-CBC is that
it supports (AEAD), in which the encrypted user message and Authenticated Encryption with Associated Data
the other protocol parts of the message are protected against changes by a Message Authentication Code (MAC).

Passwords are encrypted with AES-CBC as described above.

 208

4.10.3 Encrypting passwords and user data

User data and passwords are not passed in encrypted form on connections between UTM application and trusted
clients (i.e. clients generated trusted clients; see point).3 in chapter "System access control"

Passwords from (non-trusted) UPIC clients are always encrypted and then passed to the UTM application in
openUTM if the client as well as the server supports encryption. Passwords are also encrypted in this case if no
encryption was agreed to for the connection.

BS2000 systems

Passwords are only passed in encrypted form on connections between UTM applications on BS2000 systems
and VTSU partners if encryption was agreed to for the connection or if the password was entered in a blanked-
out field.

The encryption of is optional. This is negotiated between the client and the server when a UPIC user data
conversation or connection to a VTSU partner is established.

The client can force encryption.
The ENCRYPTION-LEVEL keyword in the Side Information file and the function call are Set_Encryption_Level
available for a UPIC client for this purpose.

BS2000 systems

The encryption level is defined on the host for VTSU partners. Various encryption levels can be specified,
from unconditional encryption for all applications through the encryption of individual messages that the
user himself has selected.

A UTM application can request encryption for a certain service or a certain partner.

If one of the partners requests encryption, then the request for encryption is either accepted by the other side or the
conversation/connection between the partners is not established.

Encryption is always negotiated on a conversation-to-conversation or connection-to-connection basis. Message-
specific encryption via the program interface is not possible.

You can assign every client and every service an encryption level in the configuration of the UTM application. The
encryption level specified whether or not messages from the client must be encrypted. The encryption levels are
defined with the KDCDEF option ENCRYPTION-LEVEL in the TAC, PTERM and TPOOL statements.

The encryption levels can be used by openUTM to control the access of clients as well as the access to certain
services.

 209

1.

2.

3.

4.10.3.1 System access control

You can specify an encryption level for every client (PTERM) and every client group (LTERM pool; TPOOL) in the
UTM configuration. The encryption level specifies if and how clients must encrypt messages or may encrypt
messages. In this manner a UTM application can protect itself from accesses via insecure clients.

You specify the encryption level for a client in the KDCDEF generation in the PTERM or TPOOL statement of the
client:

PTERM ...,ENCRYPTION-LEVEL=

TPOOL ...,ENCRYPTION-LEVEL=

There are following variants:

openUTM requests the use of encryption from the client.
The client must encrypt in all cases, otherwise it will not gain access to the UTM application. The minimum
length of the RSA key used is predefined. If the partner does not support encryption or cannot use the RSA key
of the requisite key length, then it cannot establish any connections to the UTM application.
In this case, generate one of the following variants:

ENCRYPTION-LEVEL=3 (RSA key length 1024 bit, AES-CBC method)

(RSA key length 2048 bit, AES-CBC method)ENCRYPTION-LEVEL=4

For LUW platforms additionally:
(RSA key length 2048 bit, ECDHE-RSA-AES-GCM methods)ENCRYPTION-LEVEL=5

openUTM does not request encryption and the client can specify whether or not the connection is to use
encryption.
The client is also allowed access without encryption, but it must encrypt if a service explicitly demands it (see

). "Data access control"
In this case, generate:

ENCRYPTION-LEVEL=NONE

The client is trusted (). trusted client
Encryption is not used on connections to such clients. A trusted client can also call „protected“ services without
encryption (see section below).
You should only generate clients as trusted when you are sure that communication occurs via a secure line.
In this case, generate with:

ENCRYPTION-LEVEL=TRUSTED

Socket and HTTP clients which connect to the UTM application via a secure connection are always
trusted clients (see statement BCAMAPPL T-PROT=(SOCKET,..., SECURE))

Unix, Linux and Windows systems:
Local UPIC clients (type UPIC-L) are always trusted clients.

i

 210

4.10.3.2 Data access control

You can protect individual services from accesses via insecure clients with the help of the encryption functions. A
client may only access protected services if it is a trusted client or if it is able to encrypt using the requisite method.

You can protect a service by assigning encryption level 2 or 5 to the corresponding service TAC´(5 only on Unix,
Linux and Windows systems):

TAC ...,ENCRYPTION-LEVEL=2 (encryption according to the AES-CBC algorithm)

TAC ...,ENCRYPTION-LEVEL=5 (encryption according to the AES-GCM algorithm)

If a service is protected in this manner, then the following is true:

A client generated as trusted can start such a service without using encryption.

For non-trusted clients the service belonging to the transaction code is only started if the client has passed the
input message encrypted with the requisite method. Otherwise

In the case of UPIC clients, conversation establishment is rejected by openUTM.

In the case of VTSU partners, this leads to a BADTAC or message K009 is output.

If the service is called via a transaction code without user data (e.g. for terminal emulations via a function key) or
started due to service chaining, then the service is also started without encryption. openUTM encrypts then all
dialog output messages to the client. openUTM expects all further input messages from the client to be
encrypted for multi-step services. If the input message contains unencrypted user data, then the service is
terminated abnormally.

Encryption is optional when you generate a service TAC as follows (default):

TAC ...,ENCRYPTION-LEVEL=NONE

Information for encryption on the KDCS program interface

You also have the possibility of writing separate program units that execute an access authorization check.
Encryption data is displayed on the program interface for the INIT PU call. The following information is displayed:

the encryption levels that are generated for the client and transaction code

whether encryption was negotiated for the conversation

whether the client supports encryption in principle

whether the last input message was encrypted

 211

4.10.4 Creating the RSA key pair and reading the public key

You should replace the RSA key pair with a new RSA key pair in your UTM application in regular intervals for
security reasons. This is especially important if you use encryption levels less than 5. The administration program
interface and the administration tools WinAdmin and WebAdmin provide the corresponding functions.

See the openUTM manual “Administering Applications”; KDCADMI operation code 4KC_ENCRYPT or
the online help system for WinAdmin or WebAdmin, keyword „RSA keys“.

With the help of the administration you can create a new key pair, read the public key and activate the new key pair.
Only after activation can the new key pair be used by the UTM application for encryption. An activated key pair can
also be deleted using administration facilities.

To further increase the security of the data on a connection you should read the public key of the RSA key pair,
pass it to the client using your own method and store it there. You should only activate the new RSA key pair once
this has been accomplished. With the help of the public RSA key you have stored, the client can verify if the public
key received over the connection to the UTM application really came from the UTM application.

 212

4.11 Defining database linking

When configuring the application you must use the KDCDEF control statements to define the database system with
which the UTM application is to coordinate.

If a UTM application is to be linked with a database, additional parameters must be specified when linking
and starting. See also the openUTM manual “Using UTM Applications”.
The remaining UTM generation is not affected by the linking.

i

 213

4.11.1 Linking databases on BS2000 systems

openUTM supports coordination with the following database systems:

UDS/SQL

SESAM/SQL

XA

CIS

LEASY (the LEASY file systems behaves like a database system in relation to openUTM)

A UTM application can work in coordination with up to three (up to eight with special release) different databases.
Each database system is defined with a DATABASE statement for the KDCDEF run.

DATABASE statement in section :"DATABASE - define the database system (BS2000 systems)"
Definition of the database with which the UTM application works together:

ENTRY=

Entry name of the supported database, which can be seen in the table in section "DATABASE - define the
.database system (BS2000 systems)"

USERID= and PASSWORD=

User name and password for the database system, supported only for Oracle
databases (TYPE=XA).

LIB=

Object module library from which the connection module to the database system is to be loaded
dynamically.

TYPE=

Type identifier of the database system.

You can connect to database systems not contained in the list above but that support the IUTMDB
interface with TYPE=DB.

The link to a XA resource is generated with TYPE=XA.

Alternatively, the user name and the password can be transferred to the database system by
means of start parameters.
It is possible to modify the user name and/or the password by means of dynamic administration.

i

 214

4.11.2 Linking to a Resource Manager on Unix, Linux and Windows systems

openUTM is linked with Resource Managers (e.g. database systems) via the XA interface standardized by X/Open.
It coordinates the transactions of openUTM with the services of the Resource Manager. The XA interface is
supported in the CAE version of the XA interface (XA-CAE).

openUTM for Unix, Linux and Windows systems supports coordination with the data base system Oracle.

RMXA statement in section "RMXA - define a name for an XA (database) connection (Unix, Linux and
Windows systems)"
The Resource Manager to which openUTM is to be linked and the version of the XA interface via which
the link is to be made must be defined in the generation with the RMXA statement:

XASWITCH=

Name of the xa_switch_t structure of the Resource Manager, which is made known to openUTM.

USERID= and PASSWORD=

User name and password for the database system, supported only for Oracle databases.

XA-INST=

Name of the XA instance.

The following must be noted for the linked operation of openUTM with XA:

Several Resource Managers (i.e. database systems) can be served within a UTM application.

When multiple instances are to be generated, these must be defined with the same xa_switch and different
instance names (XA-INST operand).

The simultaneous operation of several entities (databases) of a Resource Manager (database system) is
possible provided the Resource Manager supports multi-instance mode. The databases with which the UTM
application is linked are determined by corresponding start parameters for the application. For multi-instance
mode, you must define several RMXA statements and specify several open strings at the start.

Below is a description of how you must generate the linking of your UTM application with the Resource Manager.
The database-specific names specified here (xa_switch_t structure) may change, which is why you should check
that the specifications are correct. For more information, see the documentation for the database systems.

Linking with Oracle

RMXA XASWITCH=xaosw,USERID= ...

or

RMXA XASWITCH=xaoswd,USERID= ...

Detailed examples are provided in openUTM manual “Using UTM Applications on Unix, Linux and Windows
Systems” under the heading "Start parameters for a UTM database application".

Alternatively, the user name and the password can be transferred to the database system by
means of start parameters.

It is possible to modify the user name and/or the password by means of dynamic administration.

i

 215

When the dynamic XA connection is used on Windows systems, the link between Oracle and openUTM must be
configured in addition in the Windows Registry. Details siehe openUTM manual “Using UTM Applications on Unix,
Linux and Windows Systems”, Stichwort „UTM-Datenbank-Anschluss generieren“.

 216

4.12 Internationalizing the application - XHCS support (BS2000 systems)

A UTM application on BS2000 system can be programmed such that communication partners with different
languages can receive the messages from the program units in their respective language. Even regional differences
within a language can be taken into account. Date specifications, time, units of measurement, and currency
symbols can be displayed in accordance with language-specific conventions.

To display the fonts and special characters of the individual languages on a terminal or printer, you may require
various extended character sets (8-bit codes or Unicode). Using the BS2000 software product XHCS (E tended x H
ost ode upport), several extended character sets can be used simultaneously on a BS2000 system. openUTM C S
supports the functions of XHCS. This means that you can assign a particular language environment – also called a
locale – to the UTM objects. In other words, you can assign a standard locale. Individual users and LTERM partners
that clients use to connect to the application are assigned specific locales that are used to edit the messages.

To implement multilingualism in UTM applications, openUTM offers the following functions.

When generating the application, specific languages and the character sets to be used for output can be
assigned to the application, the user IDs, the LTERM partners, and the LTERM partners of the LTERM pools. In
this case you define locales, which define the language environment and character set, for the objects.

You can define locales for user message modules that take account of language-specific requirements. These
language-specific message modules are assigned to users and LTERM partners whose language and territorial
identifiers match the locale of the language-specific message module. See also chapter ."UTM messages"

While the application is running, you can change the assignment of language and character set for your user ID.
The KDCS interface provides the SIGN CL call for this purpose.

Using the variants INIT PU and INFO LO of the function calls INIT and INFO, a UTM program can read the
language and character set of the user ID, the application, a particular LTERM partner, or the LTERM partners in
a pool. The program unit thus obtains information on the character sets supported by the terminal and the
character set of the input message. With this information, the program unit can correctly interpret the input of the
user and send messages to the user in the correct language and with the appropriate character set.

If the message of a program unit is sent to a terminal/printer, openUTM transfers the logical message of the
program unit to VTSU-B together with the name of the character set to be used for editing. VTSU-B edits the
message for outputting to the terminal or printer. For information on the character set is used to edit a message
please refer to the openUTM manual „Programming Applications with KDCS”.

If the job submitter in a service is a partner program, the logical message is transferred to the job submitter
without editing.

The program unit can use INFO LO to request information from openUTM regarding the language and character
set of the LTERM partner, and the character sets supported by the terminal/printer assigned to this LTERM
partner. The character set used to edit the message for outputting to the terminal/printer must be compatible with
one of the character sets supported by this terminal/printer.

Before discussing these functions, we will explain specific XHCS terms.

 217

4.12.1 Definitions of XHCS terms

ISO character sets, variant numbers

Various extended character sets for various language areas are standardized in ISO 8859, for example ISO 8859-1,
ISO 8859-2, etc. The numbers at the end (-1, -2, etc.) are called the . An extended character set variant numbers
contains all the characters required to represent the language of a language area.
ISO 8859 codes are extensions of the ASCII code ISO 646. They are used by terminals and Unix, Linux or
Windows systems, for example. All ISO 8859 character sets contain the ASCII code as the shared part in the low-
order half of the code table.

In addition there are the Unicode character sets UTF-8 and UTF-16 with which the characters of all language areas
can be represented with a single character set.

EBCDIC character sets

EBCDIC character sets are used in the BS2000 operating system. An extension of EBCDIC.DF.03-IRV or -DRV
exists for each ISO 8859 code. EBCDIC.DF.03-IRV is the international reference version and EBCDIC.DF.03-DRV
is the German reference version of the non-extended EBCDIC code. Both codes contain the EBCDIC kernel as the
shared character set and only differ in certain symbols. The extensions of these EBCDIC character sets are called
EBCDIC.DF.04-1, EBCDIC.DF.04-2 through EBCDIC.DF.04-F.

The EBCDIC counterpart of ther Unicode character sets UTF-8 and UTF-16 is the character set UTF-EBCDIC
(UTFE).

Compatible character sets

Extended ISO and EBCDIC character sets with the same variant number are , i.e. they contain the same compatible
characters. The individual characters are located at different code positions within the code table. The codes can be
transferred using conversion tables.

The BS2000 system administrator can use XHCS to modify the EBCDIC character sets by assigning different code
positions in the code table to the individual characters of a character set. The complete set of characters is retained.
The modified EBCDIC character sets are with the EBCDIC.DF.04-n character set from which they were compatible
generated.

Reference code

XHCS combines all compatible character sets of the system into a group. A group therefore contains an ISO variant
and the EBCDIC character sets compatible with this variant. The EBCDIC.DF.04-n character set of the group is the
reference code of the group. All character sets in a group can be converted to the reference code of the group using
XHCS.

Coded character set name (CCS name)

A name containing a maximum of eight characters, known as the CCS name or the CCSN, is assigned to each
character set used in the system. The CCS name uniquely identifies the character set in the system. The CCS
names of the reference codes are predefined by XHCS. EBCIDIC.DF.04-1 has the CCS name EDF041, for
example.

A list of the CCS names for the character sets available in your BS2000 can be obtained using EDT. To request this
information, call EDT and enter the EDT statement . EDT then supplies a list of the available character @SHOW CCS

sets.

 218

Default system code

The BS2000 system administrator can define several extended character sets (also for various ISO variants), which
can be used simultaneously by the system components.

The system administrator can define one of these character sets as the default system code. The default system
code currently set is indicated in the output of the command/SHOW-SYSTEM-PARAMETERS PAR=*AL. It is
specified in the HOSTCODE parameter.

Default user character set

The BS2000 system administrator can assign one of the character sets defined in the system as the default user
character set for each BS2000 user ID. If a default user character set is defined for the BS2000 user ID, its CCS
name is displayed in the output field CODED-CHARACTER-SET of the /SHOW-USER-ATTRIBUTES command.

For further information on XHCS, see the User Guide “XHCS 8-Bit Code Processing in BS2000/OSD -
Internationalization”.

i

 219

4.12.2 Defining the language environment - setting the locale

When generating a UTM application, a separate language environment can be defined for the UTM application, for
each LTERM partner, for all LTERM partners in an LTERM pool, and for each user ID. To do this, you assign the
application and the individual objects a triplet comprising the language identifier, territorial identifier, and name of a
character set, which is known as the locale. The locale is specified as follows:

LOCALE=(lang_id,terr_id,ccsname)

lang_id The language identifier identifies the language in which the user is to be addressed by the lang_id
UTM program units. The language identifier can be up to 2 bytes long. The descriptor of a language
can be freely selected.

terr_id The territorial identifier enables you to take account of regional differences within a language (e.terr_id
g. English in UK or America) or different units of currency and measurement in the various countries
(dollar and sterling). The territorial identifier can be up to 2 bytes long and can be freely selected.

ccsname The character set name specifies which character set can be used to edit a message for ccsname
outputting to the terminal. As the character set name, specify the CCS name of a character set
defined in the BS2000 system. CCS names are assigned by the BS2000 system administrator.

If all users come from the same language area, e.g. Western Europe, it is sufficient to assign an extended character
set to the UTM application. It is only necessary to use user specific character sets if the various users of an
application speak languages that cannot all be represented by an extended character set.

In order to support extended character sets, the subsystem XHCS must be available on the processor on which the
UTM application is running. For all character set names generated in the UTM application, associated EBCDIC
character sets must be defined in XHCS. In addition, the terminals must support an ISO character compatible with
the respective EBCDIC character set. Only particular types of terminals and printers support 8-bit character sets.

Application-specific language environment – standard-language environment

MAX statement in section "MAX - define UTM application parameters"
You assign the locale to theUTM application in the generation using the MAX statement:

LOCALE=

The locale generated for the application is assigned to each user ID, each LTERM partner, and each LTERM
pool as the default value for the language environment. This default setting applies as long as no specific locale
is defined for these objects.

User-specific language environment

USER statement in section "USER - define a user ID"
You assign a locale to a user ID using the USER statement:

LOCALE=

The character set assigned to a user ID is used to output dialog messages to the screen (see the character sets
section of the openUTM manual „Programming Applications with KDCS”).

 220

LTERM partner-specific language environment

LTERM statement in section and "LTERM - define an LTERM partner for a client or printer" TPOOL
 in section statement "TPOOL - define an LTERM pool"

You use the LTERM statement to assign a locale to an LTERM partner via which a terminal or printer
connects to the application. For an LTERM pool, a locale is defined for all LTERM partners in this pool
using the TPOOL statement:

LOCALE=

The character set defined for the LTERM partner is used to output asynchronous messages (see also "UTM
).messages"

The LTERM partner-specific locale is also used in the first part of the sign-on service, for example, if the user has
not yet signed on, i.e. the user-specific language environment is not yet created.

Example

The language identifier DE for German is used in the application. To be able to take account of the different units of
currency in messages to users in Germany and Switzerland (Euro and franc), the territorial identifiers for De

Germany and for Switzerland are defined. The EBCDIC character set EBCDIC.DF.04-1 can be used to output CH

messages. Its CCS name is EDF041.

The locale for users in Germany can be defined as the standard language environment for the application. To
this end, specify the following in the MAX statement:

MAX ..., LOCALE=(DE,DE,EDF041)

In this case, no separate locale need be defined for users and terminals in Germany that connect to the
application via LTERM partners.

If language-specific requirements are to be taken into account for users and terminals in Switzerland, the
following must be generated:

USER username ,..., LOCALE=(DE,CH,EDF041)
LTERM ltermname ,..., LOCALE=(DE,CH,EDF041)

However, you can also use the DEFAULT statement to set the locale (DE,DE,EDF041) for all USER and LTERM
statements:

DEFAULT USER LOCALE=(DE,DE,EDF041)

DEFAULT LTERM LOCALE=(DE,DE,EDF041)

You must then also generate the following for users and terminals in Switzerland that connect to the application
via LTERM partners:

USER username ,..., LOCALE=(,CH)
LTERM ltermname ,..., LOCALE=(,CH)

 221

4.12.3 Character set names for edit profiles and formats

In addition to the user-specific and LTERM partner-specific assignment of character set names, a separate
character set name can be assigned to each edit profile defined in the application.

The name of a character set can be assigned to each format when creating formats with FHS/IFG.

For information on which of the generated character set names (application-specific, user-specific, LTERM partner-
specific character set, or the character set name assigned to an edit profile or to a format) is used to edit a message
for outputting to the screen or printer, as described in section ."Character sets for editing messages"

 222

4.12.4 Querying the language environment in a UTM program unit

In the initialization phase, openUTM transfers information to a program unit regarding the locale of the user who
started the associated service. The prerequisite is that the INIT call is used with the operation modification PU and
that the program requests the information. See also the openUTM manual „Programming Applications with KDCS”.

If the user has not yet signed on, openUTM transfers the locale of the LTERM partner via which the connection to
the application was established. The program unit can then correctly interpret the code and terminology in the input
from the communication partner and can generate messages in the language used by the communication partner.

Specifications on the user-specific character set are required because the user-specific character set is used to
output dialog messages to 8-bit terminals if no edit profile or format with CCS names is assigned with MPUT. The
program unit must take this into account when structuring the message.

The character set of the LTERM partner is used to output asynchronous messages to 8-bit terminals if no edit
profile or format with CCS name is specified with FPUT. Information on the character sets supported by the terminal
can be obtained using the KDCS call INFO LO.

In addition to the locale of the LTERM partner associated with the service, you can also use INFO LO to query the
ISO character sets supported by the terminal. If the user-specific or LTERM partner-specific character set is not
compatible with one of the ISO character sets supported, the service may be aborted or, in the case of
asynchronous messages, the message may be lost.

 223

4.12.5 Character sets for editing messages

If the message of a program unit is sent to a terminal or printer, openUTM transfers the logical message and a
character set name to VTSU-B. VTSU-B edits the message for output. The type of message and type of client
determine which of the generated character sets is transferred from openUTM to VTSU-B.

A distinction is made here between three message types:

message in line mode without edit profile or messages created by event exit FORMAT

message in line mode with edit profiles

message in format mode.

Message in line mode without edit profile and messages created by event EXIT FORMAT

The terminal or printer to which the message is addressed supports none of the extended character sets.

The message is transferred to VTSU-B without specifying a character set
name.Characters that do not belong to the EBCDIC kernel are replaced by smudge characters or substitute
characters.

The terminal or printer to which the message is addressed supports extended character sets.

Dialog messages are edited using the user-specific character set.

Asynchronous messages are edited using the LTERM partner-specific character set of the LTERM partner
whose message queue contains the message.

In this way, the program unit can correctly serve 8-bit printers, amongst others. The program unit uses INFO LO
to obtain information on the character set names generated in the locale of the LTERM partner assigned to the
printer. It then transfers the character set name together with the message to VTSU for editing.

You must ensure that the EBCDIC character set associated with the character set name is compatible with an
ISO character set supported by the printer. This is not checked by VTSU-B, as VTSU-B does not know which
ISO character sets are supported by the printer. The supported character sets are indicated in the printer
description.

In order that VTSU-B can serve the printer in 8-bit mode, the VTSU-operating parameters xxxxxDEV8 and
xxxxxLIN8 must be set. Any modification to the operating parameters does not come into effect until VTSU is
loaded dynamically. See the User Guide “VTSU - Virtual Terminal Support”.

If the EBCDIC character set of the message is not compatible with any ISO character set of the 8-bit client, one
of the following errors will occur:

A dialog service is terminated with PEND ER. A PEND ER dump is created and UTM message K017 is sent.

An asynchronous output message is discarded. A UTM dump is created and a UTM message is sent.

UTM message K106 is output to the screen if an asynchronous message was retrieved with KDCOUT
(LTERM...,ANNOAMSG=YES) or if part of the message was already sent before the error occurred.

An error message is written to SYSLOG.

In relation to the character set, formatted messages created by the format exit are handled like messages in line
mode.

 224

Message in line mode with edit profiles

No character set name is assigned to the edit profile.

In relation to the character set used, these messages are handled like messages in line mode without edit profile.

By using user-specific and LTERM partner-specific character sets, you can thus permanently serve users in 8-bit
mode without having to explicitly generate 8-bit edit profiles.

A character set name is assigned to the edit profile.

openUTM always transfers the character set name of the edit profile together with the logical message to VTSU-
B for editing.

If a message is sent to a terminal or printer that only permits 7-bit mode, the service is terminated with PEND ER
in the case of dialog services. An asynchronous message is discarded in this case and a UTM message is sent.

In the case of messages to 8-bit terminals or printers, the EBCDIC character set used must be compatible with
an ISO character set supported by the terminal/printer. With asynchronous messages, VTSU-B cannot check this
compatibility. For this reason, the message should only be sent in the character set assigned to the edit profile.

You need only explicitly assign a character set to an edit profile if this character set is not identical to the user-
specific or LTERM partner-specific character set and if the message to be sent contains characters from this
character set which do not, however, belong to the EBCDIC kernel.

Message in format mode

Format to which no character set was assigned when creating IFG.

In relation to the character set used, openUTM handles these messages in the same way as messages in line
mode without edit profile, i.e. a dialog message is edited using the user-specific character set, and an
asynchronous message is edited using the LTERM partner-specific character set, if this message is directed to
an 8-bit terminal or corresponding printer.

Format with character set name, i.e. a character set was assigned to the format when creating with IFG.

The character set name assigned to the format is transferred by openUTM for editing.

If the message is directed to printers or clients that only permit 7-bit mode, the service is terminated with PEND
ER in dialog services. An asynchronous output message is discarded in this case and a UTM message is sent.

With messages to 8-bit terminals or printers, the EBCDIC character set used by the message must be
compatible with one of the ISO character sets supported by the terminal/printer.

A character set need therefore only be explicitly assigned to the format to be sent if it contains characters that do
not belong to the EBCDIC kernel.

A character set need only be explicitly assigned to the format if the character set used for representation is not
identical to the user-specific or LTERM partner-specific character set.

 225

5 Notes on generating a UTM cluster application on Unix, Linux and
Windows systems

Unlike a standalone application, a UTM cluster application is intended to be run on more than one computer.
Together, these computers are known as a cluster and the individual computers on which the application is to run
are known as nodes. A UTM cluster application is made up of several identically generated UTM applications (the
node applications) that run on the individual nodes.

The configuration of the application, including the KDCFILEs for all nodes, is created in a single generation run and
is therefore always the same.

A UTM cluster application can be distributed across up to 32 nodes.

The computers that belong to a cluster must be equivalent in terms of hardware status and software configuration.
Discrepancies involving compatible correction statuses and updates are possible. Mixed configurations, such as
Windows and Unix computers in combination are not possible.

You can find detailed information on operation and in particular on generating applications for UTM
cluster applications in the relevant openUTM manual “Using UTM Applications on Unix, Linux and
Windows systems”.

CAUTION!
The nodes of a cluster must always have the same system time.

!

 226

5.1 Generating a UTM cluster application

The generation of a UTM cluster application differs in the following ways from that of a standalone UTM application:

There are the additional statements CLUSTER and CLUSTER-NODE as well as the operand value
GEN=CLUSTER in the OPTION statement, see ."KDCDEF statements"

When a UTM cluster application is generated, UTM cluster files are also generated, see below.

Only one copy of the KDCFILE is permitted, i.e. KDCFILE=(...,SINGLE) must be specified in the MAX statement
(default value).

The size of a UTM page must be 4K or 8K (MAX statement, BLKSIZE operand)

Please also note the following important differences that apply during a UTM cluster application run:

In a UTM cluster applications, the user data that applies globally throughout the cluster is stored in GSSB and
ULS areas. In the case of UTM-F, the service data is also stored in these areas.

The KDCFILEs of the node applications contain only the user data that is local to the node.

 227

5.1.1 UTM cluster files

A UTM cluster application is generated in a generation run during which the KDCDEF utility creates the following
files:

the cluster configuration file

the cluster user file

the cluster page pool files

the cluster GSSB file

the cluster ULS file

an initial KDCFILE

and the root source

The initial KDCFILE must be copied for each node application after the generation run.

The UTM cluster files generated by KDCDEF do not have to be generated as often for a UTM cluster application as
the KDCFILE or the root source.

Subsequent generation runs can be performed in order to

modify the KDCFILE and/or the root source.

If you modify only the KDCFILE (but not the UTM cluster files) in a subsequent generation run, please note that:

The sequence of TAC statements must not be modified. Otherwise services may be terminated abnormally on
service restarts. As a result, you must append new TAC statements at the end and must not delete any TAC
statements.

The RESTART parameter in the USER statements must not be modified.

A KDCUPD run for the node applications enables you to transfer the data from the previous node KDCFILEs to
the newly generated KDCFILEs, see ."Update generation for UTM cluster applications"

regenerate the UTM cluster files.

You can perform a KDCUPD run for the UTM cluster application in order to take over the data from the previous
UTM cluster files into the newly generated files, see ."Update generation for UTM cluster applications"

If changes are made to the configuration, a new initial KDCFILE can, for instance, be created with additional objects
in a subsequent generation run.

The initial KDCFILE must be copied for each node application after the generation run.

Figure 17 shows what files are created when you define a UTM cluster application.

It must be possible to access the UTM cluster files and the KDCFILEs of all node applications from all
node applications. See also the section "UTM cluster application" in the openUTM manual “Using UTM
Applications on Unix, Linux and Windows Systems”.

i

 228

Figure 17: The result of the KDCDEF run (with OPTION ...,GEN=(KDCFILE, ROOTSRC, CLUSTER)) for a UTM cluster application.

If you also specify GEN=CLUSTER with the OPTION statement, a cluster configuration file is created together with
the following files.

Cluster user file for managing user IDs in a UTM cluster application.

Cluster page pool files for storing user data that applies globally in the cluster in a UTM cluster application and
for managing the cluster page pool.

Cluster GSSB file and cluster ULS file for managing GSSB and ULS in a UTM cluster application.

If you specify OPTION GEN=CLUSTER, then you must also specify a CLUSTER statement and at least two
CLUSTER-NODE statements.

Shared properties of the UTM cluster files

The UTM cluster files are generally only created once for a UTM cluster application. You can only use a new cluster
configuration after all the node applications of a UTM cluster application have been terminated.

The UTM cluster files are created with the file name in the directory defined with . UTM-C. suffix cluster_filebase
The UTM cluster files can be copied to a different directory in order to operate the UTM cluster application.

 229

Cluster configuration file

The cluster configuration file contains information on all node applications of a UTM cluster application and
specifications on data that is global to the cluster. It is used jointly by all node applications of a UTM cluster
application.

KDCDEF creates the cluster configuration file with the suffix . The full file name or path name is:CFG

Unix and Linux systems: /cluster_filebase UTM-C.CFG

Windows systems: \cluster_filebase UTM-C.CFG

Cluster user file

The cluster user file is used for managing users in a UTM cluster application.

The cluster user file can be extended during operation of a UTM cluster application. This always happens when the
administrator defines new users for a UTM cluster application. You must therefore always also specify the cluster
user file during subsequent generation runs for creating a new KDCFILE. The entries in the new KDCFILE are
merged with the entries in the existing cluster user file and where necessary, KDCDEF extends the cluster user file
to include entries for new users.

KDCDEF creates the cluster user file with the suffix . The full file name or path name is:USER

Unix and Linux systems: /cluster_filebase UTM-C.USER

Windows systems: \cluster_filebase UTM-C.USER

Cluster page pool files

The cluster page pool files are used to record user data that is managed for the entire cluster in a UTM cluster
application. This data consists of the GSSBs, ULS and the user service data. The number of cluster page pool files
is defined at generation time. Between one and a maximum of ten files can be created.

KDCDEF creates the cluster page pool files with the with the suffix CP where = 01, 02 up to a maximum of 10. nn nn
The full file name or path name of a cluster page pool file is:

Unix and Linux systems: / cluster_filebase UTM-C.CP nn

Windows systems: \ cluster_filebase UTM-C.CP nn

A control file for the cluster page pool is also always created. The name of this file includes the specification UTM-C.
CPMD.

Cluster GSSB file

The cluster GSSB file is used for managing GSSBs in a cluster application.

KDCDEF creates the cluster GSSB file with the suffix . The full file name or path name is:GSSB

Unix and Linux systems: /cluster_filebase UTM-C.GSSB

Windows systems: \cluster_filebase UTM-C.GSSB

The cluster GSSB file can be extended while an application is running. This is done whenever the space left in the
file is no longer sufficient to accept the current management information.

 230

Cluster ULS file

The cluster ULS file is used for managing ULSs in a cluster application.

KDCDEF creates the cluster ULS file with the suffix . The full file name or path name isULS

Unix and Linux systems: /cluster_filebase UTM-C.ULS

Windows systems: \cluster_filebase UTM-C.ULS

The cluster ULS file can be extended while an application is running. This is done whenever the space left in the file
is no longer sufficient to accept the current management information.

 231

5.1.2 KDCDEF statements

Special generation statements are required for generating a UTM cluster application:

You define global properties of a UTM cluster application using the CLUSTER statement. See "CLUSTER -
. These include, for instanceDefine global properties of a UTM cluster application"

the cluster filebase

the BCAMAPPL name for cluster-internal communication

timers for monitoring

a failure command and an emergency command to be called if a node fails

specifications on the cluster page pool files (number, warning level, size)

specifications concerning behavior on user sign-on as well as on deadlock handling.

You specify node-specific properties for each node application with the CLUSTER-NODE statement. See
. These include, for instance"CLUSTER-NODE - Define a node application of a UTM cluster application"

the base name of the KDCFILE, the user log file and the system log file SYSLOG

the host name of the node

the reference name of the node application

You must issue a separate CLUSTER-NODE statement for each node application.

If specifications in the CLUSTER statement or CLUSTER-NODE statements are modified then it is
always necessary to create a complete, new generation. This means that the KDCFILE and the cluster
files must be regenerated. The only exception are increases in the size of the values for the cluster
page pool. For details, see information on enlarging the cluster page pool in the relevant openUTM
manual “Using UTM Applications”.

If the UTM cluster files are to be created on generation, you must specify the GEN=CLUSTER
parameter in the OPTION statement (see also)."OPTION - manage the KDCDEF run"

You must specify MAX BLKSIZE=4K or 8K during KDCDEF generation for UTM cluster applications.
For applications on 32-bit systems, the default value is 4K. On 64-bit systems, the default value is 8K.

It is not possible to generate a UTM cluster application with two copies of the KDCFILE, i.e. the value
MAX KDCFILE=(..., SINGLE) must be specified (this is the default value).

i

 232

5.1.3 Initial KDCFILE

In the same way as with a standalone application, the initial KDCFILE is stored under the base name that you
specify in the KDCFILE operand of the MAX statement.

Each node application uses a copy of the initial KDCFILE at runtime of a node application. To allow this, you must
copy the initial KDCFILE once for each node application after the generation run.

Because each node application is monitored by another ode application, all node applications must have mutual
access to all KDCFILEs.

You will find information on starting and monitoring the node applications and detecting failures in the
relevant openUTM manual “Using UTM Applications”.

 233

5.2 Generating a reserve node application

During generation with KDCDEF, you have the option of creating reserve node applications with provisional values.
You can subsequently use the administration facilities to change the host name and the base name of the KDCFILE
of these node applications. The node application must not be active when this is done.

> To do this, specify the provisional, node-specific base name of the KDCFILE and the host name of the
reserve node using the CLUSTER-NODE statement. See "CLUSTER-NODE - Define a node application of a

.UTM cluster application"

> At a subsequent time, you use KC_MODIFY_OBJECT administration statement to change the node-specific
properties of the reserve node application: Specify the object type KC_CLUSTER_NODE to assign the spare
node application actual values for the host name of the cluster node and the base name of the KDCFILE of
the node application.

For further details on possibilities for using reserve node applications, refer to the openUTM manual
“Using UTM Applications on Unix, Linux and Windows Systems”.

For detailed information on changing the node-specific properties using the administration facilities, refer
to openUTM manual “Administering Applications”.

 234

5.3 Using global memory areas

GSSB and ULS

The UTM GSSB and ULS memory areas are available throughout the cluster in UTM cluster applications. This
means that all node applications have read and write access to these areas. The user data is stored in cluster page
pool files (see) and the management data for the GSSB and ULS areas is stored in the cluster "UTM cluster files"
GSSB file and cluster ULS file, respectively, see ."UTM cluster files"

You can use the KDCDEF statement CLUSTER ... DEADLOCK-PREVENTION to specify whether or not openUTM
is to perform additional checks to prevent deadlocks if memory areas are locked.

GSSB and ULS data are also saved in the case of UTM-F.

TLS

The UTM TLS memory areas are created locally to the nodes in UTM cluster applications, as each TLS is assigned
to an LTERM or (OSI-)LPAP and a connection can be established to every LTERM or (OSI-)LPAP in every cluster
node at any time. A separate version of the memory area therefore exists in each cluster node.

 235

5.4 Using users with RESTART=YES

In UTM cluster applications, a service restart is possible in all node applications for all genuine user IDs that have
been generated with USER ..., RESTART=YES. Any genuine user generated with USER ...,RESTART=YES is
always signed on exclusively, i.e. the user can only be signed on once to the UTM cluster application at any given
time. Furthermore, such users can have no more than one open dialog service throughout the entire cluster.

The open services of such users can be continued in any node application provided that the open service is not
bound to a node application, see below. A bound service can only be continued in the node application to which it is
bound.

Node-bound services

The following services are always node bound:

Services that have started communications with a job receiver via LU6.1 or OSI TP and for which the job-
receiving service has not yet been terminated

Inserted services in a service stack

Services that have completed a SESAM transaction

In addition, following abnormal termination, an open service is bound to a node application if the user was signed on
at the node application at the time the application was terminated.

If a user who wants to sign on at another node application even though his service is bound to a node application
then the sign-on attempt is rejected if

the node application to which the service is bound is running,

or the bound service has a transaction in the state PTC (prepare to commit),

or the UTM cluster application was generated with CLUSTER ... ABORT-BOUND-SERVICE = NO.

Connection user IDs

The service restart for connection user IDs of TS applications is bound to the connection and therefore to the node
application. If a connection user ID has been generated by a TS application with RESTART=YES then it can have a
service context that permits restarts in every node application.

Note on UTM-F
When a node application is terminated service data is lost for all services bound to this node. See
next section "Node-bound services".

i

 236

5.5 Special issues

You must create the appropriate directories for storing the global cluster files before the generation run. These must
exist and be accessible before the generation run.

The name for MAX KDCFILE and CLUSTER-NODE FILEBASE must not exceed 27 characters for UTM cluster
applications.

 237

5.6 Special issues with LU6.1 connections

More sessions (LSES statements) than connections (CON statements) can be assigned to an LPAP partner for a
UTM cluster application. KDCDEF warns you of this with message K438, but a KDCFILE is created.

A node application is assigned to each session on generation (NODE-NAME operand in the LSES and CLUSTER-
NODE statements). As a result, UTM can choose the "right" session when establishing a session with a partner
application.

For information on what you need to consider for LU6.1 communication between a standalone application
and a UTM cluster application, refer to the section "LU6.1-LPAP bundles of a standalone application with

.a UTM cluster application"

 238

6 The KDCDEF generation tool

In order to generate a new UTM application or adapt an existing UTM application, you must first define the
application configuration using KDCDEF control statements, and then use the KDCDEF generation tool to generate
the UTM components KDCFILE and KDCROOT from which the UTM application program is created. For further
information, see ."Introduction to the generation procedure"

You can also modify the configuration of an application dynamically during operation. To do this, the RESERVE
statement can be used during generation to reserve certain table locations for UTM objects. You can thus insert or
remove clients, printers, user IDs, and services, KSETs, LTACs, CONs and LSESes in the configuration “on-the-fly”
without affecting availability. The dynamic entry of objects is described in detail in the openUTM manual
“Administering Applications”.

By issuing a CREATE-CONTROL-STATEMENTS statement during the KDCDEF run, you can read out the
configuration information defined in the KDCFILE of a dynamically configured application, and convert this
information to control statements. This function is known as inverse KDCDEF. The control statements which are
generated in this way are written to a file which you can re-use directly as the input file for the KDCDEF run. For
more information, see . "Inverse KDCDEF"

 239

6.1 Creating the ROOT table source, the KDCFILE and UTM cluster files

Based on the configuration information in the KDCDEF control statements, the KDCDEF generation tool creates the
KDCFILE. This file contains all configuration and administrative data, as well as the ROOT table source for the main
routine KDCROOT and - optionally - the UTM cluster files.

The KDCFILE, the ROOT table source and the UTM cluster files can be generated simultaneously in a single
KDCDEF run or individually in separate KDCDEF runs. This is defined in the KDCDEF statement OPTION ...,
GEN=.

All KDCDEF statements provided for defining the UTM application are listed in the following sections in accordance
with their function group.

 240

6.1.1 Statements for controlling the KDCDEF run

Statement Function

EJECT Initiate a page feed in the log

END Terminate KDCDEF input

OPTION Manage the KDCDEF run

REMARK or * Insert a comment line

additional statement on BS2000 systems

DEFAULT Define default values

 241

6.1.2 Statements for creating the ROOT table source

Statement Function

AREA Define names for additional data areas

EXIT Define event exits

MAX Define UTM application parameters

MESSAGE Define the UTM message module

PROGRAM Define program units

RESERVE Reserve table locations for objects that can be entered dynamically

ROOT Define a name for the ROOT table source

additional statement on BS2000 systems

DATABASE Define the database system (BS2000 systems)

FORMSYS Define the format handling system

LOAD-MODULE Define load modules for BLS

MPOOL Define a common memory pool

TCBENTRY Define a group of TCB entries

additional statements on Unix, Linux and Windows systems

RMXA Define a name for a resource manager on Unix, Linux and Windows systems (database
connection via the X/Open XA interface)

SHARED-OBJECT Define shared objects/DLLs for exchanging programs

 242

6.1.3 Basic statements for creating a KDCFILE

Statement Function

ACCOUNT Define UTM accounting parameters

BCAMAPPL Define additional application names for parallel connections

CREATE-CONTROL-STATEMENTS Create control statements from the existing KDCFILE for a new KDCDEF
run

KSET Define a key set

LTERM Define an LTERM partner as the logical access point for clients and
printers

MAX Define the name and runtime parameters of the UTM application

MESSAGE Define a UTM message module

MSG-DEST Define a user message line

PROGRAM Define the names and properties of program units

PTERM Define clients and printers

QUEUE Reserve table entries for temporary message queues

RESERVE Reserve table locations for objects that can be entered dynamically

SFUNC Define special functions for the F and K keys

SIGNON Control the sign-on procedure

SUBNET Define IP subnets

TAC Define the names and properties of transaction codes

TACCLASS Define the number of processes for a TAC class

TAC-PRIORITIES Define priorities for the TAC classes

TLS Define a name for a TLS block

TPOOL Define an LTERM pool

ULS Define the names of ULS blocks

USER Define user IDs

 243

Statement Function

additional basic statements on BS2000 systems

DATABASE Define the database system

EDIT Define edit options

LOAD-MODULE Define load modules for BLS

MPOOL Define a common memory pool

MUX Define a multiplex connection

SATSEL Define SAT logging

additional basic statement on Unix, Linux and Windows systems

CLUSTER Define global properties of a UTM cluster application

CLUSTER-NODE Define a node application of a UTM cluster

RMXA Define a name for a resource manager

SHARED-OBJECT Define shared objects/DLLs for exchanging programs

 244

6.1.3.1 Creating the KDCFILE - additional statements for distributed processing via LU6.1

Statement Function

BCAMAPPL Define additional application names for parallel connections

CON Define a logical connection to a UTM partner application

LPAP Define an LPAP partner as the logical access point for a UTM partner application

LSES Define a session name for the connection between two UTM applications

LTAC Define local names for TACs in UTM partner applications

MASTER-LU61-LPAP Define the master LPAP of an LU6.1-LPAP bundle

RESERVE Reserve table locations for objects that can be entered dynamically (CON, LSES, LTAC)

SESCHA Define the session characteristics

UTMD Define the global values

 245

6.1.3.2 Creating the KDCFILE - additional statements for distributed processing via OSI TP

Statement Function

ABSTRACT-SYNTAX Define the abstract syntax

ACCESS-POINT Create an OSI TP access point for the local UTM application

APPLICATION-CONTEXT Define the application context

LTAC Define local names for TACs in UTM partner applications

MASTER-OSI-LPAP Define a master LPAP for a OSI-LPAP bundle

OSI-CON Define a logical connection to the partner application

OSI-LPAP Define an OSI-LPAP partner as the logical access point for the partner application

RESERVE Reserve table locations for objects that can be entered dynamically (LTAC)

TRANSFER-SYNTAX Define the transfer syntax

UTMD Define global values and the address of the local UTM application

additional statements on Unix, Linux and Windows systems

MAX XAPTPSHMKEY Define the key for the XAPTP shared memory segment

MAX OSISHMKEY Define an authorization key for the OSS shared memory segment

MAX OSI-SCRATCH-AREA
Define the size of the working area for dynamic data storage

 246

6.1.3.3 Generating KDCFILE and UTM cluster files - additional statements for UTM cluster applications

For UTM cluster applications on Unix, Linux, and Windows systems, you must also consider the following
instructions:

Statement Function

CLUSTER Define global properties of a UTM cluster application

CLUSTER-NODE Define a node application of a UTM cluster application

MAX 1

APPLIMODE
,APPLINAME
,GSSBS
,KB
,LSSBS
,NB
,ULS

Define UTM application parameters

OPTION GEN=(CLUSTER,.. Generate the UTM cluster files

1If the values of the operands listed here are modified then the UTM cluster files must be regenerated with OPTION
GEN=(CLUSTER,...).

 247

6.1.4 Effects of the KDCDEF statements on the generation objects

Not all statements of the KDCDEF generation tool have the same effect on the KDCFILE and ROOT table source.
The table below shows which control statements affect which generation objects during the KDCDEF run:

KDCDEF control statement KDCFILE ROOT
tables

KDCDEF
control

Distributed
processing via

LU6.1 OSI TP

ABSTRACT-SYNTAX X X

ACCESS-POINT X X

ACCOUNT X

APPLICATION-CONTEXT X X

AREA X X

BCAMAPPL X X

CON X X

CREATE-CONTROL-STATEMENTS1

EJECT X

END X

EXIT X X

KSET X

LPAP X X

LSES X X

LTAC X X X

LTERM X

MASTER-LU61-LPAP X X

MASTER-OSI-LPAP X X

MAX2 X X X

MESSAGE X X

MSG-DEST X

 248

KDCDEF control statement KDCFILE ROOT
tables

KDCDEF
control

Distributed
processing via

LU6.1 OSI TP

OPTION3 X X X (X) (X)

OSI-CON X X

OSI-LPAP X X

PROGRAM X X4

PTERM X

QUEUE X

REMARK X

RESERVE X X5

ROOT X

SESCHA X X

SFUNC X

SIGNON X

SUBNET X

TAC X

TACCLASS X

TAC-PRIORITIES X

TLS X

TPOOL X

TRANSFER-SYNTAX X X

ULS X

USER X

UTMD X X X

 249

KDCDEF control statement KDCFILE ROOT
tables

KDCDEF
control

Distributed
processing via

LU6.1 OSI TP

BS2000 specific statements

DATABASE X X

DEFAULT6 X X X

EDIT X

FORMSYS X X

LOAD-MODULE X X7

MPOOL X X8

MUX X

SATSEL X

TCBENTRY X

Unix, Linux and Windows system specific statements

CLUSTER X

CLUSTER-NODE X

RMXA X X

SHARED-OBJECT X X

1Based on the configuration information defined in an existing KDCFILE, the CREATE-CONTROL-
STATEMENTS statement generates an input file containing KDCDEF control statements for a new KDCDEF run.

2The operands CLRCH=, KB=, NB= and SPAB= only affect the generation of the ROOT table source. The other
operands only affects the generation of the KDCFILE.

3The effect of the OPTION statement on the KDCFILE and the ROOT table source depends on the values entered
for OPTION ...,GEN=.

4Only when generating a UTM application without load modules (on BS2000 systems), shared objects (on Unix and
Linux systems) or DLLs (on Windows systems).

5Only when generating without the operand PROGRAM= and without load modules, shared objects or DLLs.

6The effect of the DEFAULT statement on the KDCFILE and the ROOT table source depends on the specified
substatement.

7Only when extending the generation by load modules.n

8Only when generating without load modules.

 250

The KDCDEF control statement OPTION...GEN= is used to define which objects (the KDCFILE, ROOT table
sources and UTM cluster files) are to be generated by the KDCDEF generation tool.

When a new ROOT table source is created, this must be compiled (assembled on BS2000 systems) and relinked to
your application. Relinking of an application program is only necessary if the table module is not dynamically
loaded.
This is not necessary if you merely modify the KDCFILE. You can run the application with the new KDCFILE and
the old main routine KDCROOT if no generation parameters that also affect KDCROOT have been changed when
creating the new KDCFILE.

The MAX, ULS, CLUSTER and CLUSTER-NODE statements also affect the UTM cluster files during generation of
UTM cluster applications. If you change parameters of the ULS, CLUSTER and/or CLUSTER-NODE statement
when performing a new generation of a UTM cluster application, you must specify OPTION GEN=CLUSTER in
order for the changes to take effect, see also ."OPTION - manage the KDCDEF run"

 251

6.2 Calling KDCDEF and entering the control statements

Starting KDCDEF and executing a KDCDEF run

BS2000 systems

Unix and Linux systems

Windows systems

Order of the control statements

Format of the control statements

Continuation lines in control statements

Syntax and plausibility checks

KDCDEF logging

Format and uniqueness of object names

Reserved names

Format of names

Number of names

Uniqueness of names and addresses

Result of the KDCDEF run

 252

6.2.1 Starting KDCDEF and executing a KDCDEF run

You can also start the KDCDEF run from WinAdmin. For further information, please see the WinAdmin
online Help system, keyword „run KDCDEF“.

i

 253

6.2.1.1 BS2000 systems

The KDCDEF generation tool is started using the command:

/START-KDCDEF

Alternatively, you can also call KDCDEF via the SDF command START-KDCDEF. This command is located in the
SDF UTM application area. For more detailed information, see openUTM manual “Using UTM Applications on
BS2000 Systems” section "Calling UTM tools".

KDCDEF reads the generation statements from SYSDTA from a SAM or ISAM file or from an LMS library element..
The control options for the KDCDEF run (see the OPTION statement,) are "OPTION - manage the KDCDEF run"
only processed by KDCDEF if it is read from SYSDTA. All other control statements for KDCDEF can be read from
SYSDTA as well as from SAM or ISAM files or from an LMS library element.

The following restrictions apply to the use of LMS library elements:
Delta elements are not supported.

The record type of read records is not evaluated.

The records in the LMS elements may be a maximum of 256 characters in length.

The SAM or ISAM files or LMS library elements can be defined as input sources as described below:

Assign an input file using the BS2000 commando ASSIGN-SYSDTA:

/ASSIGN-SYSDTA TO-FILE=inputsource

/START-KDCDEF

Assign input files using the KDCDEF control statement OPTION ...,DATA=:

/ASSIGN-SYSDTA TO-FILE=*SYSCMD

/START-KDCDEF

OPTION DATA=inputsource1

OPTION DATA=inputsource2

etc.

END

You can catalog the files of the KDCFILE with the required attributes before calling the KDCDEF utility
program. In particular, you can assign the volume and suitable primary and secondary allocation values
as appropriate. If a KDCFILE file has already been cataloged then KDCDEF takes over the predefined
attributes.
If a file has not been cataloged then KDCDEF assigns the value 192 for both primary and secondary
allocation when creating the file.

i

 254

1.

2.

3.

4.

6.2.1.2 Unix and Linux systems

Proceed as follows to start the KDCDEF too and to execute a KDCDEF generation:

Add the directory below to the PATH environment variable:
. utm-path/ex

The program used to start the KDCDEF generation tool is located in this directory.kdcdef

Create one or more source files with an ASCII editor with control statements for the UTM generation. You must
observe the information stated in section and section "Order of the control statements" "Format of the control

.statements"

Create the directory (base directory of the application) in which openUTM stores the KDCFILE and filebase
other application-specific files. Enter the following command to create this directory:

mkdir filebase

You must create the directory starting KDCDEF. is the directory that you specified in the MAX before filebase
statement in the FILEBASE= operand.

You start the KDCDEF tool with the program.kdcdef

By default, KDCDEF reads the KDCDEF control statements from . Only the control options for the stdin
KDCDEF run are read in from a shell script (see OPTION statement in section "OPTION - manage the

), while the actual generation statements for KDCDEF are read from the files created in Step 2. KDCDEF run"
You can specify these files directly at the start of KDCDEF:

kdcdef < definput

or after KDCDEF has been started using the KDCDEF statement OPTION:

OPTION DATA=definput

END

The messages and logs from KDCDEF are written to and , i.e. everything is displayed on the screen if stdout stderr
you have not redirected the output.

You can redirect the output to a file as follows (you can select any name you want for the files):

kdcdef < definput 2>def.err 1>def.prot

All UTM messages are recorded in and contains the complete log of the KDCDEF run.def.err def.prot

 255

1.

2.

3.

4.

6.2.1.3 Windows systems

Proceed as follows to start the KDCDEF too and to execute a KDCDEF generation:

Add the directory below to the PATH environment variable: .The program used to start utmpath\ex kdcdef.exe
the KDCDEF generation tool and other utility programs and DLLs are located in this directory. Proceed as
follows:

In the Control Panel, open the dialog box . Possible access: In the search box enter Environment Variables
the term , continue with / / Environment Variables Edit the system environment variables System Properties

 / .Advanced Environment Variables

Enter the path listed above to the PATH variable and click on the "Set" button.

Create one or more source files with control statements using an ASCII editor such as the NOTEPAD for the
UTM generation. You must observe the information stated in section and in "Order of the control statements"
section . "Format of the control statements"

Create the directory (project directory) in which openUTM stores the KDCFILE and other application-filebase
specific files. You must create the directory starting KDCDEF. is the directory that you specified before filebase
in the MAX statement in the FILEBASE= operand.

Now start the KDCDEF tool. Open a command prompt window. KDCDEF reads the KDCDEF control
statements from by default, i.e. directly from the command prompt. Enter the following to have KDCDEF stdin
read the control statements from a file (e.g.):definput.txt

kdcdef < definput.txt

or start KDCDEF with and pass the file using the KDCDEF statement OPTION:kdcdef

OPTION DATA=definput.txt

The messages and logs from KDCDEF are written to and , i.e. everything is displayed on the screen if stdout stderr
you have not redirected the output. You can redirect the output to a file as follows (you can select any name you
want for the files):

kdcdef < definput.txt 2>def.err 1>def.prot

All UTM messages are recorded in and contains the complete log of the KDCDEF run.def.err def.prot

 256

6.2.2 Order of the control statements

Apart from the following exceptions, the control statements can be entered in any order. Apart from END and
UTMD, all control statements can be entered several times.

The END statement is always specified last, and concludes the sequence of control statements.

In the OPTION statement, the last parameter value specified always applies.

The order of the AREA statements indicates the order in which these areas must be specified in the parameter
list and declared in the program unit (e.g. in the LINKAGE-SECTION in COBOL). See the openUTM manual
„Programming Applications with KDCS”.

The sequence of the EXIT statements with USAGE=START and USAGE=SHUT defines the sequence in which
the programs of the event exits START and SHUT are executed when the application is started or shut down.

The master LTERM of a LTERM bundle must be generated before the slave LTERMs of this LTERM bundle.

The primary LTERM of a LTERM group must be generated before the alias LTERMs of this LTERM group.

The defined subnets are checked against the IP address of a connection request externally in the same order as
that in which the SUBNET statements are entered.

BS2000 systems:

The DEFAULT statement refers only to the control statements entered thereafter.

Load modules are loaded in the same order as that in which the LOAD-MODULE statements are entered. Refer
to the LOAD-MODULE statement in section "LOAD-MODULE - define a load module (BLS, BS2000 systems)"
and openUTM manual “Using UTM Applications on BS2000 Systems”.

Unix, Linux and Windows systems:

Shared objects/DLLs are loaded in the same order as that in which the SHARED-OBJECT statements are
entered.

 257

6.2.3 Format of the control statements

All KDCDEF control statements (apart from the DEFAULT statement on BS2000 systems) have the following format:

control-statement operand1, operand2,...

control-statement can be entered starting in column 1 or later.

control-statement must be separated from the operands by at least one blank.

Each line of the control statement can be up to 240 characters in length. The control statements can be up to
3096 characters in length when continuation lines are used (see)."Continuation lines in control statements"

Comments can be inserted using the statement REMARK or by entering an asterisk (*) in column 1.

The EJECT statement initiates a page feed in the log. The EJECT line itself is not logged.

 258

6.2.4 Continuation lines in control statements

A control statement for the KDCDEF generation tool can consist of one or more lines, in which the hyphen (-) or
backslash (\) can be used as the continuation character. In other words, if the last character of a line (apart from
blanks) is a hyphen or a backslash, KDCDEF interprets the following line as belonging to the last statement
specified. The continuation line can be entered starting in column 1 or later.

Each control statement can be up to 3096 characters in length, excluding comment lines, continuation characters,
and blanks after the continuation character.

All comment lines must be marked with REMARK or an * in column 1.

 259

6.2.5 Syntax and plausibility checks

KDCDEF carries out syntax and plausibility checks for all control statements entered. If KDCDEF does not detect
any serious errors, then KDCDEF creates the KDCFILE and/or the source code for the ROOT tables, depending on
what you have specified in OPTION.

In the case of UTM cluster applications, the UTM cluster files are also created where necessary.

KDCDEF always executes the plausibility checks for all control statements. If only one ROOT table source is
created in a KDCDEF run, for example, then KDCDEF also checks the control statements that only affect the
KDCFILE.

For this reason you should execute every KDCDEF run using all generation information, regardless of whether on
the source code for the ROOT tables or only the KDCFILE is to be created.

Inconsistencies arising during the creation of the ROOT table module and KDCFILE that would otherwise only be
detected once the application is started can be detected much earlier when complete plausibility checks are used.
Errors are avoided.

 260

6.2.6 KDCDEF logging

To improve legibility, KDCDEF logging can be structured as follows:

Comments can be inserted in the KDCDEF log:

As a string surrounded by quotes:
KDCDEF control statement " “comment
The comment entered after a KDCDEF control statement must not contain quotes.

With * or ARK comment REM comment
A * in column 1 or a REMARK statement create a comment line with a line number.

Markers can be inserted in front of KDCDEF control statements, and must be preceded by a period (.). marker
 can be up to eight alphanumeric characters in length, and must begin with a letter.marker

The EJECT statement initiates a page feed in the log. The EJECT line itself is not logged.

 261

6.2.7 Format and uniqueness of object names

When configuring objects of the application, you must assign names to the objects. These names are then used by
openUTM or the user to address specific objects. The following conditions should be borne in mind when assigning
names:

You must not use a reserved name.

The object name must be unique within that particular object class.

The name must not exceed the defined maximum length, and must contain permitted characters only.

 262

6.2.7.1 Reserved names

Please note the comments below in order to ensure that the allocation of names does not result in unexpected,
undefined UTM application behavior:

Names which start with KDC are reserved for the transaction codes of the event services, the administration
commands (KDCADM), the Dead Letter Queue and the SAT administration (BS2000 systems) and may only be
used for such objects.This does not apply to the load modules belonging to a UTM application on BS2000
systems.

On BS2000 systems program unit names must not start with prefixes which are used for runtime systems such
as IT, IC etc.

On Unix, Linux and Windows systems the names of UTM objects must not start with KDC, KC, x, ITS or mF.
External names (e.g. program unit names) must not start with ’t_’, ’a_’, ’o_’ or ’s_’ which are reserved for CMX
(t_) or OSS (a_, o_, s_).

 263

6.2.7.2 Format of names

The following conventions must be observed for names entered in KDCDEF control statements:

The base name of the KDCFILE (MAX ...,KDCFILE=) must comply with the rules for file names of the operating
system, under which the application is to run (for further information, see MAX statement in section "MAX -

).define UTM application parameters"

The names of LTERM partners, clients and printers, transaction codes and TAC queues etc. can be up to eight
characters in length, where the following characters are permitted:

A,B,C,...,Z

0,1,...,9

#, @, $

On Unix, Linux and Windows systems, names may also contain lowercase letters (a,b,c,...,z). The names are
case sensitive.

Program names specified as entry/object names in the PROGRAM statement may be up to 32 characters long.
This also applies for program names in TAC PROGRAM= and EXIT PROGRAM=.

The following characters are permitted in program names:

A,B,C,...,Z

0,1,...,9

#, @, $

If other special characters are used, the program name must be enclosed in quotes, see below.

Additional special characters in names:

Program names or passwords may also include other special characters such as "_" (underscore) and "-"
(hyphen) if permitted by the particular system environment.

Names of IP subnets must start with an asterisk ("*").

Load module names on BS2000 systems (LOAD-MODULE) may also include the "." (period) and "-" (hyphen)
characters.

Names that include special characters (program names, passwords, etc.) must be enclosed in quotes.

Exceptions to name length rules:

Presentation and session selectors in the ACCESS-POINT and OSI-CON statements can be up to 16
characters in length.

Program names can be up to 32 characters long.

Processor names can be up to 64 characters long.

On BS2000 systems, load module names in BLS generation and character set names can be up to 32
characters long; the names of common memory pools (MPOOLs) can be up to 50 characters long.

 264

6.2.7.3 Number of names

One name is created for each of the following control statements:

ACCESS-POINT
BCAMAPPL
CON
EDIT
KSET
LOAD-MODULE (BS2000 systems)
LPAP
LSES
LTAC
LTERM
MASTER-OSI_LPAP
MASTER-LU61-LPAP
MUX (BS2000 systems)
OSI-CON
OSI-LPAP
PROGRAM
PTERM
SHARED-OBJECT (Unix, Linux and Windows systems)
TAC
TLS
TPOOL
USER
ULS

Additional names are generated for the LTERM, MUX and TPOOL statements:

If an application is generated without USER, two names are created for each LTERM statement.

Two names are created for an LTERM statement belonging to a PTERM statement with PTYPE=APPLI,
SOCKET, UPIC-R or UPIC-L if the implicit (connection) user belonging to this LTERM is not generated with an
explicit USER statement.

For each TPOOL statement, the number of names created is double that specified in the NUMBER= operand of
the TPOOL statement. In the case of a TPOOL statement with PTYPE=APPLI, SOCKET, UPIC-R and UPIC-
L the number of names created is that specified in NUMBER=.threefold

Two names are created for each MUX statement.

Unix, Linux and Windows systems:

Additional names are generated for the CLUSTER and CLUSTER-NODE statements:

One BCAMAPPL is also generated for the CLUSTER statement.

One PTERM, one LTERM and one USER are also generated for each CLUSTER-NODE statement.

Furthermore, up to six additional names are created during generation, which are required by openUTM for event
services (KDCSGNTC, KDCBADTC, KDCMSGTC, KDCMSGUS, KDCMSGLT, KDCAPLKS). The first three names
can also be specified in a TAC statement. The last three names may not be specified.

 265

If XATMI program units are generated for a UTM application, i.e. if API=(XOPEN,XATMI) is set in at least one TAC
statement, then a TAC entry named KDCTXCOM and a PROGRAM entry named KDCTXRLB are created by
openUTM.

The name KDCDLETQ is created for the dead letter queue during generation. The properties of this TAC queue can
also be defined in a separate TAC statement.

Maximum values for names

The table below shows the maximum number of names that can be created using KDCDEF control statements. If
this number is exceeded, then the generation is terminated.

Group of KDCDEF control statements Maximum number of generated names

BS2000 systems

#PTERM + #CON + TPOOLNR + #OSI-ASSOCIATIONS +

#MUX1
<= 500 000

#LTERM + #LPAP + TPOOLNR + #OSI-LPAP + #TASKS +

#MUX + 11
<= 500 000

Unix, Linux and Windows systems

#PTERM + #CON + TPOOLNR + #OSI-ASSOCIATIONS <= 500 000

#LTERM + #LPAP + TPOOLNR + #OSI-LPAP + #TASKS +
1

<= 500 000

BS2000, Unix, Linux and Windows systems

#USER + #APPLI + #LSES + #OSI-ACTIVE-
ASSOCIATIONS + (2 * #TASKS) + 1

<= 500 000

#PROGRAM <= 32 000

#TAC + 4 <= 32 000

#LSES <= 65 000

#CON <= 65 000

#KSET + 1 <= 32 000

#LTAC <= 32 000

#MUX1 <= 9 999

Total of all other names + 2 <= 32 767

1Only on BS2000 systems

Description of placeholders:

 266

#statement Number of names generated using this KDCDEF statement

#APPLI Number of PTERM statements plus the TPOOLNR values of the TPOOL statements with
PTYPE=APPLI/SOCKET/UPIC-R and UPIC-L (UPIC-L only on Unix, Linux and Windows systems)

In the case of UTM cluster applications, the values of #PTRM, #LTRM and #APPLI are each
increased by the number of specified CLUSTER-NODE statements.

#MUX Total number of generated MUX statements (only on BS2000 systems)

#OSI-ACTIVE-ASSOCIATIONS

Number of active parallel OSI connections of the generated operand values (OSI-CON ...,
ACTIVE=YES and associated OSI-LPAP...,ASSOCIATIONS=). This is the sum of all number
ASSOCIATIONS values in all OSI-LPAP statements.

#OSI-ASSOCIATIONS

#OSI-ACTIVE-ASSOCIATIONS plus the number of inactive parallel OSI-connections. (OSI-CON ...,
ACTIVE=YES/NO and associated OSI-LPAP...,ASSOCIATIONS=). This is the sum of all number
ASSOCIATIONS values in all OSI-LPAP statements, including the values of OSI-LPAP statements
for which backup connections are generated.

TPOOLNR Sum of all NUMBER= operands (number of LTERM partners in each LTERM pool) in all generated
TPOOL statements

The following must also be noted:

The number of names for #PROGRAM, #TAC, #LTERM, #PTERM, #USER, #KSET and #LTAC includes names
generated statically and reserved names for objects that can be entered dynamically.

The names of MASTER-LU61-LPAP statements must also be counted with #LPAP.

The names of MASTER OSI-LPAP statements must also be counted for #OSI-LPAP.

If the application was generated without USER statements, #USER must be replaced by #LTERM + TPOOLNR
in the first condition.

You can generate up to 100 ULS blocks and 100 TLS blocks.

The number of generated user IDs (#USER) plus the number of entries intended for service stacking (defined in
MAX NRCONV=) is restricted to a maximum of 500000.

The number of generated user IDs (#USER) plus the number of entries intended for service stacking (MAX
NRCONV) plus the maximum number of possible parallel asynchronous services (defined in MAX ASYNTASKS
= (...,)) plus the number of entries reserved for sign on services (SIGNON CONCURRENT-service_number
TERMINAL-SIGNON) is restricted to a maximum of 665000.

 267

6.2.7.4 Uniqueness of names and addresses

The objects of a UTM application are combined in shared name spaces which are defined for specific object types.
The names and address of objects of the permitted types must be unique throughout the name class. A name or
address must only be assigned once within the name class. There are three name classes:

Name class 1

LTERM partners (statement LTERM)ltermname

LTERM partners created by openUTM for the LTERM pools
(statement TPOOL ...,LTERM= , NUMBER=)ltermprefix number

transaction codes and TAC queues (statements TAC)tacname

LPAP or OSI-LPAP partners for server-to-server communication
(statements OSI-LPAP and LPAP)osi_lpap_name lpapname

Name class 2

user IDs (statement USER)username

sessions for distributed processing based on LU6.1 (statement LSES)sessionname

connections and associations for distributed processing based on OSI TP (statement OSI-LPAP...,
ASSOCIATION-NAMES=, ASSOCIATIONS=)

Name class 3

clients and printers (PTERM statement)
Clients are terminals, UPIC-clients, transport system applications (DCAM, CMX and socket applications), and
UTM partner applications that do not use a higher-level protocol (LU6.1, OSI TP) during communication.

name of the partner application for distributed processing based on LU6.1 (CON statement)

name of the partner application for distributed processing based on OSI TP (OSI-CON statement)

multiplex connections of a UTM application on BS2000 systems (MUX statement)

The objects listed in name class 3 are communication partners of the UTM application. openUTM must be able to
uniquely identify these objects and the connections to them. For this purpose, it assigns a name triplet to each
communication partner. This name triplet must be unique within the UTM application and consists of the following
components:

the name of the communication partner.
This is specified in in the PTERM statement, in in the CON statement, in ptermname remote_appliname
TRANSPORT-SELECTOR= in the OSI-CON statement and in in the MUX statement. name
On BS2000 systems the BCAM name of the communication partner must be specified.

the name of the system on which the communication partner is located.This is specified in the PRONAM=
operand of the PTERM, CON and MUX statements and in the NETWORK-SELECTOR= operand of the OSI-
CON statement.

the name of the local application via which the connection to the communication partner is established. This is
specified in the BCAMAPPL= operand of the PTERM, MUX and CON statements and in the LOCAL-ACCESS-
POINT= operand of the OSI-CON statement.

 268

6.2.8 Result of the KDCDEF run

Depending on the entries made during generation, the KDCDEF generation tool creates the following:

BS2000 systems:

the KDCFILE with the main file .KDCA and, if dual-file operation is used, the duplicate file .filebase filebase
KDCB

the ROOT table source

the page pool .P A, possibly with the duplicate .P Bfilebase nn filebase nn

the restart area .R A, possibly with the duplicate .R Bfilebase nn filebase nn

Unix, Linux and Windows systems:

the main file KDCA in the directory and, if dual-file operation is used, the duplicate file KDCB, also in filebase
the directoryfilebase

the ROOT table source in the form of a C/C++ source

the page pool P A, possibly with the duplicate P B, in the directorynn nn filebase

the restart area R A, possibly with the duplicate R B, in the directorynn nn filebase

Additionally, if a UTM cluster application is being generated, see also the section "Notes on generating a UTM
:cluster application on Unix, Linux and Windows systems"

the cluster configuration file

the cluster user file

the cluster page pool files (a control file and one or more files for the user data)

the cluster GSSB file

the cluster ULS file

The format of the KDCFILE is described in detail in section . "The KDCFILE"

KDCDEF outputs a message to SYSOUT (BS2000 systems) or (Unix, Linux and Windows systems) stderr
indicating whether the KDCFILE was created successfully and specifying the size of the KAA (KDC Application
Area) occupied by the application. It also outputs a log containing the control statements and any error messages to
SYSLST (BS2000 systems) or (Unix, Linux and Windows systems).stdout

Note for KDCDEF on BS2000 systems

If the KDCDEF generation tool terminates abnormally due to an error, it sets process switch 3 (as occurs with all
UTM tools). In this case, no files are generated apart from those created by the CREATE-CONTROL-
STATEMENTS statement.

 269

6.3 Inverse KDCDEF

The inverse KDCDEF function provided by openUTM is used to ensure that changes made to the configuration
dynamically during runtime are not lost when your application is regenerated. It creates control statements for the
KDCDEF generation tool from the configuration data in the current KDCFILE.

Inverse KDCDEF generates control statements for object types that can be entered and deleted dynamically:

USER statements

For all user IDs currently defined in the application. Inverse KDCDEF does not create USER statements for user
IDs defined internally by UTM for the LTERM partners of clients of type UPIC-R, APPLI and SOCKET.

LTERM statements

For all LTERM partners of the application which do not belong to an LTERM pool or to a multiplex connection
(BS2000 systems).

PTERM statements

For all clients and printers entered in the configuration. No PTERM statements are created for clients that
connect via an LTERM pool to the application or that belong to a multiplex connection.

PROGRAM statements

For all program units and conversation exits currently defined in the application configuration.

TAC statements

For all transaction codes and TAC queues of the application.

KSET statements

For all key sets of the application.

CON statements

For all LU6.1 connections of the application.

LSES statements

For all LU6.1 session names of the application.

LTAC statements

For all local transaction codes for VTV partner applications.

Control statements are also generated for objects of the types listed above, which were created statically in a
previous KDCDEF generation. All modifications entered dynamically for these objects during runtime are taken into
consideration.

Inverse KDCDEF does create control statements for object types other than those listed above. Nor does it not
generate control statements for other components of the application or for application parameters.

It does create control statements for objects that were dynamically deleted from the application configuration. not
After regeneration, these objects are thus permanently removed from the configuration. They do not occupy a table
location and their object names are no longer reserved.

After regeneration with KDCDEF, the update tool KDCUPD does not transfer any application data from the old
KDCFILE to the new KDCFILE, which relates to objects deleted dynamically. This applies even if the new KDCDEF
generation includes an object with the same name and type as a deleted object. In particular, KDCUPD does not
transfer any asynchronous jobs created by LTERM partners or user IDs that have since been deleted.

The USER statements created by inverse KDCDEF do not include any passwords. For user IDs generated with a
password, inverse KDCDEF creates USER statements with the following format:

 270

USER username, PASS=*RANDOM,....

Once the KDCDEF run is complete and the new KDCFILE has been created, you must transfer the passwords of
the user IDs to the new KDCFILE using the KDCUPD tool. This is also possible in a UTM-F application. For further
information, see ."The tool KDCUPD – updating the KDCFILE"

It is not generally necessary to transfer the passwords with KDCUPD with UTM cluster applications. In UTM cluster
applications, the current passwords are stored in the cluster user file and not in the KDCFILE.

You only need to transfer the passwords with KDCUPD if a new cluster user file has been generated and you wish
to retain the passwords from the last application run.

In order to ensure that the KDCFILE contains the current passwords, the current information on all users
must be read once (e.g. using WinAdmin or WebAdmin.) before the application is terminated.

i

 271

6.3.1 Starting inverse KDCDEF

Inverse KDCDEF can be started online or offline.

The inverse KDCDEF run is started by issuing the KC_CREATE_STATEMENTS call via the program online
interface for administration. Further information can be found in the openUTM manual “Administering Applications”.
Inverse KDCDEF can only be started if the application is not running, i.e. outside the application runtime. offline
Since inverse KDCDEF reads data from the KDCFILE, you must ensure that this data is not modified during the
inverse KDCDEF run.

Inverse KDCDEF can be started offline by calling the KDCDEF generation tool and issuing the control
statement . This statement is described in section CREATE-CONTROL-STATEMENTS "CREATE-

.CONTROL-STATEMENTS - Create KDCDEF control statements"

You can start inverse KDCDEF such that KDCDEF control statements are created either for all permitted
object types, or only for those object types combined in the object groups CON, DEVICE, KSET, LSES,
LTAC, PROGRAM and USER.

CREATE-CONTROL-STATEMENTS *ALL

KDCDEF control statements are created for all objects of type TAC, PROGRAM, PTERM, LTERM USER,
KSET, LTAC, CON and LSES.

CREATE-CONTROL-STATEMENTS DEVICE

LTERM and PTERM statements are created for LTERM partners, clients and printers.

CREATE-CONTROL-STATEMENTS PROGRAM

PROGRAM and TAC statements are created for program units, conversation exits, and transaction codes.

CREATE-CONTROL-STATEMENTS USER

USER statements are created for user IDs.

CREATE-CONTROL-STATEMENTS KSET

KSET statements are created for key sets.

CREATE-CONTROL-STATEMENTS LTAC

LTAC statements are created for transaction codes. These are used to start the service programs in partner
applications.

CREATE-CONTROL-STATEMENTS CON

CON statements are created for transport connections to remote LU6.1 applications.

CREATE-CONTROL-STATEMENTS LSES

LSES statements are created for assigning new LU6.1 session names.

 272

6.3.2 Result of inverse KDCDEF

With inverse KDCDEF, you can define that

all control statements are to be written to a file or - on BS2000 systems - to an LMS library element.

or that the control statements of a particular object group are to be written to a separate file or - on BS2000
systems - to a separate LMS library element.

When starting inverse KDCDEF, you specify the name(s) of the file(s) or LMS library element(s) to be created. If a
file or LMS library element with this name does not exist, the file or library element is created automatically. If a file
or LMS library element with this name already exists. It is created automatically. Otherwise you can define whether
it is to be overwritten or updated.

The CREATE-CONTROL-STATEMENTS statement is applied immediately. You can therefore issue the OPTION
statement immediately after the CREATE-CONTROL-STATEMENTS statement in the same KDCDEF run. This
transfers the files created by inverse KDCDEF to KDCDEF. For example:

CREATE-CONTROL-STATEMENTS *ALL, TO-FILE=control_statements_file

 ,MODE=CREATE,FROM-FILE=kdcfile

OPTION DATA=control_statements_file

The diagram below illustrates how you can transfer the files generated by inverse KDCDEF directly as input files to
KDCDEF. However, you can also edit them, i.e. modify them before the KDCDEF run and pass them to KDCDEF
later as part of a regeneration. In this case, you simply terminate the generated control statements with the END
statement. You assign each generated input file to KDCDEF with the control statement OPTION DATA=

 before the start.control_statements_file

 273

Figure 18: KDCDEF run with inverse KDCDEF

 274

6.3.3 Creating KDCDEF control statements in upgrades

To enable inverse KDCDEF to read information from the KDCFILE, you must ensure that the KDCFILE was created
with the same openUTM version as the KDCDEF generation tool used for the inverse KDCDEF run.

If you upgrade to a new openUTM version, the KDCDEF control statements must first be created in the previous
version, i.e. you must start the inverse KDCDEF of the previous version. The generated files can then be used as
input files for the KDCDEF of the new openUTM version.

 275

6.4 Recommendations when regenerating an application

During the operation of a UTM application, it may become necessary to regenerate the application.

For UTM cluster applications on Unix, Linux or Windows systems, there are changes that can be made with a new
generation of the KDCFILE with a running UTM cluster application and changes that can only be made when the
UTM cluster application has been completely terminated.

A list of changes that require the UTM cluster application to be completely terminated before the
application is started with the new KDCFILE can be found in the openUTM manual “Using UTM
Applications on Unix, Linux and Windows Systems”

Possible reasons for initiating a new KDCDEF run are listed below:

to adjust the maximum values defined during generation

to create new objects for distributed processing based on LU6.1 or OSI TP, because the server group is to be
expanded during distributed processing A KDCDEF run is only needed for distributed processing based on LU6.
1 if it is necessary to insert LPAP objects. Objects of the types CON, LSES and LTAC, on the other hand, can be
created with dynamic administration (provided that sufficient table entries were reserved with the RESERVE
statement).

to enter new load modules (BS2000 systems), shared objects (Unix and Linux systems) or DLLs (Windows
systems) in the application program

in cases where table locations reserved for the dynamic entry of objects in the configuration are occupied, to
extend the table or to remove objects marked for deletion in order to release the table locations and object
names for further use

The application downtime associated with regeneration can be reduced by observing the following
recommendations:

When generating your application for the first time, split the KDCDEF control statements between various files
depending on whether the objects involved can only be generated statically or can be entered dynamically.
These files can then be provided to KDCDEF as input files using the OPTION DATA= statement.

The control statements USER, LTERM, PTERM, PROGRAM TAC, CON, KSET, LSES and LTAC should be
entered separately in files in accordance with the various object groups. When regenerating the application, you
can simply replace these files with those created by inverse KDCDEF (DEVICE, PROGRAM, and USER, CON,
KSET, LSES and LTAC). Further information can be found in section "CREATE-CONTROL-STATEMENTS -

.Create KDCDEF control statements"

Before regenerating the application or initiating the inverse KDCDEF run, it is
recommended that you dynamically delete all objects that are to be excluded from the new configuration
(KC_DELETE_OBJECT call). Further information can be found in the openUTM manual “Administering
Applications”.

Compared to the manual deletion of control statements from the input file for the KDCDEF run, dynamic deletion
offers the following advantages:

In UTM cluster applications, objects that can be administered dynamically must always be deleted using
the administration facilities. Only deleting the objects in the KDCDEF source leads to inconsistencies in
the individual node applications of the UTM cluster application.

i

 276

If an object is manually deleted from the input file during regeneration, and another object is defined with the
same name and type but with different properties in the same generation run, the KDCUPD tool does not
recognize these as two different objects, and transfers the data of the deleted object to the KDCFILE. This can
be avoided by dynamically deleting the object beforehand, and then creating an object with the same name and
type during regeneration. In this case, KDCUPD will recognize these as two different objects, and will not transfer
the data of the old object into the new KDCFILE.

The manual deletion of KDCDEF statements from the KDCDEF input file is both tedious and prone to errors.
During deletion, you must look out for dependencies between objects and thus between the KDCDEF
statements. If dependencies are inadvertently overlooked, the KDCDEF run will have to be repeated thus
increasing downtimes.

The processes performed during regeneration can be automated. Within a single procedure, you can call inverse
KDCDEF, transfer the generated files directly to KDCDEF, and call the KDCUPD update tool. This fully
automatic procedure minimizes downtimes during regeneration.

To prevent undesirable repercussions from dynamic deletion, make sure for instance that there are no jobs pending
for objects deleted or loaded dynamically during runtime.

 277

6.5 KDCDEF control statements

ABSTRACT-SYNTAX - define the abstract syntax

ACCESS-POINT - create an OSI TP access point

ACCOUNT - define the accounting functions

APPLICATION-CONTEXT - define the application context

AREA - define additional data areas

BCAMAPPL - define additional application names

CHAR-SET- assign names to code tables (BS2000 systems)

CLUSTER - define global properties of a UTM cluster application (Unix, Linux and Windows systems)

CLUSTER-NODE - define a node application of a UTM cluster application (Unix, Linux and Window systems)

CON - define a connection for distributed processing based on LU6.1

CREATE-CONTROL-STATEMENTS - create KDCDEF control statements

DATABASE - define a database system (BS2000 systems)

DEFAULT - define default values (BS2000 systems)

EDIT - define edit options (BS2000 systems)

EJECT - initiate a page feed in the log

END - terminate KDCDEF input

EXIT - define event exits

FORMSYS - define the format handling system (BS2000 systems)

HTTP-DESCRIPTOR - define a HTTP Descriptor

KSET - define a key set

LOAD-MODULE - define a load module (BLS, BS2000 systems)

LPAP - define an LPAP partner for distributed processing based on LU6.1

LSES - define a session name for distributed processing based on LU6.1

LTAC - define a transaction code for the partner application

LTERM - define an LTERM partner for a client or printer

MASTER-LU61-LPAP - define the master LPAP of an LU6.1-LPAP bundle

MASTER-OSI-LPAP - defining the master LPAP of an OSI-LPAP bundle

MAX - define UTM application parameters

MESSAGE - define a UTM message module

MPOOL - define a common memory pool (BS2000 systems)

MSG-DEST - define user-specific messages destinations

MUX - define a multiplex connection (BS2000 systems)

OPTION - manage the KDCDEF run

OSI-CON - define a logical connection to an OSI TP partner

OSI-LPAP - define an OSI-LPAP partner for distributed processing based on OSI TP

PROGRAM - define a program unit

PTERM - define the properties of a client/printer and assign an LTERM partner

 278

QUEUE - reserve table entries for temporary messages queues

REMARK - insert a comment line

RESERVE - reserve table locations for UTM objects

RMXA - define a name for an XA database connection (Unix, Linux and Windows systems)

ROOT - define a name for the ROOT table source

SATSEL - define SAT logging (BS2000 systems)

SESCHA - define session characteristics for distributed processing based on LU6.1

SFUNC - define function keys

SHARED-OBJECT - define shared objects/DLLs (Unix, Linux and Windows systems)

SIGNON - control the sign-on procedure

SUBNET - define IP subnets

TAC - define the properties of transaction codes and TAC queues

TACCLASS - define the number of processes for a TAC class

TAC-PRIORITIES - specify priorities of the TAC classes

TCBENTRY - define a group of TCB entries (BS2000 systems)

TLS - define a name for a TLS block

TPOOL - define an LTERM pool

TRANSFER-SYNTAX - define the transfer syntax

ULS - define a name for a ULS block

USER - define a user ID

UTMD - application parameters for distributed processing

 279

6.5.1 ABSTRACT-SYNTAX - define the abstract syntax

The ABSTRACT-SYNTAX control statement is only required if you want to define your own Application Context for
communication via the OSI-TP protocol (see the APPLICATION-CONTEXT statement in section "APPLICATION-

).CONTEXT - define the application context"

ABSTRACT-SYNTAX defines a local name for an abstract syntax, and to assign an object identifier and the transfer
syntax selected for transferring the user data. Since openUTM automatically generates the abstract syntaxes CCR,
UDT, XATMI and UTMSEC. Therefore, they need not be explicitly generated using the ABSTRCT-SYNTAX
statement. It is possible to generate up to 50 abstract syntaxes, including those generated implicitly by openUTM.

ABSTRACT-SYNTAX abstract_syntax_name
 ENTIFIER=object_identifier,OBJECT-ID

 [,TRANSFER-SYNTAX=transfer_syntax_name]

abstract_syntax_name

 Local name for an abstract syntax up to eight characters in length. This name must be unique
within the UTM application.

abstract_syntax_name must be specified in MGET/MPUT or FGET/FPUT when sending or
receiving data in this abstract syntax.

OBJECT-IDENTIFIER=object_identifier

Object identifier of the abstract syntax specified as follows:

object_identifier=(number1,number2, ... ,number10)

number is a positive integer in the range 0 to 67108863. For , you can specify object_identifier
two to ten integers enclosed in parentheses, each of which is separated by a comma. The
number of integers entered and their positions are relevant.

Instead of the integer itself, you can also specify the symbolic name assigned to this integer.
The table in section shows the permitted values for at the various positions."OSI terms" number

object_identifier must be unique with the UTM application, i.e. another abstract syntax must not
be generated with the same object identifier.

TRANSFER-SYNTAX=transfer_syntax_name

Name of a transfer syntax defined using the TRANSFER-SYNTAX control statement.

Default: BER (Basic Encoding Rules)

 280

openUTM automatically generates the abstract syntaxes CCR, UDT, XATMI and UTMSEC, which are defined as
follows:

Generation of “CCR”:

ABSTRACT-SYNTAX CCR, -

 OBJECT-IDENTIFIER=(2, 7, 2, 1, 2), -

 TRANSFER-SYNTAX=BER

Symbolic representation of the object identifier:

(joint-iso-ccitt, ccr, abstract-syntax, apdus, version2)

Generation of “UDT”:

ABSTRACT-SYNTAX UDT, -

 OBJECT-IDENTIFIER=(1, 0, 10026, 6, 1, 1), -

 TRANSFER-SYNTAX=BER

Symbolic representation of the object identifier:

(iso, standard, tp, udt, generic-abstract-syntax, version)

Generation of “XATMI”:

ABSTRACT-SYNTAX XATMI, -

 OBJECT-IDENTIFIER=(1, 2, 826, 0, 1050, 4, 1, 0), -

 TRANSFER-SYNTAX=BER

Symbolic representation of the object identifier:

(iso, national-member-body, bsi, disc, xopen, xatmi, apdus-abstract-syntax,

version1

Generation of “UTMSEC”:

ABSTRACT-SYNTAX UTMSEC, -

 OBJECT-IDENTIFIER=(1, 3, 0012, 2, 1107, 1, 6, 1, 2, 0), -

 TRANSFER-SYNTAX=BER

Symbolic representation of the object identifier:

(iso, identified-organisation, icd-ecma, member-company, siemens-units, sni,

transaction-processing, utm-security, abstract-syntax, version)

 281

6.5.2 ACCESS-POINT - create an OSI TP access point

The ACCESS-POINT control statement is required only for communication based on the OSI TP protocol. It defines
a local access point to the services of OSI TP.

Using the information specified in the ACCESS-POINT statement, a partner application can address the local
application.

You specify the following parameters for a service access point in the ACCESS-POINT statement:

Address of the access point within the local system
The address of the access points consists of the presentation selector, session selector and transport selector
components.

The address specifications must be coordinated with the communication partners. The TRANSPORT-
SELECTOR specification is mandatory in all cases.

Unix, Linux and Windows systems:
On Unix, Linux and Windows systems the address of the access point also comes from the LISTENER-PORT, T-
PROT, and TSEL-FORMAT components.
See for more "Providing address information for the CMX transport system (Unix, Linux and Windows systems)"
information.
Only a maximum of 1000 connections can be established per access point at a time. If you require more
concurrent connections in your application, you must define more than one access point. But in this case note
the above info box.

Application Entity Qualifier
You can define an application entity qualifier (AEQ) as additional address information. The application entity
qualifier (AEQ) is combined with the application process title (APT) defined in the UTMD statement to form the
application entity title (AET). The AET is a globally unique name for an application entity within the OSI TP
environment. During transaction-oriented processing, the partner application requires the AET of the local UTM
application in order to establish a connection. Similarly, the local application requires the AET of the partner
application. It must be specified in the OSI-LPAP control statement that defines the partner application.
The transport selector for the access point is still a mandatory entry.

Listener ID (Unix, Linux and Windows systems)
On Unix, Linux and Windows systems the access point is assigned a listener ID.

Each ACCESS-POINT is signed on to the transport system when the application is started (provided this is
possible), and is not signed off until the application is terminated.

If you issue more than one ACCESS-POINT statement per application, then KDCDEF outputs warning
K492.

If more than one ACCESS-POINT statement is generated for an application then the applcation program
have to make sure that all partner applications involved in a single transaction are connected to the UTM
appilcation via the same service access point. OSI TP does not support tansactions spreading over more
than one service access point.

i

 282

ACCESS-POINT access_point_name

[, PPLICATION- NTITY- UALIFIER=aequalifier]A E Q

 , RESENTATION ECTOR={ *NONE |P -SEL

 (C'c' [, | EBCDIC | ASCII]) |STD

 X'x' }

 , ESSION ECTOR={ *NONE |S -SEL

 (C'c' [, | EBCDIC | ASCII]) | STD

 X'x' }

 , RANSPORT ECTOR=C'c'T -SEL

further operands for Unix, Linux and Windows systems

[,LISTENER-ID=number]

[,LISTENER-PORT=number]

[,T-PROT=()] RFC1006

[,TSEL-FORMAT={ T | E | A }]

access_point_name

Name of the OSI TP access point, which is then used to identify the access point in the
local UTM application.

access_point_name can be up to eight characters in length. must be access_point_name
unique within the local UTM application.

APPLICATION- NTITY- UALIFIER=aequalifierE Q

Address component of the application entity title (AET). The AET is required if you are
working with transaction management (commit functional unit), or if a heterogeneous
partner requires an AET in order to establish a connection.

An application entity qualifier (AEQ) can be specified only if an application process title
(APT) is also defined for the application in the UTMD statement.

However, an APT need not necessarily be assigned an AEQ. If AEQ is defined , the not
access point has no application entity title (AET), i.e. it cannot be used for transaction
management (commit functional unit).

For , specify a positive integer. must be unique within the application, i.aequalifier aequalifier
e. =integer1 must not be specified as the AEQ in any other ACCESS-POINT aequalifier
statement.

Minimum value: 1

Maximum value: 67 108 863 (2 -1)26

If the application context of an OSI-LPAP partner that operates via this access
point (OSI-CON statement) contains the CCR syntax, you must enter an
application entity qualifier here.

i

 283

LISTENER-ID= number

This operand is supported only on Unix, Linux and Windows systems.

This assigns a listener ID to the access point as administrative information.

Listener IDs can be specified for access points and application names. See also the
BCAMAPPL statement in section ."BCAMAPPL - define additional application names"

You can use the listener IDs to distribute the network connections of the access points to
different network processes. All connections of an access point are managed by the same
network process.

If you do not explicitly specify a listener ID, openUTM assigns the value 0 and combines all
connections without a listener ID into a single network process.

Default value: 0
Minimum value: 0
Maximum value: 65535

BCAMAPPL names that were created for communication via the socket interface (native
TCP/IP) use separate network processes. Their listener IDs comprise a separate number
space. i.e. they are administered in a different network process even if they have the same
listener ID as this access point.

LISTENER-PORT= number

This operand is supported only on Unix, Linux and Windows systems.

Port number of the access point.

All port numbers between 1 and 65535 are allowed.

Default: 0 (i.e. no port number)

If OPTION CHECK-RFC1006=YES, then a port number must be entered for LISTENER-
PORT.

PRESENTATION ECTOR=-SEL

Presentation selector for the address of the OSI TP access point.

 *NONE The address of the OSI TP access point does not contain a presentation selector.

 C’c’ The presentation selector is entered in the form of a character string (c). The value
specified for can be up to 16 characters in length. The presentation selector is case-c
sensitive.

In the case of a character string, you can chose the code in which the characters are
interpreted.

 STD The characters are interpreted as a machine-specific code (BS2000 = EBCDIC; Unix, Linux
and Windows systems = ASCII).

Default: STD

 EBCDIC The characters are interpreted as EBCDIC code.

 284

 ASCII The characters are interpreted as ASCII code.

 X’x’ The presentation selector is entered in the form of a hexadecimal number (x). The value
specified for can be up to 32 hexadecimal digits (corresponds to 16 bytes) in length. You x
must enter an even number of hexadecimal digits.

SESSION ECTOR= -SEL

Session selector for the address of the OSI TP access point.

 *NONE The address of the OSI TP access point does not contain a session selector.

 C’c’ The session selector is entered in the form of a character string (c). The value specified for c
can be up to 16 characters in length. The session selector is case-sensitive.

In the case of a character string, you can chose the code in which the characters are
interpreted.

 STD The characters are interpreted as a machine-specific code (BS2000 = EBCDIC; Unix, Linux
and Windows systems = ASCII).

Default: STD

 EBCDIC The characters are interpreted as EBCDIC code.

 ASCII The characters are interpreted as ASCII code.

 X’x’ The session selector is entered in the form of a hexadecimal number (x).
The value specified for can be up to 32 hexadecimal digits (corresponds to 16 bytes) in x
length. You must enter an even number of hexadecimal digits.

TRANSPORT ECTOR=C’c’-SEL

Transport component for the address of the OSI TP access point.

The specification of T-SEL=C’c’ is mandatory.

You can enter up to eight printable characters. Permitted characters include uppercase
letters, numbers, and the special characters $, # and @. Hyphens are not permitted. The
first character of the name must be an uppercase letter.

The name defined in T-SEL must be unique in the local UTM application. It must not be the
same name as the primary application name specified in MAX APPLINAME, a BCAMAPPL
name or the name specified with a Tselector in an ACCESS-POINT control statement.

BS2000 systems:

T-SEL= specifies the local BCAM application name.The transport selector must be unique
in the local system for each host.

Unix, Linux and Windows systems:

You must match T-SEL to the transport selector of the OSI TP partner. If, for example, the
partner is a UTM application, the specification in T-SEL must match the transport selector of
the OSI-CON statement on the partner.

 285

T-PROT= Address formats of the T-selectors of the access point

This operand is supported only on Unix, Linux and Windows systems.

Further Information, see ."PCMX documentation" (openUTM documentation)

 RFC1006 Address format RFC1006, ISO transport protocol based on TCP/IP and RFC1006
convergence protocol.

Default: RFC1006

TSEL-FORMAT= Format indicator of the T-selectors of the access point (operand TRANSPORT-SELECTOR)

This operand is supported only on Unix, Linux and Windows systems.

The format indicator specifies the encoding of the T-selectors in the
transport protocol. You will find more information in the “PCMX documentation” (openUTM

.documentation)

 T TRANSDATA format (encoded in EBCDIC)

 E EBCDIC character format

 A ASCII character format

Default:
 T if the character set of the T-selector corresponds to the TRANSDATA format
 E in all other cases

It is recommended to specify a value explicitly for TSEL-FORMAT.

 286

6.5.3 ACCOUNT - define the accounting functions

The ACCOUNT control statement allows you to define:

whether the accounting or calculation phase of the UTM accounting is to be activated at the start of the UTM
application,

when an accounting record is written,

the weighting with which resources are to be evaluated in the accounting phase.

If the ACCOUNT control statement is not specified, then this has the same effect as ACCOUNT ACC=NO. Only the
first ACCOUNT statement of a KDCDEF run is evaluated.

UTM accounting can also be activated and deactivated via the administration, even if no ACCOUNT statement is
issued in the KDCDEF generation. In this case the default values apply.

You may only specify the ACCOUNT statement once within a KDCDEF run.

ACCOUNT ACC={ YES | NO | CALC }

[,CPUUNIT=cpuunit]

[,IOUNIT=iounit]

[,MAXUNIT=maxunit]

[,OUTUNIT=outunit]

ACC= specifies which UTM accounting functions are to be executed. ACC is a mandatory operand.

 YES openUTM is to activate the accounting phase of UTM accounting after the application start.

 NO The accounting functions are not activated after the application start.
You can switch on the accounting functions during live operation using the administration
command KDCAPPL ..., ACC=ON or via the program interface for administration (see the
openUTM manual “Administering Applications”).

 CALC openUTM is to activate the calculation phase after the application start.

CPUUNIT= cpuunit

specifies the weighting with which a CPU second is evaluated in the accounting phase of the UTM
accounting. Fractions of a CPU second are billed proportionally.
You must enter an integer here.

Default value: 0
Minimum value: 0
Maximum value: 32767

The UTM accounting functions and the format of accounting records written by openUTM are described in
the openUTM manual “Using UTM Applications”.

i

 287

IOUNIT= iounit

specifies the weighting with which 100 disk I/Os are evaluated in the accounting phase.

Fractions of 100 inputs/outputs are billed accordingly. You must enter an integer here.

Default value: 0
Minimum value: 0
Maximum value: 32767

 MAXUNIT= maxunit

specifies the number of accounting units at which openUTM is to create an accounting record for a
particular user (USER). You must enter an integer here.

Default value:

99 999 999 (=10 -1) i.e. an accounting record is normally created only on connection shutdown.8

Minimum value: 1

Maximum value: 99 999 999 (=10 - 1)8

OUTUNIT= outunit

specifies the weighting with which a print job (FPUT NE) is evaluated for accounting purposes.
You must enter an integer here.

Default value: 0
Minimum value: 0
Maximum value: 4095

Unix, Linux and Windows systems:
This operand is not used because these operating systems do not provide information on
disk I/O.

i

 288

6.5.4 APPLICATION-CONTEXT - define the application context

The APPLICATION-CONTEXT control statement is required only for communication based on the OSI TP protocol.
You only have to specify the APPLICATION-CONTEXT statement if you want to define an additional application
context.

It allows you to define the application context used for communication via OSI TP. The application context
determines the rules governing data transfer between the
communication partners. It defines how the user data is encoded for transfer, and the format in which data is
transferred. The application context must be coordinated with the partner.

The APPLICATION-CONTEXT statement enables you to define a local name for an application context, and to
assign an object identifier and the abstract syntaxes belonging to this application context.

openUTM generates the standard application contexts UDTAC, UDTDISAC, XATMIAC, UDTCCR, UDTSEC and
XATMICCR.

APPLICATION-CONTEXT application_context_name

 ENTIFIER=object_identifier,OBJECT-ID

 ,ABSTRACT-SYNTAX={ abstract_syntax_name |

 (abstract_syntax_name,...) }

application_context_name

 A local name for an application context up to eight characters in length.

application_context_name must be unique within the UTM application.

OBJECT-IDENTIFIER=object_identifier

Object identifier of the application context specified as follows:

object_identifier=(number1,number2, ... ,number10)

number is a positive integer in the range 0 to 67108863. For object_identifier, you can
specify two to ten integers enclosed in parentheses, each of which is separated by a
comma. The number of integers entered and their positions are relevant.
Instead of the integer itself, you can also specify the symbolic name assigned to this
integer. The table in section shows the permitted values for number at the "OSI terms"
various positions.

object_identifier must be unique within the UTM application, i.e. another application context
must not be generated with the same object identifier.

ABSTRACT-SYNTAX= Abstract syntax assigned to the application context for the transfer of user data.

 abstract_syntax_name

Name of an abstract syntax defined using the ABSTRACT-SYNTAX control statement.

 (abstract_syntax_name, ..., abstract_syntax_name)

 289

List of up to nine abstract syntaxes separated by commas. Each abstract syntax specified in
must be defined beforehand using the ABSTRACT-SYNTAX abstract_syntax_name

statement.

The default UTM syntaxes CCR, UDT, XATMI, and UTMSEC need not be explicitly
generated.

To work with transaction processing, a application context must be selected that contains the abstract syntax CCR.

If sign-on data is to be passed in a APRO call, then a application context must be selected that contains the
abstract syntax UTMSEC.

If both partners use the XATMI interface, then a application context must be selected that contains the abstract
syntax XATMI.

openUTM automatically generates the application contexts UDTAC, UDTDISAC, XATMIAC, UDTCCR, UDTSEC
and XATMICCR, which are defined as follows:

Generation of “UDTAC”:

APPLICATION-CONTEXT UDTAC, -

OBJECT-IDENTIFIER=(1, 0, 10026, 6, 2), -

ABSTRACT-SYNTAX=UDT

Symbolic representation of the object identifier:

(iso, standard, tp, udt, application-context)

Generation of “UDTDISAC”:

APPLICATION-CONTEXT UDTDISAC, -

OBJECT-IDENTIFIER=(1, 0, 10026, 6, 2, 1), -

ABSTRACT-SYNTAX=UDT

Symbolic representation of the object identifier:

(iso, standard, tp, udt, application-context, with-tp)

Generation of “XATMIAC”:

APPLICATION-CONTEXT XATMIAC, -

OBJECT-IDENTIFIER=(1, 2, 826, 0, 1050, 4, 2, 1), -

ABSTRACT-SYNTAX=(XATMI)

Symbolic representation of the object identifier:

(iso, national-member-body, bsi, disc, xopen, xatmi, application-context, atpll-21-

31)

Generation of “UDTCCR”:

APPLICATION-CONTEXT UDTCCR, -

OBJECT-IDENTIFIER=(1, 0, 10026, 6, 2), -

ABSTRACT-SYNTAX=(UDT, CCR)

Symbolic representation of the object identifier:

 290

(iso, standard, tp, udt, application-context)

Generation of “UDTSEC”:

APPLICATION-CONTEXT UDTSEC, -

OBJECT-IDENTIFIER=(1, 3, 0012, 2, 1107, 1, 6, 1, 3, 0), -

ABSTRACT-SYNTAX=(UDT, UTMSEC, CCR)

Symbolic representation of the object identifier:

(iso, identified-organisation, icd-ecma, member-company, siemens-units, sni,

transaction-processing, utm-security, application-context, version)

Generation of “XATMICCR”:

APPLICATION-CONTEXT XATMICCR, -

OBJECT-IDENTIFIER=(1, 2, 826, 0, 1050, 4, 2, 1), -

ABSTRACT-SYNTAX=(XATMI, CCR)

Symbolic representation of the object identifier:

(iso, national-member-body, bsi, disc, xopen, xatmi, application-context, atpll-21-

31)

 291

6.5.5 AREA - define additional data areas

The AREA statement allows you to define the name, properties, and sequence of additional shareable data areas.
The structure of these areas is not defined by openUTM and can be defined as chosen. The addresses of such
areas are passed to the program unit as parameters at the start of the program with the address of the
communication area and the standard primary working area.

Each area to be defined in openUTM must be defined in a separate AREA statement. The order of the AREA
statements indicates the order in which these areas must be specified in the parameter list and declared in the
program unit (e.g. on BS2000 systems in the LINKAGE-SECTION under COBOL). If the area defined on the -th n
location is required, then all areas in the parameter list and in the data declaration must be specified or declared up
to this area.

It is possible to specify up to 99 AREA statements in a single generation run.

Generating areas on BS2000 systems

On BS2000 systems areas can be created:

in the global common memory pool (for all applications).

in the local common memory pool (for all application processes started under the same user ID).

in non-privileged subsystems.

in the linked application program.

The following applies for the AREA statement:

If you specify the operand LOAD-MODULE=, you must also write a LOAD-MODULE statement. Note that no
load module may be referenced which has been generated with LOAD-MODULE ...LOAD-MODE=ONCALL.

AREA statements that do not contain the LOAD-MODULE operand define data areas that are linked statically to
the application program.

The default values for AREA are set using the DEFAULT PROGRAM statement.

You have an alternative to administering areas with openUTM using AREA statements in most
programming languages (especially under COBOL and C/C++). The alternative is to declare areas as
external data areas and to access these areas from the program units. This option offers a number of
benefits compared with AREAs. You will find more information on this subject in the openUTM manual
„Programming Applications with KDCS”.

i

AREAs in UTM cluster applications are local to the node, i.e. each node application has its own instance
of each AREA.

i

 292

AREA areaname

[,LOAD-MODULE=lmodname]

areaname Name of the area. is an alphanumeric value up to 32 characters in length. must areaname areaname
be a module.

LOAD-MODULE=lmodname

lmodname can be up to 32 characters in length.

LOAD-MODULE= identifies the name of the load module to which the module is linked. This load
module must be defined using the LOAD- MODULE statement, and must not be generated with the
operand LOAD-MODE=ONCALL.

Generating areas on Unix, Linux and Windows systems

An area must be explicitly defined, compiled, and linked to the program unit as external C/C++ data structures.

In the AREA statement, you can define whether the area is transferred directly to the program unit, or is accessed
indirectly by means of a pointer. When accessing indirectly, a pointer must be supplied with the address of the area
before the first program unit is started. You can set the addresses before compiling or during the application run in
the event exit START, for example.

AREA areaname

 [,ACCESS={ | INDIRECT }]DIRECT

areaname Name of the area. is an alphanumeric value up to 32 characters in length. areaname areaname
must be a module.

ACCESS= Mode of access to the additional data area

 DIRECT The area is defined directly as a C data structure.Default: DIRECT

 INDIRECT The area is defined as a pointer. The pointer must be supplied with the address of the areaname
area. It is possible to first set the address during the application run, e.g. you can store the
address of a shared memory area in the pointer in the START event exit.

 293

6.5.6 BCAMAPPL - define additional application names

The BCAMAPPL statement allows you to assign additional application names to the UTM application for client
/server communication and distributed processing via LU6.1. Each application name defines a transport system
endpoint that can be used to establish connections to the UTM application.

The primary application name of the UTM application is specified in the APPLINAME operand of the MAX
statement. Please note the following:

BS2000 systems:
You may issue the BCAMAPPL statement only for additional BCAM names of the application. You must not
issue a BCAMAPPL statement for the primary application name.

Unix, Linux and Windows systems:

You will also need to issue a BCAMAPPL statement for the primary application name if you also wish to
establish connections via this name to partner applications or clients.

Only a maximum of 1000 connections can be established at a time per application name. If more concurrent
connections are needed by your application, you must define more than one application name.

The BCAMAPPL statement can be issued several times. However, to ensure that resources are not unnecessarily
occupied, you should only generate as many BCAMAPPL statements (i.e. application names) as are necessary.

It is necessary to generate additional application names for your UTM application if:

parallel connections via LU6.1 are to be defined to other applications (distributed processing). In this event,
additional application names must be generated in at least one of the applications involved.

communication with a partner is to be done via the socket interface (native TCP/IP). You will need a separate
BCAMAPPL name (with T-PROT=SOCKET) for the communication via the socket interface. This name cannot
be used for communication via other transport protocols.

you select the transport protocol (not NEA) for a partner of a UTM application generated with PTYPE=APPLI,
PTYPE=UPIC-R, or generated as a partner of a LU6.1 application.

you establish multiplex connections to a partner of a UTM application.

you want to communicate with a UTM application on Unix or Windows systems.

you want to establish connections via the RFC1006 protocol. In this case you must define a separate
BCAMAPPL name for the communication via RFC1006.

In all K-messages which contain the UTM application name as an insert, the name defined in the
APPLINAME operand of the MAX statement will be displayed.

i

 294

BCAMAPPL statement on BS2000 systems

BCAMAPPL appliname

 ,LISTENER-PORT=number only allowed and mandatory for T-PROT=SOCKET

 [,SIGNON-TAC={ *NONE | tacname }]

 [,T-PROT={ | ISO | RFC1006 | SOCKET | NEA

 (SOCKET [,*ANY | | *HTTP] [,SECURE]) *USP }]

 [,USER-AUTH = | *BASIC] *NONE

appliname Additional BCAM name of the UTM application. can be up to eight characters in appliname
length. must not be identical to the application name you specified in MAX ...,appliname
APPLINAME= or in ACCESS-POINT..., TRANSPORT-SELECTOR=.

appliname must be unique in the local system for each host.

LISTENER-PORT= number

Only permitted for T-PROT=SOCKET. In this case, it is mandatory to specify the
LISTENER-PORT.

LISTENER-PORT specifies the port number on which openUTM waits for external
connection establishment requests.

If LISTENER-PORT is generated together with T-PROT=(SOCKET,..., SECURE), then in
addition to the port number defined with , the port number +1 is also number number
assigned by the UTM application.
The second port number is required for communication between the UTM application and
the reverse proxy.

All port numbers between 1 and 65535 are allowed.

Each port number may only be used in the local system. It may be when starting once
openUTM that some port numbers are already reserved by the system or other TCP/IP
applications, or that privileged port numbers may not be used. In this case, the start of the
UTM application is aborted.

SIGNON-TAC = Specifies whether a sign-on service is to be started for connections that are established
using the application names (=transport system access point). If a sign-on appliname
service is to be started, you must specify the name of the transaction code via which the
sign-on service is to be started.

 *NONE For connections to the UTM application that are to be established using the application
name , no sign-on service is to be started, regardless of whether the TAC is appliname
generated with KDCSGNTC or not.

If the T-PROT=(SOCKET,*ANY | *HTTP) is given for the BCAMAPPL, then the value
*NONE has to be specified for SIGNON-TAC, if the TAC KDCSGNTC is generated for the
application.

 295

 tacname Name of the service TAC started via the sign-on service.

The transaction code must be generated using a TAC statement. In the TAC tacname
statement, you must not modify the following default settings for the transaction code:

API = KDCS,

CALL = FIRST or BOTH,

ENCRYPTION-LEVEL = NONE,

PGWT = NO,

TACCLASS = 0,

TYPE = D,

no limitation on data access authorizations, i.e. the operands ACCESS-LIST and LOCK
may not be specified

For UPIC partners, the sign-on service is only started if UPIC=YES is generated in the
SIGNON statement. In the case of UPIC partners, the signon service is not started when
the connection is established. Instead, it is started before a UPIC conversation is started
(see also SIGNON statement, OMIT-UPIC-SIGNOFF= parameter in section "SIGNON -

). control the sign-on procedure"
For LU6.1 partners, no sign-on service is started.

tacname may not be assigned to a program (PROGRAM operand of a TAC statement) that
is located in a load module generated with LOAD-MODE=ONCALL.

Default:

KDCSGNTC as far as it is generated in the application (KDCSGNTC = standard sign-on
service; generated with a TAC statement)

otherwise *NONE

T-PROT= Transport protocols to be used on the connections to partner applications that are
established through this application name.

 NEA An NEA transport protocol is used.

Default: NEA

CAUTION!
Those communication partners that establish their connection to the UTM
application via the primary application name (generated in MAX
APPLINAME=) can only have a sign-on service that is generated using the
transaction code KDCSGNTAC.

!

 296

 ISO An ISO transport protocol is used.

Whether or not an ISO transport connection can be established to this application and
which transport protocol will actually be used depends on the generation of the transport
system. As parallel connections are allowed for ISO transport connections although they
are not supported by openUTM, openUTM accepts the connection of the contention winner
(CON) or of the partner with the alphabetically smaller name pair (, processor ptermname
name, PTERM statement) in case of a contention.

 RFC1006 TCP/IP is used with the RFC1006 convergence protocol.
RFC1006 is synonymous with T-PROT=ISO on BS2000 systems.

T-PROT=RFC1006 or T-PROT=ISO must be used for communication with
openUTM on Unix, Linux or Windows systems.

 SOCKET Native TCP/IP is to be used as the transport protocol, i.e. communication is to be handled
via the socket interface.

If you specify T-PROT=SOCKET, then you must define a port number in the LISTENER-
PORT operand.

You will find more information on SOCKET in the section ."Providing address information"

With sub-parameters the type of socket protocol can be speciified that is to be used on
these connections.

 *USP The UTM socket protocol shall be used on connections of this transport system
access point.
*USP is the default value.

 *HTTP The HTTP protocol shall be used on connections of this transport system access point.

 *ANY On connections of this communication end point both of the UTM socket protocol and the
HTTP protocol are supported.
WIth this configuration the protocol of a connection is determined by the protocol of the first
message received.

 297

 *SECURE When SECURE is specified as additional sub-parameter, then the TLS functionality of the
secure socket layer is used for all communication on these connections.

If SECURE is specified for an application in BS2000 systems, UTM starts an additional
ENTER process with a reverse proxy for this application. The purpose of this proxy process
is to accept SSL connections for the UTM application and pass them on to the UTM
application.

UTM passes a maximum of three listener port numbers to the reverse proxy process. This
means that for a UTM(BS2000) application with a maximum of three BCAMAPPL
statements, the attribute SECURE should be specified. If more than three BCAMAPPL
statements with the SECURE attribute are required for an application, a user must create
the start procedure of the reverse proxy process himself and start the process manually.

The prerequisite for starting the reverse proxy process is that a job variable with the base
name of KDCFILE is cataloged when the application is started. For details see the
description for the use of such a job variable and of the reverse proxy process in generell in
the manual "Using UTM Applications in BS2000 Systems" in the chapter "Starting UTM
Applications".

USER-AUTH = The USER-AUTH parameter specifies which authentication mechanism HTTP-clients must
use for this application.

The value that is set here for this parameter applies to all HTTP messages that are received
using this application name and whose path specification is not mapped to a TAC using an
HTTP-DESCRIPTOR statement. For the latter cases, the parameter USER-AUTH acts on
the HTTP-DESCRIPTOR statement.

If the UTM application is generated without users, only the value *NONE may be
specified for USER-AUTH.

 *BASIC The Basic Authentication Scheme from RFC 2617 is to be used to transfer authentication
data. If Basic Authorization is required for an HTTP request, but no Authorization Header is
contained in the HTTP request, UTM requests authentication data using a response with
status code 401 Unauthorized.

 *NONE If *NONE is specified, the client does not have to pass any authentication data. UTM uses
the connection user for such a request if the client does not automatically send
authentication information in the HTTP request.

Default: *NONE

 298

BCAMAPPL statement on Unix, Linux and Windows systems

On Unix, Linux and Windows systems the operands , LISTENER-PORT (TCP/IP port number), T-PROT appliname
(transport protocols used) and TSEL-FORMAT (format identifier) are used to specify the address.

BCAMAPPL appliname

 [,LISTENER-ID=number]

 [,LISTENER-PORT=number]

 [,SIGNON-TAC={ *NONE | tacname }]

 [,T-PROT={ | SOCKET | RFC1006

 (SOCKET [,*ANY | | *HTTP] [,SECURE]) *USP }]

 [,USER-AUTH = | *BASIC]] *NONE

 [,TSEL-FORMAT={ T | E | A }]

appliname Additional name of the UTM application. can be up to eight characters in length. appliname
 must not be identical to the application name you specified in ACCESS-POINT...,appliname

TRANSPORT-SELECTOR=.

In addition, the name must be different from the application name that you specified in the
BCAMAPPL operand of the CLUSTER statement.

appliname must be unique throughout the network.

KDCDEF creates a T-selectors from for the transport system. The T-selectors is appliname
part of the transport address of the application that is used to address the application from
partner applications when establishing a connection.

Exception:
 is only relevant internally in UTM for T-PROT=SOCKET, e.g. for the appliname

administration. The name only needs to be unique within the application.

 299

LISTENER-ID= number

This assigns a listener ID to the application name as administrative information.

Listener IDs can be specified for application names and access points. Further information
can be found in the description of the ACCESS-POINT statement.

You can use the listener IDs to distribute the network connections of the access points to
different network processes. All connections of an access point are managed by the same
network process.

BCAMAPPL names with T-PROT=SOCKET (communication via the socket interface)
comprise a separate set of numbers, i.e. the access points for communication via the
socket interface are managed using different network processes than the access points for
other transport protocols.

If you do not specify a listener ID, then openUTM assigns the value 0 as the listener ID. All
connections without a listener ID that are not established via the socket interface are
combined into a single network process, and all connections without a listener ID that are
established via the socket interface are combined into another single network process.

Default value: 0
Minimum value: 0
Maximum value: 65535

LISTENER-PORT= number

Port number of the UTM application.

All port numbers between 1 and 65535 are allowed.

With T-PROT=RFC1006 and OPTION CHECK-RFC1006=YES and withT-PROT=SOCKET,
a port number must be specified for LISTENER-PORT. In all other cases, the default value
is 0 (no port number).

SIGNON-TAC = Specifies whether a sign-on service is to be started for connections that are established
using the application names (=transport system access point). If a sign-on appliname
service is to be started, you must specify the name of the transaction code via which the
sign-on service is to be started.

A port number may only be used per processor to listen for connections once
being established via the socket interface (SOCKET).

If the default value is used (port number 0), the default port number assigned
by PCMX is used internally. This can result in conflicts if, for example, the port
is used by different applications.

i

 300

 *NONE For connections to the UTM application that are to be established using the application
name , no sign-on service is to be started, regardless of whether the TAC is appliname
generated with KDCSGNTC or not.

If the T-PROT=(SOCKET,*ANY | *HTTP) is given for the BCAMAPPL, then the value
*NONE has to be specified for SIGNON-TAC, if the TAC KDCSGNTC is generated for the
application.

 tacname Name of the service TAC started via the sign-on service.

The transaction code must be generated using a TAC statement. In the TAC tacname
statement, you must not modify the following default settings for the transaction code:

API = KDCS,

CALL = FIRST or BOTH,

ENCRYPTION-LEVEL = NONE,

PGWT = NO,

TACCLASS = 0,

TYPE = D,

no limitation on data access authorizations, or in other words, the operands ACCESS-
LIST and LOCK may not be specified

For UPIC partners, the sign-on service is only started if UPIC=YES is also generated in the
SIGNON statement. In the case of UPIC partners, the signon service is not started when
the connection is established. Instead, it is started before a UPIC conversation is started
(see also SIGNON statement, OMIT-UPIC-SIGNOFF= parameter in section "SIGNON -

). For LU6.1 or OSI TP partners, no sign-on service is started.control the sign-on procedure"

Default:

KDCSGNTC as far as it is generated in the application (KDCSGNTC = standard sign-on
service; generated with a TAC statement)

otherwise *NONE

T-PROT= Address formats of the T-selectors in the transport address.

You can specify the following address formats for T-PROT.

 RFC1006 Address format RFC1006

You will find more information on the RFC1006 address format in the section “PCMX
.documentation” (openUTM documentation)

Default: RFC1006

CAUTION!
If the application name specified in corresponds to the primary appliname
application name (generated in MAX APPLINAME=) then for SIGNON-TAC= you
may specify KDCSGNTC (standard sign-on service), *NONE or leave it blank.

!

 301

 SOCKET Communication is done via the socket interface.
No other address specifications are required other than T-PROT=SOCKET, LISTENER-
PORT and . appliname
You will find more information on SOCKET in the section . "Providing addressinformation"

With sub-parameters the type of socket protocol can be speciified that is to be used on
these connections.

 *USP The UTM socket protocol shall be used on connections of this communication end point.

*USP is the default value.

 *HTTP The HTTP protocol shall be used on connections of this communication end point.

 *ANY On connections of this communication end point both of the UTM socket protocol and the
HTTP protocol are supported.
WIth this configuration the protocol of a connection is determined by the protocol of the first
message received.

 *SECURE If SECURE is also specified as an additional sub-parameter, then communication on these
connections takes place using TLS via the Secure Socket Layer.

USER-AUTH = The USER-AUTH parameter specifies which authentication mechanism clients must use for
this application.

The value that is set here for this parameter applies to all HTTP messages that are received
using this application name and whose path specification is not mapped to a TAC using an
HTTP-DESCRIPTOR statement. For the latter cases, the parameter USER-AUTH acts on
the HTTP-DESCRIPTOR statement.

If the UTM application is generated without users, only the value *NONE may be
specified for USER-AUTH.

 *BASIC The Basic Authentication Scheme from RFC 2617 is to be used to transfer authentication
data. If Basic Authorization is required for an HTTP request, but no Authorization Header is
contained in the HTTP request, UTM requests authentication data using a response with
status code 401 Unauthorized.

 *NONE If *NONE is specified, the client does not have to pass any authentication data. UTM uses
the connection user for such a request if the client does not automatically send
authentication information in the HTTP request.

Default: *NONE

TSEL-FORMAT= Format identifier of the T-selectors to be created from .appliname

The format identifier specifies the encoding of the T-selector in the transport protocol. You
will find more information in the section .“PCMX documentation” (openUTM documentation)

 T TRANSDATA format (coding in EBCDIC)
In this case must be exactly 8 characters long and must not include lowercase appliname
letters.

 E EBCDIC format

 302

 A ASCII format

Default:

 T if the character set of matches to the TRANSDATA formatappliname
 E in all other cases

It is recommended for TNS-less operation via RFC1006 to explicitly specify a value for
TSEL-FORMAT.

 303

6.5.7 CHAR-SET- assign names to code tables (BS2000 systems)

This statement is only needed when the application communicates with HTTP-Clients.

Messages from HTTP-Clients are normally encoded in an ASCII character set. On the other hand BS2000 systems
use EBCDIC character sets. The character set of the payload (message body) of an HTTP message can be
specified in the Content-Type header of the HTTP protocol. UTM can perform a code conversion of the payload, if
the character set name given in the Content-Type header of the HTTP message matches exactly one of the names
generated with the CHAR-SET statement. Note that the names are interpreted case-insensitive.

Each of the four code conversion tables of UTM may be assigned up to four character-set names.

CHAR-SET { SYS1 | SYS2 | SYS3 | SYS4 }

, NAME= (C'char-set-name', ...)

SYS1 | SYS2 | SYS3 | SYS4

 With this parameter one of the four code conversion tables of UTM is selected. For further information
about code conversion in UTM applications see chapter " ".Code conversion

NAME= (C'char-set-name', ...)

With the parameter NAME up to four character set names may be defined, which will be assigned to
the code conversion table specified in this statement. The spelling of the names is case-insensitive.
The maximum length of the name is 32 characters.

The defined character set names must be unique within the application. At most four character set
names may be assigned to one code conversion table. This may be done by one or more CHAR-SET
statements.

 304

6.5.8 CLUSTER - define global properties of a UTM cluster application (Unix, Linux and
Windows systems)

The CLUSTER statement is used to configure a UTM cluster application. The operands of the CLUSTER control
statement can be split over several CLUSTER statements.

If you specify the same operand in several CLUSTER statements, the first specification is taken as the valid one.
No message is issued.

If a cluster statement is specified, you must also specify at least two CLUSTER-NODE statements. If a CLUSTER
statement is specified, KDCDEF implicitly generates a BCAMAPPL entry with the BCAMAPPL name specified in
the CLUSTER statement.

CLUSTER CLUSTER-FILEBASE = cluster_filebase

 ,BCAMAPPL = cluster_applname

 ,LISTENER-PORT = port_number

 ,USER-FILEBASE = user_filebase

[,ABORT-BOUND-SERVICE = { | YES }]NO

[,CHECK-ALIVE-TIMER-SEC = time]

[,COMMUNICATION-REPLY-TIMER-SEC = time]

[,COMMUNICATION-RETRY-NUMBER = number]

[,DEADLOCK-PREVENTION = { | YES }]NO

[,EMERGENCY-CMD = command_string1]

[,FAILURE-CMD = command_string2]

[,FILE-LOCK-RETRY = number]

[,FILE-LOCK-TIMER-SEC = time]

[,PGPOOL=(number,warnlevel)]

[,PGPOOLFS=number]

[,RESTART-TIMER-SEC = time]

[,LISTENER-ID=number]

The effect of the CLUSTER statement depends on the value specified in the OPTION statement, see
section . "OPTION - manage the KDCDEF run"

If you change specifications in the CLUSTER statement or the CLUSTER-NODE statements with a new
generation, you must create new UTM cluster files and a new KDCFILE (OPTION GEN=CLUSTER,
KDCFILE) and use this file to apply the changes.

: Exception
The size of the cluster page pool can be increased during operation, i.e. without it being necessary to
generate new UTM cluster files. When this is done, the number of cluster page pool files must not be
changed.

i

The operands CLUSTER-FILEBASE, BCAMAPPL, LISTENER-PORT and USER-FILEBASE must always
be specified. The specifications in the OPTION statement determine whether and in what way these
operands are then evaluated.

i

 305

CLUSTER-FILEBASE=cluster_filebase

Name prefix or directory for the UTM cluster files. Some of the UTM cluster files are
generated by KDCDEF (see list below) while others are not generated until runtime.

The operand CLUSTER-FILEBASE is only evaluated if GEN=CLUSTER or GEN=
(CLUSTER,...) is specified in the OPTION statement. In this case, KDCDEF generates the
following files:

the cluster configuration file

the cluster user file

the cluster page pool files.

the cluster GSSB file

the cluster ULS file

In this case, these files must not already exist.

Mandatory operand.

cluster_filebase defines the directory in which the UTM cluster files are to be stored. The
directory must be created before the KDCDEF run.

The UTM cluster files are created under the file names , wherexxxx is file- UTM-C.xxxx

specific, see ."UTM cluster files"

The files can be copied to a different directory to operate the UTM cluster application.
Specify the name which is then valid in the start parameters when the application is started.
The name can be up to 42 characters in length and must comply with the syntax for file
names.

BCAMAPPL= cluster_applname

Name of the communication end point for cluster-internal communication.

The name specified here must be different from the names specified for TRANSPORT-
SELECTOR under MAX APPLINAME, in other BCAMAPPL statements or in ACCESS-
POINT statements. In addition, the name specified here must not be used by other
applications on the computers of the UTM cluster application as the name of a
communication end point.

The name generated here must not be referenced in other statements (e.g. in the PTERM
statement) as the BCAMAPPL name.

The name can be up to 8 characters in length.

Mandatory operand.

 306

LISTENER-PORT= port_number

Port number for cluster-internal communication.

This operand specifies the port number on which the local application listens for external
connection requests.

Enter any port number between 1 and 65535.

Note that the port number specified here must not be used anywhere else on the computers
of the UTM cluster. The port number must also differ from the other port numbers used by
this application. KDCDEF does not, however, check this.

Mandatory operand.

USER-FILEBASE= user_filebase

Name prefix or directory for the current cluster user file of a UTM cluster application. The
operand USER-FILEBASE is only evaluated if GEN=KDCFILE, GEN=(KDCFILE,
ROOTSRC) or GEN=ROOTSRC is specified in the OPTION statement.

If GEN=KDCFILE or GEN=(KDCFILE,ROOTSRC), the cluster user file must exist under
the name taken from . KDCDEF evaluates the file and extends it if user_filebase
necessary. The cluster user file can already be open for the KDCDEF run of a running
UTM cluster application.

If GEN=ROOTSRC then the cluster user file may already exist but this is not mandatory.
If it does exist then it is checked but not modified.

Mandatory operand.

The name can be up to 42 characters in length and must comply with the syntax for file
names.

ABORT-BOUND-SERVICE

This parameter determines how UTM behaves when a user who has an open service in a
node application signs on.

 NO If there is a node-bound service for a user on sign-on (see note), then the user can only
sign on at the node application to which the open service is bound; Sign-on attempts at any
other node application are rejected.

Default in UTM-S applications.

This value is not permitted in UTM-F applications.

 307

 YES If when a user signs on at a node application, there is a node-bound service for this user
that is bound to another node application that has been terminated, then the user is able to
sign on provided that no transaction of the open service has the state PTC. No service
restart is performed

The open service is terminated abnormally the next time the node application to which it is
bound is started.

Default in UTM-F applications.

CHECK-ALIVE-TIMER-SEC=time

Interval in seconds at which a node application of a UTM cluster application checks the
availability of another node application.

Minimum value: 30
Maximum value: 3600
Default value: 600

COMMUNICATION-REPLY-TIMER-SEC=time

Time in seconds that a node application of a UTM cluster application waits for a response
after sending a message to another node application.

If there is no response in the time specified here, it must be assumed that the other node
application has failed. If you have selected a value greater than zero for COMMUNICATION-
RETRY-NUMBER, it is only assumed that the other node application has failed after the
number of retry attempts has been reached.

Minimum value: 1
Maximum value: 60
Default value: 10

COMMUNICATION-RETRY-NUMBER=number

Number of retry attempts to establish communication with another node application if this
node application does not respond within the time specified under COMMUNICATION-
REPLY-TIMER. If the monitored node application also fails to respond to any of the retry
attempts, it is flagged as failed.

Minimum value: 0, i.e. no retry after a timeout.
Maximum value: 10
Default value: 1

A service is node-bound if it

has a job-receiver service

or is an inserted service resulting from service stacking.

In addition, a service associated with a user is node-bound as long as the user is
signed-on at a node application.

i

 308

DEADLOCK-PREVENTION=

In UTM cluster applications, information concerning locked data areas (GSSB, TLS, ULS) is
stored in a file. Before a service waits at a locked data area, UTM can check whether the
new wait situation might result in a deadlock. To do this, additional file I/Os are necessary.

This parameter specifies whether or not UTM performs additional checks in order to prevent
deadlocks.

 YES UTM performs additional checks of the GSSB, TLS and ULS data areas in order to prevent
deadlocks.

 NO UTM does not perform any additional checks of the GSSB, TLS and ULS data areas in
order to prevent deadlocks If a deadlock occurs in one of these data areas then this is
resolved by means of a timeout. See also MAX statement, operand RESWAIT=time1 (

)."MAX - define UTM application parameters"

Default: NO

In productive operation, it is advisable to set this parameter to YES only if timeouts occur
frequently when accessing these data areas.

EMERGENCY-
CMD=

command_string1

Name of a script.

This operand passes a command string containing a command to be executed.

The emergency script is called by openUTM if a failed node application was not restarted
after the failure script has been called and the restart timer (RESTART-TIMER-SEC
parameter) has expired.

The emergency script can be used, for example, to restart the failed computer in a cluster
or perform a node recovery for a failed node application.

The emergency script is always executed on the computer of the monitoring node
application.

The name passed here is not parsed by KDCDEF.

command_string1 can be up to 200 characters in length. The way in which the emergency
script is specified depends on the operating system.

Unix and Linux systems:

Specify the fully qualified name of a Unix Sshell script.

Example: EMERGENCY-CMD = ' utmpath /shsc/utm-c.emergency'

Windows systems:

Specify the fully qualified name of a Windows command script.

When openUTM is installed, platform specific templates are supplied with the
name .utm-c.emergency

i

 309

Example: \EMERGENCY-CMD = ' utmpath shsc\utm-c.emergency.cmd'

Calling the script command_string1 during an application run

Six arguments are passed to the script . These identify the failed cluster command_string1
node and allow corrective measures to be initiated.

The arguments are passed in the following sequence:

1st argument Name of the UTM application

2nd argument Filebase name of the KDCFILE of the failed node application

3rd argument Host name of the failed node

4th argument Virtual host name of the failed node

5th argument Reference name of the failed node application (NODE-NAME parameter
in the CLUSTER-NODE statement)

6th argument Term Application Reason: Error code in the UTM dump of the failed
node, see message K060 in openUTM manual ”Messages, Debugging
and Diagnostics”. You can decide whether or not to restart the node
application on the basis of this error code.

The error code ASIS99 means that the node was terminated
abnormally by the administrator with KDCSHUT KILL and that it
should not normally be restarted.

In the case of all other error codes (with the exception of ENDPET),
the node application was terminated abnormally and should normally
be restarted.

The error code ENDPET means that the node application was
terminated normally by the administrator with KDCSHUT even though
there was at least one distributed transaction in the PTC state
(prepare to commit). In this case the node application should be
restarted if possible in order to resolve the PTC state and release any
locks in the node application or a partner application.

The return code of the procedure or script is not evaluated.

Unix and Linux systems:

The generated script is started as a background process.command_string1

It is called with the six arguments listed above.

Windows systems:

The command script is called with the Windows command START command_string1
without waiting for it to terminate.

It is called with the six arguments listed above.

 310

FAILURE-CMD= command-string2

Name of a script.

command_string2 can be up to 200 characters in length. The way in which the failure script
is specified depends on the operating system.

The failure script is called by openUTM if a node application terminates abnormally or if
failure of a node application is detected. A user can use the failure script to restart the failed
node application, for instance.

The failure script is always executed on the computer of the monitoring node application.

Otherwise, the syntax and call method for FAILURE-CMD are identical to the syntax and
call method of "EMERGENCY-CMD" (see "CLUSTER - Define global properties of a UTM

).cluster application"

FILE-LOCK-
RETRY=

number

Number of retries for a lock request for a file that is global to the cluster if the lock was not
assigned in the time specified in FILE-LOCK-TIMER-SEC.

Minimum value: 1
Maximum value: 10
Default value: 1

FILE-LOCK-
TIMER-SEC=

time

Maximum time in seconds that a node application of a UTM cluster application waits for a
lock to be assigned to a file that is global to the cluster.

Minimum value: 10
Maximum value: 60
Default value: 30

LISTENER-ID= number

This parameter is used to select a network process for internal cluster communication.

Minimum value: 0
Maximum value: 65535
Default value: 0

PGPOOL= (number, warnlevel)

Specifies the size of the cluster page pool and the warning level for cluster page pool
utilization. The cluster page pool stores the GSSB, ULS and the service data of users
(USER statement) who are generated with RESTART=YES.

The cluster page pool can be extended during cluster operation while leaving the number of
files unchanged, see the applicable openUTM manual “Using UTM Applications”.

When openUTM is installed, platform specific templates are supplied with the
name .utm-c.failure

i

 311

 number Size of the cluster page pool in UTM pages.

For each generated node, at least 500 UTM pages are needed in the cluster page pool. The
size of a UTM page is defined in the BLKSIZE operand of the MAX statement.

Default: 10,000 or the minimum size
Minimum value: 500 * number of cluster nodes
Maximum value: 16777215 - (2 * in CLUSTER PGPOOLFS)number

If the value specified here is smaller than the minimum value that UTM calculates from the
number of generated nodes and the length generated in MAX RECBUF= , then UTM length
increases to the minimum size.number

 warning level Percentage value specifying the cluster page pool utilization level at which a warning
(message K041) is output.

Default: 80
Minimum value: 60
Maximum value: 99

Please note that the messages indicating that cluster page pool utilization has risen above
or fallen below the warning level are only output for the node application that triggers the
associated change in state. In contrast, all running node applications are affected by a
potential cluster page pool bottleneck.

PGPOOLFS= number

Number of files over which the user data is to be distributed in the cluster page pool.

The cluster page pool files are created using the cluster filebase that is specified in the
CLUSTER-FILEBASE operand. They are given the suffixes CP01, CP02, CP10.

In addition, KDCDEF always creates a file with the suffix CPMD which is used to manage
the cluster page pool and does not contain any user data.

Default: 1
Minimum value: 1
Maximum value: 10

RESTART-TIMER-
SEC=

time

Maximum time in seconds that a node application requires for a warm start after a failure.

After a failure has been detected and the failure command for a failed node application has
been called, the monitoring node application starts a timer with the time specified here. If
the failed node application is not available after this time has expired, the emergency
command is started for the failed node application.

If a value of 0 is specified, no timer is set for monitoring the restart of the failed node
application.

Minimum value: 0, i.e. restart of the application is not monitored.
Maximum value: 3600
Default value: 0

 312

6.5.9 CLUSTER-NODE - define a node application of a UTM cluster application (Unix,
Linux and Window systems)

You use the CLUSTER-NODE statement to configure a node application of a UTM cluster application.

You can start up to 32 node applications simultaneously.

You are allowed to specify the CLUSTER-NODE statement up to 32 times for each UTM cluster application.

You must specify at least two CLUSTER-NODE statements if you want to generate a UTM cluster application. A
CLUSTER statement must also be generated if you have specified a CLUSTER-NODE statement.

CLUSTER-NODE FILEBASE = node_filebase

 ,HOSTNAME = host_name

[,NODE-NAME = node_name]

[,VIRTUAL-HOST = virtual_host_name]

FILEBASE = node_filebase

Base name of the KDCFILE, the user log file and the system log file SYSLOG for this node
application. When a node application is started, the UTM system files are expected under the
name specified here. The KDCFILE must be accessible from all node applications.

This operand replaces the FILEBASE start parameter in a standalone UTM application.

The base names of the CLUSTER-NODE statements must differ from each other. The same
restrictions apply as for MAX KDCFILE= .filebase

Mandatory operand.

node_filebase identifies the directory containing the KDCFILE and all the files of the
application when a node application of a UTM cluster application is started. The name

 must identify the same directory specified here from the perspective of all the computers
. The name can be up to 27 characters in length.of the cluster

If you change specifications in the CLUSTER statement or the CLUSTER-NODE statements with a new
generation, you must create a new cluster configuration file (OPTION GEN=CLUSTER) and use this file
to apply the changes.

i

 313

HOSTNAME= host_name

Host name of this node. Specify the primary name of this host.

The name can be up to 64 characters in length.

The host names of the CLUSTER-NODE statements must differ from each other. Host
names that only differ in terms of case are regarded as identical.

In the case of Unix and Linux systems, you must specify the name of the computer that is
output by the command .uname -n

On Windows systems, you must specify the name of the computer that is entered in the
Control Panel.

No distinction is made between uppercase and lowercase notation; KDCDEF always
converts the host names into uppercase.

Mandatory operand.

NODE-NAME= node_name

Defines a reference name for the node application. This name can be used when configuring
LU6.1 sessions as well as for node recoveries:

Configuring LU6.1 sessions:
The reference name defined here can be specified in the NODE-NAME parameter of an
LSES statement in order to assign the LU6.1 session unambiguously to a node
application. This enables openUTM to select the "right" session when establishing a
session with a partner application.

Node recovery:
If a node recovery is to be performed for the node application generated here then the
reference name defined here must be specified in the NODE-TO-RECOVER start
parameter. For more details, consult "node recovery" in the openUTM manual “Using UTM
Applications”.

Default value: NODE nn
 = 01..32, where is determined by the sequence of CLUSTER-NODE statements during nn nn

generation.

 314

VIRTUAL-HOST= virtual_host_name

Has the same function as the MAX HOSTNAME parameter with UTM cluster applications.
You are not allowed to specify the MAX HOSTNAME parameter in UTM cluster applications.

VIRTUAL-HOST allows the sender address for network connections established from this
node application to be specified.

The name can be up to 64characters in length.

Default: blanks. This means that the default sender address of the transport system is used
when connections are established.

This function is required in a cluster if the relocatable IP address is to be used as the sender
address instead of the static IP address when establishing a connection.

No distinction is made between uppercase and lowercase notation; KDCDEF always
converts the virtual host names into uppercase.

 315

6.5.10 CON - define a connection for distributed processing based on LU6.1

The CON statement allows you to define a transport connection between the local UTM application and a partner
application. It also assigns an LPAP partner to the real partner application, i.e. the logical access point of the
partner application in the local application. You must define the LPAP partner in an LPAP statement (see "LPAP -

). define an LPAP partner for distributed processing based on LU6.1"
By issuing several CON statement for the same partner application, you can also define parallel transport
connections.

Generation when standalone UTM applications are to be linked to UTM cluster
applications

For more information on generating LU6.1 connections see "Distributed processing via the LU6.1 protocol"

When generating the CON, PTERM and MUX statements, please note that the name triplet (or appliname
, ,) must be unique within the generation run.ptermname processorname local_appliname

Example

If a PTERM statement has already been generated with
, , PTERM partner_name1 PRONAM= processorname1

you cannot generate a CON statement with
 , CON partner_name1 PRONAM= processorname1

but you can enter
 , CON partner_name1 ,PRONAM= processorname1 ,BCAMAPPL= local_appliname1

provided is not identical to the primary UTM application name.local_appliname1

The statements MUX ... and CON are also mutually exclusive.partner_name1 partner_name1

CON remote_appliname

[,BCAMAPPL=local_appliname]

[,LISTENER-PORT=number]

,LPAP=lpapname

,PRONAM={ processorname | C’processorname’

}

[,TERMN=termn_id]

Unix, Linux and Windows system specific operands

[,T-PROT=] RFC1006

[,TSEL-FORMAT={ T | E | A }]

 316

remote_appliname Name of the partner application with which you wish to communicate via the logical
connection.

remote_appliname can be up to eight characters in length. Permitted characters are capital
letters, numbers and the characters $, # and @. Hyphens are not allowed in names. The
first letter must be a capital letter. If lowercase letters are used in a name, you must enter it
in single quotes ('...') .

remote_appliname is a mandatory specification.

BS2000 systems:
 can be either the BCAM name of a UTM partner application (in the case remote_appliname

of a homogeneous link) or the name of a TRANSIT application (in the case of a
heterogeneous link). The first letter must be uppercase.

Unix, Linux and Windows systems:
You must specify the T-selector that the partner application uses to sign on to the transport
system for . The first character must be a letter.remote_appliname

BCAMAPPL= local_appliname

A name for the local application, as defined in the MAX or BCAMAPPL control statement. A
BCAMAPPL name may not be specified for which T-PROT=SOCKET is generated.

On Unix, Linux and Windows systems this name must not begin with a ’$’.

The BCAMAPPL name specified in the CLUSTER statement is not permitted here.

Default: If nothing is specified, then the primary application name defined in MAX ...,
APPLINAME= is used.

LISTENER-PORT= number

Port number of the partner application.

All port numbers between 1 and 65535 are allowed.

Default: 0 (i.e. no port number)

 BS2000 systems:
A port number different from 0 may only be specified if the local application specified in the
parameter BCAMAPPL is not generated with T-PROT=NEA.
If 0 is specified, the transport system uses the standard port 102.

 Unix, Linux and Windows systems
If OPTION CHECK-RFC1006=YES, then a port number must be entered for LISTENER-
PORT.

 317

LPAP= lpapname

Name of the LPAP partner of the partner application with which the connection is to be
established. The name of the LPAP partner via which the partner application signs on must
be defined using the statement LPAP .lpapname

By issuing several CON statements with the same , you can establish parallel lpapname
connections to the partner application.

Please note, however, that these parallel connections lead to the same partner application (
 and).remote_appliname processorname

Mandatory parameter

PRONAM= { processorname | C’processorname’ }

Name of the partner host.
The complete name (FQDN) by which the computer is known in the DNS must be specified.
The name can be up to 64 characters long.
If the contains special characters it must be entered as a character string processorname
using C’...’.

Mandatory operand

No distinction is made between uppercase and lowercase notation; KDCDEF always
converts the name of the partner computer into uppercase.

TERMN= termn_id

Identifier up to two characters in length, which indicates the type of communication partner.
 is not queried by openUTM, but is used by the user when querying or grouping termn_id

terminal types, for example. is entered in the KB header for job-receiving services, termn_id
i.e. for services started by a partner application in the local application.

Default: A4

T-PROT= This operand is only supported on Unix, Linux and Windows systems.

Address format with which the partner application signs on to the transport system. The
following address formats are explained in the "PCMX documentation" (openUTM

.documentation)

 RFC1006 Address format RFC1006

Default: RFC1006

TSEL-FORMAT= This operand is only supported on Unix, Linux and Windows systems.

Format identifier of the T-selector. The format indicator specifies the encoding of the T-
selectors in the transport protocol. You will find more information in the "PCMX

.documentation" (openUTM documentation)

 T TRANSDATA format (encoded in EBCDIC)

 E EBCDIC character format

 318

 A ASCII character format

Default:

 T if the character set of the T-selector corresponds to the TRANSDATA format.
 E in all other cases

It is recommended to specify a value explicitly for TSEL-FORMAT for operation via
RFC1006.

The address of a partner application of a UTM application on Unix, Linux and Windows
systems

In order to be able to establish a connection to a partner application, the UTM application must know the address of
the partner application. You can enter the address using the following operands:

remote_appliname (address of the partner application in the partner processor)

PRONAM (real host name or UTM host name of the partner processor)

LISTENER-PORT (port number for RFC1006)

T-PROT (the transport protocol used)

TSEL-FORMAT (format indicator of the T-selector)

See ."Providing address information for the CMX transport system (Unix, Linux and Windows systems)"

 319

6.5.11 CREATE-CONTROL-STATEMENTS - create KDCDEF control statements

When regenerating your application, inverse KDCDEF allows you to retain UTM objects in the configuration which
were entered dynamically during runtime. Further information can be found in section . "Inverse KDCDEF"

The statement CREATE-CONTROL-STATEMENTS generates KDCDEF control statements for the UTM objects
which can be entered dynamically, and outputs them to the file . During the same KDCDEF control_statements_file
run, you can use

as the basis for generation by defining it as an input file using the statement OPTION ...,control_statements_file
DATA= .control_statements_file

Using the statement CREATE-CONTROL-STATEMENT, you can generate control statements for UTM objects of
type TAC, PROGRAM, PTERM, LTERM, USER, CON, LTAC, LSES and KSET.

However, for users generated implicitly, inverse KDCDEF creates USER statements adds the user neither nor
name in the USER= operand in the LTERM statement.

It does not transfer UTM objects to the file , which were marked for deletion by control_statements_file
administration using KC_DELETE_OBJECT. In a KDCDEF run in which is defined as an control_statements_file
input file, the names of the deleted UTM objects can be used again.

You can start KDCDEF for inverse KDCDEF with at least one CREATE-CONTROL-STATEMENTS statement and
without any further KDCDEF control statements.

REATE- ONTROL- TATEMENTSC C S

 { *ALL | CON | DEVICE | KSET | LSES | LTAC |

 PROGRAM | USER }

 ,FROM-FILE=kdcfile

 ,TO-FILE=control_statements_file |

 * RARY- ENT (RARY=<lib-name> LIB ELEM 1 LIB

 , ENT=<element>ELEM

 [, ION=C‘<version>‘ | VERS

 | *HIGH EST-EXISTING

 -LIMIT |*UPPER

 EMENT]*INCR

 [,TYPE=<element-type>])]

 [,MODE={ | XTEND }]REATEC E

 only on BS2000 systems1

If you upgrade to a new version, the KDCDEF control statements must first be created in the previous
version before being processed in a later version by the KDCDEF generation tool.

i

 320

*ALL KDCDEF control statements are generated for the following object types:

KSET

LSES

LTAC

TAC

CON

PROGRAM

PTERM

LTERM

USER

They cannot be created for other object types.

CON This creates KDCDEF control statements for the transport connections to remote
applications.

DEVICE KDCDEF control statements are generated for LTERM partners, clients and
printers, i.e. for the following object types:

PTERM

LTERM

KSET KDCDEF control statements are generated for key sets, i.e. for objects of type
KSET.

LSES This creates KDCDEF control statements for the assignment of session names.

LTAC KDCDEF control statements are generated for transaction codes via which service
programs in partner applications are started. These are objects of the type LTAC.

PROGRAM KDCDEF control statements are generated for programs, service exits
transaction codes and TAC queues , i.e. for the following object types:

TAC

PROGRAM

USER KDCDEF control statements are generated for user IDs, i.e. for objects of type
USER.

Please note that passwords cannot be reconstructed. In the case of user
IDs with passwords, statements are created with the following format:
USER username, PASS=*RANDOM, ...

In the case of standalone applications, you must use the KDCUPD tool to
transfer the passwords to the new KDCFILE after the KDCDEF run has
finished. This is also possible for the UTM-F generation variant.

i

 321

FROM-FILE= kdcfile

Name of the KDCFILE from which the control statements are to be generated.

TO-FILE= Specifes where the KDCDEF control statements are to be written to.

 control_statements_file The generated KDCDEF control statements are written to the file specified in
. For , you must enter a valid file control_statements_file control_statements_file

name. can be defined as an input file for the KDCDEF run control_statements_file
using the statement OPTION ...,DATA= .control_statements_file

 *LIBRARY-ELEMENT
(...)

This parameter is supported on BS2000 systems only.

The KDCDEF control statements are written to the LMS library element specified
here. The following restrictions apply:

Delta elements are not supported.

UTM always writes records with record type "1".

 LIBRARY= <lib-name>

Name of an LMS library. The file name can be up to 54 characters in length. If the
library does not yet exist, it is created.
LIBRARY is a mandatory parameter of *LIBRARY-ELEMENT(...).

 ELEMENT= <element>

Name of the LMS element.
The element name may be up to 64 characters in length and consists of an
alphanumeric string which can be subdivided into multiple substrings separated by
periods or hyphens.
ELEMENT is a mandatory parameter of *LIBRARY-ELEMENT(...).

 VERSION= Version of the LMS element.

 C'<version>'

The element version is specified as an alphanumeric string of up to 24 characters in
length which can be subdivided into multiple substrings separated by periods or
hyphens.

 *HIGHEST-EXISTING The statements are written to the highest version of the specified element present in
the library.

 *UPPER-LIMIT The statements are written to the highest possible version of the specified element.
LMS indicates this version by means of an "@".

The openUTM version of the KDCFILE must match that of the KDCDEF
generation tool.

i

 322

 *INCREMENT A new version is created for the specified element. *INCREMENT may only be
specified if MODE=CREATE.

Default value:

*HIGHEST-EXISTING in MODE=EXTEND

*INCREMENT in MODE=CREATE

 TYPE= <element-type>

Type of LMS element. An alphanumeric string of up to 8 characters in length can be
specified for the type.

Default value: S

MODE= Write mode of the file containing the generated KDCDEF control statements

 CREATE The file specified in is created.control_statements_file

On BS2000 systems the file is created as a SAM file or an LMS library element. The
following applies:

If a file with the same name already exists, this must be a SAM file. This SAM file
is then overwritten.

If an element of the same name already exists and if *HIGHEST- EXISTING or
*UPPER-LIMIT is specified for VERSION=C‘<version>‘ then the element is
overwritten.

If a file with the same name already exists on Unix, Linux or Windows systems, it is
overwritten.

 EXTEND The generated control statements are appended to the existing
. If this file does not exist, it is created.control_statements_file

If an LMS library is specified in the BS2000 system then the library must already
exist. In this case, an existing element of the specified version is extended. If the
element does not yet exist in this version then it is created.

If MODE=CREATE and VERSION is not equal to *INCREMENT then
any existing element is overwritten with the specified version.

i

KDCDEF does not check whether the specifications for ELEMENT,
VERSION or TYPE comply with the LMS syntax rules. For further
information on the syntax rules for the names of LMS elements and a
specification of version and type, see the manual "LMS SDF Format".

i

 323

6.5.12 DATABASE - define a database system (BS2000 systems)

The DATABASE control statement allows you to define the database systems with which the UTM application is to
coordinate.

Each database system must be defined in a separate DATABASE statement. By issuing several DATABASE
statements for the same database system, you can assign several entry names to that database system.

The DATABASE statement can be issued several times. It is thus possible to define up to three (in a special
release, up to eight) different database systems.

DATABASE [ENTRY=entryname]

 [,USERID=username | C‘username‘]

 [,PASSWORD=C'password']

 [,LIB=omlname | LOGICAL-ID(logical-id) }]

 [,TYPE={ | SESAM | LEASY | DB | XA | CIS }]UDS

 [,XA-INST[-NAME]=inst-name]

ENTRY= entryname

Entry name of the database. The following default values apply:

$UNIBASE if TYPE = UDS

SESAM if TYPE = SESAM

CIS if TYPE = CIS

LEASY if TYPE = LEASY

DB if TYPE = DB

When generating the XA connection with TYPE=XA in openUTM on BS2000 systems, the
name of the XA switch as it is provided by the database system be specified with the must
ENTRY parameter. It is possible to generate several XY switches in the DATABASE
statement.

Other entry names (e.g. SQLUDS for UDS/SQL) can be found in the manuals for the
respective database systems.

A database connection to Oracle must be generated with TYPE = XA.i

 324

USERID= username | C‘username‘

Specifies a user name for the database system. The user name can be up to 30 characters in
length.

This functionality is only provided for Oracle databases. openUTM passes this name to the
database system in the Open string.

If a user name is to be passed to the database system in lowercase characters, then you
must use the format C'username'.

PASSWORD= C'password'

Specifies a password for the database system. The password can be up to 30 characters in
length.

This functionality is only provided for Oracle databases. openUTM passes the password to
the database system in the Open string.

Alternatively, the password can be transferred to the database system by means of start
parameters.

LIB= Specifies library from which the connection module for the database system is dynamically
loaded.

 omlname OML name which the connection module for the database system is to be loaded
dynamically. can be up to 54 characters in length.omlname

 LOGICAL-ID(logical-id)

Alternatively, the user name can be transferred to the database system by means
of start parameters.

For XA databases (TYPE=XA), it is possible to modify the user name and/or the
password by means of dynamic administration.

i

 325

Specifies that a search is to be made for the connection module in the IMON installation path
for the database system and that the module is to be loaded from there.

 is a name up to 15 characters long. It may be specified only for SESAM/SQL and logical-id
UDS/SQL; it is SYSLNK for both database systems, refer also to the notes in section "Notes

.on using LOGICAL-ID"

If you do not specify LIB= , then LIB= is set to TASKLIB. This does not correspond to the SET-
TASKLIB command, rather a library named TASKLIB must exist. Dynamic loading of the
connection module from the library assigned with SYSFILE-TASKLIB is not supported.

Notes on using LOGICAL-ID

LIB=LOGICAL-ID() may be specified only if the database system was correctly logical-id
installed with IMON. If the database system was not installed with IMON, you must either
statically link the connection module (without the LIB= operand) or you must specify LIB=

.omlname

Using LOGICAL-ID() instead of has the advantage that the openUTM logical-id omlname
application is then independent of the installation paths and library names of the database
system.

If you specify LIB=LOGICAL-ID(SYSLNK) and if several product versions are installed, the
most recent version is used by default.

If you do not want the most recent version to be loaded, you must either specify the library
of a less recent version using LIB= or you must assign the version before starting omlname
the openUTM application (using the SELECT-PRODUCT-VERSION command of IMON).

If an error occurs when searching for the connection module in the IMON installation path,
application start is aborted and the error is logged to SYSOUT.

TYPE= This identifies the database system.

With TYPE=DB you can also connect to database systems other than those named above.
This is only possible when the database system supports the IUTMDB interface.

Default: UDS

During the dynamic load, the DBL searches for the connection module first in the
library that you specified in LIB= . If this library does not exist, then the DBL aborts
the search. If the library exists but the connection module is not found there, then
the DBL searches the alternative libraries. These libraries are the libraries that have
been assigned a file chain name BLSLIB (0<= <=99).nn nn

If several DATABASE statements are issued with the same TYPE in order to
generate a number of entries for the same database, the connection module is
loaded from the library specified in the LIB operand of the first DATABASE
statement with the relevant TYPE.

i

 326

XA-INST-NAME= This parameter is permitted only if TYPE=XA was specified.

inst-name is the local name for the XA instance which is 1 to 4 characters long.

If more than one DATABASE statement with TYPE=XA is generated for an application, the
statements must differ from XA-INST-NAME in their values. In the case of applications with
just one XA database, the parameter can be omitted.

The string specified for XA-INST-NAME must be specified after the string ".RMXA" in the
prefix for the start parameters for this database.

Example:

Specification in the DATABASE statement:

DATABASE,TYPE=XA,XA-INST-NAME=DB1

Specification in the start parameters for this data base:

.RMXADB1 RMXA RM="rm-name",OS="open-string",...

Default: blanks

 327

6.5.13 DEFAULT - define default values (BS2000 systems)

The DEFAULT control statement allows you to define default values for the operands of a KDCDEF control
statement. A default operand value set using DEFAULT applies until the next DEFAULT statement is issued for the
same operand in the same control statement. If you subsequently wish to reset the default value to the UTM
standard setting, you must reassign this standard setting using the DEFAULT statement. If this is not possible (e.g.
FORMAT = blanks), then the default value is set in the (STD) or *STD entry.

Statement-specific default values offer the following advantage:
If you issue a control statement several times (e.g. PTERM), there is no need to specify the same operand values
over and over again in each statement (e.g. the processor name in PRONAM).

DEFAULT control-statement operand [,operand] [,...]

control-statement

KDCDEF control statement for which new default values are to be defined in this DEFAULT
statement. The following operands are dependent on this control statement, and apply only for this
control statement class. Please note that the PROGRAM and AREA statements form a single
class, i.e. modified default values of the PROGRAM statement also apply for the other statements
in this class.

You must insert at least one blank between and the following operands. The control_statement
table on the next page shows the control statements that can be specified here.

operand ,... One or more operands of the KDCDEF control statement . Each operand is control_statement
separated by a comma. The table on the next page shows
the operands permitted for .control_statement

When porting BS2000 systems openUTM applications to Unix, Linux or Windows systems, please note
that the DEFAULT statement is not supported by openUTM on Unix, Linux and Windows systems.

i

 328

Permitted control statements Permitted operands

CON BCAMAPPL={ |(STD)}local_appliname
LPAP={ |(STD)}lpapname
PRONAM={ C’ ’} processorname | processorname
TERMN=termn_id

LPAP DEAD-LETTER-Q={NO | YES}
NETPRIO=netprio
QLEV=queue_level
STATUS={ON|OFF}
SESCHA=sescha_name

LSES LPAP=sessionname
NODE-NAME=node_name

LTAC LPAP=lpapname
LTACUNIT=ltacunit
STATUS={ON|OFF}
TYPE={D|A}
WAITTIME=(,)time1 time2

LTERM ANNOAMSG={Y|N}
FORMAT={ |(STD)}formatname
KERBEROS-DIALOG={YES | NO}
LOCALE={ ([], [],[]) | *STD}lang_id terr_id ccsname
NETPRIO=netprio
PLEV=print_level_number
QAMSG={Y|N|(STD)}
QLEV=queue_level_number
RESTART={YES|NO}
STATUS={ON|OFF}
USAGE={D|O}

LOAD-MODULE LIB=libname
LOAD-MODE=loadmode
VERSION={ *HIGHEST-EXISTING | *UPPER-LIMIT} version |

OSI-CON ACTIVE={YES|NO}
LOCAL-ACCESS-POINT=access-point_name

OSI-LPAP APPLICATION-CONTEXT=application_context
DEAD-LETTER-Q={NO | YES}
IDLETIME=time
QLEV=queue_level_number
STATUS={ON|OFF}
TERMN=termn_id

 329

Permitted control statements Permitted operands

PROGRAM COMP=compiler
LOAD-MODULE={ |*STD}lmodname

PTERM BCAMAPPL=local_appliname
CONNECT={YES | NO}
ENCRYPTION-LEVEL={NONE | 3 | 4 | TRUSTED}

IDLETIME=time
MAP={USER | SYSTEM | SYS | SYS1 | SYS2 | SYS3 | SYS4}
PRONAM={ | C’ ’ | *RSO}processorname processorname
PROTOCOL={N|STATION}
PTYPE={ | *RSO | *ANY}partnertyp
STATUS={ON|OFF}
TERMN={ |(STD)}termn_id
USAGE={D|O}
USP-HDR={ALL | MSG | NO}

SESCHA CONNECT={Y|N}
CONTWIN={Y|N|(STD)}
DPN={ |(STD)}instance_name
IDLETIME=time
PLU={Y|N|(STD)}
PACCNT=number

TAC ADMIN={Y | N}
CALL={BOTH | FIRST | NEXT | (STD)}
DEAD-LETTER-Q={NO | YES}
ENCRYPTION-LEVEL={NONE | 2 }

EXIT={ | (STD) } exit
PGWT={NO | YES}
PROGRAM={ |(STD)}program_name
QLEV=queue_level_number
QMODE = {STD | WRAP-AROUND}
RUNPRIO=priority
SATADM={NO|YES}
SATSEL={BOTH|SUCC|FAIL|NONE}
STATUS={ON | OFF | HALT | KEEP}
TACCLASS={ |(STD)}class
TACUNIT=tacunit
TCBENTRY={ | (STD)} name_of_tcbentry-statement
TIME={ | (,)}time1 time1 time2
TYPE={D | A | Q}

 330

Permitted control statements Permitted operands

TPOOL ANNOAMSG={ Y | N }
BCAMAPPL=appliname
ENCRYPTION-LEVEL={NONE | 3 | 4 | TRUSTED}
FORMAT={ |(STD)}formatname
IDLETIME=time
KERBEROS-DIALOG={YES | NO}
LOCALE={ ([], [],[]) | *STD }lang_id terr_id ccsname
MAP={ USER | SYSTEM | SYS | SYS1 | SYS2 | SYS3 | SYS4}
NETPRIO={ MEDIUM | LOW }
NUMBER=number1
PRONAM={ | C’ ’ | *ANY }processorname processorname
PROTOCOL={ N | STATION }
PTYPE={ | *ANY }partnertyp
QLEV= queue_level_number
TERMN={ | (STD) } termn_id
USP-HDR={ALL | MSG | NO}

USER FORMAT={ |(STD)}formatname
LOCALE={ ([], [],[]) | *STD }lang_id terr_id ccsname
PERMIT={NONE | ADMIN | SATADM | (ADMIN,SATADM)}
PROTECT-PW=(, _)length,level_of_complexity max time,min_time
QLEV=queue_level_number
QMODE = {STD | WRAP-AROUND}
Q-READ-ACL = keysetname
Q-WRITE-ACL = keysetname
RESTART={YES | NO}
SATSEL={BOTH | SUCC | FAIL | NONE}
STATUS={ON | OFF}

 331

6.5.14 EDIT - define edit options (BS2000 systems)

The EDIT control statement allows you to combine screen functions and screen output properties in line mode (edit
options) in groups known as edit profiles. It also enables you to assign names to these edit profiles, which can then
be used to address a set of edit options from a program unit.

The EDIT statement can be issued several times within a generation run. However, a different name (name
operand) must be specified in each EDIT statement.

The edit profile names are specified in the KCMF field of the MPUT, MGET, DPUT, FPUT and FGET calls at the
programming interface, where a blank is entered as the format control character.

openUTM interprets the entries in the KCMF field as follows:

No edit profiles generated Edit profiles generated

If a blank is entered as the format control
character, openUTM ignores the remaining
characters in the field.

If a blank is entered as the format control character, the
remaining characters in the field must contain either the name of
a valid edit profile or further blanks.

A detailed description of the operands described below can be found in the „TIAM“ User Guide. Further information
on working with edit profiles can be found in the openUTM manual „Programming Applications with KDCS”.

EDIT name

 [,BELL={ | YES }]NO

 [,CCSNAME=ccsname]

 [,HCOPY={ | YES }]NO

 [,HOM={ | YES }]NO

 [,IHDR={ | YES }]NO

 [,LOCIN={ | YES }]NO

 [,LOW={ | NO}]YES

 ,MODE={ EXTEND | INFO | LINE | PHYS | TRANS }

 [,NOLOG={ | YES }]NO

 [,OHDR={ | YES }]NO

 [,SAML={ | YES }]NO

 [,SPECIN={ C | I | }]N

 332

name Alphanumeric name up to seven characters in length for the set of edit options to be defined.

BELL= This specifies whether or not an acoustic alarm is triggered on the terminal when a message is
output.

CCSNAME= ccsname

(oded haracter et) c c s name
Name of the character set (CCS name) used to format a message. This name can be up to eight
characters in length. The specified CCS name must belong to one of the EBCDIC character sets
defined under the BS2000 system (see also the XHCS User Guide). The character set must be
compatible with an ISO character set supported by the terminal to which the message is directed.
During generation, KDCDEF cannot check the validity of the CCS name under the BS2000 system
or the compatibility condition.

A CCS name must not be assigned to the edit profile if the value TRANS (transparent mode) is
defined for the MODE operand.

HCOPY= (ard)h copy
This specifies whether the output message is to be logged on a connected hardcopy printer in
addition to being displayed on the terminal.

HOM= (ogeneous)hom
This specifies whether the output message is to be output unstructured, i.e. in homogeneous
format. If you enter NO here, the message is output in a structured format, i.e. in non-
homogeneous format. In this case, a logical line is regarded as an output unit.

IHDR= (nput eade)i h r
This specifies whether the header of the input message is to be transferred to the program unit.

LOCIN= (al parameter put)loc in
This operand applies only for terminals that support local parameters (e.g. 9763). If you enter YES
here, local attributes in the input message are forwarded to the user as logical control characters.
If you enter NO here, local attributes are removed from the input message and are not forwarded.
LOCIN=YES is permitted only if MODE=EXTEND.

LOW= (ercase)low
This specifies whether lowercase letters are permitted in the input message transferred to the
program unit. If you enter NO here, the system converts all lowercase letters into uppercase.

MODE=

 EXTEND (ed line mode)extend
This specifies whether the message is to be output in extended line mode.
If you enter MODE=EXTEND, the value YES is permitted only for the BELL, LOW, and LOCIN edit
options. The value N must be entered for the SPECIN operand.

If the edit profile is used to output messages to an RSO printer, only the CCSNAME=
parameter of the edit profile is evaluated.

i

 333

 INFO The message is to be output in a special information line (system line) without overwriting
important data at the terminal.

This specification is primarily intended for application programs that send "asynchronous"
messages to terminals without knowing what is currently being displayed at the terminal. At
terminals with a hardware display line (e.g. DSS 9749, 9750, 9763), the data is always output
protected in a hardware system line; in all other cases, it is output in the same way as a normal
line mode message.

 LINE (mode)line
The message is to be output in line mode. It can be structured using logical control characters, and
is formatted by the system. If you enter MODE=LINE, the value NO must be entered for IHDR,
OHDR and LOCIN.

 PHYS (ical mode)phys
The message is to be output or read in physical mode, i.e. without being formatted by the system.
If you enter MODE=PHYS, the value YES is permitted only for the IDHR, LOW and OHDR edit
options. The value N must be entered for the SPECIN operand.

This specification should not be used for messages output on a printer. Physical messages to a
printer can only be implemented using a format exit.

 TRANS (parent mode)trans
The output message is to be transferred in transparent mode. If you enter MODE=TRANS, the
value YES must not be specified for any other edit option.

The value N must be entered for the SPECIN= operand.
The CCSNAME= operand must not be specified.

NOLOG= (ical characters)no log
This specifies how the system is to handle non-printable characters.

 YES The logical control characters are not evaluated. All characters less than X’40’ in EBCDIC code
are replaced by alternate characters (SUB). Only printable characters are allowed through.

 NO All logical control characters are evaluated. Special physical control characters are allowed
through. All other characters less than X’40’ are replaced by alternate characters (SUB). Printable
characters are allowed through.

Default: NO

OHDR= (utput ea e)o h d r
This specifies whether the output message contains a header. The length of the message header
+ 1 must be entered in binary format in the first byte of the message.

SAML= (e ine)sam l
This applies only for printer stations.
If SAML=YES, the message is not preceded by a line feed. If SAML=NO applies, the message
begins at the start of the next line.

SPECIN= (ial put)spec in

 334

 C (onfidential)c
This specifies whether the display of input data is to be suppressed on the terminal, thus
protecting confidentiality.

 I (d-card)i
This specifies whether input data is to be entered via the ID card reader.

 N (ormal)n
The terminal requires normal input.

 335

6.5.15 EJECT - initiate a page feed in the log

The EJECT control statement allows you to initiate a page feed in the log. The EJECT line itself is not logged or
counted.

EJECT

 336

6.5.16 END - terminate KDCDEF input

The END control statement identifies the end of the sequence of control statements, and is the last statement
entered.

END

If a file with OPTION DATA= is defined as a KDCDEF input file and contains an END statement, filename
KDCDEF input is terminated as soon as this statement is processed.

i

 337

6.5.17 EXIT - define event exits

The EXIT control statement allows you to define event exits which are used in the application, except for the event
exits VORGANG and HTTP.

For the event exits FORMAT and INPUT, you may only specify a single EXIT statement for each KDCDEF run.
For the event exits START and SHUT, you may specify up to eight EXIT statements. However, the specifications for
the PROGRAM= operand must differ for the EXIT statements.

When starting or terminating a UTM process, all of the programs defined as START or SHUT exits are called one
after the other. The sequence of the EXIT statements in the KDCDEF run determines the sequence in which
openUTM activates the START or SHUT exit program.

Further information on event exits can be found in the openUTM manual „Programming Applications with KDCS”.

Event exits on BS2000 systems:
The event exits START, SHUT, INPUT and FORMAT must not be assigned to a load module generated with LOAD-
MODULE LOAD-MODE=ONCALL.

EXIT PROGRAM=objectname

,USAGE={ START |

 SHUT |

 (INPUT, { ALL | FORMMODE | LINEMODE | USERFORM }) |1

 FORMAT }1

1FORMAT and USERFORM are only permitted on BS2000 systems

PROGRAM= name

Name of the program containing the functions to be executed for the event exit. A
PROGRAM statement with this name () must be issued.objectname

USAGE= Type of event exit

 START Used as event exit START

 SHUT Used as event exit SHUT

 INPUT Used as event exit INPUT
Additionally you must specify the type of INPUT exit:

 ALL Event exit INPUT, which handles messages of all format control characters as well as
LINEMODE messages.

 FORMMODE Event exit INPUT for +, *, and #formats

The event services MSGTAC, BADTACS and SIGNON must be defined using the TAC statement.i

If you specify ALL here, this is the only event exit INPUT of the application. Further
INPUT event exits cannot be defined.

i

 338

 LINEMODE Event exit INPUT for LINEMODE messages

 USERFORM Event exit INPUT for -formats

 FORMAT Used as event exit FORMAT

 339

6.5.18 FORMSYS - define the format handling system (BS2000 systems)

The FORMSYS control statement allows you to define the format handling system. Only the first FORMSYS
statement is evaluated.

FORMSYS [TYPE=typ]

[,ENTRY=entryname]

[,LIB=omlname]

TYPE= typ

This identifies the format handling system.
Only the value FHS is supported.

Default: FHS

ENTRY= entryname

Entry name for the format handling system

Default value: KDCFHS with TYPE=FHS

LIB= omlname

Designates the object module library (OML) from which the connection module for the format handling
system is loaded. can be up to 54 characters in length.omlname

If you do not specify LIB= , then LIB= is set to TASKLIB. This does not correspond to the SET-
TASKLIB command, rather a library named TASKLIB must exist. Dynamic loading of the connection
module from the library assigned with SYSFILE-TASKLIB is not supported.

During the dynamic load, the DBL searches for the connection module first in the library that
you specified in LIB= . If this library does not exist, then the DBL aborts the search. The DBL
does not abort the search if LIB was not specified but was preset to TASKLIB and no file
with this name exists. If the library exists but the connection module is not found there, then
the DBL searches the alternative libraries. These libraries are the libraries that have been
assigned a file chain name BLSLIB (0<= <=99).nn nn

i

 340

6.5.19 HTTP-DESCRIPTOR - define a HTTP Descriptor

With the HTTP-DESCRIPTOR statement, a mapping of the path received in an HTTP request to a TAC is defined
and additional processing parameters can be specified. The specifications in the HTTP-DESCRIPTOR statement
are used by UTM after receiving an HTTP request to determine the TAC to which the message is to be sent and to
control the processing of the message.

If no suitable HTTP-DESCRIPTOR statement is defined for the path of an HTTP request, UTM performs a standard
conversion of the messages for this request if the path can be mapped directly to a TAC defined for the application.

HTTP-

DESCRIPTOR

http-descriptor-name

[,BCAMAPPL = bcamappl |]*ALL

[,HTTP-EXIT = program-name | | *SYSTEM]*NONE

[,PATH = C'path' |]C’/*’

 ,TAC = tac

[,USER-AUTH = | *BASIC]*NONE

Only on BS2000 systems

[,CONVERT-TEXT = *YES |]*NO

http-descriptor-name The parameter has only local application meaning. It assigns a local http-descriptor-name
name to the HTTP-DESCRIPTOR. This is required, for example, at the administration
interface. The name can be a maximum of 8 characters long.

BCAMAPPL = bcamappl

With BCAMAPPL, you can specify the name of a BCAMAPPL statement.

If BCAMAPPL is specified, the HTTP-DESCRIPTOR statement is only valid for HTTP
connections via this BCAMAPPL.

If *ALL is specified, the HTTP-DESCRIPTOR statement applies to all HTTP connections.

The BCAMAPPL statement can also be used to specify the schema for (HTTP/HTTPS)
which this HTTP-DESCRIPTOR is to be valid.

The name can be a maximum of 8 characters long.

Default: *ALL

CONVERT-TEXT = The parameter CONVERT-TEXT may only be specified in BS2000 systems.

The CONVERT-TEXT parameter specifies whether UTM is to perform a code conversion
for text messages or not. UTM evaluates the specifications in the Content-Type header of
an HTTP request and and the mapping to a code conversion tables defined with the
CHAR-SET statement. A code conversion of an HTTP message is only performed, for
example, if a code conversion table is assigned to the character set specified in the
Content-Type header using the CHAR-SET statement.

 *YES UTM should perform a code conversion.

 *NO UTM should not perform a code conversion.
*NO is the default value.

 341

HTTP-EXIT = The HTTP-EXIT parameter can be used to define a user program that is to be called by
UTM to reformat the input and output messages.
The program specified in HTTP-EXIT must be defined with a PROGRAM statement.

The name of the user program must not exceed 32 characters.

 *NONE If *NONE is specified for HTTP-EXIT, web-aware programs that can process messages
from HTTP clients directly, that is, without reformatting, are identified.
*NONE is the default value.

 *SYSTEM With *SYSTEM you can specify that UTM is to convert output messages into HTML format.

TAC = tac The parameter TAC determines the TAC and therefore the part-program that is to be
called for requests with the path specified in this statement. The TAC must be defined with
a TAC statement. Only one dialog TAC may be specified. The same TAC may be
specified in different HTTP-DESCRIPTOR statements. The TAC can be a maximum of 8
characters long.

PATH = According to RFC 3986 "Uniform Resource Identifier" a URI is structured as follows:

 http://example.com:8042/over/there?name=ferret#nose

 _/ ______________/_________/ _________/ __/

 | | | | |

 scheme authority path query fragment

The path of an HTTP request is used to address a resource. UTM uses the path to
determine the part-program to which an HTTP request is to be sent.

If no TAC can be determined in any way for an incoming HTTP request, for example,
because no standard path (C'/*') has been generated, the HTTP request is rejected with
status code .404 Not Found

A "*" as the last character in the parameter PATH has the meaning of a wildcard
character, i.e. the prefix of the path is defined via such a declaration. If the beginning of
the path of an HTTP request matches a path prefix defined in this way, then this HTTP-
DESCRIPTOR is evaluated for the request.

http://example.com:8042/over/there?name=ferret#nose

 342

 C'path' The parameter must fulfill the following conditions:path

First character must be a "/".

The path must not contain the character string "//".

The path must be at least two characters long.

The characters ":", "?" and "#" must not appear in the path.

A '*' must not be more than the last character in the path.

If the last character in the path is a '/', it is ignored.

The maximum length of the path is 254 characters.

The specification of the character string in the parameter PATH must be unique for
each BCAMAPPL.

KDCDEF stores the path specified here in normalized form. This means that %-coded
substitute representations of unreserved characters and spaces are converted to their
equivalent one-character representation. For % codes and Unreserved Characters see
RFC 3986.

 C'/*' An HTTP-DESCRIPTOR statement with PATH=C'/*' defines the standard behavior for one
or all BCAMAPPLs. Such a declaration is used by UTM if a TAC cannot be determined for
an HTTP request in any other way.
C'/*' is the default value.

USER-AUTH = The USER-AUTH parameter specifies which authorization mechanism clients must use for
this application.

The value set here for this parameter applies to all HTTP messages to which a TAC is
assigned using this HTTP-DESCRIPTOR statement.

If the UTM application is generated without users, only the value *NONE may be
specified for USER-AUTH.

 *BASIC The Basic Authentication Scheme from RFC 2617 is to be used to transfer authentication
data. UserId and password are separated by a colon and Base64 encoded in the
authorization header of an HTTP request.

If Basic Authorization is defined for an HTTP request, but no Authorization Header is
contained in the HTTP request, UTM requests authentication data using a response with
status code .401 Unauthorized

 *NONE If *NONE is specified, the client does not have to pass any authentication data. UTM uses
the connection user for such a request if the client does not send authentication
information in the HTTP request itself.

Default: *NONE

 343

6.5.20 KSET - define a key set

The KSET control statement allows you to combine the key codes of an application, which were defined for data
access control, to form a logical key set. You can specify several control statements for a single key set.

KDCDEF implicitly generates the KDCAPLKS key set, which by default contains all key codes.

KSET keysetname

 ,KEYS={ (key1,key2,... key n) | MASTER }

keysetname Name of the defined key set up to eight characters in length.

You can assign this key set

to a user (in a USER statement in section)"USER - define a user ID"

to an LTERM partner (in a LTERM statement in section "LTERM - define an LTERM partner for
)a client or printer"

to a partner application (in an LPAP or OSI-LPAP statement in section "LPAP - define an LPAP
 or partner for distributed processing based on LU6.1" "OSI-LPAP - define an OSI-LPAP partner

)for distributed processing based on OSI TP"

to a TAC (in the TAC statement in section "TAC - define the properties of transaction codes and
)TAC queues"

to an LTAC (in the LTAC statement in section "LTAC - define a transaction code for the partner
)application"

to a TPOOL (in the TPOOL statement in section or "TPOOL - define an LTERM pool" "Format
)and uniqueness of object names"

After the connection has been established, the key set of the LTERM or (OSI-)LPAP partner
assigned to the connection is available to the client or partner application. After signing on to the
application, the key set of the user ID is available to the client or partner application.
The lock/key code and the access list concept are described in detail in the openUTM manual
“Concepts und Functions”. An introduction to access control can be found in section "Lock/key

.code concept"

KEYS = (key1,..., key)n

Key or access codes of the key set keysetname

List of numbers between 1 and the maximum value permitted by the application (MAX ...,
KEYVALUE=). These numbers correspond to the key codes contained in this key set.number

A key or access code grants access to a resource secured with a lock code or an access list,
provided the key code and lock code match or the access code is contained in the access list.

You can specify up to 60 key codes/access codes in each KSET statement. If a key set contains
more than 60 key codes, you must issue another KSET statement with the same .keysetname

If you only specify one key code, you can omit the parentheses.

If you enter the value 0 for , this is ignored by openUTM. No message is output.key

 MASTER The MASTER key set contains all the key codes/access codes of the application.

 344

6.5.21 LOAD-MODULE - define a load module (BLS, BS2000 systems)

The LOAD-MODULE control statement allows you to define the name, version and properties of load modules. If
you use the BLS interface, this statement must be issued for all load modules that can be exchanged or loaded as
independent units during the program run. Each load module must be defined in a separate LOAD-MODULE
statement.

The load modules that can be processed with BLS are either LLMs (link and load modules) or OMs (object
modules). However, it is recommended that the program components and data areas to be loaded dynamically are
linked to LLMs (see the BLS manuals).

A load module can contain several program units and data areas, which are defined using PROGRAM or AREA
statements. You can assign one or more PROGRAM and/or AREA statements to a single LOAD-MODULE
statement. This takes place on the basis of the load module name , which must also be entered in the lmodname
LOAD-MODULE operand of the PROGRAM or AREA statement. However, it is also possible to generate LOAD-
MODULE statements without assigning a PROGRAM or AREA statement (e.g. load modules that contain parts of
the runtime system of a programming language).

At least one LOAD-MODULE statement must be generated if the "program exchange" function (KDCAPPL
PROGRAM=NEW) is to be used on BS2000 systems.

When starting the UTM application, the load modules are loaded in accordance with the sequence of LOAD-
MODULE statements and the value of the LOAD-MODE operand. The load sequence is as follows:

The basic part of the application, including all load modules linked in statically to the application program (LOAD-
MODE=STATIC).

All load modules loaded into a global common memory pool when starting the UTM application. These are
generated with LOAD-MODULE LOAD-MODE=(POOL, ...) and MPOOL ,SCOPE=GLOBAL. poolname, poolname
The common memory pools are loaded in accordance with the sequence of MPOOL statements in the
generation run. Within a pool, the sequence of LOAD-MODULE statements that refer to this pool applies.

All load modules loaded into a local common memory pool when starting the UTM application. These are
generated with LOAD-MODULE LOAD-MODE=(POOL, ...) and MPOOL ,SCOPE=GROUP. poolname, poolname
The pools are loaded in accordance with the sequence of MPOOL statements. Within a pool, the sequence of
LOAD-MODULE statements that refer to this pool applies.

All load modules to be loaded dynamically as independent units during startup. These are generated with LOAD-
MODULE LOAD-MODE=STARTUP. The load modules are loaded in accordance with the sequence of LOAD-
MODULE statements defined in this way.

Load modules generated with LOAD-MODE=ONCALL are loaded the first time an assigned program unit is called.

Please note the following:

Load modules containing TCB entries be exchanged.cannot

When dynamically linking a load module with the generation ALTERNATE-LIBRARIES=YES, you must ensure
that only RTS modules are actually linked. This is because when load modules are exchanged, only the load
module itself is removed from memory. If the load module is used to dynamically load other modules using the
autolink function, these modules remain in memory following the exchange process even though shared data
structures, for example, have been modified.

When linking with the SYSLNK.CRTE.PARTIAL-BIND library, the entry ALTERNATE-LIBRARIES=YES is not
required for load modules that only contain C code and possibly data objects (areas), and should therefore be
avoided.

 345

LOAD-MODULE lmodname

 [, ERNATE- RARIES={ | YES }ALT LIB NO

 [,LIB=libname]

 [,LOAD-MODE={ | STARTUP

 ONCALL |

 STATIC |

 (POOL,poolname,{ | NO-PRIVATE-SLICE

 STARTUP |

 ONCALL })

 }]

 ,VERSION={ version | EST ING | PER IT }*HIGH -EXIST *UP -LIM

lmodname Name of the load module up to 32 characters in length

This name is subject to the same rules as the element names of a program library
(see also)."Format of names"

ALTERNATE- RARIES=LIB

This is used to control the autolink function when dynamically linking the private slice
of the load module.

 NO The autolink function is not executed when linking the load module.

Default: NO

 YES The BLS autolink function is activated.
For instance, if a load module requires other RTS modules for exchange purposes and
these have not yet been loaded into memory, this function is used to load these RTS
modules dynamically. Before starting the UTM
application, the required RTS libraries must be reserved with Linkname BLSLIB (00 nn
<= <= 99). If open external references cannot be resolved by the loaded modules, nn
these libraries are then searched in ascending order
(as specified in) for appropriate definitions when dynamically loading the load nn
modules.

ALTERNATE-LIBRARIES=YES may only be used to dynamically load RTS modules
and not to dynamically load user programs.

Further information on the Autolink function can be found in the openUTM manual
“Using UTM Applications on BS2000 Systems”.

The operand values LOAD-MODE=STATIC / (POOL, ,NO-poolname
PRIVATE-SLICE) cannot be combined with ALTERNATE-LIBRARIES=YES.
Such a combination will be rejected by the KDCDEF run.

i

 346

LIB= libname

Program library from which the load module is to be loaded dynamically. can libname
be up to 54 characters in length.

If LOAD-MODE = STATIC, the LIB= operand is ignored. In all other cases, you must
assign a value to LIB= either in the LOAD-MODULE statement or in a preceding
DEFAULT statement.

LOAD-MODE= Load mode of the load module

 STARTUP The load module is loaded dynamically as an independent unit when the application is
started. External references from the subsystem, from class 3/4 memory, and from all
other modules of the UTM application which are already loaded are resolved. For
runtime system functions, see also the description of the operand ALTERNATE-
LIBRARIES=YES.

 ONCALL The load module is loaded dynamically as an independent unit the first time a program
unit or conversation exit assigned to the load module is called. External references
from class 3/4 memory and from all other modules of the UTM application which are
already loaded are resolved.

 STATIC The load module must be linked in statically to the application program.

 (POOL,poolname, NO-PRIVATE-SLICE)

The memory pool is defined using the MPOOL statement.

poolname can be up to 50 characters in length.

When the application is started, the load module is loaded into the common memory
pool . It is not divided into public and private slices. A private slice is poolname
therefore not linked (even statically) into the application program.

 (POOL,poolname, STARTUP)

When the application is started, the public slice of the load module is loaded into the
common memory pool . The private slice belonging to the load module is poolname
then loaded into the local task memory.

Load modules which are generated with LOAD-MODE=STARTUP and
which contain TCB entries must not be exchanged during runtime.

Default: STARTUP

i

Load modules containing TCB entries must not be generated with LOAD-
MODE=ONCALL.

If you are working with several processes, this load module must not be
overwritten in the library LIB= during runtime. Otherwise, different libname
versions of the load module will be executed during the application run.

i

 347

 (POOL,poolname, ONCALL)

When the application is started, the public slice of the load module is loaded into the
common memory pool . The private slice belonging to the load module is poolname
then loaded into the local task memory when the first program unit assigned to this
load module is called.

Only external references from class 3/4 memory, from the subsystems, and from the
local memory pool are resolved.

 VERSION=version | *HIGHEST-EXISTING | *UPPER-LIMIT

Version of the load module. can be up to 24 characters in length.version

 *UPPER-LIMIT If VERSION=*UPPER-LIMIT (or VERSION=@) is specified then the BLS addresses
the load module in a PLAM library, which was last entered in this PLAM lmodname
library without an explicit version specification. If you work with explicit versions in
LMS, you use @ as the load module version.cannot

The rules governing the versions of elements in a program library also apply to name
allocation. However, there is one limitation: if contains the character “.” then version
the version must start with a letter.

 *HIGHEST-EXISTING Every time the application is started and at every application exchange, the highest
version of this module that exists in the library is loaded, i.e.

For the first task (application start) or the initiating task (before application
exchange), UTM determines the highest current element version for all load
modules generated with VERSION=*HIGHEST-EXISTING.

This element version is then also used to load modules that are not loaded until
later, e.g. because they are generated with LOAD-MODE=ONCALL.

When starting follow-up tasks for an application and when reloading the application
program after a PEND ER, the version of this module that is loaded is the one that
is already loaded by the other tasks in the application or that was loaded in this task
before the PEND ER.

For LOAD-MODULE statements generated with LOAD-MODE=STATIC, specifying
VERSION=*HIGHEST-EXISTING is permitted.not

 348

6.5.22 LPAP - define an LPAP partner for distributed processing based on LU6.1

The LPAP control statement allows you to define a logical access point for the partner application in the local
application. An LPAP statement is only required if communication with the partner application is to be carried out
using the LU6.1 protocol. This logical access point is known as an LPAP partner. For each LPAP partner, you must
define a logical name, possibly administration authorization for the partner application, maximum values for the
message queue of the LPAP partner, and logical properties for communication with the partner application based
on the LU6.1 protocol.

For information about generating LU6.1 connections see ."Distributed processing via the LU6.1 protocol"

The CON statement is used to assign a real partner application to the LPAP partner (see the CON statement in the
section "CON - define a connection for distributed processing based on LU6.1"

LPAP lpapname

[,BUNDLE = master_lpap_name]

[, DEAD-LETTER-Q={ | YES } NO

[,KSET=keysetname]

[,LNETNAME=local_netname]

[,PERMIT={ ADMIN | SATADM | (ADMIN,SATADM) } 1 1

]

[,QLEV=queue_level_number]

[,RNETNAME=remote_netname]

 ,SESCHA=sescha_name

[,STATUS={ | OFF }]ON

 additional operand on BS2000 systems
[,NETPRIO={ MEDIUM | LOW }]

1only permitted on BS2000 systems

lpapname LPAP partner name, i.e. the logical name of the partner application, which is used by the
program units of the local application to address the partner application. applies lpapname
only in the local application, and can be up to eight characters in length.

The specified name must be unique and must not be assigned to any other object in
name class 1. See also section . "Uniqueness of names and addresses"

Together with the LTERM names and the OSI-LPAP names, the LPAP names form a
common name class.

 349

BUNDLE= master_lpap_name

Name of the master LPAP. If this operand is specified, the LPAP becomes a slave LPAP
of an LU6.1-LPAP bundle.

You define the with a MASTER-LU61-LPAP statement.master_lpap_name

Messages sent to the master LPAP of an LPAP bundle with an APRO call are distributed
to the slave LPAPs of this LPAP bundle by openUTM. This allows the application to
distribute the messages to be sent across several partner applications of the same type
without the need to program this explicitly.

DEAD-LETTER-Q= specifies whether asynchronous messages to this LPAP partner that could not be sent
due to a permanent error are to be saved in the dead letter queue.

Monitoring of the number of messages in the dead letter queue is enabled and disabled
with the MAX ...,DEAD-LETTER-Q-ALARM statement.

 YES Asynchronous messages to this LPAP partner that could not be sent due to a permanent
error are saved in the dead letter queue provided (in the case of message complexes) no
negative confirmation job has been defined.

 NO No asynchronous messages to this LPAP partner are saved in the dead letter queue.

Default: NO

KSET= keysetname

Name of the key set assigned to the partner application in the local application. The key
set is defined using the KSET statement. The partner application can only start those
services or address those remote services generated in the local application which are
not locked, i.e. for which no lock code has been defined, and whose key codes are
defined in the key set .keysetname

The local application can thus be secured against unauthorized access by the partner
application.

Default: No key set,
i.e. only transaction codes that are not protected with lock codes can be started by the
partner application.

Main jobs for message complexes (MCOM) with negative confirmation jobs are
never saved in the dead letter queue as the negative confirmation jobs are
activated in case of errors.

If the number of messages in the dead letter queue is limited with QLEV,
messages may be lost in the event of errors. If the number is not limited, the
openUTM page pool generated must be sufficiently large. If there is a threat of
a page pool bottleneck, the dead letter queue can be locked during application
run with STATUS=OFF.

i

 350

LNETNAME= local_netname

This is required only for heterogeneous links. identifies the VTAM name local_netname
defined for the UTM application in the CICS or IMS partner application.

Default: Blanks

NETPRIO= This operand is only supported on BS2000 systems.

Transport priority to be used on the transport connection assigned to this LPAP partner.

Default: MEDIUM

PERMIT= Authorization level of the partner application

 ADMIN The partner application can execute administration functions in the local application.

 SATADM The partner application can execute preselection functions in the local
application, i.e. it can activate and deactivate the SAT logging of certain
events (UTM SAT administration authorization).

 (ADMIN,SATADM) The partner application can execute administration and preselection functions in the local
application.

Default:
The partner application cannot execute administration functions in the local application.

QLEV= queue_level_number

Maximum number of asynchronous messages that can be accommodated in the
message queue of the LPAP partner. If this threshold value is exceeded, further APRO-
AM calls to this LPAP partner are rejected with UTM message 40Z.

Default: 32767
Minimum value: 0
Maximum value: 32767 (i.e. unlimited)

RNETNAME= remote_netname

This parameter is required only for heterogeneous links. identifies the remote_netname
VTAM name of the CICS or IMS partner application.

Default: Blanks

SESCHA= sescha_name

The session characteristics that apply for communication between the local application
and the partner application are defined under in the SESCHA statement sescha_name
(see "SESCHA - define session characteristics for distributed processing based on LU6.1"
). By specifying here, you can assign this set of session characteristics to sescha_name
the LPAP partner.

This is a mandatory operand.

STATUS= Specifies whether the LPAP partner is locked. The status can be changed during
operation using the administration command KDCLPAP.

 351

 ON The LPAP partner is not locked. Connections can be established between the partner
application and the local application or connections already exist.

Default: ON

 OFF The LPAP partner is locked. No connections can be established between the partner
application and the local application.

 352

6.5.23 LSES - define a session name for distributed processing based on LU6.1

The LSES control statement required only for communication based on the LU6.1 protocol.

For more information about generating LU6.1 connection see "Distributed processing via the LU6.1
.protocol"

It allows you to define a common session name for the connection established between two applications for
distributed processing. This name is then used to resume an interruptedcommunication process. LSES also
enables you to allocate the session to an LPAP partner. For this purpose, each LPAP statement must be assigned
at least one LSES statement. In the case of parallel sessions, several different session names must be defined for
the LPAP partner .lpapname

An LPAP partner must be always be assigned the same number of sessions (LSES statement) and transport
connections (CON statement).

Exception: More LSES statements than CON statements can be assigned to an LPAP partner for a UTM cluster
application.

If a session is defined for the local application with LSES AAA, RSES=BBB, this sessionmust be defined with LSES
BBB, RSES=AAA in the generation of the partner application.

To ensure that the USER and session name need not be unique in two connected applications, the common
session name consists of two parts:

 = + sessionname local_sessionname remote_sessionname

LSES local_sessionname

 ,LPAP=lpapname

[,RSES=remote_sessionname]

addtional operand on Unix, Linux and Windows systems

[,NODE_NAME=nodename]

local_sessionname Name of the session in the local application.
The specified name must be unique and must not be assigned to any other object in name
class 2. See also ."Uniqueness of names and addresses"

LPAP= lpapname

Name of the LPAP partner assigned to the partner application.
 is used for communicating with the partner application assigned to the local_sessionname

LPAP partner in the local application.lpapname

 353

NODE-NAME= node_name

This parameter is only relevant for UTM cluster applications on Unix, Linux and Windows
systems.

To ensure that openUTM is able to select the "right" session when establishing a session
with a partner application, you must assign the LU6.1 sessions to the node applications via
the NODE-NAME operand. The following dependencies apply:

The name specified in NODE-NAME must be defined in a CLUSTER-NODE statement
using the identically named NODE-NAME operand.

The host name for the node (HOSTNAME) specified in this CLUSTER-NODE statement
must be referenced in a CON statement in the partner application (PRONAM).

The LPAP name specified in this CON statement must, in the partner application, be
specified in an LSES statement that matches the LSES statement generated here. I.e.
the local session name in the partner application corresponds to the RSES name that is
specified here and vice versa.

See also and ."Generation notes” "Procedure when generating LU6.1 connections"

Default value: eight spaces, i.e. not a node application.

In the case of standalone applications, NODE-NAME may not contain any values other than
spaces.

RSES= remote_sessionname

Remote half session name

Default: = is set, if RSES is not named.remote_sessionname local_sessionname

 354

6.5.24 LTAC - define a transaction code for the partner application

The LTAC control statement allows you to define a local transaction code for a service, a remote service program or
a remote TAC queue in a partner application. LTAC statements can be generated for communication based on both
the LU6.1 protocol and the OSI TP protocol.

The local transaction code is assigned either

the name of a transaction code in a specific partner application (with single-step addressing), in which case the
local transaction code addresses both the partner application and the transaction code in this application, or

the name of a transaction code in any partner application (with double-step addressing). The partner application
in which the service program addressed by the local transaction code is to run must be specified explicitly in the
program interface.

LTAC ltacname

 [,{ CESS- IST=keysetname | LOCK=lockcode }] AC L

 [,LPAP=lpapname]

 [,LTACUNIT=ltacunit]

 [,RTAC={ C'rtacname' |

 rtacname |

 recipient_TPSU_title [,CODE={ | ST AN D ARD

 ABLE-STRING |PRINT

 -STRING |T61

 EGER } INT

]

 }

]

 [,STATUS = { | OFF }]ON

 [,TYPE={ | A }]D

 [,WAITTIME=(time1,time2)]

 355

ltacname Name of a local transaction code defined for the remote service program

ACCESS-LIST= keysetname

ACCESS-LIST= is used to specify the access authorizations that the user of the
local UTM application must have in order to be able to send a job to the remote
program. Whether the job is actually carried out by the remote application will
depend on the access authorizations that are defined there.

ACCESS-LIST may not be specified in conjunction with the LOCK= lockcode
operand.

For you must enter the name of a key set. The key set must be defined keysetname
using a KSET statement.

A user can only access the LTAC if the key set of the user (USER ...,KSET=)
contains at least one of the key codes contained in the key set (access list)

 of the LTACs.keysetname

If you enter neither ACCESS-LIST= nor LOCK= the LTAC is keysetname lockcode
not protected and any user of the local application is able to start the remote service
program.

Default: no key set

LOCK= lockcode

May not be specified in conjunction with the ACCESS-LIST= operand.

LOCK= specifies the Lock code of the remote service program. A service secured
with a lock code can only be addressed by a program unit if the program unit was
started under a user ID (KCBENID) and from a client or a partner application
(KCLOGTER) whose key set contains a key code that matches the lock code.

If you enter neither ACCESS-LIST= nor LOCK= the LTAC is keysetname lockcode
not protected and any user of the local UTM application is able to start the remote
service program.

Default: 0 (no lock code)
Maximum value: Value of MAX ...,KEYVALUE=number

LPAP= lpapname

This identifies the partner application to which the service program belongs. You
must enter the name of the LPAP partner assigned to this partner application or the
name of an LU6.1-LPAP bundle or an OSI-LPAP bundle.

If the LPAP= operand is not specified, the name of the partner application must be
entered in the APRO function call (in the KCPA field).

 356

LTACUNIT= ltacunit

Specifies the number of accounting units that are calculated for each call of this
LTAC in the accounting phase of the UTM accounting. The accounting units are
added to the accounting unit counter of the user ID that called the LTAC.
You may only specify integer values. This operand is only relevant if you are using
the “UTM Accounting” function. Further information on the UTM Accounting can be
found in the openUTM manual “Using UTM Applications”.

Default value: 1
Minimum value: 0
Maximum value: 4095

RTAC= Name of the transaction code for the remote service program in the partner
application. is used in the local application to address a service program ltacname
defined under this transaction code () in the partner application.recipient TPSU-title

In the case of asynchronous communication you can also specify the name of a
TAC queue in the partner application.

Default: rtacname=ltacname

 C‘rtacname‘ |
 rtacname |
 recipient_TPSU_title

The name of the transaction code for the remote service program in the partner
application () can be specified in the form of a character string or recipient_TPS_title
a number. A character string can be entered in the format or .C‘rtacname‘ rtacname

For , the OSI TP standard distinguishes between the code recipient_TPSU_title
types printable string, T.61 string, and integer, which are used internally by
openUTM to represent the RTAC name.

 CODE=

 STANDARD If is specified in the form of a character string, it can be up to recipient_TPSU_title
eight characters in length. It can only contain characters that are permitted for TAC
names. Further information can be found in section ."Format of names"

CODE=STD must be used for communication based on the LU6.1 protocol, and is
recommended if the partner application is a UTM application.

For communication based on the OSI TP protocol, CODE=PRINTABLE- STRING is
used internally.

Default: STANDARD

 357

 PRINTABLE-STRING The string can be up to 64 characters in length, and is case-recipient_TPSU_title
sensitive.

If the partner application is a UTM application, can be up to recipient_TPSU_title
eight characters in length. It can only contain characters permitted for TAC names. If
these requirements are not met, the string can only be used for heterogeneous links
based on the OSI TP protocol.

The following characters are permitted for the code type PRINTABLE- STRING:

A, B, C, . . . , Z

a, b, c, . . . , z

0, 1, 2, . . . , 9

and the following special characters:

apostrophe ’

hyphen -

blank <SPACE>

colon :

question mark ?

equals sign =

comma ,

plus sign +

period .

left parenthesis (

right parenthesis)

slash /

 358

 T61-STRING With the code type T61-STRING, openUTM supports all characters of the code type
PRINTABLE-STRING as well as the following special characters:

dollar sign $

greater than sign >

less than sign <

ampersand &

commercial at @

number sign #

semicolon ;

percentage sign %

asterisk *

underscore _

 INTEGER For , you can specify a positive integer between 0 and recipient_TPSU_title
67108863.

This is permitted only for partner applications which are not UTM applications and
which communicate on the basis of the OSI TP protocol.

STATUS= This defines whether or not the of the remote service program is locked ltacname
when the local application is started.

The value entered for STATUS= applies until it is changed using the KDCLTAC
administration command.

 ON The transaction code is not locked, i.e. jobs are accepted for the ltacname
corresponding service program.

Default: ON

 OFF The transaction code is locked, i.e. jobs are not accepted for the remote ltacname
service program.

TYPE= This defines whether the remote service program is operated in dialog or
asynchronous mode.

 D The remote service program is operated in dialog mode.

Default: D

 A The remote service program or the remote TAC queue is operated in asynchronous
mode.

 359

WAITTIME= (time1,time2)

Maximum time spent waiting for a session to be reserved. By appropriately selecting
this wait time, you can limit the wait time of a user on the terminal that requests the
remote service.

 time1 Number of seconds spent waiting for a session to be reserved (possibly including
connection setup) or for an association to be established when starting a remote
service program.

time1 0 for asynchronous TACs:!=

An asynchronous job is always placed in the message queue of the partner
application.

time1 0 for dialog TACs:!=

A dialog job is accepted if a logical connection exists to the partner application.

time1 = 0 for asynchronous TACs:
An asynchronous job (FPUT job) that is not time-driven is only entered in the
message queue of the partner application if there is a logical connection to the
partner application. If there is no connection, then the FPUT call is rejected with
the return code 40Z, KD13.

time1=0 for dialog TACs:
If there is no session or association generated for which the local application is
the contention winner, then the dialog job (APRO DM call) is rejected with 40Z,
KD11. If there are sessions/associations for which the local application is the
contention winner, but none are free when the program ends, then the
transaction is rolled back.

In the case of asynchronous jobs to OSI TP partners is always set internally to time1
60 seconds, regardless of the value actually set.

If there is no logical connection to the partner application, then dialog jobs are
rejected, regardless of the value of . The establishment of a connection is time1
initiated at the same time.

 360

 time2 Maximum number of seconds spent waiting for a response from the job receiver.
This can be used to restrict the wait time for the terminal user.

 = 0 means “wait indefinitely”. time2
 is only relevant for dialog LTACs, the wait times for asynchronous LTACs are time2

defined using UTMD ... CONCTIME=(...,).time2

Default value: WAITTIME = (30,0).
Minimum value: WAITTIME = (0,0)
Maximum value: WAITTIME = (32767,32767)

Wait times can be modified using the UTM administration (e.g. with the KDCLTAC
command).

If a value > 0 is specified in then this value is ignored by openUTM if time2
a KDCSHUT WARN or GRACE has been issued and the local service has
initiated the end of the transaction. In this case, openUTM chooses the
wait time in such a way that the transaction is rolled back before the
application is terminated in order, if possible, to prevent the application
from being terminated abnormally with ENDPET.

i

 361

6.5.25 LTERM - define an LTERM partner for a client or printer

The LTERM control statement allows you to define an LTERM partner as the logical access point for a client or
printer of the application. Clients are terminals, UPIC clients and transport system applications (DCAM, CMX and
socket applications, or UTM applications generated as transport system applications).

LTERM partners are used by clients and printers to establish a connection with the UTM application. They are
assigned physical clients or printers using the PTERM statement. You can also define pools of LTERM partners;
further information can be found in the description of the TPOOL statement in section "TPOOL - define an LTERM

.pool"

LTERM partners can also be predefined, i.e. they aren’t assigned to a client/printer yet. The LTERM partner ->

PTERM assignment can be defined later on during operation using the KDCSWTCH administration command.

A separate LTERM statement must be issued for all clients defined in a PTERM statement.

LTERM ltermname

[,BUNDLE=master-lterm]

[,GROUP=primary-lterm]

[,KSET=keysetname]

[,LOCK=lockcode]

[,QAMSG={ ES | O }]Y N

[,QLEV=queue_level_number]

[,RESTART={ | O }]YES N

[,STATUS={ | OFF }]ON

[,USAGE={ | O }]D

[,USER=username]

additional operands on BS2000, Unix and Linux systems

[,CTERM=ltermname2]

[,PLEV=print_level_number]

additional operands on BS2000 systems

[,ANNOAMSG={ | N }]Y

[,FORMAT= { + | * | # }formatname]

[,KERBEROS-DIALOG = { ES | }]Y N O

[,LOCALE=([lang_id][,[terr_id][,ccsname]])]

[,NETPRIO={ EDIUM | OW }]M L

Printers are not supported by openUTM on Windows systems.i

The operands LOCK=, KSET=, USER= and ANNOAMSG= are only valid for clients; the operands
CTERM= and PLEV= are only valid for printers.

i

 362

ltermname Name of the LTERM partner up to eight characters in length.

ltermname is used

to assign a client or printer to the LTERM partner in the PTERM statement.

by the program units of the application to address clients, printers, and other TS applications
(not server-to-server communication) assigned to the LTERM partner.

The specified name must be unique and must not be assigned to any other object in name class
1. See also ."Uniqueness of names and addresses"

ANNOAMSG= (unce synchronous e sa e)anno a m s g

This operand is only supported on BS2000 systems.

This operand applies only for LTERM partners used by terminals (USAGE=D) to sign on to the
UTM application.

 Y An asynchronous message to this terminal is announced in advance by outputting UTM
message K012 in the system line. The user must then request the message using the UTM
command KDCOUT.

Default: Y

 N An asynchronous message to this terminal is sent immediately, i.e. without prior announcement.

BUNDLE= master-lterm

Name of a master LTERM in a LTERM bundle (connection bundle). By specifying , master-lterm
this LTERM becomes a slave LTERM of the corresponding connection bundle.

The master LTERM specified here must have been generated in a preceding LTERM statement.
Do not assign a PTERM to a master LTERM.

Connection bundles permit load balancing (see)."LTERM bundle"

Connection bundles can be generated for APPLI or SOCKET connections (PTYPE operand of
the corresponding PTERM statement).

BUNDLE must not be specified together with GROUP or CTERM.

CTERM= ltermname2

(ontrol inal)c term

This operand is only supported on BS2000, Unix and Linux systems.

This only needs to be specified for LTERM partners generated for printers (USAGE=O).
 is the name of an LTERM partner (up to eight characters in length) which was ltermname2

configured as a printer control LTERM (LTERM ...,USAGE=D). The printer control LTERM can
be assigned one or more LTERM partners which were configured for printers. It is used to
manage printers, print jobs, and printer queues.

Default: Blanks, i.e. no printer control LTERM

 363

GROUP= primary-lterm

Name of a primary LTERM. By specifying , this LTERM becomes an alias LTERM primary-lterm
of the corresponding primary LTERM. They define a LTERM group.

In a LTERM group you assign several LTERMs to one connection (see). "LTERM groups"

The primary LTERM specified here must have been generated in a preceding LTERM
statement. The primary LTERM must be a normal LTERM assigned to a PTERM with
PTYPE=APPLI or PTYPE=SOCKET or the master LTERM of a connection bundle. Do not
assign a PTERM to an alias LTERM.

FORMAT= This operand is only supported on BS2000 systems.

Designates the start format of the LTERM partners. Start formats can only be defined for
terminals. It only makes sense to specify a start format if the application is generated without
user IDs or if you are using your own signon service.

If the LTERM partner is assigned to a UPIC client, then specifying a start format has no effect.

If the application is generated user IDs, this format is output instead of UTM message without
K001. Following a terminal-specific restart, the start format is not displayed, rather the KDCDISP
command is executed.

If the application is generated user IDs, the name of the start format can be queried in the with
first part of the sign-on procedure using the SIGN ST call. If you do not use your own sign-on
procedure, you cannot use the LTERM-specific start format.

The sign of the format consists as follows:

+, * or # followed by an alphanumeric name () up to seven characters in length.formatname

#formats can only be used in the context of a sign-on procedure.

The terms have the following meanings:

 + When the next MGET call of the program unit is issued, each entry in a format field is preceded
by 2 bytes for the attribute field in the KDCS message area, i.e. the field properties can be
modified by the program unit.
The format name at the KDCS interface is + .formatname

 * When the next MGET call of the program unit is issued, the entry in a format field is not
preceded by any bytes for an attribute field, i.e. the field properties cannot be modified by the
program unit. The format name at the KDCS interface is * .formatname

 # This identifies a format with extended user attributes. The field properties and global format
properties can be modified by the program unit. The format name at the KDCS interface is #

.formatname

Default: no start format

KERBEROS-DIALOG =

GROUP must not be specified together with BUNDLE or CTERM.i

 364

 This operand is only supported on BS2000 systems.

 YES A Kerberos dialog is performed when a connection is established for terminals that support
Kerberos and that connect to the application directly via this LTERM partner (not via OMNIS).

openUTM stores the Kerberos information in the length resulting from the maximum lengths
generated for MAX PRINCIPAL-LTH and MAX CARDLTH. If the Kerberos information is longer,
it is truncated to this length and stored.

The KDCS call INFO (KCOM=CD) allows a program unit run to read this information unless a
user subsequently signs on with an ID card. In this event, the Kerberos information is overwritten
by the ID card information.

If the maximum of the lengths generated for MAX PRINCIPAL-LTH and MAX CARDLTH is zero,
a warning message is issued.

 NO No Kerberos dialog is performed.

Default.

KSET= keysetname

This applies only to clients generated as dialog partners (USAGE=D). is the name keysetname
of a key set defined using the KSET statement and assigned to the LTERM partner . ltermname

 may be up to 8 characters long.keysetname

A maximum of one key set can be assigned to each LTERM partner. This defines the access
permissions for this LTERM partner with respect to using the services of the application and
remote services (LTACs) generated in this application.

This LTERM partner can only be used to start services of the application that are protected with
a lock code or an access list and only address remote services that are protected with a lock
code or an access list if the following applies: The key set assigned to the LTERM partner and
the KSET of the UTM user ID under which sign-on using this LTERM partner was performed
must contain the key code or access code that matches the lock code or access list.
The lock/key code concept and the access list concept are described in detail in the openUTM
manual “Concepts und Functions”. An introduction to data access control can be found in section

."Lock/key code concept"

Services whose TACs are not secured with codes can be called by the user or the client
program without restriction.

In the case of an application in which user IDs have been defined and for which data access
control is not required for terminals, you can assign all key codes to the terminals as follows:

LTERM ...,KSET=MASTERSET

 KSET MASTERSET,KEYS=MASTER

Default: No key set

LOCALE= (lang_id,terr_id,ccs_name)

This operand is only supported on BS2000 systems.

Language environment of the client that signs on to the application via this LTERM partner.

 365

 lang_id Freely selectable language identifier for the client, up to two characters in length.

The language identifier may be queried by the program units of the application, so that
messages can be sent to the terminal in the communication partner’s language.

 terr_id Freely selectable territorial identifier for the client, up to two characters in length.

The territorial identifier may be queried by the program units of the application, so that messages
can be sent to the terminal taking into consideration any special territorial features of the
communication partner’s language.

 ccsname (oded haracter et)c c s name
Name of an extended character set (CCS name) up to eight characters in length. The specified
CCS name must belong to one of the EBCDIC character sets defined under the BS2000 system
(see also the XHCS User Guide). The character set must be compatible with an ISO character
set supported by the terminal assigned to this LTERM partner.

During generation, KDCDEF cannot check the validity of the CCS name under the BS2000
system or the compatibility condition. If you specify a CCS name which is not defined in XHCS,
this results in a PEND ER when an attempt is made to establish a connection via this LTERM
partner during runtime.

The character set with the specified CCS name is used for:

outputting dialog messages on 8-bit terminals if the application is generated without user IDs
or if a user is not signed on to the terminal, and another CCS name is not explicitly selected
using an edit profile or a format.

outputting asynchronous messages on 8-bit terminals if another CCS name is not explicitly
selected using an edit profile or a format.

Default: Locale defined in the MAX statement

LOCK= lockcode

This applies only for clients (USAGE=D).
Lock code assigned to the LTERM partner as a logical numerical lock. is a number lockcode
between 1 and the maximum value permitted by the application (MAX ...,KEYVALUE=). number
It is only possible to sign on to this LTERM partner under a UTM user ID (USER) for which a key
set has been generated with a key code that contains the lock code of the LTERM partner. If the
application is generated without user IDs (no USER statement), the LOCK= operand is ignored.

Default: 0, i.e. no lock code
Maximum value: Value of MAX ...,KEYVALUE=number

NETPRIO= This operand is only supported on BS2000 systems.

Transport priority to be used on the transport connection assigned to this LTERM partner.

NETPRIO has no significance for LTERM partners that are assigned to a PTERM using
PTYPE=SOCKET or PTYPE=*RSO.

Default:
MEDIUM for clients
LOW for printers

 366

PLEV= print_level_number
(rint el)p lev

This operand is only supported on BS2000, Unix and Linux systems.

This applies only for printers. The PLEV= operand allows you to access printers from various
UTM applications (printer sharing). The connection between the UTM application and the printer
exists only while the print job is being transferred, thus allowing other applications to establish a
connection as required.

This operand defines the number of printer messages at which openUTM attempts to establish a
connection with the printer. openUTM continues to collect these messages until the threshold
value defined with PLEV= is reached. It then establishes a logical connection to the printer. The
connection is shut down again as soon as there are no further messages for this printer. Another
application can then output messages to the printer if necessary. If the client is assigned a
printer pool, openUTM attempts to establish a connection to all printers in the pool as soon as
the threshold value is reached. When all messages have been sent, the connection to all printers
in the pool is shut down again.

If the connection to the printer is shut down (e.g. by administration) even through the threshold
value PLEV= is still exceeded, openUTM attempts to reestablish the connection at intervals
defined in MAX ...,CONRTIME= .time

If PLEV=0 is specified, the connection is not shut down even if there are no further output
messages.

If PLEV>0 is specified, the operands RESTART=NO or USAGE=D must not be specified for the
LTERM partner. On BS2000 systems QAMSG=NO must also not be specified.

Default value: 0
Minimum value: 0
Maximum value: 32767
If you exceed the maximum value, KDCDEF automatically resets your entry to the default value
without outputting a UTM message.

QAMSG= (ueue synchronous e sa e)q a m s g

 YES An asynchronous message (FPUT job) to the client or printer is buffered by openUTM in the
message queue of this LTERM partner, even if the client or printer is not connected to the
application.

Default: If RESTART= YES

 NO An FPUT job sent to this client or printer is rejected with the return codes KCRCCC=44Z and
KCRCDC=K705 if the client or printer is not connected to the application.

Default: If RESTART=NO

If PLEV>0 is specified, the operand CONNECT=YES of the associated PTERM
statement has no effect.

i

 367

QLEV= queue_level_number

(ueue el) q lev
Specifies the maximum number of asynchronous messages simultaneously buffered by
openUTM in the message queue of the LTERM partner. If this threshold value is exceeded,
openUTM rejects all further FPUT or DPUT calls for this LTERM partner with 40Z.
QLEV= can be used to control the size of the page pool more effectively. This is because the
number of asynchronous messages cannot exceed the .queue_level_number

Default value: 32767
Minimum value: 0
Maximum value: 32767 (i.e. unlimited)
If you exceed the maximum value, KDCDEF automatically resets your entry to the default value
without outputting a UTM message.

RESTART= Processing of asynchronous messages when the client link is disconnected.

 YES When the link to the client assigned to this LTERM partner is disconnected, asynchronous
messages are retained. If user IDs are not generated in this application, openUTM performs an
automatic service restart for this LTERM partner.

Default: YES

 NO When the link to the client assigned to this LTERM partner is disconnected, openUTM deletes all
asynchronous messages in the message queue of the LTERM partner. If these are messages of
a UTM message complex, the negative confirmation job is activated. It is possible to relieve the
load on the page pool by specifying RESTART=NO.

If QAMSG=YES is specified, you must not specify RESTART=NO.

If user IDs are not defined in the application, openUTM does not perform an automatic service
restart for clients or printers, i.e.:

If the connection is shut down by KDCOFF, if it is lost, or if the application is terminated
normally, the service is rolled back to the last synchronization point and terminated. The event
exit VORGANG is then called with KCKNZVG=D (=Disconnect).

During a UTM warm start following abnormal termination of the application, an open service
for this LTERM partner is terminated without calling the event exit VORGANG.

Following connection setup, KDCDISP/KDCLAST behaves in the same way as after
regeneration, i.e. the UTM message is output.K020 NO MESSAGE(S) PRESENT

STATUS= Status of the LTERM partner following connection setup. This can be modified during runtime
using the administration command KDCLTERM.

You should not specify a QLEV < PLEV for a printer, as this would mean that the
connection to this printer would have to be established by administration.

i

 368

 ON The client or printer assigned to this LTERM partner is not locked, i.e. you can work with it as
soon as the connection has been established.

Default: ON

 OFF The client or printer assigned to this LTERM partner is locked.

USAGE= Type of LTERM partner

 D The LTERM partner is configured as a dialog partner. Both the client and the application can
send messages via the connection between the client and the local application.

Default: D

 O The LTERM partner is configured for an output medium. It is only possible to send messages
from the application to the printer or TS application etc.

USER= username

This only applies if the LTERM has been configured as a dialog partner (USAGE=D). Depending
on the type of the assigned client, this operand has the following effect:

If a terminal is assigned to the LTERM partner, openUTM executes an automatic KDCSIGN
for the user ID when establishing a logical connection between the client assigned username
to this LTERM partner and the UTM application. Note that when the automatic KDCSIGN is
used, access protection is limited.
You should not specify this operand unless you are certain that an authorized user is working
under this user ID at this client. After the logical connection is set up, the client is in the same
state as if the user executed the KDCSIGN command (BS2000 systems) or signon username
check (Unix, Linux and Windows systems) successfully. The user ID must be defined using
the USER statement.

If the LTERM partner is assigned a client of type APPLI or UPIC, then the user ID username
is reserved for this client (as the connection user ID). The client is signed on under this user
ID when the connection is established. Another client or terminal user cannot sign on to the
UTM application with this user ID.
If a user ID with the name of the LTERM partner was generated explicitly by means of a
USER statement, openUTM assigns this user ID exclusively to the LTERM partner. If the
LTERM partner is to send administration calls to the application, then a user ID with
administration authorization must be specified if the client is not signed-on using a real user
ID. If transaction codes are to be called from this client that are protected by lock codes, then
this user ID must be assigned an appropriate key set.
If no user ID was specified, then KDCDEF implicitly creates a user ID with the name of the
LTERM partner and the value defined in LTERM ...,RESTART=.

Default: No automatic KDCSIGN

 369

6.5.26 MASTER-LU61-LPAP - define the master LPAP of an LU6.1-LPAP bundle

The MASTER-LU61-LPAP statement allows you to specify the name and properties of a master LPAP for an LU6.1
LPAP bundle.

Slave LPAPs are assigned to a master LPAP of an LU6.1 LPAP bundle with the BUNDLE parameter of the LPAP
statement. The master LPAP and the slave LPAPs together form an LPAP bundle. LPAP bundles allow messages
to be distributed automatically across several LPAP partners (see)."LU6.1-LPAP bundles"

MASTER-LU61-LPAP master_lpap_name

 [,STATUS={ | OFF }]ON

master_lpap_name

Name of the master LPAP of an LU6.1 LPAP bundle. This name is only of significance in the local
application and must differ from the names of LTERMs, LPAPs, OSI-LPAPs and TACs defined in this
application.

master_lpap_name can be up to 8 characters in length.

STATUS= Specifies whether the MASTER-LU61-LPAP is locked.

 ON The MASTER-LU61-LPAP is not locked.

 OFF The MASTER-LU61-LPAP is locked. Jobs for the MASTER-LU61-LPAP are rejected.

 370

6.5.27 MASTER-OSI-LPAP - defining the master LPAP of an OSI-LPAP bundle

WIth the control statement MASTER-OSI-LPAP you specify the name and properties of a master LPAP for an OSI-
LPAP bundle.

A master LPAP of an OSI-LPAP bundle is assigned slave LPAPs with the BUNDLE parameter of the OSI-LPAP
statement. The master LPAP and the slave LPAPs together form a LPAP bundle. LPAP bundles allow messages to
be distributed automatically across several LPAP partners (see)."OSI-LPAP bundles"

MASTER-OSI-LPAP master_lpap_name
,APPLICATION-CONTEXT=context_name
[,STATUS={ ON | OFF }]

master_lpap_name

Name for the master LPAP in an OSI-LPAP bundle. This name is only significant in the local
application. It must be different from the names of the LTERMs, LPAPs, OSI-LPAPs, and TACs
defined in the application.

 can be a maximum of 8 characters long.master_lpap_name

APPLICATION-CONTEXT=context-name

Name of the application context to be used for communication with the remote partner.

All slave LPAPs in an OSI-LPAP bundle must be assigned to the same application context as the
master LPAP.

STATUS= Specifies whether the MASTER-OSI-LPAP is locked.

 ON The MASTER-OSI-LPAP is not locked.

 OFF The MASTER-OSI-LPAP is locked. Jobs for the MASTER-OSI-LPAP are rejected.

 371

6.5.28 MAX - define UTM application parameters

The MAX control statement allows you to define the maximum values, timers, process values and system
parameters of a UTM application. For instance, these include:

the name of the application

the base name or the base directory for UTM files

single or dual-file operation of the KDCFILE

size of a UTM page (block size of UTM storages and buffers)

the maximum number of

processes

key codes

GSSBs

LSSBs

UTM pages in the buffer for user log records, etc.

threshold values for monitoring the size of SYSLOG file generations if the SYSLOG is created as an FGG
(SYSLOG-SIZE operand)

the default language environment of the UTM application (LOCALE operand)

whether or not SM2 can be used for performance monitoring in the application

The parameters of the MAX control statement can be split into several MAX statements. If the same operand is
inadvertently entered in several MAX statements, the first value entered for this operand is taken as valid.

Mandatory operands:

APPLINAME=, KDCFILE= and TASKS=.

Additional mandatory operands on Unix, Linux and Windows systems:

SEMKEY= or SEMARRAY= (semaphore keys), IPCSHMKEY=, KAASHMKEY= and CACHESHMKEY=.

In OSI TP applications additionally: XAPTPSHMKEY= and OSISHMKEY=.

The mandatory operands need to be defined once.

Note on UTM cluster applications on Unix, Linux and Windows systems:

If you modify one of the operands APPLINAME, APPLIMODE, GSSBS, LSSBS, KB or NB then you must
regenerate both the initial KDCFILE and the UTM cluster files by specifying GEN=(CLUSTER,KDCFILE) in the
OPTION statement.

For clarity, all operands of the MAX statement are listed in a table following the operand descriptions.

 372

Operands valid for all operating systems

MAX [APPLIMODE={ | AST }]ECURES F

 ,APPLINAME=appliname

[,ASYNTASKS={ atask_number | (atask_number,service_number) }]

[,BLKSIZE={ 2K | 4K | 8K }]

 [,CACHESIZE=(number,paging,{ | RES } { , | DS })]NORES 1 PS 1

[,CLRCH={ c | C'c'| X'xx' }]

[,CONN-USERS=number] (mandatory on Unix, Linux and Windows systems)

[,CONRTIME=time]

[,DATA-COMPRESSION={ | YES | NO }]STD

[,DEAD-LETTER-Q-ALARM=number]

[,DESTADM=destination]

[,DPUTLIMIT1=(day,hour,minute,second)]

[,DPUTLIMIT2=(day,hour,minute,second)]

[,GSSBS=number]

[,HOSTNAME=name]

[,KB=length]

 ,KDCFILE=(filebase [, { | OUBLE }])INGLES D

[, VALUE=number]KEY

[,LEADING-SPACES={ NO | YES }]

[,LPUTBUF=number]

[,LPUTLTH=length]

[,LSSBS=number]

[,MOVE-BUNDLE-MSGS={ YES | NO }]

[,NB=length]

[,NRCONV=number]

[, SI- CRATCH- REA=value]O S A

[,PGPOOL=(number,warnlevel1,warnlevel2)]
[,PGPOOLFS=number]
[,PGWTTIME=time]
[,PRIVILEGED-LTERM = <lterm-name>]
[,QTIME = (qtime1,qtime2)]
[,RECBUF=(number,length)]
[,RECBUFFS=number]
[,REDELIVERY=(number1, number2)]
[,RESWAIT={ time1 | (time1, time2) }]
[,SM2={ NO | OFF | ON }]
[,SPAB=length]
[,STATISTICS-MSG={ NONE | FULL-HOUR }]
[,SYSLOG-SIZE=size]
[,SYSTEM-TASKS={ *STD | number }]
 ,TASKS=number
[,TASKS-IN-PGWT=number]
[,TERMWAIT=time]
[,TRACEREC=number]
[,TRMSGLTH=length]
[,USLOG={ SINGLE | DOUBLE }]

further operands for BS2000 systems

 373

[,BRETRYNR=number]

[,CARDLTH=length]

[,CATID=(catalog_A,catalog_B)]

[,LOCALE=([lang_id][,[terr_id][,ccsname]])]

[,LOGACKWAIT=time]

[,MP-WAIT=number]

[,PRINCIPAL-LTH=length]

[,REQNR=number]

[,SAT={ ON | }]OFF

[,VGMSIZE=number]

further operands for Unix, Linux and Windows systems

 ,CACHESHMKEY=number

 ,IPCSHMKEY=number

[,IPCTRACE=number]

 ,KAASHMKEY=number

 ,OSISHMKEY=number only mandatory if you generate OSI TP partners
 ,{ SEMARRAY=(number,number1) | SEMKEY=(number,...) }

 ,XAPTPSHMKEY=number only mandatory if you generate OSI TP partners

1NORES | RES and PS | DS only permitted on BS2000 systems. The long form PROGRAM-SPACE or DATA-
SPACE can also be specified instead of PS or DS.

APPLIMODE= This specifies whether the application is a UTM-S or UTM-F application.

 SECURE The application is generated as a UTM-S application.

With UTM-S, openUTM logs all user data so that this data is retained after the
application is terminated or following a system crash. In the event of errors, UTM-
S guarantees the integrity and consistency of the application data. If a UTM-S
application is terminated abnormally, an automatic restart is automatically
performed. For this purpose, this variant of openUTM logs all modifications at the
end of transactions.

Default: SECURE

 FAST The application is generated as a UTM-F application.

UTM-F offers enhanced performance by eliminating the disk input/output
operations performed by UTM-S when logging user and transaction data. With a
standalone UTM-F application, openUTM only logs user passwords and changes
to the configuration which were made by means of dynamic administration. These
modifications are thus retained for the next application run. However, UTM-F
applications do not log changes to the user data. They are therefore suitable only
for installations in which performance is the most important criterion and the
restart facility is not required. This applies in the case of pure information systems,
or if all logging functions can be provided by the database system used.

In UTM cluster applications, user data that is valid globally in the cluster is also
saved for UTM-F.

 374

APPLINAME= appliname

Name of the UTM application up to eight characters in length. defines appliname
a transport system access point via which connections to the UTM application can
be established.

This is a mandatory operand.

If several application names are required, for example, for distributed processing
based on the LU6.1 protocol, these can be assigned to the application using the
BCAMAPPL statement. With APPLINAME= you define the primary application
name.

appliname must be unique within the local system and must not begin with the
character ’$’.

BS2000 systems:

This name is subject to the name conventions for BCAM applications. The
transport system access point defined with supports the transport appliname
protocol NEA.

appliname must not begin with a number or with ’$’ as this is prohibited by BCAM
and the application cannot be started otherwise. Please note that KDCDEF cannot
intercept numbers.

Unix, Linux and Windows systems:

appliname must be specified when establishing a connection from the terminal
(dialog terminal process).

If connections are to be established with partner applications using the application
name defined with APPLINAME=, you must also issue an appropriate
BCAMAPPL statement (see)."BCAMAPPL - define additional application names"

ASYNTASKS= (atask_number,service_number)

Maximum number of resources that may be reserved to process asynchronous
jobs.

 atask_number Maximum number of processes (BS2000 tasks or work processes on Unix, Linux
and Windows systems) of the application which can simultaneously handle jobs
with asynchronous transaction codes. This operand allows you to prevent long-
running asynchronous processes from affecting dialog operation.

If ASYNTASKS=0, asynchronous TAC classes cannot be generated.

Default: 1
Minimum value: 0
Maximum value: TASKS -1

 375

 service_number Maximum number of asynchronous services that may be open at the same time.

You should set to be larger than when one of the service_number atask_number
two following cases can arise:

Process switch while processing an asynchronous service:If an asynchronous
service consists of several program units and if the transaction code of a follow-
up program (follow-up TAC after PEND PA/PR or PEND SP) is located in a
different TAC lass than the calling program unit or the priority control is
generated for TAC classes (TAC-PRIORITIES statement), then a process
switch can occur during processing. The asynchronous service is inactive at
first and does not allocate a UTM process, although it remains open.

Dialogs initiated by synchronous services with LU6.1 or OSI TP partner
applications: If a dialog is initiated with a partner application within an
asynchronous service (with APRO DM) and it must wait for a response from the
partner (via PEND KP or PEND RE), then the asynchronous service remains
open until the response arrives (or until a timeout), but it does not allocate a
UTM process.

If these cases arise in the application and the value of is too service_number
small, then the asynchronous processing may be temporarily blocked because

 of inactive services already exist. New asynchronous services service_number
cannot be started although no UTM processes are processing asynchronous
services at this time.

Default: atask_number
Minimum value: atask_number
Maximum value: 32767

BLKSIZE= Size of a UTM page

Please note that, depending on the BLKSIZE specification, each user storage
area occupies at least 2K, 4K or 8K in the page pool.

You can only specify BLKSIZE=4K or 8K for UTM cluster applications.

Default

standalone UTM applications: 2K

UTM cluster applications that run on 32-bit systems: 4K

UTM cluster applications that run on 64-bit systems: 8K

Possible values: 2K, 4K, 8K

On BS2000 systems you must specify BLKSIZE=4K or 8K

if the KDCFILE and the USLOG file are created on NK4 disks, or

if the KDCFILE is to be used as a Hiperfile (high-performance file).

i

 376

BRETRYNR= number

This operand is only supported on BS2000 systems.

Number of attempts made by openUTM to transfer a message to the transport
system (BCAM) if BCAM cannot accept the message immediately. If this number
is exceeded, the connection to the dialog partner is shut down.

BRETRYNR is irrelevant for asynchronous messages output to a dialog partner
with PTYPE=APPLI (PTERM statement). If such a message from the transport
system is rejected due to a temporary bottleneck, then openUTM releases the
process, but does not clear down the connection. After waiting for three seconds,
openUTM makes up to three attempts to transfer the message to BCAM. If after
the third attempt BCAM still cannot accept the message, then openUTM waits for
3 more seconds before it makes another three attempts to send the message to
BCAM. If still unsuccessful, it waits another 3 seconds before making another
three attempts, and so on.

Default: 10
Minimum value: 1
Maximum value: 32767 (theoretical value)

CACHESHMKEY= number

This operand is only supported on Unix, Linux and Windows systems.

Authorization key for the shared memory segment containing the global buffer for
file access. Keys are global parameters under the Unix, Linux and Windows
systems. You cannot specify more than one key. You must enter a decimal
number for .number

This is a mandatory operand.

CACHESIZE= (number,paging,NORES or RES, PS or DS)

(NORES, RES, PS, DS only on BS2000 systems PROGRAM-SPACE or DATA-
SPACE can also be specified instead of PS or DS)

This specifies the size and properties of the cache memory (further information
can be found in the openUTM manual “Concepts und Functions”). The values
entered here affect the performance of your UTM application.

 377

 number Number of UTM pages in the cache. The size of each UTM page is defined in the
BLKSIZE= operand. The cache is used for accessing the page pool, i.e. all input
and output operations involving LSSBs, GSSBs, TLSs, LPUT messages, FPUT
messages, MPUT messages to clients, and some types of UTM administrative
data. Data is not written to the KDCFILE until the cache becomes full or the
transaction is terminated.

KDCDEF rounds up this number to a multiple of 32.

Default value:
1024 (corresponds to 2, 4 or 8 MB, depending on the value of BLKSIZE=)
Minimum value:
32 (corresponds to 64, 128 or 256 KB, depending on the value of BLKSIZE=)
Maximum value:
Depends on the hardware and operating system, but not larger than 16777184.

 paging Percentage of cache pages to be written to the KDCFILE in a single batch in the
event of a bottleneck, thereby freeing space in the cache. This must correspond to
at least eight pages. The value specified here can be modified using the
administration command KDCAPPL CACHE= .%_utm_pages

Default value: 70(%)
Minimum value: 0, i.e. eight pages are swapped out
Maximum value: 100 (%)

 NORES This operand value is only supported on BS2000 systems.

The cache is created as non-resident.

Default: NORES

 RES This operand value is only supported on BS2000 systems.

The cache is created as resident.

A resident cache can enhance the performance of the UTM application. RES may
not be specified together with DATA-SPACE.

Resident cache offers enhanced performance in productive mode, as the cache
paging algorithm is designed specifically for use with this type of cache.

If the cache on BS2000 systems is located in the program space (PS),
the cache is created in a common memory pool whose size is always a
multiple of 1 MB. The BS2000 system automatically rounds the value
specified in CACHESIZE. CACHESIZE should be requested in multiples
of 1 MB so that address space is not wasted.

i

The number of resident pages used in the creation of a resident cache
cannot be checked using the COREBIAS operand of the BS2000
command BIAS.

i

 378

 PS or PROGRAM-SPACE This operand value is only supported on BS2000 systems.

The UTM cache is created in the program space.

Default: PS

 DS or DATA-SPACE This operand value is only supported on BS2000 systems.

The UTM cache is created in one or more data spaces.

If the generated UTM cache is larger than 2GBt, UTM will distribute the cache
over more than one data space as a data space may be at most 2GB in size.

The option of creating the UTM cache in a data space should be chosen only if a
very large UTM cache is required and the address space (program space) is not
sufficient for this.

Use of a data space for the ITM cache always entails a slight loss of performance
as a result of the way in which a program can access data in a data space. For
applications which require a large UTM cache, these performance disadvantages
are, however, counterbalanced by the advantages which a large cache brings
through the reduction of file IOs.

Above all for UTM applications it can be advantageous to create a very large UTM
cache in a data space. In the case of UTM-F, cache buffers are written to file only
in the event of a cache bottleneck. If the UTM cache is generated large enough all
file IOs to this page pool may be omitted for such applications.

The maximum size of a UTM cache in data spaces is 8 GB. In other words:

when BLKSIZE is 2K, the maximum value for is 4,194,304,number

when BLKSIZE is 4K, the maximum value for is 2,097,152,number

when BLKSIZE is 8K, the maximum value for is 1,048,576. number

DATA-SPACE may not be specified together with RES.

 379

CARDLTH= length

This operand is only supported on BS2000 systems.

Length of the ID card information in bytes. If the ID card reader is used for sign-on,
openUTM stores the ID card information in the length resulting from the maximum
of the length specified here and the value generated for MAX PRINCIPAL-LTH. If
the information on the ID card is longer, it is truncated and stored in this length.

The KDCS call INFO (KCOM=CD) enables a program to read this information.

CARDLTH must be big enough to ensure that the following applies for all USER
statements with
USER ..., CARD = (,): pos string
pos + length (string) -1 <= CARDLTH.

Default: 0
Maximum value: 255

When a value > 255 is specified, 255 is assumed.
No warning message is output.

CATID= (catalog_A,catalog_B)

This operand is only supported on BS2000 systems.

Catalog IDs to which your KDCFILE is assigned.

If you work with CATIDs, enter the base name without the CATID in KDCFILE=
 (see).filebase "MAX - define UTM application parameters"

In the case of single-file operation of the KDCFILE, specify the CATID to which the
KDCFILE is to be assigned in . In this case, is not specified.catalog_A catalog_B

In the case of dual-file operation of the KDCFILE (see), you can "The KDCFILE"
assign files with the suffix A to CATID and files with the suffix B to catalog_A

. If you only specify a value for , both files are assigned to this catalog_B catalog_A
CATID.

CLRCH= Character with which the KB program area and the standard primary working area
are overwritten at the end of a dialog step. Possible entries are:

c
C’c’
X’xx’

Where is an alphanumeric character and a hexadecimal character.c x

Default:
The communication area and standard primary working area are not overwritten.

 380

CONN-USERS= number

This operand is used to control the load on the application. It defines the
maximum number of users that can work simultaneously with the application. In
the case of an application for which user IDs have not been generated, CONN-
USERS= can be used to define the maximum number of clients that can sign
simultaneously on to the application via LTERM partners.

CONN-USERS < number of users/clientsThis prevents all users/clients from
working simultaneously with the application.

CONN-USERS=0The number of simultaneously active users/clients is
unrestricted.

CONN-USERS > number of users/clientsThe application load is not controlled.
CONN-USERS= is ignored.

User IDs and clients generated with administration authorization can sign on to the
UTM application, even if the maximum number of simultaneously active user IDs
has already been reached.

Default value on BS2000 systems: 0 (i.e. no restriction)
Minimum value: 0
Maximum value: 500000

CONN-USERS is a mandatory operand on Unix, Linux and Windows
systems. Please note that cannot be set to a higher value that number
the number of concurrent user licenses obtained.

i

 381

CONRTIME= time

(nection equest) Time in minutes after which openUTM retries to con r time
establish a connection after failing to establish a connection generated to be
established automatically.
If CONRTIME > 0 then, following a disconnection, openUTM first attempts to
reestablish the connection immediately and then at the intervals specified in
CONRTIME. This applies to the following partners:

TS applications (PTYPE=APPLI or PTYPE=SOCKET) which openUTM
generates with automatic connection setup (PTERM ...,CONNECT=YES,)
provided that the connection was not terminated by an administration command
or due to the IDLETIME timer running down (see the PTERM statement on
"PTERM - define the properties of a client/printer and assign an LTERM

) .partner"

OSI TP or LU6.1 partner applications which were generated with automatic
connection setup, provided that the connection was not terminated by an
administration command or because of the expiry of an IDLETIME timer.

OSI TP partner to which the asynchronous messages were sent and with which
no connection existed at the creation time of the messages.

On BS2000 systems

Printers to which openUTM establishes a connection as soon as the number
of print jobs for this printer exceeds the generated threshold value (LTERM
...,PLEV>0). On disconnection, the number of print jobs must be greater
than or equal to the threshold value if openUTM is to attempt to re-establish
the connection. If CONRTIME 0, openUTM also attempts to re-establish !=

the connection if this was previously explicitly disconnected using an
administration command.

Printers to which openUTM automatically establishes a connection (PTERM
...,CONNECT=YES), provided that the connection was not terminated by an
administration command.

Message distributor (MUX) to which openUTM automatically establishes a
connection on start-up, provided that the connection was not terminated by
an administration command.

If a connection to this partner is not established when the application is started or
the administration command KDCPTERM or KDCLPAP is issued, openUTM
attempts to reestablish the connection at intervals specified in CONRTIME=.

If CONRTIME=0, openUTM does not make any attempt to set up the connection.
 A wait time of 10 minutes is set for asynchronous messages to OSI TP Exception:

partners.

Default: 10 min.
Maximum value: 32767 min.

 382

DATA-COMPRESSION= This parameter enables data compression to be permitted or not permitted.
If data compression is permitted and enabled, for data of the secondary storages
and long-term storages (GSSB, LSSB, TLS and ULS) and the communication
area-program area UTM performs data compression in order to reduce the space
required for these areas by at least one UTM page. For UTM-S applications in
particular this can have a positive effect on the performance because as a result
execution in UTM and the file IOs to the page pool are optimized.
UTM attempts to compress the user data only if this enables at least one UTM
page to be saved, i.e. only for data spaces which are written with a length of more
than one UTM page.

 YES Data compression is permitted and enabled. Data compression can be disabled
using administration facilities, e.g. by means of KDCAPPL.

 NO Data compression is not permitted and is disabled. This setting cannot be
modified using administration facilities.

 STD Data compression is permitted and enabled for UTM-S applications
(APPLIMODE=S).
Data compression is permitted but disabled for UTM-F applications
(APPLIMODE=F).

This default setting can be modified using administration facilities.

Default: STD

DEAD-LETTER-Q-ALARM Controls monitoring the number of messages in the dead letter queue.

The K134 message is output each time the threshold is reached. for this message
the destination MSGTAC can be defined in order to automate handling of the dead
letter queue.

Default: 0, monitoring is disabled.
Maximum value: 65535

DESTADM= destination

Destination to which openUTM sends the results of administration calls processed
asynchronously. For , you can specify:destination

an LTERM partner Exception: UPIC-LTERM partners are not permitted!

the TAC of an asynchronous program

the TAC queue (type=Q).

Default: Blanks, i.e. no destination; the results are thus lost.

The average value for UTM pages saved per data compression can be
queried using the administration functions, e.g. using the KDCINF STAT
command (see openUTM manual “Administering Applications”) or using
WinAdmin or WebAdmin.

i

 383

DPUTLIMIT1= (day,hour,minute,second)

Defines the latest possible execution time of a job. Can be specified in relative or
absolute time:

time of execution < time of DPUT call + DPUTLIMIT1

The following applies for time specifications in DPUTLIMIT1:

 day Maximum value: 364
Minimum value: 0

 hour Maximum value: 23
Minimum value: 0

 minute Maximum value: 59
Minimum value: 0

 second Maximum value: 59
Minimum value: 0

Default value: DPUTLIMIT1 (360, 0, 0, 0) 360 days=

Default value: DPUTLIMIT2 (1, 0, 0, 0) 1 day=

Minimum value: (0, 0, 0, 0)
Maximum value: (364, 23, 59, 59)

The following must apply for the DPUTLIMIT1 and DPUTLIMIT2 operands:

DPUTLIMIT1 + DPUTLIMIT2 <= (364, 23, 59, 59) < 365 days

i.e. if you enter (364, 23, 59, 59) for DPUTLIMIT1, you must specify DPUTLIMIT2=
(0, 0, 0, 0).

DPUTLIMIT2= (day,hour,minute,second)

The time specification for the DPUT call does not contain a number for the year.
Furthermore, the desired execution time may already have passed if the DPUT
call was delayed.

For this reason, you must decide whether the execution time of a job with an
absolute time specification should be attributed to the past, current, or next year.

Since DPUTLIMIT1 + DPUTLIMIT2 must be < 1 year, only one of these three
alternatives will be in the permissible open time period (call time - DPUTLIMIT2,
call time + DPUTLIMIT1):

If the only alternative allowed is before the call time, then the DPUT is handled
as an FPUT and executed as soon as possible.

If the only alternative allowed is after the call time, then the DPUT is saved and
only converted to an FPUT and executed at the alternative time.

If none of the three alternatives are in the permissible time period, then the
DPUT is rejected.

 384

DPUTLIMIT2 therefore allows you to backdate the specified execution time into
the past for time-driven jobs with absolute time specifications. You cannot
backdate jobs with relative time specifications.

DPUTLIMIT1 restricts the predating of jobs with absolute or relative time
specifications into the future only.

Example 1

DPUTLIMIT1 = (300,0,0,0)

DPUTLIMIT2 = (010,0,0,0)

The DPUT call time is (005,0,0,0). The current and last years are not leap years.

DPUTs with relative time (000,0,0,0) to (299,23,59,59) are accepted.

DPUTs with absolute times (001,0,0,0) to (005,0,0,0) and (360,0,0,1) to
(365,23,59,59) are handled as FPUT.

DPUTs with absolute time (005,0,0,1) to (304,23,59,59) are handled as DPUT.

DPUTs with absolute time (305,0,0,0) to (360,0,0,1) are rejected.

-|---------------|------------- ... --------------|-----------|
360 5 305 360
 FFFFFFFFFFFFFFFFFDDDDDDDDDDDDD ... DDDDDDDDDDDDDDD

Example 2

DPUTLIMIT1 and DPUTLIMIT2 are defined exactly as in , but the Example 1
DPUT call time is (360,0,0,0).

DPUTs with relative time (000,0,0,0) to (299,23,59,59) are accepted.

DPUTs with absolute time (350,0,0,1) to (360,0,0,0) are handled as FPUT.

DPUTs with absolute time (001,0,0,0) to (294,23,59,59) and (360,0,0,1) to
(365,23,59,59) are handled as DPUT.

DPUTs with absolute time (295,0,0,0) to (350,0,0,0) are rejected.

 -|---------------|-------------- ... -----------|-------------|
 350 360 295 350
 FFFFFFFFFFFFFFFFFDDDDDDDDDDDDDD ... DDDDDDDDDDDD

The default values are listed under the description of the DPUTLIMIT1 operand.

GSSBS= number

Maximum number of GSSBs (global secondary storage areas) that can exist
simultaneously in the application.

Default: 32
Minimum value: 0
Maximum value: 30000

 385

HOSTNAME= name

BS2000 systems:

Name of the virtual host on which the UTM application runs (from the point of view
of BCAM). This virtual host must also be generated in BCAM. The name can be
up to 8 characters in length. Default value: 8 blanks, i.e the applications runs
under the real host.

Unix, Linux and Windows systems:

Can only be specified in standalone applications.

In UTM cluster applications, you can specify a virtual host name in the VIRTUAL-
HOST parameter of the CLUSTER-NODE statement.

Name of the host that is specified as the sending address when a connection is
established from the UTM application end. HOSTNAME= is required in cluster
systems that use the “relocatable” IP address as the sending address and not the
stationary IP address.
The name can be up to 64 characters in length.

Default: Blanks, the default processor name of the transport system is used as the
sending address.

IPCSHMKEY= number

This operand is only supported on Unix, Linux and Windows systems.

Authorization key for the shared memory segment, which is used for
communication between work processes on one side and the dialog terminal or
printer processes and the timer process (external processes of an application) on
the other side. Keys are global parameters under the Unix, Linux and Windows
systems. You cannot specify more than one key. You must enter a decimal
number for .number

This is a mandatory operand.

IPCTRACE= number

This operand is only supported on Unix, Linux and Windows systems.

In test mode (startup with TESTMODE=ON, see openUTM manual “Using UTM
Applications on Unix, Linux and Windows Systems”), openUTM writes entries in
the trace area of the IPC (shared memory segments for interprocess
communication). These entries contain internal information which is required for
diagnostic purposes. Each entry occupies 32 bytes. IPCTRACE defines the
number of entries in the trace area. If this number is exceeded, openUTM
overwrites the existing entries, beginning with the oldest entry.

Default: 1060
Minimum value: 1
Maximum value: 32500

KDCDEF automatically resets values < 1 or > 32500 to the minimum or maximum
value without outputting a UTM message.

 386

KAASHMKEY= number

This operand is only supported on Unix, Linux and Windows systems.

Authorization key for the shared memory segment containing the global data.
Keys are global parameters under the Unix, Linux and Windows systems. You
cannot specify more than one key. You must enter a decimal number for .number

This is a mandatory operand.

KB= length

Length of the communication area (KB) in bytes, excluding the KB header and KB
return area.

Default: 512
Minimum value: 0
Maximum value: 32767

KDCFILE=

 filebase Base name of the KDCFILE, the user log file, and the system log file SYSLOG.
The name entered here must also be specified in the start parameter
FILEBASE=filebase when starting the application program (see openUTM manual
“Using UTM Applications”).

This is a mandatory operand.

BS2000 systems:
If you use the CATID= parameter to assign catalog IDs to your KDCFILE, the
base name must be specified without a CATID. (see section "BS2000 systems:"

 for the format and length of the name).(The KDCFILE)

Unix, Linux and Windows systems:
filebase is the name of the directory containing the KDCFILE and all application
files. This directory must be created before the KDCDEF run.
filebase can be fully or partially qualified and can be a maximum of 29 characters
in length for standalone applications, irrespective of whether the name is fully or
partially qualified.
filebase can be a maximum of 27 characters in length for UTM cluster applications.

 SINGLE Single-file operation is activated for the KDCFILE.

If the KDCFILE is split (see section), all KDCFILE files are "Splitting the KDCFILE"
subject to single-file operation.

Default: SINGLE

 DOUBLE For security reasons, dual-file operation is activated for the KDCFILE.

If the KDCFILE is split (see section), all KDCFILE files are "Splitting the KDCFILE"
subject to dual-file operation.

In UTM cluster applications, only SINGLE may be specified.

 387

KEYVALUE= number

Value of the highest key code of the application, and thus the value of the
corresponding highest lock code that can be assigned to a transaction code or a
terminal for data access control. The operand KEYVALUE=number can also be
used to define the maximum number of key codes per key set. openUTM uses this
information to optimize the key set tables. You can define up to 4000 key and lock
codes. Only numerical lock codes can be defined.

Default: 32
Minimum value: 1
Maximum value: 4000

Exceptions:

Maximum value (32-bit Unix, Linux and Windows systems): 1976 for MAX ...,
BLKSIZE=2K

Maximum value (64-bit Unix, Linux and Windows systems): 3900 for MAX ...,
BLKSIZE=4K

If you enter a value < 1, KDCDEF automatically sets KEYVALUE=1 without
outputting a UTM message.

LEADING-SPACES= Specifies how the leading spaces in a messages from a terminal or from a TS
application (PTERM ... PTYPE=APPLI or SOCKET) are to be handled.

 YES When calling a program unit, leading blanks in messages are passed on to the
program unit. The same applies for messages sent to a client with PTYPE=APPLI.
A blank acting as a separator between TAC and message is removed if the TAC
name < 8 characters.

 NO Leading blanks are suppressed.

Default: NO

 388

LOCALE= (lang_id,terr_id,ccsname)

This operand is only supported on BS2000 systems.

Default language environment of the UTM application (see also section“UTM
).messages”

The message module whose language and territorial identifiers match the
specifications in the MESSAGE ...LOCALE= and MAX ...,LOCALE= statements
becomes the application message module. openUTM sends messages to the
message destinations SYSOUT, SYSLST, and CONSOLE from this application
message module. The specifications in the application message module also
determine the destination of a particular message.

 lang_id Freely selectable language identifier for the UTM application up to two characters
in length.

Default: Blanks

 terr_id Freely selectable territorial identifier up to two characters in length.

Default: Blanks

 ccsname (oded haracter et)c c s name
Name of an extended character set (CCS name) up to eight characters in length.
The specified CCS name must belong to one of the EBCDIC character sets
defined under the BS2000 system (see also the XHCS User Guide). During
generation, openUTM cannot check whether this condition is fulfilled. KDCDEF
will thus accept CCS names to which no character set is assigned.

Default: Blanks, i.e. 7-bit mode

The locale generated here is assigned to all user IDs and clients that
sign on via LTERM partners or LTERM pools as the default language
environment. This default setting applies unless another locale is
explicitly defined for these objects in the corresponding USER, LTERM,
or TPOOL statements.

i

 389

LOGACKWAIT= time

The maximum length of time in seconds that openUTM is to wait for an
acknowledgment from an output device. This acknowledgment is

for a printer, the logical print acknowledgment from the printer,

for an RSO printer, the acknowledgment from RSO,

for an FPUT call to another application, the transport acknowledgment.

If confirmation does not arrive within this period, e.g. because the printer has run
out of paper, openUTM shuts down the logical connection to the device.

Default: 600
Minimum value: 10
Maximum value: 32767

LPUTBUF= number

Size of the LPUT buffer in UTM pages. The LPUT buffer of the KDCFILE is used
to temporarily store LPUT data. This data is not copied to the user log file until the
value specified in is exceeded. The user log file USLOG is open only number
during this copy process.

Default: 1
Minimum value: 1
Maximum value: 1000
KDCDEF automatically resets values > 1000 to 1000 without outputting a UTM
message.

CAUTION!
This operand must be set > 1 if the application contains LPUT calls.
Otherwise, the copy process will be started too often. This involves
opening and closing the user log files.
The value entered in LPUTBUF must be selected such that the buffer
can accommodate the longest LPUT record. The following must apply:

LPUTBUF * UTM page size >= LPUTLTH + length of KB header (84
bytes)

!

 390

LPUTLTH= length

Maximum length of the user data in LPUT records in bytes (excluding the KB
header).

The maximum length of an LPUT record in the user log file is calculated as follows
(see also the openUTM manual „Programming Applications with KDCS”, user log
file):

length + 84 bytes for the KB header + 12 bytes for length fields.

Default: 1948
Minimum value: 0
Maximum value (BS2000 systems): 32652, irrespective of the storage medium for
the user log file
Maximum value (Unix, Linux and Windows systems): 32668

BS2000 systems:
openUTM uses to determine the block size of the user log file. To do this, length
openUTM calculates the next largest value of (l + 100 bytes) that is a ength
multiple of 2 kbytes. openUTM uses this multiple as the block length for the user
log file. The 100 bytes comprise of 84 bytes for the KB header + 12 bytes for the
record length fields + 4 bytes for the block length fields.

If the user log file USLOG is created on a non-key disk (NK2, NK4), then you must
select the value of such that:length

length + 100 byte + 16 bytes block-specific internal DVS administration information

is a multiple of 2 Kbytes (on NK2 disks) or 4 Kbytes (on NK4 disks). This allows
you to optimally utilize disk space.

The 16 byte block-specific internal DVS administration information are therefore
not available for use as user data. You will find more information on this subject in
the BS2000 manual "Introductory Guide to DMS".

LSSBS= number

Maximum number of LSSBs (local secondary storage areas) that can be created
in a service.

Default: 8
Minimum value: 0
Maximum value: 1600

MOVE-BUNDLE-MSGS= This parameter can be used for an application to allow automatic moving of
waiting asynchronous messages from a slave LTERM, slave LPAP or slave OSI-
LPAP without a connection to the partner application.

 YES When the waiting time defined in MAX CONRTIME has elapsed, or after 10
minutes (if CONRTIME=0), UTM automatically moves FPUT messages to
a slave in the bundle with a connection established. It is possible that FPUTs
from a transaction will be sent using different slaves from a bundle.

 391

 NO Asynchronous messages to a slave are never sent via another slave.

Default: NO

MP-WAIT= number

This operand is only supported on BS2000 systems.

Maximum number of seconds for which openUTM waits for a process to sign on to
a common memory pool.

Default value: 180
Minimum value: 1
Maximum value: 32000

NB= length

Maximum length of a working area for

logical inputs and outputs to and from terminals and transport system
applications of the APPLI type

asynchronous output messages to printers and transport system applications of
the SOCKET type

This should be equal to the length of the largest KDCS message area of the
program units in bytes.

Default: 2048
Minimum value: 2048
Maximum value (BS2000 systems): 32700
Maximum value (Unix, Linux and Windows systems): 32676

CAUTION!
The default value of 180 seconds should only be changed in exceptional
circumstances, e.g. if a process terminates with K078 ENQAR and a
user dump with the return code KDCSST01.

!

 392

NRCONV= number

(umbe of ersations) n r conv
Maximum number of services that can be simultaneously stacked by the user.
NRCONV=0 means that services cannot be stacked.

The following limits are valid:

Number of user IDs + maximum number of services that can be placed on the
stack (number of services = * number of user IDs) <= 500000number

If the limit value of 500000 is exceeded (by the values specified for NRCONV in
the RESERVE statement, see "RESERVE - reserve table locations for UTM

, and by the number of USER statements, see), objects" "USER - define a user ID"
then openUTM automatically creates fewer entries for stacking services. In this
case, not all users will be able to place services on the stack.number

Default: 0
Minimum value: 0
Maximum value: 15

OSISHMKEY= number

This operand is only supported on Unix, Linux and Windows systems.

Authorization key for the shared memory segment, which is used by OSS for
communication based on OSI TP. You must enter a decimal number for . number
This is a mandatory operand if the application communicates on the basis of OSI
TP.

OSI-SCRATCH-AREA= value

Size in KB of an internal UTM working area for dynamic data storage when using
the OSI TP protocol.

Default: 256
Minimum value: 128
Maximum value: 32767

On BS2000 systems this working area is automatically extended during runtime, if
required.

On Unix, Linux and Windows systems the size of the internal working area must
not be modified during runtime. It is recommended that you select the default
value. However, if this proves to be insufficient during operation, increase the
value of OSI-SCRATCH-AREA and repeat the generation procedure.

PGPOOL= (number,warnlevel1,warnlevel2)

Size of the page pool in UTM pages and the warning levels for utilization of the
page pool.

 393

 number Number of UTM pages to be used for the page pool in the KDCFILE (see "Page
). The size of each UTM page is defined in the BLKSIZE= operand.pool"

Default: 100
Minimum value: 20
Maximum value: 16777215 - (2 * number of PGPOOLFS)

If you enter a value less than 20, KDCDEF automatically sets PGPOOL=20
without outputting a UTM message.

On Unix, Linux and Windows systems the value of PGPOOL is always an even
number. If you enter an uneven number, openUTM subtracts 1 from your entry.

 warnlevel1 Numeric value (percentage) indicating the page pool utilization level at which the
first warning (UTM message K041) is output.

Default: 80
Minimum value: 1
Maximum value: 99

 warnlevel2 Numeric value (percentage) indicating the page pool utilization level at which the
second warning is to be output. If is exceeded, all asynchronous jobs warnlevel2
are rejected. In this case, the user receives a K message, and a corresponding
return code is sent to a program unit.

Default: 95
Minimum value: + 1 warnlevel1
Maximum value: 100

 394

PGPOOLFS= number

Number of files between which the page pool is to be split. If PGPOOLFS = 0, the
page pool is located in the main file (on BS2000 systems in the file filebase.KDCA,
on Unix, Linux and Windows systems in the file KDCA in the file filebase
directory). In the case of dual-file operation (MAX ...,KDCFILE=(...,DOUBLE)), the
value specified in does not include the two file copies. number
The file names are defined by KDCDEF.

Default: 0, i.e. the page pool is located in the main file

Maximum value (BS2000 systems): 99 (and PGPOOL= / 2)number
Maximum value (Unix, Linux and Windows systems): 10

Minimum value: The minimum value depends on the number of UTM pages, the
UTM page size and the maximum file size permitted on the relevant system.

On BS2000 systems, an individual UTM file must not be larger than 32 Gbytes
in size.
For BS2000 systems, this results in the following minimum value depending on
the size of a UTM page:
4 if BLKSIZE = 8K and PGPOOL >= 4194304number
2 if BLKSIZE = 4K and PGPOOL >= 8388608 number
0: other, for meaning, see above.

On Unix, Linux and Windows systems in 32-bit mode files up to 2 Gbyte in size
are supported.

On Unix, Linux and Windows systems in 64-bit mode, openUTM can also use
larger files as defined by the limits of the operating system and file system.

PGWTTIME= time

Maximum number of seconds for which a program unit can wait for messages to
arrive after a blocking call (e.g. PGWT call). During this period, a process of the
UTM application is exclusively reserved for this program unit.

Default: corresponds to in TERMWAIT=time time
Minimum value: 60
Maximum value: 32767

 395

PRINCIPAL-LTH= length

This operand is only supported on BS2000 systems.

Maximum length of a Kerberos principal in bytes. This parameter is only of
significance if at least one user is generated with USER ..., PRINCIPAL= or at
least one LTERM or TPOOL is generated with KERBEROS-DIALOG=YES. The
length of the value specified with USER ... PRINCIPAL= must not be larger than
the value generated with MAX PRINCIPAL-LTH=.

When a Kerberos dialog is performed with a client, openUTM saves the Kerberos
information in the length resulting from the maximum of this length and the length
generated for MAX CARDLTH. If the Kerberos information is longer, it is truncated
to this length and stored.
The KDCS call INFO (KCOM=CD) allows the program unit run to read this
information if no user signs on to the same client with an ID card after the
Kerberos dialog. In this event, the Kerberos information is overwritten by the ID
card information.

Default: 0
Minimum value: 0
Maximum value: 100

 396

PRIVILEGED-LTERM=

lterm-name

Identifies an LTERM as a privileged connection. Jobs sent to the UTM application
via this LTERM are prioritized for processing by UTM in situations in which the
UTM application is subject to a high load.

To permit rapid responsiveness even in high-load situations, additional processes
(referred to as UTM system processes) are started for a UTM application. The
UTM system processes only handle selected jobs. These are primarily internal
jobs or jobs issued by an administrator who is signed on at the UTM application
via the privileged LTERM. See also operand MAX SYSTEM-TASKS on "MAX -

.define UTM application parameters"

If optimum use is to be made of this functionality, the PRIVILEGED-LTERM
should always be explicitly generated. Only then is it possible for all the
mechanisms that allow this LTERM to be privileged in high-load situations to take
effect. More specifically, the following approach is recommended:

The administrator's workstation should be generated via a PTERM- and an
LTERM statement.

The administrator's LTERM should be declared as a PRIVILEGED-LTERM.

If a connection is established via this LTERM then the following applies:

If a sign-on service is started for this connection then this sign-on service is
also processed by the UTM system processes.

If an administrator signs on via this connection then program unit runs for this
connection are also handled by the UTM system processes.

If a normal user signs on via this connection then this connection is handled
exclusively using "normal" processes until the user signs off.

The LTERM must be generated as a dialog LTERM in an LTERM statement.

If no PRIVILEGED-LTERM is generated then it is dynamically determined as
follows:

After the start of the application, the first LTERM to which an administrator
signs on becomes the privileged LTERM.

If this administrator then signs off again then the next LTERM to become the
privileged LTERM is that at which an administrator signs on or at which an
administrator who is already signed on starts a program unit.

QTIME= (qtime1, qtime2)

Specifies the maximum permitted length of time that a service is to wait for the
arrival of a message in a message queue. QTIME= refers to user specific (USER
queues), permanent (TAC queues) and temporary message queues.

It is possible to define individual maximum values for wait times in dialog or
asynchronous services.
If a greater wait time value is specified in a program unit run than is generated in
QTIME=, openUTM resets the wait time to the generated value.

 397

 qtime1 Maximum length of wait time for dialog services

 qtime2 Maximum length of wait time for asynchronous services

Both times are specified in seconds.

Default: 32767 (seconds)
Maximum value: 32767 (seconds)
Minimum value: 0 (seconds)

RECBUF= (number,length)

Size of the transaction-oriented restart area. This area contains the data required
for a restart following a transaction or system error. Further information on the
restart area can be found on section . “Restart area”

 number Number of UTM pages per process to be used in the KDCFILE to store data for a
restart following a system error. The size of each UTM page is defined in the
BLKSIZE= operand. If this area is large, the application load is reduced but the
restart process following a system error is slower. If this area is small, the
application load is increased but the restart process following a system error is
faster.

Default: 100 (per process)
Minimum value: 5 (per process)
Maximum value: 32767 (per process)

 length Size in bytes of the buffer available to each application process for temporarily
storing restart data. This data is required for a restart following a transaction or
system error.

Default: 8192
Minimum value: 1024
Maximum value: 16777212 (16 MB)

RECBUFFS= number

Number of files between which the restart area is to be split. If RECBUFFS=0, the
restart area is located in the main file of KDCFILE. In the case of dual-file
operation (MAX ..., KDCFILE=(...,DOUBLE)), the value specified in does number
not include the two file copies. The file names are defined by KDCDEF.

number must not be greater than the maximum number of processes defined in
TASKS=. If this requirement is not fulfilled, the default value is used.

Default: 0
Maximum value (BS2000 systems): 99, or value of the TASKS parameter
Maximum value (Unix, Linux and Windows systems):
10, or value of the TASKS parameter

 398

REDELIVERY= (number1, number2)

Maximum number of redeliveries of an asynchronous message after the service or
transaction was rolled back. and apply for different message number1 number2
destinations.

 number1 Maximum number of redeliveries of messages to an asynchronous TAC. Delivery
is always repeated after an asynchronous service was terminated abnormally with
PEND ER/FR or system PEND ER without at least one transaction having been
completed successfully. Restart of an asynchronous service after PEND RS within
the first transaction is not regarded as a redelivery.
When redelivery is made, the program unit assigned to the TAC is restarted. With
the FGET call, the number of redeliveries is output in the KB return area.

 number2 Maximum number of redeliveries of messages to a service controlled queue.
Delivery is always repeated if the message was processed and the transaction
was then rolled back.

With the DGET call, the number of redeliveries is output in the KB return area.

Default: (0, 255)
Minimum value for and : 0number1 number2
Maximum value for and : 255 (i.e. the number is unlimited)number1 number2

A value of 0 means that the message is deleted or saved to the dead letter queue
after rollback, depending on the value in TAC ...,DEAD-LETTER-Q.

If the value is set to 255, a message is redelivered any number of times. Note that
this can result in an endless loop if, for example, a program unit is rolled back
because of a programming error. Additionally the message cannot be saved to the
dead letter queue in case of an endless loop.

REQNR= number

This operand is only supported on BS2000 systems.

Maximum number of PAM read/write jobs that can be issued in parallel at the
same time for a file in a UTM process. This value can be used to control the
parallel processing of input/output operations within certain limits.

Default: 20
Minimum value: 1
Maximum value: 100
KDCDEF replaces an invalid value with the maximum value without outputting a
message.

RESWAIT= (time1,time2)

(ource) res wait
The times specified for and can be modified during runtime using the time1 time2
administration command KDCAPPL.

 399

 time1 Maximum number of seconds for which a program unit can wait for a resource
locked by another transaction: GSSBs, TLSs, ULSs, and on BS2000 systems
possibly LTERM partners if ANNOAMSG=N.
If the resource does not become available within this time, the program unit
receives an appropriate return code.
If the transaction currently occupying the resource is waiting for an input message
following a PEND KP or PGWT KP program call, the program unit receives an
appropriate return code immediately without having to wait for the period specified
in . If a PEND KP or PGWT KP call is issued in a blocking transaction, all time1
pending program units are informed of this by means of a return code.

RESWAIT=0: The application program does not wait for the resource to become
available. If the resource is locked by another transaction, the requesting program
unit immediately receives an appropriate return code.

Default: 120
Minimum value: 0
Maximum value: 32767

On BS2000 systems the real waiting time depends on the precision with
which the bourse waiting time was set in the operating system.

i

 400

 time2 Maximum number of seconds for which you can wait for a resource locked by
another process. If is exceeded, the application is terminated abnormally.time2

time2 should not be set too low, since certain activities in the UTM application
must be performed and completed by a process before the same activities can be
initiated in another process.

Example

When sending a message, a process locks the terminal to which the message is
directed. If another process wishes to access an input message of the same
terminal, it must wait for the terminal to become available again.

In particular, the value entered for must be at least equal to the longest time2
processing time (real time) required in the following cases:

In the case of a communication partner generated with PTERM ...,
PTYPE=APPLI, the resources are locked for the entire duration of a processing
step. This includes the time required to process the event exit VORGANG at
the start and/or end of a conversation.

At the end of a conversation, the resources remain locked as long as the event
exit VORGANG is running.

Default: 300
Minimum value: 300
Maximum value: 32767

If the value 0 is specified for , KDCDEF uses the default value 300 without time2
outputting a UTM message. If you specify a value between 0 and 300, however,
KDCDEF issues an appropriate UTM message.

SAT= (ecurity udit rail)s a t

This operand is only supported on BS2000 systems.

Minimum event logging with SAT. Further information about "SAT logging" can be
found in the openUTM manual “Using UTM Applications on BS2000 Systems”.

 ON SAT logging is switched on.

Minimum logging with SAT is switched on for the following events:

signing a process on to and off from the UTM application

switching the memory protection key

exchanging programs

executing a UTM SAT administration command.

Minimum logging can be extended and controlled by means of preselection.
This is generated using the SATSEL statement and the SATSEL= operand in the
USER and TAC statements. The administration command KDCMSAT can be
used to modify the preselection values defined during generation.

 401

 OFF SAT logging is switched off
The logging procedure only covers attempts to access the SAT administration
TAC KDCMSAT (apart from KDCMSAT HELP). All other events are ignored. SAT
logging can be switched on and off using the SAT administration TAC KDCMSAT
(see the openUTM manual “Using UTM Applications on BS2000 Systems”).

Default: OFF

SEMARRAY= (number,number1)

This operand is only supported on Unix, Linux and Windows systems.

Range of semaphore keys for global semaphores (process synchronization).
Semaphore keys are global parameters under the Unix, Linux and Windows
systems. With SEMARRAY, you enter an initial value and an upper limit number

. openUTM then reserves these keys, incrementing them by 1 starting with number
the initial value. For further information, please contact your system administrator.

This is a mandatory operand if SEMKEY= is not specified.

 number Initial value (numeric value)

 number1 Number of keys to be reserved

Minimum value: 1
Maximum value: 1000

The SEMARRAY= and SEMKEY= parameters are mutually exclusive.
Compared to SEMKEY=, SEMARRAY= offers the advantage of allowing
openUTM to reserve more than ten semaphore keys. To calculate the
number of semaphore keys required for a UTM application, please refer
to the description of the global system resources in the openUTM
manual “Using UTM Applications on Unix, Linux and Windows Systems”.

i

 402

SEMKEY= (number,...)

This operand is only supported on Unix, Linux and Windows systems.
Semaphore keys (aphore) for global semaphores (process sem key
synchronization).
Semaphore keys are global parameters under the Unix, Linux and Windows
systems. You can define up to 10 semaphore keys in a list. All semaphore keys (

) are specified in the form of a decimal number. For further information, number,...
please contact your system administrator.

This is a mandatory operand if SEMARRAY is not specified.

SM2= This defines whether the UTM application is to supply data to SM2 or openSM2
for performance monitoring.

 NO Performance monitoring with openSM2 is generally prohibited for the UTM
application, i.e. the UTM application cannot supply data to openSM2, nor can this
be explicitly activated by the UTM administrator.

 OFF The UTM application can supply data to openSM2, but this must be explicitly
activated by the administrator using KDCAPPL SM2=ON. The supply of data can
be deactivated again at any time using the administration command KDCAPPL
SM2=OFF.

Default value: OFF

 ON The UTM application can supply data to openSM2. This is activated automatically
when starting the UTM application. It can be deactivated again at any time by the
UTM application administrator using the administration command KDCAPPL
SM2=OFF.

SPAB= length

Maximum length of the standard primary working area in bytes

Default: 512
Minimum value: 0
Maximum value: 32767

STATISTICS-MSG= Specifies whether or not openUTM is to produce statistics message K081 hourly.

The SEMARRAY= and SEMKEY= parameters are mutually exclusive.
Compared to SEMKEY=, SEMARRAY= offers the advantage of allowing
openUTM to reserve more than ten semaphore keys. To calculate the
number of semaphore keys required for a UTM application, please refer
to the description of the global system resources in the openUTM
manual “Using UTM Applications on Unix, Linux and Windows Systems”.

i

 403

 FULL-HOUR Statistics message K081 is produced every hour and written in the SYSLOG. At
the same time, openUTM resets the following application specific statistical values
to 0:

number of messages received ()term_input_msgs

number of messages sent/output ()term_output_msgs

number of requests to write records in the user log file USLOG ()logfile_writes

percentage of requests from buffers in the cache that led to wait times (
)cache_wait_buffer

 NONE Statistics message K081 is not produced and the statistical values listed above
are not automatically reset to 0.
You should choose NONE if you want to reset the statistical values listed above
via the administration when needed (see the openUTM manual “Administering
Applications”, KC_MODIFY_OBJECT).

Default: FULL-HOUR

 404

SYSLOG-SIZE= size

Automatic size monitoring of the system log file SYSLOG by openUTM.

size 0 !=

This can only be specified if the system log file SYSLOG is created as a file
generation group (FGG). If SYSLOG is a normal file and a value other than 0 is
entered for , openUTM aborts the application startup with the start error 58. size
If SYSLOG is created as an FGG, you can use SYSLOG-SIZE to activate the
automatic size monitoring of the SYSLOG by openUTM. In this case, size
defines the file generation size at which openUTM switches to the next file
generation.

size=0
If the value 0 is specified for (default), openUTM does not monitor the size size
of the SYSLOG file. Instead, it outputs all UTM messages directed to SYSLOG
to the same file generation until openUTM switches to another file generation
by means of administration (KDCSLOG command), or until size monitoring is
activated.

size>=100
Values >= 100 are interpreted by openUTM as follows: the size of each
individual SYSLOG file generation must not exceed the value (* size of a size
UTM page). The size of each UTM page is defined in BLKSIZE. When the size
of the SYSLOG file exceeds this threshold value, openUTM automatically
switches to the next SYSLOG file generation.

size<100
openUTM automatically resets values between 1 and 99 to 100. In this case, a
UTM message is output for information purposes.

size<0
Values < 0 are rejected by KDCDEF.

The administrator can modify the generated threshold value, and activate or
deactivate size monitoring as desired during operation (e.g. with the KDCSLOG
command).

Default: 0 (no size monitoring)
Minimum value: 100

Maximum value: (2 - 1)31

 405

SYSTEM-TASKS Controls the number of UTM system processes.
Under load, in the case of UTM applications all processes can be utilized by
program unit runs, and they are then not available for processing other jobs.

To ensure that an application continues to be responsive and, for example, can
also process internal jobs to terminate transactions, communication between the
nodes of a UTM cluster application or an administrator's jobs in these situations,
UTM starts further processes, known as UTM system processes, in addition to the
processes generated and started by the user.

Generally no program unit runs are executed by the UTM system processes, and
they are only used for internal jobs in bottleneck situations. Consequently the
additional UTM system processes only place a slight load on the host.
The UTM system processes are started independently by UTM and in addition to
the processes started by the user.
See also the MAX operand PRIVILEGED-LTERM in section "MAX - define UTM

.application parameters"

 *STD *STD means that UTM starts (up to) three additional processes for the application;
these are then used as UTM system processes. Depending on the number of
tasks started for the application, the second, fourth, and seventh processes of an
application become UTM system processes.

*STD is the default value.

 406

 number Maximum number of UTM system processes which are to be started in addition
for the application.

The value 0 means that no UTM system process will be started.

Minimum value: 0
Maximum value: 10

Values greater than 10 are ignored and rounded down to 10.

The table below shows how many UTM system processes are started additionally
for the generated value SYSTEM-TASKS=*STD in accordance with the start
parameter TASKS:

Start
parameter

TASKS=

Number of additionally
started

UTM system processes

Total started
processes

1 0 1

2 1 3

3 2 5

4 2 6

5 3 8

n > 5 3 n + 3

If more than three UTM system processes are generated, depending on the value
of SYSTEM-TASKS and the number of started processes, the 11th, 21st, 31st,
41st, 51st, 61st, and 71st processes also become UTM system processes.

TASKS= number

Maximum number of processes that can be used simultaneously for the
application.

This is a mandatory operand.

Minimum value: 2
Maximum value: 240

KDCDEF automatically resets values < 2 to 2 without outputting a UTM message.

The current number of processes is defined when starting the application. You can
specify TASKS=1 during startup. The administrator can dynamically modify the
number of processes during runtime (e.g. with the administration command
KDCAPPL). The number of processes specified during startup or set by the
administrator must not exceed the value generated here.

 407

TASKS-IN-PGWT= number

Maximum number of processes of the UTM application in which program units
with blocking calls, e.g. the KDCS call PGWT, may run simultaneously. The value
of TASKS-IN-PGWT must be less than that of the TASKS= operand.

If TASKS-IN-PGWT=0, it is not possible to generate a TAC class or a transaction
code (TAC) for which blocking calls are permitted (see TAC/TACCLASS ...,
PGWT=). In this case, PGWT=NO must be specified in all TACCLASS and TAC
statement (see also the TAC statement in section"TAC - define the properties of

 and the TACCLASS statement in section transaction codes and TAC queues"
 for more "TACCLASS - define the number of processes for a TAC class"

information).

Default value: 0
Minimum value: 0
Maximum value: in TASKS -1number

TERMWAIT= time

(inal)term wait
Maximum time in seconds that may elapse in a multi-step transaction (i.e. after
PEND KP) between dialog output to the partner and the subsequent dialog
response from the partner. This value applies for all dialogs in which the partner
assumes the client role (terminals, UPIC clients, OSI TP, LU6.1 and LU6.2 job
submitters). For terminal clients, for example, is the time the user has to think time
after PEND KP. In the event of a timeout, the transaction is rolled back and the
resources reserved by the transaction are released. The connection to the partner
is shut down.

Default: 600
Maximum value: 32767
Minimum value: 60

 408

TRACEREC= number

Maximum number of entries in the process-specific trace areas handled by
openUTM. This value applies to the trace area

of the main routine KDCROOT (UTM Diagarea)

of the UTM system code (KTA trace)

of the XAPTP module (XAP trace) for OSI TP applications

openUTM writes trace information to these areas for diagnostic purposes.

Length of the entries:

Entry in UTM Diagarea: 138 bytes (on 32-bit systems) or 256 bytes (on 64-bit
systems)

KTA and XAP trace entry: 64 bytes (on 32-bit systems) or 112 bytes (on 64-bit
systems

Default: 32500
Minimum value: 1
Maximum value: 32500 (depending on the available resources)

KDCDEF automatically resets values < 1 to the default value and values > 32500
to the maximum value without outputting a UTM message.

TRMSGLTH= length

This defines the maximum value for the following:

The length of physical output messages sent to a terminal, printer or transport
system application (PTYPE=APPLI) or received by a terminal or transport
system application with PTYPE=APPLI. When the message length is
calculated, all characters to be transmitted, including control characters etc.,
must be included.

The length of asynchronous output messages to transport system applications
of the SOCKET type.

The length of the message section of the input message received from an
UPIC client that uses TCP/IP via the socket interface. During the calculation of
the length, it is necessary to take account of all the characters that are to be
transferred, including protocol elements.

Default: 32700 bytes

Maximum value: 32700 bytes
A value < 32700 is replaced with the maximum value by KDCDEF with no
message. Values < 32700 are only supported for compatibility reasons.

If you use RSO printers, the size of the RSO buffer (REMOTE-BUFFER- SIZE in
the SPOOL parameter file) must be greater than or equal to 32700. See also
section for more "Defining the RSO buffer size" (Entries for RSO and SPOOL)
information.

USLOG= This defines single- or dual-file operation for the user log file USLOG.

 409

 SINGLE Single-file operation is activated for the user log file.

Default: SINGLE

 DOUBLE For security reasons, dual-file operation is activated for the user log file.
Further information on the user log file can be found in openUTM manual “Using
UTM Applications”.

VGMSIZE= number

This operand is only supported on BS2000 systems.

This parameter is used to generate a buffer area with the specified size for the
service memory of an SQL database system. It also restricts the user’s share of
the page pool. VGMSIZE= is specified in KB.

If the service memory area to be logged when the PEND call is issued is greater
than , the service is terminated with PEND ER.number

Default value: 32KB
Minimum value: 32KB
Maximum value: 256KB

XAPTPSHMKEY= number

This operand is only supported on Unix, Linux and Windows systems.

Authorization key for the XAPTP shared memory segment

Shared memory keys are global system parameters.

XAPTPSHMKEY is a mandatory operand if the application is to communicate via
the OSI TP protocol.

 410

The table below provides an overview of the purpose and default values of the individual operands of the MAX
statement:

Operand Purpose Mandatory Default
value

Operands valid for all operating systems

APPLIMODE= Choice of UTM variant: UTM-S or UTM-F SECURE

APPLINAME= Name of the UTM application X -

ASYNTASKS= Asynchronous processing (number of processes for
asynchronous processing and asynchronous services open at the
same time)

1, 1

BLKSIZE= Size of a UTM page 2K (in UTM
cluster
applications:
4K or 8K)

CACHESIZE= Tuning feature (size and properties of the cache) Depending
on the
system:
BS2000
systems:
(1024,70%,
NORES, PS)
Unix, Linux
and
Windows
systems
(1024,70%)

CLRCH= Character for overwriting the communication area and standard
primary working area

None

CONN-
USERS=

Restriction on the number of users or clients active simultaneously Depending
on the
system:
BS2000
systems:
No
restriction
Unix, Linux
and
Windows
systems:
Mandatory
operand

 411

Operand Purpose Mandatory Default
value

CONRTIME= Automatic connection setup for printers (waiting time for
reconnection)

10
minutes

DATA-
COMPRESSION

Controlling data compression STD

DEAD-LETTER-
Q-ALARM=

Monitors the number of messages received in the dead letter
queue

0, i.e. no
monitoring

DESTADM= Asynchronous administration None

DPUTLIMIT1= Time-driven jobs (upper limit) 360 days

DPUTLIMIT2= Time-driven jobs (lower limit) 1 day

GSSBS= GSSB storage areas (maximum number) 32

HOSTNAME= Virtual host name for the UTM application 8 blanks

KB= Maximum length of the communication area 512

KDCFILE= Assigning a KDCFILE X -

KEYVALUE= Data access control using the lock/key code concept (number of
the highest key code)

32

LEADING-
SPACES=

Pass leading blanks in messages from terminals or from TS
applications
(PTYPE=APPLI/SOCKET) to the program unit

NO

LPUTBUF= Logging of user data with LPUT (number of PAM pages in the
page pool)

1

LPUTLTH= Logging of user data with LPUT (maximum LPUT message
length)

1948
bytes

LSSBS= LSSB storage areas (maximum number) 8

MOVE-BUNDLE-
MSGS=NO

Automatic moving of waiting asynchronous messages of a slave
LTERM, a slave LPAP, or a slave OSI-LPAP

NO

NB= Maximum length of the KDCS message area 2048

NRCONV= Maximum number of stacked services 0

 412

Operand Purpose Mandatory Default value

OSI-
SCRATCH-
AREA=

Size in KB of an internal UTM working area 256

PGPOOL= Size of the page pool and warning levels 100 UTM pages,
80%, 95%

PGPOOLFS= Tuning feature: splitting the page pool Page pool in
KDCFILE

PGWTTIME= Maximum time for the KDCS call PGWT TERMWAIT=
time

PRIVILEGED-
LTERM=

Define the privileged LTERM -

QTIME Maximum permitted wait time for messages from service
controlled queues

32767 seconds

RECBUF= Tuning feature:
size of the restart area in KDCFILE or process-oriented
system memory

5 PAM pages
per process,
512 bytes

RECBUFFS= Tuning feature:
splitting the restart area

in KDCFILE

REDELIVERY= Maximum number of redeliveries of an asynchronous
message

0 for UTM-
controlled
queues,
255 for
servicecontrolled
queues

RESWAIT= Waiting time for a resource (e.g. GSSB, TLS) locked by
another transaction (time1) or process (time2)

120 seconds,
300 seconds

SPAB= Maximum SPAB length 512

SM2= Permitting, activating, and deactivating the supply of UTM
data to SM2

OFF

STATISTICS-
MSG=

Statistics message K081 is produced and the counter is
automatically reset to 0

FULL-HOUR

SYSLOG-
SIZE=

Automatic size monitoring of the SYSLOG file by openUTM 0

SYSTEM-
TASKS

Number of UTM system processes *STD

 413

Operand Purpose Mandatory Default
value

TASKS= Number of UTM processes X -

TASKS-IN-
PGWT=

Number of processes for PGWT jobs 0

TERMWAIT= Maximum waiting time for dialog input within a transaction 600 seconds

TRACEREC= Space reserved for diagnostic information (number of
entries)

32500

TRMSGLTH= Maximum message length 32700 bytes

USLOG= Single- or dual-file operation of the user log file SINGLE

VGMSIZE= Generate the buffer area with the specified size 32 KB

 414

Operand Purpose Mandatory Default
value

BS2000-specific operands

BRETRYNR= Communication with BCAM (number of retries when sending
messages)

10

CARDLTH= ID card reader for KDCSIGN check 0

CATID= Catalog IDs for the KDCFILE Default
CATID

LOCALE= Default language environment Blanks

LOGACKWAIT= Support for output devices (waiting time for confirmation) 600
seconds

MP-WAIT= Maximum waiting time per process for connection to the common
memory pool

180
seconds

PRINCIPAL-
LTH=

Maximum length of a Kerberos principal in bytes 32

REQNR= Tuning feature: PAM I/O jobs (maximum number of parallel jobs) 20

SAT= Minimum logging of events with SAT OFF

VGMSIZE= Size of the buffer area for the service memory of an SQL database
system

32KB

 415

Operand Purpose Mandatory Default
value

Unix, Linux and Windows system-specific operands

CACHESHMKEY= Authorization key for a shared memory segment (global buffer for
file access)

X -

IPCSHMKEY= Authorization key for a shared memory segment (communication
between UTM processes)

X -

IPCTRACE= Number of UTM entries in the IPC trace area 1060

KAASHMKEY= Authorization key for a shared memory segment (global data) X -

OSISHMKEY= Authorization key for an OSS shared memory segment with
OSI TP

-

SEMARRAY= Range of semaphore keys for global semaphores (alternative to
SEMKEY)

X -

SEMKEY= Semaphore keys for global semaphores (alternative to
SEMARRAY)

X -

XAPTPSHMKEY= Authorization key for the XAPTP shared memory segment with
OSI TP

-

 416

6.5.29 MESSAGE - define a UTM message module

The MESSAGE control statement allows you to incorporate user message modules in the configuration. It is
possible to use a separate user message module to adapt the message texts and/or the message destinations of
individual messages to suit your requirements.

For more information on message modules see also section in this manual and the openUTM "UTM messages"
manual ”Messages, Debugging and Diagnostics”.

Generating message modules on BS2000 systems

In order to internationalize the application, it is possible to create several user message modules which output the
UTM messages of an application in the appropriate language.

The respective language environment can be defined for a user message module by means of a locale, i.e. a
unique pair of language and territorial identifiers. The language-specific message modules are assigned for
message output in accordance with the locale defined for the user and LTERM partner.

The German UTM message module KCSMSGS and the standard English UTM message module KCSMSGSE are
supplied with openUTM.

MESSAGE MODULE=name

[,LIB=omlname]

[,LOCALE = (lang-id [,terr-id])]

MODULE= name

Name of the user-specific message module up to eight characters in length. This module is created
using the KDCMMOD tool (see the openUTM manual “Messages, Debugging and Diagnostics on
BS2000 Systems”).

This is a mandatory operand.

The name specified here must be unique within the application.

LIB= omlname

Object module library from which the user-specific message module is to be loaded dynamically.
 can be up to 54 characters in length.omlname

If the user-specific message module is to be loaded dynamically, it must not be linked to the
application.

If nothing is specified for LIB= , TASKLIB is assumed. This does correspond to the SET-not
TASKLIB command, rather a library named TASKLIB must exist in this case. Dynamic loading of the
user message module from the library assigned with SYSFILE-TASKLIB is not supported.

When loading dynamically, the DBL searches for the user message module first in the
library that you have assigned in LIB= . If this library does not exist, the DBL aborts the
search. If the library exists but the user message module could not be found there, the
DBL searches through the alternative libraries. The alternative libraries are those that
have been assigned a file link name BLSLIB (0<= <=99).nn nn

i

 417

LOCALE= (lang_id, terr_id)

Language environment of the user-specific message modules defined by means of a language
identifier and possibly a territorial identifier. By making the appropriate entries in the LOCALE=
parameter of the USER or LTERM statement, you can assign a corresponding UTM message
module. Messages are then output in the user’s language.

If you issue more than one MESSAGE statement, each statement must contain the LOCALE=
parameter. The and combination must be unique in each MESSAGE statement for a lang_id terr_id
UTM message module.

 lang_id Freely selectable language identifier for a UTM message module, up to two characters in length.

There is no default value for , i.e. this is a mandatory parameter.lang_id

 terr_id Territorial identifier for a UTM message module up to two characters in length. You can also specify
blanks for .terr_id

If you specify MESSAGE ...,LOCALE=, you must also define the MAX ...,LOCALE (see "MAX -
). The application message module of the UTM application is define UTM application parameters"

automatically the message module whose and in the MESSAGE statement match lang_id terr_id
the locale in the MAX statement.
openUTM uses the application message module for messages to SYSLST, SYSOUT and
CONSOLE. The message destinations specified in the other message modules have no significance.

The UTM message module whose and in the MESSAGE statement are identical to lang_id terr_id
the values entered for LOCALE= in the USER or LTERM statement is used for messages to
STATION, SYSLINE and PARTNER.

Specifications relating to the user have priority over those relating to the LTERM partner, i.e. if a
user is signed on when a message is output, openUTM uses the UTM message module appropriate
for that user. If the UTM message modules are assigned using language and territorial identifiers,
the procedure is as follows:

If a UTM message module exists with a and combination identical to the entries in lang_id terr_id
the USER or LTERM statement, UTM messages are output in this language environment.

If an identical combination cannot be found, the UTM message module with the same but lang_id
for which no has been generated is used.terr_id

If this is not possible, the application message module is used.

Generating message modules on Unix, Linux and Windows systems

On UnixOn Unix, Linux and Windows systems, you can generate exactly one user-defined message module with
the MESSAGE statement, i.e. you may only specify the MESSAGE statement once within a single KDCDEF run.

If a MESSAGE statement is not issued, the name of the external C/C++ structure is KCSMSGS. An object module
with a C/C++ structure with this name is supplied with openUTM as a file.

On Unix and Linux systems, the file is the object module in the library under the path kcsmsgs.o libwork utmpath
./sys

On Windows systems the module in the library .kcsmsgs.obj utmpath /sys/libwork.lib

 418

MESSAGE MODULE=name

 MODULE= name

Name of the external C/C++ structure with which messages are addressed. In the case of a user-
specific message module (see the description of the KDCMMOD tool in the openUTM manual
“Messages, Debugging and Diagnostics on Unix, Linux and Windows Systems”), the name
specified here must match the name of this module. can be up to eight characters in length.name

This is a mandatory operand.

 419

6.5.30 MPOOL - define a common memory pool (BS2000 systems)

The MPOOL control statement allows you to define the properties of a common memory pools.

The MPOOL statement can be issued several times, the only limit being the number of pools that can be created by
a single process. Support is provided for up to eight common memory pools with SCOPE=GROUP or
SCOPE=GLOBAL under a single user ID.

The common memory pools are always created as FIXED. Every task that connects to an existing common memory
pool is assigned the same address as the task that set up the common memory pool.

The sequence of MPOOL statements within the generation run determines the order in which the common memory
pools are created. Firstly, all common memory pools generated with SCOPE=GLOBAL are created in accordance
with the sequence of MPOOL statements. This is followed by the creation of all common memory pools generated
with SCOPE=GROUP, as defined by the sequence of MPOOL statements.

MPOOL poolname

 [,ACCESS={ | WRITE }]READ

 [,PAGE=X'xxxxxxxx']

 [,SCOPE={ | GLOBAL }]GROUP

 ,SIZE=poolsize

poolname Name of the common memory pool. must be unique within the UTM application and can poolname
be up to 50 characters in length.

A number is appended to the name.

ACCESS= Access authorization

 READ Read-only access to the common memory pool

Default: READ

 WRITE Read and write access to the common memory pool

 420

PAGE= X’xxxxxxxx’

Hexadecimal address in the format X’xxxxxxxx’.

24-bit addressing mode: If the address is not a multiple of 64K (the four low-order half-bytes are
0), it is rounded off to a multiple of 64K.

31-bit addressing mode: The address is a multiple of 1MB. If this is not the case, it is rounded off
to a multiple of 1MB.

Default:

24-bit addressing mode: The pool is created starting with the lowest possible address.

31-bit addressing mode: The pool is created starting with the lowest possible address above
X'01000000'.

The common memory pools are always created as FIXED, i.e. all tasks of the UTM application find
the pool at the same address in their virtual address space.

An alternative to the use of PAGE= is to ensure that all the shared pools are generated in the same
sequence in all applications. The MPOOL statements for shared pools must be specified at the
beginning of the MPOOL statements.

SCOPE= Scope of the memory pool

 GLOBAL All processes in the system

 GROUP All processes that run under the same user ID.

Default: GROUP

SIZE= poolsize

Number of 64 KB memory segments in the pool (1 unit corresponds to 64KB)

In 31-bit addressing mode, the memory segments are 1MB in length. The size of the common
memory pool is thus rounded up to the nearest MB, which is calculated by multiplying by poolsize
64KB.

This is a mandatory operand.

If, on BS2000, global common memory pools are used in several UTM applications with
the same contents/names, the parameter PAGE=X'xxxxxxxx' must be specified with the
same address in all applications. The address specified using PAGE= must be selected in
such a way that the address area reserved is available in all these applications.

i

 421

6.5.31 MSG-DEST - define user-specific messages destinations

This statement allows you to define up to four additional user-specific message destinations for the UTM messages.

For this purpose, openUTM provides the unoccupied UTM message destinations, USER-DEST-1, USER-DEST-2,
USER-DEST-3 and USER-DEST-4. MSG-DEST allows you to assign these UTM message destinations to concrete
destinations. These destinations may be:

a USER queue, or in other words, the message queue of a user ID

a TAC queue

an asynchronous TAC

or an LTERM partner, that is not assigned to a UPIC client.

You can also assign several message destinations of the same type, for example, three LTERM partners and one
USER queue. By defining the USER or TAC queue as the user specific message destination you can ensure that
the UTM messages are output to the WinAdmin or WebAdmin administration workstation. More information can be
found in the openUTM manual ”Messages, Debugging and Diagnostics” as well as in the online help of WinAdmin
and WebAdmin, keyword „message collector“.

MSG-DEST msgdest
 ,NAME=name
 ,DEST-TYPE={ LTERM | USER-QUEUE | TAC }
 [,MSG-FORMAT={ | PRINT }]FILE

msgdest Name of the UTM message destination to which you wish to assign a user specific message
destination. Possible values are:

USER-DEST-1, USER-DEST-2, USER-DEST-3 or USER-DEST-4.

msgdest must also be assigned, using KDCMMOD, to the messages you wish to output to
this user-specific message destination. For more information see section "User-specific

 and the description of KDCMMOD in the openUTM manual ”message destinations"
Messages, Debugging and Diagnostics”.

 422

NAME= name

Name of the user-specific message destination. Possible values are:

Name of a UTM user ID. This must be generated in a USER statement.

Name of an asynchronous TAC. This must be generated in a TAC statement with TYPE=A.

Name of a TAC queue. This must be generated in a TAC statement with TYPE=Q.

BS2000 systems:
Name of an LTERM partner. This must be generated in an LTERM application and may
not be assigned to a PTERM with PTYPE=UPIC-R.

Unix, Linux and Windows systems:
Name of an LTERM partner. This must be generated in an LTERM application and may
not be assigned to a PTERM with PTYPE=UPIC-R or UPIC-L.

All messages that are linked via KDCMMOD to are then also output to the msgdest
destination specified in .name

DEST-TYPE= Specifies the type of the message destination in :name

 LTERM The message destination specified in is an LTERM partner.name

 TAC The message destination specified in is an asynchronous TAC or a TAC queue.name

 USER-QUEUE The message destination specified in is a USER queue.name

MSG-FORMAT= Specifies the format in which the message is passed to the message destination.

 FILE The format corresponds to the data structures for the MSGTAC program. So only message
inserts without messages texts are passed, the message inserts are not converted to a
printable format.

 PRINT The format corresponds to the output format of the UTM tool KDCPSYSL. So the message is
prefixed with the date and time, followed by the message text with the text inserts and
additional inserts. All inserts are formatted printable.

KDCPSYSL is described in the openUTM manual “Using UTM Applications”.

Default: FILE

User-specific message destinations should not be locked or dynamically deleted
because otherwise no more messages will be output at this destination.

i

 423

6.5.32 MUX - define a multiplex connection (BS2000 systems)

The MUX control statement allows you to define the name and properties of a multiplex connection between the
UTM application and a Session Manager (OMNIS). This multiplex connection can then be used simultaneously by
several terminals to sign on to the UTM application.

The initiative for establishing the transport connection between openUTM and the Session Manager can come from
either side, but only the Session Manager can open a session.

MUX name

 [,BCAMAPPL=local_appliname]

 [,CONNECT={ | N }]Y

 [,MAXSES=number]

 [,NETPRIO={ | OW }] M EDIUM L

 ,PRONAM={ processorname | C’processorname’ }

 [,STATUS={ | OFF}]ON

name Name of the multiplex connection

BCAMAPPL= local_appliname

Local name of the UTM application as defined in the MAX statement (APPLINAME on "MAX -
) or BCAMAPPL statement (see define UTM application parameters" "BCAMAPPL - define

). This name is then used to establish a connection to the Session additional application names"
Manager, i.e. the Session Manager must specify as the partner name when local_appliname
connecting to the UTM application. By issuing several MUX statements with different BCAMAPPL
names, you can set up parallel connections to the Session Manager.

Default:
Application name defined in the statement MAX APPLINAME=appliname

CONNECT= Set up the local transport connection on application start

 Y When starting the application, openUTM attempts to establish a logical transport connection to
the Session Manager.

If unsuccessful, openUTM repeats its attempt to establish the connection at intervals defined in
MAX ...,CONRTIME= .time

Default: Y

 N When starting the application, openUTM does not attempt to establish a connection to the
Session Manager.

The specified name must be unique and must not be assigned to any other object in
name class 3. See also section “ "Uniqueness of names and addresses

i

 424

MAXSES= number

Maximum number of simultaneously active sessions between the Session Manager and the UTM
application

NETPRIO= Transport priority to be used on the transport connection between the Session Manager and the
UTM application

Default: MEDIUM

PRONAM= { processorname | C’processorname’ }

Name of the system on which the Session Manager is located.
If the contains special characters it must be entered as a character string using processorname
C’...’.

STATUS= Status of the multiplex connection

 ON The connection to the Session Manager is not locked.

Default: ON

 OFF The connection to the Session Manager is locked. A connection cannot be established between
the Session Manager and the UTM application.

This status can be modified by the administrator.

openUTM creates LTERM partners internally for the specified number of number
sessions. The number of LTERM partners must be taken into consideration in the
maximum number of UTM names. See section “Maximum values for names” (Number

.of names)

Default value: 10
Minimum value: 1
Maximum value: 65000 (theoretical value)

i

 425

6.5.33 OPTION - manage the KDCDEF run

The OPTION control statement allows you to manage the KDCDEF run.

The control statements for KDCDEF can be distributed in such a manner that only the OPTION statements are
contained in a procedure file/shell script, but the actual generation statements are read from other files (on BS2000
systems from SAM or ISAM files or from LMS library elements).

openUTM only processes OPTION statements if they have been read in by SYSDTA or .stdin

OPTION statements are ignored by KDCDEF, if is read from a file that is assigned using OPTION DATA=.

If you issue more than one OPTION statement, the values last specified are taken as valid.

If the OPTION statement is not specified, only the KDCFILE is generated, i.e. the default setting GEN=KDCFILE
applies.

OPTION [,DATA= { filename |

 * RARY- ENT (RARY=lib-name LIB ELEM 1 LIB

 , ENT=elementELEM

 [, ION=C'version' | VERS

 | *HIGH EST-EXISTING

 -LIMIT]*UPPER

 [,TYPE=element-type]) }]

 [,GEN= { | ROOTSRC | NO | ALL | KDCFILE CLUSTER | 2

 (KDCFILE,ROOTSRC) |

 (CLUSTER,KDCFILE) | 2

 (CLUSTER,ROOTSRC) | 2

 (CLUSTER,KDCFILE,ROOTSRC) }]2

[,GEN-RSA-KEYS={ | NO }]YES

additional opernan on BS2000 systems

[,ROOTSRC=filename]

 additional operand on Unix, Linux and Windows systems
[,CHECK-RFC1006={ NO | }]YES

 only on BS2000 systems 1

 only on Unix, Linux and Windows systems2

CHECK-RFC1006= This parameter is only supported on Unix, Linux and Windows systems.

Extended check of the UTM generation for the communication via TCP/IP
connections with RFC1006.

 426

 YES KDCDEF checks the specifications of transport addresses for all
communication partners and local transport system end points that are
generated with T-PROT= RFC1006 for completeness and plausibility.
When OPTION CHECK-RFC1006=YES, a port number must be specified
in the LISTENER-PORT parameters of the ACCESS-POINT, BCAMAPPL,
CON, OSI-CON, and PTERM statements.

Default: YES

 NO KDCDEF does not execute any extended checks.

DATA= Specifies the source from which the subsequent KDCDEF control
statements are to be read. The source can also have been generated by
inverse KDCDEF by means of the statement CREATE-CONTROL-
STATEMENTS.

For information on the inverse KDCDEF function, see section "Inverse
.KDCDEF"

 filename The KDCDEF control statements are read from the file specified here (on
BS2000 systems, from a SAM or ISAM file). If the end-of-file is reached
then the next KDCDEF control statements are read from SYSDTA or stdin
again.

 *LIBRARY-ELEMENT(...) This parameter value is only supported on BS2000 systems.

The KDCDEF control statements are read from the LMS library element
specified here. If the end of the file is reached then the next KDCDEF
control statements are again read from SYSDTA.
If the specified library element does not exist then KDCDEF cancels the
generation run with an error message

 LIBRARY= lib-name

Name of an LMS library. The file name can be up to 54 characters in
length. LIBRARY is a mandatory parameter.

 ELEMENT= element

Name of an LMS element.
The element name may be up to 64 characters in length and consists of
an alphanumeric string which can be subdivided into multiple substrings
separated by periods or hyphens.
ELEMENT is a mandatory parameter.

 VERSION = Version of the LMS element.

 C'version' The element version is specified as an alphanumeric string of up to 24
characters in length which can be subdivided into multiple substrings
separated by periods or hyphens.

 *HIGHEST-EXISTING The highest version of the specified element present in the library is read.

Default: *HIGHEST-EXISTING

 427

 *UPPER-LIMIT The highest possible version of the specified element is read. LMS
indicates this version by means of an "@".

 TYPE= element-type

Type of LMS element. An alphanumeric string of up to 8 characters in
length can be specified for the type. Default value: S

GEN= Specifies what objects are to be generated.

 KDCFILE The KDCFILE is generated.

Default: KDCFILE

 ROOTSRC The ROOT table source is generated.

 (KDCFILE,ROOTSRC) The KDCFILE and the ROOT table source are generated.

 CLUSTER This parameter value is only supported on Unix, Linux and Windows
systems.

The following UTM cluster files are generated:

the cluster configuration file

the cluster user file

the cluster page pool files

the cluster GSSB file

the cluster ULS file

These files must not already exist.

 (CLUSTER,KDCFILE) This parameter value is only supported on Unix, Linux and Windows
systems.

The UTM cluster files listed above are generated together with the
KDCFILE.

 (CLUSTER,ROOTSRC) This parameter value is only supported on Unix, Linux and Windows
systems.

The UTM cluster files listed above are generated together with the ROOT
table source.

For further information on the syntax rules for the names of LMS
elements and a specification of version and type, see the
manual "LMS SDF Format".

i

If you have specified OPTION GEN=CLUSTER or
(CLUSTER,...), you must also specify a CLUSTER statement
and at least two CLUSTER-NODE statements.

i

 428

 (CLUSTER,KDCFILE,ROOTSRC) This parameter value is only supported on Unix, Linux and Windows
systems.

The UTM cluster files listed above are generated together with the
KDCFILE and the ROOT table source.

 NO The parameters are only checked.

 ALL The KDCFILE and the ROOT table source are generated.

GEN-RSA-KEYS = Specifies whether RSA keys are to be created.

 YES KDCDEF is to generate RSA keys.

RSA keys are required by applications in which objects (TAC, PTERM or
TPOOL) are generated with an encryption level.

If GEN-RSA-KEYS=YES then KDCDEF always generates RSA keys for
password encryption irrespective of the type of objects generated.

If GEN-RSA-KEYS=YES is set but the encryption functions are not
available then KDCDEF issues the warning message K508. However, the
KDCFILE is still generated and the application can be operated (without
encryption).

Default: YES

If a ROOT table source is generated, the ROOT statement must be specified. This is the case with the
following specifications:

ROOTSRC

(KDCFILE,ROOTSRC)

ALL

(CLUSTER,ROOTSRC)

(CLUSTER,KDCFILE,ROOTSRC)

The following must further be noted for Unix, Linux and Windows systems:

KDCDEF generates the ROOT table source as a C/C++ program under the name (see rootname .c

the ROOT statement) in the directory (see the MAX ...,KDCFILE= statement).filebase filebase...

If a KDCFILE is generated for a UTM cluster application, then the cluster user file must already exist.
This file is evaluated and extended if required.

i

 429

 NO KDCDEF is not to generate RSA keys.

GEN-RSA-KEYS=NO should not be used unless

openUTM is being run without the encryption functionality ,

or, after the KDCDEF run, the RSA keys are transferred from an old
KDCFILE to the new KDCFILE using KDCUPD. For more information
on transferring RSA keys with KDCUPD see "The tool KDCUPD -

.updating the KDCFILE"

If objects with encryption are generated in an application and if no RSA
keys are available, the application can run but with certain restrictions, i.e.:

TACs with encryption level cannot be called,

no connection can be established to PTERMs or TPOOLs generated
with encryption level.

ROOTSRC= filename

This parameter is only supported on BS2000 systems.

This parameter is significant only when generating the ROOT table source.

filename can be up to 54 characters in length.

A ROOT source with the CSECT name is generated and stored rootname
in the KDCROOT file . is defined in the ROOT filename rootname
statement.

Default: ROOT.SRC.ASSEMB.rootname

 430

6.5.34 OSI-CON - define a logical connection to an OSI TP partner

The OSI-CON control statement allows you to assign a real partner application to an OSI-LPAP partner for
communication based on the OSI TP protocol. It is used to define logical connections between the local UTM
application and a partner application. For this purpose, you must specify:

the name of the OSI TP access point in the local application, via which the connection is to be established. This
is defined using the ACCESS-POINT statement.

the address of the OSI TP access point of the partner application. This address consists of P-selector, S-
selector, T-selector and N-selector and optionally the port nummer (parameter LISTENER-PORT).

On Unix, Linux and Windows systems the following operands are used to describe the T-selector:

TRANSPORT-SELECTOR (=address of the partner application on the partner computer)

T-PROT (the transport protocol used)

TSEL-FORMAT (format identifier of the T-selector)

LISTENER-PORT (port number for RFC1006)

See for more "Providing address information for the CMX transport system (Unix, Linux and Windows systems)"
information.

The partner application sets up the connection to the local application via an OSI-LPAP partner, which is defined in
the OSI-LPAP statement. Here you generate the number of connections, the names of the individual connections,
and so on. The communication parameters of the OSI-LPAP partner are assigned to the OSI-CON statement using
the operand OSI-LPAP= . The logical connection is thus generated in a single OSI-CON statement, osi_lpap_name
even if there are several parallel connections to the partner application.

If a partner application can be accessed in various remote systems at different times, you must define several
addresses and thus replacement connections for the OSI-LPAP partner assigned to this application. For generation
purposes, this involves assigning several OSI-CON statements (OSI-CON statements with the same osi_lpap_name
and LOCAL-ACCESS-POINT) to a single OSI-LPAP statement (see "OSI-LPAP - define an OSI-LPAP partner for

). However, only one OSI-CON statement can be active at any one time. distributed processing based on OSI TP"
You can switch to a replacement connection by means of administration.

When you use OSI-LPAP bundles, then the following also applies to the OSI-CONs of the slave LPAPs in a LPAP
bundle:
All OSI-CONs of all slave LPAPs in a LPAP bundle must be assigned the same access point (see also section

)."MASTER-OSI-LPAP - Defining the master LPAP of an OSI-LPAP bundle"

 431

OSI-CON connection_name

[,ACTIVE={ | NO }]YES

 ,LOCAL-ACCESS-POINT=access_point_name

 , ETWORK ECTOR=C'c'N -SEL

 ,OSI-LPAP=osi_lpap_name

 , RESENTATION ECTOR={ *NONE | P -SEL

 (C'c' [, | EBCDIC | ASCII]) | STD

 X'xx' }

 , ESSION ECTOR={ *NONE | S -SEL

 (C'c' [, | EBCDIC | ASCII]) | STD

 X'xx' }

 , RANSPORT ECTOR=C'c'T -SEL

[,LISTENER-PORT=number]

 additional operands on Unix, Linux and Windows systems
[,MAP={ USER | SYSTEM | SYS1 | SYS2 | SYS3 | SYS4 }]

[,T-PROT=] RFC1006

[,TSEL-FORMAT={ T | E | A }]

connection_name Name of the logical connection between the local UTM application and the partner
application for communication based on the OSI TP protocol.

 identifies the connection in the local application. It can be up to eight connection_name
characters in length and must be unique in the local application.

ACTIVE= Status (active or inactive) of the logical connection to the partner application. In the case of
replacement connections to the partner application, several OSI-CON control statements
are issued with the same of an OSI-LPAP partner. However, only one OSI-osi_lpap_name
CON statement can be generated with ACTIVE=YES. All others must be defined with
ACTIVE=NO. You can then switch to the replacement connections by means of
administration.

 YES The connection defined in this OSI-CON statement is active.

Default: YES

 NO The connection defined in this OSI-CON statement is inactive.

LISTENER-PORT= number

Port number of the partner application.
All port numbers between 1 and 65535 are allowed.

Default: 0 (no port number)

On BS2000 systems, the transport system uses the standard port 102 in this case.
On Unix/Linux and Windows systems, a port number must be specified.

LOCAL-ACCESS-POINT=access_point_name

 432

Name of the local OSI TP access point used for communication with the partner application.
This is defined using the ACCESS-POINT control statement.

If replacement connections (several OSI-CON statements with the same) osi_lpap_name
have been defined for the OSI-LPAP partner to which the partner application is assigned,
the same local access point must be specified for all replacement connections.

If the application context of the OSI-LPAP partner uses the CCR syntax, the following
address components must also be defined for the local access point:

APPLICATION-ENTITY-QUALIFIER (see the description of the ACCESS-POINT
statement in section)"ACCESS-POINT - create an OSI TP access point"

APPLICATION-PROCESS-TITLE (see the description of the UTMD statement in section
)"UTMD - application parameters for distributed processing"

MAP= This operand is only valid on Unix, Linux and Windows systems.

Controls the code conversion (EBCDIC <-> ASCII) for user messages exchanged between
partner applications (OSI-LPAP) in the abstract syntax UDT.

User messages are passed in the message area on the KDCS interface in the message
handling calls (MPUT/FPUT/DPUT).

For user messages with a different abstract syntax than UDT - i.e. if KCMF does not contain
any blanks - UTM does not perform a conversion regardless of the value generated here.

 USER openUTM does not convert user messages, i.e. the data in the KDCS message area is
transferred between the partner applications unchanged.

Default: USER

 SYSTEM | SYS1 | SYS2 | SYS3 | SYS4

UTM converts the user messages based on the conversion tables provided for the code
conversion (see), i.e.:section “Code conversion”

Prior to sending, the code is converted from ASCII to EBCDIC.

After receipt, the code is converted from EBCDIC to ASCII.

The specifications SYSTEM and SYS1 are synonymous.

The prerequisite is that the message has been created using the abstract syntax of UDT
(KCMF = blanks).

UTM assumes that the messages contain only printable characters.

NETWORK ECTOR=C’c’-SEL

 433

Name of the partner computer.

The complete name (FQDN) by which the computer is known in the DNS must be specified.

The name can be up to 64 characters long.

N-SEL is a mandatory operand.

No distinction is made between uppercase and lowercase notation; KDCDEF always
converts the name of the partner computer into uppercase.

OSI-LPAP= osi-lpap_name

Name of the OSI-LPAP partner defined as the logical access point for the partner
application in the local application.

 must be defined in a OSI-LPAP statement. osi_lpap_name
 can be up to eight characters in length.osi_lpap_name

PRESENTATION ECTOR=-SEL

Presentation selector of the partner application. This is the address component of the OSI
TP access point in the remote partner’s system. The specified value must match the
presentation selector defined for this access point in the partner application.

 *NONE A symbolic presentation selector is not defined.

 C’c’ The presentation selector is entered in the form of a character string (c). The value
specified for can be up to 16 characters in length. The presentation selector is case-c
sensitive.

In the case of a character string, you can chose the code in which the characters are
interpreted:

 STD The characters are interpreted as a machine-specific code (BS2000 = EBCDIC; Unix, Linux
and Windows systems = ASCII).

Default: STD

 EBCDIC The characters are interpreted as EBCDIC code.

 ASCII The characters are interpreted as ASCII code.

 X’x’ The presentation selector is entered in the form of a hexadecimal number (x). The value
specified for can be up to 32 hexadecimal digits (corresponds to16 bytes) in length. You x
must enter an even number of hexadecimal digits.

Please note that the name pair (TRANSPORT-SELECTOR, NETWORK-
SELECTOR) specified here must not be identical to the name pair (

, PRONAM) defined in a CON statement (remote_appliname "CON - define a
) , or to the name pair (connection for distributed processing based on LU6.1"

, PRONAM) defined in a PTERM statement (ptermname "PTERM - define the
).properties of a client/printer and assign an LTERM partner"

i

 434

SESSION ECTOR= -SEL

 Session selector of the partner application. This is the address component of the OSI TP
access point in the remote partner’s system. The specified value must match the session
selector defined for this access point in the partner application.

 *NONE A session selector is not defined.

 C’c’ The session selector is entered in the form of a character string (c). The value specified for c
can be up to 16 characters in length. The session selector is case-sensitive.

In the case of a character string, you can chose the code in which the characters are
interpreted:

 STD The characters are interpreted as a machine-specific code (BS2000 = EBCDIC; Unix, Linux
and Windows systems = ASCII).

Default: STD

 EBCDIC The characters are interpreted as EBCDIC code.

 ASCII The characters are interpreted as ASCII code.

 X’x’ The session selector is entered in the form of a hexadecimal number (x). The value
specified for can be up to 32 hexadecimal digits (corresponds to 16 bytes) in length. You x
must enter an even number of hexadecimal digits.

TRANSPORT ECTOR=C’c’ -SEL

You can enter up to eight printable characters. Permitted characters include uppercase
letters, numbers, and the special characters $, # and @. Hyphens are not permitted. The
first character must be an uppercase letter.

T-SEL= is a mandatory operand.

In T-SEL= you must specify the following:

BS2000 systems: The BCAM application name of the remote partner.

Unix, Linux and Windows systems: T-selector of the partner application.

You must specify the T-selector in T-SEL that is assigned to the partner application in
the remote system for CHECK-RFC1006=YES.

Please note that the name pair (TRANSPORT-SELECTOR, NETWORK-
SELECTOR) specified here must not be identical to the name pair (

, PRONAM) defined in a CON statement (in section remote_appliname "CON -
), or to the name define a connection for distributed processing based on LU6.1"

pair (, PRONAM) defined in a PTERM statement (in section ptermname "PTERM -
).define the properties of a client/printer and assign an LTERM partner"

i

 435

T-PROT= The address format with which the OSI TP partner signs on to the transport system.

Information on the following address formats can be found in section "PCMX
.documentation" (openUTM documentation)

 RFC1006 Address format RFC1006
ISO transport protocol based on TCP/IP and RFC1006 convergence protocol.

Default: RFC1006

TSEL-FORMAT= The format identifier of the T-selector
The format identifier specifies the coding of the T-selector in the transport protocol. You will
find more information in section ."PCMX documentation" (openUTM documentation)

 T TRANSDATA format

 E EBCDIC format

 A ASCII format

Default:

 T If the character set of the value of T-SEL corresponds to the TRANSDATA format
 E Otherwise

It is recommended to explicitly specify a value for TSEL-FORMAT operation via TCP/IP with
RFC1006.

 436

6.5.35 OSI-LPAP - define an OSI-LPAP partner for distributed processing based on OSI TP

The OSI-LPAP control statement allows you to define a logical access point in the local application for a partner
application with which you wish to communicate on the basis of the OSI TP protocol. This logical access point is
known as an OSI-LPAP partner. For each OSI-LPAP partner, you must define a logical partner name and the
following logical connection properties:

The application entity title (AET) of the partner application. This must be defined if you are working with
transaction management (commit functional unit) or if a heterogeneous partner requires an AET in order to
establish a connection. The AET consists of the following components, which must be specified for the partner
application:

the application entity qualifier (AEQ) of the remote access point (see the description of the ACCESS-POINT
statement on)"ACCESS-POINT - create an OSI TP access point"

The application process title (APT) of the partner application (see the description of the UTMD statement on
)"UTMD - application parameters for distributed processing"

The application context used for communication with the partner application based on the OSI TP protocol. If you
are not using a standard application context, you define your application context using the APPLICATION-
CONTEXT statement (see). If the application context "APPLICATION-CONTEXT - define the application context"
of the OSI-LPAP partner contains the CCR syntax, an AEQ and an APT must be specified for the partner
application.

The number and properties of connections to the partner application

Access rights of the partner application in the local applicationThe operands KSET and ASS-KSET are provided
to define the access rights. In KSET you specify the highest level of access rights of the OSI TP partner that the
OSI TP partner will have when it signs on to the local application with a user ID. You can restrict these access
rights with the ASS-KSET operand. The restricted access rights take effect when the OSI TP partner does not
pass a user ID when signing on, i.e. the "association user" is active.

Administration authorization of the partner application in the local application

Maximum values for the message queue of the OSI-LPAP partner.

If a communication partner can be accessed in various remote systems at different times, you can assign several
addresses to this partner. This involves assigning several OSI-CON statements (with the same , see osi_lpap_name

) to a single OSI-LPAP statement. However, only one "OSI-CON - define a logical connection to an OSI TP partner"
OSI-CON statement can be active at any one time. You can switch to a replacement connection by means of
administration. All OSI-CON connections belonging to an OSI-LPAP partner must have the same local access point.

 437

OSI-LPAP osi_lpap_name

 ,APPLICATION-CONTEXT=application_context_name

 [, PPLICATION- NTITY- UALIFIER=application_entity_qualifier A E Q

 , PPLICATION- ROCESS- ITLE=object_identifier]A P T

 [,ASS-KSET=keysetname2]

 , OCIATION =association_nameASS -NAMES

 [,ASSOCIATIONS=number]

 [,BUNDLE=master-lpap-name]

 [,CONNECT=number]

 ,CONTWIN=number

 [, DEAD-LETTER-Q={ NO | YES }]

 [,IDLETIME=time]

 [,KSET=keysetname1]

 [,PERMIT={ ADMIN | SATADM | (ADMIN,SATADM) }]1 1

 [,QLEV=number]

 [,STATUS={ | OFF }]ON

 [,TERMN=termn_id]

1only permitted on BS2000 systems

osi_lpap_name Name of the OSI-LPAP partner of the partner application, which is used by the program
units of the local UTM application to address the partner application. can be osi_lpap_name
up to eight characters in length.

osi_lpap_name must be unique and must not be assigned to any other object in name class
1. See also section . "Uniqueness of names and addresses"

APPLICATION-CONTEXT=application_context_name

Name of the application context to be used by the partner application.

This is a mandatory operand.

By default, openUTM supports the following application contexts:

UDTAC

UDTDISAC

XATMIAC

UDTCCR

UDTSEC

XATMICCR

Further information can be found in the description of the APPLICATION-CONTEXT
statement on . If the generated "APPLICATION-CONTEXT - define the application context"
application context does not match that used by the partner application, openUTM rejects
the connection request with the following UTM messages:

P001 APPLICATION CONTEXT NOT SUPPORTED or

P011 Abstract syntax not permitted

 438

APPLICATION- NTITY- UALIFIER=application_entitiy_qualifierE Q

Application entity qualifier of the partner application. This is combined with the application
process title to address a partner application when using a heterogeneous link or working
with transaction management (commit functional unit). is a application_entitiy_qualifier
positive integer used to call the partner application in the remote system.

If the application context contains the CCR syntax, this is a mandatory operand. The name
pair and must be unique within the UTM application_entity_qualifier object_identifier
application.

The specified here must be assigned to access point in the application_entity_qualifier
partner application.

Minimum value: 1

Maximum value: 67108 863 (2 -1)26

APPLICATION- ROCESS- ITLE=object_identifierP T

The application process title of the partner application is to be specified as the
. The application process title is combined with the application entity object_identifier

qualifier to address a partner application when using a heterogeneous link or working with
transaction management (commit functional unit).

If the partner application is a UTM cluster application then the application process title
(APT) of a node application must be specified here. Here it should be noted that when a
node application is started, openUTM may extend the APT generated for this application by
the node index of the application. See also the description of the APPLICATION-PROCESS-
TITLE operand in the UTMD statement in section "UTMD - application parameters for

.distributed processing"

If the application context contains the CCR syntax, this is a mandatory operand. The name
pair (of the OSI-LPAP statement) and must be application_entity_qualifier object_identifier
unique within the UTM application.

For information on defining the APT, see the UTMD statement in section "UTMD -
.application parameters for distributed processing"

 439

 ASS-KSET= ksetname2

ASS-KSET is only allowed if the local application is generated with user IDs. You may only
set ASS-KSET in conjunction with KSET.

You must specify the name of the key set in . The key set must be defined with a ksetname2
KSET statement.

You specify the minimum access rights that the partner application can have in the local
application with ASS-KSET= .

The key set specified in takes effect when the partner application does not pass ksetname2
a user ID to openUTM when establishing the association. The access rights result from the
set of key codes contained in the key set generated with KSET= and with ASS-KSET=
(intersection of the sets). For this reason, all key codes contained in ASS-KSET= ksetname2
should also be contained in KSET= .ksetname1

Default: No key set
The access rights specified in KSET are always valid.

ASSOCIATION =association_name-NAMES

Name defined in the local application for logical connections to the partner application.

Connection names consists of the value of as a prefix, followed by a association_name
serial number between 1 and the value of the ASSOCIATIONS operand, i.e. the number of
parallel connections. The entire name can be up to eight characters in length. The
maximum length of depends on the value specified for ASSOCIATIONS. association_name
The following applies for the number of connections:

Number of decimal places in the value specified for ASSOCIATIONS +number of
characters in <= 8association_name

Example

If ASSOCIATIONS=10 and
ASSOCIATION-NAMES=ASSOC,

The connection names are ASSOC01, ASSOC02,...,ASSOC10.

These are used as association names in the local UTM application. The same name must
not be defined for a user ID (USER) or a session name for distributed processing based on
LU6.1 (LSES).

 440

ASSOCIATIONS= number

Maximum number of parallel connections to the partner application. This depends on layers
1 - 6 of the OSI reference model defined by ISO (in particular on layer 4, the transport layer).

The number of parallel connections must be coordinated with the generation of the partner
application.

Default: 1
Minimum value: 1
Maximum value: 21000
The maximum number of associations of all OSI-LPAP statements in a UTM application is
restricted by the size of the name space of the UTM application (see)."Number of names"

BUNDLE= master-lpap-name

Name of a master LPAP. By specifying , this OSI-LPAP partner becomes master-lpap-name
a slave LPAP of the corresponding master LPAP.

The master LPAP specified here must be generated with a MASTER-OSI-LPAP statement.

CONNECT= number

Number of connections to be established automatically with the partner application when
the local application is started. Automatic connection setup can be requested in either the
local application or the partner application. The connection is established as soon as both
partners are available.

The following applies on BS2000 systems: If the partner application runs on Unix, Linux or
Windows systems, a value greater than 0 should be generated only if the BS2000 system is
configured in such a manner that connections to this partner can be actively established.
See also section . "Coordinating the UTM and BCAM generations (BS2000systems)"

Default: 0 Maximum value:
Number of parallel connections specified in the ASSOCIATIONS operand.

 441

CONTWIN= number

Number of connections for which the local application is to act as the contention winner.
The local application is the contention loser for all other connections (ASSOCIATIONS=
entry minus CONTWIN= entry).

The contention winner of a connection is responsible for managing that connection.
However, jobs can be started both by the contention winner and by the contention loser. If
both communication partners attempt to initiate a job simultaneously, the connection is
reserved by the contention winner job.

This is a mandatory operand.

The number of contention winners and contention losers must be coordinated with the
generation of the partner application.
The contention winner should be the communication partner that initiates jobs most
frequently. If this application cannot set up any connections to the partner application, e.g.
because the BCMAP entries are missing, this application can nevertheless be the
contention winner provided the partner application sets up all the connections automatically.

Minimum value: 0
Maximum value: Number of parallel connections specified for the ASSOCIATIONS operand.

DEAD-LETTER-Q= specifies whether asynchronous messages to this LPAP partner that could not be sent due
to a permanent error are to be saved in the dead letter queue.

Monitoring of the number of messages in the dead letter queue is enabled and disabled
with the MAX ...,DEAD-LETTER-Q-ALARM statement.

 YES Asynchronous messages to this LPAP partner that could not be sent due to a permanent
error are saved in the dead letter queue provided (in the case of message complexes) no
negative confirmation job has been defined.

 NO No asynchronous messages to this LPAP partner are saved in the dead letter queue.

Default: NO

Main jobs for message complexes (MCOM) with negative confirmation jobs are
never saved in the dead letter queue as the negative confirmation jobs are
activated in case of errors.

If the number of messages in the dead letter queue is limited with QLEV,
messages may be lost in the event of errors. If the number is not limited, the
openUTM page pool generated must be sufficiently large. If there is a threat of a
page pool bottleneck, the dead letter queue can be locked during application run
with STATUS=OFF.

i

 442

IDLETIME= time

Number of seconds for which the idle state of a connection is monitored. If the connection is
not reserved by a job within the period specified in , openUTM shuts down the time
connection.

IDLETIME=0 means that the idle state of the connection is not monitored.

Default: 0
Minimum value: 60
Maximum value: 32767

If you specify a value that is greater than zero and smaller than the minimum value,
KDCDEF replaces the value with the minimum value.

KSET= keysetname1

Specifies the maximum access rights of the partner application in the local application. The
name of a key set is to be specified in . The key set must be defined with a keysetname1
KSET statement.

If the OSI TP partner does not pass a user ID to the local application for an OSI TP dialog,
then its access rights for this OSI TP dialog result from the set of key codes that are in the
key set generated with KSET= as well as with ASS-KSET= (intersection).

The key set should therefore also contain all key codes that are in the key set keysetname1
generated with ASS-KSET= .

If the OSI TP partner does pass a user ID, then its access rights for this OSI TP dialog
result from the set of key codes that are contained in the key set of the user ID as well as in
the key set of the OSI-LPAP generated with KSET.

Default: No key set,
i.e. only those services can be started or remote services (LTAC) generated in the local
application can be addressed that are not secured with a lock code.

PERMIT= Authorization level of the partner application

 ADMIN The partner application can execute administration functions in the local application.

 SATADM The partner application can execute SAT preselection functions in the local application, i.e.
it can activate and deactivate the SAT logging of certain events (UTM SAT administration
authorization).

 (ADMIN,SATADM)

The partner application can execute administration and SAT preselection functions in the
local application.

Default:
If the operand is not specified, the partner application cannot execute administration and
SAT preselection functions in the local application.

 443

QLEV= queue_level_number

Maximum number of asynchronous messages that can be accommodated in the message
queue of the OSI-LPAP partner. If this threshold value is exceeded, further APRO-AM calls
to this LPAP partner are rejected with UTM message 40Z.

Default: 32767
Minimum value: 0
Maximum value: 32767 (i.e no restriction of the queue length)

STATUS= Specifies whether the OSI-LPAP partner is locked. This status can be modified by the
administrator using the KDCLPAP administration command.

 ON The OSI-LPAP partner is unlocked. Connections between the partner application and the
local application can be established or may be already in place.

Default: ON

 OFF The OSI-LPAP partner is locked. Connections cannot be established between the partner
application and the local application.

TERMN= termn_id

Identifier up to two characters in length, which indicates the type of communication partner.
 is not queried by openUTM, but is used by the user when querying or grouping termn_id

terminal types, for example. is entered in the KB header for services, i.e. for termn_id
services started by the partner application in the local application.

Default: A6

 444

6.5.36 PROGRAM - define a program unit

The PROGRAM control statement allows you to define the name and properties of a program unit.
If a ROOT table source is to be generated in the KDCDEF run (OPTION statement with GEN=ROOTSRC or
GEN=ALL), then you must issue at least one PROGRAM statement.

Generating UTM program units on BS2000 systems

PROGRAM objectname

, COMP={ ASSEMB |

 C |

 COB1 |

 FOR1 |

 PASCAL-XT |

 PLI1 |

 SPL4 |

 ILCS }

[,LOAD-MODULE=lmodname]

objectname Access point for a program unit (CSECT or ENTRY name). may be up to 32 objectname
characters in length.

For details on the characters allowed refer to the section . "Format of names"

COMP= Designates the runtime system that the program unit will be used for.

This is a mandatory operand.

You must specify COMP=ILCS for all program units that support ILCS (Inter Language
Communication Services), e.g. program units under COBOL85, FORTRAN90, C, etc.
Whether or not ILCS is supported depends on the compiler version used and on the runtime
system version under which the program unit runs.

The value that you must specify for COMP can be found in the appendix of the openUTM
manual “Using UTM Applications on BS2000 Systems”.
Please consider these notes especially if the programs were compiled with an older compiler
version.

COMP=C is a synonym for COMP=ILCS.
The KDCADM administration program must be generated with COMP=ILCS and
the KDCSHUT transaction code must be assigned at least with a TAC statement.

i

 445

LOAD-MODULE= lmodname

LOAD-MODULE identifies the name of the load module in which the program unit was linked.
This load module must be defined using the LOAD-MODULE statement. can be lmodname
up to 32 characters in length.This name is subject to the same rules as the element names of
a program library (see also section). "Format of names"

Please note the following when using the LOAD-MODULE operand:

The KDCADM administration program must not be assigned to a load module generated
with LOAD-MODE=ONCALL in the LOAD-MODULE statement.

 446

Generating UTM program units on Unix, Linux or Windows systems

PROGRAM objectname

 ,COMP={ | COB2 | CPP | MFCOBOL | NETCOBOL } C

 [,SHARED-OBJECT=shared_object_name]

objectname Name of the access point of the program unit. The name must be alphanumeric and may
be up to 32 characters in length. For details on the characters allowed refer to the section

."Format of names"

COMP= Designates the compiler used to compile the program unit.

 C C compiler

Default: C

 CPP C++ compiler

 COB2 COBOL compiler (Server Express / NetExpress / Visual COBOL)
This generates a COBOL program that was compiled using a COBOL
complier from Micro Focus.
Only numbers and uppercase letters can be used for the PROGRAM-ID and the access
points. This not only complies with IBM conventions, but also guarantees the portability of
the programs.

 MFCOBOL COBOL compiler (Server Express / NetExpress / Visual COBOL), has the same effect as
COB2. I.e. a COBOL program that was compiled using a Micro Focus Cobol compiler is
generated.

 NETCOBOL

NetCOBOL compiler from Fujitsu.

This parameter value is supported only on Unix and Linux systems.

A COBOL program that was compiled using the Fujitsu NetCOBOL compiler is generated.

SHARED-OBJECT= shared_object_name

(Program exchange using the dynamic linker)
This operand need only be specified if the program unit is to be loaded dynamically.

 is the name of the shared object (Unix and Linux system) or DLL shared_object_name
(Windows system) into which the program unit was incorporated. This shared object/DLL
must be defined using the SHARED-OBJECT statement.

CAUTION!
In a UTM application, programs must not be simultaneously generated with
MFCOBOL/COB2 and NETCOBOL!

!

 447

6.5.37 PTERM - define the properties of a client/printer and assign an LTERM partner

The PTERM control statement allows you to define the properties of a physical client or printer of the UTM
application.

Clients are terminals, UPIC clients and transport system applications. Transport system applications (for short TS
application) are understood to be all applications that are generated as PTYPE=APPLI or PTYPE=SOCKET. See
also the PTYPE operand in the table in section "PTERM - define the properties of a client/printer and assign an

 (BS2000 systems) or LTERM partner" "PTERM - define the properties of a client/printer and assign an LTERM
 (Unix, Linux and Windows systems).partner"

You must always issue a PTERM statement for clients when connections to the client or printer are to be
established from the local UTM application.

The PTERM statement allows you to assign an LTERM partner defined using the LTERM statement to the client
/printer. A separate LTERM statement must be written for each client or printer (see also "LTERM - define an

 for more information on this subject).LTERM partner for a client or printer"

If desired, you can first define the client/printer in a PTERM statement and then assign it to an LTERM partner later
on during operation by means of dynamic administration. Exceptions are UPIC clients and TS applications. You
need to assign an LTERM partner to these immediately.

If LTERM pools have not been generated (TPOOL statement, see), you must "TPOOL - define an LTERM pool"
assign a client in the LTERM= operand of at least one PTERM statement. Only then can a connection be
established in order to access the application.

Address of the client or printer

For the application to be able to establish connections to the partner application, you must specify the partner
address. The following operands are used to do this:

ptermname (name/T-selector of the communication partner)

PRONAM (name of the host partner)
On Unix, Linux and Windows systems, the name of the partner processor may only be specified if the partner is
a remote UPIC client (UPIC-R) or a TS application (PTYPE= APPLI or SOCKET).

LISTENER-PORT (TCP/IP port number).
On BS2000 systems, LISTENER-PORT may only be specified with PTYPE=APPLI and PTYPE=SOCKET.

The following operands are used for further definition of the partner address on Unix, Linux and Windows systems:

T-PROT (address format for the transport protocol used)

TSEL-FORMAT (format identifier of the T-selector)

See section for "Providing address information for the CMX transport system (Unix, Linux and Windows systems)"
more information or section "Providing address information for the SOCKET transport system (Unix, Linux and

".Windows systems)

Printers are not supported by openUTM on Windows systems.i

 448

If the connection to a TS application is to be established via the socket interface with native TCP/IP as the transport
protocol, then you must specify the computer on which the TS application will run in PRONAM and the port number
on the host partner on which the TS application waits for requests to establish a connection from the network in
LISTENER-PORT. You must specify an application name that was generated for T-PROT=SOCKET in BCAMAPPL
(see also). "BCAMAPPL - define additional application names"
You can specify whether or not openUTM is to handle code conversion in the MAP operand.

Uniqueness of names

When generating the CON, PTERM and MUX statements, please note that the name triplet (or appliname
, ,) must be unique within the generation run.ptermname processorname local_appliname

PTERM ptermname

 [,BCAMAPPL=local_appliname]

 [,CONNECT={ YES | NO }]

 [,ENCRYPTION-LEVEL={ NONE | 3 | 4 | 5 | TRUSTED }] 2

 [,IDLETIME=time]

 [,LISTENER-PORT=number]

 [,LTERM=ltermname]

 [,MAP={ USER | SYSTEM | SYS1 | SYS2 | SYS3 | SYS4 }]

 ,PRONAM={ processorname | C’processorname’| *RSO } 1

 only mandatory on BS2000 systems
 [,STATUS={ ON | OFF }]

 [,TERMN=termn_id]

 [,USP-HDR={ NO | MSG | ALL }]

BS2000, Unix and Linux system specific operand

[,CID=printer_id]

BS2000 specific operands

[,PROTOCOL={ N | STATION }]

 ,PTYPE={ partnertyp | *ANY | *RSO }

[,USAGE={ D | 0 }]

Unix, Linux and Windows system specific operands

[,PTYPE={ partnertyp |

 PRINTER | }](PRINTER ,printertype [,class])

[,T-PROT=RFC1006 | SOCKET]

[,TSEL-FORMAT={ T | E | A }]

In order to make the generation of your UTM application more independent of the terminal type, it is
possible to incorporate terminals in the configuration without explicitly specifying their type. For this
purpose, set the PTYPE operand to *ANY. During connection setup, openUTM then takes the partner
type (PTYPE) from the user services protocol (connection letter) and checks whether or not this type is
supported. If not, openUTM rejects the connection request.

i

 449

1This operand value is only permitted on BS2000 systems

These operand values are only permitted on Unix, Linux, and Windows systems 2

 450

ptermname Name of the client or printer up to 8 characters in length

The specified name must be unique and must not be assigned to any other object in name
class 3. See also section "Uniqueness of names and addresses"

The following cases can arise:

Socket applications (PTYPE=SOCKET)

If the connection is to be established from the local application to the client, then any
 can be selected. It is only relevant internally in UTM then, e.g. for ptermname

administration.

If the connection is to be established externally (initiated by the client), then ptermname
must contain the port number via which the client addresses the UTM application. You
must then specify the prefix “PRT“ followed by 5 digits (with leading zeros, if necessary)
that designate the port number as the . For example, you must specify ptermname

=PRT08050 if the client is to address the UTM application via the port 8050.ptermname

Establishing the connection externally to a specific PTERM is only possible by partners
that set their port numbers themselves when establishing a connection. openUTM does
not do this, i.e. you cannot issue any PTERM statements for a remote UTM application
that is to establish SOCKET connections to the local application. In this case, you need
to connect via an LTERM pool.

 BS2000 systems:
When defining an RSO printer (PTYPE=*RSO), you must specify the name of the printer as
defined for RSO.

Unix, Linux or Windows systems:
For UPIC clients and TS applications with PTYPE=APPLI you must specify the T-selector
that is assigned to the client in the remote system for ptermname if OPTION CHECK-
RFC1006=YES.

In the case of printers, ptermname is the name of the spool queue or printer group as
defined during generation of the Unix or Linux system. To output the data, the printer
process (utmprint) calls the utmlp script (see PTYPE=PRINTER on "PTERM - define the
properties of a client/printer and assign an LTERM partner").

In the case of local terminals and pseudo terminals, the result of the command basename

 must be specified for in each PTERM statement so that the UTM `tty` ptermname
generation matches the terminal generation under the Unix or Linux system.

On Unix and Linux systems, the default assigned by openUTM may not be ptermname
unique. Depending on the type of network to which the system is connected, it is possible
to have two or more pseudo terminals for which the last term of the tty (after the last slash)
is identical. Only one terminal can use this to establish a connection with the ptermname
application. The connection request from the second terminal will be rejected by openUTM.

 451

Example The system contains the ttys and . If terminal /dev/pts/12 /dev/inet/12

requests a connection to the application with the 12 and /dev/pts/12 ptermname
terminal is already linked to the application, the connection request issued /dev/inet/12

by is rejected. You must use the last two parts of the output of the /dev/pts/12 tty
command as the ; e.g. instead of PTERM 12, enter the statements PTERM ptermname pts

and PTERM ./12 inet/12

You can also generate an LTERM pool with PTYPE=TTY instead.

 Windows systems:
For terminals any name can be specified for ptermname.

BCAMAPPL= local_appliname

Name of the local UTM application as defined in MAX ...,APPLINAME= or the BCAMAPPL
statement (see also). When "BCAMAPPL - define additional application names"
establishing a connection between the client/printer and the UTM application,

 must be specified as the partner name. In the case of terminals and local_appliname
printers, the name defined in MAX ...,APPLINAME= must be used here. For PTERMs with
PTYPE=SOCKET you must specify a name in that is generated using local_appliname
BCAMAPPL ... T-PROT=SOCKET.

The BCAMAPPL name specified in the CLUSTER statement is not permitted here.

Default value:
Value in MAX APPLINAME= (primary name of the UTM application). This default value
applies if BCAMAPPL= is not specified or contains blanks only.

CID= printer_id

This operand is only supported on BS2000, Unix and Linux systems.

This applies only for printers assigned to a printer control LTERM. is used to printer_id
identify the printers at the printer control LTERM, and can be up to eight characters in
length.

The printer control LTERM is used to manage printers, printer queues and print jobs.

If the printer is assigned an LTERM partner for which a printer control LTERM has been
defined using LTERM ...,CTERM= , the printer itself is also assigned to this ltermname2
printer control LTERM. The combination of of the printer control LTERM and ltermname2
CID must be unique.

Default: A CID is not assigned to the printer

CONNECT= Specifies whether or not openUTM establishes a connection to the client or printer when
starting the application.

On BS2000 systems CONNECT= is only relevant for TS applications, terminals and
printers.

On Unix and Linux systems CONNECT= is only relevant for TS applications and printers.

On Windows systems CONNECT= is only relevant for TS applications.

 452

 YES When starting the application, openUTM automatically attempts to establish a connection.

In the case of printers generated with LTERM ...,PLEV > 0, openUTM does not attempt to
establish the logical connection until the PLEV value is exceeded.

If a connection cannot be established to a printer or TS application, openUTM makes
repeated attempts to establish the connection at intervals defined in MAX ...,CONRTIME.

BS2000 systems:
If a logical connection to a terminal cannot be set up, this can be performed explicitly by the
user at a later point in time.

Unix and Linux systems:
When starting the application, openUTM automatically creates a printer process for
executing print jobs, which is assigned to .ptermname

 NO When starting the application, openUTM does not attempt to establish a connection.

CONNECT=NO must be specified for clients with PTYPE=UPIC-R and UPIC-L.

Default: NO

ENCRYPTION-LEVEL=

Unix and Linux systems:
A printer process is not created for . This can only be achieved by ptermname
issuing the administration command KDCPTERM ACT=C (or KDCLTERM for the
assigned LTERM partner). The printer process can then accept print jobs from
work processes, which are directed to the appropriate spool queue.

i

 453

Only relevant for UPIC clients that support encryption and on BS2000 systems for some
terminal emulations that support encryption also.

In ENCRYPTION-LEVEL you set the minimum encryption level for the communication with
the client.
You specify whether or not the UTM application should request encryption of the message
on the connection to the client. You can also define the client as a "trusted" client. See also
section for more information on encryption."Message encryption connections to clients "

The client must be a openUTM-Client with the UPIC carrier system and with encryption
functions to be able to encrypt data on the connection to the client.

Default values:

 is the default value for:TRUSTED

HTTP clients und USP-Socket applications, which connect via a transport system
access point (BCAMAPPL), that is configured with T-PROT=(..., SECURE).

Local UPIC clients (PTYPE=UPIC-L) on Unix, Linux and Windows systems

Other values for these partners are changed to TRUSTED by KDCDEF without issuing a
message.

 is the default value forNONE

all other types of communication partners.

For partners with PTYPE different from UPIC-R, and on BS2000 different from T9763, the
values 3, 4, 5 are changed to NONE by KDCDEF without issuing a message.

BS2000 systems:
A prerequisite for the use of encryption on connections between openUTM and terminal
emulations is VTSU-B >= V12.0C.

You can specify the following:

 NONE Encryption of the messages exchanged between the client and the UTM application is not
requested by openUTM by default.
Passwords are transmitted in encrypted form, if both partners support encryption.
Services for which encryption was generated for their service TACs (see ENCRYPTION-
LEVEL in the TAC statement starting on "TAC - define the properties of transaction codes

) can only be started by this client if the client negotiates encryption and TAC queues"
when establishing the connection or establishing the conversation.

 3 | 4 | 5 Encryption of the messages exchanged between the client and the UTM application is
requested by openUTM by default. The value specifies the encryption level. The client
cannot connect unless it supports at least this encryption level. Otherwise openUTM rejects
connection setup.

The values have the following meaning:

3 Passwords and input/output messages are encrypted using the AES-CBC algorithm. An
RSA key with a key length of 1024 bits is used to exchange the AES key.

 454

4 Passwords and input/output messages are encrypted using the AES-CBC algorithm. An
RSA key with a key length of 2048 bits is used to exchange the AES key.

 5 Input/output messages are encrypted using the AES-GCM algorithm. The AES key is
agreed using the Ephemeral Elliptic Curve Diffie-Hellman method (ECDHE). An RSA key
with a key length of 2048 bits is used to sign the public server key.

Level 5 is currently only supported by openUTM for LUW platforms.

BS2000 systems:
VTSU encryption is used for VTSU partners. (see manual "Security Handbook for Systems
Support")

 TRUSTED The client is a "trusted" client.
Messages between the client and the application are not encrypted. A "trusted" client can
also start services whose service TACs request encryption (generated with TAC
ENCRYPTION-LEVEL= 2 | 5).

TRUSTED should only be selected if the client communication is conducted through a
secure connection.

IDLETIME= time

May only be specified for dialog partners.
In you enter the maximum time in seconds that openUTM may wait for input from the time
client outside of a transaction, i.e. after the end of a transaction or after signing on. If this
time is exceeded, then openUTM clears down the connection to the client. If the client is a
terminal, then message K021 is output before the connection is cleared.

This function serves to improve data security: If a user forgets to sign off from the terminal
when taking a break or when finishing his or her work on the terminal, then the connection
to the terminal or client is automatically cleared down after the wait time has run out. This
reduces the chance of someone gaining unauthorized access to the system.

Default: 0 (= no wait time limit)
MAX TERMWAIT=(...,) is used for terminals (when it is set). time2
Maximum value: 32767
Minimum value: 60

If you specify a value that is greater than zero and smaller than the minimum value,
KDCDEF replaces the value with the minimum value.

If the application is generated with OPTION GEN-RSA-KEYS=NO, no RSA keys
are created in the KDCDEF run. In order to use the encryption functions, you
must create the required keys using administration facilities (KC_ENCRYPT or
WinAdmin or WebAdmin) or transfer them from an old KDCFILE using KDCUPD.

i

 455

LISTENER-PORT= number

Port number for establishing TCP/IP connections

With socket applications (T-PROT=SOCKET) the LISTENER-PORT= is a mandatory
operand.

All port numbers between 1 and 65535 are allowed.

BS2000 systems:
On BS2000 systems LISTENER-PORT may only be specified partners with PTYPE=APPLI
or PTYPE=SOCKET. In the case of PTYPE=SOCKET, LISTENER-PORT is a mandatory
operand.

For you must specify the port number on which the partner application waits for number
requests to establish a connection, i.e. the port number on the host partner through which
the partner application is addressed.

A port number that is not equal to 0 may only be specified if the local application specified
in the parameter BCAMAPPL is not generated with T-PROT=NEA.

Default: 0 (i.e. no port number)
In this case, the transport system uses the default port 102.

Unix, Linux and Windows systems:
LISTENER-PORT is only relevant for TS applications (PTYPE=SOCKET or APPLI).

The LISTENER-PORT is used with T-PROT=SOCKET to specify the port number used to
address the partner. No other addressing information is necessary.

Default: 0 (no port numbers)
When OPTION CHECK-RFC1006=YES, a port number must be specified in LISTENER-
PORT for PTERMs with PTYPE=APPLI.

LTERM= ltermname

Name of the LTERM partner assigned to the client/printer . This name is used ptermname
by the client/printer to sign on to the UTM application, and can be up to eight characters in
length.

The LTERM operand is mandatory for clients with PTYPE=SOCKET, APPLI and UPIC-R.

The LTERM partner assigned to a client/printer can be changed during runtime using the
KDCSWTCH administration command, e.g. if the printer fails. However, it is not possible to
assign a dialog LTERM partner (LTERM USAGE=D) to a printer.

For the printer pool function, you must issue several PTERM statements with the
same . A printer pool consists of numerous printers assigned to a ltermname
single LTERM partner (see also section). openUTM "Generating printer pools"
then distributes print jobs cyclically to the various printers in the pool.

i

 456

MAP= Controls the code conversion (EBCDIC <-> ASCII) for user messages exchanged between
communication partners.

User messages are passed in the message area on the KDCS interface in the message
handling calls (MPUT/MGET/FPUT/DPUT/FGET).

 USER openUTM does not convert the data of the message area, i.e. the messages are
transferred between the partner applications unchanged.
Note that the user message contains the transaction code in TS applications (partners with
PTYPE=SOCKET or APPLI). It must be encoded in the form that the receiving system
expects, i.e. on BS2000 systems in EBCDIC and in ASCII on Unix, Linux and Windows
systems.

Default: USER

 SYSTEM | SYS1 | SYS2 | SYS3 | SYS4

This parameter is only permitted for the following partners:

BS2000 systems: partners with PTYPE=SOCKET

Unix, Linux and Windows systems: partners with PTYPE=SOCKET or APPLI

UTM converts the user messages based on the conversion tables provided for the code
conversion (see section), i.e.: "Code conversion"

Prior to sending, the code is converted from ASCII to EBCDIC on Unix, Linux and Windows
systems and from EBCDIC to ASCII on BS2000 systems.

After receipt, the code is converted from EBCDIC to ASCII on Unix, Linux and Windows
systems and from ASCII to EBCDIC on BS2000 systems.

The specifications SYSTEM and SYS1 are synonymous.

UTM assumes that the messages contain only printable characters.

 457

PRONAM= { processorname | C’processorname’ }

Name of the partner computer. The complete name (FQDN) by which the computer is
known in the DNS must be specified.

The name can be up to 64 characters long.

If contains special characters it must be entered as a character string using processorname
C’...’.

BS2000 systems:

This name is defined during generation of the network. Please consult your network
administrator. The assignment of to must be unique.ptermname processorname

If a TS application is described with which the UTM application communicates via the
socket interface, then you must specify the symbolic address of the host partner for

. The association of the symbolic address to the real IP address must be processorname
entered in the name service of the local system (in the RDF file). You must not specify an
alias of the host.

When defining an RSO printer (PTYPE=*RSO), you must specify *RSO here.

In the case of clients connecting directly via OMNIS, i.e without mulitplex connection, you
must specify PRONAM= where is the host on which OMNIS is omnis-host omnis-host
loaded.

This is a mandatory operand.

PRONAM need not be specified if a default value for this operand is defined beforehand
using the DEFAULT statement.

Unix, Linux and Windows systems:

On Unix, Linux and Windows systems PRONAM= is permitted only for remote UPIC clients
(PTYPE=UPIC-R) and TS applications (PTYPE=SOCKET or APPLI).

For , you enter the real host name under which the IP address of the processorname
partner computer is entered in the name service of the local system (e.g. the hosts file) see

. You must not specify alias names of "Specifying computer names in KDCDEF generation"
the computer.

No distinction is made between uppercase and lowercase notation; KDCDEF always
converts the name of the partner computer into uppercase.

processorname is a mandatory operand for PTYPE=APPLI, SOCKET or UPIC-R.

Default for PTYPE=TTY, UPIC-L or PRINTER: blanks

PROTOCOL= User services protocol used on connections between the UTM application and the client
/printer

 458

 N A user services protocol is not used between the UTM application and the client/printer.

PROTOCOL=N must be set for UPIC clients (PTYPE=UPIC-R), TS applications
(PTYPE=SOCKET or APPLI) that communicate with the UTM application via the socket
interface (native TCP/IP) and for printers accessed via RSO (PTYPE=*RSO).

Clients with PROTOCOL=N cannot sign on to the UTM application via a multiplex
connection (MUX statement).

PROTOCOL=N must be specified for clients connecting directly via ONMIS (i.e. without
multiplex connection).

If you specify PTYPE=*ANY, openUTM ignores the entry PROTOCOL=N and automatically
sets PROTOCOL=STATION.

Default with PTYPE=SOCKET, APPLI, UPIC-R or *RSO.

 STATION The user services protocol (NEABT) is used between the UTM application and the client
/printer.

PROTOCOL=STATION must be specified for clients generated with PTYPE=*ANY. In this
case, openUTM requires the user services protocol (NEABT) to determine the device type
of the client or printer.

For UPIC clients (PTYPE=UPIC-R), TS applications (PTYPE=APPLI or SOCKET) or
printers that are addressed via RSO (PTYPE=*RSO), you are only permitted to specify
PROTOCOL=N. If you specify PROTOCOL=STATION it will be ignored.

Default with PTYPE SOCKET , UPIC-R or *RSO.!=

PTYPE= Type of communication partner

PTYPE on BS2000 systems:

This is a mandatory operand on BS2000 systems.

For PTYPE you must specify the partner type of the client or partnertyp
printer, the value *ANY, or the value *RSO for RSO printers.

 partnertyp Type of communication partner, i.e. type of client or printer. The value specified in
 must match to the type that has been set in the terminal emulation used, for partnertyp

example. The partner type must be entered either in the PTYPE parameter here, or using a
DEFAULT statement. The following partner types are supported:

Partner PTYPE TERMN

DSS 9748 T9748 1) FE

DSS 9749 T9749 FE

DSS 9750 T97501) FE

DSS 9751 T9751 FE

DSS 9752 T9752 FF

 459

DSS 9753 T9753 FE

DSS 9754 T9754 FI

DSS 9755 T9755 2) FG

DSS 9756 T97562) FG

DSS 9763 T9763 FH

DSS 9770 T9770 FK

DSS 9770R T9770R FK

FHS-DOORS Front End DSS-FE FH

DSS 3270 (IBM) T3270 FL

DSS X28 (TELETYPE) THCTX28 C5

DSS X28 (VIDEO) TVDTX28 C6

FHS-DOORS Front End DSS-FE FH

Data station PT80 TPT80 C4

9001 printer T9001 C7

9002 printer T9002 FA

9003 printer T9003 F9

9004 printer T9004 FD

9001-3 printer T9001-3 CA

9001-893 printer T9001-
893

CB

9011-18 printer T9011-18 CC

9011-19 printer T9011-19 CD

9012 printer T9012 CE

9013 printer T9013 C9

9021 printer T9021 CH

9022 printer T9022 CF

3287 printer T3287 CG

 460

Transport system application that is not a socket application, e.g.:
DCAM, CMX or UTM application.

APPLI A1

Intelligent terminal THOST A3

UPIC client UPIC-R A5

USP-Socket application SOCKET A7

HTTP client SOCKET A8

Secure USP-Socket application SOCKET A9

HTTPS client SOCKET AA

1)The PTYPEs T9748 and T9750 refer to the same terminal type.

2)The PTYPEs T9755 and T9756 refer to the same terminal type.

The VTSU version in which the individual terminals are supported can be found in the
respective DCAM, FHS and TIAM manuals. If a terminal is not supported by VTSU,
openUTM rejects connection requests from this terminal and outputs UTM messages K064
and K107.

 *ANY A PTYPE=*ANY entry generates a VTSU client. The client/printer is incorporated in the
configuration without precise information on the device type. During connection setup,
openUTM takes the device type from the user services protocol. Only then can it be
determined whether or not the partner type is supported.

The advantage of PTYPE=*ANY is that it allows you to include clients in the configuration
without having to know how their type. The configuration is also easier to maintain,
because even if the type is modified in the terminal emulation, for example, this client can
still sign on to the application without having to modify the KDCDEF generation.

If terminal mnemonics (TERMN operand) are not explicitly generated for clients defined
with PTYPE=*ANY, the default terminal mnemonic of the partner type is used for
connection setup.

 *RSO If PTYPE=*RSO, support is provided for printers via RSO. Instead of establishing a
transport connection, openUTM reserves the printer in RSO and transfers the message to
be printed to RSO.

PTYPE on Unix, Linux and Windows systems:

 461

 partnertyp Type of communication partner, i.e. type of client or printer. For you can specify partnertyp
the following:

Partner PTYPE TERMN

Terminal TTY F1

PRINTER (only on Unix and Linux systems) PRINTER F2

PRINTER, printertype, class (only on Unix and Linux systems) PRINTER F3

Transport system application that does not use the socket
interface (for example UTM, CMX or DCAM application).

APPLI A1

local UPIC client UPIC-L A2

remote UPIC client UPIC-R A5

USP socket application SOCKET A7

HTTP client SOCKET A8

secure USP socket application SOCKET A9

secure HTTP client SOCKET AA

Default: TTY

 PRINTER Printer without additional parameters.
To output the data, the printer process () calls the script. Parameters are utmprint utmlp
also passed to in the call in addition to the data to be printed. then passes the utmlp utmlp
data by default to the lp command, see information on the script in section utmlp "PTERM -

).define the properties of a client/printer and assign an LTERM partner"

 (PRINTER, printertype,[class]) (only on Unix and Linux systems)

 462

Printer with extended parameters.
To output the data, the printer process () calls the script. Parameters are utmprint utmlp
also passed to in the call in addition to the data to be printed. passes the data utmlp utmlp
with the value of set to to the lp command (for information on the class destination utmlp
script see below).utmlp

printertype
Designates the printer type of the printer to be used for printing. If there are special
characters in the value of the parameter, then you must place the value in printertype
single quotes.
Maximum length of : 8 charactersprintertype

class
Name of the printer group (printer class).
If the name of the printer group contains special characters, then you must place the value
in single quotes.
Maximum length: 40 characters
Default value: value of ptermname

Information on the utmlp script:

The script is also supplied with openUTM. You will find it in the $UTMPATH/shsc utmlp
directory.

The parameters which are transferred to the script dependent on the PTERM utmlp
statement are documented in the script itself.

The script is accessed at runtime using the $PATH variable.

You can edit the script to modify the message before printing or print it over the network,
for example.

If printing was successful, the script returns exit code 0 (null). If the script returns an exit
code other than 0, then the connection to the printer process is cleared and another
attempt is made to output the data once the connection has be reestablished.

STATUS= Status (locked or unlocked) of the client/printer when the application is started.

With clients of type APPLI,SOCKET or UPIC-R, it may appear to openUTM that a
connection to the client still exists, even though the client is no longer actually
linked to the application and therefore attempts to reestablish the connection. For
this purpose, the client sends a connection request to openUTM, which causes
openUTM to shut down the “existing” connection.

With clients of type APPLI or SOCKET, openUTM then automatically initiates the
setup of a new connection.For UPIC clients, the initiation to establish a new
connection must be made by the UPIC client.

i

 463

 ON The client or printer is unlocked. If the LTERM partner used by the client/printer to sign on
to the UTM application is not locked, connections can be establish or may already be in
place.

Default: ON

 OFF The client or printer is locked. Connections cannot be established between the client/printer
and the local application. The client/printer can be released by the administrator.

TERMN= termn_id

Identifier up to two characters in length, which indicates the type of client. openUTM
provides this identifier to the application program in the KCTERMN field of the KB header.

 is not queried by openUTM, but can be used by the user for analysis purposes.termn_id

Default values:

If this operand is not specified, openUTM sets the KCTERMN field to the default ID of the
partner type specified in the PTYPE operand. However, the user can select other values if
desired.

BS2000 systems:
The default values are listed in the partner type table for the PTYPE= operand in section

."PTERM - define the properties of a client/printer and assign an LTERM partner"
If TERMN is not explicitly specified for clients generated with PTYPE=*ANY, openUTM
does not enter the terminal mnemonic in KCTERMN until the connection is established.
This is the default terminal mnemonic of the type specified in the user services protocol of
the connection request.

Unix, Linux and Windows systems:
The default values are listed in the table below.

T-PROT= This operand is only supported on Unix, Linux and Windows systems.

The address format with which the OSI TP partner signs on to the transport system. Is only
relevant for PTYPE=SOCKET, APPLI and UPIC-R.

Information on the following address formats can be found in the section "PCMX
.documentation" (openUTM documentation)

 RFC1006 Address format RFC1006

 SOCKET Communication is conducted via the socket interface.
SOCKET may only be specified if the name of the local UTM application that you specified
in BCAMAPPL is generated with T-PROT=SOCKET.
The specification of a port number in the LISTENER-PORT operand is mandatory.

The default value for T-PROT depends on the PTYPE specification:

T-PROT=RFC1006 when PTYPE=APPLI or UPIC-R
T-PROT=SOCKET when PTYPE=SOCKET

 464

TSEL-FORMAT= This operand is only supported on Unix, Linux and Windows systems.

The format identifier of the T-selector in the transport address of the client.
TSEL-FORMAT is only relevant for PTYPE=SOCKET, APPLI and UPIC-R.

The format identifier specifies the coding of the T-selector in the transport
protocol. You will find more information in the section "PCMX documentation" (openUTM

.documentation)

 T TRANSDATA format

 E EBCDIC format

 A ASCII format

It is recommended to explicitly specify a value for TSEL-FORMAT for operation via
RFC1006.

USAGE= This specifies whether the communication partner is a dialog partner or purely an output
medium.

 D The client is a dialog partner. Messages can be exchanged between the client and the
local application in both directions.

UPIC clients (PTYPE=UPIC-R) are always dialog partners.

An LTERM partner with USAGE=D must not be assigned to a client with USAGE=O.

This is the default value if PTYPE=SOCKET, APPLI, UPIC-R, and for terminals.

 O The communication partner is a printer. Messages can only be sent from the application to
the printer.

Default:
This is the only value permitted for partners generated with PTYPE=*RSO.

USP-HDR= This parameter is used to control the output messages for which openUTM is to establish a
UTM socket protocol header on this connection.
A description of the USP header can be found in the openUTM manual „Programming
Applications with KDCS”.

This parameter is only relevant for PTERMs with PTYPE=SOCKET.

 NO openUTM does not create a UTM socket protocol header for any of the output messages.

Default.

 MSG Only when outputting K messages does openUTM create and prefix the message with a
UTM socket protocol header.

 ALL openUTM creates and prefixes all output messages (dialog, asynchronous, K messages)
with a UTM socket protocol header.

 465

6.5.38 QUEUE - reserve table entries for temporary messages queues

The QUEUE control statement allows you to specify the number of temporary queues that are permitted to exist in
the application at any one time. In the KDCFILE the appropriate number of table entries are reserved for temporary
queues. You can also define the default settings for these queues.

Temporary queues are suitable, for example, for communication between two services. These can be created and
deleted dynamically during operation using the KDCS calls QCRE and QREL.

The QUEUE statement may only be specified once during a generation run!

For more information about queues and possible applications please refer the openUTM manual “Concepts und
Functions”.

QUEUE NUMBER=queue-number

 [,QLEV=queue_level_number]

 [,QMODE = { | WRAP-AROUND }]STD

NUMBER= queue-number

Specifies the maximum number of temporary queues that are permitted to exist at any one
time during an application run.

Minimum value: 1
Maximum value: 500.000

QLEV= queue_level_number

(ueue el) Q Lev
Specifies the standard value for the maximum number of messages that may exist at any
one time in a temporary message queue.
The maximum number of messages can be defined specifically using the KDCS call QCRE
(KCLA parameter) for each queue when the queue is generated. The default value
generated with QLEV= is used if the value 0 is entered in the parameter KCLA.

QLEV=32767 means that the number of messages in the queue is not limited by default.

Default: 32767 (or in other words, an unrestricted queue length)
Minimum value: 1
Maximum value: 32767 (or in other words, an unrestricted queue length)

QMODE= (ueue) Q Mode
Determines the behavior of openUTM in the event that the maximum number of messages
saved in a temporary queue has been exceeded and the queue level is thus reached.
The value generated here is used when dynamically creating a temporary queue if no other
value is specified in the KDCS call QCRE.

 STD openUTM rejects all additional messages for the queue with a negative return code if the
queue level has been reached.

Default: STD

 WRAP-AROUND openUTM continues to accept messages for the temporary queue, even if the queue level
has already been reached. When writing a message to the queue openUTM deletes the
oldest messages in the queue and replaces it with the new one.

 466

6.5.39 REMARK - insert a comment line

The REMARK control statement allows you to insert a comment in the KDCDEF control statements. Comments
must not extend beyond one line.

ARK REM comment

comment Any character string

A comment line can also be created by inserting an asterisk * in column 1.

 467

6.5.40 RESERVE - reserve table locations for UTM objects

If you use the functions of the program interface KDCADMI for dynamic configuration during application operation,
or want to add dynamic objects using the WinAdmin or WebAdmin administration workstation, then you must use
the RESERVE statement to reserve table spaces in the object tables of openUTM at the KDCDEF generation.

Further information on dynamic configuration can be found in section "Changing theconfiguration of an application
.dynamically"

The RESERVE statement can only be issued once for each object type. The following is valid for a RESERVE
statement with OBJECT=ALL:

After RESERVE OBJECT=ALL is specified, it is not possible to enter any additional RESERVE statements.

Before RESERVE OBJECT=ALL all object-specific RESERVE statements are permitted. These object-specific
RESERVE statements take priority.

Due to internal dependencies, the KDCDEF generation tool may reserve more objects than specified in RESERVE
statements. The exact number of objects of the reserved entries for an object type is output in a message.

RESERVE OBJECT={ ALL [,CARDS=percent1] [,PRINCIPALS=percent2] 1 1

|

 CON |

 KSET |

 LSES |

 LTAC |

 LTERM |

 PROGRAM |

 PTERM |

 TAC |

 USER [,CARDS=percent1] [,PRINCIPALS=percent2] }1 1

[{ ,NUMBER=number | ,PERCENT=percent3 }]

1only permitted on BS2000 systems

OBJECT= Table locations are reserved for objects of the specified type. These objects can then be
entered in the configuration dynamically as required.

 ALL [,CARDS=percent1] [,PRINCIPALS=percent2]

(CARDS= and PRINCIPALS= are only permitted on BS2000 systems)
Table locations can be reserved for objects of type CON, KSET, LSES, LTAC, LTERM,
PROGRAM, PTERM, TAC and USER, which are then entered dynamically.

With objects of type USER, CARDS= means that up to % of users entered percent1 percent1
dynamically can be defined with an ID card.
PRINCIPALS= means that up to % of users entered dynamically can be percent2 percent2
defined with a Kerberos authentication.

Default for / : 0%, i.e. no users can be entered dynamically with an identity percent1 percent2
card or Kerberos authentication.
Maximum value for / : 100%percent1 percent2

 468

 CON Table entries are reserved for the transport connections to LU6.1 partner applications, for
example, for objects of type CON.

 KSET Table entries are reserved for the key sets, for example, for objects of type KSET.

 LSES Table entries are reserved for the LU6.1 session names, for example, for objects of type LSES.

 LTAC Table entries are reserved for the local service names via which the service programs in
partner applications can be started. These are objects of the type LTAC.

 LTERM Table locations are reserved for objects of type LTERM

Please note that the following object components must be generated statically and cannot be
entered dynamically:

A client with PTYPE=APPLI cannot be assigned dynamically to an LTERM partner without
an autosign USER with the name of a statically generated USER.

A client with PTYPE=APPLI cannot be assigned dynamically to an LTERM partner without
an autosign USER defined with the name of a statically generated user.

the format handling system when using formats

the sign-on procedure with #formats.

 PROGRAM Table locations are reserved for objects of type PROGRAM
Objects of type PROGRAM can only be entered dynamically in applications generated with
load modules (BS2000 systems), shared objects (Unix and Linux systems) or DLLs (Windows
systems).

Please note that the following object components must be generated statically and cannot be
entered dynamically:

Programming languages (PROGRAM ...,COMP=) must be generated statically using the
PROGRAM statement.

With ILCS-compatible languages (COMP=ILCS), the static generation of an ILCS program
is sufficient.

LOAD-MODULEs in PROGRAM must be generated statically using the LOAD-MODULE
statement.

For applications generated without load modules on BS2000 systems, the PROGRAM
names specified when entering a new TAC must be generated statically.

For applications generated without shared objects/DLLs, the program names specified when
entering a TAC must be generated statically.

 PTERM Table locations are reserved for objects of type PTERM.

For each client with PTYPE=APPLI, SOCKET, UPIC-R or UPIC-L, openUTM implicitly creates
a USER. If such clients generated dynamically, this must be taken into consideration in the
NUMBER= or PERCENT= operand for OBJECT=USER.

Please note that BCAMAPPL names must be generated statically and cannot be entered
dynamically.

 469

 TAC Table locations are reserved for objects of type TAC.

Please note that the following object components must be generated statically and cannot be
entered dynamically:

TAC classes

If TACs are to be created dynamically for X/Open program units, at least one X/Open TAC
must be generated statically.

 USER [,CARDS=percent1] [,PRINCIPALS=percent2]

(CARDS= and PRINCIPALS= are only permitted on BS2000 systems) Table locations are
reserved for objects of type USER.

If user IDs have not been generated for an application, i.e. the generation does not contain any
USER statements, table locations cannot be reserved for objects of type USER. This is
because KDCDEF already reserves an

object of type USER internally for each reserved object of type LTERM. The number of users
reserved by KDCDEF in this way is output in a UTM message.

BS2000 systems:
On BS2000 systems CARDS= means that up to % of users entered percent1 percent1
dynamically can be defined with an ID card. PRINCIPALS= means that up to percent2 percent2
% of users entered dynamically can be defined with a Kerberos authentication.

Default for / : 0%, i.e. no users can be entered dynamically with an identity percent1 percent2
card or Kerberos authentication. Maximum value for / : 100%percent1 percent2

Please note that the following object components must be generated statically and cannot be
entered dynamically:

the format handling system when using formats

the sign-on procedure with #-formats

UTM creates an internal user ID for all TS applications (PTYPE=APPLI/ SOCKET) and UPIC
clients (PTYPE=UPIC-R). The NUMBER or PERCENT specification must be increased
appropriately if these PTERMs are to be entered dynamically.

 470

NUMBER= number

Maximum number of objects of the specified type which can be entered dynamically.

If OBJECTS=ALL, up to objects of the types listed in the syntax diagram can be number
entered dynamically.

NUMBER=0 The number of objects of the specified type can be increased dynamically to
the maximum value, i.e. the maximum number of names that can be generated as specified
in section . "Number of names "

NUMBER 0 This reduces the storage space occupied by the UTM application. If the !=

number of objects to be reserved is greater than the maximum number of names that can be
generated (see), then this statement has the same effect as "Number of names "
NUMBER=0.

Minimum value: 0
Maximum value:

32 000 for LTAC, KSET, TAC and PROGRAM

65 000 for CON, LSES, LTERM, PTERM

500 000 for USER, LTERM, PTERM

The following also apply:

The sum of the reserved entries for an object type and the number of statically generated
names of the associated name classes must not exceed the maximum number of permitted
entries for these name classes (see). "Number of names"

The sum of the reserved CONs and PTERMs must not be greater than 500 000.

The sum of the reserved LSES and USER must not be greater than 500 000.

At the end of the KDCDEF run, the number of entries reserved for each object type is output
with message K502.

PERCENT= percent3

Number of objects of the specified type which can be entered dynamically, expressed as a
percentage of the total number of objects of this type which have been generated statically.

The advantage of a percentage specification is that the number of objects that can be entered
dynamically automatically increases at the same rate as the number of statically generated
objects of the respective type in each generation (assuming the RESERVE statements are not
modified).

PERCENT= has the same effect as the equivalent percent3
NUMBER= , i.e. PERCENT=0 has the same effect as NUMBER=0.number

PERCENT 0 reduces the storage space occupied by the UTM application. If the number of !=

objects to be reserved is greater than the maximum number of names that can be generated
(see), this statement has the same effect as PERCENT=0."Number of names"

Default: 10
Minimum value: 0
Maximum value: Number of names that can be generated

 471

6.5.41 RMXA - define a name for an XA database connection (Unix, Linux and Windows
systems)

The XA interface standardized by X/Open allows you to link openUTM to any Resource Manager that supports this
interface, e.g. the database system Oracle. openUTM supports this connection via the XA CAE interface (CAE
specification).

A separate RMXA statement must be issued for each Resource Manager instance.

The start parameters for the Resource Manager generally determine the database to which openUTM is linked via
the Resource Manager.

RMXA XASWITCH=name

 [,USERID=username | C‘username‘]

 [,PASSWORD=C'password']

 [,DLLIMPORT={ ES | }]Y ON

 [,XA-INST[-NAME]=inst-name]

XASWITCH= name

Name of the structure of the Resource Manager, which is made known to xa_switch_t
openUTM. The value entered for is predefined in the respective Resource Manager. name
The name my be up to 54 characters in length. Further information can be found in section

 .)"Defining database linking"

This is a mandatory operand.

USERID= username | C‘username‘

If a user name is to be passed to the database system in lowercase characters, then you
must use the format C'username'.

PASSWORD = C'password'

Specifies a password for the database system. The password can be up to 30 characters in
length. openUTM passes the password to the database system if the placeholder
*UTMPASS has been specified for the password in the Open string. In other words
openUTM replaces '*UTMPASS' in the start parameter by the value generated here.

Alternatively, the password can be transferred to the database system by means of start
parameters.

DLLIMPORT= Specifies how the structure of the Resource Manager is to be addressed.xa_switch_t

Alternatively, the user name can be transferred to the database system by means
of start parameters.

It is possible to modify the user name and/or the password by means of dynamic
administration.

i

 472

 YES Only permitted in openUTM on Windows systems.
The structure is addressed with .xa_switch_t dllimport

You must generate DLLIMPORT=YES to connect to Oracle on Windows
systems.

 NO The structure is addressed using .xa_switch_t extern

Default: NO

XA-INST-NAME= This parameter is permitted only if TYPE=XA was specified.

inst-name is the local name for the XA instance which is 1 to 4 characters long.

If more than one RMXA statement is generated for an application, the XA-INST-NAME
values in the applications must differ. The parameter can be omitted for applications with just
one RMXA statement.

The string specified for XA-INST-NAME must be specified after the string ".RMXA" in the
prefix for the start parameters for this database.

Example:

Specification in the RMXA statement:

RMXA....,XA-INST-NAME=DB1

Specification in the start parameters for this data base:

.RMXADB1 RM="rm-name",OS="open-string",...

Default: blanks

 473

6.5.42 ROOT - define a name for the ROOT table source

The ROOT control statement must be specified when creating a ROOT table source. It can be omitted if only the
KDCFILE is to be created, i.e.neither the operand GEN=ALL nor GEN=ROOTSRC is specified in the OPTION
statement. The ROOT statement can only be issued once.

ROOT rootname

rootname mandatory operand. You have to specify:

BS2000 systems:
CSECT name of the KDCROOT table to be incorporated (Assembler program).

When using the ROOT dynamic loading mechanism, this module is loaded during application startup
from the library specified in the start parameter TABLIB= . If this is not the case, the module libname
must be linked statically.

Unix, Linux and Windows systems:
Name part of the file containing the ROOT table source as a C/C++ program. is an rootname
alphanumeric name up to eight characters in length. The fully qualified name is filebase/rootname.c
(Unix and Linux systems) or (Windows systems).filebase\rootname.c

 474

6.5.43 SATSEL - define SAT logging (BS2000 systems)

The SATSEL control statement allows you to define which events from which UTM event class are to be logged
using SAT (preselection of the events to be logged). This involves specifying the event class to which the events
belong, and then restricting the logging procedure within each event class by defining whether only successful
results or only unsuccessful results are to be logged.

The SATSEL statement can be issued several times. If an event class is specified in several SATSEL statements,
the values entered in the first statement determine the logging mode.

If SAT logging is to be activated when the application is started, this must be defined during generation (MAX ...,
SAT=ON).

If MAX ...,SAT=OFF is generated, you can use SATSEL to define the events to be logged in the generation, even if
SAT logging is deactivated. In this case, the SATSEL statements are not effective, but SAT logging is predefined.
When required, SAT logging can then be activated during operation (KDCMSAT administration command).

The event logging mode can also be defined using the SATSEL operand in the USER (user specific) and TAC (TAC-
specific) statements. If entries are made in various statements, the following applies:

Logging is switched on as soon as it is activated in a statement. The logging mode (SUCC, FAIL, or BOTH) is
unique.

SAT logging can be activated in several statements (SATSEL, USER, and TAC statements). If different logging
modes are specified in the various statements, openUTM creates a superset of logging modes by ORing the
individual settings. However, there is one exception: if an event class is set to OFF in the SATSEL statement,
logging is deactivated for this event class even if it is activated in the USER or TAC statement. Further
information on the possible combinations of SAT logging conditions and their effect can be found in the
openUTM manual “Using UTM Applications on BS2000 Systems”.

Each event to be logged (apart from SIGN, CHANGE-PW) is assigned to a USER and TAC. Logging of an event
can thus be activated using the SATSEL statement (activate logging for a particular event) or the SATSEL
operand of the USER or TAC statement.

SATSEL { BOTH | SUCC | FAIL | NONE | OFF }

, EVENT=(event1, event2, ...)

BOTH Both successful and unsuccessful events of the class specified in EVENT are logged.

SUCC Only successful events of the class specified in EVENT are logged. SAT logging is also
performed as defined in the SATSEL operand of the USER and TAC statements.

FAIL Only unsuccessful events of the class specified in EVENT are logged. SAT logging is also
performed as defined in the SATSEL operand of the USER and TAC statements.

NONE Event-specific SAT logging is not performed. SAT logging takes place only if activated for a
specific user and/or TAC.

You can find further information about the SAT logging and about possible combinations of conditions of
SAT-loggings and their result in the openUTM manual “Using UTM Applications on BS2000 Systems”.

i

 475

OFF None of the events of the class specified in EVENT are logged, even if SAT logging has been
activated in the USER or TAC command. This allows you to exclude events from logging
which are not relevant to security (e.g. access to TLS areas), and thus to restrict the quantity
of log data.

EVENT=(event1, event2, ...)

Event classes to be logged. The following event classes can be selected:

 SIGN Events that occur when the user signs on.

 CHANGE-PW Events that occur when the user password is changed.

 START-PU Events that occur when starting a program unit run, or when accepting a dialog or
asynchronous job.

 END-PU Events that indicate the end of the program unit run.

 GSSB Events that indicate access to a global secondary storage area (GSSB).

 TLS Events that indicate access to a terminal-specific long-term storage area (TLS).

 ULS Events that indicate access to a user-specific long-term storage area (ULS).

 ADM-CMD Events that affect the execution of an administration command issued by direct input or via a
program interface.

 476

6.5.44 SESCHA - define session characteristics for distributed processing based on LU6.1

The SESCHA control statement allows you to define session characteristics between the local application and the
partner application. The set of session characteristics defined here is stored under a name, which can then be
assigned to an LPAP partner using the SESCHA= operand of the LPAP statement (see "LPAP - define an LPAP

).partner for distributed processing based on LU6.1"

When generating LU6.1 connections, you must bear in mind the information in section "Distributed processing via
.the LU6.1 protocol"

SESCHA sescha_name

[,CONNECT={ ES | }] Y ON

[,CONTWIN={ ES | }] Y ON

[,DPN=destination_process_name]

[,IDLETIME=pacing_count_time]

[,PACCNT=pacing_count_number]

 ,PLU={ ES | O }Y N

 additional operand on Unix, Linux and Windows systems
[,MAP={ | TEM | SYS1 | SYS2 | SYS3 | SYS4 }]USER SYS

sescha_name Name under which the session characteristics are combined. This is specified for the SESCHA=
operand of the LPAP statement in order to assign these session characteristics to a particular
LPAP partner.

CONNECT= This defines whether the local application is to establish the connection to the partner application
during startup.

 NO The connection to the partner application must be established using an administration command.

Default: NO

 YES The connection to the partner application is established when the local application is started.
If unsuccessful, openUTM repeats its attempt to establish the connection at intervals defined in
MAX ...,CONRTIME=.

CONNECT=YES can be specified both in the local application and in the partner application. This
means that the connection is established automatically as soon as both applications are available.

CONTWIN= (ention ner) cont win
This defines whether the local application is the contention winner or the contention loser. The
contention winner application is responsible for managing the session and controlling the
reservation of sessions by jobs. You must specify CONTWIN=Y in one of the two participating
applications and CONTWIN=N in the other.

 YES The partner application is the contention winner.

 477

 NO The local application is the contention winner.

In both cases, jobs can be started by either application. If both applications simultaneously
attempt to initiate a job, the session is reserved by the job issued by the contention winner.

The correct selection of this parameter is important for performance in communication between
two applications: CONTWIN=Y must be specified in one of the applications, and CONTWIN=N in
the other.

Default: If PLU=N, the local application is the contention loser; otherwise, it acts as the
contention winner.

DPN= destination_process_name

Entity that processes asynchronous messages. This operand is significant only for links to IBM
systems.

Default: 8 blanks

IDLETIME= idle_time

Number of seconds for which the idle state of a session is monitored. If the session is not
reserved by a job within the period specified in IDLETIME=, openUTM shuts down the
connection.

IDLETIME = 0 means that the idle state of the connection is not monitored.

Default value: 0
Minimum value: 60
Maximum value: 32767

If you specify a value that is greater than zero and smaller than the minimum value, KDCDEF
replaces the value with the minimum value.

MAP= This operand is only supported on Unix, Linux and Windows systems.

Controls the code conversion (EBCDIC <-> ASCII) for user messages exchanged between
partner applications (OSI-LPAP) in the abstract syntax UDT.

User messages are passed in the message area on the KDCS interface in the message handling
calls (MPUT/FPUT/DPUT).
openUTM does not generally execute any message handling for formatted messages (KCMF
contains a format identifier).

 USER openUTM does not convert the user messages, i.e. the data in the KDCS message area is
transferred to the partner application unchanged.

Default: USER

 SYSTEM | SYS1 | SYS2 | SYS3 | SYS4

 478

UTM converts the user messages based on the conversion tables provided for the code
conversion (see section "), i.e.:"Code conversion

Prior to sending, the code is converted from ASCII to EBCDIC.

After receipt, the code is converted from EBCDIC to ASCII.

The parameter values SYSTEM and SYS1 are synonymous.

The prerequisite is that the message has been created using the abstract syntax of UDT (KCMF
= blanks).

UTM assumes that the messages contain only printable characters.

PACCNT= pacing_count_number

Maximum number of message segments of a long message which can be received by the local
application without issuing a response. If this value is too high, this may result in network
congestion or loss of messages.

If PACCNT=0, pacing does not take place.

Default: 3
Minimum value: 0
Maximum value: 63

PLU= Application that opens the session, i.e. the primary logical unit (PLU).

 YES The partner application is the primary logical unit.

 NO The local application is the primary logical unit.

PLU=Y must be specified for one of the applications, and PLU=N for the other.

CAUTION!
If only short messages are to be exchanged with the partner application (less than
4000 byte) then pacing should be deactivated (PACCNT=0); this saves on overhead in
communication with the partner. If data flow problems still occur, then either the default
must be reset or the generation of the transport system must be modified accordingly.

!

 479

6.5.45 SFUNC - define function keys

The SFUNC control statement allows you to assign

transaction codes,

KDCS return codes transferred to the program units,

KDC commands, and

the stacking function

to the function keys of terminals.

It should be issued once for each function key to be used.

A function key can be selected in UPIC clients and transferred to the UTM application.
If openUTM receives a function key from a UPIC client, then only the parameter RET is evaluated. If the parameter
is not generated, openUTM returns the return code 19Z for the MGET call.

SFUNC functionkey

 { [,CMD={ KDCDISP | KDCFOR | KDCLAST | KDCOFF | KDCOFF-BUT |1

 KDCOUT | KDCSIGN }]1

 |

 [,TAC=tac1] {[,RET=xxZ] | [,STACK=tac2]} }

1only on BS2000 systems

functionkey Short name for the function key. The following values are possible:

With F keys, the value of the F key and an input message are displayed.
With K keys, a short message is output indicating the value of the K key.
K14 is required for ID card readers (see the openUTM manual „Programming Applications with
KDCS”).

BS2000 systems:
Supported values are K1 to K14 and F1 to F24

Unix, Linux and Windows systems:
Supported values are F1 to F20

CMD= Name of the KDC command to be assigned to this function key. If the CMD is specified, it is not
possible to define any further operands.

On BS2000 system F and K keys assigned by SFUNC cannot be used by FHS-DE (see the "FHS User
Guide").

On Unix, Linux and Windows systems function keys are only relevant for UPIC clients. Only the RET
operand is evaluated.

i

 480

TAC= tac1

Name of the transaction code to be assigned to the function key. This must be defined as a service
TAC using the TAC statement (CALL=FIRST/BOTH). If the function key is pressed outside the
service, this has the same effect as entering the transaction code. If the function key is pressed
within the service and neither RET nor STACK is specified, the first MGET call in the next program
unit of this service issues return code 19Z.

RET= xxZ

Return code contained in the KCRCCC field of the communication area following an MGET call if a
particular function key is pressed during a service.

If the function key at the terminal is pressed at the beginning of a service and TAC= is not set, tac1
openUTM responds by outputting the messaged K009 or by starting the BADTACS program unit.
At the first MGET call, the BADTACS program unit receives the return code assigned to the function
key in the field KCRCCC.

If the function key activated from the UPIC client at the beginning of a conversation, that service is
started that belongs to the TAC (TP_NAME) set by the UPIC client. At the first MGET call, the
program unit receives the return code assigned to the function key in the field KCRCCC.

The RET and STACK operands are mutually exclusive.

Value range: 20 <= xx <= 39.
The assignment is freely selectable.

STACK= tac2

Name of the transaction code to be assigned to the function key. This must be defined as a dialog
service TAC using the TAC statement (TYPE=D and CALL=FIRST/BOTH). If the function key is
pressed within the service, the current service is stacked and the service with the transaction code

 is started. If the function key is pressed outside the service, transaction code is started. If tac2 tac1
transaction code is not specified, pressing the function key starts the service with the tac1
transaction code .tac2

The RET= and STACK= operands are mutually exclusive.

 481

Alternative escape keys on BS2000 systems

For K and F keys not available on the keyboard the following alternative keys can be used:

Key Alternative

K1

K2

K3

K4 ESC V

K5 ESC W

K6 ESC M

K7 ESC N

K8 ESC O

K9 ESC ?

K10 ESC >

K11 ESC =

K12 ESC <

K13 ESC ;

K14 ESC :

F1

F2

F3

F4 ESC ^

F5 ESC _

 482

6.5.46 SHARED-OBJECT - define shared objects/DLLs (Unix, Linux and Windows systems)

The SHARED-OBJECT control statement allows you to define

on Unix and Linux systems: the name and properties of a shared object if programs are to be exchanged using
the dynamic linker.

on Windows systems: the name and properties of DLLs used for dynamic loading.

The program exchange functions are supported on all Unix and Linux systems except AIX systems.

SHARED-OBJECT shared_object_name

 [, ECTORY=directory_name]DIR

 [,LOAD-MODE={ | ONCALL }]STARTUP

 [,VERSION=version]

shared_object_name Name of the shared object/DLL up to 32 characters in length.

DIRECTORY= directory_name

Directory in which the shared object is stored. can be up to 54 characters directory_name
in length.

Default: No entry, i.e. the current directory is used.

Unix and Linux systems:
If a directory is not specified for DIRECTORY=, the directory is searched for the filebase
shared object. If the shared object cannot be found there, the environment variable
LD_LIBRARY_PATH is used as the search path.

LOAD-MODE= Load mode of the shared object/DLL

 STARTUP The shared object/DLL is loaded when the application is started.

Default: STARTUP

 ONCALL The shared object/DLL is loaded when the first call of a program unit or of a conversation
exit is issued.

Shared objects/DLLs generated with LOAD-MODE=ONCALL can only be exchanged if
the openUTM version support for shared objects/DLLs is used.

 483

VERSION= Shared object/DLL version up to 24 characters in length.

VERSION= is evaluated only if openUTM version support is used. This is described in the
openUTM manual “Using UTM Applications on Unix, Linux and Windows Systems”.

Default: No version specification

If VERSION= is not specified and if is a directory name, the shared shared_object_name
object/DLL is addressed using the highest version name (in lexical terms). openUTM
regards the version name merely as an identifier, i.e. the lexical sequence does not
necessary mean “older” or “newer”. The UTM administrator is responsible for version
management.

Shared object file name version support (Unix and Linux systems):without
The fully qualified file name of the shared object is directory_name

 If / is a directory the file is /shared_object_name. directory_name shared_object_name
loaded with the highest file name (in lexical terms) from this directory.
If the generation statement is . the file SHARED-OBJECT , DIRECTORY=aaa.so ./

is loaded. aaa.so

Shared object file name version support:with
:Unix and Linux systems

The fully qualified file name of the shared object is directory_name
 /shared_object_name/version.

If the generation statement is .SHARED-OBJECT aaa, DIRECTORY=., VERSION=V1

 the file is loaded.S0 ./aaa/V1.S0

:Windows systems
The fully qualified file name of the shared object is

.adirectory_name\shared_object_name\version
For the generation specification,

the file is SHARED-OBJECT aaa, DIRECTORY=., VERSION=V1 .\aaa\V1.dll

loaded.
The suffix is added automatically..dll

On Windows systems it is recommended that you use the VERSION= operand
since the search for the "lexically largest name" can return unexpected results
on Windows systems.

i

http://aaa.so
http://aaa.so

 484

6.5.47 SIGNON - control the sign-on procedure

You can specify options and parameters for the sign-on procedure of your UTM application with the SIGNON
control statement. The signing on of users is controlled by the SIGNON parameter.

The parameters UPIC, RESTRICTED and CONCURRENT-TERMINAL-SIGNON are only relevant if a sign-on
service is generated.

If you enter an invalid value for the SIGNON operand, then KDCDEF uses the corresponding default value. This is
currently done without outputting a corresponding message (see the following descriptions of the operands).

SIGNON [CONCURRENT-TERMINAL-SIGNON=%_value]

 [,GRACE={ | YES }]NO

 [,MULTI-SIGNON={ | NO }]YES

 [,OMIT-UPIC-SIGNOFF={ YES | NO }]

 [,PW-HISTORY=number]

 [,RESTRICTED={ | NO }]YES

 [,SILENT-ALARM=number1]

 [,UPIC={ YES | }]NO

CONCURRENT-TERMINAL-SIGNON=%_value

This is only relevant when your application is generated with a sign-on service.
You specify the percentage of users generated for which a sign-on service may be
active at the same time in CONCURRENT-TERMINAL-SIGNON. openUTM attempts
to allocate the necessary resources according to this specification.

The value is based only on sign-on services that are started for terminal %_value
users and TS applications.

Default: 25 (%)
Minimum value: 1 (%)
Maximum value: 100 (%)

If you enter a value < 1 or > 100 for , KDCDEF sets the default value of 25 % %_value
without outputting a message.

GRACE= (Grace-Sign-On)
Specifies if a user may still change his or her password after the password validity
period has expired (see USER PROTECT-PW,)."USER - define a user ID"

 485

 YES The user can still change his or her password after the password validity period has
expired.
The change must be made within the sign-on procedure, before the user is completely
signed on.
If a sign-on service is activated, the password can be changed there using the KDCS
call SIGN CP, regardless of the client type. A sign-on service is always activated
when a user signs on via a connection for whose transport access point a sign-on
service has been generated.

The table below shows how the individual client types behave when a password has
expired and how this behavior depends on whether a sign-on service is activated.

Client type Behavior if the password has expired 1)

UPIC Regardless of whether a sign-on service is activated, the
password can be changed using the

 function.Set_Conversation_Security_New_Password

BS2000 terminal If the password is blanked out, openUTM prompts the user to
change the password, regardless of whether a sign-on service
is activated.

If the password is not blanked out, openUTM prompts the
user to change the password only if no sign-on service is
activated.

Terminal on Unix,
Linux and
Windows systems

openUTM prompts the user to change the password,
regardless of whether a sign-on service is activated.

TS application The user can no longer change the password without
activation of a sign-on service.

HTTP client The user can not change the password.

1) The password can always be changed via the administration interface. By default,
passwords with limited periods of validity are immediately set to "expired" when
changes are made via the administration interface. If you want to prevent this, then
you must explicitly request this in the administration interface.

Note the following particularities after regeneration or change generation:

If, after regeneration (followed by a KDCUPD run), the password of a user
becomes invalid because the complexity requirement has been increased, the user
can change his or her password in the sign-on service only (using SIGN CP).

After regeneration (without a subsequent KDCUPD run), openUTM forces users to
change passwords generated with a validity period when they first sign on.

 486

 NO The user cannot change his or her password after the validity period has expired. The
password may only be changed by an administrator after the validity period has
expired.

Default: NO

MULTI-SIGNON= Specifies if a user may be signed on to the application multiple times under the same
user ID simultaneously.

 YES The following cases can arise:

The user ID is generated with USER..,RESTART=NO:
In this case the user may sign on to the application a multiple number of times
simultaneously. However, the user may only sign on once through an application.
The user can also sign on via UPIC, APPLI, SOCKET and OSI TP connections.

The user ID is generated with USER...,RESTART=YES:
In this case the user may sign on no more than once to the application, although
additional job-receiving services can be active in the application for the user if
these services are started via OSI TP connections and the commit functional unit
was selected.

 NO Every user ID may only be signed on once, and no more than one dialog service can
be active at a time for each user.

Default: YES

OMIT-UPIC-SIGNOFF= Specifies whether a user who has signed on over a UPIC connection remains signed
on or not after the conversation has finished.

 YES If a user has signed on over a UPIC connection, they remain signed on after the
conversation has finished. This user is only signed off

if another user is passed in the UPIC protocol before a new UPIC conversation is
started over the same UPIC connection,

or when the connection is cleared.

If no other user is passed in the UPIC protocol, no sign-on service is started before
the UPIC conversation is started.

If the application is generated without users, the user ID is never changed for an
existing connection. In this case, therefore, a sign-on service is only started where
necessary before the first conversation is started after the connection has been
established.

Default in UTM cluster applications.

The MULTI-SIGNON operand does not have any effect on the receiving and
starting of asynchronous services via OSI TP.

i

 487

 NO If a user has signed on over a UPIC connection, they are signed off after the
conversation has finished.

Default in standalone applications.

PW-HISTORY= number

Specifies if and how many password changes are to be maintained by openUTM in
the password history.

If you enter a value > 0 for , then openUTM maintains a password history. number
 is the number of passwords for a user ID that are recorded by openUTM.number

If a user changes his or her password and if a maximum period of validity is
generated for the password in the USER statement, then the new password must be
different from the current password and the last of passwords used by the number
user. number=0 means that openUTM will not maintain a password history.

Default: 0
Minimum value: 0
Maximum value: 10

If you specify a value > 10 for PW-HISTORY, then KDCDEF sets it to the maximum
value of 10.

The password history only applies to the user; the administrator can change the
password irrespective of the history.

RESTRICTED= Specifies if DB calls and access to global UTM storage is prohibited in the first part of
the sign-on service.

 YES DB calls and access to global UTM storage is prohibited in the first part of the sign-on
service.

 NO DB calls and access to global UTM storage is permitted in the first part of the sign-on
service.

Default: YES

SILENT-ALARM= number1

Specifies the number of unsuccessful sign on attempts that may occur one after the
other via an LTERM partner or a terminal user. A silent alarm (message K094) is
triggered when this number is exceeded. The message is output after number1
unsuccessful sign-on attempts in a row by a user or by a client.

Default: 10

Minimum value: 1
Maximum value: 100

UPIC= This is only relevant when a sign-on service is generated in your application.
With UPIC= you specify in UPIC if the sign-on service is activated when a UPIC client
wants to start a conversation.

 488

 YES If a sign-on service is generated for the transport system end point (BCAMAPPL) via
which the UPIC client has connected to the application, this is started before every
UPIC conversation.

 NO No sign-on service is started for UPIC clients.

Default: NO

 489

6.5.48 SUBNET - define IP subnets

For UTM applications IP subnets can be generated.

The generation of subnets allows

to restrict access to the UTM-application to communication partners from a particular IP address range

to suppress name resolution via DNS for communication partners from a particular IP address range. IP
addresses from an address range thus defined can consequently be assigned a permanent name (so-called
"mapped name"). This assignment is only effective for an external connection request.

Multiple IP subnets can be defined for a UTM application. In the case of an external connection request they are
evaluated in the order in which they are defined in the KDCDEF input. IPv4 addresses are compared only with IPv4
subnet addresses and IPv6 addresses only with IPv6 subnet addresses.

SUBNET mapped_name
[,BCAMAPPL=local_appliname]
{ ,IPV4-SUBNET=X'ipv4_addr' | IPV6-SUBNET=X'ipv6_addr' }
[,RELEVANT-BITS=number]
[,RESOLVE-NAMES=YES | NO]

mapped_name Name for the subnet, up to 8 characters long.
The name specified as must begin with the character "*" (asterisk) and be mapped_name
defined as PRONAM in a TPOOL statement.
The string "*ANY" may not, however, be specified as , i.e. subnets are not mapped_name
supported in conjunction with TPOOL PRONAM=*ANY.
The must be unique, i.e. the same may not be specified in mapped_name mapped_name
more than one SUBNET statement.

 490

BCAMAPPL= local_appliname

Name of a local UTM application as defined with MAX ...,APPLINAME= or in a BCAMAPPL
statement.

 must be specified in BCAMAPPL= in the TPOOL statement, i.e. the local_appliname
TPOOL is assigned to the subnet via the name pair specified in the SUBNET statement
comprising and .mapped_name local_appliname

Default: name, specified under MAX...,APPLINAME=.

Only connections which are set up to the application name defined with BCAMAPPL are
assigned to the TPOOL which is allocated to the SUBNET. In this case no name resolution
takes place by means of DNS.

Connections which come from the same subnet but are set up using a different application
name are treated like normal connections. In other words, for these connections the host
name is resolved by means of DNS, and the host name thus ascertained is used for
assignment to the generated partner.

This enables, for instance, both UPIC partners and also other partners from the same
subnet to sign on to a UTM application:

At connection setup the UPIC partners specify the BCAMAPPL name which was defined
in the SUBNET statement, and are assigned to the TPOOL.

Other partners from this subnet, such as LU6.1 partners, specify a different local
application name for connection setup.

IPV4-SUBNET=
IPV6-SUBNET=

X‘ipv4_addr‘ or X‘ipv6_addr‘ respectively

IPv4 or IPv6 subnet address from whose range connections are to be mapped to the
.mapped_name

The address is specified as a hexadecimal string.
Either IPV4-SUBNET or IPV6-SUBNET must be specified. The simultaneous specification
of IPV4-SUBNET and IPV6-SUBNET is not permitted.

RELEVANT-BITS= number

Number of relevant bits for the subnet address (subnet mask). If an IP address which is to
be checked has the same number of relevant bits in the subnet mask as a defined subnet
mask, the IP address is mapped to the .mapped_name

Possible values:
IPv4 subnets: 1 ... 32
IPv6 subnets: 1 ... 128

Default:
IPv4 subnets: 24
IPv6 subnets: 64

 491

RESOLVE-NAMES The RESOLVE-NAMES parameter can be used to specify whether a DNS name resolution
is to be used for connections that are established from this subnet.

If name resolution is used, the real processor name of the communication partner is
displayed via the administration interface and in messages. Otherwise, the name of the
subnet is displayed instead of the processor name.

Default on BS2000 systems: YES
Default on Unix, Linux and Windows systems: NO

 492

6.5.49 TAC - define the properties of transaction codes and TAC queues

The TAC control statement allows you to define the name and properties of a transaction code and (permanent)
message queues of the UTM application.

Transaction codes are the “calling names” for program units of the application. You must always assign a
program name (PROGRAM= operand) to a transaction code.

TAC queues are application-wide message queues that exist independently of a program unit. The operand
PROGRAM= may not be specified. TAC queues are service-controlled, which means that the program units of
the UTM application are responsible for reading messages from queues, openUTM - unlike transaction codes -
does not carry out scheduling.

The is a TAC queue with the fixed name KDCDLETQ. It is always available for backing up dead letter queue
queued messages sent to transaction codes or TAC queues which absolutely could not be processed, i.e. the
maximum number of redelivery attempts may have been exceeded. In addition, it is possible to save
asynchronous messages to LPAP or OSI-LPAP partners that could not be sent due to a permanent error and
that are deleted from their message queue.

The messages of the dead letter queue can be read with DGET BF/BN and moved for further processing to other
message queues with DADM MV/MA. When moving, it must be ensured that the new target is of the same type
(asynchronous TAC/TAC queue, LPAP partner or OSI-LPAP partner). Details can be found in the openUTM
manual „Programming Applications with KDCS” for the KDCS call DADM.

You cannot generate or process messages for the dead letter queue KDCDLETQ.

The backing up of asynchronous messages in the dead letter queue can be enabled and disabled for each
message destination individually using the DEAD-LETTER-Q parameter. This parameter is available in the
following statements:

in the TAC statement for messages to asynchronous TAC or TAC queues

in the LPAP statement for asynchronous messages to LPAP partners

in the OSI-LPAP statement for asynchronous messages to OSI-LPAP partners

Main jobs to message complexes with negative acknowledgement jobs are never backed up in the dead letter
queue.

The name KDCDLETQ is created for the dead letter queue during generation. The following properties are set
for the generation:

TYPE=Q, STATUS=ON, ADMIN=N, QMODE=STD, QLEV=32767

The properties of this TAC queue can also be defined in a separate TAC statement.

A message to a TAC queue cannot be processed when the transaction containing the DGET FT/NT or PF/PN call is
rolled back. A message to a asynchronous TAC cannot be processed when the asynchronous service started with
PEND ER/FR terminates abnormally before reaching a synchronization point first.

Generating transaction codes

The parameters QMODE, Q-READ-ACL and Q-WRITE-ACL have no significance for transaction codes.

When defining transaction codes for program units containing calls of the X/Open CPI-C or XATMI interface, you
must use the API= operand to assign the identifier of the program interface used to the TAC.

The administration commands used to manage the application must also be defined as TACs. They can be
generated as dialog TACs or asynchronous TACs. At least one administration TAC (preferably the KDCSHUT
administration command) must be generated and defined in the application. You must also generate at least one
user with administration authorization.

 493

The event services BADTACS, MSGTAC are defined by entering TAC statements with the privileged TAC
names KDCBADTC and KDCMSGTC in the generation.

An event service SIGNON (= sign-on service) may be defined in several ways:

using the privileged TAC name KDCSGNTC. You use this to define the event service for the access point
specified in MAX APPLINAME= . This event service is then also the default for all other access appliname
points that are generated using a BCAMAPPL statement.

using BCAMAPPL ,SIGNON-TAC= in conjunction with TAC You use this to appliname2 signon-tac signon-tac.
define an own event service for the access point . In this way you can define several SIGNON appliname2
services.

The event service generated with KDCSGNTC is default for all other access points that are generated with a
BCAMAPPL statement.

For the event services BADTACS, MSGTAC and SIGNON, there are preset values for some operands. These
are listed in the table below. These preset values cannot be modified for KDCBADTC, KDCMSGTC and
KDCSGNTC. With TAC that you must set the values as described below.signon-tac

Operand in
TAC statement

Preset value for

KDCBADTC KDCMSGTC KDCSGNTC or
TAC signon-tac

ACCESS-LIST= Blank Blank Blank

ADMIN= NO (freely selectable) NO

API= KDCS KDCS KDCS

CALL= FIRST FIRST BOTH

ENCRYPTION-LEVEL= NONE NONE NONE

LOCK= 0 0 0

SATADM=
(BS2000 systems)

NO NO NO

SATSEL=
(BS2000 systems)

NONE NONE NONE

STATUS= OFF OFF OFF

TACCLASS= no TAC class 16 no TAC class

TYPE= D A D

These default settings mean that, for example, the TACs KDCSGNTC, KDCBADTC and KDCMSGTC are not
subject to access protection by key sets and lock codes and cannot be used by the user or specified in a FPUT
or DPUT call.

The TACs KDCBADTC, KDCSGNTC and KDCMSGTC are not subject to processing control by the TAC classes.
This also applies for KDCMSGTC although KDCMSGTC is assigned to TAC class 16.

All TACs running within a sign-on service are not subject to processing control by TAC classes.

DEAD-LETTER-Q=NO is set for KDCMSGTC and cannot be changed.

 494

Note the following when generating TACs:

The programs assigned to the TACs KDCBADTC, KDCMSGTC and KDCSGNTC and TAC must signon-tac
not be assigned to a load module to be loaded dynamically when the first call of one of its program units is
issued (LOAD-MODULE statement with LOAD-MODE=ONCALL).

The event exit VORGANG and the program units of the service must be located in the same load module if
the load module is generated with LOAD-MODE=ONCALL.

UTM SAT administration commands (preselection commands) can only be generated as dialog TACs. The
names of these TACs can be found in the openUTM manual “Using UTM Applications on BS2000 Systems”.

Generating TAC queues

Only the following operands of TAC statements are relevant for the generation of a TAC queue (TYPE=Q):

tacname, ADMIN, DEAD-LETTER-Q, QLEV, QMODE, Q-READ-ACL, Q-WRITE-ACL, STATUS and TYPE.

The ADMIN, QLEV, QMODE, Q-READ-ACL, and STATUS operands can be used as desired for the dead letter
queue KDCDLETQ.

All other operands are not evaluated for TAC queues.

More information about TAC queues and the applications they make possible can be found in the
openUTM manual “Concepts und Functions”.

 495

TAC tacname

[,{ CESS- IST=keysetname | LOCK=lockcode }] AC L

[,ADMIN={ YES | | READ }]NO

[,API={ | (XOPEN,{ XATMI | CPIC })]KDCS

[,CALL={ | FIRST | NEXT }]BOTH

[, DEAD-LETTER-Q={ | YES }NO

[, NCRYPTION EVEL={ | 2 | 5 }]E -L ONEN 2

[,EXIT=conversation_exit]

[,PGWT={ | YES }] NO only allowed when TAC-PRIORITIES are used

 [,PROGRAM=objectname] only allowed with TYPE=D | A

[,QLEV=queue_level_number]

[,QMODE = { | WRAP-AROUND }]STD

[,Q-READ-ACL = keysetname]

[,Q-WRITE-ACL = keysetname]

[,STATUS={ | OFF | HALT | KEEP }]ON

[,TACCLASS=tacclass]

[,TACUNIT=tacunit]

 [,TYPE={ | A | Q }]D

additional operands for BS2000 systems

[,DBKEY=dbkey]

[,RUNPRIO=priority]

[,SATADM={ | ES }]ON Y

[,SATSEL={ BOTH | SUCC | FAIL | }]NONE

[,TCBENTRY=name_of_tcbentry_statement]

 [,TIME={ time1 | (time1,time2) }]

additional operand for Unix, Linux and Windows systems

[,RTIME=rtime]

only on Unix, Linux, and Windows systems 2

tacname Name of the transaction code or the message queue (TAC name) up to eight characters in
length.

The specified name must be unique and must not be assigned to any other object
in name class 1. See also .section “Uniqueness of names and addresses”

i

 496

ACCESS-LIST= keysetname

This allows you to define user access authorizations for this transaction code. ACCESS-
LIST= may not be specified in conjunction with the operand LOCK= .lockcode

Under you must specify the name of a key set. The key set must be defined keysetname
with a KSET statement.

A user is then only able to access the transaction code if the key set of the user (USER ...,
KSET=), the key set of the LTERM partner via which the user is signed on and the key set
specified under all contain at least once common key code.keysetname

If you specify neither ACCESS-LIST= nor LOCK= the transaction code keysetname lockcode
is not protected and any user is able to call the transaction code.

Default: no key set

ADMIN= Authorization required by the user in order to call the transaction code, the TAC-queue or a
service containing this transaction code as a follow-up TAC.

 YES Meaning for one TAC (TYPE=A or D):
The TAC can only be called by the administrator or by a user with administration
authorization. All functions of the program interface for administration can be used in the
associated administration program.

Meaning for a TAC queue (TYPE=Q):
Only the administrator or a user with administration authorizations may read messages in
this queue/write messages to this queue.

 NO Administration authorization is not required for this TAC or this TAC-queue

 READ Administration authorization is not required for this TAC or this TAC-queue

Only those functions of the program interface for administration that have read-only access
to the application data can be used in the associated administration program (only
KDCADMI with the operation code KC_GET_OBJECT).

API= Program interface used by the program unit belonging to the transaction code

This is a mandatory operand if you use the X/Open CPI-C or XATMI interface.

 KDCS The program unit is a KDCS program.

Default: KDCS

 (XOPEN,CPIC) The program unit is a CPI-C program.

 (XOPEN,XATMI) The program unit is an XATMI program.

CALL= This specifies whether or not a service is started with the transaction code, i.e. whether the
transaction code is the first TAC of a service or a follow-up TAC in a service.

 BOTH The TAC can be used as the first TAC or a follow-up TAC in a service.

Default: BOTH

 497

 FIRST The TAC can only be used as the first TAC in a service.

 NEXT The TAC can only be used as a follow-up TAC in a service. No queued jobs can be
generated in this TAC.

DBKEY= dbkey

This operand is only supported on BS2000 systems.

This is only relevant if the program unit issues database calls.

dbkey is a name with a maximum length of 8 characters under which the activities of this
transaction code are registered with the database system. The format of the key depends
on the database system used. The DBKEY is only used for UDS databases and there
serves as a special indicator for activity in the UDS monitor ("program-name"). In previous
versions of openUTM, this name was also used in the context of permission checking
(hence the designation DBKEY). For more information, see the chapter "BPRIVACY" in the
UDS/SQL manual "Creation and Restructuring".

Default: UTM

The default value DBKEY=UTM causes the value of the start parameter DBKEY to be
passed at the database interface (see openUTM manual “Using UTM Applications”, Start
parameters).

DEAD-LETTER-Q= Specifies whether asynchronous messages of this message queue are to be placed in the
dead letter queue after incorrect processing and unsuccessful redelivery.

The statement MAX ...,DEAD-LETTER-Q-ALARM can be used to enable monitoring the
number of messages in the dead letter queue.

 YES Messages to this asynchronous TAC or this TAC queue which could not be processed are
backed up in the dead letter queue if they are not redelivered and (with message
complexes) no negative acknowledgement job has been defined from.

CPI-C programs must be generated with CALL=FIRST or BOTH.
XATMI programs must be generated with CALL=FIRST.

i

 498

 NO Messages to this asynchronous TAC or this TAC queue which could not be processed are
not saved in the dead letter queue.
This value must be generated for all dialog TACs, for asynchronous TACs with
CALL=NEXT and for KDCMSGTC and KDCDLETQ.

Default: NO

ENCRYPTION-LEVEL=

In ENCRYPTION-LEVEL you set the minimum encryption level that must be used by a
service started through this transaction code. The encryption level specified here applies to
all messages that are send and received in the service.

 NONE Encryption of the messages is not necessary.
You must set ENCRYPTION-LEVEL=NONE for transaction codes generated with
CALL=NEXT.

Default: NONE

Main jobs to message complexes (MCOM) with negative acknowledgement jobs
are never saved into the dead letter queue since the negative acknowledgement
jobs are activated if an error occurs.

If the number of messages in the dead letter queue is limited with QLEV,
messages from asynchronous TACs or TAC queues can be lost if an error
occurs. If this limit is not applied, the openUTM page pool must be dimensioned
large enough. If there is a danger of a page pool bottleneck, the dead letter queue
can be blocked during operation with STATUS=OFF.

i

 499

 2 | 5 A service can only be started with this transaction code if the input message from the client
is transmitted in encrypted form.
Dialog output messages of the service are transmitted to the client in encrypted form.

The value specifies the algorithm to be used for encryption:
2: Encryption of input/output messages using the AES-CBC algorithm.
5: Encryption of input/output messages according to the AES-GCM algorithm.
 Level 5 is currently only supported on Unix, Linux and Windows systems.

In relation to the encryption level of the connection (PTERM, TPOOL) this means:

To call transaction codes generated with encryption level 2, the connection must have
been established with at least encryption level 3.

To call transaction codes generated with encryption level 5, the connection must have
been established with at least encryption level 5.

If a client does not encrypt the first input message with at least the requisite encryption level
or does not support encryption, then no service is started. The following exceptions apply:

The calling client is generated as a trusted client)
(PTERM/TPOOL ENCRYPTION-LEVEL=TRUSTED)....,

The service is an asynchronous service and is started locally.

The service is started by means of service chaining.

The service is started without user data.

If the transaction code is called without user data or started through service chaining, then
the client must be able to encrypt because openUTM
transmits all dialog output messages in encrypted form and, for multi-step services, expects
all additional input messages from non-trusted clients to be encrypted.

You may only specify ENCRYPTION-LEVEL= 2 | 5 for transaction codes used to start a
service (CALL=FIRST or CALL=BOTH).

EXIT= conversation_exit Name of the event exit VORGANG to be assigned to this TAC.

EXIT= can only be specified in conjunction with CALL=FIRST or CALL=BOTH. The event
exit VORGANG must be defined in a separate PROGRAM statement.

Default: No event exit VORGANG

In applications for which no encryption functions are available ransaction codes t
generated with ENCRYPTION-LEVEL=2 | 5 can only be started by trusted clients .

i

 500

LOCK= lockcode

Lock code assigned to the transaction code of a service in the form of a numerical lock.
 is a number between 1 and the maximum value permitted by the application (MAX lockcode

...,KEYVALUE=).
This may not be specified in conjunction with the operand ACCESS-LIST=.

For data access control, key sets can be defined for (UTM) user IDs (USER) and for the
LTERM/(OSI-)LPAP partners. If a service is secured by means of a lock code, it can only
be started if the appropriate key code is contained both in the key set of the user ID, in and
the key set of the LTERM/(OSI-)LPAP partner.

Services whose TACs are not secured with a lock code or an ACCESS-LIST can be called
by any user ID and any LTERM/(OSI-)LPAP partner without restriction. Further information
on the lock/key code and access list concepts can be found in the openUTM manual
“Concepts und Functions”.

Default: 0 (the TAC is not secured with a lock code)
Maximum value: Value of MAX ...,KEYVALUE=number

PGWT You may only specify PGWT if the jobs to TAC classes are processed according to their
priority in your application, i.e. the KDCDEF generation contains the TAC-PRIORITIES
statement. You specify whether or not blocking calls (e.g. PGWT) are allowed to be
executed in a program unit run that was started for this transaction code with PGWT.

 YES Blocking calls are permitted.
If you specify PGWT=YES, then you must assign a TAC class to this transaction code, i.e.
you must set TACCLASS= .

Note the following cases:

CPI-C program units
If a CPI-C program unit is to conduct dialog conversations in which send authorization is
transferred to the conversation partner using a call with =Set_Send_Type send_type

 or by issuing a Receive call in Send status, then CM_SEND_AND_PREP_TO_RECEIVE

the transaction code of this CPI-C program unit must be assigned to a TAC class
generated with PGWT=YES.

XATMI program units
If an XATMI application contains both requests and conversational services, at least two
tasks must be started and the transaction code for the service must be generated with
PGWT=YES.

CAUTION!
If the user and the LTERM/(OSI-)LPAP partner do not also have the key code for
a continuation program called by this TAC, openUTM aborts the service with an
error.

!

 501

 NO Blocking calls are not permitted.

Default: NO

PROGRAM= objectname

Name of the program unit to which this TAC is to be assigned.

A program name must be generated for asynchronous and dialog TACs; the PROGRAM
parameter is not permitted for TAC queues.

Default: Blanks, no program name

If the program is not loaded in application operation, or the access authorizations do not
permit the call, openUTM calls the BADTACS dialog service. If BADTACS is not generated
in the application, UTM outputs the message K009 instead.

QLEV= queue_level_number

(ueue el)q lev
For asynchronous transaction codes (TYPE=A), this operand specifies the maximum
number of asynchronous messages that can be accommodated in the message queue of
the transaction code. QLEV can be used to prevent the page pool from becoming
overloaded with jobs for this TAC or this TAC queue. openUTM does not take the
asynchronous jobs into consideration until the end of the transaction. It is possible to
exceed the number of messages for a messages queue as specified in QLEV if several
messages are created for the same queue in a transaction.

If an additional message is to be created once QLEV has been reached, the behavior of
openUTM will depend on the setting made in QMODE= (see below).

Default: 32767
Minimum value: 0
Maximum value: 32767 (i.e. unlimited)
If you exceed the maximum value, KDCDEF automatically resets your entry to the default
value without outputting a UTM message.

QMODE = (ueue) Q Mode
This determines the behavior of openUTM in the event that the maximum permitted number
of messages saved in a queue has already been reached and thus the Queue Level has
been reached.

 STD If, at the time of an FPUT or DPUT call, the number of messages saved in this queue is
greater than or equal to the maximum number generated in QLEV=, the FPUT or DPUT call
is rejected with 40Z or with an appropriate message, if this TAC was entered at a terminal.

 WRAP-AROUND

 502

Only for TACs with TYPE=Q (TAC queues):
openUTM continues to accept messages for this queue, even when the Queue Level has
been reached. When writing the next messages to the queue openUTM deletes the oldest
existing message from the queue providing that its start time has been reached and it is not
currently being read.

Default: STD

Q-READ-ACL= read-keysetname

This parameter is only evaluated for TACs with TYPE=Q (TAC queues). This parameter is
used to specify the authorizations that a user requires to be able to read and delete
messages from this queue.

In this parameter you can specify the name if a KSET that is defined with a KSET
statement. In this case, a user can only then have read access to this TAC queue if the key
set (KSET) of the user and that of the logical terminal via which the user has signed on,
both contain at least one key code that corresponds to the key code specified in the key set
entered here.

If no key set is specified in Q-READ-ACL, all users are able to read and delete messages
from this queue.

Default: no key set

Q-WRITE-ACL= write-keysetname

This parameter is only evaluated for TACs with TYPE=Q (TAC queues). It may not be
specified for the dead letter queue.
This parameter is used to set the authorizations that a user requires to be able to write
messages to this queue.

Using this parameter you can specify the name of a KSET that has been defined using a
KSET statement. In this case, a user can only have write access to this TAC queue if the
key set (KSET) of the user and that of the logical terminal via which the user is signed on,
both contain at least one of the key codes contained in the key set specified here.

If no key set is specified in Q-WRITE-ACL, all users are able to write messages to this
queue.

Default: no key set

 503

RTIME= rtime

This operand is only supported on Unix, Linux and Windows systems.

Maximum real time (in seconds) available to a program unit started using this TAC. If the
program unit runs over the specified time, openUTM terminates the service and outputs an
error message (K017 with cause 70Z/XTnn, see the openUTM manual “Messages,
Debugging and Diagnostics on Unix, Linux and Windows Systems”).

rtime = 0 means that the program unit real time is not monitored.

Default: 0
Minimum value: 0
Maximum value: 32767

RUNPRIO= priority

This operand is only supported on BS2000 systems.

BS2000 run priority of the TAC. This run priority is assigned to the UTM process in which
the program unit runs (PROGRAM). You can thus use the BS2000 scheduling mechanisms
to control the sequence of UTM program units. However, the RUNPRIO operand cannot
influence the time at which openUTM starts a program unit.

When starting a program unit, openUTM attempts to set the run priority of the current
process to the value defined in RUNPRIO for the current TAC. If the generated run priority
is incompatible with the JOIN entries of the corresponding user ID, the run priority of the
current process is not changed and openUTM outputs a corresponding K message. If the
maximum permitted RUNPRIO values for the user ID and the job class are different, the
value most beneficial to the user is permitted. If JOIN entries have not been defined, the run
priority specified in RUNPRIO is set.

After the program unit is terminated, openUTM resets the run priority to its original value,
unless it was changed during the program unit run using the CHANGE-TASK-PRIORITY
command. In this case, the run priority set externally is retained after the end of the
program unit.

If RUNPRIO=0, a TAC-specific run priority is not generated for this TAC.

Default: 0
Minimum value: 30 (highest priority)
Maximum value: 255 (lowest priority)

SATADM= This operand is only supported on BS2000 systems.

This operand defines whether UTM SAT administration authorization is required in order to
call the TAC.

Monitoring of the program unit run also includes the PEND/PGWT call as well as
any database calls. In the case of PGWT calls, the PGWT wait time is also
included, i.e. in RTIME, you must also take account of the maximum wait time in
PGWT (MAX PGWTTIME).

i

 504

 YES The TAC can only be called by users/clients or partner applications for which administration
authorization for SAT logging (PERMIT=SATADM) has been generated in the USER, LPAP
or OSI-LPAP statement.

 NO The user/client or partner application does not require UTM SAT administration
authorization to use the TAC.

SATSEL= SAT logging mode when running the program unit called using this TAC.

If SAT logging is activated (MAX ...,SAT=ON), TAC-specific events are logged as defined in
this operand during a program run under this TAC.

The SATSEL control statement is used to define the general SAT logging mode for all
TACs and users. This can be supplemented by the SATSEL operand of the TAC statement,
which allows you to define TAC-specific logging. If the logging of an event class is
prohibited in the SATSEL statement, events of this class are not logged. (For information on
the link between EVENT-, TAC- and USER-specific log settings, see openUTM manual
“Using UTM Applications on BS2000 Systems”).

SATSEL can be generated even if SAT logging is deactivated (MAX ...,SAT=OFF). In this
case, the statements are not effective when the application is started, but SAT logging is
predefined. When required, SAT logging can then be activated during operation with the
UTM SAT administration command KDCMSAT.

 BOTH Both successful unsuccessful events are logged.and

 SUCC Only successful events are logged.

 FAIL Only unsuccessful events are logged.

 NONE A TAC-specific SAT logging mode is not defined.

Default: NONE

STATUS= Status (locked or unlocked) of the TAC or the TAC queue when the application is started.

 ON Meaning for TACs: The TAC is unlocked, and is available once the application is started,
until such time as the administrator locks it.

Meaning for TAC queues: Read and write access is permitted for this queue.

Default: ON

 OFF The TAC is locked when the application is started. Jobs for this TAC are not accepted until
the TAC is unlocked by the administrator.

If the transaction code belongs to a KDCS program unit and is generated with CALL=BOTH
or CALL=NEXT, it is locked as a service TAC (first TAC of a service) but not as a follow-up
TAC.

Meaning for TAC queues: The queue is locked to write access. Read access is permitted.

 505

 HALT The TAC is locked in full when the application is started, i.e. even as a follow-up TAC in an
asynchronous service or a dialog service.

If the TAC is called as a follow-up TAC, the service is terminated with PEND ER (74Z). The
TAC must be released by the system administrator.
Asynchronous jobs already buffered in the message queue of the TAC are not started.
They remain in the message queue until the TAC status is set to ON or OFF by the UTM
administrator.

Meaning for TAC queues: The queue is locked to both read and write access.

 KEEP May only be specified for TAC queues and for asynchronous transaction codes that are
also service TACs (CALL=BOTH or CALL=FIRST).
openUTM accepts jobs for the transaction code. The jobs are not processed, however,
rather just written in the message queue of the transaction code. They are processed as
soon as the administrator changes the status of the transaction code to ON or OFF.

You can use STATUS=KEEP to collect jobs that are to be executed later at a time when the
application load is lower (e.g. at night).
To avoid overloading the page pool with too many temporarily stored jobs, you should limit
the size of the job queue of the transaction code using the QLEV parameter.

Meaning for TAC queues: The queue is locked to read access. Write access is permitted.

The status us always set to ON for the KDCSHUT and KDCTAC administration
commands, even if you specify a different value for STATUS. Your application
can always be administered in this manner.

i

 506

TACCLASS= tacclass

Assigns the transaction code a TAC class.

The TAC classes are required for controlling the processing of dialog and asynchronous
jobs. Jobs that are assigned different TAC classes are started according to different criteria
by openUTM. The TAC class, which is assigned a transaction code, controls whether a job
is processed immediately or temporarily stored in the message queue of the transaction
code first, and when it will be read out of the message queue and processed. There are two
different methods available to control job
processing (see)."Code conversion"

The following numerical values are permitted:

1 - 8 for dialog TACs

9 - 16 for asynchronous TACs

If asynchronous TAC classes are generated, then the value in MAX ...,ASYNTASKS must
be greater than 0.

If your application is generated TAC-PRIORITIES statements and encounters without
blocking calls in the program unit belonging to this TAC (e.g. the KDCS call PGWT), then
you must specify the dialog or asynchronous TAC class for for which tacclass TACCLASS

is set.PGWT=YES

If your application is generated TAC-PRIORITIES statements, then you can assign with
any dialog or asynchronous TAC class to this TAC. You just need to set TAC ...,

 in this case.PGWT=YES

Default for dialog TACs:
Dialog TACs are normally not assigned to a TAC class. The program unit belonging to the
dialog TAC is started as soon as a process retrieves the corresponding message from the
job bourse of the application.

Default for asynchronous TACs:
The default value for asynchronous TACs is 16.

TACUNIT= tacunit

Specifies the number of accounting units that are charged in the accounting phase of the
UTM accounting each time this transaction code is called. The accounting units are added
to the accounting unit counter of the user ID that called the transaction code.
This operand is required only if openUTM is to collect accounting data (see also the
ACCOUNT statement on and "Accounting" in "ACCOUNT - define the accounting functions"
the openUTM manual “Using UTM Applications”. You must enter an integer here.

Default value: 1
Minimum value: 0
Maximum value: 4095

If the transaction code is generated with PGWT=YES, then you must assign a
TAC class to the transaction code.

i

 507

TCBENTRY= name_of_tcbentry_statement

Only relevant for transaction codes from program units that are generated
with PROGRAM ...,COMP=COB1.

name_of_tcbentry_statement designates the name of a TCBENTRY statement
in which the TCB entries assigned to this TAC have been combined.

Default: No name

TIME= This operand is only supported on BS2000 systems.

Supervise CPU consumption an elapsed run time for a program unit.

 time1 Maximum CPU time (in milliseconds) available to the program unit with this TAC. If the
program unit runs over the specified time, openUTM terminates the service and outputs
UTM message K017 for dialog programs or K055 for asynchronous programs. KCRCCC is
set to 70Z, and KCRCDC to XT20 (see the openUTM manual “Messages, Debugging and
Diagnostics on BS2000 Systems”).
The value 0 means that the program unit started using this TAC is not subject to a timeout.
Values 1 to 999 are not permitted and are replaced with 1000.

Default: 30000 ms
Minimum value: 0 ms
Maximum value: 86400000 ms

 time2 Maximum real time (in seconds) available to the program unit with this TAC.
If the program unit runs over the specified time, openUTM terminates the service with UTM
message K017 for dialog programs or K055 for asynchronous programs. KCRCCC is set to
70Z, and KCRCDC to XTA0 (see the openUTM manual “Messages, Debugging and
Diagnostics on BS2000 Systems”. The value 0 means that the real time is not monitored for
the program unit started using this TAC.

Default: 0 s
Minimum value: 0 s
Maximum value: 32767 s

CAUTION!
With the administration TACs KDCSHUT, KDCSHUTA, KDCDIAG and
KDCDIAGA, the value of TIME= should be set to a value greater than the time1
default value (at least twice as large; >= 60000 ms).

With KDCSHUT WARN, applications with large numbers of generated terminals
may require more CPU time than permitted by the default value. (See also the
openUTM manual “Administering Applications”.)The same is true when you
request a diagnostics dump with KDCDIAG DUMP=YES in large applications.

!

Monitoring of the program unit run also includes the PEND/PGWT call as well as
any database calls. In the case of PGWT calls, the PGWT wait time is also
included, i.e. in TIME=(...,), you must also take account of the maximum time2
wait time in PGWT (MAX PGWTTIME).

i

 508

TYPE= This defines whether jobs with this transaction code are processed in dialog, in an
asynchronous mode or whether a TAC queue is created.

 D The TAC is a dialog transaction code, i.e. a job with this TAC is processed in the dialog with
the job submitter.

Default: D

 A The TAC is an asynchronous transaction code, i.e. a job with this TAC creates an
asynchronous job in the message queue of the transaction code. Processing takes place
independently of the job submitter.

 Q This TAC statement is used to generate a TAC queue. In a queue of this nature it is
possible to use a FPUT or DPUT call to write a message to a queue and to use a DGET
call to read a messages in the queue.

 509

6.5.50 TACCLASS - define the number of processes for a TAC class

You specify the method used to control job processing in this UTM application with the TACCLASS control
statement. This means that you specify the criteria used by openUTM to start the jobs for transaction codes that
have been assigned a TAC class.

The specification of these criteria can also be done using the TACCLASS statement or the TAC-PRIORITIES
statement.

A TAC class consists of a subset of the generated transaction codes of the application. These TACs are divided into
TAC classes using the TACCLASS= operand of the TAC statement.

By generating at least one TACCLASS statement, you specify that job processing in your application is controlled
by the limitation of the number of processes for the individual TAC classes. You may not issue any TAC-
PRIORITIES statements in this case, then.

The TACCLASS statement allows you to define how many processes of the UTM application are allowed to work at
the same time for the TACs of a TAC class. You can also specify in the PGWT operand whether or not blocking
calls (e.g. the KDCS call PGWT) are allowed or not in program unit runs that are started by transaction codes of the
TAC class. You may only assign the PGWT=YES property, i.e. blocking calls are allowed, to one dialog and one
asynchronous TAC class.

The number of processes of a TAC class that you specify in the TACCLASS statement can be changed by the
administrator. See the openUTM manual “Administering Applications” for details.

You can thus control the load on the UTM application exerted by the program units of individual TACs. For example,
you can prevent long-running program units from blocking the application. If asynchronous services are used for
distributed processing, then you can avoid situations where all the application processes available for asynchronous
processing are allocated by this service.

Default values

All TAC classes are created implicitly in the KDCDEF generation if you generate a transaction code with the TAC ...,
TACCLASS= statement, or if you generate a TAC class with TACCLASS.

If you do issue any TAC-PRIORITIES statements, then you should write a TACCLASS statement for every TAC not
class used. In this case, openUTM assigns the minimum value for TASKS and TASKS-FREE to those TAC classes
for which no TACCLASS statement is issued. You must always issue TACCLASS statements for TAC classes with
PGWT=YES!

If you do not use TAC classes, i.e. the TACCLASS= operand is not specified in any TAC statement and there are
no TACCLASS or TAC-PRIORITIES statements, then the following applies:

Dialog TACs are processed without restriction.

Asynchronous TACs are restricted by the number of processes specified in the ASYNTASKS start parameter.
This value can be modified by the administration.

You will find a detailed description of the TAC classes and priority control in section "Job control -
priorities and process limitations"

 510

TACCLASSS tacclass

 ,{ TASKS=number1 | TASKS-FREE=number2 }

 [,PGWT={ | YES }]NO

tacclass Number of the TAC class for which the number of processes is to be specified. You may specify
the following TAC classes:

the dialog TAC classes 1 - 8

the asynchronous TAC classes 9 - 16.

You assign a transaction code to this TAC class by specifying TACCLASS= in the tacclass
corresponding TAC statement.

You may only specify an asynchronous TAC class if you have generated a non-zero value in
MAX ...,ASYNTASKS.

Asynchronous transaction codes that are not assigned a TAC class are automatically assigned
TAC class 16.

The TAC class numbers are not priorities, rather only a designation for the TAC class.
Only the number of permitted processes can determine the extent to which number1
processing of a TAC class is restricted so that the TACs of other classes can be
processed quicker. This is possible only if is less than the number of active number1
processes of the application.

i

 511

TASKS= number1

Maximum number of application processes that can be executed simultaneously for the TACs of
this class. The values permitted here depend on the value of the PGWT operand and the values
defined for the TASKS, TASKS-IN-PGWT, and ASYNTASKS operands of the MAX statement.
The value ranges permitted for TASKS= are given in the table below.number1

Class 1 - 8
Dialog TACs

Class 9 - 16
Asynchronous TACs

Minimum
value

PGWT=NO PGWT=YES PGWT=NO PGWT=YES

1 1 0 0

Maximum
value

TASKS *) TASKS-IN-
PGWT *)

ASYNTASKS*) The lesser of the two values:
ASYNTASKS, *) TASKS-IN-PGWT

*)

*) As specified in the MAX statement

This is a mandatory operand if TASKS-FREE= is not specified.

If you enter TASKS=0 for a dialog TAC class, openUTM automatically resets this value to 1.

The total number of tasks entered in the TASKS= operand of the individual
TACCLASS statements can be greater than the maximum number of processes
permitted by the application (MAX ...,TASKS=).

i

 512

TASKS-FREE= number2

TASKS-FREE specifies for

dialog TAC classes: Minimum number of processes of the UTM application to be kept free for
processing TACs of other classes.

asynchronous TAC classes: Minimum number of processes permitted for asynchronous jobs
(MAX ...,ASYNTASKS=) to be kept free for processing TACs of other classes.

Compared to the TASKS parameter, TASKS-FREE offers the advantage of dynamically
adapting the number of processes permitted for a TAC class if the total number of application
processes is changed.

The values permitted for TASKS-FREE= depends on the values defined for the TASKS number2
and ASYNTASKS operands of the MAX statement.

The value ranges permitted for TASKS-FREE= are given in the table below:

Class 1 - 8
Dialog TACs

Class 9 - 16
Async. TACs

Min. value 1 1

Max. value TASKS-1 *) ASYNTASKS *)

*) As specified in the MAX statement

This is a mandatory operand if TASKS= is not specified.

If you enter TASKS-FREE=0, openUTM automatically resets this value to 1.

PGWT= (ro ram ai)p g w t

This specifies whether or not program units containing blocking calls (e.g. KDCS call PGWT)
can be executed in this TAC class. (Further information on PGWT can be found in the
openUTM manual „Programming Applications with KDCS” and in the openUTM manual
“Concepts und Functions”).

 513

 YES Blocking calls are permitted in this TAC class.
PGWT=YES can only be generated if MAX ...,TASKS-IN-PGWT 0 is defined. It can be !=

specified for up to one dialog TAC class and one asynchronous TAC class. Program units
containing PGWT calls must be assigned to this TAC class.

CPI-C program units
If a CPI-C program unit is to conduct dialog conversations in which send authorization is
transferred to the conversation partner using a Set_Send_Type call with
send_type=CM_SEND_AND_PREP_TO_RECEIVE or by issuing a Receive call in Send
status, the transaction code of this CPI-C program unit must be assigned to a TAC class
generated with PGWT=YES, e.g.:
MAX TASKS=2

MAX TASKS-IN-PGWT=1

TACCLASS 1,TASKS=1,PGWT=YES

TAC CPIC1,PROGRAM=xyz,API=(XOPEN,CPIC),TACCLASS=1

XATMI program units
If an XATMI application contains both requests and conversational services, at least two
tasks must be started and a TAC class that permits PGWT calls must be generated. A
service is always linked to the task. This is not necessary for applications that only contain
request/response services.

 NO Program units that contain blocking calls are not permitted in this TAC class.

Default: NO

Blocking calls for asynchronous TACs are not processed until all jobs in the
messages queues of dialog TAC classes have been executed.

i

 514

Example

The table below shows how the value defined for TASKS-FREE affects that defined for the TAC class under certain
marginal conditions.

The CURRENT TASKS column contains the maximum number of processes currently available to the UTM
application. CURRENT ASYNTASKS contains the maximum number of processes available for performing
asynchronous services. The global maximum values for CURRENT TASKS and CURRENT ASYNTASKS are
defined in the TASKS and ASYNTASKS operands of the MAX statement. During runtime, the current values can
be modified dynamically within this upper limit using the TASKS and MAXASYN operands of the KDCAPPL
command.

The DIALOG column contains the maximum number of processes available for a particular DIALOG-TAC class if
TASKS-FREE= is specified for this TAC class.nn

The ASYNCH column contains the maximum number of processes available for a particular asynchronous TAC
class if TASKS-FREE= is specified for this TAC class.number2

CURRENT TASKS CURRENT ASYNTASKS TASKS-FREE DIALOG ASYNCH

10 9 2 8 7

6 6 2 4 4

3 3 2 1 1

2 2 2 1 0

1 1 2 1 0

10 5 3 7 2

6 5 3 3 2

 515

6.5.51 TAC-PRIORITIES - specify priorities of the TAC classes

With the TAC-PRIORITIES control statement you specify the method to be used to control job processing in this
UTM application. This means that you specify the criteria used to start jobs for transaction codes that are assigned
a TAC class.

You can also specify these criteria using the TAC-PRIORITIES statement or the TACCLASS statement.

A TAC class consists of a subset of the generated transaction codes of the application. The dividing of transaction
codes into TAC classes is done in the TAC statement with the TACCLASS= operand.
If the TACCLASS operand is not specified, then dialog TACs are not assigned a TAC class and asynchronous
TACs are not assigned asynchronous TAC class 16.

You can specify the following in particular with TAC-PRIORITIES:

That the distribution of processes amongst the TAC classes is to be done according to priorities. You must not
issue any TACCLASS statements in this case.

The algorithm to be used to distribute the available processes of the application amongst the dialog and
asynchronous TAC classes.
Operands: DIAL-PRIO and ASYN-PRIO

The maximum number of processes of the application that are allowed to process jobs to dialog TAC classes.
Operand: FREE-DIAL-TASKS

Specifying priorities for the TAC classes

In priority control you can select between absolute, relative or equal priorities for dialog jobs and for asynchronous
jobs. The control of job processing of dialog and asynchronous jobs is done separately from each other.

Jobs for dialog TACs that are not assigned any TAC class are processed regardless of the priorities set for dialog
jobs. These jobs are always started immediately after they are received from the transport system.

The number of the TAC class plays a role for absolute and relative priorities. Jobs to TAC classes with a low
number have a higher priority that jobs to TAC classes with a higher number. This means that for dialog TAC
classes, TAC class 1 has the highest priority and TAC class 8 the lowest priority. For asynchronous TAC classes,
TAC class 9 has the highest priority and TAC class 16 the lowest priority.

When absolute priorities are used, processes of the application that are free and available for processing the TAC
classes are always assigned the TAC class with the highest priority, i.e. 1 or 9, as long as there are jobs waiting for
this TAC class.

Only after there are no more jobs waiting in the TAC class with the highest priority are jobs waiting for the TAC
class with the next lowest priority processed.

If you want to prevent jobs waiting for a TAC class with a lower priority from not being processed for a long time,
then you should use relative priorities.

When relative priorities are used, jobs from TAC classes with higher priority are processed more often than jobs
from TAC classes with lower priority.

When matching priorities are used, then the same number of jobs from each TAC class are processed as long as
there are waiting jobs available.

Limiting the number of processes that process jobs to TAC classes

 516

You can limit the number of processes that process jobs of a TAC class when using priority control for the TAC
classes to keep some processes free for administrative tasks or internal jobs.

You limit the number of processes for the dialog TAC classes relative to the total number of processes using the
FREE-DIAL-TASKS operand.
With MAX ASYNTASKS=(,...) you limit the number of processes for asynchronous TAC classes.atask_number

This limit is the same, however, for all asynchronous and for all dialog TAC classes.

Transaction codes that start program unit runs with blocking calls

When the TAC-PRIORITIES statement is used, transaction codes with blocking calls (e.g. the KDCS call PGWT)
can be assigned any TAC class as long as the TASKS-IN-PGWT operand of the MAX statement is generated with a
value > 0. You must generate TAC PGWT=YES for these transaction codes.

You will find a detailed description of the TAC classes and priority control in chapter “Job control -
”.priorities and process limitations

 TAC-PRIORITIES [DIAL-PRIO={ ABS | REL | }] EQ
[,ASYN-PRIO={ ABS | REL | }] EQ
[,FREE-DIAL-TASKS = number]

DIAL-PRIO = Specifies according to which priority free processes will be distributed amongst the dialog TAC
classes with waiting jobs. Waiting dialog jobs can only arise when more jobs are obtained from
the job bourse at a specific time than there are processes available for the dialog TAC classes.
The jobs are then written to the job queues of the transaction codes from which they will then be
read out and processed according to their priority by the processes that become free.

 ABS Absolute priority:
A free process is always assigned the TAC class with the highest priority (TAC class 1) as long
as there are jobs waiting for this TAC class. TAC classes with lower priority are only serviced if
there are no more jobs waiting in all TAC classes with higher priority.

 REL Relative priority:
Free processes are assigned TAC classes with higher priority more often than TAC classes with
lower priority as long as there are jobs waiting for the TAC classes with higher priority. If jobs are
available for all dialog TAC classes, then a free process will be assigned TAC class 1 twice as
often as TAC class 2, and TAC class 2 will be assigned processes twice as often as TAC class
3, etc.

 EQ Equal priority:
As long as there are jobs available, all TAC classes are services equally often. This equal
distribution can be interrupted if a TAC class does not have any jobs waiting for a while or when
program unit runs with blocking calls (e.g. the KDCS call PGWT) often arise.

Default: EQ

If no TACCLASS statement or TAC-PRIORITIES statement is issued in the generation although the
TACCLASS parameter was specified for at least one TAC statement, then the default values of the
TACCLASS statement are applied. TAC priorities are not used in this case. See the TACCLASS
description on for more information."TACCLASS - define the number of processes for a TAC class"

i

 517

ASYN-PRIO= Specifies according to which priority processes will be distributed amongst the asynchronous
TAC classes with outstanding asynchronous jobs or interrupted asynchronous jobs.

If the maximum number of simultaneously open asynchronous services is reached (set in MAX
ASYNTASKS=(...,)), then no more asynchronous jobs are started. An interrupted service_number
open asynchronous service is selected according to its priority and resumed.

 ABS Absolute priority:
A free process is always assigned the TAC class with the highest priority, i.e. TAC class 9, as
long as there are asynchronous jobs or interrupted asynchronous jobs waiting for this TAC class.
Free processes only process the jobs of a TAC class with a lower priority when there are no
more outstanding or interrupted asynchronous jobs in the message queues of all TAC classes
with higher priority.

 REL Relative priority:
Free processes are assigned TAC classes with higher priority more often than TAC classes with
lower priority as long as there are outstanding or interrupted jobs waiting for the TAC classes
with higher priority. If jobs are available for all TAC classes, then a free process will be assigned
TAC class 9 twice as often as TAC class 10, and TAC class 10 will be assigned processes twice
as often as TAC class 11, etc.

 EQ Equal priority:
As long as there are jobs available, all TAC classes are services equally often. This equal
distribution can be interrupted if a TAC class does not have any jobs waiting for a while or when
program unit runs with blocking calls (e.g. the KDCS call PGWT) often arise.

Default: EQ

FREE-DIAL-TASKS=number

With FREE-DIAL-TASKS you limit the total number of processes that may process jobs to dialog
TAC classes relative to the number of all processes of the application. In you specify the number
minimum number of processes of the application that are to be reserved for processing jobs that
do not belong to any dialog TAC class.

Minimum value: 0 (no limit)
Maximum value: TASKS - 1 (TASKS from the MAX statement)
Default value: 1

Example
TASKS=7 and ASYNTASKS=2 was set in the MAX statement. FREE-DIAL-TASKS=3 is
generated in the TAC-PRIORITIES statement. The application is operated with six processes. A
maximum of three processes may process jobs in TAC classes 1 through 8 then. A maximum of
two processes can process jobs in TAC classes 9 through 16. One process is reserved for dialog
jobs that are not assigned a TAC class.

The maximum number of processes that may simultaneously process asynchronous
jobs is not limited by FREE-DIAL-TASKS= . The MAX operand ASYNTASKS=

 is provided for this purpose.atask_number

i

 518

6.5.52 TCBENTRY - define a group of TCB entries (BS2000 systems)

The TBCENTRY control statement is permitted only for COB1 program units. COBOL program units that are not
ILCS-compatible must be generated with PROGRAM ...,COMP=COB1 in openUTM. TCB entries offer benefits
when used in conjunction with COBOL-DML, and in the case of a GOTO in a PERFORM routine. Further
information can be found in the openUTM manual „Programming Applications with KDCS”.

TCB entries are used to create nested reentrant COBOL programs. They are required in the following cases:

In conjunction with COBOL-DML:
if the USE-DATABASE-EXEPTION clause is used in a DECLARATIVES subsection and the program run is
terminated within these declaratives using PEND. In this case, you must specify the TCB entry I$ITCUPS;
otherwise, the DECLARATIVES counter will not be reset, resulting in a COBOL error action. I$ITCUPS therefore
resets the counter if a PEND occurs within the declaratives.

In the case of a GOTO in a PERFORM routine:
If a program unit is terminated in a PERFORM routine, the COBOL runtime system notes the return address. If
you branch to the PERFORM routine using GOTO in the next program unit, the program unit behaves as if the
PERFORM routine were still open and branches to the return address. Markers are reset by specifying a TCB
entry (with any name).

TCB entries must also be made known to the COB1 compiler using the COBRUN parameter.

The TCBENTRY statement can be issued several times.

TCBENTRY tcbentry_groupname

,ENTRY=(entry1,..., entry18)

tcbentry_groupname

Freely selectable name up to eight characters in length, which is used to address the group of TCB
entries defined in this TCBENTRY statement, and to link the group of TCB entries to a TAC statement.

ENTRY= TCB entry name.

 519

6.5.53 TLS - define a name for a TLS block

Each LTERM partner can be assigned a terminal-specific long-term storage area (TLS), which can contain several
blocks. The TLS control statement allows you to define a name for a TLS block. The TLS block is then identified
using the name of the LTERM partner () and the block name defined here. openUTM provides each ltermname
LTERM partner with a TLS block with this name. By issuing several TLS statements with different block names, you
can define several blocks for each LTERM partner.

In the case of distributed processing, the TLS blocks defined in a TLS statement are also assigned to LPAP and
OSI-LPAP partners.

You can issue up to 100 TLS statements.

TLS name

name Name of a TLS block up to eight characters in length.

 520

6.5.54 TPOOL - define an LTERM pool

The TPOOL control statement allows you to define the name and properties of an L ERM . LTERM pools allow T pool
you to connect numerous clients with the same technical properties (partner and processor type) to a UTM
application via LTERM partners. Printers are not supported in this case. The TPOOL statement merely defines the
type (PTYPE=) and processor name (PRONAM=) for the client. The LTERM partner assigned to the client is
specified dynamically in the UTM system code during connection setup on the basis of the LTERM partner name
and client name defined in the TPOOL statement. This assignment applies only for the duration of a session, i.e. it
is not a static assignment as in the case of the statement pair LTERM / PTERM. The clients contained in an LTERM
pool need not be configured explicitly in the application (by defining a PTERM). The number of clients that can be
simultaneously signed on is equal to the number of LTERM partners generated in the LTERM pool.

For clients that connect via an LTERM pool (i.e. that are not explicitly generated), the establishment of the
connection can only be initiated "from outside", i.e. from the client itself. It is therefore not possible to establish a
connection via UTM administration commands.

Also it is not possible to establish a connection via BCAM administration commands or using predefined BCAM
connections on BS2000 systems.

The TPOOL statement allows you to define LTERM pools with different levels of availability for connection setup:

With PRONAM= and PTYPE= , an LTERM pool is generated such that only clients of processorname partnertyp
the same type located on the specified system can establish connections with the UTM application via this
LTERM pool.

With PRONAM=*ANY, all clients of a particular type can sign on to the UTM application irrespective of the
system on which they are located.

On BS2000 systems with PTYPE=*ANY, you can define an LTERM pool without specifying the client type. This
LTERM pool can then be used by clients of all types located on the specified system to establish connections
with the UTM application.

With PRONAM=*ANY and PTYPE=*ANY, all clients on all systems can sign on to the UTM application on
BS2000/PSD (open LTERM pool).

It is possible to define several LTERM pools, i.e. issue several TPOOL statements in each KDCDEF run. However,
please note the following:

BS2000 systems:

The combination PRONAM / PTYPE / BCAMAPPL must be unique for LTERM pools for which the NEABT user
protocol is defined (PROTOCOL=STATION). The combination PRONAM/BCAMAPPL must also be unique for
LTERM pools with PROTOCOL=NO.

The client must support the user services protocol specified in the TPOOL statement. PROTOCOL=NO must be
generated for clients with PTYPE=APPLI, PTYPE=SOCKET or PTYPE=UPIC-R. PROTOCOL=STATION must
be specified for LTERM pools generated with PTYPE=*ANY.

During connection setup, openUTM takes the type (PTYPE) of the client generated with PTYPE=*ANY from the
user services protocol (connection letter). openUTM then checks whether or not this client type is supported. If
not, the connection request is rejected.

Unix, Linux and Windows systems:

The combination PRONAM/PTYPE/BCAMAPPL must be unique for LTERM pools.
For LTERM pools, the maximum number of connections that can be established via one transport system
endpoint at a time must be taken into account.

 521

The LTERM partners of an LTERM pool are generated with LTERM ..., RESTART=NO. During connection setup,
therefore, all messages buffered in the message queue of the LTERM partners of the LTERM pool are deleted. An
LTERM-specific service restart is not performed. In applications generated without user IDs, a service restart cannot
be executed after a connection is cleared and then re-established for clients that are connected to the application
via an LTERM pool.

You can specify access rights for an LTERM pool (KSET operand) that clients connected through the LTERM pool
may exercise. In applications with user IDs you can limit the access rights specified with KSET for LTERM pools
generated for connecting UPIC clients or
TS applications using the USER-KSET operand. The access rights in KSET are then applicable to clients that
explicitly specify a user ID when signing on. The limited access rights in USER-KSET take effect when the client
does not specify a user ID when signing on, i.e. when the “connection user ID“ is active.

Using the LOCALE operand, you can define a client-specific language environment for each LTERM pool.

TPOOL [,BCAMAPPL=local_appliname]

[,CONNECT-MODE={ | MULTI }]SINGLE

[, NCRYPTION EVEL={ | 3 | 4 | 5 | RUSTED }]E -L ONEN 2 T

[,IDLETIME=time]

[,KSET=keysetname1]

[,LOCK=lockcode]

 ,LTERM=ltermprefix

[,MAP={ USER | SYSTEM | SYS1 | SYS2 | SYS3 | SYS4 }]

 ,NUMBER=number1

 ,PRONAM ={ processorname | C'processorname' | *ANY } 3

 ,PTYPE={ partnertyp | *ANY }1

[,QLEV=queue_level_number]

[,STATUS=({ ON | OFF }[, number2)]

[,TERMN=termn_id]

[,USER-KSET=keysetname2]

 [,USP-HDR={ALL | MSG | }]NO

 additional operands BS2000 systems
[ANNOAMSG={ | N }]Y

[,FORMAT= { + | * | # }formatname]

[,KERBEROS-DIALOG={ ES | }]Y ON

[,LOCALE=([lang_id][,[terr_id][,ccsname]])]

[,NETPRIO={ | OW }EDIUMM L

[,PROTOCOL={ N | STATION }]

1 only on BS2000 systems

 only on Unix, Linux and Windows systems2

 mandatory on BS2000 systems only3

ANNOAMSG= (unc synchronous e sa e)anno e a m s g

This operand is only supported on BS2000 systems.

This applies only to LTERM pools used by terminals to sign on to the UTM application. It
defines whether or not openUTM announces asynchronous messages before outputting
them in the system line on the terminal.

 522

 Y Asynchronous messages are announced in advance. The user must then request the
message using the KDCOUT command.

Default: Y

 N Asynchronous messages are sent without prior announcement.

BCAMAPPL= local_appliname

Name of the local UTM application. This name is then used to establish a connection
between the client and the UTM application. is defined either with MAX ...,local_appliname
APPLINAME= or in the BCAMAPPL statement (see "BCAMAPPL - define additional

).application names"

If you specify a value other than APPLI, SOCKET or UPIC-R for the PTYPE= operand, you
can only specify the name defined with MAX ...,APPLINAME= for appliname

.local_appliname

Default: , specified under MAX ...,APPLINAME=.appliname

BS2000 systems:

The BCAMAPPL statement allows you to define whether or not NEA or ISO transport
protocols or native TCP/IP (socket interface) are to be used when communicating with
partners that sign on to this application.

To establish a connection with the UTM application, the client must generally specify
 as the partner name.local_appliname

One exception are LTERM pools that are generated with PTYPE=SOCKET. In this case,
clients that connect via the LTERM pool must know the port number on which the UTM
application "listens". This port number is specified in BCAMAPPL LISTENER-PORT= .

Unix, Linux and Windows systems:
The BCAMAPPL name specified in the CLUSTER statement is not permitted here.

CONNECT-MODE= This defines whether a client can use the same name for multiple sign-ons to the UTM
application via this LTERM pool.

 SINGLE Multiple sign-ons via the LTERM pool under the same name are not permitted.

Default: SINGLE

 523

 MULTI This is permitted only for LTERM pools that are used by UPIC partners or TS applications
to connect.
A UPIC client program (PTYPE=UPIC-R or UPIC-L) or TS application (PTYPE=APPLI or
SOCKET) can connect several times to the UTM application via the LTERM pool under the
same name. A new name need not be created for each connection.

A UPIC client or TS application can connect a maximum of times to the LTERM number1
pool (see NUMBER= ,).number1 "TPOOL - define an LTERM pool"

In the case of CONNECT-MODE=MULTI, the UTM application does not identify the
communication partner or the connection to the partner (as usual) using the name of the
partner that the partner specified when the connection was established. The UTM
application does not even know the partner under its application name. Instead, the partner
is identified using the name of the pool LTERM partner () through which it is ltermname
connected. In order for openUTM to be able to uniquely identify the partner, the triplet
consisting of the of the LTERM pool, the and the ltermname processorname

 must not be explicitly generated in any PTERM, CON or OSI-CON local_appliname
statement. Additionally, the name that the partner specifies when establishing the
connection may not match any LTERM name of the LTERM pool.

ENCRYPTION-LEVEL=

Only relevant for UPIC clients that support encryption and on BS2000 systems for some
terminal emulations that support encryption also.

In ENCRYPTION-LEVEL you set the minimum encryption level for the communication with
the clients, that connect via an LTERM pool with the application.

You specify whether or not the UTM application should request encryption of the message
on the connection via the LTERM pool to the client. You can also define the client as a
"trusted" client. This means that every client that connects via this LTERM pool is
considered to be a trusted client.(see also section "Message encryption on connections to

 for more information on encryption).clients"

Default values:

 is the default value for:TRUSTED

HTTP clients und USP-Socket applications, which connect via a transport system
access point (BCAMAPPL), that is configured with T-PROT=(..., SECURE).

Local UPIC clients (PTYPE=UPIC-L) on Unix, Linux and Windows systems

Other values for these partners are changed to TRUSTED by KDCDEF without issuing a
message.

 is the default value forNONE

all other types of communication partners.

For partners with PTYPE different from UPIC-R, and on BS2000 different from T9763, the
values 3, 4, 5 are changed to NONE by KDCDEF without issuing a message.

You can specify the following:

 524

 NONE Encryption of the messages exchanged between the client and the UTM application is not
requested by openUTM.
However, passwords are always transmitted in encrypted form provided both partners
support encryption.
Services for which encryption was generated for their service TACs (see ENCRYPTION-
LEVEL in the TAC statement starting in section "TAC - define the properties of transaction

) can only be started by this client if the client explicitly selects an codes and TAC queues"
encryption level that corresponds to at least the required level when establishing the
conversation or connection.

Default: NONE

 3 | 4 | 5 Messages exchanged between the client and the UTM application are encrypted by
openUTM by default. The value specifies the encryption level. Only clients that support at
least this encryption level can connect via this LTERM pool. If a client does not support the
specified encryption level, openUTM rejects connection setup to the client.

The values have the following meaning:

3 Passwords and input/output messages are encrypted using the AES-CBC algorithm.
An RSA key with a key length of 1024 bits is used to exchange the AES key.

4 Passwords and input/output messages are encrypted using the AES-CBC algorithm.
An RSA key with a key length of 2048 bits is used to exchange the AES key.

5 Input/output messages are encrypted using the AES-GCM algorithm. The AES key is
agreed using the Ephemeral Elliptic Curve Diffie-Hellman method (ECDHE). An RSA
key with a key length of 2048 bits is used to sign the public Diffie-Hellman key of the
server.
Level 5 is currently only supported by openUTM for LUW platforms.

BS2000 systems:
VTSU encryption is used for VTSU partners.

 TRUSTED Messages between the client and the application are not encrypted.
A "trusted" client can also start services whose service TACs request encryption
(generated with TAC ENCRYPTION-LEVEL=2 | 5). This means that every client that
connects via this LTERM pool is considered to be a trusted client.

TRUSTED should only be selected for an LTERM pool if communication is conducted
through a secure connection.

If the application is generated with OPTION GEN-RSA-KEYS=NO, no RSA keys
are created in the KDCDEF run. In order to use the encryption functions, you
must create the required keys using administration facilities (KC_ENCRYPT or
WinAdmin or WebAdmin) or transfer them from an old KDCFILE using KDCUPD.

i

 525

FORMAT= This operand is supported on BS2000 systems only.

Start format for users on terminals that sign on to the application via this LTERM pool (see
also the statement LTERM ...,FORMAT=, in section "LTERM - define an LTERM partner

). for a client or printer"
Once the connection is established, the format specified in is output on the formatname
terminal, provided a terminal-specific restart has not been performed.

Default: No start format

IDLETIME= time

The maximum time in seconds that openUTM may wait for input from the client outside of a
transaction, i.e. after the end of a transaction or after signing on. If this time is exceeded,
then openUTM clears down the connection to the client. If the client is a terminal, then
message K021 is output before the connection is cleared.

This function serves to improve data security:
If a user forgets to sign off from the terminal when taking a break or when finishing his or
her work on the terminal, then the connection to the terminal or client is automatically
cleared down after the wait time has run out. This reduces the chance of someone gaining
unauthorized access to the system.

Default: 0 (= no wait time limit). For TPOOLs that HTTP clients can connect to, the default
value is 180 seconds.
Maximum value: 32767
Minimum value: 60

If you specify a value that is greater than zero and smaller than the minimum value,
KDCDEF replaces the value with the minimum value.

 KERBEROS-
DIALOG =

This operand is supported on BS2000 systems only.

 Y A Kerberos dialog is performed when a connection is established for terminals that support
Kerberos and that connect to the application directly via this terminal pool (not via OMNIS).

openUTM stores the Kerberos information in the length resulting from the maximum
lengths generated for MAX PRINCIPAL-LTH and MAX CARDLTH. If the Kerberos
information is longer, it is truncated to this length and stored.
If a length greater than zero is generated neither for MAX PRINCIPAL-LTH nor for MAX
CARDLTH, a warning message is issued.

The KDCS call INFO (KCOM=CD) allows a program unit run to read this information.
Exception: A user has subsequently signed on to this client with an ID card.
In this event, the Kerberos information is overwritten by the card ID information.

 N No Kerberos dialog is performed,
Default.

 526

KSET= keysetname1

Name of a key set assigned to this LTERM pool. The key set must be defined with a KSET
statement.

This defines the access permissions for the LTERM partners of this LTERM pool with
respect to using the services of the application and remote services (LTACs) generated in
this application.

An LTERM partner of this LTERM pool can only be used to start services of the application
that are protected with a lock code or an access list and only address remote services that
are protected with a lock code or an access list if the following applies: The key set
assigned to the LTERM partner and the KSET of the UTM user ID under which sign-on
using this LTERM partner was performed must contain the key code or access code that
matches the lock code or access list.

With PTYPE=APPLI, SOCKET, UPIC-R, UPIC-L the following additionally applies with
respect to the key set of the user ID:

If the client does not pass a real user ID to openUTM for the session/conversation, then
its access rights are the result of the set of key codes that are contained in the key set
generated with KSET and the key set generated with USER-KSET. The key set

 should therefore contain all key codes that are also contained in the key keysetname1
set generated with USER-KSET.

If the client passes a user ID, then its access rights are the result of the set of key codes
that are contained in the key set of the user ID and the key set generated with KSET.

LOCALE= (lang_id,terr_id,ccsname)

This operand is supported on BS2000 systems only.

Language environment of clients that sign on to the UTM application via the LTERM pool.

 lang_id Freely selectable language identifier for the clients of the LTERM pool, up to two
characters in length.
The language identifier may be queried by the program units of the application, so that
messages can be sent to the terminals in the client’s language.

 terr_id Freely selectable territorial identifier for the clients of the LTERM pool, up to two characters
in length.

The territorial identifier may be queried by the program units of the application, so that any
special territorial features of the client’s language can be taken into consideration in
messages.

 527

 ccsname (oded haracter et)c c s name
Name of an extended character set (CCS name) up to eight characters in length. The
specified CCS name must belong to one of the EBCDIC character sets defined under the
BS2000 system (see also the XHCS User Guide). The character set must be compatible
with an ISO character set supported by all terminals in the LTERM pool.
During generation, KDCDEF cannot check the validity of the CCS name under the BS2000
system or the compatibility condition.

The character set with the specified name is used for:

outputting dialog messages on 8-bit terminals if the application is generated without user
IDs, or if a user has not yet signed on to the LTERM partner of the LTERM pool and
another CCS name has not been explicitly selected using an edit profile or a format.

outputting asynchronous messages on 8-bit terminals if another CCS name is not
explicitly selected using an edit profile or a format.

Default: If TPOOL ...,LOCALE is not specified, then the locale of the
application defined in the MAX statement is used.

LOCK= lockcode

Access protection to the LTERM pool. Lock code assigned to the LTERM partners of the
LTERM pool. is a numeric value between 1 and the maximum value permitted in lockcode
the application (MAX ...,KEYVALUE=). You can only sign on to the application on an
LTERM partner of this LTERM pool under a UTM user ID (USER) for which a key set was
generated with a key code that matches the lock code of the LTERM pool.

Default: 0 (the LTERM pool is not secured with a lock code)
Maximum value: Value of KEYVALUE defined in the MAX statement

LTERM= ltermprefix

Prefix for the names of LTERM partners of the LTERM pool. LTERM names are eight
characters in length, and consist of the prefix specified here followed by a serial number
between 1 and the value defined for NUMBER= .number1

The maximum length of depends on the number of decimal places in . ltermprefix number1
The number of characters in plus the number of decimal places in ltermprefix number1
must be less than 8.

When specifying and , please note that LTERM partner names must be ltermprefix number1
unique within the application. This applies for names generated with TPOOL ...,LTERM=
(in all TPOOL statements) and for names defined in LTERM statements.

Example
With =1000 and LTERM=LTRM, the LTERM partners defined for the LTERM pool number1
are assigned the names LTRM0001,LTRM0002,...,LTRM1000.

These names must not be specified in any LTERM statement.

The specified names must not be assigned to any other object in name class 1.
See also section . "Uniqueness of names and addresses"

i

 528

MAP= Controls the code conversion (EBCDIC <-> ASCII) for the user messages exchanged
between the communication partners. User messages are passed in the message area on
the KDCS interface in the message handling calls (MPUT/MGET/FPUT/DPUT/FGET).

 USER openUTM does not convert the data of the message area, i.e. the messages are
transferred between the partners application unchanged.
Note that the user message contains the transaction code in the case of TS applications
(partners with PTYPE=SOCKET or APPLI). It must be encoded in the form that the
receiving system expects, i.e. on BS2000 systems in EBCDIC and in ASCII on Unix, Linux
and Windows systems.

For TPOOLs, to which exclusively HTTP clients may connect, only the default value USER
may be specified for parameter MAP. On BS2000 systems a code conversion for HTTP
clients can be configured using the statements CHAR-SET and HTTP-DESCRIPTOR, see
the description in chapters " " CHAR-SET- assign names to code tables (BS2000 systems)
and " ".HTTP-DESCRIPTOR - define a HTTP Descriptor

Default: USER

 SYSTEM | SYS1 | SYS2 | SYS3 | SYS4

This parameter is only permitted for the following partners:

BS2000 systems: partners with PTYPE=SOCKET

Unix, Linux and Windows systems: partners with PTYPE=SOCKET or APPLI

UTM converts the user messages based on the conversion tables provided for the code
conversion (see section), i.e.: "Code conversion"

Prior to sending, the code is converted from ASCII to EBCDIC on Unix, Linux and
Windows systems and from EBCDIC to ASCII on BS2000 systems.

After receipt, the code is converted from EBCDIC to ASCII on Unix, Linux and Windows
systems and from ASCII to EBCDIC on BS2000 systems.

The specifications SYSTEM and SYS1 are synonymous.

UTM assumes that the messages contain only printable characters.

NETPRIO= This operand is supported on BS2000 systems only.

Transport priority to be used on the transport connections assigned to this LTERM pool.

NETPRIO is not relevant when the connection from the partner application is established
via the socket interface (transport protocol SOCKET).

Default: MEDIUM

NUMBER= number1

Maximum number of LTERM partners in this LTERM pool. Up to clients can then number1
sign on to the application via the LTERM pool. The maximum value permitted for number1
depends on the number of names generated in the UTM application (see section "Number

).of names"

Minimum value: 1

 529

PRONAM= System on which the clients must be located in order to sign on to the application via this
LTERM pool.

Unix, Linux and Windows systems:

PRONAM= may only be specified for LTERM pools of type PTYPE=APPLI, SOCKET or
UPIC-R.

No distinction is made between uppercase and lowercase notation; KDCDEF always
converts the name of the partner computer into uppercase.

The combination of PRONAM/PTYPE/BCAMAPPL must be unique.

Default value for PTYPE=TTY and UPIC-L: blanks

BS2000 systems:

PRONAM= is a mandatory operand.

If PROTOCOL=STATION is set, the combination of PRONAM/PTYPE/BCAMAPPL must
be unique.

If PROTOCOL=NO is set, the combination of PRONAM/BCAMAPPL must be unique.

 { processorname | C’processorname’ }

Name of the partner computer.

The complete name (FQDN) by which the computer is known in the DNS must be specified.

The name can be up to 64 characters long.

Only clients located on this system can sign on to the application via this LTERM pool.

If contains special characters it must be entered in the form of a character processorname
string using C’...’ .

Instead of the name of the partner computer name you can enter the mapped name of a
SUBNET statement. These names begin with a "*". All clients which belong to the subnet
defined with this SUBNET statement can connect themselves to a TPOOL generated in
this way. Please note that in this case you must specify the local application name of the
associated SUBNET statement in the BCAMAPPL operand.

 *ANY Any client that fulfills the following conditions can sign on to the application via the LTERM
pool:

The client must not be explicitly generated in a PTERM statement.

The client type must match the entry in PTYPE.

Another LTERM pool must not generated for the system on which the client is located or
for the same client type. This prevents open LTERM pools from being used as an
“overflow” for other LTERM pools.

PROTOCOL= This operand is supported on BS2000 systems only.

This operand specifies whether or not the user services protocol (NEABT) is to be used
between the UTM application and the clients accessed via this LTERM pool.

 530

 N openUTM does not use a user services protocol.
If PROTOCOL=N is generated, it is not possible to establish connections to terminals in
this LTERM pool via a multiplex connection (see the description of the MUX statement in
section)."MUX - define a multiplex connection (BS2000 systems)"

PROTOCOL=N must be generated for UPIC client programs (PTYPE=UPIC-R) and for TS
applications (PTYPE=APPLI or SOCKET). In this case, openUTM ignores the entry
PROTOCOL=STATION without outputting a UTM message.

If you specify PTYPE=*ANY, openUTM ignores the entry PROTOCOL=NO.

 STATION The user services protocol (NEABT) is used between the UTM application and the clients
accessed via this LTERM pool.

With PTYPE=*ANY, you must specify PROTOCOL=STATION. In this case, openUTM
requires the user services protocol (NEABT) to determine the partner type if this is not
explicitly specified during generation (PTYPE=*ANY).

Default:
N if PTYPE=APPLI, SOCKET or UPIC-R
STATION if PTYPE APPLI, SOCKET or UPIC-R.!=

PTYPE= Type of client that can sign on to the application via this LTERM pool.

If you have specified an application name in BCAMAPPL= that is generated for
communication via the socket interface (BCAMAPPL statement with T-PROT=SOCKET),
then you must set PTYPE=SOCKET.

This is a mandatory operand.

 partnertyp Type of client.

A list of partner types supported can be found in the description of the PTERM control
statement in section "PTERM - define the properties of a client/printer and assign an

. Please note that printers be connected via LTERM pools.LTERM partner" cannot

 *ANY only permitted on BS2000 systems.
PTYPE=*ANY describes an open LTERM pool. All clients that support the user services
protocol (PROTOCOL=STATION) and that are located on the processor defined with
PRONAM= may connect to this LTERM pool.

In this case, openUTM takes the partner type from the user services protocol during
connection setup. Only then can it be determined whether or not the partner type is
supported.

The advantage of PTYPE=*ANY is that it allows you to include clients in the configuration
without having to know their type. The configuration is also easier to maintain because
even if the type is modified in the terminal emulation, for example, this client can still sign
on to the application without having to modify the KDCDEF generation.

 531

QLEV= queue_level_number

(ueue el)q lev
Maximum number of asynchronous messages that can be accommodated in the message
queue of the LTERM partner. If this threshold value is exceeded, openUTM rejects all
further FPUT calls for this LTERM partner with UTM message 40Z.

Default: 32767
Minimum value: 0
Maximum value: 32767

If you exceed the maximum value, KDCDEF automatically resets your entry to the default
value without outputting a UTM message.

STATUS= NUMBER= defines the number of LTERM partners in the LTERM pool. STATUS=number1
 defines the number of clients that are unlocked (ON) and locked (OFF) for the number2

LTERM pool when the application is started.
The status can be modified by administration during operation.

Default:
STATUS=(OFF , 0), i.e. all clients of the LTERM pools are unlocked.

 ON number2 clients are unlocked.

 OFF number2 clients are locked.

 number2 Number of clients (and thus the number of LTERM partners of the LTERM pool) which are
locked or unlocked.

TERMN= termn_id

Identifier up to two characters in length, which indicates the type of client. openUTM
provides this identifier to the application program in the KCTERMN field of the KB header.

termn_id is not queried by openUTM, but can be used by the user for analysis purposes.

Default values:

If this operand is not specified, openUTM sets the KCTERMN field to the default ID of the
partner type specified in the PTYPE operand. However, the user can select other values if
desired.

The default values are listed in the partner type table for the PTYPE operand of the
PTERM statement "PTERM - define the properties of a client/printer and assign an LTERM

.partner"

BS2000 systems:
If TERMN is not explicitly specified for clients generated with PTYPE=*ANY, openUTM
does not enter the terminal mnemonic in KCTERMN until the connection is established.
This is the default terminal mnemonic of the type specified in the user services protocol of
the connection request.

 532

USER-KSET= keysetname2

This is only allowed if the application is generated with user IDs and PTYPE=APPLI,
SOCKET, UPIC-R or UPIC-L is specified. You may only set USER-KSET= in conjunction
with KSET= .

You must specify the name of a key set for . The key set must be defined with a ksetname2
KSET statement.

You specify the minimum access rights that a client connected via this LTERM pool can
exercise with USER-KSET= .

ksetname2 takes effect when the client is signed on under the connection user ID. Its
access rights are the result of the set of key codes that are contained in the key set
generated with KSET= and in the key set generated with USER-KSET= (intersection). For
this reason, all key codes contained in USER-KSET= should also be contained ksetname2
in KSET= .ksetname1

Default: No key set
The access rights specified in KSET are always valid.

USP-HDR= Specifies the output messages for which openUTM is to create a UTM socket protocol
header for the connections generated with this statement.

A value that is not equal to NO may only be specified with LTERM pools for which
communication is configured via socket connections (PTYPE=SOCKET).

A description of the USP header can be found in the openUTM manual „Programming
Applications with KDCS”.

For TPOOLs to which exclusively HTTP clients may connect, only the default value NO
may be specified for parameter USP-HDR.

 ALL For all output messages (dialog, asynchronous, K messages) openUTM creates a UTM
socket protocol header and adds this to the front of the message.

 MSG openUTM only creates a UTM socket protocol header and adds this to the front of the
message for K messages only.

 NO No UTM socket protocol headers are created.

Default: NO

 533

6.5.55 TRANSFER-SYNTAX - define the transfer syntax

You only need the TRANSFER-SYNTAX control statement when you want to define your own application context
for communication based on the OSI TP protocol (see the APPLICATION-CONTEXT statement in section

)."APPLICATION-CONTEXT - define the application context"

It allows you to define a local name for a transfer syntax, and to assign an object identifier. The transfer syntax
determines the rules governing the encoding and decoding of the abstract syntax defined in the object identifier.

The transfer syntax defined here must be supported by the OSS version used. OSS only supports the BER transfer
syntax at the present time.

TRANSFER-SYNTAX transfer_syntax_name

 ENTIFIER=object_identifier,OBJECT-ID

transfer_syntax_name Local name for a transfer syntax up to eight characters in length. This name must be
unique within the UTM application.

The BER (Basic Encoding Rules) is reserved.transfer_syntax_name

OBJECT-IDENTIFIER= object_identifier

Object identifier of the transfer syntax specified as follows:

object_identifier=(number1,number2, ... ,number10)

number is a positive integer in the range 0 to 67108863. For , you can object_identifier
specify two to ten integers enclosed in parentheses, each of which is separated by a
comma. The number of integers entered and their positions are relevant.
Instead of the integer itself, you can also specify the symbolic name assigned to this
integer. The table in section shows the permitted values for at the "OSI terms" number
various positions.

object_identifier must be unique within the UTM application, i.e. another transfer syntax
must not be generated with the same object identifier.

openUTM generates the BER transfer syntax by default:

TRANSFER-SYNTAX BER, -

 OBJECT-IDENTIFIER=(2, 1, 1) -

Symbolic description of the object identifier:

(joint-iso-ccitt, ansl, basic-encoding)

 534

6.5.56 ULS - define a name for a ULS block

Each UTM user ID can be assigned a user-specific long-term storage area (ULS), which can contain several blocks
each of which is addressed by means of a name.

The ULS control statement allows you to define a name for a ULS block. openUTM then provides each UTM user
ID with a ULS block with this name. By issuing several ULS statements with different block names, you can define
several blocks.

In the case of distributed processing based on LU6.1, the ULS blocks defined in a ULS statement are also assigned
to sessions (LSES).

This statement is required only if the application is generated with user IDs.

You can issue up to 100 ULS statements.

Note for UTM cluster applications on Unix, Linux and Windows systems:
If you modify, remove or add ULS statements then you must regenerate both the initial KDCFILE and the UTM
cluster files by specifying GEN=(CLUSTER,KDCFILE) in the OPTION statement.

ULS name

name Name of a ULS block up to eight characters in length, which can be used to address the block from a
program unit.

 535

6.5.57 USER - define a user ID

The USER control statement allows you to define user IDs for the UTM application. These are then used by users
and client programs to sign on to the application. The following can be defined for user IDs:

the authentication procedure (password, magnetic strip card on BS2000 systems and Unix)

complexity level and period of validity of password

access rights (lock/key code or access list concept)

administration authorization

the user status

properties of the USER queue that belongs to the user ID

the start format

UTM SAT administration authorization (BS2000 systems)

the user-specific language environment (BS2000 systems).

Method and type of authentication (BS2000 systems: password, magnetic strip card, Kerberos principal)

At least one user ID must be assigned administration authorization in order to manage the application.
Administration authorization can be granted to several user IDs, thereby enabling several users to simultaneously
call administration functions under the respective user ID. On BS2000 systems the same is true for the UTM SAT
administration authorization and calling SAT preselection functions.

An application can also be generated without user IDs. In this case, users are not required to identify themselves,
and openUTM uses the name of the respective client internally as the user ID. All users can thus issue
administration commands and on BS2000 systems UTM SAT administration commands. If you work without user
IDs, openUTM will not be able to use some data protection functions.

 536

USER username

[,KSET=keysetname]

[,PASS={ (password, ARK) | D

 (*RANDOM, ARK) |D

 password |

 *RANDOM }]

[,KSET=keysetname]

[,PERMIT={ |ADMIN | SATADM | (ADMIN,SATADM) }]NONE 1 1

[,PROTECT-PW=([length]

 ,[{ | MIN | MED | MAX }]NONE

 ,[maxtime]

 ,[mintime])] 2

[,QLEV5=queue_level_number]

[,QMODE = { | WRAP-AROUND }]STD

[,Q-READ-ACL=read-keysetname]

[,Q-WRITE-ACL=write-keysetname]

 [,RESTART={ | O }] ESY N

[,STATUS={ | OFF }]ON

additional operands on BS2000 systems
[,CARD=(position,characterstring)]

[,FORMAT= { + | * | # }formatname]

[,LOCALE=([lang_id][,[terr_id][,ccsname]])]

[,PRINCIPAL=characterstring]

 [,SATSEL={ | BOTH | SUCC | FAIL }]NONE

1 only on BS2000 systems

2 Commas at the end can be omitted, i.e. you can specify (8,NONE) instead of (8,NONE,,).

username UTM user ID specified by the user when signing on to the application, or by a client
when opening a conversation with the application. can be up to eight username
characters in length.
(See also the operand USER= in the LTERM statement starting in section username

)."LTERM - define an LTERM partner for a client or printer"

The specified name must be unique and must not be assigned to any other object in
name class 2. See also section ."Uniqueness of names and addresses"

If is identical to the name of an LTERM that is assigned to a PTERM with username
PTYPE=APPLI, SOCKET or UPIC-R, you must bear in mind the notes detailed
under LTERM.

 537

CARD= This operand is supported on BS2000 systems only.
specifies whether a magnetic strip card is to be checked when signing on to the
application under this user ID, and defines the ID card information to be verified.
Enter a subfield of the information stored on the magnetic strip card, which is to be
checked by openUTM.

The following must apply for this parameter:
pos + length(string) -1 <= MAX CARDLTH
Otherwise the parameter is ignored.

You cannot specify PRINCIPAL= if you have specified CARD=.

 position Start position of the ID card information to be checked:
 = 1 corresponds to the first byte, etc.position

 characterstring When signing on to the application, openUTM checks whether the ID card
information starting at the defined position begins with this character string.

characterstring can be specified in the following format:

as a hexadecimal character string; hexadecimal characters always occur in pairs,
e.g. X’DDEF’

as an alphanumeric character string, e.g. FRIDOLIN or C’@FRIEDEL’.

Special characters must be entered in the format C’...’ or X’...’.

Default: No ID card check performed when signing on to the application Maximum
length: 100 bytes (see also MAX ...,CARDLTH=)

FORMAT= This operand is supported on BS2000 systems only.

Format identifier for a user-specific start format.
This start format is automatically output after each successful attempt to sign on to
the application, provided an open service does not exist for this user. However, if an
open service exists for the user (USER) following a successful sign-on check, the
start format is displayed, rather the last dialog screen appears (service restart). If not
you use your own sign-on procedure, the name of the user-specific start format may
be queried in the second part of the sign-on procedure using the SIGN ST call.

The format identifier composes as follows:

+, * or # followed by an alphanumeric name () up to seven characters in formatname
length.

#formats can only be used in the context of a sign-on procedure.

The terms have the following meanings:

 + When the next MGET call of the program unit is issued, each entry in a format field
is preceded by 2 bytes for the attribute field in the KDCS message area, i.e. the field
properties can be modified by the program unit.
The format identifier at the KDCS interface is thus + .formatname

 538

 * When the next MGET call of the program unit is issued, the entry in a format field is
not preceded by any bytes for an attribute field in the KDCS message area, i.e. the
field properties cannot be modified by the program unit. The format identifier at the
KDCS interface is thus * .formatname

 # This identifies a format with extended user attributes. The field properties and global
format properties can be modified by the program unit. The format identifier at the
KDCS interface is thus # .formatname

Default: No start format

KSET= keysetname

Name of the key set assigned to the user ID. The key set is defined with the KSET
statement. A maximum of one key set can be assigned per USER.

The key set defines the access permissions for this user ID with respect to using the
services of the application and remote services (LTACs) generated in this application.

This user ID can only be used to start services of the application that are protected
with a lock code or an access list and only address remote services that are
protected with a lock code or an access list if the following applies: The key set
assigned to the user ID and the key set of the LTERM partner under which sign-on
using this user ID was performed must contain the key code or access code that
matches the lock code or access list.

The lock/key code concept and the access list concept are both described in detail in
the openUTM manual “Concepts und Functions”. An introduction to data access
control can be found as of ."Data access control"

Services whose service TACs are not secured with codes can be called by the user
or the client program without restriction. Further information on the lock/key code
concept can be found in the openUTM manual “Concepts und Functions”.

Default: No key set, i.e. the user can only access clients and LTERM partners that
have not been secured with lock codes.

LOCALE= (lang_id,terr_id,ccsname)

This operand is supported on BS2000 systems only.

Language environment of the user

 lang_id Freely selectable language identifier for the UTM user ID, up to two characters in
length.

The language identifier may be queried by the program units of the application, so
that messages can be sent by the program units to the user ID in the user’s
language.

 539

 terr_id Freely selectable territorial identifier for the UTM user ID, up to two characters in
length.

The territorial identifier may be queried by the program units of the application, so
that any special territorial features of the user’s language can be taken into
consideration in messages to the user.

 ccsname (oded haracter et)c c s name
Name of an extended character set (CCS name) up to eight characters in length.
The specified CCS name must belong to one of the EBCDIC character sets defined
under the BS2000 system (see also the "XHCS User Guide").
During generation, openUTM cannot check the validity of the CCS name under the
BS2000 system.

The character set with the specified CCS name is used for outputting dialog
messages, provided the user is signed on to an 8-bit terminal and another CCS
name is not explicitly selected using an edit profile or a format.
The character set must be compatible with an extended ISO character set supported
by the terminal. During generation, openUTM cannot check this compatibility
condition, i.e. incorrect entries cannot be intercepted by KDCDEF.

Default:
Locale of the application defined in the MAX statement is used if USER ...,LOCALE
is not specified.

 540

PASS= Password up to 16 characters in length which must be specified by the user during
the sign-on check. This password must comply with the level of complexity defined in
the PROTECT-PW= operand.

PASS= may not be specified together with PRINCIPAL=.

If you enter *RANDOM here, a secret random password is generated for the user ID.
A valid password must then be transferred to the user ID using the KDCUPD tool or
by means of administration. Passwords created in this way are not subject to the
conditions set in PROTECT-PW=.

BS2000 systems:
password can be entered in the following format:

hexadecimal, e.g. X’DDFF’

as a constant, e.g. C’@LKE’

as a printable alphanumeric character string, e.g. NORBERT.

Unix, Linux and Windows systems:
The password can be entered in the form of a printable alphanumeric character
string, e.g. or ’.UTM4EVER C’UTM_ever

Default: 16 blanks (i.e. no password)

The parameters have the following effects on the signon procedure:

 password
 *RANDOM

BS2000 systems:
Standard sign-on dialog:
The user must enter ’KDCSIGN , ’ to sign on to the application.username password

Sign-on procedure:
The user ID and password must be transferred to openUTM using the SIGN ON call.

Unix, Linux and Windows systems:
Standard sign-on dialog:
To sign on to the application, the user first enters . openUTM then prompts username
the user to enter the password.

Sign-on procedure:
In an intermediate dialog, openUTM prompts the user to enter the password as in
the standard sign-on procedure.

Make sure that at least one user ID is configured with administration
authorization by the startup time at the latest. This user ID must not be
assigned a password created using *RANDOM, as otherwise the
application cannot be administered.

i

 541

 (password, DARK)
 (*RANDOM,
DARK)

BS2000 systems:
Standard sign-on dialog:
To sign on to the application the user first enters ’KDCSIGN ’. openUTM username
then prompts the user to enter the password in a blanked-out field on the screen.

Sign-on procedure:
In an intermediate dialog, openUTM prompts the user to enter the password in a
blanked-out field.

Unix, Linux and Windows systems:
Standard sign-on dialog:
To sign on to the application, the user first enters . openUTM then prompts username
the user to enter the password.

Sign-on procedure:
In an intermediate dialog, openUTM prompts the user to enter the password as in
the standard sign-on procedure.

PERMIT= Administration authorization level of the user within the local application

 ADMIN The user can execute administration functions under this user ID.

 NONE The user must not execute any administration functions.

Default: NONE

On BS2000 systems the user also must not execute any SAT preselection functions.

 SATADM The user can execute SAT preselection functions (UTM SAT administration).

 (ADMIN,SATADM) The user can execute administration and SAT preselection functions.

 542

PRINCIPAL= characterstring

This operand is supported on BS2000 systems only.

Authentication of the user is to be performed using Kerberos. It is only possible to
authenticate users using Kerberos if the user signs in directly (not via OMNIS) at a
terminal that supports Kerberos.

openUTM stores the Kerberos information in the maximum of the lengths generated
for MAX PRINCIPAL-LTH and MAX CARDLTH. If the Kerberos information is longer,
it is truncated and stored in this length.

The KDCS call INFO (KCOM=CD) enables a program unit to read this information as
long as the user is signed in on this client.

Specifying PRINCIPAL excludes the possibility of specifying the parameters CARD
and PASS.

characterstring must be specified as follows as an alphanumeric string enclosed in
single quotes:

C'windowsaccount@NT-DNS-REALM-NAME'

windowsaccount:

Domain account of the user

NT-DNS-REALM-NAME:

DNS name of the Active Directory domain. This name is a fixed value for every
Active Directory domain and was assigned when the Kerberos key was set up.

The length of the character string passed must not be greater than the value
specified for MAX PRINCIPAL-LTH. Otherwise the parameter is ignored.

openUTM stores the Kerberos information in the length resulting from the maximum
length generated for MAX PRINCIPAL-LTH and MAX CARDLTH. If the Kerberos
information is longer, it is truncated to this length and stored.

The KDCS call INFO (KCOM=CD) allows a program unit run to read this information
as long as the user is signed in on this client.

Maximum length: The value generated with MAX ...,PRINCIPAL-LTH. See "MAX -
define UTM application parameters".

Default: No Kerberos authentication

PROTECT-PW= Specifies the minimum length, level of complexity, and minimum and maximum
validity period of the user password. The values defined for PROTECT-PW must be
taken into consideration when specifying the password in the PASS= operand. They
are checked by openUTM when the password is changed by the administrator
(KDCUSER administration command, see the openUTM manual “Administering
Applications”) or by a program unit (SIGN CP call).

 543

 length Minimum number of characters that must be contained in the password.
The administrator can only delete the user password if the value 0 is specified for

.length

Default: 0

Minimum value:
0 for NONE or if a level of complexity is not defined
1 for MIN
2 for MED
3 for MAX

Maximum value: 16

 NONE/MIN/MED/MAX

 Level of complexity of the password

 NONE The password can be any character string.

Default: NONE

 MIN In the password, up to two consecutive characters may be identical. The minimum
length of the password is one character.

 MED In the password, up to two consecutive characters may be identical. The password
must contain at least one letter and one number. The minimum length of the
password is two characters.

 MAX In the password, up to two consecutive characters may be identical. The password
must contain at least one letter, one number, and one special character. The
minimum length of the password is three characters. Special characters are all
characters other than a-z, A-Z, 0-9, and blanks.

 544

 maxtime Maximum validity period:
 specifies the maximum number of days for which the password is valid.maxtime

If a validity period is specified, then the validity of the password expires at the end of
the last day of the specified validity period. For instance, if the validity period is one
day, the password ceases to be valid at 24:00 hours on the following day.

If the application is generated with SIGNON GRACE=YES, when the application is
regenerated the password is set to “expired”, the user must then assign a new
password the first time they sign on.

If the password expires, then the next action taken depends on how the UTM
application is generated:

With grace sign-ons (SIGNON GRACE= YES)
The user can and must change the password the next time the they sign on, as
long as the sign-on service of the application offers them this opportunity. If this is
not the case, the password must be modified by administration otherwise the user
will no longer be able to sign on under this user ID. This may occur, for example,
with users that sign on via TS applications and UPIC clients without sign on
services or via an OSI-TP partner.

Without grace sign-ons (SIGNON GRACE= NO)
openUTM rejects a sign-on attempt with message K120. The administrator must
then change the password.

With = 0 the validity period of the password is not restricted.maxtime

Default: 0 (validity period not restricted)
Maximum value: 180
Minimum value: 0

 545

 mintime Minimum validity period:
You specify the minimum validity period of the password in days in . mintime
Once the user has changed the password, the user may only change the password
again after the minimum validity period has expired.

By specifying > 0 you can prevent a user whose password has expired from mintime
changing his or her password twice in a row to set the password back to the original
(= expired) password.

If a minimum validity period of one day is specified, then the password may be
changed no earlier that at 12.00 midnight of the following day (local time of the
generation).

The user can always change the password after the administrator has changed the
password and after a new generation, regardless of whether the minimum validity
period has expired or not.

mintime must not be larger than (maximum validity period). maxtime
If =0 is specified, then the minimum validity period of the password is not mintime
restricted.

Default: 0 (no limit)
Minimum value: 0
Maximum value: 180

QLEV= queue_level_number

(ueue el) q lev
Specifies the maximum number of asynchronous messages that may be buffered in
the message queue of the user (= USER queue). QLEV can be used to make sure
that the page pool is not overloaded with messages for this USER.
openUTM only takes asynchronous jobs into account at the end of the transaction. It
is thus possible that the maximum number of messages for a message queue as
specified in QLEV may be exceeded if several messages are created for this queue
during a single transaction.

If the threshold value has been exceeded, then the behavior will depend on the
value set in the operand QMODE=, see below.

With QLEV=0 no messages may be saved in the queue and with QLEV=32767 the
queue length is not restricted.

Default: 32767
Minimum value: 0
Maximum value: 32767

If a value is specified that is greater than the maximum, this is set back to the default
in the KDCDEF run. No message is issued.

QMODE = (ueue) Q Mode
Determines the behavior of openUTM in the event that the maximum permitted
number of messages that may be saved in the USER queue has been reached and
thus the queue level (QLEV= operand) has also been reached.

 546

 STD When the queue level is reached openUTM rejects all additional messages for the
queue with negative return code (40Z for DPUT).

 WRAP-AROUND openUTM continues to accept messages for the queue, even if the queue level has
been reached. When a new message is written to the queue, openUTM deletes the
oldest message in the queue and replaces it with the new one.

Default: STD

Q-READ-ACL= read-keysetname

Specifies the read and delete rights for external users in the USER queue. In read-
you must enter a key set that has been generated using a KSET keysetname

statement.

If you enter Q-READ-ACL=, an external user () is only permitted read != username
access to the queue if both the key set of their user ID and the key set of the LTERM
partner via which the user is signed on contain at least one of the key codes
contained in the key set .read-keysetname

The owner () of the USER queue always has read and delete rights to their username
queue, even if the rights are restricted using Q-READ-ACL.

If you do not specify Q-READ-ACL=, all users have both read and delete rights in the
queue.

Default: no key set

Q-WRITE-ACL= write-keysetname

Specifies the write rights for external users in the USER queue.
In you must enter a key set that has been generated using a write-keysetname
KSET statement.

If you enter Q-WRITE-ACL=, an external user () is only permitted write != username
access to the queue if both the key set of their user ID and the key set of the LTERM
partner via which the user is signed on contain at least one of the key codes
contained in the key set .write-keysetname
The owner () of the USER queue always has the write rights to their username
queue, even if the rights are restricted using Q-WRITE-ACL.

If you do not specify Q-WRITE-ACL= all users have both write rights in the queue.

Default: no key set

RESTART= This specifies whether openUTM is to save the service data for a user ID so that a
service restart will be possible on the next sign-on under this user ID.

 547

 YES The service context belonging to this user ID is saved. This means that a service
restart can be performed for users who sign on using this user ID if an open service
exists for the user ID.

With a service restart, the type of the client and possibly the generated sign on
service may play a role Additional information can be found in section . "Generating a

 and in the openUTM manual “Using UTM Applications”.restart"

Default: YES

 NO The service context belonging to this user ID is not saved, no service restart is
possible,

If the connection is shut down during operation by KDCOFF, if it is lost, or if the
application is terminated normally, the service is rolled back to the last
synchronization point and terminated. The event exit VORGANG is then called
with KCKNZVG=D (=Disconnect).

During a UTM warm start following abnormal termination of the application, an
open service for this UTM user is terminated without calling the event exit
VORGANG.

Following connection setup, KDCDISP/KDCLAST behaves in the same way as
after regeneration.

If RESTART=NO is specified together with SIGNON MULTI-SIGNON=YES, several
users can sign on simultaneously to openUTM under this user ID, but only one user
can sign on to the terminal. Conversely, it is possible for any number of client
programs can sign on simultaneously.

Explicitly generated connection user IDs to UPIC clients are always
generated with RESTART=NO (without any message) .

i

 548

SATSEL= This operand is supported on BS2000 systems only.

SAT logging mode for this user

If SAT logging is activated (MAX SAT=YES), all events triggered by this user are
logged as defined in this operand.

The SATSEL control statement is used to define the general SAT logging mode for
all TACs and users. This can be supplemented by the SATSEL operand of the
USER statement, which allows you to define user-specific logging. If the logging of
an event class is prohibited in the SATSEL statement, events of this class are not
logged. (For information on the link between the EVENT-, TAC- and USER-specific
log settings, see the openUTM manual “Using UTM Applications on BS2000
Systems”.)

SATSEL can be generated even if SAT logging is deactivated (MAX statement with
SECLEV=NO and SAT=OFF). In this case, the statements are not effective when
the application is started, but SAT logging is predefined. When required, SAT
logging can then be activated during operation (UTM SAT administration command
KDCMSAT, see the openUTM manual “Using UTM Applications on BS2000
Systems”).

 NONE A user-specific SAT logging mode is not defined.

Default: NONE

 BOTH Both successful unsuccessful events are logged.and

 SUCC Only successful events are logged.

 FAIL Only unsuccessful events are logged.

STATUS= Status (locked or unlocked) of the user ID when the application is started.

 ON The user ID is unlocked.

Default: ON

 OFF The user ID is locked. It cannot be used by a user or client to sign on to the
application until it has been released by the administrator.

User IDs that are implicitly or explicitly assigned to an UPIC client or a
client of a TS application via an LTERM statement (LTERM ...,USER=) are
always locked. They cannot be authorized by the UTM administrator.
These user IDs are called connection user IDs.

i

 549

6.5.58 UTMD - application parameters for distributed processing

The UTMD control statement allows you to define values for distributed processing throughout the application. A
UTMD statement is only required for applications that use either the LU6.1 or the OSI TP protocol for
communication.

The UTMD statement may only by entered once.

If you use the OSI TP protocol in your application, you can specify the Application Process Title (APT) of the
application in the UTMD statement. This is required by some heterogeneous partners that support another variant
of the OSI TP protocol in order to establish a connection. These applications expect the specification of the
Application Process Title on establishment of the connection.

The application process title is combined with any application entity qualifier (AEQ) assigned to an access point of
your application to form an application entity title (AET), which is unique throughout the OSI network. This is used
by the partner application to identify the access point of the local application via which communication is to take
place.

UTMD [PPLICATION- ROCESS- ITLE=object_identifier]A P T

 [,CONCTIME={ time1 | (time1,time2) }]

 [,MAXJR=%_maxjr]

 [,PTCTIME=time3]

 [,RSET={ | LOCAL }]GLOBAL

APPLICATION-PROCESS-TITLE=object_identifier

(only relevant if the OSI TP protocol is used in the application)
Address component of the application entity title (AET). The AET is required if you are working
with transaction management (commit functional unit), or if a heterogeneous partner requires an
AET to establish a connection.

object_identifier is the application process title (APT) of your application. Even if this is not defined
by a standardization body, the relevant conventions for and must be component1 component2
observed when assigning an APT. Further information can be found in section "Application entity

. In practice, the specified must be unique within the title (AET)" (OSI terms) object_identifier
network.

An application process title consists of at least 2 and at most 10 components. It is specified in the
following format:

()component1,component2,...,component10

The components are specified in the form of positive integers. Symbolic names are assigned to
some numbers of individual components, and can be used instead of the numbers. In the
application process title, both the number of components and their positions within the
parentheses are relevant, e.g. (1,2,3), (1,2,3,0,0) and (0,1,2,3,0) identify different application
process titles.

If the application context (definition of the communication partner in the OSI-LPAP
statement, "OSI-LPAP - define an OSI-LPAP partner for distributed processing based

) agreed with a partner application contains the CCR syntax, you must enter on OSI TP"
an application process title here.

i

 550

openUTM and the OSI standard only permit the following values or symbolic names for
: component1

0 or CCITT
1 or ISO
2 or JOINT-ISO-CCITT

The values permitted for depend on the value of .component2 component1

If = 0 or 1, values between 0 and 39 are permitted for (0 <= component1 component2
 <= 39).component2

If = 2, values between 0 and 67108863 (2 -1) are permitted for (0 component1 26 component2
<= <= 67108863).component2

Values between 0 and 67108863 (2 -1) are permitted for all other components.26

openUTM does not check whether the specified application process title is registered with a
standardization body.

CONCTIME= (nection ontrol)con c time

 time1 Maximum number of seconds for which openUTM monitors the opening of a session (LU6.1) or
association (OSI TP). If the session or association is not opened within the specified time,
openUTM shuts down the transport connection. This prevents the transport connection from being
blocked if an attempt to open a session or association fails. This can occur if a message required
to open the session/association is lost.

CONCTIME=0 for LU6.1 means opening is not monitored.
CONCTIME=0 for OSI TP means monitoring is set internally to 60 seconds.

Default: 0
Minimum value: 0
Maximum value: 32767

Note for UTM cluster applications on Unix, Linux and Windows systems

In the case of UTM cluster applications, the APT of the individual node applications is
modified at node-specific level in order to ensure that the AET is unique. If the APT
consists of fewer than 10 elements then the APT is extended by the index of the
associated node when the node application is started. The index of a node is
determined by the sequence of CLUSTER-NODE statements during generation.

Example:
If (1,2,3) is generated as the APT and if the UTM cluster application has two node
applications, then the APT at runtime is as follows:

(1,2,3,1) for node 1 (= first CLUSTER-NODE statement) and
(1,2,3,2) for node 2 (= second CLUSTER-NODE statement) and
If the generated APT already contains 10 elements then the APT remains unchanged
for all node applications. In this case, links with OSI-TP implementations from other
vendors may result in problems because the AET is not unique.

i

 551

 time2 Maximum number of seconds for which openUTM is to wait for confirmation from the partner
application when sending an asynchronous message. Once the specified time has elapsed,
openUTM shuts down the transport connection. The job is not lost however. Monitoring prevents
the connection from being blocked because a confirmation has been lost, or because the loss of
connection was not reported to openUTM by the transport system.
The value 0 means that monitoring is not performed.

Default: 0
Minimum value: 0
Maximum value: 32767

MAXJR= %_maxjr

(imal number of ob eceivers) max j r
Specifies the maximum number of job-receiving services that can be addressed in the local
application at any one time.
This corresponds to the number of APRO calls that can be active simultaneously.

The percentage value refers to the number of generated sessions and associations (maximum
number of LSES statements for the LU6.1 protocol + total number of parallel connections
specified in OSI-LPAP statements; ASSOCIATIONS operand). It must be within the range 0 to
200. If you enter a value > 100, APRO calls issued before the session is reserved can be entered
in a table.

Default: 100,

i.e. the maximum number of job-receiving services active at a particular time is equal to the
number of sessions and associations.

Minimum value: 0
Maximum value: 200

 552

 PTCTIME= time3

(repare o ommit) p t c
This is significant only for distributed processing via LU6.1 connections. PTCTIME defines the
maximum number of seconds for which a job receiving service waits in PTC state (transaction
status P) for confirmation from the job submitter. Once this time has elapsed, the connection to
the job submitter is shut down, the transaction in the job-receiving service is rolled back, and the
service is terminated. This can lead to inconsistent data if the transaction is committed in the
partner application (mismatch). The value 0 means that the job-receiving service waits indefinitely
for confirmation.

Default:
Value specified in MAX ...,TERMWAIT= for the waiting time after PEND KPtime

Minimum value: 0
Maximum value: 32767

RSET= In the case of Distributed Transaction Processing, this operand defines how rolling back a local
transaction affects the distributed transaction.

A local transaction can be rolled back:

by a RSET call issued in a program unit, or

by rolling back a database transaction involved in the local transaction.

 GLOBAL After the local transaction is rolled back, the program unit must be terminated such that openUTM
rolls back the distributed transaction.

Default: GLOBAL

 LOCAL Rolling back the local transaction has no effect on the distributed transaction.

Inconsistencies may occur in the distributed databases if some of the local transactions involved
in a distributed transaction are rolled back while others are concluded. If RSET=LOCAL is
specified, it is no longer possible to guarantee global data integrity in the relevant system
components. This is now the responsibility of the application program units. You must decide
when it makes sense to terminate the distributed transaction and when to roll back the transaction.

If a value > 0 is specified in then this value is ignored by openUTM if a KDCSHUT time3
WARN or GRACE has been issued. In this case, openUTM chooses the wait time in
such a way that the transaction is rolled back before the application is terminated in
order, if possible, to prevent the application from being terminated abnormally with
ENDPET.

i

 553

6.6 Dialog control - effects of generation parameters

The following statements and parameters of the KDCDEF generation tool can be used to control the dialog during
generation:

KDCDEF statement Effect

EXIT ...,USAGE=INPUT Event exit INPUT

LTAC ..., WAITTIME= Maximum waiting time for distributed processing

LTERM ..., RESTART= Refers to asynchronous messages and the service restart procedure if user IDs
are not generated

LTERM ..., USER= Automatic KDCSIGN

MAX ..., APPLIMODE= Refers to the service restart procedure and asynchronous messages

MAX ..., CONN-USERS= Application load: number of simultaneously active users or clients

MAX ..., NRCONV= Maximum number of stacked services

MAX ..., PGWTIME= Maximum time in seconds that a program unit is allowed to wait to receive
messages after a blocked call.

MAX ..., TERMWAIT= Maximum waiting time until the next input from the terminal in a multi-step
transaction (following PEND KP)

PTERM ..., IDLETIME=
TPOOL ..., IDLETIME=

Maximum waiting time until the next input from the client after the end of the
transaction or after signing on (following PEND RE/FI/ER)

SIGNON ..., GRACE= The user may or may not change his or her password after it has expired

SIGNON ..., MULTI-SIGNON= Several users/clients may or may not be signed on at the same time under the
same user ID

SIGNON ..., SILENT-
ALARM=

Limits the number of unsuccessful sign-on attempts

USER statements defined Sign-on check performed for all users

USER ..., PASS= Sign-on check with a password; input may be blanked-out

USER ..., PROTECT-PW= Authorization check with a blanked-out password, validity period, and level of
complexity

USER ..., RESTART= Service restart procedure

 554

KDCDEF statement Effect

SFUNC ... Assignment of a F key or K key (on BS2000 systems) as a TAC, UTM command, or
stacking request

TAC KDCBADTC Event service BADTACS

TAC KDCSGNTC Sign on using a sign-on procedure

On BS2000 systems the following parameters also are relevant

LTERM ...,
ANNOAMSG=

Asynchronous messages with or without prior announcement

LTERM ...,
FORMAT=

LTERM specific start format

TPOOL ...,
ANNOAMSG=

Asynchronous messages announced in advance before being output in the system line
on the terminal

PTERM ...,
CONNECT=

Automatic or non-automatic connection setup to the terminal by openUTM when starting
the application

MAX ..., LOCALE= Default language environment of the application

LTERM ..., LOCALE= Language environment of clients that sign on via LTERM partners

TPOOL ...,
FORMAT=

defines the start format for the terminal user

TPOOL ..., LOCALE= Language environment of clients that sign on via LTERM pools

USER ..., CARD= Sign-on check with a magnetic strip card

USER ..., FORMAT= User specific start format

USER ..., LOCALE= Language environment of the user

USER ...,
PRINCIPAL=

User authentication will be performed using Kerberos.

 555

6.7 Example generation: ComfoTRAVEL

The example generation TRAVEL is a travel reservation system which allows the customers of travel agents Comfo
in Munich, Paris and New York, to book “all-inclusive” packages consisting of hotel, flight and leisure activities plus
the necessary bank operations. To do this, the travel agents access a central reservation system (RMS Reservation
Management System).

Figure 19: Example generation TRAVEL with the employed protocolsComfo

 556

6.7.1 KDCDEF input file DYNAMIC.RMS for UTM-D application RMS

* ADMINISTRATION programs *

PROGRAM KDCADM, COMP=ILCS
PROGRAM KDCDADM,COMP=ILCS
PROGRAM KDCPADM,COMP=ILCS

* RMS programs *

PROGRAM AVALRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM RESRRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM CNCLRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM AUTHRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM INITRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM SHUTRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM ENQRRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM HNDLEXIT, COMP=ILCS, LOAD-MODULE=RMS

* BOOKKEEPING programs *

PROGRAM BOOKKEEP, COMP=ILCS, LOAD-MODULE=BOOKKEEP

* PERSONNEL programs *

PROGRAM PERSNNL, COMP=ILCS, LOAD-MODULE=PERSNNL

* OFFICE programs *

PROGRAM OFFICE, COMP=ILCS, LOAD-MODULE=OFFICE

*** TAC statements ***

******* TAC BOOKKEEP *****
*
TAC BOOKKEEP, PROGRAM=BOOKKEEP, LOCK=7
******* TACS PERSNNL *****
*
TAC OPERSNNL, PROGRAM=PERSNNL, LOCK=2
TAC MPERSNNL, PROGRAM=PERSNNL, LOCK=3
TAC CPERSNNL, PROGRAM=PERSNNL, LOCK=4
******* TACS OFFICE *****
*
TAC OFFCHRG , PROGRAM=OFFICE , LOCK=5
TAC OFFADMIN, PROGRAM=OFFICE , LOCK=6
*
********* TACS RMS *****
*
TAC AVALRESP, PROGRAM=AVALRESP, LOCK=8
TAC RESRRESP, PROGRAM=RESRRESP, LOCK=8
TAC CNCLRESP, PROGRAM=CNCLRESP, LOCK=8
TAC AUTHRESP, PROGRAM=AUTHRESP, LOCK=8
TAC INITRESP, PROGRAM=INITRESP, LOCK=8
TAC SHUTRESP, PROGRAM=SHUTRESP, LOCK=8
TAC ENQRRESP, PROGRAM=ENQRRESP, LOCK=8
*** ADMINISTRATION DIALOG ***
DEFAULT TAC ADMIN=Y, PROGRAM=KDCADM

 557

TAC KDCTAC , LOCK=1
TAC KDCLTERM, LOCK=1
TAC KDCPTERM, LOCK=1
TAC KDCSWTCH, LOCK=1
TAC KDCSEND , LOCK=1
TAC KDCAPPL , LOCK=1
TAC KDCUSER , LOCK=1
TAC KDCDIAG , LOCK=1
TAC KDCLOG , LOCK=1
TAC KDCINF , LOCK=1
TAC KDCHELP , LOCK=1
TAC KDCLPAP , LOCK=1
TAC KDCLTAC , LOCK=1
TAC KDCSHUT , LOCK=1
TAC KDCTCL , LOCK=1
TAC TACDADM , PROGRAM=KDCDADM, LOCK=1
TAC TACPADM , PROGRAM=KDCPADM, LOCK=1
*** ADMINISTRATION ASYNCHRON ***
DEFAULT TAC TYPE=A
TAC KDCTACA , LOCK=1
TAC KDCLTRMA, LOCK=1
TAC KDCPTRMA, LOCK=1
TAC KDCSWCHA, LOCK=1
TAC KDCUSERA, LOCK=1
TAC KDCSENDA, LOCK=1
TAC KDCAPPLA, LOCK=1
TAC KDCDIAGA, LOCK=1
TAC KDCLOGA , LOCK=1
TAC KDCINFA , LOCK=1
TAC KDCHELPA, LOCK=1
TAC KDCLPAPA, LOCK=1
TAC KDCLTACA, LOCK=1
TAC KDCSHUTA, LOCK=1
TAC KDCTCLA , LOCK=1
*

*** USER statements ***

USER SUPERUSR, PERMIT=ADMIN, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
 , KSET=MASTER
USER UTMADMIN, PERMIT=ADMIN, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
 , KSET=UTMADMIN
USER CLERK , FORMAT=*BOOK, PASS='¤$*45jkl', PROTECT-PW=(8, MAX) -
 , KSET=BOOKKEEP
USER PRSNLMNG, FORMAT=*PERSNNL, PASS='78+lsd*/', PROTECT-PW=(8, MAX) -
 , KSET=MPRSNNL
USER MILLER , FORMAT=*PERSNNL, PASS='7HGFKK*/', PROTECT-PW=(, MED) -
 , KSET=OPRSNNL
USER COMP , FORMAT=*PERSNNL, PASS='7sdfKK*/', PROTECT-PW=(, MED) -
 , KSET=CPRSNNL
USER CHARGE , FORMAT=*TRAVEL, PASS='%aJ1df-+', PROTECT-PW=(, MED) -
 , KSET=OFFCHRG , LOCALE=(EN)
USER CHIEF , FORMAT=*TRAVEL, PASS='%aJs5f-+', PROTECT-PW=(, MED) -
 , KSET=OFFADMIN, LOCALE=(EN)
USER TPARIS , FORMAT=*TRAVEL, PASS='kj678+*', PROTECT-PW=(, MED) -
 , KSET=TRVAGNCY, LOCALE=(FR, EU)
USER TNEWYORK, FORMAT=*TRAVEL, PASS='56asdf$~', PROTECT-PW=(, MED) -
 , KSET=TRVAGNCY, LOCALE=(EN)
USER TMUNICH , FORMAT=*TRAVEL, PASS='%as3f$0', PROTECT-PW=(, MED) -

 558

 , KSET=TRVAGNCY, LOCALE=(DE, EU)
USER TLONDON , FORMAT=*TRAVEL, PASS='%4Jsdf-+', PROTECT-PW=(, MED) -
 , KSET=TRVAGNCY, LOCALE=(EN)
USER MANOFF , FORMAT=*BOOK, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
 , KSET=OFFADMIN

*** PTERM/LTERM statements ***

PTERM PRB22273, LTERM=PRINTER, PRONAM=PRO, PTYPE=T9021, CONNECT=YES
LTERM PRINTER, USAGE=O
PTERM RSO, LTERM=RSO, PTYPE=*RSO, PRONAM=*RSO, CONNECT=YES
LTERM RSO, USAGE=O

 559

6.7.2 KDCDEF statements for UTM-D application RMS

*** K D C D E F - S T A T E M E N T S ***
*** FOR UTM-D-PROGRAM "RMS" ***

ROOT RMSROOT
OPTION GEN=ALL
ACCOUNT ACC = YES
FORMSYS
MESSAGE MODULE = KCSMSGS, LOCALE=(EN)
MESSAGE MODULE = MSGSGER, LOCALE=(DE, EU)
MESSAGE MODULE = MSGSFRA, LOCALE=(FR, EU)
MAX LOCALE = (EN)
MAX KDCFILE = (RMS, DOUBLE) -
 ,APPLINAME = APRMS -
 ,APPLIMODE = S -
 ,TASKS = 10 -
 ,ASYNTASKS = 3 -
 ,GSSBS = 200 -
 ,PGPOOL = 2048 -
 ,CACHESIZE = (512,50,RES) -
 ,CONN-USERS = 50 -
 ,RECBUF = (10,1024) -
 ,KEYVALUE = 20 -
 ,LSSBS = 9 -
 ,LPUTBUF = 10 -
 ,LPUTLTH = 1948 -
 ,NRCONV = 1 -
 ,TERMWAIT = (600) -
 ,DPUTLIMIT1 = (363,0,0,0) -
 ,DPUTLIMIT2 = (1,0,0,0) -
 ,KB = 1024 -
 ,NB = 2048 -
 ,SPAB = 4096 -
 ,CLRCH = X'FF'

*** RESERVE statement to allow dynamic administration ***

RESERVE OBJECT=ALL

*** DATABASE CONTROL statements ***

DATABASE TYPE=UDS
DATABASE TYPE=XA, ENTRY=XAOSWD
*

*** SFUNC CONTROL statements ***

SFUNC F1 , TAC = INITRESP
SFUNC F2 , TAC = SHUTRESP
SFUNC F5 , TAC = ENQRRESP
SFUNC F6 , TAC = AUTHRESP
SFUNC F7 , TAC = RESRRESP
SFUNC F8 , TAC = AVALRESP
SFUNC F20, TAC = CNCLRESP

*** KSET statements ***

 560

KSET MASTER , KEYS=MASTER "SUPERUSER"
KSET UTMADMIN, KEYS=1 "Administrator of application"
KSET OPRSNNL , KEYS=2 "office personnel / Büropersonal"
KSET MPRSNNL , KEYS=3 "personnel manager / Personalchef"
KSET CPRSNNL , KEYS=4 "computer personnel / DV-Mitarbeiter"
KSET OFFCHRG , KEYS=5 "official in charge / Sachbearbeiter"
KSET OFFADMIN, KEYS=6 "administrator of office data"
KSET BOOKKEEP, KEYS=7 "book keeper"
KSET TRVAGNCY, KEYS=8 "travel agencies"

*** LOAD-MODULE statements ***

LOAD-MODULE BOOKKEEP, VERSION=@, LIB=DYNPROGLIB, LOAD-MODE=STARTUP
LOAD-MODULE PERSNNL , VERSION=@, LIB=DYNPROGLIB, LOAD-MODE=STARTUP
LOAD-MODULE RMS , VERSION=@, LIB=DYNPROGLIB, LOAD-MODE=STARTUP
LOAD-MODULE OFFICE , VERSION=@, LIB=DYNPROGLIB, LOAD-MODE=STARTUP

*** EXIT statements ***

EXIT PROGRAM=HNDLEXIT, USAGE=START
EXIT PROGRAM=HNDLEXIT, USAGE=SHUT
**
*** Read data which could be administered dynamically ***
**
* use create-control-statements if application ran before
* CREATE-CONTROL-STATEMENTS *ALL, TO-FILE = DYNAMIC.RMS.DATA -
* , FROM-FILE = COPIED.RMS.KDCA
OPTION DATA=DYNAMIC.RMS
*

*** TACCLASS statements ***

* not used

*** TLS statements ***

TLS TLSA

*** ULS statements ***

ULS ULSA
ULS ULSB

*** TPOOL statements ***

TPOOL LTERM=TP#, NUMBER=100, PRONAM=*ANY, PTYPE=*ANY, KSET=MASTER
TPOOL LTERM=UPICR, NUMBER=100, PRONAM=*ANY, PTYPE=UPIC-R, KSET=MASTER

*** UTMD statements ***

UTMD MAXJR = 200, APT=(1,2,3,10), CONCTIME=25, PTCTIME=0

*** Generation of syntax ***

ABSTRACT-SYNTAX EUROSI, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 3, 12) -
 , TRANSFER-SYNTAX = BER

* Generation of APPLICATION CONTEXTS ***

 561

*
* Without CCR
APPLICATION-CONTEXT EUROSIAC, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 4, 12) -
 , ABSTRACT-SYNTAX = (EUROSI)
*
* Include CCR
APPLICATION-CONTEXT EUOSICCR, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 4, 13) -
 , ABSTRACT-SYNTAX = (EUROSI, CCR)
*

*** OSI TP generation ***

*+---+
*| T R A V E L - Connections |
*+---+
ACCESS-POINT RMS, T-SEL=C'RMS', S-SEL=('SRMS',ASCII) -
 , P-SEL=('PRMS',ASCII), AEQ=1
*
* travel-agency MUNICH <========> RMS
OSI-CON MUNICH, LOCAL-ACCESS-POINT=RMS, OSI-LPAP=MUNICH -
 , N-SEL=C'HOST0001', T-SEL=C'TRAV', S-SEL=(C'STRV',ASCII) -
 , P-SEL= (C'PTRV',ASCII)
*
* travel-agency PARIS <========> RMS
OSI-CON PARIS , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=PARIS -
 , N-SEL=C'ISO09', T-SEL=C'TRAV', S-SEL=(C'STRV',ASCII) -
 , P-SEL=(C'PTRV',ASCII)
*
* travel-agency NEWYORK <========> RMS
OSI-CON NEWYORK, LOCAL-ACCESS-POINT=RMS, OSI-LPAP=NEWYORK -
 , N-SEL=C'ISO10', T-SEL=C'TRAV', S-SEL=('2',ASCII) -
 , P-SEL=('2',ASCII)
*
* travel-agency LONDON <========> RMS
OSI-CON LONDON , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=LONDON -
 , N-SEL=C'ISO06', T-SEL=C'TRAV', S-SEL=('2',ASCII) -
 , P-SEL=('2',ASCII)
*
OSI-LPAP MUNICH , ASS-NAMES=MUNICH, ASSOCIATIONS=4, CONNECT=0 -
 , CONTWIN=0, APPLICATION-CONTEXT=EUOSICCR -
 , APT=(1,2,3,21),AEQ=1, KSET=TRVAGNCY
OSI-LPAP PARIS , ASS-NAMES=PARIS, ASSOCIATIONS=4, CONNECT=0 -
 , CONTWIN=0, APPLICATION-CONTEXT=EUOSICCR -
 , APT=(1,2,3,22), AEQ=1, KSET=TRVAGNCY
OSI-LPAP NEWYORK, ASS-NAMES=NEWYORK, ASSOCIATIONS=1, CONNECT=0 -
 , CONTWIN=0, APPLICATION-CONTEXT=EUOSICCR -
 , APT=(1,2,3,23), AEQ=1, KSET=TRVAGNCY
OSI-LPAP LONDON , ASS-NAMES=LONDON, ASSOCIATIONS=1, CONNECT=0 -
 , CONTWIN=0, APPLICATION-CONTEXT=EUOSICCR -
 , APT=(1,2,3,24), AEQ=1, KSET=TRVAGNCY
*
*+---+
*| From RMS to all servers |
*+---+
* RMS <========> Server
*
OSI-LPAP BANK , ASS-NAMES=BANK, ASSOCIATIONS=4, CONNECT=4 -
 , CONTWIN=4, APPLICATION-CONTEXT=EUOSICCR -

 562

 , APT=(1,2,3,30), AEQ=1
OSI-LPAP GOLF , ASS-NAMES=GOLF, ASSOCIATIONS=4, CONNECT=4 -
 , CONTWIN=4, APPLICATION-CONTEXT=EUOSICCR -
 , APT=(1,2,3,30), AEQ=2
OSI-LPAP HOTEL , ASS-NAMES=HOTEL, ASSOCIATIONS=4, CONNECT=4 -
 , CONTWIN=4, APPLICATION-CONTEXT=EUOSICCR -
 , APT=(1,2,3,30), AEQ=3
OSI-LPAP AIRLINE, ASS-NAMES=FLIGHT, ASSOCIATIONS=4, CONNECT=4 -
 , CONTWIN=4,APPLICATION-CONTEXT=EUOSICCR -
 , APT=(1,2,3,30), AEQ=4
*
LTAC BANK, LPAP=BANK, RTAC=BANK, STATUS=ON, TYPE=D
*
OSI-CON BANK , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=BANK -
 , N-SEL=C'HOST0001', T-SEL=C'BANK', S-SEL=('SBNK',ASCII) -
 , P-SEL=(C'PBNK',ASCII)
OSI-CON GOLF , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=GOLF -
 , N-SEL=C'HOST0001', T-SEL=C'GOLF', S-SEL=('SGLF',ASCII) -
 , P-SEL=('PGLF',ASCII)
OSI-CON HOTEL , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=HOTEL -
 , N-SEL=C'HOST0001', T-SEL = C'HOTL' -
 , S-SEL = ('SHTL',ASCII), P-SEL = ('PHTL',ASCII)
OSI-CON AIRLINE, LOCAL-ACCESS-POINT=RMS, OSI-LPAP=AIRLINE -
 , N-SEL=C'HOST0001', T-SEL = C'FLGH' -
 , S-SEL=('SFLG',ASCII), P-SEL=('PFLG',ASCII)
END

 563

6.7.3 KDCDEF input file DynamicTravel for UTM application TRAVEL

* BANK program *

PROGRAM BANK, COMP=C, SHARED-OBJECT=BANK

* TRAVEL programs *

PROGRAM SIGN1, COMP=C
PROGRAM SIGN2, COMP=C
PROGRAM BDTAC, COMP=C
PROGRAM TRRECEIV, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM STRTEX, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM MMENUE, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO1, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO2, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO3, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO4, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO5, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO6, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM CANCEL, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM CANCALL, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINQU, COMP=C, SHARED-OBJECT=TRAVEL
**** Administration
PROGRAM KDCADM, COMP=C
PROGRAM KDCDADM, COMP=C
PROGRAM KDCPADM, COMP=C

* TACS BANK *

TAC BANK, PROGRAM=BANK, LOCK=5

* TACS TRAVEL AGENCY *

TAC KDCBADTC, PROGRAM=BDTAC, TYPE=D
TAC KDCSGNTC, PROGRAM=SIGN1, TYPE=D
TAC SIGNON2 , PROGRAM=SIGN2, TYPE=D
TAC MMENUE , PROGRAM=MMENUE , LOCK=5
TAC INFO1 , PROGRAM=TRINFO1 , LOCK=5
TAC INFO2 , PROGRAM=TRINFO2 , LOCK=5
TAC INFO3 , PROGRAM=TRINFO3 , LOCK=5
TAC INFO4 , PROGRAM=TRINFO4 , LOCK=5
TAC INFO5 , PROGRAM=TRINFO5 , LOCK=5
TAC INFO6 , PROGRAM=TRINFO6 , LOCK=5
TAC TRRECEIV, PROGRAM=TRRECEIV, LOCK=5
TAC CANCEL , PROGRAM=CANCEL , LOCK=5, CALL=NEXT, TYPE=D
TAC CANCALL , PROGRAM=CANCALL , LOCK=5, CALL=FIRST, TYPE=D
TAC INQUIRY , PROGRAM=TRINQU , LOCK=5
*
**** ADMINISTRATION DIALOG ***
TAC KDCTAC , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCLTERM, LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCPTERM, LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCSWTCH, LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCSEND , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCAPPL , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCUSER , LOCK=1, ADMIN=Y, PROGRAM=KDCADM

 564

TAC KDCDIAG , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCLOG , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCINF , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCHELP , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCLPAP , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCLTAC , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCSHUT , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCTCL , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC TACDADM , PROGRAM=KDCDADM, LOCK=1, ADMIN=Y
TAC TACPADM , PROGRAM=KDCPADM, LOCK=1, ADMIN=Y
*** ADMINISTRATION ASYNCHRON ***
TAC KDCTACA , LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCLTRMA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCPTRMA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCSWCHA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCUSERA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCSENDA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCAPPLA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCDIAGA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCLOGA , LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCINFA , LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCHELPA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCLPAPA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCLTACA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCSHUTA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCTCLA , LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
*

*** USER statements ***

USER SUPERUSR, PERMIT=ADMIN, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
 , KSET=MASTER
USER UTMADMIN, PERMIT=ADMIN, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
 , KSET=UTMADMIN
USER CHARGE1 , PASS='%aJ1df-+', PROTECT-PW=(,MED) -
 , KSET=OFFCHRG
USER CHARGE2 , PASS='%aJ1df-+', PROTECT-PW=(, MED) -
 , KSET=OFFCHRG
* .

*** PTERM/LTERM statements ***

PTERM PRINTX, LTERM=PRINTER, PTYPE=PRINTER, CONNECT=YES
LTERM PRINTER, USAGE=O

 565

6.7.4 KDCDEF statements for UTM application TRAVEL

*** K D C D E F - S T A T E M E N T S ***
*** FOR UTM-PROGRAM "TRAVEL" ***

ROOT TRAVROOT
OPTION GEN=ALL
FORMSYS
MESSAGE MODULE = KCSMSGS
MAX KDCFILE = (TRAVFILE, DOUBLE) -
 ,APPLINAME = APTRAVEL -
 ,APPLIMODE = S -
 ,TASKS = 7 -
 ,ASYNTASKS = 3 -
 ,GSSBS = 200 -
 ,PGPOOL = (2048) -
 ,CACHESIZE = (512,50) -
 ,CONN-USERS = 50 -
 ,TRACEREC = 30000 -
 ,RECBUF = (10,1024) -
 ,KEYVALUE = 20 -
 ,LSSBS = 9 -
 ,LPUTBUF = 10 -
 ,LPUTLTH = 1948 -
 ,NRCONV = 1 -
 ,TERMWAIT = (600) -
 ,DPUTLIMIT1 = (363,0,0,0) -
 ,DPUTLIMIT2 = (1,0,0,0) -
 ,KB = 1024 -
 ,NB = 2048 -
 ,SPAB = 4096 -
 ,CLRCH = X'FF' -
 ,SEMARRAY =(00001221,5) -
 ,IPCSHMKEY = 00012210 -
 ,KAASHMKEY = 00012220 -
 ,CACHESHMKEY = 00012230 -
 ,OSISHMKEY = 00012244 -
 ,XAPTPSHMKEY = 00012254
**
*** Read data which can be administrated dynamically ***
**
* if application ran before use create-control-statements
* CREATE-CONTROL-STATEMENTS *ALL, TO-FILE = dynamicTravel -
* , FROM-FILE = TRAVFILE/copied.KDCA
OPTION DATA=DynamicTravel
*

*** RESERVE statement to allow dynamic administration ***

RESERVE OBJECT=ALL

*** RMXA ***

RMXA XASWITCH=xaoswd

*** SHARED-OBJECT statements ***

 566

SHARED-OBJECT TRAVEL, LIB=DYNPROGLIB, LOAD-MODE=STARTUP
SHARED-OBJECT BANK, LIB=DYNPROGLIB, LOAD-MODE=STARTUP

*** KSET statements ***

KSET MASTER , KEYS=MASTER "SUPERUSER"
KSET UTMADMIN, KEYS=1 "Administrator of application"
KSET OFFCHRG , KEYS=5 "official in charge / Sachbearbeiter"

*** TPOOL statements ***

TPOOL LTERM=TP#, NUMBER=100, PTYPE=TTY, KSET=MASTER
TPOOL LTERM=UPICR, NUMBER=100, PTYPE=UPIC-R, KSET=MASTER

*** Generation of syntax ***

ABSTRACT-SYNTAX EUROSI, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 3, 12) -
, TRANSFER-SYNTAX = BER

* Generation of APPLICATION CONTEXTS ***

*
* Without CCR
APPLICATION-CONTEXT EUROSIAC, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 4, 12) -
 , ABSTRACT-SYNTAX = (EUROSI)
*
* Include CCR
APPLICATION-CONTEXT EUOSICCR, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 4, 13) -
 , ABSTRACT-SYNTAX = (EUROSI, CCR)
*

*** OSI TP generation ***

*** UTMD statements ***

UTMD MAXJR = 200, APT=(1,2,3,21), CONCTIME=25, PTCTIME=0
*+---+
*| R M S - Connections |
*+---+
ACCESS-POINT TRAVEL, T-SEL=C'TRAV', S-SEL= (C'STRV',ASCII) -
 , P-SEL= (C'PTRV',ASCII), AEQ=1 -
 , LISTENER-PORT=30003, T-PROT=RFC1006 , TSEL-FORMAT=T
*+---+
*| From travel agency to RMS |
*+---+
* travel-agency <========> RMS
OSI-CON RMS , LOCAL-ACCESS-POINT=TRAVEL, OSI-LPAP=RMS,N-SEL=C'HOST0001'-
 ,T-SEL=C'RMS',S-SEL= (C'SRMS',ASCII), P-SEL= (C'PRMS',ASCII)-
 ,LISTENER-PORT=102, T-PROT=RFC1006, TSEL-FORMAT=T
OSI-LPAP RMS, ASS-NAMES=RMS, ASSOCIATIONS=4, CONNECT=0, CONTWIN=4 -
 , APPLICATION-CONTEXT=EUOSICCR, APT=(1,2,3,10),AEQ=1
*
*+---+
*| B A N K - Connections |
*+---+
SESCHA PLUC, PLU=Y, PACCNT=0, CONNECT=Y
LPAP LPBANK, SESCHA=PLUC
BCAMAPPL SMP30041 -

 567

 ,T-PROT=RFC1006 -
 ,LISTENER-PORT=30004,TSEL-FORMAT=T
* Connection 1 for sending ---> BANK---------------*
CON SMP30114,PRONAM=local,BCAMAPPL=SMP30041,LPAP=LPBANK -
 ,T-PROT=RFC1006 -
 ,LISTENER-PORT=30001,TSEL-FORMAT=T
LSES SMP30141,RSES=SMP30141,LPAP=LPBANK
* Connection 2 for sending ---> BANK---------------*
CON SMP30214,PRONAM=local,BCAMAPPL=SMP30041,LPAP=LPBANK -
 ,T-PROT=RFC1006 -
 ,LISTENER-PORT=30001,TSEL-FORMAT=T
LSES SMP30241,RSES=SMP30241,LPAP=LPBANK
* Connection 3 for sending ---> BANK---------------*
CON SMP30314,PRONAM=local,BCAMAPPL=SMP30041,LPAP=LPBANK -
 ,T-PROT=RFC1006 -
 ,LISTENER-PORT=30001,TSEL-FORMAT=T
LSES SMP30341,RSES=SMP30341,LPAP=LPBANK

* LTAC's -------> BANK

LTAC bank, RTAC=BANK, WAITTIME=(10,30), LPAP=LPBANK

* LTAC's -------> RMS

LTAC AVALRESP, LPAP=RMS
LTAC RESRRESP, LPAP=RMS
LTAC CNCLRESP, LPAP=RMS
LTAC AUTHRESP, LPAP=RMS
LTAC INITRESP, LPAP=RMS
LTAC SHUTRESP, LPAP=RMS
LTAC ENQRRESP, LPAP=RMS
*
END

 568

6.8 KDCDEF messages

The KDCDEF generation tool logs the defined parameters on SYSLST (BS2000 systems) or on (Unix, Linux stdout
and Windows systems). It also outputs UTM messages relating to execution of the program, with message numbers
ranging from K400 to K549. Apart from UTM messages K401, K513 and K514 all KDCDEF messages are output
both to SYSLST and to SYSOUT or to and to . UTM messages K401, K513 and K514 is output only to stderr stdout
SYSOUT or .stderr

On Unix and Linux systems KDCDEF uses NLS message catalogs to output messages.

UTM messages relating to incorrect statements are preceded by the number of the incorrect statement. The
openUTM manual ”Messages, Debugging and Diagnostics” lists all UTM messages together with information on the
corrective actions to be performed.

 569

7 Changing the configuration of an application dynamically

This chapter describes what to note in the KDCDEF generation of the application if you want to use the dynamic
configuration functions in your application. On the program interface, openUTM provides KDCADMI functions as
well as functions available at the administration workstation WinAdmin or the web application WebAdmin with which
you can enter objects in the configuration of the application or delete them from the configuration while the
application is running. This increases the availability of UTM applications, because a regeneration of the application
with KDCDEF, which necessitates an interruption to operation, is required much less often. In order to use the
functions for dynamic configuration, you must reserve table locations in the object tables of openUTM when
generating with the KDCDEF control statement RESERVE.

This means that services as well as clients and printers can be entered dynamically in the configuration with the
assigned LTERM partners, and also means that user IDs can be created dynamically. All of these objects can also
be deleted dynamically.

You can dynamically create and delete the following objects:

transaction codes and TAC queues

program units and VORGANG exits (only in applications with load modules, shared objects or DLLs)

user IDs

LTERM partners

key sets

local service names

transport connections to LU6.1 partner applications and LU6.1 session names

communication partners that are TS applications, UPIC clients or terminals

printers.

To be able to use the functions of dynamic configuration, you must create administration programs or use the
openUTM components WinAdmin or WebAdmin. By calling KC_CREATE_OBJECT on the program interface for
administration you can enter new objects in the configuration, and by calling KC_DELETE_OBJECT you can delete
objects from the configuration. The openUTM manual “Administering Applications” describes what to note when
creating administration programs for dynamically entering objects and when deleting objects from the configuration
of the application.

To allow you to incorporate objects into the configuration of your UTM application dynamically, you must make
certain preparations (see and "Reserving locations in the KDCFILE object tables" "Prerequisites for entering objects

) when generating the application with KDCDEF.dynamically"

No preparations are necessary in the KDCDEF generation for deleting objects from the configuration.

The dynamic configuration functions can also be used in full in the function variant UTM-F. openUTM logs
all changes to the configuration in the KDCFILE. The modified configuration data then also remains
available for the next application run, as with UTM-S.

i

 570

7.1 Reserving locations in the KDCFILE object tables

The configuration data of a UTM application is stored in the object tables of the KDCFILE, which is created in the
KDCDEF generation of the application. These object tables can only be expanded dynamically insofar as free table
locations are available. For this reason, free table locations for objects you do not want to incorporate into the
application configuration until the application is running, must still be reserved when generating with the KDCDEF
statement RESERVE. You can reserve table locations for the following UTM objects:

UTM object Object
type

User IDs USER

TS applications, UPIC clients, terminals and printers PTERM

LTERM partners LTERM

Program units and VORGANG exits PROGRAM

Transaction codes and TAC queues TAC

Transport connections to LU6.1 partner applications CON

LU6.1 session names LSES

Key sets KSET

Local service names for remote applications LTAC

With the RESERVE statement in section , you define the "RESERVE - reserve table locations for UTM objects"
number of empty table locations to be created for an object type; this corresponds to the number of individual
objects of the respective object type that can be configured dynamically.

The number of table locations that can be created for each object type is limited by the number of names that can
be generated. See also the table in section ."Number of names"

The empty table locations in the object tables are reserved for specific object types, i.e. a table location you
reserved for an LTERM partner for example, cannot be occupied by a transaction code, etc.

During the application run, the number of objects of a particular type that can be configured dynamically
corresponds to the number of empty table locations you reserved with
KDCDEF. Deleting another object of the same type does not immediately release a table location for a new object.

User IDs are one exception to this. You can delete user IDs in one of two ways, "delayed" or "immediately". If a user
ID is deleted with "delayed", then the table locations remain reserved (as for the other types of objects). If the user
ID is removed "immediately" from the configuration, the table location for this user ID is released and can be used
immediately for a new user ID.

 571

Examples

RESERVE OBJECT=LTERM, NUMBER=100

This means that up to 100 LTERM partners can be entered dynamically in the configuration.

RESERVE OBJECT=LTERM, PERCENT=200

In this case, the number of reserved table locations was defined relative to the number of statically generated
LTERM partners. Twice as many (200%) LTERM partners can be created dynamically as were entered statically in
the KDCDEF generation. If 50 LTERM partners were entered in the KDCDEF generation, another 100 LTERM
partners can be entered dynamically.

RESERVE OBJECT=ALL, NUMBER=100

This means that 100 objects can be entered dynamically for each object type, i.e. 100 user IDs, 100 LTERM
partners, etc.

RESERVE OBJECT=USER, NUMBER=0

This statement means that the number of objects of the specified type (here USER) can be increased dynamically
up to the maximum value that can be generated.

Please note the following when reserving table locations with RESERVE: openUTM internally creates a
user ID for each UPIC client and each TS application entered dynamically in the configuration. Therefore,
in UTM applications generated with user IDs (the KDCDEF generation contains at least one USER
statement), an additional table location for user IDs must be reserved for each client of type APPLI,
SOCKET, UPIC-R or UPIC-L to be entered dynamically. These table locations are not released when the
clients are deleted (corresponds to a “delayed“ delete). In applications without user IDs, these table
locations are reserved internally by openUTM.

i

Due to the large amount of space required by the tables, it is advisable to specify a value 0 for !=

NUMBER in order to reduce the space requirement of the application.
i

 572

7.2 Prerequisites for entering objects dynamically

This section describes what objects you must generate statically beforehand and what prerequisites must be met
before you can dynamically enter program units, VORGANG exits, transaction codes, user IDs and LU6.1
connections.

Note that the statically generated limit values also apply for dynamically generated objects, e.g. the value defined
with MAX ...,KEYVALUE= applies to dynamically generated key sets.

Generating lock codes, BCAMAPPL names, formatting system and LPAP partners

The following objects must be statically generated in KDCDEF:

The lock codes you want to assign to transaction codes and LTERM partners as data access control must lie
within the range between 1 and the maximum value defined with MAX,...KEYVALUE= . At the same time, number
you must generate the key sets that contain the key codes corresponding to the lock codes.

The lock/key code concept is described in detail in the openUTM manual “Concepts und Functions”.

All names of the local application (BCAMAPPL names) via which the connections are to be established to clients
or printers, must be generated with KDCDEF. Remember especially that a separate BCAMAPPL name must be
generated for the connection of TS applications via the socket interface (PTYPE=SOCKET).

If start formats are to be assigned to user IDs and LTERM partners, a format handling system must be generated
with the FORMSYS statement in the KDCDEF generation. If #formats are used as start formats, a sign-on
service must also be generated.

If you want to enter LU6.1 connections or session names dynamically, the LPAP partners and the session
characteristics (SESCHA statement) must be statically generated.

Prerequisites for program units and VORGANG exits

New program units and VORGANG exits can only be incorporated dynamically into the configuration of the
application if the UTM application

BS2000 systems:

The application was generated with load modules (KDCDEF generation with LOAD-MODULE statements), and
the functionality of the BLS must be used for linking and loading the application program.

The new program unit must be linked in a load module which was defined in the KDCDEF generation. This load
module must not be linked statically in the application program (LOAD-MODE=STATIC), because this type of
load module cannot be exchanged dynamically.

Unix , Linux and Windows systems:

The application was generated with shared objects or DLLs (KDCDEF generation with SHARED-OBJECT
statements).
The new program unit must be linked in a shared object or DLL which was defined in the KDCDEF generation.

At least one program unit must be generated statically with KDCDEF for each programming language in which you
want to create program units of your application. Only then the language connection modules and runtime systems
are required for operation contained in the application program.

 573

Prerequisites for transaction codes

Please note the following for the dynamic configuration of transaction codes:

Transaction codes for program units that use an X/Open program interface can only be created dynamically if at
least one transaction code has been configured for an X/Open program unit in the KDCDEF generation (TAC
statement with API KDCS).!=

If you want to divide the transaction codes into TAC classes to control job processing, then you must create at
least one TAC class in the KDCDEF generation. TAC classes can be created in two ways in the KDCDEF
generation:

You generate a transaction code, and you specify a TAC class in the TACCLASS operand (TAC statement)
that is then implicitly created by KDCDEF.

If you run the application priority control (the application does not contain any TAC-PRIORITIES without
statements), then you can create the TAC classes by writing a TACCLASS statement.

If you created a TAC class in the KDCDEF generation, then the transaction codes you enter dynamically can be
assigned to any TAC class between 1 and 16. The TAC classes are then created implicitly by openUTM. These
TAC classes can be administered.

If the application is generated TAC-PRIORITIES, then openUTM assigns the process numbers (TASKS) without
for implicitly created TAC classes as follows: 1 for dialog TAC classes (classes 1 through 8)
and 0 for asynchronous TAC classes (classes 9 through 16).

Asynchronous TAC classes (9 through 16) are only created by openUTM, however, if you have set ASYNTASKS
> 0 in the MAX statement in the generation.

In applications with TAC classes priority control, you can only dynamically create transaction codes that without
start the program unit runs with blocking calls when TAC classes have been statically generated with
PGWT=YES (dialog and/or asynchronous TAC classes).
Dialog and asynchronous TAC classes with PGWT=YES must therefore be generated explicitly in the KDCDEF
generation with TACCLASS statements.
You must also set MAX TASKS-IN-PGWT > 0.

In applications priority control (with TAC-PRIORITIES statements) , you can only dynamically create with
transaction codes that start the program unit runs with blocking calls (TAC ...,PGWT=YES) when MAX TASKS-
IN-PGWT>0 was set in the KDCDEF generation.

Prerequisites for user IDs

User IDs can only be entered dynamically if your application is generated with user IDs. In this case, your KDCDEF
generation must contain at least one USER statement. At least one user ID must be configured with administration
authorization, so that the calls for dynamic administration can be executed under this user ID.

If user IDs with ID cards are also to be configurable, the percentage of table locations that can be occupied by user
IDs with ID card must be explicitly specified when reserving the table locations with the RESERVE statement.

BS2000 systems:
For program units compiled with ILCS-capable compilers (COMP=ILCS), it is sufficient to generate one
program unit with COMP=ILCS in the KDCDEF generation. It is not necessary to issue PROGRAM
statements for the various programming languages.

i

 574

You must generate the length of the ID card information statically in the KDCDEF generation using the MAX
statement for user IDs with ID cards:
MAX...,CARDLTH=length

 575

8 The tool KDCUPD - updating the KDCFILE

You can use the KDCUPD tool after regenerating your UTM application to transfer important user data and
administration information of the production application from the old KDCFILE to the new one. In addition, you can
use the KDCUPD update tool to switch from an older openUTM version to the current new openUTM version
without losing the data from the previous production application in the KDCFILE.

The same applies to UTM cluster applications on Unix, Linux and Windows systems, both for the KDCFILEs of the
node applications and for the user data and management information in the UTM cluster files created during
generation.

You can use the KDCUPD statement TRANSFER to control which data are to be transferred. KDCUPD
automatically carries out a consistency check for the KDCFILE files prior to transfer.

You can use the KDCUPD statement CHECK to check the completeness and consistency of the KDCFILE files of
an application without transferring data.

In the case of UTM cluster applications, a distinction is made in the KDCUPD run depending on whether
the data of a KDCFILE or the data from the UTM cluster files is to be transferred. For details, see "Update

.generation for UTM cluster applications"

i

 576

8.1 Overview

This section provides an overview of

Version upgrades

Prerequisites

Data backups

Scope of transfer, i.e. what data is transferred

 577

8.1.1 Supported upgrades

You can use the KDCUPD utility program to transfer data from applications from openUTM versions 6.3, 6.4, 6.5
and 7.0.

The KDCUPD utility program from openUTM V7.0 also supports the following upgrades:

openUTM V6.3 -> openUTM V7.0
openUTM V6.4 -> openUTM V7.0
openUTM V6.5 -> openUTM V7.0
openUTM V7.0 -> openUTM V7.0

On Unix, Linux and Windows systems, KDCUPD in V7.0 also supports a transfer from 32-bit to 64-bit architecture,
see chapter " ".Update generation with transfer from 32-bit to 64-bit architecture

When changing versions, you must create a new KDCFILE with the KDCDEF of the new openUTM version.

KDCUPD does not support a change from a newer openUTM to an older one.

For UTM applications on Unix , Linux and Windows systems applies:

An upgrade from a standalone UTM application to a UTM cluster application or vice versa is only possible within
Version 7.0. If you want to change from a standalone UTM application of an previous version to a V7.0 UTM cluster
application then you must first convert the standalone UTM application from the previous version to V7.0 before you
can convert it to a cluster application in V7.0.

 578

8.1.2 Prerequisite for using KDCUPD

The for running KDCUPD are:prerequisites

You have used the KDCDEF to create a new KDCFILE.

If the application is a UTM cluster application and if a cluster update is to performed then it is necessary to use
the KDCDEF generation tool to create new UTM cluster files as well as the new KDCFILE.

The application was terminated normally (e.g. with the administration command KDCSHUT N, W or G). If the
application was terminated abnormally, then you must execute a warm start beforehand and then terminate the
application normally. In the case of a cluster update, all the node applications must have been terminated
normally.

In the case of a cluster update, all the node applications must have been terminated normally.

 579

8.1.3 Backing up data

Before you start your work, please read the following notes:

There are a number of ways of avoiding overwriting the KDCFILE:

As shown here, you create the new KDCFILE before terminating the application. You use the same base name,
but set up the KDCFILE under another ID (BS2000 systems) or in another directory (Unix, Linux and Windows
systems). After you terminate the application, you must rename or copy the files for the subsequent KDCUPD
run.

First terminate the application and then rename the old KDCFILE and all associated files by changing the base
name. Alternatively, copy the old KDCFILE and all associated files to a different ID (BS2000 systems) or to a
different directory (Unix, Linux and Windows systems). Then start the KDCDEF run to generate the new
KDCFILE with the same base name.
Specify the following in the subsequent KDCUPD run:

KDCFILE OLD= base_name-renamed/copied-KDCFILE

KDCFILE NEW= base_name-new-KDCFILE

Use a new base name for the new KDCFILE and work with this name in the KDCUPD run. When you
subsequently start the application, you can either use the new base name or continue to use the previous base
name after copying and renaming the files.

CAUTION!

When you create the new KDCFILE with KDCDEF, you must ensure that you do not accidentally
and thus destroy important application data!overwrite the old KDCFILE

The records in user log files (USLOG files) must be saved before the application is restarted because
openUTM overwrites the current USLOG file generation from the beginning after a KDCUPD run.

!

 580

8.1.4 What data does KDCUPD transfer?

This section lists the data that is transferred, indicates the dependencies of the UTM variants and generation
parameters and describes in greater detail which user data is always transferred and which it might sometimes not
be possible to transfer.

Transfer in standalone applications

The data that KDCUPD transfers from the old KDCFILE to the new one depends on the variant of the UTM
application, see also section : "Transfer of user data"

UTM-F applications

KDCUPD transfers certain changes to the administration data:

Passwords and RSA keys

if data compression is permitted by means of the generation: information whether data compression is
enabled.

locales of users and version numbers of load modules on BS2000 systems

version number of shared objects on Unix and Linux systems

version number of DLLs on Windows systems.

All available RSA keys of levels 1 to 4 are also transferred in a KDCUPD run. Active keys and keys created using
administration facilities but not yet activated are transferred. If, in the old KDCFILE, there are no RSA keys in an
encryption level, then nothing is transferred for this level. It can therefore happen that RSA keys generated for
this encryption level in the new KDCFILE are not overwritten with 0.

UTM-S applications

For UTM-S applications, KDCUPD transfers all changes as for UTM-F applications and in addition transfers
administration data and current user data such as global secondary storage areas, asynchronous messages,
TLS or ULS areas, and service-specific information etc. from the previous KDCFILE to a newly generated
KDCFILE. In the data transfer, the KDCUPD checks whether the owner, the destination or the initiator of the data
is missing in the new KDCFILE or if it was deleted by the administration in the previous application run. In this
case, KDCUPD does not transfer the data and logs this event.

Transfer in UTM cluster applications on Unix, Linux and Windows systems

In UTM cluster applications, the scope of the transferred data also depends on whether you are performing a node
update or a cluster update.

Cluster update

When a cluster update is performed in a UTM cluster application, the management and user data for the GSSB,
ULS and the service-specific information from the previous UTM cluster files is imported into the new UTM cluster
files irrespective of the variant of the UTM application. If data cannot be transferred, for example because the owner
of the service specific data is not present in the new UTM cluster files, then this is logged.

Node update

In the case of a node update, the data that KDCUPD transfers from the old to the new KDCFILE depends on the
variant of the UTM application:

 581

UTM-F applications

KDCUPD transfers certain changes to the administration data:

RSA keys

if data compression is permitted by means of the generation: information whether data compression is
enabled.

version number of shared objects on Unix and Linux systems

version number of DLLs on Windows systems.

All available RSA keys of levels 1 to 4 are transferred in a KDCUPD run. Active keys and keys created using
administration facilities but not yet activated are transferred. If, in the old KDCFILE, there are no RSA keys in an
encryption level, then nothing is transferred for this level. It can therefore happen that RSA keys generated for
this encryption level in the new KDCFILE are not overwritten with 0.

UTM-S applications

For UTM-S applications, KDCUPD transfers all changes as for UTM-F applications and in addition transfers
administration data and current user data such as asynchronous messages, TLS areas from the previous
KDCFILE to a newly generated KDCFILE. In the data transfer, the KDCUPD checks whether the owner, the
destination or the initiator of the data is missing in the new KDCFILE or if it was deleted by the administration in
the previous application run. In this case, KDCUPD does not transfer the data and logs this event.

For further details, see . The effect of the individual parameters in "Update generation for UTM cluster applications"
node updates and cluster updates can be found in the description of the TRANSFER statement, see "TRANSFER -

.control the data transfer of the user data"

 582

8.1.4.1 Changing generation parameters

KDCUPD compares the generations of the two KDCFILEs. Depending on the results of these checks, KDCUPD
cannot transfer some items of data and in some cases must reject transfer completely.

If the KDCUPD run detects that the database configurations of the two generations are incompatible then an error
message is output and the KDCUPD run is terminated abnormally.

No transfer on BS2000 systems

When generating new KDCFILE the user is basically permitted to change all the generation parameters compared
with the old KDCFILE. However, there are some exceptions which apply only to UTM-S applications:

The entire transfer is denied by KDCUPD fif Old KDCFILE generated with formatting, new KDCFILE without
because running an application with the KDCFILE would lead to errors.

If the database generations have changed in terms of the number and sequence of the databases, no open
services are transferred.
Exception:
If more databases are generated in the new generation than in the old one and the existing sequence from the
old generation is retained, everything is transferred.

In case of a version change the entire transfer is rejected, if the database generations have changed in terms of
the number and sequence of the databases.

In the case of the UTM-F variant, differences of this kind do not prevent KDCUPD from carrying out the transfer.

Limited transfer

There are generation differences between the old and new KDCFILE which in principle permit transfer, but for which
individual messages or data areas cannot be transferred. KDCUPD logs events such as these to SYSOUT or
SYSLST (on BS2000 systems) or to stdout or stderr (on Unix, Linux and Windows systems) and continues transfer
to the new KDCFILE.

Examples

If an LTERM partner is no longer defined in the new KDCFILE, KDCUPD cannot transfer any FPUT messages
and TLS areas for these LTERM partners.

If the communication area of a dialog service is larger than the maximum communication area length (operand
MAX KB=...) in the new KDCFILE, KDCUPD rejects transfer of this service.

In general, the generation values of the new KDCFILE apply when transferring with KDCUPD.

 583

8.1.4.2 Transfer of user data

The transfer of user data can be controlled using the KDCUPD TRANSFER statement.

Please note that in the case of standalone applications as well as of node updates in UTM cluster applications, the
following remarks only apply to UTM-S.

User data always transferred by KDCUPD

KDCUPD always transfers the following data of a KDCFILE, irrespective of the specifications in the TRANSFER
control statement:

asynchronous messages in USER queues when the user, generating LTERM, and generating USER also exist
in the new KDCFILE

User data which KDCUPD transfers optionally

The TRANSFER control statement allows you to control which of the following data KDCUPD is to transfer to the
new KDCFILE or the UTM cluster files:

Dialog services started by a terminal or a TS application of type APPLI.

Dialog services started by a UPIC client.

Dialog services started by a TS application of type SOCKET.

Passwords for the user IDs and - if generated - the validity period remaining, minimum wait time until the next
password change, and the password history

Secondary storage area GSSB, TLS, and ULS

Queued output jobs

Queued messages to local asynchronous services and TAC queues as well as open asynchronous services

Queued messages to local partners

Queued messages to remote partners

Queued messages to temporary queues

Current version number of the loadable objects (load objects on BS2000 systems, shared objects on Unix and
Linux systems, DLLs on Windows systems)

The locales of users (only on BS2000 systems)

When services are transferred, all service-specific data is transferred:

Local secondary storage area data

Saved dialog messages

Communication areas

Batch stacked services (only for standalone applications)

Data not transferred by KDCUPD

The following is not transferred by KDCUPD:

Objects which have been added with the administration function such as new USERs.

Data belonging to open, distributed services.
KDCUPD does not issue a message that this data was not transferred!

 584

Open dialog services of users when the user does not exist in the new KDCFILE.

Open asynchronous services when the user who started the service or the LTERM or (OSI-)LPAP partner from
which the asynchronous service was started does not exist in the new KDCFILE.

Queued messages when the destination of the message, the user who generated the message, or the LTERM or
(OSI-)LPAP partner from which the asynchronous service was started does not exist in the new KDCFILE.

The TLS or ULS storage areas when the corresponding LTERM, (OSI-)LPAP, the associated USER, or the
associated session or association does not exist in the new KDCFILE.

Service stacks in UTM cluster applications.

 585

1.

2.

3.

4.

5.

8.2 Update generation for standalone UTM applications

Steps

Steps 1 to 5 on the following pages explain how to use the tool KDCUPD to update the KDCFILE.

Create the new KDCFILE with KDCDEF

Terminate the application normally

Rename/copy the old KDCFILE and back up the user log file

Call KDCUPD

Start application

These steps are described in detail on the following pages. The method shown here is only one of several
possibilities. In all cases, you must ensure that the KDCFILE is not overwritten, see warning in section "Backing up

.data"

Figure 20: Updating the KDCFILE

1) Create the new KDCFILE with KDCDEF

You can change the configuration of your application in the KDCDEF run, i.e. you can define new partner
applications and connections, for example, delete existing ones or change application properties, etc.

It is possible to switch from single-file to dual-file operation. In addition, the “new” KDCFILE can be divided into
several files, or the number of files can be changed. When dual-file operation is used and/or the new KDCFILE is
distributed across several files, all these files must exist and KDCUPD must be able to access them.

Before performing the operations below, please read section !"Backing up data"!

 586

2) Terminate the application normally

Terminate the application normally, see ."Prerequisite for using KDCUPD"

The application must be terminated normally before calling KDCUPD so that the old KDCFILE is in a consistent
state.

Make sure that the user log file exists and is not locked when the application is terminated. openUTM stores the
user log records (LPUT calls) temporarily and does not write them to the file immediately. When the application is
terminated normally, an attempt is made to write these records to the current user log file. If this attempt fails, the
records remain in the old KDCFILE.
KDCUPD does transfer these LPUT records to the new KDCFILE. But KDCUPD indicates with a warning not
message (K314) that the data get lost.

3) Copy the KDCFILE and back up the user log file

After terminating the application, you must copy or rename the current KDCFILE, for instance to OLD.KDCA. Then
you assign the ‘correct’ name to the new KDCFILE.

When dual-file operation is used and/or the current KDCFILE is distributed across several files, all these files must
be copied or renamed using the same filebase name, and KDCUPD must be able to access them.

Back up any existing user log file, as this file is overwritten when the system is restarted after a KDCDEF or
KDCUPD run.

4) Call KDCUPD

In a subsequent KDCUPD run, specify the base name of the copied KDCFILE (including the user ID on BS2000) in
the control statement KDCFILE OLD= and specify the base name of the newly generated KDCFILE in the control
statement KDCFILE NEW=.

BS2000 systems:

Before calling KDCUPD you must do the following:

The library SYSLNK.UTM.070 must be set as the tasklib:

/SET-TASKLIB LIBRARY=$userid.SYSLNK.UTM.070

The library of the openUTM version with which the new KDCFILE was generated must be assigned.If no library
or an incorrect library was assigned, the DLL outputs a corresponding message.

Process switch 3 should be set to OFF:

/MODIFY-JOB-SWITCHES OFF=3

KDCUPD is called as follows:

 /START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM -

 (LIBRARY=$userid.SYSLNK.UTM.070.UTIL,ELEMENT-OR-SYMBOL=KDCUPD)

 :

 : KDCUPD control statements

 :

 END

Alternatively, you can also call KDCUPD via the SDF command START-KDCUPD. This command is located in the
SDF UTM application area. For more detailed information, see openUTM manual “Using UTM Applications on
BS2000 Systems” section "Calling UTM tools".

 587

KDCUPD reads control statements from SYSDTA. A description of the KDCUPD control statements can be found
as of ."Control statements for KDCUPD"

KDCUPD outputs the procedure for logging purposes to SYSLST and/or SYSOUT (see control statement LIST in
section)."LIST - control the runtime log"

Unix, Linux and Windows systems:

The subdirectory DUMP must exist in the base directory of the old KDCFILE () as well as in the base filebase1
directory of the new KDCFILE () before KDCUPD is called. DUMP is used for diagnostic purposes.filebase2

You start KDCUPD on Unix and Linux systems from the shell. You must call KDCUPD in a DOS window on
Windows systems. Enter the following command to do this:

Unix and Linux systems: utmpath /ex/kdcupd 1>upd.out

Windows systems: utmpath \ex\kdcupd 1>upd.out.txt

Note the following:

You should redirect the output to to a file (or in the examples above).always stdout upd.out upd.out.txt

You may redirect (command mode) because KDCUPD asks you to enter the control statements via not stderr
 (e.g. the ‘‘ of the KDCUPD input mode is output to).stderr stderr

KDCUPD reads the control statements from . A description of the control statements for KDCUPD can be stdin
found in section . "Control statements for KDCUPD"

KDCUPD outputs the procedure for logging purposes to and/or (see control statement LIST in section stdout stderr
)."LIST - control the runtime log"

5) Start the application

The base name () of the new KDCFILE must be specified in the start parameter FILEBASE=. Modify your filebase2
start procedure if you have assigned a new base name to the new KDCFILE when creating it.

If the data has been transferred to the new KDCFILE with KDCUPD and you restart the application, then every user
can continue to work as if the application was terminated normally and then restarted.

 588

8.3 Update generation for UTM cluster applications (Unix, Linux and Windows
systems)

KDCUPD allows you to update and convert UTM cluster applications as follows:

Offline update of a UTM cluster application,
where the UTM cluster application must be shut down.

Online update of a UTM cluster application,
which can be performed while the UTM cluster application is running.

Converting a UTM cluster application,
i.e. converting a UTM cluster application from standalone to cluster and vice versa.

When performing a KDCUPD run in UTM cluster applications, you can choose between a node update and a
cluster update:

In the case of a , you update the KDCFILE of a individual node application.node update

In the case of a , you update the UTM cluster files created during generation.cluster update

You can control these two variants using the KDCFILE and CLUSTER-FILEBASE statements.

The following sections describe the KDCUPD statements that are required for these functions and provide
information on how you must first use KDCDEF to create the generation file. In addition, further activities are
required depending on the situation, e.g. starting or terminating node applications or the UTM cluster application or
adapting the start parameters.

For details see the relevant openUTM manual “Using UTM Applications”, chapter “UTM cluster
application”.

Before performing the operations below, please read section !"Backing up data"!

 589

8.3.1 Offline update of a UTM cluster application

An offline update in a UTM cluster application is necessary in the following cases:

If you convert the UTM cluster application from a previous version to V7.0.In this case you must also regenerate
the UTM cluster files (OPTION GEN=(CLUSTER, KDCFILE), see ."Offline Update with cluster update"

If you make adaptations which are listed in section "Adaptations to the UTM generation that require an offline
". For most changes, it is sufficient simply to recreate the KDCFILE (OPTION GEN=KDCFILE). However, update

in the case of certain adaptations it is also necessary to regenerate the UTM cluster files (OPTION GEN=
(CLUSTER, KDCFILE)).

In order to perform an offline update, it is necessary to shut down all the node applications and therefore also the
UTM cluster application for at least a short period.

Adaptations to the UTM generation that require an offline update

The table below indicates what you have to specify in the OPTION statement for the individual changes.

Type of change KDCDEF
control
statements

OPTION GEN=

Switching between operation with and without users USER (CLUSTER,
KDCFILE)

Switching between operation with and without multiple sign-on being
permitted

SIGNON
MULTI-SIGNON

KDCFILE

Switching between applications with and without a formatting system FORMSYS (CLUSTER,
KDCFILE)

Changing the password history SIGNON
PW-HISTORY

KDCFILE

Changing the database systems DATABASE,
RMXA

(CLUSTER,
KDCFILE)

In general, the following applies: When a node application is started, the KDCFILE must not be older
than the UTM cluster files.

If you perform a conversion from a previous version to V7.0 then you must install openUTM V7.0 on all
the nodes before calling KDCDEF.

i

 590

Type of change KDCDEF
control
statements

OPTION GEN=

Changing the number of LSSBs, GSSBs or ULSs MAX LSSB,
MAX GSSB, ULS

(CLUSTER,
KDCFILE)

Reduction in the maximum number of services that the user is permitted
to stack

MAX NRCONV KDCFILE

Reduction in the maximum number of asynchronous services that can be
opened simultaneously

MAX
ASYNTASKS,
second parameter

KDCFILE

Reduction in the size of the node page pool MAX PGPOOL,
first parameter
value

KDCFILE

Reduction in the size of the process-specific buffer for caching restart data MAX RECBUF,
second
parameter value

KDCFILE

Changing the length of the communication area MAX KB (CLUSTER,
KDCFILE)

Reduction in the size of the standard primary working area MAX SPAB KDCFILE

Changing the size of the message area MAX NB (CLUSTER,
KDCFILE)

Changing the maximum length of physical output messages MAX TRMSGLTH (CLUSTER,
KDCFILE)

Reduction of the maximum length of the user data in LPUT records MAX LPUTLTH KDCFILE

Switching between UTM-S and UTM-F MAX
APPLIMODE

(CLUSTER,
KDCFILE)

Increasing the number of the generated node applications CLUSTER-NODE (CLUSTER,
KDCFILE)

Changing the names of the ULSs ULS (CLUSTER,
KDCFILE)

 591

1.

2.

3.

4.

5.

6.

Type of change KDCDEF
control
statements

OPTION GEN=

Reducing the size of the cluster pagepool CLUSTER
PGPOOL,
first parameter
value

(CLUSTER,
KDCFILE)

Changing the number of the cluster pagepool files CLUSTER
PGPOOLFS

(CLUSTER,
KDCFILE)

All other changes in the CLUSTER statement except for the PGPOOL
parameter

CLUSTER (CLUSTER,
KDCFILE)

Offline Update with cluster update

Proceed as follows:

Use the administration facilities to delete all objects that can be dynamically administered and that are no
longer to be included in the new configuration.

Create the generation statements for a new KDCDEF run as follows: First create the statements for new
objects that have been newly introduced into the application dynamically. To do this, call the online inverse
KDCDEF in an active node application.
Note that you must not create, delete or modify any more objects after you have performed the online inverse
KDCDEF, otherwise the update generation is not correct.

Terminate the UTM cluster application.

Create generation statements for new objects manually or modify existing generation statements to suit your
requirements.

Generate a new initial KDCFILE and new cluster files using the modified KDCDEF statements. When you do
this, specify GEN=(CLUSTER, KDCFILE) in the KDCDEF statement OPTION, see "OPTION - manage the

.KDCDEF run"

Make the old and new UTM cluster files as well as an old KDCFILE and the new initial KDCFILE available. You
may need to rename the files first.

Use KDCUPD to perform a cluster update. This transfers user data from the UTM cluster application run to the
new UTM cluster files. This data includes, for example, GSSB, ULS, the service data of users with
RESTART=YES as well as the passwords of users.

For the old and new KDCFILE, you can use either an initial KDCFILE or a KDCFILE of a node application. For
this KDCUPD run, the KDCFILEs are used only for the program run and for a variety of checks. The content of
the old KDCFILE is transferred and the new KDCFILE is not changed.not

Perform the KDCUPD run with the following statements:

CLUSTER-FILEBASE OLD=cluster-filebase-old,NEW=cluster-filebase-new

KDCFILE OLD=filebase-old,NEW=filebase-new

TRANSFER ...

Explanation

 592

6.

7.

8.

9.

10.

cluster-filebase-old

Base name of the old UTM cluster files.

cluster-filebase-new

Base name of the new UTM cluster files generated by KDCDEF. KDCUPD transfers the data that is
valid globally in the cluster from the old UTM cluster files to the new UTM cluster files. You use the
TRANSFER statement to specify the scope of the data to be transferred.

filebase-old

Base name of an old KDCFILE in the UTM cluster application.

filebase-new

Base name of a new KDCFILE in the UTM cluster application.

Copy the new initial KDCFILE (see step) into the node-specific filebase for a node application.5

Perform a KDCUPD run for this node application (node update) using the KDCFILE of this node as the new
KDCFILE (node update).

When you do this, specify the following KDCUPD statements:

KDCFILE OLD=filebase-old,NEW=filebase-new

TRANSFER ...

During this run, transfer all the user data from the last application run of this node application into the new
KDCFILE of this node application. This allows, for instance, asynchronous messages of this node application to
be transferred from the old KDCFILE to the new KDCFILE.

Carry out steps and for all other node applications without delay in order to update all node applications to 7 8
the same generation status.

Restart he UTM cluster application.

Offline Update without cluster update

If you make only such changes that are listed in the table on and which "Offline update of a UTM cluster application"
have the entry KDCFILE in the column OPTION GEN= then you proceed as follows:

> Carry out steps through starting on .1 4 "Offline update of a UTM cluster application"

> In step , generate a new initial KDCFILE using the modified KDCDEF statements. When you do this, specify 5
GEN=KDCFILE in the KDCDEF statement OPTION, you must specify GEN=CLUSTER!not

> Carry out steps through on .7 10 "Offline update of a UTM cluster application"

Special features in UTM-F cluster applications

In UTM cluster applications, the global UTM storage areas GSSB and ULS are also transaction-oriented in the case
of UTM-F. The service data belonging to a user is saved when the user signs off.

This means that in the case of an update generation with a cluster update, it is possible to transfer the same data as
in the case of a UTM-S cluster application.

In contrast, when a node update is performed, not all the data is transferred but instead only the program
versions of the load modules.

i

 593

8.3.2 Online update of a UTM cluster application

When you perform an online update, only the KDCFILE is regenerated and no changes are made to the UTM
cluster files. As a result, the changes to the generation apply only to the KDCFILE.

You can perform an online update while the cluster application is running, i.e. at least one node application is
always active during the update.

You can make the following changes without terminating the UTM cluster application:

Update generation of the KDCFILE for which it is not necessary to completely terminate the UTM cluster
application, see below. This is the case for all changes that are not listed in the table on "Offline update of a UTM

.cluster application"

Increase in the size of the cluster page pool, see ."Increasing the size of the cluster page pool"

Change to the application program, see ."Change to the application program"

 594

1.

2.

3.

4.

5.

6.

7.

8.

9.

8.3.2.1 Update generation of the KDCFILE

An update generation of the KDCFILE for UTM cluster application will be necessary, for instance, if spare capacity
for dynamic objects has been exhausted or if changes must be made to the configuration that are not possible using
the dynamic administration facilities. Examples include entering additional transport system end points or partner
applications for distributed processing or increasing the size of the cache, or page pool.

Proceed as follows to perform an update generation of the KDCFILE:

Use the administration facilities to delete all objects that can be dynamically administered and that are no
longer to be included in the new configuration.

Create the generation statements for a new KDCDEF run as follows: First create the statements for new
objects that have been newly introduced into the application dynamically. To do this, call the online inverse
KDCDEF in an active node application.
Note that you must not create, delete or modify any more objects after you have performed an online inverse
KDCDEF, otherwise the update UTM generation will not be correct.

Create generation statements for new objects manually or modify existing generation statements to suit your
requirements.

When generating the new KDCFILE, specify the filebase name of the cluster user file currently opened by the
running openUTM application under CLUSTER USER-FILEBASE=, see "CLUSTER - Define global properties

.of a UTM cluster application"

Generate a new initial KDCFILE using the modified KDCDEF statements. To do this specify OPTION
GEN=KDCFILE. You must specify GEN=CLUSTER!.not

Terminate one of the node applications normally (e.g. using KDCSHUT GRACE or WinAdmin/WebAdmin).

Rename the KDCFILE of the terminated node application (in preparation for the KDCUPD run).

Copy the new initial KDCFILE created in step into the node-specific filebase for the terminated node 4
application from step .6

Perform a KDCUPD run for this node application using the KDCFILE of this node as the new KDCFILE (node
update).

When you do this, specify the following KDCUPD statements:

KDCFILE OLD=filebase-old,NEW=filebase-new

TRANSFER ...

Explanation

filebase-old
 Base name of the node application’s old KDCFILE.

filebase-new
 Base name of the new KDCFILE generated using KDCDEF and copied for the node application.

KDCUPD transfers the data from the old KDCFILE to the node application’s new KDCFILE. You use the
TRANSFER statement to specify the scope of the data to be transferred. This allows, for instance,
asynchronous messages of this node application to be transferred from the old KDCFILE to the new KDCFILE.

CAUTION!
If you modify the KDCFILE without terminating the UTM cluster application then you must not change the
order of the TAC statements. Otherwise services may be terminated abnormally on service restarts. As a
result, you must append new TAC statements at the end and must not delete any TAC statements.You
should also not modify the RESTART parameter in the USER statements.

!

 595

8.

9.

10.

Restart this node application using the new KDCFILE that has been prepared as described.

When you restart the node application, the values of the start parameters that apply globally in the cluster are
taken over from the running UTM cluster application. The sources for these are as follows:

the administration journal in which recent global administration actions are logged,

the file containing the online copy of the management data of the UTM cluster application from which older
changes are taken over.

Carry out steps through for all other node applications without delay in order to update all node applications 5 9
to the same generation status.

Note that global administration of all applications of a cluster and an online inverse KDCDEF run are
not possible until all active node applications have been updated to the same generation status. Local
administration of individual node applications, however, can be carried out at any time.

i

CAUTION!
After a node application has been restarted on the basis of a newly generated KDCFILE, it is not possible
to start other node applications using a KDCFILE from an older generation run.

!

 596

8.3.2.2 Increasing the size of the cluster page pool

You can increase the size of the cluster page pool and/or modify the warning level for the cluster page pool while
the UTM cluster application is running. To do this, you, in principle, perform an update generation of the KDCFILE
as described in section . However, you should note the following:"Update generation of the KDCFILE"

Enter the new values for the size and/or warning level in the PGPOOL operand of the CLUSTER statement. You
may only increase the size of the cluster page pool. It is not possible to reduce the size online!

Perform the KDCDEF run. When you do this, enter only OPTION GEN=KDCFILE. You must specify not
GEN=CLUSTER!

Make sure that sufficient disk storage space is available for the enlarged cluster page pool files since this is not
checked at generation time.

The remaining steps are similar to the procedure described above (see steps 5 through 9 in section "Update
), i.e. you update all the active node applications to the current generation state one generation of the KDCFILE"

after the other.

The change to the warning level or the increase in the size of the cluster page pool takes effect as soon as all the
running node applications have been restarted with the newly generated KDCFILE.

The size of the cluster page pool files is increased by the running UTM cluster application and the additional pages
are taken into account when new pages are reserved for the relevant nodes.

If there is not enough space available in order to increase the size of the cluster page pool then the UTM
cluster application aborts the increase with an error message and continues to work with the original file
size. In this case, the disk storage space for individual cluster page pool files that have already been
increased is not reduced again but also not used!

i

 597

1.

2.

3.

4.

5.

8.3.2.3 Change to the application program

You can add new program units to the UTM cluster application or modify existing program units without the need to
terminate the entire UTM cluster application. In order to do this, you should always generate the application in such
a way that the ROOT table module is dynamically loaded when the application is started. You should avoid statically
linking program units.

To add new program units that are not yet assigned to any shared object already existing in the application,
create a new ROOT table module in a KDCDEF run.
This can be done while the application is running.

Then compile the ROOT table module and link the application program again as necessary.
This can be done irrespective of whether node applications of the UTM cluster application are active or not.

Then close a the node applications and replace the application program.

Restart the node application with the new application program.

Repeat the steps and successively for all other node applications.3 4

Please note:
If you define a new shared object, you must also generate a new initial KDCFILE, copy this to the node applications
and perform a KDCUPD run, see section ."Update generation of the KDCFILE"

Until this action has been completed for all node applications, the node applications of the cluster use different
versions of the application program. This may affect the behavior of the application. It is for instance possible that a
particular program unit is called in one node application but not in another node application.

If the modified application program uses new programs and/or new transaction codes, then you can add
these to the configuration using the dynamic administration capabilities, e.g. directly before or after the
replacement of the application program.

i

 598

8.3.3 Converting a UTM cluster application

KDCUPD allows you to convert UTM cluster applications when performing the following actions:

Conversion from a standalone application V7.0 to a UTM cluster application V7.0, see below.

Conversion from a UTM cluster application V7.0 to a standalone UTM application V7.0, see "Converting a UTM
cluster application to a standalone UTM application"

 599

1.

2.

3.

4.

5.

6.

7.

8.3.3.1 Conversion from a standalone UTM application to a UTM cluster application

Standalone UTM applications can be converted directly to UTM cluster applications in the case of UTM applications
as of version 7.0.

If you want to convert a standalone UTM application < V7.0 into a UTM cluster application then you must first
convert it into a standalone application version 7.0.

Activities before conversion

Before conversion, you have to check the following points and make adaptations if necessary:

Application code

It is not necessary to adapt the code of the application unless

the global memory areas AREA and shared memories are used, because these lose their global nature
in the UTM cluster application.

other application-specific resources are used whose functionality must be available across the entire
cluster when migrating to a UTM cluster application.

UPIC clients

You only need to adapt the UPICFILE for UPIC clients whose paths to the UTM applications have been
configured statically in the UPICFILE.

You must adapt the UPICFILE and the client program for UPIC clients that dynamically configure their
paths to the UTM applications using SET calls.

For detailed information on adapting UPIC clients, refer to the manual „openUTM-Client for the UPIC
Carrier System”.

Performing the Conversion

A standalone UTM application is running on node. It is to be converted to a UTM cluster application that is to one
run on different nodes:several

Proceed as follows:

First install openUTM V7.0 on all the nodes.

Extend the generation statements for a new KDCDEF run as follows:

> Define the cluster-specific name prefix as the storage location for the files that are global to the cluster
(CLUSTER statement, CLUSTER-FILEBASE operand).

> Configure each node with one CLUSTER-NODE statement per node.

Run the KDCDEF utility with OPTION GEN=(CLUSTER,KDCFILE):

The new initial KDCFILE is generated and the UTM cluster files of the UTM cluster application are created.

Terminate the standalone UTM application on the computer.

Back up the KDCFILE of the standalone application for the subsequent KDCUPD run.

Make the new cluster files generated by KDCDEF, the initial KDCFILE and the old KDCFILE available under
the base names which you specify in CLUSTER-FILEBASE NEW=, KDCFILE OLD= and KDCFILE NEW= in
the cluster update.

 600

7.

8.

9.

10.

11.

Use KDCUPD to perform a cluster update. When you do this, the data that applies globally at cluster level is
transferred from the old KDCFILE of the standalone application to the UTM cluster files.

> Make the new UTM cluster files and the old and new KDCFILE available under the base names specified
below. For the new KDCFILE, you can use either the initial KDCFILE or the KDCFILE of a node
application. In this case, the KDCFILEs are only used for various checks. The content of the new
KDCFILE is not changed.

> Perform the KDCUPD run with the following statements:

CLUSTER-FILEBASE NEW=cluster-filebase

KDCFILE OLD=filebase-old,NEW=filebase-new

TRANSFER ...

Explanation

cluster-filebase

Base name of the new UTM cluster files generated by KDCDEF. KDCUPD transfers the data
that applies globally at cluster level from the old KDCFILE of the standalone application to the
UTM cluster files. You use the TRANSFER statement to specify the scope of the data to be
transferred.

filebase-old

Base name of the old KDCFILE in the standalone application.

filebase-new

Base name of the new KDCFILE in the UTM cluster application.

Copy the initial KDCFILE for each node application into the corresponding node specific filebase.

Perform a KDCUPD run with the following statements for a node application’s KDCFILE:

KDCFILE OLD=filebase-old,NEW=filebase-new

TRANSFER ...

Explanation

filebase-old

Base name of the old KDCFILE in the standalone application.

filebase-new

Base name of the node application’s KDCFILE. KDCUPD transfers the data from the old KDCFILE to
the node application’s KDCFILE. You use the TRANSFER statement to specify the scope of the data
to be transferred.

When you do this, the data that applies locally at node level is transferred from the old KDCFILE of the
standalone application to the node application’s new KDCFILE.

Make the UTM cluster files available at the storage location that you have specified in

the start parameter CLUSTER-FILEBASE. Make the node KDCFILEs available at the storage location that you
have specified in the KDCDEF statement CLUSTER-NODE. These storage locations must be present on a
medium that can be accessed by all the nodes.

In all node applications, replace the start parameters

CAUTION!
You can only perform a KDCUPD run for a node application!

!

 601

11.

12.

13.

.UTM START FILEBASE=<filebase>

required for standalone applications by the statement

.UTM START CLUSTER-FILEBASE=<cluster-filebase>.

See also the section „Start parameters for openUTM“ in the corresponding openUTM manual “Using UTM
Applications” for details.

Start the first node application with the KDCFILE modified in step .9

Start the other node applications.

Adapting other UTM applications that communicate with the UTM cluster application
using OSI TP or LU6.1

If UTM application 1 communicates with UTM application 2 via OSI TP or LU6.1, and you wish to convert UTM
application 2 to a UTM cluster application, you should generate LPAP bundles in UTM application

The master LPAP is addressed by application 1. The master LPAP sends messages to the slave LPAPs of the
connected nodes on which application 2 is running in sequence. In this event, the LPAP bundle acts as a static load
distributor.

For detailed information see section and section ."LU6.1-LPAP bundles" "OSI-LPAP bundles"

 602

1.

2.

8.3.3.2 Converting a UTM cluster application to a standalone UTM application

If you want to convert a UTM cluster application of V7.0 into a standalone V7.0 application then you can perform
either a cluster update or a node update, but not both. This is due to the fact that KDCUPD is able to transfer data
to a newly generated KDCFILE .once only

When you perform a cluster update, you can only transfer data that applies globally to the cluster such as
passwords, GSSB, ULS and service-specific data. In the case of a node update, you can only transfer local, node-
level data such as TLS, asynchronous messages etc.

Use KDCDEF to generate the KDCFILE for the standalone application. To do this, specify OPTION ...
GEN=KDCFILE. You must not specify GEN=CLUSTER.

Perform either a or a :cluster update node update

Cluster update

> Terminate the UTM cluster application.

> Make the old UTM cluster files and the old and new KDCFILE available under the base names specified
below. For the old KDCFILE, you can use either the initial KDCFILE or the KDCFILE of a node
application. In this case, the KDCFILEs are only used for various checks. The content of the old KDCFILE
is transferred.not

> Perform the KDCUPD run with the following statements:

CLUSTER-FILEBASE OLD=cluster-filebase-old

KDCFILE OLD=filebase-old,NEW=filebase-new

TRANSFER ...

When you do this, KDCUPD transfers the global, cluster-level data such as passwords, locales (BS2000
systems), GSSB, ULS and service-specific data from the UTM cluster files to the KDCFILE of the new
standalone application.

Explanation

cluster-filebase-old
 Base name of the old UTM cluster files. KDCUPD transfers the data that applies globally at cluster
level to the KDCFILE of the new standalone application. You use the TRANSFER statement to specify
the scope of the data to be transferred.

filebase-old
 Base name of the selected KDCFILE in the UTM cluster application (initial KDCFILE or KDCFILE
of a node application).

filebase-new
 Name of the KDCFILE of the standalone application. KDCUPD transfers the data of the UTM
cluster files to the new KDCFILE.

Node update

> Terminate all node applications except for one.

> At the node application that is still running, perform an online import for the other node applications in
order to be able to transfer as much of the node-specific data as possible.

> Terminate this node application.

 603

2.

3.

> Perform the KDCUPD run with the following statements:

KDCFILE OLD=filebase-old,NEW=filebase-new

TRANSFER ...

Explanation

filebase-old
 Name of the KDCFILE of the lastly terminated node application.

filebase-new
 Name of the KDCFILE of the standalone application. KDCUPD transfers the data from the
KDCFILE of the node application to the KDCFILE of the standalone application.

You use the TRANSFER statement to specify the scope of the data to be transferred.

Start the standalone application with the new KDCFILE.

 604

1.

2.

8.4 Update generation with transfer from 32-bit to 64-bit architecture

On 64-bit platforms, KDCUPD is also able to transfer data from a 32-bit UTM application to a 64-bit UTM
application. The transfer is always performed from the 32-bit UTM application to the 64-bit application and is
supported only by the 64-bit variant of the utility program KDCUPD.

When doing so, please note the following:

KDCUPD is only able to process UTM applications on the same system platform.

The previous 32-bit UTM application and the 64-bit UTM application to which the data is to be transferred must
be of the same version.

If the 32-bit UTM application was run with a predecessor version < V7.0 then the transfer must be performed in
two stages, see following example for openUTM V6.5:

Transfer from openUTM V6.5 (32-bit) to openUTM V7.0 (32-bit) using the KDCUPD V7.0 32-bit
program.

Transfer from openUTM V7.0 (32-bit) to openUTM V7.0 (64-bit) using the KDCUPD V7.0 64-bit
program.

In the case of UTM cluster applications, the change of architecture must be performed both for the node update
and the cluster update.

Steps

The steps are the same as when performing transfers between 32-bit platforms, see for example section "Update
.generation for standalone UTM applications"

KDCUPD automatically detects the change of architecture when the transfer operation is performed, i.e. no special
control statements are required for this operation. More specifically, the following applies:

You enter the directory containing the previously used 32-bit KDCFILE in the OLD parameter of the TRANSFER
statement.

You enter the directory for the newly generated 64-bit KDCFILE in the NEW parameter of the TRANSFER
statement.

When this change of architecture is performed, KDCUPD outputs the message K841.

CAUTION!
All user data, e.g. GSSB, LSSB, TLS, ULS content and the KB program areas, is taken over unchanged
at the binary level because KDCUPD has no information about the internal structure of the user data
employed by the user!

!

 605

1.

2.

8.5 Control statements for KDCUPD

KDCUPD knows the following control statements for data transfer:

Statement Meaning

TRANSFER Control the transfer of the data from the old KDCFILE to the new KDCFILE

KDCFILE Specify the base name of the newly generated and the old KDCFILE

CLUSTER-FILEBASE Specify base name of old and new UTM cluster files
(Unix, Linux and Windows systems)

CATID The catid of the old and new KDCFILE are specified on BS2000 systems

LIST Control the runtime log

END Terminate input and start processing

KDCUPD knows the following control statements for the consistency check:

Statement Meaning

CHECK Check the consistency of the KDFILE of a UTM application

LIST Control the runtime log

END Terminate input and start processing

The control statements are read from SYSDTA on BS2000 systems or from (command prompt) on Unix, Linux stdin
and Windows systems.The control statements KDCFILE, CATID, LIST and CHECK may only be entered once per
KDCUPD run. The input must be contained in a single line. Multiple (separate single) lines can be entered for the
control statement TRANSFER.

Example

KDCUPD is to transfer the data from the old KDCFILE (base name) of a standalone UTM-S application BOOK01

to the new KDCFILE (base name). All data is to be transferred except for the asynchronous messages BOOK02

intended for the communication partners (LPAP and LTERM) that are still located in the message queues of the
old KDCFILE. KDCUPD is to output the successful transfer messages only to SYSLST (BS2000 systems) or

 (Unix, Linux and Windows systems).stdout

BS2000 systems Unix, Linux and Windows systems

*KDCFILE NEW=BUCH02,OLD=BUCH01

*CATID OLD=(20SN,20PN),NEW=(20SN,20PN)

*TRANSFER ASYNLPAP=NO

 *TRANSFER ASYNTERM=NO

*LIST PROTOCOL=SYSLST

*END

*KDCFILE NEW=BUCH02,OLD=BUCH01

*TRANSFER ASYNLPAP=NO

 *TRANSFER ASYNTERM=NO

*LIST PROTOCOL=STDOUT

*END

 606

2. If you only enter the mandatory parameters in all statements, then KDCUPD attempts to transfer everything and
outputs the log to SYSOUT and SYSLST or to and . You must specify the following to transfer all stdout stderr
data:

BS2000 systems Unix, Linux and Windows systems

*KDCFILE NEW=BUCH02,OLD=BUCH01

*CATID OLD=(20SN,20PN),NEW=(20SN,

20PN)

*END

*KDCFILE NEW=BUCH02,OLD=BUCH01

*END

 607

8.5.1 CATID - define Catid of the old and the new KDCFILE

This statement only applies to BS2000 systems.

The CATID statement specifies the catalog ID of the old and new KDCFILE. You must specify at least one of the
operands OLD or NEW.

CATID [OLD=(catalog_A,catalog_B)]

[,NEW=(catalog_A,catalog_B)]

OLD= (catalog_A,catalog_B)

Catids for the old (previously used) KDCFILE

NEW= (catalog_A,catalog_B)

Catids for the new KDCFILE If you specify only , this Catid is assigned to all parts of the catalog_A
KDCFILE. If you are working with Catids, the base name () must be specified in the filebase1/2
KDCFILE statement without a catalog ID.

 608

8.5.2 CHECK - check the consistency of the KDCFILE

The CHECK statement causes KDCUPD to check the KDCFILE file(s) of an application for consistency
(completeness, identical generation and processing status). No data is transfered.

CHECK filebase

filebase Base name of the KDCFILE
(KDCDEF control statement MAX KDCFILE=filebase)

BS2000 systems:
With dual-file operation, must be specified with the catalog ID of the A files.filebase

 609

8.5.3 CLUSTER-FILEBASE - Specify the base names of the old and new UTM cluster files

This statement only applies on Unix, Linux and Windows systems.

You use the CLUSTER-FILEBASE statement to inform KDCUPD of the base names of the old and new UTM
cluster files.

CLUSTER-FILEBASE [NEW=cluster_filebase2]

[,OLD=cluster_filebase1]

NEW= cluster_filebase2

Base name of the newly generated UTM cluster files.
You must not specify this parameter when converting a UTM cluster application to a standalone
application.

OLD= cluster_filebase1

Base name of the previously used UTM cluster files.You must not specify this parameter when
converting a standalone application to a UTM cluster application.

The old and new UTM cluster files must have different base names. You can do this in two ways:

For the new KDCDEF generation, enter a base name that is different from that in the old KDCDEF
generation (KDCDEF statement CLUSTER; operand CLUSTER-FILEBASE).

In the KDCDEF generation, leave the base name in CLUSTER CLUSTER-FILEBASE= unchanged.
When you do this, rename the previously used UTM cluster files before the KDCUPD run so that they
have a different base name.

i

 610

8.5.4 END - terminate input and start processing

The END statement terminates the entry of parameters and starts processing. The KDCUPD control statements
must be terminated with END.

END

 611

8.5.5 KDCFILE - specify the base name of the old and new KDCFILE

The KDCFILE statement passes the base name of the old and new KDCFILE to KDCUPD.

KDCFILE NEW=filebase2

,OLD=filebase1

NEW= filebase2

Base name of the newly generated KDCFILE

BS2000 systems:
In the case of dual-file operation, the catalog IDS for the A and B files can be assigned with the CATID
statement. In this event, you must specify the base name without the catalog ID.

OLD= filebase1

Base name of the old KDCFILE

 612

8.5.6 LIST - control the runtime log

The LIST statement controls output of the positive and negative transfer messages as well as messages K305 and
K306 for the number of pages used in the page pool.

LIST [ERRORS={ | SYSOUT | SYSLST | STDERR | STDOUT }]BOTH 1 1 2 2

 [,INFO={ | ONG | O }]HORTS L N

 [,PROTOCOL={ | NO | SYSOUT | SYSLST | STDERR | STDOUT }]BOTH 1 1 2 2

1SYSLST and SYSOUT are only permitted on BS2000 systems.

STDERR and STDOUT are only permitted on Unix, Linux and Windows systems2

ERRORS= Controls the output of negative transfer messages

 BOTH Data is logged to SYSOUT and SYSLST (on BS2000 systems) or to and on Unix, stderr stdout
Linux and Windows systems.

Default: BOTH

 SYSOUT Data is logged to SYSOUT.

 SYSLST Data is logged to SYSLST.

 STDOUT Data is logged to stdout.

 STDERR Data is logged to stderr.

INFO= Controls the output of messages K305 and K306 for the number of pages used in the page pool
of the new KDCFILE

 613

 SHORT At the end of the log for the successful transfer messages, K306 messages are used to output an
overview of the number of pages used in the page pool. An overall view and a view with the
number of pages used by each of the GSSB, QUEUE, LTERM, LPAP, TAC, USER, and
ASYNVG object types (if they use pages in the page pool) are output.

In the page pool usage view the following are displayed for each type of object:

GSSB Data of the GSSB storage area

QUEUE Asynchronous messages of the temporary queue and the management
information required for administration

LTERM TLS blocks and asynchronous messages (including management information) of
the LTERM

LPAP TLS blocks and asynchronous messages (iincluding management information) of
the LPAP or OSI-LPAP

TAC Asynchronous messages (including management information) of the TAC

USER ULS blocks, asynchronous messages (including management informationn) and
dialog service information of the user, ULS blocks of the LSES or OSI-ASS.

ASYNVG Service data (including any LSSBs that are present) of all the user’s open
asynchronous services

Standard: SHORT

 LONG In a K305 message, the page pool usage is also output for each object of this type after the last
positive transfer message as long as at least one page pool page is used.

 NO Messages K305 and K306 are deactivated.

PROTOCOL= Controls the output of positive transfer messages and the messages for the page pool usage
(see INFO).

 BOTH Data is logged to SYSOUT and SYSLST (on BS2000 systems) or to and on Unix, stderr stdout
Linux and Windows systems.

Default: BOTH

 NO No positive transfer messages are output and no messages for the page pool usage.

 SYSOUT Data is logged to SYSOUT.

 SYSLST Data is logged to SYSLST.

 STDOUT Data is logged to stdout.

 STDERR Data is logged to stderr.

 614

8.5.7 TRANSFER - control the data transfer of the user data

The TRANSFER specifies the user data KDCUPD is to transfer to the new KDCFILE.

TRANSFER [ASYNLPAP= | NO]YES

 [,ASYNTACS= | NO]YES

 [,ASYNTERM= | NO]YES

 [, DB-CREDENTIALS = YES | NO]

 [,DIALOGS= | NO] YES

 [,PASS= | NO]YES

 [,PROG-VER= | NO]YES

 [,SOCKET-DIALOGS= | NO]YES

 [,STORAGES= | NO]YES

 [,UPIC-DIALOGS= | NO]YES

 Additional operand on BS2000 systems

 [,LOCALE= | NO]YES

If you omit the TRANSFER statement, KDCUPD transfers the user data as if the value YES was specified for all the
TRANSFER operands.

ASYNLPAP=

 YES All asynchronous messages that have not yet been output to partner applications (distributed
processing via LU6.1 / OSI TP) are also transferred.

Messages from the dead letter queue with the original destination LPAP or OSI-LPAP are only
transferred if the original destinations still exist in the new generation. The transfer happens
regardless of whether DEAD-LETTER-Q=YES has been generated for the LPAPs or OSI-LPAPs.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

 NO These messages are not transferred.

ASYNTACS=

 615

 YES All background jobs not yet processed, including time-driven jobs and all asynchronous jobs with
their data, are transferred. In addition, all messages in all TAC queues are transferred.

Messages from the dead letter queue with original destination TAC or TAC queue are taken on
regardless of whether the original destination still exists in the new generation or DEAD-LETTER-
Q=YES was generated for TACs.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

 NO These jobs and data are not transferred.

Neither queued messages nor open asynchronous messages are transferred.

ASYNTERM=

 YES All asynchronous messages not yet output to LTERM partners are transferred, including time-driven
messages.

 NO These messages are not transferred.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

DB-CREDENTIALS =

 YES Database password and database user name are transferred.

The following applies to UTM cluster applications:
The parameter only applies to cluster updates.

 NO Database password and database user name are not transferred.

DIALOGS=

 YES The data to dialog services is transferred.
If the service is open, this includes LSSBs, KB and the last dialog message.
If the service is terminated, only the last logged dialog message is transferred.

The following applies to UTM cluster applications:

In the case of a node update, the service-specific data of connection user IDs is taken over.

In the case of a cluster update, the service-specific data of genuine user IDs is taken over.

 NO No service-specific data is transferred.

LOCALE= Additional operand on BS2000 systems

CAUTION!
In the case of wraparound queues, the messages which were transferred first are lost and
replaced by the most recently transferred messages when the queue level is reached. No
warning message is issued.

!

 616

 YES KDCUPD transfers the current values of the locale of each UTM user (USER) to the new KDCFILE.
The values can differ from generated values, e.g. if a user has changed his/her locale using the
SIGN CL call in the application run.

 NO The locales of users are not transferred, i.e. the generated values apply.

PASS=

 YES Passwords are transferred from the old to the new KDCFILE. This applies to all USERs for whom a
password was generated in the old and in the new KDCFILE. The following is also transferred (if
generated):

the remaining validity period of the password

the most recently used passwords, in other words the password history

the minimum period before the password can next be changed

In the case of users for whom no password was defined in the old KDCFILE (in contrast to the new
file), the new password is retained.
If no password is generated for a user in the new KDCFILE, any existing password in the old
KDCFILE is not transferred.

The following applies to UTM cluster applications:
The parameter only applies to cluster updates.

 NO No passwords are transferred.

PROG-VER=

 YES The current version numbers of the load modules (BS2000), shared objects (Unix and Linux
systems) or DLLs (Windows systems) are transferred to the new KDCFILE.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

 NO The current version numbers are not transferred.

QUEUES=

 YES All temporary queues and the messages they contain are transferred from the old to the new
KDCFILE.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

 NO The temporary queues and the messages they contain are not transferred.

SOCKET-DIALOGS=

 617

 YES The data for dialog services started by socket partners is transferred. In the case of an open service,
these are the LSSBs, KB and the most recent dialog message. In the case of a terminated service, it
is the most recently saved dialog message.

The following applies to UTM cluster applications:

In the case of a node update, the service-specific data of connection user IDs is taken over.

In the case of a cluster update, the service-specific data of genuine user IDs is taken over.

 NO The data is not transferred.

STORAGES=

 YES All UTM secondary storage areas, i.e. GSSB, TLS and ULS are transferred.

The following applies to UTM cluster applications:

In the case of a node update, the TLS areas are taken over.

In the case of a cluster update, the GSSBs and the ULS areas are taken over.

 NO The UTM secondary storage area are not transferred.

UPIC-DIALOGS=

 YES The data for dialog services started by UPIC clients is transferred. In the case of an open service,
these are the LSSBs, KB and the most recent dialog message. In the case of a terminated service, it
is the most recently saved dialog message.

The following applies to UTM cluster applications:
The parameter only applies to cluster updates.

 NO The data is not transferred.

 618

8.6 KDCUPD runtime log and messages

The update tool KDCUPD creates a runtime log that contains the following important information in addition to the
parameters specified:

Specifications on the data that was transferred.

Specifications on the data that could not be transferred (these messages are marked with).*

Brief information on the page pool usage

KDCUPD compares the generation of the old and new KDCFILE.
As a result of these checks, KDCUPD can reject transfer of individual items of user data because they are
incompatible with the generation options of the new KDCFILE.
It is also possible for KDCUPD to reject transfer completely because individual generation options of the old and
new KDCFILE differ so significantly that it would not be possible to start the application with the new KDCFILE and
the transferred data (see also)."Changing generation parameters"

The runtime log is output to SYSOUT and SYSLST or to and by default. The output can be controlled stdout stderr
using the LIST statement.

The KDCUPD messages are listed in the openUTM manual ”Messages, Debugging and Diagnostics”. The causes
of error and the actions to be taken in response to the UTM message are described where necessary.

On Unix, Linux and Windows systems KDCUPD uses the NLS message catalog to output its messages.

Behavior in the event of errors

If an internal error occurs, KDCUPD creates a UTM dump (on Unix, Linux and Windows systems the dump is
located in the DUMP subdirectory of the base directory).
This dump can be edited using the KDCDUMP editing tool (see the openUTM manual ”Messages, Debugging and
Diagnostics”).

On BS2000 systems the process switch 3 is set if KDCUPD cannot terminate itself normally due to an error.
Process switch 3 is also set when not all of the data could be transferred to the new KDCFILE because some
generation components have been removed although KDCUPD terminated itself normally.

The process switch 3 is also set if KDCUPD could not run because an error occured during checking the KDCFILEs.

Diagnostic documentation

If an error message is output in relation to the execution of KDCUPD, the following documentation should be
supplied or at least saved:

UTM dump, if one was created
In the event of a memory bottleneck, it may be the case that no dump file can be written.For UTM applications on
Unix and Linux sYstems the core dump also must be logged.

log of KDCUPD

KDCDEF control statements for the old and new KDCFILE
(unless prohibited for data protection reasons)

the old KDCFILE

the new KDCFILE in the state before the KDCUPD run
(alternatively KDCDEF control statements)

 619

in the case of cluster updates:
the old cluster files and the new cluster files in their state before the KDCUPD run

 620

9 Glossary

A term in font means that it is explained somewhere else in the glossary.italic

abnormal termination of a UTM application

Termination of a , where the is not updated. Abnormal termination is UTM application KDCFILE
caused by a serious error, such as a crashed computer or an error in the system software. If you
then restart the application, openUTM carries out a .warm start

abstract syntax (OSI)

Abstract syntax is defined as the set of formally described data types which can be exchanged
between applications via . Abstract syntax is independent of the hardware and programming OSI TP
language used.

acceptor (CPI-C)

The communication partners in a are referred to as the and the acceptor. The conversation initiator
acceptor accepts the conversation initiated by the initiator with Accept_Conversation.

access list

An access list defines the authorization for access to a particular , or service TAC queue USER
. An access list is defined as a and contains one or more , each of which queue key set key codes

represent a role in the application. Users or LTERMs or (OSI) LPAPs can only access the service or
/ when the corresponding roles have been assigned to them (i.e. when their TAC queue USER queue

 and the access list contain at least one common .key set key code)

access point (OSI)

See service access point.

ACID properties

Acronym for the fundamental properties of : atomicity, consistency, isolation and transactions
durability.

administration

Administration and control of a by an or an .UTM application administrator administration program

administration command

Commands used by the of a to carry out administration functions for administrator UTM application
this application. The administration commands are implemented in the form of .transaction codes

administration journal

See .cluster administration journal

administration program

Program unit containing calls to the . This can be either the program interface for administration
standard administration program that is supplied with openUTM or a program written by KDCADM
the user.

 621

administrator

User who possesses administration authorization.

AES

AES (Advanced Encryption Standard) is the current symmetric encryption standarddefined by the
National Institute of Standards and Technology (NIST) and based on the Rijndael algorithm
developed at the University of Leuven (Belgium). If the AES method is used, the UPIC client
generates an AES key for each session.

Apache Axis

Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the design of Web
services and client applications. There are implementations in C++ and Java.

Apache Tomcat

Apache Tomcat provides an environment for the execution of Java code on Web servers. It was
developed as part of the Apache Software Foundation's Jakarta project. It consists of a servlet
container written in Java which can use the JSP Jasper compiler to convert JavaServer pages into
servlets and run them. It also provides a fully featured HTTP server.

application cold start

See .cold start

application context (OSI)

The application context is the set of rules designed to govern communication between two
applications. This includes, for instance, abstract syntaxes and any assigned transfer syntaxes.

application entity (OSI)

An application entity (AE) represents all the aspects of a real application which are relevant to
communications. An application entity is identified by a globally unique name (“globally” is used here
in its literal sense, i.e. worldwide), the (AET). Every application entity application entity title
represents precisely one . One application process can encompass several application process
application entities.

application entity qualifier (OSI)

Component of the . The application entity qualifier identifies a application entity title service access
 within an application. The structure of an application entity qualifier can vary. openUTM point

supports the type “number”.

application entity title (OSI)

An application entity title is a globally unique name for an (“globally” is used here in application entity
its literal sense, i.e. worldwide). It is made up of the of the relevant application process title

 and the application process application entity qualifier.

 622

application information

This is the entire set of data used by the . The information comprises memory areas UTM application
and messages of the UTM application including the data currently shown on the screen. If operation
of the UTM application is coordinated with a database system, the data stored in the database also
forms part of the application information.

application process (OSI)

The application process represents an application in the . It is uniquely OSI reference model
identified globally by the .application process title

application process title (OSI)

According to the OSI standard, the application process title (APT) is used for the unique
identification of applications on a global (i.e. worldwide) basis. The structure of an application
process title can vary. openUTM supports the type .Object Identifier

application program

An application program is the core component of a . It comprises the main routine UTM application
 and any and processes all jobs sent to a .KDCROOT program units UTM application

application restart

see warm start

application service element (OSI)

An application service element (ASE) represents a functional group of the application layer (layer 7)
of the .OSI reference model

application warm start

see .warm start

association (OSI)

An association is a communication relationship between two application entities. The term
“association” corresponds to the term in .session LU6.1

asynchronous conversation

CPI-C conversation where only the is permitted to send. An asynchronous transaction code initiator
for the must have been generated in the .acceptor UTM application

asynchronous job

Job carried out by the job submitter at a later time. openUTM includes functions message queuing
for processing asynchronous jobs (see and . An UTM-controlled queue service-controlled queue)
asynchronous job is described by the , the recipient and, where applicable, asynchronous message
the required execution time. If the recipient is a terminal, a printer or a transport system application,
the asynchronous job is a . If the recipient is an of the same queued output job asynchronous service
application or a remote application, the job is a . Asynchronous jobs can be background job time-

or can be integrated in a . driven jobs job complex

 623

asynchronous message

Asynchronous messages are messages directed to a . They are stored temporarily message queue
by the local and then further processed regardless of the job submitter. Distinctions UTM application
are drawn between the following types of asynchronous messages, depending on the recipient:

In the case of asynchronous messages to a all further processing is UTM-controlled queue,
controlled by openUTM. This type includes messages that start a local or remote asynchronous

 (see also) and messages sent for output on a terminal, a printer or a service background job
transport system application (see also).queued output job

In the case of asynchronous messages to a , further processing is service-controlled queue
controlled by a of the application. This type includes messages to a , service TAC queue
messages to a and messages to a . The USER queue and the USER queue temporary queue
temporary queue must belong to the local application, whereas the TAC queue can be in both
the local application and the remote application.

asynchronous program

Program unit started by a .background job

asynchronous service (KDCS)

Service which processes a . Processing is carried out independently of the job background job
submitter. An asynchronous service can comprise one or more program units/transactions. It is
started via an asynchronous .transaction code

audit (BS2000 systems)

During execution of a UTM events which are of relevance in terms of security can UTM application,
be logged by for auditing purposes.SAT

authentication

See .system access control

authorization

See .data access control

Axis

See .Apache Axis

background job

Background jobs are destined for an of the current asynchronous jobs asynchronous service
application or of a remote application. Background jobs are particularly suitable for time-intensive
processing or processing which is not time-critical and where the results do not directly influence the
current dialog.

basic format

Format in which terminal users can make all entries required to start a service.

basic job

Asynchronous job in a .job complex

 624

browsing asynchronous messages

A sequentially reads the in a . The service asynchronous messages service-controlled queue
messages are not locked while they are being read and they remain in the queue after they have
been read. This means that they can be read simultaneously by different services.

bypass mode (BS2000 systems)

Operating mode of a printer connected locally to a terminal. In bypass mode, any asynchronous
 sent to the printer is sent to the terminal and then redirected to the printer by the terminal message

without being displayed on screen.

cache

Used for buffering application data for all the processes of a . UTM application
The cache is used to optimize access to the and, in the case of UTM cluster applications, page pool
the .cluster page pool

CCR (Commitment, Concurrency and Recovery)

CCR is an Application Service Element (ASE) defined by OSI used for OSI TP communication which
contains the protocol elements (services) related to the beginning and end (commit or rollback) of a

. CCR supports the commitment.transaction two-phase

CCS name (BS2000 systems)

See .coded character set name

client

Clients of a can be:UTM application

terminals

UPIC client programs

transport system applications (e.g. DCAM, PDN, CMX, socket applications or UTM applications
which have been generated as).transport system applications

Clients are connected to the UTM application via LTERM partners.
Note: UTM clients which use the OpenCPIC carrier system are treated just like .OSI TP partners

client side of a conversation

This term has been superseded by .initiator

cluster

A number of computers connected over a fast network and which in many cases can be seen as a
single computer externally. The objective of clustering is generally to increase the computing
capacity or availability in comparison with a single computer.

cluster administration journal

The cluster administration journal consists of:

two log files with the extensions JRN1 and JRN2 for global administration actions,

the JKAA file which contains a copy of the KDCS Application Area (KAA). Administrative
changes that are no longer present in the two log files are taken over from this copy.

 625

The administration journal files serve to pass on to the other node applications those administrative
actions that are to apply throughout the cluster to all node applications in a UTM cluster application.

cluster configuration file

File containing the central configuration data of a . The cluster configuration UTM cluster application
file is created using the UTM generation tool .KDCDEF

cluster filebase

Filename prefix or directory name for the .UTM cluster files

cluster GSSB file

File used to administer GSSBs in a . The cluster GSSB file is created using UTM cluster application
the UTM generation tool .KDCDEF

cluster lock file

File in a used to manage cross-node locks of user data areas.UTM cluster application

cluster page pool

The cluster page pool consists of an administration file and up to 10 files containing a UTM cluster
user data that is available globally in the cluster (service data including LSSB, GSSB application’s

and ULS). The cluster page pool is created using the UTM generation tool .KDCDEF

cluster start serialization file

Lock file used to serialize the start-up of individual node applications (only on Unix, Linux and
Windows systems).

cluster ULS file

File used to administer the ULS areas of a . The cluster ULS file is created UTM cluster application
using the UTM generation tool .KDCDEF

cluster user file

File containing the user management data of a . The cluster user file is UTM cluster application
created using the UTM generation tool .KDCDEF

coded character set name (BS2000 systems)

If the product (e tended ost ode upport) is used, each character set used is uniquely XHCS X H C S
identified by a coded character set name (abbreviation: “CCS name” or “CCSN”).

cold start

Start of a after the application terminates normally () or after a UTM application normal termination
new generation (see also). warm start

 626

communication area (KDCS)

KDCS , secured by transaction logging and which contains service-specific primary storage area
data. The communication area comprises 3 parts:

the KB header with general service data

the KB return area for returning values to KDCS calls

the KB program area for exchanging data between UTM program units within a single .service

communication end point

see transport system end point

communication resource manager

In distributed systems, communication resource managers (CRMs) control communication between
the application programs. openUTM provides CRMs for the international OSI TP standard, for the
LU6.1 industry standard and for the proprietary openUTM protocol UPIC.

configuration

Sum of all the properties of a . The configuration describes:UTM application

application parameters and operating parameters

the objects of an application and the properties of these objects. Objects can be program units
and , communication partners, printers, , etc.transaction codes user IDs

defined measures for controlling data and system access.

The configuration of a UTM application is defined at generation time () and can static configuration
be changed dynamically by the administrator (while the application is running, dynamic configuration
). The configuration is stored in the .KDCFILE

confirmation job

Component of a where the confirmation job is assigned to the . There are job complex basic job
positive and negative confirmation jobs. If the returns a positive result, the positive basic job
confirmation job is activated, otherwise, the negative confirmation job is activated.

connection bundle

see LTERM bundle.

connection user ID

User ID under which a or a is signed on at the directly TS application UPIC client UTM application
after the connection has been established. The following applies, depending on the client (= LTERM
partner) generation:

The connection user ID is the same as the USER in the LTERM statement (explicit connection
user ID). An explicit connection user ID must be generated with a USER statement and cannot
be used as a “genuine” .user ID

The connection user ID is the same as the LTERM partner (implicit connection user ID) if no
USER was specified in the LTERM statement or if an LTERM pool has been generated.

 627

In a , the service belonging to a connection user ID (RESTART=YES in UTM cluster application
LTERM or USER) is bound to the connection and is therefore local to the node.
A connection user ID generated with RESTART=YES can have a separate service in each node

.application

contention loser

Every connection between two partners is managed by one of the partners. The partner that
manages the connection is known as the . The other partner is the contention loser.contention winner

contention winner

A connection's contention winner is responsible for managing the connection. Jobs can be started by
the contention winner or by the . If a conflict occurs, i.e. if both partners in the contention loser
communication want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation

In CPI-C, communication between two CPI-C application programs is referred to as a conversation.
The communication partners in a conversation are referred to as the and the .initiator acceptor

conversation ID

CPI-C assigns a local conversation ID to each , i.e. the and each have conversation initiator acceptor
their own conversation ID. The conversation ID uniquely assigns each CPI-C call in a program to a
conversation.

CPI-C

CPI-C (ommon rogramming nterface for ommunication) is a program interface for program-to-C P I C
program communication in open networks standardized by X/Open and CIW (PI-C mplementor's C I

orkshop). W
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE Specification. The
interface is available in COBOL and C. In openUTM, CPI-C can communicate via the OSI TP, LU6.
1 and UPIC protocols and with openUTM-LU62.

Cross Coupled System / XCS

Cluster of BS2000 computers with the Multiple System Control Highly Integrated System Complex

Facility (HIPLEX MSCF).®

data access control

In data access control openUTM checks whether the communication partner is authorized to access
a particular object belonging to the application. The access rights are defined as part of the
configuration.

data space (BS2000 systems)

Virtual address space of BS2000 which can be employed in its entirety by the user. Only data and
programs stored as data can be addressed in a data space; no program code can be executed.

 628

dead letter queue

The dead letter queue is a TAC queue which has the fixed name KDCDLETQ.
It is always available to save queued messages sent to transaction codes, TAC queues, LPAP or
OSI-LPAP partners but which could not be processed. The saving of queued messages in the dead
letter queue can be activated or deactivated for each message destination individually using the
TAC, LPAP or OSI-LPAP statement's DEAD-LETTER-Q parameter.

DES

DES (Data Encryption Standard) is an international standard for encrypting data. One key is used in
this method for encoding and decoding. If the DES method is used, the UPIC client generates a
DES key for each session.

dialog conversation

CPI-C conversation in which both the and the are permitted to send. A dialog initiator acceptor
transaction code for the must have been generated in the .acceptor UTM application

dialog job, interactive job

Job which starts a . The job can be issued by a or, when two servers dialog service client
communicate with each other (), by a different application.server-server communication

dialog message

A message which requires a response or which is itself a response to a request. The request and
the response both take place within a single service. The request and reply together form a dialog
step.

dialog program

Program unit which partially or completely processes a .dialog step

dialog service

Service which processes a interactively (synchronously) in conjunction with the job submitter (job
 or another server application) . A dialog service processes received from the client dialog messages

job submitter and generates dialog messages to be sent to the job submitter. A dialog service
comprises at least one In general, a dialog service encompasses at least one dialog transaction.
step. Exception: in the event of it is possible for more than one service to comprise service chaining,
a dialog step.

dialog step

A dialog step starts when a is received by the . It ends when the dialog message UTM application
UTM application responds.

dialog terminal process (Unix , Linux and Windows systems)

A dialog terminal process connects a terminal of a Unix, Linux or Windows system with the work
processes of the . Dialog terminal processes are started either when the user enters UTM application
utmdtp or via the LOGIN shell. A separate dialog terminal process is required for each terminal to be
connected to a UTM application.

 629

distributed processing

Processing of by several different applications or the transfer of to dialog jobs background jobs
another application. The higher-level protocols and are used for distributed LU6.1 OSI TP
processing. openUTM-LU62 also permits distributed processing with LU6.2 partners. A distinction is
made between distributed processing with (transaction logging across distributed transactions
different applications) and distributed processing without distributed transactions (local transaction
logging only). Distributed processing is also known as server-server communication.

distributed transaction

Transaction which encompasses more than one application and is executed in several different (sub-
)transactions in distributed systems.

distributed transaction processing

Distributed processing with distributed transactions.

dynamic configuration

Changes to the made by the administrator. UTM objects such as , configuration program units
, , printers or can be added, modified or in transaction codes clients LU6.1 connections, user IDs

some cases deleted from the configuration while the application is running. To do this, it is
necessary to create separate which use the functions of the administration programs program

. The WinAdmin administration program or the WebAdmin administration interface for administration
program can be used to do this, or separate must be created that utilize the administration programs
functions of the administration program interface.

encryption level

The encryption level specifies if and to what extent a client message and password are to be
encrypted.

event-driven service

This term has been superseded by .event service

event exit

Routine in an application program which is started automatically whenever certain events occur (e.g.
when a process is started, when a service is terminated). Unlike , an event exit must event services
not contain any KDCS, CPI-C or XATMI calls.

event function

Collective term for and . event exits event services

 630

event service

Service started when certain events occur, e.g. when certain UTM messages are issued. The
for event-driven services must contain KDCS calls. program units

filebase

UTM application filebase
On BS2000 systems, filebase is the prefix for the , the USLOG and the KDCFILE user log file system

 SYSLOG. log file
On Unix, Linux and Windows systems, filebase is the name of the directory under which the
KDCFILE, the user log file USLOG, the system log file SYSLOG and other files relating to to the
UTM application are stored.

Functional Unit (FU)

A subset of the protocol providing a particular functionality. The OSI TP protocol is divided OSI TP
into the following functional units:

Dialog

Shared Control

Polarized Control

Handshake

Commit

Chained Transactions

Unchained Transactions

Recovery

Manufacturers implementing OSI TP need not include all functional units, but can concentrate on a
subset instead. Communications between applications of two different OSI TP implementations is
only possible if the included functional units are compatible with each other.

generation

See UTM generation.

global secondary storage area

See secondary storage area.

hardcopy mode

Operating mode of a printer connected locally to a terminal. Any message which is displayed on
screen will also be sent to the printer.

heterogeneous link

In the case of a link between a and a non-UTM server-server communication: UTM application
application, e.g. a CICS or TUXEDO application.

Highly Integrated System Complex / HIPLEX ®

Product family for implementing an operating, load sharing and availability cluster made up of a
number of BS2000 servers.

 631

 632

HIPLEX ® MSCF

(MSCF = ultiple ystem ontrol acility) M S C F

Provides the infrastructure and basic functions for distributed applications with HIPLEX .®

homogeneous link

In the case of : a link between two It is of no server-server communication UTM applications.
significance whether the applications are running on the same operating system platforms or on
different platforms.

inbound conversation (CPI-C)

See incoming conversation.

incoming conversation (CPI-C)

A conversation in which the local CPI-C program is the is referred to as an incoming acceptor
conversation. In the X/Open specification, the term “inbound conversation” is used synonymously
with “incoming conversation”.

initial KDCFILE

In a , this is the generated by and which must be copied UTM cluster application KDCFILE KDCDEF
for each node application before the node applications are started.

initiator (CPI-C)

The communication partners in a are referred to as the initiator and the . The conversation acceptor
initiator sets up the conversation with the CPI-C calls Initialize_Conversation and Allocate.

insert

Field in a message text in which openUTM enters current values.

inverse KDCDEF

A function which uses the dynamically adapted configuration data in the to generate KDCFILE
control statements for a run. An inverse KDCDEF can be started “offline” under KDCDEF KDCDEF
 or “online” via the .program interface for administration

IUTMDB

Interface used for the coordinated interaction with resource managers on BS2000 systems. This
includes data repositories (LEASY) and data base systems (SESAM/SQL, UDS/SQL).

JConnect client

Designation for clients based on the product openUTM-JConnect. The communication with the UTM
application is carried out via the .UPIC protocol

JDK

Java Development Kit
Standard development environment from Oracle Corporation for the development of Java
applications.

 633

job

Request for a provided by a . The request is issued by specifying a service UTM application
transaction code. See also: , , , . queued output job dialog job background job job complex

job complex

Job complexes are used to assign to . An asynchronous job confirmation jobs asynchronous jobs
within a job complex is referred to as a .basic job

job-receiving service (KDCS)

A job-receiving service is a started by a of another server application.service job-submitting service

job-submitting service (KDCS)

A job-submitting service is a which requests another service from a different server service
application () in order to process a job.job-receiving service

KDCADM

Standard administration program supplied with openUTM. KDCADM provides administration
functions which are called with transaction codes ().administration commands

KDCDEF

UTM tool for the of . KDCDEF uses the configuration information in the generation UTM applications
KDCDEF control statements to create the UTM objects and the ROOT table sources for KDCFILE
the main routine .KDCROOT
In UTM cluster applications, KDCDEF also creates the the , cluster configuration file, cluster user file
the , the and the .cluster page pool cluster GSSB file cluster ULS file

KDCFILE

One or more files containing data required for a to run. The KDCFILE is created UTM application
with the UTM generation tool . Among other things, it contains the of the KDCDEF configuration
application.

KDCROOT

Main routine of an which forms the link between the and the UTM application program program units
system code. KDCROOT is linked with the to form the .program units application program

KDCS message area

For KDCS calls: buffer area in which messages or data for openUTM or for the are program unit
made available.

KDCS parameter area

See parameter area.

KDCS program interface

Universal UTM program interface compliant with the national DIN 66 265 standard and which
includes some extensions. KDCS (compatible data communications interface) allows dialog services
to be created, for instance, and permits the use of functions. In addition, KDCS message queuing
provides calls for . distributed processing

 634

Kerberos

Kerberos is a standardized network authentication protocol (RFC1510) based on encryption
procedures in which no passwords are sent to the network in clear text.

Kerberos principal

Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two locations, namely with the
key owner (principal) and the KDC (Key Distribution Center).

key code

Code that represents specific access authorization or a specific role. Several key codes are grouped
into a .key set

key set

Group of one or more under a particular a name. A key set defines authorization within key codes
the framework of the authorization concept used (lock/key code concept or concept). A access list
key set can be assigned to a , an an , a or a user ID LTERM partner (OSI) LPAP partner service

.TAC queue

linkage program

See .KDCROOT

local secondary storage area

See secondary storage area.

Log4j

Log4j is part of the Apache Jakarta project. Log4j provides information for logging information
(runtime information, trace records, etc.) and configuring the log output. uses the software WS4UTM
product Log4j for trace and logging functionality.

lock code

Code protecting an LTERM partner or transaction code against unauthorized access. Access is only
possible if the of the accesser contains the appropriate (lock/key code concept).key set key code

logging process

Process in Unix, Linux and Windows systems that controls the logging of account records or
monitoring data.

LPAP bundle

LPAP bundles allow messages to be distributed to LPAP partners across several partner
applications. If a UTM application has to exchange a very large number of messages with a partner
application then load distribution may be improved by starting multiple instances of the partner
application and distributing the messages across the individual instances. In an LPAP
bundle, openUTM is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The slave LPAPs are
assigned to the master LPAP on UTM generation. LPAP bundles exist for both the OSI TP protocol
and the LU6.1 protocol.

 635

LPAP partner

In the case of via the protocol, an LPAP partner for each partner distributed processing LU6.1
application must be configured in the local application. The LPAP partner represents the partner
application in the local application. During communication, the partner application is addressed by
the name of the assigned LPAP partner and not by the application name or address.

LTERM bundle

An LTERM bundle (connection bundle) consists of a master LTERM and multiple slave LTERMs. An
LTERM bundle (connection bundle) allows you to distribute queued messages to a logical partner
application evenly across multiple parallel connections.

LTERM group

An LTERM group consists of one or more alias LTERMs, the group LTERMs and a primary LTERM.
In an LTERM group, you assign multiple LTERMs to a connection.

LTERM partner

LTERM partners must be configured in the application if you want to connect clients or printers to a
. A client or printer can only be connected if an LTERM partner with the appropriate UTM application

properties is assigned to it. This assignment is generally made in the , but can also be configuration
made dynamically using terminal pools.

LTERM pool

The TPOOL statement allows you to define a pool of LTERM partners instead of issuing one LTERM
and one PTERM statement for each . If a client establishes a connection via an LTERM pool, client
an LTERM partner is assigned to it dynamically from the pool.

LU6.1

Device-independent data exchange protocol (industrial standard) for transaction-oriented server-
.server communication

LU6.1-LPAP bundle

LPAP bundle for partner applications.LU6.1

LU6.1 partner

Partner of the that communicates with the UTM application via the protocol. UTM application LU6.1
Examples of this type of partner are:

a UTM application that communicates via LU6.1

an application in the IBM environment (e.g. CICS, IMS or TXSeries) that communicates via LU6.
1

main process (Unix /Linux / Windows systems)

Process which starts the . It starts the , the , UTM application work processes UTM system processes
and the and monitors the printer processes, network processes, logging process timer process UTM

. application

 636

main routine KDCROOT

See .KDCROOT

management unit

SE Servers component; in combination with the , permits centralized, web-based SE Manager
management of all the units of an SE server.

message definition file

The message definition file is supplied with openUTM and, by default, contains the UTM message
texts in German and English together with the definitions of the message properties. Users can take
this file as a basis for their own message modules.

message destination

Output medium for a . Possible message destinations for a message from the openUTM message
transaction monitor include, for instance, terminals, , the MSGTAC, the TS applications event service

SYSLOG or SYSOUT/SYSLST or system log file TAC queues, asynchronous TACs, USER queues,
stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/SYSLST and stderr
/stdout.

message queue

Queue in which specific messages are kept with transaction management until further processed. A
distinction is drawn between and , depending on service-controlled queues UTM-controlled queues
who monitors further processing.

message queuing

Message queuing (MQ) is a form of communication in which the messages are exchanged via
intermediate queues rather than directly. The sender and recipient can be separated in space or
time. The transfer of the message is independent of whether a network connection is available at the
time or not. In openUTM there are and .UTM-controlled queues service-controlled queues

MSGTAC

Special event service that processes messages with the message destination MSGTAC by means
of a program. MSGTAC is an asynchronous service and is created by the operator of the application.

multiplex connection (BS2000 systems)

Special method offered by to connect terminals to a . A multiplex connection OMNIS UTM application
enables several terminals to share a single transport connection.

multi-step service (KDCS)

Service carried out in a number of .dialog steps

multi-step transaction

Transaction which comprises more than one .processing step

Network File System/Service / NFS

Allows Unix systems to access file systems across the network.

 637

network process (Unix / Linux / Windows systems)

A process in a for connection to the network.UTM application

network selector

The network selector identifies a service access point to the network layer of the OSI reference
 in the local system.model

node

Individual computer of a .cluster

node application

UTM application that is executed on an individual as part of a .node UTM cluster application

node bound service

A node bound service belonging to a user can only be continued at the node application at which the
user was last signed on. The following services are always node bound:

Services that have started communications with a job receiver via LU6.1 or OSI TP and for
which the job-receiving service has not yet been terminated

Inserted services in a service stack

Services that have completed a SESAM transaction

In addition, a user’s service is node bound as long as the user is signed-on at a node application.

node filebase

Filename prefix or directory name for the , and node application's KDCFILE user log file system log
.file

node recovery

If a node application terminates abnormally and no rapid warm start of the application is possible on
its associated then it is possible to perform a node recovery for this node on another node computer
node in the UTM cluster. In this way, it is possible to release locks resulting from the failed node
application in order to prevent unnecessary impairments to the running .UTM cluster application

normal termination of a UTM application

Controlled termination of a . Among other things, this means that the administration UTM application
data in the are updated. The initiates normal termination (e.g. with KDCFILE administrator
KDCSHUT N). After a normal termination, openUTM carries out any subsequent start as a .cold start

object identifier

An object identifier is an identifier for objects in an OSI environment which is unique throughout the
world. An object identifier comprises a sequence of integers which represent a path in a tree
structure.

OMNIS (BS2000 systems)

OMNIS is a “session manager” which lets you set up connections from one terminal to a number of
partners in a network concurrently OMNIS also allows you to work with multiplex connections.

 638

online import

In a , online import refers to the import of application data from a normally UTM cluster application
terminated node application into a running node application.

online update

In a online update refers to a change to the application configuration or the UTM cluster application,
application program or the use of a new UTM revision level while a is UTM cluster application
running.

open terminal pool

Terminal pool which is not restricted to clients of a single computer or particular type. Any client for
which no computer- or type-specific terminal pool has been generated can connect to this terminal
pool.

OpenCPIC

Carrier system for UTM clients that use the protocol.OSI TP

OpenCPIC client

OSI TP partner application with the carrier system.OpenCPIC

openSM2

The openSM2 product line offers a consistent solution for the enterprise-wide performance
management of server and storage systems. openSM2 offers the acquisition of monitoring data,
online monitoring and offline evaluation.

openUTM cluster

From the perspective of UPIC clients, from the perspective of the server:Combination of several not
node applications of a UTM cluster application to form one logical application that is addressed via a
common symbolic destination name.

openUTM-D

openUTM-D (openUTM distributed) is a component of openUTM which allows distributed processing.
openUTM-D is an integral component of openUTM.

OSI-LPAP bundle

LPAP bundle for partner applications.OSI TP

OSI-LPAP partner

OSI-LPAP partners are the addresses of the generated in openUTM. In the case of OSI TP partners
 via the protocol, an OSI-LPAP partner for each partner application distributed processing OSI TP

must be configured in the local application. The OSI-LPAP partner represents the partner application
in the local application. During communication, the partner application is addressed by the name of
the assigned OSI-LPAP partner and not by the application name or address.

 639

OSI reference model

The OSI reference model provides a framework for standardizing communications in open systems.
ISO, the International Organization for Standardization, described this model in the ISO IS7498
standard. The OSI reference model divides the necessary functions for system communication into
seven logical layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP

Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner

Partner of the UTM application that communicates with the UTM application via the OSI TP protocol.
Examples of such partners are:

a UTM application that communicates via OSI TP

an application in the IBM environment (e.g. CICS) that is connected via openUTM-LU62

an OpenCPIC client

applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)

See .outgoing conversation

outgoing conversation (CPI-C)

A conversation in which the local CPI-C program is the is referred to as an outgoing initiator
conversation. In the X/Open specification, the term “outbound conversation” is used synonymously
with “outgoing conversation”.

page pool

Part of the in which user data is stored.KDCFILE
In a this data consists, for example, of , messages sent to standalone application dialog messages

, . message queues secondary memory areas
In a UTM cluster application, it consists, for example, of messages to .message queues, TLS

parameter area

Data structure in which a program unit passes the operands required for a UTM call to openUTM.

partner application

Partner of a UTM application during . Higher communication protocols are distributed processing
used for distributed processing (, or LU6.2 via the openUTM-LU62 gateway).LU6.1 OSI TP

postselection (BS2000 systems)

Selection of logged UTM events from the SAT logging file which are to be evaluated. Selection is
carried out using the SATUT tool.

 640

prepare to commit (PTC)

Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system waits for the partner to
confirm the end of the transaction.

preselection (BS2000 systems)

Definition of the UTM events which are to be logged for the . Preselection is carried out SAT audit
with the UTM-SAT administration functions. A distinction is made between event-specific, user-
specific and job-specific (TAC-specific) preselection.

presentation selector

The presentation selector identifies a service access point to the presentation layer of the OSI
 in the local system.reference model

primary storage area

Area in main memory to which the has direct access, e.g. KDCS program unit standard primary
, .working area communication area

print administration

Functions for and the administration of , sent to a printer.print control queued output jobs

print control

openUTM functions for controlling print output.

printer control LTERM

A printer control LTERM allows a client or terminal user to connect to a UTM application. The
printers assigned to the printer control LTERM can then be administered from the client program or
the terminal. No administration rights are required for these functions.

printer control terminal

This term has been superseded by .printer control LTERM

printer group (Unix systems)

For each printer, a Unix system sets up one printer group by default that contains this one printer
only. It is also possible to assign several printers to one printer group or to assign one printer to
several different printer groups.

printer pool

Several printers assigned to the same .LTERM partner

printer process (Unix / Linux systems)

Process set up by the for outputting to a . The main process asynchronous messages printer group
process exists as long as the printer group is connected to the . One printer process UTM application
exists for each connected printer group.

 641

process

The openUTM manuals use the term “process” as a collective term for processes (Unix / Linux /
Windows systems) and tasks (BS2000 systems).

processing step

A processing step starts with the receipt of a sent to the by a dialog message UTM application client
 or another server application. The processing step ends either when a response is sent, thus also
terminating the , or when a dialog message is sent to a third party.dialog step

program interface for administration

UTM program interface which helps users to create their own . Among other administration programs
things, the program interface for administration provides functions for , for dynamic configuration
modifying properties and application parameters and for querying information on the configuration
and the current workload of the application.

program space (BS2000 systems)

Virtual address space of BS2000 which is divided into memory classes and in which both executable
programs and pure data are addressed.

program unit

UTM are implemented in the form of one or more program units. The program units are services
components of the . Depending on the employed API, they may have to contain application program
KDCS, XATMI or CPIC calls. They can be addressed using . Several different transaction codes
transaction codes can be assigned to a single program unit.

queue

See message queue.

queued output job

Queued output jobs are which output a message, such as a document, to a asynchronous jobs
printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it is not necessary to
create program units to process them.

Quick Start Kit

A sample application supplied with openUTM (Windows systems).

redelivery

Repeated delivery of an that could not be processed correctly because, for asynchronous message
example, the was rolled back or the was terminated abnormally. transaction asynchronous service
The message is returned to the message queue and can then be read and/or processed again.

reentrant program

Program whose code is not altered when it runs. On BS2000 systems this constitutes a prerequisite
for using . shared code

 642

request

Request from a or another server for a .client service function

requestor

In XATMI, the term requestor refers to an application which calls a service.

resource manager

Resource managers (RMs) manage data resources. Database systems are examples of resource
managers. openUTM, however, also provides its own resource managers for accessing message
queues, local memory areas and logging files, for instance. Applications access RMs via special
resource manager interfaces. In the case of database systems, this will generally be SQL and in the
case of openUTM RMs, it is the KDCS interface.

restart

See screen restart.
see service restart.

RFC1006

A protocol defined by the IETF (Internet Engineering Task Force) belonging to the TCP/IP family that
implements the ISO transport services (transport class 0) based on TCP/IP.

RSA

Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir and Adleman). This
method uses a pair of keys that consists of a public key and a private key. A message is encrypted
using the public key, and this message can only be decrypted using the private key. The pair of RSA
keys is created by the UTM application.

SAT audit (BS2000 systems)

Audit carried out by the SAT (Security Audit Trail) component of the BS2000 software product
SECOS.

screen restart

If a is interrupted, openUTM again displays the of the last completed dialog service dialog message
 on screen when the service restarts provided that the last transaction output a message transaction

on the screen.

SE manager

Web-based graphical user interface (GUI) for the SE series of Business Servers. SE Manager runs
on the and permits the central operation and administration of server units (with management unit
/390 architecture and/or x86 architecture), application units (x86 architecture), net unit and
peripherals.

SE server

A Business Server from Fujitsu's SE series.

 643

secondary storage area

Memory area secured by transaction logging and which can be accessed by the KDCS program unit
with special calls. Local secondary storage areas (LSSBs) are assigned to one Global service.
secondary storage areas (GSSBs) can be accessed by all services in a . Other UTM application
secondary storage areas include the and the terminal-specific long-term storage (TLS) user-specific

 .long-term storage (ULS)

selector

A selector identifies a service access point to services of one of the layers of the OSI reference
 in the local system. Each selector is part of the address of the access point.model

semaphore (Unix / Linux / Windows systems)

Unix, Linux and Windows systems resource used to control and synchronize processes.

server

A server is an which provides . The computer on which the applications are application services
running is often also referred to as the server.

server-server communication

See .distributed processing

server side of a conversation (CPI-C)

This term has been superseded by .acceptor

service

Services process the that are sent to a server application. A service of a UTM application jobs
comprises one or more transactions. The service is called with the . Services can be service TAC
requested by or by other servers.clients

service access point

In the OSI reference model, a layer has access to the services of the layer below at the service
access point. In the local system, the service access point is identified by a . During selector
communication, the links up to a service access point. A connection is established UTM application
between two service access points.

service chaining (KDCS)

When service chaining is used, a follow-up service is started without a specification dialog message
after a has completed.dialog service

service-controlled queue

Message queue in which the calling and further processing of messages is controlled by . A services
service must explicitly issue a KDCS call (DGET) to read the message. There are service-controlled
queues in openUTM in the variants , and . USER queue TAC queue temporary queue

 644

service restart (KDCS)

If a service is interrupted, e.g. as a result of a terminal user signing off or a being UTM application
terminated, openUTM carries out a . An is restarted or service restart asynchronous service
execution is continued at the most recent , and a continues synchronization point dialog service
execution at the most recent . As far as the terminal user is concerned, the synchronization point
service restart for a dialog service appears as a provided that a dialog message was screen restart
sent to the terminal user at the last synchronization point.

service routine

See .program unit

service stacking (KDCS)

A terminal user can interrupt a running and insert a new dialog service. When the dialog service
inserted has completed, the interrupted service continues.service

service TAC (KDCS)

Transaction code used to start a .service

session

Communication relationship between two addressable units in the network via the SNA protocol LU6.
 .1

session selector

The session selector identifies an in the local system to the services of the session access point
layer of the .OSI reference model

shared code (BS2000 systems)

Code which can be shared by several different processes.

shared memory

Virtual memory area which can be accessed by several different processes simultaneously.

shared objects (Unix / Linux / Windows systems)

Parts of the can be created as shared objects. These objects are linked to the application program
application dynamically and can be replaced during live operation. Shared objects are defined with
the KDCDEF statement SHARED-OBJECT.

sign-on check

See .system access control

sign-on service (KDCS)

Special for a user in which control how a user signs on to a UTM dialog service program units
application.

single-step service

Dialog service which encompasses precisely one . dialog step

 645

single-step transaction

Transaction which encompasses precisely one .dialog step

SOA

(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the form of re-usable,
technically independent, loosely coupled . Services can be called independently of the services
underlying implementations via interfaces which may possess public and, consequently, trusted
specifications. Service interaction is performed via a communication infrastructure made available
for this purpose.

SOAP

SOAP (Simple Object Access Protocol) is a protocol used to exchange data between systems and
run remote procedure calls. SOAP also makes use of the services provided by other standards, XML
for the representation of the data and Internet transport and application layer protocols for message
transfer.

socket connection

Transport system connection that uses the socket interface. The socket interface is a standard
program interface for communication via TCP/IP.

standalone application

See .standalone UTM application

standalone UTM application

Traditional that is not part of a .UTM application UTM cluster application

standard primary working area (KDCS)

Area in main memory available to all KDCS . The contents of the area are either program units
undefined or occupied with a fill character when the program unit starts execution.

start format

Format output to a terminal by openUTM when a user has successfully signed on to a UTM
(except after a and during sign-on via the).application service restart sign-on service

static configuration

Definition of the during generation using the UTM tool .configuration KDCDEF

SYSLOG file

See .system log file

synchronization point, consistency point

The end of a . At this time, all the changes made to the during the transaction application information
transaction are saved to prevent loss in the event of a crash and are made visible to others. Any
locks set during the transaction are released.

 646

system access control

A check carried out by openUTM to determine whether a certain is authorized to work with user ID
the . The authorization check is not carried out if the UTM application was UTM application
generated without user IDs.

system log file

File or file generation to which openUTM logs all UTM messages for which SYSLOG has been
defined as the during execution of a message destination UTM application.

TAC

See .transaction code

TAC queue

Message queue generated explicitly by means of a KDCDEF statement. A TAC queue is a service-
that can be addressed from any service using the generated name.controlled queue

temporary queue

Message queue created dynamically by means of a program that can be deleted again by means of
a program (see).service-controlled queue

terminal-specific long-term storage (KDCS)

Secondary storage area assigned to an or and which is retained LTERM, LPAP OSI-PAP partner
after the application has terminated.

time-driven job

Job which is buffered by openUTM in a up to a specific time until it is sent to the message queue
recipient. The recipient can be an of the same application, a , a asynchronous service TAC queue
partner application, a terminal or a printer. Time-driven jobs can only be issued by KDCS program

.units

timer process (Unix / Linux / Windows systems)

Process which accepts jobs for controlling the time at which are executed. It does work processes
this by entering them in a job list and releasing them for processing after a time period defined in the
job list has elapsed.

TLS termination proxy

A TLS termination proxy is a proxy server that is used to handle incoming TLS connections,
decrypting the data and passing on the unencrypted request to other servers.

TNS (Unix / Linux / Windows systems)

Abbreviation for the Transport Name Service. TNS assigns a transport selector and a transport
system to an application name. The application can be reached through the transport system.

Tomcat

see Apache Tomcat

https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Transport_Layer_Security

 647

transaction

Processing section within a for which adherence to the is guaranteed. If, service ACID properties
during the course of a transaction, changes are made to the , they are either application information
made consistently and in their entirety or not at all (all-or-nothing rule). The end of the transaction
forms a .synchronization point

transaction code/TAC

Name which can be used to identify a . The transaction code is assigned to the program program unit
unit during or . It is also possible to assign more than one transaction static dynamic configuration
code to a program unit.

transaction rate

Number of successfully executed per unit of time.transactions

transfer syntax

With the data to be transferred between two computer systems is converted from the local OSI TP,
format into transfer syntax. Transfer syntax describes the data in a neutral format which can be
interpreted by all the partners involved. An must be assigned to each transfer Object Identifier
syntax.

transport connection

In the this is a connection between two entities of layer 4 (transport layer).OSI reference model,

transport layer security

Transport layer security is a hybrid encryption protocol for secure data transmission in the Internet.

transport selector

The transport selector identifies a service access point to the transport layer of the OSI reference
 in the local system.model

transport system access point

See transport system end point.

transport system application

Application which is based directly on a transport system interface (e.g. CMX, DCAM or socket).
When transport system applications are connected, the partner type APPLI or SOCKET must be
specified during . A transport system application cannot be integrated in a configuration distributed

.transaction

transport system end point

Client/server or server/server communication establishes a connection between two transport
system end points. A transport system end point is also referred to as a local application name and
is defined using the BCAMAPPL statement or MAX APPLINAME.

TS application

See transport system application.

 648

typed buffer (XATMI)

Buffer for exchanging typed and structured data between communication partners. Typed buffers
ensure that the structure of the exchanged data is known to both partners implicitly.

UPIC

Carrier system for openUTM clients. UPIC stands for Universal Programming Interface for
Communication. The communication with the UTM application is carried out via the .UPIC protocol

UPIC Analyzer

Component used to analyze the UPIC communication recorded with . This step is UPIC Capture
used to prepare the recording for playback using .UPIC Replay

UPIC Capture

Used to record communication between UPIC clients and UTM applications so that this can be
replayed subsequently ().UPIC Replay

UPIC client

The designation for openUTM clients with the UPIC carrier system and for .JConnect clients

UPIC protocol

Protocol for the client server communication with . The UPIC protocol is used by UTM applications
 and .UPIC clients JConnect clients

UPIC Replay

Component used to replay the UPIC communication recorded with and prepared with UPIC Capture
.UPIC Analyzer

user exit

This term has been superseded by event exit.

user ID

Identifier for a user defined in the for the (with an optional password configuration UTM application
for) and to whom special data access rights () have system access control system access control
been assigned. A terminal user must specify this ID (and any password which has been assigned)
when signing on to the UTM application. On BS2000 systems, system access control is also
possible via . Kerberos
For other clients, the specification of a user ID is optional, see also . connection user ID
UTM applications can also be generated without user IDs.

user log file

File or file generation to which users write variable-length records with the KDCS LPUT call. The
data from the KB header of the is prefixed to every record. The user log KDCS communication area
file is subject to transaction management by openUTM.

 649

USER queue

Message queue made available to every user ID by openUTM. A USER queue is a service-
and is always assigned to the relevant user ID. You can restrict the access of other controlled queue

UTM users to your own USER queue.

user-specific long-term storage

Secondary storage area assigned to a , a or an and which is retained user ID session association
after the application has terminated.

USLOG file

See user log file.

UTM application

A UTM application provides which process jobs from or other applications. services clients
openUTM is responsible for transaction logging and for managing the communication and system
resources. From a technical point of view, a UTM application is a process group which forms a
logical server unit at runtime.

UTM client

See client.

UTM cluster application

UTM application that has been generated for use on a cluster and that can be viewed logically as a
 application. single

In physical terms, a UTM cluster application is made up of several identically generated UTM
applications running on the individual cluster .nodes

UTM cluster files

Blanket term for all the files that are required for the execution of a UTM cluster application on Unix,
Linux and Windows systems. This includes the following files:

Cluster configuration file

Cluster user file

Files belonging to the cluster page pool

Cluster GSSB file

Cluster ULS file

Files belonging to the *cluster administration journal

Cluster lock file*

Lock file for start serialization*

The files indicated by * are created when the first node application is started. All the other files are
created on generation using KDCDEF.

UTM-controlled queue

Message queues in which the calling and further processing of messages is entirely under the
control of openUTM. See also and .asynchronous job, background job asynchronous message

 650

UTM-D

See openUTM-D.

UTM-F

UTM applications can be generated as UTM-F applications (UTM fast). In the case of UTM-F
applications, input from and output to hard disk is avoided in order to increase performance. This
affects input and output which uses to save user data and transaction data. Only changes to UTM-S
the administration data are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-MODE=FAST),
application data that is valid throughout the cluster is also saved. In this case, GSSB and ULS data
is treated in exactly the same way as in UTM cluster applications generated with UTM-S. However,
service data relating to users with RESTART=YES is written only when the relevant user signs off
and not at the end of each transaction.

UTM generation

Static configuration of a using the UTM tool KDCDEF and creation of an application UTM application
program.

UTM message

Messages are issued to by the openUTM transaction monitor or by UTM UTM message destinations
tools (such as). A message comprises a message number and a message text, which can KDCDEF
contain with current values. Depending on the message destination, either the entire inserts
message is output or only certain parts of the message, such as the inserts).

UTM page

A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone UTM applications,
the size of a UTM page on generation of the UTM application can be set to 2K, 4K or 8 K. The size
of a UTM page in a is always 4K or 8 K. The and the restart area UTM cluster application page pool
for the KDCFILE and are divided into units of the size of a UTM page.UTM cluster files

utmpath (Unix / Linux / Windows systems)

The directory under which the openUTM components are installed is referred to as in this utmpath
manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH must be set to the
value of . On Unix and Linux systems, you must set UTMPATH before a UTM application is utmpath
started. On Windows systems UTMPATH is set in accordance with the UTM version installed most
recently.

UTM-S

In the case of UTM-S applications, openUTM saves all user data as well as the administration data
beyond the end of an application and any system crash which may occur. In addition, UTM-S
guarantees the security and consistency of the application data in the event of any malfunction. UTM
applications are usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)

UTM SAT administration functions control which UTM events relevant to security which occur during
operation of a are to be logged by . Special authorization is required for UTM UTM application SAT
SAT administration.

 651

UTM socket protocol (USP)

Proprietary openUTM protocol above TCP/IP for the transformation of the Socket interface received
byte streams in messages.

UTM system process

UTM process that is started in addition to the processes specified via the start parameters and which
only handles selected jobs. UTM system processes ensure that UTM applications continue to be
reactive even under very high loads.

UTM terminal

This term has been superseded by .LTERM partner

UTM tool

Program which is provided together with openUTM and which is needed for UTM specific tasks (e.g
for configuring).

virtual connection

Assignment of two communication partners.

warm start

Start of a application after it has terminated abnormally. The is reset UTM-S application information
to the most recent consistent state. Interrupted are rolled back to the most recent dialog services

, allowing processing to be resumed in a consistent state from this point (synchronization point
). Interrupted are rolled back and restarted or restarted at the service restart asynchronous services

most recent .synchronization point
For applications, only configuration data which has been dynamically changed is rolled back UTM-F
to the most recent consistent state after a restart due to a preceding abnormal termination.
In UTM cluster applications, the global locks applied to GSSB and ULS on abnormal termination of
this node application are released. In addition, users who were signed on at this node application
when the abnormal termination occurred are signed off.

WebAdmin

Web-based tool for the administration of openUTM applications via a Web browser. WebAdmin
includes not only the full function scope of the but also additional administration program interface
functions.

Web service

Application which runs on a Web server and is (publicly) available via a standardized, programmable
interface. Web services technology makes it possible to make UTM program units available for
modern Web client applications independently of the programming language in which they were
developed.

WinAdmin

Java-based tool for the administration of openUTM applications via a graphical user interface.
WinAdmin includes not only the full function scope of the but also administration program interface
additional functions.

 652

work process (Unix / Linux / Windows systems)

A process within which the of a run.services UTM application

workload capture & replay

Family of programs used to simulate load situations; consisting of the main components UPIC
, and and - on Unix, Linux and Windows systems - the utility Capture UPIC Analyzer Upic Replay

program . Workload Capture & Replay can be used to record UPIC sessions with UTM kdcsort
applications, analyze these and then play them back with modified load parameters.

WS4UTM

WS4UTM (eb ervices for open) provides you with a convenient way of making a service of a W S UTM
UTM application available as a Web service.

XATMI

XATMI (X/Open Application Transaction Manager Interface) is a program interface standardized by X
/Open for program-program communication in open networks.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI CAE Specification.
The interface is available in COBOL and C. In openUTM, XATMI can communicate via the OSI TP,

 and UPIC protocols.LU6.1

XHCS (BS2000 systems)

XHCS (Extended Host Code Support) is a BS2000 software product providing support for
international character sets.

XML

XML (eXtensible Markup Language) is a metalanguage standardized by the W3C (WWW
Consortium) in which the interchange formats for data and the associated information can be
defined.

 653

10 Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used in the original German
product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000 systems)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix, Linux and Windows Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000 systems)

DB Database

DBH Database Handler

DC Data Communication

DCAM Data Communication Access Method

DES Data Encryption Standard

 654

DLM Distributed Lock Manager (BS2000 systems)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GCM Galois/Counter Mode

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000 systems)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000 systems)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

 655

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000 systems)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000 systems)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000 systems)

 656

RTS Runtime System

SAT Security Audit Trail (BS2000 systems)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSL Secure Socket Layer

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TLS Transport Layer Security

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 systems (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 systems (Task User)

TX Transaction Demarcation (X/Open)

 657

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000 systems

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Processing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

 658

11 Related publications

You will find the manuals on the internet at .https://bs2manuals.ts.fujitsu.com

openUTM documentation

openUTMConcepts and Functions

User Guide

openUTM Programming Applications with KDCS for COBOL, C and C++

Core Manual

openUTM Generating Applications

User Guide

openUTM Using UTM Applications on BS2000 Systems

User Guide

openUTM Using UTM Applications on Unix, Linux and Windows Systems

User Guide

openUTM Administering Applications

User Guide

openUTM Messages, Debugging and Diagnostics on BS2000 Systems

User Guide

openUTM Messages, Debugging and Diagnostics on Unix, Linux and Windows Systems

User Guide

openUTM Creating Applications with X/Open Interfaces

User Guide

openUTM XML for openUTM

openUTM Client (Unix systems) for the OpenCPIC Carrier System
Client-Server Communication with openUTM

User Guide

openUTM Client for the UPIC Carrier System
Client-Server Communication with openUTM

User Guide

https://bs2manuals.ts.fujitsu.com/index

 659

openUTM WinAdmin
Graphical Administration Workstation for openUTM

Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM

Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing between openUTM and CICS, IMS and LU6.2
Applications

User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

Documentation for the openSEAS product environment

BeanConnect

User Guide

openUTM-JConnect
Connecting Java Clients to openUTM

User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

 660

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Documentation for the BS2000 environment

AID Advanced Interactive Debugger
Core Manual

User Guide

AID Advanced Interactive Debugger
Debugging of COBOL Programs

User Guide

AID Advanced Interactive Debugger
Debugging of C/C++ Programs

User Guide

BCAM
BCAM Volume 1/2

User Guide

BINDER
User Guide

BS2000 OSD/BC
Commands Volume 1 - 7

User Guide

BS2000 OSD/BC
Executive Macros

User Guide

BS2IDE
Eclipse-based Integrated Development Environment for BS2000
User Guide and Installation Guide
Web page: https://bs2000.ts.fujitsu.com/bs2ide/

https://bs2000.ts.fujitsu.com/bs2ide/

 661

BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD

User Guide

DCAM
COBOL Calls

User Guide

DCAM
Macros

User Guide

DCAM
Program Interfaces

Description

FHS
Format Handling System for openUTM, TIAM, DCAM

User Guide

IFG for FHS
User Guide

HIPLEX AF
High-Availability of Applications in BS2000/OSD

Product Manual

HIPLEX MSCF
BS2000 Processor Networks

User Guide

IMON
Installation Monitor

User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU
Functions and Commands

User Guide

 662

OMNIS/OMNIS-MENU
Administration and Programming

User Guide

OSS (BS2000)
OSI Session Service
User Guide

openSM2
Software Monitor

User Guide

RSO
Remote SPOOL Output

User Guide

SECOS
Security Control System

User Guide

SECOS
Security Control System

Ready Reference

SESAM/SQL
Database Operation

User Guide

TIAM
User Guide

UDS/SQL
Database Operation

User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support

User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD

User Guide

 663

Documentation for the Unix, Linux and Windows system environment

CMX V6.0 (Unix systems)
(only available in German)Betrieb und Administration

User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2

The documentation of openSM2 is provided in the form of detailed online help systems, which are delivered with the
product.

Other publications

CPI-C

X/Open CAE Specification
Distributed Transaction Processing:
The CPI-C Specification, Version 2
ISBN 1 85912 135 7

Reference Model
X/Open Guide
Distributed Transaction Processing:
Reference Model, Version 2
ISBN 1 85912 019 9

REST
Architectural Styles and the Design of Network-based Software Architectures
Dissertation Roy Fielding

TX
X/Open CAE Specification
Distributed Transaction Processing:
The TX (Transaction Demarcation) Specification
ISBN 1 85912 094 6

XATMI
X/Open CAE Secification
Distributed Transaction Processing

 664

The XATMI Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)

Web page: http://www.w3org/XML

http://www.w3org/XML

	Generating Applications
	Preface
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Changes in openUTM V7.0
	New server functions
	Discontinued server functions
	New client functions
	New functions for openUTM WinAdmin
	New functions for openUTM WebAdmin

	Notational conventions

	Introduction to the generation procedure
	Configuring the UTM application
	Generating application components - result of the KDCDEF run
	The KDCFILE
	Administrative data
	Page pool
	Restart area
	Creating a new KDCFILE during operation

	Performance aspects - tuning
	Splitting the KDCFILE
	KDCFILE on raw-device (Unix and Linux systems)
	KDCFILE on a stripe set (Windows systems)

	Generating applications for distributed processing
	Distributed processing via the LU6.1 protocol
	Transport connections and SNA sessions
	Generation notes
	Procedure when generating LU6.1 connections
	LU6.1-LPAP bundles
	Usage of LU6.1-LPAP bundles for communication with an UTM cluster application on Unix, Linux and Windows systems

	Distributed processing via the OSI TP protocol
	OSI terms
	Generation of distributed processing based on OSI TP
	OSI-LPAP bundles

	Coordinating the UTM and BCAM configurations (BS2000 systems)
	Providing address information for the CMX transport system (Unix, Linux and Windows systems)
	Providing address information with KDCDEF
	Converting address information from TNS entries to KDCDEF

	Providing address information for the SOCKET transport system (Unix, Linux and Windows systems)
	Network connection (Unix, Linux and Windows systems)
	Computer names (Unix, Linux and Windows systems)
	Specifying computer names in KDCDEF generation
	KDCNAMEINFO tool

	Generating selected objects and functions of the application
	Connecting clients to the application
	Connecting clients via LTERM partners
	LTERM pools
	LTERM bundle
	LTERM groups
	Connecting OpenCPIC clients
	Defining the client sign-on procedure
	Establishing an automatic connection
	Automatic sign-on under a specific user ID
	Generating sign-on services for clients
	Multiple sign-ons

	Specifying maximum waiting times for dialog prompting
	Generating security functions
	Defining system access control
	Assigning administration authorizations

	Generating restart functionality
	USP headers for output messages to USP socket applications
	Providing address information
	Providing address information for clients of type UPIC and APPLI on BS2000 systems
	Providing address information for clients of type UPIC and APPLI on Unix, Linux and Windows systems
	Additional information for LTERM pools on Unix, Linux and Windows systems

	Examples for the generation of a client/server combination

	Generating printers (on BS2000, Unix and Linux systems)
	Generating RSO printers (BS2000 systems)
	Entries for the KDCDEF generation
	Entries for RSO and SPOOL
	Activating printers for openUTM
	Querying printer information
	Releasing printers in the event of an error

	Generating printer pools
	Bypass mode (BS2000 systems)
	Generating printer control LTERMs

	Generating service-controlled queues
	USER queues
	TAC queues
	Temporary queues
	Specifying the maximum waiting time for reading from service-controlled queues
	Limiting the maximum number of redeliveries to service-controlled queues

	UTM messages
	Messages in openUTM on BS2000 systems
	Messages in openUTM on Unix, Linux and Windows systems
	User-specific message destinations

	Message distribution and multiplexing with OMNIS (BS2000 systems)
	Multiplex connections
	Defining multiplex connections
	Confirming the connection shutdown by the partner

	Statistics on multiplex connections
	Combination of multiplex connections and direct connections

	Generating load modules, common memory pools and shared code (BS2000 systems)
	Generating load modules
	Generating shared code and common memory pools
	Shared code in system memory
	Shared code in common memory pools

	Code conversion
	Job control - priorities and process limitations
	Job processing via priority control
	Job processing via process limitation for TAC classes
	Comparison of some of the properties of the two methods
	Process priorities on BS2000 systems

	Authorization Concept
	Lock/key code concept
	Access list concept
	Data access control with distributed processing

	Message encryption on connections to clients
	Requirements
	Encryption methods
	Encrypting passwords and user data
	System access control
	Data access control

	Creating the RSA key pair and reading the public key

	Defining database linking
	Linking databases on BS2000 systems
	Linking to a Resource Manager on Unix, Linux and Windows systems

	Internationalizing the application - XHCS support (BS2000 systems)
	Definitions of XHCS terms
	Defining the language environment - setting the locale
	Character set names for edit profiles and formats
	Querying the language environment in a UTM program unit
	Character sets for editing messages

	Notes on generating a UTM cluster application on Unix, Linux and Windows systems
	Generating a UTM cluster application
	UTM cluster files
	KDCDEF statements
	Initial KDCFILE

	Generating a reserve node application
	Using global memory areas
	Using users with RESTART=YES
	Special issues
	Special issues with LU6.1 connections

	The KDCDEF generation tool
	Creating the ROOT table source, the KDCFILE and UTM cluster files
	Statements for controlling the KDCDEF run
	Statements for creating the ROOT table source
	Basic statements for creating a KDCFILE
	Creating the KDCFILE - additional statements for distributed processing via LU6.1
	Creating the KDCFILE - additional statements for distributed processing via OSI TP
	Generating KDCFILE and UTM cluster files - additional statements for UTM cluster applications

	Effects of the KDCDEF statements on the generation objects

	Calling KDCDEF and entering the control statements
	Starting KDCDEF and executing a KDCDEF run
	BS2000 systems
	Unix and Linux systems
	Windows systems

	Order of the control statements
	Format of the control statements
	Continuation lines in control statements
	Syntax and plausibility checks
	KDCDEF logging
	Format and uniqueness of object names
	Reserved names
	Format of names
	Number of names
	Uniqueness of names and addresses

	Result of the KDCDEF run

	Inverse KDCDEF
	Starting inverse KDCDEF
	Result of inverse KDCDEF
	Creating KDCDEF control statements in upgrades

	Recommendations when regenerating an application
	KDCDEF control statements
	ABSTRACT-SYNTAX - define the abstract syntax
	ACCESS-POINT - create an OSI TP access point
	ACCOUNT - define the accounting functions
	APPLICATION-CONTEXT - define the application context
	AREA - define additional data areas
	BCAMAPPL - define additional application names
	CHAR-SET- assign names to code tables (BS2000 systems)
	CLUSTER - define global properties of a UTM cluster application (Unix, Linux and Windows systems)
	CLUSTER-NODE - define a node application of a UTM cluster application (Unix, Linux and Window systems)
	CON - define a connection for distributed processing based on LU6.1
	CREATE-CONTROL-STATEMENTS - create KDCDEF control statements
	DATABASE - define a database system (BS2000 systems)
	DEFAULT - define default values (BS2000 systems)
	EDIT - define edit options (BS2000 systems)
	EJECT - initiate a page feed in the log
	END - terminate KDCDEF input
	EXIT - define event exits
	FORMSYS - define the format handling system (BS2000 systems)
	HTTP-DESCRIPTOR - define a HTTP Descriptor
	KSET - define a key set
	LOAD-MODULE - define a load module (BLS, BS2000 systems)
	LPAP - define an LPAP partner for distributed processing based on LU6.1
	LSES - define a session name for distributed processing based on LU6.1
	LTAC - define a transaction code for the partner application
	LTERM - define an LTERM partner for a client or printer
	MASTER-LU61-LPAP - define the master LPAP of an LU6.1-LPAP bundle
	MASTER-OSI-LPAP - defining the master LPAP of an OSI-LPAP bundle
	MAX - define UTM application parameters
	MESSAGE - define a UTM message module
	MPOOL - define a common memory pool (BS2000 systems)
	MSG-DEST - define user-specific messages destinations
	MUX - define a multiplex connection (BS2000 systems)
	OPTION - manage the KDCDEF run
	OSI-CON - define a logical connection to an OSI TP partner
	OSI-LPAP - define an OSI-LPAP partner for distributed processing based on OSI TP
	PROGRAM - define a program unit
	PTERM - define the properties of a client/printer and assign an LTERM partner
	QUEUE - reserve table entries for temporary messages queues
	REMARK - insert a comment line
	RESERVE - reserve table locations for UTM objects
	RMXA - define a name for an XA database connection (Unix, Linux and Windows systems)
	ROOT - define a name for the ROOT table source
	SATSEL - define SAT logging (BS2000 systems)
	SESCHA - define session characteristics for distributed processing based on LU6.1
	SFUNC - define function keys
	SHARED-OBJECT - define shared objects/DLLs (Unix, Linux and Windows systems)
	SIGNON - control the sign-on procedure
	SUBNET - define IP subnets
	TAC - define the properties of transaction codes and TAC queues
	TACCLASS - define the number of processes for a TAC class
	TAC-PRIORITIES - specify priorities of the TAC classes
	TCBENTRY - define a group of TCB entries (BS2000 systems)
	TLS - define a name for a TLS block
	TPOOL - define an LTERM pool
	TRANSFER-SYNTAX - define the transfer syntax
	ULS - define a name for a ULS block
	USER - define a user ID
	UTMD - application parameters for distributed processing

	Dialog control - effects of generation parameters
	Example generation: ComfoTRAVEL
	KDCDEF input file DYNAMIC.RMS for UTM-D application RMS
	KDCDEF statements for UTM-D application RMS
	KDCDEF input file DynamicTravel for UTM application TRAVEL
	KDCDEF statements for UTM application TRAVEL

	KDCDEF messages

	Changing the configuration of an application dynamically
	Reserving locations in the KDCFILE object tables
	Prerequisites for entering objects dynamically

	The tool KDCUPD - updating the KDCFILE
	Overview
	Supported upgrades
	Prerequisite for using KDCUPD
	Backing up data
	What data does KDCUPD transfer?
	Changing generation parameters
	Transfer of user data

	Update generation for standalone UTM applications
	Update generation for UTM cluster applications (Unix, Linux and Windows systems)
	Offline update of a UTM cluster application
	Online update of a UTM cluster application
	Update generation of the KDCFILE
	Increasing the size of the cluster page pool
	Change to the application program

	Converting a UTM cluster application
	Conversion from a standalone UTM application to a UTM cluster application
	Converting a UTM cluster application to a standalone UTM application

	Update generation with transfer from 32-bit to 64-bit architecture
	Control statements for KDCUPD
	CATID - define Catid of the old and the new KDCFILE
	CHECK - check the consistency of the KDCFILE
	CLUSTER-FILEBASE - Specify the base names of the old and new UTM cluster files
	END - terminate input and start processing
	KDCFILE - specify the base name of the old and new KDCFILE
	LIST - control the runtime log
	TRANSFER - control the data transfer of the user data

	KDCUPD runtime log and messages

	Glossary
	Abbreviations
	Related publications

