
Tools.h++
Class Reference

Rogue Software

Corvallis, Oregon USA

Tools.h++ Class Reference

Authors: Tools.h++ Team

Tools.h++ Team:
Tools.h++ Development: Anna Dahan, Frank Griswold, Kevin Johnsrude,
 Tom Pearson, and Jim Shur
Engineering Services: Wade Brittain, Bruce Kyle, Randall Robinson,
 Howard Sanders, and Tibbi Scott
Manuals: Elaine Cull, Wendi Minne, and Julie Prince
Marketing: Anita Covelli and Michael Nelson
Support: North Krimsly
With invaluable help from: James Fowler, John Vriezen,
 and the entire Rogue Wave Crew

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.

Rogue Wave and .h++ are registered trademarks, and Tools.h++ is a
trademark of Rogue Wave Software, Inc. All other mentioned names are
trademarks of their respective companies.

Printed in the United States of America.
Part # RW30-01-2-032596b

Class Reference Printing History:
March 1996 First Printing

Rogue Wave Software, Inc., 850 SW 35th Street, Corvallis, Oregon, 97333 USA

Product Information: (541) 754-5010
 1-800-487-3217

Technical support: (541) 754-2311
 e-mail: support@roguewave.com

FAX: (541) 757-6650

BBS: (541) 754-5011

World Wide Web: http://www.roguewave.com

Please have your product serial number available when calling for technical support.

Table of Contents

Introduction ... 1

Class Hierarchy ... 3

Class Reference .. 9
RWAuditStreamBuffer...11
RWBag..15
RWBagIterator...19
RWBench..21
RWBinaryTree...27
RWBinaryTreeIterator..31
RWbistream ...33
RWBitVec ...39
RWbostream ..45
RWBTree ..51
RWBTreeDictionary ...55
RWBTreeOnDisk...61
RWBufferedPageHeap ...67
RWCacheManager..69
RWCLIPstreambuf..71
RWCollectable...75
RWCollectableAssociation ..79
RWCollectableDate...81
RWCollectableInt ..83
RWCollectableString ..85
RWCollectableTime..87
RWCollection...89
RWCRegexp...93
RWCRExpr...96
RWCString ...101
RWCSubString ..117
RWCTokenizer ..121

ii

RWDate ..123
RWDDEstreambuf ..133
RWDiskPageHeap ..137
RWDlistCollectables...141
RWDlistCollectablesIterator..145
RWeistream ...149
RWeostream ..155
RWFactory ...161
RWFile ..165
RWFileManager ..171
RWGBitVec(size)...173
RWGDlist(type)...177
RWGDlistIterator(type) ...181
RWGOrderedVector(val)...185
RWGQueue(type) ...189
RWGSlist(type)..193
RWGSlistIterator(type) ..197
RWGSortedVector(val) ..201
RWGStack(type)..205
RWGVector(val)..207
RWHashDictionary ..209
RWHashDictionaryIterator ...215
rw_hashmap ..217
rw_hashmultimap ..223
rw_hashmultiset ...229
rw_hashset ...235
RWHashTable ...241
RWHashTableIterator ..245
RWIdentityDictionary..247
RWIdentitySet ...249
RWInteger..251
RWIterator ...253
RWLocale ...255
RWLocaleSnapshot...261
RWModel ...265
RWModelClient ..267
RWOrdered..269
RWOrderedIterator ..273
RWpistream...275
RWpostream..281
RWSequenceable...287
RWSet ...289
RWSetIterator ..293
rw_slist<T>..295
RWSlistCollectables..299
RWSlistCollectablesIterator...303
RWSlistCollectablesQueue ..307

iii

RWSlistCollectablesStack ..311
RWSortedVector ...315
RWTBitVec<size> ...319
RWTime ...323
RWTimer..329
RWTIsvDlist<T> ...331
RWTIsvDlistIterator<T> ..337
RWTIsvSlist<T> ..339
RWTIsvSlistIterator<T>...345
RWTPtrDeque<T>..347
RWTPtrDlist<T> ...357
RWTPtrDlistIterator<T> ..367
RWTPtrHashDictionary...371
RWTPtrHashDictionaryIterator..373
RWTPtrHashMap<K,T,H,EQ> ...375
RWTPtrHashMapIterator<K,T,H,EQ> ..383
RWTPtrHashMultiMap<K,T,H,EQ>..387
RWTPtrHashMultiMapIterator<K,T,H,EQ> ..395
RWTPtrHashMultiSet<T,H,EQ> ..399
RWTPtrHashMultiSetIterator<T,H,EQ> ...407
RWTPtrHashSet<T,H,EQ> ..411
RWTPtrHashSetIterator<T,H,EQ>...419
RWTPtrHashTable..421
RWTPtrHashTableIterator...423
RWTPtrMap<K,T,C>..425
RWTPtrMapIterator<K,T,C>...433
RWTPtrMultiMap<K,T,C>..435
RWTPtrMultiMapIterator<K,T,C>...443
RWTPtrMultiSet<T,C>...445
RWTPtrMultiSetIterator<T,C>..451
RWTPtrOrderedVector<T> ...453
RWTPtrSet<T,C> ..463
RWTPtrSetIterator<T,C> ...469
RWTPtrSlist<T> ..471
RWTPtrSlistIterator<T>...479
RWTPtrSortedDlist<T,C>..483
RWTPtrSortedDlistIterator<T,C>...491
RWTPtrSortedVector<T,C>...495
RWTPtrVector<T>..503
RWTQueue<T,C> ...507
RWTStack<T,C>..509
RWTValDeque<T> ...511
RWTValDlist<T> ..521
RWTValDlistIterator<T> ...531
RWTValHashDictionary..535
RWTValHashDictionaryIterator...537
RWTValHashMap<K,T,H,EQ>...539

iv

RWTValHashMapIterator<K,T,H,EQ> ...545
RWTValHashMultiMap<K,T,H,EQ>...547
RWTValHashMultiMapIterator<K,T,H,EQ>..555
RWTValHashMultiSet<T,H,EQ> ...557
RWTValHashMultiSetIterator<T,H,EQ> ..565
RWTValHashSet<T,H,EQ> ...567
RWTValHashSetIterator<T,H,EQ> ..575
RWTValHashTable ...577
RWTValHashTableIterator..579
RWTValMap<K,T,C>...581
RWTValMapIterator<K,T,C>..589
RWTValMultiMap<K,T,C> ...591
RWTValMultiMapIterator<K,T,C>..599
RWTValMultiSet<T,C>..601
RWTValMultiSetIterator<T,C>...607
RWTValOrderedVector<T> ..609
RWTValSet<T,C>..617
RWTValSetIterator<T,C>...623
RWTValSlist<T> ...625
RWTValSlistIterator<T> ..633
RWTValSortedDlist<T,C> ...637
RWTValSortedDlistIterator<T,C>..645
RWTValSortedVector<T,C>..649
RWTValVector<T> ...657
RWTValVirtualArray<T>..661
RWVirtualPageHeap..665
RWvios ...669
RWvistream ...671
RWvostream ..677
RWWString..681
RWWSubString ...695
RWWTokenizer...699
RWXDRistream (Unix only)..701
RWXDRostream (Unix only)...707
RWZone ...713
RWZoneSimple ...717

Appendix A: Alternate Template Class Interfaces 723
RWTPtrDlist<T> ...725
RWTPtrDlistIterator<T> ..733
RWTPtrHashDictionary<K,V> ...737
RWTPtrHashDictionaryIterator<K,V> ..741
RWTPtrHashSet<T>...743
RWTPtrHashTable<T>...747
RWTPtrHashTableIterator<T> ...751
RWTPtrOrderedVector<T> ...753

v

RWTPtrSlist<T> ..759
RWTPtrSlistIterator<T>...767
RWTPtrSortedVector<T> ..771
RWTValDlist<T> ..777
RWTValDlistIterator<T> ...785
RWTValHashDictionary<K,V> ..789
RWTValHashDictionaryIterator<K,V> ...793
RWTValHashSet<T> ..795
RWTValHashTable<T>..799
RWTValHashTableIterator<T>...803
RWTValOrderedVector<T> ..805
RWTValSlist<T> ...811
RWTValSlistIterator<T> ..819
RWTValSortedVector<T>..823

Tools.h++ Class Reference 1

Introduction

The Tools.h++ Class Reference describes all the classes and functions in
Tools.h++. It does not provide a tutorial on how to program with the
Tools.h++ class library. For information on how to write programs using
Tools.h++, consult the Tools.h++ User's Guide. For information on installing
and using Tools.h++, review the Tools.h++ Getting Started Guide.

Immediately following this introduction is a class hierarchy diagram. The
class hierarchy lists all the classes, and illustrates the relationships among
them. You can refer to it for a bird’s-eye view of the inheritance structure
used in Tools.h++.

The remainder of this reference is an alphabetical listing of classes. The
entry for each class begins with an illustration showing the individual class's
inheritance hierarchy, followed by a synopsis that lists the header files(s) and
the Smalltalk typedef (if appropriate) associated with the class. The synopsis
also shows a declaration and definition of a class object, and any typedefs
that are used. Following the synopsis is a brief description of the class, and a
list of member and global functions. These functions are organized in
categories according to their general use – for example, "constructors,"
"global operators," and "public member functions." The categories, although
somewhat arbitrary, provide a way of organizing the many functions.

All Rogue Wave class names start with the letters RW, as in RWCollectable,
with the bold font emphasizing the class name rather than the prefix. In
some cases, we may refer to an instance of a class by an English name; for
example, "the string" instead of "the RWCString instance." We do this to
make it easier to read when the meaning should be clear from context, but
we use the longer form if there is a possible ambiguity.

All function names begin with a lower case letter, with the first letter of
subsequent words capitalized. Function names attempt to accurately
describe what a function does. For example, RWCString::toLower()

changes all uppercase letters in itself to lowercase. Underline characters and
abbreviations are not generally used in function names.

Function names, examples, operating system commands, mathematical
symbols and code fragments are shown in a courier font, as in
<rw/stream.h> . Vertical ellipses are used in code examples to indicate that
some part of the code is missing.

Throughout this documentation, there are frequent references to "self." This
should be read as "*this ".

Organization
of the Class

Reference

Conventions

2 Tools.h++ Class Reference

Each class that inherits from another class (or other classes) includes an
illustration that shows the inheritance hierarchy. For example, the following
illustration indicates that class A inherits from class B:

When a class inherits from more than one class, or there are multiple levels
of inheritance, all of the inheritance relationships are shown. For example,
the following illustration indicates that A inherits from class B and from class
C, which inherits from class D.

The notation system used in the inheritance hierarchies is based on the
Object Modeling Technique (OMT) developed by Rumbaugh and others.1

Within their general categories, member functions for each class are listed
alphabetically. Member functions fall into three general types:

1. Functions that are unique to a class. The complete documentation for
these functions is presented in the class where they occur. An example
is balance() , a member of the class RWBinaryTree.

2. Functions that are inherited from a base class without being redefined.
The complete documentation for these functions is presented in the
defining base class. An example is clearAndDestroy() , for class
RWBinaryTree, which is inherited from class RWCollection. When a
member function is inherited without being redefined, the member
function appears in both places, and this guide refers you to the original
definition.

3. Functions that are redefined in a derived class. These are usually virtual
functions. The documentation for these functions usually directs you to
the base class, but may also mention peculiarities that are relevant to the
derived class. An example is apply(), for class RWBinaryTree.

1 The notation is similar to the notation used in Design Patterns by
Gamma, Helm, Johnson, and Vlissides.

Inheritance
Notation

BA

B
A

C D

Member
Functions

Tools.h++ Class Reference 3

Class Hierarchy

The following list shows the public class hierarchy of the Tools.h++ classes.
Note that this is the public class hierarchy--the implementation of a given
class may use private inheritance. Additionally, some classes inherit from
public, but undocumented, implementation classes. Undocumented classes
are omitted from the hierarchy.

Classes derived by multiple inheritance show their additional base(s) in
italics to the right of the class name.

RWBench
RWBitVec
RWBTreeOnDisk
RWCacheManager
RWCollectable

RWCollection
RWBag
RWBinaryTree
RWBTree

RWBTreeDictionary
RWHashTable

RWSet
RWFactory
RWHashDictionary

RWIdentityDictionary
RWIdentitySet

RWSequenceable
RWDlistCollectables
RWOrdered

RWSortedVector
RWSlistCollectables

RWSlistCollectablesQueue
RWSlistCollectablesStack

RWCollectableAssociation
RWCollectableDate (&RWDate)
RWCollectableInt (&RWInteger)
RWCollectableString (&RWCString)
RWCollectableTime (&RWTime)

Class
Hierarchy

4 Tools.h++ Class Reference

RWModelClient
RWCRegexp
RWCRExp
RWCString

RWCollectableString (&RWCollectable)
RWCSubString
RWCTokenizer
RWDate

RWCollectableDate (&RWCollectable)
RWErrObject
RWFactory
RWFile

RWFileManager
RWGBitVec(size)
RWGDlist(type)
RWGDlistIterator(type)
RWGOrderedVector(val)
RWGQueue(type)
RWGSlist(type)
RWGSlistIterator(type)
RWGStack(type)
RWGVector(val)

RWGSortedVector(val)
RWInstanceManager
RWInteger

RWCollectableInt (&RWCollectable)
RWIterator

RWBagIterator
RWBinaryTreeIterator
RWDlistCollectablesIterator
RWHashDictionaryIterator
RWHashTableIterator

RWSetIterator
RWOrderedIterator
RWSlistCollectablesIterator

RWLocale
RWLocaleSnapshot

RWMessage
RWModel
RWReference

RWCStringRef
RWVirtualRef
RWWStringRef

Tools.h++ Class Reference 5

RWTime
RWCollectableTime (&RWCollectable)

RWTimer
RWTBitVec<size>
RWTIsvDlist<T>
RWTIsvDlistIterator<TL>
RWTIsvSlist<T>
RWTIsvSlistIterator<TL>
RWTPtrDeque<T>
RWTPtrDlist<T>
RWTPtrDlistIterator<T>
RWTPtrHashMap<Key,Type,Hash,EQ>
RWTPtrHashMapIterator<Key,Type,Hash,EQ>
RWTPtrHashMultiMap<Key,Type,Hash,EQ>
RWTPtrHashMultiMapIterator<Key,Type,Hash,EQ>
RWTPtrHashMultiSet<T,Hash,EQ>
RWTPtrHashMultiSetIterator<T,Hash,EQ>
RWTPtrHashSet<T,Hash,EQ>
RWTPtrHashSetIterator<T,Hash,EQ>
RWTPtrMap<Key,Type,Compare>
RWTPtrMapIterator<Key,Type,Compare>
RWTPtrMultiMap<Key,Type,Compare>
RWTPtrMultiMapIterator<Key,Type,Compare>
RWTPtrMultiSet<T,Compare>
RWTPtrMultiSetIterator<T,Compare>
RWTPtrOrderedVector<T>
RWTPtrSet<T,Compare>
RWTPtrSetIterator<T,Compare>
RWTPtrSlist<T>
RWTPtrSlistIterator<T>
RWTPtrSlistDictionary<KeyP,ValP>
RWTPtrSlistDictionaryIterator<KeyP,ValP>
RWTPtrSortedDlist<T,Compare>
RWTPtrSortedDlistIterator<T,Compare>
RWTPtrSortedVector<T,Compare>
RWTPtrVector<T>
RWTQueue<T,Container>
RWTRegularExpression<charT>
RWTStack<T,Container>
RWTValDeque<T>
RWTValDlist<T>
RWTValDlistIterator<T>
RWTValHashMap<Key,Type,Hash,EQ>
RWTValHashMapIterator<Key,Type,Hash,EQ>

6 Tools.h++ Class Reference

RWTValHashMultiMap<Key,Type,Hash,EQ>
RWTValHashMultiMapIterator<Key,Type,Hash,EQ>
RWTValHashMultiSet<T,Hash,EQ>
RWTValHashMultiSetIterator<T,Hash,EQ>
RWTValHashSet<T,Hash,EQ>
RWTValHashSetIterator<T,Hash,EQ>
RWTValMap<Key,Type,Compare>
RWTValMapIterator<Key,Type,Compare>
RWTValMultiMap<Key,Type,Compare>
RWTValMultiMapIterator<Key,Type,Compare>
RWTValMultiSet<T,Compare>
RWTValMultiSetIterator<T,Compare>
RWTValOrderedVector<T>
RWTValSet<T,C>
RWTValSetIterator<T,C>
RWTValSlist<T>
RWTValSlistIterator<T>
RWTValSlistDictionary<Key,V>
RWTValSlistDictionaryIterator<Key,V>
RWTValSortedDlist<T,Compare>
RWTValSortedDlistIterator<T,Compare>
RWTValSortedVector<T>
RWTValVector<T>
RWTValVirtualArray<T>
RWvios

RWios (virtual)
 RWvistream

RWbistream (&ios: virtual)
RWeistream

 RWpistream
RWXDRistream (&RWios)

 RWvostream
RWbostream (&ios: virtual)

RWeostream
 RWpostream

RWXDRostream (&RWios)
RWVirtualPageHeap

RWBufferedPageHeap
RWDiskPageHeap

RWWString
RWWSubString
RWWTokenizer
RWZone

RWZoneSimple

Tools.h++ Class Reference 7

streambuf
RWAuditStreamBuffer
RWCLIPstreambuf

RWDDEstreambuf
xmsg

RWxmsg
RWExternalErr

RWFileErr
RWStreamErr

RWInternalErr
RWBoundsErr

RWxalloc

Tools.h++ Class Reference 9

Class Reference

Tools.h++ Class Reference 11

RWAuditStreamBuffer

RWAuditStreamBuffer streambuf

#include <rw/auditbuf.h>
#include <iostream.h>
RWAuditStreamBuffer buf(arguments)
ostream os(&buf); // may be used for ostreams
istream is(&buf); // or istreams of any kind

Class RWAuditStreamBuffer is used to construct a stream, after which the
RWAuditStreamBuffer instance will count all the bytes that pass through the
stream. If constructed with a function pointer, RWAuditStreamBuffer will
call that function with each byte that passes through the stream. The
counting capacity provides for streams the equivalent of the RWCollectable
method recursiveStoreSize() which is only available for RWFile.

None

#include <rw/auditbuf.h>
#include <rw/bstream.h>
#include <rw/pstream.h>
#include <iostream.h>
int main() {
 RWCollectable ct;
 fillCollectable(); // make a collection, somehow
 RWAuditStreamBuffer bcounter, pcounter;
 RWbostream bcount(&bcounter); //ctor takes streambuf pointer
 RWpostream pcount(&pcounter);
//…
 bcount << ct;
 pcount << ct;
cout << “We just counted “ << bcounter
 << “ bytes from an RWbostream.” << endl;
cout << “We just counted “ << pcounter
 << “ bytes from an RWpostream.” << endl;
return 0;
}

RWAuditStreamBuffer may be used as the streambuf for any stream,
including those derived from RWvostream or RWvistream, strstream,
ifstream, ofstream, etc.

typedef void (*RWauditFunction)(unsigned char, void*);
If you wish to do more than count each character handled by the buffer,
you may provide an RWauditFunction to the constructor. The first
parameter to this function is a byte provided by the stream. The second
parameter is the address of the conter to be manipulated by
RWAuditFunction.

Synopsis

Description

Persistence

Short Example

Related
Classes

Global
Typedef

RWAuditStreamBuffer

12 Tools.h++ Class Reference

RWAuditStreamBuffer(RWauditFunction=0, void*=0);

Constructs a new RWAuditStreamBuffer that may be used only to
examine and count every byte that passes into an ostream that has the
RWAuditStreamBuffer instance as its streambuf . It will not forward the
bytes to any stream, nor accept bytes from a stream. The second argument
to the constructor allows you to supply storage for the byte count. It is
optional.

RWAuditStreamBuffer(istream&, RWauditFunction=0, void*=0);

Constructs a new RWAuditStreamBuffer that passes bytes from the
istream on which it is constructed to the istream that has the
RWAuditStreamBuffer instance as its streambuf . A typical use would be
to count or examine the bytes being input from a file through a stream
derived from RWvistream . The second argument to the constructor
allows you to supply storage for the byte count. It is optional.

RWAuditStreamBuffer(iostream&, RWauditFunction=0, void*=0);

Constructs a new RWAuditStreamBuffer that passes bytes to and from the
iostream on which it is constructed to and from the istream that has the
RWAuditStreamBuffer instance as its streambuf . A typical use would be
to count or examine the bytes being transferred to and from a file used to
store and retrieve changing data. The second argument to the constructor
allows you to supply storage for the byte count. It is optional.

RWAuditStreamBuffer(ostream&, RWauditFunction=0, void*=0);

Constructs a new RWAuditStreamBuffer that passes bytes into the
ostream on which it is constructed from the ostream that has the
RWAuditStreamBuffer instance as its streambuf . A typical use would be
to count or examine the bytes being output to a file through a stream
derived from RWvostream. The second argument to the constructor
allows you to supply storage for the byte count. It is optional.

RWAuditStreamBuffer(streambuf*, RWauditFunction=0, void*=0);

Constructs a new RWAuditStreamBuffer that passes bytes into the
ostream on which it is constructed from the ostream that has the
RWAuditStreamBuffer instance as its streambuf . A typical use would be
to count or examine the bytes being output to a file through a stream
derived from RWvostream. The second argument to the constructor
allows you to supply storage for the byte count. It is optional.

virtual ~RWAuditStreamBuffer();
We have provided an empty destructor since some compilers complain if
there is no virtual destructor for a class that has virtual methods.

Public
Constructors

Public
Destructor

RWAuditStreamBuffer

Tools.h++ Class Reference 13

operator unsigned long();
Provides the count of bytes seen so far.

unsigned long
reset (unsigned long value = 0);

Resets the count of bytes seen so far. Returns the current count.

#include <iostream.h>
#include <fstream.h>
#include <rw/auditbuf.h>
#include <rw/pstream.h>
#include <rw/cstring.h>
void doCrc (unsigned char c, void* x) {
 (unsigned char)x ̂ = c;
}

int main() {
if(1) { // just a block to control variable lifetime
 unsigned char check = '\0';

 // create an output stream
 ofstream op("crc.pst");

 // create an RWAuditStreamBuffer that will do CRC
 RWAuditStreamBuffer crcb(op,doCrc,&check);

 // create an RWpostream to put the data through.
RWpostream p(&crcb);

 // now send some random stuff to the stream
 p << RWCString("The value of Tools.h++ is at least ");
 p << (int)4;
 p << RWCString(" times that of the next best library!\n") ;
 p << RWCString("Pi is about ") << (double)3.14159 << '.';

 // finally, save the sum on the stream itself.
p << (unsigned int)check; // alters check, _after_ saving it...

 // just for fun, print out some statistics:
 cout << "We just saved " << crcb
 << " bytes of data to the file." << endl;
 cout << "The checksum for those bytes was " <<check << endl;
} // end of block

 // now read the data back in, checking to see if it survived.
 unsigned char check = '\0';

 // create an instream
 ifstream ip("crc.pst");

 // create an RWAuditStreamBuffer that will do CRC
 RWAuditStreamBuffer crcb(ip,doCrc,&check);

Public
Member
Operator

Public
Member
Function

Extended
Example

RWAuditStreamBuffer

14 Tools.h++ Class Reference

 // create an RWpistream to interpret the bytes
 RWpistream p(&crcb);

 RWCString first, mid1, mid2;
 int value;
 double pi;
 char pnc;
 unsigned int savedCRC;
 unsigned char matchCRC;
 // read in the data. Don\'t read the checksum yet!
 p >> first >> value >> mid1 >> mid2 >> pi >> pnc;
 // save the checksum
 matchCRC = check;
 // Now it is safe to alter the running checksum by reading in
 // the one saved in the file.
p >> savedCRC;

 if(savedCRC != matchCRC) {
 cout << "Checksum error. Saved CRC: " << savedCRC
 << " built CRC: " << matchCRC << dec << endl;
 }
 else {
 cout << "The message was: " << endl;
 cout << first << value << mid1 << mid2 << pi << pnc << endl;
 }
 // just for fun, print out some statistics:
 cout << "We just read " << crcb
 << " bytes of data from the file." << endl;
 cout << "The checksum was " << matchCRC << flush;
 cout << " and the saved checksum was " << savedCRC << endl;
return 0;
}

Tools.h++ Class Reference 15

RWBag

RWBag RWCollection RWCollectable

typedef RWBag Bag; // Smalltalk typedef .
#include <rw/rwbag.h>
RWBag h;

Class RWBag corresponds to the Smalltalk class Bag. It represents a group
of unordered elements, not accessible by an external key. Duplicates are
allowed.

An object stored by RWBag must inherit abstract base class RWCollectable,
with suitable definition for virtual functions hash() and isEqual() (see
class RWCollectable). The function hash() is used to find objects with the
same hash value, then isEqual() is used to confirm the match.

Class RWBag is implemented by using an internal hashed dictionary
(RWHashDictionary) which keeps track of the number of occurrences of an
item. If an item is added to the collection that compares equal (isEqual) to
an existing item in the collection, then the count is incremented. Note that
this means that only the first instance of a value is actually inserted:
subsequent instances cause the occurrence count to be incremented. This
behavior parallels the Smalltalk implementation of Bag.

Member function apply() and the iterator are called repeatedly according to
the count for an item.

See class RWHashTable if you want duplicates to be stored, rather than
merely counted.

Polymorphic

RWBag(size_t n = RWDEFAULT_CAPACITY);
Construct an empty bag with n buckets.

RWBag(const RWBag& b);
Copy constructor. A shallow copy of b will be made.

void
operator= (const RWBag& b);

Assignment operator. A shallow copy of b will be made.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

RWBag

16 Tools.h++ Class Reference

RWBoolean
operator== (const RWBag& b) const;

Returns TRUE if self and bag b have the same number of total entries and if
for every key in self there is a corresponding key in b which isEqual and
which has the same number of entries.

virtual void
apply (RWapplyCollectable ap, void*);

Redefined from class RWCollection. This function has been redefined to
apply the user-supplied function pointed to by ap to each member of the
collection in a generally unpredictable order. If an item has been inserted
more than once (i.e., more than one item isEqual), then apply() will be
called that many times. The user-supplied function should not do
anything that could change the hash value or the meaning of “isEqual ” of
the items.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Redefined from class RWCollection.

virtual void
clearAndDestroy ();

Inherited from class RWCollection.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

virtual size_t
entries () const;

Redefined from class RWCollection.

virtual RWCollectable*
find (const RWCollectable* target) const;

Redefined from class RWCollection. The first item that was inserted into
the Bag and which equals target is returned or nil if no item is found.
Hashing is used to narrow the search.

virtual unsigned
hash () const;

Inherited from class RWCollectable.

Public
Member

Functions

RWBag

Tools.h++ Class Reference 17

virtual RWCollectable*
insert (RWCollectable* c);

Redefined from class RWCollection. Inserts the item c into the collection
and returns it, or if an item was already in the collection that isEqual to c ,
then returns the old item and increments its count.

RWCollectable*
insertWithOccurrences (RWCollectable* c,size_t n);

Inserts the item c into the collection with count n and returns it, or if an
item was already in the collection that isEqual to c , then returns the old
item and increments its count by n.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWBAG.

virtual RWBoolean
isEmpty () const;

Redefined from class RWCollection.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the number of items that are
equal to the item pointed to by target .

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Removes and returns the item that
isEqual to the item pointed to by target . Returns nil if no item was
found.

virtual void
removeAndDestroy (const RWCollectable* target);

Redefined from class RWCollection. Removes the item that isEqual to
the item pointed to by target . Destroys the item as well if it is the last
occurrence in the collection.

void
resize (size_t n = 0);

Resizes the internal hash table to have n buckets. The overhead for this
function is the hashing of every element in the collection. If n is zero, then
an appropriate size will be picked automatically.

RWBag

18 Tools.h++ Class Reference

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream &) const;
virtual void
saveGuts (RWFile&) const;

Inherited from class RWCollection.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 19

RWBagIterator

RWBagIterator RWIterator

#include <rw/rwbag.h>
RWBag b;
RWBagIterator it(b);

Iterator for class RWBag, which allows sequential access to all the elements
of RWBag. Note that because an RWBag is unordered, elements are not
accessed in any particular order. If an item was inserted N times into the
collection, then it will be visited N consecutive times.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWBagIterator(const RWBag&);

Construct an iterator for an RWBag. After construction, the position of the
iterator is undefined.

virtual RWCollectable*
operator() ();

Redefined from class RWIterator. Advances the iterator to the next item
and returns it. Returns nil when the end of the collection has been
reached.

virtual RWCollectable*
findNext (const RWCollectable* target);

Redefined from class RWIterator. Moves iterator to the next item which
isEqual to the object pointed to by target and returns it. Hashing is used
to find the target. If no item is found, returns nil and the position of the
iterator will be undefined.

virtual RWCollectable*
key () const;

Redefined from class RWIterator. Returns the item at the current iterator
position.

virtual void
reset ();

Redefined from class RWIterator. Resets the iterator to its starting state.

Synopsis

Description

Persistence

Public
Constructor

Public
Member
Operator

Public
Member

Functions

Tools.h++ Class Reference 21

RWBench

#include <rw/bench.h>
(Abstract base class)

This is an abstract class that can automate the process of benchmarking a
piece of code. To use it, derive a class from RWBench, including a definition
for the virtual function doLoop(unsigned long N). This function should
perform N operations of the type that you are trying to benchmark.
RWBench will call doLoop() over and over again until a preset amount of
time has elapsed. It will then sum the total number of operations performed.

To run, construct an instance of your derived class and then call go() . Then
call report() to get a standard summary. For many compilers, this
summary will automatically include the compiler type and memory model.
You can call ops(), outerLoops(), etc. for more detail.

If you wish to correct for overhead, then provide an idleLoop() function
which should do all non-benchmark-related calculations.

None

This example benchmarks the time required to return a hash value for a
Rogue Wave string versus a Borland string.

#include <rw/bench.h> /* Benchmark software */
#include <rw/cstring.h> /* Rogue Wave string class */
#include <stdlib.h>
#include <iostream.h>
#include <rw/ctoken.h>
#include <rw/regexp.h>

// The string to be hashed:
const char* cs = "A multi-character string with lots of words in it
to be parsed out and searched for.";

class TestBrute : public RWBench {
public:
TestBrute() { }
 virtual void doLoop(unsigned long n);
 virtual void idleLoop(unsigned long n);
 virtual void what(ostream& s) const
 { s << "Brute force string search: \n"; }
};

class TestRW : public RWBench {
public:
TestRW() { }
 virtual void doLoop(unsigned long n);
 virtual void idleLoop(unsigned long n);

Synopsis

Description

Persistence

Example

RWBench

22 Tools.h++ Class Reference

 virtual void what(ostream& s) const
 { s << "Rogue Wave search: \n"; }
};

main(int argc, char* argv[]){
 cout << "Testing string \n\"" << cs << "\"\n";

 // Test brute force string search algorithm:
 TestBrute other;
 other.parse(argc, argv);
 other.go();
 other.report(cout);

 // Test RW searching w/regular expressions:
 TestRW rw;
 rw.parse(argc, argv);
 rw.go();
 rw.report(cout);

 return 0;
}

void TestBrute::doLoop(unsigned long n){
 RWCString string(cs);
 RWCTokenizer *tokener;
 RWCString token;

 tokener = new RWCTokenizer(string);

 while(n--){

 if((token = (*tokener)()).isNull())
 {
 delete tokener;
 tokener = new RWCTokenizer(string);
 token = (*tokener)();
 }

 size_t j = 0;

 for(size_t i = 0; i < string.length() && j != token.length();
 i++)
 {
 j = 0;
 while((j < token.length()) && (string[i+j]==token[j]))
 j++;
 }

 }
 delete tokener;
}

void TestRW::doLoop(unsigned long n){
 RWCString string(cs);
 RWCTokenizer *tokener;
 RWCString token, result;

RWBench

Tools.h++ Class Reference 23

 RWCRegexp re("");

 tokener = new RWCTokenizer(string);

 while(n--){

 if((token = (*tokener)()).isNull())
 {
 delete tokener;
 tokener = new RWCTokenizer(string);
 token = (*tokener)();
 }

 re = RWCRegexp(token);
 result = string(re); //Do the search!

 }
 delete tokener;
}

void TestBrute::idleLoop(unsigned long n){
 RWCString string(cs); // Subtract out the overhead
 RWCTokenizer *tokener;
 RWCString token;

 tokener = new RWCTokenizer(string);

 while(n--){

 if((token = (*tokener)()).isNull())
 {
 delete tokener;
 tokener = new RWCTokenizer(string);
 token = (*tokener)();
 }

 }
 delete tokener;
}

void TestRW::idleLoop(unsigned long n){
 RWCString string(cs); //Subtract out the overhead
 RWCTokenizer *tokener;
 RWCString token, result;
 RWCRegexp re("");

 tokener = new RWCTokenizer(string);

 while(n--){

 if((token = (*tokener)()).isNull())
 {
 delete tokener;
 tokener = new RWCTokenizer(string);
 token = (*tokener)();
 }

 re = RWCRegexp(token);

 }
 delete tokener;
}

RWBench

24 Tools.h++ Class Reference

Program output:

Testing string
"A multi-character string with lots of words in it to be parsed out
and searched for."
Borland C++ V4.0

Brute force string search:

Iterations: 35
Inner loop operations: 1000
Total operations: 35000
Elapsed (user) time: 4.596
Kilo-operations per second: 7.61532

Borland C++ V4.0

Rogue Wave search:

Iterations: 53
Inner loop operations: 1000
Total operations: 53000
Elapsed (user) time: 2.824
Kilo-operations per second: 18.7677

RWBench(double duration = 5, unsigned long ILO=1000,
 const char* machine = 0);

The parameter duration is the nominal amount of time that the
benchmark should take in seconds. The virtual function
doLoop(unsigned long) will be called over and over again until at least
this amount of time has elapsed. The parameter ILO is the number of
“inner loop operations” that should be performed. This parameter will be
passed in as parameter N to doLoop(N) . Parameter machine is an optional
null terminated string that should describe the test environment (perhaps
the hardware the benchmark is being run on).

virtual void
doLoop (unsigned long N)=0;

A pure virtual function whose actual definition should be supplied by the
specializing class. This function will be repeatedly called until a time
duration has elapsed. It should perform the operation to be benchmarked
N times. See the example.

double
duration () const;

Return the current setting for the benchmark test duration. This should
not be confused with function time() which returns the actual test time.

virtual void
go();

Call this function to run the benchmark.

Public
Constructors

Public
Member

Functions

RWBench

Tools.h++ Class Reference 25

virtual void
idleLoop (unsigned long N);

This function can help to correct the benchmark for overhead. The default
definition merely executes a “for() ” loop N times. See the example.

const char *
machine ();

This function accesses the name of the machine which is passed into the
benchmark object through parse() .

virtual void
parse (int argc, char* argv[]);

This function allows an easy way to change the test duration, number of
inner loops and machine description from the command line:

Argument Type Description

argv[1] double Duration (sec.)

argv[2] unsigned long No. of inner loops

argv[3] const char* Machine

void
parse (const char *);

This is a non-virtual function which provides the same service as
parse(int argc, char * argv[]) , but is designed for Windows users.
It extracts tokens from the null-terminated command argument provided
by Windows, then calls the virtual parse for ANSI C command
arguments.

virtual void
report (ostream&) const;

Calling this function provides an easy and convenient way of getting an
overall summary of the results of a benchmark.

double
setDuration (double t);

Change the test duration to time t .

unsigned long
setInnerLoops (unsigned long N);

Change the number of “inner loop operations” to N.

virtual void
what (ostream&) const;

You can supply a specializing version of this virtual function that provides
some detail of what is being benchmarked. It is called by report() when
generating a standard report.

RWBench

26 Tools.h++ Class Reference

void
where (ostream&) const;

This function will print information to the stream about the compiler and
memory model that the code was compiled under.

unsigned long
innerLoops () const;

Returns the current setting for the number of inner loop operations that
will be passed into function doLoop(unsigned long N) as parameter N.

double
time () const;

Returns the amount of time the benchmark took, corrected for overhead.

unsigned long
outerLoops () const;

Returns the number of times the function doLoop() was called.

double
ops () const;

Returns the total number of inner loop operations that were performed
(the product of the number of times outerLoop() was called times the
number of inner loop operations performed per call).

double
opsRate () const;

Returns the number of inner loop operations per second.

Tools.h++ Class Reference 27

RWBinaryTree

RWBinaryTree RWCollection RWCollectable

typedef RWBinaryTree SortedCollection; // Smalltalk typedef.
#include <rw/bintree.h>
RWBinaryTree bt;

Class RWBinaryTree represents a group of ordered elements, internally
sorted by the compareTo() function. Duplicates are allowed. An object
stored by an RWBinaryTree must inherit abstract base class RWCollectable.

Polymorphic

RWBinaryTree();
Construct an empty sorted collection.

RWBinaryTree(const RWBinaryTree& t);
Copy constructor. Constructs a shallow copy from t . Member function
balance() (see below) is called before returning.

virtual ~RWBinaryTree();

Redefined from RWCollection. Calls clear() .

void
operator= (const RWBinaryTree& bt);

Sets self to a shallow copy of bt .

void
operator+= (const RWCollection ct);

Inserts each element of .ct into self. Note that using this operator to insert
an already-sorted collection will result in creating a very unbalanced tree,
possibly to the point of stack overflow.

RWBoolean
operator<= (const RWBinaryTree& bt) const;

Returns TRUE if self is a subset of the collection bt . That is, every item in
self must compare equal to a unique item in bt .

RWBoolean
operator== (const RWBinaryTree& bt) const;

Returns TRUE if self and bt are equivalent. That is, they must have the
same number of items and every item in self must compare equal to a
unique item in bt .

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

RWBinaryTree

28 Tools.h++ Class Reference

virtual void
apply (RWapplyCollectable ap, void*);

Redefined from class RWCollection to apply the user-supplied function
pointed to by ap to each member of the collection, in order, from smallest
to largest. This supplied function should not do anything to the items that
could change the ordering of the collection.

void
balance ();

Special function to balance the tree. In a perfectly balanced binary tree
with no duplicate elements, the number of nodes from the root to any
external (leaf) node differs by at most one node. Since this collection
allows duplicate elements, a perfectly balanced tree is not always possible.
Preserves the order of duplicate elements.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Redefined from class RWCollection.

virtual void
clearAndDestroy ();

Inherited from class RWCollection.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

virtual size_t
entries () const;

Redefined from class RWCollection.

virtual RWCollectable*
find (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the first item that compares
equal to the item pointed to by target , or nil if no item was found.

virtual unsigned
hash () const;

Inherited from class RWCollectable.

Public
Member

Functions

RWBinaryTree

Tools.h++ Class Reference 29

unsigned
height () const;

Returns the number of nodes between the root node and the farthest leaf.
A RWBinaryTree with one entry will have a height of 1. Note that the
entire tree is traversed to discover this value.

virtual RWCollectable*
insert (RWCollectable* c);

Redefined from class RWCollection. Inserts the item c into the collection
and returns it. Returns nil if the insertion was unsuccessful. The item c is
inserted according to the value returned by compareTo() . insert() does
not automatically balance the RWBinaryTree. Be careful not to insert() a
long sequence of sorted items without calling balance() since the result
will be very unbalanced (and therefore inefficient).

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWBINARYTREE.

virtual RWBoolean
isEmpty () const;

Redefined from class RWCollection.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the number of items that
compare equal to the item pointed to by target .

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Removes the first item that
compares equal to the object pointed to by target and returns it. Returns
nil if no item was found.

virtual void
removeAndDestroy (const RWCollectable* target);

Inherited from class RWCollection.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);

Inherited from class RWCollection.

RWBinaryTree

30 Tools.h++ Class Reference

virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Redefined from class RWCollection to store objects by level, rather than
in order. This results in the tree maintaining its morphology.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 31

RWBinaryTreeIterator

RWBinaryTreeIterator RWIterator

// Smalltalk typedef:
typedef RWBinaryTreeIterator SortedCollectionIterator;
#include <rw/bintree.h>
RWBinaryTree bt;
RWBinaryTreeIterator iterate(bt);

Iterator for class RWBinaryTree. Traverses the tree from the “smallest” to
“largest” element, where “smallest” and “largest” are defined by the virtual
function compareTo() . Note that this approach is generally less efficient
than using the member function RWBinaryTree::apply() .

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWBinaryTreeIterator(const RWBinaryTree&);

Constructs an iterator for an RWBinaryTree. Immediately after
construction, the position of the iterator is undefined until positioned.

virtual RWCollectable*
operator ()();

Redefined from class RWIterator. Advances iterator to the next “largest”
element and returns a pointer to it. Returns nil when the end of the
collection is reached.

virtual RWCollectable*
findNext (const RWCollectable* target);

Redefined from class RWIterator. Moves iterator to the next item which
compares equal to the object pointed to by target and returns it. If no
item is found, returns nil and the position of the iterator will be
undefined.

virtual void
reset ();

Redefined from class RWIterator. Resets iterator to its state at
construction.

Synopsis

Description

Persistence

Public
Constructor

Public
Member
Operator

Public
Member

Functions

RWBinaryTreeIterator

32 Tools.h++ Class Reference

virtual RWCollectable*
key () const;

Redefined from class RWIterator. Returns the item at the current iterator
position.

Tools.h++ Class Reference 33

RWbistream

 RWvistream RWios RWvios
 RWbistream
 ios

#include <rw/bstream.h>
RWbistream bstr(cin); // Construct an RWbistream,
 // using cin’s streambuf

Class RWbistream specializes the abstract base class RWvistream to restore
variables stored in binary format by RWbostream.

You can think of it as a binary veneer over an associated streambuf.
Because the RWbistream retains no information about the state of its
associated streambuf, its use can be freely exchanged with other users of the
streambuf (such as an istream or ifstream).

RWbistream can be interrogated as to the stream state using member
functions good() , bad() , eof() , etc.

None

See RWbostream for an example of how the file “data.dat ” might be
created.

#include <rw/bstream.h>
#include <fstream.h>

main(){
 ifstream fstr(“ data.dat”); // Open an input file
 RWbistream bstr(fstr); // Construct RWbistream from it

 int i;
 float f;
 double d;

 bstr >> i; // Restore an int that was stored in binary
 bstr >> f >> d; // Restore a float & double
}

RWbistream(streambuf* s);

Construct an RWbistream from the streambuf s . For DOS, this
streambuf must have been opened in binary mode.

RWbistream(istream& str);

Construct an RWbistream using the streambuf associated with the
istream str . For DOS, the streambuf must have been opened in binary

Synopsis

Description

Persistence

Example

Public
Constructors

RWbistream

34 Tools.h++ Class Reference

mode. This can be done by specifying ios::binary as part of the second
argument to the constructor for an ifstream. Using the example above, the
line to create the ifstream would read, ifstream fstr(“data.dat”,

ios::in | ios::binary); where the “| ” is the binary OR operator.

virtual RWvistream&
operator>> (char& c);

Redefined from class RWvistream. Get the next char from the input
stream and store it in c .

virtual RWvistream&
operator>> (wchar_t& wc);

Redefined from class RWvistream. Get the next wide char from the input
stream and store it in wc.

virtual RWvistream&
operator>> (double& d);

Redefined from class RWvistream. Get the next double from the input
stream and store it in d.

virtual RWvistream&
operator>> (float& f);

Redefined from class RWvistream. Get the next float from the input
stream and store it in f .

virtual RWvistream&
operator>> (int& i);

Redefined from class RWvistream. Get the next int from the input stream
and store it in i .

virtual RWvistream&
operator>> (long& l);

Redefined from class RWvistream. Get the next long from the input
stream and store it in l .

virtual RWvistream&
operator>> (short& s);

Redefined from class RWvistream. Get the next short from the input
stream and store it in s .

virtual RWvistream&
operator>> (unsigned char& c);

Redefined from class RWvistream. Get the next unsigned char from the
input stream and store it in c .

Public
Operators

RWbistream

Tools.h++ Class Reference 35

virtual RWvistream&
operator>> (unsigned short& s);

Redefined from class RWvistream. Get the next unsigned short from the
input stream and store it in s .

virtual RWvistream&
operator>> (unsigned int& i);

Redefined from class RWvistream. Get the next unsigned int from the
input stream and store it in i .

virtual RWvistream&
operator>> (unsigned long& l);

Redefined from class RWvistream. Get the next unsigned long from the
input stream and store it in l .

operator void* ();

Inherited via RWvistream from RWvios.

virtual int
get ();

Redefined from class RWvistream. Get and return the next char from the
input stream. Returns EOF if end of file is encountered.

virtual RWvistream&
get (char& c);

Redefined from class RWvistream. Get the next char and store it in c .

virtual RWvistream&
get (wchar_t& wc);

Redefined from class RWvistream. Get the next wide char and store it in
wc.

virtual RWvistream&
get (unsigned char& c);

Redefined from class RWvistream. Get the next unsigned char and store
it in c .

virtual RWvistream&
get (char* v, size_t N);

Redefined from class RWvistream. Get a vector of char s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

Public
Member

Functions

RWbistream

36 Tools.h++ Class Reference

virtual RWvistream&
get (wchar_t* v, size_t N);

Redefined from class RWvistream. Get a vector of wide char s and store
them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (double* v, size_t N);

Redefined from class RWvistream. Get a vector of double s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (float* v, size_t N);

Redefined from class RWvistream. Get a vector of float s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (int* v, size_t N);

Redefined from class RWvistream. Get a vector of int s and store them in
the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (long* v, size_t N);

Redefined from class RWvistream. Get a vector of long s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (short* v, size_t N);

Redefined from class RWvistream. Get a vector of short s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an

RWbistream

Tools.h++ Class Reference 37

exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (unsigned char* v, size_t N);

Redefined from class RWvistream. Get a vector of unsigned char s and
store them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (unsigned short* v, size_t N);

Redefined from class RWvistream. Get a vector of unsigned short s and
store them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit..

virtual RWvistream&
get (unsigned int* v, size_t N);

Redefined from class RWvistream. Get a vector of unsigned int s and
store them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (unsigned long* v, size_t N);

Redefined from class RWvistream. Get a vector of unsigned long s and
store them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
getString (char* s, size_t N);

Redefined from class RWvistream. Restores a character string from the
input stream and stores it in the array beginning at s . The function stops
reading at the end of the string or after N-1 characters, whichever comes
first. If N-1 characters have been read and the Nth character is not the
string terminator, then the failbit of the stream will be set. In either case,
the string will be terminated with a null byte.

RWbistream

38 Tools.h++ Class Reference

virtual RWvistream&
getString (wchar_t* ws, size_t N);

Redefined from class RWvistream. Restores a wide character string from
the input stream and stores it in the array beginning at ws. The function
stops reading at the end of the string or after N-1 characters, whichever
comes first. If N-1 characters have been read and the Nth character is not
the string terminator, then the failbit of the stream will be set. In either
case, the string will be terminated with a null byte.

Tools.h++ Class Reference 39

RWBitVec

#include <rw/bitvec.h>
RWBitVec v;

Class RWBitVec is a bitvector whose length can be changed at run time.
Because this requires an extra level of indirection, this makes it slightly less
efficient than classes RWGBitVec(size) or RWTBitVec<size>, whose lengths
are fixed at compile time.

Simple

#include <rw/bitvec.h>
#include <rw/rstream.h>

main(){
 // Allocate a vector with 20 bits, set to TRUE:
 RWBitVec av(20, TRUE);

 av(2) = FALSE; // Turn bit 2 off
 av.clearBit(7); // Turn bit 7 off
 av.setBit(2); // Turn bit 2 back on

 for(int i=11; i<=14; i++) av(i) = FALSE;

 cout << av << endl; // Print the vector out
}

Program output:

 [
 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1
]

RWBitVec();
Construct a zero lengthed (null) vector.

RWBitVec(size_t N);
Construct a vector with N bits. The initial value of the bits is undefined.

RWBitVec(size_t N, RWBoolean initVal);
Construct a vector with N bits, each set to the Boolean value initVal .

RWBitVec(const RWByte* bp, size_t N);
Construct a vector with N bits, initialized to the data in the array of bytes
pointed to by bp . This array must be at least long enough to contain N bits.
The identifier RWByte is a typedef for an unsigned char .

Synopsis

Description

Persistence

Example

Public
Constructors

RWBitVec

40 Tools.h++ Class Reference

RWBitVec(const RWBitVec& v);
Copy constructor. Uses value semantics — the constructed vector will be a
copy of v .

~RWBitVec();
The destructor. Releases any allocated memory.

RWBitVec&
operator= (const RWBitVec& v);

Assignment operator. Value semantics are used — self will be a copy of v .

RWBitVec&
operator= (RWBoolean b);

Assignment operator. Sets every bit in self to the boolean value b.

RWBitVec&
operator&= (const RWBitVec& v);
RWBitVec&
operator^= (const RWBitVec& v);
RWBitVec&
operator|= (const RWBitVec& v);

Logical assignments. Set each element of self to the logical AND, XOR, or
OR, respectively, of self and the corresponding bit in v . Self and v must
have the same number of elements (i.e., be conformal) or an exception of
type RWInternalErr will occur.

RWBitRef
operator[] (size_t i);

Returns a reference to bit i of self. A helper class, RWBitRef, is used. The
result can be used as an lvalue. The index i must be between 0 and the
length of the vector less one. Bounds checking is performed. If the index
is out of range, then an exception of type RWBoundsErr will occur.

RWBitRef
operator() (size_t i);

Returns a reference to bit i of self. A helper class, RWBitRef, is used. The
result can be used as an lvalue. The index i must be between 0 and the
length of the vector less one. Bounds checking is performed only if the
preprocessor macro RWBOUNDS_CHECK has been defined before including
the header file <rw/bitvec.h> . If so, and if the index is out of range, then
an exception of type RWBoundsErr will occur.

RWBoolean
operator[] (size_t i) const;

Returns the boolean value of bit i . The result cannot be used as an lvalue.
The index i must be between 0 and the length of the vector less one.
Bounds checking is performed. If the index is out of range, then an
exception of type RWBoundsErr will occur.

Assignment
Operators

Indexing
Operators

RWBitVec

Tools.h++ Class Reference 41

RWBoolean
operator() (size_t i) const;

Returns the boolean value of bit i . The result cannot be used as an lvalue.
The index i must be between 0 and the length of the vector less one.
Bounds checking is performed only if the preprocessor macro
RWBOUNDS_CHECK has been defined before including the header file
<rw/bitvec.h> . If so, and if the index is out of range, then an exception of
type RWBoundsErr will occur.

RWBoolean
operator== (const RWBitVec& u) const;

Returns TRUE if self and v have the same length and if each bit of self is set
to the same value as the corresponding bit in v . Otherwise, returns FALSE.

RWBoolean
operator!= (const RWBitVec& u) const;

Returns FALSE if self and v have the same length and if each bit of self is
set to the same value as the corresponding bit in v . Otherwise, returns
TRUE.

RWBoolean
operator== (RWBoolean b) const;

Returns TRUE if every bit of self is set to the boolean value b. Otherwise
FALSE.

RWBoolean
operator!= (RWBoolean b) const;

Returns FALSE if every bit of self is set to the boolean value b. Otherwise
TRUE.

void
clearBit (size_t i);

Clears (i.e., sets to FALSE) the bit with index i . The index i must be
between 0 and the length of the vector less one. No bounds checking is
performed. The following are equivalent, although clearBit(size_t) is
slightly smaller and faster than using operator()(size_t) :

 a(i) = FALSE;
 a.clearBit(i);

const RWByte*
data () const;

Returns a const pointer to the raw data of self. Should be used with care.

size_t
firstFalse () const;

Returns the index of the first FALSE bit in self. Returns RW_NPOS if there is
no FALSE bit.

Logical
Operators

Public
Member

Functions

RWBitVec

42 Tools.h++ Class Reference

size_t
firstTrue () const;

Returns the index of the first TRUE bit in self. Returns RW_NPOS if there is
no TRUE bit.

unsigned
hash () const;

Returns a value suitable for hashing.

RWBoolean
isEqual (const RWBitVec& v) const;

Returns TRUE if self and v have the same length and if each bit of self is set
to the same value as the corresponding bit in v . Otherwise, returns FALSE.

size_t
length () const;

Returns the number of bits in the vector.

ostream&
printOn (ostream& s) const;

Print the vector v on the output stream s . See the example above for a
sample of the format.

void
resize (size_t N);

Resizes the vector to have length N. If this results in a lengthening of the
vector, the additional bits will be set to FALSE.

istream&
scanFrom (istream&);

Read the bit vector from the input stream s . The vector will dynamically
be resized as necessary. The vector should be in the same format printed
by member function printOn(ostream&) .

void
setBit (size_t i);

Sets (i.e., sets to TRUE) the bit with index i . The index i must be between 0
and size- 1. No bounds checking is performed. The following are
equivalent, although setBit(size_t) is slightly smaller and faster than
using operator()(size_t) :

 a(i) = TRUE;
 a.setBit(i);

RWBoolean
testBit (size_t i) const;

Tests the bit with index i . The index i must be between 0 and size- 1. No
bounds checking is performed. The following are equivalent, although
testBit(size_t) is slightly smaller and faster than using
operator()(size_t) :

RWBitVec

Tools.h++ Class Reference 43

 if(a(i)) doSomething();
 if(a.testBit(i)) doSomething();

RWBitVec
operator! (const RWBitVec& v);

Unary operator that returns the logical negation of vector v .

RWBitVec
operator& (const RWBitVec&,const RWBitVec&);
RWBitVec
operator^ (const RWBitVec&,const RWBitVec&);
RWBitVec
operator| (const RWBitVec&,const RWBitVec&);

Returns a vector that is the logical AND, XOR, or OR of the vectors v1 and v2 .
The two vectors must have the same length or an exception of type
RWInternalErr will occur.

ostream&
operator<< (ostream& s, const RWBitVec& v);

Calls v.printOn(s) .

istream&
operator>> (istream& s, RWBitVec& v);

Calls v.scanFrom(s) .

RWvostream&
operator<< (RWvostream&, const RWBitVec& vec);
RWFile&
operator<< (RWFile&, const RWBitVec& vec);

Saves the RWBitVec vec to a virtual stream or RWFile, respectively.

RWvistream&
operator>> (RWvistream&, RWBitVec& vec);
RWFile&
operator>> (RWFile&, RWBitVec& vec);

Restores an RWBitVec into vec from a virtual stream or RWFile,
respectively, replacing the previous contents of vec .

size_t
sum(const RWBitVec& v);

Returns the total number of bits set in the vector v .

Related
Global

Functions

Tools.h++ Class Reference 45

RWbostream

 RWvostream RWios RWvios
 RWbostream
 ios

#include <rw/bstream.h>
// Construct an RWbostream, using cout’s streambuf:
RWbostream bstr(cout);

Class RWbostream specializes the abstract base class RWvostream to store
variables in binary format. The results can be restored by using its
counterpart RWbistream.

You can think of it as a binary veneer over an associated streambuf.
Because the RWbostream retains no information about the state of its
associated streambuf, its use can be freely exchanged with other users of the
streambuf (such as ostream or ofstream).

Note that variables should not be separated with white space. Such white space
would be interpreted literally and would have to be read back in as a
character string.

RWbostream can be interrogated as to the stream state using member
functions good() , bad() , eof() , etc.

None

See RWbistream for an example of how the file “data.dat ” might be read
back in.

#include <rw/bstream.h>
#include <fstream.h>

main(){
 ofstream fstr(“data.dat”); // Open an output file
 RWbostream bstr(fstr); // Construct an RWbostream from it

 int i = 5;
 float f = 22.1;
 double d = -0.05;

 bstr << i; // Store an int in binary
 bstr << f << d; // Store a float & double
}

Synopsis

Description

Persistence

Example

RWbostream

46 Tools.h++ Class Reference

RWbostream(streambuf* s);

Construct an RWbostream from the streambuf s . For DOS, the
streambuf must have been opened in binary mode.

RWbostream(ostream& str);

Construct an RWbostream from the streambuf associated with the
output stream str . For DOS, the streambuf must have been opened in
binary mode. This can be done by specifying ios::binary as part of the
second argument to the constructor for an ofstream. Using the example
above, the line to create the ofstream would read, ofstream

fstr(“data.dat”, ios::out | ios::binary); where the “| ” is the
binary OR operator.

virtual ~RWvostream();
This virtual destructor allows specializing classes to deallocate any
resources that they may have allocated.

virtual RWvostream&
operator<< (const char* s);

Redefined from class RWvostream. Store the character string starting at s
to the output stream in binary. The character string is expected to be null
terminated.

virtual RWvostream&
operator<< (const wchar_t* ws);

Redefined from class RWvostream. Store the wide character string
starting at ws to the output stream in binary. The wide character string is
expected to be null terminated.

virtual RWvostream&
operator<< (char c);

Redefined from class RWvostream. Store the char c to the output stream
in binary.

virtual RWvostream&
operator<< (wchar_t wc);

Redefined from class RWvostream. Store the wide char wc to the output
stream in binary.

virtual RWvostream&
operator<< (unsigned char c);

Redefined from class RWvostream. Store the unsigned char c to the
output stream in binary.

Public
Constructors

Public
Destructor

Public
Operators

RWbostream

Tools.h++ Class Reference 47

virtual RWvostream&
operator<< (double d);

Redefined from class RWvostream. Store the double d to the output
stream in binary.

virtual RWvostream&
operator<< (float f);

Redefined from class RWvostream. Store the float f to the output
stream in binary.

virtual RWvostream&
operator<< (int i);

Redefined from class RWvostream. Store the int i to the output stream
in binary.

virtual RWvostream&
operator<< (unsigned int i);

Redefined from class RWvostream. Store the unsigned int i to the
output stream in binary.

virtual RWvostream&
operator<< (long l);

Redefined from class RWvostream. Store the long l to the output stream
in binary.

virtual RWvostream&
operator<< (unsigned long l);

Redefined from class RWvostream. Store the unsigned long l to the
output stream in binary.

virtual RWvostream&
operator<< (short s);

Redefined from class RWvostream. Store the short s to the output
stream in binary.

virtual RWvostream&
operator<< (unsigned short s);

Redefined from class RWvostream. Store the unsigned short s to the
output stream in binary.

operator void* ();

Inherited via RWvostream from RWvios.

virtual RWvostream&
flush ();

Send the contents of the stream buffer to output immediately.

Public
Member

Functions

RWbostream

48 Tools.h++ Class Reference

virtual RWvostream&
put (char c);

Redefined from class RWvostream. Store the char c to the output stream.

virtual RWvostream&
put (wchar_t wc);

Redefined from class RWvostream. Store the wide character wc to the
output stream.

virtual RWvostream&
put (unsigned char c);

Redefined from class RWvostream. Store the unsigned char c to the
output stream.

virtual RWvostream&
put (const char* p, size_t N);

Redefined from class RWvostream. Store the vector of char s starting at p
to the output stream in binary.

virtual RWvostream&
put (const wchar_t* p, size_t N);

Redefined from class RWvostream. Store the vector of wide char s
starting at p to the output stream in binary.

virtual RWvostream&
put (const unsigned char* p, size_t N);

Redefined from class RWvostream. Store the vector of unsigned char s
starting at p to the output stream in binary.

virtual RWvostream&
put (const short* p, size_t N);

Redefined from class RWvostream. Store the vector of short s starting at
p to the output stream in binary.

virtual RWvostream&
put (const unsigned short* p, size_t N);

Redefined from class RWvostream. Store the vector of unsigned short s
starting at p to the output stream in binary.

virtual RWvostream&
put (const int* p, size_t N);

Redefined from class RWvostream. Store the vector of int s starting at p
to the output stream in binary.

virtual RWvostream&
put (const unsigned int* p, size_t N);

Redefined from class RWvostream. Store the vector of unsigned int s
starting at p to the output stream in binary.

RWbostream

Tools.h++ Class Reference 49

virtual RWvostream&
put (const long* p, size_t N);

Redefined from class RWvostream. Store the vector of long s starting at p
to the output stream in binary.

virtual RWvostream&
put (const unsigned long* p, size_t N);

Redefined from class RWvostream. Store the vector of unsigned long s
starting at p to the output stream in binary.

virtual RWvostream&
put (const float* p, size_t N);

Redefined from class RWvostream. Store the vector of float s starting at
p to the output stream in binary.

virtual RWvostream&
put (const double* p, size_t N);

Redefined from class RWvostream. Store the vector of double s starting at
p to the output stream in binary.

virtual RWvostream&
putString (const char* p, size_t N);

Redefined from class RWvostream. Data is formatted as a string
containing N characters.

virtual RWvostream&
putString (const char*s, size_t N);

Store the character string, including embedded nulls, starting at s to the
output string.

Tools.h++ Class Reference 51

RWBTree

RWBTree RWCollection RWCollectable

#include <rw/btree.h>
RWBTree a;

Class RWBTree represents a group of ordered elements, not accessible by an
external key. Duplicates are not allowed. An object stored by class RWBTree
must inherit abstract base class RWCollectable — the elements are ordered
internally according to the value returned by virtual function compareTo()

(see class RWCollectable).

This class has certain advantages over class RWBinaryTree. First, the B-tree
is automatically balanced. (With class RWBinaryTree, you must call member
function balance() explicitly to balance the tree.) Nodes are never allowed
to have less than a certain number of items (called the order). The default
order is 50, but may be changed by resetting the value of the static constant
“order ” in the header file <btree.h> and recompiling. Larger values will
result in shallower trees, but less efficient use of memory.

Because many keys are held in a single node, class RWBTree also tends to
fragment memory less.

Polymorphic

RWBTree();
Construct an empty B-tree.

RWBTree(const RWBTree& btr);
Construct self as a shallow copy of btr .

Public Destructor
virtual
~RWBTree();

Redefined from RWCollection. Calls clear() .

void
operator= (const RWBTree& btr);

Set self to a shallow copy of btr .

RWBoolean
operator<= (const RWBTree& btr) const;

Returns TRUE if self is a subset of btr . That is, for every item in self, there
must be an item in btr that compares equal. Note: If you inherit from
RWBTree in the presence of the Standard C++ Library, we recommend that
you override this operator and explicitly forward the call. Overload

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

RWBTree

52 Tools.h++ Class Reference

resolution in C++ will choose the Standard Library provided global
operators over inherited class members. These global definitions are not
appropriate for set-like partial orderings.

RWBoolean
operator== (const RWBTree& btr) const;

Returns TRUE if self and btr are equivalent. That is, they must have the
same number of items and for every item in self, there must be an item in
btr that compares equal.

virtual void
apply (RWapplyCollectable ap, void*);

Redefined from class RWCollection to apply the user-supplied function
pointed to by ap to each member of the collection, in order, from smallest
to largest. This supplied function should not do anything to the items that
could change the ordering of the collection.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Redefined from class RWCollection.

virtual void
clearAndDestroy ();

Inherited from class RWCollection.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

virtual size_t
entries () const;

Redefined from class RWCollection.

virtual RWCollectable*
find (const RWCollectable* target) const;

Redefined from class RWCollection. The first item that compares equal to
the object pointed to by target is returned or nil if no item is found.

virtual unsigned
hash () const;

Inherited from class RWCollectable.

Public
Member

Functions

RWBTree

Tools.h++ Class Reference 53

unsigned
height () const;

Special member function of this class. Returns the height of the tree,
defined as the number of nodes traversed while descending from the root
node to an external (leaf) node.

virtual RWCollectable*
insert (RWCollectable* c);

Redefined from class RWCollection. Inserts the item c into the collection
and returns it. The item c is inserted according to the value returned by
compareTo() . If an item is already in the collection which isEqual to c ,
then the old item is returned and the new item is not inserted. Otherwise
returns nil if the insertion was unsuccessful.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWBTREE.

virtual RWBoolean
isEmpty () const;

Redefined from class RWCollection.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the number of items that
compare equal to target . Since duplicates are not allowed, this function
can only return 0 or 1.

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Removes and returns the first item
that compares equal to the object pointed to by target . Returns nil if no
item was found.

virtual void
removeAndDestroy (const RWCollectable* target);

Inherited from class RWCollection.

RWBTree

54 Tools.h++ Class Reference

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Inherited from class RWCollection.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 55

RWBTreeDictionary

RWBTreeDictionary RWBTree RWCollection RWCollectable

#include <rw/btrdict.h>

RWBTreeDictionary a;

Dictionary class implemented as a B-tree, for the storage and retrieval of key-
value pairs. Both the keys and values must inherit abstract base class
RWCollectable — the elements are ordered internally according to the
value returned by virtual function compareTo() of the key (see class
RWCollectable). Duplicate keys are not allowed.

The B-tree is balanced. That is, nodes are never allowed to have less than a
certain number of items (called the order). The default order is 50, but may
be changed by resetting the value of the static constant “order ” in the
header file <btree.h> and recompiling. Larger values will result in
shallower trees, but less efficient use of memory.

Polymorphic

RWBTreeDictionary();
Constructs an empty B-tree dictionary.

RWBoolean
operator<= (const RWBTreeDictionary& btr) const;

Returns TRUE if self is a subset of btr . That is, for every item in self, there
must be an item in btr that compares equal. This operator is not explicitly
present unless you are compiling with an implementation of the C++
Standard Library. Normally it is inherited from RWBTree.

Note: If you inherit from RWBTreeDictionary in the presence of the C++
Standard Library, we recommend that you override this operator and
explicitly forward the call. Overload resolution in C++ will choose the
Standard Library provided global operators over inherited class members.
These global definitions are not appropriate for set-like partial orderings.

void
applyToKeyAndValue (RWapplyKeyAndValue ap,void*);

Redefined from class RWCollection. Applies the user-supplied function
pointed to by ap to each key-value pair of the collection, in order, from
smallest to largest.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWBTreeDictionary

56 Tools.h++ Class Reference

RWBinaryTree
asBinaryTree ();
RWBag
asBag () const;
RWSet
asSet () const;
RWOrdered
asOrderedCollection () const;
RWBinaryTree
asSortedCollection () const:

Converts the RWBTreeDictionary to an RWBag, RWSet, RWOrdered, or
an RWBinaryTree. Note that since a dictionary contains pairs of keys and
values, the result of this call will be a container holding
RWCollectableAssociations. Note also that the return value is a copy of
the data. This can be very expensive for large collections. Consider using
operator+=() to insert each RWCollectableAssociation from this
dictionary into a collection of your choice.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Redefined from class RWCollection. Removes all key-value pairs from
the collection.

virtual void
clearAndDestroy ();

Redefined from class RWCollection. Removes all key-value pairs in the
collection, and deletes both the key and the value.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

virtual size_t
entries () const;

Redefined from class RWCollection.

virtual RWCollectable*
find (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the key in the collection
which compares equal to the object pointed to by target , or nil if no key
is found.

RWBTreeDictionary

Tools.h++ Class Reference 57

RWCollectable*
findKeyAndValue (const RWCollectable* target,
 RWCollectable*& v) const;

Returns the key in the collection which compares equal to the object
pointed to by target , or nil if no key was found. The value is put in v .
You are responsible for defining v before calling this function.

RWCollectable*
findValue (const RWCollectable* target) const;

Returns the value associated with the key which compares equal to the
object pointed to by target , or nil if no key was found.

RWCollectable*
findValue (const RWCollectable* target,
 RWCollectable* newValue);

Returns the value associated with the key which compares equal to the
object pointed to by target , or nil if no key was found. Replaces the
value with newValue (if a key was found).

virtual unsigned
hash () const;

Inherited from class RWCollectable.

unsigned
height () const;

Inherited from class RWBTree.

RWCollectable*
insertKeyAndValue (RWCollectable* key,RWCollectable* value);

Adds a key-value pair to the collection and returns the key if successful,
nil if the key is already in the collection.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWBTREEDICTIONARY.

virtual RWBoolean
isEmpty () const;

Inherited from class RWBTree.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the number of keys that
compare equal with target . Because duplicates are not allowed, this
function can only return 0 or 1.

RWBTreeDictionary

58 Tools.h++ Class Reference

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Removes the key and value pair for
which the key compares equal to the object pointed to by target . Returns
the key, or nil if no match was found.

virtual void
removeAndDestroy (const RWCollectable* target);

Redefined from class RWCollection. Removes and deletes the key and
value pair for which the key compares equal to the object pointed to by
target . Note that both the key and the value are deleted. Does nothing if
the key is not found.

RWCollectable*
removeKeyAndValue (const RWCollectable* target,
 RWCollectable*& v);

Removes the key and value pair for which the key compares equal to the
object pointed to by target. Returns the key, or nil if no match was found.
The value is put in v . You are responsible for defining v before calling this
function.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Inherited from class RWCollection.

virtual RWCollection*
select (RWtestCollectable testfunc, void* x) const;

Evaluates the function pointed to by tst for the key of each item in the
RWBTreeDictionary. It inserts keys and values for which the function
returns TRUE into a new RWBTreeDictionary allocated off the heap and
returns a pointer to this new collection. Because the new dictionary is
allocated off the heap, you are responsible for deleting it when done. This is
not a virtual function.

virtual RWCollection*
select (RWtestCollectablePair testfunc, void* x) const;

Evaluates the function pointed to by tst for both the key and the value of
each item in the RWBTreeDictionary. It inserts keys and values for which
the function returns TRUE into a new RWBTreeDictionary allocated off the
heap and returns a pointer to this new collection. Because the new
dictionary is allocated off the heap, you are responsible for deleting it when
done. This is not a virtual function.

RWBTreeDictionary

Tools.h++ Class Reference 59

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 61

RWBTreeOnDisk

typedef long RWstoredValue ;
typedef int (*RWdiskTreeCompare)(const char*, const char*,
 size_t);

#include <rw/disktree.h>
#include <rw/filemgr.h>
RWFileManager fm(”filename.dat”);
RWBTreeOnDisk bt(fm);

Class RWBTreeOnDisk represents an ordered collection of associations of
keys and values, where the ordering is determined by comparing keys using
an external function. The user can set this function. Duplicate keys are not
allowed. Given a key, the corresponding value can be found.

This class is specifically designed for managing a B-tree in a disk file. Keys,
defined to be arrays of chars , and values, defined by the typedef
RWstoredValue , are stored and retrieved from a B-tree. The values can
represent offsets to locations in a file where objects are stored.

The key length is set by the constructor. By default, this value is 16
characters. By default, keys are null-terminated. However, the tree can be
used with embedded nulls, allowing multibyte and binary data to be used as
keys. To do so you must:

• Specify TRUE for parameter ignoreNull in the constructor (see below);

• Make sure all buffers used for keys are at least as long as the key length
(remember, storage and comparison will not stop with a null value);

• Use a comparison function (such as memcmp()) that ignores nulls.

This class is meant to be used with class RWFileManager which manages
the allocation and deallocation of space in a disk file.

When you construct an RWBTreeOnDisk you give the location of the root
node in the constructor as argument start . If this value is RWNIL (the
default) then the location will be retrieved from the RWFileManager using
function start() (see class RWFileManager). You can also use the
enumeration createMode to set whether to use an existing tree (creating
one if one doesn’t exist) or to force the creation of a new tree. The location of
the resultant root node can be retrieved using member function
baseLocation().

Synopsis

Description

RWBTreeOnDisk

62 Tools.h++ Class Reference

More than one B-tree can exist in a disk file. Each must have its own
separate root node. This can be done by constructing more than one
RWBTreeOnDisk, each with createMode set to create .

The order of the B-tree can be set in the constructor. Larger values will result
in shallower trees, but less efficient use of disk space. The minimum number
of entries in a node can also be set. Smaller values may result in less time
spent balancing the tree, but less efficient use of disk space.

None

enum styleMode {V6Style, V5Style};
This enumeration is used by the constructor to allow backwards
compatibility with older V5.X style trees, which supported only 16-byte
key lengths. It is used only when creating a new tree. If opening a tree for
update, its type is determined automatically at runtime.

V6Style Initialize a new tree using V6.X style trees. This is
the default.

V5Style Initialize a new tree using V5.X style trees. In this
case, the key length is fixed at 16 bytes.

enum createMode {autoCreate, create};
This enumeration is used by the constructor to determine whether to force
the creation of a new tree.

autoCreate Look in the location given by the constructor
argument start for the root node. If valid, use it.
Otherwise, allocate a new tree. This is the default.

create Forces the creation of a new tree. The argument
start is ignored.

RWBTreeOnDisk(RWFileManager& f,
 unsigned nbuf = 10,
 createMode omode = autoCreate,
 unsigned keylen = 16,
 RWBoolean ignoreNull = FALSE,
 RWoffset start = RWNIL,
 styleMode smode = V6Style,
 unsigned halfOrder = 10,
 unsigned minFill = 10);
Construct a B-tree on disk. The parameters are as follows:

f The file in which the B-tree is to be managed. This is
the only required parameter.

nbuf The maximum number of nodes that can be cached
in memory.

Persistence

Enumerations

Public
Constructor

RWBTreeOnDisk

Tools.h++ Class Reference 63

omode Determines whether to force the creation of a new
tree or whether to attempt to open an existing tree
for update (the default).

keylen The length of a key in bytes. Ignored when opening
an existing tree.

ignoreNull Controls whether to allow embedded nulls in keys.
If FALSE (the default), then keys end with a
terminating null. If TRUE, then all keylen bytes are
significant. Ignored when opening an existing tree.

start Where to find the root node. If set to RWNIL (the
default), then uses the value returned by the
RWFileManager’s start() member function.
Ignored when creating a new tree.

smode Sets the type of B-tree to create, allowing backwards
compatibility (see above). The default specifies new
V6.X style B-trees. Ignored when opening an
existing tree.

halfOrder One half the order of the B-tree (that is, one half the
number of entries in a node). Ignored when
opening an existing tree.

minFill The minimum number of entries allowed in a node
(must be less than or equal to halfOrder). Ignored
when opening an existing tree.

void
applyToKeyAndValue ((*ap)(const char*,RWstoredValue), void* x);

Visits all items in the collection in order, from smallest to largest, calling
the user-provided function pointed to by ap with the key and value as
arguments. This function should have the prototype:

void yourApplyFunction (const char* ky,
 RWstoredValue val,void* x);

The function yourApplyFunction may not change the key. The value x
can be anything and is passed through from the call to
applyToKeyAndValue() . This member function may throw an RWFileErr
exception.

RWoffset
baseLocation () const;

Returns the offset of this tree’s starting location within the
RWFileManager. This is the value you will pass to a constructor as the

Public
Member

Functions

RWBTreeOnDisk

64 Tools.h++ Class Reference

start argument when you want to open one of several trees stored in one
managed file.

unsigned
cacheCount () const;

Returns the maximum number of nodes that may currently be cached.

unsigned
cacheCount (unsigned newcount);

Sets the number of nodes that should be cached to newcount . Returns the
old number.

void
clear ();

Removes all items from the collection.This member function may throw an
RWFileErr exception.

RWBoolean
contains (const char* ky) const;

Returns TRUE if the tree contains a key that is equal to the string pointed to
by ky , and FALSE otherwise. This member function may throw an
RWFileErr exception.

size_t
entries ();

Returns the number of items in the RWBTreeOnDisk. This member
function may throw an RWFileErr exception.

RWoffset
extraLocation (RWoffset newlocation);

Sets the location where this RWBTreeOnDisk keeps your own application-
specific information to newlocation . Returns the previous value.

RWBoolean
findKey (const char* ky, RWCString& foundKy)const ;

Returns TRUE if ky is found, otherwise FALSE. If successful, the found key
is returned as a reference in foundKy . This member function may throw an
RWFileErr exception.

RWBoolean
findKeyAndValue (const char* ky,
 RWCString& foundKy,
 RWStoredValue& foundVal)const ;

Returns TRUE if ky is found, otherwise FALSE. If successful, the found key
is returned as a reference in foundKy , and the value is returned as a
reference in foundVal . This member function may throw an RWFileErr
exception.

RWBTreeOnDisk

Tools.h++ Class Reference 65

RWstoredValue
findValue (const char* ky)const;

Returns the value for the key that compares equal to the string pointed to
by ky . Returns RWNIL if no key is found. This member function may throw
an RWFileErr exception.

int
height ();

Returns the height of the RWBTreeOnDisk. A possible exception is
RWFileErr.

int
insertKeyAndValue (const char* ky,RWstoredValue v);

Adds a key-value pair to the B-tree. Returns TRUE for successful insertion,
FALSE otherwise. A possible exception is RWFileErr.

unsigned
keyLength () const;

Return the length of the keys for this RWBtreeOnDisk. This number is set
when the tree is first constructed and cannot be changed.

unsigned
minOrder ()const;

Return the minimum number of items that may be found in any non-root
node in this RWBtreeOnDisk. This number is set when the tree is first
constructed and cannot be changed.

unsigned
nodeSize () const;

Returns the number of bytes used by each node of this RWBTreeOnDisk.
This number is calculated from the length of the keys and the order of the
tree, and cannot be changed. We make it available to you for your
calculations about how many nodes to cache.

unsigned
order ()const;

Return half the maximum number of items that may be stored in any node
in this RWBtreeOnDisk. This number is set when the tree is first
constructed and cannot be changed. This method should have been
renamed “halfOrder ” but is still called “order ” for backward
compatibility.

RWBoolean
isEmpty () const;

Returns TRUE if the RWBTreeOnDisk is empty, otherwise FALSE.

RWBTreeOnDisk

66 Tools.h++ Class Reference

void
remove (const char* ky);

Removes the key and value pair that has a key which matches ky . This
member function may throw an RWFileErr exception.

RWBoolean
replaceValue (const RWCString& key,
 const RWstoredValue newval,
 RWstoredValue& oldVal);

Attempts to replace the RWstoredValue now associated with key by the
value newval . If successful, the previous value is returned by reference in
oldVal ; and the methed returns TRUE. Otherwise, returns FALSE.

RWdiskTreeCompare
setComparison (RWdiskTreeCompare fun);

Changes the comparison function to fun and returns the old function.
This function must have prototype:

 int yourFun (const char* key1, const char* key2, size_t N);

It should return a number less than zero, equal to zero, or greater than
zero depending on whether the first argument is less than, equal to or
greater than the second argument, respectively. The third argument is the
key length. Possible choices (among others) are strncmp() (the default),
or strnicmp() (for case-independent comparisons).

Tools.h++ Class Reference 67

RWBufferedPageHeap

RWBufferedPageHeap RWVirtualPageHeap

#include <rw/bufpage.h>
(Abstract base class)

This is an abstract base class that represents an abstract page heap buffered
through a set of memory buffers. It inherits from the abstract base class
RWVirtualPageHeap, which represents an abstract page heap.

RWBufferedPageHeap will supply and maintain a set of memory buffers.
Specializing classes should supply the actual physical mechanism to swap
pages in and out of these buffers by supplying definitions for the pure
virtual functions swapIn(RWHandle, void*) and swapOut(RWHandle,

void*) .

The specializing class should also supply appropriate definitions for the
public functions allocate() and deallocate(RWHandle) .

For a sample implementation of a specializing class, see class
RWDiskPageHeap.

None

RWBufferedPageHeap(unsigned pgsize, unsigned nbufs=10);
Constructs a buffered page heap with page size pgsize . The number of
buffers (each of size pgsize) that will be allocated on the heap will be
nbufs . If there is insufficient memory to satisfy the request, then the state
of the resultant object as returned by member function isValid() will be
FALSE, otherwise, TRUE.

virtual RWBoolean
swapIn (RWHandle h, void* buf) = 0;
virtual RWBoolean
swapOut (RWHandle, h void* buf) = 0;

It is the responsibility of the specializing class to supply definitions for
these two pure virtual functions. Function swapOut() should copy the
page with handle h from the buffer pointed to by buf to the swapping
medium. Function swapIn() should copy the page with handle h into the
buffer pointed to by buf .

virtual RWHandle
allocate () = 0;

It is the responsibility of the specializing class to supply a definition for
this pure virtual function. The specializing class should allocate a page

Synopsis

Description

Persistence

Public
Constructor

Protected
Member

Functions

Public
Member

Functions

RWBufferedPageHeap

68 Tools.h++ Class Reference

and return a unique handle for it. It should return zero if it cannot satisfy
the request. The size of the page is set by the constructor.

virtual
~RWBufferedPageHeap ();

Deallocates all internal buffers.

RWBoolean
isValid ();

Returns TRUE if self is in a valid state. A possible reason why the object
might not be valid is insufficient memory to allocate the internal buffers.

virtual void
deallocate (RWHandle h);

Redefined from class RWVirtualPageHeap. It is never an error to call this
function with argument zero. Even though this is not a pure virtual
function, it is the responsibility of the specializing class to supply an
appropriate definition for this function. All this definition does is release
any buffers associated with the handle h. Just as the actual page allocation
is done by the specializing class through virtual function allocate() , so
must the actual deallocation be done by overriding deallocate() .

virtual void
dirty (RWHandle h);

Redefined from class RWVirtualPageHeap.

virtual void*
lock (RWHandle h);

Redefined from class RWVirtualPageHeap.

virtual void
unlock (RWHandle h);

Redefined from class RWVirtualPageHeap.

Tools.h++ Class Reference 69

RWCacheManager

#include <rw/cacheman.h>
RWFile f(“file.dat”); // Construct a file
RWCacheManager(&f, 100); // Cache 100 byte blocks to file.dat

Class RWCacheManager caches fixed length blocks to and from an
associated RWFile. The block size can be of any length and is set at
construction time. The number of cached blocks can also be set at
construction time.

Writes to the file may be deferred. Use member function flush() to have
any pending writes performed.

None

#include <rw/cacheman.h>
#include <rw/rwfile.h>

struct Record {
 int i;
 float f;
 char str[15];
};
main(){
 RWoffset loc;
 RWFile file(“file.dat”); // Construct a file

 // Construct a cache, using 20 slots for struct Record:
 RWCacheManager cache(&file, sizeof(Record), 20);

 Record r;
 // ...
 cache.write(loc, &r);
 // ...
 cache.read(loc, &r);
}

RWCacheManager(RWFile* file, unsigned blocksz,
 unsigned mxblks = 10);

Construct a cache for the RWFile pointed to by file . The length of the
fixed-size blocks is given by blocksz . The number of cached blocks is
given by mxblks . If the total number of bytes cached would exceed the
maximum value of an unsigned int, then RWCacheManager will quietly
decide to cache a smaller number of blocks.

~RWCacheManager();
Performs any pending I/O operations (i.e., calls flush()) and deallocates
any allocated memory.

Synopsis

Description

Persistence

Example

Public
Constructor

Public
Destructor

RWCacheManager

70 Tools.h++ Class Reference

RWBoolean
flush ();

Perform any pending I/O operations. Returns TRUE if the flush was
successful, FALSE otherwise.

void
invalidate ();

Invalidate the cache.

RWBoolean
read (RWoffset locn, void* dat);

Return the data located at offset locn of the associated RWFile. The data is
put in the buffer pointed to by dat . This buffer must be at least as long as
the block size specified when the cache was constructed. Returns TRUE if
the operation was successful, otherwise FALSE.

RWBoolean
write (RWoffset locn, void* dat);

Write the block of data pointed to by dat to the offset locn of the
associated RWFile. The number of bytes written is given by the block size
specified when the cache was constructed. The actual write to disk may be
deferred. Use member function flush() to perform any pending output.
Returns TRUE if the operation was successful, otherwise FALSE.

Public
Member

Functions

Tools.h++ Class Reference 71

RWCLIPstreambuf

RWCLIPstreambuf streambuf

#include <rw/winstrea.h>
#include <iostream.h>
iostream str(new RWCLIPstreambuf());

Class RWCLIPstreambuf is a specialized streambuf that gets and puts
sequences of characters to Microsoft Windows global memory. It can be
used to exchange data through Windows clipboard facility.

The class has two modes of operation: dynamic and static. In dynamic
mode, memory is allocated and reallocated as needed. If too many
characters are inserted into the internal buffer for its present size, then it will
be resized and old characters copied over into any new memory as
necessary. This is transparent to the user. It is expected that this mode
would be used primarily for “insertions,” i.e., clipboard “cuts” and “copies.”
In static mode, the buffer streambuf is constructed from a specific piece of
memory. No reallocations will be done. It is expected that this mode would
be used primarily for “extractions,” i.e., clipboard “pastes.”

In dynamic mode, the RWCLIPstreambuf “owns” any allocated memory
until the member function str() is called, which “freezes” the buffer and
returns an unlocked Windows handle to it. The effect of any further
insertions is undefined. Until str() has been called, it is the responsibility
of the RWCLIPstreambuf destructor to free any allocated memory. After the
call to str() , it becomes the user’s responsibility.

In static mode, the user has the responsibility for freeing the memory handle.
However, because the constructor locks and dereferences the handle, you
should not free the memory until either the destructor or str() has been
called, either of which will unlock the handle.

None

//Instructions: compile as a Windows program.
//Run this program, then using your favorite text editor or word
//processor, select paste and see the result!

#include <rw/winstrea.h>

#include <stdlib.h>
#include <iostream.h>
#include <windows.h>

void postToClipboard(HWND owner);

Synopsis

Description

Persistence

Example

RWCLIPstreambuf

72 Tools.h++ Class Reference

main()
{
 postToClipboard(NULL);

 return 0;
}

// PASS YOUR WINDOW HANDLE TO THIS FUNCTION THEN PASS YOUR VALUES
// TO THE CLIPBOARD USING ostr.

void postToClipboard(HWND owner)
{
 //Build the clipstream buffer on the heap
 RWCLIPstreambuf* buf = new
 RWCLIPstreambuf();

 ostream ostr(buf);

 double d = 12.34;

 ostr << "Some text to be exchanged through the clipboard.\n";
 ostr << "Might as well add a double: " << d << endl;
 ostr.put('\0'); // Include the terminating null

 // Lock the streambuf, get its handle:
 HANDLE hMem = buf->str();

 OpenClipboard(owner);

 EmptyClipboard();
 SetClipboardData(CF_TEXT, hMem);
 CloseClipboard();

 // Don't delete the buffer!. Windows is now responsible for it.
}
The owner of the clipboard is passed in as parameter “owner ”. A
conventional ostream is created, except that it uses an RWCLIPstreambuf as
its associated streambuf. It can be used much like any other ostream, such
as cout , except that characters will be inserted into Windows global
memory.

Some text and a double is inserted into the ostream. Finally, member
function str() is called which returns a Windows HANDLE. The clipboard is
then opened, emptied, and the new data put into it with format CF_TEXT

which, in this case, is appropriate because a simple ostream was used to
format the output. If a specializing virtual streams class such as
RWbostream or RWpostream had been used instead, the format is not so
simple. In this case, the user might want to register his or her own format,
using the Windows function RegisterClipboardFormat() .

RWCLIPstreambuf

Tools.h++ Class Reference 73

RWCLIPstreambuf ();

Constructs an empty RWCLIPstreambuf in dynamic mode. The results
can be used anywhere any other streambuf can be used. Memory to
accomodate new characters will be allocated as needed.

RWCLIPstreambuf (HANDLE hMem);

Constructs an RWCLIPstreambuf in static mode, using the memory block
with global handle hMem. The effect of gets and puts beyond the size of
this memory block is unspecified.

~RWCLIPstreambuf ();
If member function str() has not been called, the destructor unlocks the
handle and, if in dynamic mode, also frees it.

Because RWCLIPstreambuf inherits from streambuf, any of the latter’s
member functions can be used. Furthermore, RWCLIPstreambuf has been
designed to be analogous to strstreambuf. However, note that the return
type of str() is a HANDLE, rather than a char* .

HANDLE
str ();

Returns an (unlocked) HANDLE to the global memory being used. The
RWCLIPstreambuf should now be regarded as “frozen”: the effect of
inserting any more characters is undefined. If the RWCLIPstreambuf was
constructed in dynamic mode, and nothing has been inserted, then the
returned HANDLE may be NULL. If it was constructed in static mode, then
the returned handle will be the handle used to construct the
RWCLIPstreambuf.

Public
Constructors

Public
Destructor

Public
Member

Functions

Tools.h++ Class Reference 75

RWCollectable

typedef RWCollectable Object; // Smalltalk typedef
#include <rw/collect.h>

Class RWCollectable is an abstract base class for collectable objects. This
class contains virtual functions for identifying, hashing, comparing, storing
and retrieving collectable objects. While these virtual functions have simple
default definitions, objects that inherit this base class will typically redefine
one or more of them.

Polymorphic

virtual
~RWCollectable ();

All functions that inherit class RWCollectable have virtual destructors.
This allows them to be deleted by such member functions as
removeAndDestroy() without knowing their type.

virtual RWspace
binaryStoreSize () const;

Returns the number of bytes used by the virtual function
saveGuts(RWFile&) to store an object. Typically, this involves adding up
the space required to store all primitives, plus the results of calling
recursiveStoreSize() for all objects inheriting from RWCollectable.
See the Tool.h++ User's Guide Section entitled "Virtual Function
binaryStoreSize" for details.

virtual int
compareTo (const RWCollectable*) const;

The function compareTo() is necessary to sort the items in a collection. If
p1 and p2 are pointers to RWCollectable objects, the statement

p1->compareTo(p2);

should return:

 0 if *p1 “is equal to” *p2 ;

>0 if *p1 is “larger” than *p2 ;

<0 if *p1 is “smaller” than *p2 .

Note that the meaning of “is equal to,” “larger” and “smaller” is left to the
user. The default definition provided by the base class is based on the
addresses, i.e.,

Synopsis

Description

Persistence

Virtual
Functions

RWCollectable

76 Tools.h++ Class Reference

return this == p2 ? 0 : (this > p2 ? 1 : -1);

and is probably not very useful.

virtual unsigned
hash () const;

Returns a hash value. This function is necessary for collection classes that
use hash table look-up. The default definition provided by the base class
hashes the object’s address:

return (unsigned)this;

It is important that the hash value be the same for all objects which return
TRUE to isEqual() .

virtual RWClassID
isA () const;

Returns a class identification number (typedef’d to be an unsigned short).
The default definition returns __RWCOLLECTABLE. Identification numbers
greater than or equal to 0x8000 (hex) are reserved for Rogue Wave objects.
User defined classes should define isA () to return a number between 0 and
0x7FFF.

virtual RWBoolean
isEqual (const RWCollectable* t) const;

Returns TRUE if collectable object “matches” object at address t . The
default definition is:

return this == t;

i.e., both objects have the same address (a test for identity). The definition
may be redefined in any consistent way.

virtual RWCollectable*
newSpecies () const;

Allocates a new object off the heap of the same type as self and returns a
pointer to it. You are responsible for deleting the object when done with it.

virtual void
restoreGuts (RWFile&);

Read an object’s state from a binary file, using class RWFile, replacing the
previous state.

virtual void
restoreGuts (RWvistream&);

Read an object’s state from an input stream, replacing the previous state.

RWCollectable

Tools.h++ Class Reference 77

virtual void
saveGuts (RWFile&) const;

Write an object’s state to a binary file, using class RWFile.

virtual void
saveGuts (RWvostream&) const;

Write an object’s state to an output stream.

RWStringID
stringID ();

Returns the identification string for the class. Acts virtual, although it is
not.1

RWspace
recursiveStoreSize () const;

Returns the number of bytes required to store the object using the global
operator

RWFile& operator<<(RWFile&, const RWCollectable&);

Recursively calls binaryStoreSize() , taking duplicate objects into
account.

static RWClassID
classID (const RWStringID& name);

Returns the result of looking up the RWClassID associated with name in the
global RWFactory.

static RWClassID
classIsA ();

Returns the RWClassID of this class.

static RWBoolean
isAtom (RWClassID id);

Returns TRUE if id is the RWClassID that is associated with an
RWCollectable class that has a programmer-chosen RWStringID.

static RWspace
nilStoreSize ();

Returns the number of bytes required to store a rwnil pointer in an
RWFile.

1 See the section in the User's Guide entitled "RWStringID"
for more information on how to make a non-virtual
function act like a virtual function.

Static Public
Member

Functions

RWCollectable

78 Tools.h++ Class Reference

RWvostream&
operator<< (RWvostream&, const RWCollectable& obj);
RWFile&
operator<< (RWFile&, const RWCollectable& obj);

Saves the object obj to a virtual stream or RWFile, respectively.
Recursively calls the virtual function saveGuts() , taking duplicate objects
into account. See the Tools.h++ User's Guide section entitled "Persistence"
for more information.

RWvistream&
operator>> (RWvistream&, RWCollectable& obj);
RWFile&
operator>> (RWFile&, RWCollectable& obj);

Restores an object inheriting from RWCollectable into obj from a virtual
stream or RWFile, respectively, replacing the previous contents of obj .
Recursively calls the virtual function restoreGuts() , taking duplicate
objects into account. See the Tools.h++ User's Guide section entitled
"Persistence" for more information. Various exceptions that could be
thrown are RWInternalErr (if the RWFactory does not know how to
make the object), and RWExternalErr (corrupted stream or file).

RWvistream&
operator>> (RWvistream&, RWCollectable*& obj);
RWFile&
operator>> (RWFile&, RWCollectable*& obj);

Looks at the next object on the input stream or RWFile, respectively, and
either creates a new object of the proper type off the heap and returns a
pointer to it, or else returns a pointer to a previously read instance.
Recursively calls the virtual function restoreGuts() , taking duplicate
objects into account. If an object is created off the heap, then you are
responsible for deleting it. See the Tools.h++ User's Guide section entitled
"Persistence" for more information. Various exceptions that could be
thrown are RWInternalErr (if the RWFactory does not know how to
make the object), and RWExternalErr (corrupted stream or file). In case an
exception is thrown during this call, the pointer to the partly restored
object will probably be lost, and memory will leak. For this reason, you
may prefer to use the static methods tryRecursiveRestore()

documented above.

Related
Global

Operators

Tools.h++ Class Reference 79

RWCollectableAssociation

RWCollectableAssociation RWCollectable

#include <rw/collass.h>

RWCollectableAssociation inherits class RWCollectable. Used internally
to associate a key with a value in the Tools.h++ “dictionary” collection
classes. Comparison and equality testing are forwarded to the key part of
the association.

Polymorphic

The “dictionary containers” RWBTreeDictionary, RWHashDictionary, and
RWIdentityDictionary make use of RWCollectableAssociation. When any
of their contents is dealt with as an RWCollectable, as when operator+=()

or asBag() etc. is used, the RWCollectableAssociation will be exposed.

RWCollectableAssociation ();
RWCollectableAssociation (RWCollectable* k, RWCollectable* v);

Construct an RWCollectableAssociation with the given key and value.

virtual ~ RWCollectableAssociation ();
virtual RWspace
binaryStoreSize () const;

Redefined from class RWCollectable.

virtual int
compareTo (const RWCollectable* c) const;

Redefined from class RWCollectable. Returns the results of calling
key()->compareTo(c) .

virtual unsigned
hash () const;

Redefined from class RWCollectable. Returns the results of calling
key()->hash() .

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return
__RWCOLLECTABLEASSOCIATION.

Synopsis

Description

Persistence

Related
Classes

Public
Constructors

Public
Destructor

Public
Member

Functions

RWCollectableAssociation

80 Tools.h++ Class Reference

virtual RWBoolean
isEqual (const RWCollectable* c) const;

Redefined from class RWCollectable. Returns the results of calling
key()->isEqual(c) .

RWCollectable*
key () const;

Returns the key part of the association.

RWCollectable*
value () const;

Returns the value part of the association.

RWCollectable*
value (RWCollectable* ct);

Sets the value to ct and returns the old value.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Redefined from class RWCollectable.

Tools.h++ Class Reference 81

RWCollectableDate

RWCollectable
RWCollectableDate

RWDate

typedef RWCollectableDate Date; // Smalltalk typedef
#include <rw/colldate.h>
RWCollectableDate d;

Collectable Dates. Inherits classes RWDate and RWCollectable. This class
is useful when dates are used as keys in the “dictionary” collection classes,
or if dates are stored and retrieved as RWCollectables. The virtual
functions of the base class RWCollectable have been redefined.

Polymorphic

RWCollectableDate();
RWCollectableDate(unsigned long julianDate);
RWCollectableDate(unsigned day, unsigned year);
RWCollectableDate(unsigned day, unsigned month, unsigned year);
RWCollectableDate(unsigned day, const char* mon,
 unsigned year,const RWLocale&
 locale = RWLocale::global());
RWCollectableDate(istream& s, const RWLocale& locale =
 RWLocale::global());
RWCollectableDate(const RWCString& str,const RWLocale&
 locale = RWLocale::global());
RWCollectableDate(const RWTime& t, const RWZone& zone =
 RWZone::local());
RWCollectableDate(const struct tm* tmb);
RWCollectableDate(const RWDate& d);

Calls the corresponding constructor of the base class RWDate.

virtual RWspace
binaryStoreSize () const;

Redefined from class RWCollectable.

virtual int
compareTo (const RWCollectable* c) const;

Redefined from class RWCollectable. Returns the results of calling
RWDate::compareTo .

virtual unsigned
hash () const;

Redefined from class RWCollectable. Returns the results of calling
RWDate::hash() .

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Functions

RWCollectableDate

82 Tools.h++ Class Reference

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWCOLLECTABLEDATE.

virtual RWBoolean
isEqual (const RWCollectable* t) const;

Redefined from class RWCollectable. Returns the results of calling
operator==() for the base class RWDate by using appropriate casts.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Redefined from class RWCollectable.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 83

RWCollectableInt

RWCollectable
RWCollectableInt

RWInteger

typedef RWCollectableInt Integer; // Smalltalk typedef
#include <rw/collint.h>
RWCollectableInt i;

Collectable integers. Inherits classes RWInteger and RWCollectable. This
class is useful when integers are used as keys in the “dictionary” collection
classes, or if integers are stored and retrieved as RWCollectables. The
virtual functions of the base class RWCollectable have been redefined.

Polymorphic

RWCollectableInt ();
Calls the appropriate base class constructor. See
RWInteger::RWInteger() .

RWCollectableInt (int i);
Calls the appropriate base class constructor. See
RWInteger::RWInteger(int) .

virtual RWspace
binaryStoreSize () const;

Redefined from class RWCollectable.

virtual int
compareTo (const RWCollectable* c) const;

Redefined from class RWCollectable. Returns the difference between self
and the RWCollectableInt pointed to by c .

virtual unsigned
hash () const;

Redefined from class RWCollectable. Returns the RWCollectableInt’s
value as an unsigned , to be used as a hash value.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWCOLLECTABLEINT.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Functions

RWCollectableInt

84 Tools.h++ Class Reference

virtual RWBoolean
isEqual (const RWCollectable* c) const;

Redefined from class RWCollectable. Returns TRUE if self has the same
value as the RWCollectableInt at address c .

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Redefined from class RWCollectable.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 85

RWCollectableString

RWCollectable
RWCollectableString

RWCString

typedef RWCollectableString String; // Smalltalk typedef
#include <rw/collstr.h>
RWCollectableString c;

Collectable strings. This class is useful when strings are stored and retrieved
as RWCollectables, or when they are used as keys in the “dictionary”
collection classes. Class RWCollectableString inherits from both class
RWCString and class RWCollectable. The virtual functions of the base
class RWCollectable have been redefined.

Polymorphic

RWCollectableString ();

Construct an RWCollectableString with zero characters.

RWCollectableString (const RWCString& s);

Construct an RWCollectableString from the RWCString s .

RWCollectableString (const char* c);
Conversion from character string.

RWCollectableString (const RWCSubString&);
Conversion from sub-string.

RWCollectableString (char c, size_t N);

Construct an RWCollectableString with N characters (default blanks).

virtual RWspace
binaryStoreSize () const;

Redefined from class RWCollectable.

virtual int
compareTo (const RWCollectable* c) const;

Redefined from class RWCollectable. returns the result of
RWCString::compareTo(*(const String*)c, RWCString::exact) .
This compares strings lexicographically, with case considered. It would be
possible to define , for instance, CaseFoldedString which did
comparisons ignoring case. We have deliberately left this as an exercise
for two reasons: Because it is both easy to do and not universally needed;
and because the presence of both RWCollectableStrings and such a

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Functions

RWCollectableString

86 Tools.h++ Class Reference

CaseFoldedString in any kind of sorted collection has the potential for
very confusing behavior, since the result of a comparison would depend
on the order in which the comparison was done.

virtual unsigned
hash () const;

Redefined from class RWCollectable. Calls RWCString::hash() and
returns the results.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWCOLLECTABLESTRING.

virtual RWBoolean
isEqual (const RWCollectable* c) const;

Redefined from class RWCollectable. Calls RWCString::operator==()

(i.e., the equivalence operator) with c as the argument and returns the
results.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Redefined from class RWCollectable.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 87

RWCollectableTime

RWCollectable
RWCollectableTime

RWTime

typedef RWCollectableTime Time; // Smalltalk typedef
#include <rw/colltime.h>
RWCollectableTime t;

Inherits classes RWTime and RWCollectable. This class is useful when
times are used as keys in the “dictionary” collection classes, or if times are
stored and retrieved as RWCollectables. The virtual functions of the base
class RWCollectable have been redefined.

Polymorphic

RWCollectableTime();
RWCollectableTime(unsigned long s);
RWCollectableTime(unsigned hour, unsigned minute,
 unsigned sec = 0,const RWZone&
 zone = RWZone::local());
RWCollectableTime(const RWDate& day, unsigned hour=0,
 unsigned minute=0, unsigned sec = 0,
 const RWZone& zone = RWZone::local());
RWCollectableTime(const RWDate& day, const RWCString& str,
 const RWZone& zone = RWZone::local(),
 const RWLocale& locale = RWLocale::global());
RWCollectableTime(const struct tm* tmb,
 const RWZone& zone = RWZone::local());

Calls the corresponding constructor of RWTime.

virtual RWspace
binaryStoreSize () const;

Redefined from class RWCollectable.

virtual int
compareTo (const RWCollectable* c) const;

Redefined from class RWCollectable. Returns the results of calling
RWTime::compareTo .

virtual unsigned
hash () const;

Redefined from class RWCollectable. Returns the results of calling
RWTime::hash() .

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWCOLLECTABLETIME.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Functions

RWCollectableTime

88 Tools.h++ Class Reference

virtual RWBoolean
isEqual (const RWCollectable* c) const;

Redefined from class RWCollectable. Returns the results of calling
operator==() for the base class RWTime by using appropriate casts.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Redefined from class RWCollectable.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 89

RWCollection

RWCollection RWCollectable

#include <rw/colclass.h>
typedef RWCollection Collection; // Smalltalk typedef

Class RWCollection is an abstract base class for the Smalltalk-like collection
classes. The class contains virtual functions for inserting and retrieving
pointers to RWCollectable objects into the collection classes. Virtual
functions are also provided for storing and reading the collections to files
and streams. Collections that inherit this base class will typically redefine
one or more of these functions.

In the documentation below, pure virtual functions are indicated by “= 0” in
their declaration. These functions must be defined in derived classes. For
these functions the description is intended to be generic — all inheriting
collection classes generally follow the described pattern. Exceptions are
noted in the documentation for the particular class.

For many other functions, a suitable definition is provided by RWCollection
and a deriving class may not need to redefine the function. Examples are
contains() or restoreGuts() .

Polymorphic

void
operator+= (const RWCollection&);
void
operator-= (const RWCollection&);

Adds or removes, respectively, each item in the argument to or from self.
Using operator+=(somePreSortedCollection) on an RWBinaryTree can
cause that tree to become unbalanced; possibly to the point of stack
overflow.

virtual
~RWCollection ();

Null definition (does nothing).

virtual void
apply (RWapplyCollectable ap, void*) = 0;

This function applies the user-supplied function pointed to by ap to each
member of the collection. This function should have prototype

void yourApplyFunction (RWCollectable* ctp, void*);

Synopsis

Description

Persistence

Public
Member

Operators

Public
Member

Functions

RWCollection

90 Tools.h++ Class Reference

The function yourApplyFunction() can perform any operation on the
item at address ctp that does not change the hash value or sorting order of
the item. Client data may be passed to this function through the second
argument.

RWBag
asBag () const;
RWSet
asSet () const;
RWOrdered
asOrderedCollection () const;
RWBinaryTree
asSortedCollection () const;

Allows any collection to be converted to an RWBag, RWSet, RWOrdered,
or an RWBinaryTree. Note that the return value is a copy of the data. This
can be very expensive for large collections. You should consider using
operator+=() to insert each item from this collection into a collection of
your choice. Also note that converting a collection containing data which
is already sorted to a RWBinaryTree via the asSortedCollection() or
asBinaryTree() methods will build a very unbalanced tree.

virtual RWspace
binaryStoreSize () const;

Redefined from class RWCollectable.

virtual void
clear () = 0;

Removes all objects from the collection. Does not delete the objects
themselves.

virtual void
clearAndDestroy ();

Removes all objects from the collection and deletes them. Takes into
account duplicate objects within a collection and only deletes them once.
However, it does not take into account objects shared between different
collections. Either do not use this function if you will be sharing objects
between separate collections, or put all collections that could be sharing
objects into one single “super-collection” and call clearAndDestroy() on
that.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Returns TRUE if the collection contains an item where the virtual function
find() returns non-nil.

RWCollection

Tools.h++ Class Reference 91

virtual size_t
entries () const = 0;

Returns the total number of items in the collection.

virtual RWCollectable*
find (const RWCollectable* target) const = 0;

Returns a pointer to the first item in the collection which “matches” the
object pointed to by target or nil if no item was found. For most
collections, an item “matches” the target if either isEqual() or
compareTo() find equivalence, whichever is appropriate for the actual
collection type. However, the “identity collections” (i.e., RWIdentitySet
and RWIdentityDictionary) look for an item with the same address (i.e.,
“is identical to”).

virtual unsigned
hash () const;

Inherited from class RWCollectable.

virtual RWCollectable*
insert (RWCollectable* e) = 0;

Adds an item to the collection and returns a pointer to it. If the item is
already in the collection, some collections derived from RWCollection
return the old instance, others return nil .

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWCOLLECTION.

virtual RWBoolean
isEmpty () const = 0;

Returns TRUE if the collection is empty, otherwise returns FALSE.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual size_t
occurrencesOf (const RWCollectable* t) const = 0;

Returns the number of items in the collection which are “matches” t . See
function find() for a definition of matches.

virtual void
restoreGuts (RWFile&);

Redefined to repeatedly call the global operator

RWFile& operator>>(RWFile&, RWCollectable*&);

followed by insert(RWCollectable*) for each item in the collection.

RWCollection

92 Tools.h++ Class Reference

virtual void
restoreGuts (RWvistream&);

Redefined to repeatedly call the global operator

RWvistream& operator>>(RWvistream&, RWCollectable*&);

followed by insert(RWCollectable*) for each item in the collection.

RWCollectable*
remove (const RWCollectable* target) = 0;

Removes and returns a pointer to the first item in the collection which
“matches” the object pointed to by target . Returns nil if no object was
found. Does not delete the object.

virtual void
removeAndDestroy (const RWCollectable* target);

Removes and deletes the first item in the collection which “matches” the
object pointed to by target .

RWCollection*
select (RWtestCollectable tst, void* x) const;

Evaluates the function pointed to by tst for each item in the collection. It
inserts those items for which the function returns TRUE into a new
collection allocated off the heap of the same type as self and returns a
pointer to this new collection. Because the new collection is allocated off
the heap, you are responsible for deleting it when done. This is not a virtual
function.

virtual void
saveGuts (RWFile&);

Redefined to call the global operator

RWFile& operator<<(RWFile&, const RWCollectable&);

for each object in the collection.

virtual void
saveGuts (RWvostream&);

Redefined to call the global operator

RWvostream& operator<<(RWvostream&, const RWCollectable&);

for each object in the collection.

Tools.h++ Class Reference 93

RWCRegexp

#include <rw/regexp.h>
RWCRegexp re(“.*\\.doc”);// Matches filename with suffix “.doc”

Class RWCRegexp represents a regular expression. The constructor
“compiles” the expression into a form that can be used more efficiently. The
results can then be used for string searches using class RWCString.

The regular expression (RE) is constucted as follows:

The following rules determine one-character REs that match a single
character:

1.1 Any character that is not a special character (to be defined) matches
itself.

1.2 A backslash (\) followed by any special character matches the literal
character itself. I.e., this “escapes” the special character.

1.3 The “special characters” are:
 + * ? . [] ^ $

1.4 The period (.) matches any character except the newline. E.g., “.umpty”
matches either “Humpty” or “Dumpty.”

1.5 A set of characters enclosed in brackets ([]) is a one-character RE that
matches any of the characters in that set. E.g., “[akm]” matches either an
“a”, “k”, or “m”. A range of characters can be indicated with a dash.
E.g., “[a-z]” matches any lower-case letter. However, if the first character
of the set is the caret (^), then the RE matches any character except those
in the set. It does not match the empty string. Example: [^akm] matches
any character except “a”, “k”, or “m”. The caret loses its special meaning
if it is not the first character of the set.

The following rules can be used to build a multicharacter RE.

2.1 A one-character RE followed by an asterisk (*) matches zero or more
occurrences of the RE. Hence, [a-z]* matches zero or more lower-case
characters.

2.2 A one-character RE followed by a plus (+) matches one or more
occurrences of the RE. Hence, [a-z]+ matches one or more lower-case
characters.

Synopsis

Description

RWCRegexp

94 Tools.h++ Class Reference

2.3 A question mark (?) is an optional element. The preceeding RE can
occur zero or once in the string — no more. E.g. xy?z matches either xyz
or xz.

2.4 The concatenation of REs is a RE that matches the corresponding
concatenation of strings. E.g., [A-Z][a-z]* matches any capitalized word.

Finally, the entire regular expression can be anchored to match only the
beginning or end of a line:

3.1 If the caret (^) is at the beginning of the RE, then the matched string
must be at the beginning of a line.

3.2 If the dollar sign ($) is at the end of the RE, then the matched string must
be at the end of the line.

The following escape codes can be used to match control characters:

 \b backspace

 \e ESC (escape)

 \f formfeed

 \n newline

 \r carriage return

 \t tab

 \xddd the literal hex number 0xdd

 \ddd the literal octal number ddd

 \^C Control code. E.g. \^D is “control-D”

None

#include <rw/regexp.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

main(){
 RWCString aString(“Hark! Hark! the lark”);

 // A regular expression matching any lower-case word
 // starting with “l”:
 RWCRegexp reg(“l[a-z]*”);

 cout << aString(reg) << endl; // Prints “lark”
}

RWCRegexp(const char* pat);
Construct a regular expression from the pattern given by pat . The status
of the results can be found by using member function status() .

Persistence

Example

Public
Constructors

RWCRegexp

Tools.h++ Class Reference 95

RWCRegexp(const RWCRegexp& r);
Copy constructor. Uses value semantics — self will be a copy of r .

~RWCRegexp();
Destructor. Releases any allocated memory.

RWCRegexp&
operator= (const RWCRegexp&);

Uses value semantics — sets self to a copy of r .

RWCRegexp&
operator= (const char* pat);

Recompiles self to the pattern given by pat . The status of the results can
be found by using member function status() .

size_t
index (const RWCString& str,size_t* len, size_t start=0) const;

Returns the index of the first instance in the string str that matches the
regular expression compiled in self, or RW_NPOS if there is no such match.
The search starts at index start . The length of the matching pattern is
returned in the variable pointed to by len . If an invalid regular expression
is used for the search, an exception of type RWInternalErr will be thrown.
Note that this member function is relatively clumsy to use — class
RWCString offers a better interface to regular expression searches.

statVal
status ();

Returns the status of the regular expression and resets status to OK:

statVal Meaning
RWCRegexp::OK No errors
RWCRegexp::ILLEGAL Pattern was illegal
RWCRegexp::TOOLONG Pattern exceeded maximum

length1

1 To change the amount of space allocated for a pattern you
may edit file regexp.cpp to change the value of
RWCRegexp::maxval_ , then recompile and insert the
changed object into the appropriate library.

Public
Destructor

Assignment
Operators

Public
Member

Functions

Tools.h++ Class Reference 96

RWCRExpr

#include <rw/re.h>
RWCRExpr re(“.*\\.doc”); // Matches filename with suffix “.doc”

Class RWCRExpr represents an extended regular expression such as those
found in lex and awk. The constructor “compiles” the expression into a form
that can be used more efficiently. The results can then be used for string
searches using class RWCString. Regular expressions can be of arbitrary
size, limited by memory. The extended regular expression features found
here are a subset of those found in the POSIX.2 standard (ANSI/IEEE Std
1003.2, ISO/IEC 9945-2).

Note: RWCRExpr is available only if your compiler supports exception
handling and the C++ Standard Library.

The regular expression (RE) is constructed as follows:

The following rules determine one-character REs that match a single
character:

Any character that is not a special character (to be defined) matches itself.

1. A backslash (\) followed by any special character matches the literal
character itself; that is, this “escapes” the special character.

2. The “special characters” are:

 + * ? . [] ^ $ () { } | \

3. The period (.) matches any character. E.g., “.umpty” matches either
“Humpty” or “Dumpty.”

4. A set of characters enclosed in brackets ([]) is a one-character RE that
matches any of the characters in that set. E.g., “[akm]” matches either an
“a”, “k”, or “m”. A range of characters can be indicated with a dash.
E.g., “[a-z]” matches any lower-case letter. However, if the first character
of the set is the caret (^), then the RE matches any character except those
in the set. It does not match the empty string. Example: [^akm] matches
any character except “a”, “k”, or “m”. The caret loses its special meaning
if it is not the first character of the set. The following rules can be used
to build a multicharacter RE:

Synopsis

Description

RWCRExpr

Tools.h++ Class Reference 97

5. Parentheses (()) group parts of regular expressions together into
subexpressions that can be treated as a single unit. For example, (ha)+
matches one or more “ha”’s.

6. A one-character RE followed by an asterisk (*) matches zero or more
occurrences of the RE. Hence, [a-z]* matches zero or more lower-case
characters.

7. A one-character RE followed by a plus (+) matches one or more
occurrences of the RE. Hence, [a-z]+ matches one or more lower-case
characters.

8. A question mark (?) is an optional element. The preceeding RE can
occur zero or once in the string — no more. E.g. xy?z matches either xyz
or xz.

9. The concatenation of REs is a RE that matches the corresponding
concatenation of strings. E.g., [A-Z][a-z]* matches any capitalized word.

10. The OR character (|) allows a choice between two regular expressions.
For example, jell(y|ies) matches either “jelly” or “jellies”.

11. Braces ({ }) are reserved for future use.

12. All or part of the regular expression can be “anchored” to either the
beginning or end of the string being searched:

13. If the caret (^) is at the beginning of the (sub)expression, then the
matched string must be at the beginning of the string being searched.

14. If the dollar sign ($) is at the end of the (sub)expression, then the
matched string must be at the end of the string being searched.

None

#include <rw/re.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

main(){
 RWCString aString("Hark! Hark! the lark");

 // A regular expression matching any lowercase word or end of a
 //word starting with "l":
 RWCRExpr re("l[a-z]*");

 cout << aString(re) << endl; // Prints "lark"
}

Persistence

Example

RWCRExpr

98 Tools.h++ Class Reference

RWCRExpr(const char* pat);
RWCRExpr(const RWCString& pat);

Construct a regular expression from the pattern given by pat . The status
of the results can be found by using member function status() .

RWCRExpr(const RWCRExpr& r);
Copy constructor. Uses value semantics — self will be a copy of r .

RWCRExpr();
Default constructor. You must assign a pattern to the regular expression
before you use it.

~RWCRExpr();
Destructor. Releases any allocated memory.

RWCRExpr&
operator= (const RWCRExpr& r);

Recompiles self to pattern found in r .

RWCRExpr&
operator= (const char* pat);
RWCRExpr&
operator= (const RWCString& pat);

Recompiles self to the pattern given by pat . The status of the results can
be found by using member function status() .

size_t
index (const RWCString& str, size_t* len = NULL,
 size_t start=0) const;

Returns the index of the first instance in the string str that matches the
regular expression compiled in self, or RW_NPOS if there is no such match.
The search starts at index start . The length of the matching pattern is
returned in the variable pointed to by len . If an invalid regular expression
is used for the search, an exception of type RWInternalErr will be thrown.
Note that this member function is relatively clumsy to use — class
RWCString offers a better interface to regular expression searches.

statusType
status () const;

Returns the status of the regular expression:

statusType Meaning
RWCRExpr::OK No errors
RWCRExpr::NOT_SUPPORTED POSIX.2 feature not yet

supported.
RWCRExpr::NO_MATCH Tried to find a match but failed
RWCRExpr::BAD_PATTERN Pattern was illegal

Public
Constructors

Public
Destructor

Assignment
Operators

Public
Member

Functions

RWCRExpr

Tools.h++ Class Reference 99

statusType Meaning
RWCRExpr::BAD_COLLATING_ELEMENT Invalid collating element

referenced
RWCRExpr::BAD_CHAR_CLASS_TYPE Invalid character class type

referenced
RWCRExpr::TRAILING_BACKSLASH Trailing \ in pattern
RWCRExpr::UNMATCHED_BRACKET [] imbalance
RWCRExpr::UNMATCHED_PARENTHESIS () imbalance
RWCRExpr::UNMATCHED_BRACE {} imbalance
RWCRExpr::BAD_BRACE Content of {} invalid.
RWCRExpr::BAD_CHAR_RANGE Invalid endpoint in [a-z]

expression
RWCRExpr::OUT_OF_MEMORY Out of memory
RWCRExpr::BAD_REPEAT ?,* or + not preceded by valid

regular expression

Tools.h++ Class Reference 101

RWCString

#include <rw/cstring.h>
RWCString a;

Class RWCString offers very powerful and convenient facilities for
manipulating strings that are just as efficient as the familiar standard C
<string.h> functions.

Although the class is primarily intended to be used to handle single-byte
character sets (SBCS; such as ASCII or ISO Latin-1), with care it can be used
to handle multibyte character sets (MBCS). There are two things that must
be kept in mind when working with MBCS:

• Because characters can be more than one byte long, the number of bytes
in a string can, in general, be greater than the number of characters in the
string. Use function RWCString::length() to get the number of bytes
in a string, function RWCString::mbLength() to get the number of
characters. Note that the latter is much slower because it must
determine the number of bytes in every character. Hence, if the string is
known to be nothing but SBCS, then RWCString::length() is much to
be preferred.

• One or more bytes of a multibyte character can be zero. Hence, MBCS
cannot be counted on being null terminated. In practice, it is a rare
MBCS that uses embedded nulls. Nevertheless, you should be aware of
this and program defensively. In any case, class RWCString can handle
embedded nulls.

Parameters of type “const char* ” must not be passed a value of zero. This
is detected in the debug version of the library.

The class is implemented using a technique called copy on write. With this
technique, the copy constructor and assignment operators still reference the
old object and hence are very fast. An actual copy is made only when a
“write” is performed, that is if the object is about to be changed. The net
result is excellent performance, but with easy-to-understand copy semantics.

A separate class RWCSubString supports substring extraction and
modification operations.

Simple

Synopsis

Description

Persistence

RWCString

102 Tools.h++ Class Reference

#include <rw/re.h>
#include <rw/rstream.h>

main(){
 RWCString a("There is no joy in Beantown.");

 cout << a << endl << “becomes....” << endl;

 RWCRExpr re("[A-Z][a-z]*town"); // Any capitalized “town”
 a.replace(re, “Redmond”);
 cout << a << endl;
}
Program output:

There is no joy in Redmond.

enum RWCString::caseCompare { exact, ignoreCase }
Used to specify whether comparisons, searches, and hashing functions
should use case sensitive (exact) or case-insensitive (ignoreCase)
semantics.

enum RWCString::scopeType { one, all }
Used to specify whether regular expression replace replaces the first one

substring matched by the regular expression or replaces all substrings
matched by the regular expression.

RWCString();
Creates a string of length zero (the null string).

RWCString(const char* cs);
Conversion from the null-terminated character string cs . The created
string will copy the data pointed to by cs , up to the first terminating null.
This function is incompatible with cs strings with embedded nulls. This
function may be incompatible with cs MBCS strings.

RWCString(const char* cs, size_t N);
Constructs a string from the character string cs . The created string will
copy the data pointed to by cs . Exactly N bytes are copied, including any
embedded nulls. Hence, the buffer pointed to by cs must be at least N bytes
long.

RWCString(RWSize_T ic);
Creates a string of length zero (the null string). The string’s capacity (that
is, the size it can grow to without resizing) is given by the parameter ic .
We recommend creating an RWSize_T value from a numerical constant to
pass into this constructor. While RWSize_T knows how to convert size_t’s
to itself, conforming compilers will chose the conversion to char instead.

Example

Enumerations

Public
Constructors

RWCString

Tools.h++ Class Reference 103

RWCString(const RWCString& str);
Copy constructor. The created string will copy str ’s data.

RWCString(const RWCSubString& ss);
Conversion from sub-string. The created string will copy the substring
represented by ss .

RWCString(char c);
Constructs a string containing the single character c .

RWCString(char c, size_t N);
Constructs a string containing the character c repeated N times.

operator
const char* () const;

Access to the RWCString’s data as a null terminated string. This data is
owned by the RWCString and may not be deleted or changed. If the
RWCString object itself changes or goes out of scope, the pointer value
previously returned may (will!) become invalid. While the string is null-
terminated, note that its length is still given by the member function
length() . That is, it may contain embedded nulls.

RWCString&
operator= (const char* cs);

Assignment operator. Copies the null-terminated character string pointed
to by cs into self. Returns a reference to self. This function is incompatible
with cs strings with embedded nulls. This function may be incompatible with cs

MBCS strings.

RWCString&
operator= (const RWCString& str);

Assignment operator. The string will copy str ’s data. Returns a reference
to self.

RWCString&
operator+= (const char* cs);

Append the null-terminated character string pointed to by cs to self.
Returns a reference to self. This function is incompatible with cs strings with
embedded nulls. This function may be incompatible with cs MBCS strings.

RWCString&
operator+= (const RWCString& str);

Append the string str to self. Returns a reference to self.

Type
Conversion

Assignment
Operators

RWCString

104 Tools.h++ Class Reference

char&
operator[] (size_t i);
char
operator[] (size_t i) const;
Return the i th byte. The first variant can be used as an lvalue. The index i
must be between 0 and the length of the string less one. Bounds checking is
performed — if the index is out of range then an exceptionof type
RWBoundsErr will occur.

char&
operator() (size_t i);
char
operator() (size_t i) const;
Return the i th byte. The first variant can be used as an lvalue. The index i
must be between 0 and the length of the string less one. Bounds checking is
performed if the pre-processor macro RWBOUNDS_CHECK has been defined
before including <rw/cstring.h>. In this case, if the index is out of range,
then an exception of type RWBoundsErr will occur.

RWCSubString
operator() (size_t start, size_t len);
const RWCSubString
operator() (size_t start, size_t len) const;

Substring operator. Returns an RWCSubString of self with length len ,
starting at index start . The first variant can be used as an lvalue. The sum
of start plus len must be less than or equal to the string length. If the
library was built using the RWDEBUG flag, and start and len are out of range,
then an exception of type RWBoundsErr will occur.

RWCSubString
operator() (const RWCRExpr& re, size_t start=0);
const RWCSubString
operator() (const RWCRExpr& re, size_t start=0) const;
RWCSubString
operator() (const RWCRegexp& re, size_t start=0);
const RWCSubString
operator() (const RWCRegexp& re, size_t start=0) const;

Returns the first substring starting after index start that matches the
regular expression re . If there is no such substring, then the null substring
is returned. The first variant can be used as an lvalue .

Note that if you wish to use operator()(const RWCRExpr&...) you must
instead use match(const RWCRExpr&...) described below. The reason for
this is that we are presently retaining RWCRegexp but operator(const

RWCRExpr&...) and operator(const RWCRegexp) are ambiguous in the
case of RWCString::operator("string"). In addition, operator(const

char *) and operator(size_t) are ambiguous in the case of
RWCString::operator(0) . This function maybe incompatible with strings
with embedded nulls. This function is incompatible with MBCS strings.

Indexing
Operators

RWCString

Tools.h++ Class Reference 105

RWCString&
append (const char* cs);

Append a copy of the null-terminated character string pointed to by cs to
self. Returns a reference to self. This function is incompatible with cs strings
with embedded nulls. This function may be incompatible with cs MBCS strings.

RWCString&
append (const char* cs, size_t N);

Append a copy of the character string cs to self. Exactly N bytes are
copied, including any embedded nulls. Hence, the buffer pointed to by cs

must be at least N bytes long. Returns a reference to self.

RWCString&
append (char c, size_t N);

Append N copies of the character c to self. Returns a reference to self.

RWCString&
append (const RWCString& cstr);

Append a copy of the string cstr to self. Returns a reference to self.

RWCString&
append (const RWCString& cstr, size_t N);

Append the first N bytes or the length of cstr (whichever is less) of cstr to
self. Returns a reference to self.

size_t
binaryStoreSize () const;

Returns the number of bytes necessary to store the object using the global
function:

RWFile& operator<<(RWFile&, const RWCString&);

size_t
capacity () const;

Return the current capacity of self. This is the number of bytes the string
can hold without resizing.

size_t
capacity (size_t capac);

Hint to the implementation to change the capacity of self to capac .
Returns the actual capacity.

int
collate (const char* str) const;
int
collate (const RWCString& str) const;

Returns an int less then, greater than, or equal to zero, according to the
result of calling the standard C library function ::strcoll() on self and
the argument str . This supports locale-dependent collation. Provided

Public
Member

Functions

RWCString

106 Tools.h++ Class Reference

only on platforms that provide ::strcoll() . This function is incompatible
with strings with embedded nulls.

int
compareTo (const char* str, caseCompare = RWCString::exact)
const;
int
compareTo (const RWCString& str,
 caseCompare = RWCString::exact) const;

Returns an int less than, greater than, or equal to zero, according to the
result of calling the standard C library function memcmp() on self and the
argument str . Case sensitivity is according to the caseCompare
argument, and may be RWCString::exact or RWCString::ignoreCase . If
caseCompare is RWCString::exact , then this function works for all string
types. Otherwise, this function is incompatible with MBCS strings. This
function is incompatible with const char* strings with embedded nulls. This
function may be incompatible with const char* MBCS strings.

RWBoolean
contains (const char* str, caseCompare = RWCString::exact)
 const;
RWBoolean
contains (const RWCString& cs,
 caseCompare = RWCString::exact) const;

Pattern matching. Returns TRUE if str occurs in self. Case sensitivity is
according to the caseCompare argument, and may be RWCString::exact

or RWCString::ignoreCase . If caseCompare is RWCString::exact , then
this function works for all string types. Otherwise, this function is
incompatible with MBCS strings. This function is incompatible with const

char* strings with embedded nulls. This function may be incompatible with
const char* MBCS strings.

const char*
data () const;

Access to the RWCString’s data as a null terminated string. This datum is
owned by the RWCString and may not be deleted or changed. If the
RWCString object itself changes or goes out of scope, the pointer value
previously returned will become invalid. While the string is null
terminated, note that its length is still given by the member function
length() . That is, it may contain embedded nulls.

size_t
first (char c) const;

Returns the index of the first occurence of the character c in self. Returns
RW_NPOS if there is no such character or if there is an embedded null prior
to finding c . This function is incompatible with strings with embedded nulls.
This function is incompatible with MBCS strings.

RWCString

Tools.h++ Class Reference 107

size_t
first (char c, size_t) const;

Returns the index of the first occurence of the character c in self.
Continues to search past embedded nulls. Returns RW_NPOS if there is no
such character. This function is incompatible with MBCS strings.

size_t
first (const char* str) const;

Returns the index of the first occurence in self of any character in str .
Returns RW_NPOS if there is no match or if there is an embedded null prior
to finding any character from str . This function is incompatible with strings
with embedded nulls. This function may be incompatible with MBCS strings.

size_t
first (const char* str, size_t N) const;

Returns the index of the first occurence in self of any character in str .
Exactly N bytes in str are checked including any embedded nulls so str must
point to a buffer containing at least N bytes. Returns RW_NPOS if there is
no match.

unsigned
hash (caseCompare = RWCString::exact) const;

Returns a suitable hash value. If caseCompare is RWCString::ignoreCase

then this function will be incompatible with MBCS strings.

size_t
index (const char* pat,size_t i=0,
 caseCompare = RWCString::exact) const;
size_t
index (const RWCString& pat,size_t i=0,
 caseCompare = RWCString::exact) const;

Pattern matching. Starting with index i , searches for the first occurrence
of pat in self and returns the index of the start of the match. Returns
RW_NPOS if there is no such pattern. Case sensitivity is according to the
caseCompare argument; it defaults to RWCString::exact . If caseCompare

is RWCString::exact , then this function works for all string types.
Otherwise, this function is incompatible with MBCS strings.

size_t
index (const char* pat, size_t patlen,size_t i,
 caseCompare cmp) const;
size_t
index (const RWCString& pat, size_t patlen,size_t i,
 caseCompare cmp) const;

Pattern matching. Starting with index i , searches for the first occurrence
of the first patlen bytes from pat in self and returns the index of the start
of the match. Returns RW_NPOS if there is no such pattern. Case sensitivity
is according to the caseCompare argument. If caseCompare is

RWCString

108 Tools.h++ Class Reference

RWCString::exact , then this function works for all string types.
Otherwise, this function is incompatible with MBCS strings.

size_t
index (const RWCRExpr& re, size_t i=0) const;
size_t
index (const RWCRegexp& re, size_t i=0) const;

Regular expression matching. Returns the index greater than or equal to i
of the start of the first pattern that matches the regular expression re .
Returns RW_NPOS if there is no such pattern. This function is incompatible
with MBCS strings.

size_t
index (const RWCRExpr& re,size_t* ext,size_t i=0) const;
size_t
index (const RWCRegexp& re,size_t* ext,size_t i=0) const;

Regular expression matching. Returns the index greater than or equal to i
of the start of the first pattern that matches the regular expression re .
Returns RW_NPOS if there is no such pattern. The length of the matching
pattern is returned in the variable pointed to by ext . This function is
incompatible with strings with embedded nulls. This function may be
incompatible with MBCS strings.

RWCString&
insert (size_t pos, const char* cs);

Insert a copy of the null-terminated string cs into self at byte position pos ,
thus expanding the string. Returns a reference to self. This function is
incompatible with cs strings with embedded nulls. This function may be
incompatible with cs MBCS strings.

RWCString&
insert (size_t pos, const char* cs, size_t N);

Insert a copy of the first N bytes of cs into self at byte position pos , thus
expanding the string. Exactly N bytes are copied, including any embedded
nulls. Hence, the buffer pointed to by cs must be at least N bytes long.
Returns a reference to self.

RWCString&
insert (size_t pos, const RWCString& str);

Insert a copy of the string str into self at byte position pos . Returns a
reference to self.

RWCString&
insert (size_t pos, const RWCString& str, size_t N);

Insert a copy of the first N bytes or the length of str (whichever is less) of
str into self at byte position pos . Returns a reference to self.

RWCString

Tools.h++ Class Reference 109

RWBoolean
isAscii () const;

Returns TRUE if self contains no bytes with the high bit set.

RWBoolean
isNull () const;

Returns TRUE if this is a zero lengthed string (i.e., the null string).

size_t
last (char c) const;

Returns the index of the last occurrence in the string of the character c .
Returns RW_NPOS if there is no such character or if there is an embedded
null to the right of c in self. This function is incompatible with strings with
embedded nulls. This function may be incompatible with MBCS strings.

size_t
last (char c, size_t N) const;

Returns the index of the last occurrence in the string of the character c .
Continues to search past embedded nulls. Returns RW_NPOS if there is no
such character. This function is incompatible with MBCS strings.

size_t
length () const;

Return the number of bytes in self. Note that if self contains multibyte
characters, then this will not be the number of characters.

RWCSubString
match (const RWCRExpr& re, size_t start=0);
const RWCSubString
match (const RWCRExpr& re, size_t start=0) const;
Returns the first substring starting after index start that matches the
regular expression re . If there is no such substring, then the null substring is
returned. The first variant can be used as an lvalue. Note that this is used
in place of operator()(const RWCRegexp&...) if you want to use extended
regular expressions.

size_t
mbLength () const;

Return the number of multibyte characters in self, according to the
Standard C function ::mblen() . Returns RW_NPOS if a bad character is
encountered. Note that, in general, mbLength() ≤ length() . Provided
only on platforms that provide ::mblen() .

RWCString&
prepend (const char* cs);

Prepend a copy of the null-terminated character string pointed to by cs to
self. Returns a reference to self. This function is incompatible with cs strings
with embedded nulls. This function may be incompatible with cs MBCS strings.

RWCString

110 Tools.h++ Class Reference

RWCString&
prepend (const char* cs, size_t N);

Prepend a copy of the character string cs to self. Exactly N bytes are
copied, including any embedded nulls. Hence, the buffer pointed to by cs

must be at least N bytes long. Returns a reference to self.

RWCString&
prepend (char c, size_t N);

Prepend N copies of character c to self. Returns a reference to self.

RWCString&
prepend (const RWCString& str);

Prepends a copy of the string str to self. Returns a reference to self.

RWCString&
prepend (const RWCString& cstr, size_t N);

Prepend the first N bytes or the length of cstr (whichever is less) of cstr

to self. Returns a reference to self.

istream&
readFile (istream& s);

Reads characters from the input stream s , replacing the previous contents
of self, until EOF is reached. Null characters are treated the same as other
characters.

istream&
readLine (istream& s, RWBoolean skipWhite = TRUE);

Reads characters from the input stream s , replacing the previous contents
of self, until a newline (or an EOF) is encountered. The newline is removed
from the input stream but is not stored. Null characters are treated the
same as other characters. If the skipWhite argument is TRUE, then
whitespace is skipped (using the iostream library manipulator ws) before
saving characters.

istream&
readString (istream& s);

Reads characters from the input stream s , replacing the previous contents
of self, until an EOF or null terminator is encountered. If the number of
bytes remaining in the stream is large, you should resize the RWCString to
approximately the number of bytes to be read prior to using this method.
See “Implementation Details” in the User’s Guide for more information.
This function is incompatible with strings with embedded nulls. This function
may be incompatible with MBCS strings.

istream&
readToDelim (istream& s, char delim=’\n’);

Reads characters from the input stream s , replacing the previous contents
of self, until an EOF or the delimiting character delim is encountered. The

RWCString

Tools.h++ Class Reference 111

delimiter is removed from the input stream but is not stored. Null
characters are treated the same as other characters. If delim is ‘\0’ then
this function is incompatible with strings with embedded nulls. If delim is ‘\0’

then this function may be incompatible with MBCS strings.

istream&
readToken (istream& s);

Whitespace is skipped before saving characters. Characters are then read
from the input stream s , replacing previous contents of self, until trailing
whitespace or an EOF is encountered. The whitespace is left on the input
stream. Null characters are treated the same as other characters.
Whitespace is identified by the standard C library function isspace() .
This function is incompatible with MBCS strings.

RWCString&
remove (size_t pos);

Removes the bytes from the byte position pos , which must be no greater
than length() , to the end of string. Returns a reference to self.

RWCString&
remove (size_t pos, size_t N);

Removes N bytes or to the end of string (whichever comes first) starting at
the byte position pos , which must be no greater than length() . Returns a
reference to self.

RWCString&
replace (size_t pos, size_t N, const char* cs);

Replaces N bytes or to the end of string (whichever comes first) starting at
byte position pos , which must be no greater than length() , with a copy of
the null-terminated string cs . Returns a reference to self. This function is
incompatible with cs strings with embedded nulls. This function may be
incompatible with cs MBCS strings.

RWCString&
replace (size_t pos, size_t N1,const char* cs, size_t N2);

Replaces N1 bytes or to the end of string (whichever comes first) starting at
byte position pos , which must be no greater than length() , with a copy of
the string cs . Exactly N2 bytes are copied, including any embedded nulls.
Hence, the buffer pointed to by cs must be at least N2 bytes long. Returns
a reference to self.

RWCString&
replace (size_t pos, size_t N, const RWCString& str);

Replaces N bytes or to the end of string (whichever comes first) starting at
byte position pos , which must be no greater than length() , with a copy of
the string str . Returns a reference to self.

RWCString

112 Tools.h++ Class Reference

RWCString&
replace (size_t pos, size_t N1,const RWCString& str, size_t N2);

Replaces N1 bytes or to the end of string (whichever comes first) starting at
position pos , which must be no greater than length() , with a copy of the
first N2 bytes, or the length of str (whichever is less), from str . Returns a
reference to self.

replace (const RWCRExpr& pattern, const char* replacement,
 scopeType scope=one);
replace (const RWCRExpr& pattern,
 const RWCString& replacement,scopeType scope=one);

Replaces substring matched by pattern with replacement string.
pattern is the new extended regular expression. scope is one of {one ,
all } and controls whether all matches of pattern are replaced with
replacement or just the first one match is replaced. replacement is the
replacement pattern for the string. Here’s an example:

RWCString s("hahahohoheehee");
s.replace(RWCRExpr("(ho)+","HAR"); // s == "hahaHARheehee"

This function is incompatible with const char* replacement strings with
embedded nulls. This function may be incompatible with const char*

replacement MBCS strings.

void
resize (size_t n);

Changes the length of self to n bytes, adding blanks or truncating as
necessary.

RWCSubString
strip (stripType s = RWCString::trailing, char c = ‘ ‘);
const RWCSubString
strip (stripType s = RWCString::trailing, char c = ‘ ‘)
const;
Returns a substring of self where the character c has been stripped off the
beginning, end, or both ends of the string. The first variant can be used as an
lvalue. The enum stripType can take values:

stripType Meaning

leading Remove characters at beginning

trailing Remove characters at end

both Remove characters at both ends

RWCString

Tools.h++ Class Reference 113

RWCSubString
subString (const char* cs, size_t start=0,
 caseCompare = RWCString::exact);
const RWCSubString
subString (const char* cs, size_t start=0,
 caseCompare = RWCString::exact) const;
Returns a substring representing the first occurence of the null-terminated
string pointed to by “cs ”. The first variant can be used as an lvalue. Case
sensitivity is according to the caseCompare argument; it defaults to
RWCString::exact . If caseCompare is RWCString::ignoreCase then this
function is incompatible with MBCS strings. This function is incompatible with
cs strings with embedded nulls. This function may be incompatible with cs MBCS
strings.

void
toLower ();

Changes all upper-case letters in self to lower-case, using the standard C
library facilities declared in <ctype.h>. This function is incompatible with
MBCS strings.

void
toUpper ();

Changes all lower-case letters in self to upper-case, using the standard C
library facilities declared in <ctype.h>. This function is incompatible with
MBCS strings.

static unsigned
hash (const RWCString& str);

Returns the hash value of str as returned by
str.hash(RWCString::exact) .

static size_t
initialCapacity (size_t ic = 15);

Sets the minimum initial capacity of an RWCString , and returns the old
value. The initial setting is 15 bytes. Larger values will use more memory,
but result in fewer resizes when concatenating or reading strings. Smaller
values will waste less memory, but result in more resizes.

static size_t
maxWaste(size_t mw = 15);

Sets the maximum amount of unused space allowed in a string should it
shrink, and returns the old value. The initial setting is 15 bytes. If more
than mw bytes are wasted, then excess space will be reclaimed.

static size_t
resizeIncrement (size_t ri = 16);

Sets the resize increment when more memory is needed to grow a string.
Returns the old value. The initial setting is 16 bytes.

Static Public
Member

Functions

RWCString

114 Tools.h++ Class Reference

RWBoolean
operator== (const RWCString&, const char*);
RWBoolean
operator== (const char*, const RWCString&);
RWBoolean
operator== (const RWCString&, const RWCString&);
RWBoolean
operator!= (const RWCString&, const char*);
RWBoolean
operator!= (const char*, const RWCString&);
RWBoolean
operator!= (const RWCString&, const RWCString&);

Logical equality and inequality. Case sensitivity is exact. This function is
incompatible with const char* strings with embedded nulls. This function
may be incompatible with const char* MBCS strings.

RWBoolean
operator< (const RWCString&, const char*);
RWBoolean
operator< (const char*, const RWCString&);
RWBoolean
operator< (const RWCString&, const RWCString&);
RWBoolean
operator> (const RWCString&, const char*);
RWBoolean
operator> (const char*, const RWCString&);
RWBoolean
operator> (const RWCString&, const RWCString&);
RWBoolean
operator<= (const RWCString&, const char*);
RWBoolean
operator<= (const char*, const RWCString&);
RWBoolean
operator<= (const RWCString&, const RWCString&);
RWBoolean
operator>= (const RWCString&, const char*);
RWBoolean
operator>= (const char*, const RWCString&);
RWBoolean
operator>= (const RWCString&, const RWCString&);

Comparisons are done lexicographically, byte by byte. Case sensitivity is
exact. Use member collate() or strxfrm() for locale sensitivity. This
function is incompatible with const char* strings with embedded nulls. This
function may be incompatible with const char* MBCS strings.

Related
Global

Operators

RWCString

Tools.h++ Class Reference 115

RWCString
operator+ (const RWCString&, const RWCString&);
RWCString
operator+ (const char*, const RWCString&);
RWCString
operator+ (const RWCString&, const char*);

Concatenation operators. This function is incompatible with const char*

strings with embedded nulls. This function may be incompatible with const

char* MBCS strings.

ostream&
operator<< (ostream& s, const RWCString&);

Output an RWCString on ostream s .

istream&
operator>> (istream& s, RWCString& str);

Calls str.readToken(s) . That is, a token is read from the input stream s .
This function is incompatible with MBCS strings.

RWvostream&
operator<< (RWvostream&, const RWCString& str);
RWFile&
operator<< (RWFile&, const RWCString& str);

Saves string str to a virtual stream or RWFile, respectively.

RWvistream&
operator>> (RWvistream&, RWCString& str);
RWFile&
operator>> (RWFile&, RWCString& str);

Restores a string into str from a virtual stream or RWFile, respectively,
replacing the previous contents of str .

RWCString
strXForm (const RWCString&);

Returns the result of applying ::strxfrm() to the argument string, to
allow quicker collation than RWCString::collate(). Provided only on
platforms that provide ::strxfrm() . This function is incompatible with
strings with embedded nulls.

RWCString
toLower (const RWCString& str);

Returns a version of str where all upper-case characters have been
replaced with lower-case characters. Uses the standard C library function
tolower() . This function is incompatible with MBCS strings.

RWCString
toUpper (const RWCString& str);

Returns a version of str where all lower-case characters have been
replaced with upper-case characters. Uses the standard C library function
toupper() . This function is incompatible with MBCS strings.

Related
Global

Functions

Tools.h++ Class Reference 117

RWCSubString

#include <rw/cstring.h>
RWCString s(“test string”);
s(6,3); // “tri”

The class RWCSubString allows some subsection of an RWCString to be
addressed by defining a starting position and an extent. For example the 7th
through the 11th elements, inclusive, would have a starting position of 7 and
an extent of 5. The specification of a starting position and extent can also be
done in your behalf by such functions as RWCString::strip() or the
overloaded function call operator taking a regular expression as an
argument. There are no public constructors — RWCSubStrings are
constructed by various functions of the RWCString class and then destroyed
immediately.

A zero length substring is one with a defined starting position and an extent
of zero. It can be thought of as starting just before the indicated character,
but not including it. It can be used as an lvalue. A null substring is also
legal and is frequently used to indicate that a requested substring, perhaps
through a search, does not exist. A null substring can be detected with
member function isNull(). However, it cannot be used as an lvalue.

None

#include <rw/cstring.h>
#include <rw/rstream.h>
main(){
 RWCString s(“What I tell you is true.”);
 // Create a substring and use it as an lvalue:
 s(19, 0) = “three times “;
 cout << s << endl;
}
Program output:

What I tell you is three times true.

RWCSubString&
operator= (const RWCString&);

Assignment from an RWCString. The statements:

RWCString a;
RWCString b;
...
b(2, 3) = a;

Synopsis

Description

Persistence

Example

Assignment
Operators

RWCSubString

118 Tools.h++ Class Reference

will copy a’s data into the substring b(2,3) . The number of elements
need not match: if they differ, b will be resized appropriately. Sets self’s
extent to be the length of the assigned RWCString. If self is the null
substring, then the statement has no effect. Returns a reference to self.

RWCSubString&
operator= (const RWCSubString&);

Assignment from an RWCSubString. The statements:

RWCString a;
RWCString b;
...
b(2, 3) = a(5,5);

will copy 5 characters of a’s data into the substring b(2,3) . The number
of elements need not match: if they differ, b will be resized appropriately.
Sets self’s extent to be the extent of the assigned RWCSubString. If self is
the null substring, then the statement has no effect. Returns a reference to
self.

RWCSubString&
operator= (const char*);

Assignment from a character string. Example:

RWCString str(“Mary had a lamb”);
char dat[] = “Perrier”;
str(11,4) = dat; // “Mary had a Perrier”

Note that the number of characters selected need not match: if they differ,
str will be resized appropriately. Sets self’s extent to be the strlen() of
the assigned character string. If self is the null substring, then the
statement has no effect. Returns a reference to self.

char&
operator[] (size_t i);
char
operator[] (size_t i) const;

Returns the i th character of the substring. The first variant can be used as
an lvalue, the second cannot. The index i must be between zero and the
length of the substring, less one. Bounds checking is performed: if the
index is out of range, then an exception of type RWBoundsErr will occur.

char&
operator() (size_t i);
char
operator() (size_t i) const;

Returns the i th character of the substring. The first variant can be used as
an lvalue, the second cannot. The index i must be between zero and the
length of the substring, less one. Bounds checking is enabled by defining

Indexing
Operators

RWCSubString

Tools.h++ Class Reference 119

the pre-processor macro RWBOUNDS_CHECK before including
<rw/cstring.h> . In this case, if the index is out of range, then an
exception of type RWBoundsErr will occur.

RWBoolean
isNull () const;

Returns TRUE if this is a null substring.

size_t
length () const;

Returns the extent (i.e., length) of the RWCSubString.

RWBoolean
operator! () const;

Returns TRUE if this is a null substring.

size_t
start () const;

Returns the starting element of the RWCSubString.

void
toLower ();

Changes all upper-case letters in self to lower-case. Uses the standard C
library function tolower() .

void
toUpper ();

Changes all lower-case letters in self to upper-case. Uses the standard C
library function toupper() .

RWBoolean
operator== (const RWCSubString&, const RWCSubString&);
RWBoolean
operator== (const RWCString&, const RWCSubString&);
RWBoolean
operator== (const RWCSubString&, const RWCString&);
RWBoolean
operator== (const char*, const RWCSubString&);
RWBoolean
operator== (const RWCSubString&, const char*);

Returns TRUE if the substring is lexicographically equal to the character
string or RWCString argument. Case sensitivity is exact.

Public
Member

Functions

Global Logical
Operators

RWCSubString

120 Tools.h++ Class Reference

RWBoolean
operator!= (const RWCString&, const RWCString&);
RWBoolean
operator!= (const RWCString&, const RWCSubString&);
RWBoolean
operator!= (const RWCSubString&, const RWCString&);
RWBoolean
operator!= (const char*, const RWCString&);
RWBoolean
operator!= (const RWCString&, const char*);

Returns the negation of the respective operator==() .

Tools.h++ Class Reference 121

RWCTokenizer

#include <rw/ctoken.h>
RWCString str(“a string of tokens”);
RWCTokenizer(str); // Lex the above string

Class RWCTokenizer is designed to break a string up into separate tokens,
delimited by an arbitrary “white space.” It can be thought of as an iterator
for strings and as an alternative to the ANSI C function strtok() which has
the unfortunate side effect of changing the string being tokenized.

None

#include <rw/ctoken.h>
#include <rw/rstream.h>
main(){
 RWCString a(“Something is rotten in the state of Denmark”);
 RWCTokenizer next(a); // Tokenize the string a
 RWCString token; // Will receive each token
 // Advance until the null string is returned:
 while (!(token=next()).isNull())
 cout << token << “\n”;
}
Program output:

 Something
 is
 rotten
 in
 the
 state
 of
 Denmark

RWCTokenizer (const RWCString& s);
Construct a tokenizer to lex the string s .

RWCSubString
operator() ;

Advance to the next token and return it as a substring. The tokens are
delimited by any of the four characters in “ \t\n\0” . (space, tab, newline
and null).

RWCSubString
operator() (const char* s);

Advance to the next token and return it as a substring. The tokens are
delimited by any character in s , or any embedded null.

Synopsis

Description

Persistence

Example

Public
Constructor

Public
Member

Operators

RWCTokenizer

122 Tools.h++ Class Reference

RWCSubString
operator() (const char* s,size_t num);

Advance to the next token and return it as a substring. The tokens are
delimited by any of the first num characters in s . Buffer s may contain
nulls, and must contain at least num characters. Tokens will not be
delimited by nulls unless s contains nulls.

Tools.h++ Class Reference 123

RWDate

#include <rw/rwdate.h>RWDate a; // Construct today’s date

Class RWDate represents a date, stored as a Julian day number. The
member function isValid() can be used to determine whether an RWDate
is a valid date. For example, isValid() would return FALSE for the date 29
February 1991 because 1991 is not a leap year. See “Using Class RWDate” in
the Tools.h++ User’s Guide.

RWDate’s can be converted to and from RWTime’s, and to and from the
Standard C library type struct tm defined in <time.h> .

Note that using a 2-digit year specifier in your code may lead to less-than-
perfect behavior at the turn of the century. We urge you to create programs
that are “millenially correct” by using 4-digit year specifiers.

Note that because the default constructor for this class creates an instance
holding the current date, constructing a large array of RWDate may be slow.

RWDate v[5000]; // Figures out the current date 5000 times

Those with access to the Standard C++ Library-based versions of the
Tools.h++ template collections should consider the following:

// Figures out the current date just once:
RWTValOrderedVector<RWDate> v(5000, RWDate());

Thanks to the smart allocation scheme of the standard collections, the above
declaration will result in only one call to the default constructor followed by
5000 invocations of the copy constructor. In the case of RWDate, the copy
constructor amounts to an assignment of one long to another, resulting in
faster creation than the simple array.

Simple

#include <rw/rwdate.h>
#include <rw/rstream.h>

main(){
 // Today’s date
 RWDate d;

 // Last Sunday’s date:
 RWDate lastSunday = d.previous(“Sunday”);

 cout << d << endl << lastSunday << endl;
}

Synopsis

Description

Persistence

Example

RWDate

124 Tools.h++ Class Reference

Program output:

03/22/91
03/17/91

RWDate();

Default constructor. Constructs an RWDate with the present date.

RWDate(const RWDate&);
Copy constructor.

RWDate(unsigned day, unsigned year);

Constructs an RWDate with a given day of the year and a given year. The
member function isValid() can be used to test whether the results are a
valid date.

RWDate(unsigned day, unsigned month, unsigned year);

Constructs an RWDate with the given day of the month, month of the
year, and year. Days should be 1-31, months should be 1–12, and the year
may be specified as (for example) 1990, or 90. The member function
isValid() can be used to test whether the results are a valid date.

RWDate(unsigned day, const char* mon, unsigned year,
 const RWLocale& locale = RWLocale::global());

Constructs an RWDate with the given day of the month, month and year.
The locale argument is used to convert the month name. Days should be
1-31, months may be specified as (for example): January, JAN, or Jan, and
the year may be specified as (for example) 1990, or 90. The member
function isValid() can be used to test whether the results are a valid
date.

RWDate(istream& s,const RWLocale& locale =
 RWLocale::global());

A full line is read, and converted to a date by the locale argument. The
member function isValid() must be used to test whether the results are a
valid date. Because RWLocale cannot rigorously check date input, dates
created in this way should also be reconfirmed by the user.

RWDate(const RWCString& str,
 const RWLocale& locale = RWLocale::global());

The string str is converted to a date. The member function isValid()

must be used to test whether the results are a valid date. Because
RWLocale cannot rigorously check date input, dates created in this way
should also be reconfirmed by the user.

Public
Constructors

RWDate

Tools.h++ Class Reference 125

RWDate(const RWTime& t,
 const RWZone& zone = RWZone::local());

Constructs an RWDate from an RWTime. The time zone used defaults to
local. The member function isValid() must be used to test whether the
results are a valid date.

RWDate(const struct tm*);

Constructs an RWDate from the contents of the struct tm argument
members tm_year , tm_mon, and tm_mday . Note that the numbering of
months and years used in struct tm differs from that used for RWDate
and RWTime operations. struct tm is declared in the standard include file
<time.h>.

RWDate(unsigned long jd);
Construct a date from the Julian Day number jd . Note that it is possible to
construct a valid RWDate which represents a day previous to the
beginning of the Gregorian calendar for some locality. Rogue Wave
doesn’t know the specifics for your locality, so will not enforce an arbitrary
cutoff for “validity.”

RWDate&
operator= (const RWDate&);

Assignment operator.

RWDate
operator++ ();

Prefix increment operator. Adds one day to self, then return the result.

RWDate
operator-- ();

Prefix decrement operator. Subtracts one day from self, then returns the
result.

RWDate
operator++ (int);

Postfix increment operator. Adds one day to self, returning the initial
value.

RWDate
operator-- (int);

Postfix decrement operator. Subtracts one day from self, returning the
initial value.

RWDate&
operator+= (unsigned long s);

Adds s days to self, returning self.

Public
Member

Operators

RWDate

126 Tools.h++ Class Reference

RWDate&
operator-= (unsigned long s);

Substracts s days from self, returning self.

RWCString
asString (char format = ‘x’,
 const RWLocale& = RWLocale::global()) const;

Returns the date as a string, formatted by the RWLocale argument.
Formats are as defined in the standard C library function strftime() .

RWCString
asString (const char* format,
 const RWLocale& = RWLocale::global()) const;

Returns the date as a string, formatted by the RWLocale argument.
Formats are as defined in the standard C library function strftime() .

RWBoolean
between (const RWDate& a, const RWDate& b) const;

Returns TRUE if this RWDate is between a and b, inclusive.

size_t
binaryStoreSize () const;

Returns the number of bytes necessary to store the object using the global
function

RWFile& operator<<(RWFile&, const RWDate&);

int
compareTo (const RWDate* d) const;

Compares self to the RWDate pointed to by d and returns:

 0 if self == *d;

 1 if self > *d;

 –1 if self < *d.

unsigned
day () const;

Returns the day of the year (1-366) for this date.

unsigned
dayOfMonth () const;

Returns the day of the month (1-31) for this date.

void
extract (struct tm*) const;

Returns with the struct tm argument filled out completely, with the time
members set to 0 and tm_isdst set to -1. Note that the encoding for

Public
Member

Functions

RWDate

Tools.h++ Class Reference 127

months and days of the week used in struct tm differs from that used
elsewhere in RWDate. If the date is invalid, all fields are set to -1.

unsigned
firstDayOfMonth () const;

Returns the day of the year (1-366) corresponding to the first day of this
RWDate’s month and year.

unsigned
firstDayOfMonth (unsigned month) const;

Returns the day of the year (1-366) corresponding to the first day of the
month month (1–12) in this RWDate’s year.

unsigned
hash () const;

Returns a suitable hashing value.

RWBoolean
isValid () const;

Returns TRUE if this is a valid date, FALSE otherwise.

The following two functions are provided as a service to users who need
to manipulate the date representation directly. The julian day number is not
the Julian date!. The julian day number is calculated using Algorithm 199
from Communications of the ACM, Volume 6, No. 8, (Aug. 1963), p. 444 and
is valid for any valid Gregorian date in the Gregorian calendar. The
Gregorian calendar was first introduced on Sep. 14, 1752, and was adopted
at various times in various places.

unsigned long
julian () const;

Returns the value of the julian day number..

void
julian (unsigned long j);

Changes the value of the julian day number to j.

RWBoolean
leap () const;

Returns TRUE if the year of this RWDate is a leap year.

RWDate
max(const RWDate& t) const;

Returns the later date of self or t .

RWDate
min (const RWDate& t) const;

Returns the earlier date of self or t .

RWDate

128 Tools.h++ Class Reference

unsigned
month () const;

Returns the month (1–12) for this date.

RWCString
monthName(const RWLocale& = RWLocale::global()) const;

Returns the name of the month for this date, according to the optional
RWLocale argument.

RWDate
next (unsigned dayNum) const;

Returns the date of the next numbered day of the week, where Monday = 1,
..., Sunday = 7. The variable dayNum must be between 1 and 7, inclusive.

RWDate
next (const char* dayName,
 const RWLocale& = RWLocale::global()) const;

Returns the date of the next dayName (for example, the date of the previous
Monday) The weekday name is interpreted according to the RWLocale
argument.

RWDate
previous (unsigned dayNum) const;

Returns the date of the previous numbered day of the week, where
Monday = 1, ..., Sunday = 7. The variable dayNum must be between 1 and 7,
inclusive.

RWDate
previous (const char* dayName,
 const RWLocale& = RWLocale::global()) const;

Returns the date of the previous dayName (for example, the date of the
previous Monday) The weekday name is interpreted according to the
RWLocale argument.

RWCString
weekDayName(const RWLocale& = RWLocale::global()) const;

Returns the name of the day of the week for this date, according to the
optional RWLocale argument.

unsigned
weekDay() const;

Returns the number of the day of the week for this date, where Monday =
1, ..., Sunday = 7.

unsigned
year () const;

Returns the year of this date.

RWDate

Tools.h++ Class Reference 129

static unsigned
dayOfWeek (const char* dayName,
 const RWLocale& = RWLocale::global());

Returns the number of the day of the week corresponding to the given
dayName. “Monday” = 1, ..., “Sunday” = 7. Names are interpreted by the
RWLocale argument. Returns 0 if no match is found.

static unsigned
daysInMonthYear (unsigned month, unsigned year);

Returns the number of days in a given month and year. Returns 0 if month

is not between 1 and 12 inclusive.

static unsigned
daysInYear (unsigned year);

Returns the number of days in a given year.

static RWBoolean
dayWithinMonth (unsigned monthNum, unsigned dayNum,
 unsigned year);

Returns TRUE if a day (1-31) is within a given month in a given year.

static unsigned
hash (const RWDate& d);

Returns the hash value of d as returned by d.hash() .

static unsigned
indexOfMonth (const char* monthName,
 const RWLocale& = RWLocale::global());

Returns the number of the month (1–12) corresponding to the given
monthName. Returns 0 for no match.

static unsigned long
jday (unsigned mon, unsigned day, unsigned year);

Returns the Julian day corresponding to the given month (1–12), day (1-31)
and year. Returns zero (0) if the date is invalid.

static RWCString
nameOfMonth (unsigned monNum,
 const RWLocale& = RWLocale::global());

Returns the name of month monNum (January = 1, ..., December = 12),
formatted for the given locale.

static RWBoolean
leapYear (unsigned year);

Returns TRUE if a given year is a leap year.

static RWDate
now();

Returns today’s date.

Static Public
Member

Functions

RWDate

130 Tools.h++ Class Reference

static RWCString
weekDayName(unsigned dayNum,
 const RWLocale& = RWLocale::global());

Returns the name of the day of the week dayNum (Monday = 1, ..., Sunday =
7), formatted for the given locale.

RWBoolean
operator< (const RWDate& d1, const RWDate& d2);

Returns TRUE if the date d1 is before d2 .

RWBoolean
operator<= (const RWDate& d1, const RWDate& d2);

Returns TRUE if the date d1 is before or the same as d2 .

RWBoolean
operator> (const RWDate& d1, const RWDate& d2);

Returns TRUE if the date d1 is after d2 .

RWBoolean
operator>= (const RWDate& d1, const RWDate& d2);

Returns TRUE if the date d1 is after or the same as d2 .

RWBoolean
operator== (const RWDate& d1, const RWDate& d2);

Returns TRUE if the date d1 is the same as t2 .

RWBoolean
operator!= (const RWDate& d1, const RWDate& d2);

Returns TRUE if the date d1 is not the same as d2 .

RWDate
operator+ (const RWDate& d, unsigned long s);
RWDate
operator+ (unsigned long s, const RWDate& d);

Returns the date s days in the future from the date d.

unsigned long
operator- (const RWDate& d1, const RWDate& d2);

If d1>d2, returns the number of days between d1 and d2 . Otherwise, the
result is implementation defined.

RWDate
operator- (const RWDate& d, unsigned long s);

Returns the date s days in the past from d.

ostream&
operator<< (ostream& s, const RWDate& d);

Outputs the date d on ostream s , according to the locale imbued in the
stream (see class RWLocale), or by RWLocale::global() if none.

Related
Global

Operators

RWDate

Tools.h++ Class Reference 131

istream&
operator>> (istream& s, RWDate& t);

Reads t from istream s . One full line is read, and the string contained is
converted according to the locale imbued in the stream (see class
RWLocale), or by RWLocale::global() if none. The function
RWDate::isValid() must be used to test whether the results are a valid
date.

RWvostream&
operator<< (RWvostream&, const RWDate& date);
RWFile&
operator<< (RWFile&, const RWDate& date);

Saves the date date to a virtual stream or RWFile, respectively.

RWvistream&
operator>> (RWvistream&, RWDate& date);
RWFile&
operator>> (RWFile&, RWDate& date);

Restores the date into date from a virtual stream or RWFile, respectively,
replacing the previous contents of date .

Tools.h++ Class Reference 133

RWDDEstreambuf

RWDDEstreambuf RWCLIPstreambuf streambuf

#include <rw/winstrea.h>
#include <iostream.h>
iostream str(new RWDDEstreambuf(CF_TEXT, TRUE, TRUE, TRUE)) ;

Class RWDDEstreambuf is a specialized streambuf that gets and puts
sequences of characters to Microsoft Windows global memory that has been
allocated with the GMEM_DDESHARE flag. It can be used to exchange data
through the Windows Dynamic Data Exchange (DDE) facility.

The class has two modes of operation: dynamic and static. In dynamic
mode, memory is allocated and reallocated on an as-needed basis. If too
many characters are inserted into the internal buffer for its present size, then
it will be resized and old characters copied over into any new memory as
necessary. This is transparent to the user. It is expected that this mode
would be used primarily by the DDE server. In static mode, the buffer
streambuf is constructed from a specific piece of memory. No reallocations
will be done. It is expected that this mode would be used primarily by the
DDE client.

In dynamic mode, the RWDDEstreambuf “owns” any allocated memory
until the member function str() is called, which “freezes” the buffer and
returns an unlocked Windows handle to it. The effect of any further
insertions is undefined. Until str() has been called, it is the responsibility
of the RWDDEstreambuf destructor to free any allocated memory. After the
call to str() , it becomes the user’s responsibility.

In static mode, the user always has the responsibility for freeing the memory
handle. However, because the constructor locks and dereferences the
handle, you should not free the memory until either the destructor or str()

has been called, either of which will unlock the handle.

Note that although the user may have the “responsibility” for freeing the
memory, whether it is the client or the server that actually does the call to
GlobalFree() will depend on the DDE “release” flag.

None

This is an example of how the class might be used by a DDE server.

#include <rw/winstrea.h>
#include <iostream.h>
#include <windows.h>

Synopsis

Description

Persistence

Example

RWDDEstreambuf

134 Tools.h++ Class Reference

#include <dde.h>

BOOL
postToDDE(HWND hwndServer, HWND hwndClient) {
 RWDDEstreambuf* buf =
 new RWDDEstreambuf(CF_TEXT, TRUE, TRUE, TRUE);
 ostream ostr(buf);
 double d = 12.34;
 ostr << “Some text to be exchanged through the DDE.\n”;
 ostr << “The double you requested is: “ << d << endl;
 ostr.put(0); // Include the terminating null
 // Lock the streambuf, get its handle:
 HANDLE hMem = buf->str();
 // Get an identifying atom:
 ATOM aItem = GlobalAddAtom(“YourData”);
 if(!PostMessage(hwndClient, WM_DDE_DATA, hwndServer,
 MAKELONG(hMem, aItem))){
 // Whoops! The message post failed, perhaps because
 // the client terminated. Now we are responsible
 // for deallocating the memory:
 if(hMem != NULL)
 GlobalFree(hMem);
 GlobalDeleteAtom(aItem);
 return FALSE;
 }
 return TRUE;
}

The handle of the DDE server is passed in as parameter hwndServer , the
handle of the client as parameter hwndClient . An ostream is created, using
an RWDDEstreambuf as its associated streambuf. The results can be used
much like any other ostream, such as cout, except that characters will be
inserted into Windows global memory, from where they can be transferred
through the DDE. Note the parameters used in the constructor. These
should be studied below as they have important ramifications on how
memory allocations are handled through the DDE. In particular, parameter
fRelease , if TRUE, states that the client will be responsible for deallocating
the memory when done. The defaults also specify fAckReq TRUE, meaning
that the client will acknowledge receiving the message: you must be
prepared to receive it.

Some text and a double is inserted into the ostream. Member function
str() is then called which unlocks and returns a Windows HANDLE. Once
we have called str() , we are responsible for this memory and must either
free it when done, or pass on that responsibility to someone else. In this
case, it will be passed on to the client.

An atom is then constructed to identify the data. The DDE data, along with
its identifying atom, is then posted. If the post fails, then we have been
unable to foist our responsbility for the global memory onto someone else
and will have to free it (along with the atom) ourselves.

RWDDEstreambuf

Tools.h++ Class Reference 135

RWDDEstreambuf (WORD cfFormat = CF_TEXT,
 BOOL fResponse = TRUE
 BOOL fAckReq = TRUE
 BOOL fRelease = TRUE);

Constructs an empty RWDDEstreambuf in dynamic mode. The results can
be used anywhere any other streambuf can be used. Memory to
accomodate new characters will be allocated as needed.

The four parameters are as defined by the Windows Reference, Volume 2 (in
particular, see the section DDE Message Directory). Parameter cfFormat

specifies the format of the data being inserted into the streambuf. These
formats are the same as used by SetClipboardData() . If a specializing
virtual streams class such as RWbostream or RWpostream is used to
perform the actual character insertions instead of a simple ostream, the
format may not be so simple. In this case, the user might want to register
his or her own format, using the Windows function
RegisterClipboardFormat() .

For the meaning of the other three parameters see below, and/or the
Windows reference manuals.

RWDDEstreambuf (HANDLE hMem);

Constructs an RWDDEstreambuf in static mode, using the memory block
with global handle hMem. The effect of gets and puts beyond the size of
this block is unspecified. The format of the DDE transfer, and the specifics
of DDE acknowledgments, memory allocations, etc., can be obtained by
using the member functions defined below.

~RWDDEstreambuf ();
If member function str() has not been called, the destructor unlocks the
handle and, if in dynamic mode, also frees it.

Because RWDDEstreambuf inherits from streambuf, any of the latter’s
member functions can be used. Furthermore, RWDDEstreambuf has been
designed to be analogous to streambuf. However, note that the return type
of str() is a HANDLE, rather than a char* .

BOOL
ackReq () const;

Returns whether this DDE exchange requests an acknowledgement. See
the Windows Reference, Volume 2, for more information.

WORD
format () const;

Returns the format of this DDE exchange (e.g., CF_TEXT for text exchange,
etc.). See the Windows Reference, Volume 2, for more information.

Public
Constructors

Public
Destructor

Public
Member

Functions

RWDDEstreambuf

136 Tools.h++ Class Reference

BOOL
release () const;

Returns TRUE if the client is responsible for the release of of the memory
returned by str() . See the Windows Reference, Volume 2, for more
information.

BOOL
response () const;

Returns TRUE if this data is in response to a WM_DDE_REQUEST message.
Otherwise, it is in response to a WM_DDE_ADVISE message. See the Windows
Reference, Volume 2, for more information.

HANDLE
str ();

Returns an (unlocked) HANDLE to the global memory being used. The
RWDDEstreambuf should now be regarded as “frozen”: the effect of
inserting any more characters is undefined. If the RWDDEstreambuf was
constructed in dynamic mode, and nothing has been inserted, then the
returned HANDLE may be NULL. If it was constructed in static mode, then
the returned handle will be the handle used to construct the
RWDDEstreambuf.

Tools.h++ Class Reference 137

RWDiskPageHeap

RWDiskPageHeap RWBufferedPageHeap RWVirtualPageHeap

#include <rw/diskpage.h>
unsigned nbufs;
unsigned pagesize;
RWDiskPageHeap heap(“filename”, nbufs, pagesize) ;

Class RWDiskPageHeap is a specializing type of buffered page heap. It
swaps its pages to disk as necessary.

None

In this example, 100 nodes of a linked list are created and strung together.
The list is then walked, confirming that it contains 100 nodes. Each node is a
single page. The “pointer” to the next node is actually the handle for the
next page.

#include <rw/diskpage.h>
#include <rw/rstream.h>

struct Node {
 int key;
 RWHandle next;
};

RWHandle head = 0;
const int N = 100; // Exercise 100 Nodes

main() {
 // Construct a disk-based page heap with page size equal
 // to the size of Node and with 10 buffers:
 RWDiskPageHeap heap(0, 10, sizeof(Node));

 // Build the linked list:
 for (int i=0; i<N; i++){
 RWHandle h = heap.allocate();
 Node* newNode = (Node*)heap.lock(h);
 newNode->key = i;
 newNode->next = head;
 head = h;
 heap.dirty(h);
 heap.unlock(h);
 }

// Now walk the list:
unsigned count = 0;
RWHandle nodeHandle = head;
while(nodeHandle){
Node* node = (Node*)heap.lock(nodeHandle);
RWHandle nextHandle = node->next;
heap.unlock(nodeHandle);

Synopsis

Description

Persistence

Example

RWDiskPageHeap

138 Tools.h++ Class Reference

heap.deallocate(nodeHandle);
nodeHandle = nextHandle;
count++;
 }

cout << “List with “ << count << “ nodes walked.\n”;
return 0;
}

Program output:

List with 100 nodes walked.

RWDiskPageHeap(const char* filename = 0,
 unsigned nbufs = 10,
 unsigned pgsize = 512);

Constructs a new disk-based page heap. The heap will use a file with
filename filename , otherwise it will negotiate with the operating system
for a temporary filename. The number of buffers, each the size of the page
size, will be nbufs . No more than this many pages can be locked at any
one time. The size of each page is given by pgsize . To see whether a
valid RWDiskPageHeap has been constructed, call member function
isValid() .

virtual
~RWDiskPageHeap();

Returns any resources used by the disk page heap back to the operating
system. All pages should have been deallocated before the destructor is
called.

virtual RWHandle
allocate ();

Redefined from class RWVirtualPageHeap. Allocates a page off the disk
page heap and returns a handle for it. If there is no more space (for
example, the disk is full) then returns zero.

virtual void
deallocate (RWHandle h);

Redefined from class RWBufferedPageHeap. Deallocate the page
associated with handle h. It is not an error to deallocate a zero handle.

virtual void
dirty (RWHandle h);

Inherited from RWBufferedPageHeap.

RWBoolean
isValid () const;

Returns TRUE if this is a valid RWDiskPageHeap.

Public
Constructor

Public
Destructor

Public
Member

Functions

RWDiskPageHeap

Tools.h++ Class Reference 139

virtual void*
lock (RWHandle h);

Inherited from RWBufferedPageHeap.

virtual void
unlock (RWHandle h);

Inherited from RWBufferedPageHeap.

Tools.h++ Class Reference 141

RWDlistCollectables

RWDlistCollectables RWSequenceable RWCollection RWCollectable

#include <rw/dlistcol.h>
RWDlistCollectables a;

Class RWDlistCollectables represents a group of ordered items, not
accessible by an external key. Duplicates are allowed. The ordering of
elements is determined externally, generally by the order of insertion and
removal. An object stored by RWDlistCollectables must inherit abstract
base class RWCollectable.

Class RWDlistCollectables is implemented as a doubly-linked list, which
allows for efficient insertion and removal, as well as for movement in either
direction.

Polymorphic

RWDlistCollectables ();
Constructs an empty doubly-linked list.

RWDlistCollectables (RWCollectable* a);
Constructs a linked list with a single item a.

RWBoolean
operator== (const RWDlistCollectables& d) const;

Returns TRUE if self and d have the same number of items and if for every
item in self, the corresponding item in the same position in d isEqual to it.

virtual Collectable*
append (RWCollectable*);

Redefined from RWSequenceable. Inserts the item at the end of the
collection and returns it. Returns nil if the insertion was unsuccesful.

virtual void
apply (RWapplyCollectable ap, void*);

Redefined from class RWCollection to apply the user-supplied function
pointed to by ap to each member of the collection, in order, from first to
last.

virtual RWCollectable*&
at (size_t i);
virtual const RWCollectable*
at (size_t i) const;

Redefined from class RWSequenceable. The index must be between
zero and the number of items in the collection less one, or an exception of

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWDlistCollectables

142 Tools.h++ Class Reference

type RWBoundsErr will occur. Note that for a linked list, these functions
must traverse all the links, making them not particularly efficient.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Redefined from class RWCollection.

virtual void
clearAndDestroy ();

Inherited from class RWCollection.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

RWBoolean
containsReference (const RWCollectable* e) const;

Returns true if the list contains an item that is identical to the item pointed
to by e (that is, that has the address e).

virtual size_t
entries () const;

Redefined from class RWCollection.

virtual RWCollectable*
find (const RWCollectable* target) const;

Redefined from class RWCollection. The first item that isEqual to the
item pointed to by target is returned, or nil if no item is found.

RWCollectable*
findReference (const RWCollectable* e) const;

Returns the first item that is identical to the item pointed to by e (that is,
that has the address e), or nil if none is found.

virtual RWCollectable*
first () const;

Redefined from class RWSequenceable. Returns the item at the
beginning of the list.

RWDlistCollectables

Tools.h++ Class Reference 143

RWCollectable*
get ();

Returns and removes the item at the beginning of the list.

virtual unsigned
hash () const;

Inherited from class RWCollectable.

virtual size_t
index (const RWCollectable* c) const;

Redefined from class RWSequenceable. Returns the index of the first
item that isEqual to the item pointed to by c , or RW_NPOS if there is no
such index.

virtual RWCollectable*
insert (RWCollectable* c);

Redefined from class RWCollection. Adds the item to the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

void
insertAt (size_t indx, RWCollectable* e);

Redefined from class RWSequenceable. Adds a new item to the
collection at position indx . The item previously at position i is moved to
i+1 , etc. The index indx must be between 0 and the number of items in the
collection, or an exception of type RWBoundsErr will occur.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWDLISTCOLLECTABLES.

virtual RWBoolean
isEmpty () const;

Redefined from class RWCollection.

virtual RWCollectable*
last () const;

Redefined from class RWSequenceable. Returns the item at the end of
the list.

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the number of items that
isEqual to the item pointed to by target .

size_t
occurrencesOfReference (const RWCollectable* e) const;

Returns the number of items that are identical to the item pointed to by e
(that is, that have the address e).

RWDlistCollectables

144 Tools.h++ Class Reference

virtual RWCollectable*
prepend (RWCollectable*);

Redefined from class RWSequenceable. Adds the item to the beginning
of the collection and returns it. Returns nil if the insertion was
unsuccessful.

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Removes and returns the first item
that isEqual to the item pointed to by target . Returns nil if there is no
such item.

virtual void
removeAndDestroy (const RWCollectable* target);

Inherited from class RWCollection.

RWCollectable*
removeReference (const RWCollectable* e);

Removes and returns the first item that is identical to the item pointed to by
e (that is, that has the address e). Returns nil if there is no such item.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Inherited from class RWCollection.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 145

RWDlistCollectablesIterator

RWDlistCollectablesIterator RWIterator

#include <rw/dlistcol.h>
RWDlistCollectables d;
RWDlistCollectablesIterator it(d) ;

Iterator for class RWDlistCollectables. Traverses the linked-list from the
first (head) to the last (tail) item. Functions are provided for moving in either
direction.

As with all Rogue Wave iterators, the “current item” is undefined
immediately after construction — you must define it by using operator() or
some other (valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWDlistCollectablesIterator (RWDlistCollectables& d);

Construct an RWDlistCollectablesIterator from an RWDlistCollectables.
Immediately after construction, the position of the iterator is undefined.

virtual RWCollectable*
operator() ();

Redefined from class RWIterator. Advances the iterator to the next item
and returns it. Returns nil when the end of the list is reached.

void
operator++ ();

Advances the iterator one item.

void
operator-- ();

Moves the iterator back one item.

void
operator+= (size_t n);

Advances the iterator n items.

void
operator-= (size_t n);

Moves the iterator back n items.

Synopsis

Description

Persistence

Public
Constructor

Public
Member

Operators

RWDlistCollectablesIterator

146 Tools.h++ Class Reference

RWBoolean
atFirst () const;

Returns TRUE if the iterator is at the beginning of the list, otherwise FALSE;

RWBoolean
atLast () const;

Returns TRUE if the iterator is at the end of the list, otherwise FALSE;

virtual RWCollectable*
findNext (const RWCollectable* target);

Redefined from class RWIterator. Moves iterator to the next item which
isEqual to the item pointed to by target and returns it. If no item is
found, returns nil and the position of the iterator will be undefined.

RWCollectable*
findNextReference (const RWCollectable* e);

Moves iterator to the next item which is identical to the item pointed to by e
(that is, that has address e) and returns it. If no item is found, returns nil

and the position of the iterator will be undefined.

RWCollectable*
insertAfterPoint (RWCollectable* a);

Insert item a after the current cursor position and return the item. The
cursor’s position will be unchanged.

virtual RWCollectable*
key () const;

Redefined from class RWIterator. Returns the item at the current iterator
position.

RWCollectable*
remove ();

Removes and returns the item at the current cursor position. Afterwards,
the iterator will be positioned at the previous item in the list.

RWCollectable*
removeNext (const RWCollectable* target);

Moves iterator to the next item in the list which isEqual to the item
pointed to by target , removes it from the list and returns it. Afterwards,
the iterator will be positioned at the previous item in the list. If no item is
found, returns nil and the position of the iterator will be undefined.

RWCollectable*
removeNextReference (const RWCollectable* e);

Moves iterator to the next item in the list which is identical to the item
pointed to by e (that is, that has address e), removes it from the list and
returns it. Afterwards, the iterator will be positioned at the previous item
in the list. If no item is found, returns nil and the position of the iterator
will be undefined.

Public
Member

Functions

RWDlistCollectablesIterator

Tools.h++ Class Reference 147

virtual void
reset ();

Redefined from class RWIterator. Resets the iterator. Afterwards, the
position of the iterator will be undefined.

void
toFirst ();

Moves the iterator to the beginning of the list.

void
toLast ();

Moves the iterator to the end of the list.

Tools.h++ Class Reference 149

RWeistream

... ios
RWeistream RWbistream ...

... RWvistream RWvios

#include <rw/estream.h>
RWeistream estr(cin); // Construct an RWeistream,
 // using cin’s streambuf

Class RWeistream specializes the base class RWbistream to restore values
previously stored by RWeostream.The endian streams, RWeistream and
RWeostream, offer an efficient compromise between the portable streams
(RWpistream, RWpostream) and the binary streams (RWbistream,
RWbostream). By compensating for differences in big-endian vs. little-
endian formats, as well as sizes of the various integral types, the endian
streams offer portability without incurring the stream-size overhead of
translating values into a series of printable characters. For example, data
stored in little-endian format by an RWeostream object in a DOS program
can be retrieved by an RWeistream object on any of several machines,
regardless of its native endian format or the sizes of its integral types.
Endian streams will work properly when shared among a group of
platforms that:

• Share a common size and representation (apart from endian format) for
types float and double ;

• Use two's complement format for negative integral values.

As with the portable streams, care must be taken when storing or retrieving
variables of type char . Endian stream methods treat char s as numbers
except where the method description explicitly states that the char is being
treated, instead, as a character. See the entry for RWpostream for an
example of this distinction. Data stored in an integral type on one platform
may be too large to fit into that type on a receiving platform. If so, the
RWeistream's failbit will be set.

Endian streams can be interrogated as to the stream state using member
functions good() , bad() , eof() , etc.

None.

See RWeostream for an example of how the file “data.dat ” might be
created.

Synopsis

Description

Persistence

Example

RWeistream

150 Tools.h++ Class Reference

#include <rw/estream.h>
#include <fstream.h>
main()
{
 ifstream fstr ("data.dat"); // Open an input file
 RWeistream estr(fstr); // Construct an RWeistream from it
 // (For DOS: RWeistream estr(fstr, ios::binary)
 int i;
 float f;
 double d;

 estr >> i; // Restore an int that was stored in binary,
 // without regard to size or endian format.
 estr >> f >> d; // Restore a float & double without regard to
 // endian formats.
}

RWeistream (streambuf* s);

Construct an RWeistream from the streambuf s . For DOS, this
streambuf must have been created in binary mode. Throw exception
RWStreamErr if not a valid endian stream.

RWeistream (istream& str);

Construct an RWeistream using the streambuf associated with the
istream str . For DOS, the str must have been opened in binary mode.
Throw exception RWStreamErr if not a valid endian stream.

virtual int
get ();
virtual RWvistream&
get (char& c);
virtual RWvistream&
get (unsigned char& c);
virtual RWvistream&
get (char* v, size_t N);
virtual RWvistream&
get (unsigned char* v, size_t N);

Inherited from class RWbistream.

virtual RWvistream&
get (wchar_t& wc);

Redefined from class RWbistream. Get the next wchar_t from the input
stream and store it in wc, compensating for any differences in size or
endian format between the stream and the current environment. Set the
failbit if the value in the stream is too large to be stored in wc.

virtual RWvistream&
get (wchar_t* v, size_t N);

Redefined from class RWbistream. Get a vector of wchar_t s and store it
in the array beginning at v , compensating for any differences in size or

Public
Constructors

Public
Member

Functions

RWeistream

Tools.h++ Class Reference 151

endian format between the stream and the current environment. If the
restore stops prematurely, store whatever possible in v , and set the failbit.
Also set the failbit if any values in the stream are too large to be stored in
an element of v .

virtual RWvistream&
get (double* v, size_t N);

Redefined from class RWbistream. Get a vector of double s and store
them in the array beginning at v , compensating for any difference in
endian format between the stream and the current environment. If the
restore stops prematurely, store whatever possible in v , and set the failbit.

virtual RWvistream&
get (float* v, size_t N);

Redefined from class RWbistream. Get a vector of float s and store them
in the array beginning at v , compensating for any difference in endian
format between the stream and the current environment. If the restore
stops prematurely, store whatever possible in v , and set the failbit.

virtual RWvistream&
get (int* v, size_t N);

Redefined from class RWbistream. Get a vector of int s and store them in
the array beginning at v , compensating for any differences in size or
endian format between the stream and the current environment. If the
restore stops prematurely, store whatever possible in v , and set the failbit.
Also set the failbit if any values in the stream are too large to be stored in
an element of v .

virtual RWvistream&
get (long* v, size_t N);

Redefined from class RWbistream. Get a vector of long s and store them
in the array beginning at v , compensating for any differences in size or
endian format between the stream and the current environment. If the
restore stops prematurely, store whatever possible in v , and set the failbit.
Also set the failbit if any values in the stream are too large to be stored in
an element of v .

virtual RWvistream&
get (short* v, size_t N);

Redefined from class RWbistream. Get a vector of short s and store them
in the array beginning at v , compensating for any differences in size or
endian format between the stream and the current environment. If the
restore stops prematurely, store whatever possible in v , and set the failbit.
Also set the failbit if any values in the stream are too large to be stored in
an element of v .

RWeistream

152 Tools.h++ Class Reference

virtual RWvistream&
get (unsigned short* v, size_t N);

Redefined from class RWbistream. Get a vector of unsigned short s and
store them in the array beginning at v . If the restore stops prematurely,
store whatever possible in v , and set the failbit. Also set the failbit if any
values in the stream are too large to be stored in an element of v .

virtual RWvistream&
get (unsigned int* v, size_t N);

Redefined from class RWbistream. Get a vector of unsigned int s and
store them in the array beginning at v , compensating for any differences in
size or endian format between the stream and the current environment. If
the restore stops prematurely, store whatever possible in v , and set the
failbit. Also set the failbit if any values in the stream are too large to be
stored in an element of v .

virtual RWvistream&
get (unsigned long* v, size_t N);

Redefined from class RWbistream. Get a vector of unsigned long s and
store them in the array beginning at v , compensating for any differences in
size or endian format between the stream and the current environment If
the restore stops prematurely, store whatever possible in v , and set the
failbit. Also set the failbit if any values in the stream are too large to be
stored in an element of v .

virtual RWvistream&
getString (char* s, size_t N);

Redefined from class RWbistream. Restores a character string from the
input stream and stores it in the array beginning at s . The function stops
reading at the end of the string or after N-1 characters, whichever comes
first. If the latter, then the failbit of the stream will be set, and the
remaining characters of the string will be extracted from the stream and
thrown away. In either case, the string will be terminated with a null byte.
If the size of the string is too large to be represented by a variable of type
size_t in the current environment, the badbit of the stream will be set,
and no characters will be extracted. Note that the elements of the string
are treated as characters, not numbers.

virtual RWvistream&
operator>> (char& c);

Redefined from class RWbistream. Get the next char from the input
stream and store it in c . Note that c is treated as a character, not a number.

RWeistream

Tools.h++ Class Reference 153

virtual RWvistream&
operator>> (wchar_t& wc);

Redefined from class RWbistream. Get the next wchar_t from the input
stream and store it in wc, compensating for any differences in size or
endian format between the stream and the current environment. Set the
failbit if the value in the stream is too large to be stored in wc.

virtual RWvistream&
operator>> (double& d);

Redefined from class RWbistream. Get the next double from the input
stream and store it in d, compensating for any difference in endian format
between the stream and the current environment.

virtual RWvistream&
operator>> (float& f);

Redefined from class RWbistream. Get the next float from the input
stream and store it in f, compensating for any difference in endian format
between the stream and the current environment.

virtual RWvistream&
operator>> (int& i);

Redefined from class RWbistream. Get the next int from the input
stream and store it in i, compensating for any differences in size or
endian format between the stream and the current environment. Set the
failbit if the value in the stream is too large to be stored in i .

virtual RWvistream&
operator>> (long& l);

Redefined from class RWbistream. Get the next long from the input
stream and store it in l, compensating for any differences in size or
endian format between the stream and the current environment. Set the
failbit if the value in the stream is too large to be stored in l .

virtual RWvistream&
operator>> (short& s);

Redefined from class RWbistream. Get the next short from the input
stream and store it in s, compensating for any differences in size or
endian format between the stream and the current environment. Set the
failbit if the value in the stream is too large to be stored in s .

virtual RWvistream&
operator>> (unsigned char& c);

Redefined from class RWbistream. Get the next unsigned char from the
input stream and store it in c . Note that c is treated as a character, not a
number.

RWeistream

154 Tools.h++ Class Reference

virtual RWvistream&
operator>> (unsigned short& s);

Redefined from class RWbistream. Get the next unsigned short from
the input stream and store it in s, compensating for any differences in size
or endian format between the stream and the current environment. Set the
failbit if the value in the stream is too large to be stored in s .

virtual RWvistream&
operator>> (unsigned int& i);

Redefined from class RWbistream. Get the next unsigned int from the
input stream and store it in i, compensating for any differences in size or
endian format between the stream and the current environment. Set the
failbit if the value in the stream is too large to be stored in i .

virtual RWvistream&
operator>> (unsigned long& l);

Redefined from class RWbistream. Get the next unsigned long from the
input stream and store it in l, compensating for any differences in size or
endian format between the stream and the current environment. Set the
failbit if the value in the stream is too large to be stored in l .

RWeostream::EndianstreamEndian ();
Return the endian format (RWeostream::BigEndian or
RWeostream::LittleEndian) of numeric values, as represented in the
stream.

size_t
streamSizeofInt ();

Return the size of int s, as represented in the stream.

size_t
streamSizeofLong ();

Return the size of long s, as represented in the stream.

size_t
streamSizeofShort ();

Return the size of short s, as represented in the stream.

size_t
streamSizeofSizeT ();

Return the size of size_t s, as represented in the stream.

size_t
streamSizeofWchar ();

Returns the size of wchar_t s, as represented in the stream.

Tools.h++ Class Reference 155

RWeostream

... ios
RWeostream ...

... RWbostream RWvostream RWvios

#include <rw/estream.h>
// Construct an RWeostream that uses cout’s streambuf,
// and writes out values in little-endian format:
RWeostream estr(cout, RWeostream::LittleEndian);

Class RWeostream specializes the base class RWbostream to store values in
a portable binary format. The results can be restored via its counterpart,
RWeistream.See the entry for RWeistream for a general description of the
endian stream classes.

None.

See RWeistream for an example of how the file “data.dat ” might be read.

#include <rw/estream.h>
#include <fstream.h>

main()
{
 ofstream fstr("data.dat"); // Open an output file
 RWeostream estr(fstr); // Construct an RWeostream from it
 // (For DOS: RWeistream estr(fstr, ios::binary)
 int i = 5;
 float f = 22.1;
 double d = -0.05;

 estr << i; // Store an int, float, and double
 estr << f << d; // using the native endian format
}

enum RWeostream::Endian { LittleEndian,
 BigEndian,
 HostEndian }

Used to specify the format that RWeostreams should use to represent
numeric values in the stream. HostEndian means to use the native format
of the current environment.

RWeostream (streambuf* s, Endian fmt = HostEndian);

Construct an RWeostream from the streambuf s . Values placed into the
stream will have an endian format given by fmt . For DOS, the streambuf
must have been created in binary mode. Throw exception RWStreamErr if
streambuf s is not empty.

Synopsis

Description

Persistence

Example

Enumeration

Public
Constructors

RWeostream

156 Tools.h++ Class Reference

RWeostream (ostream& str, Endian fmt = HostEndian);

Construct an RWeostream from the streambuf associated with the output
stream str . Values placed into the stream will have an endian format
given by fmt . For DOS, the str must have been opened in binary mode.
Throw exception RWStreamErr if streambuf s is not empty.

virtual ~RWvostream ();
This virtual destructor allows specializing classes to deallocate any
resources that they may have allocated.

virtual RWvostream&
flush ();

Send the contents of the stream buffer to output immediately.

virtual RWvostream&
operator<< (const char* s);

Redefined from class RWbostream. Store the character string starting at s
to the output stream. The character string is expected to be null
terminated. Note that the elements of s are treated as characters, not as
numbers.

virtual RWvostream&
operator<< (char c);

Redefined from class RWbostream. Store the char c to the output stream.
Note that c is treated as a character, not a number.

virtual RWvostream&
operator<< (wchar_t wc);

Redefined from class RWbostream. Store the wchar_t wc to the output
stream in binary, using the appropriate endian representation.

virtual RWvostream&
operator<< (unsigned char c);

Redefined from class RWbostream. Store the unsigned char c to the
output stream. Note that c is treated as a character, not a number.

virtual RWvostream&
operator<< (double d);

Redefined from class RWbostream. Store the double d to the output
stream in binary, using the appropriate endian representation.

virtual RWvostream&
operator<< (float f);

Redefined from class RWbostream. Store the float f to the output
stream in binary, using the appropriate endian representation.

Public
Destructor

Public
Member

Functions

RWeostream

Tools.h++ Class Reference 157

virtual RWvostream&
operator<< (int i);

Redefined from class RWbostream. Store the int i to the output stream
in binary, using the appropriate endian representation.

virtual RWvostream&
operator<< (unsigned int i);

Redefined from class RWbostream. Store the unsigned int i to the
output stream in binary, using the appropriate endian representation.

virtual RWvostream&
operator<< (long l);

Redefined from class RWbostream. Store the long l to the output stream
in binary, using the appropriate endian representation.

virtual RWvostream&
operator<< (unsigned long l);

Redefined from class RWbostream. Store the unsigned long l to the
output stream in binary, using the appropriate endian representation.

virtual RWvostream&
operator<< (short s);

Redefined from class RWbostream. Store the short s to the output
stream in binary, using the appropriate endian representation.

virtual RWvostream&
operator<< (unsigned short s);

Redefined from class RWbostream. Store the unsigned short s to the
output stream in binary, using the appropriate endian representation.

virtual RWvostream&
put (char c);
virtual RWvostream&
put (unsigned char c);
virtual RWvostream&
put (const char* p, size_t N);

Inherited from class RWbostream.

virtual RWvostream&
put (wchar_t wc);

Redefined from class RWbostream. Store the wchar_t wc to the output
stream in binary, using the appropriate endian representation.

virtual RWvostream&
put (const wchar_t* p, size_t N);

Redefined from class RWbostream. Store the vector of wchar_t s starting
at p to the output stream in binary, using the appropriate endian
representation.

RWeostream

158 Tools.h++ Class Reference

virtual RWvostream&
put (const unsigned char* p, size_t N);

Redefined from class RWbostream. Store the vector of unsigned char s
starting at p to the output stream in binary, using the appropriate endian
representation.

virtual RWvostream&
put (const short* p, size_t N);

Redefined from class RWbostream. Store the vector of short s starting at
p to the output stream in binary, using the appropriate endian
representation.

virtual RWvostream&
put (const unsigned short* p, size_t N);

Redefined from class RWbostream. Store the vector of unsigned short s
starting at p to the output stream in binary, using the appropriate endian
representation.

virtual RWvostream&
put (const int* p, size_t N);

Redefined from class RWbostream. Store the vector of int s starting at p
to the output stream in binary, using the appropriate endian
representation.

virtual RWvostream&
put (const unsigned int* p, size_t N);

Redefined from class RWbostream. Store the vector of unsigned int s
starting at p to the output stream in binary, using the appropriate endian
representation.

virtual RWvostream&
put (const long* p, size_t N);

Redefined from class RWbostream. Store the vector of long s starting at p
to the output stream in binary, using the appropriate endian
representation.

virtual RWvostream&
put (const unsigned long* p, size_t N);

Redefined from class RWbostream. Store the vector of unsigned long s
starting at p to the output stream in binary, using the appropriate endian
representation.

virtual RWvostream&
put (const float* p, size_t N);

Redefined from class RWbostream. Store the vector of float s starting at
p to the output stream in binary, using the appropriate endian
representation.

RWeostream

Tools.h++ Class Reference 159

virtual RWvostream&
put (const double* p, size_t N);

Redefined from class RWbostream. Store the vector of double s starting at
p to the output stream in binary, using the appropriate endian
representation.

virtual RWvostream&
putString (const char*s, size_t N);

Store the character string, including embedded nulls, starting at s to the
output string.

Tools.h++ Class Reference 161

RWFactory

typedef unsigned short RWClassID;
typedef RWCollectable* (*RWuserCreator)();
#include <rw/factory.h>

RWFactory* theFactory;

Class RWFactory can create an instance of an RWCollectable object, given
a class ID. It does this by maintaining a table of class IDs and associated
“creator functions.” A creator function has prototype:

RWCollectable* aCreatorFunction ();

This function should create an instance of a particular class. For a given
RWClassID tag, the appropriate function is selected, invoked and the
resultant pointer returned. Because any object created this way is created off
the heap, you are responsible for deleting it when done.

There is a one-of-a-kind global RWFactory which can be accessed using
getRWFactory . It is guaranteed to have creator functions in it for all of the
classes referenced by your program. See also the section in the User's Guide
about RWFactory.

None

#include <rw/factory.h>
#include <rw/rwbag.h>
#include <rw/colldate.h>
#include <rw/rstream.h>

main(){
 // Create new RWBag off the heap, using Class ID __RWBAG.

 RWBag* b = (RWBag*)getRWFactory ()->create(__RWBAG);

 b->insert(new RWCollectableDate); // Insert today’s date
 // ...
 b->clearAndDestroy(); // Cleanup: first delete members,
 delete b; // then the bag itself
}
END FILE

RWFactory ();

Construct an RWFactory.

Synopsis

Description

Persistence

Example

Public
Constructors

RWFactory

162 Tools.h++ Class Reference

RWBoolean
operator<= (const RWFactory& h);

Returns TRUE if self is a subset of h, that is, every element of self has a
counterpart in h which isEqual . This operator is included to fix an
inconsistency in the C++ language. It is not explicitly present unless you
are compiling with an implementation of the Standard C++ Library. It
would normally be inherited from RWSet

Note: If you inherit from RWFactory in the presence of the Standard C++
Library, we recommend that you override this operator and explicitly
forward the call. Overload resolution in C++ will choose the Standard
Library provided global operators over inherited class members. These
global definitions are not appropriate for set-like partial orderings.

void
addFunction (RWuserCreator uc, RWClassID id);

Adds to the RWFactory the global function pointed to by uc , which
creates an instance of an object with RWClassID id .

void
addFunction (RWuserCreator uc, RWClassID id, RWStringID sid);

Adds to the RWFactory the global function pointed to by uc , which
creates an instance of an object with RWClassID id and RWStringID sid .

RWCollectable*
create (RWClassID id) const;

Allocates a new instance of the class with RWClassID id off the heap and
returns a pointer to it. Returns nil if id does not exist. Because this
instance is allocated off the heap, you are responsible for deleting it when
done.

RWCollectable*
create (RWString sid) const;

Allocates a new instance of the class with RWStringID sid off the heap
and returns a pointer to it. Returns nil if sid does not exist. Because this
instance is allocated off the heap, you are responsible for deleting it when
done.

RWuserCreator
getFunction (RWClassID id) const;

Returns from the RWFactory a pointer to the global function associated
with RWClassID id . Returns nil if id does not exist.

RWuserCreator
getFunction (RWStringID sid) const;

Returns from the RWFactory a pointer to the global function associated
with RWStringID sid . Returns nil if sid does not exist.

Public
Operator

Public
Member

Functions

RWFactory

Tools.h++ Class Reference 163

void
removeFunction (RWClassID id);

Removes from the RWFactory the global function associated with
RWClassID id . If id does not exist in the factory, no action is taken.

void
removeFunction (RWStringID sid);

Removes from the RWFactory the global function associated with
RWStringID sid . If sid does not exist in the factory, no action is taken.

RWStringID
stringID (RWClassID id) const;

Looks up the RWStringID associated with id and returns it. If there is no
such association, returns RWStringID(“NoID”) .

RWClassID
classID (RWStringID) const;

Looks up the RWClassID associated with sid and returns it. If there is no
such association, returns __RWUNKNOWN.

Tools.h++ Class Reference 165

RWFile

#include <rw/rwfile.h>

RWFile f(“filename”);

Class RWFile encapsulates binary file operations using the Standard C
stream library (functions fopen() , fread() , fwrite() , etc.). This class is
based on class PFile of the Interviews Class Library (1987, Stanford
University). The member function names begin with upper case letters in
order to maintain compatibility with class PFile .

Because this class is intended to encapsulate binary operations, it is
important that it be opened using a binary mode. This is particularly
important under MS-DOS — otherwise bytes that happen to match a
newline will be expanded to (carriage return, line feed).

None

RWFile (const char* filename, const char* mode = 0);

Construct an RWFile to be used with the file of name filename and with
mode mode. The mode is as given by the Standard C library function
fopen() . If mode is zero (the default) then the constructor will attempt to
open an existing file with the given filename for update (mode “ rb+ ”). If
this is not possible, then it will attempt to create a new file with the given
filename (mode “ wb+”). The resultant object should be checked for
validity using function isValid() .

~RWFile ();
Performs any pending I/O operations and closes the file.

const char*
Access ();

Returns the access mode with which the underlying FILE* was opened.

void
ClearErr ();

Reset error state so that neither Eof() nor Error() returns TRUE. Calls C
library function clearerr() .

RWoffset
CurOffset ();

Returns the current position, in bytes from the start of the file, of the file
pointer.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Functions

RWFile

166 Tools.h++ Class Reference

RWBoolean
Eof ();

Returns TRUE if an end-of-file has been encountered.

RWBoolean
Erase ();

Erases the contents but does not close the file. Returns TRUE if the
operation was successful.

RWBoolean
Error ();

Returns TRUE if a file I/O error has occurred as determined by a call to the
C library function ferror() .

RWBoolean
Exists ();

Returns TRUE if the file exists.

RWBoolean
Flush ();

Perform any pending I/O operations. Returns TRUE if successful.

const char*
GetName();

Returns the file name.

FILE*
GetStream ();

Returns the FILE* that underlies the RWFile interface. Provided for users
who need to “get under the hood” for system-dependent inquiries, etc. Do
not use to alter the state of the file!

RWBoolean
IsEmpty ();

Returns TRUE if the file contains no data, FALSE otherwise.

RWBoolean
isValid () const;

Returns TRUE if the file was successfully opened, FALSE otherwise.

RWFile

Tools.h++ Class Reference 167

RWBoolean
Read(char& c);
RWBoolean
Read(wchar_t& wc);
RWBoolean
Read(short& i);
RWBoolean
Read(int& i);
RWBoolean
Read(long& i);
RWBoolean
Read(unsigned char& c);
RWBoolean
Read(unsigned short& i);
RWBoolean
Read(unsigned int& i);
RWBoolean
Read(unsigned long& i);
RWBoolean
Read(float& f);
RWBoolean
Read(double& d);

Reads the indicated built-in type. Returns TRUE if the read is successful.

RWBoolean
Read(char* i, size_t count);
RWBoolean
Read(wchar_t* i, size_t count);
RWBoolean
Read(short* i, size_t count);
RWBoolean
Read(int* i, size_t count);
RWBoolean
Read(long* i, size_t count);
RWBoolean
Read(unsigned char* i, size_t count);
RWBoolean
Read(unsigned short* i,size_t count);
RWBoolean
Read(unsigned int* i, size_t count);
RWBoolean
Read(unsigned long* i, size_t count);
RWBoolean
Read(float* i, size_t count);
RWBoolean
Read(double* i, size_t count);

Reads count instances of the indicated built-in type into a block pointed to
by i . Returns TRUE if the read is successful. Note that you are responsible
for declaring i and for allocating the necessary storage before calling this
function.

RWFile

168 Tools.h++ Class Reference

RWBoolean
Read(char* string);

Reads a character string, including the terminating null character, into a
block pointed to by string . Returns TRUE if the read is successful. Note
that you are responsible for declaring string and for allocating the
necessary storage before calling this function. Beware of overflow when
using this function.

RWBoolean
SeekTo (RWoffset offset);

Repositions the file pointer to offset bytes from the start of the file.
Returns TRUE if the operation is successful.

RWBoolean
SeekToBegin ();

Repositions the file pointer to the start of the file. Returns TRUE if the
operation is successful.

RWBoolean
SeekToEnd ();

Repositions the file pointer to the end of the file. Returns TRUE if the
operation is successful.

RWBoolean
Write (char i);
RWBoolean
Write (wchar_t i);
RWBoolean
Write (short i);
RWBoolean
Write (int i);
RWBoolean
Write (long i);
RWBoolean
Write (unsigned char i);
RWBoolean
Write (unsigned short i);
RWBoolean
Write (unsigned int i);
RWBoolean
Write (unsigned long i);
RWBoolean
Write (float f);
RWBoolean
Write (double d);

Writes the appropriate built-in type. Returns TRUE if the write is
successful.

RWFile

Tools.h++ Class Reference 169

RWBoolean
Write (const char* i, size_t count);
RWBoolean
Write (const wchar_t* i, size_t count);
RWBoolean
Write (const short* i, size_t count);
RWBoolean
Write (const int* i, size_t count);
RWBoolean
Write (const long* i, size_t count);
RWBoolean
Write (const unsigned char* i, size_t count);
RWBoolean
Write (const unsigned short* i,size_t count);
RWBoolean
Write (const unsigned int* i, size_t count);
RWBoolean
Write (const unsigned long* i, size_t count);
RWBoolean
Write (const float* i, size_t count);
RWBoolean
Write (const double* i, size_t count);

Writes count instances of the indicated built-in type from a block pointed
to by i . Returns TRUE if the write is successful.

RWBoolean
Write (const char* string);

Writes a character string, including the terminating null character, from a
block pointed to by string . Returns TRUE if the write is successful.
Beware of non-terminated strings when using this function.

static RWBoolean
Exists (const char* filename, int mode = F_OK);

Returns TRUE if a file with name filename exists and may be accessed
according to the mode specified. The mode may be ORed together from one
or more of:

F_OK: “Exists” (Implied by any of the others)
X_OK: “Executable or searchable”
W_OK: “Writable”
R_OK: “Readable”

If your compiler or operating system does not support the POSIX
access() function, then mode X_OK will always return FALSE.

Static Public
Member

Functions

Tools.h++ Class Reference 171

RWFileManager

RWFileManager RWFile

typedef long RWoffset ;
typedef unsigned long RWspace; // (typically)
#include <rw/filemgr.h>
RWFileManager f(“file.dat”);

Class RWFileManager allocates and deallocates storage in a disk file, much
like a “freestore” manager. It does this by maintaining a linked list of free
space within the file. Note: Class RWFileManager inherits class RWFile as
a public base class; hence all the public member functions of RWFile are
visible to RWFileManager. They are not listed here.

If a file is managed by an RWFileManager then reading or writing to
unallocated space in the file will have undefined results. In particular,
overwriting the end of allocated space is a common problem which usually
results in corrupted data. One way to encounter this problem is to use
binaryStoreSize() to discover the amount of space needed to store an
RWCollection. For most purposes, the storage size of an RWCollection is
found using the RWCollectable method recursiveStoreSize() .

None

RWFileManager (const char* filename, const char* mode = 0);

Constructs an RWFileManager for the file with path name filename

using mode mode. The mode is as given by the Standard C library function
fopen() . If mode is zero (the default) then the constructor will attempt to
open an existing file with the given filename for update (mode “ rb+ ”). If
this is not possible, then it will attempt to create a new file with the given
filename (mode “ wb+”). If the file exists and is not empty, then the
constructor assumes it contains an existing file manager; other contents
will cause an exception of type RWExternalErr to be thrown. If no file
exists or if an existing file is empty, then the constructor will attempt to
create the file (if necessary) and initialize it with a new file manager. The
resultant object should be checked for validity using function isValid() .
A possible exception that could occur is RWFileErr.

RWoffset
allocate (RWspace s);

Allocates s bytes of storage in the file. Returns the offset to the start of the
storage location. The very first allocation for the file is considered

Synopsis

Description

Persistence

Public
Constructor

Public
Member

Functions

RWFileManager

172 Tools.h++ Class Reference

“special” and can be returned at any later time by the function start() . A
possible exception that could occur is RWFileErr.

void
deallocate (RWoffset t);

Deallocates (frees) the storage space starting at offset t . This space must
have been previously allocated by a call to allocate() . The very first
allocation ever made in the file is considered “special” and cannot be
deallocated. A possible exception that could occur is RWFileErr.

RWoffset
endData ();

Returns an offset just past the end of the file.

RWoffset
start ();

Returns the offset of the first space ever allocated for data in this file. If no
space has ever been allocated, returns RWNIL. This is typically used to “get
started” and find the rest of the data in the file.

Tools.h++ Class Reference 173

RWGBitVec(size)

#include <rw/gbitvec.h>
declare(RWGBitVec, size)
RWGBitVec(size) a;

RWGBitVec(size) is a bit vector of fixed length size . The length cannot be
changed dynamically (see class RWBitVec if you need a bit vector whose
length can be changed at run time). Objects of type RWGBitVec(size) are
declared with macros defined in the standard C++ header file <generic.h> .
Bits are numbered from 0 through size-1, inclusive.

None

In this example, a bit vector 24 bits long is declared and exercised:

#include "rw/gbitvec.h"
#include <iostream.h>

const int VECSIZE = 8;

declare(RWGBitVec, VECSIZE) // declare a 24 bit long vector
implement(RWGBitVec, VECSIZE) // implement the vector

main()
{
 RWGBitVec(VECSIZE) a, b; // Allocate two vectors.

 a(2) = TRUE; // Set bit 2 (the third bit) of a on.
 b(3) = TRUE; // Set bit 3 (the fourth bit) of b on.

 RWGBitVec(VECSIZE) c = a ̂ b; // Set c to the XOR of a and b.

 cout << "Vector 1" << "\t" << "Vector 2" << "\t"
 << "Vector 1 xor Vector 2" << endl;

 for(int i = 0; i < VECSIZE; i++)
 cout << a[i] << "\t\t" << b[i] << "\t\t" << c[i] << endl;

 return 0;
}

RWGBitVec(size)();
Construct a bit vector size elements long, with all bits initialized to FALSE.

RWGBitVec(size)(RWBoolean f);
Construct a bit vector size elements long, with all bits initialized to f .

Synopsis

Description

Persistence

Example

Public
Constructors

RWGBitVec(size)

174 Tools.h++ Class Reference

RWGBitVec(sz)&
operator= (const RWGBitVec(sz)& v);

Set each element of self to the corresponding bit value of v . Return a
reference to self.

RWGBitVec(sz)&
operator= (RWBoolean f);

Set all elements of self to the boolean value f .

RWGBitVec(sz)&
operator&= (const RWGBitVec(sz)& v);
RWGBitVec(sz)&
operator^= (const RWGBitVec(sz)& v);
RWGBitVec(sz)&
operator|= (const RWGBitVec(sz)& v);

Logical assignments. Set each element of self to the logical AND, XOR, or OR,
respectively, of self and the corresponding bit in v .

RWBitRef
operator[] (size_t i);

Returns a reference to the i th bit of self. This reference can be used as an
lvalue. The index i must be between 0 and size -1, inclusive. Bounds
checking will occur.

RWBitRef
operator() (size_t i);

Returns a reference to the i th bit of self. This reference can be used as an
lvalue. The index i must be between 0 and size -1, inclusive. No bounds
checking is done.

void
clearBit (size_t i);

Clears (i.e., sets to FALSE) the bit with index i . The index i must be
between 0 and size-1. No bounds checking is performed. The following
are equivalent, although clearBit(size_t) is slightly smaller and faster
than using operator()(size_t) :

 a(i) = FALSE;
 a.clearBit(i);

const RWByte*
data () const;

Returns a const pointer to the raw data of self. Should be used with care.

void
setBit (size_t i);

Sets (i.e., sets to TRUE) the bit with index i . The index i must be between 0
and size -1. No bounds checking is performed. The following are

Assignment
Operators

Indexing
Operators

Public
Member

Functions

RWGBitVec(size)

Tools.h++ Class Reference 175

equivalent, although setBit(size_t) is slightly smaller and faster than
using operator()(size_t):

 a(i) = TRUE;
 a.setBit(i);

RWBoolean
testBit (size_t i) const;

Tests the bit with index i . The index i must be between 0 and size-1. No
bounds checking is performed. The following are equivalent, although
testBit(size_t) is slightly smaller and faster than using
operator()(size_t) :

 if(a(i)) doSomething();
 if(a.testBit(i)) doSomething();

RWGBitVec(sz)
operator& (const RWGBitVec(sz)& v1, const RWGBitVec(sz)& v2);
RWGBitVec(sz)
operator^ (const RWGBitVec(sz)& v1, const RWGBitVec(sz)& v2);
RWGBitVec(sz)
operator| (const RWGBitVec(sz)& v1, const RWGBitVec(sz)& v2);

Return the logical AND, XOR, and OR, respectively, of vectors v1 and v2 .

RWBoolean
operator== (const RWGBitVec(sz)& v1, const RWGBitVec(sz)& v2)
 const;

Returns TRUE if each bit of v1 is set to the same value as the corresponding
bit in v2 . Otherwise, returns FALSE.

RWBoolean
operator!= (const RWGBitVec(sz)& v1, const RWGBitVec(sz)& v2)
 const;

Returns FALSE if each bit of v1 is set to the same value as the
corresponding bit in v2 . Otherwise, returns TRUE.

Related
Global

Functions

Tools.h++ Class Reference 177

RWGDlist(type)

#include <rw/gdlist.h>
declare(RWGDlist, type)

RWGDlist(type) a;

Class RWGDlist(type) represents a group of ordered elements of type type ,
not accessible by an external key. Duplicates are allowed. This class is
implemented as a doubly-linked list. Objects of type RWGDlist(type) are
declared with macros defined in the standard C++ header file
<generic.h> .In order to find a particular item within the collection, a user-
provided global “tester” function is required to test for a “match,” definable
in any consistent way. This function should have prototype:

RWBoolean yourTesterFunction (const type * c, const void* d);

The argument c is a candidate within the collection to be tested for a match.
The argument d is for your convenience and will be passed to
yourTesterFunction() . The function should return TRUE if a “match” is
found between c and d.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type *, const void*);

has been used for this tester function.

None

#include <rw/gdlist.h>
#include <rw/rstream.h>
declare(RWGDlist,int) /* Declare a list of ints */

main() {
 RWGDlist(int) list; // Define a list of ints
 int *ip;

 list.insert(new int(5)); // Insert some ints
 list.insert(new int(7));
 list.insert(new int(1));
 list.prepend(new int(11));

 RWGDlistIterator(int) next(list);

 while(ip = next())
 cout << *ip << endl; // Print out the members

Synopsis

Description

Persistence

Example

RWGDlist(type)

178 Tools.h++ Class Reference

 while(!list.isEmpty())
 delete list.get(); // Remove & delete list items

 return 0;
}
END FILE
Program output:

11
5
7
1

RWGDlist(type)();
Construct an empty collection.

RWGDlist(type)(type * a);
Construct a collection with one entry a.

RWGDlist(type)(const RWGDlist(type)& a);
Copy constructor. A shallow copy of a is made.

void
operator= (const RWGDlist(type)& a);

Assignment operator. A shallow copy of a is made.

type*
append (type * a);

Adds an item to the end of the collection. Returns nil if the insertion was
unsuccessful.

void
apply (void (*ap)(type *, void*), void*);

Visits all the items in the collection in order, from first to last, calling the
user-provided function pointed to by ap for each item. This function
should have prototype:

void yourApplyFunction (type* c, void*);

and can perform any operation on the object at address c . The last
argument is useful for passing data to the apply function.

type *&
at (size_t i);
const type *
at (size_t i) const;

Returns a pointer to the i th item in the collection. The first variant can be
used as an lvalue, the second cannot. The index i must be between zero
and the number of items in the collection less one, or an exception of type
TOOL_INDEX will be thrown.

Public
Constructors

Assignment
Operator

Public
Member

Functions

RWGDlist(type)

Tools.h++ Class Reference 179

void
clear ();

Removes all items in the collection.

RWBoolean
contains (yourTester t, const void* d) const;

Returns TRUE if the collection contains an item for which the user-defined
function pointed to by t finds a match with d.

RWBoolean
containsReference (const type * e) const;

Returns TRUE if the collection contains an item with the address e.

size_t
entries () const;

Returns the number of items in the collection.

type *
find (yourTester t, const void* d) const;

Returns the first item in the collection for which the user-provided
function pointed to by t finds a match with d, or nil if no item is found.

type *
findReference (const type * e) const;

Returns the first item in the collection with the address e, or nil if no item
is found.

type *
first () const;

Returns the first item of the collection.

type *
get ();

Returns and removes the first item of the collection.

type *
insert (type * e);

Adds an item to the end of the collection and returns it. Returns nil if the
insertion was unsuccessful.

void
insertAt (size_t indx, type* e);

Adds a new item to the collection at position indx . The item previously at
position i is moved to i+1 , etc. The index indx must be between 0 and the
number of items in the collection, or an exception of type TOOL_INDEX will
be thrown.

RWBoolean
isEmpty () const;

Returns TRUE if the collection is empty, otherwise FALSE.

RWGDlist(type)

180 Tools.h++ Class Reference

type *
last () const;

Returns the last item of the collection.

size_t
occurrencesOf (yourTester t, const void* d) const;

Returns the number of occurrences in the collection for which the user-
provided function pointed to by t finds a match with d.

size_t
occurrencesOfReference (const type * e) const;

Returns the number of items in the collection with the address e.

type*
prepend (type * a);

Adds an item to the beginning of the collection. Returns nil if the
insertion was unsuccessful.

type *
remove (yourTester t, const void* d);

Removes and returns the first item from the collection for which the user-
provided function pointed to by t finds a match with d, or returns nil if
no item is found.

type *
removeReference (const type * e);

Removes and returns the first item from the collection with the address e,
or returns nil if no item is found.

Tools.h++ Class Reference 181

RWGDlistIterator(type)

#include <rw/gdlist.h>
declare(RWGDlist, type)

RWGDlist(type) a;
RWGDlistIterator(type) I(a) ;

Iterator for class RWGDlist(type), which allows sequential access to all the
elements of a doubly-linked list. Elements are accessed in order, in either
direction.As with all Rogue Wave iterators, the “current item” is undefined
immediately after construction — you must define it by using operator() or
some other (valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type *, const void*);

has been used. See the documentation for class RWGDlist(type) for an
explanation of this function.

None

See class RWGDlist(type)

RWGDlistIterator(type)(RWGDlist(type)& list);

Construct an iterator for the RWGDlist(type) list . Immediately after
construction, the position of the iterator is undefined.

type *
operator() ();

Advances the iterator to the next item and returns it. Returns nil if at the
end of the collection.

void
operator++ ();

Advances the iterator one item.

void
operator-- ();

Moves the iterator back one item.

Synopsis

Description

Persistence

Example

Public
Constructor

Public
Member

Operators

RWGDlistIterator(type)

182 Tools.h++ Class Reference

void
operator+= (size_t n);

Advances the iterator n items.

void
operator-= (size_t n);

Moves the iterator back n items.

RWBoolean
atFirst () const;

Returns TRUE if the iterator is at the start of the list, FALSE otherwise;

RWBoolean
atLast () const;

Returns TRUE if the iterator is at the end of the list, FALSE otherwise;

type *
findNext (yourTester t,const type * d);

Moves the iterator to the next item for which the function pointed to by t
finds a match with d and returns it. Returns nil if no match is found, in
which case the position of the iterator will be undefined.

type *
findNextReference (const type * e);

Moves the iterator to the next item with the address e and returns it.
Returns nil if no match is found, in which case the position of the iterator
will be undefined.

type *
insertAfterPoint (type * a);

Adds item a after the current iterator position and return the item. The
position of the iterator is left unchanged.

type *
key () const;

Returns the item at the current iterator position.

type *
remove ();

Removes and returns the item at the current cursor position. Afterwards,
the iterator will be positioned at the previous item in the list.

type *
removeNext (yourTester t, const type * d);

Moves the iterator to the next item for which the function pointed to by t
finds a “match” with d and removes and returns it. Returns nil if no
match is found, in which case the position of the iterator will be undefined.

Public
Member

Functions

RWGDlistIterator(type)

Tools.h++ Class Reference 183

type *
removeNextReference (const type * a);

Moves the iterator to the next item with the address e and removes and
returns it. Returns nil if no match is found, in which case the position of
the iterator will be undefined.

void
reset ();

Resets the iterator to its initial state.

void
toFirst ();

Moves the iterator to the first item in the list.

void
toLast ();

Moves the iterator to the last item in the list.

Tools.h++ Class Reference 185

RWGOrderedVector(val)

#include <rw/gordvec.h>
declare(RWGVector, val)
declare(RWGOrderedVector, val)
implement(RWGVector, val)
implement(RWGOrderedVector, val)

RWGOrderedVector(val) v;// Ordered vector of objects of val val .

Class RWGOrderedVector(val) represents an ordered collection of objects
of val val . Objects are ordered by the order of insertion and are accessible
by index. Duplicates are allowed. RWGOrderedVector(val) is
implemented as a vector, using macros defined in the standard C++ header
file <generic.h> .Note that it is a value-based collection: items are copied in
and out of the collection.

The class val must have:

• a default constructor;

• well-defined copy semantics (val::val(const val&) or equiv.);

• well-defined assignment semantics (val::operator=(const val&) or
equiv.);

• well-defined equality semantics (val::operator==(const val&) or
equiv.).

To use this class you must declare and implement its base class as well as the
class itself. For example, here is how you declare and implement an ordered
collection of doubles:

declare(RWGVector,double) // Declare base class
declare(RWGOrderedVector,double) // Declare ordered vector

// In one and only one .cpp file you must put the following:
implement(RWGVector,double) // Implement base class
implement(RWGOrderedVector,double) // Implement ordered vector

For each val of RWGOrderedVector you must include one (and only one)
call to the macro implement somewhere in your code for both the
RWGOrderedVector itself and for its base class RWGVector.

None

Here’s an example that uses an ordered vector of RWCStrings.

Synopsis

Description

Persistence

Example

RWGOrderedVector(val)

186 Tools.h++ Class Reference

#include <rw/gordvec.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

declare(RWGVector,RWCString)
declare(RWGOrderedVector,RWCString)
implement(RWGVector,RWCString)
implement(RWGOrderedVector,RWCString)

main() {
 RWGOrderedVector(RWCString) vec;

 RWCString one("First");
 vec.insert(one);

 vec.insert("Second"); // Automatic val conversion occurs
 vec.insert("Last"); // Automatic val conversion occurs

 for(size_t i=0; i<vec.entries(); i++) cout << vec[i] << endl;

 return 0;
}

Program output:

First
Second
Last

RWGOrderedVector(val)(size_t capac=RWDEFAULT_CAPACITY);
Construct an ordered vector of elements of val val . The initial capacity of
the vector will be capac whose default value is RWDEFAULT_CAPACITY. The
capacity will be automatically increased as necessary should too many
items be inserted, a relatively expensive process because each item must be
copied into the new storage.

val
operator() (size_t i) const;
val&
operator() (size_t i);

Return the i th value in the vector. The index i must be between 0 and one
less than the number of items in the vector. No bounds checking is
performed. The second variant can be used as an lvalue, the first cannot.

val
operator[] (size_t i) const;
val&
operator[] (size_t i);

Return the i th value in the vector. The index i must be between 0 and one
less than the number of items in the vector. Bounds checking will be
performed. The second variant can be used as an lvalue, the first cannot.

Public
Constructors

Public
Member

Functions

RWGOrderedVector(val)

Tools.h++ Class Reference 187

void
clear ();

Remove all items from the collection.

const val*
data () const;

Returns a pointer to the raw data of self. Should be used with care.

size_t
entries () const;

Return the number of items currently in the collection.

size_t
index (val item) const;

Perform a linear search of the collection returning the index of the first
item that isEqual to the argument item . If no item is found, then it
returns RW_NPOS.

void
insert (val item);

Add the new value item to the end of the collection.

void
insertAt (size_t indx, val item);

Add the new value item to the collection at position indx . The value of
indx must be between zero and the length of the collection. No bounds
checking is performed. Old items from index indx upwards will be
shifted to higher indices.

RWBoolean
isEmpty () const;

Returns TRUE if the collection has no entries. FALSE otherwise.

void
size_t
length () const;

Synonym for entries() .

val
pop ();

Removes and returns the last item in the vector.

void
push (val);

Synonym for insert() .

removeAt (size_t indx);
Removes the item at position indx from the collection. The value of indx

must be between zero and one less than the length of the collection. No
bounds checking is performed. Old items from index indx+1 will be

RWGOrderedVector(val)

188 Tools.h++ Class Reference

shifted to lower indices. E.g., the item at index indx+1 will be moved to
position indx , etc.

void
resize (size_t newCapacity);

Change the capacity of the collection to newCapacity , which must be at
least as large as the present number of items in the collection. Note that
the actual number of items in the collection does not change, just the
capacity.

Tools.h++ Class Reference 189

RWGQueue(type)

#include <rw/gqueue.h>
declare(RWGQueue, type)

RWGQueue(type) a ;

Class RWGQueue(type) represents a group of ordered elements, not
accessible by an external key. A RWGQueue(type) is a first in, first out
(FIFO) sequential list for which insertions are made at one end (the “tail”),
but all removals are made at the other (the “head”). Hence, the ordering is
determined externally by the ordering of the insertions. Duplicates are
allowed. This class is implemented as a singly-linked list. Objects of type
RWGQueue(type) are declared with macros defined in the standard C++
header file <generic.h> .In order to find a particular item within the
collection, a user-provided global “tester” function is required to test for a
“match”, definable in any consistent way. This function should have
prototype:

RWBoolean yourTesterFunction (const type * c, const void* d);

The argument c is a candidate within the collection to be tested for a match.
The argument d is for your convenience and will be passed to
yourTesterFunction(). The function should return TRUE if a “match” is
found between c and d.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type *, const void*);

has been used for this tester function.

None

RWGQueue(type)();
Construct an empty queue.

RWGQueue(type)(type * a);
Construct a queue with one entry a.

RWGQueue(type)(const RWGQueue(type)& q);
Copy constructor. A shallow copy of q is made.

Synopsis

Description

Persistence

Public
Constructors

RWGQueue(type)

190 Tools.h++ Class Reference

void
operator= (const RWGQueue(type)& q);

Assignment operator. A shallow copy of q is made.

type*
append (type * a);

Adds a to the end of the queue and returns it. Returns nil if the insertion
was unsuccessful.

void
clear ();

Removes all items from the queue.

RWBoolean
contains (yourTester t , const void* d) const;

Returns TRUE if the queue contains an item for which the user-defined
function pointed to by t finds a match with d.

RWBoolean
containsReference (const type * e) const;

Returns TRUE if the queue contains an item with the address e.

size_t
entries () const;

Returns the number of items in the queue.

type *
first () const;

Returns the first item in the queue, or nil if the queue is empty.

type *
get ();

Returns and removes the first item in the queue. Returns nil if the queue is
empty.

RWBoolean
isEmpty () const;

Returns TRUE if the queue is empty, otherwise FALSE.

type*
insert (type * a);

Calls append(type*) with a as the argument.

type *
last ();

Returns the last (most recently inserted) item in the queue, or nil if the
queue is empty.

Assignment
Operator

Public
Member

Functions

RWGQueue(type)

Tools.h++ Class Reference 191

size_t
occurrencesOf (yourTester t, const void* d) const;

Returns the number of items in the queue for which the user-provided
function pointed to by t finds a match with d.

size_t
occurrencesOfReference (const type * e) const;

Returns the number of items in the queue with the address e.

Tools.h++ Class Reference 193

RWGSlist(type)

#include <rw/gslist.h>
declare(RWGSlist, type)

RWGSlist(type) a ;

Class RWGSlist(type) represents a group of ordered elements of type type,
not accessible by an external key. Duplicates are allowed. This class is
implemented as a singly-linked list. Objects of type RWGSlist(type) are
declared with macros defined in the standard C++ header file
<generic.h> .In order to find a particular item within the collection, a user-
provided global “tester” function is required to test for a “match,” definable
in any consistent way. This function should have prototype:

RWBoolean yourTesterFunction (const type * c, const void* d);

The argument c is a candidate within the collection to be tested for a match.
The argument d is for your convenience and will be passed to
yourTesterFunction() . The function should return TRUE if a “match” is
found between c and d.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type *, const void*);

has been used for this tester function.

None

RWGSlist (type)();
Construct an empty collection.

RWGSlist (type)(type * a);
Construct a collection with one entry a.

RWGSlist (type)(const RWGSlist(type)& a);
Copy constructor. A shallow copy of a is made.

void
operator= (const RWGSlist(type)&);

Assignment operator. A shallow copy of a is made.

Synopsis

Description

Persistence

Public
Constructors

Assignment
Operator

RWGSlist(type)

194 Tools.h++ Class Reference

type*
append (type * a);

Adds an item to the end of the collection and returns it. Returns nil if the
insertion was unsuccessful.

void
apply (void (*ap)(type *, void*), void*);

Visits all the items in the collection in order, from first to last, calling the
user-provided function pointed to by ap for each item. This function
should have prototype:

void yourApplyFunction (type* c, void*);

and can perform any operation on the object at address c . The last
argument is useful for passing data to the apply function.

type *&
at (size_t i);
const type *
at (size_t i) const;

Returns a pointer to the i th item in the collection. The first variant can be
used as an lvalue, the second cannot. The index i must be between zero
and the number of items in the collection less one, or an exception of type
TOOL_INDEX will be thrown.

void
clear ();

Removes all items in the collection.

RWBoolean
contains (yourTester t, const void* d) const;

Returns TRUE if the collection contains an item for which the user-defined
function pointed to by t finds a match with d.

RWBoolean
containsReference (const type * e) const;

Returns TRUE if the collection contains an item with the address e.

size_t
entries () const;

Returns the number of items in the collection.

type *
find (yourTester t, const void* d) const;

Returns the first item in the collection for which the user-provided
function pointed to by t finds a match with d, or nil if no item is found.

Public
Member

Functions

RWGSlist(type)

Tools.h++ Class Reference 195

type *
findReference (const type * e) const;

Returns the first item in the collection with the address e, or nil if no item
is found.

type *
first () const;

Returns the first item of the collection.

type *
get ();

Returns and removes the first item of the collection.

type *
insert (type * e);

Adds an item to the end of the collection and returns it. Returns nil if the
insertion was unsuccessful.

void
insertAt (size_t indx, type* e);

Adds a new item to the collection at position indx . The item previously at
position i is moved to i+1 , etc. The index indx must be between 0 and the
number of items in the collection, or an exception of type TOOL_INDEX will
be thrown.

RWBoolean
isEmpty () const;

Returns TRUE if the collection is empty, otherwise FALSE.

type *
last () const;

Returns the last item of the collection.

size_t
occurrencesOf (yourTester t, const void* d) const;

Returns the number of occurrences in the collection for which the user-
provided function pointed to by t finds a match with d.

size_t
occurrencesOfReference (const type * e) const;

Returns the number of items in the collection with the address e.

type*
prepend (const type * a);

Adds an item to the beginning of the collection and returns it. Returns nil

if the insertion was unsuccessful.

RWGSlist(type)

196 Tools.h++ Class Reference

type *
remove (yourTester t, const void* d);

Removes and returns the first item from the collection for which the user-
provided function pointed to by t finds a match with d, or returns nil if
no item is found.

type *
removeReference (const type * e);

Removes and returns the first item from the collection with the address e,
or returns nil if no item is found.

Tools.h++ Class Reference 197

RWGSlistIterator(type)

#include <rw/gslist.h>
declare(RWGSlist, type)

RWGSlist(type) a ;
RWGSlistIterator(type) I(a);

Iterator for class RWGSlist(type), which allows sequential access to all the
elements of a singly-linked list. Elements are accessed in order, first to
last.As with all Rogue Wave iterators, the “current item” is undefined
immediately after construction — you must define it by using operator() or
some other (valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type *, const void*);

has been used. See the documentation for class RWGSlist(type) for an
explanation of this function.

None

RWGSlistIterator (type)(RWGSlist(type)& list);

Constructs an iterator for the RWGSlist(type) list . Immediately after
construction, the position of the iterator is undefined.

type *
operator() ();

Advances the iterator to the next item and returns it. Returns nil if it is at
the end of the collection.

void
operator++ ();

Advances the iterator one item.

void
operator+= (size_t n);

Advances the iterator n items.

RWBoolean
atFirst () const;

Returns TRUE if the iterator is at the start of the list, FALSE otherwise;

Synopsis

Description

Persistence

Public
Constructor

Public
Member

Operators

Public
Member

Functions

RWGSlistIterator(type)

198 Tools.h++ Class Reference

RWBoolean
atLast () const;

Returns TRUE if the iterator is at the end of the list, FALSE otherwise;

type *
findNext (yourTester t,const type * d);

Moves the iterator to the next item for which the function pointed to by t
finds a match with d and returns it. Returns nil if no match is found, in
which case the position of the iterator will be undefined.

type *
findNextReference (const type * e);

Moves the iterator to the next item with the address e and returns it.
Returns nil if no match is found, in which case the position of the iterator
will be undefined.

type *
insertAfterPoint (type * a);

Adds item a after the current iterator position and return the item. The
position of the iterator is left unchanged.

type *
key () const;

Returns the item at the current iterator position.

type *
remove ();

Removes and returns the item at the current cursor position. Afterwards,
the iterator will be positioned at the previous item in the list. In a singly-
linked list, this function is an inefficient operation because the entire list
must be traversed, looking for the link before the link to be removed.

type *
removeNext (yourTester t, const type * d);

Moves the iterator to the next item for which the function pointed to by t
finds a “match” with d and removes and returns it. Returns nil if no
match is found, in which case the position of the iterator will be undefined.

type *
removeNextReference (const type * e);

Moves the iterator to the next item with the address e and removes and
returns it. Returns nil if no match is found, in which case the position of
the iterator will be undefined.

void
reset ();

Resets the iterator to its initial state.

RWGSlistIterator(type)

Tools.h++ Class Reference 199

void
toFirst ();

Moves the iterator to the start of the list.

void
toLast ();

Moves the iterator to the end of the list.

Tools.h++ Class Reference 201

RWGSortedVector(val)

RWGSortedVector(val) RWGVector(val)

#include <rw/gsortvec.h>
declare(RWGSortedVector, val)
implement(RWGSortedVector, val)
RWGSortedVector(val) v; // A sorted vector of vals .

Class RWGSortedVector(val) represents a vector of elements of val val,
sorted using an insertion sort. The elements can be retrieved using an index
or a search. Duplicates are allowed. Objects of val RWGSortedVector(val)
are declared with macros defined in the standard C++ header file
<generic.h> .Note that it is a value-based collection: items are copied in and
out of the collection.

The class val must have:

• a default constructor;

• well-defined copy semantics (val::val(const val&) or equiv.);

• well-defined assignment semantics (val::operator=(const val&) or
equiv.);

• well-defined equality semantics (val::operator==(const val&) or
equiv.);

• well-defined less-than semantics (val::operator<(const val&) or
equiv.)..

To use this class you must declare and implement its base class as well as the
class itself. For example, here is how you declare and implement a sorted
collection of doubles:

declare(RWGVector,double) // Declare base class
declare(RWGSortedVector,double) // Declare sorted vector

// In one and only one .cpp file you must put the following:
implement(RWGVector,double) // Implement base class
implement(RWGSortedVector,double) // Implement sorted vector

For each val of RWGSortedVector you must include one (and only one) call
to the macro implement somewhere in your code for both the
RWGSortedVector itself and for its base class RWGVector.

Insertions and retrievals are done using a binary search. Note that the
constructor of an RWGSortedVector(val) requires a pointer to a
“comparison function.” This function should have protoval:

Synopsis

Description

RWGSortedVector(val)

202 Tools.h++ Class Reference

int comparisonFunction (const val * a, const val * b);

and should return an int less than, greater than, or equal to zero, depending
on whether the item pointed to by a is less than, greater than, or equal to the
item pointed to by b. Candidates from the collection will appear as a, the
key as b.

None

Here’s an example of a sorted vector of int s:

#include <rw/gsortvec.h>
#include <rw/rstream.h>

declare(RWGVector,int)
declare(RWGSortedVector,int)
implement(RWGVector,int)
implement(RWGSortedVector,int)

// Declare and define the "comparison function":
int compFun(const int* a, const int* b) {
 return *a - *b;
}

main() {
 // Declare and define an instance,
 // using the comparison function 'compFun':
 RWGSortedVector(int) avec(compFun);

 // Do some insertions:
 avec.insert(3); // 3
 avec.insert(17); // 3 17
 avec.insert(5); // 3 5 17

 cout << avec(1); // Prints '5'
 cout << avec.index(17); // Prints '2'
}

RWGSortedVector(val)(int (*f)(const val *, const val *));
Construct a sorted vector of elements of val val , using the comparison
function pointed to by f . The initial capacity of the vector will be set by
the value RWDEFAULT_CAPACITY. The capacity will automatically be
increased should too many items be inserted.

RWGSortedVector(val)(int (*f)(const val *, const val *),
 size_t N);

Construct a sorted vector of elements of val val , using the comparison
function pointed to by f . The initial capacity of the vector will be N. The
capacity will automatically be increased should too many items be
inserted.

Persistence

Example

Public
Constructors

RWGSortedVector(val)

Tools.h++ Class Reference 203

val
operator() (size_t i) const;

Return the i th value in the vector. The index i must be between 0 and the
length of the vector less one. No bounds checking is performed.

val
operator[] (size_t i) const;

Return the i th value in the vector. The index i must be between 0 and the
length of the vector less one. Bounds checking is performed.

size_t
entries () const;

Returns the number of items currently in the collection.

size_t
index (val v);

Return the index of the item with value v . The value “RW_NPOS” is
returned if the value does not occur in the vector. A binary search, using
the comparison function, is done to find the value. If duplicates are
present, the index of the first instance is returned.

RWBoolean
insert (val v);

Insert the new value v into the vector. A binary search, using the
comparison function, is performed to determine where to insert the value.
The item will be inserted after any duplicates. If the insertion causes the
vector to exceed its capacity, it will automatically be resized by an amount
given by RWDEFAULT_RESIZE.

void
removeAt (size_t indx);

Remove the item at position indx from the collection. The value of indx

must be between zero and the length of the collection less one. No bounds
checking is performed. Old items from index indx+1 will be shifted to
lower indices. E.g., the item at index indx+1 will be moved to position
indx , etc..

void
resize (size_t newCapacity);

Change the capacity of the collection to newCapacity , which must be at
least as large as the present number of items in the collection. Note that
the actual number of items in the collection does not change, just the
capacity.

Public
Member

Functions

Tools.h++ Class Reference 205

RWGStack(type)

#include <rw/gstack.h>
declare(RWGStack, type)

RWGStack(type) a ;

Class RWGStack(type) represents a group of ordered elements, not
accessible by an external key. A RWGStack(type) is a last in, first out
(LIFO) sequential list for which insertions and removals are made at the
beginning of the list. Hence, the ordering is determined externally by the
ordering of the insertions. Duplicates are allowed. This class is implemented
as a singly-linked list. Objects of type RWGStack(type) are declared with
macros defined in the standard C++ header file <generic.h> .In order to find
a particular item within the collection, a user-provided global “tester”
function is required to test for a “match,” definable in any consistent way.
This function should have prototype:

RWBoolean yourTesterFunction (const type * c, const void* d);

The argument c is a candidate within the collection to be tested for a match.
The argument d is for your convenience and will be passed to
yourTesterFunction() . The function should return TRUE if a “match” is
found between c and d.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type *, const void*);

has been used for this tester function.

None

RWGStack(type) ();
Constructs an empty stack.

RWGStack(type) (type * a);
Constructs a stack with one entry a.

RWGStack(type) (const RWGStack(type)& a);
Copy constructor. A shallow copy of a is made.

void
operator= (const RWGStack(type)& a);

Assignment operator. A shallow copy of a is made.

Synopsis

Description

Persistence

Public
Constructors

Assignment
Operator

RWGStack(type)

206 Tools.h++ Class Reference

void
clear ();

Removes all items from the stack.

RWBoolean
contains (yourTester t , const void* d) const;

Returns TRUE if the stack contains an item for which the user-defined
function pointed to by t finds a match with d.

RWBoolean
containsReference (const type * e) const;

Returns TRUE if the stack contains an item with the address e.

size_t
entries () const;

Returns the number of items in the stack.

RWBoolean
isEmpty () const;

Returns TRUE if the stack is empty, otherwise FALSE.

size_t
occurrencesOf (yourTester t, const void* d) const;

Returns the number of items in the stack for which the user-provided
function pointed to by t finds a match with d.

size_t
occurrencesOfReference (const type * e) const;

Returns the number of items in the stack with the address e.

type *
pop ();

Removes and returns the item at the top of the stack, or returns nil if the
stack is empty.

void
push (type * a);

Adds an item to the top of the stack.

type *
top () const;

Returns the item at the top of the stack or nil if the stack is empty.

Public
Member

Functions

Tools.h++ Class Reference 207

RWGVector(val)

#include <rw/gvector.h>
declare(RWGVector, val)
implement(RWGVector, val)

RWGVector(val) a; // A Vector of val’s .

Class RWGVector(val) represents a group of ordered elements, accessible
by an index. Duplicates are allowed. This class is implemented as an array.
Objects of type RWGVector(val) are declared with macros defined in the
standard C++ header file <generic.h> . Note that it is a value-based
collection: items are copied in and out of the collection.

The class val must have:

• a default constructor;

• well-defined copy semantics (val::val(const val&) or equiv.);

• well-defined assignment semantics (val::operator=(const val&) or
equivalent).

For each type of RWGVector, you must include one (and only one) call to
the macro implement , somewhere in your code.

None

#include <rw/gvector.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

declare(RWGVector, RWDate) /* Declare a vector of dates */
implement(RWGVector, RWDate) /* Implement a vector of dates */

main() {
 RWGVector(RWDate) oneWeek(7);
 for (int i=1; i<7; i++)
 oneWeek(i) = oneWeek(0) + i;

 for (i=0; i<7; i++)
 cout << oneWeek(i) << endl;

 return 0;
}
Program output:
04/12/93
04/13/93
04/14/93
04/15/93
04/16/93
04/17/93
04/18/93

Synopsis

Description

Persistence

Example

RWGVector(val)

208 Tools.h++ Class Reference

RWGVector(val) ();
Construct an empty vector.

RWGVector(val) (size_t n);
Construct a vector with length n. The initial values of the elements can
(and probably will) be garbage.

RWGVector(val) (size_t n, val v);
Construct a vector with length n. Each element is assigned the value v .

RWGVector(val) (RWGVector(val)& s);
Copy constructor. The entire vector is copied, including all embedded
values.

RWGVector(val)&
operator= (RWGVector(val)& s);

Assignment operator. The entire vector is copied.

RWGVector(val)&
operator= (val v);

Sets all elements of self to the value v .

val
operator() (size_t i) const;
val&
operator() (size_t i);

Return the i ’th element in the vector. The index i must be between zero
and the length of the vector less one. No bounds checking is performed.
The second variant can be used as an lvalue.

val
operator[] (size_t i) const;
val&
operator[] (size_t i);

Return the i th element in the vector. The index i must be between zero
and the length of the vector less one. Bounds checking is performed.

const val*
data () const;

Returns a pointer to the raw data of self. Should be used with care.

size_t
length () const;

Returns the length of the vector.

void
reshape (size_t n);

Resize the vector. If the vector shrinks, it will be truncated. If the vector
grows, then the value of the additional elements will be undefined.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 209

RWHashDictionary

RWHashDictionary RWSet RWHashTable RWCollection RWCollectable

typedef RWHashDictionary Dictionary; // Smalltalk typedef.
#include <rw/hashdict.h>
RWHashDictionary a ;

An RWHashDictionary represents a group of unordered values, accessible
by external keys. Duplicate keys are not allowed. RWHashDictionary is
implemented as a hash table of associations of keys and values. Both the key
and the value must inherit from the abstract base class RWCollectable, with
a suitable definition of the virtual function hash() and isEqual() for the
key.

This class corresponds to the Smalltalk class Dictionary.

None

RWHashDictionary (size_t n = RWDEFAULT_CAPACITY);
Construct an empty hashed dictionary using n hashing buckets.

RWHashDictionary (const RWHashDictionary& hd);
Copy constructor. A shallow copy of the collection hd is made.

void
operator= (const RWHashDictionary& hd);

Assignment operator. A shallow copy of the collection hd is made.

RWBoolean
operator<= (const RWHashDictionary& hd) const;

Returns TRUE if for every key-value pair in self, there is a corresponding
key in hd that isEqual . Their corresponding values must also be equal.
Note: If you inherit from RWHashDictionary in the presence of the
Standard C++ Library, we recommend that you override this operator and
explicitly forward the call. Overload resolution in C++ will choose the
Standard Library provided global operators over inherited class members.
These global definitions are not appropriate for set-like partial orderings.

RWBoolean
operator== (const RWHashDictionary& hd) const;

Returns TRUE if self and hd have the same number of entries and if for
every key-value pair in self, there is a corresponding key in hd that
isEqual . Their corresponding values must also be equal.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

RWHashDictionary

210 Tools.h++ Class Reference

void
applyToKeyAndValue (RWapplyKeyAndValue ap, void* x);

Applies the user-supplied function pointed to by ap to each key-value pair
of the collection. Items are not visited in any particular order. An untyped
argument may be passed to the ap function through x .

RWBinaryTree
asBinaryTree ();
RWBag
asBag () const;
RWSet
asOrderedCollection () const;
asSet () const;
RWOrdered
RWBinaryTree
asSortedCollection () const;

Converts the RWHashDictionary to an RWBag, RWSet, RWOrdered, or
an RWBinaryTree. Note that since a dictionary contains pairs of keys and
values, the result of this call will be a container holding
RWCollectableAssociations. Note also that the return value is a copy of
the data. This can be very expensive for large collections. Consider using
operator+=() to insert each RWCollectableAssociation from this
dictionary into a collection of your choice.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Redefined from class RWCollection. Removes all key-value pairs in the
collection.

virtual void
clearAndDestroy ();

Redefined from class RWCollection. Removes all key-value pairs in the
collection, and deletes the key and the value.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

virtual size_t
entries () const;

Inherited from class RWSet.

Public
Member

Functions

RWHashDictionary

Tools.h++ Class Reference 211

virtual RWCollectable*
find (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the key which isEqual to
the object pointed to by target , or nil if no key was found.

RWCollectable*
findKeyAndValue (const RWCollectable* target,
 RWCollectable*& v) const;

Returns the key which isEqual to the item pointed to by target , or nil if
no key was found. The value is put in v . You are responsible for defining
v before calling this function.

RWCollectable*
findValue (const RWCollectable* target) const;

Returns the value associated with the key which isEqual to the item
pointed to by target , or nil if no key was found.

RWCollectable*
findValue (const RWCollectable* target,
RWCollectable* newValue);

Returns the value associated with the key which isEqual to the item
pointed to by target , or nil if no key was found. Replaces the value with
newValue (if a key was found).

virtual unsigned
hash () const;

Inherited from class RWCollectable.

RWCollectable*
insertKeyAndValue (RWCollectable* key,RWCollectable* value);

Adds a key-value pair to the collection and returns the key if successful,
nil if the key is already in the collection.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWHASHDICTIONARY.

virtual RWBoolean
isEmpty () const;

Inherited from class RWSet.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Inherited from class RWCollectable.

RWHashDictionary

212 Tools.h++ Class Reference

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Inherited from class RWSet. Returns the number of keys which isEqual

to the item pointed to by target . Because duplicates are not allowed, this
function can only return 0 or 1.

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Removes the key and value pair
where the key isEqual to the item pointed to by target . Returns the key,
or nil if no match was found.

virtual void
removeAndDestroy (const RWCollectable* target);

Redefined from class RWCollection. Removes and deletes the key and
value pair where the key isEqual to the item pointed to by target . Note
that both the key and the value are deleted. Does nothing if the key is not
found.

RWCollectable*
removeKeyAndValue (const RWCollectable* target,
 RWCollectable*& v);

Removes the key and value pair where the key isEqual to the item
pointed to by target . Returns the key, or nil if no match was found. The
value part of the removed pair is put in v . You are responsible for
defining v before calling this function.

void
resize (size_t n = 0);

Inherited from class RWSet.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Inherited from class RWCollection.

virtual RWCollection*
select (RWtestCollectable testfunc, void* x) const;

Evaluates the function pointed to by tst for the key of each item in the
RWHashDictionary. It inserts keys and values for which the function
returns TRUE into a new RWHashDictionary allocated off the heap and
returns a pointer to this new collection. Because the new dictionary is
allocated off the heap, you are responsible for deleting it when done. This is

RWHashDictionary

Tools.h++ Class Reference 213

a virtual function which hides the non-virtual function inherited from
RWCollection.

virtual RWCollection*
select (RWtestCollectablePair testfunc, void* x) const;

Evaluates the function pointed to by tst for both the key and the value of
each item in the RWHashDictionary. It inserts keys and values for which
the function returns TRUE into a new RWHashDictionary allocated off the
heap and returns a pointer to this new collection. Because the new
dictionary is allocated off the heap, you are responsible for deleting it when
done. This is a virtual function which hides the non-virtual function
inherited from RWCollection.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 215

RWHashDictionaryIterator

 RWHashDictionaryIterator RWIterator

#include <rw/hashdict.h>

RWHashDictionary hd;
RWHashDictionaryIterator iter(hd);

Iterator for class RWHashDictionary, allowing sequential access to all the
elements of RWHashDictionary. Since RWHashDictionary is unordered,
elements are not accessed in any particular order.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWHashDictionaryIterator (RWHashDictionary&);

Construct an iterator for an RWHashDictionary collection. Immediately
after construction, the position of the iterator is undefined until positioned.

virtual RWCollectable*
operator() ();

Redefined from class RWIterator. Advances the iterator to the next key-
value pair and returns the key. Returns nil if the cursor is at the end of
the collection. Use member function value() to recover the value.

virtual RWCollectable*
findNext (const RWCollectable* target);

Redefined from class RWIterator. Moves the iterator to the next key-value
pair where the key isEqual to the object pointed to by target . Returns
the key or nil if no key was found.

virtual RWCollectable*
key () const;

Redefined from class RWIterator. Returns the key at the current iterator
position.

RWCollectable*
remove ();

Removes the key-value pair at the current iterator position. Returns the
key, or nil if there was no key-value pair.

Synopsis

Description

Persistence

Public
Constructor

Public
Member
Operator

Public
Member

Functions

RWHashDictionaryIterator

216 Tools.h++ Class Reference

RWCollectable*
removeNext (const RWCollectable* target);

Moves the iterator to the next key-value pair where the key isEqual to the
object pointed to by target . Removes the key-value pair, returning the
key or nil if there was no match.

virtual void
reset ();

Redefined from class RWIterator. Inherited from class RWSetIterator.
Resets the iterator to its initial state.

RWCollectable*
value () const;

Returns the value at the current iterator position.

RWCollectable*
value (RWCollectable* newValue) const;

Replaces the value at the current iterator position and returns the old
value.

Tools.h++ Class Reference 217

rw_hashmap

#include <rw/rwstl/hashmap.h>
rw_hashmap<K,V,Hash,EQ> map;

Class rw_hashmap<K,V,Hash,EQ> maintains a collection of mappings
between K and V, implemented as a hash table of pair<const K,V> . Pairs
with duplicate keys are not allowed. Two pairs having duplicate keys is the
result of the EQ comparison, applied to the first element of each, is TRUE.
Since this is a value based collection, objects are copied into and out of the
collection. As with all classes that meet the ANSI associative container
specification, rw_hashmap provides for iterators that reference its elements.
Operations that alter the contents of rw_hashmap may invalidate other
iterators that reference the container. Since the contents of rw_hashmap are
in pseudo-random order, the only iterator ranges that will usually make
sense are the results of calling equal_range(key) , and the entire range from
begin() to end() .

None

typedef K key_type;
typedef Hash key_hash;
typedef EQ key_equal;
typedef pair<K,V> value_type; // or ... “const K”
typedef (unsigned) size_type; //from rw_slist
typedef (int) difference_type; // from rw_slist
typedef (value_type&) reference;
typedef (const value_type&) const_reference; //from rw_slist

Iterators over rw_hashmap<K,V,Hash,EQ> are forward iterators.

typedef (scoped Iterator) iterator;
typedef (scoped ConstIterator) const_iterator;

rw_hashmap <K,V,Hash,EQ>(size_type sz = 1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an empty rw_hashmap<K,V,Hash,EQ> with sz slots, using h as
the hash object, and eq as the equality comparator.

rw_hashmap <K,V,Hash,EQ>(const rw_hashmap<K,V,Hash,EQ>& map);

Construct an rw_hashmap<K,V,Hash,EQ> which is a copy of map. Each
element from map will be copied into self.

Synopsis

Description

Persistence

Public
Typedefs

Public
Constructors

rw_hashmap

218 Tools.h++ Class Reference

rw_hashmap <K,V,Hash,EQ>(const_iterator first,
 const_iterator bound
 size_type sz=1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an rw_hashmap<K,V,Hash,EQ> with sz slots, using h as the
hash object, and eq as the equality comparator, containing a copy of each
pair referenced by the range starting with first and bounded by bound .

rw_hashmap <K,V,Hash,EQ>(const value_type* first,
 const value_type* bound
 size_type sz=1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an rw_hashmap<K,V,Hash,EQ> with sz slots, using h as the
hash object, and eq as the equality comparator, containing a copy of each
pair referenced by the range starting with first and bounded by bound .
If there are items in the range for which the K parts of the pairs match EQ,
then only the first such item will be inserted into self.

~rw_hashmap <K,V,Hash,EQ>();
The destructor releases the memory used by the container’s
implementation.

rw_hashmap<K,V,Hash,EQ>&
operator= (const rw_hashmap<K,V,Hash,EQ>& rhs);

Sets self to have the same capacity, Hash and EQ as rhs , removes all self’s
current contents, and replaces them with copies of the elements in rhs .

bool
operator== (const rw_hashmap<K,V,Hash,EQ> & rhs) const;

Returns true if self and rhs have the same number of elements, and for
each value_type in self, there is a value_type in rhs that has a first part
for which the EQ object in self returns true, and a second part for which
operator==() returns true. The need to test both parts means that this
operator is slightly slower than the method equal_by_keys() described
below.

V&
operator[] (const key_type& key);

Returns a reference to the V part of a pair held in self which has a part EQ

to key , either by finding such a pair, or inserting one (in which case the
reference is to an instance of V created by its default constructor).

iterator
begin ();

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() . Note that because items are stored in pseudo-

Public
Destructor

Public
Operators

Accessors

rw_hashmap

Tools.h++ Class Reference 219

random order, this iterator might reference any item that has been stored
in self.

const_iterator
begin () const;

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() . Note that because items are stored in pseudo-
random order, this iterator might reference any item that has been stored
in self.

iterator
end ();

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

const_iterator
end () const;

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

pair<const_iterator, const_iterator>
equal_range (const key_type key) const;

Returns pair<const_iterator, const_iterator>(lower_bound(key),

upper_bound(key)) . Upper and lower bound have special meaning for
hash-based collections. See discussion elsewhere.

pair<iterator, iterator>
equal_range (const key_type key);

Returns pair<iterator, iterator>(lower_bound(key),

upper_bound(key)) . Upper and lower bound have special meaning for
hash-based collections. See discussion elsewhere.

const_iterator
lower_bound (const key_type& key) const;

Returns the lower bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

iterator
lower_bound (const key_type& key);

Returns the lower bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

const_iterator
upper_bound (const key_type& key) const;

Returns the upper bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

rw_hashmap

220 Tools.h++ Class Reference

iterator
upper_bound (const key_type& key);

Returns the upper bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

size_type
capacity () const;

Returns the number of slots in the hash table that self uses.

bool
empty () const;

Returns true if self is empty.

float
fill_ratio () const;

Returns the result of calculating size()/capacity() .

size_type
size () const;

Returns the number of pairs currently held in self.

void
clear ();

A synonym for erase(begin(),end());

size_type
erase (const key_type& key);

If there is a pair in self for which the first part is EQ to key , that pair is
removed, and 1 is returned. Otherwise, 0 is returned.

iterator
erase (iterator iter);

Removes the element referenced by iter and returns an iterator
referencing the “next” element. If iter does not reference an item in self,
the result is undefined.

iterator
erase (iterator first, iterator bound);

Removes each element in the range which begins with first and is bound
by bound . Returns an iterator referencing bound . If first does not
reference an item in self (and if first and bound are not equal), the effect
is undefined.

pair<iterator,bool>
insert (const value_type& val);

If there is no pair in self with first part EQ to the first part of val then
inserts val , returning a pair with an iterator referencing the new element
and true. Otherwise, returns a pair with an iterator referencing the
matching value_type and false.

Const Public
Member

Functions

Mutators

rw_hashmap

Tools.h++ Class Reference 221

size_type
insert (iterator ignore, const value_type& val);

If there is no pair in self with first part EQ to the first part of val then
inserts val , returning 1. Otherwise, does nothing and returns 0. Note that
the first argument is provided only for conformance with the ANSI
associative container specification, and is ignored by the method, since hash
table look up can be done in constant time.

size_type
insert (const value_type* first, const value_type* bound);

For each element in the range beginning with first and bounded by
bound, if there is no pair in self with first part EQ to the first part of that
element, the element is copied into self, or if there is such a pair, the
element is skipped. Returns the number of elements inserted.

size_type
insert (const_iterator first, const_iterator bound);

For each element in the range beginning with first and bounded by
bound, if there is no pair in self with first part EQ to the first part of that
element, the element is copied into self, or if there is such a pair, the
element is skipped. Returns the number of elements inserted.

void
swap(rw_hashmap<K,V,Hash,EQ>& other);

Exchanges the contents of self with other including the Hash and EQ

objects. This method does not copy or destroy any of the items exchanged
but exchanges the underlying hash tables.

size_type
count (const key_type& key) const;

Returns 1 if self contains a pair with its first element EQ to key , else 0.

bool
equal_by_keys (const rw_hashmap<K,V,Hash,EQ>& rhs) const;

Returns true if self and rhs have the same size, and if for each value_type

in self, there is a value_type in rhs such that the EQ object in self returns
true when called for the first parts of those pairs. Note that this method
does not compare the V (second) part of the pair of the items, so it will run
slightly faster than operator==() .

const_iterator
find (const key_type& key) const;

Returns a const_iterator referencing the pair with key as its first element if
such a pair is contained in self, else returns end() .

Special
Methods for

Maps

rw_hashmap

222 Tools.h++ Class Reference

iterator
find (const key_type& key);

Returns an iterator referencing the pair with key as its first element, if such
a pair is contained in self, else returns end() .

void
resize (size_type sz);

Resizes self’s hash table to have sz slots; and re-hashes all self’s elements
into the new table. Can be very expensive if self holds many elements.

Tools.h++ Class Reference 223

rw_hashmultimap

#include <rw/rwstl/hashmmap.h>
rw_hashmultimap<K,V,Hash,EQ> mmap;

Class rw_hashmultimap<K,V,Hash,EQ> maintains a collection of mappings
between K and V, implemented as a hash table of pair<const K,V> in which
there may be many pairs with the same K instance. Since this is a value based
collection, objects are copied into and out of the collection. As with all classes
that meet the ANSI associative container specification, rw_hashmap provides
for iterators that reference its elements. Operations that alter the contents of
rw_hashmap may invalidate other iterators that reference the container.
Since the contents of rw_hashmap are in pseudo-random order, the only
iterator ranges that will usually make sense are the results of calling
equal_range(key) , and the entire range from begin() to end() .

None

typedef K key_type;
typedef Hash key_hash;
typedef EQ key_equal;
typedef pair<K,V> value_type; // or ... “const K”
typedef (unsigned) size_type; //from rw_slist
typedef (int) difference_type; // from rw_slist
typedef (value_type&) reference;
typedef (const value_type&) const_reference; //from rw_slist

Iterators over rw_hashmultimap<K,V,Hash,EQ> are forward iterators.

typedef (scoped Iterator) iterator;
typedef (scoped ConsIterator) const_iterator;

rw_hashmultimap<K,V,Hash,EQ> (size_type sz = 1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an empty rw_hashmultimap<K,V,Hash,EQ> with sz slots,
using h as the hash object, and eq as the equality comparator.

rw_hashmultimap<K,V,Hash,EQ> (const
 rw_hashmultimap<K,V,Hash,EQ>& mmap);

Construct an rw_hashmultimap<K,V,Hash,EQ> which is a copy of mmap.
Each element from mmap will be copied into self.

Synopsis

Description

Persistence

Public
Typedefs

Public
Constructors

rw_hashmultimap

224 Tools.h++ Class Reference

rw_hashmultimap<K,V,Hash,EQ> (const_iterator first,
 const_iterator bound
 size_type sz=1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an rw_hashmultimap<K,V,Hash,EQ> with sz slots, using h as
the hash object, and eq as the equality comparator, containing a copy of
each pair referenced by the range starting with first and bounded by
bound .

rw_hashmultimap<K,V,Hash,EQ> (const value_type* first,
 const value_type* bound
 size_type sz=1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an rw_hashmultimap<K,V,Hash,EQ> with sz slots, using h as
the hash object, and eq as the equality comparator, containing a copy of
each pair referenced by the range starting with first and bounded by
bound .

~rw_hashmultimap<K,V,Hash,EQ> ();
The destructor releases the memory used by the container’s
implementation.

rw_hashmultimap<K,V,Hash,EQ>&
operator= (const rw_hashmultimap<K,V,Hash,EQ>& rhs);

Sets self to have the same capacity, Hash and EQ as rhs , removes all self’s
current contents, and replaces them with copies of the elements in rhs .

bool
operator== (const rw_hashmultimap<K,V,Hash,EQ> & rhs) const;

Returns true if self and rhs have the same number of elements, and for
each value_type in self, there is exactly one corresponding value_type in
rhs that has a first part for which the EQ object in self returns true, and a
second part for which operator==() returns true. The need to test both
parts, and ensure that the matches are one-to-one means that this operator
may be significantly slower than the method equal_by_keys() described
below.

iterator
begin ();

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() . Note that because items are stored in pseudo-
random order, this iterator might reference any item that has been stored
in self.

Public
Destructor

Public
Operators

Accessors

rw_hashmultimap

Tools.h++ Class Reference 225

const_iterator
begin () const;

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() . Note that because items are stored in pseudo-
random order, this iterator might reference any item that has been stored
in self.

iterator
end ();

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

const_iterator
end () const;

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

pair<const_iterator, const_iterator>
equal_range (const key_type key) const;

Returns pair<const_iterator,const_iterator>(lower_bound(key),

upper_bound(key)) . Upper and lower bound have special meaning for
hash-based collections. See discussion elsewhere.

pair<iterator, iterator>
equal_range (const key_type key);

Returns pair<iterator,iterator>(lower_bound(key),

upper_bound(key)) . Upper and lower bound have special meaning for
hash-based collections. See discussion elsewhere.

const_iterator
lower_bound (const key_type& key) const;

Returns the lower bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

iterator
lower_bound (const key_type& key);

Returns the lower bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

const_iterator
upper_bound (const key_type& key) const;

Returns the upper bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

iterator
upper_bound (const key_type& key);

Returns the upper bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

rw_hashmultimap

226 Tools.h++ Class Reference

size_type
capacity () const;

Returns the number of slots in the hash table that self uses.

bool
empty () const;

Returns true if self is empty.

float
fill_ratio () const;

Returns the result of calculating size()/capacity() .

size_type
size () const;

Returns the number of items currently held in self.

void
clear ();

A synonym for erase(begin(),end());

size_type
erase (const key_type& key);

Removes all pairs in self for which the first part is EQ to key , and returns
the number of removed elements.

iterator
erase (iterator iter);

Removes the element referenced by iter and returns an iterator
referencing the “next” element. If iter does not reference an item in self,
the result is undefined.

iterator
erase (iterator first, iterator bound);

Removes each element in the range which begins with first and is bound
by bound . Returns an iterator referencing bound . If first does not
reference an item in self (and if first and bound are not equal), the effect
is undefined.

pair<iterator,bool>
insert (const value_type& val);

Inserts the pair, val , and returns a pair with an iterator referencing the
new element and true .

size_type
insert (iterator ignore, const value_type& val);

Inserts the pair, val , returning 1. Note that the first argument is provided
only for conformance with the ANSI associative container specification, and
is ignored by the method, since hash table look up can be done in constant
time.

Const Public
Member

Functions

Mutators

rw_hashmultimap

Tools.h++ Class Reference 227

size_type
insert (const value_type* first, const value_type* bound);

For each element in the range beginning with first and bounded by
bound , the element is copied into self. Returns the number of elements
inserted.

size_type
insert (const_iterator first, const_iterator bound);

For each element in the range beginning with first and bounded by
bound , the element is copied into self. Returns the number of elements
inserted.

void
swap(rw_hashmultimap<K,V,Hash,EQ>& other);

Exchanges the contents of self with other including the Hash and EQ

objects. This method does not copy or destroy any of the items exchanged
but exchanges the underlying hash tables.

size_type
count (const key_type& key) const;

Returns the number of pairs in self which have key EQ to their first
element.

bool
equal_by_keys (const rw_hashmultimap<K,V,Hash,EQ>& rhs) const;

Returns true if self and rhs have the same size, and if for each distinct
key_type in self, self and rhs have the same number of pairs with first
parts that test EQ to that instance. Note that this method does not compare
the V (second) part of the pair of the items, so it will run slightly faster than
operator==() .

const_iterator
find (const key_type& key) const;

Returns a const_iterator referencing some pair with key as its first element,
if such a pair is contained in self, else returns end() .

iterator
find (const key_type& key);

Returns an iterator referencing some pair with key as its first element, if
such a pair is contained in self, else returns end() .

void
resize (size_type sz);

Resizes self’s hash table to have sz slots; and re-hashes all self’s elements
into the new table. Can be very expensive if self holds many elements.

Special
Methods for

Multimaps

Tools.h++ Class Reference 229

rw_hashmultiset

#include <rw/rwstl/hashmset.h>
rw_hashmultiset<T,Hash,EQ> mset;

Class rw_hashmultiset<T,Hash,EQ> maintains a collection of T,
implemented as a hash table in which there may be many EQ instances of T.
Since this is a value based collection, objects are copied into and out of the
collection. As with all classes that meet the ANSI associative container
specification, rw_hashmap provides for iterators that reference its elements.
Operations that alter the contents of rw_hashmap may invalidate other
iterators that reference the container. Since the contents of rw_hashmap are
in pseudo-random order, the only iterator ranges that will usually make
sense are the results of calling equal_range(key) , and the entire range from
begin() to end() .

None

typedef T key_type;
typedef T value_type; // or ... “const K”
typedef Hash key_hash;
typedef EQ key_equal;
typedef (unsigned) size_type; //from rw_slist
typedef (int) difference_type; // from rw_slist
typedef (value_type&) reference;
typedef (const value_type&) const_reference; //from rw_slist

Iterators over rw_hashmultiset<T,Hash,EQ> are forward iterators.

typedef (scoped Iterator) iterator;
typedef (scoped ConsIterator) const_iterator;

rw_hashmultiset<T,Hash,EQ> (size_type sz = 1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an empty rw_hashmultiset<T,Hash,EQ> with sz slots, using h
as the hash object, and eq as the equality comparator.

rw_hashmultiset<T,Hash,EQ> (const rw_hashmultiset<T,Hash,EQ>&
 mset);

Construct an rw_hashmultiset<T,Hash,EQ> which is a copy of mset . Each
element from mset will be copied into self.

Synopsis

Description

Persistence

Public
Typedefs

Public
Constructors

rw_hashmultiset

230 Tools.h++ Class Reference

rw_hashmultiset<T,Hash,EQ> (const_iterator first,
 const_iterator bound
 size_type sz=1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an rw_hashmultiset<T,Hash,EQ> with sz slots, using h as the
hash object, and eq as the equality comparator, containing a copy of each
item referenced by the range starting with first and bounded by bound .

rw_hashmultiset<T,Hash,EQ> (const value_type* first,
 const value_type* bound
 size_type sz=1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an rw_hashmultiset<T,Hash,EQ> with sz slots, using h as the
hash object, and eq as the equals object, containing a copy of each item
referenced by the range including first and bounded by bound .

~rw_hashmultiset<T,Hash,EQ> ();
The destructor releases the memory used by the container’s
implementation.

rw_hashmultiset<T,Hash,EQ>&
operator= (const rw_hashmultiset<T,Hash,EQ>& rhs);

Sets self to have the same capacity, Hash and EQ as rhs , removes all self’s
current contents, and replaces them with copies of the elements in rhs .

bool
operator== (const rw_hashmultiset<T,Hash,EQ> & rhs) const;

Returns true if self and rhs have the same number of elements, and for
each distinct instance of T in self, both self and rhs have the same count of
instances.

iterator
begin ();

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() . Note that because items are stored in pseudo-
random order, this iterator might reference any item that has been stored
in self.

const_iterator
begin () const;

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() . Note that because items are stored in pseudo-
random order, this iterator might reference any item that has been stored
in self.

Public
Destructor

Public
Operators

Accessors

rw_hashmultiset

Tools.h++ Class Reference 231

iterator
end ();

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

const_iterator
end () const;

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

pair<const_iterator, const_iterator>
equal_range (const key_type key) const;

Returns pair<const_iterator, const_iterator>(lower_bound(key),

upper_bound(key)) . Upper and lower bound have special meaning for
hash-based collections. See discussion elsewhere.

pair<iterator, iterator>
equal_range (const key_type key);

Returns pair<iterator, iterator>(lower_bound(key),

upper_bound(key)) . Upper and lower bound have special meaning for
hash-based collections. See discussion elsewhere.

const_iterator
lower_bound (const key_type& key) const;

Returns the lower bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

iterator
lower_bound (const key_type& key);

Returns the lower bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

const_iterator
upper_bound (const key_type& key) const;

Returns the upper bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

iterator
upper_bound (const key_type& key);

Returns the upper bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

size_type
capacity () const;

Returns the number of slots in the hash table that self uses.

bool
empty () const;

Returns true if self is empty.

Const Public
Member

Functions

rw_hashmultiset

232 Tools.h++ Class Reference

float
fill_ratio () const;

Returns the result of calculating size()/capacity() .

size_type
size () const;

Returns the number of items currently held in self.

void
clear ();

A synonym for erase(begin(),end());

size_type
erase (const key_type& key);

Removes all items in self which are EQ to key , and returns the number of
removed elements.

iterator
erase (iterator iter);

Removes the element referenced by iter and returns an iterator
referencing the “next” element. If iter does not reference an item in self,
the result is undefined.

iterator
erase (iterator first, iterator bound);

Removes each element in the range which begins with first and is bound
by bound . Returns an iterator referencing bound . If first does not
reference an item in self (and if first and bound are not equal), the effect
is undefined.

pair<iterator,bool>
insert (const value_type& val);

Inserts val , returning a pair with an iterator referencing the new element
and true.

size_type
insert (iterator ignore, const value_type& val);

Inserts val , returning 1. Note that the first argument is provided only for
conformance with the ANSI associative container specification, and is
ignored by the method, since hash table look up can be done in constant
time.

size_type
insert (const value_type* first, const value_type* bound);

For each element in the range beginning with first and bounded by
bound , the element is copied into self. Returns the number of elements
inserted.

Mutators

rw_hashmultiset

Tools.h++ Class Reference 233

size_type
insert (const_iterator first, const_iterator bound);

For each element in the range beginning with first and bounded by
bound , the element is copied into self. Returns the number of elements
inserted.

void
swap(rw_hashmultiset<T,Hash,EQ>& other);

Exchanges the contents of self with other including the Hash and EQ

objects. This method does not copy or destroy any of the items exchanged
but exchanges the underlying hash tables.

size_type
count (const key_type& key) const;

Returns the number of items in self which are EQ to key .

const_iterator
find (const key_type& key) const;

Returns a const_iterator referencing some item EQ to key if such an item
is contained in self, else returns end() .

iterator
find (const key_type& key);

Returns an iterator referencing some item EQ to key if such a item is
contained in self, else returns end() .

void
resize (size_type sz);

Resizes self’s hash table to have sz slots; and re-hashes all self’s elements
into the new table. Can be very expensive if self holds many elements.

Special
Methods for

Multisets

Tools.h++ Class Reference 235

rw_hashset

#include <rw/rwstl/hashset.h>
rw_hashset<T,Hash,EQ> set;

Class rw_hashset<T,Hash,EQ> maintains a collection of T, implemented as a
hash table in which there may not be more than one instance of any given T.
Since this is a value based collection, objects are copied into and out of the
collection. As with all classes that meet the ANSI associative container
specification, rw_hashset provides for iterators that reference its elements.
Operations that alter the contents of rw_hashset may invalidate other
iterators that reference the container. Since the contents of rw_hashset are in
pseudo-random order, the only iterator ranges that will usually make sense
are the results of calling equal_range(key) , and the entire range from
begin() to end() .

None

typedef T key_type;
typedef T value_type; // or ... “const K”
typedef Hash key_hash;
typedef EQ key_equal;
typedef (unsigned) size_type; //from rw_slist
typedef (int) difference_type; // from rw_slist
typedef (value_type&) reference;
typedef (const value_type&) const_reference; //from rw_slist

Iterators over rw_hashset<T,Hash,EQ> are forward iterators.

typedef (scoped Iterator) iterator;
typedef (scoped ConsIterator) const_iterator;

rw_hashset<T,Hash,EQ> (size_type sz = 1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an empty rw_hashset<T,Hash,EQ> with sz slots, using h as the
hash object, and eq as the equality comparator.

rw_hashset<T,Hash,EQ> (const rw_hashset<T,Hash,EQ>& set);

Construct an rw_hashset<T,Hash,EQ> which is a copy of set . Each
element from set will be copied into self.

Synopsis

Description

Persistence

Public
Typedefs

Public
Constructors

rw_hashset

236 Tools.h++ Class Reference

rw_hashset<T,Hash,EQ> (const_iterator first,
 const_iterator bound
 size_type sz=1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an rw_hashset<T,Hash,EQ> with sz slots, using h as the hash
object, and eq as the equality comparator, containing a copy of each item
referenced by the range starting with first and bounded by bound .

rw_hashset<T,Hash,EQ> (const value_type* first,
 const value_type* bound
 size_type sz=1024,
 const Hash& h = Hash(),
 const EQ& eq = EQ());

Construct an rw_hashset<T,Hash,EQ> with sz slots, using h as the hash
object, and eq as the equality comparator, containing a copy of each item
referenced by the range starting with first and bounded by bound . If
there are items in the range which test EQ, then only the first such item will
be inserted into self.

~rw_hashset<T,Hash,EQ> ();
The destructor releases the memory used by the container’s
implementation.

rw_hashset<T,Hash,EQ>&
operator= (const rw_hashset<T,Hash,EQ>& rhs);

Sets self to have the same capacity, Hash and EQ as rhs , removes all self’s
current contents, and replaces them with copies of the elements in rhs .

bool
operator== (const rw_hashset<T,Hash,EQ> & rhs) const;

Returns true if self and rhs have the same number of elements, and for
each item in self there is an item in rhs which tests EQ.

iterator
begin ();

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() . Note that because items are stored in pseudo-
random order, this iterator might reference any item that has been stored
in self.

const_iterator
begin () const;

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() . Note that because items are stored in pseudo-
random order, this iterator might reference any item that has been stored
in self.

Public
Destructor

Public
Operators

Accessors

rw_hashset

Tools.h++ Class Reference 237

iterator
end ();

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

const_iterator
end () const;

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

pair<const_iterator, const_iterator>
equal_range (const key_type key) const;

Returns pair<const_iterator, const_iterator>(lower_bound(key),

upper_bound(key)) . Upper and lower bound have special meaning for
hash-based collections. See discussion elsewhere.

pair<iterator, iterator>
equal_range (const key_type key);

Returns pair<iterator,iterator>(lower_bound(key),

upper_bound(key)) . Upper and lower bound have special meaning for
hash-based collections. See discussion elsewhere.

onst_iterator
lower_bound (const key_type& key) const;

Returns the lower bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

iterator
lower_bound (const key_type& key);

Returns the lower bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

const_iterator
upper_bound (const key_type& key) const;

Returns the upper bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

iterator
upper_bound (const key_type& key);

Returns the upper bound of key in self. This has a special meaning for
hash-based collections. See discussion elsewhere.

size_type
capacity () const;

Returns the number of slots in the hash table that self uses.

bool
empty () const;

Returns true if self is empty.

Const Public
Member

Functions

rw_hashset

238 Tools.h++ Class Reference

float
fill_ratio () const;

Returns the result of calculating size()/capacity() .

size_type
size () const;

Returns the number of items currently held in self.

void
clear ();

A synonym for erase(begin(),end());

size_type
erase (const key_type& key);

If there is an item EQ to key , it is removed, and 1 is returned. Otherwise, 0
is returned.

iterator
erase (iterator iter);

Removes the element referenced by iter and returns an iterator
referencing the “next” element. If iter does not reference an item in self,
the result is undefined.

iterator
erase (iterator first, iterator bound);

Removes each element in the range which begins with first and is
bounded by bound . Returns an iterator referencing bound . If first does
not reference an item in self (and if first and bound are not equal), the
effect is undefined.

pair<iterator,bool>
insert (const value_type& val);

If there is no item in self EQ to val then inserts val , returning a pair with
an iterator referencing the new element and true. Otherwise, returns a
pair with an iterator referencing the matching value_type and false.

size_type
insert (iterator ignore, const value_type& val);

If there is no item in self EQ to val then inserts val , returning 1.
Otherwise, does nothing and returns 0. Note that the first argument is
provided only for conformance with the ANSI associative container
specification, and is ignored by the method, since hash table look up can
be done in constant time.

size_type
insert (const value_type* first, const value_type* bound);

For each element in the range beginning with first and bounded by
bound, if there is no item in self EQ to that element, the element is copied

Mutators

rw_hashset

Tools.h++ Class Reference 239

into self, or if there is such an element, it is skipped. Returns the number
of elements inserted.

size_type
insert (const_iterator first, const_iterator bound);

For each element in the range beginning with first and bounded by
bound, if there is no item in self EQ to that element, the element is copied
into self, or if there is such an element, it is skipped. Returns the number
of elements inserted.

void
swap(rw_hashset<T,Hash,EQ>& other);

Exchanges the contents of self with other including the Hash and EQ

objects. This method does not copy or destroy any of the items exchanged
but exchanges the underlying hash tables.

size_type
count (const key_type& key) const;

Returns 1 if self contains key , else 0.

const_iterator
find (const key_type& key) const;

Returns a const_iterator referencing key , if it is contained in self, else
returns end() .

iterator
find (const key_type& key);

Returns an iterator referencing key , if it is contained in self, else returns
end() .

void
resize (size_type sz);

Resizes self’s hash table to have sz slots; and re-hashes all self’s elements
into the new table. Can be very expensive if self holds many elements.

Special
Methods for

Sets

Tools.h++ Class Reference 241

RWHashTable

RWHashTable RWCollection RWCollectable

#include <rw/hashtab.h>
RWHashTable h ;

This class is a simple hash table for objects inheriting from RWCollectable.
It uses chaining (as implemented by class RWSlistCollectables) to resolve
hash collisions. Duplicate objects are allowed.

An object stored by RWHashTable must inherit from the abstract base class
RWCollectable, with suitable definition for virtual functions hash() and
isEqual() (see class RWCollectable).

To find an object that matches a key, the key’s virtual function hash() is first
called to determine in which bucket the object occurs. The bucket is then
searched linearly by calling the virtual function isEqual() for each
candidate, with the key as the argument. The first object to return TRUE is
the returned object.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of items in the collection greatly exceeds the
number of buckets then efficiency will sag because each bucket must be
searched linearly. The number of buckets can be changed by calling member
function resize(). This will require that all objects be rehashed.

The iterator for this class is RWHashTableIterator.

None

hashtab.cpp
#include <rw/hashtab.h>
#include <rw/colldate.h>
#include <rw/rstream.h>

main(){
 RWHashTable table;
 RWCollectableDate *july
 = new RWCollectableDate(7, “July”, 1990);
 RWCollectableDate *may
 = new RWCollectableDate (1, “May”, 1977);
 RWCollectableDate *feb
 = new RWCollectableDate (22, “Feb”, 1983);
 RWCollectableDate *aug
 = new RWCollectableDate (2, “Aug”, 1966);

 table.insert(july);
 table.insert(may);
 table.insert(feb);

Synopsis

Description

Persistence

Example

RWHashTable

242 Tools.h++ Class Reference

 table.insert(aug);

 cout << “Table contains “ << table.entries() << “ entries.\n”;
 RWCollectableDate key(22, "Feb", 1983);
 cout << “It does “;
 if (!table.contains(&key)) cout << “not “;
 cout << “contain the key “ << key << endl;

 delete july;
 delete may;
 delete feb;
 delete aug;
 return 0;
}

Program output:

Table contains 4 entries.
It does contain the key February 22, 1983

RWHashTable(size_t N = RWCollection::DEFAULT_CAPACITY);
Construct an empty hash table with N buckets.

RWHashTable(const RWHashTable& t);
Copy constructor. Create a new hash table as a shallow copy of the table
t . The new table will have the same number of buckets as the old table.
Hence, the members need not be and will not be rehashed.

void
operator= (const RWHashTable& t);

Assignment operator. Sets self as a shallow copy of t . Afterwards, the
two tables will have the same number of buckets. Hence, the members
need not be and will not be rehashed.

RWBoolean
operator== (const RWHashTable& t) const;

Returns TRUE if self and t have the same number of elements and if for
every key in self there is a corresponding key in t which isEqual .

RWBoolean
operator<= (const RWHashTable& t) const;

Returns TRUE if self is a subset of t , that is, every element of self has a
counterpart in t which isEqual . Note: If you inherit from RWHashTable
in the presence of the Standard C++ Library, we recommend that you
override this operator and explicitly forward the call. Overload resolution
in C++ will choose the Standard Library provided global operators over
inherited class members. These global definitions are not appropriate for
set-like partial orderings.

Public
Constructors

Public
Operators

RWHashTable

Tools.h++ Class Reference 243

RWBoolean
operator!= (const RWHashTable&) const;

Returns the negation of operator==() , above.

virtual void
apply (RWapplyCollectable ap, void*);

Redefined from RWCollection. The function pointed to by ap will be
called for each member in the collection. Because of the nature of hashing
collections, this will not be done in any particular order. The function
should not do anything that could change the hash value or equality
properties of the objects.

virtual RWspace
binaryStoreSize () const;

Inherited from RWCollection.

virtual void
clear ();

Redefined from RWCollection.

virtual void
clearAndDestroy ();

Inherited from RWCollection.

virtual int
compareTo (const RWCollectable*) const;

Inherited from RWCollection.

virtual RWBoolean
contains (const RWCollectable*) const;

Inherited from RWCollection.

virtual size_t
entries () const;

Redefined from RWCollection.

virtual RWCollectable*
find (const RWCollectable*) const;

Redefined from RWCollection.

virtual unsigned
hash () const;

Inherited from RWCollection.

virtual RWCollectable*
insert (RWCollectable* a);

Redefined from RWCollection. Returns a if successful, nil otherwise.

Member
Functions

RWHashTable

244 Tools.h++ Class Reference

virtual RWClassID
isA () const;

Redefined from RWCollection to return __RWHASHTABLE.

virtual RWBoolean
isEmpty () const;

Redefined from RWCollection.

virtual RWBoolean
isEqual (const RWCollectable*) const;

Redefined from RWCollection.

virtual RWCollectable*
newSpecies () const;

Redefined from RWCollection.

virtual size_t
occurrencesOf (const RWCollectable*) const;

Redefined from RWCollection.

virtual RWCollectable*
remove (const RWCollectable*);

Redefined from RWCollection.

virtual void
removeAndDestroy (const RWCollectable*);

Inherited from RWCollection.

virtual void
resize (size_t n = 0);

Resizes the internal hash table to have n buckets. This causes rehashing all
the members of the collection. If n is zero, then an appropriate size will be
picked automatically.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Inherited from class RWCollection.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 245

RWHashTableIterator

RWHashTableIterator RWIterator

#include <rw/hashtab.h>
RWHashTable h;
RWHashTableIterator it(h);

Iterator for class RWHashTable, which allows sequential access to all the
elements of RWHashTable. Note that because an RWHashTable is
unordered, elements are not accessed in any particular order.

As with all Rogue Wave iterators, the “current item” is undefined
immediately after construction — you must define it by using operator() or
some other (valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWHashTableIterator (RWHashTable&);

Construct an iterator for an RWHashTable. After construction, the
position of the iterator is undefined.

virtual RWCollectable*
operator() ();

Redefined from class RWIterator. Advances the iterator to the next item
and returns it. Returns nil when the end of the collection is reached.

virtual RWCollectable*
findNext (const RWCollectable* target);

Redefined from class RWIterator. Moves iterator to the next item which
isEqual to the item pointed to by target and returns it.

virtual RWCollectable*
key () const;

Redefined from class RWIterator. Returns the item at the current iterator
position.

RWCollectable*
remove ();

Remove the item at the current iterator position from the collection.

Synopsis

Description

Persistence

Public
Constructor

Public
Member
Operator

Public
Member

Functions

RWHashTableIterator

246 Tools.h++ Class Reference

RWCollectable*
removeNext (const RWCollectable*);

Moves the iterator to the next item which isEqual to the item pointed to
by target , removes it from the collection and returns it. If no item is
found, returns nil and the position of the iterator will be undefined.

virtual void
reset ();

Redefined from class RWIterator. Resets the iterator to its starting state.

Tools.h++ Class Reference 247

RWIdentityDictionary

RWIdentityDictionary RWHashDictionary RWSet RWHashTable …
… RWCollection RWCollectable

#include <rw/idendict.h>
// Smalltalk typedef:
typedef RWIdentityDictionary IdentityDictionary;
RWIdentityDictionary a;

The class RWIdentityDictionary is implemented as a hash table, for the
storage and retrieval of key-value pairs. Class RWIdentityDictionary is
similar to class RWHashDictionary except that items are found by requiring
that they be identical (i.e., have the same address) as the key, rather than
being equal (i.e., test true for isEqual()).

Both keys and values must inherit from the abstract base class RWCollectable.

The iterator for this class is RWHashDictionaryIterator.

None

RWIdentityDictionary (size_t n = RWDEFAULT_CAPACITY);
Construct an empty identity dictionary with n hashing buckets.

RWBoolean
operator<= (const RWIdentityDictionary& t) const;

Returns TRUE if self is a subset of t , that is, every element of self has a
counterpart in t which isEqual . This operator is not explicitly present
unless you are compiling with an implementation of the Standard C++
Library. It is normally inherited from RWHashDictionary.

Note: If you inherit from RWIdentityDictionary in the presence of the
Standard C++ Library, we recommend that you override this operator and
explicitly forward the call. Overload resolution in C++ will choose the
Standard Library provided global operators over inherited class members.
These global definitions are not appropriate for set-like partial orderings.

The user interface to this class is identical to class RWHashDictionary and is
not reproduced here. The only difference between the classes is that keys are
found on the basis of identity rather than equality, and that the virtual
function isA() returns __RWIDENTITYDICTIONARY, the ClassId for
RWIdentityDictionary.

Synopsis

Description

Persistence

Public
Constructor

Public
Operator

Public
Member

Functions

Tools.h++ Class Reference 249

RWIdentitySet

RWIdentitySet RWSet RWHashTable RWCollection RWCollectable

#include <rw/idenset.h>
typedef RWIdentitySet IdentitySet; // Smalltalk typedef
RWIdentitySet a;

The class RWIdentitySet is similar to class RWSet except that items are
found by requiring that they be identical (i.e., have the same address) as the
key, rather than being equal (i.e., test true for isEqual()).

The iterator for this class is RWSetIterator.

Polymorphic

RWIdentitySet (size_t n = RWDEFAULT_CAPACITY);
Construct an empty identity set with n hashing buckets.

The user interface to this class is identical to class RWSet and is not
reproduced here. The only difference between the classes is that keys are
found on the basis of identity rather than equality, and that the virtual
function isA() returns __RWIDENTITYSET, the ClassId for RWIdentitySet.

Synopsis

Description

Persistence

Public
Constructor

Public
Member

Functions

Tools.h++ Class Reference 251

RWInteger

#include <rw/rwint.h>
RWInteger i;

Integer class. This class is useful as a base class for classes that use integers
as keys in dictionaries, etc.

Isomorphic

RWInteger ();

Construct an RWInteger with value zero (0).

RWInteger (int i);

Construct an RWInteger with value i . Serves as a type conversion from
int .

operator
int ();

Type conversion to int .

RWspace
binaryStoreSize () const;

Returns the number of bytes necessary to store the object using the global
function:

RWFile& operator<< (RWFile&, const RWInteger&);

int
value () const;

Returns the value of the RWInteger.

int
value (int newval);

Changes the value of the RWInteger to newval and returns the old value.

ostream&
operator<< (ostream& o, const RWInteger& x);

Output x to ostream o .

istream&
operator>> (istream& i, RWInteger& x);

Input x from istream i .

Synopsis

Description

Persistence

Public
Constructors

Type
Conversion

Public
Member

Functions

Related
Global

Operators

RWInteger

252 Tools.h++ Class Reference

RWvostream&
operator<< (RWvostream&, const RWInteger& x);
RWFile&
operator<< (RWFile&, const RWInteger& x);

Saves the RWInteger x to a virtual stream or RWFile, respectively.

RWvistream&
operator>> (RWvistream&, RWInteger& x);
RWFile&
operator>> (RWFile&, RWInteger& x);

Restores an RWInteger into x from a virtual stream or RWFile,
respectively, replacing the previous contents of x .

Tools.h++ Class Reference 253

RWIterator

#include <rw/iterator.h>
typedef RWIterator Iterator; // “Smalltalk” typedef

Class RWIterator is an abstract base class for iterators used by the Smalltalk-
like collection classes. The class contains virtual functions for positioning
and resetting the iterator. They are all pure virtual functions, meaning that
deriving classes must supply a definition. The descriptions below are
intended to be generic — all inheriting iterators generally follow the
described pattern.

None

virtual RWCollectable*
findNext (const RWCollectable* target) = 0;

Moves the iterator forward to the next item which “matches” the object
pointed to by target and returns it or nil if no item was found. For most
collections, an item “matches” the target if either isEqual() or
compareTo() indicate equivalence, whichever is appropriate for the actual
collection type. However, when an iterator is used with an “identity
collection” (i.e., RWIdentitySet and RWIdentityDictionary), it looks for an
item with the same address (i.e., “is identical to”).

virtual RWCollectable*
key () const = 0;

Returns the item at the current iterator position.

virtual RWCollectable*
operator ()() = 0;

Advances the iterator and returns the next item, or nil if the end of the
collection has been reached.

virtual void
reset () = 0;

Resets the iterator to the state it had immediately after construction.

Synopsis

Description

Persistence

Public Virtual
Functions

Tools.h++ Class Reference 255

RWLocale

#include <locale.h>
#include <rw/locale.h>

(Abstract base class)

RWLocale is an abstract base class. It defines an interface for formatting
dates (including day and month names), times, numbers (including digit
grouping), and currency, to and from strings.

Note that because it is an abstract base class, there is no way to actually
enforce these goals — the description here is merely the model of how a class
derived from RWLocale should act.

There are three ways to use an RWLocale object:

• By passing the object to functions which expect one, such as
RWDate::asString().

• By specifying a “global” locale using the static member function
RWLocale::global(RWLocale*). This locale is passed as the default
argument to functions that use a locale.

• By “imbuing” a stream with the object, so that when an RWDate or
RWTime is written to a stream using operator<<() , the appropriate
formatting will be used automatically.

Two implementations of RWLocale are provided with the library:

• Class RWLocaleSnapshot encapsulates the Standard C library locale
facility, with two additional advantages: more than one locale can be
active at the same time; and it supports conversions from strings to other
types.

• There is also an internal class that mimics RWLocaleSnapshot(“C”) . If
your compiler does not have built-in support for locales, one is
constructed automatically at program startup to be used as the default
value of RWLocale::global() . If your compiler does support locales,
RWLocale::global() returns a const reference to an instance of
RWLocaleSnapshot(“C”) .

None

Synopsis

Description

Persistence

RWLocale

256 Tools.h++ Class Reference

enum
CurrSymbol { NONE, LOCAL, INTL };

Controls whether no currency symbol, the local currency symbol, or the
international currency symbol should be used to format currency.

virtual RWCString
asString (long) const = 0;
virtual RWCString
asString (unsigned long) const = 0;

Converts the number to a string (e.g., “3,456”).

virtual RWCString
asString (double f, int precision = 6,
RWBoolean showpoint = 0) const = 0;

Converts the double f to a string. The variable precision is the number
of digits to place after the decimal separator. If showpoint is TRUE, the
decimal separator will appear regardless of the precision.

virtual RWCString
asString (const struct tm* tmbuf,char format,
const RWZone& zone) const = 0;

Converts components of the struct tm object to a string, according to the
format character. The meanings assigned to the format character are
identical to those used in the Standard C Library function strftime() .
The members of struct tm are assumed to be set consistently. See Table 1
for a summary of strftime() formatting characters.

RWCString
asString (const struct tm* tmbuf,const char* format,
 const RWZone& zone) const;

Converts components of the struct tm object to a string, according to the
format string. Each format character in the format string must be preceded
by %. Any characters not preceded by % are treated as ordinary characters
which are returned unchanged. You may represent the special character %
with "%%". The meanings assigned to the format character are identical to
those used in the Standard C Library function strftime() . The members
of struct tm are assumed to be set consistently. See Table 1 for a
summary of strftime() formatting characters. This function is not
virtual in order to maintain link-compatibility with the previous version of
the library.

virtual RWCString
moneyAsString (double value,enum CurrSymbol = LOCAL)
 const = 0;

Returns a string containing the value argument formatted according to
monetary conventions for the locale. The value argument is assumed to
contain an integer representing the number of units of currency (e.g.,
moneyAsString(1000., RWLocale::LOCAL) in a US locale would yield

Enumeration

Public
Member

Functions

RWLocale

Tools.h++ Class Reference 257

“$10.00 ”). The CurrSymbol argument determines whether the local (e.g.,
“$”) or international (e.g., “USD “) currency symbol is applied, or none.

virtual int
monthIndex (const RWCString&) const = 0;

Interprets its argument as a full or abbreviated month name, returning
values 1 through 12 to represent (respectively) January through December,
or 0 for an error. Leading white space is ignored.

virtual RWBoolean
stringToNum (const RWCString&, double* fp) const = 0;

Interprets the RWCString argument as a floating point number. Spaces
are allowed before and after the (optional) sign, and at the end. Digit
group separators are allowed in the integer portion. Returns TRUE for a
valid number, FALSE for an error. If it returns FALSE, the double*

argument is untouched. All valid numeric strings are accepted; all others
are rejected. The following are examples of valid numeric strings in an
English-speaking locale:

 “1” ” -02. “ ”.3”
 ”1234.56” ”1e10” ”+ 19,876.2E+20”

virtual RWBoolean
stringToNum (const RWCString&, long* ip) const = 0;

Interprets the RWCString argument as an integer. Spaces are allowed
before and after the (optional) sign, and at the end. Digit group separators
are allowed. Returns TRUE for a valid integer, FALSE for an error. If it
returns FALSE, the long* argument is untouched. All valid numeric
strings are accepted; all others are rejected. The following are examples of
valid integral strings in an English-speaking locale:

 “1” ” -02. “ ”+ 1,234”
 ”1234545” ”1,234,567”

Table 1. Formatting characters used by strftime().
Examples are given (in parenthesis). For those formats that do not use all members of the struct tm, only

those members that are actually used are noted [in brackets].

Format
character Meaning Example

a Abbreviated weekday name [from
tm::tm_wday]

Sun

A Full weekday name [from tm::tm_wday] Sunday

b Abbreviated month name Feb

RWLocale

258 Tools.h++ Class Reference

Format
character Meaning Example

B Full month name February

c Date and time [may use all members] Feb 29 14:34:56 1984

d Day of the month 29

H Hour of the 24-hour day 14

I Hour of the 12-hour day 02

j Day of the year, from 001 [from tm::tm_yday] 60

m Month of the year, from 01 02

M Minutes after the hour 34

p AM/PM indicator, if any AM

S Seconds after the minute 56

U Sunday week of the year, from 00 [from
tm::tm_yday and tm::tm_wday]

w Day of the week, with 0 for Sunday 0

W Monday week of the year, from 00 [from
tm::tm_yday and tm::tm_wday]

x Date [uses tm::tm_yday in some locales] Feb 29 1984

X Time 14:34:56

y Year of the century, from 00 (deprecated) 84

Y Year 1984

Z Time zone name [from tm::tm_isdst] PST or PDT

virtual RWBoolean
stringToDate (const RWCString&, struct tm*) const = 0;

Interprets the RWCString as a date, and extracts the month, day, and year
components to the tm argument. It returns TRUE for a valid date, FALSE

otherwise. If it returns FALSE, the struct tm argument is untouched;
otherwise it sets the tm_mday , tm_mon, and tm_year members. If the date
is entered as three numbers, the order expected is the same as that
produced by strftime() . Note that this function cannot reject all invalid
date strings.

RWLocale

Tools.h++ Class Reference 259

The following are examples of valid date strings in an English-speaking
locale:

 “Jan 9, 62” ”1/9/62” ”January 9 1962”
 ”09Jan62” ”010962”

virtual RWBoolean
stringToTime (const RWCString&, struct tm*) const = 0;

Interprets the RWCString argument as a time, with hour, minute, and
optional second. If the hour is in the range [1..12], the local equivalent of
“AM” or “PM” is allowed. Returns TRUE for a valid time string, FALSE for
an error. If it returns FALSE, the tm argument is untouched; otherwise it
sets the tm_hour , tm_min , and tm_sec members. Note that this function
cannot reject all invalid time strings. The following are examples of valid
time strings in an English-speaking locale:

 “1:10 AM” ”13:45:30” ”12.30.45pm”
 ”PM 3:15” ”1430”

virtual RWBoolean
stringToMoney (const RWCString&, double*,
 RWLocale::CurrSymbol=LOCAL) const = 0;

Interprets the RWCString argument as a monetary value. The currency
symbol, if any, is ignored. Negative values may be specified by the
negation symbol or by enclosing parentheses. Digit group separators are
optional; if present they are checked. Returns TRUE for a valid monetary
value, FALSE for an error. If it returns FALSE, the double* argument is
untouched; otherwise it is set to the integral number of monetary units
entered (e.g. cents, in a U.S. locale).

const RWLocale*
imbue (ios& stream) const;

Installs self in the stream argument, for later use by the operators << and
>> (e.g. in RWDate or RWTime). The pointer may be retrieved from the
stream with the static member RWLocale::of() . In this way a locale may
be passed transparently through many levels of control to be available
where needed, without intruding elsewhere.

virtual int
weekdayIndex (const RWCString&) const = 0;

Interprets its argument as a full or abbreviated weekday name, returning
values 1 through 7 to represent (respectively) Monday through Sunday, or
0 for an error.

RWLocale

260 Tools.h++ Class Reference

static const RWLocale&
of (ios&);

Returns the locale installed in the stream argument by a previous call to
RWLocale::imbue() or, if no locale was installed, the result from
RWLocale::global() .

static const RWLocale*
global (const RWLocale* loc);

Sets the global “default” locale object to loc , returning the old object. This
object is used by RWDate and RWTime string conversion functions as a
default locale. It is set initially to refer to an instance of a class that
provides the functionality of RWLocaleSnapshot(“C”) .

static const RWLocale&
global ();

Returns a reference to the present global “default” locale.

const RWLocale*
defaultLocale ();

Returns a pointer to a new instance of either RWLocaleSnapshot(“C”) ; or
another class that provides the same behavior for compilers that don’t
fully support Standard C locales.

Static Public
Member

Functions

Tools.h++ Class Reference 261

RWLocaleSnapshot

RWLocaleSnapshot RWLocale

#include <locale.h>
#include <rw/locale.h>

RWLocaleSnapshot ourLocale(“”); // encapsulate user’s formats

The class RWLocaleSnapshot implements the RWLocale interface using
Standard C library facilities. To use it, the program creates an
RWLocaleSnapshot instance. The constructor of the instance queries the
program’s environment (using standard C library functions such as
localeconv() , strftime() , and, if available , vendor specific library
functions) to learn everything it can about formatting conventions in effect at
the moment of instantiation. When done, the locale can then be switched
and another instance of RWLocaleSnapshot created. By creating multiple
instances of RWLocaleSnapshot, your program can have more than one
locale active at the same time, something that is difficult to do with the
Standard C library facilities.

Note: RWLocaleSnapshot does not encapsulate character set, collation, or
message information.

Class RWLocaleSnapshot has a set of public data members initialized by
its constructor with information extracted from its execution environment.

None

Try this program with the environmental variable LANG set to various locales:

#include <rw/rwdate.h>
#include <rw/locale.h>
#include <iostream.h>

main(){
 RWLocaleSnapshot *userLocale = new RWLocaleSnapshot(“”);
 RWLocale::global(userLocale);
 // Print a number using the global locale:
 cout << RWLocale::global().asString(1234567.6543) << endl;
 // Now get and print a date:
 cout << “enter a date: “ << flush;
 RWDate date;
 cin >> date;
 if (date.isValid())
 cout << date << endl;
 else
 cout << “bad date” << endl;
 delete userLocale;
 return 0;
}

Synopsis

Description

Persistence

Example

RWLocaleSnapshot

262 Tools.h++ Class Reference

enum
RWDateOrder { DMY, MDY, YDM, YMD };

RWLocaleSnapshot (const char* localeName = 0);

Constructs an RWLocale object by extracting formats from the global
locale environment. It uses the Standard C Library function setlocale()

to set the named locale, and then restores the previous global locale after
formats have been extracted. If localeName is 0, it simply uses the current
locale. The most useful locale name is the empty string, “” , which is a
synonym for the user’s chosen locale (usually specified by the
environment variable LANG).

virtual RWCString
asString (long) const;
virtual RWCString
asString (unsigned long) const;
virtual RWCString
asString (double f, int precision = 6,
RWBoolean showpoint = 0) const;
virtual RWCString
asString (struct tm* tmbuf,char format, const RWZone& zone);
 const;
virtual RWCString
asString (struct tm* tmbuf,char* format,
 const RWZone& zone) const;
virtual RWCString
moneyAsString (double value,enum CurrSymbol = LOCAL) const;
virtual RWBoolean
stringToNum (const RWCString&, double* fp) const;
virtual RWBoolean
stringToNum (const RWCString&, long* ip) const;
virtual RWBoolean
stringToDate (const RWCString&, struct tm*) const;
virtual RWBoolean
stringToTime (const RWCString&, struct tm*) const;
virtual RWBoolean
stringToMoney (const RWCString&, double* ,
 RWLocale::CurrSymbol=LOCAL) const;

Redefined from class RWLocale. These virtual functions follow the
interface described under class RWLocale. They generally work by
converting values to and from strings using the rules specified by the
struct lconv values (see <locale.h>) encapsulated in self.

Enumerations

Public
Constructor

Public
Member

Functions

RWLocaleSnapshot

Tools.h++ Class Reference 263

RWCString decimal_point_;
RWCString thousands_sep_;
RWCString grouping_;
RWCString int_curr_symbol_;
RWCString currency_symbol_;
RWCString mon_decimal_point_;
RWCString mon_thousands_sep_;
RWCString mon_grouping_;
RWCString positive_sign_;
RWCString negative_sign_;
char int_frac_digits_;
char frac_digits_;
char p_cs_precedes_;
char p_sep_by_space_;
char n_cs_precedes_;
char n_sep_by_space_;
char p_sign_posn_;
char n_sign_posn_;

These are defined identically as the correspondingly-named members of
the standard C library type lconv , from <locale.h> .

Public Data
Members

Tools.h++ Class Reference 265

RWModel

#include <rw/model.h>
(abstract base class)

This abstract base class has been designed to implement the “Model” leg of a
Model-View-Controller architecture. A companion class, RWModelClient,
supplies the “View” leg.

It maintains a list of dependent RWModelClient objects. When member
function changed(void*) is called, the list of dependents will be traversed,
calling updateFrom(RWModel*, void*) for each one, with itself as the first
argument. Subclasses of RWModelClient should be prepared to accept such
a call.

None

This is an incomplete and somewhat contrived example in that it does not
completely define the classes involved. “Dial” is assumed to be a graphical
representation of the internal settings of “Thermostat.” The essential point is
that there is a dependency relationship between the “Thermostat” and the
“Dial”: when the setting of the thermostat is changed, the dial must be
notified so that it can update itself to reflect the new setting of the
thermostat.

#include <rw/model.h>
class Dial : public RWModelClient {
public:
 virtual void updateFrom(RWModel* m, void* d);
};

class Thermostat : public RWModel {
 double setting;
public:
 Thermostat(Dial* d)
 { addDependent(d); }
 double temperature() const
 { return setting; }
 void setTemperature(double t)
 { setting = t; changed(); }
};

void Dial::updateFrom(RWModel* m, void*) {
 Thermostat* t = (Thermostat*)m;
 double temp = t->temperature();
 // Redraw graphic.
}

Synopsis

Description

Persistence

Example

RWModel

266 Tools.h++ Class Reference

RWModel();
When called by the specializing class, sets up the internal ordered list of
dependents.

void
addDependent (RWModelClient* m);

Adds the object pointed to by m to the list of dependents of self.

void
removeDependent (RWModelClient* m);

Removes the object pointed to by m from the list of dependents of self.

virtual void
changed (void* d);

Traverse the internal list of dependents, calling member function
updateFrom(RWModel*, void*) for each one, with self as the first
argument and d as the second argument.

Public
Constructor

Public
Member

Functions

Tools.h++ Class Reference 267

RWModelClient

#include <rw/model.h>
(abstract base class)

This abstract base class has been designed to implement the “View” leg of a
Model-View-Controller architecture. Class RWModel, supplies the “Model”
leg. See class RWModel for details.

None

virtual void
updateFrom (RWModel* p, void* d) = 0;

Deriving classes should supply an appropriate definition for this pure
virtual function. The overall semantics of the definition should be to
update self from the data presented by the object pointed to by p. That is,
self is considered a dependent of the object pointed to by p. The pointer d
is available to pass client data.

Synopsis

Description

Persistence

Public
Member
Function

Tools.h++ Class Reference 269

RWOrdered

RWOrdered RWSequenceable RWCollection RWCollectable

#include <rw/ordcltn.h>
RWOrdered a;

Class RWOrdered represents a group of ordered items, accessible by an
index number, but not accessible by an external key. Duplicates are allowed.
The ordering of elements is determined externally, generally by the order of
insertion and removal. An object stored by RWOrdered must inherit from
the abstract base class RWCollectable.

Class RWOrdered is implemented as a vector of pointers, allowing for
more efficient traversing of the collection than the linked list classes.
RWSlistCollectables and RWDlistCollectables, but slower insertion in the
center of the collection.

Polymorphic

RWOrdered(size_t size = RWDEFAULT_CAPACITY);

Construct an RWOrdered with an initial capacity of size .

RWBoolean
operator== (const RWOrdered& od) const;

Returns TRUE if for every item in self, the corresponding item in od at the
same index isEqual . The two collections must also have the same number
of members.

RWCollectable*&
operator[] (size_t i);

Returns the i th element in the collection. If i is out of range, an exception
of type RWBoundsErr will occur. The results of this function can be used
as an lvalue.

RWCollectable*&
operator() (size_t i);

Returns the i th element in the collection. Bounds checking is enabled by
defining the preprocessor directive RWBOUNDS_CHECK before including the
header file ordcltn.h . In this case, if i is out of range, an exception of
type RWBoundsErr will occur. The results of this function can be used as
an lvalue.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

RWOrdered

270 Tools.h++ Class Reference

virtual RWCollectable*
append (RWCollectable*);

Redefined from class RWSequenceable. Adds the item to the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

virtual void
apply (RWapplyCollectable ap, void* x);

Redefined from class RWCollection. This function has been redefined to
apply the user-supplied function pointed to by ap to each member of the
collection, in order, from first to last.

virtual RWCollectable*&
at (size_t i);
virtual const RWCollectable*
at (size_t i) const;

Redefined from class RWSequenceable.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Redefined from class RWCollection.

virtual void
clearAndDestroy ();

Inherited from class RWCollection.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

virtual size_t
entries () const;

Redefined from class RWCollection.

virtual RWCollectable*
find (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the first item that isEqual

to the item pointed to by target , or nil if no item was found..

Public
Member

Functions

RWOrdered

Tools.h++ Class Reference 271

virtual RWCollectable*
first () const;

Redefined from class RWSequenceable. Returns the first item in the
collection.

virtual unsigned
hash () const;

Inherited from class RWCollectable.

virtual size_t
index (const RWCollectable*) const;

Redefined from class RWSequenceable.

virtual RWCollectable*
insert (RWCollectable* c);

Redefined from class RWCollection. Adds the item to the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

void
insertAt (size_t indx, RWCollectable* e);

Redefined from class RWSequenceable. Adds a new item to the
collection at position indx . The item previously at position i is moved to
i+1 , etc. The index indx must be between 0 and the number of items in the
collection, or an exception of type RWBoundsErr will be thrown.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWORDERED.

virtual RWBoolean
isEmpty () const;

Redefined from class RWCollection.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWCollectable*
last () const;

Redefined from class RWSequenceable. Returns the last item in the
collection.

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the number of items that
compare isEqual to the item pointed to by target .

RWOrdered

272 Tools.h++ Class Reference

RWCollectable*
prepend (RWCollectable*);

Redefined from class RWSequenceable. Adds the item to the beginning
of the collection and returns it. Returns nil if the insertion was
unsuccessful.

void
push (RWCollectable* c);

This is an alternative implementation of a stack to class
RWSlistCollectablesStack. The item pointed to by c is put at the end of
the collection.

RWCollectable*
pop ();

This is an alternative implementation of a stack to class
RWSlistCollectablesStack. The last item in the collection is removed and
returned. If there are no items in the collection, nil is returned.

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Removes the first item that isEqual

to the item pointed to by target and returns it. Returns nil if no item
was found.

RWCollectable*
removeAt (size_t index);

Removes the item at the position index in the collection and returns it.

virtual void
removeAndDestroy (const RWCollectable* target);

Inherited from class RWCollection.

RWCollectable*
top () const;

This is an alternative implementation of a stack to class
RWSlistCollectablesStack. The last item in the collection is returned. If
there are no items in the collection, nil is returned.

Tools.h++ Class Reference 273

RWOrderedIterator

RWOrderedIterator RWIterator

#include <rw/ordcltn.h>
RWOrdered a ;
RWOrderedIterator iter(a);

Iterator for class RWOrdered. Traverses the collection from the first to the
last item.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWOrderedIterator (const RWOrdered& a);

Construct an RWOrderedIterator from an RWOrdered. Immediately
after construction the position of the iterator is undefined.

virtual RWCollectable*
operator() ();

Redefined from class RWIterator. Advances the iterator to the next item
and returns it. Returns nil when the end of the collection is reached.

virtual RWCollectable*
findNext (const RWCollectable*);

Redefined from class RWIterator. Moves iterator to the next item which
isEqual to the item pointed to by target and returns it. If no item is found,
returns nil and the position of the iterator will be undefined.

virtual RWCollectable*
key () const;

Redefined from class RWIterator. Returns the item at the current iterator
position.

virtual void
reset ();

Redefined from class RWIterator. Resets the iterator to its starting state.

Synopsis

Description

Persistence

Public
Constructors

Public
Member
Operator

Public
Member

Functions

Tools.h++ Class Reference 275

RWpistream

RWpistream RWvistream RWvios

#include <rw/pstream.h>
RWpistream pstr(cin); // Construct an RWpistream, using cin’s
 // streambuf

Class RWpistream specializes the abstract base class RWvistream to restore
variables stored in a portable ASCII format by RWpostream.

You can think of RWpistream and RWpostream as an ASCII veneer over an
associated streambuf which are responsible for formatting variables and
escaping characters such that the results can be interchanged between any
machines. As such, they are slower than their binary counterparts
RWbistream and RWbostream which are more machine dependent.
Because RWpistream and RWpostream retain no information about the
state of their associated streambufs , their use can be freely exchanged with
other users of the streambuf (such as istream or ifstream).

RWpistream can be interrogated as to the stream state using member
functions good() , bad() , eof() , etc.

None

See RWpostream for an example of how to create an input stream for this
program.

#include <rw/pstream.h>

main(){
 // Construct an RWpistream to use standard input
 RWpistream pstr(cin);

 int i;
 float f;
 double d;
 char string[80];

 pstr >> i; // Restore an int that was stored in binary
 pstr >> f >> d; // Restore a float & double
 pstr.getString(string, 80); // Restore a character string
}

RWpistream (streambuf* s);

Initialize an RWpistream from the streambuf s .

Synopsis

Description

Persistence

Example

Public
Constructors

RWpistream

276 Tools.h++ Class Reference

RWpistream (istream& str);

Initialize an RWpistream using the streambuf associated with the
istream str .

virtual RWvistream&
operator>> (char& c);

Redefined from class RWvistream. Get the next character from the input
stream and store it in c . This member attempts to preserve the symbolic
characters values transmitted over the stream.

virtual RWvistream&
operator>> (wchar_t& wc);

Redefined from class RWvistream. Get the next wide char from the input
stream and store it in wc.

virtual RWvistream&
operator>> (double& d);

Redefined from class RWvistream. Get the next double from the input
stream and store it in d.

virtual RWvistream&
operator>> (float& f);

Redefined from class RWvistream. Get the next float from the input
stream and store it in f .

virtual RWvistream&
operator>> (int& i);

Redefined from class RWvistream. Get the next int from the input stream
and store it in i .

virtual RWvistream&
operator>> (long& l);

Redefined from class RWvistream. Get the next long from the input
stream and store it in l .

virtual RWvistream&
operator>> (short& s);

Redefined from class RWvistream. Get the next short from the input
stream and store it in s .

virtual RWvistream&
operator>> (unsigned char& c);

Redefined from class RWvistream. Get the next unsigned char from the
input stream and store it in c .

Public
Operators

RWpistream

Tools.h++ Class Reference 277

virtual RWvistream&
operator>> (unsigned short& s);

Redefined from class RWvistream. Get the next unsigned short from the
input stream and store it in s .

virtual RWvistream&
operator>> (unsigned int& i);

Redefined from class RWvistream. Get the next unsigned int from the
input stream and store it in i .

virtual RWvistream&
operator>> (unsigned long& l);

Redefined from class RWvistream. Get the next unsigned long from the
input stream and store it in l .

operator void* ();

Inherited via RWvistream from RWvios.

virtual int
get ();

Redefined from class RWvistream. Get and return the next character from
the input stream. Returns EOF if end of file is encountered.

virtual RWvistream&
get (char& c);

Redefined from class RWvistream. Get the next char and store it in c .
This member only preserves ASCII numerical codes, not the coresponding
character symbol.

virtual RWvistream&
get (wchar_t& wc);

Redefined from class RWvistream. Get the next wide char and store it in
wc.

virtual RWvistream&
get (unsigned char& c);

Redefined from class RWvistream. Get the next unsigned char and store
it in c .

virtual RWvistream&
get (char* v, size_t N);

Redefined from class RWvistream. Get a vector of char s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit. Note that this
member preserves ASCII numerical codes, not their corresponding

Public
Member

Functions

RWpistream

278 Tools.h++ Class Reference

character values. If you wish to restore a character string, use the function
getString(char*, size_t).

virtual RWvistream&
get (wchar_t* v, size_t N);

Redefined from class RWvistream. Get a vector of wide char s and store
them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit. Note
that this member preserves ASCII numerical codes, not their
corresponding character values. If you wish to restore a character string,
use the function getString(char*, size_t).

virtual RWvistream&
get (double* v, size_t N);

Redefined from class RWvistream. Get a vector of double s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (float* v, size_t N);

Redefined from class RWvistream. Get a vector of float s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (int* v, size_t N);

Redefined from class RWvistream. Get a vector of int s and store them in
the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (long* v, size_t N);

Redefined from class RWvistream. Get a vector of long s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

RWpistream

Tools.h++ Class Reference 279

virtual RWvistream&
get (short* v, size_t N);

Redefined from class RWvistream. Get a vector of short s and store them
in the array beginning at v . If the restore operation stops prematurely,
because there are no more data available on the stream, because an
exception is thrown, or for some other reason; get stores what has already
been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (unsigned char* v, size_t N);

Redefined from class RWvistream. Get a vector of unsigned char s and
store them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit. Note
that this member preserves ASCII numerical codes, not their
corresponding character values. If you wish to restore a character string,
use the function getString(char*, size_t).

virtual RWvistream&
get (unsigned short* v, size_t N);

Redefined from class RWvistream. Get a vector of unsigned short s and
store them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (unsigned int* v, size_t N);

Redefined from class RWvistream. Get a vector of unsigned int s and
store them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit.

virtual RWvistream&
get (unsigned long* v, size_t N);

Redefined from class RWvistream. Get a vector of unsigned long s and
store them in the array beginning at v . If the restore operation stops
prematurely, because there are no more data available on the stream,
because an exception is thrown, or for some other reason; get stores what
has already been retrieved from the stream into v , and sets the failbit.

RWpistream

280 Tools.h++ Class Reference

virtual RWvistream&
getString (char* s, size_t N);

Redefined from class RWvistream. Restores a character string from the
input stream and stores it in the array beginning at s . The function stops
reading at the end of the string or after N-1 characters, whichever comes
first. If N-1 characters have been read and the Nth character is not the
string terminator, then the failbit of the stream will be set. In either case,
the string will be terminated with a null byte. If the input stream has been
corrupted, then an exception of type RWExternalErr will be thrown.

virtual RWvistream&
getString (wchar_t* ws, size_t N);

Redefined from class RWvistream. Restores a character string from the
input stream and stores it in the array beginning at ws. The function stops
reading at the end of the string or after N-1 characters, whichever comes
first. If N-1 characters have been read and the Nth character is not the
string terminator, then the failbit of the stream will be set. In either case,
the string will be terminated with a null byte. If the input stream has been
corrupted, then an exception of type RWExternalErr will be thrown.

Tools.h++ Class Reference 281

RWpostream

RWpostream RWvostream RWvios

#include <rw/pstream.h>
// Construct an RWpostream, using cout’s streambuf:
RWpostream pstr(cout) ;

Class RWpostream specializes the abstract base class RWvostream to store
variables in a portable (printable) ASCII format. The results can be restored
by using its counterpart RWpistream.

You can think of RWpistream and RWpostream as an ASCII veneer over an
associated streambuf which are responsible for formatting variables and
escaping characters such that the results can be interchanged between any
machines. As such, they are slower than their binary counterparts
RWbistream and RWbostream which are more machine dependent.
Because RWpistream and RWpostream retain no information about the
state of their associated streambufs, their use can be freely exchanged with
other users of the streambuf (such as istream or ifstream).

The goal of class RWpostream and RWpistream is to store variables using
nothing but printable ASCII characters. Hence, nonprintable characters
must be converted into an external representation where they can be
recognized. Furthermore, other characters may be merely bit values (a bit
image, for example), having nothing to do with characters as symbols. For
example,

RWpostream pstrm(cout);
char c = ‘\n’;

pstr << c; // Stores “newline”
pstr.put©; // Stores the number 10.

The expression “pstr << c ” treats c as a symbol for a newline, an
unprintable character. The expression “pstr.put© ” treats c as the literal
number “10”.

Note that variables should not be separated with white space. Such white space
would be interpreted literally and would have to be read back in as a
character string.

RWpostream can be interrogated as to the stream state using member
functions good() , bad() , eof() , precision() , etc.

None

Synopsis

Description

Persistence

RWpostream

282 Tools.h++ Class Reference

See RWpistream for an example of how to read back in the results of this
program. The symbol “o” is intended to represent a control-G, or bell.

#include <rw/pstream.h>

main(){
 // Construct an RWpostream to use standard output:
 RWpostream pstr(cout);

 int i = 5;
 float f = 22.1;
 double d = -0.05;
 char string[]
 = “A string with\ttabs,\nnewlines and a o bell.”;

 pstr << i; // Store an int in binary
 pstr << f << d; // Store a float & double
 pstr << string; // Store a string
}

Program output:

5
22.1
-0.05
“A string with\ttabs,\nnewlines and a \x07 bell.”

RWpostream (streambuf* s);

Initialize an RWpostream from the streambuf s .

RWpostream (ostream& str);

Initialize an RWpostream from the streambuf associated with the output
stream str .

virtual ~RWvostream ();
This virtual destructor allows specializing classes to deallocate any
resources that they may have allocated.

virtual RWvostream&
operator<< (const char* s);

Redefined from class RWvostream. Store the character string starting at s
to the output stream using a portable format. The character string is
expected to be null terminated.

virtual RWvostream&
operator<< (const wchar_t* ws);

Redefined from class RWvostream. Store the wide character string
starting at ws to the output stream using a portable format. The character
string is expected to be null terminated.

Example

Public
Constructors

Public
Destructor

Public
Operators

RWpostream

Tools.h++ Class Reference 283

virtual RWvostream&
operator<< (char c);

Redefined from class RWvostream. Store the char c to the output stream
using a portable format. Note that c is treated as a character, not a
number. This member attempts to preserve the symbolic characters values
transmitted over the stream

virtual RWvostream&
operator<< (wchar_t wc);

Redefined from class RWvostream. Store the wide char wc to the output
stream using a portable format. Note that wc is treated as a character, not a
number.

virtual RWvostream&
operator<< (unsigned char c);

Redefined from class RWvostream. Store the unsigned char c to the
output stream using a portable format. Note that c is treated as a
character, not a number.

virtual RWvostream&
operator<< (double d);

Redefined from class RWvostream. Store the double d to the output
stream using a portable format.

virtual RWvostream&
operator<< (float f);

Redefined from class RWvostream. Store the float f to the output
stream using a portable format.

virtual RWvostream&
operator<< (int i);

Redefined from class RWvostream. Store the int i to the output stream
using a portable format.

virtual RWvostream&
operator<< (unsigned int i);

Redefined from class RWvostream. Store the unsigned int i to the
output stream using a portable format.

virtual RWvostream&
operator<< (long l);

Redefined from class RWvostream. Store the long l to the output stream
using a portable format.

virtual RWvostream&
operator<< (unsigned long l);

Redefined from class RWvostream. Store the unsigned long l to the
output stream using a portable format.

RWpostream

284 Tools.h++ Class Reference

virtual RWvostream&
operator<< (short s);

Redefined from class RWvostream. Store the short s to the output
stream using a portable format.

virtual RWvostream&
operator<< (unsigned short s);

Redefined from class RWvostream. Store the unsigned short s to the
output stream using a portable format.

operator void* ();

Inherited via RWvostream from RWvios.

int
precision () const;

Returns the currently set precision used for writing float and double

data. At construction, the precision is set to RW_DEFAULT_PRECISION

(defined in compiler.h .)

int
precision (int p);

Changes the precision used for writing float and double data. Returns
the previously set precision. At construction, the precision is set to
RW_DEFAULT_PRECISION (defined in compiler.h .)

virtual RWvostream&
flush ();

Send the contents of the stream buffer to output immediately.

virtual RWvostream&
put (char c);

Redefined from class RWvostream. Store the char c to the output stream,
preserving its value using a portable format. This member only preserves
ASCII numerical codes, not the coresponding character symbol.

virtual RWvostream&
put (wchar_t wc);

Redefined from class RWvostream. Store the wide character wc to the
output stream, preserving its value using a portable format.

virtual RWvostream&
put (unsigned char c);

Redefined from class RWvostream. Store the unsigned char c to the
output stream, preserving its value using a portable format.

virtual RWvostream&
put (const char* p, size_t N);

Redefined from class RWvostream. Store the vector of char s starting at p
to the output stream, preserving their values using a portable format.

Public
Member

Functions

RWpostream

Tools.h++ Class Reference 285

Note that the characters will be treated as literal numbers (i.e., not as a
character string).

virtual RWvostream&
put (const wchar_t* p, size_t N);

Redefined from class RWvostream. Store the vector of wide char s
starting at p to the output stream, preserving their values using a portable
format. Note that the characters will be treated as literal numbers (i.e., not
as a character string).

virtual RWvostream&
put (const unsigned char* p, size_t N);

Redefined from class RWvostream. Store the vector of unsigned char s
starting at p to the output stream using a portable format. The characters
should be treated as literal numbers (i.e., not as a character string).

virtual RWvostream&
put (const short* p, size_t N);

Redefined from class RWvostream. Store the vector of short s starting at
p to the output stream using a portable format.

virtual RWvostream&
put (const unsigned short* p, size_t N);

Redefined from class RWvostream. Store the vector of unsigned short s
starting at p to the output stream using a portable format.

virtual RWvostream&
put (const int* p, size_t N);

Redefined from class RWvostream. Store the vector of int s starting at p
to the output stream using a portable format.

virtual RWvostream&
put (const unsigned int* p, size_t N);

Redefined from class RWvostream. Store the vector of unsigned int s
starting at p to the output stream using a portable format.

virtual RWvostream&
put (const long* p, size_t N);

Redefined from class RWvostream. Store the vector of long s starting at p
to the output stream using a portable format.

virtual RWvostream&
put (const unsigned long* p, size_t N);

Redefined from class RWvostream. Store the vector of unsigned long s
starting at p to the output stream using a portable format.

RWpostream

286 Tools.h++ Class Reference

virtual RWvostream&
put (const float* p, size_t N);

Redefined from class RWvostream. Store the vector of float s starting at
p to the output stream using a portable format.

virtual RWvostream&
put (const double* p, size_t N);

Redefined from class RWvostream. Store the vector of double s starting at
p to the output stream using a portable format.

virtual RWvostream&
putString (const char*s, size_t N);

Store the character string, including embedded nulls, starting at s to the
output string.

Tools.h++ Class Reference 287

RWSequenceable

RWSequenceable RWCollection RWCollectable

#include <rw/seqcltn.h>
typedef RWSequenceable SequenceableCollection;
 // Smalltalk typedef

Class RWSequenceable is an abstract base class for collections that can be
accessed by an index. It inherits class RWCollection as a public base class
and adds a few extra virtual functions. This documentation only describes
these extra functions.

Polymorphic

RWCollectable*
append (RWCollectable*) = 0;

Adds the item to the end of the collection and returns it. Returns nil if the
insertion was unsuccessful.

virtual RWCollectable*&
at (size_t i);
virtual const RWCollectable*
at (size_t i) const;

Allows access to the i th element of the collection. The first variant can be
used as an lvalue, the second cannot. The index i must be between zero
and the number of items in the collection less one, or an exception of type
RWBoundsErr will be thrown.

virtual RWCollectable*
first () const = 0;

Returns the first item in the collection.

virtual size_t
index (const RWCollectable* c) const = 0;

Returns the index number of the first item that “matches” the item pointed
to by c . If there is no such item, returns RW_NPOS. For most collections, an
item “matches” the target if either isEqual() or compareTo() find
equivalence, whichever is appropriate for the actual collection type.

void
insertAt (size_t indx, RWCollectable* e);

Adds a new item to the collection at position indx . The item previously at
position i is moved to i+1 , etc. The index indx must be between 0 and the
number of items in the collection, or an exception of type RWBoundsErr
will be thrown.

Synopsis

Description

Persistence

Public
Member

Functions

RWSequenceable

288 Tools.h++ Class Reference

virtual RWCollectable*
last () const = 0;

Returns the last item in the collection.

RWCollectable*
prepend (RWCollectable*) = 0;

Adds the item to the beginning of the collection and returns it. Returns
nil if the insertion was unsuccessful.

Tools.h++ Class Reference 289

RWSet

RWSet RWHashTable RWCollection RWCollectable

typedef RWSet Set; // Smalltalk typedef.
#include <rw/rwset.h>

RWSet h ;

Class RWSet represents a group of unordered elements, not accessible by an
external key, where duplicates are not allowed. It corresponds to the
Smalltalk class Set.

An object stored by RWSet must inherit abstract base class RWCollectable,
with suitable definition for virtual functions hash() and isEqual() (see
class RWCollectable). The function hash() is used to find objects with the
same hash value, then isEqual() is used to confirm the match.

An item c is considered to be “already in the collection” if there is a member
of the collection with the same has value as c for which isEqual(c) returns
TRUE. In this case, method insert(c) will not add it, thus insuring that
there are no duplicates.

The iterator for this class is RWSetIterator.

Polymorphic

RWSet (size_t n = RWDEFAULT_CAPACITY);
Constructs an empty set with n hashing buckets.

RWSet (const RWSet & h);
Copy constructor. Makes a shallow copy of the collection h.

virtual ~RWSet();
Calls clear() .

void
operator= (const RWSet& h);

Assignment operator. Makes a shallow copy of the collection h.

RWBoolean
operator== (const RWSet& h);

Returns TRUE if self and h have the same number of elements and if for
every key in self there is a corresponding key in h which isEqual .

RWBoolean
operator!= (const RWSet& h);

Returns the negation of operator==() , above.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

RWSet

290 Tools.h++ Class Reference

RWBoolean
operator<= (const RWSet& h);

Returns TRUE if self is a subset of h, that is, every element of self has a
counterpart in h which isEqual . Note: If you inherit from RWSet in the
presence of the C++ Standard Library, we recommend that you override
this operator and explicitly forward the call. Overload resolution in C++
will choose the Standard Library provided global operators over inherited
class members. These global definitions are not appropriate for set-like
partial orderings.

RWBoolean
operator< (const RWSet& h);

Returns TRUE if self is a proper subset of h, that is, every element of self
has a counterpart in h which isEqual , but where the two sets are not
identical.

RWSet&
operator*= (const RWSet& h);

Sets self to be the intersection of self and h. Returns self.

virtual void
apply (RWapplyCollectable ap, void*);

Redefined from class RWCollection to apply the user-supplied function
pointed to by ap to each member of the collection in a (generally)
unpredictable order. This supplied function must not do anything to the
items that could change the ordering of the collection.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Inherited from class RWCollection.

virtual void
clearAndDestroy ();

Redefined from class RWCollection.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

Public
Member

Functions

RWSet

Tools.h++ Class Reference 291

virtual size_t
entries () const;

Inherited from class RWCollection.

virtual RWCollectable*
find (const RWCollectable* target) const;

Returns the item in self which isEqual to the item pointed to by target

or nil if no item is found. Hashing is used to narrow the search.

virtual unsigned
hash () const;

Inherited from class RWCollectable.

virtual RWCollectable*
insert (RWCollectable* c);

Adds c to the collection and returns it. If an item is already in the
collection which isEqual to c , then the old item is returned and the new
item is not inserted.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWSET.

virtual RWBoolean
isEmpty () const;

Inherited from class RWCollectable.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Redefined from class RWCollection.

void
intersectWith (const RWSet& h, RWSet& ret) const;

Computes the intersection of self and h, and inserts the result into ret

(which may be either empty or not, depending on the effect desired). It
may be slightly more efficient than operator*=() .

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the count of entries that
isEqual to the item pointed to by target. Because duplicates are not
allowed for this collection, only 0 or 1 can be returned.

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Returns and removes the item that
isEqual to the item pointed to by target, or nil if there is no item.

RWSet

292 Tools.h++ Class Reference

virtual void
removeAndDestroy (const RWCollectable* target);

Inherited from class RWCollection.

void
resize (size_t n = 0);

Resizes the internal hashing table to leave n slots. If n==0 , resizes to
3*entries()/2 .

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Inherited from class RWCollection.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 293

RWSetIterator

RWSetIterator RWHashTableIterator RWIterator

#include <rw/rwset.h>
RWSet h;
RWSetIterator it(h) ;

Iterator for class RWSet, which allows sequential access to all the elements of
RWSet. Note that because an RWSet is unordered, elements are not accessed
in any particular order.

The “current item” is undefined immediately after construction — you must
define it by using operator() or some other (valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid.

None

RWSetIterator (RWSet&);

Construct an iterator for an RWSet. After construction, the position of the
iterator will be undefined.

virtual RWCollectable*
operator() ();

Inherited from RWHashTableIterator.

virtual RWCollectable*
findNext (const RWCollectable* target);

Inherited from RWHashTableIterator.

virtual RWCollectable*
key () const;

Inherited from RWHashTableIterator.

RWCollectable*
remove ();

Inherited from RWHashTableIterator.

RWCollectable*
removeNext (const RWCollectable*);

Inherited from RWHashTableIterator.

virtual void
reset ();

Inherited from RWHashTableIterator.

Synopsis

Description

Persistence

Public
Constructor

Public
Member
Operator

Public
Member

Functions

Tools.h++ Class Reference 295

rw_slist<T>

#include <rw/rwstl/slist.h>
rw_slist<T> list;

Class rw_slist<T> maintains a collection of T, implemented as a singly-linked
list. Since this is a value based list, objects are copied into and out of the links
that make up the list. As with all classes that meet the ANSI sequence
specification, rw_slist provides for iterators that reference its elements.
Operations that alter the contents of rw_slist will invalidate iterators that
reference items at or after the location of change.

typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef (unsigned) size_type; //from Allocator<Node>

Iterators over rw_slist<T> are forward iterators.

typedef (scoped Iterator) iterator;
typedef (scoped ConstIterator) const_iterator;

rw_slist<T> ();

Construct an empty rw_slist<T>.

rw_slist<T> (const rw_slist<T>& list);

Construct an rw_slist<T> which is a copy of list . Each element from list

will be copied into self.

rw_slist<T> (size_type count, const T& value);

Construct an rw_slist<T> containing exactly count copies of value .

rw_slist<T> (const_iterator first, const_iterator bound);

Construct an rw_slist<T> containing a copy of each element referenced by
the range starting at first and bounded by bound .

rw_slist<T> (const T* first, const T* bound);

Construct an rw_slist<T> containing a copy of each element referenced by
the range starting at first and bounded by bound .

~rw_slist<T> ();
The destructor releases the memory used by the links.

Synopsis

Description

Public
Typedefs

Public
Constructors

Public
Destructor

rw_slist<T>

296 Tools.h++ Class Reference

iterator
begin ();

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() .

const_iterator
begin () const;

The iterator returned references the first item in self. If self is empty, the
iterator is equal to end() .

iterator
end ();

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

const_iterator
end () const;

The iterator returned marks the location “off the end” of self. It may not
be dereferenced.

T&
front ();

References the first item in the list as an L-value. If self is empty, the
behavior is undefined.

const T&
front ();

References the first item in the list as an R-value. If self is empty, the
behavior is undefined.

bool
empty () const;

Returns true if self is empty.

size_type
size () const;

Returns the number of items currently held in self.

iterator
erase (iterator iter);

Removes from self the element referenced by iter . If iter does not
reference an actual item contained in self, the effect is undefined. Returns
an iterator referencing the location just after the erased item.

iterator
erase (iterator first, iterator bound);

Removes from self the elements referenced by the range beginning at
first and bounded by bound . Returns an iterator referencing a position
just after the last erased item. If first does not reference an item in self
(and if first and bound are not equal), the effect is undefined.

Accessors

Const Public
Member

Functions

Mutators

rw_slist<T>

Tools.h++ Class Reference 297

iterator
insert (iterator loc, const T& val);

Insert val just prior to the place referenced by loc . Returns an iterator
referencing the newly inserted element. (Note:
++(list.insert(loc,val))==loc;)

iterator
insert (iterator loc, const_iterator first, const_iterator
bound);

Insert a copy of each item in the range beginning at first and bounded by
bound into self at a place just prior to the place referenced by loc. Returns
an iterator referencing the last newly inserted element. (Note:
++(list.insert(loc,first,bound))==loc;)

iterator
insert (iterator loc, const T* first, const T* bound);

Insert a copy of each item in the range beginning at first and bounded by
bound into self at a place just prior to the place referenced by loc. Returns
an iterator referencing the last newly inserted element. (Note:
++(list.insert(loc,first,bound))==loc;)

void
pop_front ();

Erases the first element of self. If self is empty, the effect is undefined.

void
push_back (const T& item);

Inserts item as the last element of the list.

void
push_front (const T& item);

Inserts item as the first element of the list.

void
reverse ();

Reverses the order of the nodes containing the elements in self.

void
sort ();

Sorts self according to T::operator<(T) or equivalent. Runs in time
proportional to N log(N) where N is the number of elements.This is
method does not copy or destroy any of the items exchanged during the
sort, but adjusts the order of the links in the list.

void
swap(rw_slist<T>& other);

Exchanges the contents of self with other retaining the ordering of each.
This is method does not copy or destroy any of the items exchanged, but
re-links the lists.

rw_slist<T>

298 Tools.h++ Class Reference

void
unique ();

Removes from self all but the first element from each equal range. A
precondition is that any duplicate elements are adjacent.

void
merge (rw_slist& donor);

Assuming both donor and self are sorted, moves every item from donor

into self, leaving donor empty, and self sorted. If either list is unsorted,
the move will take place, but the result may not be sorted. This method
does not copy or destroy the items in donor , but re-links list nodes into
self.

void
splice (iterator to, rw_slist<T>& donor);

Insert the entire contents of donor into self, just before the position
referenced by to , leaving donor empty. This method does not copy or
destroy any of the items moved, but re-links the list nodes from donor into
self.

void
splice (iterator to, rw_slist<T>& donor, iterator from);

Remove from donor and insert into self, just before location to , the item
referenced by from . If from does not reference an actual item contained in
donor the effect is undefined. This method does not copy or destroy the
item referenced by from , but re-links the node containing it from donor

into self.

void
splice (iterator to, rw_slist<T>& donor, iterator from_start,
 iterator from_bound);

Remove from donor and insert into self just before location to , the items
referenced by the range beginning with from_start and bounded by
from_bound . If that range does not refer to items contained by donor , the
effect is undefined. This method does not copy or destroy the items
referenced by the range, but re-links those list nodes from donor into self.

bool
operator== (const rw_slist<T>& lhs, const rw_slist<T>& rhs);

Returns true if lhs and rhs have the same number of elements and each
element of rhs tests equal (T::operator==() or equivalent) to the
corresponding element of lhs .

bool
operator< (const rw_slist<T>& lhs, const rw_slist<T>& rhs);

Returns the result of calling
 lexicographical_compare(lhs.begin(), lhs.end(),
 rhs.begin(), rhs.end());

Special
Methods for

Lists

Related
Global

Operators

Tools.h++ Class Reference 299

RWSlistCollectables

RWSlistCollectables RWSequenceable RWCollection RWCollectable

// Smalltalk typedef:
typedef RWSlistCollectables LinkedList ;
#include <rw/slistcol.h>
RWSlistCollectables a;

Class RWSlistCollectables represents a group of ordered elements, without
keyed access. Duplicates are allowed. The ordering of elements is
determined externally, by the order of insertion and removal. An object
stored by RWSlistCollectables must inherit abstract base class
RWCollectable.

The virtual function isEqual() (see class RWCollectable) is required to
find a match between a target and an item in the collection

Class RWSlistCollectables is implemented as a singly-linked list, which
allows for efficient insertion and removal, but efficient movement in only
one direction. This class corresponds to the Smalltalk class LinkedList.

Polymorphic

RWSlistCollectables ();
Constructs an empty linked list.

RWSlistCollectables (RWCollectable* a);
Constructs a linked list with single item a.

RWBoolean
operator== (const RWSlistCollectables& s) const;

Returns TRUE if self and s have the same number of members and if for
every item in self, the corresponding item at the same index in s isEqual

to it.

virtual RWCollectable*
append (RWCollectable*);

Redefined from RWSequenceable. Inserts the item at the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

virtual void
apply (RWapplyCollectable ap, void*);

Redefined from class RWCollection. This function has been redefined to
apply the user-defined function pointed to by ap to each member of the
collection, in order, from first to last.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWSlistCollectables

300 Tools.h++ Class Reference

virtual RWCollectable*&
at (size_t i);
virtual const RWCollectable*
at (size_t i) const;

Redefined from class RWSequenceable. The index i must be between 0
and the number of items in the collection less one, or an exception of type
RWBoundsErr will be thrown. Note that for a linked list, these functions
must traverse all the links, making them not particularly efficient.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Redefined from class RWCollection.

virtual void
clearAndDestroy ();

Inherited from class RWCollection.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

RWBoolean
containsReference (const RWCollectable* e) const;

Returns true if the list contains an item that is identical to the item pointed
to by e (that is, that has the address e).

virtual size_t
entries () const;

Redefined from class RWCollection.

virtual RWCollectable*
find (const RWCollectable* target) const;

Redefined from class RWCollection. The first item that matches target is
returned, or nil if no item was found.

RWCollectable*
findReference (const RWCollectable* e) const;

Returns the first item that is identical to the item pointed to by e (that is,
that has the address e), or nil if none is found.

RWSlistCollectables

Tools.h++ Class Reference 301

virtual RWCollectable*
first () const;

Redefined from class RWSequenceable. Returns the item at the
beginning of the list.

RWCollectable*
get ();

Returns and removes the item at the beginning of the list.

virtual unsigned
hash () const;

Inherited from class RWCollectable.

virtual size_t
index (const RWCollectable* c) const;

Redefined from class RWSequenceable. Returns the index of the first
item that isEqual to the item pointed to by c . If there is no such item,
returns RW_NPOS.

virtual RWCollectable*
insert (RWCollectable* c);

Redefined from class RWCollection. Adds the item to the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

void
insertAt (size_t indx, RWCollectable* e);

Redefined from class RWSequenceable. Adds a new item to the
collection at position indx . The item previously at position i is moved to
i+1 , etc. The index indx must be between 0 and the number of items in the
collection, or an exception of type RWBoundsErr will be thrown.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWSLISTCOLLECTABLES.

virtual RWBoolean
isEmpty () const;

Redefined from class RWCollection.

virtual RWCollectable*
last () const;

Redefined from class RWSequenceable. Returns the value at the end of
the collection.

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWCollection. Returns the number of items that
isEqual to the item pointed to by target .

RWSlistCollectables

302 Tools.h++ Class Reference

size_t
occurrencesOfReference (const RWCollectable* e) const;

Returns the number of items that are identical to the item pointed to by e
(that is, that have the address e).

virtual RWCollectable*
prepend (RWCollectable*);

Redefined from class RWSequenceable. Adds the item to the beginning
of the collection and returns it. Returns nil if the insertion was
unsuccessful.

virtual RWCollectable*
remove (const RWCollectable* target);

Redefined from class RWCollection. Removes and returns the first item
that isEqual to the item pointed to by target . Returns nil if there is no
such item.

virtual void
removeAndDestroy (const RWCollectable* target);

Inherited from class RWCollection.

RWCollectable*
removeReference (const RWCollectable* e);

Removes and returns the first item that is identical to the item pointed to by
e (that is, that has the address e). Returns nil if there is no such item.

virtual void
restoreGuts (RWvistream&);
virtual void
restoreGuts (RWFile&);
virtual void
saveGuts (RWvostream&) const;
virtual void
saveGuts (RWFile&) const;

Inherited from class RWCollection.

RWStringID
stringID ();

(acts virtual) Inherited from class RWCollectable.

Tools.h++ Class Reference 303

RWSlistCollectablesIterator

RWSlistCollectablesIterator RWIterator

// Smalltalk typedef.
typedef RWSlistCollectablesIterator LinkedListIterator;
#include <rw/slistcol.h>
RWSlistCollectables sc;
RWSlistCollectablesIterator sci(sc) ;

Iterator for class RWSlistCollectables. Traverses the linked-list from the first
to last item.

The “current item” is undefined immediately after construction — you must
define it by using operator() or some other (valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWSlistCollectablesIterator (RWSlistCollectables&);
Constructs an iterator from a singly-linked list. Immediately after
construction, the position of the iterator will be undefined.

virtual RWCollectable*
operator() ();

Redefined from class RWIterator. Advances the iterator to the next
element and returns it. Returns nil when the end of the collection is
reached.

void
operator++ ();

Advances the iterator one item.

void
operator+= (size_t n);

Advances the iterator n items.

RWBoolean
atFirst () const;

Returns TRUE if the iterator is at the beginning of the list, otherwise FALSE;

RWBoolean
atLast () const;

Returns TRUE if the iterator is at the end of the list, otherwise FALSE;

Synopsis

Description

Persistence

Public
Constructor

Public
Member

Operators

Public
Member

Functions

RWSlistCollectablesIterator

304 Tools.h++ Class Reference

virtual RWCollectable*
findNext (const RWCollectable* target);

Redefined from class RWIterator. Moves iterator to the next item which
isEqual to the item pointed to by target and returns it. If no item is
found, returns nil and the position of the iterator will be undefined.

RWCollectable*
findNextReference (const RWCollectable* e);

Moves iterator to the next item which is identical to the item pointed to by e
(that is, that has address e) and returns it. If no item is found, returns nil

and the position of the iterator will be undefined.

RWCollectable*
insertAfterPoint (RWCollectable* a);

Insert item a after the current cursor position and return the item. The
cursor’s position will be unchanged.

virtual RWCollectable*
key () const;

Redefined from class RWIterator. Returns the item at the current iterator
position.

RWCollectable*
remove ();

Removes and returns the item at the current cursor position. Afterwards,
the iterator will be positioned at the previous item in the list. This function
is not very efficient in a singly-linked list.

RWCollectable*
removeNext (const RWCollectable* target);

Moves iterator to the next item in the list which isEqual to the item
pointed to by target , removes it from the list and returns it. Afterwards,
the iterator will be positioned at the previous item in the list. If no item is
found, returns nil and the position of the iterator will be undefined.

RWCollectable*
removeNextReference (const RWCollectable* e);

Moves iterator to the next item in the list which is identical to the item
pointed to by e (that is, that has address e), removes it from the list and
returns it. Afterwards, the iterator will be positioned at the previous item
in the list. If no item is found, returns nil and the position of the iterator
will be undefined.

virtual void
reset ();

Redefined from class RWIterator. Resets the iterator. Afterwards, the
position of the iterator will be undefined.

RWSlistCollectablesIterator

Tools.h++ Class Reference 305

void
toFirst ();

Moves the iterator to the beginning of the list.

void
toLast ();

Moves the iterator to the end of the list.

Tools.h++ Class Reference 307

RWSlistCollectablesQueue

RWSlistCollectablesQueue RWSlistCollectables RWSequenceable …
… RWCollection RWCollectable

// Smalltalk typedef:
typedef RWSlistCollectablesQueue Queue ;
#include <rw/queuecol.h>
RWSlistCollectablesQueue a;

Class RWSlistCollectablesQueue represents a restricted interface to class
RWSlistCollectables to implement a first in first out (FIFO) queue. A queue
is a sequential list for which all insertions are made at one end (the “tail”),
but all removals are made at the other end (the “head”). Hence, the ordering
is determined externally by the ordering of the insertions. Duplicates are
allowed.

An object stored by RWSlistCollectablesQueue must inherit abstract base
class RWCollectable. The virtual function isEqual() (see class
RWCollectable) is required, to find a match between a target and an item in
the queue.

This class corresponds to the Smalltalk class Queue.

Polymorphic

RWSlistCollectablesQueue ();
Construct an empty queue.

RWSlistCollectablesQueue (RWCollectable* a);
Construct an queue with single item a.

RWSlistCollectablesQueue (const RWSlistCollectablesQueue & q);
Copy constructor. A shallow copy of the queue q is made.

void
operator= (const RWSlistCollectablesQueue & q);

Assignment operator. A shallow copy of the queue q is made.

virtual void
apply (RWapplyCollectable ap, void*);

Inherited from class RWSlistCollectables.

Synopsis

Description

Persistence

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWSlistCollectablesQueue

308 Tools.h++ Class Reference

virtual RWCollectable*
append (RWCollectable*);

Inherited from class RWSlistCollectables. Adds an element to the end of
the queue.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Inherited from class RWSlistCollectables.

virtual void
clearAndDestroy ();
virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

RWBoolean
containsReference (const RWCollectable* e) const;
virtual size_t
entries () const;

Inherited from class RWSlistCollectables.

virtual RWCollectable*
first () const;

Inherited from class RWSlistCollectables. Returns the item at the
beginning of the queue (i.e., the least recently inserted item). Returns nil

if the queue is empty.

RWCollectable*
get ();

Inherited from class RWSlistCollectables. Returns and removes the item at
the beginning of the queue (i.e., the least recently inserted item). Returns
nil if the queue is empty.

virtual RWCollectable*
insert (RWCollectable* c);

Redefined from class RWSlistCollectables to call append() .

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return
__RWSLISTCOLLECTABLESQUEUE.

virtual RWBoolean
isEmpty () const;

Inherited from class RWSlistCollectables.

RWSlistCollectablesQueue

Tools.h++ Class Reference 309

virtual RWCollectable*
last () const;

Inherited from class RWSlistCollectables. Returns the last item in the
queue (the most recently inserted item).

virtual size_t
occurrencesOf (const RWCollectable* target) const;
size_t
occurrencesOfReference (const RWCollectable* e) const;

Inherited from class RWSlistCollectables.

virtual RWCollectable*
remove (const RWCollectable*);

Redefined from class RWSlistCollectables. Calls get() . The argument is
ignored.

Tools.h++ Class Reference 311

RWSlistCollectablesStack

RWSlistCollectablesStack RWSlistCollectables RWSequenceable …
…RWCollection RWCollectable

// Smalltalk typedef:
typedef RWSlistCollectablesStack Stack;
#include <rw/stackcol.h>
RWSlistCollectablesStack a;

Class RWSlistCollectablesStack represents a restricted interface to class
RWSlistCollectables to implement a last in first out (LIFO) stack. A Stack is
a sequential list for which all insertions and deletions are made at one end
(the beginning of the list). Hence, the ordering is determined externally by
the ordering of the insertions. Duplicates are allowed.

An object stored by RWSlistCollectablesStack must inherit abstract base
class RWCollectable. The virtual function isEqual() (see class
RWCollectable) is required, to find a match between a target and an item in
the stack.

This class corresponds to the Smalltalk class Stack.

Polymorphic

RWSlistCollectablesStack ();
Construct an empty stack.

RWSlistCollectablesStack (RWCollectable* a);
Construct a stack with one entry a.

RWSlistCollectablesStack (const RWSlistCollectablesStack& s);
Copy constructor. A shallow copy of the stack s is made.

void
operator= (const RWSlistCollectablesStack& s);

Assignment operator. A shallow copy of the stack s is made.

virtual void
apply (RWapplyCollectable ap, void*);
virtual RWspace
binaryStoreSize () const;
virtual void
clear ();

Inherited from class RWSlistCollectables.

Synopsis

Description

Persistence

Public
Constructors

Assignment
Operator

Public
Member

Functions

RWSlistCollectablesStack

312 Tools.h++ Class Reference

virtual void
clearAndDestroy ();
virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

RWBoolean
containsReference (const RWCollectable* e) const;
virtual size_t
entries () const;

Inherited from class RWSlistCollectables.

virtual RWCollectable*
first () const;

Inherited from class RWSlistCollectables. Same as top() .

virtual RWCollectable*
insert (RWCollectable* c);

Inherited from class RWSlistCollectables. Same as push() .

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return
__RWSLISTCOLLECTABLESSTACK.

virtual RWBoolean
isEmpty ()const;

Inherited from class RWSlistCollectables.

virtual RWCollectable*
last () const;

Inherited from class RWSlistCollectables. Returns the item at the bottom
of the stack.

virtual size_t
occurrencesOf (const RWCollectable* target) const;
size_t
occurrencesOfReference (const RWCollectable* e) const;

Inherited from class RWSlistCollectables.

virtual RWCollectable*
remove (const RWCollectable*);

Redefined from class RWSlistCollectables. Calls pop() . The argument is
ignored.

RWCollectable*
pop ();

Removes and returns the item at the top of the stack, or returns nil if the
stack is empty.

RWSlistCollectablesStack

Tools.h++ Class Reference 313

void
push (RWCollectable*);

Adds an item to the top of the stack.

RWCollectable*
top () const;

Returns the item at the top of the stack or nil if the stack is empty.

Tools.h++ Class Reference 315

RWSortedVector

RWSortedVector RWOrdered RWSequenceable …
… RWCollection RWCollectable

#include <rw/sortvec.h>
RWSortedVector a;

Class RWSortedVector represents a group of ordered items, internally
sorted by the compareTo() function and accessible by an index number.
Duplicates are allowed. An object stored by RWSortedVector must inherit
from the abstract base class RWCollectable. An insertion sort is used to
maintain the vector in sorted order.

Because class RWSortedVector is implemented as a vector of pointers,
traversing the collection is more efficient than with class RWBinaryTree.
However, insertions are slower in the center of the collection.

Note that because the vector is sorted, you must not modify elements
contained in the vector in such a way as to invalidate the ordering.

Polymorphic

sortvec.cpp
#include <rw/sortvec.h>
#include <rw/collstr.h>
#include <rw/rstream.h>

main(){
 RWSortedVector sv;
 sv.insert(new RWCollectableString(“dog”));
 sv.insert(new RWCollectableString(“cat”));
 sv.insert(new RWCollectableString(“fish”));
 RWSortedVectorIterator next(sv);
 RWCollectableString* item;
 while(item = (RWCollectableString*)next())
 cout << *item << endl;
 sv.clearAndDestroy();
}

Program output:

cat
dog
fish

RWSortedVector (size_t size = RWDEFAULT_CAPACITY);

Construct an empty RWSortedVector that has an initial capacity of size
items. The capacity will be increased automatically as needed.

Synopsis

Description

Persistence

Example

Public
Constructors

RWSortedVector

316 Tools.h++ Class Reference

RWBoolean
operator== (const RWSortedVector& sv) const;

Returns TRUE if for every item in self, the corresponding item in sv at the
same index is equal. The two collections must also have the same number
of members.

const RWCollectable*
operator[] (size_t i);

Returns the ith element in the collection. If i is out of range, an exception
of type RWBoundsErr will be thrown. The return value cannot be used as
an lvalue.

const RWCollectable*
operator() (size_t i);

Returns the i th element in the collection. Bounds checking is enabled by
defining the preprocessor directive RWBOUNDS_CHECK before including the
header file “rwsortvec.h ”. In this case, if i is out of range, an exception of
type RWBoundsErr will be thrown. The return value cannot be used as an
lvalue.

virtual void
apply (RWapplyCollectable ap, void* x);

Inherited from class RWOrdered.

virtual const RWCollectable*
at (size_t i) const;

Inherited from class RWOrdered.

virtual RWspace
binaryStoreSize () const;

Inherited from class RWCollection.

virtual void
clear ();

Inherited from class RWOrdered.

virtual void
clearAndDestroy ();

Inherited from class RWCollection.

virtual int
compareTo (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWBoolean
contains (const RWCollectable* target) const;

Inherited from class RWCollection.

Public
Member

Operators

Public
Member

Functions

RWSortedVector

Tools.h++ Class Reference 317

virtual size_t
entries () const;

Inherited from class RWOrdered.

virtual RWCollectable*
find (const RWCollectable* target) const;

Inherited from class RWOrdered. Note that RWOrdered::find() uses the
virtual function index() to perform its search. Hence, a binary search
will be used.

virtual RWCollectable*
first () const;

Inherited from class RWOrdered.

virtual unsigned
hash () const;

Inherited from class RWCollectable.

virtual size_t
index (const RWCollectable*) const;

Redefined from class RWOrdered. Performs a binary search to return the
index of the first item that compares equal to the target item, or RW_NPOS if
no such item can be found.

virtual RWCollectable*
insert (RWCollectable* c);

Redefined from class RWOrdered. Performs a binary search to insert the
item pointed to by c after all items that compare less than or equal to it,
but before all items that compare greater than it. Returns nil if the
insertion was unsuccessful, c otherwise.

virtual RWClassID
isA () const;

Redefined from class RWCollectable to return __RWSORTEDVECTOR.

virtual RWBoolean
isEmpty () const;

Inherited from class RWOrdered.

virtual RWBoolean
isEqual (const RWCollectable* a) const;

Inherited from class RWCollectable.

virtual RWCollectable*
last () const;

Inherited from class RWOrdered.

RWSortedVector

318 Tools.h++ Class Reference

virtual size_t
occurrencesOf (const RWCollectable* target) const;

Redefined from class RWOrdered. Returns the number of items that
compare equal to the item pointed to by target.

virtual RWCollectable*
remove (const RWCollectable* target);

Inherited from class RWOrdered. Note that RWOrdered::remove() uses
the virtual function index() to perform its search. Hence, a binary search
will be used.

virtual void
removeAndDestroy (const RWCollectable* target);

Inherited from class RWCollection.

RWCollectable*
removeAt (size_t index);

Inherited from class RWOrdered. Removes the item at the position index
in the collection and returns it.

Tools.h++ Class Reference 319

RWTBitVec<size>

#include <rw/tbitvec.h>
RWTBitVec<22> // A 22 bit long vector

RWTBitVec<size> is a parameterized bit vector of fixed length size. Unlike
class RWBitVec, its length cannot be changed at run time. The advantage of
RWBitVec is its smaller size, and one less level of indirection, resulting in a
slight speed advantage.

Bits are numbered from 0 through size-1, inclusive.

The copy constructor and assignment operator use copy semantics.

None

In this example, a bit vector 24 bits long is exercised:

#include <rw/tbitvec.h>
main() {
 RWTBitVec<24> a, b; // Allocate two vectors.
 a(2) = TRUE; // Set bit 2 (the third bit) of a on.
 b(3) = TRUE; // Set bit 3 (the fourth bit) of b on.
 RWTBitVec<24> c = a ̂ b; // Set c to the XOR of a and b.
}

RWTBitVec<size> ();
Constructs an instance with all bits set to FALSE.

RWTBitVec<size> (RWBoolean val);
Constructs an instance with all bits set to val .

RWTBitVec<size>&
operator= (const RWTBitVec<size>& v);

Sets self to a copy of v .

RWTBitVec&
operator= (RWBoolean val);

Sets all bits in self to the value val .

RWTBitVec&
operator&= (const RWTBitVec& v);
RWTBitVec&
operator^= (const RWTBitVec& v);
RWTBitVec&
operator|= (const RWTBitVec& v);

Logical assignments. Sets each bit of self to the logical AND, XOR, or OR,
respectively, of self and the corresponding bit in v .

Synopsis

Description

Persistence

Example

Public
Constructor

Assignment
Operators

RWTBitVec<size>

320 Tools.h++ Class Reference

RWBitRef
operator[] (size_t i);

Returns a reference to the i th bit of self. This reference can be used as an
lvalue. The index i must be between 0 and size-1, inclusive. Bounds
checking will occur.

RWBitRef
operator() (size_t i);

Returns a reference to the i th bit of self. This reference can be used as an
lvalue. The index i must be between 0 and size-1, inclusive. No bounds
checking is done.

RWBoolean
operator== (RWBoolean b) const;

Returns TRUE if every bit of self is set to the value b. Otherwise, returns
FALSE.

RWBoolean
operator!= (RWBoolean b) const;

Returns TRUE if any bit of self is not set to the value b. Otherwise, returns
FALSE.

RWBoolean
operator== (const RWTBitVec& v) const;

Returns TRUE if each bit of self is set to the same value as the
corresponding bit in v . Otherwise, returns FALSE.

RWBoolean
operator!= (const RWTBitVec& v) const;

Returns TRUE if any bit of self is not set to the same value as the
corresponding bit in v . Otherwise, returns FALSE.

void
clearBit (size_t i);

Clears (i.e., sets to FALSE) the bit with index i . The index i must be
between 0 and size-1. No bounds checking is performed. The following
two lines are equivalent, although clearBit(size_t) is slightly smaller
and faster than using operator()(size_t) :

 a(i) = FALSE;
 a.clearBit(i);

const RWByte*
data () const;

Returns a const pointer to the raw data of self. Should be used with care.

size_t
firstFalse () const;

Returns the index of the first OFF (False) bit in self. Returns RW_NPOS if
there is no OFF bit.

Logical
Operators

RWTBitVec<size>

Tools.h++ Class Reference 321

size_t
firstTrue () const;

Returns the index of the first ON (True) bit in self. Returns RW_NPOS if there
is no ON bit.

void
setBit (size_t i);

Sets (i.e., sets to TRUE) the bit with index i . The index i must be between 0
and size -1. No bounds checking is performed. The following two lines
are equivalent, although setBit(size_t) is slightly smaller and faster
than using operator()(size_t)

 a(i) = TRUE;
 a.setBit(i);

RWBoolean
testBit (size_t i) const;

Tests the bit with index i . The index i must be between 0 and size -1. No
bounds checking is performed. The following are equivalent, although
testBit(size_t) is slightly smaller and faster than using
operator()(size_t) :

 if(a(i)) doSomething();
 if(a.testBit(i)) doSomething();

RWTBitVec operator& (const RWTBitVec& v1, const RWTBitVec& v2);
RWTBitVec operator^ (const RWTBitVec& v1, const RWTBitVec& v2);
RWTBitVec operator| (const RWTBitVec& v1, const RWTBitVec& v2);

Return the logical AND, XOR, and OR, respectively, of vectors v1 and v2 .

Related
Global

Functions

Tools.h++ Class Reference 323

RWTime

#include <rw/rwtime.h>
RWTime a; // Construct with current time

Class RWTime represents a time, stored as the number of seconds since
00:00:00 January 1, 1901 UTC. See Section 8 for how to set the time zone for
your compiler. Failure to do this may result in UTC (GMT) times being
wrong.

Output formatting is done using an RWLocale object. The default locale
formats according to U.S. conventions.

Note that because the default constructor for this class creates an instance
holding the current date and time, constructing a large array of RWTime
may be slow.

RWTime v[5000]; // Figures out the current time 5000 times

Those with access to the C++ Standard Library-based versions of the
Tools.h++ template collections should consider the following:

// Figures out the current time just once:
RWTValOrderedVector<RWTime> v(5000, RWTime());

Thanks to the smart allocation scheme of the standard collections, the above
declaration will result in only one call to the default constructor followed by
5000 invocations of the copy constructor. In the case of RWTime, the copy
constructor amounts to an assignment of one long to another, resulting in
faster creation than the simple array.

Simple

This example constructs a current time, and the time when Daylight-Saving
Time starts in the year 1990. It then prints them out.

#include <rw/rwtime.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main(){
 RWTime t; // Current time
 RWTime d(RWTime::beginDST(1990, RWZone::local()));
 cout << “Current time: “ << RWDate(t) << “ “ << t <<
 endl;
 cout << “Start of DST, 1990: “ << RWDate(d) << “ “ << d <<
 endl;
}

Synopsis

Description

Persistence

Example

RWTime

324 Tools.h++ Class Reference

Program output

Current time: 03/22/91 15:01:40
Start of DST, 1990: 05/01/90 02:00:00

RWTime();
Default constructor. Constructs a time with the present time.

RWTime(const RWTime&);
Copy constructor.

RWTime(unsigned long s);
Constructs a time with s seconds since 00:00:00 January 1, 1901 UTC. If
s==0 , an invalid time is constructed. Note that for small s this may be
prior to January 1, 1901 in your time zone.

RWTime(unsigned hour, unsigned minute, unsigned second=0,
 const RWZone& zone = RWZone::local());

Constructs a time with today’s date, and the specified hour, minute, and
second, relative to the time zone zone , which defaults to local time.

RWTime(const RWDate& date, unsigned hour = 0,
 unsigned minute = 0,unsigned second = 0,
 const RWZone& = RWZone::local());

Constructs a time for a given date, hour, minute, and second, relative to
the time zone zone , which defaults to local time. Note that the maximum
RWTime is much sooner than maximum RWDate. (In fact, it is on Feb. 5,
2037 for platforms with 4-byte long s.) This is a consequence of the fact
that RWTime counts seconds while RWDate only deals with full days.

RWTime(const struct tm*, const RWZone& = RWZone::local());
Constructs a time from the tm_year , tm_mon, tm_mday, tm_hour ,
tm_min , and tm_sec components of the struct tm argument. These
components are understood to be relative to the time zone zone , which
defaults to local time. Note that the numbering of months and years in a
struct tm differs from that used in RWTime arguments.

RWTime(const RWDate& date, const RWCString& str,
 const RWZone& zone = RWZone::local(),
 const RWLocale& locale = RWLocale::global());

Constructs a time for the given date, extracting the time from the string
str . The string str should contain only the time. The time is understood
to be relative to the time zone zone , which defaults to local time. The
specified locale is used for formatting information . Use function
isValid() to check the results. Note: not all time string errors can be
detected by this function.

Public
Constructors

RWTime

Tools.h++ Class Reference 325

RWTime&
operator= (const RWTime&);

Assignment operator.

RWTime
operator++ ();

Prefix increment operator. Add one second to self, then return the results.

RWTime
operator-- ();

Prefix decrement operator. Subtract one second from self, then return the
results.

RWTime
operator++ (int);

Postfix increment operator. Add one second to self, returning the initial
value.

RWTime
operator-- (int);

Postfix decrement operator. Subtract one second from self, returning the
initial value.

RWTime&
operator+= (unsigned long s);

Add s seconds to self, returning self.

RWTime&
operator-= (unsigned long s);

Subtract s seconds from self, returning self.

RWCString
asString (char format = ‘\0’,const RWZone& = RWZone::local(),
 const RWLocale& = RWLocale::global()) const;

Returns self as a string, formatted by the RWLocale argument, with the
time zone adjusted according to the RWZone argument. Formats are as
defined by the standard C library function strftime() . The default
format is the date followed by the time: “%x %X”. The exact format of the
date and time returned is dependent upon the implementation of
strftime() available. For more information, look under RWLocale.

RWCString
asString (char* format,const RWZone& = RWZone::local(),
 const RWLocale& = RWLocale::global()) const;

Returns self as a string, formatted by the RWLocale argument, with the
time zone adjusted according to the RWZone argument. Formats are as
defined by the standard C library function strftime() .

Public
Member

Operators

Public
Member

Functions

RWTime

326 Tools.h++ Class Reference

RWBoolean
between (const RWTime& a, const RWTime& b) const;

Returns TRUE if RWTime is between a and b, inclusive.

size_t
binaryStoreSize () const;

Returns the number of bytes necessary to store the object using the global
function

RWFile& operator<<(RWFile&, const RWTime&);

int
compareTo (const RWTime* t) const;

Comparison function, useful for sorting times. Compares self to the
RWTime pointed to by t and returns:

 0 if self == * t ;
 1 if self > * t ;
 –1 if self < * t ;

void
extract (struct tm*,const RWZone& = RWZone::local()) const;

Fills all members of the struct tm argument, adjusted to the time zone
specified by the RWZone argument. If the time is invalid, the struct tm

members are all set to -1. Note that the encoding of struct tm members is
different from that used in RWTime and RWDate functions.

unsigned
hash () const;

Returns a suitable hashing value.

unsigned
hour (const RWZone& zone = RWZone::local()) const;

Returns the hour, adjusted to the time zone specified.

unsigned
hourGMT() const;

Returns the hour in UTC (GMT).

RWBoolean
isDST (const RWZone& zone = RWZone::local()) const;

Returns TRUE if self is during Daylight-Saving Time in the time zone given
by zone , FALSE otherwise.

RWBoolean
isValid () const;

Returns TRUE if this is a valid time, FALSE otherwise.

RWTime
max(const RWTime& t) const;

Returns the later time of self or t .

RWTime

Tools.h++ Class Reference 327

RWTime
min (const RWTime& t) const;

Returns the earlier time of self or t .

unsigned
minute (const RWZone& zone = RWZone::local()) const;

Returns the minute, adjusted to the time zone specified.

unsigned
minuteGMT () const;

Returns the minute in UTC (GMT).

unsigned
second () const;

Returns the second; local time or UTC (GMT).

unsigned long
seconds () const;

Returns the number of seconds since 00:00:00 January 1, 1901 UTC.

static RWTime
beginDST (unsigned year,
 const RWZone& zone = RWZone::local());

Return the start of Daylight-Saving Time (DST) for the given year, in the
given time zone. Returns an “invalid time” if DST is not observed in that
year and zone.

static RWTime
endDST(unsigned year, const RWZone& = RWZone::local());

Return the end of Daylight-Saving Time for the given year, in the given
time zone. Returns an “invalid time” if DST is not observed in that year
and zone.

static unsigned
hash (const RWTime& t);

Returns the hash value of t as returned by t.hash() .

static RWTime
now();

Returns the present time.

RWTime
operator+ (const RWTime& t, unsigned long s);
RWTime
operator+ (unsigned long s, const RWTime& t);

Returns an RWTime s seconds greater than t .

RWTime
operator- (const RWTime& t, unsigned long s);

Returns an RWTime s seconds less than t .

Static Public
Member

Functions

Related
Global

Operators

RWTime

328 Tools.h++ Class Reference

RWBoolean
operator< (const RWTime& t1, const RWTime& t2);

Returns TRUE if t1 is less than t2 .

RWBoolean
operator<= (const RWTime& t1, const RWTime& t2);

Returns TRUE if t1 is less than or equal to t2 .

RWBoolean
operator> (const RWTime& t1, const RWTime& t2);

Returns TRUE if t1 is greater than t2 .

RWBoolean
operator>= (const RWTime& t1, const RWTime& t2);

Returns TRUE if t1 is greater than or equal to t2 .

RWBoolean
operator== (const RWTime& t1, const RWTime& t2);

Returns TRUE if t1 is equal to t2 .

RWBoolean
operator!= (const RWTime& t1, const RWTime& t2);

Returns TRUE if t1 is not equal to t2 .

ostream&
operator<< (ostream& s, const RWTime& t);

Outputs the time t on ostream s , according to the locale imbued in the
stream (see class RWLocale), or by RWLocale::global() if none.

RWvostream&
operator<< (RWvostream&, const RWTime& t);
RWFile&
operator<< (RWFile&, const RWTime& t);

Saves RWTime t to a virtual stream or RWFile, respectively.

RWvistream&
operator>> (RWvistream&, RWTime& t);
RWFile&
operator>> (RWFile&, RWTime& t);

Restores an RWTime into t from a virtual stream or RWFile, respectively,
replacing the previous contents of t .

Tools.h++ Class Reference 329

RWTimer

#include <rw/timer.h>
RWTimer timer;

This class can measure elapsed CPU (user) time. The timer has two states:
running and stopped. The timer measures the total amount of time spent in
the “running” state since it was either constructed or reset.

The timer is put into the “running” state by calling member function
start() . It is put into the “stopped” state by calling stop() .

RWTimer uses the system-dpendent function clock() which returns the
number of “ticks” since it was first called. As a result, RWTimer will not be
able to measure intervals longer than some system-dependent value. (For
instance, on several common UNIX systems, this value is just under 36
minutes.)

None

This example prints out the amount of CPU time used while looping for 5
seconds (as measured using class RWTime).

#include <rw/timer.h>
#include <rw/rwtime.h>
#include <rw/rstream.h>

main()
{RWTimer t;
 t.start(); // Start the timer

 RWTime start;
 start.now(); // Record starting time

 // Loop for 5 seconds:
 for (RWTime current; current.seconds() - start.seconds() < 5;
 current = RWTime::now())
 {;}

 t.stop(); // Stop the timer

 cout << t.elapsedTime() << endl;
 return 0;
}

Program output (exact value may differ):

5.054945

Synopsis

Description

Persistence

Example

RWTimer

330 Tools.h++ Class Reference

RWTimer();
Constructs a new timer. The timer will not start running until start() is
called.

double
elapsedTime () const;

Returns the amount of (CPU) time that has accumulated while the timer
was in the running state.

void
reset ();

Resets (and stops) the timer.

void
start ();

Puts the timer in the “running” state. Time accumulates while in this state.

void
stop ();

Puts the timer in the “stopped” state. Time will not accumulate while in
this state.

Public
Constructor

Public
Member

Functions

Tools.h++ Class Reference 331

RWTIsvDlist<T>

#include <rw/tidlist.h>
RWTIsvDlist<T> list;

Class RWTIsvDlist<T> is a class that implements intrusive doubly-linked lists.

An intrusive list is one where the member of the list must inherit from a
common base class, in this case RWIsvDlink. The advantage of such a list is
that memory and space requirements are kept to a minimum. The
disadvantage is that the inheritance hierarchy is inflexible, making it slightly
more difficult to use with an existing class. Class RWTValDlist<T> is offered
as an alternative, non-intrusive, linked list.

See Stroustrup (1991; Section 8.3.1) for more information about intrusive
lists.

Note that when you insert an item into an intrusive list, the actual item
(not a copy) is inserted. Because each item carries only one link field, the
same item cannot be inserted into more than one list, nor can it be inserted
into the same list more than once.

#include <rw/tidlist.h>
#include <rw/rstream.h>
#include <string.h>

struct Symbol : public RWIsvDlink {
 char name[10];
 Symbol(const char* cs) {
 strncpy(name, cs, sizeof(name)); name[9] = '\0';
 }
};

void printem(Symbol* s, void*) { cout << s->name << endl; }

main() {
 RWTIsvDlist<Symbol> list;
 list.insert(new Symbol("one"));
 list.insert(new Symbol("two"));
 list.prepend(new Symbol("zero"));

 list.apply(printem, 0);
 list.clearAndDestroy(); // Deletes the items inserted into
 // the list
 return 0;
}
Program Output:
zero
one
two

Synopsis

Descripton

Example

RWTIsvDlist<T>

332 Tools.h++ Class Reference

RWTIsvDlist ();
Constructs an empty list.

RWTIsvDlist (T* a);
Constructs a list with the single item pointed to by a in it.

void
append (T* a);

Appends the item pointed to by a to the end of the list.

void
apply (void (*applyFun)(T*, void*), void* d);

Calls the function pointed to by applyFun to every item in the collection.
This must have the prototype:

void yourFun (T* item, void* d);

The item will be passed in as argument item . Client data may be passed
through as parameter d.

T*
at (size_t i) const;

Returns the item at index i . The index i must be between zero and the
number of items in the collection less one, or an exception of type
TOOL_INDEX will be thrown.

void
clear ();

Removes all items from the list.

void
clearAndDestroy ();

Removes and calls delete for each item in the list. Note that this assumes
that each item was allocated off the heap.

RWBoolean
contains (RWBoolean (*testFun)(const T*, void*),void* d)
 const;

Returns TRUE if the list contains an item for which the user-defined
“tester” function pointed to by testFun returns TRUE . The tester function
must have the prototype:

RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

RWBoolean
containsReference (const T* a) const;

Returns TRUE if the list contains an item with the address a.

Public
Constructors

Public
Member

Functions

RWTIsvDlist<T>

Tools.h++ Class Reference 333

size_t
entries () const;

Returns the number of items currently in the list.

T*
find (RWBoolean (*testFun)(const T*, void*),void* d) const;

Returns the first item in the list for which the user-defined “tester”
function pointed to by testFun returns TRUE. If there is no such item, then
returns nil . The tester function must have the prototype:

 RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

T*
first () const;

Returns (but does not remove) the first item in the list, or nil if the list is
empty.

T*
get ();

Returns and removes the first item in the list, or nil if the list is empty.

size_t
index (RWBoolean (*testFun)(const T*, void*),void* d) const;

Returns the index of the first item in the list for which the user-defined
“tester” function pointed to by testFun returns TRUE. If there is no such
item, then returns RW_NPOS. The tester function must have the prototype:

 RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

void
insert (T* a);

Appends the item pointed to by a to the end of the list. This item cannot
be inserted into more than one list, nor can it be inserted into the same list
more than once.

void
insertAt (size_t i, T* a);

Insert the item pointed to by a at the index position i . This position must
be between zero and the number of items in the list, or an exception of
type TOOL_INDEX will be thrown. The item cannot be inserted into more
than one list, nor can it be inserted into the same list more than once.

RWTIsvDlist<T>

334 Tools.h++ Class Reference

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the list, FALSE otherwise.

T*
last () const;

Returns (but does not remove) the last item in the list, or nil if the list is
empty.

size_t
occurrencesOf (RWBoolean (*testFun)(const T*, void*),void* d)
 const;

Traverses the list and returns the number of times for which the user-
defined “tester” function pointed to by testFun returned TRUE . The tester
function must have the prototype:

 RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d

size_t
occurrencesOfReference (const T* a) const;

Returns the number of times which the item pointed to by a occurs in the
list. Because items cannot be inserted into a list more than once, this
function can only return zero or one.

void
prepend (T* a);

Prepends the item pointed to by a to the beginning of the list.

T*
remove (RWBoolean (*testFun)(const T*, void*),void* d);

Removes and returns the first item for which the user-defined tester
function pointed to by testFun returns TRUE, or nil if there is no such
item. The tester function must have the prototype:

 RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

T*
removeAt (size_t i);

Removes and returns the item at index i . The index i must be between
zero and the number of items in the collection less one or an exception of
type TOOL_INDEX will be thrown.

RWTIsvDlist<T>

Tools.h++ Class Reference 335

T*
removeFirst ();

Removes and returns the first item in the list, or nil if there are no items in
the list.

T*
removeLast ();

Removes and returns the last item in the list, or nil if there are no items in
the list.

T*
removeReference (T* a);

Removes and returns the item with address a, or nil if there is no such
item.

Tools.h++ Class Reference 337

RWTIsvDlistIterator<T>

#include <rw/tidlist.h>
RWTIsvDlist<T> list;
RWTIsvDlistIterator<T> iterator(list);

Iterator for class RWTIsvDlist<T>, allowing sequential access to all the
elements of a doubly-linked parameterized intrusive list. Elements are
accessed in order, in either direction.

The “current item” is undefined immediately after construction — you must
define it by using operator() or some other (valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTIsvDlistIterator (RWTIsvDlist<T>& c);
Constructs an iterator to be used with the list c .

T*
operator++ ();

Advances the iterator one position, returning a pointer to the new link, or
nil if the end of the list has been reached.

T*
operator-- ();

Reverses the iterator one position, returning a pointer to the new link, or
nil if the beginning of the list has been reached.

T*
operator+= (size_t n);

Advances the iterator n positions, returning a pointer to the new link, or
nil if the end of the list has been reached.

T*
operator-= (size_t n);

Reverses the iterator n positions, returning a pointer to the new link, or
nil if the beginning of the list has been reached.

T*
operator() ();

Advances the iterator one position, returning a pointer to the new link, or
nil if the end of the list has been reached.

Synopsis

Description

Persistence

Public
Constructor

Public
Operators

RWTIsvDlistIterator<T>

338 Tools.h++ Class Reference

RWTIsvDlist<T>*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

T*
findNext (RWBoolean (*testFun)(const T*, void*),void*);

Advances the iterator to the first link for which the tester function pointed
to by testFun returns TRUE and returns it, or nil if there is no such link.

void
insertAfterPoint (T* a);

Inserts the link pointed to by a into the iterator’s associated collection in
the position immediately after the iterator’s current position.

T*
key () const;

Returns the link at the iterator’s current position. Returns nil if the
iterator is not valid.

T*
remove ();

Removes and returns the current link from the iterator’s associated
collection. Returns nil if unsuccessful. Afterwards, if successful, the
iterator will be positioned at the element immediately before the removed
link.

T*
removeNext (RWBoolean (*testFun)(const T*, void*),void*);

Advances the iterator to the first link for which the tester function pointed
to by testFun returns TRUE, removes and returns it. Returns FALSE if
unsuccessful. Afterwards, if successful, the iterator will be positioned at
the element immediately before the removed element.

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTIsvDlist<TL>& c);

Resets the iterator to iterate over the collection c .

Public
Member

Functions

Tools.h++ Class Reference 339

RWTIsvSlist<T>

#include <rw/tislist.h>
RWTIsvSlist<T> list;

Class RWTIsvSlist<T> is a class that implements intrusive singly-linked lists.

An intrusive list is one where the member of the list must inherit from a
common base class, in this case RWIsvSlink. The advantage of such a list is
that memory and space requirements are kept to a minimum. The
disadvantage is that the inheritance hierarchy is inflexible, making it slightly
more difficult to use with an existing class. Class RWTValSlist<T> is offered
as an alternative, non-intrusive, linked list.

See Stroustrup (1991; Section 8.3.1) for more information about intrusive
lists.

Note that when you insert an item into an intrusive list, the actual item
(not a copy) is inserted. Because each item carries only one link field, the
same item cannot be inserted into more than one list, nor can it be inserted
into the same list more than once.

#include <rw/tislist.h>
#include <rw/rstream.h>
#include <string.h>

struct Symbol : public RWIsvSlink
{ char name[10];
 Symbol(const char* cs)
 { strncpy(name, cs, sizeof(name)); name[9] = '\0'; }
};

void printem(Symbol* s, void*) { cout << s->name << endl; }

main(){
 RWTIsvSlist<Symbol> list;
 list.insert(new Symbol("one"));
 list.insert(new Symbol("two"));
 list.prepend(new Symbol("zero"));

 list.apply(printem, 0);
 list.clearAndDestroy(); // Deletes the items inserted into
 // the list
 return 0;
}
Program Output:
zero
one
two

Synopsis

Descripton

Example

RWTIsvSlist<T>

340 Tools.h++ Class Reference

RWTIsvSlist ();
Constructs an empty list.

RWTIsvSlist (T* a);
Constructs a list with the single item pointed to by a in it.

void
append (T* a);

Appends the item pointed to by a to the end of the list.

void
apply (void (*applyFun)(T*, void*), void* d);

Calls the function pointed to by applyFun to every item in the collection.
This must have the prototype:

void yourFun (T* item, void* d);

The item will be passed in as argument item . Client data may be passed
through as parameter d.

T*
at (size_t i) const;

Returns the item at index i . The index i must be between zero and the
number of items in the collection less one, or an exception of type
TOOL_INDEX will be thrown.

void
clear ();

Removes all items from the list.

void
clearAndDestroy ();

Removes and calls delete for each item in the list. Note that this assumes
that each item was allocated off the heap.

RWBoolean
contains (RWBoolean (*testFun)(const T*, void*), void* d)
 const;

Returns TRUE if the list contains an item for which the user-defined
“tester” function pointed to by testFun returns TRUE . The tester function
must have the prototype:

RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

RWBoolean
containsReference (const T* a) const;

Returns TRUE if the list contains an item with the address a.

Public
Constructors

Public
Member

Functions

RWTIsvSlist<T>

Tools.h++ Class Reference 341

size_t
entries () const;

Returns the number of items currently in the list.

T*
find (RWBoolean (*testFun)(const T*, void*),void* d) const;

Returns the first item in the list for which the user-defined “tester”
function pointed to by testFun returns TRUE. If there is no such item, then
returns nil . The tester function must have the prototype:

RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

T*
first () const;

Returns (but does not remove) the first item in the list, or nil if the list is
empty.

T*
get ();

Returns and removes the first item in the list, or nil if the list is empty.

size_t
index (RWBoolean (*testFun)(const T*, void*),void* d) const;

Returns the index of the first item in the list for which the user-defined
“tester” function pointed to by testFun returns TRUE. If there is no such
item, then returns RW_NPOS. The tester function must have the prototype:

RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

void
insert (T* a);

Appends the item pointed to by a to the end of the list. This item cannot
be inserted into more than one list, nor can it be inserted into the same list
more than once.

void
insertAt (size_t i, T* a);

Insert the item pointed to by a at the index position i . This position must
be between zero and the number of items in the list, or an exception of
type TOOL_INDEX will be thrown. The item cannot be inserted into more
than one list, nor can it be inserted into the same list more than once.

RWTIsvSlist<T>

342 Tools.h++ Class Reference

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the list, FALSE otherwise.

T*
last () const;

Returns (but does not remove) the last item in the list, or nil if the list is
empty.

size_t
occurrencesOf (RWBoolean (*testFun)(const T*, void*),void* d)
 const;

Traverses the list and returns the number of times for which the user-
defined “tester” function pointed to by testFun returned TRUE . The tester
function must have the prototype:

RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

size_t
occurrencesOfReference (const T* a) const;

Returns the number of times which the item pointed to by a occurs in the
list. Because items cannot be inserted into a list more than once, this
function can only return zero or one.

void
prepend (T* a);

Prepends the item pointed to by a to the beginning of the list.

T*
remove (RWBoolean (*testFun)(const T*, void*),void* d);

Removes and returns the first item for which the user-defined tester
function pointed to by testFun returns TRUE, or nil if there is no such
item. The tester function must have the prototype:

RWBoolean yourTester (const T* item, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

T*
removeAt (size_t i);

Removes and returns the item at index i . The index i must be between
zero and the number of items in the collection less one or an exception of
type TOOL_INDEX will be thrown.

RWTIsvSlist<T>

Tools.h++ Class Reference 343

T*
removeFirst ();

Removes and returns the first item in the list, or nil if there are no items in
the list.

T*
removeLast ();

Removes and returns the last item in the list, or nil if there are no items in
the list. This function is relatively slow because removing the last link in a
singly-linked list necessitates access to the next-to-the-last link, requiring
the whole list to be searched.

T*
removeReference (T* a);

Removes and returns the link with address a. The link must be in the list.
In a singly-linked list this function is not very efficient.

Tools.h++ Class Reference 345

RWTIsvSlistIterator<T>

#include <rw/tislist.h>
RWTIsvSlist<T> list;
RWTIsvSlistIterator<T> iterator(list);

Iterator for class RWTIsvSlist<T>, allowing sequential access to all the
elements of a singly-linked parameterized intrusive list. Elements are
accessed in order, from first to last.

The “current item” is undefined immediately after construction — you must
define it by using operator() or some other (valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTIsvSlistIterator (RWTIsvSlist<T>& c);
Constructs an iterator to be used with the list c .

T*
operator++ ();

Advances the iterator one position, returning a pointer to the new link, or
nil if the end of the list has been reached.

T*
operator+= (size_t n);

Advances the iterator n positions, returning a pointer to the new link, or
nil if the end of the list has been reached.

T*
operator() ();

Advances the iterator one position, returning a pointer to the new link, or
nil if the end of the list has been reached.

RWTIsvSlist<T>*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

T*
findNext (RWBoolean (*testFun)(const T*, void*),void*);

Advances the iterator to the first link for which the tester function pointed
to by testFun returns TRUE and returns it, or nil if there is no such link.

Synopsis

Description

Persistence

Public
Constructor

Public
Operators

Public
Member

Functions

RWTIsvSlistIterator<T>

346 Tools.h++ Class Reference

void
insertAfterPoint (T* a);

Inserts the link pointed to by a into the iterator’s associated collection in
the position immediately after the iterator’s current position.

T*
key () const;

Returns the link at the iterator’s current position. Returns nil if the
iterator is not valid.

T*
remove ();

Removes and returns the current link from the iterator’s associated
collection. Returns nil if unsuccessful. Afterwards, if successful, the
iterator will be positioned at the element immediately before the removed
link. This function is relatively inefficient for a singly-linked list.

T*
removeNext (RWBoolean (*testFun)(const T*, void*),void*);

Advances the iterator to the first link for which the tester function pointed
to by testFun returns TRUE, removes and returns it. Returns FALSE if
unsuccessful. Afterwards, if successful, the iterator will be positioned at
the element immediately before the removed element.

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTIsvSlist<TL>& c);

Resets the iterator to iterate over the collection c .

Tools.h++ Class Reference 347

RWTPtrDeque<T>

#include <rw/tpdeque.h>
RWTPtrDeque<T> deq;

RWTPtrDeque requires the Standard C++ Library.

This class maintains a pointer-based collection of values, implemented as a
double-ended queue, or deque. Class T is the type pointed to by the items in
the collection.

Isomorphic

In this example, a double-ended queue of int s is exercised.

// tpdeque.cpp
#include <rw/tpdeque.h>
#include <iostream.h>

/*
 * This program partitions integers into even and odd numbers
 */

int main(){
 RWTPtrDeque<int> numbers;

 int n;

 cout << "Input an assortment of integers (EOF to end):"
 << endl;

 while (cin >> n) {
 if (n % 2 == 0)
 numbers.pushFront(new int(n));
 else
 numbers.pushBack(new int(n));
 }

 while (numbers.entries()) {
 cout << *numbers.first() << endl;
 delete numbers.popFront();
 }

 return 0;
}

Program Input:
1 2 3 4 5
<eof>

Program Output:
4
2
1
3
5

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrDeque<T>

348 Tools.h++ Class Reference

Classes RWTPtrDlist<T>, RWTPtrSlist<T>, and RWTPtrOrderedVector<T> also
provide a Rogue Wave pointer-based interface to C++-standard sequence
collections.

Class deque<T*, allocator> is the C++-standard collection that serves as
the underlying implementation for this class.

typedef deque<T*, allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef T* value_type;
typedef T*& reference;
typedef T* const& const_reference;

RWTPtrDeque<T> ();
Constructs an empty, double-ended queue.

RWTPtrDeque<T> (const deque<T*, allocator>& deq);
Constructs a double-ended queue by copying all elements of deq .

RWTPtrDeque<T> (const RWTPtrDeque<T>& rwdeq);
Copy constructor.

RWTPtrDeque<T> (size_type n, T* a);
Constructs a double-ended queue with n elements, each initialized to a.

RWTPtrDeque<T> (T* const* first, T* const* last);
Constructs a double-ended queue by copying elements from the array of
T* s pointed to by first , up to, but not including, the element pointed to
by last .

RWTPtrDeque<T>&
operator= (const RWTPtrDeque<T>& deq);

Clears all elements of self and replaces them by copying all elements of
deq .

RWTPtrDeque<T>&
operator= (const deque<T*, allocator>& stddeq);

Clears all elements of self and replaces them by copying all elements of
stddeq .

bool
operator< (const RWTPtrDeque<T>& deq);

Returns true if self compares lexicographically less than deq , otherwise
returns false . Items in each collection are dereferenced before being
compared. Assumes that type T has well-defined less-than semantics.

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTPtrDeque<T>

Tools.h++ Class Reference 349

bool
operator== (const RWTPtrDeque<T>& deq);

Returns true if self compares equal to deq , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other. Elements are dereferenced before being
compared.

reference
operator() (size_type i);

const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type i);

const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
append (T* a);

Adds the item a to the end of the collection.

void
apply (void (*fn)(T*,void*), void* d);

void
apply (void (*fn)(const T*,void*), void* d) const;

void
apply (void (*fn)(T*&,void*), void* d);

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

 void yourfun(T* a, void* d);
 void yourfun(const T* a, void* d);
 void yourfun(T*& a, void* d);

for reference semantics. Client data may be passed through parameter d.

Public
Member

Functions

RWTPtrDeque<T>

350 Tools.h++ Class Reference

reference
at (size_type i);

const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use this method if
multiple pointers to the same object are stored.

bool
contains (const T* a) const;

If there exists an element t in self such that the expression (*t == *a) is
true, returns true . Otherwise, returns false .

bool
contains (bool (*fn)(const T*, void*), void *d) const;

bool
contains (bool (*fn)(T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void *d)

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

RWTPtrDeque<T>

Tools.h++ Class Reference 351

size_type
entries () const;

Returns the number of items in self.

T*
find (const T* a) const;

If there exists an element t in self such that the expression (*t == *a) is
true , returns t . Otherwise, returns rwnil .

T*
find (bool (*fn)(T*,void*), void* d) const;
T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

reference
first ();

const_reference
first () const;

Returns a reference to the first element of self. If the collection is empty,
the function throws an exception of type RWBoundsErr.

size_type
index (const T* a) const;

Returns the position of the first item t in self such that (*t == *a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(T*,void*), void* d) const;
size_type
index (bool (*fn)(const T*,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true, or returns the static member npos if no such item exists. fn points
to a user-defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to the end of the collection. Returns true .

RWTPtrDeque<T>

352 Tools.h++ Class Reference

void
insertAt (size_type i, T* a);

Inserts the item a in front of the item at position i in self. This position
must be between zero and the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

T*&
last ();

T* const &
last () const;

Returns a reference to the last element of self.

reference
maxElement ();

const_reference
maxElement () const;

reference
minElement ();

const_reference
minElement () const;

Returns a reference to the maximum or minimum element in self.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self such that the expression
(*t == *a) is true .

size_type
occurrencesOf (bool (*fn)(T*,void*), void* d) const;
size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
popBack ();

Removes and returns the last item in the collection.

T*
popFront ();

Removes and returns the first item in the collection.

RWTPtrDeque<T>

Tools.h++ Class Reference 353

void
prepend (T* a);

Adds the item a to the beginning of the collection.

void
pushBack (T* a);

Adds the item a to the end of the collection.

void
pushFront (T* a);

Adds the item a to the beginning of the collection.

T*
remove (const T* a);

Removes and returns the first element t in self such that the expression
(*t == *a) is true . Returns rwnil if there is no such element.

T*
remove (bool (*fn)(T*, void*), void* d);
T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have one of the
prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type const T*
removeAll (const_reference a);

Removes all elements t in self such that the expression (*t == *a) is
true . Returns the number of items removed.

size_type
removeAll (bool (*fn)(T*,void*), void* d);
size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

RWTPtrDeque<T>

354 Tools.h++ Class Reference

T*
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between zero and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T*
removeFirst ();

Removes and returns the first item in the collection.

T*
removeLast ();

Removes and returns the first item in the collection.

size_type
replaceAll (const T* oldVal, T* newVal);

Replaces with newVal all elements t in self such that the expression
(*t == *oldVal) is true . Returns the number of items replaced.

size_type
replaceAll (bool (*fn)(T*, void*), void* x, T* newVal);
size_type
replaceAll (bool (*fn)(const T*, void*), void* x,
 const T* newVal);

Replaces with newVal all elements t in self such that the expression
((*fn)(t,d)) is true . Returns the number of items replaced. fn points to
a user-defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
sort ();

Sorts the collection using the less-than operator to compare elements.
Elements are dereferenced before being compared.

deque<T*, allocator>&
std ();
const deque<T*, allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

size_type npos ;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

Static Public
Data Member

RWTPtrDeque<T>

Tools.h++ Class Reference 355

RWvostream&
operator<< (RWvostream& strm, const RWTPtrDeque<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrDeque<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrDeque<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrDeque<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrDeque<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrDeque<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 357

RWTPtrDlist<T>

#include <rw/tpdlist.h>
RWTPtrDlist<T> dlist;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTPtrDlist described in
Appendix A.

This class maintains a pointer-based collection of values, implemented as a
doubly-linked list. Class T is the type pointed to by the items in the
collection.

Isomorphic

In this example, a pointer-based doubly-linked list of user type Dog is
exercised.

//
// tpdlist.cpp
//
#include <rw/tpdlist.h>
#include <iostream.h>
#include <string.h>

class Dog {
 char* name;
public:
 Dog(const char* c) {
 name = new char[strlen(c)+1];
 strcpy(name, c); }

 ~Dog() { delete name; }

 // Define a copy constructor:
 Dog(const Dog& dog) {
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name); }

 // Define an assignment operator:
 void operator=(const Dog& dog) {
 if (this!=&dog) {
 delete name;
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name);
 }
 }

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrDlist<T>

358 Tools.h++ Class Reference

 // Define an equality test operator:
 int operator==(const Dog& dog) const {
 return strcmp(name, dog.name)==0; }

 // Order alphabetically by name:
 int operator<(const Dog& dog) const {
 return strcmp(name, dog.name)<0; }

 friend ostream& operator<<(ostream& str, const Dog& dog){
 str << dog.name;
 return str;}
};

main(){
 RWTPtrDlist<Dog> terriers;
 terriers.insert(new Dog("Cairn Terrier"));
 terriers.insert(new Dog("Irish Terrier"));
 terriers.insert(new Dog("Schnauzer"));

 Dog key1("Schnauzer");
 cout << "The list " <<
 (terriers.contains(&key1) ? "does " : "does not ") <<
 "contain a Schnauzer\n";

 Dog key2("Irish Terrier");
 terriers.insertAt(
 terriers.index(&key2),
 new Dog("Fox Terrier")
);

 Dog* d;
 while (!terriers.isEmpty()) {
 d = terriers.get();
 cout << *d << endl;
 delete d;
 }

 return 0;
}

Program Output:
The list does contain a Schnauzer
Cairn Terrier
Fox Terrier
Irish Terrier
Schnauzer

Classes RWTPtrDeque<T>, RWTPtrSlist<T>, and RWTPtrOrderedVector<T>
also provide a Rogue Wave pointer-based interface to C++-standard
sequence collections.

Class list<T*, allocator> is the C++-standard collection that serves as the
underlying implementation for this class.

Related
Classes

RWTPtrDlist<T>

Tools.h++ Class Reference 359

typedef list<T*, allocator> container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef T* value_type;
typedef
typedef T* reference;
typedef T* const& const_reference;

RWTPtrDlist<T> ();
Constructs an empty, doubly-linked list.

RWTPtrDlist<T> (const RWTPtrDlist<T>& rwlst);
Copy constructor.

RWTPtrDlist<T> (const list<T*, allocator>& lst);
Constructs a pointer based doubly linked list by copying all elements of
lst .

RWTPtrDlist<T> (size_type n, T* a=0);
Constructs a doubly-linked list with n elements, each initialized to a.

RWTPtrDlist<T> (T*const* first, T*const* last);
Constructs a doubly-linked list by copying elements from the array of T* s
pointed to by first , up to, but not including, the element pointed to by
last .

RWTPtrDlist<T>&
operator= (const list<T*, allocator>& lst);
RWTPtrDlist<T>&
operator= (const RWTPtrDlist<T>& lst);

Clears all elements of self and replaces them by copying all elements of
lst.

bool
operator< (const RWTPtrDlist<T>& lst);

Returns true if self compares lexicographically less than lst , otherwise
returns false . Items in each collection are dereferenced before being
compared. Assumes that type T has well-defined less-than semantics.

bool
operator== (const RWTPtrDlist<T>& lst);

Returns true if self compares equal to lst , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other. Elements are dereferenced before being
compared.

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTPtrDlist<T>

360 Tools.h++ Class Reference

reference
operator() (size_type i);

const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type i);

const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
append (T* a);

Adds the item a to the end of the collection.

void
apply (void (*fn)(T*,void*), void* d);
void
apply (void (*fn)(T*&,void*), void* d);
void
apply (void (*fn)(const T*,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. self function must have one of the prototypes:

 void yourfun(T* a, void* d);
 void yourfun(const T* a, void* d);
 void yourfun(reference a, void* d);

Client data may be passed through parameter d.

const
const_reference
at (size_type i);
reference
at (size_type i);

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

Public
Member

Functions

RWTPtrDlist<T>

Tools.h++ Class Reference 361

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use self method if
multiple pointers to the same object are stored.

bool
contains (const T* a) const;

Returns true if there exists an element t in self such that the
expression(*t == *a) is true , otherwise returns false .

bool
contains (bool (*fn)(T*,void*), void* d) const;
bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

for the const version. Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

T*
find (const T* a) const;

If there exists an element t in self such that the expression (*t == *a) is
true , returns t . Otherwise, returns rwnil .

T*
find (bool (*fn)(T*,void*), void* d) const;
T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have one of the prototypes:

RWTPtrDlist<T>

362 Tools.h++ Class Reference

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

for the const version. Client data may be passed through parameter d.

reference
first ();

const_reference
first () const;

Returns a reference to the first element of self.

T*
get ();

Removes and returns the first element in the collection.

size_type
index (const T* a) const;

Returns the position of the first item t in self such that (*t == *a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(T*,void*), void* d) const;
size_type
index (bool (*fn)(const T*,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true, or returns the static member npos if no such item exists. fn points
to a user-defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

for the const version. Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to the end of the collection. Returns true .

void
insertAt (size_type i, T* a);

Inserts the item a in front of the item at position i in self. self position
must be between zero and the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

RWTPtrDlist<T>

Tools.h++ Class Reference 363

T*&
last ();

T*const&
last () const;

Returns a reference to the last item in the collection.

reference
maxElement ();

const_reference
maxElement () const;

reference
minElement ();

const_reference
minElement () const;

Returns a reference to the maximum or minimum element in self.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self such that the expression
(*t == *a) is true .

size_type
occurrencesOf (bool (*fn)(T*,void*), void* d) const;
size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

for the const version. Client data may be passed through parameter d.

void
prepend (T* a);

Adds the item a to the beginning of the collection.

T*
remove (const T* a);

Removes and returns the first element t in self such that the expression
(*t == *a) is true . Returns rwnil if there is no such element.

T*
remove (bool (*fn)(T*,void*), void* d);
T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn

RWTPtrDlist<T>

364 Tools.h++ Class Reference

points to a user-defined tester function which must have one of the
prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const T* a);

Removes all elements t in self such that the expression (*t == *a) is
true . Returns the number of items removed.

size_type
removeAll (bool (*fn)(T*,void*), void* d);
size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

for the const version. Client data may be passed through parameter d.

T*
removeAt (size_type i);

Removes and returns the item at position i in self. self position must be
between zero and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T*
removeFirst ();

Removes and returns the first item in the collection.

T*
removeLast ();

Removes and returns the first item in the collection.

size_type
replaceAll (const T* oldVal,T* newVal);

Replaces with newVal all elements t in self such that the expression
(*t == *oldVal) is true . Returns the number of items replaced.

size_type
replaceAll (bool (*fn)(T*, void*),void* d,T* newVal);
size_type
replaceAll (bool (*fn)(const T*, void*),void* d,T* newVal);

Replaces with newVal all elements t in self such that the expression
((*fn)(t,d)) is true . Returns the number of items replaced. fn points to
a user-defined tester function which must have prototype:

RWTPtrDlist<T>

Tools.h++ Class Reference 365

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
sort ();

Sorts the collection using the less-than operator to compare elements.
Elements are dereferenced before being compared.

list<T*, allocator>&
std ();
const list<T*, allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

RWvostream&
operator<< (RWvostream& strm, const RWTPtrDlist<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrDlist<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrDlist<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrDlist<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrDlist<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrDlist<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Static Public
Data Member

Related
Global

Operators

Tools.h++ Class Reference 367

RWTPtrDlistIterator<T>

#include<rw/tpdlist.h>
RWTPtrDlist<T> dl;
RWTPtrDlistIterator<T> itr(dl);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTPtrDlistIterator described in
Appendix A.

RWTPtrDlistIterator provides an iterator interface to the Tools 7 Standard
C++ Library-based collections which is compatible with the iterator interface
provided for the Tools.h++ 6.xcontainers.

The order of iteration over an RWTPtrDlist is dependent on the order of the
values in the container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called. For operator-- ,
decrementing past the first element will return a value equivalent to false .

None

#include<rw/tpdlist.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTPtrDlist<RWCString> a;
 RWTPtrDlistIterator<RWCString> itr(a);
 a.insert(new RWCString("John"));
 a.insert(new RWCString("Steve"));
 a.insert(new RWCString("Mark"));
 a.insert(new RWCString("Steve"));

 for(;itr();)
 cout << *itr.key() <<endl;

 return 0;
}

Synopsis

Please Note!

Description

Persistence

Examples

RWTPtrDlistIterator<T>

368 Tools.h++ Class Reference

Program Output
John
Steve
Mark
Steve

RWTPtrDlistIterator<T> (RWTPtrDlist<T>& l);
Creates an iterator for the list l . The iterator begins in an undefined state
and must be advanced before the first element will be accessible

T*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its value. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to boolean
false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created, self will reference the first element. If, before iteration, self
referenced the last value in the list, self will now referece an undefined
value distinct from the reset value and a value equivalent to false will be
returned. Otherwise, a value equivalent to true is returned. Note: no
post-increment operator is provided.

RWBoolean
operator+= (size_type n);

Behaves as if operator++() had been applied n times

RWBoolean
operator-- ();

Moves self back to the immediately previous element. If the iterator has
been reset or just created, self operator will returna value equivalent to
false , otherwise it will return a value equivalent to true . If self
references the the first element, it will now be in the reset state. If self has
been iterated past the last value in the list, it will now reference the last
item in the list. Note: no post-decrement operator is provided.

RWBoolean
operator-= (size_type n);

Behaves as if operator—() had been applied n times

RWTPtrDlist<T>*
container() const;

Returns a pointer to the collection being iterated over.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTPtrDlistIterator<T>

Tools.h++ Class Reference 369

T*
findNext (const T* a);

Returns the first element t encountered while iterating self forward, such
that the expression (*t == *a) is true . If no such element exists, returns
a nil pointer equivalent to false. Leaves self referencing the found item, or
“past the end.”

T*
findNext (RWBoolean(*fn)(T*, void*), void* d);

Returns the first element t encountered by iterating self forward such that
the expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d. If no such element exists,
returns a nil pointer equivalent to false. Leaves self referencing the found
item, or “past the end.”

void
insertAfterPoint (T* p);

Inserts the pointer p into the container directly after the element referenced
by self.

T*
key ();

Returns the stored value referenced by self. Undefined if self is not
referencing a value within the list.

T*
remove ();

Returns the stored value referenced by self and removes it from the
collection. Undefined if self is not referencing a value within the list.

T*
removeNext (const T*);

Returns and removes the first element t , encountered by iterating self
forward, such that the expression (*t == *a) is true . If no such element
exists, returns nil .

T*
removeNext (RWBoolean(*fn)(T*, void*), void* d);

Returns and removes the first element t, encountered by iterating self
forward, such that the expression((*fn)(t,d)) is true . fn points to a
user-defined tester function which must have prototype:

bool yourTester(const T* a, void* d);

Client data may be passed through parameter d. If no such element exists,
returns nil .

RWTPtrDlistIterator<T>

370 Tools.h++ Class Reference

void
reset ();
void
reset (RWTPtrDlist<T>& l*);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset with no argument will reset the
iterator on the current container. Supplying RWTPtrDlist<T> to reset()

will reset the iterator on the new container.

Tools.h++ Class Reference 371

RWTPtrHashDictionary

#define RWTPtrHashDictionary RWTPtrHashMap

If you have the Standard C++ Library, refer to the reference for this class
under its new name: RWTPtrHashMap. Although the old name
(RWTPtrHashDictionary) is still supported, we recommend that you use the
new name when coding your applications.

If you do not have the Standard C++ Library, refer to the description of
RWTPtrHashDictionary in Appendix A.

Synopsis

Please Note!

Tools.h++ Class Reference 373

RWTPtrHashDictionaryIterator

#define RWTPtrHashDictionaryIterator RWTPtrHashMapIterator

If you have the Standard C++ Library, refer to the reference for this class
under its new name: RWTPtrHashMapIterator. Although the old name
(RWTPtrHashDictionaryIterator) is still supported, we recommend that you
use the new name when coding your applications.

If you do not have the Standard C++ Library, refer to the description of
RWTPtrHashDictionaryIterator in Appendix A.

Synopsis

Please Note!

Tools.h++ Class Reference 375

RWTPtrHashMap<K,T,H,EQ>

#include <rw/tphdict.h>
RWTPtrHashMap<K,T,H,EQ> m;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the interface for RWTPtrHashDictionary described in
Appendix A.

This class maintains a pointer-based collection of associations of type
pair<K* const, T*> . These pairs are stored according to a hash object of
type H. H must provide a hash function on elements of type K via a public
member

 unsigned long operator()(const K& x)

Equivalent keys within the collection will be grouped together based on an
equality object of type EQ. EQ must ensure this grouping via public member

 bool operator()(const K& x, const K& y)

which should return true if x and y are equivalent.

RWTPtrHashMap<K,T,H,EQ> will not accept a key that compares equal to
any key already in the collection. (RWTPtrHashMultiMap<K,T,H,EQ> may
contain multiple keys that compare equal to each other.) Equality is based
on the comparison object and not on the == operator.

Isomorphic

//
// tphmap.cpp
//
#include<rw/tphdict.h>
#include<rw/cstring.h>
#include<iostream.h>

struct silly_hash{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x(0); }
};
int main(){
 RWCString snd = "Second";
 RWTPtrHashMap<RWCString,int,silly_hash,equal_to<RWCString> >
 contest;
 contest.insert(new RWCString("First"), new int(7));
 contest.insert(&snd,new int(3));

Synopsis

Please Note!

Description

Persistence

Examples

RWTPtrHashMap<K,T,H,EQ>

376 Tools.h++ Class Reference

 //duplicate insertion rejected
 contest.insert(&snd,new int(6));

 contest.insert(new RWCString("Third"), new int(2));

 cout << "There was "
 << contest.occurrencesOf(new RWCString("Second"))
 << " second place winner." << endl;

 return 0;
}
 Program Output:
There was 1 second place winner.

Class RWTPtrHashMultiMap<K,T,H,EQ> offers the same interface to a
pointer-based collection that accepts multiple keys that compare equal to
each other.

Class rw_hashmap<K*,T*,rw_deref_hash<H,K>,rw_deref_compare<C,K> > is
the C++-standard library style collection that serves as the underlying
implementation for this collection.

typedef rw_deref_hash<H,K> container_hash;
typedef rw_deref_compare<EQ,K> container_eq;
typedef rw_hashmap<K*,T*,container_hash,container_eq >
 container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef pair <K* const, T*> value_type;
typedef pair <K* const, T*>& reference;
typedef const pair <K* const, T*>& const_reference;
typedef K* value_type_key;
typedef T* value_type_data;
typedef K*& reference_key;
typedef T*& reference_data;
typedef const K*const& const_reference_key;
typedef const T*const& const_reference_data;

RWTPtrHashMap<K,T,H,EQ> ();
Constructs an empty map.

RWTPtrHashMap<K,T,H,EQ> (const RWTPtrHashMap<K,T,H,EQ>& rwm);
Copy constructor.

RWTPtrHashMap<K,T,H,EQ>
(const container_type & m);

Constructs a pointer based hash map by copying all elements from m.

RWTPtrHashMap<K,T,H,EQ>
(const H& h, size_type sz = RWDEFAULT_CAPACITY);

This Tools.h++ 6.x style constructor creates an empty hashed map which
uses the hash object h and has an initial capacity of sz .

Related
Classes

Public
Typedefs

Public
Constructors

RWTPtrHashMap<K,T,H,EQ>

Tools.h++ Class Reference 377

RWTPtrHashMap<K,T,H,EQ>
(const value_type* first,value_type* last);

Constructs a map by copying elements from the array of pair s pointed to
by first , up to, but not including, the pair pointed to by last .

RWTPtrHashMap<K,T,H,EQ>&
operator= (const container_type& m);
RWTPtrHashMap<K,T,H,EQ>&
operator= (const RWTPtrHashMap<K,T,H,EQ>& m);

Destroys all associations in self and replaces them by copying all
associations from m.

bool
operator== (const RWTPtrHashMap<K,T,H,EQ>& m) const;

Returns true if self compares equal to m, otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual keys that compare
equal to each other. Keys are dereferenced before being compared.

T*&
operator[] (K* key);

Looks up key and returns a reference to its associated item. If the key is
not in the dictionary, then it will be added with an associated uninitialized
pointer of type T* . Because of this, if there is a possibility that a key will
not be in the dictionary, then this operator should only be used as an
lvalue.

void
apply (void (*fn)(const K*, T*&,void*),void* d);

void
apply (void (*fn)(const K*,const T*,void*),void* d) const;

Applies the user-defined function pointed to by fn to every association in
the collection. self function must have one of the prototypes:

void yourfun(const K* key, T*& a, void* d);
void yourfun(const K* key, const T* a, void* d);

Client data may be passed through parameter d.

void
applyToKeyAndValue (void (*fn)(const K*, T*&,void*),void* d);

void
applyToKeyAndValue
(void (*fn)(const K*, const T*, void*), void* d) const;

This is a deprecated version of the apply member above. It behaves
exactly the same as apply.

Public
Member

Operators

Public
Member

Functions

RWTPtrHashMap<K,T,H,EQ>

378 Tools.h++ Class Reference

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first pair in self.

size_type
capacity () const;

Returns the number of buckets(slots) available in the underlying hash
representation. See resize below.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all associations from the collection and uses operator delete to
destroy the objects pointed to by the keys and their associated items. Do
not use self method if multiple pointers to the same object are stored. (If
the equality operator is reflexive, the container cannot hold such multiple
pointers.)

bool
contains (const K* key) const;

Returns true if there exists a key j in self that compares equal to *key ,
otherwise returns false .

bool
contains
(bool (*fn)(value_type,void*),void* d) const;

Returns true if there exists an association a in self such that the expression
((*fn)(a,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last association in self.

size_type
entries () const;

Returns the number of associations in self.

RWTPtrHashMap<K,T,H,EQ>

Tools.h++ Class Reference 379

float
fillRatio () const;

Returns the ratio entries() /capacity() .

const K*
find (const K* key) const;

If there exists a key j in self that compares equal to *key , then j is
returned. Otherwise, returns rwnil .

value_type
find (bool (*fn)(value_type,void*), void* d) const;

If there exists an association a in self such that the expression
((*fn)(a,d)) is true , then returns a. Otherwise, returns
pair<rwnil,rwnil> . fn points to a user-defined tester function which
must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

T*
findValue (const K* key);

const T*
findValue (const K* key) const;

If there exists a key j in self that compares equal to *key , returns the item
associated with j . Otherwise, returns rwnil .

const K*
findKeyAndValue (const K* key, T*& tr);

const K*
findKeyAndValue (const K* key, const T*& tr) const;

If there exists a key j in self that compares equal to *key , assigns the item
associated with j to tr, and returns j . Otherwise, returns rwnil and
leaves the value of tr unchanged.

bool
insert (K* key, T* a);

Adds key with associated item a to the collection. Returns true if the
insertion is successful, otherwise returns false . The function will return
true unless the collection already holds an association with the equivalent
key.

bool
insertKeyAndValue (K* key,T* a);

This is a deprecated version of the insert member above. It behaves
exactly the same as insert.

RWTPtrHashMap<K,T,H,EQ>

380 Tools.h++ Class Reference

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

size_type
occurrencesOf (const K* key) const;

Returns the number of keys j in self that compare equal to *key .

size_type
occurrencesOf
(bool (*fn)(value_type,void*),void* d) const;

Returns the number of associations a in self such that the
expression((*fn)(a,d)) is true . fn points to a user-defined tester
function which must have prototype:

bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

K*
remove (const K* key);

Removes the first association with key j in self that compares equal to
*key and returns j . Returns rwnil if there is no such association.

K*
remove (bool (*fn)(value_type,void*), void* d);

Removes the first association a in self such that the expression
((*fn)(a,d)) is true and returns its key. Returns rwnil if there is no
such association. fn points to a user-defined tester function which must
have prototype:

bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const K* key);

Removes all associations with key j in self that compare equal to *key .
Returns the number of associations removed.

size_type
removeAll (bool (*fn)(value_type,void*), void* d);

Removes all associations a in self such that the expression ((*fn)(a,d)) is
true . Returns the number removed. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

RWTPtrHashMap<K,T,H,EQ>

Tools.h++ Class Reference 381

void
resize (size_type sz);

Changes the capacity of self by creating a new hashed map with a capacity
of sz . resize copies every element of self into the new container and
finally swaps the internal representation of the new container with the
internal representation of self .

rw_hashmap<K*,T*,rw_deref_hash<H,K>,deref_compare<EQ,K>>&
std ();
const rw_hashmap<K*,T*,rw_deref_hash<H,K>,deref_compare<EQ,K>>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrHashMap<K,T,H,EQ>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrHashMap<K,T,H,EQ>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrHashMap<K,T,H,EQ>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrHashMap<K,T,H,EQ>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrHashMap<K,T,H,EQ>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrHashMap<K,T,H,EQ>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 383

RWTPtrHashMapIterator<K,T,H,EQ>

#include<rw/tphdict.h>
RWTPtrHashMap<K,T,H,EQ> m;
RWTPtrHashMap<K,T,H,EQ> itr(m);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the interface for RWTPtrHashDictionaryIterator described
in Appendix A.

RWTPtrHashMapIterator is supplied with Tools.h++ 7.x to provide an
iterator interface to the Standard Library based collections that has backward
compatibility with the container iterators provided in Tools.h++ 6.x.

Iteration over an RWTPtrHashMap is pseudorandom and dependent on the
capacity of the underlying hash table and the hash function being used.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced
with either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Once this state is reached,
continued increments will return a value equivalent to false until reset()

is called.

None

#include<rw/tphdict.h>
#include<iostream.h>
#include<rw/cstring.h>

struct silly_h{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x(0); }
};

int main(){
 RWTPtrHashMap
 <RWCString,int,silly_h,equal_to<RWCString> > age;

 RWTPtrHashMapIterator
 <RWCString,int,silly_h,equal_to<RWCString> > itr(age);

 age.insert(new RWCString("John"),new int(30));
 age.insert(new RWCString("Steve"),new int(17));

Synopsis

Please Note!

Description

Persistence

Examples

RWTPtrHashMapIterator<K,T,H,EQ>

384 Tools.h++ Class Reference

 age.insert(new RWCString("Mark"),new int(24));

//Duplicate insertion is rejected
 age.insert(new RWCString("Steve"),new int(24));

 for(;++itr;)
 cout << *itr.key() << "\'s age is " << *itr.value() << endl;

 return 0;
}

Program Output (not necessarily in this order)
John’s age is 30
Mark’s age is 24
Steve’s age is 17

RWTPtrHashMapIterator<K,T,H,EQ> (RWTPtrHashMap<K,T,H,EQ>&h);
Creates an iterator for the hashed map h . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible.

K*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its key. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the multi-map, self will now reference an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWTPtrHashMap<K,T,H,EQ>*
container() const;

Returns a pointer to the collection being iterated over.

K*
key () const;

Returns the key portion of the association currently referenced by self.
Undefined if self is not referencing a value within the map.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTPtrHashMapIterator<K,T,H,EQ>

Tools.h++ Class Reference 385

void
reset ();
void
reset (RWTPtrHashMap<K,T,H,EQ>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a hashed map with reset()

will reset the iterator on that container.

T*
value ();

Returns the value portion of the association pointed to by self. The
behavior is undefined if the map is empty.

Tools.h++ Class Reference 387

RWTPtrHashMultiMap<K,T,H,EQ>

#include <rw/tphmmap.h>
RWTPtrHashMultiMap<K,T,H,EQ> m;

RWTPtrHashMultiMap requires the Standard C++ Library.

This class maintains a pointer-based collection of associatoins of type
pair<K* const, T*> . These pairs are stored according to a hash object of
type H. H must provide a hash function on elements of type K via a public
member

 unsigned long operator()(const K& x)

Equivalent keys within the collection will be grouped together based on an
equality object of type EQ. EQ must ensure this grouping via public member

 bool operator()(const K& x, const K& y)

which should return true if x and y are equivalent.

RWTPtrHashMultiMap<K,T,H,EQ> may contain multiple keys that compare
equal to each other. (RWTPtrHashMap<K,T,H,EQ> will not accept a key that
compares equal to any key already in the collection.) Equality is based on
the comparison object and not on the == operator.

Isomorphic

//
// tphmap.cpp
//
#include<rw/tphmmap.h>
#include<rw/cstring.h>
#include<iostream.h>

struct silly_hash{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x[0]; }
};
int main(){
 RWCString snd = “Second”;
 RWTPtrHashMultiMap<RWCString,int,silly_hash,equal_to<RWCString> >
 contest;
 contest.insert(new RWCString(“First”), new int(7));
 contest.insert(&snd, new int(3));
 contest.insert(&snd, new int(6)); // duplicate key OK
 contest.insert(new RWCString(“Third”), new int(2));

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrHashMultiMap<K,T,H,EQ>

388 Tools.h++ Class Reference

 cout << “There were “ << contest.occurrencesOf(&snd)
 << “ second place winners.” << endl;

 return 0;
}
 Program Output:
There were 2 second place winners.

Class RWTPtrHashMap<K,T,H,EQ> offers the same interface to a pointer-
based collection that will not accept multiple keys that compare equal to
each other.

rw_hashmultimap<<K*,T*>,rw_deref_hash<H,K>,rw_deref_compare<EQ,K> >
is the C++-standard style collection that serves as the underlying
implementation for this collection.

typedef rw_deref_hash<H,K> container_hash;
typedef rw_deref_compare<EQ,K> container_eq;
typedef rw_hashmultimap<K*,T*,container_hash,container_eq>
 container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef pair <K* const, T*> value_type;
typedef pair <K* const, T*>& reference;
typedef const pair <K* const, T*>& const_reference;
typedef K* value_type_key;
typedef T* value_type_data;
typedef K*& reference_key;
typedef T*& reference_data;
typedef const K*const& const_reference_key;
typedef const T*const& const_reference_data;

RWTPtrHashMultiMap<K,T,H,EQ> ();
Constructs an empty map.

RWTPtrHashMultiMap<K,T,H,EQ> (const container_type& m);
Constructs a multi-map by doing an element by element copy from the
C++ Standard Library style hashed multi-map, m.

RWTPtrHashMultiMap<K,T,H,EQ>
(const RWTPtrHashMultiMap<K,T,H,EQ>& rwm);

Copy constructor.

RWTPtrHashMultiMap<K,T,H,EQ>
(value_type* first, value_type* last);

Constructs a map by copying elements from the array of pair s pointed to
by first , up to, but not including, the pair pointed to by last .

Related
Classes

Public
Typedefs

Public
Constructors

RWTPtrHashMultiMap<K,T,H,EQ>

Tools.h++ Class Reference 389

RWTPtrHashMultiMap<K,T,H,EQ>
(const H& h, size_type sz = RWDEFAULT_CAPACITY);

This Tools.h++ 6.x style constructor creates an empty hashed multi-map
which uses the hash object h and has an initial capacity of sz .

RWTPtrHashMultiMap<K,T,H,EQ>&
operator= (const container_type&jjj m);
RWTPtrHashMultiMap<K,T,H,EQ>&
operator= (const RWTPtrHashMultiMap<K,T,H,EQ>& m);

Destroys all associations in self and replaces them by copying all
associations from m.

bool
operator== (const RWTPtrHashMultiMap<K,T,H,EQ>& m);

Returns true if self compares equal to m, otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual keys that compare
equal to each other. Keys are dereferenced before being compared.

void
apply (void (*fn)(const K*, T*&,void*),void* d);

void
apply (void (*fn)(const K*, const T*, void*), void* d) const;

Applies the user-defined function pointed to by fn to every association in
the collection. self function must have one of the prototypes:

void yourfun(const K* key, T*& a, void* d);
void yourfun(const K* key, const T* a, void* d);

Client data may be passed through parameter d.

void
applyToKeyAndValue (void (*fn)(const K*, T*&,void*),void* d);

void
applyToKeyAndValue
(void (*fn)(const K*, const T*, void*), void* d) const;

This is a deprecated version of the apply member above. It behaves
exactly the same as apply .

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first pair in self.

size_type
capacity () const;

Returns the number of buckets (slots) available in the underlying hash
representation. See resize below.

Public
Member

Operators

Public
Member

Functions

RWTPtrHashMultiMap<K,T,H,EQ>

390 Tools.h++ Class Reference

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all associations from the collection and uses operator delete to
destroy the objects pointed to by the keys and their associated items. Do
not use self method if multiple pointers to the same keys or items are
stored.

bool
contains (const K* key) const;

Returns true if there exists a key j in self that compares equal to *key ,
otherwise returns false .

bool
contains (bool (*fn)(value_type,void*),void* d) const;

Returns true if there exists an association a in self such that the expression
((*fn)(a,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(value_type* a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last association in self.

size_type
entries () const;

Returns the number of associations in self.

float
fillRatio () const;

Returns the ratio entries() /capacity() .

const K*
find (const K* key) const;

If there exists a key j in self that compares equal to *key , then j is
returned. Otherwise, returns rwnil .

value_type
find (bool (*fn)(value_type,void*), void* d) const;

If there exists an association a in self such that the expression
((*fn)(a,d)) is true , then returns a. Otherwise, returns

RWTPtrHashMultiMap<K,T,H,EQ>

Tools.h++ Class Reference 391

pair<rwnil,rwnil> . fn points to a user-defined tester function which
must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

T*
findValue (const K* key);

const T*
findValue (const K* key) const;

If there exists a key j in self that compares equal to *key , returns the item
associated with j . Otherwise, returns rwnil .

const K*
findKeyAndValue (const K* key, T*& tr);

const K*
findKeyAndValue (const K* key, const T*& tr) const;

If there exists a key j in self that compares equal to *key , assigns the item
associated with j to tr, and returns j . Otherwise, returns rwnil and
leaves the value of tr unchanged.

bool
insert (K* key,T* a);

Adds key with associated item a to the collection. Returns true .

bool
insertKeyAndValue (K* key,T* a);

This is a deprecated version of the insert member above. It behaves
exactly the same as insert.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

size_type
occurrencesOf (const K* key) const;

Returns the number of keys j in self that compare equal to *key .

size_type
occurrencesOf
(bool(*fn)(value_type,void*),void* d)const;

Returns the number of associations a in self such that the
expression((*fn)(a,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

RWTPtrHashMultiMap<K,T,H,EQ>

392 Tools.h++ Class Reference

K*
remove (const K* key);

Removes the first association with key j in self that compares equal to
*key . Returns rwnil if there is no such association.

K*
remove (bool (*fn)(value_type,void*), void* d);

Removes the first association a in self such that the expression
((*fn)(a,d)) is true and returns its key. Returns rwnil if there is no
such association. fn points to a user-defined tester function which must
have prototype:

bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const K* key);

Removes all associations with key j in self that compare equal to *key .
Returns the number of associations removed.

size_type
removeAll (bool (*fn)(value_type,void*), void* d);

Removes all associations a in self such that the expression ((*fn)(a,d)) is
true . Returns the number removed. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

void
resize (size_type sz);

Changes the capacity of self by creating a new hashed multi-map with a
capacity of sz . resize then copies every element of self into the new
container and finally swaps the internal representation of the new
container with self .

container_type&
std ();
const container_type&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

RWTPtrHashMultiMap<K,T,H,EQ>

Tools.h++ Class Reference 393

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrHashMultiMap<K,T,H,EQ>& coll);
RWFile&
operator<< (RWFile& strm,
 const RWTPtrHashMultiMap<K,T,H,EQ>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm,
 RWTPtrHashMultiMap<K,T,H,EQ>& coll);
RWFile&
operator>> (RWFile& strm,
 RWTPtrHashMultiMap<K,T,H,EQ>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm,
 RWTPtrHashMultiMap<K,T,H,EQ>*& p);
RWFile&
operator>> (RWFile& strm,
 RWTPtrHashMultiMap<K,T,H,EQ>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 395

RWTPtrHashMultiMapIterator<K,T,H,EQ>

#include<rw/tphmmap.h>
RWTPtrHashMultiMap<K,T,H,EQ> m;
RWTPtrHashMultiMap<K,T,H,EQ> itr(m);

RWTPtrHashMultiMapIterator requires the Standard C++ Library.

RWTPtrHashMultiMapIterator is supplied with Tools 7 to provide an iterator
interface to the new Standard Library based collections that has backward
compatibility with the container iterators provided in Tools 6.

Iteration over an RWTPtrHashMultiMap is pseudorandom and dependent on
the capacity of the underlying hash table and the hash function being used.
The only useable relationship between consecutive elements is that elements
which are defined to be equivalent by the equivalence object, EQ, will remain
adjacent.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tphmmap.h>
#include<iostream.h>
#include<rw/cstring.h>

struct silly_h{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x(0); }
};

int main(){
 RWTPtrHashMultiMap
 <RWCString,int,silly_h,equal_to<RWCString> > age;

 RWTPtrHashMultiMapIterator
 <RWCString,int,silly_h,equal_to<RWCString> > itr(age);

 age.insert(new RWCString("John"),new int(30));
 age.insert(new RWCString("Steve"),new int(17));

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrHashMultiMapIterator<K,T,H,EQ>

396 Tools.h++ Class Reference

 age.insert(new RWCString("Mark"),new int(24));
 age.insert(new RWCString("Steve"),new int(24));

 for(;++itr;)
 cout << *itr.key() << "\'s age is " << *itr.value() << endl;

 return 0;
}

Program Output (not necessarily in this order)
John’s age is 30
Mark’s age is 24
Steve’s age is 24
Steve’s age is 17

RWTPtrHashMultiMapIterator<K,T,H,EQ>
(RWTPtrHashMultiMap<K,T,H,EQ>&h);

Creates an iterator for the hashed multi-map h . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible.

K*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its key. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the multi-map, self will now reference an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWTPtrHashMultiMap<K,T,H,EQ>*
container() const;

Returns a pointer to the collection being iterated over.

K*
key () const;

Returns the key portion of the association currently referenced by self.
Undefined if self is not referencing a value within the multimap.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTPtrHashMultiMapIterator<K,T,H,EQ>

Tools.h++ Class Reference 397

void
reset ();
void
reset (RWTPtrHashMultiMap<K,T,H,EQ>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrHashMultiMap to
reset() will reset the iterator on that container.

T*
value ();

Returns the value portion of the association referenced by self. Undefined
if self is not valid.

Tools.h++ Class Reference 399

RWTPtrHashMultiSet<T,H,EQ>

#include <rw/tphasht.h>
RWTPtrHashMultiSet<T,H,EQ> hmset;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the interface for RWTPtrHashTable described in Appendix
A.

This class maintains a pointer-based collection of values, which are stored
according to a hash object of type H. Class T is the type pointed to by the
items in the collection. H must provide a hash function on elements of type T
via a public member

 unsigned long operator()(const T& x)

Objects within the collection will be grouped together based on an equality
object of type EQ. EQ must ensure this grouping via public member

 bool operator()(const T& x, const T& y)

which should return true if x and y are equivalent, false otherwise.

RWTPtrHashMultiSet<T,H,EQ> may contain multiple items that compare
equal to each other. (RWTPtrHashSet<T,H,EQ> will not accept an item that
compares equal to an item already in the collection.)

Isomorphic

//
// tphasht.cpp
//
#include <rw/tphasht.h>
#include <rw/cstring.h>
#include <iostream.h>

struct silly_hash{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x(0); }
};

main(){
RWTPtrHashMultiSet<RWCString,silly_hash,equal_to<RWCString> > set1;
RWTPtrHashMultiSet<RWCString,silly_hash,equal_to<RWCString> > set2;

 set1.insert(new RWCString("one"));
 set1.insert(new RWCString("two"));
 set1.insert(new RWCString("three"));

Synopsis

Please Note!

Description

Persistence

Examples

RWTPtrHashMultiSet<T,H,EQ>

400 Tools.h++ Class Reference

 set1.insert(new RWCString("one")); // OK: duplicates allowd

 cout << set1.entries() << endl; // Prints "4"

 set2 = set1;
 cout << ((set1.isEquivalent(set2)) ? "TRUE" : "FALSE") << endl;
 // Prints "TRUE"

 set2.difference(set1);

 set1.clearAndDestroy();
 cout << set1.entries() << endl; // Prints "0"
 cout << set2.entries() << endl; // Prints "0"

 return 0;
}

Class RWTPtrHashSet<T,H,EQ> offers the same interface to a pointer-based
collection that will not accept multiple items that compare equal to each
other.

Class rw_hashmultiset<T*,rw_deref_hash<H,T>,rw_deref_compare<EQ,T> >
is the C++-standard collection that serves as the underlying implementation
for RWTPtrHashMultiSet<T,H,EQ>.

typedef rw_deref_compare<EQ,T> container_eq;
typedef rw_deref_hash<H,T> container_hash;

typedef rw_hashmultiset<T*,container_hash,container_eq>
 container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef T* value_type;
typedef T* const& reference;
typedef T* const& const_reference;

RWTPtrHashMultiSet<T,H,EQ>
(size_type sz=1024,const H& h = H(),const EQ& eq = EQ());

Constructs an empty multi set. The hash table representation used by self
multi-set will have sz buckets, use h as a hashing function and eq to test
for equality between stored elements.

RWTPtrHashMultiSet<T,H,EQ>
(const RWTPtrHashMultiSet<T,H,EQ>& rws);

Copy constructor.

RWTPtrHashMultiSet<T,H,EQ>
(const rw_hashmultiset<T*,container_hash, container_eq>& s);

Constructs a hashed multi-set, copying all element from s .

Related
Classes

Public
Typedefs

Public
Constructors

RWTPtrHashMultiSet<T,H,EQ>

Tools.h++ Class Reference 401

RWTPtrHashMultiSet<T,H,EQ>
(const H& h,size_type sz = RWDEFAULT_CAPACITY);

This Tools.h++ 6.xstyle constructor creates an empty hashed multi-set
which uses the hash object h and has an initial hash table capacity of sz .

RWTPtrHashMultiSet<T,H,EQ> (T*const* first,T*const* last,
size_type sz=1024,const H& h = H(),const EQ& eq = EQ());

Constructs a set by copying elements from the array of T* s pointed to by
first , up to, but not including, the element pointed to by last . The hash
table representation used by self multi-set will have sz buckets, use h as a
hashing function and eq to test for equality between stored elements.

RWTPtrHashMultiSet<T,H,EQ>&
operator= (const RWTPtrHashMultiSet<T,H,EQ>& s);

Clears all elements of self and replaces them by copying all elements of s.

bool
operator== (const RWTPtrHashMultiSet<T,H,EQ>& s) const;

Returns true if self compares equal to s , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other. Elements are dereferenced before being
compared.

void
apply (void (*fn)(const T*,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. self function must have prototype:

 void yourfun(const T* a, void* d);

Client data may be passed through parameter d.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

size_type
capacity () const;

Returns the number of buckets(slots) available in the underlying hash
representation. See resize below.

void
clear ();

Clears the collection by removing all items from self.

Public
Member

Operators

Public
Member

Functions

RWTPtrHashMultiSet<T,H,EQ>

402 Tools.h++ Class Reference

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use self method if
multiple pointers to the same object are stored.

bool
contains (const T* a) const;

Returns true if there exists an element t in self that compares equal to *a ,
otherwise returns false .

bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
difference (const RWTPtrHashMultiSet<T,H,EQ>& s);

Sets self to the set-theoretic difference given by (self - s) . Elements
from each set are dereferenced before being compared.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

float
fillRatio () const;

Returns the ratio entries() /capacity() .

const T*
find (const T* a) const;

If there exists an element t in self that compares equal to *a , returns t .
Otherwise, returns rwnil .

const T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have prototype:

RWTPtrHashMultiSet<T,H,EQ>

Tools.h++ Class Reference 403

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to the collection. Returns true .

void
intersection (const RWTPtrHashMultiSet<T,H,EQ>& s);

Destructively performs a set theoretic intersection of self and s , replacing
the contents of self with the result.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isEquivalent (const RWTPtrHashMultiSet<T,H,EQ>& s) const;

Returns true if there is set equivalence between self and s ; returns false

otherwise.

bool
isProperSubsetOf (const RWTPtrHashMultiSet<T,H,EQ>& s) const;

Returns true if self is a proper subset of s ; returns false otherwise.

bool
isSubsetOf (const RWTPtrHashMultiSet<T,H,EQ>& s) const;

Returns true if self is a subset of s or if self is set equivalent to s , false

otherwise.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self that compare equal to *a .

size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
remove (const T* a);

Removes and returns the first element t in self that compares equal to *a .
Returns rwnil if there is no such element.

RWTPtrHashMultiSet<T,H,EQ>

404 Tools.h++ Class Reference

T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const T* a);

Removes all elements t in self that compare equal to *a . Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
resize (size_type sz);

Changes the capacity of self by creating a new hashed multi-set with a
capacity of sz . resize copies every element of self into the new
container and finally swaps the internal representation of the new
container with the internal representation of self .

rw_hashset<T*,container_hash,container_eq>&
std ();
const rw_hashset<T*,container_hash,container_eq>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

void
symmetricDifference (const RWTPtrHashMultiSet<T,H,EQ>& rhs);

Destructively performs a set theoretic symmetric difference operation on
self and rhs . Self is replaced by the result. A symmetric difference can be
informally defined as (A∪B)-(A∩B).

void
Union (const RWTPtrHashMultiSet<T,H,EQ>& rhs);

Destructively performs a set theoretic union operation on self and rhs .
Self is replaced by the result. Note the uppercase “U” in Union to avoid
conflict with the C++ reserved word.

RWTPtrHashMultiSet<T,H,EQ>

Tools.h++ Class Reference 405

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrHashMultiSet<T,H,EQ>& coll);
RWFile&
operator<< (RWFile& strm,
 const RWTPtrHashMultiSet<T,H,EQ>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm,
 RWTPtrHashMultiSet<T,H,EQ>& coll);
RWFile&
operator>> (RWFile& strm,
 RWTPtrHashMultiSet<T,H,EQ>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm,
 RWTPtrHashMultiSet<T,H,EQ>*& p);
RWFile&
operator>> (RWFile& strm,
 RWTPtrHashMultiSet<T,H,EQ>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 407

RWTPtrHashMultiSetIterator<T,H,EQ>

#include<rw/tphasht.h>
RWTPtrHashMultiSet<T,H,EQ> m;
RWTPtrHashMultiSet<T,H,EQ> itr(m);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the interface for RWTPtrHashTableIterator described in
Appendix A.

RWTPtrHashMultiSetIterator is supplied with Tools.h++ 7.x to provide an
iterator interface to the Standard Library based collections that has backward
compatibility with the container iterators provided in Tools.h++ 6.x.

Iteration over an RWTPtrHashMultiSet is pseudorandom and dependent on
the capacity of the underlying hash table and the hash function being used.
The only useable relationship between consecutive elements is that all
elements which are defined to be equivalent by the equivalence object, EQ,
will remain adjacent.

The current item referenced by this iterator is undefined after construction or
after a call to reset() operation. The iterator becomes valid after being
advanced with either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tphasht.h>
#include<iostream.h>
#include<rw/cstring.h>

struct silly_h{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x(0); }
};

int main(){
 RWTPtrHashMultiSet<RWCString,silly_h,equal_to<RWCString> > age;

 RWTPtrHashMultiSetIterator
 <RWCString,silly_h,equal_to<RWCString> > itr(age);

 age.insert(new RWCString("John"));

Synopsis

Please Note!

Description

Persistence

Examples

RWTPtrHashMultiSetIterator<T,H,EQ>

408 Tools.h++ Class Reference

 age.insert(new RWCString("Steve"));
 age.insert(new RWCString("Mark"));
 age.insert(new RWCString("Steve"));

 for(;++itr;)
 cout << *itr.key() << endl;

 return 0;
}

Program Output (not necessarily in this order)
John
Mark
Steve
Steve

RWTPtrHashMultiSetIterator<T,H,EQ>
(RWTPtrHashMultiSet<T,H,EQ>&h);

Creates an iterator for the hashed multi-set h . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible.

T*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its value. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the multiset, self will now reference an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWTPtrHashMultiSet<T,H,EQ>*
container() const;

Returns a pointer to the collection being iterated over.

T*
key () const;

Returns the value currently referenced by self . Undefined if self is not
referencing a value within the multiset.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTPtrHashMultiSetIterator<T,H,EQ>

Tools.h++ Class Reference 409

void
reset ();
void
reset (RWTPtrHashMultiSet<T,H,EQ>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrHashMultiSet to
reset() will reset the iterator on that container.

Tools.h++ Class Reference 411

RWTPtrHashSet<T,H,EQ>

#include <rw/tphset.h>
RWTPtrHashSet<T,H,EQ> s;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTPtrHashSet described in
Appendix A.

This class maintains a pointer-based collection of values, which are stored
according to a hash object of type H. Class T is the type pointed to by the
items in the collection. H must provide a hash function on elements of type T
via a public member

unsigned long operator()(const T& x)

Objects within the collection will be grouped together based on an equality
object of type EQ. EQ must ensure this grouping via public member

bool operator()(const T& x, const T& y)

which should return true if x and y are equivalent, false otherwise.

RWTPtrHashSet<T,H,EQ> will not accept an item that compares equal to an
item already in the collection. (RWTPtrHashMultiSet<T,H,EQ> may contain
multiple items that compare equal to each other.) Equality is based on the
equality object and not on the == operator.

Isomorphic

//
// tphset2.cpp
//
#include <rw/tphset.h>
#include <rw/cstring.h>
#include <iostream.h>

struct silly_hash{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x(0); }
};

main(){
RWTPtrHashSet<RWCString,silly_hash,equal_to<RWCString> > set1;
RWTPtrHashSet<RWCString,silly_hash,equal_to<RWCString> > set2;

 set1.insert(new RWCString("one"));

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrHashSet<T,H,EQ>

412 Tools.h++ Class Reference

 set1.insert(new RWCString("two"));
 set1.insert(new RWCString("three"));
 set1.insert(new RWCString("one")); // Duplicate insertion rejected

 cout << set1.entries() << endl; // Prints "3"

 set2 = set1;
 cout << ((set1.isEquivalent(set2)) ? "TRUE" : "FALSE") << endl;
 // Prints "TRUE"

 set2.difference(set1);

 set1.clearAndDestroy();
 cout << set1.entries() << endl; // Prints "0"
 cout << set2.entries() << endl; // Prints "0"

 return 0;
}

Class RWTPtrHashMultiSet<T,H,EQ> offers the same interface to a pointer-
based collection that accepts multiple items that compare equal to each
other.

Class rw_hashset<T*,rw_deref_hash<H,T>, rw_deref_compare<EQ,T> > is
the C++-standard collection that serves as the underlying implementation
for RWTPtrHashSet<T,H,EQ>.

typedef rw_deref_compare<EQ,T> container_eq;
typedef rw_deref_hash<H,T> container_hash;
typedef rw_hashset<T*,container_hash, container_eq>
 container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef T* value_type;
typedef T* const& reference;
typedef T* const& const_reference;

RWTPtrHashSet<T,H,EQ>
(size_type sz=1024,const H& h = H(),const EQ& eq = EQ());

Constructs an empty hashed set. The underlying hash table representation
will have sz buckets, will use h for its hashing function and will use eq to
determine equality between elements.

RWTPtrHashSet<T,H,EQ> (const RWTPtrHashSet<T,H,EQ>& rws);
Copy constructor.

RWTPtrHashSet<T,H,EQ>
(const H& h,size_type sz = RWDEFAULT_CAPACITY);

This Tools.h++ 6.xstyle constructor creates an empty hashed set which
uses the hash object h and has an initial hash table capacity of sz .

Related
Classes

Public
Typedefs

Public
Constructors

RWTPtrHashSet<T,H,EQ>

Tools.h++ Class Reference 413

RWTPtrHashSet<T,H,EQ>
(const rw_hashset<T*,container_hash,container_eq>& s);

Constructs a pointer based hash set by copying all elements from s .

RWTPtrHashSet<T,H,EQ> (T*const* first,T*const* last,
size_type sz=1024,const H& h = H(),const EQ& eq = EQ());

Constructs a set by copying elements from the array of T* s pointed to by
first , up to, but not including, the element pointed to by last . The
underlying hash table representation will have sz buckets, will use h for
its hashing function and will use eq to determine equality between
elements.

RWTPtrHashSet<T,H,EQ>&
operator= (const RWTPtrHashSet<T,H,EQ>& s);

Clears all elements of self and replaces them by copying all elements of s.

bool
operator== (const RWTPtrHashSet<T,H,EQ>& s) const;

Returns true if self compares equal to s , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other. Elements are dereferenced before being
compared.

void
apply (void (*fn)(const T*,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. self function must have prototype:

void yourfun(const T* a, void* d);

Client data may be passed through parameter d.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

size_type
capacity () const;

Returns the number of buckets(slots) available in the underlying hash
representation. See resize below.

void
clear ();

Clears the collection by removing all items from self.

Public
Member

Operators

Public
Member

Functions

RWTPtrHashSet<T,H,EQ>

414 Tools.h++ Class Reference

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use self method if
multiple pointers to the same object are stored. (If the equality operator is
reflexive, the container cannot hold such multiple pointers.)

bool
contains (const T* a) const;

Returns true if there exists an element t in self such that the
expression(*t == *a) is true , otherwise returns false .

bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
difference (const RWTPtrHashSet<T,H,EQ>& s);

Sets self to the set-theoretic difference given by (self - s) . Elements
from each set are dereferenced before being compared.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

float
fillRatio () const;

Returns the ratio entries() /capacity() .

const T*
find (const T* a) const;

If there exists an element t in self such that *T compares equal to *a ,
returns t . Otherwise, returns rwnil .

RWTPtrHashSet<T,H,EQ>

Tools.h++ Class Reference 415

const T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to the collection. Returns true if the insertion is
successful, otherwise returns false . The function will return true unless
the collection already holds an element with an equivalent key.

void
intersection (const RWTPtrHashSet<T,H,EQ>& s);

Destructively performs a set theoretic intersection of self and s , replacing
the contents of self with the result.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isEquivalent (const RWTPtrHashSet<T,H,EQ>& s) const;

Returns true if there is set equivalence between self and s , and returns
false otherwise.

bool
isProperSubsetOf (const RWTPtrHashSet<T,H,EQ>& s) const;

Returns true if self is a proper subset of s , and returns false otherwise.

bool
isSubsetOf (const RWTPtrHashSet<T,H,EQ>& s) const;

Returns true if self is a subset of s or if self is set equivalent to s , false

otherwise.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t that compare equal to *a

size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const T* a, void* d);

RWTPtrHashSet<T,H,EQ>

416 Tools.h++ Class Reference

Client data may be passed through parameter d.

T*
remove (const T* a);

Removes and returns the first element t in self that compares equal to *a .
Returns rwnil if there is no such element.

T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have prototype:

bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const T* a);

Removes all elements t in self that compare equal to *a . Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
resize (size_type sz);

Changes the capacity of self by creating a new hashed set with a capacity
of sz . resize copies every element of self into the new container and
finally swaps the internal representation of the new container with the
internal representation of self .

rw_hashset<T*,container_hash, container_eq>&
std ();
const rw_hashset<T*,container_hash, container_eq>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

RWTPtrHashSet<T,H,EQ>

Tools.h++ Class Reference 417

void
symmetricDifference (const RWTPtrHashSet<T,H,EQ>& s);

Destructively performs a set theoretic symmetric difference operation on
self and s . Self is replaced by the result. A symmetric difference can be
defined as (A∪B)-(A∩B).

void
Union (const RWTPtrHashSet<T,H,EQ>& s);

Destructively performs a set theoretic union operation on self and s . Self
is replaced by the result. Note the uppercase “U” in Union to avoid conflict
with the C++ reserved word.

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrHashSet<T,H,EQ>& coll);
RWFile&
operator<< (RWFile& strm,
 const RWTPtrHashSet<T,H,EQ>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrHashSet<T,H,EQ>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrHashSet<T,H,EQ>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrHashSet<T,H,EQ>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrHashSet<T,H,EQ>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 419

RWTPtrHashSetIterator<T,H,EQ>

#include<rw/tphset.h>
RWTPtrHashSet<T,H,EQ> m;
RWTPtrHashSet<T,H,EQ> itr(m);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTPtrHashSetIterator described
in Appendix A.

RWTPtrHashSetIterator is supplied with Tools.h++ 7.x to provide an iterator
interface to the Standard Library based collections that has backward
compatibility with the container iterators provided in Tools.h++ 6.x.

Iteration over an RWTPtrHashSet is pseudorandom and dependent on the
capacity of the underlying hash table and the hash function being used.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a pre-increment or an operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tphset.h>
#include<iostream.h>
#include<rw/cstring.h>

struct silly_h{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x(0); }
};

int main(){
 RWTPtrHashSet <RWCString,silly_h,equal_to<RWCString> > age;

 RWTPtrHashSetIterator
 <RWCString,silly_h,equal_to<RWCString> > itr(age);

 age.insert(new RWCString("John"));
 age.insert(new RWCString("Steve"));
 age.insert(new RWCString("Mark"));

//Duplicate insertion is rejected
 age.insert(new RWCString("Steve"));

 for(;++itr;) cout << *itr.key() << endl;

Synopsis

Please Note!

Description

Persistence

Examples

RWTPtrHashSetIterator<T,H,EQ>

420 Tools.h++ Class Reference

 return 0;
}

Program Output (not necessarily in this order)
John
Mark
Steve

RWTPtrHashSetIterator<T,H,EQ> (RWTPtrHashSet<T,H,EQ>&h);
Creates an iterator for the hashed set h . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible.

T*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its value. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the multi-map, self will now point to an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWTPtrHashSet<T,H,EQ>*
container() const;

Returns a pointer to the collection being iterated over.

T*
key () const;

Returns the element referenced by self . Undefined if self is not
referencing a value within the set.

void
reset ();
void
reset (RWTPtrHashSet<T,H,EQ>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrHashSet to reset()

will reset the iterator on that container.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 421

RWTPtrHashTable

#define RWTPtrHashTable RWTPtrHashMultiSet

If you have the Standard C++ Library, refer to the reference for this class
under its new name: RWTPtrHashMultiSet. Although the old name
(RWTPtrHashTable) is still supported, we recommend that you use the new
name when coding your applications.

If you do not have the Standard C++ Library, refer to the description of
RWTPtrHashTable in Appendix A.

Synopsis

Please Note!

Tools.h++ Class Reference 423

RWTPtrHashTableIterator

#define RWTPtrHashTableIterator RWTPtrHashMultiSetIterator

If you have the Standard C++ Library, refer to the reference for this class
under its new name: RWTPtrHashMultiSetIterator. Although the old name
(RWTPtrHashTableIterator) is still supported, we recommend that you use
the new name when coding your applications.

If you do not have the Standard C++ Library, refer to the description of
RWTPtrHashTableIterator in Appendix A.

Synopsis

Please Note!

Tools.h++ Class Reference 425

RWTPtrMap<K,T,C>

#include <rw/tpmap.h>
RWTPtrMap<K,T,C> m;

RWTPtrMap requires the Standard C++ Library.

This class maintains a pointer-based collection of associations of type
pair<K* const, T*> . The first part of the association is a key of type K* ,
the second is its associated item of type T* . Order is determined by the key
according to a comparison object of type C. C must induce a total ordering
on elements of type K via a public member

bool operator()(const K& x, const K& y)

which returns true if x and its partner should precede y and its partner
within the collection. The structure less<T> from the C++-standard header
file <functional> is an example. Note that keys will be dereferenced before
being compared.

RWTPtrMap<K,T,C> will not accept a key that compares equal to any key
already in the collection. (RWTPtrMultiMap<K,T,C> may contain multiple
keys that compare equal to each other.) Equality is based on the comparison
object and not on the == operator. Given a comparison object comp, keys a
and b are equal if

!comp(a,b) && !comp(b,a).

Isomorphic.

In this example, a map of RWCStrings and RWDates is exercised.

//
// tpmap.cpp
//
#include <rw/tpmap.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <iostream.h>
#include <function.h>

main(){
 RWTPtrMap<RWCString, RWDate, less<RWCString> > birthdays;

 birthdays.insert

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrMap<K,T,C>

426 Tools.h++ Class Reference

 (
 new RWCString("John"),
 new RWDate(12, "April", 1975)
);
 birthdays.insert
 (
 new RWCString("Ivan"),
 new RWDate(2, "Nov", 1980)
);

 // Alternative syntax:
 birthdays[new RWCString("Susan")] =
 new RWDate(30, "June", 1955);
 birthdays[new RWCString("Gene")] =
 new RWDate(5, "Jan", 1981);

 // Print a birthday:
 RWCString key("John");
 cout << *birthdays[&key] << endl;
 return 0;
}

Program Output:
04/12/75

Class RWTPtrMultiMap<K,T,C> offers the same interface to a pointer-based
collection that accepts multiple keys that compare equal to each other.
RWTPtrSet<T,C> maintains a pointer-based collection of keys without the
associated items.

Class map<K*,T*,deref_compare<C,K, allocator> > is the C++-standard
collection that serves as the underlying implementation for this collection.

typedef rw_deref_compare<C,K> container_comp;
typedef map<K*,T*,container_comp, allocator> container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef pair <K* const, T*> value_type;
typedef pair <K* const, T*>& reference;
typedef const pair <K* const, T*>& const_reference;
typedef K* value_type_key;
typedef T* value_type_data;
typedef K*& reference_key;
typedef T*& reference_data;
typedef const K*const& const_reference_key;
typedef const T*const& const_reference_data;

RWTPtrMap<K,T,C>
(const container_comp& comp = container_comp());

Constructs an empty map with comparator comp.

Related
Classes

Public
Typedefs

Public
Constructors

RWTPtrMap<K,T,C>

Tools.h++ Class Reference 427

RWTPtrMap<K,T,C> (const RWTPtrMap<K,T,C>& rwm);
Copy constructor.

RWTPtrMap<K,T,C> (const container_type& m);
Constructs a map by copying all elements from m.

RWTPtrMap<K,T,C>
(value_type* first,value_type* last,
 const container_comp& comp = container_comp());

Constructs a map by copying elements from the array of pair s pointed to
by first , up to, but not including, the pair pointed to by last .

RWTPtrMap<K,T,C>&
operator= (const RWTPtrMap<K,T,C>& m);
RWTPtrMap<K,T,C>&
operator= (const container_type& m);

Destroys all associations in self and replaces them by copying all
associations from m.

bool
operator< (const RWTPtrMap<K,T,C>& m) const;

Returns true if self compares lexicographically less than m, otherwise
returns false . Keys in each collection are dereferenced before being
compared. Assumes that type K has well-defined less-than semantics.

bool
operator== (const RWTPtrMap<K,T,C>& m) const;

Returns true if self compares equal to m, otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual keys that compare
equal to each other. Keys are dereferenced before being compared.

T*&
operator[] (const K* key);

Looks up key and returns a reference to its associated item. If the key is
not in the dictionary, then it will be added with an associated uninitialized
pointer of type T* . Because of this, if there is a possibility that a key will
not be in the dictionary, then this operator should only be used as an
lvalue.

void
apply (void (*fn)(const K*,T*&,void*),void* d);

void
apply (void (*fn)(const K*,const T*,void*),void* d) const;

Applies the user-defined function pointed to by fn to every association in
the collection. This function must have one of the prototypes:

void yourfun(const K* key, T*& a, void* d);
void yourfun(const K* key, const T* a, void* d);

Client data may be passed through parameter d.

Public
Member

Operators

Public
Member

Functions

RWTPtrMap<K,T,C>

428 Tools.h++ Class Reference

void
applyToKeyAndValue (void (*fn)(const K*,T*&,void*),void* d);

void
applyToKeyAndValue
(void (*fn)(const K*,const T*,void*),void* d) const;

This is a deprecated version of the apply member above. It behaves
exactly the same as apply.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first pair in self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all associations from the collection and uses operator delete to
destroy the objects pointed to by the keys and their associated items. Do
not use this method if multiple pointers to the same object are stored.
(This could happen even if keys all compare different, since items are not
considered during comparison.)

bool
contains (const K* key) const;

Returns true if there exists a key j in self that compares equal to *key ,
otherwise returns false .

bool
contains (bool (*fn)(value_type,void*), void* d) const;

Returns true if there exists an association a in self such that the expression
((*fn)(a,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(value_type a, void* d);
Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last association in self.

size_type
entries () const;

Returns the number of associations in self.

RWTPtrMap<K,T,C>

Tools.h++ Class Reference 429

const K*
find (const K* key) const;

If there exists a key j in self that compares equal to *key , then j is
returned. Otherwise, returns rwnil .

value_type
find (bool (*fn)(value_type,void*), void* d) const;

If there exists an association a in self such that the expression
((*fn)(a,d)) is true , then returns a. Otherwise, returns
pair<rwnil,rwnil> . fn points to a user-defined tester function which
must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

T*
findValue (const K* key);

const T*
findValue (const K* key) const;

If there exists a key j in self that compares equal to *key , returns the item
associated with j . Otherwise, returns rwnil .

const K*
findKeyAndValue (const K* key, T*& tr);

const K*
findKeyAndValue (const K* key, const T*& tr) const;

If there exists a key j in self that compares equal to *key , assigns the item
associated with j to tr, and returns j . Otherwise, returns rwnil and
leaves the value of tr unchanged.

bool
insert (K* key, T* a);

Adds key with associated item a to the collection. Returns true if the
insertion is successful, otherwise returns false . The function will return
true unless the collection already holds an association with the equivalent
key.

bool
insertKeyAndValue (K* key, T* a);

This is a deprecated version of the insert member above. It behaves
exactly the same as insert.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

RWTPtrMap<K,T,C>

430 Tools.h++ Class Reference

size_type
occurrencesOf (const K* key) const;

Returns the number of keys j in self that compare equal to *key .

size_type
occurrencesOf
(bool (*fn)(value_type,void*), void* d) const;

Returns the number of associations a in self such that the
expression((*fn)(a,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

K*
remove (const K* key);

Removes the first association with key j in self that compare euqal to *key

and returns j . Returns rwnil if there is no such association.

K*
remove (bool (*fn)(value_type,void*), void* d);

Removes the first association a in self such that the expression
((*fn)(a,d)) is true and returns its key. Returns rwnil if there is no
such association. fn points to a user-defined tester function which must
have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const K* key);

Removes all associations with key j in self that compare equal to *key .
Returns the number of associations removed.

size_type
removeAll (bool (*fn)(value_type,void*), void* d);

Removes all associations a in self such that the expression ((*fn)(a,d)) is
true . Returns the number removed. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

RWTPtrMap<K,T,C>

Tools.h++ Class Reference 431

container_type
std ();
const container_type
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

RWvostream&
operator<< (RWvostream& strm, const RWTPtrMap<K,T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrMap<K,T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrMap<K,T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrMap<K,T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrMap<K,T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrMap<K,T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operations

Tools.h++ Class Reference 433

RWTPtrMapIterator<K,T,C>

#include<rw/tpmap.h>
RWTPMap<K,T,C> map;
RWTPMapIterator<K,T,C> itr(map);

RWTPtrMapIterator requires the Standard C++ Library.

RWTPrtMapIterator is supplied with Tools 7 to provide an iterator interface
to the new Standard Library based collections that has backward
compatibility with the container iterators provided in Tools 6.

The order of iteration over an RWTPtrMap is dependent on the comparator
object supplied as applied to the key values of the stored associations.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tpmap.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTPtrMap<RWCString,int,less<RWCString> > age;
 RWTPtrMapIterator<RWCString,int,less<RWCString> > itr(age);

age.insert(new RWCString("John") ,new int(30));
 age.insert(new RWCString("Steve"),new int(17));
 age.insert(new RWCString("Mark") ,new int(24));

//Insertion is rejected, no duplicates allowed
 age.insert(new RWCString("Steve"),new int(24));

for(;itr();)
 cout << *itr.key() << "\'s age is " << *itr.value() << endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrMapIterator<K,T,C>

434 Tools.h++ Class Reference

Program Output
John’s age is 30
Mark’s age is 24
Steve’s age is 17

RWTPtrMapIterator<K,T,C> (const RWTPtrMap<K,T,C>& rwm);
Creates an iterator for the map rwm . The iterator begins in an undefined
state and must be advanced before the first element will be accessible

K*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its key. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the multimap, self will now point to an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWTPtrMap<K,T,C>*
container() const;

Returns a pointer to the collection being iterated over.

K*
key () const;

Returns the key portion of the association currently referenced by self.
Undefined if self is not referencing a value within the map.

void
reset ();
void
reset (RWTPtrMap<K,T,C>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrMap to reset() will
reset the iterator on that container.

T*
value ();

Returns the value portion of the association pointed to by self. Undefined
if self is not referencing a value within the map.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 435

RWTPtrMultiMap<K,T,C>

#include <rw/tpmmap.h>
RWTPtrMultiMap<K,T,C> m;

RWTPtrMultiMap requires the Standard C++ Library.

This class maintains a pointer-based collection of associations of type
pair<K*, const T*> . The first part of the association is a key of type K* ,
the second is its associated item of type T* . Order is determined by the key
according to a comparison object of type C. C must induce a total ordering
on elements of type K via a public member

bool operator()(const K& x, const K& y)

which returns true if x and its partner should precede y and its partner
within the collection. The structure less<T> from the C++-standard header
file <functional> is an example. Note that keys will be dereferenced before
being compared.

RWTPtrMultiMap<K,T,C> may contain multiple keys that compare equal to
each other. (RWTPtrMap<K,T,C> will not accept a key that compares equal
to any key already in the collection.) Equality is based on the comparison
object and not on the == operator. Given a comparison object comp, keys a
and b are equal if

!comp(a,b) && !comp(b,a).

Isomorphic.

In this example, a multimap of RWCString s and RWDates is exercised.

//
// tpmmap.cpp
//
#include <rw/tpmmap.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <iostream.h>

main(){
 typedef RWTPtrMultiMap<RWCString, RWDate, less<RWCString> >
 RWMMap;
 RWMMap birthdays;

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrMultiMap<K,T,C>

436 Tools.h++ Class Reference

 birthdays.insert(new RWCString("John"),
 new RWDate(12, "April", 1975));
 birthdays.insert(new RWCString("Ivan"),
 new RWDate(2, "Nov", 1980));
 birthdays.insert(new RWCString("Mary"),
 new RWDate(22, "Oct", 1987));
 birthdays.insert(new RWCString("Ivan"),
 new RWDate(19, "June", 1971));
 birthdays.insert(new RWCString("Sally"),
 new RWDate(15, "March", 1976));
 birthdays.insert(new RWCString("Ivan"),
 new RWDate(6, "July", 1950));

 // How many "Ivan"s?
 RWCString ivanstr("Ivan");
 RWMMap::size_type n = birthdays.occurrencesOf(&ivanstr);
 RWMMap::size_type idx = 0;
 cout << "There are " << n << " Ivans:" << endl;
 RWMMap::const_iterator iter =
 birthdays.std().lower_bound(&ivanstr);

 while (++idx <= n)
 cout << idx << ". " << *(*iter++).second << endl;
 return 0;
}

Program Output:
There are 3 Ivans:
1. 11/02/80
2. 06/19/71
3. 07/06/50

Class RWTPtrMap<K,T,C> offers the same interface to a pointer-based
collection that will not accept multiple keys that compare equal to each
other. RWTPtrMultiSet<T,C> maintains a pointer-based collection of keys
without the associated values.

Class multimap<K*,T*,deref_compare<C,K,allocator> > is the C++-
standard collection that serves as the underlying implementation for this
collection.

typedef rw_deref_compare<C,K> container_comp;
typedef multimap<K*,T*,container_comp,allocator>
 container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef pair<K* const, T*> value_type;
typedef pair<K* const, T*> reference;
typedef const pair<K* const, T*>& const_reference;
typedef K* value_type_key;
typedef T* value_type_data;
typedef K*& reference_key;
typedef T*& reference_data;
typedef const K*const& const_reference_key;
typedef const T*const& const_reference_data;

Related
Classes

Public
Typedefs

RWTPtrMultiMap<K,T,C>

Tools.h++ Class Reference 437

RWTPtrMultiMap<K,T,C>
(const container_comp& comp =container_comp());

Constructs an empty map with comparator comp.

RWTPtrMultiMap<K,T,C> (const container_type& m);
Constructs a multimap by copying all element from m.

RWTPtrMultiMap<K,T,C> (const RWTPtrMultiMap<K,T,C>& rwm);
Copy constructor.

RWTPtrMultiMap<K,T,C> (value_type* first,value_type* last,
 const container_comp& comp = container_comp());

Constructs a multimap by copying elements from the array of pair s
pointed to by first , up to, but not including, the pair pointed to by last .

RWTPtrMultiMap<K,T,C>&
operator= (const container_type& m);
RWTPtrMultiMap<K,T,C>&
operator= (const RWTPtrMultiMap<K,T,C>& m);

Destroys all associations in self and replaces them by copying all
associations from m.

bool
operator< (const RWTPtrMultiMap<K,T,C>& m);

Returns true if self compares lexicographically less than m, otherwise
returns false . Keys in each collection are dereferenced before being
compared. Assumes that type K has well-defined less-than semantics.

bool
operator== (const RWTPtrMultiMap<K,T,C>& m);

Returns true if self compares equal to m, otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual keys that compare
equal to each other. Keys are dereferenced before being compared.

void
apply (void (*fn)(const K*, T*&,void*),void* d);

void
apply (void (*fn)(const K*,const T*,void*),void* d) const;

Applies the user-defined function pointed to by fn to every association in
the collection. This function must have one of the prototypes:

 void yourfun(const K* key, T*& a, void* d);
 void yourfun(const K* key, const T* a, void* d);

Client data may be passed through parameter d.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTPtrMultiMap<K,T,C>

438 Tools.h++ Class Reference

void
applyToKeyAndValue (void (*fn)(const K*, T*&,void*),void* d);

void
applyToKeyAndValue
(void (*fn)(const K*,const T*,void*),void* d) const;

This is a deprecated version of the apply member above. It behaves
exactly the same as apply.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first pair in self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all associations from the collection and uses operator delete to
destroy the objects pointed to by the keys and their associated items. Do
not use this method if multiple pointers to the same object are stored.

bool
contains (const K* key) const;

Returns true if there exists a key j in self that compares equal to *key ,
otherwise returns false .

bool
contains (bool (*fn)(value_type,void*), void* d) const;

Returns true if there exists an association a in self such that the expression
((*fn)(a,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last association in self.

size_type
entries () const;

Returns the number of associations in self.

RWTPtrMultiMap<K,T,C>

Tools.h++ Class Reference 439

const K*
find (const K* key) const;

If there exists a key j in self that compares equal to *key , then j is
returned. Otherwise, returns rwnil .

value_type
find (bool (*fn)(value_type,void*), void* d) const;

If there exists an association a in self such that the expression
((*fn)(a,d)) is true , then returns a. Otherwise, returns
pair<rwnil,rwnil> . fn points to a user-defined tester function which
must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

T*
findValue (const K* key);

const T*
findValue (const K* key) const;

If there exists a key j in self such that the expression (*j == *key) is
true , returns the item associated with j . Otherwise, returns rwnil .

const K*
findKeyAndValue (const K* key, T*& tr);

const K*
findKeyAndValue (const K* key, const T*& tr) const;

If there exists a key j in self that compares equal to *key , assigns the item
associated with j to tr, and returns j . Otherwise, returns rwnil and
leaves the value of tr unchanged.

bool
insert (K* key, T* a);

Adds key with associated item a to the collection. Returns true .

bool
insertKeyAndValue (K* key, T* a);

This is a deprecated version of the insert member above. It behaves
exactly the same as insert.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

size_type
occurrencesOf (const K* key) const;

Returns the number of keys j in self that compare equal to *key .

RWTPtrMultiMap<K,T,C>

440 Tools.h++ Class Reference

size_type
occurrencesOf
(bool (*fn)(value_type,void*), void* d) const;

Returns the number of associations a in self such that the
expression((*fn)(a,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

K*
remove (const K* key);

Removes the first association with key j in self such that the expression
(*j == *key) is true and returns j . Returns rwnil if there is no such
association.

K*
remove (bool (*fn)(value_type,void*), void* d);

Removes the first association a in self such that the expression
((*fn)(a,d)) is true and returns its key. Returns rwnil if there is no
such association. fn points to a user-defined tester function which must
have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const K* key);

Removes all associations with key j in self that compare equal to *key .
Returns the number of associations removed.

size_type
removeAll (bool (*fn)(value_type,void*), void* d);

Removes all associations a in self such that the expression ((*fn)(a,d)) is
true . Returns the number removed. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(value_type a, void* d);

Client data may be passed through parameter d.

container_type&
std ();
const container_type&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

RWTPtrMultiMap<K,T,C>

Tools.h++ Class Reference 441

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrMultiMap<K,T,C>& coll);
RWFile&
operator<< (RWFile& strm,
 const RWTPtrMultiMap<K,T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrMultiMap<K,T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrMultiMap<K,T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrMultiMap<K,T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrMultiMap<K,T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 443

RWTPtrMultiMapIterator<K,T,C>

#include<rw/tpmmap.h>
RWTPtrMultiMap<K,T,C> map;
RWTPtrMultiMapIterator<K,T,C> itr(map);

RWTPtrMultiMapIterator requires the Standard C++ Library.

RWTPtrMultiMapIterator is supplied with Tools 7 to provide an iterator
interface to the new Standard Library based collections with backward
compatibility to the Tools 6 container iterators.

The order of iteration over an RWTPtrMultiMap is dependent on the
comparator object of the container as applied to the key values of the stored
associations.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced
with either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tpmmap.h>
#include<iostream.h>
#include<rw/cstring.h>
#include<utility>

int main(){
 RWTPtrMultiMap<RWCString,int,less<RWCString> > age;
 RWTPtrMultiMapIterator<RWCString,int,less<RWCString> > itr(age);

 age.insert(new RWCString("John"), new int(30));
 age.insert(new RWCString("Steve"),new int(17));
 age.insert(new RWCString("Mark"), new int(24));
 age.insert(new RWCString("Steve"),new int(24));

 for(;itr();)
 cout << *itr.key() << "\'s age is " << *itr.value() << endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrMultiMapIterator<K,T,C>

444 Tools.h++ Class Reference

Program Output
John’s age is 30
Mark’s age is 24
Steve’s age is 17
Steve’s age is 24

RWTPtrMultiMapIterator<K,T,C> (const RWTPtrMultiMap<K,T,C>& m);
Creates an iterator for the multimap m . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible

K*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its key. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the multimap, self will now point to an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWTPtrMultiMap<K,T,C>*
container() const;

Returns a pointer to the collection being iterated over.

K*
key () const;

Returns the key portion of the association currently referenced by self .
Undefined if self is not referencing a value within the multimap.

void
reset ();
void
reset (RWTPtrMultiMap<K,T,C>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrMultiMap to reset()

will reset the iterator on that container.

T*
value ();

Returns the value portion of the association referenced by self .
Undefined if self is not referencing a value within the multimap.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 445

RWTPtrMultiSet<T,C>

#include <rw/tpmset.h>
RWTPtrMultiSet<T,C> s;

RWTPtrMultiSet requires the Standard C++ Library.

This class maintains a pointer-based collection of values, which are ordered
according to a comparison object of type C. Class T is the type pointed to by
the items in the collection. C must induce a total ordering on elements of
type T via a public member

bool operator()(const T& x, const T& y)

which returns true if x should precede y within the collection. The structure
less<T> from the C++-standard header file <functional> is an example.
Note that items in the collection will be dereferenced before being compared.

RWTPtrMultiSet<T,C> may contain multiple items that compare equal to each
other. (RWTPtrSet<T,C> will not accept an item that compares equal to an
item already in the collection.)

Isomorphic.

In this example, a multi-set of RWCString s is exercised.

//
// tpmset.cpp
//
#include <rw/tpmset.h>
#include <rw/cstring.h>
#include <iostream.h>
#include <function.h>

main(){
 RWTPtrMultiSet<RWCString, less<RWCString> > set;

 set.insert(new RWCString("one"));
 set.insert(new RWCString("two"));
 set.insert(new RWCString("three"));
 set.insert(new RWCString("one")); // OK: duplicates allowd

 cout << set.entries() << endl; // Prints "4"

 set.clearAndDestroy();
 cout << set.entries() << endl; // Prints "0"

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrMultiSet<T,C>

446 Tools.h++ Class Reference

Class RWTPtrSet<T,C> offers the same interface to a pointer-based collection
that will not accept multiple items that compare equal to each other.
RWTPtrMultiMap<K,T,C> maintains is a pointer-based collection of key-
value pairs.

Class multiset<T*, rw_deref_compare<C,T>,allocator > is the C++-
standard collection that serves as the underlying implementation for
RWTPtrMultiSet<T,C>.

typedef rw_deref_compare<C,T> container_comp;
typedef multiset<T*, container_comp,allocator> container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef T* value_type;
typedef T* const& reference;
typedef T* const& const_reference;

RWTPtrMultiSet<T,C> (const container_comp& = container_comp());
Constructs an empty set.

RWTPtrMultiSet<T,C> (const RWTPtrMultiSet<T,C>& rws);
Copy constructor.

RWTPtrMultiSet<T,C> (const container_type>& ms);
Constructs a multimap by copying all elements from ms.

RWTPtrMultiSet<T,C> (T* const* first,T* const* last,const
container_comp& = container_comp());

Constructs a set by copying elements from the array of T* s pointed to by
first , up to, but not including, the element pointed to by last .

RWTPtrMultiSet<T,C>&
operator= (const container_type>& s);
RWTPtrMultiSet<T,C>&
operator= (const RWTPtrMultiSet<T,C>& s);

Clears all elements of self and replaces them by copying all elements of s .

bool
operator< (const RWTPtrMultiSet<T,C>& s) const;

Returns true if self compares lexicographically less than s , otherwise
returns false . Items in each collection are dereferenced before being
compared. Assumes that type T has well-defined less-than semantics.

bool
operator== (const RWTPtrMultiSet<T,C>& s) const;

Returns true if self compares equal to s , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTPtrMultiSet<T,C>

Tools.h++ Class Reference 447

compare equal to each other. Elements are dereferenced before being
compared.

void
apply (void (*fn)(const T*,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have prototype:

 void yourfun(const T* a, void* d);

Client data may be passed through parameter d.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use this method if
multiple pointers to the same object are stored.

bool
contains (const T* a) const;

Returns true if there exists an element t in self that compares equal to *a ,
otherwise returns false .

bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
difference (const RWTPtrMultiSet<T,C>& s);

Sets self to the set-theoretic difference given by (self - s) . Elements
from each set are dereferenced before being compared.

Public
Member

Functions

RWTPtrMultiSet<T,C>

448 Tools.h++ Class Reference

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries ();

Returns the number of items in self.

const T*
find (const T* a) const;

If there exists an element t in self such that the expression (*t == *a) is
true , returns t . Otherwise, returns rwnil .

const T*
find (bool (*fn)(T*,void*), void* d);
const T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to the collection. Returns true .

void
intersection (const RWTPtrMultiSet<T,C>& s);

Sets self to the intersection of self and s . Elements from each set are
dereferenced before being compared.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isEquivalent (const RWTPtrMultiSet<T,C>& s) const;

Returns true if there is set equivalence between self and s , and returns
false otherwise.

bool
isProperSubsetOf (const RWTPtrMultiSet<T,C>& s) const;

Returns true if self is a proper subset of s , and returns false otherwise.

RWTPtrMultiSet<T,C>

Tools.h++ Class Reference 449

bool
isSubsetOf (const RWTPtrMultiSet<T,C>& s) const;

Returns true if self is a subset of s or if self is set equivalent to rhs , false

otherwise.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self that compare equal to *a .

size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
remove (const T* a);

Removes and returns the first element t in self that compares equal to *a .
Returns rwnil if there is no such element.

T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const T* a);

Removes all elements t in self that compare equal to *a . Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

RWTPtrMultiSet<T,C>

450 Tools.h++ Class Reference

multiset<T*, container_comp,allocator>&
std ();
const multiset<T*, container_comp,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

void
symmetricDifference (const RWTPtrMultiSet<T,C>& s);

Sets self to the symmetric difference of self and s . Elements from each set
are dereferenced before being compared.

void
Union (const RWTPtrMultiSet<T,C>& s);

Sets self to the union of self and s . Elements from each set are
dereferenced before being compared. Note the uppercase “U” in Union to
avoid conflict with the C++ reserved word.

RWvostream&
operator<< (RWvostream& strm, const RWTPtrMultiSet<T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrMultiSet<T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrMultiSet<T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrMultiSet<T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrMultiSet<T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrMultiSet<T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 451

RWTPtrMultiSetIterator<T,C>

#include<rw/tpmset.h>
RWTPtrMultiSet<T,C> set;
RWTPtrMultiSetIterator<T,C> itr(set);

RWTPtrMultiSetIterator requires the Standard C++ Library.

RWTPtrMultiSetIterator is supplied with Tools 7 to provide an iterator
interface to the new Standard Library based collections that has backward
compatibility with the container iterators provided in Tools 6.

The order of iteration over an RWTPtrMultiSet is dependent upon the
comparator object parameter C as applied to the values stored in the
container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tpmset.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTPtrMultiSet<RWCString, less<RWCString> > a;
 RWTPtrMultiSetIterator<RWCString, less<RWCString> > itr(a);

 a.insert(new RWCString("John"));
 a.insert(new RWCString("Steve"));
 a.insert(new RWCString("Mark"));
 a.insert(new RWCString("Steve"));

 for(;itr();)
 cout << *itr.key() <<endl;

 return 0;
}

Program Output
John
Mark
Steve
Steve

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrMultiSetIterator<T,C>

452 Tools.h++ Class Reference

RWTPtrMultiSetIterator<T,C> (const RWTPtrMultiSet<T,C>& m);
Creates an iterator for the multi-set m . The iterator begins in an undefined
state and must be advanced before the first element will be accessible

T*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its value. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the multi-set, self will now point to an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWTPtrMultiSet<T,C>*
container() const;

Returns a pointer to the collection being iterated over.

T*
key ();

Returns the stored value referenced by self . Undefined if self is not
referencing a value within the list.

void
reset ();
void
reset (RWTPtrMultiSet<T,C>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrMultiSet with
reset() will reset the iterator on that container.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 453

RWTPtrOrderedVector<T>

#include <rw/tpordvec.h>
RWTPtrOrderedVector<T> ordvec;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface for RWTPtrOrderedVector
described in Appendix A.

This class maintains a pointer-based collection of values, implemented as a
vector. Class T is the type pointed to by the items in the collection

Isomorphic

In this example, a pointer-based vector of type RWDate is exercised.

//
// tporddat.cpp
//
#include <rw/tpordvec.h>
#include <rw/rwdate.h>
#include <iostream.h>

main(){
 RWTPtrOrderedVector<RWDate> week(7);

 RWDate begin; // Today's date

 for (int i=0; i<7; i++)
 week.insert(new RWDate(begin++));

 for (i=0; i<7; i++)
 cout << *week[i] << endl;

 return 0;
}

Program Output:
05/31/95
06/01/95
06/02/95
06/03/95
06/04/95
06/05/95
06/06/95

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrOrderedVector<T>

454 Tools.h++ Class Reference

Classes RWTPtrDeque<T>, RWTPtrSlist<T>, and RWTPtrDlist<T> also provide
a Rogue Wave pointer-based interface to C++-standard sequence collections.

Class vector<T*,allocator> is the C++-standard collection that serves as the
underlying implementation for this class.

typedef vector<T*,allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef T* value_type;
typedef T*& reference;
typedef T* const& const_reference;

RWTPtrOrderedVector<T> ();
Constructs an empty vector.

RWTPtrOrderedVector<T> (const RWTPtrOrderedVector<T>& rwvec);
Copy constructor.

RWTPtrOrderedVector<T> (const vector<T*,allocator>& vec);
Constructs an ordered vector by copying all elements of vec .

RWTPtrOrderedVector<T> (size_type n, T* a);
Constructs a vector with n elements, each initialized to a.

RWTPtrOrderedVector<T> (T* const* first,T* const* last);
Constructs a vector by copying elements from the array of T* s pointed to
by first , up to, but not including, the element pointed to by last .

RWTPtrOrderedVector<T>&
operator= (const RWTPtrOrderedVector<T>& vec);
RWTPtrOrderedVector<T>&
operator= (const vector<T*,allocator>& vec);

Clears all elements of self and replaces them by copying all elements of
vec .

bool
operator< (const RWTPtrOrderedVector<T>& vec) const;

Returns true if self compares lexicographically less than vec , otherwise
returns false . Items in each collection are dereferenced before being
compared.

bool
operator== (const RWTPtrOrderedVector<T>& vec) const;

Returns true if self compares equal to vec , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTPtrOrderedVector<T>

Tools.h++ Class Reference 455

compare equal to each other. Elements are dereferenced before being
compared.

reference
operator() (size_type i);

const_reference
operator()(size_type i) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type i);

const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
append (T* a);

Adds the item a to the end of the collection.

void
apply (void (*fn)(T*&,void*), void* d);
void
apply (void (*fn)(T*,void*), void* d);
void
apply (void (*fn)(const T*,void*), void*`d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

 void yourfun(reference a, void* d);
 void yourfun(T* a, void* d);
 void yourfun(const T* a, void* d);

Client data may be passed through parameter d.

reference
at (size_type i);

const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

Public
Member

Functions

RWTPtrOrderedVector<T>

456 Tools.h++ Class Reference

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use this method if
multiple pointers to the same object are stored.

bool
contains (const T* a) const;

Returns true if there exists an element t in self such that the
expression(*t == *a) is true , otherwise returns false .

bool
contains (bool (*fn)(T*,void*), void* d) const;
bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*const*
data () const;

Returns a pointer to the first element of the vector.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries ();

Returns the number of items in self.

RWTPtrOrderedVector<T>

Tools.h++ Class Reference 457

T*
find (const T* a) const;

If there exists an element t in self such that the expression (*t == *a) is
true , returns t . Otherwise, returns rwnil .

T*
find (bool (*fn)(T*,void*), void* d) const;
T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

reference
first ();

const_reference
first () const;

Returns a reference to the first element of self.

size_type
index (const T* a) const;

Returns the position of the first item t in self such that (*t == *a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(T*,void*), void* d) const;
size_type
index (bool (*fn)(const T*,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to the end of the collection. Returns true .

void
insertAt (size_type i, T* a);

Inserts the item a in front of the item at position i in self. This position
must be between zero and the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

RWTPtrOrderedVector<T>

458 Tools.h++ Class Reference

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

T*&
last ();

T*const&
last () const;

Returns a reference to the last item in the collection.

size_type
length () const;

Returns the number of items in self.

reference
maxElement ();

const_reference
maxElement () const;

reference
minElement ();

const_reference
minElement () const;

Returns a reference to the maximum or minimum element in self.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self such that the expression
(*t == *a) is true .

size_type
occurrencesOf (bool (*fn)(T*,void*),void* d) const;
size_type
occurrencesOf (bool (*fn)(const T*,void*),void* d) const;

Returns the number of elements t in self such that the expression
((*fn)(t,d)) is true . fn points to a user-defined tester function which
must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
prepend (T* a);

Adds the item a to the beginning of the collection.

T*
remove (const T* a);

Removes and returns the first element t in self such that the expression
(*t == *a) is true . Returns rwnil if there is no such element.

RWTPtrOrderedVector<T>

Tools.h++ Class Reference 459

T*
remove (bool (*fn)(T*,void*), void* d);
T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have one of the
prototypes:

 bool yourTester(const T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const T* a);

Removes all elements t in self such that the expression (*t == *a) is
true . Returns the number of items removed.

size_type
removeAll (bool (*fn)(T*,void*), void* d);
size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between zero and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T*
removeFirst ();

Removes and returns the first item in the collection.

T*
removeLast ();

Removes and returns the first item in the collection.

size_type
replaceAll (const T* oldVal, T* newVal);

Replaces with newVal all elements t in self such that the expression
(*t == *oldVal) is true . Returns the number of items replaced.

RWTPtrOrderedVector<T>

460 Tools.h++ Class Reference

size_type
replaceAll (bool (*fn)(T*, void*),void* x,T* newVal);
size_type
replaceAll (bool (*fn)(const T*, void*),void* x,T* newVal);

Replaces with newVal all elements t in self such that the expression
((*fn)(t,d)) is true . Returns the number of items replaced. fn points to
a user-defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
resize (size_type n);

Modify the capacity of the vector to be at least as large as n. The function
has no effect if the capacity is already as large as n.

void
sort ();

Sorts the collection using the less-than operator to compare elements.
Elements are dereferenced before being compared.

vector<T*,allocator>&
std ();
const vector<T*,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrOrderedVector<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrOrderedVector<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrOrderedVector<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrOrderedVector<T>& coll);

Restores the contents of the collection coll from the input stream strm .

Static Public
Data Member

Related
Global

Operators

RWTPtrOrderedVector<T>

Tools.h++ Class Reference 461

RWvistream&
operator>> (RWvistream& strm, RWTPtrOrderedVector<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrOrderedVector<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference 463

RWTPtrSet<T,C>

#include <rw/tpset.h>
RWTPtrSet<T,C> s;

RWTPtrSet requires the Standard C++ Library.

This class maintains a pointer-based collection of values, which are ordered
according to a comparison object of type C. Class T is the type pointed to by
the items in the collection. C must induce a total ordering on elements of
type T via a public member

bool operator()(const T& x, const T& y)

which returns true if x should precede y within the collection. The structure
less<T> from the C++-standard header file <functional> is an example.
Note that items in the collection will be dereferenced before being compared.

RWTPtrSet<T,C> will not accept an item that compares equal to an item
already in the collection. (RWTPtrMultiSet<T,C> may contain multiple items
that compare equal to each other.) Equality is based on the comparison
object and not on the == operator. Given a comparison object comp, items a
and b are equal if

!comp(a,b) && !comp(b,a).

Isomorphic.

In this example, a pointer-based set of RWCString s is exercised.

//
//tpset.cpp
//
#include <rw/tpset.h>
#include <rw/cstring.h>
#include <iostream.h>
#include <function.h>

main(){
 RWTPtrSet<RWCString, less<RWCString> > set;

 set.insert(new RWCString("one"));
 set.insert(new RWCString("two"));
 set.insert(new RWCString("three"));
 set.insert(new RWCString("one")); // Rejected: duplicate entry

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrSet<T,C>

464 Tools.h++ Class Reference

 cout << set.entries() << endl; // Prints "3"

 set.clearAndDestroy();
 cout << set.entries() << endl; // Prints "0"

 return 0;
}

Class RWTPtrMultiSet<T,C> offers the same interface to a pointer-based
collection that accepts multiple items that compare equal to each other.
RWTPtrMap<K,T,C> is a pointer-based collection of key-value pairs.

Class set<T*,rw_deref_compare<C,T>,allocator> is the C++-standard
collection that serves as the underlying implementation for RWTPtrSet<T,C>.

typedef rw_deref_compare<C,T> container_comp;
typedef set<T*, container_comp,allocator> container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef T* value_type;
typedef T*const& reference;
typedef T*const& const_reference;

RWTPtrSet<T,C> (const container_comp& comp = container_comp());
Constructs an empty set.

RWTPtrSet<T,C> (const RWTPtrSet<T,C>& rws);
Copy constructor.

RWTPtrSet<T,C> (const container_type& s);
Creates a pointer based set by copying all elements from s.

RWTPtrSet<T,C> (T* const* first,T* const* last,const
container_comp& comp = container_comp());

Constructs a set by copying elements from the array of T* s pointed to by
first , up to, but not including, the element pointed to by last .

RWTPtrSet<T,C>&
operator= (const container_type& s);
RWTPtrSet<T,C>&
operator= (const RWTPtrSet<T,C>& s);

Clears all elements of self and replaces them by copying all elements of s .

bool
operator< (const RWTPtrSet<T,C>& s);

Returns true if self compares lexicographically less than s , otherwise
returns false . Items in each collection are dereferenced before being
compared. Assumes that type T has well-defined less-than semantics.

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTPtrSet<T,C>

Tools.h++ Class Reference 465

bool
operator== (const RWTPtrSet<T,C>& s);

Returns true if self compares equal to s , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other. Elements are dereferenced before being
compared.

void
apply (void (*fn)(const T*,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have prototype:

 void yourfun(const T* a, void* d);

Client data may be passed through parameter d.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items.

bool
contains (const T* a) const;

Returns true if there exists an element t in self that compares equal with
*a , otherwise returns false .

bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

Public
Member

Functions

RWTPtrSet<T,C>

466 Tools.h++ Class Reference

void
difference (const RWTPtrSet<T,C>& s);

Sets self to the set-theoretic difference given by (self - s) . Elements
from each set are dereferenced before being compared.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

const T*
find (const T* a) const;

If there exists an element t in self that compares equal with *a , returns t .
Otherwise, returns rwnil .

const T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to the collection. Returns true if the insertion is
successful, otherwise returns false . The function will return true unless
the collection already holds an element with an equivalent key.

void
intersection (const RWTPtrSet<T,C>& s);

Sets self to the intersection of self and s . Elements from each set are
dereferenced before being compared.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isEquivalent (const RWTPtrSet<T,C>& s) const;

Returns true if there is set equivalence between self and s , and returns
false otherwise.

RWTPtrSet<T,C>

Tools.h++ Class Reference 467

bool
isProperSubsetOf (const RWTPtrSet<T,C>& s) const;

Returns true if self is a proper subset of s , and returns false otherwise.

bool
isSubsetOf (const RWTPtrSet<T,C>& s) const;

Returns true if self is a subset of s or if self is set equivalent to s , false

otherwise.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self that compare equal with *a .

size_type
occurrencesOf (bool (*fn)(T*,void*), void* d);
size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the expression
((*fn)(t,d)) is true . fn points to a user-defined tester function which
must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
remove (const T* a);

Removes and returns the first element t in self that compares equal with
*a . Returns rwnil if there is no such element.

T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parámeter d.

size_type
removeAll (const T* a);

Removes all elements t in self that compares equal with *a . Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

RWTPtrSet<T,C>

468 Tools.h++ Class Reference

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

set<T*, container_comp,allocator>&
std ();
const set<T*, container_comp,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

void
symmetricDifference (const RWTPtrSet<T,C>& s);

Sets self to the symmetric difference of self and s . Elements from each set
are dereferenced before being compared.

void
Union (const RWTPtrSet<T,C>& s);

Sets self to the union of self and s . Elements from each set are
dereferenced before being compared. Note the uppercase “U” in Union to
avoid conflict with the C++ reserved word.

RWvostream&
operator<< (RWvostream& strm, const RWTPtrSet<T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrSet<T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrSet<T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrSet<T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrSet<T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrSet<T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 469

RWTPtrSetIterator<T,C>

#include<rw/tpset.h>
RWTPtrSet<T,C> set;
RWTPtrSetIterator<T,C> itr(set);

RWTPtrSetIterator requires the Standard C++ Library.

RWTPtrSetIterator is supplied with Tools 7 to provide an iterator interface to
the new Standard Library based collections that has backward compatibility
with the container iterators provided in Tools 6.

The order of iteration over an RWTPtrSet is dependent on the comparator
object supplied as applied to the values stored in the container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tpset.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTPtrSet<RWCString,less<RWCString> > a;
 RWTPtrSetIterator<RWCString,less<RWCString> > itr(a);

 a.insert(new RWCString("John"));
 a.insert(new RWCString("Steve"));
 a.insert(new RWCString("Mark"));

//Rejected, duplicate insertions not allowed
 a.insert(new RWCString("Steve"));

 for(;itr();)
 cout << *itr.key() <<endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrSetIterator<T,C>

470 Tools.h++ Class Reference

Program Output
John
Mark
Steve

RWTPtrSetIterator<T,C> (const RWTPtrSet<T,C>& s);
Creates an iterator for the set s . The iterator begins in an undefined state
and must be advanced before the first element will be accessible

T*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its value. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the set, self will now reference an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWTPtrSet<T,C>*
container() const;

Returns a pointer to the collection being iterated over.

T*
key () const;

Returns the stored value pointed to by self . Undefined if self is not
referencing a value within the set.

void
reset ();
void
reset (RWTPtrSet<T,C>& h);

Resets the iterator so that after being advanced it will point to the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrSet to reset() will
reset the iterator on the new container.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 471

RWTPtrSlist<T>

#include <rw/tpslist.h>
RWTPtrSlist<T> slist;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface for RWTPtrSlist described in
Appendix A.

This class maintains a pointer-based collection of values, implemented as a
singly-linked list. Class T is the type pointed to by the items in the collection.

Isomorphic

//
// tpsldat.cpp
//
#include <rw/tpslist.h>
#include <rw/rwdate.h>
#include <iostream.h>

main(){
 RWTPtrSlist<RWDate> dates;
 dates.insert(new RWDate(2, "June", 52)); // 6/2/52
 dates.insert(new RWDate(30, "March", 46)); // 3/30/46
 dates.insert(new RWDate(1, "April", 90)); // 4/1/90

 // Now look for one of the dates:
 RWDate * ret = dates.find(new RWDate(2,”June”,52));
 if (ret){
 cout << "Found date " << ret << endl;
 }

 // Remove in reverse order:
 while (!dates.isEmpty())
 cout << *dates.removeLast() << endl;

 return 0;
}
Program Output:
Found date
4/01/90
3/30/46
6/02/52

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrSlist<T>

472 Tools.h++ Class Reference

Classes RWTPtrDlist<T>, RWTPtrDeque<T>, and RWTPtrOrderedVector<T>
also provide a Rogue Wave pointer-based interface to C++-standard
sequence collections.

Class rw_slist<T*> is the C++-standard collection that serves as the
underlying implementation for this class.

typedef rw_slist<T*> container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef T* value_type;
typedef T*& reference;
typedef T*const& const_reference;

RWTPtrSlist<T> ();
Constructs an empty, singly-linked list.

RWTPtrSlist<T> (const RWTPtrSlist<T>& rwlst);
Copy constructor.

RWTPtrSlist<T> (const rw_slist<T*>& lst);
Construct a singly linked list by copying all elements of lst .

RWTPtrSlist<T> (size_type n, const T* a=0);
Constructs a singly-linked list with n elements, each initialized to a.

RWTPtrSlist<T> (T* const* first, T* const* last);
Constructs a singly-linked list by copying elements from the array of T*s

pointed to by first , up to, but not including, the element pointed to by
last .

RWTPtrSlist<T>&
operator= (const RWTPtrSlist<T>& lst);
RWTPtrSlist<T>&
operator= (const rw_slist<T*>& lst);

Empties self then inserts all elements of lst .

bool
operator< (const RWTPtrSlist<T>& lst) const;

Returns true if self compares lexicographically less than lst , otherwise
returns false . Items in each collection are dereferenced before being
compared.

bool
operator== (const RWTPtrSlist<T>& lst) const;

Returns true if self compares equal to lst , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTPtrSlist<T>

Tools.h++ Class Reference 473

compare equal to each other. Elements are dereferenced before being
compared.

reference
operator() (size_type i);

const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type i);

const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
append (T* a);

Adds the item a to the end of the collection.

void
apply (void (*fn)(T*,void*), void* d);
void
apply (void (*fn)(T*&,void*), void* d);
void
apply (void (*fn)(const T*,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

 void yourfun(T* a, void* d);
 void yourfun(reference a, void* d);
 void yourfun(const T* a, void* d);

Client data may be passed through parameter d.

reference
at (size_type i);
const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

Public
Member

Functions

RWTPtrSlist<T>

474 Tools.h++ Class Reference

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use this method if
multiple pointers to the same object are stored.

bool
contains (const T* a) const;

Returns true if there exists an element t in self such that the
expression(*t == *a) is true , otherwise returns false .

bool
contains (bool (*fn)(T*,void*), void* d) const;
bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

T*
find (const T* a) const;

If there exists an element t in self such that the expression (*t == *a) is
true , returns t . Otherwise, returns rwnil .

RWTPtrSlist<T>

Tools.h++ Class Reference 475

T*
find (bool (*fn)(T*,void*),void* d) const;
T*
find (bool (*fn)(const T*,void*),void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have one of the prototypes:

 bool yourTester(const T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

reference
first ();

const_reference
first () const;

Returns a reference to the first element of self.

T*
get ();

Removes and returns the first element in the collection.

size_type
index (const T* a) const;

Returns the position of the first item t in self such that (*t == *a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(T*,void*), void* d) const;
size_type
index (bool (*fn)(const T*,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true, or returns the static member npos if no such item exists. fn points
to a user-defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to the end of the collection. Returns true .

void
insertAt (size_type i, T* a);

Inserts the item a in front of the item at position i in self. This position
must be between zero and the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

RWTPtrSlist<T>

476 Tools.h++ Class Reference

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

T*&
last ();

T*const&
last () const;

Returns a reference to the last item in the collection.

reference
maxElement ();

const_reference
maxElement () const;

reference
minElement ();

const_reference
minElement () const;

Returns a reference to the maximum or minimum element in self.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self such that the expression
(*t == *a) is true .

size_type
occurrencesOf (bool (*fn)(T*,void*), void* d) const;
size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
prepend (T* a);

Adds the item a to the beginning of the collection.

T*
remove (const T* a);

Removes and returns the first element t in self such that the expression
(*t == *a) is true . Returns rwnil if there is no such element.

RWTPtrSlist<T>

Tools.h++ Class Reference 477

T*
remove (bool (*fn)(T*,void*), void* d);
T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have one of the
prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const T* a);

Removes all elements t in self such that the expression (*t == *a) is
true . Returns the number of items removed.

size_type
removeAll (bool (*fn)(T*,void*), void* d);
size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between zero and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T*
removeFirst ();

Removes and returns the first item in the collection.

T*
removeLast ();

Removes and returns the first item in the collection.

size_type
replaceAll (const T* oldVal,T* newVal);

Replaces with newVal all elements t in self such that the expression
(*t == *oldVal) is true . Returns the number of items replaced.

RWTPtrSlist<T>

478 Tools.h++ Class Reference

size_type
replaceAll (bool (*fn)(T*, void*),void* x,T* newVal);
size_type
replaceAll (bool (*fn)(const T*, void*),void* x,T* newVal);

Replaces with newVal all elements t in self such that the expression
((*fn)(t,d)) is true . Returns the number of items replaced. fn points to
a user-defined tester function which must have one of the prototypes:

 bool yourTester(T* a, void* d);
 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

void
sort ();

Sorts the collection using the less-than operator to compare elements.
Elements are dereferenced before being compared.

rw_slist<T*>&
std ();
const rw_slist<T*>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

RWvostream&
operator<< (RWvostream& strm, const RWTPtrSlist<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrSlist<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrSlist<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrSlist<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrSlist<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrSlist<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Static Public
Data Member

Related
Global

Operators

Tools.h++ Class Reference 479

RWTPtrSlistIterator<T>

#include<rw/tpslist.h>
RWTPtrSlist<T> dl;
RWTPtrSlistIterator<T> itr(dl);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface for RWTPtrSlistIterator described in
Appendix A.

RWTPtrSlistIterator is supplied with Tools 7 to provide an iterator interface to
the new Standard Library based collections that has backward compatibility
with the container iterators provided in Tools 6.

The order of iteration over an RWTPtrSlist is dependent upon the order of
insertion of items into the container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tpslist.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTPtrSlist<RWCString> a;
 RWTPtrSlistIterator<RWCString> itr(a);
 a.insert(new RWCString("John"));
 a.insert(new RWCString("Steve"));
 a.insert(new RWCString("Mark"));
 a.insert(new RWCString("Steve"));

 for(;itr();)
 cout << *itr.key() <<endl;

 return 0;
}

Synopsis

Please Note!

Description

Persistence

Examples

RWTPtrSlistIterator<T>

480 Tools.h++ Class Reference

Program Output
John
Steve
Mark
Steve

RWTPtrSlistIterator<T> (RWTPtrSlist<T>& lst);
Creates an iterator for the list lst . The iterator begins in an undefined
state and must be advanced before the first element will be accessible

T*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its value. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the list, self will now reference an
undefined value distinct from the reset value and a value equivalent to
false will be returned. Otherwise, a value equivalent to true is returned.
Note: no post-increment operator is provided.

RWBoolean
operator+= (size_type n);

Behaves as if the operator++ member function had been applied n times

RWTPtrSlist<T>*
container() const;
Returns a pointer to the collection being iterated over.

T*
findNext (const T* a);

Returns the first element t encountered by iterating self forward, such that
the expression (*t == *a) is true . If no such element is found, returns
nil . Leaves self referencing the found item or “off the end.”

T*
findNext (RWBoolean(*fn)(T*, void*), void* d);

Returns the first element t encountered by iterating self forward such that
the expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTPtrSlistIterator<T>

Tools.h++ Class Reference 481

void
insertAfterPoint (T* p);

Inserts the pointer p into the container directly after the element pointed to
by self . Leaves self referencing the prior item, or in reset condition.

T*
key ();

Returns the stored value pointed to by self . Undefined if self is not
referencing a value within the list.

T*
remove ();

Returns the stored value pointed to by self . and removes it from the
collection. Undefined if self is not referencing a value within the list.
Leaves self referencing the prior item, or in reset condition.

T*
removeNext (const T*);

Returns and removes the first element t , encountered by iterating self
forward, such that the expression (*t == *a) is true . Leaves self
referencing the prior item, or in reset condition.

T*
removeNext (RWBoolean(*fn)(T*, void*), void* d);

Returns and removes the first element t, encountered by iterating self
forward, such that the expression((*fn)(t,d)) is true . fn points to a
user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d. Leaves self referencing
the prior item, or in reset condition.

void
reset ();
void
reset (RWTPtrSlist<T>& l);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrSlist to reset()

will reset the iterator on the new container.

Tools.h++ Class Reference 483

RWTPtrSortedDlist<T,C>

#include <rw/tpsrtdli.h>
RWTPtrSortedDlist<T,C> srtdlist;

RWTPtrSortedDlist requires the Standard C++ Library.

This class maintains an always-sorted pointer-based collection of values,
implemented as a doubly-linked list. Items are ordered according to a
comparison object of type C. Class T is the type pointed to by the items in
the collection. C must induce a total ordering on elements of type T via a
public member

bool operator()(const T& x, const T& y)

which returns true if x should precede y within the collection. The structure
less<T> from the C++-standard header file <functional> is an example.
Note that items in the collection will be dereferenced before being compared.

Isomorphic.

In this example, a sorted doubly-linked list of RWDates is exercised.

//
// tpsrtdli.cpp
//
#include <rw/tpsrtdli.h>
#include <rw/rwdate.h>
#include <iostream.h>

main(){
 RWTPtrSortedDList<RWDate,greater<RWDate> > lst;

 lst.insert(new RWDate(10, "Aug", 1991));
 lst.insert(new RWDate(9, "Aug", 1991));
 lst.insert(new RWDate(1, "Sep", 1991));
 lst.insert(new RWDate(14, "May", 1990));
 lst.insert(new RWDate(1, "Sep", 1991)); // Add a duplicate
 lst.insert(new RWDate(2, "June", 1991));

 for (int i=0; i<lst.entries(); i++)
 cout << *lst[i] << endl;

 lst.clearAndDestroy();

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Example

RWTPtrSortedDlist<T,C>

484 Tools.h++ Class Reference

Program Output:
09/01/91
09/01/91
08/10/91
08/09/91
06/02/91
05/14/90

Class RWTPtrSortedVector<T> is an alternative always-sorted pointer-based
collection. RWTPtrDlist<T> is an unsorted pointer-based doubly-linked list.

Class list<T*,allocator> is the C++-standard collection that serves as the
underlying implementation for this class.

typedef rw_deref_compare<C,T> container_comp;
typedef list<T*,allocator> container_type;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef container_type::const_iterator const_iterator;
typedef container_type::iterator iterator;
typedef T* value_type;
typedef T*& reference;
typedef T* const& const_reference;

RWTPtrSortedDlist<T,C> ();
Constructs an empty doubly-linked list.

RWTPtrSortedDlist<T,C> (const RWTPtrSortedDlist<T,C>& lst);
Copy constructor.

RWTPtrSortedDlist<T,C> (const list<T*,allocator>& lst);
Constructs a doubly-linked list by iterating over all elements in lst and
performing an order preserving insertion on self for each.

RWTPtrSortedDlist<T,C> (size_type n, T* p);
Constructs a doubly-linked list with n elements, each initialized to p.

RWTPtrSortedDlist<T,C> (T** first,T** last);
Constructs a doubly-linked list by copying and sorting elements from the
array of T* s pointed to by first , up to, but not including, the element
pointed to by last .

bool
operator< (const RWTPtrSortedDlist<T,C>& lst) const;

Returns true if self compares lexicographically less than lst , otherwise
returns false . Items in each collection are dereferenced before being
compared.

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTPtrSortedDlist<T,C>

Tools.h++ Class Reference 485

bool
operator== (const RWTPtrSortedDlist<T,C>& lst) const;

Returns true if self compares equal to lst , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other. Elements are dereferenced before being
compared.

reference
operator() (size_type i);
const_reference
operator() (size_type I) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type I);
const_reference
operator[] (size_type I) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
apply (void (*fn)(T*&,void*), void* d);
void
apply (void (*fn)(T*,void*), void* d);
void
apply (void (*fn)(const T*,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

 void yourfun(const T* a, void* d);
 void yourfun(T* a, void* d);
 void yourfun(T* &a,void* d)

Client data may be passed through parameter d.

reference
at (size_type i);
const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

Public
Member

Functions

RWTPtrSortedDlist<T,C>

486 Tools.h++ Class Reference

iterator
begin ();
const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use this method if
multiple pointers to the same object are stored.

bool
contains (const T* a) const;

Returns true if there exists an element t in self such that the
expression(*t == *a) is true , otherwise returns false .

bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

iterator
end ();
const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

const T*
find (const T* a) const;

If there exists an element t in self such that the expression (*t == *a) is
true , returns t . Otherwise, returns rwnil .

RWTPtrSortedDlist<T,C>

Tools.h++ Class Reference 487

const T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

reference
first ();
const_reference
first () const;

Returns a reference to the first element of self.

size_type
index (const T* a) const;

Returns the position of the first item t in self such that (*t == *a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(const T*,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
insert (const list<T*,allocator>& a);

Adds the items from a to self in an order preserving way. Returns the
number of items inserted.

bool
insert (T* a);

Adds the item a to self. The collection remains sorted. Returns true .

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isSorted () const;

Returns true if the collection is sorted relative to the supplied comparator
object, false otherwise.

RWTPtrSortedDlist<T,C>

488 Tools.h++ Class Reference

T*&
last ();
T* const&
last () const;

Returns a reference to the last item in the collection.

size_type
merge (const RWTPtrSortedDlist<T,C>& dl);

Inserts all elements of dl into self, preserving sorted order. Returns the
number of items inserted.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self such that the expression
(*t == *a) is true .

size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
remove (const T* a);

Removes and returns the first element t in self such that the expression
(*t == *a) is true . Returns rwnil if there is no such element.

T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const T* a);

Removes all elements t in self such that the expression (*t == *a) is
true . Returns the number of items removed.

RWTPtrSortedDlist<T,C>

Tools.h++ Class Reference 489

size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between zero and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T*
removeFirst ();

Removes and returns the first item in the collection.

T*
removeLast ();

Removes and returns the first item in the collection.

const list<T*,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrSortedDlist<T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrSortedDlist<T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrSortedDlist<T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrSortedDlist<T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

Static Public
Data Member

Related
Global

Operators

RWTPtrSortedDlist<T,C>

490 Tools.h++ Class Reference

RWvistream&
operator>> (RWvistream& strm, RWTPtrSortedDlist<T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrSortedDlist<T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference 491

RWTPtrSortedDlistIterator<T,C>

#include<rw/tpsrtdli.h>
RWTPtrSortedDlist<T,C> dl;
RWTPtrSortedDlistIterator<T,C> itr(dl);

RWTPtrSortedDlistIterator requires the Standard C++ Library.

RWTPtrSortedDlistIterator is supplied with Tools.h++ 7.x to provide an
iterator interface to the new Standard Library based collections that has
backward compatibility with the container iterators provided in Tools.h++
6.x.

The order of iteration over an RWTPtrSortedDlist is dependent on the
comparator object parameter C as applied to the values stored in the
container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tpsrtdli.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTPtrSortedDlist<RWCString,less<RWCString> > a;
 RWTPtrSortedDlistIterator<RWCString,less<RWCString> > itr(a);
 a.insert(new RWCString("John"));
 a.insert(new RWCString("Steve"));
 a.insert(new RWCString("Mark"));
 a.insert(new RWCString("Steve"));

 for(;itr();)
 cout << *itr.key() <<endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTPtrSortedDlistIterator<T,C>

492 Tools.h++ Class Reference

Program Output
John
Mark
Steve
Steve

RWTPtrSortedDlistIterator<T,C> (RWTPtrSortedDlist<T,C>& l);
Creates an iterator for the list l . The iterator begins in an undefined state
and must be advanced before the first element will be accessible

T*
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns its value. If the iterator has advanced past the last item in the
container, the element returned will be a nil pointer equivalent to
boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the list, self will now point to an
undefined value and a value equivalent to false will be returned.
Otherwise, a value equivalent to true is returned. Note: no post-
increment operator is provided.

RWBoolean
operator+= (size_type n);

Behaves as if operator++() had been applied n times.

RWBoolean
operator-- ();

Moves self back to the immediately previous element. If the iterator has
been reset or just created, this operator will return false , otherwise it will
return true . If self references the the first element, it will now be in the
reset state. If self has been iterated past the last value in the list, it will
now reference the last item in the list. Note: no post-decrement operator is
provided.

RWBoolean
operator-= (size_type n);

Behaves as if operator--() had been applied n times

RWTPtrSortedDlist<T,C>*
container() const;

Returns a pointer to the collection being iterated over.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTPtrSortedDlistIterator<T,C>

Tools.h++ Class Reference 493

T*
findNext (const T* a);

Returns the first element t encountered by iterating self forward, such that
the expression (*t == *a) is true . Otherwise returns nil . Leaves self
referencing found item or “off the end.”

T*
findNext (RWBoolean(*fn)(T*, void*), void* d);

Returns the first element t encountered by iterating self forward such that
the expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d. Otherwise returns nil.
Leaves self referencing found item or “off the end.”

T*
key ();

Returns the stored value pointed to by self . Undefined if self is not
referencing a value within the list.

T*
remove ();

Returns the stored value pointed to by self . and removes it from the
collection. Undefined if self is not referencing a value within the list.
Leaves self referencing prior item or in reset state.

T*
removeNext (const T*);

Returns and removes the first element t , encountered by iterating self
forward, such that the expression (*t == *a) is true . Otherwise returns
nil . Leaves self referencing prior item or in reset state.

T*
removeNext (RWBoolean(*fn)(T*, void*), void* d);

Returns and removes the first element t, encountered by iterating self
forward, such that the expression((*fn)(t,d)) is true . fn points to a
user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d. Otherwise returns nil .
Leaves self referencing prior item or in reset state.

RWTPtrSortedDlistIterator<T,C>

494 Tools.h++ Class Reference

void
reset ();
void
reset (RWTPtrSortedDlist<T,C>& l);
Resets the iterator so that after being advanced it will point to the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTPtrSortedDlist to
reset() will reset the iterator on the new container.

Tools.h++ Class Reference 495

RWTPtrSortedVector<T,C>

#include <rw/tpsrtvec.h>
RWTPtrSortedVector<T,C> srtvec;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface for RWTPtrSortedVector described
in Appendix A.

This class maintains an always-sorted pointer-based collection of values,
implemented as a vector. Items are ordered according to a comparison
object of type C. Class T is the type pointed to by the items in the collection.
C must induce a total ordering on elements of type T via a public member

 bool operator()(const T& x, const T& y)

which returns true if x should precede y within the collection. The structure
less<T> from the C++-standard header file <functional> is an example.
Note that items in the collection will be dereferenced before being compared.

Isomorphic.

In this example, a sorted vector of RWDates is exercised.

//
// tpsrtvec.cpp
//
#include <rw/rwdate.h>
#include <rw/tpsrtvec.h>
#include <iostream.h>

main(){
 RWTPtrSortedVector<RWDate, greater<RWDate> > vec;

 vec.insert(new RWDate(10, "Aug", 1991));
 vec.insert(new RWDate(9, "Aug", 1991));
 vec.insert(new RWDate(1, "Sep", 1991));
 vec.insert(new RWDate(14, "May", 1990));
 vec.insert(new RWDate(1, "Sep", 1991)); // Add a duplicate
 vec.insert(new RWDate(2, "June", 1991));

 for (int i=0; i<vec.entries(); i++)
 cout << *vec[i] << endl;

 vec.clearAndDestroy();

 return 0;

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrSortedVector<T,C>

496 Tools.h++ Class Reference

}
Program Output:
09/01/91
09/01/91
08/10/91
08/09/91
06/02/91
05/14/90

RWTPtrSortedDlist<T,C> is an alternative always-sorted pointer-based
collection. RWTPtrOrderedVector<T> is an unsorted pointer-based vector.

Class vector<T*,allocator> is the Standard C++ Library collection that
serves as the underlying implementation for this class.

typedef vector<T*,allocator> container_type;
typedef rw_deref_compare<C,T> container_comp;
typedef container_type::const_iterator const_iterator;
typedef container_type::const_iterator iterator;
typedef container_type::size_type size_type;
typedef container_type::difference_type difference_type;
typedef T* value_type;
typedef T*& reference;
typedef T* const& const_reference;

RWTPtrSortedVector<T,C> ();
Constructs an empty vector.

RWTPtrSortedVector<T,C> (const vector<T*,allocator>& vec);
Constructs a vector by copying and sorting all elements of vec .

RWTPtrSortedVector<T,C> (const RWTPtrSortedVector<T,C>& rwvec);
Copy constructor.

RWTPtrSortedVector<T,C> (size_type n, T* p);
Constructs a vector with n elements, each initialized to p.

RWTPtrSortedVector<T,C> (size_type n);
Constructs an empty vector with a capacity of n elements.

RWTPtrSortedVector<T,C> (T** first,T** last);
Constructs a vector by copying and sorted elements from the array of T* s
pointed to by first , up to, but not including, the element pointed to by
last .

bool
operator< (const RWTPtrSortedVector<T,C>& vec) const;

Returns true if self compares lexicographically less than vec , otherwise
returns false . Items in each collection are dereferenced before being
compared.

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTPtrSortedVector<T,C>

Tools.h++ Class Reference 497

bool
operator== (const RWTPtrSortedVector<T,C>& vec) const;

Returns true if self compares equal to vec , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other. Elements are dereferenced before being
compared.

reference
operator() (size_type i);
const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type i);
const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
apply (void (*fn)(T*,void*), void* d);
void
apply (void (*fn)(T*&,void*), void* d);
void
apply (void (*fn)(const T*,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

 void yourfun(T* a, void* d);
 void yourfun(T*& a, void* d);
 void yourfun(const T* a, void* d);

Client data may be passed through parameter d.

reference
at (size_type i);
const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

Public
Member

Functions

RWTPtrSortedVector<T,C>

498 Tools.h++ Class Reference

iterator
begin ();
const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self.

void
clearAndDestroy ();

Removes all items from the collection and uses operator delete to
destroy the objects pointed to by those items. Do not use this method if
multiple pointers to the same object are stored.

bool
contains (const T* a) const;

Returns true if there exists an element t in self such that the
expression(*t == *a) is true , otherwise returns false .

bool
contains (bool (*fn)(const T*,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T* const*
data () const;

Returns a pointer to the first element of the vector.

iterator
end ();
const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

const T*
find (const T* a) const;

If there exists an element t in self such that the expression (*t == *a) is
true , returns t . Otherwise, returns rwnil .

RWTPtrSortedVector<T,C>

Tools.h++ Class Reference 499

const T*
find (bool (*fn)(const T*,void*), void* d) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , returns t . Otherwise, returns rwnil . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

reference
first ();
const_reference
first () const;

Returns a reference to the first element of self. If the collection is empty,
the function throws an exception of type RWBoundsErr.

size_type
index (const T* a) const;

Returns the position of the first item t in self such that (*t == *a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(const T*,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

bool
insert (T* a);

Adds the item a to self. The collection remains sorted. Returns true .

size_type
insert (const vector<T*,allocator>& a);

Inserts all elements of a into self. The collection remains sorted. Returns
the number of items inserted.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isSorted () const;

Returns true if the collection is sorted relative to the supplied comparator
object, false otherwise.

RWTPtrSortedVector<T,C>

500 Tools.h++ Class Reference

T*&
last ();
T* const&
last () const;

Returns a reference to the last item in the collection. If the collection is
empty, the function throws an exception of type RWBoundsErr.

size_type
length () const;

Returns the number of elements in self.

size_type
merge (const RWTPtrSortedVector<T,C>& vec);

Inserts all elements of vec into self, preserving sorted order. Returns the
number of items inserted.

size_type
occurrencesOf (const T* a) const;

Returns the number of elements t in self such that the expression
(*t == *a) is true .

size_type
occurrencesOf (bool (*fn)(const T*,void*), void* d) const;

Returns the number of elements t in self such that the expression
((*fn)(t,d)) is true . fn points to a user-defined tester function which
must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
remove (const T* a);

Removes and returns the first element t in self such that the expression
(*t == *a) is true . Returns rwnil if there is no such element.

T*
remove (bool (*fn)(const T*,void*), void* d);

Removes and returns the first element t in self such that the expression
((*fn)(t,d)) is true . Returns rwnil if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const T* a);

Removes all elements t in self such that the expression (*t == *a) is
true . Returns the number of items removed.

RWTPtrSortedVector<T,C>

Tools.h++ Class Reference 501

size_type
removeAll (bool (*fn)(const T*,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T* a, void* d);

Client data may be passed through parameter d.

T*
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between zero and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T*
removeFirst ();

Removes and returns the first item in the collection. If the collection is
empty, the function throws an exception of type RWBoundsErr.

T*
removeLast ();

Removes and returns the first item in the collection.

void
resize (size_type n);

Modify, if necessary, the capacity of the vector to be at least as large as n.

const vector<T*,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrSortedVector<T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrSortedVector<T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

Static Public
Data Member

Related
Global

Operators

RWTPtrSortedVector<T,C>

502 Tools.h++ Class Reference

RWvistream&
operator>> (RWvistream& strm, RWTPtrSortedVector<T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrSortedVector<T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrSortedVector<T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrSortedVector<T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference 503

RWTPtrVector<T>

#include <rw/tpvector.h>
RWTPtrVector<T> vec;

Class RWTPtrVector<T> is a simple parameterized vector of pointers to
objects of type T. It is most useful when you know precisely how many
pointers must be held in the collection. If the intention is to “insert” an
unknown number of objects into a collection, then class
RWTPtrOrderedVector<T> may be a better choice.

The class T can be of any type.

Isomorphic

#include <rw/tpvector.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {
 RWTPtrVector<RWDate> week(7);

 RWDate begin; // Today's date

 for (int i=0; i<7; i++)
 week[i] = new RWDate(begin++);

 for (i=0; i<7; i++)
 {
 cout << *week[i] << endl;
 delete week[i];
 }

 return 0;
}
Program output:

March 16, 1996
March 17, 1996
March 18, 1996
March 19, 1996
March 20, 1996
March 21, 1996
March 22, 1996

RWTPtrVector<T> ();
Constructs an empty vector of length zero.

RWTPtrVector<T> (size_t n);
Constructs a vector of length n. The initial values of the elements are
undefined. Hence, they can (and probably will) be garbage.

Synopsis

Descripton

Persistence

Example

Public
Constructors

RWTPtrVector<T>

504 Tools.h++ Class Reference

RWTPtrVector<T> (size_t n, T* ival);
Constructs a vector of length n, with each element pointing to the item
*ival .

RWTPtrVector<T> (const RWTPtrVector& v);
Constructs self as a shallow copy of v . After construction, pointers held by
the two vectors point to the same items.

RWTPtrVector<T>&
operator= (const RWTPtrVector<T>& v);

Sets self to a shallow copy of v . Afterwards, the two vectors will have the
same length and pointersheld by the two vectors will point to the same
items.

RWTPtrVector<T>&
operator= (T* p);

Sets all elements in self to point to the item *p .

T*&
operator() (size_t i);
T*
operator() (size_t i) const;

Returns the i th value in the vector. The first variant can be used as an l-
value, the second cannot. The index i must be between zero and the
length of the vector, less one. No bounds checking is performed.

T*&
operator[] (size_t i);
T*
operator[] (size_t i) const;

Returns the i th value in the vector. The first variant can be used as an
lvalue, the second cannot. The index i must be between zero and the
length of the vector, less one; or an exception of type TOOL_INDEX will be
thrown.

T* const *
data () const;

Returns a pointer to the raw data of the vector. Should be used with care.

size_t
length () const;

Returns the length of the vector.

void
reshape (size_t N);

Changes the length of the vector to N. If this results in the vector being
lengthened, then the initial value of the additional elements is undefined.

Public
operators

Public
Member

Functions

RWTPtrVector<T>

Tools.h++ Class Reference 505

void
resize (size_t N);

Changes the length of the vector to N. If this results in the vector being
lengthened, then the initial value of the additional elements is set to nil .

Tools.h++ Class Reference 507

RWTQueue<T,C>

#include <rw/tqueue.h>
RWTQueue<T, C> queue;

This class represents a parameterized queue. Not only can the type of object
inserted into the queue be parameterized, but also the implementation.

Parameter T represents the type of object in the queue, either a class or built
in type. The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or
equiv.);

• any other semantics required by class C.

Parameter C represents the class used for implementation. Useful choices are
RWTValSlist<T> or RWTValDlist<T>. Vectors, such as
RWTValOrderedVector<T>, can also be used, but tend to be less efficient at
removing an object from the front of the list.

None

In this example a queue of RWCStrings , implemented as a singly-linked list,
is exercised.

#include <rw/tqueue.h>
#include <rw/cstring.h>
#include <rw/tvslist.h>
#include <rw/rstream.h>

main() {
 RWTQueue<RWCString, RWTValSlist<RWCString> > queue;

 queue.insert("one"); // Type conversion occurs
 queue.insert("two");
 queue.insert("three");

 while (!queue.isEmpty())
 cout << queue.get() << endl;

 return 0;
}

Program output

one
two
three

Synopsis

Description

Persistence

Example

RWTQueue<T,C>

508 Tools.h++ Class Reference

void
clear ();

Removes all items from the queue.

size_t
entries () const;

Returns the number of items in the queue.

T
first () const;

Returns, but does not remove, the first item in the queue (the item least
recently inserted into the queue).

T
get ();

Returns and removes the first item in the queue (the item least recently
inserted into the queue).

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the queue, otherwise FALSE.

void
insert (T a);

Inserts the item a at the end of the queue.

T
last () const;

Returns, but does not remove, the last item in the queue (the item most
recently inserted into the queue).

Public
Member

Functions

Tools.h++ Class Reference 509

RWTStack<T,C>

#include <rw/tstack.h>
RWTStack<T, C> stack;

This class maintains a stack of values. Not only can the type of object
inserted onto the stack be parameterized, but also the implementation of the
stack.

Parameter T represents the type of object in the stack, either a class or built in
type. The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or
equiv.);

• any other semantics required by class C.

Parameter C represents the class used for implementation. Useful choices
are RWTValOrderedVector<T> or RWTValDlist<T>. Class RWTValSlist<T>
can also be used, but note that singly-linked lists are less efficient at
removing the last item of a list (function pop()), because of the necessity of
searching the list for the next-to-the-last item.

None

In this example a stack of int s, implemented as an ordered vector, is
exercised.

#include <rw/tstack.h>
#include <rw/tvordvec.h>
#include <rw/rstream.h>

main() {
 RWTStack<int, RWTValOrderedVector<int> > stack;

 stack.push(1);
 stack.push(5);
 stack.push(6);

 while (!stack.isEmpty())
 cout << stack.pop() << endl;
 return 0;
}
Program output:

6
5
1

Synopsis

Description

Persistence

Example

RWTStack<T,C>

510 Tools.h++ Class Reference

void
clear ();

Removes all items from the stack.

size_t
entries () const;

Returns the number of items currently on the stack.

RWBoolean
isEmpty () const;

Returns TRUE if there are currently no items on the stack, FALSE otherwise.

void
push (T a);

Push the item a onto the top of the stack.

T
pop ();

Pop (remove and return) the item at the top of the stack. If there are no
items on the stack then an exception of type TOOL_INDEX will occur.

T
top () const;

Returns (but does not remove) the item at the top of the stack.

Public
Member

Functions

Tools.h++ Class Reference 511

RWTValDeque<T>

#include <rw/tvdeque.h>
RWTValDeque<T> deq;

RWTValDeque requires the Standard C++ Library.

This class maintains a collection of values implemented as a double-ended
queue, or deque. Order is determined externally and elements are accessible
by index. Use this class when insertions and deletions usually occur at either
the beginning or the end of the collection.

Isomorphic

In this example, a double-ended queue of ints is exercised.

//
// tvdqint.cpp
//
#include <rw/tvdeque.h>
#include <iostream.h>

/*
 * This program partitions integers into even and odd numbers
 */

int main(){
 RWTValDeque<int> numbers;

 int n;

 cout << "Input an assortment of integers (EOF to end):"
 << endl;

 while (cin >> n) {
 if (n % 2 == 0)
 numbers.pushFront(n);
 else
 numbers.pushBack(n);
 }

 while (numbers.entries()) {
 cout << numbers.popFront() << endl;
 }

 return 0;
}

Program Input:

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Example

RWTValDeque<T>

512 Tools.h++ Class Reference

1 2 3 4 5
<eof>

Program Output:
4
2
1
3
5

Classes RWTValSlist<T>, RWTValDlist<T>, RWTValSortedDlist<T>, and
RWTValOrderedVector<T> also provide a Rogue Wave interface to C++-
standard sequence collections. The list classes should be considered for
frequent insertions (or removals) in the interior of the collection. The vector
may be more efficient if most insertions and removals occur at the end of the
collection.

Class deque<T,allocator> is the C++-standard collection that serves as the
underlying implementation for this class.

typedef deque<T,allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;

RWTValDeque<T>();
Constructs an empty, double-ended queue.

RWTValDeque<T>(const deque<T,allocator>& deq);
Constructs a double-ended queue by copying all elements of deq .

RWTValDeque<T>(const RWTValDeque<T>& rwdeq);
Copy constructor.

RWTValDeque<T>(size_type n, const T& val = T());
Constructs a double-ended queue with n elements, each initialized to val .

RWTValDeque<T>(const T* first, const T* last);
Constructs a double-ended queue by copying elements from the array of
Ts pointed to by first , up to, but not including, the element pointed to by
last .

Related
Classes

Public
Typedefs

Public
Constructors

RWTValDeque<T>

Tools.h++ Class Reference 513

RWTValDeque<T>&
operator= (const RWTValDeque<T,allocator>& deq);

RWTValDeque<T>&
operator= (const deque<T>& deq);

Calls the destructor on all elements of self and replaces them by copying
all elements of deq.

bool
operator< (const RWTValDeque<T>& deq) const;

bool
operator< (const deque<T,allocator>& deq) const;

Returns true if self compares lexicographically less than deq , otherwise
returns false . Type T must have well-defined less-than semantics
(T::operator<(const T&) or equivalent).

bool
operator== (const RWTValDeque<T>& deq) const;

bool
operator== (const deque<T,allocator>& deq) const;

Returns true if self compares equal to deq , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

reference
operator() (size_type i);

const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type i);

const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
append (const_reference a);

Adds the item a to the end of the collection.

Public
Member

Operators

Public
Member

Functions

RWTValDeque<T>

514 Tools.h++ Class Reference

void
apply (void (*fn)(reference,void*), void* d);

void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

 void yourfun(const_reference a, void* d);
 void yourfun(reference a, void* d);

Client data may be passed through parameter d.

reference
at (size_type i);

const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

bool
contains (const_reference a) const;

Returns true if there exists an element t in self such that the
expression(t == a) is true , otherwise returns false .

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValDeque<T>

Tools.h++ Class Reference 515

iterator
end ();

const_iterator
end () const;

Returns a past-the-end valued iterator of self.

size_type
entries () const;

Returns the number of elements in self.

bool
find (const_reference a,T& k) const;

If there exists an element t in self such that the expression (t == a) is
true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged.

bool
find (bool (*fn)(const_reference,void*), void* d, T& k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

reference
first ();

const_reference
first () const;

Returns a reference to the first element of self.

size_type
index (const_reference a) const;

Returns the position of the first item t in self such that (t == a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(const_reference,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValDeque<T>

516 Tools.h++ Class Reference

bool
insert (const_reference a);

Adds the item a to the end of the collection. Returns true .

void
insertAt (size_type i, const_reference a);

Inserts the item a in front of the item at position i in self. This position
must be between 0 and the number of entries in the collection, otherwise
the function throws an exception of type RWBoundsErr.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

reference
last ();

const_reference
last () const;

Returns a reference to the last item in the collection.

reference
maxElement ();

const_reference
maxElement () const;

reference
minElement ();

const_reference
minElement () const;

Returns a reference to the minimum or maximum element in the
collection. Type T must have well-defined less-than semantics
(T::operator<(const T&) or equivalent).

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self such that the expression
(t == a) is true .

size_type
occurrencesOf (bool (*fn)(const_reference,void*),void* d) const;

Returns the number of elements t in self such that the expression
((*fn)(t,d)) is true . fn points to a user-defined tester function which
must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValDeque<T>

Tools.h++ Class Reference 517

void
prepend (const_reference a);

Adds the item a to the beginning of the collection.

T
popBack ();

Removes and returns the last item in the collection.

T
popFront ();

Removes and returns the first item in the collection.

void
pushBack (const_reference a);

Adds the item a to the end of the collection.

void
pushFront (const_reference a);

Adds the item a to the beginning of the collection.

bool
remove (const_reference a);

Removes the first element t in self such that the expression (t == a) is
true and returns true . Returns false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self such that the expression (t == a) is true .
Returns the number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValDeque<T>

518 Tools.h++ Class Reference

T
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between 0 and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T
removeFirst ();

Removes and returns the first item in the collection.

T
removeLast ();

Removes and returns the first item in the collection.

size_type
replaceAll (const T& oldVal, const T& newVal);

Replaces all elements t in self such that the expression (t == oldVal) is
true with newVal . Returns the number of items replaced.

size_type
replaceAll (bool (*fn)(const T&,void*), void* d,
 const T& newVal);

Replaces all elements t in self such that the expression ((*fn)(t,d)) is
true .with newVal Returns the number of items replaced. fn points to a
user-defined tester function which must have prototype:

 bool yourTester(const T& a, void* d);

Client data may be passed through parameter d.

void
sort ();

Sorts the collection using the less-than operator (<) to compare elements.

deque<T,allocator>&
std ();

const deque<T,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of C++-standard
collections.

const size_type npos ;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

Static Public
Data Member

RWTValDeque<T>

Tools.h++ Class Reference 519

RWvostream&
operator<< (RWvostream& strm, const RWTValDeque<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValDeque<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValDeque<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTValDeque<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValDeque<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTValDeque<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 521

RWTValDlist<T>

#include <rw/tvdlist.h>
RWTValDlist<T> dlist;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTValDlist described in
Appendix A.

This class maintains a collection of values, implemented as a doubly-linked
list.

Isomorphic

In this example, a doubly-linked list of user type Dog is exercised.

//
// tvdldog.cpp
//
#include <rw/tvdlist.h>
#include <iostream.h>
#include <string.h>

class Dog {
 char* name;
public:
 Dog(const char* c = "") {
 name = new char[strlen(c)+1];
 strcpy(name, c); }

 ~Dog() { delete name; }

 // Define a copy constructor:
 Dog(const Dog& dog) {
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name); }

 // Define an assignment operator:
 void operator=(const Dog& dog) {
 if (this!=&dog) {
 delete name;
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name);
 }
 }

 // Define an equality test operator:
 int operator==(const Dog& dog) const {
 return strcmp(name, dog.name)==0; }

Synopsis

Please Note!

Description

Persistence

Example

RWTValDlist<T>

522 Tools.h++ Class Reference

 // order alphabetically:
 int operator<(const Dog& dog) const {
 return strcmp(name, dog.name) < 0; }

 friend ostream& operator<<(ostream& str, const Dog& dog){
 str << dog.name;
 return str;}
};

main(){
 RWTValDlist<Dog> terriers;
 terriers.insert("Cairn Terrier"); // NB: type conversion occurs
 terriers.insert("Irish Terrier");
 terriers.insert("Schnauzer");

 cout << "The list " <<
 (terriers.contains("Schnauzer") ? "does " : "does not ") <<
 "contain a Schnauzer\n";

 terriers.insertAt(
 terriers.index("Irish Terrier"),
 "Fox Terrier"
);

 while (!terriers.isEmpty())
 cout << terriers.get() << endl;

 return 0;
}
Program Output:
 The list does contain a Schnauzer
 Cairn Terrier
 Fox Terrier
 Irish Terrier
 Schnauzer

Classes RWTValDeque<T>, RWTValSlist<T>, and
RWTValOrderedVector<T> also provide a Rogue Wave interface to C++-
standard sequence collections.

Class list<T,allocator> is the C++-standard collection that serves as the
underlying implementation for this class.

typedef list<T,allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;

RWTValDlist<T> ();
Constructs an empty, doubly-linked list.

Related
Classes

Public
Typedefs

Public
Constructors

RWTValDlist<T>

Tools.h++ Class Reference 523

RWTValDlist<T> (const list<T,allocator>& lst);
Constructs a doubly-linked list by copying all elements of lst .

RWTValDlist<T> (const RWTValDlist<T>& rwlst);
Copy constructor.

RWTValDlist<T> (size_type n, const T& val = T());
Constructs a doubly-linked list with n elements, each initialized to val .

RWTValDlist<T> (const T* first, const T* last);
Constructs a doubly-linked list by copying elements from the array of Ts
pointed to by first , up to, but not including, the element pointed to by
last .

RWTValDlist<T>&
operator= (const RWTValDlist<T>& lst);

RWTValDlist<T>&
operator= (const list<T,allocator>& lst);

Calls the destructor on all elements of self and replaces them by copying
all elements of lst .

bool
operator< (const RWTValDlist<T>& lst) const;

bool
operator< (const list<T,allocator>& lst) const;

Returns true if self compares lexicographically less than lst , otherwise
returns false. Type T must have well-defined less-than semantics
(T::operator<(const T&) or equivalent).

bool
operator== (const RWTValDlist<T>& lst) const;

bool
operator== (const list<T,allocator>& lst) const;

Returns true if self compares equal to lst , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

reference
operator() (size_type i);

const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

Public
Member

Operators

RWTValDlist<T>

524 Tools.h++ Class Reference

reference
operator[] (size_type i);

const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
append (const_reference a);

Adds the item a to the end of the collection.

void
apply (void (*fn)(reference,void*), void* d);

void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

 void yourfun(const_reference a, void* d);
 void yourfun(reference a, void* d);

Client data may be passed through parameter d.

reference
at (size_type i);

const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

bool
contains (const_reference a) const;

Returns true if there exists an element t in self such that the
expression(t == a) is true , otherwise returns false .

Public
Member

Functions

RWTValDlist<T>

Tools.h++ Class Reference 525

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns a past-the-end valued iterator of self.

size_type
entries () const;

Returns the number of elements in self.

bool
find (const_reference a, T& k) const;

If there exists an element t in self such that the expression (t == a) is
true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged.

bool
find (bool (*fn)(const_reference,void*), void* d, T& k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

reference
first ();

const_reference
first () const;

Returns a reference to the first element of self.

T
get ();

Removes and returns the first element in the collection. If the collection is
empty, the function throws an exception of type RWBoundsErr. This
method is identical to removeFirst and is included for compatibility with
previous versions.

RWTValDlist<T>

526 Tools.h++ Class Reference

size_type
index (const_reference a) const;

Returns the position of the first item t in self such that (t == a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(const_reference,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
insert (const_reference a);

Adds the item a to the end of the collection. Returns true .

void
insertAt (size_type i,const_reference a);

Inserts the item a in front of the item at position i in self. This position
must be between 0 and the number of entries in the collection, otherwise
the function throws an exception of type RWBoundsErr.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

reference
last ();

const_reference
last () const;

Returns a reference to the last item in the collection.

reference
maxElement ();

const_reference
maxElement () const;

reference
minElement ();

const_reference
minElement () const;

Returns a reference to the minimum or maximum element in the
collection. Type T must have well-defined less-than semantics
(T::operator<(const T&) or equivalent).

RWTValDlist<T>

Tools.h++ Class Reference 527

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self such that the expression
(t == a) is true .

size_type
occurrencesOf (bool (*fn)(const_reference,void*),void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
prepend (const_reference a);

Adds the item a to the beginning of the collection.

bool
remove (const_reference a);

Removes the first element t in self such that the expression (t == a) is
true and returns true . Returns false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self such that the expression (t == a) is true .
Returns the number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValDlist<T>

528 Tools.h++ Class Reference

T
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between 0 and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T
removeFirst ();

Removes and returns the first item in the collection.

T
removeLast ();

Removes and returns the first item in the collection.

size_type
replaceAll (const_reference oldVal, const_reference newVal);

Replaces all elements t in self such that the expression (t == oldVal) is
true with newVal . Returns the number of items replaced.

size_type
replaceAll (bool (*fn)(const_reference,void*), void* d,
 const value_type& newval);

Replaces all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items replaced. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
sort ();

Sorts the collection using the less-than operator to compare elements.

list<T,allocator>&
std ();

const list<T>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
collections.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

Static Public
Data Member

RWTValDlist<T>

Tools.h++ Class Reference 529

RWvostream&
operator<< (RWvostream& strm, const RWTValDlist<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValDlist<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValDlist<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTValDlist<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValDlist<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTValDlist<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 531

RWTValDlistIterator<T>

#include<rw/tvdlist.h>
RWTValDlist<T> dl;
RWTValDlistIterator<T> itr(dl);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTValDlistIterator described in
Appendix A.

RWTValDlistIterator provides an iterator interface to the Tools.h++ 7
Standard Library based collections which is compatible with the iterator
interface provided for the Tools.h++ 6.x containers.

The order of iteration over an RWTValDlist is dependent on the order of
insertion of the values into the container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equal to false until reset() is called.

None

#include<rw/tvdlist.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTValDlist<RWCString> a;
 RWTValDlistIterator<RWCString> itr(a);

 a.insert("John");
 a.insert("Steve");
 a.insert("Mark");
 a.insert("Steve");

 for(;itr();)
 cout << itr.key() << endl;

 return 0;
}

Synopsis

Please Note!

Description

Persistence

Examples

RWTValDlistIterator<T>

532 Tools.h++ Class Reference

Program Output
John
Steve
Mark
Steve

RWTValDlistIterator<T> (RWTValDlist<T>& s);
Creates an iterator for the dlist s . The iterator begins in an undefined
state and must be advanced before the first element will be accessible.

RWBoolean
operator() ();

Advances self to the next element and returns its value. If the iterator has
advanced past the last item in the container, the element returned will be
a nil pointer equivalent to boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created, self will reference the first element. If, before iteration, self
referenced the last value in the list, self will now reference an undefined
value distinct from the reset value and false will be returned.
Otherwise, true is returned. Note: no postincrement operator is
provided.

RWBoolean
operator+= (size_type n);

Behaves as if the operator++ member function had been applied n times

RWBoolean
operator-- ();

Moves self back to the immediately previous element. If the iterator has
been reset or just created, this operator will return false , otherwise it will
return true . If self references the the first element, it will now be in the
reset state. If self has been iterated past the last value in the list, it will
now reference the last item in the list. Note: no postdecrement operator is
provided.

RWBoolean
operator-= (size_type n);

Behaves as if the operator-- member function had been applied n times

RWTValDlist<T>*
container() const;

Returns a pointer to the collection being iterated over.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTValDlistIterator<T>

Tools.h++ Class Reference 533

RWBoolean
findNext (const T& a);

Advances self to the first element t encountered by iterating forward, such
that the expression (t == a) is true . Returns true if an element was
found, returns false otherwise.

RWBoolean
findNext (RWBoolean(*fn)(const T&, void*), void* d);

Advances self to the first element t encountered by iterating forward such
that the expression((*fn)(t,d)) is true . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T a, void* d);

Client data may be passed through parameter d. Returns true if an
element was found, returns false otherwise.

T
key ();

Returns the stored value referenced by self .

RWBoolean
remove ();

Removes the value referenced by self from the collection. true is
returned if the removal is successful, false is returned otherwise.

RWBoolean
removeNext (const T);

Removes the first element t , encountered by iterating self forward, such
that the expression (t == a) is true . Returns true if an element was
found and removed, returns false otherwise.

RWBoolean
removeNext (RWBoolean(*fn)(T, void*), void* d);

Removes the first element t, encountered by iterating self forward, such
that the expression((*fn)(t,d)) is true . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T a, void* d);

Client data may be passed through parameter d. Returns true if an
element was found and removed, returns false otherwise.

void
reset ();
void
reset (RWTValDlist<T>& l);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValDlist to reset()

will reset the iterator on the new container.

Tools.h++ Class Reference 535

RWTValHashDictionary

#define RWTValHashDictionary RWTValHashMap

If you have the Standard C++ Library, refer to the reference for this class
under its new name: RWTValHashMap. Although the old name
(RWTValHashDictionary) is still supported, we recommend that you use
the new name when coding your applications.

If you do not have the Standard C++ Library, refer to the description of
RWTValHashDictionary in Appendix A.

Synopsis

Please Note!

Tools.h++ Class Reference 537

RWTValHashDictionaryIterator

#define RWTValHashDictionaryIterator RWTValHashMapIterator

If you have the Standard C++ Library, refer to the reference for this class
under its new name: RWTValHashMapIterator. Although the old name
(RWTValHashDictionaryIterator) is still supported, we recommend that
you use the new name when coding your applications.

If you do not have the Standard C++ Library, refer to the description of
RWTValHashDictionaryIterator in Appendix A.

Synopsis

Please Note!

Tools.h++ Class Reference 539

RWTValHashMap<K,T,H,EQ>

#include <rw/tvhdict.h>
RWTValHashMap<K,T,H,EQ> m;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the interface for RWTValHashDictionary described in
Appendix A.

This class maintains a collection of keys, each with an associated item of type
T. These pairs are stored according to a hash object of type H. H must
provide a hash function on elements of type K via a public member

unsigned long operator()(const K& x)

Equivalent keys within the collection will be grouped together based on an
equality object of type EQ. EQ must ensure this grouping via public member

bool operator()(const K& x, const K& y)

which should return true if x and y are equivalent.

RWTValHashMap<K,T,H,EQ> will not accept a key that compares equal to
any key already in the collection. (RWTValHashMultiMap<K,T,H,EQ> may
contain multiple keys that compare equal to each other.) Equality is based
on the equality object and not on the == operator.

Isomorphic

Class RWTValHashMultiMap<K,T,H,EQ> offers the same interface to a
collection that accepts multiple keys that compare equal to each other.

Class rw_hashmap<K,T,H,EQ> is the C++-standard compliant collection
that serves as the underlying implementation for this collection.

typedef rw_hashmap<K,T,H,EQ> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef pair <const K,T> value_type;
typedef K key_type;
typedef T data_type;
typedef pair <const K,T>& reference;
typedef pair <const K,T>& const_reference;

Synopsis

Please Note!

Description

Persistence

Related
Classes

Public
Typedefs

RWTValHashMap<K,T,H,EQ>

540 Tools.h++ Class Reference

RWTValHashMap<K,T,H,EQ> ();
Constructs an empty map.

RWTValHashMap<K,T,H,EQ> (const rw_hashmap<K,T,H,EQ>& m);
Constructs a map by copying all elements of m.

RWTValHashMap<K,T,H,EQ>
(const H& h, size_type sz = RWDEFAULT_CAPACITY);

Creates an empty hashed map which uses the hash object h and has an
initial capacity of sz .

RWTValHashMap<K,T,H,EQ> (const RWTValHashMap<K,T,H,EQ>& rwm);
Copy constructor.

RWTValHashMap<K,T,H,EQ> (const value_type* first,
 const value_type* last);

Constructs a map by copying elements from the array of value_type pairs
pointed to by first , up to, but not including, the pair pointed to by last .

RWTValHashMap<K,T,H,EQ>&
operator= (const RWTValHashMap<K,T,H,EQ>& m);

RWTValHashMap<K,T,H,EQ>&
operator= (const rw_hashmap<K,T,H,EQ>& m);

Destroys all elements of self and replaces them by copying all associations
from m.

bool
operator== (const RWTValHashMap<K,T,H,EQ>& m) const;

bool
operator== (const rw_hashmap<K,T,H,EQ>& m) const;

Returns true if self compares equal to m, otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual pairs that compare
equal to each other.

T&
operator[] (const K& key);

Looks up key and returns a reference to its associated item. If the key is
not in the dictionary, then it will be added with an associated item
provided by the default constructor for type T.

void
apply (void (*fn)(const K&, T&, void*),void* d);

void
apply (void (*fn)(const K&,const T&,void*),void* d) const;

Applies the user-defined function pointed to by fn to every association in
the collection. This function must have one of the prototypes:

 void yourfun(const K& key, T& a, void* d);

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTValHashMap<K,T,H,EQ>

Tools.h++ Class Reference 541

 void yourfun(const K& key, const T& a,void* d);

Client data may be passed through parameter d.

void
applyToKeyAndValue (void (*fn)(const K&, T&,void*),void* d);

void
applyToKeyAndValue
(void (*fn)(const K&, const T, void*),void* d) const;

This is a deprecated version of the apply member above. It behaves
exactly the same as apply.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first pair in self.

size_type
capacity () const;

Returns the number of buckets(slots) available in the underlying hash
representation. See resize below.

void
clear ();

Clears the collection by removing all items from self. Each key and its
associated item will have its destructor called.

bool
contains (const K& key) const;

Returns true if there exists a key j in self that compares equal to key ;
otherwise returns false .

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an association a in self such that the expression
((*fn)(a,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last association in self.

RWTValHashMap<K,T,H,EQ>

542 Tools.h++ Class Reference

size_type
entries () const;

Returns the number of associations in self.

float
fillRatio () const;

Returns the ratio entries() /capacity() .

bool
find (const K& key, K& r) const;

If there exists a key j in self that compares equal to key , assigns j to r and
returns true . Otherwise, returns false and leaves the value of r
unchanged.

bool
find (bool (*fn)(const_reference,void*),void* d,
 pair<K,T>& r) const;

If there exists an association a in self such that the expression
((*fn)(a,d)) is true , assigns a to r and returns true . Otherwise, returns
false and leaves the value of k unchanged. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const K& a, void* d);

Client data may be passed through parameter d.

bool
findValue (const K& key, T& r) const;

If there exists a key j in self that compares equal to key , assigns the item
associated with j to r and returns true . Otherwise, returns false and
leaves the value of r unchanged.

bool
findKeyValue (const K& key, K& kr, T& tr) const;

If there exists a key j in self that compares equal to key , assigns j to kr ,
assigns the item associated with j to tr, and returns true . Otherwise,
returns false and leaves the values of kr and tr unchanged.

bool
insert (const K& key, const T& a);

Adds key with associated item a to the collection. Returns true if the
insertion is successful, otherwise returns false . The function will return
true unless the collection already holds an association with the equivalent
key.

bool
insertKeyAndValue (const K& key,const T& a);

This is a deprecated version of the insert member above. It behaves
exactly the same as insert.

RWTValHashMap<K,T,H,EQ>

Tools.h++ Class Reference 543

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

size_type
occurrencesOf (const K& key) const;

Returns the number of keys j in self that compare equal to key .

size_type
occurrencesOf (bool (*fn)(const_reference,void*),void* d) const;

Returns the number of associations a in self such that the
expression((*fn)(a,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const K& key);

Removes the first association with key j in self such that the expression (j
== key) is true and returns true . Returns false if there is no such
association.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first association a in self such that the expression
((*fn)(a,d)) is true and returns true . Returns false if there is no such
element. fn points to a user-defined tester function which must have
prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const K& key);

Removes all elements j in self that compare equal to key . Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all associations a in self such that the expression ((*fn)(a,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValHashMap<K,T,H,EQ>

544 Tools.h++ Class Reference

void
resize (size_type sz);

Changes the capacity of self by creating a new hashed map with a capacity
of sz . resize copies every element of self into the new container and
finally swaps the internal representation of the new container with the
internal representation of self .

rw_hashmap<K,T,H,EQ>&
std ();

const rw_hashmap<K,T,H,EQ>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
compliant collections.

RWvostream&
operator<< (RWvostream& strm,
 const RWTValHashMap<K,T,H,EQ>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValHashMap<K,T,H,EQ>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValHashMap<K,T,H,EQ>& coll);
RWFile&
operator>> (RWFile& strm, RWTValHashMap<K,T,H,EQ>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValHashMap<K,T,H,EQ>*& p);
RWFile&
operator>> (RWFile& strm, RWTValHashMap<K,T,H,EQ>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 545

RWTValHashMapIterator<K,T,H,EQ>

#include<rw/tvhdict.h>
RWTValHashMap<K,T,H,EQ> m;
RWTValHashMap<K,T,H,EQ> itr(m);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the interface for RWTValHashDictionaryIterator described
in Appendix A.

RWTValHashMapIterator is supplied with Tools 7 to provide an iterator
interface to RWTValHashMapIterator that has backward compatibility with
the container iterators provided in Tools 6.

Iteration over an RWTValHashMap is pseudorandom and dependent on the
capacity of the underlying hash table and the hash function being used. The
only useable relationship between consecutive elements is that elements
which are defined to be equivalent by the equivalence object, EQ, will remain
adjacent.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or an operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvhdict.h>
#include<iostream.h>
#include<rw/cstring.h>

struct silly_h{
 unsigned long operator()(const RWCString& x) const
 { return x.length() * (long)x(0); }
};

int main(){
 RWTValHashMap
 <RWCString,int,silly_h,equal_to<RWCString> > age;
 RWTValHashMapIterator
 <RWCString, int, silly_h, equal_to<RWCString > > itr(age);

 age.insert(RWCString("John"), 30);
 age.insert(RWCString("Steve"),17);

Synopsis

Please Note!

Description

Persistence

Example

RWTValHashMapIterator<K,T,H,EQ>

546 Tools.h++ Class Reference

 age.insert(RWCString("Mark"),24);

//Duplicate insertion rejected
 age.insert(RWCString("Steve"),24);

 for(;itr();)
 cout << itr.key() << "\'s age is " << itr.value() << endl;

 return 0;
}

Program Output (not necessarily in this order)
John’s age is 30
Steve’s age is 17
Mark’s age is 24

RWTValHashMapIterator<K,T,H,EQ>
(RWTValHashMap<K,T,H,EQ>&h);

Creates an iterator for the hashmap h . The iterator begins in an undefined
state and must be advanced before the first element will be accessible.

RWBoolean
operator() ();

Advances self to the next element. Returns false if the iterator has
advanced past the last item in the container and true otherwise.

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration,
self referenced the last association in the multimap, self will now
reference an undefined value and false will be returned. Otherwise,
true is returned. Note: no postincrement operator is provided.

RWTValHashMap<K,T,H,EQ>*
container() const;

Returns a pointer to the collection being iterated over.

K
key () const;

Returns the key portion of the association currently pointed to by self .

void
reset ();
void
reset (RWTValHashMap<K,T,H,EQ>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValHashMap to reset()

will reset the iterator on that container.

T
value ();

Returns the value portion of the association referenced by self .

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 547

RWTValHashMultiMap<K,T,H,EQ>

#include <rw/tvhmmap.h>
RWTValHashMultiMap<K,T,H,EQ> m;

RWTValHashMultiMap requires the Standard C++ Library.

This class maintains a collection of keys, each with an associated item of type
T. These pairs are stored according to a hash object of type H. H must
provide a hash function on elements of type K via a public member

 unsigned long operator()(const K& x) const

Equivalent keys within the collection will be grouped together based on an
equality object of type EQ. EQ must ensure this grouping via public member

 bool operator()(const K& x, const K& y) const

which should return true if x and y are equivalent.

RWTValHashMultiMap<K,T,H,EQ> may contain multiple keys that compare
equal to each other. (RWTValHashMap<K,T,H,EQ> will not accept a key that
compares equal to any key already in the collection.) Equality is based on
the comparison object and not on the == operator.

Isomorphic.

//
// tvhmmrat.cpp
//
#include<rw/tvhmmap.h>
#include<iostream.h>
#include<rw/cstring.h>

struct silly_hash{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x[0]; }
};
int main(){
 RWCString trd = "Third";
 RWTValHashMultiMap<RWCString,int,silly_hash,equal_to<RWCString> >
 contest;
 contest.insert("First", 7);
 contest.insert(trd,3);

 contest.insert(trd,6); // self contains two distinct values

 //equivalent to trd
 contest.insert("Second",2);

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTValHashMultiMap<K,T,H,EQ>

548 Tools.h++ Class Reference

 contest.resize(8);
 cout << "The table is " << contest.fillRatio() * 100.0
 << "% full<< endl;
 return 0;
}

Program Output:
The table is 50% full

Class RWTValHashMap<K,T,H,EQ> offers the same interface to a collection
that will not accept multiple keys that compare equal to each other.

Class rw_hashmultimap<K,T,H,EQ> is the C++-standard collection that
serves as the underlying implementation for this collection.

typedef rw_hashmultimap<K,T,H,EQ> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef pair <const K,T> value_type;
typedef pair <const K,T>& reference;
typedef const pair<const K,T>& const_reference;

RWTValHashMultiMap<K,T,H,EQ> ();
Constructs an empty map.

RWTValHashMultiMap<K,T,H,EQ>
(const rw_hashmultimap<K,T,H,EQ>& m);

Constructs a map by copying all elements of m.

RWTValHashMultiMap<K,T,H,EQ>
(const RWTValHashMultiMap<K,T,H,EQ>& rwm);

Copy constructor.

RWTValHashMultiMap<K,T,H,EQ>
(const value_type* first, const value_type* last);

Constructs a map by copying elements from the array of association pairs
pointed to by first , up to, but not including, the association pointed to by
last .

RWTValHashMultiMap<K,T,H,EQ>&
operator= (const RWTValHashMultiMap<K,T,H,EQ>& m);

RWTValHashMultiMap<K,T,H,EQ>&
operator= (const rw_hashmultimap<K,T,H,EQ>& m);

Destroys all elements of self and replaces them by copying all associations
from m.

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTValHashMultiMap<K,T,H,EQ>

Tools.h++ Class Reference 549

bool
operator== (const RWTValHashMultiMap<K,T,H,EQ>& m) const;

bool
operator== (const rw_hashmultimap<K,T,H,EQ>& m) const;

Returns true if self compares equal to m, otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual keys that compare
equal to each other.

void
apply (void (*fn)(const K&, T&, void*),void* d);

void
apply (void (*fn)(const K&,const T&, void*), void* d) const;

Applies the user-defined function pointed to by fn to every association in
the collection. This function must have one of the prototypes:

 void yourfun(const K&, T& a, void* d);
 void yourfun(const K&, const T& a,void* d);

Client data may be passed through parameter d.

void
applyToKeyAndValue (void (*fn)(const K&, T&, void*),void* d);

void
applyToKeyAndValue
(void (*fn)(const K&,const T&,void*), void* d) const;

This is a deprecated version of the apply member above. It behaves
exactly the same as apply.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first pair in self.

size_type
capacity () const;

Returns the number of buckets(slots) available in the underlying hash
representation. See resize below.

void
clear ();

Clears the collection by removing all items from self. Each key and its
associated item will have its destructor called.

bool
contains (const K& key) const;

Returns true if there exists a key j in self that compares equal to key ,
otherwise returns false .

Public
Member

Functions

RWTValHashMultiMap<K,T,H,EQ>

550 Tools.h++ Class Reference

bool
contains
(bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an association a in self such that the expression
((*fn)(a,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last association in self.

size_type
entries () const;

Returns the number of associations in self.

float
fillRatio () const;

Returns the ratio entries() /capacity() .

bool
find (const K& key, Key& r) const;

If there exists a key j in self that compares equal to key , assigns j to r and
returns true . Otherwise, returns false and leaves the value of r
unchanged.

bool
find (bool (*fn)(const_reference,void*),
 void* d,pair<K,T>& r) const;

If there exists an association a in self such that the expression
((*fn)(a,d)) is true , assigns a to r and returns true . Otherwise, returns
false and leaves the value of k unchanged. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
findValue (const K& key, T& r) const;

If there exists a key j in self that compares equal to key , assigns the item
associated with j to r and returns true . Otherwise, returns false and
leaves the value of r unchanged.

RWTValHashMultiMap<K,T,H,EQ>

Tools.h++ Class Reference 551

bool
findKeyValue (const K& key, K& kr, T& tr) const;

If there exists a key j in self that compares equal to key , assigns j to kr ,
assigns the item associated with j to tr, and returns true . Otherwise,
returns false and leaves the values of kr and tr unchanged.

bool
insert (const K& key, const T& a);

Adds key with associated item a to the collection. Returns true .

bool
insertKeyAndValue (const K& key, const T& a);

This is a deprecated version of the insert member above. It behaves
exactly the same as insert.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

size_type
occurrencesOf (const K& key) const;

Returns the number of keys j in self that compares equal to key .

size_type
occurrencesOf
(bool (*fn)(const_reference,void*),void* d) const;

Returns the number of associations a in self such that the
expression((*fn)(a,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const K& key);

Removes the first association with key j in self such that j compares equal
to key and returns true . Returns false if there is no such association.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first association a in self such that the expression
((*fn)(a,d)) is true and returns true . Returns false if there is no such
element. fn points to a user-defined tester function which must have
prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValHashMultiMap<K,T,H,EQ>

552 Tools.h++ Class Reference

size_type
removeAll (const K& key);

Removes all associations with key j in self where j compares equal to
key . Returns the number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all associations a in self such that the expression ((*fn)(a,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
resize (size_type sz);

Changes the capacity of self by creating a new hashed multimap with a
capacity of sz . resize then copies every element of self into the new
container and finally swaps the internal representation of the new
container with self .

rw_hashmultimap<K,T,H,EQ>&
std ();

const rw_hashmultimap<K,T,H,EQ>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing accessibility to the C++-standard interface and interoperability
with other software components that make use of the C++-standard
collections.

RWvostream&
operator<< (RWvostream& strm,
 const RWTValHashMultiMap<K,T,H,EQ>& coll);
RWFile&
operator<< (RWFile& strm,
 const RWTValHashMultiMap<K,T,H,EQ>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm,
 RWTValHashMultiMap<K,T,H,EQ>& coll);
RWFile&
operator>> (RWFile& strm, RWTValHashMultiMap<K,T,H,EQ>& coll);

Restores the contents of the collection coll from the input stream strm .

Related
Global

Operators

RWTValHashMultiMap<K,T,H,EQ>

Tools.h++ Class Reference 553

RWvistream&
operator>> (RWvistream& strm, RWTValHashMultiMap<K,T,H,EQ>*& p);
RWFile&
operator>> (RWFile& strm, RWTValHashMultiMap<K,T,H,EQ>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference 555

RWTValHashMultiMapIterator<K,T,H,EQ>

#include<rw/tvhmmap.h>
RWTValHashMultiMap<K,T,H,EQ> m;
RWTValHashMultiMapIterator<K,T,H,EQ> itr(m);

RWTValHashMultiMapIterator requires the Standard C++ Library.

RWTValHashMultiMapIterator is supplied with Tools.h++ 7 to provide an
iterator interface to RWTValHashMultiMapIterator that is backward
compatible with the container iterators provided in Tools.h++ 6.x.

Iteration over an RWTValHashMultiMap is pseudorandom and dependent
on the capacity of the underlying hash table and the hash function being
used. The only useable relationship between consecutive elements is that
elements which are defined to be equivalent by the equivalence object, EQ,
will remain adjacent.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvhmmap.h>
#include<rw/cstring.h>
#include<iostream.h>

struct silly_h{
 unsigned long operator()(const RWCString& x) const
 { return x.length() * (long)x(0); }
};

int main(){
 RWTValHashMultiMap
 <RWCString,int,silly_h,equal_to<RWCString> > age;
 RWTValHashMultiMapIterator
 <RWCString, int, silly_h, equal_to<RWCString > > itr(age);

 age.insert(RWCString("John"), 30);
 age.insert(RWCString("Steve"),17);
 age.insert(RWCString("Mark"),24);
 age.insert(RWCString("Steve"),24);

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Example

RWTValHashMultiMapIterator<K,T,H,EQ>

556 Tools.h++ Class Reference

 for(;itr();)
 cout << itr.key() << "\'s age is " << itr.value() << endl;

 return 0;
}

Program Output (not necessarily in this order)
John’s age is 30
Steve’s age is 24
Steve’s age is 17
Mark’s age is 24

RWTValHashMultiMapIterator<K,T,H,EQ>
(RWTValHashMultiMap<K,T,H,EQ>&h);

Creates an iterator for the hash multimap h . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible.

RWBoolean
operator() ();

Advances self to the next element, dereferences the resulting iterator and
returns false if the iterator has advanced past the last item in the
container and true otherwise.

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration,
self referenced the last association in the multimap, self will now
reference an undefined value and false will be returned. Otherwise,
true is returned. Note: no postincrement operator is provided.

RWTValHashMultiMap<K,T,H,EQ>*
container() const;

Returns a pointer to the collection being iterated over.

K
key () const;

Returns the key portion of the association currently referenced by self .

void
reset ();
void
reset (RWTValHashMultiMap<K,T,H,EQ>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValHashMultiMap with
reset() will reset the iterator on that container.

T
value ();

Returns the value portion of the association referenced by self .

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 557

RWTValHashMultiSet<T,H,EQ>

#include <rw/tvhasht.h>
RWTValHashMultiSet<T,H,EQ>

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the interface for RWTValHashTable described in Appendix
A.

This class maintains a collection of values, which are stored according to a
hash object of type H. H must offer a hash function for elements of type T via
a public member

 unsigned long operator()(const T& x) const

Objects within the collection will be grouped together based on an equality
object of type EQ. EQ must ensure this grouping via public member

 bool operator()(const T& x, const T& y) const

which should return true if x and y are equivalent, false otherwise.

RWTValHashMultiSet<T,H,EQ> may contain multiple items that compare
equal to each other. (RWTValHashSet<T,H,EQ> will not accept an item that
compares equal to an item already in the collection.)

Isomorphic

//
// tvhmsstr.cpp
//
#include <rw/tvhasht.h>
#include <rw/cstring.h>
#include <iostream.h>

struct silly_hash{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x[0]; }
};

main(){
RWTValHashMultiSet<RWCString,silly_hash,equal_to<RWCString> > set1;
RWTValHashMultiSet<RWCString,silly_hash,equal_to<RWCString> > set2;

 set1.insert("one");
 set1.insert("two");
 set1.insert("three");
 set1.insert("one"); // OK: duplicates allowed

Synopsis

Please Note!

Description

Persistence

Example

RWTValHashMultiSet<T,H,EQ>

558 Tools.h++ Class Reference

 set1.insert("one");

 cout << set1.entries() << endl; // Prints "5"

 set2.insert("one");
 set2.insert("five");
 set2.insert("one");

 cout << ((set1.isEquivalent(set2)) ? "TRUE" : "FALSE") << endl;
 // Prints "FALSE"

 set2.intersection(set1);
 set1.clear();

 cout << set1.entries() << endl; // Prints "0"
 cout << set2.entries() << endl; // Prints "2"

 return 0;
}

Class RWTValHashSet<T,H,EQ> offers the same interface to a collection that
will not accept multiple items that compare equal to each other.

Class rw_hashmultiset<T,H,EQ> is the C++-standard compliant collection
that serves as the underlying implementation for
RWTValHashMultiSet<T,H,EQ>.

typedef rw_hashmultiset<T,H,EQ> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;

RWTValHashMultiSet<T,H,EQ>
(size_type sz = 1024,const H& h = H(),const EQ& eq = EQ());

Constructs an empty set. The underlying hash table representation will
have sz buckets, will use h as its hashing function and will use eq to
determine equivalence between elements.

RWTValHashMultiSet<T,H,EQ> (const rw_hashmultiset<T,H,EQ>& s);
Constructs a set by copying all elements of s .

RWTValHashMultiSet<T,H,EQ> (const RWTValHashMultiSet<T,H,EQ>&);
Copy constructor.

RWTValHashMultiSet<T,H,EQ>
(const H& h,size_type sz = RWDEFAULT_CAPACITY);

Creates an empty hashed multi-set which uses the hash object h and has an
initial hash table capacity of sz .

Related
Classes

Public
Typedefs

Public
Constructors

RWTValHashMultiSet<T,H,EQ>

Tools.h++ Class Reference 559

RWTValHashMultiSet<T,H,EQ> (const T* first,const T*
last,size_type sz = 1024,const H& h = H(),const EQ& eq = EQ());

Constructs a set by copying elements from the array of Ts pointed to by
first , up to, but not including, the element pointed to by last . The
underlying hash table representation will have sz buckets, will use h as its
hashing function and will use eq to determine equivalence between
elements.

RWTValHashMultiSet<T,H,EQ>&
operator= (const RWTValHashMultiSet<T,H,EQ>& s);

RWTValHashMultiSet<T,H,EQ>&
operator= (const rw_hashmultiset<T,H,EQ>& s);

Destroys all elements of self and replaces them by copying all elements of
s .

bool
operator== (const RWTValHashMultiSet<T,H,EQ>& s) const;

bool
operator== (const rw_hashmultiset<T,H,EQ>& s) const;

Returns true if self compares equal to s , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have prototype:

 void yourfun(const_reference a, void* d);

 Client data may be passed through parameter d.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

size_type
capacity () const;

Returns the number of buckets(slots) available in the underlying hash
representation. See resize below.

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

Public
Member

Operators

Public
Member

Functions

RWTValHashMultiSet<T,H,EQ>

560 Tools.h++ Class Reference

bool
contains (const_reference a) const;

Returns true if there exists an element t in self that compares equal to a,
otherwise returns false .

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
difference (const RWTValHashMultiSet<T,H,EQ>& s);

Sets self to the set-theoretic difference given by (self - s) .

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

float
fillRatio () const;

Returns the ratio entries() /capacity() .

bool
find (const_reference a,T& k) const;

If there exists an element t in self such that the expression (t == a) is
true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged.

bool
find (bool (*fn)(const_reference,void*),void* d,T& k) const;

If there exists an element t in self that compares equal to a, assigns t to k
and returns true . Otherwise, returns false and leaves the value of k
unchanged. fn points to a user-defined tester function which must have
prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValHashMultiSet<T,H,EQ>

Tools.h++ Class Reference 561

bool
insert (const_reference a);

Adds the item a to the collection. Returns true .

void
intersection (const RWTValHashMultiSet<T,H,EQ>& s);

Destructively performs a set theoretic intersection of self and s , replacing
the contents of self with the result.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isEquivalent (const RWTValHashMultiSet<T,H,EQ>& s) const;

Returns true if there is set equivalence between self and s , and returns
false otherwise.

bool
isProperSubsetOf (const RWTValHashMultiSet<T,H,EQ>& s) const;

Returns true if self is a proper subset of s , and returns false otherwise.

bool
isSubsetOf (const RWTValHashMultiSet<T,H,EQ>& s) const;

Returns true if self is a subset of s , and returns false otherwise.

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self that compares equal to a.

size_type
occurrencesOf (bool (*fn)(const_reference,void*),void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const_reference a);

Removes the first element t in self that compares equal to a and returns
true . Returns false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

RWTValHashMultiSet<T,H,EQ>

562 Tools.h++ Class Reference

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self that compare equal to a. Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
resize (size_type sz);

Changes the capacity of self by creating a new hashed multi-set with a
capacity of sz . resize copies every element of self into the new container
and finally swaps the internal representation of the new container with the
internal representation of self .

rw_hashmultiset<T,H,EQ>&
std ();

const rw_hashmultiset<T,H,EQ>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
collections.

void
symmetricDifference (const RWTValHashMultiSet<T,H,EQ>& s);

Destructively performs a set theoretic symmetric difference operation on
self and s . Self is replaced by the result. A symmetric difference can be
informally defined as (A∪B)-(A∩B).

void
Union (const RWTValHashMultiSet<T,H,EQ>& rhs);

Destructively performs a set theoretic union operation on self and rhs .
Self is replaced by the result. Note the uppercase "U" in Union to avoid
conflict with the C++ reserved word.

RWTValHashMultiSet<T,H,EQ>

Tools.h++ Class Reference 563

RWvostream&
operator<< (RWvostream& strm,
 const RWTValHashMultiSet<T,H,EQ>& coll);
RWFile&
operator<< (RWFile& strm,
 const RWTValHashMultiSet<T,H,EQ>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValHashMultiSet<T,H,EQ>& coll);
RWFile&
operator>> (RWFile& strm, RWTValHashMultiSet<T,H,EQ>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValHashMultiSet<T,H,EQ>*& p);
RWFile&
operator>> (RWFile& strm, RWTValHashMultiSet<T,H,EQ>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 565

RWTValHashMultiSetIterator<T,H,EQ>

#include<rw/tvhasht.h>
RWTValHashMultiSet<T,H,EQ> m;
RWTValHashMultiSet<T,H,EQ> itr(m);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the interface for RWTValHashTableIterator described in
Appendix A.

RWTValHashMultiSetIterator is supplied with Tools.h++ 7 to provide an
iterator interface to RWTValHashMultiSetIterator that is backward
compatible with the container iterators provided in Tools.h++ 6.x.

Iteration over an RWTValHashMultiSet is pseudorandom and dependent on
the capacity of the underlying hash table and the hash function being used.
The only useable relationship between consecutive elements is that elements
which are defined to be equivalent by the equivalence object, EQ, will remain
adjacent.

The current item referenced by this iterator is undefined after construction or
after a call to reset(). The iterator becomes valid after being advanced
with either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvhasht.h>
#include<iostream.h>
#include<rw/cstring.h>

struct silly_h{
 unsigned long operator()(const RWCString& x) const
 { return x.length() * (long)x(0); }
};

int main(){
 RWTValHashMultiSet
 <RWCString, silly_h,equal_to<RWCString> > age;
 RWTValHashMultiSetIterator
 <RWCString, silly_h, equal_to<RWCString > > itr(age);

Synopsis

Please Note!

Description

Persistence

Example

RWTValHashMultiSetIterator<T,H,EQ>

566 Tools.h++ Class Reference

 age.insert("John");
 age.insert("Steve");
 age.insert("Mark");
 age.insert("Steve");

 for(;itr();)
 cout << itr.key() << endl;

 return 0;
}

Program Output (not necessarily in this order)
John
Steve
Mark
Steve

RWTValHashMultiSetIterator<T,H,EQ> (RWTValHashMultiSet<T,H,EQ>&h);
Creates an iterator for the hashed multi-set h . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible

RWBoolean
operator() ();

Advances self to the next element. Returns false if the iterator has
advanced past the last item in the container and true otherwise.

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration,
self referenced the last value in the multi-set, self will now reference an
undefined value and false will be returned. Otherwise, true is
returned. Note: no postincrement operator is provided.

RWTValHashMultiSet<T,H,EQ>*
container() const;

Returns a pointer to the collection being iterated over.

T
key () const;

Returns the value currently referenced by self.

void
reset ();
void
reset (RWTValHashMultiSet<T,H,EQ>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValHashMultiSet to
reset() will reset the iterator on that container.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 567

RWTValHashSet<T,H,EQ>

#include <rw/tvhset.h>
RWTValHashSet<T,H,EQ> s;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTValHashSet described in
Appendix A.

This class maintains a collection of values, which are stored according to a
hash object of type H. H must offer a hash function for elements of type T via
a public member

 unsigned long operator()(const T& x) const

Objects within the collection will be grouped together based on an equality
object of type EQ. EQ must ensure this grouping via public member

 bool operator()(const T& x, const T& y) const

which should return true if x and y are equivalent, false otherwise.

RWTValHashSet<T,H,EQ> will not accept an item that compares equal to an
item already in the collection. (RWTValHashMultiSet<T,H,EQ> may contain
multiple items that compare equal to each other.) Equality is based on the
equality object and not on the == operator.

Isomorphic

//
// tvhsstr.cpp
//
#include <rw/tvhset.h>
#include <rw/cstring.h>
#include <iostream.h>

struct silly_hash{
 unsigned long operator()(RWCString x) const
 { return x.length() * (long)x(0); }
};

main(){
RWTValHashSet<RWCString,silly_hash,equal_to<RWCString> > set1;
RWTValHashSet<RWCString,silly_hash,equal_to<RWCString> > set2;

 set1.insert("one");
 set1.insert("two");

Synopsis

Please Note!

Description

Persistence

Example

RWTValHashSet<T,H,EQ>

568 Tools.h++ Class Reference

 set1.insert("three");

//Rejected, no duplicates allowed
 set1.insert("one");

 cout << set1.entries() << endl; // Prints "3"

 set2.insert("one");
 set2.insert("five");

//Rejected, no duplicates allowed
 set2.insert("one");

 cout << ((set1.isEquivalent(set2)) ? "TRUE" : "FALSE") << endl;
 // Prints "FALSE"

 set2.intersection(set1);

 set1.clear();
 cout << set1.entries() << endl; // Prints "0"
 cout << set2.entries() << endl; // Prints "1"

 return 0;
}

Class RWTValHashMultiSet<T,H,EQ> offers the same interface to a collection
that accepts multiple items that compare equal to each other.

Class rw_hashset<T,H,EQ> is the C++-standard compliant collection that
serves as the underlying implementation for RWTValHashSet<T,H,EQ>.

typedef rw_hashset<T,H,EQ> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;

RWTValHashSet<T,H,EQ>
(size_type sz = 1024,const H& h = H(),const EQ& eq= EQ());

Constructs an empty set. The underlying hash table representation will
have sz buckets, will use h for its hashing function and will use eq to
determine equality between elements

RWTValHashSet<T,H,EQ> (const rw_hashset<T,H,EQ>& s);
Constructs a set by copying all elements of s .

RWTValHashSet<T,H,EQ> (const RWTValHashSet<T,H,EQ>& rws);
Copy constructor.

Related
Classes

Public
Typedefs

Public
Constructors

RWTValHashSet<T,H,EQ>

Tools.h++ Class Reference 569

RWTPtrHashSet<T,H,EQ>
(const H& h,size_type sz = RWDEFAULT_CAPACITY);

Creates an empty hashed set which uses the hash object h and has an
initial hash table capacity of sz .

RWTValHashSet<T,H,EQ> (const T* first,const T* last,
 size_type sz = 1024,const H& h = H(),const EQ& eq = EQ());

Constructs a set by copying elements from the array of Ts pointed to by
first , up to, but not including, the element pointed to by last . The
underlying hash table representation will have sz buckets, will use h for
its hashing function and will use eq to determine equality between
elements

RWTValHashSet<T,H,EQ>&
operator= (const RWTValHashSet<T,H,EQ>& s);

RWTValHashSet<T,H,EQ>&
operator= (const rw_hashset<T,H,EQ>& s);

Destroys all elements of self and replaces them by copying all elements of
s .

bool
operator== (const RWTValHashSet<T,H,EQ>& s) const;

bool
operator== (const rw_hashset<T,H,EQ>& s) const;

Returns true if self compares equal to s , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have prototype:

 void yourfun(const T& a, void* d);

 Client data may be passed through parameter d.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

size_type
capacity () const;

Returns the number of buckets(slots) available in the underlying hash
representation. See resize below.

Public
Member

Operators

Public
Member

Functions

RWTValHashSet<T,H,EQ>

570 Tools.h++ Class Reference

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

bool
contains (const_reference a) const;

Returns true if there exists an element t in self that compares equal to a,
otherwise returns false .

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
difference (const RWTValHashSet<T,H,EQ>& s);

void
difference (const rw_hashset<T,H,EQ>& s);

Sets self to the set-theoretic difference given by (self - s) .

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

float
fillRatio () const;

Returns the ratio entries() /capacity() .

bool
find (const_reference a, value_type& k) const;

If there exists an element t in self that compares equal to a, assigns t to k
and returns true . Otherwise, returns false and leaves the value of k
unchanged.

RWTValHashSet<T,H,EQ>

Tools.h++ Class Reference 571

bool
find (bool (*fn)(const_reference,void*), void* d,
 value_type& k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
insert (const_reference a);

Adds the item a to the collection. Returns true if the insertion is
successful, otherwise returns false . The function will return true unless
the collection already holds an element with the equivalent key.

void
intersection (const RWTValHashSet<T,H,EQ>& rhs);
void
intersection (const rw_hashset<T,H,EQ>& rhs);

Destructively performs a set theoretic intersection of self and rhs ,
replacing the contents of self with the result.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isEquivalent (const RWTValHashSet<T,H,EQ>& s) const;

Returns true if there is set equivalence between self and s , and returns
false otherwise.

bool
isProperSubsetOf (const RWTValHashSet<T,H,EQ>& s) const;

Returns true if self is a proper subset of s , and returns false otherwise.

bool
isSubsetOf (const RWTValHashSet<T,H,EQ>& s) const;

Returns true if self is a subset of s or if self is set equivalent to s , false

otherwise.

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self that compare equal to a.

RWTValHashSet<T,H,EQ>

572 Tools.h++ Class Reference

size_type
occurrencesOf
(bool (*fn)(const_reference,void*),void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const_reference a);

Removes the first element t in self that compares equal to a. Returns
false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self that compare equal to a. Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
resize (size_type sz);

Changes the capacity of self by creating a new hashed set with a capacity
of sz . resize copies every element of self into the new container and
finally swaps the internal representation of the new container with the
internal representation of self .

RWTValHashSet<T,H,EQ>

Tools.h++ Class Reference 573

rw_hashset<T,H,EQ>&
std ();

const rw_hashset<T,H,EQ>&
std () const;

Returns a reference to the underlying collection that serves as the
implementation for self. This reference may be used freely, providing
access to the C++-standard interface as well as interoperability with other
software components that make use of the C++-standard collections.

void
symmetricDifference (const RWTValHashSet<T,H,EQ>& s);
void
symmetricDifference (const rw_hashset<T,H,EQ>& s);

Destructively performs a set theoretic symmetric difference operation on
self and s . Self is replaced by the result. A symmetric difference can be
defined as (A∪B)-(A∩B).

void
Union (const RWTValHashSet<T,H,EQ>& s);
void
Union (const rw_hashsett<T,H,EQ>& s);

Destructively performs a set theoretic union operation on self and s . Self
is replaced by the result. Note the use of the uppercase "U"in Union to
avoid conflict with the C++ reserved word.

RWvostream&
operator<< (RWvostream& strm,
 const RWTValHashSet<T,H,EQ>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValHashSet<T,H,EQ>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValHashSet<T,H,EQ>& coll);
RWFile&
operator>> (RWFile& strm, RWTValHashSet<T,H,EQ>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValHashSet<T,H,EQ>*& p);
RWFile&
operator>> (RWFile& strm, RWTValHashSet<T,H,EQ>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 575

RWTValHashSetIterator<T,H,EQ>

#include<rw/tvhset.h>
RWTValHashSet<T,H,EQ> m;
RWTValHashSetIterator<T,H,EQ> itr(m);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTValHashSetIterator
described in Appendix A.

RWTValHashSetIterator is supplied with Tools.h++ 7 to provide an iterator
interface to RWTValHashSetIterator that is backward compatible with the
container iterators provided in Tools.h++ 6.x.

Iteration over an RWTValHashSet is pseudorandom and dependent on the
capacity of the underlying hash table and the hash function being used. The
only useable relationship between consecutive elements is that elements
which are defined to be equivalent by the equivalence object, EQ, will remain
adjacent.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a pre-increment or an operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvhset.h>
#include<rw/cstring.h>
#include<iostream.h>

struct silly_h{
 unsigned long operator()(const RWCString& x) const
 { return x.length() * (long)x(0); }
};

int main(){
 RWTValHashSet <RWCString, silly_h,equal_to<RWCString> > age;
 RWTValHashSetIterator
 <RWCString, silly_h, equal_to<RWCString > > itr(age);

 age.insert("John");

Synopsis

Please Note!

Description

Persistence

Example

RWTValHashSetIterator<T,H,EQ>

576 Tools.h++ Class Reference

 age.insert("Steve");
 age.insert("Mark");

//Duplicate insertion rejected
 age.insert("Steve");

 for(;itr();) cout << itr.key() << endl;

 return 0;
}
Program Output (not necessarily in this order)
John
Steve
Mark

RWTValHashSetIterator<T,H,EQ> (RWTValHashSet<T,H,EQ>&h);
Creates an iterator for the hashset h . The iterator begins in an undefined
state and must be advanced before the first element will be accessible.

RWBoolean
operator() ();

Advances self to the next element. Returns false if the iterator has
advanced past the last item in the container and true otherwise.

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration,
self referenced the last value in the multi-set, self will now reference an
undefined value and false will be returned. Otherwise, true is
returned. Note: no postincrement operator is provided.

RWTValHashSet<T,H,EQ>*
container() const;

Returns a pointer to the collection being iterated over.

T
key () const;

Returns the value currently pointed to by self .

void
reset ();
void
reset (RWTValHashSet<T,H,EQ>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValHashSet to reset()

will reset the iterator on that container.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 577

RWTValHashTable

#define RWTValHashTable RWTValHashMultiSet

If you have the Standard C++ Library, refer to the reference for this class
under its new name: RWTValHashMultiSet. Although the old name
(RWTValHashTable) is still supported, we recommend that you use the
new name when coding your applications.

If you do not have the Standard C++ Library, refer to the description of
RWTValHashTable in Appendix A.

Synopsis

Please Note!

Tools.h++ Class Reference 579

RWTValHashTableIterator

#define RWTValHashTableIterator RWTValHashMultiSetIterator

If you have the Standard C++ Library, refer to the reference for this class
under its new name: RWTValHashMultiSetIterator. Although the old name
(RWTValHashTableIterator) is still supported, we recommend that you use
the new name when coding your applications.

If you do not have the Standard C++ Library, refer to the description of
RWTValHashTableIterator in Appendix A.

Synopsis

Please Note!

Tools.h++ Class Reference 581

RWTValMap<K,T,C>

#include <rw/tvmap.h>
RWTValMap<K,T,C> m;

RWTValMap requires the Standard C++ Library.

This class maintains a collection of keys, each with an associated item of type
T. Order is determined by the key according to a comparison object of type
C. C must induce a total ordering on elements of type K via a public member

 bool operator()(const K& x, const K& y) const

which returns true if x and its partner should precede y and its partner
within the collection. The structure less<T> from the C++-standard header
file <functional> is an example.

RWTValMap<K,T,C> will not accept a key that compares equal to any key
already in the collection. (RWTValMultiMap<K,T,C> may contain multiple
keys that compare equal to each other.) Equality is based on the comparison
object and not on the == operator. Given a comparison object comp, keys a
and b are equal if

 !comp(a,b) && !comp(b,a) .

Isomorphic.

In this example, a map of RWCString s and RWDates is exercised.

//
// tvmbday.cpp
//
#include <rw/tvmap.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <iostream.h>

main(){
 RWTValMap<RWCString, RWDate, less<RWCString> > birthdays;

 birthdays.insert("John", RWDate(12, "April",1975));
 birthdays.insert("Ivan", RWDate(2, "Nov", 1980));

 // Alternative syntax:
 birthdays["Susan"] = RWDate(30, "June", 1955);
 birthdays["Gene"] = RWDate(5, "Jan", 1981);

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTValMap<K,T,C>

582 Tools.h++ Class Reference

 // Print a birthday:
 cout << birthdays["John"] << endl;
 return 0;
}

Program Output:
04/12/75

Class RWTValMultiMap<K,T,C> offers the same interface to a collection that
accepts multiple keys that compare equal to each other. RWTValSet<T,C>
maintains a collection of keys without the associated values.

Class map<K,T,C,allocator> is the C++-standard collection that serves as
the underlying implementation for this collection.

typedef map<K,T,C,allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef pair <const K,T> value_type;
typedef pair <const K,T>& reference;
typedef const pair <const K,T>& const_reference;

RWTValMap<K,T,C> (const C& comp = C());
Constructs an empty map with comparator comp.

RWTValMap<K,T,C> (const container_type& m);
Constructs a map by copying all elements of m.

RWTValMap<K,T,C> (const RWTValMap<K,T,C>& rwm);
Copy constructor.

RWTValMap<K,T,C> (const value_type* first,
 const value_type* last,const C& comp = C());

Constructs a map by copying elements from the array of value_type pairs
pointed to by first , up to, but not including, the pair pointed to by last .

RWTValMap<K,T,C>&
operator= (const RWTValMap<K,T,C>& m);

RWTValMap<K,T,C>&
operator= (const container_type& m);

Destroys all elements of self and replaces them by copying all associations
from m.

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTValMap<K,T,C>

Tools.h++ Class Reference 583

bool
operator< (const RWTValMap<K,T,C>& m) const;

bool
operator< (const container_type & m) const;

Returns true if self compares lexicographically less than m, otherwise
returns false . Assumes that type K has well-defined less-than semantics
(T::operator<(const K&) or equivalent).

bool
operator== (const RWTValMap<K,T,C>& m) const;

bool
operator== (const container_type & m) const;

Returns true if self compares equal to m, otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual pairs that compare
equal to each other.

T&
operator[] (const K& key);

Looks up key and returns a reference to its associated item. If the key is
not in the dictionary, then it will be added with an associated item
provided by the default constructor for type T.

void
apply (void (*fn)(const K&, T&, void*),void* d);

void
apply (void (*fn)(const K&, const T&, void*), void* d) const;

Applies the user-defined function pointed to by fn to every association in
the collection. This function must have one of the prototypes:

void yourfun(const K& key, T& a, void* d);
 void yourfun(const K& key, const T& a,void* d);

Client data may be passed through parameter d.

void
applyToKeyAndValue (void (*fn)(const K&, T&, void*),void* d);

void
applyToKeyAndValue
(void (*fn)(const K&, const T&, void*), void* d) const;

This is a deprecated version of the apply member above. It behaves
exactly the same as apply.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first pair in self.

Public
Member

Functions

RWTValMap<K,T,C>

584 Tools.h++ Class Reference

void
clear ();

Clears the collection by removing all items from self. Each key and its
associated item will have its destructor called.

bool
contains (const K& key) const;

Returns true if there exists a key j in self that compares equal to key ,
otherwise returns false .

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an association a in self such that the expression
((*fn)(a,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last association in self.

size_type
entries () const;

Returns the number of associations in self.

bool
find (const K& key, Key& r) const;

If there exists a key j in self that compares equal to key , assigns j to r and
returns true . Otherwise, returns false and leaves the value of r
unchanged.

bool
find (bool (*fn)(const_reference,void*), void* d,
 pair<K,T>& r) const;

If there exists an association a in self such that the expression
((*fn)(a,d)) is true , assigns a to r and returns true . Otherwise, returns
false and leaves the value of k unchanged. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValMap<K,T,C>

Tools.h++ Class Reference 585

bool
findValue (const K& key, T& r) const;

If there exists a key j in self that compares equal to key , assigns the item
associated with j to r and returns true . Otherwise, returns false and
leaves the value of r unchanged.

bool
findKeyValue (const K& key, K& kr, T& tr) const;

If there exists a key j in self that compares equal to key , assigns j to kr ,
assigns the item associated with j to tr, and returns true . Otherwise,
returns false and leaves the values of kr and tr unchanged.

bool
insert (const K& key, const T& a);

Adds key with associated item a to the collection. Returns true if the
insertion is successful, otherwise returns false . The function will return
true unless the collection already holds an association with the equivalent
key.

bool
insertKeyAndValue (const K& key, const T& a);

This is a deprecated version of the insert member above. It behaves
exactly the same as insert.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

size_type
occurrencesOf (const K& key) const;

Returns the number of keys j in self that compare equal to key .

size_type
occurrencesOf
(bool (*fn)(const_reference&,void*),void* d) const;

Returns the number of associations a in self such that the
expression((*fn)(a,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference& a, void* d);

Client data may be passed through parameter d.

bool
remove (const K& key);

Removes the first association with key j in self such that j compares equal
to key and returns true . Returns false if there is no such association.

RWTValMap<K,T,C>

586 Tools.h++ Class Reference

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first association a in self such that the expression
((*fn)(a,d)) is true and returns true . Returns false if there is no such
element. fn points to a user-defined tester function which must have
prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const K& key);

Removes all associations with key j in self such that j compares equal to
key . Returns the number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all associations a in self such that the expression ((*fn)(a,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

map<K,T,C,allocator>&
std ();

const map<K,T,C,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
collections.

RWvostream&
operator<< (RWvostream& strm, const RWTValMap<K,T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValMap<K,T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValMap<K,T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTValMap<K,T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

Related
Global

Operators

RWTValMap<K,T,C>

Tools.h++ Class Reference 587

RWvistream&
operator>> (RWvistream& strm, RWTValMap<K,T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTValMap<K,T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference 589

RWTValMapIterator<K,T,C>

#include<rw/tvmap.h>
RWTValMap<K,T,C> vm;
RWTValMapIterator<K,T,C> itr(vm);

RWTValMapIterator requires the Standard C++ Library.

RWTValMapIterator is supplied with Tools.h++ 7 to provide an iterator
interface to RWTValMapIterator that is backward compatable with the
container iterators provided in Tools.h++ 6.x.

The order of iteration over an RWTValMap is dependent on the comparator
object supplied as applied to the key values of the stored associations.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvmap.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTValMap<RWCString,int,greater<RWCString> > age;
 RWTValMapIterator<RWCString,int,greater<RWCString> > itr(age);

 age.insert("John", 30);
 age.insert("Steve",17);
 age.insert("Mark",24);

//Insertion is rejected, no duplicates allowed
 age.insert("Steve",24);

 for(;itr();)
 cout << itr.key() << "\'s age is " << itr.value() << endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

xamples

RWTValMapIterator<K,T,C>

590 Tools.h++ Class Reference

Program Output
Steve’s age is 17
Mark’s age is 24
John’s age is 30

RWTValMapIterator<K,T,C>
(RWTValMap<K,T,C>&h);

Creates an iterator for the map h . The iterator begins in an undefined
state and must be advanced before the first association will be accessible.

RWBoolean
operator() ();

Advances self to the next element. If the iterator has advanced past the
last element in the collection, false will be returned. Otherwise, true

will be returned.

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration,
self pointed to the last association in the map, self will now reference an
undefined value and false will be returned. Otherwise, true is
returned. Note: no postincrement operator is provided.

RWTValMap<K,T,C>*
container() const;

Returns a pointer to the collection being iterated over.

K
key () const;

Returns the key portion of the association currently referenced by self .

void
reset ();
void
reset (RWTValMap<K,T,C>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValMap with reset()

will reset the iterator on that container.

T
value ();

Returns the value portion of the association referenced by self .

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 591

RWTValMultiMap<K,T,C>

#include <rw/tvmmap.h>
RWTValMultiMap<K,T,C> m;

RWTValMultiMap requires the Standard C++ Library.

This class maintains a collection of keys, each with an associated item of type
T. Order is determined by the key according to a comparison object of type
C. C must induce a total ordering on elements of type K via a public member

bool operator()(const K& x, const K& y) const

which returns true if x and its partner should precede y and its partner
within the collection. The structure less<T> from the C++-standard header
file <functional> is an example.

RWTValMultiMap<K,T,C> may contain multiple keys that compare equal to
each other. (RWTValMap<K,T,C> will not accept a key that compares equal
to any key already in the collection.) Equality is based on the comparison
object and not on the == operator. Given a comparison object comp, keys a
and b are equal if

!comp(a,b) && !comp(b,a) .

Isomorphic.

In this example, a map of RWCStrings and RWDates is exercised.

//
// tvmmbday.cpp
//
#include <rw/tvmmap.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <iostream.h>
#include <function.h>

main(){
 typedef RWTValMultiMap<RWCString, RWDate, less<RWCString> >
 RWMMap;
 RWMMap birthdays;

 birthdays.insert("John", RWDate(12, "April",1975));
 birthdays.insert("Ivan", RWDate(2, "Nov", 1980));
 birthdays.insert("Mary", RWDate(22, "Oct", 1987));
 birthdays.insert("Ivan", RWDate(19, "June", 1971));

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTValMultiMap<K,T,C>

592 Tools.h++ Class Reference

 birthdays.insert("Sally",RWDate(15, "March",1976));
 birthdays.insert("Ivan", RWDate(6, "July", 1950));

 // How many "Ivan"s?
 RWMMap::size_type n = birthdays.occurrencesOf("Ivan");
 RWMMap::size_type idx = 0;
 cout << "There are " << n << " Ivans:" << endl;
 RWMMap::iterator iter = birthdays.std().lower_bound("Ivan");
 while (++idx <= n)
 cout << idx << ". " << (*iter++).second << endl;
 return 0;
}

Program Output:
There are 3 Ivans:
1. 11/02/80
2. 06/19/71
3. 07/06/50

Class RWTValMap<K,T,C> offers the same interface to a collection that will
not accept multiple keys that compare equal to each other.
RWTValMultiSet<T,C> maintains a collection of keys without the associated
values.

Class multimap<K,T,C,allocator> is the C++-standard collection that serves
as the underlying implementation for this collection.

typedef multimap<K,T,C,allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef pair <const K,T> value_type;
typedef pair <const K,T>& reference;
typedef const pair <const K,T>& const_reference;

RWTValMultiMap<K,T,C> (const C& comp = C());
Constructs an empty map with comparator comp.

RWTValMultiMap<K,T,C> (const container_type& m);
Constructs a map by copying all elements of m.

RWTValMultiMap<K,T,C> (const RWTValMultiMap<K,T,C>& rwm);
Copy constructor.

RWTValMultiMap<K,T,C>
(const value_type* first, const value_type* last,
 const C& comp = C());

Constructs a map by copying elements from the array of Ts pointed to by
first , up to, but not including, the element pointed to by last .

Related
Classes

Public
Typedefs

Public
Constructors

RWTValMultiMap<K,T,C>

Tools.h++ Class Reference 593

RWTValMultiMap<K,T,C>&
operator= (const RWTValMultiMap<K,T,C>& m);

RWTValMultiMap<K,T,C>&
operator= (const container_type& m) const;

Destroys all elements of self and replaces them by copying all associations
from m.

bool
operator< (const RWTValMultiMap<K,T,C>& m);

bool
operator< (const container_type& m) const;

Returns true if self compares lexicographically less than m, otherwise
returns false . Assumes that type K has well-defined less-than semantics
(T::operator<(const K&) or equivalent).

bool
operator== (const RWTValMultiMap<K,T,C>& m) const;

bool
operator== (const container_type& m) const;

Returns true if self compares equal to m, otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual pairs that compare
equal to each other.

void
apply (void (*fn)(const K&, T&, void*),void* d);

void
apply (void (*fn)(const K&, const T&, void*),void* d) const;

Applies the user-defined function pointed to by fn to every association in
the collection. This function must have one of the prototypes:

 void yourfun(const K& key, T& a, void* d);
 void yourfun(const K& key, const T& a,void* d);

Client data may be passed through parameter d.

void
applyToKeyAndValue (void (*fn)(const K&, T&, void*),void* d);

void
applyToKeyAndValue
(void (*fn)(const K&, const T&, void*),void* d) const;

This is a deprecated version of the apply member above. It behaves
exactly the same as apply.

Public
Member

Operators

Public
Member

Functions

RWTValMultiMap<K,T,C>

594 Tools.h++ Class Reference

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first pair in self.

void
clear ();

Clears the collection by removing all items from self. Each key and its
associated item will have its destructor called.

bool
contains (const K& key) const;

Returns true if there exists a key j in self that compares equal to key ,
otherwise returns false .

bool
contains
(bool (*fn)(const_reference,void*),void* d) const;

Returns true if there exists an association a in self such that the expression
((*fn)(a,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last association in self.

size_type
entries () const;

Returns the number of associations in self.

bool
find (const K& key, Key& r) const;

If there exists a key j in self that compares equal to key , assigns j to r and
returns true . Otherwise, returns false and leaves the value of r
unchanged.

bool
find (bool (*fn)(const_reference,void*),void* d,
 pair<K,T>& r) const;

If there exists an association a in self such that the expression
((*fn)(a,d)) is true , assigns a to r and returns true . Otherwise, returns
false and leaves the value of k unchanged. fn points to a user-defined
tester function which must have prototype:

RWTValMultiMap<K,T,C>

Tools.h++ Class Reference 595

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
findValue (const K& key, T& r) const;

If there exists a key j in self that compares equal to key , assigns the item
associated with j to r and returns true . Otherwise, returns false and
leaves the value of r unchanged.

bool
findKeyValue (const K& key, K& kr, T& tr) const;

If there exists a key j in self that compares equal to key , assigns j to kr ,
assigns the item associated with j to tr, and returns true . Otherwise,
returns false and leaves the values of kr and tr unchanged.

bool
insert (const K& key, const T& a);

Adds key with associated item a to the collection. Returns true .

bool
insertKeyAndValue (const K& key, const T& a);

This is a deprecated version of the insert member above. It behaves
exactly the same as insert.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

size_type
occurrencesOf (const K& key) const;

Returns the number of keys j in self that compare equal to key .

size_type
occurrencesOf (bool (*fn)(const_reference,void*),
 void* d) const;

Returns the number of associations a in self such that the
expression((*fn)(a,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const K& key);

Removes the first association with key j in self where j compares equal to
key and returns true . Returns false if there is no such association.

RWTValMultiMap<K,T,C>

596 Tools.h++ Class Reference

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first association a in self such that the expression
((*fn)(a,d)) is true and returns true . Returns false if there is no such
element. fn points to a user-defined tester function which must have
prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const K& key);

Removes all associations in self that have a key j that compares equal to
key . Returns the number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all associations a in self such that the expression ((*fn)(a,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

multimap<K,T,C,allocator>&
std ();

const multimap<K,T,C,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
collections.

RWvostream&
operator<< (RWvostream& strm,
 const RWTValMultiMap<K,T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValMultiMap<K,T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValMultiMap<K,T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTValMultiMap<K,T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

Related
Global

Operators

RWTValMultiMap<K,T,C>

Tools.h++ Class Reference 597

RWvistream&
operator>> (RWvistream& strm, RWTValMultiMap<K,T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTValMultiMap<K,T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference 599

RWTValMultiMapIterator<K,T,C>

#include<rw/tvmmap.h>
RWTValMultiMap<K,T,C> vm;
RWTValMultiMapIterator<K,T,C> itr(vm);

RWTValMultiMapIterator requires the Standard C++ Library.

RWTValMultiMapIterator is supplied with Tools.h++ 7 to provide an iterator
interface for class RWTValMultiMap that has backward compatibility with
the container iterators provided in Tools.h++ 6.x.

The order of iteration for an RWTValMultiMap is dependent upon the
comparator object as applied to the keys of the stored associations.

The current item referenced by this iterator is undefined after construction or
after a call to reset(). The iterator becomes valid after being advanced
with either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvmmap.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTValMultiMap<RWCString,int,greater<RWCString> > a;
 RWTValMultiMapIterator
 <RWCString,int,greater<RWCString> > itr(a);

 a.insert("John", 30);
 a.insert("Steve",17);
 a.insert("Mark",24);
 a.insert("Steve",24);

 for(;itr();)
 cout << itr.key() << "\'s age is " << itr.value() << endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTValMultiMapIterator<K,T,C>

600 Tools.h++ Class Reference

Program Output
Steve’s age is 17
Steve’s age is 24
Mark’s age is 24
John’s age is 30

RWTValMultiMapIterator<K,T,C>
(RWTValMultiMap<K,T,C>&m);

Creates an iterator for the multi-map m . The iterator begins in an
undefined state and must be advanced before the first association will be
accessible.

RWBoolean
operator() ();

Advances self to the next element. If the iterator has advanced past the
last item in the collection, returns false . Otherwise, returns true .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration, self
referenced the last association in the multi-map, self will now reference an
undefined value and false will be returned. Otherwise, true is
returned. Note: no postincrement operation is provided.

RWTValMultiMap<K,T,C>*
container() const;

Returns a pointer to the collection being iterated over.

K
key () const;

Returns the key portion of the association currently referenced by self .

void
reset ();
void
reset (RWTValMultiMap<K,T,C>& h);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValMultiMap to reset()

will reset the iterator on the new container.

T
value ();

Returns the value portion of the association referenced by self .

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 601

RWTValMultiSet<T,C>

#include <rw/tvmset.h>
RWTValMultiSet<T,C>

RWTPtrMultiSet requires the Standard C++ Library.

This class maintains a collection of values, which are ordered according to a
comparison object of type C. C must induce a total ordering on elements of
type T via a public member

bool operator()(const T& x, const T& y) const

which returns true if x should precede y within the collection. The structure
less<T> from the C++-standard header file <functional> is an example.

RWTValMultiSet<T,C> may contain multiple items that compare equal to
each other. (RWTValSet<T,C> will not accept an item that compares equal to
an item already in the collection.)

Isomorphic.

In this example, a multi-set of RWCString s is exercised.

//
// tvmsstr.cpp
//
#include <rw/tvmset.h>
#include <rw/cstring.h>
#include <iostream.h>

main(){
 RWTValMultiSet<RWCString,less<RWCString> > set;

 set.insert("one");
 set.insert("two");
 set.insert("three");
 set.insert("one"); // OK, duplicates allowed

 cout << set.entries() << endl; // Prints "4"
 return 0;
}

Class RWTValSet<T,C> offers the same interface to a collection that will not
accept multiple items that compare equal to each other.
RWTValMultiMap<K,T,C> maintains a collection of key-value pairs.

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

Related
Classes

RWTValMultiSet<T,C>

602 Tools.h++ Class Reference

Class multiset<T,C,allocator> is the C++-standard collection that serves as
the underlying implementation for RWTValMultiSet<T,C>.

typedef multiset<T,C,allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef const T& const_reference;

RWTValMultiSet<T,C> (const C& cmp = C());
Constructs an empty set.

RWTValMultiSet<T,C> (const container_type& s);
Constructs a set by copying all elements of s .

RWTValMultiSet<T,C> (const RWTValMultiSet<T,C>& rws);
Copy constructor.

RWTValMultiSet<T,C>
(const T* first,const T* last,const C& cmp = C());

Constructs a set by copying elements from the array of Ts pointed to by
first , up to, but not including, the element pointed to by last .

RWTValMultiSet<T,C>&
operator= (const RWTValMultiSet<T,C>& s);

RWTValMultiSet<T,C>&
operator= (const container_type& s);

Destroys all elements of self and replaces them by copying all elements of
s .

bool
operator< (const RWTValMultiSet<T,C>& s) const;

bool
operator< (const container_type& s) const;

Returns true if self compares lexicographically less than s , otherwise
returns false . Assumes that type T has well-defined less-than semantics
(T::operator<(const T&) or equivalent).

bool
operator== (const RWTValMultiSet<T,C>& s) const;

bool
operator== (const container_type& s) const;

Returns true if self compares equal to s , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTValMultiSet<T,C>

Tools.h++ Class Reference 603

void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have prototype:

 void yourfun(const_reference a, void* d);

Client data may be passed through parameter d.

iterator
begin ();

const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

bool
contains (const_reference a) const;

Returns true if there exists an element t in self that compares equal to a,
otherwise returns false .

bool
contains (bool (*fn)(const_reference, void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
difference (const RWTValMultiSet<T,C>& s);

void
difference (const container_type& s);

Sets self to the set-theoretic difference given by (self - s) .

iterator
end ();

const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

Public
Member

Functions

RWTValMultiSet<T,C>

604 Tools.h++ Class Reference

bool
find (const_reference a, T& k) const;

If there exists an element t in self that compares equal to a, assigns t to k
and returns true . Otherwise, returns false and leaves the value of k
unchanged.

bool
find (bool (*fn)(const_reference,void*), void* d, T& k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
intersection (const RWTValMultiSet<T,C>& s);

void
intersection (const container_type& s);

Sets self to the intersection of self and s .

bool
insert (const_reference a);

Adds the item a to the collection. Returns true .

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isEquivalent (const RWTValMultiSet<T,C>& s) const;

Returns true if there is set equivalence between self and s , and returns
false otherwise.

bool
isProperSubsetOf (const RWTValMultiSet<T,C>& s) const;

Returns true if self is a proper subset of s , and returns false otherwise.

bool
isSubsetOf (const RWTValMultiSet<T,C>& s) const;

Returns true if self is a subset of s or if self is set equivalent to rhs , false

otherwise.

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self that compare equal to a.

RWTValMultiSet<T,C>

Tools.h++ Class Reference 605

size_type
occurrencesOf (bool (*fn)(const_reference,void*),void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const_reference a);

Removes the first element t in self that compares equal to a and returns
true . Returns false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self that compare equal to a. Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

multiset<T,C,allocator>&
std ();

const multiset<T,C,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
collections.

RWTValMultiSet<T,C>

606 Tools.h++ Class Reference

void
symmetricDifference (const RWTValMultiSet<T,C>& s);

void
symmetricDifference (const container_type& s);

Sets self to the symmetric difference of self and s .

void
Union (const RWTValMultiSet<T,C>& s);

void
Union (const container_type& s);

Sets self to the union of self and s . Note the use of the uppercase "U"in
Union to avoid conflict with the C++ reserved word.

RWvostream&
operator<< (RWvostream& strm, const RWTValMultiSet<T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValMultiSet<T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValMultiSet<T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTValMultiSet<T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValMultiSet<T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTValMultiSet<T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 607

RWTValMultiSetIterator<T,C>

#include<rw/tvmset.h>
RWTValMultiSet< T,C> vs;
RWTValMultiSetIterator< T,C> itr(vs);

RWTValMultiSetIterator requires the Standard C++ Library.

RWTValMultiSetIterator is supplied with Tools.h++ 7 to provide an iterator
interface for class RWTValMultiSetIterator that has backward compatibility
with the container iterators provided in Tools.h++ 6.x.

The order of iteration over an RWTValMultiSet is dependent on the supplied
comparator object parameter C as applied to the values stored in the
container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvmset.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTValMultiSet<RWCString,greater<RWCString> > a;
 RWTValMultiSetIterator<RWCString,greater<RWCString> > itr(a);
 a.insert("John");
 a.insert("Steve");
 a.insert("Mark");
 a.insert("Steve");

 for(;itr();)
 cout << itr.key() << endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTValMultiSetIterator<T,C>

608 Tools.h++ Class Reference

Program Output
Steve
Steve
Mark
John

RWTValMultiSetIterator<T,C> (RWTValMultiSet< T,C> &h);
Creates an iterator for the multi-set h . The iterator begins in an undefined
state and must be advanced before the first element will be accessible

RWBoolean
operator() ();

Advances self to the next element. If the iterator has advanced past the
last element in the collection, false will be returned. Otherwise, true

will be returned.

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration,
self referenced the last association in the multi-set, self will now
reference an undefined value and false will be returned. Otherwise,
true is returned. Note: no postincrement operator is provided.

RWTValMultiSet<T,C>*
container() const;

Returns a pointer to the collection being iterated over.

T
key ();

Returns the value pointed to by self .

void
reset ();
void
reset (RWTValMultiSet<T,C>& h);

Resets the iterator so that after being advanced it will point to the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValMultiSet to reset()

will reset the iterator on that container.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 609

RWTValOrderedVector<T>

#include <rw/tvordvec.h>
RWTValOrderedVector<T> ordvec;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTValOrderedVector
described in Appendix A.

This class maintains a collection of values, implemented as a vector.

Isomorphic

In this example, a vector of type double is exercised.

//
// tvordvec.cpp
//
#include <rw/tvordvec.h>
#include <iostream.h>

main() {
 RWTValOrderedVector<double> vec;

 vec.insert(22.0);
 vec.insert(5.3);
 vec.insert(-102.5);
 vec.insert(15.0);
 vec.insert(5.3);

 cout << vec.entries() << " entries\n" << endl; // Prints "5"
 for (int i=0; i<vec.length(); i++)
 cout << vec[i] << endl;

 return 0;
}
Program Output:
5 entries

22
5.3
-102.5
15
5.3

Classes RWTValDeque<T>, RWTValSlist<T>, and RWTValDlist<T> also
provide a Rogue Wave interface to C++-standard sequence collections.

Synopsis

Please Note!

Description

Persistence

Example

Related
Classes

RWTValOrderedVector<T>

610 Tools.h++ Class Reference

Class vector<T,allocator> is the C++-standard collection that serves as the
underlying implementation for this class.

typedef vector<T,allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;

RWTValOrderedVector<T> ();
Constructs an empty vector.

RWTValOrderedVector<T> (const vector<T,allocator>& vec);
Constructs a vector by copying all elements of vec .

RWTValOrderedVector<T> (const RWTValOrderedVector<T>& rwvec);
Copy constructor.

RWTValOrderedVector<T> (size_type n, const T& val);
Constructs a vector with n elements, each initialized to val .

RWTValOrderedVector<T> (size_type n);
Constructs an empty vector with a capacity of n elements.

RWTValOrderedVector<T> (const T* first, const T* last);
Constructs a vector by copying elements from the array of Ts pointed to by
first , up to, but not including, the element pointed to by last .

RWTValOrderedVector<T>&
operator= (const RWTValOrderedVector<T>& vec);
RWTValOrderedVector<T>&
operator= (const vector<T,allocator>& vec);

Calls the destructor on all elements of self and replaces them by copying
all elements of vec .

bool
operator< (const RWTValOrderedVector<T>& vec);
bool
operator< (const vector<T>& vec);

Returns true if self compares lexicographically less than vec , otherwise
returns false. Type T must have well-defined less-than semantics
(T::operator<(const T&) or equivalent).

bool
operator== (const RWTValOrderedVector<T>& vec) const;
bool
operator== (const vector<T>& vec) const;

Returns true if self compares equal to vec , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTValOrderedVector<T>

Tools.h++ Class Reference 611

through both collections produces, in turn, individual elements that
compare equal to each other.

T&
operator() (size_type i);
const T&
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

T&
operator[] (size_type i);
const T&
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
append (const_reference a);

Adds the item a to the end of the collection.

void
apply (void (*fn)(reference,void*), void* d);
void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

void yourfun(const_reference a, void* d);
void yourfun(reference a, void* d);

Client data may be passed through parameter d.

reference
at (size_type i);
const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

iterator
begin ();
const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

Public
Member

Functions

RWTValOrderedVector<T>

612 Tools.h++ Class Reference

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

bool
contains (const_reference a) const;

Returns true if there exists an element t in self such that the
expression(t == a) is true , otherwise returns false .

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true, otherwise returns false. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

const T*
data () const;

Returns a pointer to the first element of the vector.

iterator
end ();
const_iterator
end () const;

Returns a past-the-end valued iterator of self.

size_type
entries () const;

Returns the number of elements in self.

bool
find (const_reference a, value_type& k) const;

If there exists an element t in self such that the expression (t == a) is
true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged.

bool
find (bool (*fn)(const_reference,void*), void* d,
 value_type& k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const T& a, void* d);

RWTValOrderedVector<T>

Tools.h++ Class Reference 613

Client data may be passed through parameter d.

reference
first ();
const_reference
first () const;

Returns a reference to the first element of self.

size_type
index (const_reference a) const;

Returns the position of the first item t in self such that (t == a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(const_reference,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
insert (const_reference a);

Adds the item a to the end of the collection. Returns true .

void
insertAt (size_type i, const_reference a);

Inserts the item a in front of the item at position i in self. This position
must be between 0 and the number of entries in the collection, otherwise
the function throws an exception of type RWBoundsErr.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

reference
last ();
const_reference
last () const;

Returns a reference to the last item in the collection.

size_type
length () const;

Returns the number of elements in self.

RWTValOrderedVector<T>

614 Tools.h++ Class Reference

reference
maxElement ();
const_reference
maxElement () const;
reference
minElement ();
const_reference
minElement () const;

Returns a reference to the minimum or maximum element in the
collection. Type T must have well-defined less-than semantics
(T::operator<(const T&) or equivalent).

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self such that the expression
(t == a) is true .

size_type
occurrencesOf
(bool (*fn)(const_reference,void*), void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
prepend (const_reference a);

Adds the item a to the beginning of the collection.

bool
remove (const_reference a);

Removes the first element t in self such that the expression (t == a) is
true and returns true . Returns false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self such that the expression (t == a) is true .
Returns the number of items removed.

RWTValOrderedVector<T>

Tools.h++ Class Reference 615

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

value_type
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between 0 and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

value_type
removeFirst ();

Removes and returns the first item in the collection.

value_type
removeLast ();

Removes and returns the first item in the collection.

size_type
replaceAll (const_reference oldVal, const_reference newVal);

Replaces all elements t in self such that the expression (t == oldVal) is
true with newVal . Returns the number of items replaced.

size_type
replaceAll (bool (*fn)(const_reference,void*),
 void* d, const T& newval);

Replaces all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items replaced. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
resize (size_type n);

Modify the capacity of the vector to be at least as large as n. The function
has no effect if the capacity is already as large as n.

void
sort ();

Sorts the collection using the less-than operator to compare elements.

RWTValOrderedVector<T>

616 Tools.h++ Class Reference

vector<T,allocator>&
std ();
const vector<T,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
collections.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

RWvostream&
operator<< (RWvostream& strm,
 const RWTValOrderedVector<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValOrderedVector<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValOrderedVector<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTValOrderedVector<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValOrderedVector<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTValOrderedVector<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Static Public
Data Member

Related
Global

Operators

Tools.h++ Class Reference 617

RWTValSet<T,C>

#include <rw/tvset.h>
RWTValSet<T,C> s;

RWTValSet requires the Standard C++ Library.

This class maintains a collection of values, which are ordered according to a
comparison object of type C . C must induce a total ordering on elements of
type T via a public member

bool operator()(const T& x, const T& y) const

which returns true if x should precede y within the collection. The structure
less<T> from the C++-standard header file <functional> is an example.

RWTValSet<T,C> will not accept an item that compares equal to an item
already in the collection. (RWTValMultiSet<T,C> may contain multiple items
that compare equal to each other.) Equality is based on the comparison
object and not on the == operator. Given a comparison object comp, items a
and b are equal if

!comp(a,b) && !comp(b,a) .

Isomorphic.

In this example, a set of RWCString s is exercised.

//
// tvsstr.cpp
//
#include <rw/tvset.h>
#include <rw/cstring.h>
#include <iostream.h>
#include <function.h>

main(){
 RWTValSet<RWCString,less<RWCString> > set;

 set.insert("one");
 set.insert("two");
 set.insert("three");
 set.insert("one"); // Rejected: already in collection

 cout << set.entries() << endl; // Prints "3"
 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTValSet<T,C>

618 Tools.h++ Class Reference

Class RWTValMultiSet<T,C> offers the same interface to a collection that
accepts multiple items that compare equal to each other.
RWTValMap<K,T,C> maintains a collection of key-value pairs.

Class set<T,C,allocator> is the C++-standard collection that serves as the
underlying implementation for RWTValSet<T,C>.

typedef set<T,C,allocator> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef const T& const_reference;

RWTValSet<T,C> (const C& comp = C());
Constructs an empty set.

RWTValSet<T,C> (const container_type& s);
Constructs a set by copying all elements of s .

RWTValSet<T,C> (const RWTValSet<T,C>& rws);
Copy constructor.

RWTValSet<T,C>
(const T* first,const T* last,const C& comp = C());

Constructs a set by copying elements from the array of Ts pointed to by
first , up to, but not including, the element pointed to by last .

RWTValSet<T,C>&
operator= (const RWTValSet<T,C>& s);
RWTValSet<T,C>&
operator= (const container_type& s);

Destroys all elements of self and replaces them by copying all elements of
s.

bool
operator< (const RWTValSet<T,C>& s) const;
bool
operator< (const container_type& s) const;

Returns true if self compares lexicographically less than s , otherwise
returns false . Assumes that type T has well-defined less-than semantics
(T::operator<(const T&) or equivalent).

bool
operator== (const RWTValSet<T,C>& s) const;
bool
operator== (const set<T,C>& s) const;

Returns true if self compares equal to s , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

Related
Classes

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTValSet<T,C>

Tools.h++ Class Reference 619

void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have prototype:

 void yourfun(const_reference a, void* d);

Client data may be passed through parameter d.

iterator
begin ();
const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

bool
contains (const_reference a) const;

Returns true if there exists an element t in self that compares equal to a,
otherwise returns false .

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
difference (const RWTValSet<T,C>& s);
void
difference (const container_type& s);

Sets self to the set-theoretic difference given by (self - s) .

iterator
end ();
const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

Public
Member

Functions

RWTValSet<T,C>

620 Tools.h++ Class Reference

bool
find (const_reference a, T& k) const;

If there exists an element t in self that compares equal to a, assigns t to k
and returns true . Otherwise, returns false and leaves the value of k
unchanged.

bool
find (bool (*fn)(const_reference,void*), void* d, T& k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
insert (const_reference a);

Adds the item a to the collection. Returns true if the insertion is
successful, otherwise returns false . The function will return true unless
the collection already holds an element with the equivalent key.

void
intersection (const RWTValSet<T,C>& s);
void
intersection (const container_type& s);

Sets self to the intersection of self and s .

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isEquivalent (const RWTValSet<T,C>& s) const;

Returns true if there is set equivalence between self and s , and returns
false otherwise.

bool
isProperSubsetOf (const RWTValSet<T,C>& s) const;

Returns true if self is a proper subset of s , and returns false otherwise.

bool
isSubsetOf (const RWTValSet<T,C>& s) const;

Returns true if self is a subset of s ; false otherwise.

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self that compare equal to a.

RWTValSet<T,C>

Tools.h++ Class Reference 621

size_type
occurrencesOf (bool (*fn)(const T&,void*),void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const_reference a);

Removes the first element t in self that compares equal to a and returns
true . Returns false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self that compare equal to a. Returns the
number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

set<T,C,allocator>&
std ();
const set<T,C,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
collections.

RWTValSet<T,C>

622 Tools.h++ Class Reference

void
symmetricDifference (const RWTValSet<T,C>& s);
void
symmetricDifference (const container_type& s);

Sets self to the symmetric difference of self and s .

void
Union (const RWTValSet<T,C>& s);
void
Union (const container_type& s);

Sets self to the union of self and s . Note the use of the uppercase "U"in
Union to avoid conflict with the C++ reserved word.

RWvostream&
operator<< (RWvostream& strm, const RWTValSet<T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValSet<T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValSet<T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTValSet<T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValSet<T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTValSet<T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 623

RWTValSetIterator<T,C>

#include<rw/tvset.h>
RWTValSet<T,C> vs;
RWTValSetIterator<T,C> itr(vs);

RWTValSetIterator requires the Standard C++ Library.

RWTValSetIterator is supplied with Tools.h++ 7 to provide an iterator
interface for class RWTValSetIterator that is backward compatable with the
container iterators provided in Tools.h++ 6.x.

The order of iteration over an RWTValSet is dependent on the supplied
comparator object parameter C as applied to the values stored in the
container.

The current item referenced by this iterator is undefined after construction or
after a call to reset(). The iterator becomes valid after being advanced
with either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvset.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTValSet<RWCString,greater<RWCString> > a;
 RWTValSetIterator<RWCString,greater<RWCString> > itr(a);

 a.insert("John");
 a.insert("Steve");
 a.insert("Mark");

//Rejected, duplicates are not allowed
 a.insert("Steve");

 for(;itr();)
 cout << itr.key() << endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTValSetIterator<T,C>

624 Tools.h++ Class Reference

Program Output
Steve
Mark
John

RWTValSetIterator<T,C> (RWTValSet<T,C>&s);
Creates an iterator for the set s . The iterator begins in an undefined state
and must be advanced before the first element will be accessible

RWBoolean
operator() ();

Advances self to the next element. If the iterator has advanced past the
last element in the collection, false will be returned. Otherwise, true

will be returned.

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created self will now reference the first element. If, before iteration,
self referenced the last association in the set, self will now reference an
undefined value and false will be returned. Otherwise, true is
returned. Note: no postincrement operator is provided.

RWTValSet<T,C>*
container() const;

Returns a pointer to the collection being iterated over.

T
key () const;

Returns the value referenced by self .

void
reset ();
void
reset (RWTValSet<T,C>& s);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValSet to reset() will
reset the iterator on that container.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

Tools.h++ Class Reference 625

RWTValSlist<T>

#include <rw/tvslist.h>
RWTValSlist<T> lst;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTValSlist described in
Appendix A.

This class maintains a collection of values, implemented as a singly-linked
list.

Isomorphic

In this example, a singly-linked list of RWDates is exercised.

//
// tvslint.cpp
//
#include<rw/tvslist.h>
#include<iostream.h>

void div5(int& x, void *y){x = x/5;}

int main()
{
 const int vec[10] = {45,10,5,15,25,30,35,20,40,50};

 RWTValSlist<int> lst(vec, vec+10);
 RWTValSlistIterator<int> itr(lst);

 lst.apply(div5, 0);
 lst.sort();

 for(;itr();)
 cout << itr.key() << " ";
 cout << endl;

 return 0;
}
Program Output:
1 2 3 4 5 6 7 8 9 10

Classes RWTValDeque<T>, RWTValDlist<T>, and
RWTValOrderedVector<T> also provide a Rogue Wave interface to C++-
standard sequence collections.

Synopsis

Please Note!

Description

Persistence

Example

Related
Classes

RWTValSlist<T>

626 Tools.h++ Class Reference

The Rogue Wave supplied, standard-compliant class rw_slist<T> is the
collection that serves as the underlying implementation for this class.

typedef rw_slist<T> container_type;
typedef container_type::iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;

RWTValSlist<T> ();
Constructs an empty, singly-linked list.

RWTValSlist<T> (const rw_slist<T>& lst);
Constructs a singly-linked list by copying all elements of lst .

RWTValSlist<T> (const RWTValSlist<T>& rwlst);
Copy constructor.

RWTValSlist<T> (size_type n, const T& val = T());
Constructs a singly-linked list with n elements, each initialized to val .

RWTValSlist<T> (const T* first, const T* last);
Constructs a singly-linked list by copying elements from the array of Ts
pointed to by first , up to, but not including, the element pointed to by
last .

RWTValSlist<T>&
operator= (const RWTValSlist<T>& lst);
RWTValSlist<T>&
operator= (const rw_slist<T>& lst);

Calls the destructor on all elements of self and replaces them by copying
all elements of lst .

bool
operator< (const RWTValSlist<T>& lst) const;
bool
operator< (const rw_slist<T>& lst) const;

Returns true if self compares lexicographically less than lst , otherwise
returns false. Type T must have well-defined less-than semantics
(T::operator<(const T&) or equivalent).

bool
operator== (const RWTValSlist<T>& lst) const;
bool
operator== (const rw_slist<T>& lst) const;

Returns true if self compares equal to lst , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTValSlist<T>

Tools.h++ Class Reference 627

reference
operator() (size_type i);
const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type i);
const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
append (const_reference a);

Adds the item a to the end of the collection.

void
apply (void (*fn)(reference,void*), void* d);
void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have one of the prototypes:

 void yourfun(const_reference a, void* d);
 void yourfun(reference a, void* d);

Client data may be passed through parameter d.

reference
at (size_type i);
const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

iterator
begin ();
const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

Public
Member

Functions

RWTValSlist<T>

628 Tools.h++ Class Reference

bool
contains (const T& a) const;

Returns true if there exists an element t in self such that the
expression(t == a) is true , otherwise returns false .

bool
contains (bool (*fn)(const T&,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const T& a, void* d);

Client data may be passed through parameter d.

iterator
end ();
const_iterator
end () const;

Returns a past-the-end valued iterator of self.

size_type
entries () const;

Returns the number of elements in self.

bool
find (const_reference a,reference k) const;

If there exists an element t in self such that the expression (t == a) is
true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged.

bool
find
(bool (*fn)(const_reference,void*),void* d,reference k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

reference
first ();
const_reference
first () const;

Returns a reference to the first element of self.

RWTValSlist<T>

Tools.h++ Class Reference 629

T*
get ();

Removes and returns the first element in the collection. This method is
identical to removeFirst and is included to provide compatibility with
previous versions.

size_type
index (const_reference a) const;

Returns the position of the first item t in self such that (t == a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(const_reference,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
insert (const_reference a);

Adds the item a to the end of the collection. Returns true .

void
insertAt (size_type i, const T& a);

Inserts the item a in front of the item at position i in self. This position
must be between 0 and the number of entries in the collection, otherwise
the function throws an exception of type RWBoundsErr.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

T
last () const;

Returns a reference to the last item in the collection.

reference
maxElement ();
const_reference
maxElement () const;
reference
minElement ();
const_reference
minElement () const;

Returns a reference to the minimum or maximum element in the
collection. Type T must have well-defined less-than semantics
(T::operator<(const T&) or equivalent).

RWTValSlist<T>

630 Tools.h++ Class Reference

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self such that the expression
(t == a) is true .

size_type
occurrencesOf (bool (*fn)(const_reference,void*),void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
prepend (const_reference a);

Adds the item a to the beginning of the collection.

bool
remove (const_reference a);

Removes the first element t in self such that the expression (t == a) is
true and returns true . Returns false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self such that the expression (t == a) is true .
Returns the number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValSlist<T>

Tools.h++ Class Reference 631

T
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between 0 and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T
removeFirst ();

Removes and returns the first item in the collection.

T
removeLast ();

Removes and returns the first item in the collection.

size_type
replaceAll (const_reference oldVal,const_reference newVal);

Replaces all elements t in self such that the expression (t == oldVal) is
true with newVal . Returns the number of items replaced.

size_type
replaceAll (bool (*fn)(const_reference,void*),
 void* d,const_reference nv);

Replaces all elements t in self such that the expression ((*fn)(t,d)) is
true with the value nv . Returns the number of items replaced. fn points
to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

void
sort ();

Sorts the collection using the less-than operator to compare elements.

rw_slist<T>&
std ();

const rw_slist<T>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. This reference may be used freely,
providing access to the C++-standard interface as well as interoperability
with other software components that make use of the C++-standard
collections.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

Static Public
Data Member

RWTValSlist<T>

632 Tools.h++ Class Reference

RWvostream&
operator<< (RWvostream& strm, const RWTValSlist<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValSlist<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValSlist<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTValSlist<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValSlist<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTValSlist<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 633

RWTValSlistIterator<T>

#include<rw/tvslist.h>
RWTValSlist<T> dl;
RWTValSlistIterator<T> itr(dl);

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTValSlistIterator described in
Appendix A.

RWTValSlistIterator is supplied with Tools.h++ 7 to provide an iterator
interface for class RWTValSlistIterator that is backward compatible with the
container iterators provided in Tools.h++ 6.x.

The order of iteration over an RWTValSlist is dependent on the order of
insertion of the values into the container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equal to false until reset() is called.

None

#include<rw/tvslist.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTValSlist<RWCString> a;
 RWTValSlistIterator<RWCString> itr(a);

 a.insert("John");
 a.insert("Steve");
 a.insert("Mark");
 a.insert("Steve");

 for(;itr();)
 cout << itr.key() << endl;

 return 0;
}

Synopsis

Please Note!

Description

Persistence

Examples

RWTValSlistIterator<T>

634 Tools.h++ Class Reference

Program Output
John
Steve
Mark
Steve

RWTValSlistIterator<T> (RWTValSlist<T>& s);
Creates an iterator for the singly linked list s . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible

RWBoolean
operator() ();

Advances self to the next element. If the iterator has advanced past the
last element in the collection, false will be returned. Otherwise, true

will be returned.

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created, self will reference the first element. If, before iteration, self

referenced the last value in the list, self will now reference an undefined
value distinct from the reset value and false will be returned.
Otherwise, true is returned. Note: no postincrement operator is
provided.

RWBoolean
operator+= (size_type n);

Behaves as if the operator++ member function had been applied n times

RWBoolean
operator-- ();

Moves self back to the immediately previous element. If the iterator has
been reset or just created, this operator will return false , otherwise it will
return true . If self references the the first element, it will now be in the
reset state. If self has been iterated past the last value in the list, it will
now reference the last item in the list. Note: no postdecrement operator is
provided.

RWBoolean
operator-= (size_type n);

Behaves as if the operator-- member function had been applied n times

RWTValSlist<T>*
container() const;
Returns a pointer to the collection being iterated over.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTValSlistIterator<T>

Tools.h++ Class Reference 635

RWBoolean
findNext (const_reference a);

Advances self to the first element t encountered by iterating forward, such
that the expression (t == a) is true . Returns true if an element was
found, returns false otherwise.

RWBoolean
findNext (RWBoolean(*fn)(const_reference, void*), void* d);

Advances self to the first element t encountered by iterating forward such
that the expression((*fn)(t,d)) is true . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d. Returns true if an
element was found, returns false otherwise.

void
insertAfterPoint (T* p);

Inserts the pointer p into the container directly after the element referenced
by self .

T
key ();

Returns the stored value referenced by self .

RWBoolean
remove ();

Removes the value referenced by self from the collection. true is
returned if the removal is successful, false is returned otherwise.

RWBoolean
removeNext (const T);

Removes the first element t , encountered by iterating self forward, such
that the expression (t == a) is true . Returns true if an element was
found and removed, returns false otherwise.

RWBoolean
removeNext (RWBoolean(*fn)(T, void*), void* d);

Removes the first element t, encountered by iterating self forward, such
that the expression((*fn)(t,d)) is true . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T a, void* d);

Client data may be passed through parameter d. Returns true if an
element was found and removed, returns false otherwise.

RWTValSlistIterator<T>

636 Tools.h++ Class Reference

void
reset ();
void
reset (RWTValSlist<T>& l);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValSlist to reset()

will reset the iterator on the new container.

Tools.h++ Class Reference 637

RWTValSortedDlist<T,C>

#include <rw/tvsrtdli.h>
RWTValSortedDlist<T,C> srtdlist;

RWTValSortedDlist requires the Standard C++ Library.

This class maintains an always-sorted collection of values, implemented as a
doubly-linked list.

Isomorphic.

In this example, a sorted doubly-linked list of RWDates is exercised.

//
// tvsdldat.cpp
//
#include <rw/tvsrtdli.h>
#include <rw/rwdate.h>
#include <iostream.h>
#include <function.h>

main(){
 RWTValSortedDList<RWDate, less<RWDate> > lst;

 lst.insert(RWDate(10, "Aug", 1991));
 lst.insert(RWDate(9, "Aug", 1991));
 lst.insert(RWDate(1, "Sep", 1991));
 lst.insert(RWDate(14, "May", 1990));
 lst.insert(RWDate(1, "Sep", 1991)); // Add a duplicate
 lst.insert(RWDate(2, "June", 1991));

 for (int i=0; i<lst.entries(); i++)
 cout << lst[i] << endl;
 return 0;
}

Program Output:
05/14/90
06/02/91
08/09/91
08/10/91
09/01/91
09/01/91

RWTValSortedVector<T> is an alternative always-sorted collections.
RWTValDlist<T> is an unsorted doubly-linked list of values.

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Example

Related
Classes

RWTValSortedDlist<T,C>

638 Tools.h++ Class Reference

Class list<T,allocator> is the C++-standard collection that serves as the
underlying implementation for this class.

typedef list<T,allocator> container_type;
typedef container_type::const_iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;

RWTValSortedDlist<T,C> ();
Constructs an empty doubly-linked list.

RWTValSortedDlist<T,C> (const list<T,allocator>& lst);
Constructs a doubly-linked list by copying and sorting all elements of lst .

RWTValSortedDlist<T,C> (const RWTValSortedDlist<T,C>& rwlst);
Copy constructor.

RWTValSortedDlist<T,C> (size_type n, const T& val = T());
Constructs a doubly-linked list with n elements, each initialized to val .

RWTValSortedDlist<T,C> (const T* first, const T* last);
Constructs a doubly-linked list by copying and sorting elements from the
array of Ts pointed to by first , up to, but not including, the element
pointed to by last .

RWTValSortedDlist<T,C>&
operator= (const RWTValSortedDlist<T,C>& lst);
RWTValSortedDlist<T,C>&
operator= (const list<T,allocator>& lst);

Destroys all elements of self and replaces them by copying (and sorting, if
necessary) all elements of lst .

bool
operator< (const RWTValSortedDlist<T,C>& lst) const;
bool
operator< (const list<T,allocator>& lst) const;

Returns true if self compares lexicographically less than lst , otherwise
returns false . Assumes that type T has well-defined less-than semantics
(T::operator<(const T&) or equivalent).

bool
operator== (const RWTValSortedDlist<T,C>& lst) const;
bool
operator== (const list<T>& lst) const;

Returns true if self compares equal to lst , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTValSortedDlist<T,C>

Tools.h++ Class Reference 639

const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have prototype:

 void yourfun(const_reference a, void* d);

Client data may be passed through parameter d.

const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

iterator
begin ();
const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

bool
contains (const_reference a) const;

Returns true if there exists an element t in self such that the
expression(t==a) is true , otherwise returns false .

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

bool yourTester(const_reference a, void* d);

Public
Member

Functions

RWTValSortedDlist<T,C>

640 Tools.h++ Class Reference

Client data may be passed through parameter d.

iterator
end ();
const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

bool
find (const_reference a, value_type& k) const;

If there exists an element t in self such that the expression (t == a) is
true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged.

bool
find (bool (*fn)(const_reference,void*), void* d,
value_type& k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

reference
first ();
const_reference
first () const;

Returns a reference to the first element of self.

size_type
index (const_reference a) const;

Returns the position of the first item t in self such that (t == a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(const_reference,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

RWTValSortedDlist<T,C>

Tools.h++ Class Reference 641

size_type
insert (const list<T,allocator>& a);

Adds the items from a to self in an order preserving manner. Returns the
number of items inserted into self.

bool
insert (const_reference a);

Adds the item a to self. The collection remains sorted. Returns true .

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isSorted () const;

Returns true if the collection is sorted relative to the supplied comparator
object, false otherwise.

const_reference
last () const;

Returns a reference to the last item in the collection.

size_type
merge (const RWTValSortedDlist&<T,C> dl);

Inserts all elements of dl into self, preserving sorted order.

size_type
occurrencesOf (const_reference) const;

Returns the number of elements t in self such that the expression
(t == a) is true .

size_type
occurrencesOf (bool (*fn)(const_reference,void*),
 void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const_reference a);

Removes the first element t in self such that the expression (t == a) is
true and returns true . Returns false if there is no such element.

RWTValSortedDlist<T,C>

642 Tools.h++ Class Reference

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self such that the expression (t == a) is true .
Returns the number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

T
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between zero and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

T
removeFirst ();

Removes and returns the first item in the collection.

T
removeLast ();

Removes and returns the first item in the collection.

list<T,allocator>&
std ();
const list<T,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. It is your responsibility not to violate the
ordering of the elements within the collection.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

Static Public
Data Member

RWTValSortedDlist<T,C>

Tools.h++ Class Reference 643

RWvostream&
operator<< (RWvostream& strm,
 const RWTValSortedDlist<T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValSortedDlist<T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValSortedDlist<T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTValSortedDlist<T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValSortedDlist<T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTValSortedDlist<T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference 645

RWTValSortedDlistIterator<T,C>

#include<rw/tvsrtdli.h>
RWTValSortedDlist<T,C> dl;
RWTValSortedDlistIterator<T,C> itr(dl);

RWTValSortedDlistIterator requires the Standard C++ Library.

RWTValSortedDlistIterator is supplied with Tools.h++ 7 to provide an
iterator interface to RWTValSortedDlistIterator that is backward compatable
with the container iterators provided in Tools.h++ 6.x.

The order of iteration over an RWTValSortedDlist is dependent on the
supplied comparator object supplied as applied to the values stored in the
container.

The current item referenced by this iterator is undefined after construction or
after a call to reset() . The iterator becomes valid after being advanced with
either a preincrement or operator() .

For both operator++ and operator() , iterating past the last element will
return a value equivalent to boolean false . Continued increments will
return a value equivalent to false until reset() is called.

None

#include<rw/tvsrtdli.h>
#include<iostream.h>
#include<rw/cstring.h>

int main(){
 RWTValSortedDlist<RWCString, less<RWCString> > a;
 RWTValSortedDlistIterator<RWCString, less<RWCString> > itr(a);

 a.insert("John");
 a.insert("Steve");
 a.insert("Mark");
 a.insert("Steve");

 for(;itr();)
 cout << itr.key() << endl;

 return 0;
}

Synopsis

Standard C++
Library

Dependent!

Description

Persistence

Examples

RWTValSortedDlistIterator<T,C>

646 Tools.h++ Class Reference

Program Output
John
Mark
Steve
Steve

RWTValSortedDlistIterator<T,C> (RWTValSortedDlist<T,C>&s);
Creates an iterator for the sorted dlist s . The iterator begins in an
undefined state and must be advanced before the first element will be
accessible.

RWBoolean
operator() ();

Advances self to the next element. If the iterator has advanced past the
last item in the container, the element returned will be a nil pointer
equivalent to boolean false .

RWBoolean
operator++ ();

Advances self to the next element. If the iterator has been reset or just
created, self will reference the first element. If, before iteration, self
referenced the last value in the list, self will now point to an undefined
value distinct from the reset value and false will be returned.
Otherwise, true is returned. Note: no postincrement operator is
provided.

RWBoolean
operator+= (size_type n);

Behaves as if the operator++ member function had been applied n times

RWBoolean
operator-- ();

Moves self back to the immediately previous element. If the iterator has
been reset or just created, this operator will return false , otherwise it will
return true . If self references the the first element, it will now be in the
reset state. If self has been iterated past the last value in the list, it will
now point to the last item in the list. Note: no postdecrement operator is
provided.

RWBoolean
operator-= (size_type n);

Behaves as if the operator-- member function had been applied n times

RWTValSortedDlist<T,C>*
container() const;

Returns a pointer to the collection being iterated over.

Public
Constructors

Public
Member

Operators

Public
Member

Functions

RWTValSortedDlistIterator<T,C>

Tools.h++ Class Reference 647

RWBoolean
findNext (const T a);

Advances self to the first element t encountered by iterating forward,
such that the expression (t == a) is true . Returns true if such an
element if found, false otherwise.

RWBoolean
findNext (RWBoolean(*fn)(T, void*), void* d);

Advances self to the first element t encountered by iterating forward, such
that the expression((*fn)(t,d)) is true . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T a, void* d);

Client data may be passed through parameter d. Returns true if such an
element if found, false otherwise.

T
key ();

Returns the stored value referenced by self.

RWBoolean
remove ();

Removes the stored value referenced by self from the collection. Returns
true if the value was successfully removed, false otherwise.

RWBoolean
removeNext (const T);

Removes the first element t , encountered by iterating self forward, such
that the expression (t == a) is true . Returns true if such an element is
successfully removed, false otherwise.

RWBoolean
removeNext (RWBoolean(*fn)(T, void*), void* d);

Removes the first element t, encountered by iterating self forward, such
that the expression((*fn)(t,d)) is true . fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const T a, void* d);

Client data may be passed through parameter d. Returns true if such an
element is successfully removed, false otherwise.

void
reset ();
void
reset (RWTValSortedDlist<T,C>& l);

Resets the iterator so that after being advanced it will reference the first
element of the collection. Using reset() with no argument will reset the
iterator on the current container. Supplying a RWTValSortedDlist to
reset() will reset the iterator on the new container.

Tools.h++ Class Reference 649

RWTValSortedVector<T,C>

#include <rw/tvsrtvec.h>
RWTValSortedVector<T,C> srtvec;

If you have the Standard C++ Library, use the interface described here.
Otherwise, use the restricted interface to RWTValSortedVector described
in Appendix A.

This class maintains an always-sorted collection of values, implemented as a
vector.

Isomorphic

In this example, a sorted vector of RWDates is exercised.

//
// tvsvcdat.cpp
//
#include <rw/tvsrtvec.h>
#include <rw/rwdate.h>
#include <iostream.h>

main(){
 RWTValSortedVector<RWDate, less<RWDate> > vec;

 vec.insert(RWDate(10, "Aug", 1991));
 vec.insert(RWDate(9, "Aug", 1991));
 vec.insert(RWDate(1, "Sep", 1991));
 vec.insert(RWDate(14, "May", 1990));
 vec.insert(RWDate(1, "Sep", 1991)); // Add a duplicate
 vec.insert(RWDate(2, "June", 1991));

 for (int i=0; i<vec.entries(); i++)
 cout << vec[i] << endl;
 return 0;
}
Program Output:
05/14/90
06/02/91
08/09/91
08/10/91
09/01/91
09/01/91

RWTValSortedDlist<T,C> is an alternative always-sorted collection.
RWTValOrderedVector<T> is an unsorted vector of values.

Synopsis

Please Note!

Description

Persistence

Example

Related
Classes

RWTValSortedVector<T,C>

650 Tools.h++ Class Reference

Class vector<T,allocator> is the C++-standard collection that serves as the
underlying implementation for this class.

typedef vector<T,allocator> container_type;
typedef container_type::const_iterator iterator;
typedef container_type::const_iterator const_iterator;
typedef container_type::size_type size_type;
typedef T value_type;
typedef const T& reference;
typedef const T& const_reference;

RWTValSortedVector<T,C> ();
Constructs an empty vector.

RWTValSortedVector<T,C> (const vector<T,allocator>& vec);
Constructs a vector by copying and sorting all elements of vec .

RWTValSortedVector<T,C> (const RWTValSortedVector<T,C>& rwvec);
Copy constructor.

RWTValSortedVector<T,C> (size_type n, const T& val);
Constructs a vector with n elements, each initialized to val .

RWTValSortedVector<T,C> (size_type n);
Constructs an empty vector with a capacity of n elements.

RWTValSortedVector<T,C> (const T* first, const T* last);
Constructs a vector by copying and sorting elements from the array of Ts
pointed to by first , up to, but not including, the element pointed to by
last .

bool
operator< (const RWTValSortedVector<T,C>& vec) const;
bool
operator< (const vector<T,allocator>& vec) const;

Returns true if self compares lexicographically less than vec , otherwise
returns false . Assumes that type T has well-defined less-than semantics
(T::operator<(const T&) or equivalent).

bool
operator== (const RWTValSortedVector<T,C>& vec) const;
bool
operator== (const vector<T,allocator>& vec) const;

Returns true if self compares equal to vec , otherwise returns false . Two
collections are equal if both have the same number of entries, and iterating
through both collections produces, in turn, individual elements that
compare equal to each other.

Public
Typedefs

Public
Constructors

Public
Member

Operators

RWTValSortedVector<T,C>

Tools.h++ Class Reference 651

reference
operator() (size_type i);
const_reference
operator() (size_type i) const;

Returns a reference to the i th element of self. Index i should be between 0
and one less then the number of entries, otherwise the results are
undefined—no bounds checking is performed.

reference
operator[] (size_type i);
const_reference
operator[] (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

void
apply (void (*fn)(const_reference,void*), void* d) const;

Applies the user-defined function pointed to by fn to every item in the
collection. This function must have the prototype:

 void yourfun(const_reference a, void* d);

Client data may be passed through parameter d.

reference
at (size_type i);
const_reference
at (size_type i) const;

Returns a reference to the i th element of self. Index i must be between 0
and one less then the number of entries in self, otherwise the function
throws an exception of type RWBoundsErr.

iterator
begin ();
const_iterator
begin () const;

Returns an iterator positioned at the first element of self.

void
clear ();

Clears the collection by removing all items from self. Each item will have
its destructor called.

bool
contains (const_reference a) const;

Returns true if there exists an element t in self such that the
expression(t==a) is true , otherwise returns false .

Public
Member

Functions

RWTValSortedVector<T,C>

652 Tools.h++ Class Reference

bool
contains (bool (*fn)(const_reference,void*), void* d) const;

Returns true if there exists an element t in self such that the expression
((*fn)(t,d)) is true , otherwise returns false . fn points to a user-
defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

const T*
data ();

Returns a pointer to the first element of the vector.

iterator
end ();
const_iterator
end () const;

Returns an iterator positioned “just past” the last element in self.

size_type
entries () const;

Returns the number of items in self.

bool
find (const_reference a, value_type& k) const;

If there exists an element t in self such that the expression (t == a) is
true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged.

bool
find (bool (*fn)(const_reference,void*), void* d,
 value_type& k) const;

If there exists an element t in self such that the expression ((*fn)(t,d))

is true , assigns t to k and returns true . Otherwise, returns false and
leaves the value of k unchanged. fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

reference
first ();
const_reference
first () const;

Returns a reference to the first element of self.

RWTValSortedVector<T,C>

Tools.h++ Class Reference 653

size_type
index (const_reference a) const;

Returns the position of the first item t in self such that (t == a) , or
returns the static member npos if no such item exists.

size_type
index (bool (*fn)(const_reference,void*), void* d) const;

Returns the position of the first item t in self such that((*fn)(t,d)) is
true , or returns the static member npos if no such item exists. fn points to
a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
insert (const_reference a);

Adds the item a to self. The collection remains sorted. Returns true .

size_type
insert (const vector<T,allocator>& a);

Inserts all elements of a into self. The collection remains sorted. Returns
the number of items inserted.

bool
isEmpty () const;

Returns true if there are no items in the collection, false otherwise.

bool
isSorted () const;

Returns true if the collection is sorted relative to the supplied comparator
object, false otherwise.

const_reference
last () const;

Returns a reference to the last item in the collection.

size_type
length () const;

Returns the maximum number of elements which can be stored in self
without first resizing.

size_type
merge (const RWTValSortedVector<T,C>& dl);

Inserts all elements of dl into self, preserving sorted order.

size_type
occurrencesOf (const_reference a) const;

Returns the number of elements t in self such that the expression
(t == a) is true .

RWTValSortedVector<T,C>

654 Tools.h++ Class Reference

size_type
occurrencesOf (bool (*fn)(const_reference,void*),
 void* d) const;

Returns the number of elements t in self such that the
expression((*fn)(t,d)) is true . fn points to a user-defined tester
function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

bool
remove (const_reference a);

Removes the first element t in self such that the expression (t == a) is
true and returns true . Returns false if there is no such element.

bool
remove (bool (*fn)(const_reference,void*), void* d);

Removes the first element t in self such that the expression ((*fn)(t,d))

is true and returns true . Returns false if there is no such element. fn
points to a user-defined tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

size_type
removeAll (const_reference a);

Removes all elements t in self such that the expression (t == a) is true .
Returns the number of items removed.

size_type
removeAll (bool (*fn)(const_reference,void*), void* d);

Removes all elements t in self such that the expression ((*fn)(t,d)) is
true . Returns the number of items removed. fn points to a user-defined
tester function which must have prototype:

 bool yourTester(const_reference a, void* d);

Client data may be passed through parameter d.

value_type
removeAt (size_type i);

Removes and returns the item at position i in self. This position must be
between zero and one less then the number of entries in the collection,
otherwise the function throws an exception of type RWBoundsErr.

value_type
removeFirst ();

Removes and returns the first item in the collection.

RWTValSortedVector<T,C>

Tools.h++ Class Reference 655

value_type
removeLast ();

Removes and returns the first item in the collection.

void
resize (size_type n);

Modify, if necessary, the capacity of the vector to be at least as large as n.

vector<T,allocator>&
std ();
const vector<T,allocator>&
std () const;

Returns a reference to the underlying C++-standard collection that serves
as the implementation for self. It is your responsibility not to violate the
ordering of the elements within the collection.

const size_type npos;
This is the value returned by member functions such as index to indicate a
non-position. The value is equal to ~(size_type)0 .

RWvostream&
operator<< (RWvostream& strm,
 const RWTValSortedVector<T,C>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValSortedVector<T,C>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValSortedVector<T,C>& coll);
RWFile&
operator>> (RWFile& strm, RWTValSortedVector<T,C>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValSortedVector<T,C>*& p);
RWFile&
operator>> (RWFile& strm, RWTValSortedVector<T,C>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Static Public
Data Member

Related
Global

Operators

Tools.h++ Class Reference 657

RWTValVector<T>

#include <rw/tvvector.h>
RWTValVector<T> vec;

Class RWTValVector<T> is a simple parameterized vector of objects of type
T. It is most useful when you know precisely how many objects have to be
held in the collection. If the intention is to “insert” an unknown number of
objects into a collection, then class RWTValOrderedVector<T> may be a
better choice.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or
equiv.);

• a default constructor.

Isomorphic

#include <rw/tvvector.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {
 RWTValVector<RWDate> week(7);

 RWDate begin; // Today's date

 for (int i=0; i<7; i++)
 week[i] = begin++;

 for (i=0; i<7; i++)
 cout << week[i] << endl;

 return 0;
}
Program output:

March 16, 1996
March 17, 1996
March 18, 1996
March 19, 1996
March 20, 1996
March 21, 1996
March 22, 1996

Synopsis

Descripton

Persistence

Example

RWTValVector<T>

658 Tools.h++ Class Reference

RWTValVector<T> ();
Constructs an empty vector of length zero.

RWTValVector <T>(size_t n);
Constructs a vector of length n. The values of the elements will be set by
the default constructor of class T. For a built in type this can (and probably
will) be garbage.

RWTValVector<T> (size_t n, const T& ival);
Constructs a vector of length n, with each element initialized to the value
ival .

RWTValVector<T> (const RWTValVector& v);
Constructs self as a copy of v . Each element in v will be copied into self.

~RWTValVector<T> ();
Calls the destructor for every element in self.

RWTValVector<T>&
operator= (const RWTValVector<T>& v);

Sets self to the same length as v and then copies all elements of v into self.

RWTValVector<T>&
operator= (const T& ival);

Sets all elements in self to the value ival .

const T&
operator() (size_t i) const;
T&
operator() (size_t i);

Returns a reference to the i th value in the vector. The index i must be
between 0 and the length of the vector less one. No bounds checking is
performed.

const T&
operator[] (size_t i) const;
T&
operator[] (size_t i);

Returns a reference to the i th value in the vector. The index i must be
between 0 and the length of the vector less one. Bounds checking will be
performed.

const T*
data () const;

Returns a pointer to the raw data of self. Should be used with care.

size_t
length () const;

Returns the length of the vector.

Public
Constructors

Public
Operators

Public
Member

Functions

RWTValVector<T>

Tools.h++ Class Reference 659

void
reshape (size_t N);

Changes the length of the vector to N. If this results in the vector being
lengthened, then the initial value of the additional elements is set by the
default constructor of T.

Tools.h++ Class Reference 661

RWTValVirtualArray<T>

#include <rw/tvrtarry.h>
RWVirtualPageHeap* heap;
RWTValVirtualArray<T> array(1000L, heap);

This class represents a virtual array of elements of type T of almost any
length. Individual elements are brought into physical memory as needed
basis. If an element is updated it is automatically marked as “dirty” and will
be rewritten to the swapping medium.

The swap space is provided by an abstract page heap which is specified by
the constructor. Any number of virtual arrays can use the same abstract
page heap. You must take care that the destructor of the abstract page heap is not
called before all virtual arrays built from it have been destroyed.

The class supports reference counting using a copy-on-write technique, so
(for example) returning a virtual array by value from a function is as efficient
as it can be. Be aware, however, that if the copy-on-write machinery finds
that a copy must ultimately be made, then for large arrays this could take
quite a bit of time.

For efficiency, more than one element can (and should) be put on a page.
The actual number of elements is equal to the page size divided by the
element size, rounded downwards. Example: for a page size of 512 bytes,
and an element size of 8, then 64 elements would be put on a page.

The indexing operator (operator[](long)) actually returns an object of
type RWTVirtualElement<T>. Consider this example:

double d = vec[j];
vec[i] = 22.0;

Assume that vec is of type RWTValVirtualArray<double>. The expression
vec[j] will return an object of type RWTVirtualElement<double>, which
will contain a reference to the element being addressed. In the first line, this
expression is being used to initialize a double . The class
RWTVirtualElement<T> contains a type conversion operator to convert itself
to a T, in this case a double. The compiler uses this to initialize d in the first
line. In the second line, the expression vec[i] is being used as an lvalue. In
this case, the compiler uses the assignment operator for
RWTVirtualElement<T>. This assignment operator recognizes that the
expression is being used as an lvalue and automatically marks the

Synopsis

Description

RWTValVirtualArray<T>

662 Tools.h++ Class Reference

appropriate page as “dirty,” thus guaranteeing that it will be written back
out to the swapping medium.

Slices, as well as individual elements, can also be addressed. These should
be used wherever possible as they are much more efficient because they
allow a page to be locked and used multiple times before unlocking.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or
equiv.).

In addition, you must never take the address of an element.

None

In this example, a virtual vector of objects of type ErsatzInt is exercised. A
disk-based page heap is used for swapping space.

#include <rw/tvrtarry.h>
#include <rw/rstream.h>
#include <rw/diskpage.h>
#include <stdlib.h>
#include <stdio.h>

struct ErsatzInt {
 char buf[8];
 ErsatzInt(int i) { sprintf(buf, "%d", i); }
 friend ostream& operator<<(ostream& str, ErsatzInt& i)
 { str << atoi(i.buf); return str; }
};

main() {
 RWDiskPageHeap heap;
 RWTValVirtualArray<ErsatzInt> vec1(10000L, &heap);

 for (long i=0; i<10000L; i++)
 vec1[i] = i; // Some compilers may need a cast here

 cout << vec1[100] << endl; // Prints "100"
 cout << vec1[300] << endl; // Prints "300"

 RWTValVirtualArray<ErsatzInt> vec2 = vec1.slice(5000L, 500L);
 cout << vec2.length() << endl; // Prints "500"
 cout << vec2[0] << endl; // Prints "5000";

 return 0;
}
Program output:

100
300
500
5000

Persistence

Example

RWTValVirtualArray<T>

Tools.h++ Class Reference 663

RWTValVirtualArray<T> (long size, RWVirtualPageHeap* heap);
Construct a vector of length size . The pages for the vector will be
allocated from the page heap given by heap which can be of any type.

RWTValVirtualArray<T> (const RWTValVirtualArray<T>& v);
Constructs a vector as a copy of v . The resultant vector will use the same
heap and have the same length as v . The actual copy will not be made
until a write, minimizing the amount of heap allocations and copying that
must be done.

RWTValVirtualArray<T> (const RWTVirtualSlice<T>& sl);
Constructs a vector from a slice of another vector. The resultant vector will
use the same heap as the vector whose slice is being taken. Its length will
be given by the length of the slice. The copy will be made immediately.

~RWTValVirtualArray<T> ();
Releases all pages allocated by the vector.

RWTValVirtualArray&
operator= (const RWTValVirtualArray<T>& v);

Sets self to a copy of v . The resultant vector will use the same heap and
have the same length as v . The actual copy will not be made until a write,
minimizing the amount of heap allocations and copying that must be
done.

void
operator= (const RWTVirtualSlice<T>& sl);

Sets self equal to a slice of another vector. The resultant vector will use the
same heap as the vector whose slice is being taken. Its length will be given
by the length of the slice. The copy will be made immediately.

T
operator= (const T& val);

Sets all elements in self equal to val . This operator is actually quite
efficient because it can work with many elements on a single page at once.
A copy of val is returned.

T
operator[] (long i) const;

Returns a copy of the value at index i . The index i must be between zero
and the length of the vector less one or an exception of type
TOOL_LONGINDEX will occur.

Public
Constructors

Public
Destructor

Public
Operators

RWTValVirtualArray<T>

664 Tools.h++ Class Reference

RWTVirtualElement<T>
operator[] (long);

Returns a reference to the value at index i . The results can be used as an
lvalue. The index i must be between zero and the length of the vector less
one or an exception of type TOOL_LONGINDEX will occur.

long
length () const;

Returns the length of the vector.

T
val (long i) const;

Returns a copy of the value at index i . The index i must be between zero
and the length of the vector less one or an exception of type
TOOL_LONGINDEX will occur.

void
set (long i, const T& v);

Sets the value at the index i to v . The index i must be between zero and
the length of the vector less one or an exception of type TOOL_LONGINDEX

will occur.

RWTVirtualSlice<T>
slice (long start, long length);

Returns a reference to a slice of self. The value start is the starting index
of the slice, the value length its extent. The results can be used as an
lvalue.

void
reshape (long newLength);

Change the length of the vector to newLength . If this results in the vector
being lengthened then the value of the new elements is undefined.

RWVirtualPageHeap*
heap () const;

Returns a pointer to the heap from which the vector is getting its pages.

Public
Member

Functions

Tools.h++ Class Reference 665

RWVirtualPageHeap

#include <rw/vpage.h>
(Abstract base class)

This is an abstract base class representing an abstract page heap of fixed
sized pages. The following describes the model by which specializing
classes of this class are expected to work.

You allocate a page off the abstract heap by calling member function
allocate() which will return a memory “handle,” an object of type
RWHandle. This handle logically represents the page.

In order to use the page it must first be “locked” by calling member function
lock() with the handle as an argument. It is the job of the specializing class
of RWVirtualPageHeap to make whatever arrangements are necessary to
swap in the page associated with the handle and bring it into physical
memory. The actual swapping medium could be disk, expanded or
extended memory, or a machine someplace on a network. Upon return,
lock() returns a pointer to the page, now residing in memory.

Once a page is in memory, you are free to do anything you want with it
although if you change the contents, you must call member function
dirty() before unlocking the page.

Locked pages use up memory. In fact, some specializing classes may have
only a fixed number of buffers in which to do their swapping. If you are not
using the page, you should call unlock() . After calling unlock() the
original address returned by lock() is no longer valid — to use the page
again, it must be locked again with lock() .

When you are completely done with the page then call deallocate() to
return it to the abstract heap.

In practice, managing this locking and unlocking and the inevitable type
casts can be difficult. It is usually easier to design a class that can work with
an abstract heap to bring things in and out of memory automatically.
Indeed, this is what has been done with class RWTValVirtualArray<T>,
which represents a virtual array of elements of type T. Elements are
automatically swapped in as necessary as they are addressed.

None

This example illustrates adding N nodes to a linked list. In this linked list, a
“pointer” to the next node is actually a handle.

Synopsis

Description

Persistence

Example

RWVirtualPageHeap

666 Tools.h++ Class Reference

#include <rw/vpage.h>
struct Node {
 int key;
 RWHandle next;
};
RWHandle head = 0;
void addNodes(RWVirtualPageHeap& heap, unsigned N) {
 for (unsigned i=0; i<N; i++){
 RWHandle h = heap.allocate();
 Node* newNode = (Node*)heap.lock(h);
 newNode->key = i;
 newNode->next = head;
 head = h;
 heap.dirty(h);
 heap.unlock(h);
 }
}

RWVirtualPageHeap(unsigned pgsize);
Sets the size of a page.

virtual ~RWVirtualPageHeap();
The destructor has been made virtual to give specializing classes a chance
to deallocate any resources that they may have allocated.

unsigned
pageSize () const;

Returns the page size for this abstract page heap.

virtual RWHandle
allocate () = 0

Allocates a page off the abstract heap and returns a handle for it. If the
specializing class is unable to honor the request, then it should return a
zero handle.

virtual void
deallocate (RWHandle h) = 0;

Deallocate the page associated with handle h. It is not an error to
deallocate a zero handle.

virtual void
dirty (RWHandle h) = 0;

Declare the page associated with handle h to be “dirty.” That is, it has
changed since it was last locked. The page must be locked before calling
this function.

Public
Constructor

Public
Destructor

Public
Member

Functions

Public Pure
Virtual

Functions

RWVirtualPageHeap

Tools.h++ Class Reference 667

virtual void*
lock (RWHandle h) = 0;

Lock the page, swapping it into physical memory, and return an address
for it. A nil pointer will be returned if the specializing class is unable to
honor the lock. The returned pointer should be regarded as pointing to a
buffer of the page size.

virtual void
unlock (RWHandle h) = 0;

Unlock a page. A page must be locked before calling this function. After
calling this function the address returned by lock() is no longer valid.

Tools.h++ Class Reference 669

RWvios

#include <vstream.h>

(abstract base class)

RWvios is an abstract base class. It defines an interface similar to the C++
streams class ios. However, unlike ios, it offers the advantage of not
necessarily being associated with a streambuf.

This is useful for classes that cannot use a streambuf in their
implementation. An example of such a class is RWXDRistream, where the
XDR model does not permit streambuf functionality.

Specializing classes that do use streambufs in their implementation (e.g.,
RWpistream) can usually just return the corresponding ios function.

None

virtual int
eof () = 0;

Returns a nonzero integer if an EOF has been encountered.

virtual int
fail () = 0;

Returns a nonzero integer if the fail or bad bit has been set. Normally, this
indicates that some storage or retrieval has failed but that the stream is still
in a usable state.

virtual int
bad () = 0;

Returns a nonzero integer if the bad bit has been set. Normally this
indicates that a severe error has occurred from which recovery is probably
impossible.

virtual int
good () = 0;

Returns a nonzero integer if no error bits have been set.

virtual int
rdstate () = 0;

Returns the current error state.

virtual void
clear (int v=0) = 0;

Sets the current error state to v . If v is zero, then this clears the error state.

Synopsis

Description

Persistence

Public
Member

Functions

RWvios

670 Tools.h++ Class Reference

operator void* ();
If fail() then return 0 else return self .

Tools.h++ Class Reference 671

RWvistream

RWvistream RWvios

#include <rw/vstream.h>

Class RWvistream is an abstract base class. It provides an interface for
format-independent retrieval of fundamental types and arrays of
fundamental types. Its counterpart, RWvostream, provides a
complementary interface for the storage of the fundamental types.

Because the interface of RWvistream and RWvostream is independent of
formatting, the user of these classes need not be concerned with how
variables will actually be stored or restored. That will be up to the derived
class to decide. It might be done using an operating-system independent
ASCII format (classes RWpistream and RWpostream), a binary format
(classes RWbistream and RWbostream), or the user could define his or her
own format (e.g., an interface to a network). Note that because it is an
abstract base class, there is no way to actually enforce these goals — the
description here is merely the model of how a class derived from
RWvistream and RWvostream should act.

See class RWvostream for additional explanations and examples of format-
independent stream storage.

None

#include <rw/vstream.h>
void restoreStuff(RWvistream& str) {
 int i;
 double d;
 char string[80];
 str >> i; // Restore an int
 str >> d; // Restore a double
 // Restore a character string, up to 80 characters long:
 str.getString(string, sizeof(string));

 if(str.fail()) cerr << “Oh, oh, bad news.\n”;
}

virtual ~RWvistream ();
This virtual destructor allows specializing classes to deallocate any
resources that they may have allocated.

virtual RWvistream&
operator>> (char& c) = 0;

Get the next char from the input stream and store it in c .

Synopsis

Description

Persistence

Example

Public
Destructor

Public
Operators

RWvistream

672 Tools.h++ Class Reference

virtual RWvistream&
operator>> (wchar_t& wc) = 0;

Get the next wchar_t from the input stream and store it in wc.

virtual RWvistream&
operator>> (double& d) = 0;

Get the next double from the input stream and store it in d.

virtual RWvistream&
operator>> (float& f) = 0;

Get the next float from the input stream and store it in f .

virtual RWvistream&
operator>> (int& i) = 0;

Get the next int from the input stream and store it in i .

virtual RWvistream&
operator>> (long& l) = 0;

Get the next long from the input stream and store it in l .

virtual RWvistream&
operator>> (short& s) = 0;

Get the next short from the input stream and store it in s .

virtual RWvistream&
operator>> (unsigned char& c) = 0;

Get the next unsigned char from the input stream and store it in c .

virtual RWvistream&
operator>> (unsigned short& s) = 0;

Get the next unsigned short from the input stream and store it in s .

virtual RWvistream&
operator>> (unsigned int& i) = 0;

Get the next unsigned int from the input stream and store it in i .

virtual RWvistream&
operator>> (unsigned long& l) = 0;

Get the next unsigned long from the input stream and store it in l .

operator void* ();

Inherited from RWvios.

virtual int
get () = 0;

Get and return the next byte from the input stream, returning its value.
Returns EOF if end of file is encountered.

virtual RWvistream&
get (char& c) = 0;

Get the next char from the input stream, returning its value in c .

Public
Member

Functions

RWvistream

Tools.h++ Class Reference 673

virtual RWvistream&
get (wchar_t& wc) = 0;

Get the next wchar_t from the input stream, returning its value in wc.

virtual RWvistream&
get (unsigned char& c) = 0;

Get the next unsigned char from the input stream, returning its value in c .

virtual RWvistream&
get (char* v, size_t N) = 0;

Get a vector of char s and store them in the array beginning at v . If the
restore operation stops prematurely because there are no more data
available on the stream, because an exception is thrown, or for some other
reason, get stores what has already been retrieved from the stream into v ,
and sets the failbit. Note that get retrieves raw characters and does not
perform any conversions on speical characters such as “\n ”.

virtual RWvistream&
get (wchar_t* v, size_t N) = 0;

Get a vector of wide characterss and store them in the array beginning at v .
If the restore operation stops prematurely because there are no more data
available on the stream, because an exception is thrown, or for some other
reason, get stores what has already been retrieved from the stream into v ,
and sets the failbit. Note that get retrieves raw characters and does not
perform any conversions on speical characters such as “\n ”.

virtual RWvistream&
get (double* v, size_t N) = 0;

Get a vector of N double s and store them in the array beginning at v . If the
restore operation stops prematurely because there are no more data
available on the stream, because an exception is thrown, or for some other
reason, get stores what has already been retrieved from the stream into v ,
and sets the failbit.

virtual RWvistream&
get (float* v, size_t N) = 0;

Get a vector of N float s and store them in the array beginning at v . If the
restore operation stops prematurely because there are no more data
available on the stream, because an exception is thrown, or for some other
reason, get stores what has already been retrieved from the stream into v ,
and sets the failbit.

virtual RWvistream&
get (int* v, size_t N) = 0;

Get a vector of N int s and store them in the array beginning at v . If the
restore operation stops prematurely because there are no more data
available on the stream, because an exception is thrown, or for some other

RWvistream

674 Tools.h++ Class Reference

reason, get stores what has already been retrieved from the stream into v ,
and sets the failbit.

virtual RWvistream&
get (long* v, size_t N) = 0;

Get a vector of N long s and store them in the array beginning at v . If the
restore operation stops prematurely because there are no more data
available on the stream, because an exception is thrown, or for some other
reason,get stores what has already been retrieved from the stream into v ,
and sets the failbit.

virtual RWvistream&
get (short* v, size_t N) = 0;

Get a vector of N short s and store them in the array beginning at v . If the
restore operation stops prematurely because there are no more data
available on the stream, because an exception is thrown, or for some other
reason,get stores what has already been retrieved from the stream into v ,
and sets the failbit.

virtual RWvistream&
get (unsigned char* v, size_t N) = 0;

Get a vector of N unsigned char s and store them in the array beginning at
v . If the restore operation stops prematurely because there are no more
data available on the stream, because an exception is thrown, or for some
other reason, get stores what has already been retrieved from the stream
into v , and sets the failbit. Note that this member preserves ASCII
numerical codes, not their corresponding character values. If you wish to
restore a character string, use the function getString(char*, size_t).

virtual RWvistream&
get (unsigned short* v, size_t N) = 0;

Get a vector of N unsigned short s and store them in the array beginning
at v . If the restore operation stops prematurely because there are no more
data available on the stream, because an exception is thrown, or for some
other reason, get stores what has already been retrieved from the stream
into v , and sets the failbit.

virtual RWvistream&
get (unsigned int* v, size_t N) = 0;

Get a vector of N unsigned int s and store them in the array beginning at
v . If the restore operation stops prematurely because there are no more
data available on the stream, because an exception is thrown, or for some
other reason, get stores what has already been retrieved from the stream
into v , and sets the failbit.

RWvistream

Tools.h++ Class Reference 675

virtual RWvistream&
get (unsigned long* v, size_t N) = 0;

Get a vector of N unsigned long s and store them in the array beginning
at v . If the restore operation stops prematurely because there are no more
data available on the stream, because an exception is thrown, or for some
other reason, get stores what has already been retrieved from the stream
into v , and sets the failbit.

virtual RWvistream&
getString (char* s, size_t N) = 0;

Restores a character string from the input stream that was stored to the
output stream with RWvostream::putstring and stores it in the array
beginning at s . The function stops reading at the end of the string or after
N-1 characters, whichever comes first. If N-1 characters have been read
and the Nth character is not the string terminator, then the failbit of the
stream will be set. In either case, the string will be terminated with a null
byte.

virtual RWvistream&
getString (wchar_t* ws, size_t N) = 0;

Restores a wide character string from the input stream that was stored to
the output stream with RWvostream::putstring and stores it in the array
beginning at ws. The function stops reading at the end of the string or after
N-1 characters, whichever comes first. If N-1 characters have been read
and the Nth character is not the string terminator, then the failbit of the
stream will be set. In either case, the string will be terminated with a null
byte.

Tools.h++ Class Reference 677

RWvostream

RWvostream RWvios

#include <rw/vstream.h>

Class RWvostream is an abstract base class. It provides an interface for
format-independent storage of fundamental types and arrays of
fundamental types. Its counterpart, RWvistream, provides a
complementary interface for the retrieval of variables of the fundamental
types.

Because the interface of RWvistream and RWvostream is independent of
formatting, the user of these classes need not be concerned with how
variables will actually be stored or restored. That will be up to the derived
class to decide. It might be done using an operating-system independent
ASCII format (classes RWpistream and RWpostream), a binary format
(classes RWbistream and RWbostream), or the user could define his or her
own format (e.g., an interface to a network). Note that because it is an
abstract base class, there is no way to actually enforce these goals — the
description here is merely the model of how a class derived from
RWvistream and RWvostream should act.

Note that there is no need to separate variables with whitespace. It is the
responsibility of the derived class to delineate variables with whitespace,
packet breaks, or whatever might be appropriate for the final output sink.
The model is one where variables are inserted into the output stream, either
individually or as homogeneous vectors, to be restored in the same order
using RWvistream.

Storage and retrieval of characters requires some explanation. Characters
can be thought of as either representing some alphanumeric or control
character, or as the literal number. Generally, the overloaded insertion (<<)
and extraction (>>) operators seek to store and restore characters preserving
their symbolic meaning. That is, storage of a newline should be restored as a
newline, regardless of its representation on the target machine. By contrast,
member functions get() and put() should treat the character as a literal
number, whose value is to be preserved. See also class RWpostream.

None

#include <rw/vstream.h>
void storeStuff(RWvostream& str) {
 int i = 5;
 double d = 22.5;

Synopsis

Description

Persistence

Example

RWvostream

678 Tools.h++ Class Reference

 char string[] = “A string with \t tabs and a newline\n”;
 str << i; // Store an int
 str << d; // Store a double
 str << string; // Store a string

 if(str.fail()) cerr << “Oh, oh, bad news.\n”;
}

virtual ~RWvostream() ;
This virtual destructor allows specializing classes to deallocate any
resources that they may have allocated.

virtual RWvostream&
operator<< (const char* s) = 0;

Store the character string starting at s to the output stream. The character
string is expected to be null terminated.

virtual RWvostream&
operator<< (const wchar_t* ws) = 0;

Store the wide character string starting at ws to the output stream. The
character string is expected to be null terminated.

virtual RWvostream&
operator<< (char c) = 0;

Store the char c to the output stream. Note that c is treated as a character,
not a number.

virtual RWvostream&
operator<< (wchar_t wc) = 0;

Store the wchar_t wc to the output stream. Note that wc is treated as a
character, not a number.

virtual RWvostream&
operator<< (unsigned char c) = 0;

Store the unsigned char c to the output stream. Note that c is treated as a
character, not a number.

virtual RWvostream&
operator<< (double d) = 0;

Store the double d to the output stream.

virtual RWvostream&
operator<< (float f) = 0;

Store the float f to the output stream.

virtual RWvostream&
operator<< (int i) = 0;

Store the int i to the output stream.

Public
Destructor

Public
Operators

RWvistream

Tools.h++ Class Reference 679

virtual RWvostream&
operator<< (unsigned int i) = 0;

Store the unsigned int i to the output stream.

virtual RWvostream&
operator<< (long l) = 0;

Store the long l to the output stream.

virtual RWvostream&
operator<< (unsigned long l) = 0;

Store the unsigned long l to the output stream.

virtual RWvostream&
operator<< (short s) = 0;

Store the short s to the output stream.

virtual RWvostream&
operator<< (unsigned short s) = 0;

Store the unsigned short s to the output stream.

operator void* ();

Inherited from RWvios.

virtual RWvostream&
flush ();

Send the contents of the stream buffer to output immediately.

virtual RWvostream&
put (char c) = 0;

Store the char c to the output stream, preserving its value.

virtual RWvostream&
put (wchar_t wc) = 0;

Store the wchar_t wc to the output stream, preserving its value.

virtual RWvostream&
put (unsigned char c) = 0;

Store the char c to the output stream, preserving its value.

virtual RWvostream&
put (const char* p, size_t N) = 0;

Store the vector of N char s starting at p to the output stream. The chars
should be treated as literal numbers (i.e., not as a character string).

virtual RWvostream&
put (const wchar_t* p, size_t N) = 0;

Store the vector of N wchar_t s starting at p to the output stream. The chars
should be treated as literal numbers (i.e., not as a character string).

Public
Member

Functions

RWvostream

680 Tools.h++ Class Reference

virtual RWvostream&
put (const unsigned char* p, size_t N) = 0;

Store the vector of N unsigned char s starting at p to the output stream.
The chars should be treated as literal numbers (i.e., not as a character
string).

virtual RWvostream&
put (const short* p, size_t N) = 0;

Store the vector of N short s starting at p to the output stream.

virtual RWvostream&
put (const unsigned short* p, size_t N) = 0;

Store the vector of N unsigned short s starting at p to the output stream.

virtual RWvostream&
put (const int* p, size_t N) = 0;

Store the vector of N int s starting at p to the output stream.

virtual RWvostream&
put (const unsigned int* p, size_t N) = 0;

Store the vector of N unsigned int s starting at p to the output stream.

virtual RWvostream&
put (const long* p, size_t N) = 0;

Store the vector of N long s starting at p to the output stream.

virtual RWvostream&
put (const unsigned long* p, size_t N) = 0;

Store the vector of N unsigned long s starting at p to the output stream.

virtual RWvostream&
put (const float* p, size_t N) = 0;

Store the vector of N float s starting at p to the output stream.

virtual RWvostream&
put (const double* p, size_t N) = 0;

Store the vector of N double s starting at p to the output stream.

virtual RWvostream&
putString (const char*s, size_t N);

Store the character string, including embedded nulls, starting at s to the
output string.

Tools.h++ Class Reference 681

RWWString

#include <rw/wstring.h>
RWWString a;

Class RWWString offers very powerful and convenient facilities for
manipulating wide character strings.

This string class manipulates wide characters of the fundamental type
wchar_t . These characters are generally two or four bytes, and can be used
to encode richer code sets than the classic “char ” type. Because wchar_t

characters are all the same size, indexing is fast.

Conversion to and from multibyte and ASCII forms are provided by the
RWWString constructors, and by the RWWString member functions
isAscii() , toAscii() , and toMultiByte() .

Stream operations implicitly translate to and from the multibyte stream
representation. That is, on output, wide character strings are converted into
multibyte strings, while on input they are converted back into wide
character strings. Hence, the external representation of wide character
strings is usually as multibyte character strings, saving storage space and
making interfaces with devices (which usually expect multibyte strings)
easier.

RWWStrings tolerate embedded nulls.

Parameters of type “const wchar_t* ” must not be passed a value of zero.
This is detected in the debug version of the library.

The class is implemented using a technique called copy on write. With this
technique, the copy constructor and assignment operators still reference the
old object and hence are very fast. An actual copy is made only when a
“write” is performed, that is if the object is about to be changed. The net
result is excellent performance, but with easy-to-understand copy semantics.

A separate RWWSubString class supports substring extraction and
modification operations.

Simple

#include <rw/rstream.h>
#include <rw/wstring.h>

main(){
 RWWString a(L”There is no joy in Beantown”);
 a.subString(L”Beantown”) = L”Redmond”;

Synopsis

Description

Persistence

Example

RWWString

682 Tools.h++ Class Reference

 cout << a << endl;
 return 0;
}

Program output:

There is no joy in Redmond.

enum RWWString::caseCompare { exact, ignoreCase };
Used to specify whether comparisons, searches, and hashing functions
should use case sensitive (exact) or case-insensitive (ignoreCase)
semantics..

enum RWWString::multiByte_ { multiByte };
Allow conversion from multibyte character strings to wide character
strings. See constructor below.

enum RWWString::ascii_ {ascii };
Allow conversion from ASCII character strings to wide character strings.
See constructor below.

RWWString ();
Creates a string of length zero (the null string).

RWWString (const wchar_t* cs);
Creates a string from the wide character string cs . The created string will
copy the data pointed to by cs , up to the first terminating null.

RWWString (const wchar_t* cs, size_t N);
Constructs a string from the character string cs . The created string will
copy the data pointed to by cs . Exactly N characters are copied, including
any embedded nulls. Hence, the buffer pointed to by cs must be at least N*

sizeof(wchar_t) bytes or N wide characters long.

RWWString (RWSize_T ic);
Creates a string of length zero (the null string). The string’s capacity (that
is, the size it can grow to without resizing) is given by the parameter ic .

RWWString (const RWWString& str);
Copy constructor. The created string will copy str ’s data.

RWWString (const RWWSubString& ss);
Conversion from sub-string. The created string will copy the substring
represented by ss .

RWWString (char c);
Constructs a string containing the single character c .

Enumerations

Public
Constructors

RWWString

Tools.h++ Class Reference 683

RWWString (char c, size_t N);
Constructs a string containing the character c repeated N times.

RWWString (const char* mbcs, multiByte_ mb);
Construct a wide character string from the multibyte character string
contained in mbcs. The conversion is done using the Standard C library
function ::mbstowcs() . This constructor can be used as follows:

RWWString a(“\306\374\315\313\306\374”, multiByte);

RWWString (const char* acs, ascii_ asc);
Construct a wide character string from the ASCII character string
contained in acs . The conversion is done by simply stripping the high-
order bit and, hence, is much faster than the more general constructor
given immediately above. For this conversion to be successful, you must
be certain that the string contains only ASCII characters. This can be
confirmed (if necessary) using RWCString::isAscii() . This constructor
can be used as follows:

 RWWString a(“An ASCII character string”, ascii);

 RWWString(const char* cs, size_t N, multiByte_ mb);
 RWWString(const char* cs, size_t N, ascii__ asc);

These two constructors are similar to the two constructors immediately
above except that they copy exactly N characters, including any embedded
nulls. Hence, the buffer pointed to by cs must be at least N bytes long.

operator
const wchar_t* () const;

Access to the RWWString’s data as a null terminated wide string. This
datum is owned by the RWWString and may not be deleted or changed. If
the RWWString object itself changes or goes out of scope, the pointer
value previously returned will become invalid. While the string is null-
terminated, note that its length is still given by the member function
length() . That is, it may contain embedded nulls.

RWWString&
operator= (const char* cs);

Assignment operator. Copies the null-terminated character string pointed
to by cs into self. Returns a reference to self.

RWWString&
operator= (const RWWString& str);

Assignment operator. The string will copy str ’s data. Returns a reference
to self.

Type
Conversion

Assignment
Operators

RWWString

684 Tools.h++ Class Reference

RWWString&
operator= (const RWWSubString& sub);

Assignment operator. The string will copy sub ’s data. Returns a reference
to self.

RWWString&
operator+= (const wchar_t* cs);

Append the null-terminated character string pointed to by cs to self.
Returns a reference to self.

RWWString&
operator+= (const RWWString& str);

Append the string str to self. Returns a reference to self.

wchar_t&
operator[] (size_t i);
wchar_t
operator[] (size_t i) const;

Return the i th character. The first variant can be used as an lvalue. The
index i must be between 0 and the length of the string less one. Bounds
checking is performed — if the index is out of range then an exception of
type RWBoundsErr will be thrown.

wchar_t&
operator() (size_t i);
wchar_t
operator() (size_t i) const;

Return the i th character. The first variant can be used as an lvalue. The
index i must be between 0 and the length of the string less one. Bounds
checking is performed if the pre-processor macro RWBOUNDS_CHECK has
been defined before including <rw/wstring.h> . In this case, if the index is
out of range, then an exception of type RWBoundsErr will be thrown.

RWWSubString
operator() (size_t start, size_t len);
const RWWSubString
operator() (size_t start, size_t len) const;

Substring operator. Returns an RWWSubString of self with length len ,
starting at index start . The first variant can be used as an lvalue. The
sum of start plus len must be less than or equal to the string length. If
the library was built using the RWDEBUG flag, and start and len are out of
range, then an exception of type RWBoundsErr will be thrown.

RWWString&
append (const wchar_t* cs);

Append a copy of the null-terminated wide character string pointed to by
cs to self. Returns a reference to self.

Indexing
Operators

Public
Member

Functions

RWWString

Tools.h++ Class Reference 685

RWWString&
append (const wchar_t* cs, size_t N,);

Append a copy of the wide character string cs to self. Exactly N wide
characters are copied, including any embedded nulls. Hence, the buffer
pointed to by cs must be at least N*sizeof(wchar_t) bytes long. Returns
a reference to self.

RWWString&
append (const RWWString& cstr);

Append a copy of the string cstr to self. Returns a reference to self.

RWWString&
append (const RWWString& cstr, size_t N);

Append the first N characters or the length of cstr (whichever is less) of
cstr to self. Returns a reference to self.

size_t
binaryStoreSize () const;

Returns the number of bytes necessary to store the object using the global
function:

 RWFile& operator<<(RWFile&, const RWWString&);

size_t
capacity () const;

Return the current capacity of self. This is the number of characters the
string can hold without resizing.

size_t
capacity (size_t capac);

Hint to the implementation to change the capacity of self to capac .
Returns the actual capacity.

int
collate (const RWWString& str) const;
int
collate (const wchar_t* str) const;

Returns an int less then, greater than, or equal to zero, according to the
result of calling the POSIX function ::wscoll() on self and the
argument str . This supports locale-dependent collation.

int
compareTo (const RWWString& str,
 caseCompare = RWWString::exact) const;
int
compareTo (const wchar_t* str,
 caseCompare = RWWString::exact) const;

Returns an int less than, greater than, or equal to zero, according to the
result of calling the Standard C library function ::memcmp() on self and

RWWString

686 Tools.h++ Class Reference

the argument str . Case sensitivity is according to the caseCompare

argument, and may be RWWString::exact or RWWString::ignoreCase .

RWBoolean
contains (const RWWString& cs,
 caseCompare = RWWString::exact) const;
RWBoolean
contains (const wchar_t* str,
 caseCompare = RWWString::exact) const;

Pattern matching. Returns TRUE if cs occurs in self. Case sensitivity is
according to the caseCompare argument, and may be RWWString::exact

or RWWString::ignoreCase .

const wchar_t*
data () const;

Access to the RWWString’s data as a null terminated string. This datum is
owned by the RWWString and may not be deleted or changed. If the
RWWString object itself changes or goes out of scope, the pointer value
previously returned will become invalid. While the string is null-
terminated, note that its length is still given by the member function
length() . That is, it may contain embedded nulls.

size_t
first (wchar_t c) const;

Returns the index of the first occurrence of the wide character c in self.
Returns RW_NPOS if there is no such character or if there is an embedded
null prior to finding c .

size_t
first (wchar_t c, size_t) const;

Returns the index of the first occurrence of the wide character c in self.
Continues to search past embedded nulls. Returns RW_NPOS if there is no
such character.

size_t
first (const wchar_t* str) const;

Returns the index of the first occurrence in self of any character in str .
Returns RW_NPOS if there is no match or if there is an embedded null prior
to finding any character from str .

size_t
first (const wchar_t* str, size_t N) const;

Returns the index of the first occurrence in self of any character in str .
Exactly N characters in str are checked including any embedded nulls so str

must point to a buffer containing at least N wide characters. Returns
RW_NPOS if there is no match.

RWWString

Tools.h++ Class Reference 687

unsigned
hash (caseCompare = RWWString::exact) const;

Returns a suitable hash value.

size_t
index (const wchar_t* pat,size_t i=0,
 caseCompare = RWWString::exact) const;
size_t
index (const RWWString& pat,size_t i=0,
 caseCompare = RWWString::exact) const;

Pattern matching. Starting with index i , searches for the first occurrence
of pat in self and returns the index of the start of the match. Returns
RW_NPOS if there is no such pattern. Case sensitivity is according to the
caseCompare argument; it defaults to RWWString::exact .

size_t
index (const wchar_t* pat, size_t patlen,size_t i,
 caseCompare) const;
size_t
index (const RWWString& pat, size_t patlen,size_t i,
 caseCompare) const;

Pattern matching. Starting with index i , searches for the first occurrence
of the first patlen characters from pat in self and returns the index of the
start of the match. Returns RW_NPOS if there is no such pattern. Case
sensitivity is according to the caseCompare argument.

RWWString&
insert (size_t pos, const wchar_t* cs);

Insert a copy of the null-terminated string cs into self at position pos .
Returns a reference to self.

RWWString&
insert (size_t pos, const wchar_t* cs, size_t N);

Insert a copy of the first N wide characters of cs into self at position pos .
Exactly N wide characters are copied, including any embedded nulls. Hence,
the buffer pointed to by cs must be at least N*sizeof(wchar_t) bytes
long. Returns a reference to self.

RWWString&
insert (size_t pos, const RWWString& str);

Insert a copy of the string str into self at position pos . Returns a reference
to self.

RWWString&
insert (size_t pos, const RWWString& str, size_t N);

Insert a copy of the first N wide characters or the length of str (whichever
is less) of str into self at position pos . Returns a reference to self.

RWWString

688 Tools.h++ Class Reference

RWBoolean
isAscii () const;

Returns TRUE if it is safe to perform the conversion toAscii() (that is, if all
characters of self are ASCII characters).

RWBoolean
isNull () const;

Returns TRUE if this string has zero length (i.e., the null string).

size_t
last (wchar_t c) const;

Returns the index of the last occurrence in the string of the wide character
c . Returns RW_NPOS if there is no such character.

size_t
length () const;

Return the number of characters in self.

RWWString&
prepend (const wchar_t* cs);

Prepend a copy of the null-terminated wide character string pointed to by
cs to self. Returns a reference to self.

RWWString&
prepend (const wchar_t* cs, size_t N,);

Prepend a copy of the character string cs to self. Exactly N characters are
copied, including any embedded nulls. Hence, the buffer pointed to by cs

must be at least N*sizeof(wchart_t) bytes long. Returns a reference to
self.

RWWString&
prepend (const RWWString& str);

Prepends a copy of the string str to self. Returns a reference to self.

RWWString&
prepend (const RWWString& cstr, size_t N);

Prepend the first N wide characters or the length of cstr (whichever is
less) of cstr to self. Returns a reference to self.

istream&
readFile (istream& s);

Reads characters from the input stream s , replacing the previous contents
of self, until EOF is reached. The input stream is treated as a sequence of
multibyte characters, each of which is converted to a wide character (using
the Standard C library function mbtowc()) before storing. Null characters
are treated the same as other characters.

RWWString

Tools.h++ Class Reference 689

istream&
readLine (istream& s, RWBoolean skipWhite = TRUE);

Reads characters from the input stream s , replacing the previous contents
of self, until a newline (or an EOF) is encountered. The newline is removed
from the input stream but is not stored. The input stream is treated as a
sequence of multibyte characters, each of which is converted to a wide
character (using the Standard C library function mbtowc()) before storing.
Null characters are treated the same as other characters. If the skipWhite

argument is TRUE, then whitespace is skipped (using the iostream library
manipulator ws) before saving characters.

istream&
readString (istream& s);

Reads characters from the input stream s , replacing the previous contents
of self, until an EOF or null terminator is encountered. The input stream is
treated as a sequence of multibyte characters, each of which is converted to
a wide character (using the Standard C library function mbtowc()) before
storing.

istream&
readToDelim (istream&, wchar_t delim=(wchar_t)’\n’);

Reads characters from the input stream s , replacing the previous contents
of self, until an EOF or the delimiting character delim is encountered. The
delimiter is removed from the input stream but is not stored. The input
stream is treated as a sequence of multibyte characters, each of which is
converted to a wide character (using the Standard C library function
mbtowc()) before storing. Null characters are treated the same as other
characters.

istream&
readToken (istream& s);

Whitespace is skipped before storing characters into wide string.
Characters are then read from the input stream s , replacing previous
contents of self, until trailing whitespace or an EOF is encountered. The
trailing whitespace is left on the input stream. Only ASCII whitespace
characters are recognized, as defined by the standard C library function
isspace() . The input stream is treated as a sequence of multibyte
characters, each of which is converted to a wide character (using the
Standard C library function mbtowc()) before storing.

RWWString&
remove (size_t pos);

Removes the characters from the position pos , which must be no greater
than length() , to the end of string. Returns a reference to self.

RWWString

690 Tools.h++ Class Reference

RWWString&
remove (size_t pos, size_t N);

Removes N wide characters or to the end of string (whichever comes first)
starting at the position pos , which must be no greater than length() .
Returns a reference to self.

RWWString&
replace (size_t pos, size_t N, const wchar_t* cs);

Replaces N wide characters or to the end of string (whichever comes first)
starting at position pos , which must be no greater than length() , with a
copy of the null-terminated string cs . Returns a reference to self.

RWWString&
replace (size_t pos, size_t N1,const wchar_t* cs, size_t N2);

Replaces N1 characters or to the end of string (whichever comes first)
starting at position pos , which must be no greater than length() , with a
copy of the string cs . Exactly N2 characters are copied, including any
embedded nulls. Hence, the buffer pointed to by cs must be at least
N2*sizeof(wchart_t) bytes long. Returns a reference to self.

RWWString&
replace (size_t pos, size_t N, const RWWString& str);

Replaces N characters or to the end of string (whichever comes first)
starting at position pos , which must be no greater than length() , with a
copy of the string str . Returns a reference to self.

RWWString&
replace (size_t pos, size_t N1,
 const RWWString& str, size_t N2);

Replaces N1 characters or to the end of string (whichever comes first)
starting at position pos , which must be no greater than length() , with a
copy of the first N2 characters, or the length of str (whichever is less),
from str . Returns a reference to self.

void
resize (size_t n);

Changes the length of self, adding blanks (i.e., L' ') or truncating as
necessary.

RWWSubString
strip (stripType s = RWWString::trailing, wchar_t c = L' ');
const RWWSubString
strip (stripType s = RWWString::trailing, wchar_t c = L' ')
 const;

Returns a substring of self where the character c has been stripped off the
beginning, end, or both ends of the string. The first variant can be used as
an lvalue. The enum stripType can take values:

RWWString

Tools.h++ Class Reference 691

stripType Meaning

leading Remove characters at beginning

trailing Remove characters at end

both Remove characters at both ends

RWWSubString
subString (const wchar_t* cs, size_t start=0,
 caseCompare = RWWString::exact);
const RWWSubString
subString (const wchar_t* cs, size_t start=0,
 caseCompare = RWWString::exact) const;

Returns a substring representing the first occurrence of the null-terminated
string pointed to by “cs ”. Case sensitivity is according to the
caseCompare argument; it defaults to RWWString::exact . The first
variant can be used as an lvalue.

RWCString
toAscii () const;

Returns an RWCString object of the same length as self, containing only
ASCII characters. Any non-ASCII characters in self simply have the high
bits stripped off. Use isAscii() to determine whether this function is safe
to use.

RWCString
toMultiByte () const;

Returns an RWCString containing the result of applying the standard C
library function wcstombs() to self. This function is always safe to use.

void
toLower ();

Changes all upper-case letters in self to lower-case. Uses the C library
function towlower() .

void
toUpper ();

Changes all lower-case letters in self to upper-case. Uses the C library
function towupper() .

static unsigned
hash (const RWWString& wstr);

Returns the hash value of wstr as returned by
wstr.hash(RWWString::exact) .

Static Public
Member

Functions

RWWString

692 Tools.h++ Class Reference

static size_t
initialCapacity (size_t ic = 15);

Sets the minimum initial capacity of an RWWString, and returns the old
value. The initial setting is 15 wide characters. Larger values will use
more memory, but result in fewer resizes when concatenating or reading
strings. Smaller values will waste less memory, but result in more resizes.

static size_t
maxWaste(size_t mw = 15);

Sets the maximum amount of unused space allowed in a wide string
should it shrink, and returns the old value. The initial setting is 15 wide
characters. If more than mw characters are wasted, then excess space will
be reclaimed.

static size_t
resizeIncrement (size_t ri = 16);

Sets the resize increment when more memory is needed to grow a wide
string. Returns the old value. The initial setting is 16 wide characters.

RWBoolean
operator== (const RWWString&, const wchar_t*);
RWBoolean
operator== (const wchar_t*, const RWWString&);
RWBoolean
operator== (const RWWString&, const RWWString&);
RWBoolean
operator!= (const RWWString&, const wchar_t*);
RWBoolean
operator!= (const wchar_t*, const RWWString&);
RWBoolean
operator!= (const RWWString&, const RWWString&);

Logical equality and inequality. Case sensitivity is exact.

Related
Global

Operators

RWWString

Tools.h++ Class Reference 693

RWBoolean
operator< (const RWWString&, const wchar_t*);
RWBoolean
operator< (const wchar_t*, const RWWString&);
RWBoolean
operator< (const RWWString&, const RWWString&);
RWBoolean
operator> (const RWWString&, const wchar_t*);
RWBoolean
operator> (const wchar_t*, const RWWString&);
RWBoolean
operator> (const RWWString&, const RWWString&);
RWBoolean
operator<= (const RWWString&, const wchar_t*);
RWBoolean
operator<= (const wchar_t*, const RWWString&);
RWBoolean
operator<= (const RWWString&, const RWWString&);
RWBoolean
operator>= (const RWWString&, const wchar_t*);
RWBoolean
operator>= (const wchar_t*, const RWWString&);
RWBoolean
operator>= (const RWWString&, const RWWString&);

Comparisons are done lexicographically, byte by byte. Case sensitivity is
exact. Use member collate() or strxfrm() for locale sensitivity.

RWWString
operator+ (const RWWString&, const RWWString&);
RWWString
operator+ (const wchar_t*, const RWWString&);
RWWString
operator+ (const RWWString&, const wchar_t*);

Concatenation operators.

ostream&
operator<< (ostream& s, const RWWString& str);

Output an RWWString on ostream s . Each character of str is first
converted to a multibyte character before being shifted out to s .

istream&
operator>> (istream& s, RWWString& str);

Calls str.readToken(s) . That is, a token is read from the input stream s .

RWvostream&
operator<< (RWvostream&, const RWWString& str);
RWFile&
operator<< (RWFile&, const RWWString& str);

Saves string str to a virtual stream or RWFile, respectively.

RWWString

694 Tools.h++ Class Reference

RWvistream&
operator>> (RWvistream&, RWWString& str);
RWFile&
operator>> (RWFile&, RWWString& str);

Restores a wide character string into str from a virtual stream or RWFile,
respectively, replacing the previous contents of str .

RWWString
strXForm (const RWWString&);

Returns a string transformed by ::wsxfrm() , to allow quicker collation
than RWWString::collate() .

RWWString
toLower (const RWWString& str);

Returns a version of str where all upper-case characters have been
replaced with lower-case characters. Uses the C library function
towlower() .

RWWString
toUpper (const RWWString& str);

Returns a version of str where all lower-case characters have been
replaced with upper-case characters. Uses the C library function
towupper() .

Related
Global

Functions

Tools.h++ Class Reference 695

RWWSubString

#include <rw/wstring.h>
RWWString s(L”test string”);
s(6,3); // “tri”

The class RWWSubString allows some subsection of an RWWString to be
addressed by defining a starting position and an extent. For example the 7th
through the 11th elements, inclusive, would have a starting position of 7 and
an extent of 5. The specification of a starting position and extent can also be
done in your behalf by such functions as RWWString::strip() or the
overloaded function call operator taking a regular expression as an
argument. There are no public constructors — RWWSubStrings are
constructed by various functions of the RWWString class and then
destroyed immediately.

A zero lengthsubstring is one with a defined starting position and an extent of
zero. It can be thought of as starting just before the indicated character, but
not including it. It can be used as an lvalue. A null substring is also legal
and is frequently used to indicate that a requested substring, perhaps
through a search, does not exist. A null substring can be detected with
member function isNull() . However, it cannot be used as an lvalue.

None

#include <rw/rstream.h>
#include <rw/wstring.h>

main(){
 RWWString s(L”What I tell you is true.”);
 // Create a substring and use it as an lvalue:
 s(15,0) = RWWString(L” three times”);
 cout << s << endl;
 return 0;
}

Program output:

What I tell you three times is true.

void
operator= (const RWWString&);

Assignment from an RWWString. The statements:

RWWString a;
RWWString b;
...
b(2, 3) = a;

Synopsis

Description

Persistence

Example

Assignment
Operators

RWWSubString

696 Tools.h++ Class Reference

will copy a’s data into the substring b(2,3) . The number of elements
need not match: if they differ, b will be resized appropriately. If self is the
null substring, then the statement has no effect.

void
operator= (const wchar_t*);

Assignment from a wide character string. Example:

RWWString wstr(L”Mary had a little lamb”);
wchar_t dat[] = L”Perrier”;
wstr(11,4) = dat; // “Mary had a Perrier”

Note that the number of characters selected need not match: if they differ,
wstr will be resized appropriately. If self is the null substring, then the
statement has no effect.

wchar_t
operator[] (size_t i);
wchar_t&
operator[] (size_t i) const;

Returns the i th character of the substring. The first variant can be used as
an lvalue, the second cannot. The index i must be between zero and the
length of the substring less one. Bounds checking is performed: if the
index is out of range, then an exception of type RWBoundsErr will be
thrown.

wchar_t
operator() (size_t i);
wchar_t&
operator() (size_t i) const;

Returns the i th character of the substring. The first variant can be used as
an lvalue, the second cannot. The index i must be between zero and the
length of the substring less one. Bounds checking is enabled by defining
the pre-processor macro RWBOUNDS_CHECK before including
<rw/wstring.h> . In that case, if the index is out of range, then an
exception of type RWBoundsErr will be thrown.

RWBoolean
isNull () const;

Returns TRUE if this is a null substring.

size_t
length () const;

Returns the extent (length) of the RWWSubString.

RWBoolean
operator! () const;

Returns TRUE if this is a null substring.

Indexing
Operators

Public
Member

Functions

RWWSubString

Tools.h++ Class Reference 697

size_t
start () const;

Returns the starting element of the RWWSubString.

void
toLower ();

Changes all upper-case letters in self to lower-case. Uses the C library
function towlower() .

void
toUpper ();

Changes all lower-case letters in self to upper-case. Uses the C library
function towupper() .

RWBoolean
operator== (const RWWSubString&, const RWWSubString&);
RWBoolean
operator== (const RWWString&, const RWWSubString&);
RWBoolean
operator== (const RWWSubString&, const RWWString&);
RWBoolean
operator== (const wchar_t*, const RWWSubString&);
RWBoolean
operator== (const RWWSubString&, const wchar_t*);

Returns TRUE if the substring is lexicographically equal to the wide
character string or RWWString argument. Case sensitivity is exact.

RWBoolean
operator!= (const RWWString&, const RWWString&);
RWBoolean
operator!= (const RWWString&, const RWWSubString&);
RWBoolean
operator!= (const RWWSubString&, const RWWString&);
RWBoolean
operator!= (const wchar_t*, const RWWString&);
RWBoolean
operator!= (const RWWString&, const wchar_t*);

Returns the negation of the respective operator==()

Global Logical
Operators

Tools.h++ Class Reference 699

RWWTokenizer

#include <rw/wtoken.h>
RWWString str(“a string of tokens”, RWWString::ascii);
RWWTokenizer(str); // Lex the above string

Class RWWTokenizer is designed to break a string up into separate tokens,
delimited by arbitrary “white space.” It can be thought of as an iterator for
strings and as an alternative to the C library function wstok() which has the
unfortunate side effect of changing the string being tokenized.

None

#include <rw/wtoken.h>
#include <rw/rstream.h>

main(){
 RWWString a(L”Something is rotten in the state of Denmark”);

 RWWTokenizer next(a); // Tokenize the string a

 RWWString token; // Will receive each token

 // Advance until the null string is returned:
 while (!(token=next()).isNull())
 cout << token << “\n”;
}
Program output:

Something
is
rotten
in
the
state
of
Denmark

RWWTokenizer(const RWWString& s);
Construct a tokenizer to lex the string s .

RWWSubString
operator() ;

Advance to the next token and return it as a substring. The tokens are
delimited by any of the four wide characters in L” \t\n\0” . (space, tab,
newline and null).

Synopsis

Description

Persistence

Example

Public
Constructor

Public
Member
Function

RWWTokenizer

700 Tools.h++ Class Reference

RWWSubString
operator() (const wchar_t* s);

Advance to the next token and return it as a widesubstring. The tokens
are delimited by any wide character in s , or any embedded wide null.

RWWSubString
operator() (const wchar_t* s,size_t num);

Advance to the next token and return it as a substring. The tokens are
delimited by any of the first num wide characters in s. Buffer s may
contain embedded nulls, and must contain at least num wide characters.
Tokens will not be delimited by nulls unless s contains nulls.

Tools.h++ Class Reference 701

RWXDRistream (Unix only)

RWvistream RWvios
RWXDRistream

RWios

#include <rw/xdrstrea.h>

XDR xdr;
xdrstdio_create(&xdr, stdin, XDR_DECODE);
RWXDRistream rw_xdr(&xdr);

Class RWXDRistream is a portable input stream based on XDR routines.
Class RWXDRistream encapsulates a portion of the XDR library routines
that are used for external data representation. XDR routines allow
programmers to describe arbitrary data structures in a machine-independent
fashion. Data for remote procedure calls (RPC) are transmitted using XDR
routines.

Class RWXDRistream enables one to decode an XDR structure to a machine
representation. Class RWXDRistream provides the capability to decode all
the standard data types and vectors of those data types.

An XDR stream must first be created by calling the appropriate creation
routine. XDR streams currently exist for encoding/decoding of data to or
from standard iostreams and file streams, TCP/IP connections and Unix
files, and memory. These creation routines take arguments that are tailored
to the specific properties of the stream. After the XDR stream has been
created, it can then be used as the argument to the constructor for a
RWXDRistream object.

RWXDRistream can be interrogated as to the status of the stream using
member functions bad() , clear() , eof() , fail() , good() , and rdstate() .

None

The example that follows is a “reader” program that decodes an XDR
structure from a file stream. The example for class RWXDRostream is the
“writer” program that encodes the XDR structures onto the file stream.

The library that supports XDR routines must be linked in. The name of this
library is not standard.

#include <rw/xdrstrea.h>
#include <rw/rstream.h>
#include <stdio.h>

main(){

Synopsis

Description

Persistence

Example

RWXDRistream (Unix only)

702 Tools.h++ Class Reference

 XDR xdr;
 FILE* fp = fopen(“test”,”r+”);
 xdrstdio_create(&xdr, fp, XDR_DECODE);

 RWXDRistream rw_xdr(&xdr);
 int data;
 for(int i=0; i<10; ++i) {
 rw_xdr >> data; // decode integer data
 if(data == i)
 cout << data << endl;
 else
 cout << “Bad input value” << endl;
 }
 fclose(fp);
}

RWXDRistream (XDR* xp);

Initialize an RWXDRistream from the XDR structure xp .

RWXDristream (streambuf*);
Initialize RWXDRistream with a pointer to streambuf. Streambuf must be
already allocated.

RWXDRistream (istream&);
Initialize RWXDRistream with an input stream.

~virtual RWXDRistream ();
Deallocate previously allocated resources.

virtual int
get ();

Redefined from class RWvistream. Gets and returns the next character
from the XDR input stream. If the operation fails, it sets the failbit and
returns EOF.

virtual RWvistream&
get (char& c);

Redefined from class RWvistream. Gets the next character from the XDR
input stream and stores it in c . If the operation fails, it sets the failbit. This
member only preserves ASCII numerical codes, not the coresponding
character symbol.

virtual RWvistream&
get (wchar_t& wc);

Redefined from class RWvistream. Gets the next wide character from the
XDR input stream and stores it in wc. If the operation fails, it sets the
failbit.

Public
Constructor

Public
Destructor

Public
Member

Functions

RWXDRistream (Unix only)

Tools.h++ Class Reference 703

virtual RWvistream&
get (unsigned char& c);

Redefined from class RWvistream. Gets the next unsigned character from
the XDR input stream and stores it in c . If the operation fails, it sets the
failbit.

virtual RWvistream&
get (char* v, size_t N);

Redefined from class RWvistream. Gets a vector of N characters from the
XDR input stream and stores them in v . If the operation fails, it sets the
failbit.

virtual RWvistream&
get (unsigned char* v, size_t N);

Redefined from class RWvistream. Gets a vector of N unsigned characters
from the XDR input stream and stores them in v . If the operation fails, it
sets the failbit.

virtual RWvistream&
get (double* v, size_t N);

Redefined from class RWvistream. Gets a vector of N double s from the
XDR input stream and stores them in v . If the operation fails, it sets the
failbit.

virtual RWvistream&
get (float* v, size_t N);

Redefined from class RWvistream. Gets a vector of N float s from the
XDR input stream and stores them in v . If the operation fails, it sets the
failbit.

virtual RWvistream&
get (int* v, size_t N);

Redefined from class RWvistream. Gets a vector of N int s from the XDR
input stream and stores them in v . If the operation fails, it sets the failbit.

virtual RWvistream&
get (unsigned int* v, size_t N);

Redefined from class RWvistream. Gets a vector of N unsigned int s from
the XDR input stream and stores them in v . If the operation fails, it sets the
failbit.

virtual RWvistream&
get (long* v, size_t N);

Redefined from class RWvistream. Gets a vector of N long s from the XDR
input stream and stores them in v . If the operation fails, it sets the failbit.

RWXDRistream (Unix only)

704 Tools.h++ Class Reference

virtual RWvistream&
get (unsigned long* v, size_t N);

Redefined from class RWvistream. Gets a vector of N unsigned long s from
the XDR input stream and stores them in v . If the operation fails, it sets the
failbit.

virtual RWvistream&
get (short* v, size_t N);

Redefined from class RWvistream. Gets a vector of N short s from the
XDR input stream and stores them in v . If the operation fails, it sets the
failbit.

virtual RWvistream&
get (unsigned short* v, size_t N);

Redefined from class RWvistream. Gets a vector of N unsigned short s
from the XDR input stream and stores them in v . If the operation fails, it
sets the failbit.

virtual RWvistream&
get (wchar_t* v, size_t N);

Redefined from class RWvistream. Gets a vector of N wide characters from
the XDR input stream and stores them in v . If the operation fails, it sets the
failbit.

virtual RWvistream&
getString (char* s, size_t maxlen);

Redefined from class RWvistream. Restores a character string from the
XDR input stream that was stored to the XDR output stream with
RWXDRistream::putstring and stores the characters in the array starting
at s . The function stops reading at the end of the string or after maxlen-1

characters, whichever comes first. If maxlen-1 characters have been read
and the maxlen th character is not the string terminator, then the failbit of
the stream will be set. In either case, the string will be terminated with a
null byte.

virtual RWvistream&
operator>> (char& c);

Redefined from class RWvistream. Gets the next character from the XDR
input stream and stores it in c . If the operation fails, it sets the failbit. This
member attempts to preserve the symbolic characters' values transmitted
over the stream.

virtual RWvistream&
operator>> (double& d);

Redefined from class RWvistream. Gets the next double from the XDR
input stream and stores it in d. If the operation fails, it sets the failbit.

RWXDRistream (Unix only)

Tools.h++ Class Reference 705

virtual RWvistream&
operator>> (float& f);

Redefined from class RWvistream. Gets the next float from the XDR
input stream and stores it in f . If the operation fails, it sets the failbit.

virtual RWvistream&
operator>> (int& i);

Redefined from class RWvistream. Gets the next integer from the XDR
input stream and stores it in i . If the operation fails, it sets the failbit.

virtual RWvistream&
operator>> (long& l);

Redefined from class RWvistream. Gets the next long from the XDR input
stream and stores it in l . If the operation fails, it sets the failbit.

virtual RWvistream&
operator>> (short& s);

Redefined from class RWvistream. Gets the next short from the XDR input
stream and stores it in s . If the operation fails, it sets the failbit.

virtual RWvistream&
operator>> (wchar_t& wc);

Redefined from class RWvistream. Gets the next wide character from the
XDR input stream and stores it in wc. If the operation fails, it sets the
failbit.

virtual RWvistream&
operator>> (unsigned char& c);

Redefined from class RWvistream. Gets the next unsigned character from
the XDR input stream and stores it in c . If the operation fails, it sets the
failbit.

virtual RWvistream&
operator>> (unsigned int& i);

Redefined from class RWvistream. Gets the next unsigned integer from
the XDR input stream and stores it in i . If the operation fails, it sets the
failbit.

virtual RWvistream&
operator>> (unsigned long& l);

Redefined from class RWvistream. Gets the next unsigned long from the
XDR input stream and stores it in l . If the operation fails, it sets the failbit.

virtual RWvistream&
operator>> (unsigned short& s);

Redefined from class RWvistream. Gets the next unsigned short from the
XDR input stream and stores it in s . If the operation fails, it sets the failbit.

Tools.h++ Class Reference 707

RWXDRostream (Unix only)

RWvostream RWvios
RWXDRostream

RWios

#include <rw/xdrstrea.h>

XDR xdr;
xdrstdio_create(&xdr, stdout, XDR_ENCODE) ;
RWXDRostream rw_xdr(&xdr);

Class RWXDRostream is a portable output stream based on XDR routines.
Class RWXDRostream encapsulates a portion of the XDR library routines
that are used for external data representation. XDR routines allow
programmers to describe arbitrary data structures in a machine-independent
fashion. Data for remote procedure calls (RPC) are transmitted using XDR
routines.

Class RWXDRostream enables one to output from a stream and encode an
XDR structure from a machine representation. Class RWXDRostream
provides the capability to encode the standard data types and vectors of
those data types.

An XDR stream must first be created by calling the appropriate creation
routine. XDR streams currently exist for encoding/decoding of data to or
from standard iostreams and file streams, TCP/IP connections and Unix
files, and memory. These creation routines take arguments that are tailored
to the specific properties of the stream. After the XDR stream has been
created, it can then be used as an argument to the constructor for a
RWXDRostream object.

RWXDRostream can be interrogated as to the status of the stream using
member functions bad() , clear() , eof() , fail() , good() , and rdstate() .

None

The example that follows is a “writer” program that encodes an XDR
structure onto a file stream. The example for class RWXDRistream is the
“reader” program that decodes the XDR structures into a machine
representation for a data type. The library that supports XDR routines must
be linked in. The name of this library is not standard.

#include <rw/xdrstrea.h>
#include <rw/rstream.h>
#include <stdio.h>

Synopsis

Description

Persistence

Example

RWXDRostream (Unix only)

708 Tools.h++ Class Reference

main(){
 XDR xdr;
 FILE* fp = fopen(“test”,”w+”);
 xdrstdio_create(&xdr, fp, XDR_ENCODE);

 RWXDRostream rw_xdr(&xdr);
 for(int i=0; i<10; ++i)
 rw_xdr << i; // encode integer data
 fclose(fp);
}

RWXDRostream(XDR* xp);

Initialize a RWXDRostream from the XDR structure xp .

RWXDRostream(streambuf*);

Initialize RWXDRostream with a pointer to streambuf. streambuf must
already be allocated.

RWXDRostream(ostream&);

Initialize RWXDRostream with an output stream.

virtual ~ RWXDRostream();
Deallocate previously allocated resources.

virtual RWvostream&
operator<< (const char* s);

Redefined from class RWvostream. Store the character string starting at s
to the output stream using the XDR format. The character string is
expected to be null terminated.

virtual RWvostream&
operator<< (char c);

Redefined from class RWvostream. Store the character c to the output
stream using the XDR format. Note that c is treated as a character, not a
number. This member attempts to preserve the symbolic characters values
transmitted over the stream.

virtual RWvostream&
operator<< (wchar_t wc);

Redefined from class RWvostream. Store the wide character wc to the
output stream using the XDR format. Note that wc is treated as a
character, not a number.

virtual RWvostream&
operator<< (unsigned char c);

Redefined from class RWvostream. Store the unsigned character c to the
output stream using the XDR format. Note that c is treated as a character,
not a number.

Public
Constructor

Public
Destructor

Public
Member

Functions

RWXDRostream (Unix only)

Tools.h++ Class Reference 709

virtual RWvostream&
operator<< (double d);

Redefined from class RWvostream. Store the double d to the output
stream using the XDR format.

virtual RWvostream&
operator<< (float f);

Redefined from class RWvostream. Store the float f to the output stream
using the XDR format.

virtual RWvostream&
operator<< (int i);

Redefined from class RWvostream. Store the integer i to the output
stream using the XDR format.

virtual RWvostream&
operator<< (unsigned int i);

Redefined from class RWvostream. Store the unsigned integer i to the
output stream using the XDR format.

virtual RWvostream&
operator<< (long l);

Redefined from class RWvostream. Store the long l to the output stream
using the XDR format.

virtual RWvostream&
operator<< (unsigned long l);

Redefined from class RWvostream. Store the unsigned long l to the
output stream using the XDR format.

virtual RWvostream&
operator<< (short s);

Redefined from class RWvostream. Store the short s to the output stream
using the XDR format.

virtual RWvostream&
operator<<(unsigned short);

Redefined from class RWvostream. Store the unsigned short s to the
output stream using the XDR format.

virtual RWvostream&
put (char c);

Redefined from class RWvostream. Store the character c to the output
stream using the XDR format. If the operation fails, it sets the failbit. This
member only preserves ASCII numerical codes, not the coresponding
character symbol.

RWXDRostream (Unix only)

710 Tools.h++ Class Reference

virtual RWvostream&
put (unsigned char c);

Redefined from class RWvostream. Store the unsigned character c to the
output stream using the XDR format. If the operation fails, it sets the
failbit.

virtual RWvostream&
put (wchar_t wc);

Redefined from class RWvostream. Store the wide character wc to the
output stream using the XDR format. If the operation fails, it sets the
failbit.

virtual RWvostream&
put (const char* p, size_t N);

Redefined from class RWvostream. Store the vector of N characters
starting at p to the output stream using the XDR format. If the operation
fails, it sets the failbit.

virtual RWvostream&
put (const wchar_t* p, size_t N);

Redefined from class RWvostream. Store the vector of N wide characters
starting at p to the output stream using the XDR format. If the operation
fails, it sets the failbit.

virtual RWvostream&
put (const short* p, size_t N);

Redefined from class RWvostream. Store the vector of N short s starting
at p to the output stream using the XDR format. If the operation fails, it
sets the failbit.

virtual RWvostream&
put (const unsigned short* p, size_t N);

Redefined from class RWvostream. Store the vector of N unsigned short s
starting at p to the output stream using the XDR format. If the operation
fails, it sets the failbit.

virtual RWvostream&
put (const int* p, size_t N);

Redefined from class RWvostream. Store the vector of N integers starting
at p to the output stream using the XDR format. If the operation fails, it
sets the failbit.

virtual RWvostream&
put (const unsigned int* p, size_t N);

Redefined from class RWvostream. Store the vector of N unsigned integers
starting at p to the output stream using the XDR format. If the operation
fails, it sets the failbit.

RWXDRostream (Unix only)

Tools.h++ Class Reference 711

virtual RWvostream&
put (const long* p, size_t N);

Redefined from class RWvostream. Store the vector of N long s starting at p
to the output stream using the XDR format. If the operation fails, it sets the
failbit.

virtual RWvostream&
put (const unsigned long* p, size_t N);

Redefined from class RWvostream. Store the vector of N unsigned long s
starting at p to the output stream using the XDR format. If the operation
fails, it sets the failbit.

virtual RWvostream&
put (const float* p, size_t N);

Redefined from class RWvostream. Store the vector of N float s starting
at p to the output stream using the XDR format. If the operation fails, it
sets the failbit.

virtual RWvostream&
put (const double* p, size_t N);

Redefined from class RWvostream. Store the vector of N double s starting
at p to the output stream using the XDR format. If the operation fails, it
sets the failbit.

Virtual RWXDRostream&
flush ();

Send the contents of the stream buffer to output immediately.

Virtual RWXDRostream&
putString (const char*s, size_t N);

Store the character string for retrieval by RWXDRistream::getString .

Tools.h++ Class Reference 713

RWZone

#include <time.h>
#include <rw/zone.h>

(abstract base class)

RWZone is an abstract base class. It defines an interface for time zone issues
such as whether or not daylight-saving time is in use, the names and offsets
from UTC (also known as GMT) for both standard and daylight-saving
times, and the start and stop dates for daylight-saving time, if used.

Note that because it is an abstract base class, there is no way to actually
enforce these goals — the description here is merely the model of how a class
derived from RWZone should act.

Most programs interact with RWZone only by passing an RWZone
reference to an RWTime or RWDate member function that expects one.

RWZoneSimple is an implementation of the abstract RWZone interface
sufficient to represent U.S. daylight-saving time rules. Three instances of
RWZoneSimple are initialized from the global environment at program
startup to represent local, standard, and universal time. They are available
via calls to the static member functions RWZone::local() ,
RWZone::standard() , and RWZone::utc() , respectively. See the class
RWZoneSimple for details.

None

#include <rw/zone.h>
#include <rw/rwtime.h>
#include <rw/rstream.h>

main(){
 RWTime now;
 cout << now.asString(‘\0’, RWZone::local()) << endl;
 cout << now.asString("%x %X", RWZone::utc()) << endl;
 return 0;
}

enum DstRule { NoDST, NoAm, WeEu };
Used by the static member function dstRule() , described below, and by
constructors for classes derived from RWZone.

Synopsis

Description

Persistence

Example

Enumerations

RWZone

714 Tools.h++ Class Reference

enum StdZone {
 NewZealand = -12, CarolineIslands, MarianaIslands,
 Japan, China, Java,
 Kazakh, Pakistan, CaspianSea,
 Ukraine, Nile, Europe,
 Greenwich, Azores, Oscar,
 Greenland, Atlantic, USEastern,
 USCentral, USMountain, USPacific,
 Yukon, Hawaii, Bering
};

StdZone is provided to name the standard time zones. Its values are
intended to be passed to constructors of classes derived from RWZone.

virtual int
timeZoneOffset () const = 0;

Returns the number of seconds west of UTC for standard time in this zone.
The number is negative for zones east of Greenwich, England.

virtual int
altZoneOffset () const = 0;
Returns the number of seconds west of UTC for daylight-saving time in this
zone.

virtual RWBoolean
daylightObserved () const = 0;

Returns TRUE if daylight-saving time is observed for this zone.

virtual RWBoolean
isDaylight (const struct tm* tspec) const = 0;

Returns TRUE if the time and date represented in the struct tm argument
is in the range of daylight-saving time for this zone. The elements of the
tm argument must all be self-consistent; in particular, the tm_wday member
must agree with the tm_year , tm_mon, and tm_day members.

virtual void
getBeginDaylight (struct tm*) const = 0;
virtual void
getEndDaylight (struct tm*) const = 0;

Return with the struct tm argument set to the local time that daylight-
saving time begins, or ends, for the year indicated by the tm_year member
passed in. If daylight-saving time is not observed, the struct tm

members are all set to a negative value. Note that in the southern
hemisphere, daylight-saving time ends at an earlier date than it begins.

virtual RWCString
timeZoneName () const = 0;
virtual RWCString
altZoneName () const = 0;

Return the name of, respectively, the standard and daylight-saving time
zones represented, such as “PST” and “PDT” . Note that the current date
and time have no effect on the return values of these functions.

Public
Member

Functions

RWZone

Tools.h++ Class Reference 715

static const RWZone&
local ();

Returns a reference to an RWZone representing local time. By default this
will be an instance of RWZoneSimple created with offsets and zone names
from the operating system, with U.S. rules for daylight-saving time if
observed. This is used as the default argument value for RWDate and
RWTime functions that take an RWZone.

static const RWZone&
standard ();

Returns a reference to an RWZone representing standard local time, with
no daylight-saving time corrections. By default this is an instance of
RWZoneSimple with offset and zone name from the operating system.

static const RWZone&
utc ();

Returns a reference to an RWZone representing UTC (GMT) universal
time.

static const RWZone*
local (const RWZone*);
static const RWZone*
standard (const RWZone*);

These functions allow the values returned by the other functions above to
be set. Each returns the previous value.

static constRWDaylightRule*
dstRule (DstRule rule = NoAm);

Returns one of the built-in daylight-saving time rules according to rule .
Function dstRule() is provided for convenience in constructing
RWZoneSimple instances for time zones in which common daylight-
saving time rules are obeyed. Currently two such rule systems are
provided, NoAm for the U.S.A. and Canada, and WeEu for most of Western
Europe (excluding the U.K.). See RWZoneSimple for more details. If
DstRule NoDST is given, then 0 is returned. The result of calling dstRule()

is normally passed to the RWZoneSimple constructor.

Static Public
Member

Functions

Tools.h++ Class Reference 717

RWZoneSimple

RWZoneSimple RWZone

#include <time.h>
#include <rw/zone.h>

RWZoneSimple myZone(USCentral);

RWZoneSimple is an implementation of the abstract interface defined by
class RWZone. It implements a simple daylight-saving time rule sufficient to
represent all historical U.S. conventions and many European and Asian
conventions. It is table-driven and depends on parameters given by the
struct RWDaylightRule, which is described below.

Direct use of RWDaylightRule affords the most general interface to
RWZoneSimple. However, a much simpler programmatic interface is
offered, as illustrated by the examples below.

Three instances of RWZoneSimple are automatically constructed at
program startup, to represent UTC, Standard, and local time. They are
available via calls to the static member functions RWZone::utc() ,
RWZone::standard() , and RWZone::local() , respectively.

These member functions are set up according to the time zone facilities
provided in the execution environment (typically defined by the
environment variable TZ). By default, if DST is observed at all, then the local
zone instance will use U.S. (RWZone::NoAm) daylight-saving time rules.

Note for developers outside North America: for some time zones this
default will not be correct because these time zones rely on the C standard
global variable _daylight . This variable is set whenever any alternate time
zone rule is available, whether it represents daylight-saving time or not.
Also the periods of history affected by daylight-saving time may be different
in your time zone from those in North America, causing the North American
rule to be erroneously invoked. The best way to ensure that these default
time zones are correct is to construct an RWZoneSimple using an
appropriate RWDaylightRule and initialize RWZone::local() and
RWZone::std() with this value.

Other instances of RWZoneSimple may be constructed to represent other
time zones, and may be installed globally using RWZone static member
functions RWZone::local(const RWZone*) and RWZone::standard(const

RWZone*) .

Synopsis

Description

RWZoneSimple

718 Tools.h++ Class Reference

None

To install US Central time as your global “local” time use:

RWZone::local(new RWZoneSimple(RWZone::USCentral));

To install Hawaiian time (where daylight-saving time is not observed) one
would say,

RWZone::local(new RWZoneSimple(RWZone::Hawaii, RWZone::NoDST));

Likewise for Japan:

RWZone::local(new RWZoneSimple(RWZone::Japan, RWZone::NoDST));

For France:

RWZone::local(new RWZoneSimple(RWZone::Europe, RWZone::WeEu));

Here are the rules used internally for the RWZone::NoAm and RWZone::WeEu

values of RWZone::DstRule:

// last Sun in Apr to last in Oct:
 const RWDaylightRule usRuleAuld =
 { 0, 0000, 1, { 3, 4, 0, 120 }, { 9, 4, 0, 120 } };
// first Sun in Apr to last in Oct
 const RWDaylightRule usRule67 =
 { &usRuleAuld, 1967, 1, { 3, 0, 0, 120 }, { 9, 4, 0, 120 } };
// first Sun in Jan to last in Oct:
 const RWDaylightRule usRule74 =
 { &usRule67, 1974, 1, { 0, 0, 0, 120 }, { 9, 4, 0, 120 } };
// last Sun in Feb to last in Oct
 const RWDaylightRule usRule75 =
 { &usRule74, 1975, 1, { 1, 4, 0, 120 }, { 9, 4, 0, 120 } };
// last Sun in Apr to last in Oct
 const RWDaylightRule usRule76 =
 { &usRule75, 1976, 1, { 3, 4, 0, 120 }, { 9, 4, 0, 120 } };
// first Sun in Apr to last in Oct
 const RWDaylightRule usRuleLate =
 { &usRule76, 1987, 1, { 3, 0, 0, 120 }, { 9, 4, 0, 120 } };

// last Sun in Mar to last in Sep
 const RWDaylightRule euRuleLate =
 { 0, 0000, 1, { 2, 4, 0, 120 }, { 8, 4, 0, 120 } };

Given these definitions,

RWZone::local(new RWZoneSimple(RWZone::USCentral, &usRuleLate));

is equivalent to the first example given above and repeated here:

RWZone::local(new RWZoneSimple(RWZone::USCentral));

Persistence

Examples

RWZoneSimple

Tools.h++ Class Reference 719

Daylight-saving time systems that cannot be represented with
RWDaylightRule and RWZoneSimple must be modeled by deriving from
RWZone and implementing its virtual functions.

For example, under Britain’s Summer Time rules, alternate timekeeping
begins the morning after the third Saturday in April, unless that is Easter (in
which case it begins the week before) or unless the Council decides on some
other time for that year. In some years Summer Time has been two hours
ahead, or has extended through winter without a break. British Summer
Time clearly deserves an RWZone class all its own.

RWZoneSimple (RWZone::StdZone zone,
 RWZone::DstRule = RWZone::NoAm);

Constructs an RWZoneSimple instance using internally held
RWDaylightRules. This is the simplest interface to RWZoneSimple. The
first argument is the time zone for which an RWZoneSimple is to be
constructed. The second argument is the daylight-saving time rule which
is to be followed.

RWZoneSimple (const RWDaylightRule* rule,
 long tzoff, const RWCString& tzname,
 long altoff, const RWCString& altname);

Constructs an RWZoneSimple instance which daylight-saving time is
computed according to the rule specified. Variables tzoff and tzname are
the offset from UTC (in seconds, positive if west of 0 degrees longitude)
and the name of standard time. Arguments altoff and altname are the
offset (typically equal to tzoff - 3600) and name when daylight-saving
time is in effect. If rule is zero, daylight-saving time is not observed.

RWZoneSimple (long tzoff, const RWCString& tzname);

Constructs an RWZoneSimple instance in which daylight-saving time is
not observed. Argument tzoff is the offset from UTC (in seconds,
positive if west of 0 degrees longitude) and tzname is the name of the
zone.

RWZoneSimple (RWZone::StdZone zone,
 const RWDaylightRule* rule);

Constructs an RWZoneSimple instance in which offsets and names are
specified by the StdZone argument. Daylight-saving time is computed
according to the rule argument, if non-zero; otherwise, DST is not
observed.

The RWDaylightRule struct passed to RWZoneSimple’s constructor can be a
single rule for all years or can be the head of a chain of rules going
backwards in time.

Constructors

struct
RWDaylightRule

RWZoneSimple

720 Tools.h++ Class Reference

RWDaylightRule is a struct with no constructors. It can be initialized with
the syntax used in the Examples section above. The data members of this
structure are as follows:

struct RWExport RWDaylightRule {
 RWDaylightRule const* next_;
 short firstYear_;
 char observed_;
 RWDaylightBoundary begin_;
 RWDaylightBoundary end_;
}

RWDaylightRule const*
next_ ;

Points to the next rule in a chain which continues backwards in time.

short
firstYear_ ;

Four digit representation of the year in which this rule first goes into
effect.

char
observed_ ;

A boolean value that can be used to specify a period of years for which
daylight-saving time is not observed.

1 = Daylight-saving time is in effect during this period

0 = Daylight-saving time is not in effect during this period

(Note that these are numeric values as distinguished from ’1’ and ’0’.)

RWDaylightBoundary
begin_ ;

This structure indicates the time of year, to the minute, when DST begins
during this period. (See RWDaylightBoundary below.)

RWDaylightBoundary
end_ ;

This structure indicates the time of year, to the minute, when standard
time resumes during this period. (See RWDaylightBoundary below.)

struct RWExport RWDaylightBoundary {
 // this struct uses <time.h> struct tm conventions:
 int month_; // [0..11]
 int week_; // [0..4], or -1
 int weekday_; // [0..6], 0=Sunday; or, [1..31] if week_== -1
 int minute_; // [0..1439] (Usually 2 AM, = 120)
};

struct
RWDaylight-

Boundary

RWZoneSimple

Tools.h++ Class Reference 721

int
month_ ;

The month from (0 - 11), where 0 = January.

int
week_ ;

A week of the month from (0 - 4), or -1 if the following field is to
represent a day within the month.

int
weekday_ ;

A day of the week from (0 - 6), where 0 = Sunday, or, if the week_ field is
-1 , a day of the month from (1 - 31).

int
minute_ ;

Minutes after 12:00 AM, from (0 - 1439). For example, 120 = 2 AM.

Tools.h++ Class Reference 723

Appendix A: Alternate Template
Class Interfaces

If you do not have the Standard C++ Library, use the template class
interfaces described in this Appendix. If you do have the Standard C++
Library use the interfaces described in the main section of the Class Reference.

Tools.h++ Class Reference Appendix A 725

RWTPtrDlist<T>

#include <rw/tpdlist.h>
RWTPtrDlist<T> list;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

This class maintains a collection of pointers to type T, implemented as a
doubly linked list. This is a pointer based list: pointers to objects are copied
in and out of the links that make up the list.

Parameter T represents the type of object to be inserted into the list, either a
class or fundamental type. The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

Isomorphic

In this example, a doubly-linked list of pointers to the user type Dog is
exercised. Contrast this approach with the example given under
RWTValDlist<T>.
#include <rw/tpdlist.h>
#include <rw/rstream.h>
#include <string.h>

class Dog {
 char* name;
public:
 Dog(const char* c) {
 name = new char[strlen(c)+1];
 strcpy(name, c);
 }

 ~Dog() { delete name; }

 // Define a copy constructor:
 Dog(const Dog& dog) {
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name);
 }

 // Define an assignment operator:
 void operator=(const Dog& dog) {
 if (this!=&dog) {
 delete name;
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name);

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrDlist<T>

726 Appendix A Tools.h++ Class Reference

 }
 }

 // Define an equality test operator:
 int operator==(const Dog& dog) const {
 return strcmp(name, dog.name)==0; }

 friend ostream& operator<<(ostream& str, const Dog& dog){
 str << dog.name;
 return str;}
};

main() {
 RWTPtrDlist<Dog> terriers;
 terriers.insert(new Dog("Cairn Terrier"));
 terriers.insert(new Dog("Irish Terrier"));
 terriers.insert(new Dog("Schnauzer"));

 Dog key1("Schnauzer");
 cout << "The list "
 << (terriers.contains(&key1) ? "does " : "does not ")
 << "contain a Schnauzer\n";

 Dog key2("Irish Terrier");
 terriers.insertAt(
 terriers.index(&key2),
 new Dog("Fox Terrier")
);

 Dog* d;
 while (!terriers.isEmpty()) {
 d = terriers.get();
 cout << *d << endl;
 delete d;
 }

 return 0;
}
Program output:

The list does contain a Schnauzer
Cairn Terrier
Fox Terrier
Irish Terrier
Schnauzer

RWTPtrDlist <T>();
Constructs an empty list.

RWTPtrDlist <T>(const RWTPtrDlist<T>& c);
Constructs a new doubly-linked list as a shallow copy of c . After
construction, pointers will be shared between the two collections.

Public
Constructors

RWTPtrDlist<T>

Tools.h++ Class Reference Appendix A 727

RWTPtrDlist&
operator= (const RWTPtrDlist<T>& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared
between the two collections.

T*&
operator[] (size_t i);
T* const&
operator[] (size_t i) const;

Returns a pointer to the i th value in the list. The first variant can be used
as an lvalue , the second cannot. The index i must be between zero and
the number of items in the collection less one, or an exception of type
RWBoundsError will be thrown.

void
append (T* a);

Appends the item pointed to by a to the end of the list.

void
apply (void (*applyFun)(T*, void*), void* d);

Applies the user-defined function pointed to by applyFun to every item in
the list. This function must have the prototype:

void yourFun (T* a, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

T*&
at (size_t i);
T* const&
at (size_t i) const;

Returns a pointer to the i th value in the list. The first variant can be used
as an lvalue , the second cannot. The index i must be between zero and
the number of items in the collection less one, or an exception of type
RWBoundsError will be thrown.

void
clear ();

Removes all items from the collection.

void
clearAndDestroy ();

Removes all items from the collection and deletes them.

Public
Operators

Public
Member

Functions

RWTPtrDlist<T>

728 Appendix A Tools.h++ Class Reference

RWBoolean
contains (const T* a) const;

Returns TRUE if the list contains an object that is equal to the object pointed
to by a, FALSE otherwise. Equality is measured by the class-defined
equality operator for type T.

RWBoolean
contains (RWBoolean (*testFun)(T*, void*),void* d) const;

Returns TRUE if the list contains an item for which the user-defined
“tester” function pointed to by testFun returns TRUE . Returns FALSE

otherwise. The tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

size_t
entries () const;

Returns the number of items that are currently in the collection.

T*
find (const T* target) const;

Returns a pointer to the first object encountered which is equal to the
object pointed to by target , or nil if no such object can be found.
Equality is measured by the class-defined equality operator for type T.

T*
find (RWBoolean (*testFun)(T*, void*),void* d,) const;

Returns a pointer to the first object encountered for which the user-defined
tester function pointed to by testFun returns TRUE, or nil if no such object
can be found. The tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

T*&
first ();
T* const&
first () const;

Returns a pointer to the first item in the list. The behavior is undefined if
the list is empty.

RWTPtrDlist<T>

Tools.h++ Class Reference Appendix A 729

T*
get ();

Returns a pointer to the first item in the list and removes the item. The
behavior is undefined if the list is empty.

size_t
index (const T* a);

Returns the index of the first object that is equal to the object pointed to by
a, or RW_NPOS if there is no such object. Equality is measured by the class-
defined equality operator for type T.

size_t
index (RWBoolean (*testFun)(T*, void*),void* d) const;

Returns the index of the first object for which the user-defined tester
function pointed to by testFun returns TRUE, or RW_NPOS if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

void
insert (T* a);

Adds the object pointed to by a to the end of the list.

void
insertAt (size_t i, T* a);

Adds the object pointed to by a at the index position i . This position must
be between zero and the number of items in the list, or an exception of
type RWBoundsError will be thrown.

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the list, FALSE otherwise.

T*&
last ();
T* const&
last () const;

Returns a pointer to the last item in the list. The behavior is undefined if
the list is empty.

size_t
occurrencesOf (const T* a) const;

Returns the number of objects in the list that are equal to the object pointed
to by a. Equality is measured by the class-defined equality operator for
type T.

RWTPtrDlist<T>

730 Appendix A Tools.h++ Class Reference

size_t
occurrencesOf (RWBoolean (*testFun)(T*, void*),void* d)const;

Returns the number of objects in the list for which the user-defined
“tester” function pointed to by testFun returns TRUE . The tester function
must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

void
prepend (T* a);

Adds the item pointed to by a to the beginning of the list.

T*
remove (const T* a);

Removes the first object which is equal to the object pointed to by a and
returns a pointer to it, or nil if no such object could be found. Equality is
measured by the class-defined equality operator for type T.

T*
remove (RWBoolean (*testFun)(T*, void*),void* d);

Removes the first object for which the user-defined tester function pointed
to by testFun returns TRUE and returns a pointer to it, or nil if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

size_t
removeAll (const T* a);

Removes all objects which are equal to the object pointed to by a. Returns
the number of objects removed. Equality is measured by the class-defined
equality operator for type T.

size_t
removeAll (RWBoolean (*testFun)(T*, void*),void* d);

Removes all objects for which the user-defined tester function pointed to
by testFun returns TRUE. Returns the number of objects removed. The
tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

RWTPtrDlist<T>

Tools.h++ Class Reference Appendix A 731

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

T*
removeAt (size_t i);

Removes the object at index i and returns a pointer to it. An exception of
type RWBoundsError will be thrown if i is not a valid index. Valid indices
are from zero to the number of items in the list less one.

T*
removeFirst ();

Removes the first item in the list and returns a pointer to it. The behavior
is undefined if the list is empty.

T*
removeLast ();

Removes the last item in the list and returns a pointer to it. The behavior
is undefined if the list is empty.

RWvostream&
operator<< (RWvostream& strm, const RWTPtrDlist<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrDlist<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrDlist<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrDlist<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrDlist<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrDlist<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference Appendix A 733

RWTPtrDlistIterator<T>

#include <rw/tpdlist.h>
RWTPtrDlist<T> list;
RWTPtrDlistIterator<T> iterator(list);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

Iterator for class RWTPtrDlist<T>, allowing sequential access to all the
elements of a doubly-linked parameterized list. Elements are accessed in
order, in either direction.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTPtrDlistIterator <T>(RWTPtrDlist<T>& c);
Constructs an iterator to be used with the list c .

RWBoolean
operator++ ();

Advances the iterator to the next item and returns TRUE. When the end of
the collection is reached, returns FALSE and the position of the iterator will
be undefined.

RWBoolean
operator-- ();

Retreats the iterator to the previous item and returns TRUE. When the
beginning of the collection is reached, returns FALSE and the position of
the iterator will be undefined.

RWBoolean
operator+= (size_t n);

Advances the iterator n positions and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

Synopsis

Please Note!

Description

Persistence

Public
Constructor

Public
Member

Operators

RWTPtrDlistIterator<T>

734 Appendix A Tools.h++ Class Reference

RWBoolean
operator-= (size_t n);

Retreats the iterator n positions and returns TRUE. When the beginning of
the collection is reached, returns FALSE and the position of the iterator will
be undefined.

T*
operator() ();

Advances the iterator to the next item and returns a pointer to it. When
the end of the collection is reached, returns nil and the position of the
iterator will be undefined.

RWTPtrDlist<T>*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

T*
findNext (const T* a);

Advances the iterator to the first element that is equal to the object pointed
to by a and returns a pointer to it. If no item is found, returns nil and the
position of the iterator will be undefined. Equality is measured by the
class-defined equality operator for type T.

T*
findNext (RWBoolean (*testFun)(T*, void*), void*);

Advances the iterator to the first element for which the tester function
pointed to by testFun returns TRUE and returns a pointer to it. If no item
is found, returns nil and the position of the iterator will be undefined.

void
insertAfterPoint (T* a);

Inserts the object pointed to by a into the iterator’s associated collection in
the position immediately after the iterator’s current position which
remains unchanged.

T*
key () const;

Returns a pointer to the object at the iterator's current position. The results
are undefined if the iterator is no longer valid.

T*
remove ();

Removes and returns the object at the iterator's current position from the
iterator’s associated collection. Afterwards, the iterator will be positioned
at the element immediately before the removed element. Returns nil if
unsuccessful in which case the position of the iterator is undefined. If the
first element of the iterator's associated collection is removed, then the
position of the iterator will be undefined.

Public
Member

Functions

RWTPtrDlistIterator<T>

Tools.h++ Class Reference Appendix A 735

T*
removeNext (const T* a);

Advances the iterator to the first element that is equal to the object pointed
to by a, then removes and returns it. Afterwards, the iterator will be
positioned at the element immediately before the removed element.
Returns nil if unsuccessful in which case the position of the iterator is
undefined. Equality is measured by the class-defined equality operator for
type T.

T*
removeNext (RWBoolean (*testFun)(T*, void*), void*);

Advances the iterator to the first element for which the tester function
pointed to by testFun returns TRUE, then removes and returns it.
Afterwards, the iterator will be positioned at the element immediately
before the removed element. Returns nil if unsuccessful in which case the
position of the iterator is undefined.

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTPtrDlist<T>& c);

Resets the iterator to iterate over the collection c .

Tools.h++ Class Reference Appendix A 737

RWTPtrHashDictionary<K,V>

#include <rw/tphdict.h>
unsigned hashFun(const K&);
RWTPtrHashDictionary<K,V> dictionary(hashFun);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

 RWTPtrHashDictionary<K,V> is a dictionary of keys of type K and values of
type V, implemented using a hash table. While duplicates of values are
allowed, duplicates of keys are not.

It is a pointer based collection: pointers to the keys and values are copied in
and out of the hash buckets.

Parameters K and V represent the type of the key and the type of the value,
respectively, to be inserted into the table. These can be either classes or
fundamental types. Class K must have

• well-defined equality semantics (K::operator==(const K&)).

Class V can be of any type.

A user-supplied hashing function for type K must be supplied to the
constructor when creating a new table. If K is a Rogue Wave class, then this
requirement is usually trivial because most Rogue Wave objects know how
to return a hashing value. In fact, classes RWCString, RWDate, RWTime,
and RWWString contain static member functions called hash that can be
supplied to the constructor as is. The function must have prototype:

unsigned hFun(const K& a);

and should return a suitable hash value for the object a.

To find a value, the key is first hashed to determine in which bucket the key
and value can be found. The bucket is then searched for an object that is
equal (as determined by the equality operator) to the key.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of (key/value) pairs in the collection greatly
exceeds the number of buckets then efficiency will sag because each bucket
must be searched linearly. The number of buckets can be changed by calling

Synopsis

Please Note!

Description

RWTPtrHashDictionary<K,V>

738 Appendix A Tools.h++ Class Reference

member function resize() . This is relatively expensive because all of the
keys must be rehashed.

If you wish for this to be done automatically, then you can subclass from this
class and implement your own special insert() and remove() functions
which perform a resize() as necessary.

None

#include <rw/tphdict.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {
 RWTPtrHashDictionary<RWCString, RWDate>
 birthdays(RWCString::hash);
 birthdays.insertKeyAndValue
 (new RWCString("John"),
 new RWDate(12, "April", 1975)
);
 birthdays.insertKeyAndValue
 (new RWCString("Ivan"),
 new RWDate(2, "Nov", 1980)
);

 // Alternative syntax:
 birthdays[new RWCString("Susan")] =
 new RWDate(30, "June", 1955);
 birthdays[new RWCString("Gene")] =
 new RWDate(5, "Jan", 1981);

 // Print a birthday:
 RWCString key("John");
 cout << *birthdays[&key] << endl;

 birthdays.clearAndDestroy();
 return 0;
}
Program output:

April 12, 1975

RWTPtrHashDictionary <K,V>(unsigned (*hashKey)(const K&),
 size_t buckets = RWDEFAULT_CAPACITY);

Constructs an empty hash dictionary. The first argument is a pointer to a
user-defined hashing function for items of type K (the key). The table will
initally have buckets buckets although this can be changed with member
function resize() .

RWTPtrHashDictionary <K,V>(const RWTPtrHashDictionary<K,V>& c);
Constructs a new hash dictionary as a shallow copy of c . After
construction, pointers will be shared between the two collections. The new

Persistence

Example

Public
Constructors

RWTPtrHashDictionary<K,V>

Tools.h++ Class Reference Appendix A 739

object will use the same hashing function and have the same number of
buckets as c . Hence, the keys will not be rehashed.

RWTPtrHashDictionary<K,V>&
operator= (const RWTPtrHashDictionary<K,V>& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared
between the two collections. Self will use the same hashing function and
have the number of buckets as c . Hence, the keys will not be rehashed.

V*&
operator[] (K* key);

Look up the key key and return a reference to the pointer of its associated
value. If the key is not in the dictionary, then it is added to the dictionary.
In this case, the pointer to the value will be undefined. Because of this, if
there is a possibility that a key will not be in the dictionary, then this
operator can only be used as an lvalue .

void
applyToKeyAndValue (void (*applyFun)(K*,V*&,void*),void* d);

Applies the user-defined function pointed to by applyFun to every key-
value pair in the dictionary. This function must have prototype:

void yourFun (K* key, V*& value, void* d);

This function will be called for each key value pair in the dictionary, with a
pointer to the key as the first argument and a reference to a pointer to the
value as the second argument. The key should not be changed or touched.
A new value can be substituted, or the old value can be changed. Client
data may be passed through as parameter d.

void
clear ();

Removes all key value pairs from the collection.

void
clearAndDestroy ();

Removes all key value pairs from the collection and deletes both the keys
and the values.

RWBoolean
contains (const K* key) const;

Returns TRUE if the dictionary contains a key which is equal to the key
pointed to by key . Returns FALSE otherwise. Equality is measured by the
class-defined equality operator for type K.

size_t
entries () const;

Returns the number of key-value pairs currently in the dictionary.

Public
Operators

Public
Member

Functions

RWTPtrHashDictionary<K,V>

740 Appendix A Tools.h++ Class Reference

K*
find (const K* key) const;

Returns a pointer to the key which is equal to the key pointed to by key , or
nil if no such item could be found. Equality is measured by the class-
defined equality operator for type K.

V*
findValue (const K* key) const;

Returns a pointer to the value associated with the key pointed to by key , or
nil if no such item could be found. Equality is measured by the class-
defined equality operator for type K.

K*
findKeyAndValue (const K* key, V*& retVal) const;

Returns a pointer to the key associated with the key pointed to by key , or
nil if no such item could be found. If a key is found, the pointer to its
associated value is put in retVal . Equality is measured by the class-
defined equality operator for type K.

void
insertKeyAndValue (K* key, V* value);

If the key pointed to by key is in the dictionary, then its associated value is
changed to value . Otherwise, a new key value pair is inserted into the
dictionary.

RWBoolean
isEmpty () const;

Returns TRUE if the dictionary has no items in it, FALSE otherwise.

K*
remove (const K* key);

Removes the key and value pair where the key is equal to the key pointed
to by key . Returns the key or nil if no match was found. Equality is
measured by the class-defined equality operator for type K.

void
resize (size_t N);

Changes the number of buckets to N. This will result in all of the keys
being rehashed.

Tools.h++ Class Reference Appendix A 741

RWTPtrHashDictionaryIterator<K,V>

#include <rw/tphdict.h>
unsigned hashFun(const K&);
RWTPtrHashDictionary<K,V> dictionary(hashFun);
RWTPtrHashDictionaryIterator<K,V> iterator(dictionary);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

Iterator for class RWTPtrHashDictionary<K,V>, allowing sequential access to
all keys and values of a parameterized hash dictionary. Elements are not
accessed in any particular order.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTPtrHashDictionaryIterator (RWTPtrHashDictionary& c);
Constructs an iterator to be used with the dictionary c .

RWBoolean
operator++ ();

Advances the iterator to the next key-value pair and returns TRUE. When
the end of the collection is reached, returns FALSE and the position of the
iterator will be undefined.

K*
operator() ();

Advances the iterator to the next key-value pair and returns a pointer to
the key. When the end of the collection is reached, returns nil and the
position of the iterator will be undefined. Use member function value()

to recover the dictionary value.

RWTPtrHashDictionary*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

Synopsis

Please Note!

Description

Persistence

Public
Constructor

Public
Operators

Public
Member

Functions

RWTPtrHashDictionaryIterator<K,V>

742 Appendix A Tools.h++ Class Reference

K*
key () const;

Returns a pointer to the key at the iterator’s current position. The results
are undefined if the iterator is no longer valid.

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTPtrHashDictionary& c);

Resets the iterator to iterate over the collection c .

V*
value () const;

Returns a pointer to the value at the iterator’s current position. The results
are undefined if the iterator is no longer valid.

Tools.h++ Class Reference Appendix A 743

RWTPtrHashSet<T>

RWTPtrHashSet<T> RWTPtrHashTable<T>

#include <rw/tphset.h>
unsigned hashFun(const T&);
RWTPtrHashSet(hashFun) set;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

RWTPtrHashSet<T> is a derived class of RWTPtrHashTable<T> where the
insert() function has been overridden to accept only one item of a given
value. Hence, each item in the collection will have a unique value.

As with class RWTPtrHashTable<T>, you must supply a hashing function to
the constructor.

The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

None

This examples exercises a set of RWCStrings.

#include <rw/tphset.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

main() {
 RWTPtrHashSet<RWCString> set(RWCString::hash);

 set.insert(new RWCString("one"));
 set.insert(new RWCString("two"));
 set.insert(new RWCString("three"));
 set.insert(new RWCString("one"));

 cout << set.entries() << endl; // Prints "3"

 set.clearAndDestroy();
 return 0;
}

Program output:

3

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrHashSet<T>

744 Appendix A Tools.h++ Class Reference

RWTPtrHashSet <T>(unsigned (*hashFun)(const T&),
 size_t buckets = RWDEFAULT_CAPACITY);

Constructs an empty hashing set. The first argument is a pointer to a user-
defined hashing function for items of type T. The table will initally have
buckets buckets although this can be changed with member function
resize() .

RWTPtrHashSet<T>&
Union(const RWTPtrHashSet<T>& h);

Computes the union of self and h, modifying self and returning self.

RWTPtrHashSet<T>&
difference(const RWTPtrHashSet<T>& h);

Computes the disjunction of self and h, modifying self and returning self.

RWTPtrHashSet<T>&
intersection(const RWTPtrHashSet<T>& h);

Computes the intersection of self and h, modifying self and returning self.

RWTPtrHashSet<T>&
symmetricDifference(const RWTPtrHashSet<T>& h);

Computes the symmetric difference between self and h, modifying self and
returning self.

RWBoolean
isSubsetOf(const RWTPtrHashSet<T>& h) const;

Returns TRUE if self is a subset of h.

RWBoolean
isProperSubsetOf(const RWTPtrHashSet<T>& h) const;

Returns TRUE if self is a proper subset of h.

RWBoolean
isEquivalent(const RWTPtrHashSet<T>& h) const;

Returns TRUE if self and h are identical.

RWBoolean
operator!= (const RWTPtrHashSet<T>& h) const;

Returns FALSE if self and h are identical.

void
apply (void (*applyFun)(T*, void*), void* d);

Inherited from class RWTPtrHashTable<T>.

void
clear ();

Inherited from class RWTPtrHashTable<T>.

Public
Constructor

Public
Member

Functions

RWTPtrHashSet<T>

Tools.h++ Class Reference Appendix A 745

void
clearAndDestroy ();

Inherited from class RWTPtrHashTable<T>.

RWBoolean
contains (const T* a) const;

Inherited from class RWTPtrHashTable<T>.

size_t
entries () const;

Inherited from class RWTPtrHashTable<T>.

T*
find (const T* target) const;

Inherited from class RWTPtrHashTable<T>.

void
insert (T* a);

Redefined from class RWTPtrHashTable<T> to allow an object of a given
value to be inserted only once.

RWBoolean
isEmpty () const;

Inherited from class RWTPtrHashTable<T>.

size_t
occurrencesOf (const T* a) const;

Inherited from class RWTPtrHashTable<T>.

T*
remove (const T* a);

Inherited from class RWTPtrHashTable<T>.

size_t
removeAll (const T* a);

Inherited from class RWTPtrHashTable<T>.

void
resize (size_t N);

Inherited from class RWTPtrHashTable<T>.

Tools.h++ Class Reference Appendix A 747

RWTPtrHashTable<T>

#include <rw/tphasht.h>
unsigned hashFun(const T&);
RWTPtrHashTable<T> table(hashFun);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

This class implements a parameterized hash table of types T. It uses
chaining to resolve hash collisions. Duplicates are allowed.

It is a pointer based collection: pointers to objects are copied in and out of the
hash buckets.

Parameter T represents the type of object to be inserted into the table, either a
class or fundamental type. The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

A user-supplied hashing function for type T must be supplied to the
constructor when creating a new table. If T is a Rogue Wave class, then this
requirement is usually trivial because most Rogue Wave objects know how
to return a hashing value. In fact, classes RWCString, RWDate, RWTime,
and RWWString contain static member functions called hash that can be
supplied to the constructor as is. The function must have prototype:

unsigned hFun(const T& a);

and should return a suitable hash value for the object a.

To find an object, it is first hashed to determine in which bucket it occurs.
The bucket is then searched for an object that is equal (as determined by the
equality operator) to the candidate.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of items in the collection greatly exceeds the
number of buckets then efficiency will sag because each bucket must be
searched linearly. The number of buckets can be changed by calling member
function resize() . This is relatively expensive because all of the keys must
be rehashed.

Synopsis

Please Note!

Description

RWTPtrHashTable<T>

748 Appendix A Tools.h++ Class Reference

If you wish for this to be done automatically, then you can subclass from this
class and implement your own special insert() and remove() functions
which perform a resize() as necessary.

None

#include <rw/tphasht.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

main() {
 RWTPtrHashTable<RWCString> table(RWCString::hash);
 RWCString *states[4] = { new RWCString(“Alabama”),
 new RWCString(“Pennsylvania”),
 new RWCString(“Oregon”),
 new RWCString(“Montana”) };

 table.insert(states[0]);
 table.insert(states[1]);
 table.insert(states[2]);
 table.insert(states[3]);

 RWCString key("Oregon");
 cout << "The table " <<
 (table.contains(&key) ? "does " : "does not ") <<
 "contain Oregon\n";

 table.removeAll(&key);

 cout << "Now the table " <<
 (table.contains(&key) ? "does " : "does not ") <<
 "contain Oregon";

 delete states[0];
 delete states[1];
 delete states[2];
 delete states[3];
 return 0;
}
Program output

The table does contain Oregon
Now the table does not contain Oregon

RWTPtrHashTable <T>(unsigned (*hashFun)(const T&),
 size_t buckets = RWDEFAULT_CAPACITY);

Constructs an empty hash table. The first argument is a pointer to a user-
defined hashing function for items of type T. The table will initally have
buckets buckets although this can be changed with member function
resize() .

RWTPtrHashTable <T>(const RWTPtrHashTable<T>& c);
Constructs a new hash table as a shallow copy of c . After construction,
pointers will be shared between the two collections. The new object will

Persistence

Example

Public
Constructors

RWTPtrHashTable<T>

Tools.h++ Class Reference Appendix A 749

have the same number of buckets as c . Hence, the keys will not be
rehashed.

RWTPtrHashTable&
operator= (const RWTPtrHashTable<T>& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared
between the two collections and self will have the same number of buckets
as c . Hence, the keys will not be rehashed.

void
apply (void (*applyFun)(T*, void*), void* d);

Applies the user-defined function pointed to by applyFun to every item in
the table. This function must have prototype:

void yourFun (T* a, void* d);

Client data may be passed through as parameter d. The items should not
be changed in any way that could change their hash value.

void
clear ();

Removes all items from the collection.

void
clearAndDestroy ();

Removes all items from the collection and deletes them.

RWBoolean
contains (const T* p) const;

Returns TRUE if the collection contains an item which is equal to the item
pointed to by p. Returns FALSE otherwise. Equality is measured by the
class-defined equality operator for type T.

size_t
entries () const;

Returns the number of items currently in the collection.

T*
find (const T* target) const;

Returns a pointer to the object which is equal to the object pointed to by
target , or nil if no such object can be found. Equality is measured by the
class-defined equality operator for type T.

void
insert (T* a);

Adds the object pointed to by a to the collection.

RWBoolean
isEmpty () const;

Returns TRUE if the collection has no items in it, FALSE otherwise.

Public
Operators

Public
Member

Functions

RWTPtrHashTable<T>

750 Appendix A Tools.h++ Class Reference

size_t
occurrencesOf (const T* a) const;

Returns the number of objects in the collection which are equal to the
object pointed to by a. Equality is measured by the class-defined equality
operator for type T.

T*
remove (const T* a);

Removes the object which is equal to the object pointed to by a and returns
a pointer to it, or nil if no such object could be found. Equality is
measured by the class-defined equality operator for type T.

size_t
removeAll (const T* a);

Removes all objects which are equal to the object pointed to by a. Returns
the number of objects removed. Equality is measured by the class-defined
equality operator for type T.

void
resize (size_t N);

Changes the number of buckets to N. This will result in all of the objects in
the collection being rehashed.

Tools.h++ Class Reference Appendix A 751

RWTPtrHashTableIterator<T>

#include <rw/tphasht.h>
RWTPtrHashTable<T> table;
RWTPtrHashTableIterator<T> iterator(table);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

Iterator for class RWTPtrHashTable<T>, allowing sequential access to all the
elements of a hash table. Elements are not accessed in any particular order.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTPtrHashTableIterator (RWTPtrHashTable<T>& c);
Constructs an iterator to be used with the table c .

RWBoolean
operator++ ();

Advances the iterator to the next item and returns TRUE. When the end of
the collection is reached, returns FALSE and the position of the iterator will
be undefined.

T*
operator() ();

Advances the iterator to the next item and returns a pointer to it. When
the end of the collection is reached, returns nil and the position of the
iterator will be undefined.

RWTPtrHashTable<T>*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

Synopsis

Please Note!

Description

Persistence

Public
Constructor

Public
Operators

Public
Member

Functions

RWTPtrHashTableIterator<T>

752 Appendix A Tools.h++ Class Reference

T*
key () const;

Returns a pointer to the item at the iterator's current position. The results
are undefined if the iterator is no longer valid.

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTPtrHashTable<T>& c);

Resets the iterator to iterate over the collection c .

Tools.h++ Class Reference Appendix A 753

RWTPtrOrderedVector<T>

#include <rw/tpordvec.h>
RWTPtrOrderedVector<T> ordvec;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

RWTPtrOrderedVector<T> is a pointer-based ordered collection. That is, the
items in the collection have a meaningful ordered relationship with respect
to one another and can be accessed by an index number. The order is set by
the order of insertion. Duplicates are allowed. The class is implemented as a
vector, allowing efficient insertion and retrieval from the end of the
collection, but somewhat slower from the beginning of the collection.

The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

Isomorphic

#include <rw/tpordvec.h>
#include <rw/rstream.h>

main() {
 RWTPtrOrderedVector<double> vec;

 vec.insert(new double(22.0));
 vec.insert(new double(5.3));
 vec.insert(new double(-102.5));
 vec.insert(new double(15.0));
 vec.insert(new double(5.3));

 cout << vec.entries() << " entries\n" << endl; // Prints "5"
 for (int i=0; i<vec.length(); i++)
 cout << *vec[i] << endl;

 vec.clearAndDestroy();
 return 0;
}

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrOrderedVector<T>

754 Appendix A Tools.h++ Class Reference

Program output:

5 entries
22
5.3
-102.5
15
5.3

RWTPtrOrderedVector <T>(size_t capac=RWDEFAULT_CAPACITY);
Creates an empty ordered vector with capacity capac . Should the number
of items exceed this value, the vector will be resized automatically.

RWTPtrOrderedVector <T>(const RWTPtrOrderedVector<T>& c);
Constructs a new ordered vector as a shallow copy of c . After
construction, pointers will be shared between the two collections.

RWTPtrOrderedVector<T>&
operator= (const RWTPtrOrderedVector& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared
between the two collections.

T*&
operator() (size_t i);
T* const&
operator() (size_t i) const;

Returns a pointer to the i th value in the vector. The first variant can be
used as an lvalue , the second cannot. The index i must be between zero
and the number of items in the collection less one. No bounds checking is
performed.

T*&
operator[] (size_t i);
T* const&
operator[] (size_t i) const;

Returns a pointer to the i th value in the vector. The first variant can be
used as an lvalue , the second cannot. The index i must be between zero
and the number of items in the collection less one, or an exception of type
RWBoundsError will be thrown.

void
append (T* a);

Appends the item pointed to by a to the end of the vector. The collection
will automatically be resized if this causes the number of items in the
collection to exceed the capacity.

Public
Constructors

Public
Operators

Public
Member

Functions

RWTPtrOrderedVector<T>

Tools.h++ Class Reference Appendix A 755

T*&
at (size_t i);
T* const&
at (size_t i) const;

Returns a pointer to the i th value in the vector. The first variant can be
used as an lvalue , the second cannot. The index i must be between zero
and the number of items in the collection less one, or an exception of type
RWBoundsError will be thrown.

void
clear ();

Removes all items from the collection.

void
clearAndDestroy ();

Removes all items from the collection and deletes them.

RWBoolean
contains (const T* a) const;

Returns TRUE if the collection contains an item that is equal to the object
pointed to by a, FALSE otherwise. A linear search is done. Equality is
measured by the class-defined equality operator for type T.

T* const *
data () const;

Returns a pointer to the raw data of the vector. The contents should not be
changed. Should be used with care.

size_t
entries () const;

Returns the number of items currently in the collection.

T*
find (const T* target) const;

Returns a pointer to the first object encountered which is equal to the
object pointed to by target , or nil if no such object can be found.
Equality is measured by the class-defined equality operator for type T.

T*&
first ();
T* const&
first () const;

Returns a pointer to the first item in the vector. An exception of type
RWBoundsError will occur if the vector is empty.

size_t
index (const T* a) const;

Performs a linear search, returning the index of the first object that is equal
to the object pointed to by a, or RW_NPOS if there is no such object. Equality
is measured by the class-defined equality operator for type T.

RWTPtrOrderedVector<T>

756 Appendix A Tools.h++ Class Reference

void
insert (T* a);

Adds the object pointed to by a to the end of the vector. The collection will
be resized automatically if this causes the number of items to exceed the
capacity.

void
insertAt (size_t i, T* a);

Adds the object pointed to by a at the index position i . The item
previously at position i is moved to i+1 , etc. The collection will be resized
automatically if this causes the number of items to exceed the capacity.
The index i must be between 0 and the number of items in the vector or an
exception of type RWBoundsError will occur.

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the collection, FALSE otherwise.

T*&
last ();
T* const&
last () const;

Returns a pointer to the last item in the collection. If there are no items in
the collection then an exception of type RWBoundsError will occur.

size_t
length () const;

Returns the number of items currently in the collection.

size_t
occurrencesOf (const T* a) const;

Performs a linear search, returning the number of objects in the collection
that are equal to the object pointed to by a. Equality is measured by the
class-defined equality operator for type T.

void
prepend (T* a);

Adds the item pointed to by a to the beginning of the collection. The
collection will be resized automatically if this causes the number of items
to exceed the capacity.

T*
remove (const T* a);

Performs a linear search, removing the first object which is equal to the
object pointed to by a and returns a pointer to it, or nil if no such object
could be found. Equality is measured by the class-defined equality
operator for type T.

RWTPtrOrderedVector<T>

Tools.h++ Class Reference Appendix A 757

size_t
removeAll (const T* a);

Performs a linear search, removing all objects which are equal to the object
pointed to by a. Returns the number of objects removed. Equality is
measured by the class-defined equality operator for type T.

T*
removeAt (size_t i);

Removes the object at index i and returns a pointer to it. An exception of
type RWBoundsError will be thrown if i is not a valid index. Valid indices
are from zero to the number of items in the list less one.

T*
removeFirst ();

Removes the first item in the collection and returns a pointer to it. An
exception of type RWBoundsError will be thrown if the list is empty.

T*
removeLast ();

Removes the last item in the collection and returns a pointer to it. An
exception of type RWBoundsError will be thrown if the list is empty.

void
resize (size_t N);

Changes the capacity of the collection to N. Note that the number of
objects in the collection does not change, just the capacity.

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrOrderedVector<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrOrderedVector<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrOrderedVector<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrOrderedVector<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrOrderedVector<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrOrderedVector<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference Appendix A 759

RWTPtrSlist<T>

#include <rw/tpslist.h>
RWTPtrSlist<T> list;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

This class maintains a collection of pointers to type T, implemented as a
singly-linked list. This is a pointer based list: pointers to objects are copied in
and out of the links that make up the list.

Parameter T represents the type of object to be inserted into the list, either a
class or fundamental type. The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

Isomorphic

In this example, a singly-linked list of RWDates is exercised.

#include <rw/tpslist.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {
 RWTPtrSlist<RWDate> dates;
 dates.insert(new RWDate(2, "June", 52)); // 6/2/52
 dates.insert(new RWDate(30, "March", 46)); // 3/30/46
 dates.insert(new RWDate(1, "April", 90)); // 4/1/90

 // Now look for one of the dates:
 RWDate key(2, "June", 52);
 RWDate* d = dates.find(&key);
 if (d){
 cout << "Found date " << *d << endl;
 }

 // Remove in reverse order:
 while (!dates.isEmpty()){
 d = dates.removeLast();
 cout << *d << endl;
 delete d;
 }

 return 0;
}

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrSlist<T>

760 Appendix A Tools.h++ Class Reference

Program output:

Found date June 2, 1952
April 1, 1990
March 30, 1946
June 2, 1952

RWTPtrSlist <T>();
Construct an empty list.

RWTPtrSlist <T>(const RWTPtrSlist<T>& c);
Constructs a new singly-linked list as a shallow copy of c . After
construction, pointers will be shared between the two collections.

RWTPtrSlist&
operator= (const RWTPtrSlist<T>& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared
between the two collections.

T*&
operator[] (size_t i);
T* const&
operator[] (size_t i) const;

Returns a pointer to the i th value in the list. The first variant can be used
as an lvalue , the second cannot. The index i must be between zero and
the number of items in the collection less one, or an exception of type
RWBoundsError will be thrown.

void
append (T* a);

Appends the item pointed to by a to the end of the list.

void
apply (void (*applyFun)(T*, void*), void* d);

Applies the user-defined function pointed to by applyFun to every item in
the list. This function must have the prototype:

void yourFun (T* a, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

T*&
at (size_t i);
T* const;
at (size_t i) const;

Returns a pointer to the i th value in the list. The first variant can be used
as an lvalue , the second cannot. The index i must be between zero and

Public
Constructors

Public
Operators

Public
Member

Functions

RWTPtrSlist<T>

Tools.h++ Class Reference Appendix A 761

the number of items in the collection less one, or an exception of type
RWBoundsError will be thrown.

void
clear ();

Removes all items from the collection.

void
clearAndDestroy ();

Removes all items from the collection and deletes them.

RWBoolean
contains (const T* a) const;

Returns TRUE if the list contains an object that is equal to the object pointed
to by a, FALSE otherwise. Equality is measured by the class-defined
equality operator for type T.

RWBoolean
contains (RWBoolean (*testFun)(T*, void*),void* d) const;

Returns TRUE if the list contains an item for which the user-defined
“tester” function pointed to by testFun returns TRUE . Returns FALSE

otherwise. The tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

size_t
entries () const;

Returns the number of items that are currently in the collection.

T*
find (const T* target) const;

Returns a pointer to the first object encountered which is equal to the
object pointed to by target , or nil if no such object can be found.
Equality is measured by the class-defined equality operator for type T.

T*
find (RWBoolean (*testFun)(T*, void*),void* d,) const;

Returns a pointer to the first object encountered for which the user-defined
tester function pointed to by testFun returns TRUE, or nil if no such object
can be found. The tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

RWTPtrSlist<T>

762 Appendix A Tools.h++ Class Reference

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

T*&
first ();
T* const&
first () const;

Returns a pointer to the first item in the list. The behavior is undefined if
the list is empty.

T*
get ();

Returns a pointer to the first item in the list and removes the item. The
behavior is undefined if the list is empty.

size_t
index (const T* a);

Returns the index of the first object that is equal to the object pointed to by
a, or RW_NPOS if there is no such object. Equality is measured by the class-
defined equality operator for type T.

size_t
index (RWBoolean (*testFun)(T*, void*),void* d) const;

Returns the index of the first object for which the user-defined tester
function pointed to by testFun returns TRUE, or RW_NPOS if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

void
insert (T* a);

Adds the object pointed to by a to the end of the list.

void
insertAt (size_t i, T* a);

Adds the object pointed to by a at the index position i . This position must
be between zero and the number of items in the list, or an exception of
type RWBoundsError will be thrown.

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the list, FALSE otherwise.

RWTPtrSlist<T>

Tools.h++ Class Reference Appendix A 763

T*&
last ();
T* const&
last () const;

Returns a pointer to the last item in the list. The behavior is undefined if
the list is empty.

size_t
occurrencesOf (const T* a) const;

Returns the number of objects in the list that are equal to the object pointed
to by a. Equality is measured by the class-defined equality operator for
type T.

size_t
occurrencesOf (RWBoolean (*testFun)(T*, void*),void* d)
 const;

Returns the number of objects in the list for which the user-defined
“tester” function pointed to by testFun returns TRUE . The tester function
must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

void
prepend (T* a);

Adds the item pointed to by a to the beginning of the list.

T*
remove (const T* a);

Removes the first object which is equal to the object pointed to by a and
returns a pointer to it, or nil if no such object could be found. Equality is
measured by the class-defined equality operator for type T.

T*
remove (RWBoolean (*testFun)(T*, void*),void* d);

Removes the first object for which the user-defined tester function pointed
to by testFun returns TRUE and returns a pointer to it, or nil if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

RWTPtrSlist<T>

764 Appendix A Tools.h++ Class Reference

size_t
removeAll (const T* a);

Removes all objects which are equal to the object pointed to by a. Returns
the number of objects removed. Equality is measured by the class-defined
equality operator for type T.

size_t
removeAll (RWBoolean (*testFun)(T*, void*),void* d);

Removes all objects for which the user-defined tester function pointed to
by testFun returns TRUE. Returns the number of objects removed. The
tester function must have the prototype:

RWBoolean yourTester (T*, void* d);

This function will be called for each item in the list, with a pointer to the
item as the first argument. Client data may be passed through as
parameter d.

T*
removeAt (size_t i);

Removes the object at index i and returns a pointer to it. An exception of
type RWBoundsError will be thrown if i is not a valid index. Valid indices
are from zero to the number of items in the list less one.

T*
removeFirst ();

Removes the first item in the list and returns a pointer to it. The behavior
is undefined if the list is empty.

T*
removeLast ();

Removes the last item in the list and returns a pointer to it. The behavior
is undefined if the list is empty. This function is relatively slow because
removing the last link in a singly-linked list necessitates access to the next-
to-the-last link, requiring that the whole list be searched.

RWvostream&
operator<< (RWvostream& strm, const RWTPtrSlist<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrSlist<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrSlist<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrSlist<T>& coll);

Restores the contents of the collection coll from the input stream strm .

Related
Global

Operators

RWTPtrSlist<T>

Tools.h++ Class Reference Appendix A 765

RWvistream&
operator>> (RWvistream& strm, RWTPtrSlist<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrSlist<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference Appendix A 767

RWTPtrSlistIterator<T>

#include <rw/tpslist.h>
RWTPtrSlist<T> list;
RWTPtrSlistIterator<T> iterator(list);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

Iterator for class RWTPtrSlist<T>, allowing sequential access to all the
elements of a singly-linked parameterized list. Elements are accessed in
order, from first to last.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTPtrSlistIterator <T>(RWTPtrSlist<T>& c);
Constructs an iterator to be used with the list c .

RWBoolean
operator++ ();

Advances the iterator to the next item and returns TRUE. When the end of
the collection is reached, returns FALSE and the position of the iterator will
be undefined.

RWBoolean
operator+= (size_t n);

Advances the iterator n positions and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

T*
operator() ();

Advances the iterator to the next item and returns a pointer to it. When
the end of the collection is reached, returns nil and the position of the
iterator will be undefined.

Synopsis

Please Note!

Description

Persistence

Public
Constructor

Public
Member

Operators

RWTPtrSlistIterator<T>

768 Appendix A Tools.h++ Class Reference

RWTPtrSlist<T>*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

T*
findNext (const T* a);

Advances the iterator to the first element that is equal to the object pointed
to by a and returns a pointer to it. If no item is found, returns nil and the
position of the iterator will be undefined. Equality is measured by the
class-defined equality operator for type T.

T*
findNext (RWBoolean (*testFun)(T*, void*), void*);

Advances the iterator to the first element for which the tester function
pointed to by testFun returns TRUE and returns a pointer to it. If no item
is found, returns nil and the position of the iterator will be undefined.

void
insertAfterPoint (T* a);

Inserts the object pointed to by a into the iterator’s associated collection in
the position immediately after the iterator’s current position which
remains unchanged.

T*
key () const;

Returns a pointer to the object at the iterator's current position. The results
are undefined if the iterator is no longer valid.

T*
remove ();

Removes and returns the object at the iterator's current position from the
iterator’s associated collection. Afterwards, the iterator will be positioned
at the element immediately before the removed element. Returns nil if
unsuccessful in which case the position of the iterator is undefined. This
function is relatively inefficient for a singly-linked list.

T*
removeNext (const T* a);

Advances the iterator to the first element that is equal to the object pointed
to by a, then removes and returns it. Afterwards, the iterator will be
positioned at the element immediately before the removed element.
Returns nil if unsuccessful in which case the position of the iterator is
undefined. Equality is measured by the class-defined equality operator for
type T.

Public
Member

Functions

RWTPtrSlistIterator<T>

Tools.h++ Class Reference Appendix A 769

T*
removeNext (RWBoolean (*testFun)(T*, void*), void*);

Advances the iterator to the first element for which the tester function
pointed to by testFun returns TRUE, then removes and returns it.
Afterwards, the iterator will be positioned at the element immediately
before the removed element. Returns nil if unsuccessful in which case the
position of the iterator is undefined.

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTPtrSlist<T>& c);

Resets the iterator to iterate over the collection c .

Tools.h++ Class Reference Appendix A 771

RWTPtrSortedVector<T>

#include <rw/tpsrtvec.h>
RWTPtrSortedVector<T> sortvec;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

RWTPtrSortedVector<T> is a pointer-based sorted collection. That is, the
items in the collection have a meaningful ordered relationship with respect
to each other and can be accessed by an index number. In the case of
RWTPtrSortedVector<T>, objects are inserted such that objects “less than”
themselves are before the object, objects “greater than” themselves after the
object. An insertion sort is used. Duplicates are allowed.

Stores a pointer to the inserted item into the collection according to an
ordering determined by the less-than (<) operator.

The class T must have:

• well-defined equality semantics (T::operator==(const T&));

• well-defined less-than semantics (T::operator<(const T&));

Although it is possible to alter objects that are referenced by pointers within
a RWTPtrSortedVector<T>, it is dangerous since the changes may affect the
way that operator<() and operator==() behave, causing the
RWTPtrSortedVector<T> to become unsorted.

Isomorphic

This example inserts a set of dates into a sorted vector in no particular order,
then prints them out in order.

#include <rw/tpsrtvec.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {
 RWTPtrSortedVector<RWDate> vec;

 vec.insert(new RWDate(10, "Aug", 1991));
 vec.insert(new RWDate(9, "Aug", 1991));
 vec.insert(new RWDate(1, "Sep", 1991));
 vec.insert(new RWDate(14, "May", 1990));
 vec.insert(new RWDate(1, "Sep", 1991)); // Add a duplicate

Synopsis

Please Note!

Description

Persistence

Example

RWTPtrSortedVector<T>

772 Appendix A Tools.h++ Class Reference

 vec.insert(new RWDate(2, "June", 1991));

 for (int i=0; i<vec.length(); i++)
 cout << *vec[i] << endl;

 vec.clearAndDestroy();

 return 0;
}
Program output

May 14, 1990
June 2, 1991
August 9, 1991
August 10, 1991
September 1, 1991
September 1, 1991

RWTPtrSortedVector (size_t capac = RWDEFAULT_CAPACITY);
Create an empty sorted vector with an initial capacity equal to capac . The
vector will be automatically resized should the number of items exceed
this amount.

RWTPtrSortedVector <T>(const RWTPtrSortedVector<T>& c);
Constructs a new ordered vector as a shallow copy of c . After
construction, pointers will be shared between the two collections.

RWTPtrSortedVector<T>&
operator= (const RWTPtrSortedVector& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared
between the two collections.

T*&
operator ()(size_t i);
T* const&
operator ()(size_t i) const;

Returns a pointer to the i th value in the vector. The first variant can be
used as an lvalue , the second cannot. The index i must be between zero
and the number of items in the collection less one. No bounds checking is
performed. When used as an lvalue , care must be taken so as not to
disturb the sortedness of the collection.

T*&
operator[] (size_t i);
T* const&
operator[] (size_t i) const;

Returns a pointer to the i th value in the vector. The first variant can be
used as an lvalue , the second cannot. The index i must be between zero
and the number of items in the collection less one, or an exception of type
RWBoundsError will be thrown. When used as an lvalue , care must be
taken so as not to disturb the sortedness of the collection.

Public
Constructor

Public
Operators

RWTPtrSortedVector<T>

Tools.h++ Class Reference Appendix A 773

T*&
at (size_t i);
T* const&
at (size_t i) const;

Returns a pointer to the i th value in the vector. The first variant can be
used as an lvalue , the second cannot. The index i must be between zero
and the number of items in the collection less one, or an exception of type
RWBoundsError will be thrown. When used as an lvalue , care must be
taken so as not to disturb the sortedness of the collection.

void
clear ();

Removes all items from the collection.

void
clearAndDestroy ();

Removes all items from the collection and deletes them.

RWBoolean
contains (const T* a) const;

Returns TRUE if the collection contains an item that is equal to the object
pointed to by a, FALSE otherwise. A binary search is done. Equality is
measured by the class-defined equality operator for type T.

T* const *
data () const;

Returns a pointer to the raw data of the vector. The contents should not be
changed. Should be used with care.

size_t
entries () const;

Returns the number of items currently in the collection.

T*
find (const T* target) const;

Returns a pointer to the first object encountered which is equal to the
object pointed to by target , or nil if no such object can be found. A
binary search is used. Equality is measured by the class-defined equality
operator for type T.

T* const&
first () const;

Returns a pointer to the first item in the vector. An exception of type
RWBoundsError will occur if the vector is empty.

Public
Member

Functions

RWTPtrSortedVector<T>

774 Appendix A Tools.h++ Class Reference

size_t
index (const T* a) const;

Performs a binary search, returning the index of the first object that is
equal to the object pointed to by a, or RW_NPOS if there is no such object.
Equality is measured by the class-defined equality operator for type T.

void
insert (T* a);

Performs a binary search, inserting the object pointed to by a after all items
that compare less than or equal to it, but before all items that do not. “Less
than” is measured by the class-defined '<' operator for type T. The
collection will be resized automatically if this causes the number of items
to exceed the capacity.

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the collection, FALSE otherwise.

T* const&
last () const;

Returns a pointer to the last item in the collection. If there are no items in
the collection then an exception of type RWBoundsError will occur.

size_t
length () const;

Returns the number of items currently in the collection.

size_t
occurrencesOf (const T* a) const;

Performs a binary search, returning the number of items that are equal to
the object pointed to by a. Equality is measured by the class-defined
equality operator for type T.

T*
remove (const T* a);

Performs a binary search, removing the first object which is equal to the
object pointed to by a and returns a pointer to it, or nil if no such object
could be found. Equality is measured by the class-defined equality
operator for type T.

size_t
removeAll (const T* a);

Performs a binary search, removing all objects which are equal to the
object pointed to by a. Returns the number of objects removed. Equality is
measured by the class-defined equality operator for type T.

RWTPtrSortedVector<T>

Tools.h++ Class Reference Appendix A 775

T*
removeAt (size_t i);

Removes the object at index i and returns a pointer to it. An exception of
type RWBoundsError will be thrown if i is not a valid index. Valid indices
are from zero to the number of items in the list less one.

T*
removeFirst ();

Removes the first item in the collection and returns a pointer to it. An
exception of type RWBoundsError will be thrown if the list is empty.

T*
removeLast ();

Removes the last item in the collection and returns a pointer to it. An
exception of type RWBoundsError will be thrown if the list is empty.

void
resize (size_t N);

Changes the capacity of the collection to N. Note that the number of
objects in the collection does not change, just the capacity.

RWvostream&
operator<< (RWvostream& strm,
 const RWTPtrSortedVector<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTPtrSortedVector<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTPtrSortedVector<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTPtrSortedVector<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTPtrSortedVector<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTPtrSortedVector<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference Appendix A 777

RWTValDlist<T>

#include <rw/tvdlist.h>
RWTValDlist<T> list;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

This class maintains a collection of values, implemented as a doubly linked
list. This is a value based list: objects are copied in and out of the links that
make up the list. Unlike intrusive lists (see class RWTIsvDlist<T>), the objects
need not inherit from a link class. However, this makes the class slightly less
efficient than the intrusive lists because of the need to allocate a new link off
the heap with every insertion and to make a copy of the object in the newly
allocated link.

Parameter T represents the type of object to be inserted into the list, either a
class or fundamental type. The class T must have:

• A default constructor;

• well-defined copy semantics (T::T(const T&) or equivalent);

• well-defined assignment semantics (T::operator=(const T&) or
equivalent);

• well-defined equality semantics (T::operator==(const T&)).

Isomorphic

In this example, a doubly-linked list of user type Dog is exercised.

#include <rw/tvdlist.h>
#include <rw/rstream.h>
#include <string.h>

class Dog {
 char* name;
public:
 Dog(const char* c = "") {
 name = new char[strlen(c)+1];
 strcpy(name, c); }

 ~Dog() { delete name; }

 // Define a copy constructor:

Synopsis

Please Note!

Description

Persistence

Example

RWTValDlist<T>

778 Appendix A Tools.h++ Class Reference

 Dog(const Dog& dog) {
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name); }

 // Define an assignment operator:
 void operator=(const Dog& dog) {
 if (this!=&dog) {
 delete name;
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name);
 }
 }

 // Define an equality test operator:
 int operator==(const Dog& dog) const {
 return strcmp(name, dog.name)==0;
 }

 friend ostream& operator<<(ostream& str, const Dog& dog){
 str << dog.name;
 return str;}
};

main() {
 RWTValDlist<Dog> terriers;
 terriers.insert("Cairn Terrier"); // automatic type conversion
 terriers.insert("Irish Terrier");
 terriers.insert("Schnauzer");

 cout << "The list "
 << (terriers.contains("Schnauzer") ? "does ":"does not ")
 << "contain a Schnauzer\n";

 terriers.insertAt(
 terriers.index("Irish Terrier"),
 "Fox Terrier"
);

 while (!terriers.isEmpty())
 cout << terriers.get() << endl;

 return 0;
}
Program output:

The list does contain a Schnauzer
Cairn Terrier
Fox Terrier
Irish Terrier
Schnauzer

RWTValDlist <T>();
Construct an empty list.

Public
Constructors

RWTValDlist<T>

Tools.h++ Class Reference Appendix A 779

RWTValDlist <T>(const RWTValDlist<T>& list);
Construct a copy of the list list . Depending on the nature of the copy
constructor of T, this could be relatively expensive because every item in
the list must be copied.

RWTValDlist&
operator= (const RWTValDlist<T>& list);

Sets self to a copy of the list list . Depending on the nature of the copy
constructor of T, this could be relatively expensive because every item in
the list must be copied.

T&
operator[] (size_t i);

Returns a reference to the item at index i . The results can be used as an
lvalue . An exception of type RWBoundsError will be thrown if i is not a
valid index. Valid indices are from zero to the number of items in the list
less one.

const T&
operator[] (size_t i) const;

Returns a copy of the item at index i . The results cannot be used as an
lvalue . An exception of type RWBoundsError will be thrown if i is not a
valid index. Valid indices are from zero to the number of items in the list
less one.

void
append (const T& a);

Adds the item a to the end of the list.

void
apply (void (*applyFun)(T&, void*), void* d);

Applies the user-defined function pointed to by applyFun to every item in
the list. This function must have prototype:

void yourFun (T& a, void* d);

Client data may be passed through as parameter d.

T&
at (size_t i);

Returns a reference to the item at index i . The results can be used as an
lvalue . An exception of type RWBoundsError will be thrown if i is not a
valid index. Valid indices are from zero to the number of items in the list
less one.

Public
Operators

Public
Member

Functions

RWTValDlist<T>

780 Appendix A Tools.h++ Class Reference

const T&
at (size_t i) const;

Returns a copy of the item at index i . The results cannot be used as an
lvalue . An exception of type RWBoundsError will be thrown if i is not a
valid index. Valid indices are from zero to the number of items in the list
less one.

void
clear ();

Removes all items from the list. Their destructors (if any) will be called.

RWBoolean
contains (const T& a) const;

Returns TRUE if the list contains an object that is equal to the object a.
Returns FALSE otherwise. Equality is measured by the class-defined
equality operator.

RWBoolean
contains (RWBoolean (*testFun)(const T&, void*),void* d)
 const;

Returns TRUE if the list contains an item for which the user-defined
“tester” function pointed to by testFun returns TRUE . Returns FALSE

otherwise. The tester function must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

size_t
entries () const;

Returns the number of items that are currently in the collection.

RWBoolean
find (const T& target, T& k) const;

Returns TRUE if the list contains an object that is equal to the object target

and puts a copy of the matching object into k . Returns FALSE otherwise
and does not touch k . Equality is measured by the class-defined equality
operator. If you do not need a copy of the found object, use contains()

instead.

RWBoolean
find (RWBoolean (*testFun)(const T&, void*), void* d,T& k)
 const;

Returns TRUE if the list contains an object for which the user-defined tester
function pointed to by testFun returns TRUE and puts a copy of the
matching object into k . Returns FALSE otherwise and does not touch k .
The tester function must have the prototype:

RWTValDlist<T>

Tools.h++ Class Reference Appendix A 781

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d. If you
do not need a copy of the found object, use contains() instead.

T&
first ();
const T&
first () const;

Returns (but does not remove) the first item in the list. The behavior is
undefined if the list is empty.

T
get ();

Returns and removes the first item in the list. The behavior is undefined if
the list is empty.

size_t
index (const T& a);

Returns the index of the first object that is equal to the object a, or RW_NPOS

if there is no such object. Equality is measured by the class-defined
equality operator.

size_t
index (RWBoolean (*testFun)(const T&, void*), void* d) const;

Returns the index of the first object for which the user-defined tester
function pointed to by testFun returns TRUE, or RW_NPOS if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

void
insert (const T& a);

Adds the item a to the end of the list.

void
insertAt (size_t i, const T& a);

Insert the item a at the index position i . This position must be between
zero and the number of items in the list, or an exception of type
RWBoundsError will be thrown.

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the list, FALSE otherwise.

RWTValDlist<T>

782 Appendix A Tools.h++ Class Reference

T&
last ();
const T&
last () const;

Returns (but does not remove) the last item in the list. The behavior is
undefined if the list is empty.

size_t
occurrencesOf (const T& a) const;

Returns the number of objects in the list that are equal to the object a.
Equality is measured by the class-defined equality operator.

size_t
occurrencesOf (RWBoolean (*testFun)(const T&, void*),
 void* d) const;

Returns the number of objects in the list for which the user-defined
“tester” function pointed to by testFun returns TRUE . The tester function
must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

void
prepend (const T& a);

Adds the item a to the beginning of the list.

RWBoolean
remove (const T& a);

Removes the first object which is equal to the object a and returns TRUE.
Returns FALSE if there is no such object. Equality is measured by the class-
defined equality operator.

RWBoolean
remove (RWBoolean (*testFun)(const T&, void*),void* d);

Removes the first object for which the user-defined tester function pointed
to by testFun returns TRUE, and returns TRUE. Returns FALSE if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

size_t
removeAll (const T& a);

Removes all objects which are equal to the object a. Returns the number of
objects removed. Equality is measured by the class-defined equality
operator.

RWTValDlist<T>

Tools.h++ Class Reference Appendix A 783

size_t
removeAll (RWBoolean (*testFun)(const T&, void*),void* d);

Removes all objects for which the user-defined tester function pointed to
by testFun returns TRUE. Returns the number of objects removed. The
tester function must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

T
removeAt (size_t i);

Removes and returns the object at index i . An exception of type
RWBoundsError will be thrown if i is not a valid index. Valid indices are
from zero to the number of items in the list less one.

T
removeFirst ();

Removes and returns the first item in the list. The behavior is undefined if
the list is empty.

T
removeLast ();

Removes and returns the last item in the list. The behavior is undefined if
the list is empty.

RWvostream&
operator<< (RWvostream& strm, const RWTValDlist<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValDlist<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValDlist<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTValDlist<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValDlist<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTValDlist<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

Tools.h++ Class Reference Appendix A 785

RWTValDlistIterator<T>

#include <rw/tvdlist.h>
RWTValDlist<T> list;
RWTValDlistIterator<T> iterator(list);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

Iterator for class RWTValDlist<T>, allowing sequential access to all the
elements of a doubly-linked parameterized list. Elements are accessed in
order, in either direction.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

Isomorphic

RWTValDlistIterator <T>(RWTValDlist<T>& c);
Constructs an iterator to be used with the list c .

RWBoolean
operator++ ();

Advances the iterator to the next item and returns TRUE. When the end of
the collection is reached, returns FALSE and the position of the iterator will
be undefined.

RWBoolean
operator-- ();

Retreats the iterator to the previous item and returns TRUE. When the
beginning of the collection is reached, returns FALSE and the position of
the iterator will be undefined.

RWBoolean
operator+= (size_t n);

Advances the iterator n positions and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

Synopsis

Please Note!

Description

Persistence

Public
Constructor

Public
Member

Operators

RWTValDlistIterator<T>

786 Appendix A Tools.h++ Class Reference

RWBoolean
operator-= (size_t n);

Retreats the iterator n positions and returns TRUE. When the beginning of
the collection is reached, returns FALSE and the position of the iterator will
be undefined.

RWBoolean
operator() ();

Advances the iterator to the next item. Returns TRUE if the new position is
valid, FALSE otherwise.

RWTValDlist<T>*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

RWBoolean
findNext (const T& a);

Advances the iterator to the first element that is equal to a and returns
TRUE, or FALSE if there is no such element. Equality is measured by the
class-defined equality operator for type T.

RWBoolean
findNext (RWBoolean (*testFun)(const T&, void*), void*);

Advances the iterator to the first element for which the tester function
pointed to by testFun returns TRUE and returns TRUE, or FALSE if there is
no such element.

void
insertAfterPoint (const T& a);

Inserts the value a into the iterator’s associated collection in the position
immediately after the iterator’s current position.

T
key () const;

Returns the value at the iterator’s current position. The results are
undefined if the iterator is no longer valid.

RWBoolean
remove ();

Removes the value from the iterator’s associated collection at the current
position of the iterator. Returns TRUE if successful, FALSE otherwise.
Afterwards, if successful, the iterator will be positioned at the element
immediately before the removed element.

RWBoolean
removeNext (const T& a);

Advances the iterator to the first element that is equal to a and removes it.
Returns TRUE if successful, FALSE otherwise. Equality is measured by the
class-defined equality operator for type T. Afterwards, if successful, the

Public
Member

Functions

RWTValDlistIterator<T>

Tools.h++ Class Reference Appendix A 787

iterator will be positioned at the element immediately before the removed
element.

RWBoolean
removeNext (RWBoolean (*testFun)(const T&, void*), void*);

Advances the iterator to the first element for which the tester function
pointed to by testFun returns TRUE and removes it. Returns TRUE if
successful, FALSE otherwise. Afterwards, if successful, the iterator will be
positioned at the element immediately before the removed element.

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTValDlist<T>& c);

Resets the iterator to iterate over the collection c .

Tools.h++ Class Reference Appendix A 789

RWTValHashDictionary<K,V>

#include <rw/tvhdict.h>
unsigned hashFun(const K&);
RWTValHashDictionary<K,V> dictionary(hashFun);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

RWTValHashDictionary<K,V> is a dictionary of keys of type K and values of
type V, implemented using a hash table. While duplicates of values are
allowed, duplicates of keys are not.

It is a value based collection: keys and values are copied in and out of the
hash buckets.

Parameters K and V represent the type of the key and the type of the value,
respectively, to be inserted into the table. These can be either classes or
fundamental types. Classes K and V must have:

• well-defined copy semantics (T::T(const T&) or equivalent);

• well-defined assignment semantics (T::operator=(const T&) or
equivalent).

In addition, class K must have

• well-defined equality semantics (K::operator==(const K&)).

A user-supplied hashing function for type K must be supplied to the
constructor when creating a new table. If K is a Rogue Wave class, then this
requirement is usually trivial because most Rogue Wave objects know how
to return a hashing value. In fact, classes RWCString, RWDate, RWTime,
and RWWString contain static member functions called hash that can be
supplied to the constructor as is. The function must have prototype:

unsigned hFun(const K& a);

and should return a suitable hash value for the object a.

To find a value, the key is first hashed to determine in which bucket the key
and value can be found. The bucket is then searched for an object that is
equal (as determined by the equality operator) to the key.

Synopsis

Please Note!

Description

RWTValHashDictionary<K,V>

790 Appendix A Tools.h++ Class Reference

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of (key/value) pairs in the collection greatly
exceeds the number of buckets then efficiency will sag because each bucket
must be searched linearly. The number of buckets can be changed by calling
member function resize() . This is an expensive proposition because not
only must all the items be copied into the new buckets, but all of the keys
must be rehashed.

If you wish this to be done automatically, then you can subclass from this
class and implement your own special insert() and remove() functions
which perform a resize() as necessary.

None

#include <rw/tvhdict.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {
 RWTValHashDictionary<RWCString, RWDate>
birthdays(RWCString::hash);

 birthdays.insertKeyAndValue(
 "John",
 RWDate(12, "April", 1975)
);
 birthdays.insertKeyAndValue("Ivan", RWDate(2, "Nov", 1980));

 // Alternative syntax:
 birthdays["Susan"] = RWDate(30, "June", 1955);
 birthdays["Gene"] = RWDate(5, "Jan", 1981);

 // Print a birthday:
 cout << birthdays["John"] << endl;
 return 0;
}
Program output:

April 12, 1975

RWTValHashDictionary <K,V>(unsigned (*hashKey)(const K&),
 size_t buckets = RWDEFAULT_CAPACITY);

Constructs a new hash dictionary. The first argument is a pointer to a
user-defined hashing function for items of type K (the key). The table will
initally have buckets buckets although this can be changed with member
function resize() .

RWTValHashDictionary <K,V>(const RWTValHashDictionary<K,V>&
 dict);

Copy constructor. Constructs a new hash dictionary as a copy of dict .
The new dictionary will have the same number of buckets as the old table.

Persistence

Example

Public
Constructors

RWTValHashDictionary<K,V>

Tools.h++ Class Reference Appendix A 791

Hence, although the keys and values must be copied into the new table,
the keys will not be rehashed.

RWTValHashDictionary<K,V>&
operator= (const RWTValHashDictionary<K,V>& dict);

Sets self to a copy of dict . Afterwards, the new table will have the same
number of buckets as the old table. Hence, although the keys and values
must be copied into the new table, the keys will not be rehashed.

V&
operator[] (const K& key);

Look up the key key and return its associated value as an lvalue

reference. If the key is not in the dictionary, then it is added to the
dictionary. In this case, the value associated with the key will be provided
by the default constructor for objects of type V.

void
applyToKeyAndValue (void (*applyFun)(const K&, V&,void*),
 void* d);

Applies the user-defined function pointed to by applyFun to every key-
value pair in the dictionary. This function must have prototype:

void yourFun (const K& key, V& value, void* d);

The key will be passed by constant reference and hence cannot be
changed. The value will be passed by reference and can be modified.
Client data may be passed through as parameter d.

void
clear ();

Removes all items from the collection.

RWBoolean
contains (const K& key) const;

Returns TRUE if the dictionary contains a key which is equal to key .
Returns FALSE otherwise. Equality is measured by the class-defined
equality operator for class K.

size_t
entries () const;

Returns the number of key-value pairs currently in the dictionary.

RWBoolean
find (const K& target, K& retKey) const;

Returns TRUE if the dictionary contains a key which is equal to target and
puts the matching key into retKey . Returns FALSE otherwise and leaves
retKey untouched. Equality is measured by the class-defined equality
operator for class K.

Public
Operators

Public
Member

Functions

RWTValHashDictionary<K,V>

792 Appendix A Tools.h++ Class Reference

RWBoolean
findValue (const K& key, V& retVal) const;

Returns TRUE if the dictionary contains a key which is equal to key and
puts the associated value into retVal . Returns FALSE otherwise and leaves
retVal untouched. Equality is measured by the class-defined equality
operator for class K.

RWBoolean
findKeyAndValue (const K& key, K& retKey,V& retVal) const;

Returns TRUE if the dictionary contains a key which is equal to key and
puts the matching key into retKey and the associated value into retVal .
Returns FALSE otherwise and leaves retKey and retVal untouched.
Equality is measured by the class-defined equality operator for class K.

void
insertKeyAndValue (const K& key, const V& value);

Inserts the key key and value value into the dictionary.

RWBoolean
isEmpty () const;

Returns TRUE if the dictionary has no items in it, FALSE otherwise.

RWBoolean
remove (const K& key);

Returns TRUE and removes the (key/value) pair where the key is equal to
the key . Returns FALSE if there is no such key. Equality is measured by
the class-defined equality operator for class K.

void
resize (size_t N);

Changes the number of buckets to N, a relatively expensive operation if
there are many items in the collection.

Tools.h++ Class Reference Appendix A 793

RWTValHashDictionaryIterator<K,V>

#include <rw/tvhdict.h>
unsigned hashFun(const K&);
RWTValHashDictionary<K,V> dictionary(hashFun);
RWTValHashDictonaryIterator<K,V> iterator(dictionary);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

Iterator for class RWTValHashDictionary<K,V>, allowing sequential access
to all keys and values of a parameterized hash dictionary. Elements are not
accessed in any particular order.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTValHashDictionaryIterator (RWTValHashDictionary& c);
Constructs an iterator to be used with the dictionary c .

RWBoolean
operator++ ();

Advances the iterator one position. Returns TRUE if the new position is
valid, FALSE otherwise.

RWBoolean
operator() ();

Advances the iterator one position. Returns TRUE if the new position is
valid, FALSE otherwise.

RWTValHashDictionary*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

K
key () const;

Returns the key at the iterator’s current position. The results are
undefined if the iterator is no longer valid.

Synopsis

Please Note!

Description

Persistence

Public
Constructor

Public
Operators

Public
Member

Functions

RWTValHashDictionaryIterator<K,V>

794 Appendix A Tools.h++ Class Reference

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTValHashDictionary& c);

Resets the iterator to iterate over the collection c .

V
value () const;

Returns the value at the iterator’s current position. The results are
undefined if the iterator is no longer valid.

Tools.h++ Class Reference Appendix A 795

RWTValHashSet<T>

RWTValHashSet<T> RWTValHashTable<T>

#include <rw/tvhset.h>
unsigned hashFun(const T&);
RWTValHashSet(hashFun) set;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

RWTValHashSet<T> is a derived class of RWTValHashTable<T> where the
insert() function has been overridden to accept only one item of a given
value. Hence, each item in the collection will be unique.

As with class RWTValHashTable<T>, you must supply a hashing function to
the constructor.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equivalent);

• well-defined assignment semantics (T::operator=(const T&) or
equivalent);

• well-defined equality semantics (T::operator==(const T&)).

None

This examples exercises a set of RWCStrings.

#include <rw/tvhset.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

main(){
 RWTValHashSet<RWCString> set(RWCString::hash);

 set.insert("one");
 set.insert("two");
 set.insert("three");
 set.insert("one"); // Rejected: already in collection

 cout << set.entries() << endl; // Prints "3"
 return 0;
}
Program output:

3

Synopsis

Please Note!

Description

Persistence

Example

RWTValHashSet<T>

796 Appendix A Tools.h++ Class Reference

RWTValHashSet<T>&
Union(const RWTValHashSet<T>& h);

Computes the union of self and h, modifying self and returning self.

RWTValHashSet<T>&
difference(const RWTValHashSet<T>& h);

Computes the disjunction of self and h, modifying self and returning self.

RWTValHashSet<T>&
intersection(const RWTValHashSet<T>& h);

Computes the intersection of self and h, modifying self and returning self.

RWTValHashSet<T>&
symmetricDifference(const RWTValHashSet<T>& h);

Computes the symmetric difference between self and h, modifying self and
returning self.

RWBoolean
isSubsetOf(const RWTValHashSet<T>& h) const;

Returns TRUE if self is a subset of h.

RWBoolean
isProperSubsetOf(const RWTValHashSet<T>& h) const;

Returns TRUE if self is a proper subset of h.

RWBoolean
isEquivalent(const RWTValHashSet<T>& h) const;

Returns TRUE if self and h are identical.

void
apply (void (*applyFun)(T&, void*), void* d);

Inherited from class RWTValHashTable<T>.

void
clear ();

Inherited from class RWTValHashTable<T>.

RWBoolean
contains (const T& val) const;

Inherited from class RWTValHashTable<T>.

size_t
entries () const;

Inherited from class RWTValHashTable<T>.

RWBoolean
find (const T& target, T& k) const;

Inherited from class RWTValHashTable<T>.

Public
Member

Functions

RWTValHashSet<T>

Tools.h++ Class Reference Appendix A 797

void
insert (const T& val);

Redefined from class RWTValHashTable<T> to allow an object of a given
value to be inserted only once.

RWBoolean
isEmpty () const;

Inherited from class RWTValHashTable<T>.

size_t
occurrencesOf (const T& val) const;

Inherited from class RWTValHashTable<T>.

RWBoolean
remove (const T& val);

Inherited from class RWTValHashTable<T>.

size_t
removeAll (const T& val);

Inherited from class RWTValHashTable<T>.

void
resize (size_t N);

Inherited from class RWTValHashTable<T>.

Tools.h++ Class Reference Appendix A 799

RWTValHashTable<T>

#include <rw/tvhasht.h>
unsigned hashFun(const T&);
RWTValHashTable<T> table(hashFun);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

This class implements a parameterized hash table of types T. It uses
chaining to resolve hash collisions. Duplicates are allowed.

It is a value based collection: objects are copied in and out of the hash
buckets.

Parameter T represents the type of object to be inserted into the table, either a
class or fundamental type. The class T must have:

• well-defined copy semantics (T::T(const T&) or equivalent);

• well-defined assignment semantics (T::operator=(const T&) or
equivalent);

• well-defined equality semantics (T::operator==(const T&)).

A user-supplied hashing function for type T must be supplied to the
constructor when creating a new table. If T is a Rogue Wave class, then this
requirement is usually trivial because most Rogue Wave objects know how
to return a hashing value. In fact, classes RWCString, RWDate, RWTime,
and RWWString contain static member functions called hash that can be
supplied to the constructor as is. The function must have prototype:

unsigned hFun(const T& a);

and should return a suitable hash value for the object a.

To find an object, it is first hashed to determine in which bucket it occurs.
The bucket is then searched for an object that is equal (as determined by the
equality operator) to the candidate.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of items in the collection greatly exceeds the
number of buckets then efficiency will sag because each bucket must be
searched linearly. The number of buckets can be changed by calling member

Synopsis

Please Note!

Description

RWTValHashTable<T>

800 Appendix A Tools.h++ Class Reference

function resize() . This is an expensive proposition because not only must
all items be copied into the new buckets, but they must also be rehashed.

If you wish this to be automatically done, then you can subclass from this
class and implement your own special insert() and remove() functions
which perform a resize() as necessary.

None

#include <rw/tvhasht.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

main() {
 RWTValHashTable<RWCString> table(RWCString::hash);

 table.insert("Alabama"); // NB: Type conversion occurs
 table.insert("Pennsylvania");
 table.insert("Oregon");
 table.insert("Montana");

 cout << "The table " <<
 (table.contains("Oregon") ? "does " : "does not ") <<
 "contain Oregon\n";

 table.removeAll("Oregon");

 cout << "Now the table "
 << (table.contains("Oregon") ? "does " : "does not ")
 << "contain Oregon";
 return 0;
}
Program output

The table does contain Oregon
Now the table does not contain Oregon

RWTValHashTable <T>(unsigned (*hashFun)(const T&),
 size_t buckets = RWDEFAULT_CAPACITY);

Constructs a new hash table. The first argument is a pointer to a user-
defined hashing function for items of type T. The table will initally have
buckets buckets although this can be changed with member function
resize() .

RWTValHashTable <T>(const RWTValHashTable<T>& table);
Constructs a new hash table as a copy of table . The new table will have
the same number of buckets as the old table. Hence, although objects must
be copied into the new table, they will not be hashed.

Persistence

Example

Public
Constructors

RWTValHashTable<T>

Tools.h++ Class Reference Appendix A 801

RWTValHashTable&
operator= (const RWTValHashTable<T>&);

Sets self to a copy of table . Afterwards, the new table will have the same
number of buckets as the old table. Hence, although objects must be
copied into the new table, they will not be hashed.

void
apply (void (*applyFun)(T&, void*), void* d);

Applies the user-defined function pointed to by applyFun to every item in
the table. This function must have prototype:

void yourFun (T& a, void* d);

Client data may be passed through as parameter d.

void
clear ();

Removes all items from the collection.

RWBoolean
contains (const T& val) const;

Returns TRUE if the collection contains an item which is equal to val .
Returns FALSE otherwise. Equality is measured by the class-defined
equality operator.

size_t
entries () const;

Returns the number of items currently in the collection.

RWBoolean
find (const T& target, T& k) const;

Returns TRUE if the collection contains an item which is equal to target

and puts the matching object into k . Returns FALSE otherwise and leaves k
untouched. Equality is measured by the class-defined equality operator.

void
insert (const T& val);

Inserts the value val into the collection.

RWBoolean
isEmpty () const;

Returns TRUE if the collection has no items in it, FALSE otherwise.

size_t
occurrencesOf (const T& val) const;

Returns the number of items in the collection which are equal to val .
Equality is measured by the class-defined equality operator.

Public
Operators

Public
Member

Functions

RWTValHashTable<T>

802 Appendix A Tools.h++ Class Reference

RWBoolean
remove (const T& val);

Removes the first object which is equal to the object a and returns TRUE.
Returns FALSE if there is no such object. Equality is measured by the class-
defined equality operator.

size_t
removeAll (const T& val);

Removes all objects which are equal to the object a. Returns the number of
objects removed. Equality is measured by the class-defined equality
operator.

void
resize (size_t N);

Changes the number of buckets to N, a relatively expensive operation if
there are many items in the collection.

Tools.h++ Class Reference Appendix A 803

RWTValHashTableIterator<T>

#include <rw/tvhasht.h>
RWTValHashTable<T> table;
RWTValHashTableIterator<T> iterator(table);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

Iterator for class RWTValHashTable<T>, allowing sequential access to all the
elements of a hash table. Elements are not accessed in any particular order.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
(valid) operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTValHashTableIterator (RWTValHashTable<T>& c);
Constructs an iterator to be used with the table c .

RWBoolean
operator++ ();

Advances the iterator one position. Returns TRUE if the new position is
valid, FALSE otherwise.

RWBoolean
operator() ();

Advances the iterator one position. Returns TRUE if the new position is
valid, FALSE otherwise.

RWTValHashTable<T>*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

T
key () const;

Returns the value at the iterator’s current position. The results are
undefined if the iterator is no longer valid.

Synopsis

Please Note!

Description

Persistence

Public
Constructor

Public
Operators

Public
Member

Functions

RWTValHashTableIterator<T>

804 Appendix A Tools.h++ Class Reference

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTValHashTable<T>& c);

Resets the iterator to iterate over the collection c .

Tools.h++ Class Reference Appendix A 805

RWTValOrderedVector<T>

#include <rw/tvordvec.h>
RWTValOrderedVector<T> ordvec;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

RWTValOrderedVector<T> is an ordered collection. That is, the items in the
collection have a meaningful ordered relationship with respect to one
another and can be accessed by an index number. The order is set by the
order of insertion. Duplicates are allowed. The class is implemented as a
vector, allowing efficient insertion and retrieval from the end of the
collection, but somewhat slower from the beginning of the collection.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equivalent);

• well-defined assignment semantics (T::operator=(const T&) or
equivalent);

• well-defined equality semantics (T::operator==(const T&));

• a default constructor.

Note that an ordered vector has a length (the number of items returned by
length() or entries()) and a capacity. Necessarily, the capacity is always
greater than or equal to the length. Although elements beyond the
collection’s length are not used, nevertheless, in a value-based collection,
they are occupied. If each instance of class T requires considerable resources,
then you should ensure that the collection’s capacity is not much greater
than its length, otherwise unnecessary resources will be tied up.

Isomorphic

#include <rw/tvordvec.h>
#include <rw/rstream.h>

main() {
 RWTValOrderedVector<double> vec;

 vec.insert(22.0);
 vec.insert(5.3);
 vec.insert(-102.5);

Synopsis

Please Note!

Description

Persistence

Example

RWTValOrderedVector<T>

806 Appendix A Tools.h++ Class Reference

 vec.insert(15.0);
 vec.insert(5.3);

 cout << vec.entries() << " entries\n" << endl; // Prints "5"
 for (int i=0; i<vec.length(); i++)
 cout << vec[i] << endl;

 return 0;
}
Program output:

5 entries
22
5.3
-102.5
15
5.3

RWTValOrderedVector <T>(size_t capac=RWDEFAULT_CAPACITY);
Create an empty ordered vector with capacity capac . Should the number
of items exceed this value, the vector will be resized automatically.

RWTValOrderedVector <T>(const RWTValOrderedVector<T>& c);
Constructs a new ordered vector as a copy of c . The copy constructor of
all elements in the vector will be called. The new vector will have the
same capacity and number of members as the old vector.

RWTValOrderedVector<T>&
operator= (const RWTValOrderedVector& c);

Sets self to a copy of c . The copy constructor of all elements in the vector
will be called. Self will have the same capacity and number of members as
the old vector.

T&
operator() (size_t i);
const T&
operator() (size_t i) const;

Returns the i th value in the vector. The first variant can be used as an
lvalue , the second cannot. The index i must be between zero and the
number of items in the collection less one. No bounds checking is
performed.

T&
operator[] (size_t i);
const T&
operator[] (size_t i) const;

Returns the i th value in the vector. The first variant can be used as an
lvalue , the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type
RWBoundsError will be thrown.

Public
Constructor

Public
Operators

RWTValOrderedVector<T>

Tools.h++ Class Reference Appendix A 807

void
append (const T& a);

Appends the value a to the end of the vector. The collection will
automatically be resized if this causes the number of items in the collection
to exceed the capacity.

T&
at (size_t i);
const T&
at (size_t i) const;

Return the i th value in the vector. The first variant can be used as an
lvalue , the second cannot. The index i must be between 0 and the length
of the vector less one or an exception of type RWBoundsError will be
thrown.

void
clear ();

Removes all items from the collection.

RWBoolean
contains (const T& a) const;

Returns TRUE if the collection contains an item that is equal to a. A linear
search is done. Equality is measured by the class-defined equality
operator.

const T*
data () const;

Returns a pointer to the raw data of the vector. The contents should not be
changed. Should be used with care.

size_t
entries () const;

Returns the number of items currently in the collection.

RWBoolean
find (const T& target, T& ret) const;

Performs a linear search and returns TRUE if the vector contains an object
that is equal to the object target and puts a copy of the matching object
into ret . Returns FALSE otherwise and does not touch ret . Equality is
measured by the class-defined equality operator.

T&
first ();
const T&
first () const;

Returns the first item in the collection. An exception of type
RWBoundsError will occur if the vector is empty.

Public
Member

Functions

RWTValOrderedVector<T>

808 Appendix A Tools.h++ Class Reference

size_t
index (const T& a) const;

Performs a linear search, returning the index of the first item that is equal
to a. Returns RW_NPOS if there is no such item. Equality is measured by
the class-defined equality operator.

void
insert (const T& a);

Appends the value a to the end of the vector. The collection will
automatically be resized if this causes the number of items in the collection
to exceed the capacity.

void
insertAt (size_t i, const T& a);

Inserts the value a into the vector at index i . The item previously at
position i is moved to i+1 , etc. The collection will automatically be
resized if this causes the number of items in the collection to exceed the
capacity. The index i must be between 0 and the number of items in the
vector or an exception of type RWBoundsError will occur.

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the collection, FALSE otherwise.

T&
last ();
const T&
last () const;

Returns the last item in the collection. If there are no items in the
collection then an exception of type RWBoundsError will occur.

size_t
length () const;

Returns the number of items currently in the collection.

size_t
occurrencesOf (const T& a) const;

Performs a linear search, returning the number of items that are equal to a.
Equality is measured by the class-defined equality operator.

void
prepend (const T& a);

Prepends the value a to the beginning of the vector. The collection will
automatically be resized if this causes the number of items in the collection
to exceed the capacity.

RWTValOrderedVector<T>

Tools.h++ Class Reference Appendix A 809

RWBoolean
remove (const T& a);

Performs a linear search, removing the first object which is equal to the
object a and returns TRUE. Returns FALSE if there is no such object.
Equality is measured by the class-defined equality operator.

size_t
removeAll (const T& a);

Removes all items which are equal to a, returning the number removed.
Equality is measured by the class-defined equality operator.

T
removeAt (size_t i);

Removes and returns the object at index i . An exception of type
RWBoundsError will be thrown if i is not a valid index. Valid indices are
from zero to the number of items in the list less one.

T
removeFirst ();

Removes and returns the first object in the collection. An exception of type
RWBoundsError will be thrown if the list is empty.

T
removeLast ();

Removes and returns the last object in the collection. An exception of type
RWBoundsError will be thrown if the list is empty.

void
resize (size_t N);

Changes the capacity of the collection to N. Note that the number of
objects in the collection does not change, just the capacity.

RWvostream&
operator<< (RWvostream& strm,
 const RWTValOrderedVector<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValOrderedVector<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValOrderedVector<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTValOrderedVector<T>& coll);

Restores the contents of the collection coll from the input stream strm .

Related
Global

Operators

RWTValOrderedVector<T>

810 Appendix A Tools.h++ Class Reference

RWvistream&
operator>> (RWvistream& strm, RWTValOrderedVector<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTValOrderedVector<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference Appendix A 811

RWTValSlist<T>

#include <rw/tvslist.h>
RWTValSlist<T> list;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

This class maintains a collection of values, implemented as a singly-linked
list. This is a value based list: objects are copied in and out of the links that
make up the list. Unlike intrusive lists (see class RWTIsvSlist<T>) the objects
need not inherit from a link class. However, this makes the class slightly less
efficient than the intrusive lists because of the need to allocate a new link off
the heap with every insertion and to make a copy of the object in the newly
allocated link.

Parameter T represents the type of object to be inserted into the list, either a
class or fundamental type. The class T must have:

• A default constructor;

• well-defined copy semantics (T::T(const T&) or equivalent);

• well-defined assignment semantics (T::operator=(const T&) or
equivalent);

well-defined equality semantics (T::operator==(const T&)).

Isomorphic

In this example, a singly-linked list of RWDates is exercised.

#include <rw/tvslist.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {
 RWTValSlist<RWDate> dates;
 dates.insert(RWDate(2, "June", 52)); // 6/2/52
 dates.insert(RWDate(30, "March", 46)); // 3/30/46
 dates.insert(RWDate(1, "April", 90)); // 4/1/90

 // Now look for one of the dates:
 RWDate ret;
 if (dates.find(RWDate(2, "June", 52), ret)){
 cout << "Found date " << ret << endl;

Synopsis

Please Note!

Description

Persistence

Example

RWTValSlist<T>

812 Appendix A Tools.h++ Class Reference

 }

 // Remove in reverse order:
 while (!dates.isEmpty())
 cout << dates.removeLast() << endl;

 return 0;
}
Program output:

Found date June 2, 1952
April 1, 1990
March 30, 1946
June 2, 1952

RWTValSlist <T>();
Construct an empty list.

RWTValSlist <T>(const RWTValSlist<T>& list);
Construct a copy of the list list . Depending on the nature of the copy
constructor of T, this could be relatively expensive because every item in
the list must be copied.

RWTValSlist&
operator= (const RWTValSlist<T>& list);

Sets self to a copy of the list list . Depending on the nature of the copy
constructor of T, this could be relatively expensive because every item in
the list must be copied.

T&
operator[] (size_t i);

Returns a reference to the item at index i . The results can be used as an
lvalue. An exception of type RWBoundsError will be thrown if i is not a
valid index. Valid indices are from zero to the number of items in the list
less one.

const T&
operator[] (size_t i) const;

Returns a copy of the item at index i . The results cannot be used as an
lvalue. An exception of type RWBoundsError will be thrown if i is not a
valid index. Valid indices are from zero to the number of items in the list
less one.

void
append (const T& a);

Adds the item a to the end of the list.

void
apply (void (*applyFun)(T&, void*), void* d);

Applies the user-defined function pointed to by applyFun to every item in
the list. This function must have prototype:

Public
Constructors

Public
Operators

Public
Member

Functions

RWTValSlist<T>

Tools.h++ Class Reference Appendix A 813

void yourFun (T& a, void* d);

Client data may be passed through as parameter d.

T&
at (size_t i);

Returns a reference to the item at index i . The results can be used as an
lvalue. An exception of type RWBoundsError will be thrown if i is not a
valid index. Valid indices are from zero to the number of items in the list
less one.

const T&
at (size_t i) const;

Returns a copy of the item at index i . The results cannot be used as an
lvalue. An exception of type RWBoundsError will be thrown if i is not a
valid index. Valid indices are from zero to the number of items in the list
less one.

void
clear ();

Removes all items from the list. Their destructors, if any, will be called.

RWBoolean
contains (const T& a) const;

Returns TRUE if the list contains an object that is equal to the object a.
Returns FALSE otherwise. Equality is measured by the class-defined
equality operator.

RWBoolean
contains (RWBoolean (*testFun)(const T&, void*), void* d)
 const;

Returns TRUE if the list contains an item for which the user-defined
“tester” function pointed to by testFun returns TRUE . Returns FALSE

otherwise. The tester function must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

size_t
entries () const;

Returns the number of items that are currently in the collection.

RWBoolean
find (const T& target, T& k) const;

Returns TRUE if the list contains an object that is equal to the object target

and puts a copy of the matching object into k . Returns FALSE otherwise
and does not touch k . Equality is measured by the class-defined equality

RWTValSlist<T>

814 Appendix A Tools.h++ Class Reference

operator. If you do not need a copy of the found object, use contains()

instead.

RWBoolean
find (RWBoolean (*testFun)(const T&, void*),void* d, T& k)
 const;

Returns TRUE if the list contains an object for which the user-defined tester
function pointed to by testFun returns TRUE and puts a copy of the
matching object into k . Returns FALSE otherwise and does not touch k .
The tester function must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d. If you
do not need a copy of the found object, use contains() instead.

T&
first ();
const T&
first () const;

Returns but does not remove the first item in the list. The behavior is
undefined if the list is empty.

T
get ();

Returns and removes the first item in the list. The behavior is undefined if
the list is empty.

size_t
index (const T& a);

Returns the index of the first object that is equal to the object a, or RW_NPOS

if there is no such object. Equality is measured by the class-defined
equality operator.

size_t
index (RWBoolean (*testFun)(const T&, void*),void* d) const;

Returns the index of the first object for which the user-defined tester
function pointed to by testFun returns TRUE, or RW_NPOS if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

void
insert (const T& a);

Adds the item a to the end of the list.

RWTValSlist<T>

Tools.h++ Class Reference Appendix A 815

void
insertAt (size_t i, const T& a);

Insert the item a at the index position i . This position must be between
zero and the number of items in the list, or an exception of type
RWBoundsError will be thrown.

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the list, FALSE otherwise.

T&
last();
const T&
last () const;

Returns but does not remove the last item in the list. The behavior is
undefined if the list is empty.

size_t
occurrencesOf (const T& a) const;

Returns the number of objects in the list that are equal to the object a.
Equality is measured by the class-defined equality operator.

size_t
occurrencesOf (RWBoolean (*testFun)(const T&, void*),void* d)
 const;

Returns the number of objects in the list for which the user-defined
“tester” function pointed to by testFun returns TRUE . The tester function
must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

void
prepend (const T& a);

Adds the item a to the beginning of the list.

RWBoolean
remove (const T& a);

Removes the first object which is equal to the object a and returns TRUE.
Returns FALSE if there is no such object. Equality is measured by the class-
defined equality operator.

RWBoolean
remove (RWBoolean (*testFun)(const T&, void*), void* d);

Removes the first object for which the user-defined tester function pointed
to by testFun returns TRUE, and returns TRUE. Returns FALSE if there is no
such object. The tester function must have the prototype:

RWTValSlist<T>

816 Appendix A Tools.h++ Class Reference

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

size_t
removeAll (const T& a);

Removes all objects which are equal to the object a. Returns the number of
objects removed. Equality is measured by the class-defined equality
operator.

size_t
removeAll (RWBoolean (*testFun)(const T&, void*),void* d);

Removes all objects for which the user-defined tester function pointed to
by testFun returns TRUE. Returns the number of objects removed. The
tester function must have the prototype:

RWBoolean yourTester (const T&, void* d);

For each item in the list this function will be called with the item as the
first argument. Client data may be passed through as parameter d.

T
removeAt (size_t i);

Removes and returns the object at index i . An exception of type
RWBoundsError will be thrown if i is not a valid index. Valid indices are
from zero to the number of items in the list less one.

T
removeFirst ();

Removes and returns the first item in the list. The behavior is undefined if
the list is empty.

T
removeLast ();

Removes and returns the last item in the list. The behavior is undefined if
the list is empty. This function is relatively slow because removing the last
link in a singly-linked list necessitates access to the next-to-the-last link,
requiring the whole list to be searched.

RWvostream&
operator<< (RWvostream& strm, const RWTValSlist<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValSlist<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

Related
Global

Operators

RWTValSlist<T>

Tools.h++ Class Reference Appendix A 817

RWvistream&
operator>> (RWvistream& strm, RWTValSlist<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTValSlist<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValSlist<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTValSlist<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Tools.h++ Class Reference Appendix A 819

RWTValSlistIterator<T>

#include <rw/tvslist.h>
RWTValSlist<T> list;
RWTValSlistIterator<T> iterator(list);

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

Iterator for class RWTValSlist<T>, allowing sequential access to all the
elements of a singly-linked parameterized list. Elements are accessed in
order, from first to last.

Like all Rogue Wave iterators, the “current item” is undefined immediately
after construction — you must define it by using operator() or some other
valid operation.

Once the iterator has advanced beyond the end of the collection it is no
longer valid — continuing to use it will bring undefined results.

None

RWTValSlistIterator <T>(RWTValSlist<T>& c);
Constructs an iterator to be used with the list c .

RWBoolean
operator++ ();

Advances the iterator one position. Returns TRUE if the new position is
valid, FALSE otherwise.

RWBoolean
operator+= (size_t n);

Advances the iterator n positions. Returns TRUE if the new position is
valid, FALSE otherwise.

RWBoolean
operator() ();

Advances the iterator one position. Returns TRUE if the new position is
valid, FALSE otherwise.

Synopsis

Please Note!

Description

Persistence

Public
Constructor

Public
Member

Operators

RWTValSlistIterator<T>

820 Appendix A Tools.h++ Class Reference

RWTValSlist<T>*
container () const;

Returns a pointer to the collection over which this iterator is iterating.

RWBoolean
findNext (const T& a);

Advances the iterator to the first element that is equal to a and returns
TRUE, or FALSE if there is no such element. Equality is measured by the
class-defined equality operator for type T.

RWBoolean
findNext (RWBoolean (*testFun)(const T&, void*),void*);

Advances the iterator to the first element for which the tester function
pointed to by testFun returns TRUE and then returns TRUE, or FALSE if
there is no such element.

void
insertAfterPoint (const T& a);

Inserts the value a into the iterator’s associated collection in the position
immediately after the iterator’s current position.

T
key () const;

Returns the value at the iterator’s current position. The results are
undefined if the iterator is no longer valid.

RWBoolean
remove ();

Removes the value from the iterator’s associated collection at the current
position of the iterator. Returns TRUE if successful, FALSE otherwise.
Afterwards, if successful, the iterator will be positioned at the element
immediately before the removed element. This function is relatively
inefficient for a singly-linked list.

RWBoolean
removeNext (const T& a);

Advances the iterator to the first element that is equal to a and removes it.
Returns TRUE if successful, FALSE otherwise. Equality is measured by the
class-defined equality operator for type T. Afterwards, if successful, the
iterator will be positioned at the element immediately before the removed
element.

RWBoolean
removeNext (RWBoolean (*testFun)(const T&, void*),void*);

Advances the iterator to the first element for which the tester function
pointed to by testFun returns TRUE and removes it. Returns TRUE if
successful, FALSE otherwise. Afterwards, if successful, the iterator will be
positioned at the element immediately before the removed element.

Public
Member

Functions

RWTValSlistIterator<T>

Tools.h++ Class Reference Appendix A 821

void
reset ();

Resets the iterator to the state it had immediately after construction.

void
reset (RWTValSlist<T>& c);

Resets the iterator to iterate over the collection c .

Tools.h++ Class Reference Appendix A 823

RWTValSortedVector<T>

#include <rw/tvsrtvec.h>
RWTValSortedVector<T> sortvec;

If you do not have the Standard C++ Library, use the interface described
here. Otherwise, use the interface described in the Class Reference.

RWTValSortedVector<T> is an ordered collection. That is, the items in the
collection have a meaningful ordered relationship with respect to each other
and can be accessed by an index number. In the case of
RWTValSortedVector<T>, objects are inserted such that objects “less than”
themselves are before the object, objects “greater than” themselves after the
object. An insertion sort is used. Duplicates are allowed.

Stores a copy of the inserted item into the collection according to an ordering
determined by the less-than (<) operator.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equivalent);

• well-defined assignment semantics (T::operator=(const T&) or
equivalent);

• well-defined equality semantics (T::operator==(const T&));

• well-defined less-than semantics (T::operator<(const T&));

• a default constructor.

Note that a sorted vector has a length (the number of items returned by
length() or entries()) and a capacity. Necessarily, the capacity is always
greater than or equal to the length. Although elements beyond the
collection’s length are not used, nevertheless, in a value-based collection,
they are occupied. If each instance of class T requires considerable resources,
then you should ensure that the collection’s capacity is not much greater
than its length, otherwise unnecessary resources will be tied up.

Although it is possible to alter objects that are contained in a
RWTValSortedVector<T>, it is dangerous since the changes may affect the
way that operator<() and operator==() behave, causing the
RWTValSortedVector<T> to become unsorted.

Synopsis

Please Note!

Description

RWTValSortedVector<T>

824 Appendix A Tools.h++ Class Reference

Isomorphic

This example inserts a set of dates into a sorted vector in no particular order,
then prints them out in order.

#include <rw/tvsrtvec.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

{
 RWTValSortedVector<RWDate> vec;

 vec.insert(RWDate(10, "Aug", 1999));
 vec.insert(RWDate(9, "Aug", 1999));
 vec.insert(RWDate(1, "Sept", 1999));
 vec.insert(RWDate(14, "May", 1999));
 vec.insert(RWDate(1, "Sept", 1999)); // Add a duplicate
 vec.insert(RWDate(2, "June", 1999));

 for (int i=0; i<vec.length(); i++)
 cout << vec[i] << endl;
 return 0;
}
Program output

May 14, 1999
June 2, 1999
August 9, 1999
August 10, 1999
September 1, 1999
September 1, 1999

RWTValSortedVector (size_t capac = RWDEFAULT_CAPACITY);
Create an empty sorted vector with an initial capacity equal to capac . The
vector will be automatically resized should the number of items exceed
this amount.

T&
operator() (size_t i);
const T&
operator() (size_t i) const;

Returns the i th value in the vector. The first variant can be used as an
lvalue , the second cannot. The index i must be between zero and the
number of items in the collection less one. No bounds checking is
performed. When used as an lvalue , care must be taken so as not to
disturb the sortedness of the collection.

T&
operator[] (size_t i);
const T&
operator[] (size_t i) const;

Returns the i th value in the vector. The first variant can be used as an
lvalue , the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type

Persistence

Example

Public
Constructor

Public
Operators

RWTValSortedVector<T>

Tools.h++ Class Reference Appendix A 825

RWBoundsError will be thrown. When used as an lvalue , care must be
taken so as not to disturb the sortedness of the collection.

T&
at (size_t i);
const T&
at (size_t i) const;

Return the i th value in the vector. The first variant can be used as an
lvalue , the second cannot. The index i must be between 0 and the length
of the vector less one, or an exception of type RWBoundsError will be
thrown. When used as an lvalue , care must be taken so as not to disturb
the sortedness of the collection.

void
clear ();

Removes all items from the collection.

RWBoolean
contains (const T& a) const;

Returns TRUE if the collection contains an item that is equal to a. A binary
search is done. Equality is measured by the class-defined equality
operator.

const T*
data () const;

Returns a pointer to the raw data of the vector. The contents should not be
changed. Should be used with care.

size_t
entries () const;

Returns the number of items currently in the collection.

RWBoolean
find (const T& target, T& ret) const;

Performs a binary search and returns TRUE if the vector contains an object
that is equal to the object target and puts a copy of the matching object
into ret . Returns FALSE otherwise and does not touch ret . Equality is
measured by the class-defined equality operator.

const T&
first () const;

Returns the first item in the collection. An exception of type
RWBoundsError will occur if the vector is empty.

size_t
index (const T& a) const;

Performs a binary search, returning the index of the first item that is equal
to a. Returns RW_NPOS if there is no such item. Equality is measured by
the class-defined equality operator.

Public
Member

Functions

RWTValSortedVector<T>

826 Appendix A Tools.h++ Class Reference

void
insert (const T& a);

Performs a binary search, inserting a after all items that compare less than
or equal to it, but before all items that do not. “Less Than” is measured by
the class-defined '<' operator for type T. The collection will be resized
automatically if this causes the number of items to exceed the capacity.

RWBoolean
isEmpty () const;

Returns TRUE if there are no items in the collection, FALSE otherwise.

const T&
last () const;

Returns the last item in the collection. If there are no items in the
collection then an exception of type RWBoundsError will occur.

size_t
length () const;

Returns the number of items currently in the collection.

size_t
occurrencesOf (const T& a) const;

Performs a binary search, returning the number of items that are equal to
a. Equality is measured by the class-defined equality operator.

RWBoolean
remove (const T& a);

Performs a binary search, removing the first object which is equal to the
object a and returns TRUE. Returns FALSE if there is no such object.
Equality is measured by the class-defined equality operator.

size_t
removeAll (const T& a);

Removes all items which are equal to a, returning the number removed.
Equality is measured by the class-defined equality operator.

T
removeAt (size_t i);

Removes and returns the object at index i . An exception of type
RWBoundsError will be thrown if i is not a valid index. Valid indices are
from zero to the number of items in the list less one.

T
removeFirst ();

Removes and returns the first object in the collection. An exception of type
RWBoundsError will be thrown if the list is empty.

RWTValSortedVector<T>

Tools.h++ Class Reference Appendix A 827

T
removeLast ();

Removes and returns the last object in the collection. An exception of type
RWBoundsError will be thrown if the list is empty.

void
resize (size_t N);

Changes the capacity of the collection to N. Note that the number of
objects in the collection does not change, just the capacity.

RWvostream&
operator<< (RWvostream& strm,
 const RWTValSortedVector<T>& coll);
RWFile&
operator<< (RWFile& strm, const RWTValSortedVector<T>& coll);

Saves the collection coll onto the output stream strm , or a reference to it
if it has already been saved.

RWvistream&
operator>> (RWvistream& strm, RWTValSortedVector<T>& coll);
RWFile&
operator>> (RWFile& strm, RWTValSortedVector<T>& coll);

Restores the contents of the collection coll from the input stream strm .

RWvistream&
operator>> (RWvistream& strm, RWTValSortedVector<T>*& p);
RWFile&
operator>> (RWFile& strm, RWTValSortedVector<T>*& p);

Looks at the next object on the input stream strm and either creates a new
collection off the heap and sets p to point to it, or sets p to point to a
previously read instance. If a collection is created off the heap, then you
are responsible for deleting it.

Related
Global

Operators

RWTValSortedVector<T>

828 Appendix A Tools.h++ Class Reference

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Introduction
	Class Hierarchy
	Class Reference
	RWAuditStreamBuffer
	RWBag
	RWBagIterator
	RWBench
	RWBinaryTree
	RWBinaryTreeIterator
	RWbistream
	RWBitVec
	RWbostream
	RWBTree
	RWBTreeDictionary
	RWBTreeOnDisk
	RWBufferedPageHeap
	RWCacheManager
	RWCLIPstreambuf
	RWCollectable
	RWCollectableAssociation
	RWCollectableDate
	RWCollectableInt
	RWCollectableString
	RWCollectableTime
	RWCollection
	RWCRegexp
	RWCRExpr
	RWCString
	RWCSubString
	RWCTokenizer
	RWDate
	RWDDEstreambuf
	RWDiskPageHeap
	RWDlistCollectables
	RWDlistCollectablesIterator
	RWeistream
	RWeostream
	RWFactory
	RWFile
	RWFileManager
	RWGBitVec(size)
	RWGDlist(type)
	RWGDlistIterator(type)
	RWGOrderedVector(val)
	RWGQueue(type)
	RWGSlist(type)
	RWGSlistIterator(type)
	RWGSortedVector(val)
	RWGStack(type)
	RWGVector(val)
	RWHashDictionary
	RWHashDictionaryIterator
	rw_hashmap
	rw_hashmultimap
	rw_hashmultiset
	rw_hashset
	RWHashTable
	RWHashTableIterator
	RWIdentityDictionary
	RWIdentitySet
	RWInteger
	RWIterator
	RWLocale
	RWLocaleSnapshot
	RWModel
	RWModelClient
	RWOrdered
	RWOrderedIterator
	RWpistream
	RWpostream
	RWSequenceable
	RWSet
	RWSetIterator
	rw_slist<T>
	RWSlistCollectables
	RWSlistCollectablesIterator
	RWSlistCollectablesQueue
	RWSlistCollectablesStack
	RWSortedVector
	RWTBitVec<size>
	RWTime
	RWTimer
	RWTIsvDlist<T>
	RWTIsvDlistIterator<T>
	RWTIsvSlist<T>
	RWTIsvSlistIterator<T>
	RWTPtrDeque<T>
	RWTPtrDlist<T>
	RWTPtrDlistIterator<T>
	RWTPtrHashDictionary
	RWTPtrHashDictionaryIterator
	RWTPtrHashMap<K,T,H,EQ>
	RWTPtrHashMapIterator<K,T,H,EQ>
	RWTPtrHashMultiMap<K,T,H,EQ>
	RWTPtrHashMultiMapIterator<K,T,H,EQ>
	RWTPtrHashMultiSet<T,H,EQ>
	RWTPtrHashMultiSetIterator<T,H,EQ>
	RWTPtrHashSet<T,H,EQ>
	RWTPtrHashSetIterator<T,H,EQ>
	RWTPtrHashTable
	RWTPtrHashTableIterator
	RWTPtrMap<K,T,C>
	RWTPtrMapIterator<K,T,C>
	RWTPtrMultiMap<K,T,C>
	RWTPtrMultiMapIterator<K,T,C>
	RWTPtrMultiSet<T,C>
	RWTPtrMultiSetIterator<T,C>
	RWTPtrOrderedVector<T>
	RWTPtrSet<T,C>
	RWTPtrSetIterator<T,C>
	RWTPtrSlist<T>
	RWTPtrSlistIterator<T>
	RWTPtrSortedDlist<T,C>
	RWTPtrSortedDlistIterator<T,C>
	RWTPtrSortedVector<T,C>
	RWTPtrVector<T>
	RWTQueue<T,C>
	RWTStack<T,C>
	RWTValDeque<T>
	RWTValDlist<T>
	RWTValDlistIterator<T>
	RWTValHashDictionary
	RWTValHashDictionaryIterator
	RWTValHashMap<K,T,H,EQ>
	RWTValHashMapIterator<K,T,H,EQ>
	RWTValHashMultiMap<K,T,H,EQ>
	RWTValHashMultiMapIterator<K,T,H,EQ>
	RWTValHashMultiSet<T,H,EQ>
	RWTValHashMultiSetIterator<T,H,EQ>
	RWTValHashSet<T,H,EQ>
	RWTValHashSetIterator<T,H,EQ>
	RWTValHashTable
	RWTValHashTableIterator
	RWTValMap<K,T,C>
	RWTValMapIterator<K,T,C>
	RWTValMultiMap<K,T,C>
	RWTValMultiMapIterator<K,T,C>
	RWTValMultiSet<T,C>
	RWTValMultiSetIterator<T,C>
	RWTValOrderedVector<T>
	RWTValSet<T,C>
	RWTValSetIterator<T,C>
	RWTValSlist<T>
	RWTValSlistIterator<T>
	RWTValSortedDlist<T,C>
	RWTValSortedDlistIterator<T,C>
	RWTValSortedVector<T,C>
	RWTValVector<T>
	RWTValVirtualArray<T>
	RWVirtualPageHeap
	RWvios
	RWvistream
	RWvostream
	RWWString
	RWWSubString
	RWWTokenizer
	RWXDRistream (Unix only)
	RWXDRostream (Unix only)
	RWZone
	RWZoneSimple

	Appendix A: Alternate Template Class Interfaces
	RWTPtrDlist<T>
	RWTPtrDlistIterator<T>
	RWTPtrHashDictionary<K,V>
	RWTPtrHashDictionaryIterator<K,V>
	RWTPtrHashSet<T>
	RWTPtrHashTable<T>
	RWTPtrHashTableIterator<T>
	RWTPtrOrderedVector<T>
	RWTPtrSlist<T>
	RWTPtrSlistIterator<T>
	RWTPtrSortedVector<T>
	RWTValDlist<T>
	RWTValDlistIterator<T>
	RWTValHashDictionary<K,V>
	RWTValHashDictionaryIterator<K,V>
	RWTValHashSet<T>
	RWTValHashTable<T>
	RWTValHashTableIterator<T>
	RWTValOrderedVector<T>
	RWTValSlist<T>
	RWTValSlistIterator<T>
	RWTValSortedVector<T>

