
 Rogue Wave

 Standard C++ Library
 User's Guide

 and
 Reference

 Rogue Wave Software

 Corvallis, Oregon USA

Standard C++ Library User's Guide and Reference

for

Rogue Wave's implementation of the Standard C++ Library.

Based on ANSI's Working Paper for Draft Proposed International Standard for
Information Systems--Programming Language C++. April 28, 1995.

User's Guide Authors: Timothy A. Budd, Randy Smithey

Reference Authors: Wendi Minne, Tom Pearson, and Randy Smithey

Product Team:

Development: Anna Dahan, Donald Fowler, Marlene Hart,
Angelika Langer, Philippe Le Mouel, Randy Smithey

Quality Engineering: KevinDjang, Randall Robinson, Chun Zhang

Manuals: Wendi Minne, Kristi Moore, Julie Prince,Randy Smithey

Support: North Krimsley

Significant contributions by: Rodney Mishima

Copyright © 1995-96 Rogue Wave Software, Inc. All rights reserved.

Printed in the United States of America.

Part # RW81-01-2-032596

Printing Date: July 1996

Rogue Wave Software, Inc., 850 SW 35th Street, Corvallis, Oregon, 97333 USA

Product Information: (541) 754-5010

(800) 487-3217

Technical Support: (541) 754-2311

FAX: (541) 757-6650

World Wide Web: http://www.roguewave.com

 Please have your product serial number available when calling for technical support.

Table of Contents

1. Introduction ...1
1.1 What is the Standard C++ Library?... 2
1.2 Does the Standard C++ Library Differ From Other Libraries? 2
1.3 What are the Effects of Non-Object-Oriented Design?............................. 3
1.4 How Should I Use the Standard C++ Library?.. 5
1.5 Reading This Manual .. 6
1.6 Conventions.. 6
1.7 Using the Standard Library.. 7
1.8 Running the Tutorial Programs... 7

2. Iterators ..9
2.1 Introduction to Iterators.. 10
2.2 Varieties of Iterators .. 11

2.2.1 Input Iterators.. 12
2.2.2 Output Iterators .. 13
2.2.3 Forward Iterators .. 14
2.2.4 Bidirectional Iterators... 15
2.2.5 Random Access Iterators ... 15
2.2.6 Reverse Iterators ... 16

2.3 Stream Iterators .. 17
2.3.1 Input Stream Iterators .. 17
2.3.2 Output Stream Iterators ... 18

2.4 Insert Iterators .. 18
2.5 Iterator Operations .. 20

3. Functions and Predicates...21
3.1 Functions... 22
3.2 Predicates .. 22
3.3 Function Objects... 23
3.4 Negators and Binders.. 26

iv

4. Container Classes...29
4.1 Overview... 30
4.2 Selecting a Container... 30
4.3 Memory Management Issues ... 32
4.4 Container Types Not Found in the Standard Library 33

5. vector and vector<bool>...35
5.1 The vector Data Abstraction... 36

5.1.1 Include Files... 36
5.2 Vector Operations.. 36

5.2.1 Declaration and Initialization of Vectors... 37
5.2.2 Type Definitions.. 38
5.2.3 Subscripting a Vector ... 39
5.2.4 Extent and Size-Changing Operations... 39
5.2.5 Inserting and Removing Elements ... 40
5.2.6 Iteration .. 42
5.2.7 Test for Inclusion .. 42
5.2.8 Sorting and Sorted Vector Operations ... 42
5.2.9 Useful Generic Algorithms.. 43

5.3 Boolean Vectors.. 44
5.4 Example Program − Sieve of Eratosthenes... 45

6. list..47
6.1 The list Data Abstraction .. 48

6.1.1 Include files.. 48
6.2 List Operations... 48

6.2.1 Declaration and Initialization of Lists.. 49
6.2.2 Type Definitions.. 50
6.2.3 Placing Elements into a List .. 51
6.2.4 Removing Elements.. 53
6.2.5 Extent and Size-Changing Operations... 54
6.2.6 Access and Iteration ... 54
6.2.7 Test for Inclusion .. 55
6.2.8 Sorting and Sorted List Operations .. 55
6.2.9 Searching Operations ... 55
6.2.10 In Place Transformations ... 56
6.2.11 Other Operations .. 56

6.3 Example Program − An Inventory System... 57

7. deque...59
7.1 The deque Data Abstraction... 60

7.1.1 Include Files... 60
7.2 Deque Operations .. 60
7.3 Example Program − Radix Sort.. 61

v

8. set, multiset, and bitset..65
8.1 The set Data Abstraction... 66

8.1.1 Include Files... 66
8.2 set and multiset Operations ... 66

8.2.1 Declaration and Initialization of Set... 66
8.2.2 Type Definitions.. 67
8.2.3 Insertion ... 68
8.2.4 Removal of Elements from a Set ... 69
8.2.5 Searching and Counting .. 69
8.2.6 Iterators .. 70
8.2.7 Set Operations ... 70
8.2.8 Other Generic Algorithms ... 72

8.3 Example Program: − A Spelling Checker ... 72
8.4 The bitset Abstraction ... 73

8.4.1 Include Files... 73
8.4.2 Declaration and Initialization of bitset .. 73
8.4.3 Accessing and Testing Elements... 74
8.4.4 Set operations .. 74
8.4.5 Conversions ... 75

9. map and multimap...77
9.1 The map Data Abstraction.. 78

9.1.1 Include files.. 78
9.2 Map and Multimap Operations ... 78

9.2.1 Declaration and Initialization of map .. 78
9.2.2 Type Definitions.. 79
9.2.3 Insertion and Access... 80
9.2.4 Removal of Values .. 80
9.2.5 Iterators .. 81
9.2.6 Searching and Counting .. 81
9.2.7 Element Comparisons .. 81
9.2.8 Other Map Operations ... 82

9.3 Example Programs... 82
9.3.1 A Telephone Database ... 82
9.3.2 Graphs .. 84
9.3.3 A Concordance.. 86

10. stack and queue...89
10.1 Overview... 90
10.2 The stack Data Abstraction... 90

10.2.1 Include Files... 91
10.2.2 Declaration and Initialization of stack ... 91
10.2.3 Example Program − A RPN Calculator ... 91

10.3 The queue Data Abstraction... 93
10.3.1 Include Files... 93

vi

10.3.2 Declaration and Initialization of queue ... 93
10.3.3 Example Program − Bank Teller Simulation................................... 94

11. priority_queue ...97
11.1 The priority queue Data Abstraction .. 98

11.1.1 Include Files... 98
11.2 The Priority Queue Operations.. 99

11.2.1 Declaration and Initialization of priority queue............................. 99
11.3 Application − Event-Driven Simulation ... 100

11.3.1 An Ice Cream Store Simulation... 102

12. String...105
12.1 The string Abstraction... 106

12.1.1 Include Files... 106
12.2 String Operations... 106

12.2.1 Declaration and Initialization of string.. 107
12.2.2 Resetting Size and Capacity .. 107
12.2.3 Assignment, Append and Swap... 108
12.2.4 Character Access ... 108
12.2.5 Iterators .. 109
12.2.6 Insertion, Removal and Replacement .. 109
12.2.7 Copy and Substring.. 109
12.2.8 String Comparisons .. 110
12.2.9 Searching Operations ... 110

12.3 An Example Function − Split a Line into Words................................. 111

13. Generic Algorithms...113
13.1 Overview... 114

13.1.1 Include Files... 115
13.2 Initialization Algorithms .. 116

13.2.1 Fill a Sequence with An Initial Value... 116
13.2.2 Copy One Sequence Into Another Sequence 117
13.2.3 Initialize a Sequence with Generated Values................................ 119
13.2.4 Swap Values from Two Parallel Ranges.. 120

13.3 Searching Operations .. 121
13.3.1 Find an Element Satisfying a Condition.. 122
13.3.2 Find Consecutive Duplicate Elements ... 123
13.3.3 Find a Subsequence within a Sequence ... 124
13.3.4 Locate Maximum or Minimum Element 124
13.3.5 Locate the First Mismatched Elements in Parallel Sequences 125

13.4 In-Place Transformations.. 127
13.4.1 Reverse Elements in a Sequence ... 127
13.4.2 Replace Certain Elements With Fixed Value 128
13.4.3 Rotate Elements Around a Midpoint ... 129
13.4.4 Partition a Sequence into Two Groups .. 130

vii

13.4.5 Generate Permutations in Sequence... 131
13.4.6 Merge Two Adjacent Sequences into One..................................... 132
13.4.7 Randomly Rearrange Elements in a Sequence 132

13.5 Removal Algorithms ... 134
13.5.1 Remove Unwanted Elements .. 134
13.5.2 Remove Runs of Similar Values ... 135

13.6 Scalar-Producing Algorithms... 136
13.6.1 Count the Number of Elements that Satisfy a Condition............ 136
13.6.2 Reduce Sequence to a Single Value.. 137
13.6.3 Generalized Inner Product .. 138
13.6.4 Test Two Sequences for Pairwise Equality.................................... 139
13.6.5 Lexical Comparison.. 139

13.7 Sequence-Generating Algorithms ... 141
13.7.1 Transform One or Two Sequences ... 141
13.7.2 Partial Sums... 142
13.7.3 Adjacent Differences .. 142

13.8 Miscellaneous Algorithms.. 143
13.8.1 Apply a Function to All Elements in a Collection........................ 143

14. Ordered Collection Algorithms145
14.1 Overview... 146

14.1.1 Include Files... 147
14.2 Sorting Algorithms .. 148
14.3 Partial Sort .. 148
14.4 nth Element... 149
14.5 Binary Search.. 150
14.6 Merge Ordered Sequences.. 152
14.7 Set Operations .. 153
14.8 Heap Operations.. 154

15. Using Allocators ..157
15.1 An Overview of the Standard Library Allocators............................... 158
15.2 Using Allocators with Existing Standard Library Containers........... 158
15.3 Building Your Own Allocators .. 159

15.3.1 Using the Standard Allocator Interface ... 159
15.3.2 Using Rogue Wave's Alternative Interface 161
15.3.3 How to Support Both Interfaces ... 163

16. Building Containers & Generic Algorithms.................165
16.1 Extending the Library ... 166
16.2 Building on the Standard Containers ... 166

16.2.1 Inheritance ... 167
16.2.2 Generic Inheritance... 168
16.2.3 Generic Composition.. 168

16.3 Creating Your Own Containers ... 169

viii

16.3.1 Meeting the Container Requirements .. 169
16.3.2 Meeting the Allocator Interface Requirements............................. 170
16.3.3 Iterator Requirements .. 172

16.4 Tips and Techniques for Building Algorithms 172
16.4.1 The iterator_category Primitive .. 172
16.4.2 The distance and advance Primitives .. 173

17. The Traits Parameter...175
17.1 Using thetTraits Technique .. 176

18. Exception Handling ..179
18.1 Overview... 180

18.1.1 Include Files... 180
18.2 The Standard Exception Hierarchy ... 180
18.3 Using Exceptions ... 181
18.4 Example Program .. 182

19. auto_ptr..185
19.1 Overview... 186

19.1.1 Include File .. 186
19.2 Declaration and Initialization of Auto Pointers 186
19.3 Example Program .. 187

20. Complex ..189
20.1 Overview... 190

20.1.1 Include Files... 190
20.2 Creating and Using Complex Numbers ... 190

20.2.1 Declaring Complex Numbers ... 190
20.2.2 Accessing Complex Number Values.. 191
20.2.3 Arithmetic Operations.. 191
20.2.4 Comparing Complex Values ... 191
20.2.5 Stream Input and Output .. 191
20.2.6 Norm and Absolute Value... 191
20.2.7 Trigonometric Functions.. 192
20.2.8 Transcendental Functions.. 192

20.3 Example Program − Roots of a Polynomial ... 192

21. Numeric Limits ...193
21.1 Overview... 194
21.2 Fundamental Data Types.. 194
21.3 Numeric Limit Members .. 195

21.3.1 Members Common to All Types... 195
21.3.2 Members Specific to Floating Point Values................................... 196

ix

Class Reference ...199
accumulate.. 205
adjacent_difference.. 207
adjacent_find .. 211
advance ... 213
Algorithms.. 215

Algorithms by Mutating/Non-mutating Function................................. 215
Algorithms by Operation.. 216
Algorithms by Iterator Category ... 218

allocator... 221
The Alternate Allocator... 221

associative containers.. 227
auto_ptr ... 229
back_insert_iterator, back_inserter ... 233
basic_string ... 237
bidirectional iterator.. 259

Key to Iterator Requirements ... 259
Requirements for Bidirectional Iterators .. 259

binary_function.. 261
binary_negate ... 263
binary_search ... 265
bind1st, bind2nd, binder1st, binder2nd ... 267
bitset... 271

Errors and exceptions.. 271
compare... 277
complex ... 279
Containers... 287
copy, copy_backward.. 293
count, count_if.. 297
deque ... 299
distance.. 309
distance_type.. 311
divides ... 313
equal .. 315
equal_range .. 317
equal_to... 319
exception ... 321
fill, fill_n .. 325
find... 327
find_end .. 329
find_first_of .. 333
find_if .. 335
for_each ... 337
forward iterator.. 339

Key to Iterator Requirements ... 339
Requirements for Forward Iterators ... 339

front_insert_iterator, front_inserter .. 341

x

function object .. 345
generate, generate_n.. 351
get_temporary_buffer ... 353
greater.. 355
greater_equal .. 357
Heap Operations.. 359
includes ... 361
inner_product... 363
inplace_merge .. 365
input iterator... 369

Key to Iterator Requirements ... 369
Requirements for Input Iterators ... 369

Insert Iterator.. 371
insert_iterator, inserter.. 373
istream_iterator .. 375
iterator_category .. 379

Tag Types.. 379
Iterators ... 381

Key to Iterator Requirements ... 382
Requirements for Input Iterators ... 382
Requirements for Output Iterators.. 383
Requirements for Forward Iterators ... 384
Requirements for Bidirectional Iterators .. 384
Requirements for Random Access Iterators... 384

iter_swap... 387
less.. 389
less_equal .. 391
lexicographical_compare .. 393
limits .. 395
list... 397
logical_and.. 409
logical_not... 411
logical_or... 413
lower_bound .. 415
make_heap.. 417
map .. 421
max... 431
max_element... 433
merge ... 435
min ... 439
min_element ... 441
minus ... 443
mismatch... 445
modulus .. 447
multimap... 449
multiset.. 459
negate .. 467

xi

negators ... 469
next_permutation... 473
not1 .. 477
not2 .. 479
not_equal_to ... 481
nth_element .. 483
numeric_limits ... 487
operator!=, operator>, operator<=, operator>= ... 493
ostream_iterator ... 495
output iterator .. 497

Key to Iterator Requirements ... 497
Requirements for Output Iterators.. 497

pair ... 499
partial_sort.. 501
partial_sort_copy ... 503
partial_sum... 505
partition... 507
permutation .. 509
plus .. 511
pointer_to_binary-function .. 513
pointer_to_unary_function... 515
pop_heap... 517
predicate.. 521
prev_permutation .. 523
priority_queue.. 527
ptr_fun... 531
push_heap... 533
queue ... 537
random access iterator .. 541

Key to Iterator Requirements ... 541
Requirements for Random Access Iterators... 541

random_shuffle .. 543
raw_storage_iterator ... 545
remove... 547
remove_copy .. 549
remove_copy_if.. 551
remove_if .. 553
replace ... 555
replace_copy... 557
replace_copy_if .. 561
replace_if ... 565
return_temporary_buffer.. 567
reverse ... 569
reverse_bidirectional_iterator, reverse_iterator .. 571
reverse_copy... 577
reverse_iterator .. 579
rotate, rotate_copy ... 581

xii

search, search_n ... 585
Sequence.. 589
set ... 591
set_difference.. 599
set_intersection... 601
set_symmetric_difference ... 603
set_union... 607
sort ... 609
sort_heap... 613
stable_partition... 617
stable_sort ... 619
stack ... 623
Stream Iterators .. 627
string.. 629
string_char_traits ... 631
swap... 633
swap_ranges ... 635
times... 637
transform... 639
unary_function... 643
unary_negate .. 645
uninitialized_copy ... 647
uninitialized_fill... 649
uninitialized_fill_n .. 651
unique, unique_copy... 653
upper_bound.. 655
value_type... 657
vector ... 659
wstring... 669

 Glossary ...671

 Index ..675

S e c t i o n 1.
Introduction

1.1

What is the Standard C++ Library?

1.2
Does the Standard C++ Library Differ From Other Libraries?

1.3
What are the Effects of Non-Object-Oriented Design?

1.4
How Should I Use the Standard C++ Library?

1.5
Reading this Manual

1.6

Conventions

1.7

Using the Standard Library

1.8

Running the Tutorial Programs

2 Introduction Rogue Wave Standard C++ Library User's Guide and Tutorial

1.1 What is the Standard C++ Library?
The International Standards Organization (ISO) and the American National
Standards Institute (ANSI) are completing the process of standardizing the
C++ programming language. A major result of this standardization process
is the “Standard C++ Library,” a large and comprehensive collection of
classes and functions. This product is Rogue Wave's implementation of the
ANSI/ISO Standard Library.

The ANSI/ISO Standard C++ Library includes the following parts:

• A large set of data structures and algorithms formerly known as the
Standard Template Library (STL).

• An IOStream facility.

• A locale facility.

• A templatized string class.

• A templatized class for representing complex numbers.

• A uniform framework for describing the execution environment,
through the use of a template class named numeric_limits and
specializations for each fundamental data type.

• Memory management features.

• Language support features.

• Exception handling features.

This version of the Rogue Wave Standard C++ Library includes the data
structures and algorithms libraries (STL), and the string, complex and
numeric_limits classes.

1.2 Does the Standard C++ Library Differ From Other
Libraries?
A major portion of the Standard C++ Library is a collection of class
definitions for standard data structures and a collection of algorithms
commonly used to manipulate such structures. This part of the library was
formerly known as the Standard Template Library or STL. The organization
and design of the STL differs in almost all respects from the design of most
other C++ libraries, because it avoids encapsulation and uses almost no
inheritance.

An emphasis on encapsulation is a key hallmark of object-oriented
programming. The emphasis on combining data and functionality into an

Rogue Wave Standard C++ Library User's Guide and Tutorial Introduction 3

object is a powerful organizational principle in software development;
indeed it is the primary organizational technique. Through the proper use of
encapsulation, even exceedingly complex software systems can be divided
into manageable units and assigned to various members of a team of
programmers for development.

Inheritance is a powerful technique for permitting code sharing and
software reuse, but it is most applicable when two or more classes share a
common set of basic features. For example, in a graphical user interface, two
types of windows may inherit from a common base window class, and the
individual subclasses will provide any required unique features. In another
use of inheritance, object-oriented container classes may ensure common
behavior and support code reuse by inheriting from a more general class,
and factoring out common member functions.

The designers of the STL decided against using an entirely object-oriented
approach, and separated the tasks to be performed using common data
structures from the representation of the structures themselves. This is why
the STL is properly viewed as a collection of algorithms and, separate from
these, a collection of data structures that can be manipulated using the
algorithms.

1.3 What are the Effects of Non-Object-Oriented
Design?
The STL portion of the Standard C++ Library was purposely designed with
an architecture that is not object-oriented. This design has side effects, some
advantageous, and some not, that developers must be aware of as they
investigate how to most effectively use the library. We'll discuss a few of
them here.

• Smaller Source Code

 There are approximately fifty different algorithms in the STL, and about
a dozen major data structures. This separation has the effect of reducing
the size of source code, and decreasing some of the risk that similar
activities will have dissimilar interfaces. Were it not for this separation,
for example, each of the algorithms would have to be re-implemented in
each of the different data structures, requiring several hundred more
member functions than are found in the present scheme.

• Flexibility

 One advantage of the separation of algorithms from data structures is
that such algorithms can be used with conventional C++ pointers and
arrays. Because C++ arrays are not objects, algorithms encapsulated
within a class hierarchy seldom have this ability.

4 Introduction Rogue Wave Standard C++ Library User's Guide and Tutorial

• Efficiency

 The STL in particular, and the Standard C++ Library in general, provide
a low-level, "nuts and bolts" approach to developing C++ applications.
This low-level approach can be useful when specific programs require
an emphasis on efficient coding and speed of execution.

• Iterators: Mismatches and Invalidations

 The Standard C++ Library data structures use pointer-like objects called
iterators to describe the contents of a container. (These are described in
detail in Section 2.) Given the library's architecture, it is not possible to
verify that these iterator elements are matched; i.e., that they are derived
from the same container. Using (either intentionally or by accident) a
beginning iterator from one container with an ending iterator from
another is a recipe for certain disaster.

 It is very important to know that iterators can become invalidated as a
result of a subsequent insertion or deletion from the underlying
container class. This invalidation is not checked, and use of an invalid
iterator can produce unexpected results.

 Familiarity with the Standard C++ Library will help reduce the number
of errors related to iterators.

• Templates: Errors and "Code Bloat"

 The flexibility and power of templatized algorithms are, with most
compilers, purchased at a loss of precision in diagnostics. Errors in the
parameter lists to generic algorithms will sometimes show up only as
obscure compiler errors for internal functions that are defined many
levels deep in template expansions. Again, familiarity with the
algorithms and their requirements is a key to successful use of the
standard library.

 Because of its heavy reliance on templates, the STL can cause programs
to grow larger than expected. You can minimize this problem by
learning to recognize the cost of instantiating a particular template class,
and by making appropriate design decisions. Be aware that as
compilers become more and more fluent in templates, this will become
less of a problem.

• Multithreading Problems

 The Standard C++ Library must be used carefully in a multithreaded
environment. Iterators, because they exist independently of the
containers they operate on, cannot be safely passed between threads.
Since iterators can be used to modify a non const container, there is no
way to protect such a container if it spawns iterators in multiple threads.
Use "thread-safe" wrappers, such as those provided by Tools.h++, if you
need to access a container from multiple threads.

Rogue Wave Standard C++ Library User's Guide and Tutorial Introduction 5

1.4 How Should I Use the Standard C++ Library?
Within a few years the Standard C++ Library will be the standard set of
classes and libraries delivered with all ANSI-conforming C++ compilers. We
have noted that the design of a large portion of the Standard C++ Library is
in many ways not object-oriented. On the other hand, C++ excels as a
language for manipulating objects. How do we integrate the Standard
Library's non-object-oriented architecture with C++'s strengths as a language
for manipulating objects?

The key is to use the right tool for each task. Object-oriented design
methods and programming techniques are almost without peer as
guideposts in the development of large, complex software. For the large
majority of programming tasks, object-oriented techniques will remain the
preferred approach. And products such as Rogue Wave's Tools.h++ 7.0,
which encapsulates the Standard C++ Library with a familiar object-oriented
interface, will provide you with the power of the Library and the advantages
of object-orientation.

Use Standard C++ Library components directly when you need flexibility
and/or highly efficient code. Use the more traditional approaches to object-
oriented design, such as encapsulation and inheritance, when you need to
model larger problem domains, and knit all the pieces into a full solution.
When you need to devise an architecture for your application, always
consider the use of encapsulation and inheritance to compartmentalize the
problem. But if you discover that you need an efficient data structure or
algorithm for a compact problem, such as data stream manipulation in
drivers (the kind of problem that often resolves to a single class), look to the
Standard C++ Library. The Standard C++ Library excels in the creation of
reusable classes, where low-level constructs are needed, while traditional
OOP techniques really shine when those classes are combined to solve a
larger problem.

In the future, most libraries will use the Standard C++ Library as their
foundation. By using the Standard C++ Library, either directly or through
an encapsulation such as Tools.h++ 7.0, you help ensure interoperability.
This is especially important in large projects that may rely on
communication between several libraries. A good rule of thumb is to use the
highest encapsulation level available to you, but make sure that the
Standard C++ Library is available as the base for interlibrary communication
and operation.

The C++ language supports a wide range of programming approaches
because the problems we need to solve require that range. The language,
and now the Standard C++ library that supports it, are designed to give you
the power to approach each unique problem from the best possible angle.
The Standard C++ Library, when combined with more traditional OOP
techniques, puts a very flexible tool into the hands of anyone building a

6 Introduction Rogue Wave Standard C++ Library User's Guide and Tutorial

collection of C++ classes, whether those classes are intended to stand alone
as a library or are tailored to a specific task.

1.5 Reading This Manual
This manual is an introduction to the Rogue Wave implementation of the
Standard C++ Library. It assumes that you are already familiar with the
basics features of the C++ programming language. If you are new to C++
you may wish to examine an introductory text, such as the book The C++
Programming Language, by Bjarne Stroustrup (Addison-Wesley, 1991).

There is a classic “chicken-and-egg” problem associated with the container
class portion of the standard library. The heart of the container class library
is the definition of the containers themselves, but you can't really appreciate
the utility of these structures without an understanding of the algorithms
that so greatly extend their functionality. On the other hand, you can't really
understand the algorithms without some appreciation of the containers.

Ideally, after reading sections 2, 3 and 4 carefully, sections 5 through 11
should be read simultaneously with sections 12 and 13. Since that’s not
possible, simply skim over sections 5 through 11 and sections 12 and 13 to
gain a superficial understanding of the overall structure, then go back and
read these sections again in more detail.

1.6 Conventions
We use distinctinve fonts for class_names and function_names() When
we wish to refer to a function name or algorithm name but not draw
attention to the arguments, we will follow the function name with an empty
pair of parentheses. We do this even when the actual function invocation
requires additional arguments. We have used the term algorithm to refer to
the functions in the generic algorithms portion of the standard library, so as
to avoid confusion with member functions, argument functions, and
functions defined by the programmer. Note that both class names and
function names in the standard library follow the convention of using an
underline character as a separator. Throughout the text, examples and file
names are printed in the same courier font used for function names.

In the text, it is common to omit printing the class name in the distinctive
font after it has been introduced. This is intended to make the appearance of
the text less visually disruptive. However, we return to the distinctive font
to make a distinction between several different possibilities, as for example
between the classes vector and list used as containers in constructing a
stack.

Rogue Wave Standard C++ Library User's Guide and Tutorial Introduction 7

1.7 Using the Standard Library
Because the Standard C++ Library consists largely of template declarations,
on most platforms it is only necessary to include in your programs the
appropriate header files. These header files will be noted in the text that
describes how to use each algorithm or class.

1.8 Running the Tutorial Programs
All the tutorial programs described in this text have been gathered together
and are available as part of the distribution package. You can compile and
run these programs, and use them as models for your own programming
problems. Many of these example programs have been extended with
additional output commands that are not reproduced here in the text. The
expected output from each program is also included as part of the
distribution.

S e c t i o n 2.
Iterators

2.1

Introduction to Iterators

2.2

Varieties of Iterators

2.3

Stream Iterators

2.4

Insert Iterators

2.5

Iterator Operations

10 Iterators Rogue Wave Standard C++ Library User's Guide and Tutorial

2.1 Introduction to Iterators
Fundamental to the use of the container classes and the associated
algorithms provided by the standard library is the concept of an iterator.
Abstractly, an iterator is simply a pointer-like object used to cycle through
all the elements stored in a container. Because different algorithms need to
traverse containers in a variety of fashions, there are different forms of
iterator. Each container class in the standard library can generate an iterator
with functionality appropriate to the storage technique used in
implementing the container. It is the category of iterators required as
arguments that chiefly distinguishes which algorithms in the standard
library can be used with which container classes.

Just as pointers can be used in a variety of ways in traditional programming,
iterators are also used for a number of different purposes. An iterator can be
used to denote a specific value, just as a pointer can be used to reference a
specific memory location. On the other hand, a pair of iterators can be used
to describe a range of values, just as two pointers can be used to describe a
contiguous region of memory. In the case of iterators, however, the values
being described are not necessarily physically in sequence, but are rather
logically in sequence, because they are derived from the same container, and
the second follows the first in the order in which the elements are
maintained by the container.

Conventional pointers can sometimes be null, meaning they point at nothing.
Iterators, as well, can fail to denote any specific value. Just as it is a logical
error to dereference a null pointer, it is an error to dereference an iterator
that is not denoting a value.

When two pointers that describe a region in memory are used in a C++
program, it is conventional that the ending pointer is not considered to be
part of the region. For example, an array named x of length ten is sometimes
described as extending from x to x+10 , even though the element at x+10 is
not part of the array. Instead, the pointer value x+10 is the past-the-end value
– the element that is the next value after the end of the range being described.
Iterators are used similarly to describe a range. The second value is not
considered to be part of the range being denoted. Instead, the second value
is a past-the-end element, describing the next value in sequence after the final
value of the range. Sometimes, as with pointers to memory, this will be an
actual value in the container. Other times it may be a special value,
specifically constructed for the purpose. In either case, it is not proper to
dereference an iterator that is being used to specify the end of a range.

Just as with conventional pointers, the fundamental operation used to
modify an iterator is the increment operator (operator ++). When the
increment operator is applied to an iterator that denotes the final value in a
sequence, it will be changed to the “past the end” value. An iterator j is said

✍✍
Iterators
Iterators are
pointer-like
objects, used to
cycle through the
elements stored in
a container.

✍✍
Range
A range is a
sequence of
values held in a
container. The
range is described
by a pair of
iterators, which
define the
beginning and
end of the
sequence.

Rogue Wave Standard C++ Library User's Guide and Tutorial Iterators 11

to be reachable from an iterator i if, after a finite sequence of applications of
the expression ++i , the iterator i becomes equal to j .

Ranges can be used to describe the entire contents of a container, by
constructing an iterator to the initial element and a special “ending” iterator.
Ranges can also be used to describe subsequences within a single container,
by employing two iterators to specific values. Whenever two iterators are
used to describe a range it is assumed, but not verified, that the second
iterator is reachable from the first. Errors can occur if this expectation is not
satisfied.

In the remainder of this section we will describe the different forms of
iterators used by the standard library, as well as various other iterator-
related functions.

2.2 Varieties of Iterators
There are five basic forms of iterators used in the standard library:

input iterator read only, forward moving

output iterator write only, forward moving

forward iterator both read and write, forward
moving

bidirectional iterator read and write, forward and
backward moving

random access iterator read and write, random access

Iterator categories are hierarchical. Forward iterators can be used wherever
input or output iterators are required, bidirectional iterators can be used in
place of forward iterators, and random access iterators can be used in
situations requiring bidirectionality.

A second characteristic of iterators is whether or not they can be used to
modify the values held by their associated container. A constant iterator is
one that can be used for access only, and cannot be used for modification.
Output iterators are never constant, and input iterators always are. Other
iterators may or may not be constant, depending upon how they are created.
There are both constant and non-constant bidirectional iterators, both
constant and non-constant random access iterators, and so on.

The following table summarizes specific ways that various categories of
iterators are generated by the containers in the standard library.

Iterator Form Produced By
input iterator istream_iterator

✍✍
Iterator Ranges
When iterators are
used to describe
a range of values
in a container, it is
assumed (but not
verified) that the
second iterator is
reachable from
the first. Errors will
occur if this is not
true.

12 Iterators Rogue Wave Standard C++ Library User's Guide and Tutorial

Iterator Form Produced By
output iterator ostream_iterator

inserter

front_inserter

back_inserter

bidirectional iterator list

set and multiset

map and multimap

random access iterator ordinary pointers

vector

deque

In the following sections we will describe the capabilities and construction of
each form of iterator.

2.2.1 Input Iterators

Input iterators are the simplest form of iterator. To understand their
capabilities, consider an example program. The find() generic algorithm (to
be described in more detail in Section 13.3.1), performs a simple linear
search, looking for a specific value being held within a container. The
contents of the container are described using two iterators, here called first

and last . While first is not equal to last the element denoted by first is
compared to the test value. If equal, the iterator, which now denotes the
located element, is returned. If not equal, the first iterator is incremented,
and the loop cycles once more. If the entire region of memory is examined
without finding the desired value, then the algorithm returns the end-of-
range iterator.

template <class InputIterator, class T>
InputIterator
 find (InputIterator first, InputIterator last, const T& value)
{
 while (first != last && *first != value)
 ++first;
 return first;
}

This algorithm illustrates three requirements for an input iterator:

• An iterator can be compared for equality to another iterator. They are
equal when they point to the same position, and are otherwise not equal.

• An iterator can be dereferenced using the * operator, to obtain the value
being denoted by the iterator.

Rogue Wave Standard C++ Library User's Guide and Tutorial Iterators 13

• An iterator can be incremented, so that it refers to the next element in
sequence, using the operator ++.

Notice that these characteristics can all be provided with new meanings in a
C++ program, since the behavior of the given functions can all be modified
by overloading the appropriate operators. Because of this overloading,
iterators are possible. There are three main varieties of input iterators:

Ordinary pointers. Ordinary pointers can be used as input iterators. In fact,
since we can subscript and add to ordinary pointers, they are random access
values, and thus can be used either as input or output iterators. The end-of-
range pointer describes the end of a contiguous region of memory, and the
deference and increment operators have their conventional meanings. For
example, the following searches for the value 7 in an array of integers:

int data[100];
 ...
int * where = find(data, data+100, 7);

Note that constant pointers, pointers which do not permit the underlying
array to be modified, can be created by simply placing the keyword const in
a declaration.

const int * first = data;
const int * last = data + 100;
 // can't modify location returned by the following
const int * where = find(first, last, 7);

Container iterators. All of the iterators constructed for the various
containers provided by the standard library are at least as general as input
iterators. The iterator for the first element in a collection is always
constructed by the member function begin() , while the iterator that denotes
the “past-the-end” location is generated by the member function end() . For
example, the following searches for the value 7 in a list of integers:

list<int>::iterator where = find(aList.begin(), aList.end(), 7);

Each container that supports iterators provides a type within the class
declaration with the name iterator . Using this, iterators can uniformly be
declared in the fashion shown. If the container being accessed is constant, or
if the description const_iterator is used, then the iterator is a constant
iterator.

Input stream iterators. The standard library provides a mechanism to
operate on an input stream using an input iterator. This ability is provided
by the class istream_iterator , and will be described in more detail in
Section 2.3.1.

2.2.2 Output Iterators

An output iterator has the opposite function from an input iterator. Output
iterators can be used to assign values in a sequence, but cannot be used to

✍✍
Ordinary Pointers
as Iterators
Because ordinary
pointers have the
same functionality
as random access
iterators, most of
the generic
algorithms in the
standard library
can be used with
conventional C++
arrays, as well as
with the
containers
provided by the
standard library.

14 Iterators Rogue Wave Standard C++ Library User's Guide and Tutorial

access values. For example, we can use an output iterator in a generic
algorithm that copies values from one sequence into another:

template <class InputIterator, class OutputIterator>
OutputIterator copy
 (InputIterator first, InputIterator last, OutputIterator result)
{
 while (first != last)
 *result++ = *first++;
 return result;
}

Two ranges are being manipulated here; the range of source values specified
by a pair of input iterators, and the destination range. The latter, however, is
specified by only a single argument. It is assumed that the destination is
large enough to include all values, and errors will ensue if this is not the
case.

As illustrated by this algorithm, an output iterator can modify the element to
which it points, by being used as the target for an assignment. Output
iterators can use the dereference operator only in this fashion, and cannot be
used to return or access the elements they denote.

As we noted earlier, ordinary pointers, as well as all the iterators constructed
by containers in the standard library, can be used as examples of output
iterators. (Ordinary pointers are random access iterators, which are a
superset of output iterators.) So, for example, the following code fragment
copies elements from an ordinary C-style array into a standard library
vector:

int data[100];
vector<int> newdata(100);
 ...
copy (data, data+100, newdata.begin());

Just as the istream_iterator provided a way to operate on an input stream
using the input iterator mechanism, the standard library provides a data
type, ostream_iterator , that permits values to be written to an output
stream in an iterator-like fashion. These will be described in Section 2.3.2.

Yet another form of output iterator is an insert iterator. An insert iterator
changes the output iterator operations of dereferencing/assignment and
increment into insertions into a container. This permits operations such as
copy() to be used with variable length containers, such as lists and sets.
Insert iterators will be described in more detail in Section 2.4.

2.2.3 Forward Iterators

A forward iterator combines the features of an input iterator and an output
iterator. It permits values to both be accessed and modified. One function
that uses forward iterators is the replace() generic algorithm, which
replaces occurrences of specific values with other values. This algorithm is
written as follows:

✍✍
Parallel
Sequences
A number of the
generic algorithms
manipulate two
parallel
sequences.
Frequently the
second sequence
is described using
only a beginning
iterator, rather
than an iterator
pair. It is
assumed, but not
checked, that the
second sequence
has at least as
many elements as
the first.

Rogue Wave Standard C++ Library User's Guide and Tutorial Iterators 15

template <class ForwardIterator, class T>
void
 replace (ForwardIterator first, ForwardIterator last,
 const T& old_value, const T& new_value)
{
 while (first != last)
 {
 if (*first == old_value)
 *first = new_value;
 ++first;
 }
}

Ordinary pointers, as well as any of the iterators produced by containers in
the standard library, can be used as forward iterators. The following, for
example, replaces instances of the value 7 with the value 11 in a vector of
integers.

 replace (aVec.begin(), aVec.end(), 7, 11);

2.2.4 Bidirectional Iterators

A bidirectional iterator is similar to a forward iterator, except that
bidirectional iterators support the decrement operator (operator --),
permitting movement in either a forward or a backward direction through
the elements of a container. For example, we can use bidirectional iterators
in a function that reverses the values of a container, placing the results into a
new container.

template <class BidirectionalIterator, class OutputIterator>
OutputIterator
 reverse_copy (BidirectionalIterator first,
 BidirectionalIterator last,
 OutputIterator result)
{
 while (first != last)
 *result++ = *--last;
 return result;
}

As always, the value initially denoted by the last argument is not
considered to be part of the collection.

The reverse_copy() function could be used, for example, to reverse the
values of a linked list, and place the result into a vector:

 list<int> aList;

 vector<int> aVec (aList.size());
 reverse_copy (aList.begin(), aList.end(), aVec.begin());

2.2.5 Random Access Iterators

Some algorithms require more functionality than the ability to access values
in either a forward or backward direction. Random access iterators permit
values to be accessed by subscript, subtracted one from another (to yield the

16 Iterators Rogue Wave Standard C++ Library User's Guide and Tutorial

number of elements between their respective values) or modified by
arithmetic operations, all in a manner similar to conventional pointers.

When using conventional pointers, arithmetic operations can be related to
the underlying memory; that is, x+10 is the memory ten elements after the
beginning of x. With iterators the logical meaning is preserved (x+10 is the
tenth element after x), however the physical addresses being described may
be different.

Algorithms that use random access iterators include generic operations such
as sorting and binary search. For example, the following algorithm
randomly shuffles the elements of a container. This is similar to, although
simpler than, the function random_shuffle() provided by the standard
library.

template <class RandomAccessIterator>
void
 mixup (RandomAccessIterator first, RandomAccessIterator last)
{
 while (first < last)
 {
 iter_swap(first, first + randomInteger(last - first));
 ++first;
 }
}

The program will cycle as long as first is denoting a position that occurs
earlier in the sequence than the one denoted by last . Only random access
iterators can be compared using relational operators; all other iterators can
be compared only for equality or inequality. On each cycle through the
loop, the expression last - first yields the number of elements between
the two limits. The function randomInteger() is assumed to generate a
random number between 0 and the argument. Using the standard random
number generator, this function could be written as follows:

unsigned int randomInteger (unsigned int n)
 // return random integer greater than
 // or equal to 0 and less than n
{
 return rand() % n;
}

This random value is added to the iterator first , resulting in an iterator to a
randomly selected value in the container. This value is then swapped with
the element denoted by the iterator first .

2.2.6 Reverse Iterators

An iterator naturally imposes an order on an underlying container of values.
For a vector or a map the order is given by increasing index values. For a
set it is the increasing order of the elements held in the container. For a list
the order is explicitly derived from the way values are inserted.

✍✍
randomInteger()
The function
randomInteger
described here is
used in a number
of the example
programs
presented in later
sections.

Rogue Wave Standard C++ Library User's Guide and Tutorial Iterators 17

A reverse iterator will yield values in exactly the reverse order of those given
by the standard iterators. That is, for a vector or a list, a reverse iterator will
generate the last element first, and the first element last. For a set it will
generate the largest element first, and the smallest element last. Strictly
speaking, reverse iterators are not themselves a new category of iterator.
Rather, there are reverse bidirectional iterators, reverse random access
iterators, and so on.

The list, set and map data types provide a pair of member functions that
produce reverse bidirectional iterators. The functions rbegin() and rend()

generate iterators that cycle through the underlying container in reverse
order. Increments to such iterators move backward, and decrements move
forward through the sequence.

Similarly, the vector and deque data types provide functions (also named
rbegin() and rend()) that produce reverse random access iterators.
Subscript and addition operators, as well as increments to such iterators
move backward within the sequence.

2.3 Stream Iterators
Stream iterators are used to access an existing input or output stream using
iterator operations.

2.3.1 Input Stream Iterators

As we noted in the discussion of input iterators, the standard library
provides a mechanism to turn an input stream into an input iterator. This
ability is provided by the class istream_iterator . When declared, the two
template arguments are the element type, and a type that measures the
distance between elements. Almost always the latter is the standard type
ptrdiff_t . The single argument provided to the constructor for an
istream_iterator is the stream to be accessed. Each time the ++ operator is
invoked on an input stream iterator a new value from the stream is read
(using the >> operator) and stored. This value is then available through the
use of the dereference operator (operator *). The value constructed by
istream_iterator when no arguments are provided to the constructor can
be used as an ending iterator value. The following, for example, finds the
first value 7 in a file of integer values.

istream_iterator<int, ptrdiff_t> intstream(cin), eof;
istream_iterator<int, ptrdiff_t>::iterator where =
 find(intstream, eof, 7);

The element denoted by an iterator for an input stream is valid only until the
next element in the stream is requested. Also, since an input stream iterator
is an input iterator, elements can only be accessed, they cannot be modified
by assignment. Finally, elements can be accessed only once, and only in a

✍✍
Stream Iterators
An input stream
iterator permits an
input stream to be
read using iterator
operations. An
output stream
iterator similarly
writes to an
output stream
when iterator
operations are
executed.

18 Iterators Rogue Wave Standard C++ Library User's Guide and Tutorial

forward moving direction. If you want to read the contents of a stream more
than one time, you must create a separate iterator for each pass.

2.3.2 Output Stream Iterators

The output stream iterator mechanism is analogous to the input stream
iterator. Each time a value is assigned to the iterator, it will be written on the
associated output stream, using the >> operator. To create an output stream
iterator you must specify, as an argument with the constructor, the
associated output stream. Values written to the output stream must
recognize the stream >> operation. An optional second argument to the
constructor is a string that will be used as a separator between each pair of
values. The following, for example, copies all the values from a vector into
the standard output, and separates each value by a space:

copy (newdata.begin(), newdata.end(),
 ostream_iterator<int> (cout, " "));

Simple file transformation algorithms can be created by combining input
and output stream iterators and the various algorithms provided by the
standard library. The following short program reads a file of integers from
the standard input, removes all occurrences of the value 7, and copies the
remainder to the standard output, separating each value by a new line:

void main()
{
 istream_iterator<int, ptrdiff_t> input (cin), eof;
 ostream_iterator<int> output (cout, "\n");

 remove_copy (input, eof, output, 7);
}

2.4 Insert Iterators
Assignment to the dereferenced value of an output iterator is normally used
to overwrite the contents of an existing location. For example, the following
invocation of the function copy() transfers values from one vector to
another, although the space for the second vector was already set aside (and
even initialized) by the declaration statement:

vector<int> a(10);
vector<int> b(10);
 ...
copy (a.begin(), a.end(), b.begin());

Even structures such as lists can be overwritten in this fashion. The
following assumes that the list named c has at least ten elements. The initial
ten locations in the list will be replaced by the contents of the vector a.

list<int> c;
 ...
copy (a.begin(), a.end(), c.begin());

Rogue Wave Standard C++ Library User's Guide and Tutorial Iterators 19

With structures such as lists and sets, which are dynamically enlarged as
new elements are added, it is frequently more appropriate to insert new
values into the structure, rather than to overwrite existing locations. A type
of adaptor called an insert iterator allows us to use algorithms such as copy()

to insert into the associated container, rather than overwrite elements in the
container. The output operations of the iterator are changed into insertions
into the associated container. The following, for example, inserts the values
of the vector a into an initially empty list:

list<int> d;

copy (a.begin(), a.end(), front_inserter(d));

There are three forms of insert iterators, all of which can be used to change a
copy operation into an insert operation. The iterator generated using
front_inserter , shown above, inserts values into the front of the container.
The iterator generated by back_inserter places elements into the back of the
container. Both forms can be used with lists and deques, but not with sets
or maps. back_inserter , but not front_inserter , can be used with vector.

The third, and most general form, is inserter , which takes two arguments; a
container and an iterator within the container. This form copies elements
into the specified location in the container. (For a list, this means elements
are copied immediately before the specified location). This form can be used
with all the structures for which the previous two forms work, as well as
with sets and maps.

The following simple program illustrates the use of all three forms of insert
iterators. First, the values 3, 2 and 1 are inserted into the front of an initially
empty list. Note that as it is inserted, each value becomes the new front, so
that the resultant list is ordered 1, 2, 3. Next, the values 7, 8 and 9 are
inserted into the end of the list. Finally, the find() operation is used to
locate an iterator that denotes the 7 value, and the numbers 4, 5 and 6 are
inserted immediately prior. The result is the list of numbers from 1 to 9 in
order.

void main() {
 int threeToOne [] = {3, 2, 1};
 int fourToSix [] = {4, 5, 6};
 int sevenToNine [] = {7, 8, 9};

 list<int> aList;

 // first insert into the front
 // note that each value becomes new front
 copy (threeToOne, threeToOne+3, front_inserter(aList));

 // then insert into the back
 copy (sevenToNine, sevenToNine+3, back_inserter(aList));

20 Iterators Rogue Wave Standard C++ Library User's Guide and Tutorial

 // find the seven, and insert into middle
 list<int>::iterator seven = find(aList.begin(), aList.end(), 7);
 copy (fourToSix, fourToSix+3, inserter(aList, seven));

 // copy result to output
 copy (aList.begin(), aList.end(),
 ostream_iterator<int>(cout, " "));
 cout << endl;
}

Observe that there is an important and subtle difference between the
iterators created by inserter(aList, aList.begin()) and
front_inserter(aList). The call on inserter(aList, aList.begin())

copies values in sequence, adding each one to the front of a list, whereas
front_inserter(aList) copies values making each value the new front. The
result is that front_inserter(aList) reverses the order of the original
sequence, while inserter(aList, aList.begin()) retains the original
order.

2.5 Iterator Operations
The standard library provides two functions that can be used to manipulate
iterators. The function advance() takes an iterator and a numeric value as
argument, and modifies the iterator by moving the given amount.

void advance (InputIterator & iter, Distance & n);

For random access iterators this is the same as iter + n; however, the
function is useful because it is designed to operate with all forms of iterator.
For forward iterators the numeric distance must be positive, whereas for
bidirectional or random access iterators the value can be either positive or
negative. The operation is efficient (constant time) only for random access
iterators. In all other cases it is implemented as a loop that invokes either
the operators ++ or -- on the iterator, and therefore takes time proportional
to the distance traveled. The advance() function does not check to ensure
the validity of the operations on the underlying iterator.

The second function, distance() , returns the number of iterator operations
necessary to move from one element in a sequence to another. The
description of this function is as follows:

void distance (InputIterator first, InputIterator last,
 Distance &n);

The result is returned in the third argument, which is passed by reference.
Distance will increment this value by the number of times the operator ++

must be executed to move from first to last . Always be sure that the
variable passed through this argument is properly initialized before
invoking the function.

S e c t i o n 3.
Functions and Predicates

3.1

Functions

3.2

Predicates

3.3

Function Objects

3.4

Negators and Binders

22 Functions and Predicates Rogue Wave Standard C++ Library User's Guide and Tutorial

3.1 Functions
A number of algorithms provided in the standard library require functions
as arguments. A simple example is the algorithm for_each(), which
invokes a function, passed as an argument, on each value held in a
container. The following, for example, applies the printElement() function
to produce output describing each element in a list of integer values:

void printElement (int value)
{
 cout << "The list contains " << value << endl;
}

main ()
{
 list<int> aList;
 ...
 for_each (aList.begin(), aList.end(), printElement);
}

Binary functions take two arguments, and are often applied to values from
two different sequences. For example, suppose we have a list of strings and
a list of integers. For each element in the first list we wish to replicate the
string the number of times given by the corresponding value in the second
list. We could perform this easily using the function transform() from the
standard library. First, we define a binary function with the desired
characteristics:

string stringRepeat (const string & base, int number)
 // replicate base the given number of times
{
 string result; // initially the result is empty
 while (number--) result += base;
 return result;
}

The following call on transform() then produces the desired effect:

list<string> words;
list<int> counts;
 ...
transform (words.begin(), words.end(),
 counts.begin(), words.begin(), stringRepeat);

Transforming the words one , two , three with the values 3, 2, 3 would yield
the result oneoneone , twotwo , threethreethree .

3.2 Predicates
A predicate is simply a function that returns either a boolean (true/false)
value or an integer value. Following the normal C convention, an integer
value is assumed to be true if non-zero, and false otherwise. An example

Rogue Wave Standard C++ Library User's Guide and Tutorial Functions and Predicates 23

function might be the following, which takes as argument an integer and
returns true if the number represents a leap year, and false otherwise:

bool isLeapYear (unsigned int year)
 // return true if year is leap year
{
 // millennia are leap years
 if (0 == year % 1000) return true;
 // every fourth century is
 if (0 == year % 400) return true;
 // every fourth year is
 if (0 == year % 4) return true;
 // otherwise not
 return false;
}

A predicate is used as an argument, for example, in the generic algorithm
named find_if() . This algorithm returns the first value that satisfies the
predicate, returning the end-of-range value if no such element is found.
Using this algorithm, the following locates the first leap year in a list of
years:

list<int>::iterator firstLeap =
 find_if(aList.begin(), aList.end(), isLeapYear);

3.3 Function Objects
A function object is an instance of a class that defines the parenthesis operator
as a member function. There are a number of situations where it is
convenient to substitute function objects in place of functions. When a
function object is used as a function, the parenthesis operator is invoked
whenever the function is called.

To illustrate, consider the following class definition:

class biggerThanThree
 {
 public:
 bool operator () (int val)
 { return val > 3; }
};

If we create an instance of class biggerThanThree, every time we reference
this object using the function call syntax, the parenthesis operator member
function will be invoked. The next step is to generalize this class, by adding
a constructor and a constant data field, which is set by the constructor.

class biggerThan {
 public:
 const int testValue;
 biggerThan (int x) : testValue(x) { }

 bool operator () (int val)
 { return val > testValue; }
};

24 Functions and Predicates Rogue Wave Standard C++ Library User's Guide and Tutorial

The result is a general “bigger than X” function, where the value of X is
determined when we create an instance of the class. We can do so, for
example, as an argument to one of the generic functions that require a
predicate. In this manner the following will find the first value in a list that
is larger than 12:

list<int>::iterator firstBig =
 find_if (aList.begin(), aList.end(), biggerThan(12));

Three of the most common reasons to use function objects in place of
ordinary functions are to employ an existing function object provided by the
standard library instead of a new function, to improve execution by using
inline function calls, or to allow a function object to access or set state
information that is held by an object. We will give examples of each.

The following table illustrates the function objects provided by the standard
library.

Name Implemented operations
arithmetic functions

plus

minus

times

divides

modulus

negate

 addition x + y

subtraction x - y

multiplication x * y

division x / y

remainder x % y

negation - x

comparison functions

equal_to

not_equal_to

greater

less

greater_equal

less_equal

 equality test x == y

inequality test x != y

greater comparison x > y

less-than comparison x < y

greater than or equal comparison x >= y

less than or equal comparison x <= y

logical functions

logical_and

logical_or

logical_not

 logical conjunction x && y

logical disjunction x || y

logical negation ! x

Let's look at a couple of examples that show how these might be used. The
first example uses plus() to compute the by-element addition of two lists of

Rogue Wave Standard C++ Library User's Guide and Tutorial Functions and Predicates 25

integer values, placing the result back into the first list. This can be
performed by the following:

transform (listOne.begin(), listOne.end(), listTwo.begin(),
 listOne.begin(), plus<int>());

The second example negates every element in a vector of boolean values:

transform (aVec.begin(), aVec.end(), aVec.begin(),
 logical_not<bool>());

The base classes used by the standard library in the definition of the
functions shown in the preceding table are available for the creation of new
unary and binary function objects. These base classes are defined as follows:

template <class Arg, class Result>
struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
};

template <class Arg1, class Arg2, class Result>
struct binary_function {
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
};

An example of the use of these functions is found in Section 6.3. Here we
want to take a binary function of type “Widget” and an argument of type
integer, and compare the widget identification number against the integer
value. A function to do this is written in the following manner:

struct WidgetTester : binary_function<Widget, int, bool> {
public:
 bool operator () (const Widget & wid, int testid) const
 { return wid.id == testid; }
};

A second reason to consider using function objects instead of functions is
faster code. In many cases an invocation of a function object, such as the
examples given in the calls on transform() presented earlier, can be
expanded in-line, eliminating the overhead of a function call.

✍✍
Location of the
Class Definitions
The class
definitions for
unary_function
and
binary_function
can be
incorporated by
#including
functional .

26 Functions and Predicates Rogue Wave Standard C++ Library User's Guide and Tutorial

The third major reason to use a function object in place of a function is when
each invocation of the function must remember some state set by earlier
invocations. An example of this occurs in the creation of a generator, to be
used with the generic algorithm generate() . A generator is simply a function
that returns a different value each time it is invoked. The most commonly
used form of generator is a random number generator, but there are other
uses for the concept. A sequence generator simply returns the values of an
increasing sequence of natural numbers (1, 2, 3, 4 and so on). We can call
this object iotaGen after the similar operation in the programming language
APL, and define it as follows:

class iotaGen {
public:
 iotaGen (int start = 0) : current(start) { }
 int operator () () { return current++; }
private:
 int current;
};

An iota object maintains a current value, which can be set by the constructor,
or defaults to zero. Each time the function-call operator is invoked, the
current value is returned, and also incremented. Using this object, the
following call on the standard library function generate() will initialize a
vector of 20 elements with the values 1 through 20:

vector<int> aVec(20);
generate (aVec.begin(), aVec.end(), iotaGen(1));

3.4 Negators and Binders
Negators and binders are function adaptors that are used to build new
function objects out of existing function objects. Almost always, these are
applied to functions as part of the process of building an argument list prior
to invoking yet another function or generic algorithm.

The negators not1() and not2() take a unary and a binary predicate
function object, respectively, and create a new function object that will yield
the complement of the original. For example, using the widget tester
function object defined in the previous section, the function object

 not2(WidgetTester())

yields a binary predicate which takes exactly the same arguments as the
widget tester, and which is true when the corresponding widget tester
would be false, and false otherwise. Negators work only with function
objects defined as subclasses of the classes unary_function and
binary_function , given earlier.

✍✍
Using Function
Objects to Store
References
A more complex
illustration of the
use of a function
object occurs in
the radix sorting
example program
given as an
illustration of the
use of the list data
type in Section
6.3. In this
program
references are
initialized in the
function object,
so that during the
sequence of
invocations the
function object
can access and
modify local
values in the
calling program.

Rogue Wave Standard C++ Library User's Guide and Tutorial Functions and Predicates 27

A binder takes a two-argument function, and binds either the first or second
argument to a specific value, thereby yielding a one-argument function. The
underlying function must be a subclass of class binary_function . The
binder bind1st() binds the first argument, while the binder bind2nd() binds
the second.

For example, the binder bind2nd(greater<int>(), 5) creates a function
object that tests for being larger than 5. This could be used in the following,
which yields an iterator representing the first value in a list larger than 5:

list<int>::iterator where = find_if(aList.begin(), aList.end(),
 bind2nd(greater<int>(), 5));

Combining a binder and a negator, we can create a function that is true if the
argument is divisible by 3, and false otherwise. This can be used to remove
all the multiples of 3 from a list.

list<int>::iterator where = remove_if (aList.begin(), aList.end(),
 not1(bind2nd(modulus<int>(), 3)));

A binder is used to tie the widget number of a call to the binary function
WidgetTester(), yielding a one-argument function that takes only a widget
as argument. This is used to find the first widget that matches the given
widget type:

list<Widget>::iterator wehave =
 find_if(on_hand.begin(), on_hand.end(),
 bind2nd(WidgetTester(), wid));

✍✍
A Hot Idea
The idea
described here by
the term binder is
in other contexts
often described
by the term curry.
This is not, as some
people think,
because it is a hot
idea. Instead, it is
named after the
computer scientist
Haskell P. Curry,
who used the
concept
extensively in an
influential book on
the theory of
computation in
the 1930’s. Curry
himself attributed
the idea to Moses
Schönfinkel,
leaving one to
wonder why we
don’t instead refer
to binders as
“Schönfinkels.”

S e c t i o n 4.
Container Classes

4.1

Overview

4.2

Selecting a Container

4.3

Memory Management Issues

4.4

Container Types Not Found in the Standard Library

30 Container Classes Rogue Wave Standard C++ Library User's Guide and Tutorial

4.1 Overview
The standard library provides no fewer than ten alternative forms of
container. In this section we will briefly describe the varieties, considering
the characteristics of each, and discuss how you might go about selecting
which container to use in solving a particular problem. Subsequent sections
will then go over each of the different containers in more detail.

The following chart shows the ten container types provided by the standard
library, and gives a short description of the most significant characteristic for
each.

Name Characteristic
vector random access to elements, efficient insertions at end
list efficient insertion and removal throughout
deque random access, efficient insertion at front or back
set elements maintained in order, efficient test for inclusion,

insertion and removal
multiset set with repeated copies
map access to values via keys, efficient insertion and removal
multimap map permitting duplicate keys
stack insertions and removals only from top
queue insertion at back, removal from front
priority queue efficient access and removal of largest value

4.2 Selecting a Container
The following series of questions can help you determine which type of
container is best suited for solving a particular problem.

How are values going to be accessed?

If random access is important, than a vector or a deque should be used. If
sequential access is sufficient, then one of the other structures may be
suitable.

Is the order in which values are maintained in the collection important?

There are a number of different ways values can be sequenced. If a strict
ordering is important throughout the life of the container, then the set data
structure is an obvious choice, as insertions into a set are automatically
placed in order. On the other hand, if this ordering is important only at one
point (for example, at the end of a long series of insertions), then it might be
easier to place the values into a list or vector, then sort the resulting
structure at the appropriate time. If the order that values are held in the

Rogue Wave Standard C++ Library User's Guide and Tutorial Container Classes 31

structure is related to the order of insertion, then a stack, queue, or list may
be the best choice.

Will the size of the structure vary widely over the course of execution?

If true, then a list or set might be the best choice. A vector or deque will
continue to maintain a large buffer even after elements have been removed
from the collection. Conversely, if the size of the collection remains
relatively fixed, than a vector or deque will use less memory than will a list
or set holding the same number of elements.

Is it possible to estimate the size of the collection?

The vector data structure provides a way to pre-allocate a block of memory
of a given size (using the reserve() member function). This ability is not
provided by the other containers.

Is testing to see whether a value is contained in the collection a frequent operation?

If so, then the set or map containers would be a good choice. Testing to see
whether a value is contained in a set or map can be performed in a very
small number of steps (logarithmic in the size of the container), whereas
testing to see if a value is contained in one of the other types of collections
might require comparing the value against every element being stored by
the container.

Is the collection indexed? That is, can the collection be viewed as a series of
key/value pairs?

If the keys are integers between 0 and some upper limit, a vector or deque
should be employed. If, on the other hand, the key values are some other
ordered data type (such as characters, strings, or a user-defined type), the
map container can be used.

Can values be related to each other?

All values stored in any container provided by the standard library must be
able to test for equality against another similar value, but not all need to
recognize the relational less-than operator. However, if values cannot be
ordered using the relational less-than operator, they cannot be stored in a set
or a map.

Is finding and removing the largest value from the collection a frequent operation?

If the answer is “yes,” the priority queue is the best data structure to use.

At what positions are values inserted into or removed from the structure?

If values are inserted into or removed from the middle, then a list is the best
choice. If values are inserted only at the beginning, a deque or a list is the
preferred choice. If values are inserted or removed only at the end, a stack
or queue may be a logical choice.

32 Container Classes Rogue Wave Standard C++ Library User's Guide and Tutorial

Is a frequent operation the merging of two or more sequences into one?

If so, a set or a list would seem to be the best choice, depending whether the
collection is maintained in order. Merging two sets is a very efficient
operation. If the collections are not ordered, but the efficient splice()

member function from class list can be used, then the list data type is to be
preferred, since this operation is not provided in the other containers.

In many situations any number of different containers may be applicable to
a given problem. In such cases one possibility is to compare actual execution
timings to determine which alternative is best.

4.3 Memory Management Issues
Containers in the standard library can maintain a variety of different types
of elements. These include the fundamental data types (integer , char , and
so on), pointers, or user-defined types. Containers cannot hold references.
In general, memory management is handled automatically by the standard
container classes, with little interaction by the programmer.

Values are placed into a container using the copy constructor. For most
container classes, the element type held by the container must also define a
default constructor. Generic algorithms that copy into a container (such as
copy()) use the assignment operator.

When an entire container is duplicated (for example, through invoking a
copy constructor or as the result of an assignment), every value is copied
into the new structure using (depending on the structure) either the
assignment operator or a copy constructor. Whether such a result is a “deep
copy” or a “shallow copy,” it is controlled by the programmer, who can
provide the assignment operator with whatever meaning is desired.
Memory for structures used internally by the various container classes is
allocated and released automatically and efficiently.

If a destructor is defined for the element type, this destructor will be invoked
when values are removed from a container. When an entire collection is
destroyed, the destructor will be invoked for each remaining value being
held by the container.

A few words should be said about containers that hold pointer values. Such
collections are not uncommon. For example, a collection of pointers is the
only way to store values that can potentially represent either instances of a
class or instances of a subclass. Such a collection is encountered in an
example problem discussed in Section 11.3.

In these cases the container is responsible only for maintaining the pointer
values themselves. It is the responsibility of the programmer to manage the
memory for the values being referenced by the pointers. This includes
making certain the memory values are properly allocated (usually by

Rogue Wave Standard C++ Library User's Guide and Tutorial Container Classes 33

invoking the new operator), that they are not released while the container
holds references to them, and that they are properly released once they have
been removed from the container.

4.4 Container Types Not Found in the Standard Library
There are a number of “classic” container types that are not found in the
standard library. In most cases, the reason is that the containers that have
been provided can easily be adapted to a wide variety of uses, including
those traditionally solved by these alternative collections.

There is no tree collection that is described as such. However, the set data
type is internally implemented using a form of binary search tree. For most
problems that would be solved using trees, the set data type is an adequate
substitute.

The set data type is specifically ordered, and there is no provision for
performing set operations (union, intersection, and so on) on a collection of
values that cannot be ordered (for example, a set of complex numbers). In
such cases a list can be used as a substitute, although it is still necessary to
write special set operation functions, as the generic algorithms cannot be
used in this case.

There are no multidimensional arrays. However, vectors can hold other
vectors as elements, so such structures can be easily constructed.

There are no graphs. However, one representation for graphs can be easily
constructed as a map that holds other maps. This type of structure is
described in the sample problem discussed in Section 9.3.2.

There are no sparse arrays. A novel solution to this problem is to use the
graph representation discussed in Section 9.3.2.

There are no hash tables. A hash table provides amortized constant time
access, insertion and removal of elements, by converting access and removal
operations into indexing operations. However, hash tables can be easily
constructed as a vector (or deque) that holds lists (or even sets) as elements.
A similar structure is described in the radix sort sample problem discussed
in Section 7.3, although this example does not include invoking the hash
function to convert a value into an index.

In short, while not providing every conceivable container type, the
containers in the standard library represent those used in the solution of
most problems, and a solid foundation from which further structures can be
constructed.

S e c t i o n 5.
vector and vector<bool>

5.1

The vector Data Abstraction

5.2

Vector Operations

5.3

Boolean vectors

5.4

Example Program - Sieve of Eratosthenes

36 vector and vector<bool> Rogue Wave Standard C++ Library User's Guide and Tutorial

5.1 The vector Data Abstraction
The vector container class generalizes the concept of an ordinary C array.
Like an array, a vector is an indexed data structure, with index values that
range from 0 to one less than the number of elements contained in the
structure. Also like an array, values are most commonly assigned to and
extracted from the vector using the subscript operator. However, the
vector differs from an array in the following important respects:

• A vector has more “self-knowledge” than an ordinary array. In
particular, a vector can be queried about its size, about the number of
elements it can potentially hold (which may be different from its current
size), and so on.

• The size of the vector can change dynamically. New elements can be
inserted on to the end of a vector, or into the middle. Storage
management is handled efficiently and automatically. It is important to
note, however, that while these abilities are provided, insertion into the
middle of a vector is not as efficient as insertion into the middle of a list
(Section 6). If many insertion operations are to be performed, the list
container should be used instead of the vector data type.

The vector container class in the standard library should be compared and
contrasted to the deque container class we will describe in more detail in
Section 7. Like a vector, a deque (pronounced “deck”) is an indexed data
structure. The major difference between the two is that a deque provides
efficient insertion at either the beginning or the end of the container, while a
vector provides efficient insertion only at the end. In many situations, either
structure can be used. Use of a vector generally results in a smaller
executable file, while, depending upon the particular set of operations being
performed, use of a deque may result in a slightly faster program.

5.1.1 Include Files

Whenever you use a vector, you must include the vector header file.

 # include <vector>

5.2 Vector Operations
Each of the member functions provided by the vector data type will shortly
be described in more detail. Note that while member functions provide
basic operations, the utility of the data structure is greatly extended through
the use of the generic algorithms described in Sections 12 and 14.

Rogue Wave Standard C++ Library User's Guide and Tutorial vector and vector<bool> 37

5.2.1 Declaration and Initialization of Vectors

Because it is a template class, the declaration of a vector must include a
designation of the component type. This can be a primitive language type
(such as integer or double), a pointer type, or a user-defined type. In the
latter case, the user-defined type must implement a default constructor, as
this constructor is used to initialize newly created elements. A copy
constructor, either explicitly or implicitly defined, must also exist for the
container element type. Like an array, a vector is most commonly declared
with an integer argument that describes the number of elements the vector
will hold:

 vector<int> vec_one(10);

The constructor used to create the vector in this situation is declared as
explicit , which prevents it being used as a conversion operator. (This is
generally a good idea, since otherwise an integer might unintentionally be
converted into a vector in certain situations.)

There are a variety of other forms of constructor that can also be used to
create vectors. In addition to a size, the constructor can provide a constant
value that will be used to initialize each new vector location. If no size is
provided, the vector initially contains no elements, and increases in size
automatically as elements are added. The copy constructor creates a clone of
a vector from another vector.

vector<int> vec_two(5, 3); // copy constructor
vector<int> vec_three;
vector<int> vec_four(vec_two); // initialization by assignment

A vector can also be initialized using elements from another collection, by
means of a beginning and ending iterator pair. The arguments can be any
form of iterator; thus collections can be initialized with values drawn from
any of the container classes in the standard library that support iterators.

vector <int> vec_five (aList.begin(), aList.end());

✍✍
Requirements of
an Element Type
Elements that are
held by a vector
must define a
default
constructor
(constructor with
no arguments), as
well as a copy
constructor.
Although not used
by functions in the
vector class, some
of the generic
algorithms also
require vector
elements to
recognize either
the equivalence
operator
(operator ==) or
the relational less-
than operator
(operator <) .

38 vector and vector<bool> Rogue Wave Standard C++ Library User's Guide and Tutorial

A vector can be assigned the values of another vector, in which case the
target receives a copy of the argument vector.

vec_three = vec_five;

The assign() member function is similar to an assignment, but is more
versatile and, in some cases, requires more arguments. Like an assignment,
the existing values in the container are deleted, and replaced with the values
specified by the arguments. There are two forms of assign(). The first
takes two iterator arguments that specify a subsequence of an existing
container. The values from this subsequence then become the new elements
in the receiver. The second version of assign() takes a count and an
optional value of the container element type. After the call the container will
hold only the number of elements specified by the count, which are equal to
either the default value for the container type or the initial value specified.

vec_six.assign(list_ten.begin(), list_ten.end());
vec_four.assign(3, 7); // three copies of the value 7
vec_five.assign(12); // twelve copies of value zero

If a destructor is defined for the container element type, the destructor will
be called for each value removed from the collection.

Finally, two vectors can exchange their entire contents by means of the
swap() operation. The argument container will take on the values of the
receiver, while the receiver will assume those of the argument. A swap is
very efficient, and should be used, where appropriate, in preference to an
explicit element-by-element transfer.

 vec_three.swap(vec_four);

5.2.2 Type Definitions

The class vector includes a number of type definitions. These are most
commonly used in declaration statements. For example, an iterator for a
vector of integers can be declared in the following fashion:

vector<int>::iterator location;

In addition to iterator , the following types are defined:

value_type The type associated with the elements the
vector maintains.

const_iterator An iterator that does not allow modification of
the underlying sequence.

reverse_iterator An iterator that moves in a backward
direction.

const_reverse_iterator A combination constant and reverse iterator.

✍✍
Constructors and
Iterators
Because it
requires the ability
to define a
method with a
template
argument
different from the
class template,
some compilers
may not yet
support the
initialization of
containers using
iterators. In the
mean time, while
compiler
technology
catches up with
the standard
library definition,
the Rogue Wave
version of the
standard library
will support
conventional
pointers and
vector iterators in
this manner.

Rogue Wave Standard C++ Library User's Guide and Tutorial vector and vector<bool> 39

reference A reference to an underlying element.

const_reference A reference to an underlying element that will
not permit the element to be modified.

size_type An unsigned integer type, used to refer to the
size of containers.

difference_type A signed integer type, used to describe
distances between iterators.

5.2.3 Subscripting a Vector

The value being maintained by a vector at a specific index can be accessed or
modified using the subscript operator, just like an ordinary array. And, like
arrays, there currently are no attempts to verify the validity of the index
values (although this may change in future releases). Indexing a constant
vector yields a constant reference. Attempts to index a vector outside the
range of legal values will generate unpredictable and spurious results:

 cout << vec_five[1] << endl;
 vec_five[1] = 17;

The member function at() can be used in place of the subscript operator. It
takes exactly the same arguments as the subscript operator, and returns
exactly the same values.

The member function front() returns the first element in the vector, while
the member function back() yields the last. Both also return constant
references when applied to constant vectors.

cout << vec_five.front() << " ... " << vec_five.back() << endl;

5.2.4 Extent and Size-Changing Operations

There are, in general, three different “sizes” associated with any vector. The
first is the number of elements currently being held by the vector. The
second is the maximum size to which the vector can be expanded without
requiring that new storage be allocated. The third is the upper limit on the
size of any vector. These three values are yielded by the member functions
size(), capacity(), and max_size(), respectively.

cout << "size: " << vec_five.size() << endl;
cout << "capacity: " << vec_five.capacity() << endl;
cout << "max_size: " << vec_five.max_size() << endl;

The maximum size is usually limited only by the amount of available
memory, or the largest value that can be described by the data type
size_type . The current size and capacity are more difficult to characterize.
As we will note in the next section, elements can be added to or removed
from a vector in a variety of ways. When elements are removed from a
vector, the memory for the vector is generally not reallocated, and thus the

40 vector and vector<bool> Rogue Wave Standard C++ Library User's Guide and Tutorial

size is decreased but the capacity remains the same. A subsequent insertion
does not force a reallocation of new memory if the original capacity is not
exceeded.

An insertion that causes the size to exceed the capacity generally results in a
new block of memory being allocated to hold the vector elements. Values
are then copied into this new memory using the assignment operator
appropriate to the element type, and the old memory is deleted. Because
this can be a potentially costly operation, the vector data type provides a
means for the programmer to specify a value for the capacity of a vector.
The member function reserve() is a directive to the vector, indicating that
the vector is expected to grow to at least the given size. If the argument used
with reserve() is larger than the current capacity, then a reallocation occurs
and the argument value becomes the new capacity. (It may subsequently
grow even larger; the value given as the argument need not be a bound, just
a guess.) If the capacity is already in excess of the argument, then no
reallocation takes place. Invoking reserve() does not change the size of the
vector, nor the element values themselves (with the exception that they may
potentially be moved should reallocation take place).

vec_five.reserve(20);

A reallocation invalidates all references, pointers, and iterators referring to
elements being held by a vector.

The member function empty() returns true if the vector currently has a size
of zero (regardless of the capacity of the vector). Using this function is
generally more efficient than comparing the result returned by size() to
zero.

cout << "empty is " << vec_five.empty() << endl;

The member function resize() changes the size of the vector to the value
specified by the argument. Values are either added to or erased from the
end of the collection as necessary. An optional second argument can be used
to provide the initial value for any new elements added to the collection. If a
destructor is defined for the element type, the destructor will be called for
any values that are removed from the collection.

 // become size 12, adding values of 17 if necessary
 vec_five.resize (12, 17);

5.2.5 Inserting and Removing Elements

As we noted earlier, the class vector differs from an ordinary array in that a
vector can, in certain circumstances, increase or decrease in size. When an
insertion causes the number of elements being held in a vector to exceed the
capacity of the current block of memory being used to hold the values, then
a new block is allocated and the elements are copied to the new storage.

✍✍
Memory
Management
A vector stores
values in a single
large block of
memory. A
deque, on the
other hand,
employs a
number of smaller
blocks. This
difference may
be important on
machines that
limit the size of
any single block
of memory,
because in such
cases a deque will
be able to hold
much larger
collections than
are possible with a
vector.

Rogue Wave Standard C++ Library User's Guide and Tutorial vector and vector<bool> 41

A new element can be added to the back of a vector using the function
push_back() . If there is space in the current allocation, this operation is very
efficient (constant time).

 vec_five.push_back(21); // add element 21 to end of collection

The corresponding removal operation is pop_back() , which decreases the
size of the vector, but does not change its capacity. If the container type
defines a destructor, the destructor will be called on the value being
eliminated. Again, this operation is very efficient. (The class deque
permits values to be added and removed from both the back and the front of
the collection. These functions are described in Section 7, which discusses
deques in more detail.)

More general insertion operations can be performed using the insert()

member function. The location of the insertion is described by an iterator;
insertion takes place immediately preceding the location denoted. A fixed
number of constant elements can be inserted by a single function call. It is
much more efficient to insert a block of elements in a single call, than to
perform a sequence of individual insertions, because with a single call at
most one allocation will be performed.

 // find the location of the 7
 vector<int>::iterator where =
 find(vec_five.begin(), vec_five.end(), 7);
 // then insert the 12 before the 7
 vec_five.insert(where, 12);
 vec_five.insert(where, 6, 14); // insert six copies of 14

The most general form of the insert() member function takes a position
and a pair of iterators that denote a subsequence from another container.
The range of values described by the sequence is inserted into the vector.
Again, because at most a single allocation is performed, using this function
is preferable to using a sequence of individual insertions.

 vec_five.insert (where, vec_three.begin(), vec_three.end());

✍✍
Costly Insertions
Even adding a
single element to
a vector can, in
the worst case,
require time
proportional to
the number of
elements in the
vector, as each
element is moved
to a new location.
If insertions are a
prominent feature
of your current
problem, then you
should explore the
possibility of using
containers, such
as lists or sets,
which are
optimized for
insert operations.

42 vector and vector<bool> Rogue Wave Standard C++ Library User's Guide and Tutorial

In addition to the pop_back() member function, which removes elements
from the end of a vector, a function exists that removes elements from the
middle of a vector, using an iterator to denote the location. The member
function that performs this task is erase() . There are two forms; the first
takes a single iterator and removes an individual value, while the second
takes a pair of iterators and removes all values in the given range. The size
of the vector is reduced, but the capacity is unchanged. If the container type
defines a destructor, the destructor will be invoked on the eliminated values.

 vec_five.erase(where);
 // erase from the 12 to the end
 where = find(vec_five.begin(), vec_five.end(), 12);
 vec_five.erase(where, vec_five.end());

5.2.6 Iteration

The member functions begin() and end() yield random access iterators for
the container. Again, we note that the iterators yielded by these operations
can become invalidated after insertions or removals of elements. The
member functions rbegin() and rend() return similar iterators, however
these access the underlying elements in reverse order. Constant iterators are
returned if the original container is declared as constant, or if the target of
the assignment or parameter is constant.

5.2.7 Test for Inclusion

A vector does not directly provide any method that can be used to
determine if a specific value is contained in the collection. However, the
generic algorithms find() or count() (Section 13.3.1 and 13.6.1) can be used
for this purpose. The following statement, for example, tests to see whether
an integer vector contains the element 17.

int num = 0;
count (vec_five.begin(), vec_five.end(), 17, num);

if (num)
 cout << "contains a 17" << endl;
else
 cout << "does not contain a 17" << endl;

5.2.8 Sorting and Sorted Vector Operations

A vector does not automatically maintain its values in sequence. However, a
vector can be placed in order using the generic algorithm sort() (Section
14.2). The simplest form of sort uses for its comparisons the less-than
operator for the element type. An alternative version of the generic
algorithm permits the programmer to specify the comparison operator
explicitly. This can be used, for example, to place the elements in
descending rather than ascending order:

✍✍
Iterator
Invalidation
Once more, it is
important to
remember that
should
reallocation occur
as a result of an
insertion, all
references,
pointers, and
iterators that
denoted a
location in the
now-deleted
memory block
that held the
values before
reallocation
become invalid.

✍✍
Initializing Count
Note that count()
returns its result
through an
argument that is
passed by
reference. It is
important that this
value be properly
initialized before
invoking this
function.

Rogue Wave Standard C++ Library User's Guide and Tutorial vector and vector<bool> 43

 // sort ascending
sort (aVec.begin(), aVec.end());

 // sort descending, specifying the ordering function explicitly
sort (aVec.begin(), aVec.end(), greater<int>());

 // alternate way to sort descending
sort (aVec.rbegin(), aVec.rend());

A number of the operations described in Section 14 can be applied to a
vector holding an ordered collection. For example, two vectors can be
merged using the generic algorithm merge() (Section 14.6).

 // merge two vectors, printing output
merge (vecOne.begin(), vecOne.end(), vecTwo.begin(), vecTwo.end(),
 ostream_iterator<int> (cout, " "));

Sorting a vector also lets us use the more efficient binary search algorithms
(Section 14.5), instead of a linear traversal algorithm such as find().

5.2.9 Useful Generic Algorithms

Most of the algorithms described in Section 13 can be used with vectors. The
following table summarizes a few of the more useful of these. For example,
the maximum value in a vector can be determined as follows:

vector<int>::iterator where =
 max_element (vec_five.begin(), vec_five.end());
cout << "maximum is " << *where << endl;

Purpose Name
Fill a vector with a given initial value fill

Copy one sequence into another copy

Copy values from a generator into a
vector

generate

Find an element that matches a condition find

Find consecutive duplicate elements adjacent_find

Find a subsequence within a vector search

Locate maximum or minimum element max_element, min_element

Reverse order of elements reverse

Replace elements with new values replace

Rotate elements around a midpoint rotate

Partition elements into two groups partition

Generate permutations next_permutation

44 vector and vector<bool> Rogue Wave Standard C++ Library User's Guide and Tutorial

Purpose Name
Inplace merge within a vector inplace_merge

Randomly shuffle elements in vector random_shuffle

Count number of elements that satisfy
condition

count

Reduce vector to a single value accumulate

Inner product of two vectors inner_product

Test two vectors for pair-wise equality equal

Lexical comparison lexicographical_compare

Apply transformation to a vector transform

Partial sums of values partial_sum

Adjacent differences of value adjacent_difference

Execute function on each element for_each

5.3 Boolean Vectors
Vectors of bit values (boolean 1/0 values) are handled as a special case by
the standard library, so that the values can be efficiently packed (several
elements to a word). The operations for a boolean vector , vector<bool>,
are a superset of those for an ordinary vector, only the implementation is
more efficient.

One new member function added to the boolean vector data type is flip() .
When invoked, this function inverts all the bits of the vector. Boolean
vectors also return as reference an internal value that also supports the
flip() member function.

 vector<bool> bvec(27);
 bvec.flip(); // flip all values
 bvec[17].flip(); // flip bit 17

vector<bool> also supports an additional swap() member function that
allows you to swap the values indicated by a pair of references.

 bvec.swap(bvec [17], bvec [16]);

Rogue Wave Standard C++ Library User's Guide and Tutorial vector and vector<bool> 45

5.4 Example Program −− Sieve of Eratosthenes
An example program that illustrates the use of vectors is the classic
algorithm, called the sieve of Eratosthenes, used to discover prime numbers.
A list of all the numbers up to some bound is represented by an integer
vector. The basic idea is to strike out (set to zero) all those values that cannot
be primes; thus all the remaining values will be the prime numbers. To do
this, a loop examines each value in turn, and for those that are set to one
(and thus have not yet been excluded from the set of candidate primes)
strikes out all multiples of the number. When the outermost loop is finished,
all remaining prime values have been discovered. The program is as
follows:

void main() {
 // create a sieve of integers, initially set
 const int sievesize = 100;
 vector<int> sieve(sievesize, 1);

 // now search for 1 bit positions
 for (int i = 2; i * i < sievesize; i++)
 if (sieve[i])
 for (int j = i + i; j < sievesize; j += i)
 sieve[j] = 0;

 // finally, output the values that are set
 for (int j = 2; j < sievesize; j++)
 if (sieve[j])
 cout << j << " ";
 cout << endl;
}

✍✍
Obtaining the
Source
Source for this
program is found
in the file
sieve.cpp .

S e c t i o n 6.
list

6.1

The List Data Abstraction

6.2

List Operations

6.3

Example Programs

48 list Rogue Wave Standard C++ Library User's Guide and Tutorial

6.1 The list Data Abstraction
The vector data structure is a container of relatively fixed size. While the
standard library provides facilities for dynamically changing the size of a
vector, such operations are costly and should be used only rarely. Yet in
many problems, the size of a collection may be difficult to predict in
advance, or may vary widely during the course of execution. In such cases
an alternative data structure should be employed. In this section we will
examine an alternative data structure that can be used in these
circumstances, the list data type.

A list corresponds to the intuitive idea of holding elements in a linear
(although not necessarily ordered) sequence. New values can be added or
removed either to or from the front of the list, or to or from the back. By
using an iterator to denote a position, elements can also be added or
removed to or from the middle of a list. In all cases the insertion or removal
operations are efficient; they are performed in a constant amount of time that
is independent of the number of elements being maintained in the collection.
Finally, a list is a linear structure. The contents of the list cannot be accessed
by subscript, and, in general, elements can only be accessed by a linear
traversal of all values.

6.1.1 Include files

Whenever you use a list, you must include the list header file.

 # include <list>

6.2 List Operations
The member functions provided by the list data type are described in more
detail below. Note that while member functions provide basic operations,
the utility of the data structure is greatly extended through the use of the
generic algorithms described in Sections 13 and 14.

Rogue Wave Standard C++ Library User's Guide and Tutorial list 49

6.2.1 Declaration and Initialization of Lists

There are a variety of ways to declare a list. In the simplest form, a list is
declared by simply stating the type of element the collection will maintain.
This can be a primitive language type (such as integer or double), a pointer
type, or a user-defined type. In the latter case, the user-defined type must
implement a default constructor (a constructor with no arguments), as this
constructor is in some cases used to initialize newly created elements. A
collection declared in this fashion will initially not contain any elements.

 list <int> list_one;
 list <Widget *> list_two;
 list <Widget> list_three;

An alternative form of declaration creates a collection that initially contains
some number of equal elements. The constructor for this form is declared as
explicit , meaning it cannot be used as a conversion operator. This prevents
integers from inadvertently being converted into lists. The constructor for
this form takes two arguments, a size and an initial value. The second
argument is optional. If only the number of initial elements to be created is
given, these values will be initialized with the default constructor; otherwise
the elements will be initialized with the value of the second argument:

 list <int> list_four (5); // five elements, initialized to zero
 list <double> list_five (4, 3.14); // 4 values, initially 3.14
 list <Widget> wlist_six (4); // default constructor, 4 elements
 list <Widget> list_six (3, Widget(7)); // 3 copies of Widget(7)

Lists can also be initialized using elements from another collection, using a
beginning and ending iterator pair. The arguments can be any form of
iterator, thus collections can be initialized with values drawn from any of the
container classes in the standard library that support iterators. Because this
requires the ability to specialize a member function using a template, some
compilers may not yet support this feature. In these cases an alternative
technique using the copy() generic algorithm can be employed. When a list
is initialized using copy(), an insert iterator must be constructed to convert
the output operations performed by the copy operation into list insertions.
(See Section 2.4.) The inserter requires two arguments; the list into which
the value is to be inserted, and an iterator indicating the location at which
values will be placed. Insert iterators can also be used to copy elements into
an arbitrary location in an existing list.

 list <double> list_seven (aVector.begin(), aVector.end());

 // the following is equivalent to the above
 list <double> list_eight;
 copy (aVector.begin(), aVector.end(),
 inserter(list_eight, list_eight.begin()));

The insert() operation, to be described in Section 6.2.3, can also be used to
place values denoted by an iterator into a list. Insert iterators can be used to
initialize a list with a sequence of values produced by a generator (see Section
13.2.3). This is illustrated by the following:

✍✍
Memory
Management
Note that if you
declare a
container as
holding pointers,
you are
responsible for
managing the
memory for the
objects pointed
to. The container
classes will not, for
example,
automatically free
memory for these
objects when an
item is erased
from the
container.

50 list Rogue Wave Standard C++ Library User's Guide and Tutorial

 list <int> list_nine;
 // initialize list 1 2 3 ... 7
 generate_n (inserter(list_nine, list_nine.begin()),
 7, iotaGen(1));

A copy constructor can be used to initialize a list with values drawn from
another list. The assignment operator performs the same actions. In both
cases the assignment operator for the element type is used to copy each new
value.

 list <int> list_ten (list_nine); // copy constructor
 list <Widget> list_eleven;
 list_eleven = list_six; // values copied by assignment

The assign() member function is similar to the assignment operator, but is
more versatile and, in some cases, requires more arguments. Like an
assignment, the existing values in the container are deleted, and replaced
with the values specified by the arguments. If a destructor is provided for
the container element type, it will be invoked for the elements being
removed. There are two forms of assign() . The first takes two iterator
arguments that specify a subsequence of an existing container. The values
from this subsequence then become the new elements in the receiver. The
second version of assign takes a count and an optional value of the container
element type. After the call the container will hold the number of elements
specified by the count, which will be equal to either the default value for the
container type or the initial value specified.

 list_six.assign(list_ten.begin(), list_ten.end());
 list_four.assign(3, 7); // three copies of value seven
 list_five.assign(12); // twelve copies of value zero

Finally, two lists can exchange their entire contents by means of the
operation swap() . The argument container will take on the values of the
receiver, while the receiver will assume those of the argument. A swap is
very efficient, and should be used, where appropriate, in preference to an
explicit element-by-element transfer.

 list_ten.swap(list_nine); // exchange lists nine and ten

6.2.2 Type Definitions

The class list includes a number of type definitions. The most common use
for these is in declaration statements. For example, an iterator for a list of
integers can be declared as follows:

list<int>::iterator location;

In addition to iterator , the following types are defined:

value_type The type associated with the elements the list
maintains.

const_iterator An iterator that does not allow modification

Rogue Wave Standard C++ Library User's Guide and Tutorial list 51

of the underlying sequence.

reverse_iterator An iterator that moves in a backward
direction.

const_reverse_iterator A combination constant and reverse iterator.

reference A reference to an underlying element.

const_reference A reference to an underlying element that will
not permit the element to be modified.

size_type An unsigned integer type, used to refer to the
size of containers.

difference_type A signed integer type, used to describe
distances between iterators.

6.2.3 Placing Elements into a List

Values can be inserted into a list in a variety of ways. Elements are most
commonly added to the front or back of a list. These tasks are provided by
the push_front() and push_back() operations, respectively. These
operations are efficient (constant time) for both types of containers.

 list_seven.push_front(1.2);
 list_eleven.push_back (Widget(6));

In a previous discussion (Section 6.2.1) we noted how, with the aid of an
insert iterator and the copy() or generate() generic algorithm, values can be
placed into a list at a location denoted by an iterator. There is also a member
function, named insert() , that avoids the need to construct the inserter. As
we will describe shortly, the values returned by the iterator generating
functions begin() and end() denote the beginning and end of a list,
respectively. An insert using one of these is equivalent to push_front() or
push_back() , respectively. If we specify only one iterator, the default
element value is inserted.

// insert default type at beginning of list
list_eleven.insert(list_eleven.begin());
// insert widget 8 at end of list
list_eleven.insert(list_eleven.end(), Widget(8));

52 list Rogue Wave Standard C++ Library User's Guide and Tutorial

An iterator can denote a location in the middle of a list. There are several
ways to produce this iterator. For example, we can use the result of any of
the searching operations described in Section 13.3, such as an invocation of
the find() generic algorithm. The new value is inserted immediately prior
to the location denoted by the iterator. The insert() operation itself returns
an iterator denoting the location of the inserted value. This result value was
ignored in the invocations shown above.

 // find the location of the first occurrence of the
 // value 5 in list
 list<int>::iterator location =
 find(list_nine.begin(), list_nine.end(), 5);
 // and insert an 11 immediate before it
 location = list_nine.insert(location, 11);

It is also possible to insert a fixed number of copies of an argument value.
This form of insert() does not yield the location of the values.

 line_nine.insert (location, 5, 12); // insert five twelves

Finally, an entire sequence denoted by an iterator pair can be inserted into a
list. Again, no useful value is returned as a result of the insert().

 // insert entire contents of list_ten into list_nine
 list_nine.insert (location, list_ten.begin(), list_ten.end());

There are a variety of ways to splice one list into another. A splice differs
from an insertion in that the item is simultaneously added to the receiver list
and removed from the argument list. For this reason, a splice can be
performed very efficiently, and should be used whenever appropriate. As
with an insertion, the member function splice() uses an iterator to indicate
the location in the receiver list where the splice should be made. The
argument is either an entire list, a single element in a list (denoted by an
iterator), or a subsequence of a list (denoted by a pair of iterators).

 // splice the last element of list ten
 list_nine.splice (location, list_ten, list_ten.end());
 // splice all of list ten
 list_nine.splice (location, list_ten);
 // splice list 9 back into list 10
 list_ten.splice (list_ten.begin(), list_nine,
 list_nine.begin(), location);

Two ordered lists can be combined into one using the merge() operation.
Values from the argument list are merged into the ordered list, leaving the
argument list empty. The merge is stable; that is, elements retain their
relative ordering from the original lists. As with the generic algorithm of the
same name (Section 14.6), two forms are supported. The second form uses
the binary function supplied as argument to order values. Not all compilers
support the second form. If the second form is desired and not supported,
the more general generic algorithm can be used, although this is slightly less
efficient.

✍✍
Iteration
Invalidation
Unlike a vector or
deque, insertions
or removals from
the middle of a list
will not invalidate
references or
pointers to other
elements in the
container. This
property can be
important if two or
more iterators are
being used to
refer to the same
container.

Rogue Wave Standard C++ Library User's Guide and Tutorial list 53

 // merge with explicit compare function
 list_eleven.merge(list_six, widgetCompare);

 //the following is similar to the above
 list<Widget> list_twelve;
 merge (list_eleven.begin(), list_eleven.end(),
 list_six.begin(), list_six.end(),
 inserter(list_twelve, list_twelve.begin()), widgetCompare);
 list_eleven.swap(list_twelve);

6.2.4 Removing Elements

Just as there are a number of different ways to insert an element into a list,
there are a variety of ways to remove values from a list. The most common
operations used to remove a value are pop_front() or pop_back(), which
delete the single element from the front or the back of the list, respectively.
These member functions simply remove the given element, and do not
themselves yield any useful result. If a destructor is defined for the element
type it will be invoked as the element is removed. To look at the values
before deletion, use the member functions front() or back().

The erase() operation can be used to remove a value denoted by an iterator.
For a list, the argument iterator, and any other iterators that denote the same
location, become invalid after the removal, but iterators denoting other
locations are unaffected. We can also use erase() to remove an entire
subsequence, denoted by a pair of iterators. The values beginning at the
initial iterator and up to, but not including, the final iterator are removed
from the list. Erasing elements from the middle of a list is an efficient
operation, unlike erasing elements from the middle of a vector or a deque.

 list_nine.erase (location);

 // erase values between the first occurrence of 5
 // and the following occurrence of 7
list<int>::iterator
 location = find(list_nine.begin(), list_nine.end(), 5);
 list<int>::iterator location2 =
 find(location, list_nine.end(), 7);
 list_nine.erase (location, location2);

The remove() member function removes all occurrences of a given value
from a list. A variation, remove_if(), removes all values that satisfy a given
predicate. An alternative to the use of either of these is to use the remove()

or remove_if() generic algorithms (Section 13.5.1). The generic algorithms
do not reduce the size of the list, instead they move the elements to be
retained to the front of the list, leave the remainder of the list unchanged,
and return an iterator denoting the location of the first unmodified element.
This value can be used in conjunction with the erase() member function to
remove the remaining values.

 list_nine.remove(4); // remove all fours
 list_nine.remove_if(divisibleByThree); //remove any div by 3

 // the following is equivalent to the above

54 list Rogue Wave Standard C++ Library User's Guide and Tutorial

 list<int>::iterator location3 =
 remove_if(list_nine.begin(), list_nine.end(),
 divisibleByThree);
 list_nine.erase(location3, list_nine.end());

The operation unique() will erase all but the first element from every
consecutive group of equal elements in a list. The list need not be ordered.
An alternative version takes a binary function, and compares adjacent
elements using the function, removing the second value in those situations
were the function yields a true value. As with remove_if(), not all
compilers support the second form of unique() . In this case the more
general unique() generic algorithm can be used (see Section 13.5.2). In the
following example the binary function is the greater-than operator, which
will remove all elements smaller than a preceding element.

 // remove first from consecutive equal elements
 list_nine.unique();

 // explicitly give comparison function
 list_nine.unique(greater<int>());

 // the following is equivalent to the above
 location3 =
 unique(list_nine.begin(), list_nine.end(), greater<int>());
 list_nine.erase(location3, list_nine.end());

6.2.5 Extent and Size-Changing Operations

The member function size() will return the number of elements being held
by a container. The function empty() will return true if the container is
empty, and is more efficient than comparing the size against the value zero .

 cout << "Number of elements: " << list_nine.size () << endl;
 if (list_nine.empty ())
 cout << "list is empty " << endl;
 else
 cout << "list is not empty " << endl;

The member function resize() changes the size of the list to the value
specified by the argument. Values are either added or erased from the end
of the collection as necessary. An optional second argument can be used to
provide the initial value for any new elements added to the collection.

 // become size 12, adding values of 17 if necessary
 list_nine.resize (12, 17);

6.2.6 Access and Iteration

The member functions front() and back() return, but do not remove, the
first and last items in the container, respectively. For a list, access to other
elements is possible only by removing elements (until the desired element
becomes the front or back) or through the use of iterators.

Rogue Wave Standard C++ Library User's Guide and Tutorial list 55

There are three types of iterators that can be constructed for lists. The
functions begin() and end() construct iterators that traverse the list in
forward order. For the list data type begin() and end() create bidirectional
iterators. The alternative functions rbegin() and rend() construct iterators
that traverse in reverse order, moving from the end of the list to the front.

6.2.7 Test for Inclusion

The list data types do not directly provide any method that can be used to
determine if a specific value is contained in the collection. However, either
the generic algorithms find() or count() (Sections 13.3.1 and 13.6.1) can be
used for this purpose. The following statements, for example, test to see
whether an integer list contains the element 17.

int num = 0;
count(list_five.begin(), list_five.end(), 17, num);
if (num > 0)
 cout << "contains a 17" << endl;
else
 cout << "does not contain a 17" << endl;

if (find(list_five.begin(), list_five.end(), 17) != list_five.end())
 cout << "contains a 17" << endl;
else
 cout << "does not contain a 17" << endl;

6.2.8 Sorting and Sorted List Operations

The member function sort() places elements into ascending order. If a
comparison operator other than < is desired, it can be supplied as an
argument.

list_ten.sort (); // place elements into sequence
list_twelve.sort (widgetCompare); // sort with widget compare
 // function

Once a list has been sorted, a number of the generic algorithms for ordered
collections can be used with lists. These are described in detail in Section 14.

6.2.9 Searching Operations

The various forms of searching functions described in Section 13.3, namely
find(), find_if(), adjacent find(), mismatch(), max_element() ,
min_element() or search() can be applied to list. In all cases the result is an
iterator, which can be dereferenced to discover the denoted element, or used
as an argument in a subsequent operation.

56 list Rogue Wave Standard C++ Library User's Guide and Tutorial

6.2.10 In Place Transformations

A number of operations can be applied to lists in order to transform them in
place. Some of these are provided as member functions. Others make use of
some of the generic functions described in Section 13.

For a list, the member function reverse() reverses the order of elements in
the list.

 list_ten.reverse(); // elements are now reversed

The generic algorithm transform() (Section 13.7.1) can be used to modify
every value in a container, by simply using the same container as both input
and as result for the operation. The following, for example, increments each
element of a list by one. To construct the necessary unary function, the first
argument of the binary integer addition function is bound to the value one.
The version of transform() that manipulates two parallel sequences can be
used in a similar fashion.

 transform(list_ten.begin(), list_ten.end(),
 list_ten.begin(), bind1st(plus<int>(), 1));

Similarly, the functions replace() and replace_if() (Section 13.4.2) can be
used to replace elements of a list with specific values. Rotations (Section
13.4.3) and partitions (Section 13.4.4), can also be performed with lists.

 // find the location of the value 5, and rotate around it
 location = find(list_ten.begin(), list_ten.end(), 5);
 rotate(list_ten.begin(), location, list_ten.end());
 // now partition using values greater than 7
 partition(list_ten.begin(), list_ten.end(),
 bind2nd(greater<int>(), 7));

The functions next_permutation() and prev_permutation() (Section 13.4.5)
can be used to generate the next permutation (or previous permutation) of a
collection of values.

 next_permutation (list_ten.begin(), list_ten.end());

6.2.11 Other Operations

The algorithm for_each() (Section 13.8.1) will apply a function to every
element of a collection. An illustration of this use will be given in the radix
sort example program in the section on the deque data structure.

The accumulate() generic algorithm reduces a collection to a scalar value
(see Section 13.6.2). This can be used, for example, to compute the sum of a
list of numbers. A more unusual use of accumulate() will be illustrated in
the radix sort example.

 cout << "Sum of list is: " <<
 accumulate(list_ten.begin(), list_ten.end(), 0) << endl;

✍✍
Verify Search
Results
The searching
algorithms in the
standard library
will always return
the end of range
iterator if no
element matching
the search
condition is found.
Unless the result is
guaranteed to be
valid, it is a good
idea to check for
the end of range
condition.

Rogue Wave Standard C++ Library User's Guide and Tutorial list 57

Two lists can be compared against each other. They are equal if they are the
same size and all corresponding elements are equal. A list is less than
another list if it is lexicographically smaller (see Section 13.6.5).

6.3 Example Program −− An Inventory System
We will use a simple inventory management system to illustrate the use of
several list operations. Assume a business, named WorldWideWidgetWorks,
requires a software system to manage their supply of widgets. Widgets are
simple devices, distinguished by different identification numbers:

class Widget {
public:
 Widget(int a = 0) : id(a) { }
 void operator = (const Widget& rhs) { id = rhs.id; }
 int id;
 friend ostream & operator << (ostream & out,const Widget & w)
 { return out << "Widget " << w.id; }
 friend bool operator == (const Widget& lhs, const Widget& rhs)
 { return lhs.id == rhs.id; }
 friend bool operator< (const Widget& lhs, const Widget& rhs)
 { return lhs.id < rhs.id; }
};

The state of the inventory is represented by two lists. One list represents the
stock of widgets on hand, while the second represents the type of widgets
that customers have backordered. The first is a list of widgets, while the
second is a list of widget identification types. To handle our inventory we
have two commands; the first, order() , processes orders, while the second,
receive(), processes the shipment of a new widget.

class inventory {
public:
 void order (int wid); // process order for widget type wid
 void receive (int wid); // receive widget of type wid in
shipment
private:
 list<Widget> on_hand;
 list<int> on_order;
};

When a new widget arrives in shipment, we compare the widget
identification number with the list of widget types on backorder. We use
find() to search the backorder list, immediately shipping the widget if
necessary. Otherwise it is added to the stock on hand.

✍✍
Obtaining the
Sample Program
The executable
version of the
widget works
program is
contained in file
widwork.cpp on
the distribution
disk.

58 list Rogue Wave Standard C++ Library User's Guide and Tutorial

void inventory::receive (int wid)
{
 cout << "Received shipment of widget type " << wid << endl;
 list<int>::iterator weneed =
 find (on_order.begin(), on_order.end(), wid);
 if (weneed != on_order.end())
 {
 cout << "Ship " << Widget(wid)
 << " to fill back order" << endl;
 on_order.erase(weneed);
 }
 else
 on_hand.push_front(Widget(wid));
}

When a customer orders a new widget, we scan the list of widgets in stock to
determine if the order can be processed immediately. We can use the
function find_if() to search the list. To do so we need a binary function
that takes as its argument a widget and determines whether the widget
matches the type requested. We can do this by taking a general binary
widget-testing function, and binding the second argument to the specific
widget type. To use the function bind2nd(), however, requires that the
binary function be an instance of the class binary_function. The general
widget-testing function is written as follows:

class WidgetTester : public binary_function<Widget, int, bool> {
public:
 bool operator () (const Widget & wid, int testid) const
 { return wid.id == testid; }
};

The widget order function is then written as follows:

void inventory::order (int wid)
{
 cout << "Received order for widget type " << wid << endl;
 list<Widget>::iterator wehave =
 find_if (on_hand.begin(), on_hand.end(),
 bind2nd(WidgetTester(), wid));
 if (wehave != on_hand.end())
 {
 cout << "Ship " << *wehave << endl;
 on_hand.erase(wehave);
 }
 else
 {
 cout << "Back order widget of type " << wid << endl;
 on_order.push_front(wid);
 }
}

S e c t i o nS e c t i o n 7.
deque

7.1

The deque Data Abstraction

7.2

Deque Operations

7.3

An Example Program −− Radix Sort

60 deque Rogue Wave Standard C++ Library User's Guide and Tutorial

7.1 The deque Data Abstraction
The name “deque” is short for “double-ended queue,” and is pronounced
like “deck.” Traditionally, the term is used to describe any data structure
that permits both insertions and removals from either the front or the back of
a collection. The deque container class permits this, as well as much more.
In fact, the capabilities of the deque data structure are almost a union of
those provided by the vector and list classes.

• Like a vector, the deque is an indexed collection. Values can be accessed
by subscript, using the position within the collection as a key. (A
capability not provided by the list class).

• Like a list, values can be efficiently added either to the front or to the
back of a deque. (A capability provided only in part by the vector class).

• As with both the list and vector classes, insertions can be made into the
middle of the sequence held by a deque. Such insertion operations are
not as efficient as with a list, but slightly more efficient that they are in a
vector.

In short, a deque can often be used both in situations that require a vector
and in those that call for a list. Often, the use of a deque in place of either a
vector or a list will result in faster programs. To determine which data
structure should be used, you can refer to the set of questions described in
Section 4.2

7.1.1 Include Files

The deque header file must appear in all programs that use the deque data
type.

include <deque>

7.2 Deque Operations
A deque is declared in the same fashion as a vector, and includes within
the class the same type definitions as vector.

The begin() and end() member functions return random access iterators,
rather than bidirectional iterators, as they do for lists.

An insertion (either insert() , push_front() , or push_back()) can potentially
invalidate all outstanding iterators and references to elements in the deque.
As with the vector data type, this is a much more restrictive condition than
insertions into a list.

Rogue Wave Standard C++ Library User's Guide and Tutorial deque 61

If the underlying element type provides a destructor, then the destructor will
be invoked when a value is erased from a deque.

Since the deque data type provides random access iterators, all the generic
algorithms that operate with vectors can also be used with deques.

A vector holds elements in a single large block of memory. A deque, on the
other hand, uses a number of smaller blocks. This may be important on
systems that restrict the size of memory blocks, as it will permit a deque to
hold many more elements than a vector.

As values are inserted, the index associated with any particular element in
the collection will change. For example, if a value is inserted into position 3,
then the value formerly indexed by 3 will now be found at index location 4,
the value formerly at 4 will be found at index location 5, and so on.

7.3 Example Program −− Radix Sort
The radix sort algorithm is a good illustration of how lists and deques can be
combined with other containers. In the case of radix sort, a vector of deques
is manipulated, much like a hash table.

Radix sorting is a technique for ordering a list of positive integer values.
The values are successively ordered on digit positions, from right to left.
This is accomplished by copying the values into “buckets,” where the index
for the bucket is given by the position of the digit being sorted. Once all
digit positions have been examined, the list must be sorted.

The following table shows the sequences of values found in each bucket
during the four steps involved in sorting the list 624 852 426 987 269 146
415 301 730 78 593. During pass 1 the ones place digits are ordered.
During pass 2 the tens place digits are ordered, retaining the relative
positions of values set by the earlier pass. On pass 3 the hundreds place
digits are ordered, again retaining the previous relative ordering. After
three passes the result is an ordered list.

✍✍
Obtaining the
Sample Program
The complete
radix sort program
is found in the file
radix.cpp in the
tutorial distribution
disk.

62 deque Rogue Wave Standard C++ Library User's Guide and Tutorial

bucket pass 1 pass 2 pass 3

0 730 301 78

1 301 415 146

2 852 624, 426 269

3 593 730 301

4 624 146 415, 426

5 415 852 593

6 426, 146 269 624

7 987 78 730

8 78 987 852

9 269 593 987

The radix sorting algorithm is simple. A while loop is used to cycle through
the various passes. The value of the variable divisor indicates which digit
is currently being examined. A boolean flag is used to determine when
execution should halt. Each time the while loop is executed a vector of
deques is declared. By placing the declaration of this structure inside the
while loop, it is reinitialized to empty each step. Each time the loop is
executed, the values in the list are copied into the appropriate bucket by
executing the function copyIntoBuckets() on each value. Once distributed
into the buckets, the values are gathered back into the list by means of an
accumulation.

void radixSort(list<unsigned int> & values)
{
 bool flag = true;
 int divisor = 1;

 while (flag) {
 vector< deque<unsigned int> > buckets(10);
 flag = false;
 for_each(values.begin(), values.end(),
 copyIntoBuckets(...));
 accumulate(buckets.begin(), buckets.end(),
 values.begin(), listCopy);
 divisor *= 10;
 }
}

The use of the function accumulate() here is slightly unusual. The “scalar”
value being constructed is the list itself. The initial value for the
accumulation is the iterator denoting the beginning of the list. Each bucket
is processed by the following binary function:

list<unsigned int>::iterator
 listCopy(list<unsigned int>::iterator c,
 deque<unsigned int> & lst)
{
 // copy list back into original list, returning end

Rogue Wave Standard C++ Library User's Guide and Tutorial deque 63

 return copy(lst.begin(), lst.end(), c);
}

The only difficulty remaining is defining the function copyIntoBuckets().

The problem here is that the function must take as its argument only the
element being inserted, but it must also have access to the three values
buckets, divisor and flag . In languages that permit functions to be
defined within other functions the solution would be to define
copyIntoBuckets() as a local function within the while loop. But C++ has
no such facilities. Instead, we must create a class definition, which can be
initialized with references to the appropriate values. The parenthesis
operator for this class is then used as the function for the for_each()

invocation in the radix sort program.

class copyIntoBuckets {
public:
 copyIntoBuckets
 (int d, vector< deque<unsigned int> > & b, bool & f)
 : divisor(d), buckets(b), flag(f) {}

 int divisor;
 vector<deque<unsigned int> > & buckets;
 bool & flag;

 void operator () (unsigned int v)
 { int index = (v / divisor) % 10;
 // flag is set to true if any bucket
 // other than zeroth is used
 if (index) flag = true;
 buckets[index].push_back(v);
 }
};

S e c t i o n 8.
set, multiset, and bitset

8.1

The set Data Abstraction

8.2

set and multiset Operations

8.3

Example Program: A Spelling Checker

8.4
The bitset Abstraction

66 set , multiset, and bitset Rogue Wave Standard C++ Library User's Guide and Tutorial

8.1 The set Data Abstraction
A set is a collection of values. Because the container used to implement the
set data structure maintains values in an ordered representation, sets are
optimized for insertion and removal of elements, and for testing to see
whether a particular value is contained in the collection. Each of these
operations can be performed in a logarithmic number of steps, whereas for a
list, vector, or deque, each operation requires in the worst case an
examination of every element held by the container. For this reason, sets
should be the data structure of choice in any problem that emphasizes
insertion, removal, and test for inclusion of values. Like a list, a set is not
limited in size, but rather expands and contracts as elements are added to or
removed from the collection.

There are two varieties of sets provided by the standard library. In the set
container, every element is unique. Insertions of values that are already
contained in the set are ignored. In the multiset container, on the other
hand, multiple occurrences of the same value are permitted.

8.1.1 Include Files

Whenever you use a set or a multiset, you must include the set header file.

 # include <set>

8.2 set and multiset Operations
The member functions provided by the set and multiset data types will
shortly be described in more detail. Note that while member functions
provide basic operations, the utility of these data structures is greatly
extended through the use of the generic algorithms described in Sections 13
and 14.

8.2.1 Declaration and Initialization of Set

A set is a template data structure, specialized by the type of the elements it
contains, and the operator used to compare keys. The latter argument is
optional, and, if it is not provided, the less than operator for the key type
will be assumed. The element type can be a primitive language type (such
as integer or double), a pointer type, or a user-defined type. The element
type must recognize both the equality testing operator (operator ==) and the
less than comparison operator (operator <).

✍✍
Sets, Ordered and
Not
Although the
abstract concept
of a set does not
necessarily imply
an ordered

collection, the set
data type is
always ordered. If
necessary, a
collection of
values that
cannot be
ordered can be
maintained in, for

example, a list.

✍✍
Sets and Bags
In other
programming
languages, a
multiset is
sometimes
referred to as a
bag.

Rogue Wave Standard C++ Library User's Guide and Tutorial set , multiset, and bitset 67

Sets can be declared with no initial elements, or they can be initialized from
another container by providing a pair of iterators. An optional argument in
both cases is an alternative comparison function; this value overrides the
value provided by the template parameter. This mechanism is useful if a
program contains two or more sets with the same values but different
orderings, as it prevents more than one copy of the set member function
from being instantiated. The copy constructor can be used to form a new set
that is a clone, or copy, of an existing set.

 set <int> set_one;

 set <int, greater<int> > set_two;
 set <int> set_three(greater<int>());

 set <gadget, less<gadget> > gset;
 set <gadget> gset(less<gadget>());

 set <int> set_four (aList.begin(), aList.end());
 set <int> set_five
 (aList.begin(), aList.end(), greater<int>());

 set <int> set_six (set_four); // copy constructor

A set can be assigned to another set, and two sets can exchange their values
using the swap() operation (in a manner analogous to other standard library
containers).

 set_one = set_five;
 set_six.swap(set_two);

8.2.2 Type Definitions

The classes set and multiset include a number of type definitions. The most
common use for these is in a declaration statement. For example, an iterator
for a set of integers can be declared in the following fashion:

 set<int>::iterator location;

In addition to iterator , the following types are defined:

value_type The type associated with the elements the set
maintains.

const_iterator An iterator that does not allow modification of
the underlying sequence.

reverse_iterator An iterator that moves in a backward direction.

const_reverse_iterator A combination constant and reverse iterator.

reference A reference to an underlying element.

const_reference A reference to an underlying element that will
not permit modification.

size_type An unsigned integer type, used to refer to the

✍✍
Initializing Sets
with Iterators
As we noted in
the earlier
discussion on
vectors and lists,
the initialization of
containers using a
pair of iterators
requires a
mechanism that is
still not widely
supported by
compilers. If not
provided, the
equivalent effect
can be produced
by declaring an
empty set and
then using the
copy() generic
algorithm to copy
values into the set.

68 set , multiset, and bitset Rogue Wave Standard C++ Library User's Guide and Tutorial

size of containers.

value_compare A function that can be used to compare two
elements.

difference_type A signed integer type, used to describe the
distance between iterators.

8.2.3 Insertion

Unlike a list or vector, there is only one way to add a new element to a set.
A value can be inserted into a set or a multiset using the insert() member
function. With a multiset, the function returns an iterator that denotes the
value just inserted. Insert operations into a set return a pair of values, in
which the first field contains an iterator, and the second field contains a
boolean value that is true if the element was inserted, and false otherwise.
Recall that in a set, an element will not be inserted if it matches an element
already contained in the collection.

 set_one.insert (18);

 if (set_one.insert(18).second)
 cout << "element was inserted" << endl;
 else
 cout << "element was not inserted " << endl;

Insertions of several elements from another container can also be performed
using an iterator pair:

 set_one.insert (set_three.begin(), set_three.end());

The pair data structure is a tuple of values. The first value is accessed
through the field name first , while the second is, naturally, named second .
A function named make_pair() simplifies the task of producing an instance
of class pair.

template <class T1, class T2>
struct pair {
 T1 first;
 T2 second;
 pair (const T1 & x, const T2 & y) : first(x), second(y) { }
};

template <class T1, class T2>
inline pair<T1, T2> make_pair(const T1& x, const T2& y)
 { return pair<T1, T2>(x, y); }

In determining the equivalence of keys, for example, to determine if the key
portion of a new element matches any existing key, the comparison function
for keys is used, and not the equivalence (==) operator. Two keys are
deemed equivalent if the comparison function used to order key values
yields false in both directions. That is, if Compare(key1, key2) is false, and
if Compare(key2, key1) is false, then key1 and key2 are considered
equivalent.

✍✍
The Pair Data Type
If you want to use
the pair data type
without using
maps, you should
include the
header file
named utility .

Rogue Wave Standard C++ Library User's Guide and Tutorial set , multiset, and bitset 69

8.2.4 Removal of Elements from a Set

Values are removed from a set using the member function erase(). The
argument can be either a specific value, an iterator that denotes a single
value, or a pair of iterators that denote a range of values. When the first
form is used on a multiset, all arguments matching the argument value are
removed, and the return value indicates the number of elements that have
been erased.

 // erase element equal to 4
 set_three.erase(4);

 // erase element five
 set<int>::iterator five = set_three.find(5);
 set_three.erase(five);

 // erase all values between seven and eleven
 set<int>::iterator seven = set_three.find(7);
 set<int>::iterator eleven = set_three.find(11);
 set_three.erase (seven, eleven);

If the underlying element type provides a destructor, then the destructor will
be invoked prior to removing the element from the collection.

8.2.5 Searching and Counting

The member function size() will yield the number of elements held by a
container. The member function empty() will return a boolean true value if
the container is empty, and is generally faster than testing the size against
zero.

The member function find() takes an element value, and returns an iterator
denoting the location of the value in the set if it is present, or a value
matching the end-of-set (the value yielded by the function end()) if it is not.
If a multiset contains more than one matching element, the value returned
can be any appropriate value.

 set<int>::iterator five = set_three.find(5);
 if (five != set_three.end())
 cout << "set contains a five" << endl;

The member functions lower_bound() and upper_bound() are most useful
with multisets, as with sets they simply mimic the function find(). The
member function lower_bound() yields the first entry that matches the
argument key, while the member function upper_bound() returns the first
value past the last entry matching the argument. Finally, the member
function equal_range() returns a pair of iterators, holding the lower and
upper bounds.

The member function count() returns the number of elements that match
the argument. For a set this value is either zero or one, whereas for a
multiset it can be any nonnegative value. Since a non-zero integer value is
treated as true, the count() function can be used to test for inclusion of an

70 set , multiset, and bitset Rogue Wave Standard C++ Library User's Guide and Tutorial

element, if all that is desired is to determine whether or not the element is
present in the set. The alternative, using find(), requires testing the result
returned by find() against the end-of-collection iterator.

 if (set_three.count(5))
 cout << "set contains a five" << endl;

8.2.6 Iterators

The member functions begin() and end() produce iterators for both sets and
multisets. The iterators produced by these functions are constant to ensure
that the ordering relation for the set is not inadvertently or intentionally
destroyed by assigning a new value to a set element. Elements are
generated by the iterators in sequence, ordered by the comparison operator
provided when the set was declared. The member functions rbegin() and
rend() produce iterators that yield the elements in reverse order.

8.2.7 Set Operations

The traditional set operations of subset test , set union , set intersection ,
and set difference are not provided as member functions, but are instead
implemented as generic algorithms that will work with any ordered
structure. These functions are described in more detail in Section 14.7. The
following summary describes how these functions can be used with the set
and multiset container classes.

8.2.7.1 Subset test

The function includes() can be used to determine if one set is a subset of
another; that is, if all elements from the first are contained in the second. In
the case of multisets the number of matching elements in the second set
must exceed the number of elements in the first. The four arguments are a
pair of iterators representing the (presumably) smaller set, and a pair of
iterators representing the (potentially) larger set.

 if (includes(set_one.begin(), set_one.end(),
 set_two.begin(), set_two.end()))
 cout << "set_one is a subset of set_two" << endl;

The less than operator (operator <) will be used for the comparison of
elements, regardless of the operator used in the declaration of the set.
Where this is inappropriate, an alternative version of the includes()

function is provided. This form takes a fifth argument, which is the
comparison function used to order the elements in the two sets.

8.2.7.2 Set Union or Intersection

The function set_union() can be used to construct a union of two sets. The
two sets are specified by iterator pairs, and the union is copied into an

✍✍
No Iterator
Invalidation
Unlike a vector or
deque, the
insertion or
removal of values
from a set does
not invalidate
iterators or
references to
other elements in
the collection.

Rogue Wave Standard C++ Library User's Guide and Tutorial set , multiset, and bitset 71

output iterator that is supplied as a fifth argument. To form the result as a
set, an insert iterator must be used to form the output iterator. (See Section
2.4 for a discussion of insert iterators.) If the desired outcome is a union of
one set with another, then a temporary set can be constructed, and the
results swapped with the argument set prior to deletion of the temporary
set.

 // union two sets, copying result into a vector
 vector<int> v_one (set_one.size() + set_two.size());

 set_union(set_one.begin(), set_one.end(),
 set_two.begin(), set_two.end(), v_one.begin());

 // form union in place
 set<int> temp_set;
 set_union(set_one.begin(), set_one.end(),
 set_two.begin(), set_two.end(),
 inserter(temp_set, temp_set.begin()));
 set_one.swap(temp_set); // temp_set will be deleted

The function set_intersection() is similar, and forms the intersection of
the two sets.

As with the includes() function, the less than operator (operator <) is used
to compare elements in the two argument sets, regardless of the operator
provided in the declaration of the sets. Should this be inappropriate,
alternative versions of both the set_union() or set_intersection()

functions permit the comparison operator used to form the set to be given as
a sixth argument.

The operation of taking the union of two multisets should be distinguished
from the operation of merging two sets. Imagine that one argument set
contains three instances of the element 7, and the second set contains two
instances of the same value. The union will contain only three such values,
while the merge will contain five. To form the merge, the function merge()

can be used (see Section 14.6). The arguments to this function exactly match
those of the set_union() function.

8.2.7.3 Set Difference

There are two forms of set difference. A simple set difference represents the
elements in the first set that are not contained in the second. A symmetric
set difference is the union of the elements in the first set that are not
contained in the second, with the elements in the second that are not
contained in the first. These two values are constructed by the functions
set_difference() and set_symmetric_difference(), respectively. The use
of these functions is similar to the use of the set_union() function described
earlier.

72 set , multiset, and bitset Rogue Wave Standard C++ Library User's Guide and Tutorial

8.2.8 Other Generic Algorithms

Because sets are ordered and have constant iterators, a number of the
generic functions described in Sections 13 and 14 either are not applicable to
sets or are not particularly useful. However, the following table gives a few
of the functions that can be used in conjunction with the set data type.

Purpose Name Section
Copy one sequence into another copy 13.2.2

Find an element that matches a condition find_if 13.3.1

Find a subsequence within a set search 13.3.3

Count number of elements that satisfy
condition

count_if 13.6.1

Reduce set to a single value accumulate 13.6.2

Execute function on each element for_each 13.8.1

8.3 Example Program: −− A Spelling Checker
A simple example program that uses a set is a spelling checker. The checker
takes as arguments two input streams; the first representing a stream of
correctly spelled words (that is, a dictionary), and the second a text file.
First, the dictionary is read into a set. This is performed using a copy() and
an input stream iterator, copying the values into an inserter for the
dictionary. Next, words from the text are examined one by one, to see if
they are in the dictionary. If they are not, then they are added to a set of
misspelled words. After the entire text has been examined, the program
outputs the list of misspelled words.

void spellCheck (istream & dictionary, istream & text)
{
 typedef set <string, less<string> > stringset;
 stringset words, misspellings;
 string word;
 istream_iterator<string, ptrdiff_t> dstream(dictionary), eof;

 // first read the dictionary
 copy (dstream, eof, inserter(words, words.begin()));

 // next read the text
 while (text >> word)
 if (! words.count(word))
 misspellings.insert(word);

 // finally, output all misspellings
 cout << "Misspelled words:" << endl;
 copy (misspellings.begin(), misspellings.end(),
 ostream_iterator<string>(cout, "\n"));
}

✍✍
Obtaining the
Sample Program
This program can
be found in the
file spell.cpp in
the tutorial
distribution.

Rogue Wave Standard C++ Library User's Guide and Tutorial set , multiset, and bitset 73

An improvement would be to suggest alternative words for each
misspelling. There are various heuristics that can be used to discover
alternatives. The technique we will use here is to simply exchange adjacent
letters. To find these, a call on the following function is inserted into the
loop that displays the misspellings.

void findMisspell(stringset & words, string & word)
{
 for (int i = 1; i < word.length(); i++) {
 swap(word[i-1], word[i]);
 if (words.count(word))
 cout << "Suggestion: " << word << endl;
 // put word back as before
 swap(word[i-1], word[i]);
 }
}

8.4 The bitset Abstraction
A bitset is really a cross between a set and a vector. Like the vector
abstraction vector<bool>, the abstraction represents a set of binary (0/1 bit)
values. However, set operations can be performed on bitsets using the
logical bit-wise operators. The class bitset does not provide any iterators for
accessing elements.

8.4.1 Include Files
#include <bitset>

8.4.2 Declaration and Initialization of bitset

A bitset is a template class abstraction. The template argument is not,
however, a type, but an integer value. The value represents the number of
bits the set will contains.

bitset<126> bset_one; // create a set of 126 bits

An alternative technique permits the size of the set to be specified as an
argument to the constructor. The actual size will be the smaller of the value
used as the template argument and the constructor argument. This
technique is useful when a program contains two or more bit vectors of
differing sizes. Consistently using the larger size for the template argument
means that only one set of methods for the class will be generated. The
actual size, however, will be determined by the constructor.

bitset<126> bset_two(100); // this set has only 100 elements

A third form of constructor takes as argument a string of 0 and 1 characters.
A bitset is created that has as many elements as are characters in the string,
and is initialized with the values from the string.

bitset<126> small_set("10101010"); // this set has 8 elements

74 set , multiset, and bitset Rogue Wave Standard C++ Library User's Guide and Tutorial

8.4.3 Accessing and Testing Elements

An individual bit in the bitset can be accessed using the subscript operation.
Whether the bit is one or not can be determined using the member function
test(). Whether any bit in the bitset is “on” is tested using the member
function any(), which yields a boolean value. The inverse of any() is
returned by the member function none().

 bset_one[3] = 1;
 if (bset_one.test(4))
 cout << "bit position 4 is set" << endl;
 if (bset_one.any())
 cout << "some bit position is set" << endl;
 if (bset_one.none()) cout << “no bit position is set” << endl;

The function set() can be used to set a specific bit. bset_one.set(i) is
equivalent to bset_one[i] = true . Invoking the function without any
arguments sets all bit positions to true. The function reset() is similar, and
sets the indicated positions to false (sets all positions to false if invoked with
no argument). The function flip() flips either the indicated position, or all
positions if no argument is provided. The function flip() is also provided
as a member function for the individual bit references.

 bset_one.flip(); // flip the entire set
 bset_one.flip(12); // flip only bit 12
 bset_one[12].flip(); // reflip bit 12

The member function size() returns the size of the bitset, while the member
function count() yields the number of bits that are set.

8.4.4 Set operations

Set operations on bitsets are implemented using the bit-wise operators, in a
manner analogous to the way in which the same operators act on integer
arguments.

The negation operator (operator ~) applied to a bitset returns a new bitset
containing the inverse of elements in the argument set.

The intersection of two bitsets is formed using the and operator (operator &).
The assignment form of the operator can be used. In the assignment form,
the target becomes the disjunction of the two sets.

 bset_three = bset_two & bset_four;
 bset_five &= bset_three;

The union of two sets is formed in a similar manner using the or operator
(operator |). The exclusive-or is formed using the bit-wise exclusive or
operator (operator ^).

The left and right shift operators (operator << and >>) can be used to shift a
bitset left or right, in a manner analogous to the use of these operators on
integer arguments. If a bit is shifted left by an integer value n, then the new
bit position i is the value of the former i-n. Zeros are shifted into the new
positions.

Rogue Wave Standard C++ Library User's Guide and Tutorial set , multiset, and bitset 75

8.4.5 Conversions

The member function to_ulong() converts a bitset into an unsigned long .
It is an error to perform this operation on a bitset containing more elements
than will fit into this representation.

The member function to_string() converts a bitset into an object of type
string. The string will have as many characters as the bitset. Each zero bit
will correspond to the character 0, while each one bit will be represented by
the character 1.

S e c t i o n 9.
map and multimap

9.1

The map Data Abstraction

9.2

Map and Multimap Operations

9.3

Example Programs

78 map and multimap Rogue Wave Standard C++ Library User's Guide and Tutorial

9.1 The map Data Abstraction
A map is an indexed data structure, similar to a vector or a deque.
However, maps differ from vectors or deques in two important respects.
First, in a map, unlike a vector or deque, the index values (called the key
values) need not be integer, but can be any ordered data type. For example,
maps can be indexed by real numbers, or by strings. Any data type for
which a comparison operator can be defined can be used as a key. As with a
vector or deque, elements can be accessed through the use of the subscript
operator (although there are other techniques). The second important
difference is that a map is an ordered data structure. This means that
elements are maintained in sequence, the ordering being determined by key
values. Because they maintain values in order, maps can very rapidly find
the element specified by any given key (searching is performed in
logarithmic time). Like a list, maps are not limited in size, but expand or
contract as necessary as new elements are added or removed. In large part,
a map can simply be considered to be a set that maintains a collection of
pairs.

There are two varieties of maps provided by the standard library. The map
data structure demands unique keys. That is, there is a one-to-one
association between key elements and their corresponding value. In a map,
the insertion of a new value that uses an existing key is ignored. A
multimap, on the other hand, permits multiple different entries to be
indexed by the same key. Both data structures provide relatively fast
(logarithmic time) insertion, deletion, and access operations.

9.1.1 Include files

Whenever you use a map or a multimap, you must include the map header
file.

 # include <map>

9.2 Map and Multimap Operations
The member functions provided by the map and multimap data types will
shortly be described in more detail. Note that while member functions
provide basic operations, the utility of the data structure is greatly extended
through the use of the generic algorithms described in Sections 13 and 14.

9.2.1 Declaration and Initialization of map

The declaration of a map follows the pattern we have seen repeatedly in the
standard library. A map is a template data structure, specialized by the type
of the key elements, the type of the associated values, and the operator to be

✍✍
Other Names for
Maps
In other
programming
languages, a
map-like data
structure is
sometimes
referred to as a
dictionary, a
table, or an
associative array.

✍✍
Pairs
See the discussion
of insertion in
Section 8 for a
description of the
pair data type.

Rogue Wave Standard C++ Library User's Guide and Tutorial map and multimap 79

used in comparing keys. If your compiler supports default template types (a
relatively new feature in C++ not yet supported by all vendors), then the last
of these is optional, and if not provided, the less than operator for the key
type will be assumed. Maps can be declared with no initial elements, or
initialized from another container by providing a pair of iterators. In the
latter case the iterators must denote values of type pair; the first field in each
pair is taken to be a key, while the second field is a value. A copy
constructor also permits maps to be created as copies of other maps.

 // map indexed by doubles containing strings
 map<double, string, less<double> > map_one;
 // map indexed by integers, containing integers
 map<int, int> map_two(aContainer.begin(), aContainer.end());
 // create a new map, initializing it from map two
 map<int, int> map_three (map_two); // copy constructor

A map can be assigned to another map, and two maps can exchange their
values using the swap() operation (in a manner analogous to other standard
library containers).

9.2.2 Type Definitions

The classes map and multimap include a number of type definitions. These
are most commonly used in declaration statements. For example, an iterator
for a map of strings to integers can be declared in the following fashion:

map<string, int>::iterator location;

In addition to iterator , the following types are defined:

key_type The type associated with the keys used to index
the map.

value_type The type held by the container, a key/value
pair.

const_iterator An iterator that does not allow modification of
the underlying sequence.

reverse_iterator An iterator that moves in a backward direction.

const_reverse_iterator A combination constant and reverse iterator.

reference A reference to an underlying value.

const_reference A reference to an underlying value that will not
permit the element to be modified.

size_type An unsigned integer type, used to refer to the
size of containers.

key_compare A function object that can be used to compare
two keys.

value_compare A function object that can be used to compare

80 map and multimap Rogue Wave Standard C++ Library User's Guide and Tutorial

two elements.

difference_type A signed integer type, used to describe the
distances between iterators.

9.2.3 Insertion and Access

Values can be inserted into a map or a multimap using the insert()

operation. Note that the argument must be a key-value pair. This pair is
often constructed using the data type value_type associated with the map.

 map_three.insert (map<int>::value_type(5, 7));

Insertions can also be performed using an iterator pair, for example as
generated by another map.

 map_two.insert (map_three.begin(), map_three.end());

With a map (but not a multimap), values can be accessed and inserted using
the subscript operator. Simply using a key as a subscript creates an entry −
the default element is used as the associated value. Assigning to the result
of the subscript changes the associated binding.

 cout << "Index value 7 is " << map_three[7] << endl;
 // now change the associated value
 map_three[7] = 5;
 cout << "Index value 7 is " << map_three[7] << endl;

9.2.4 Removal of Values

Values can be removed from a map or a multimap by naming the key value.
In a multimap the erasure removes all elements with the associated key. An
element to be removed can also be denoted by an iterator; as, for example,
the iterator yielded by a find() operation. A pair of iterators can be used to
erase an entire range of elements.

 // erase the 4th element 4
 map_three.erase(4);
 // erase the 5th element
 mtesttype::iterator five = map_three.find(5);
 map_three.erase(five);

 // erase all values between the 7th and 11th elements
 mtesttype::iterator seven = map_three.find(7);
 mtesttype::iterator eleven = map_three.find(11);
 map_three.erase (seven, eleven);

If the underlying element type provides a destructor, then the destructor will
be invoked prior to removing the key and value pair from the collection.

Rogue Wave Standard C++ Library User's Guide and Tutorial map and multimap 81

9.2.5 Iterators

The member functions begin() and end() produce bidirectional iterators for
both maps and multimaps. Dereferencing an iterator for either a map or a
multimap will yield a pair of key/value elements. The field names first

and second can be applied to these values to access the individual fields.
The first field is constant, and cannot be modified. The second field,
however, can be used to change the value being held in association with a
given key. Elements will be generated in sequence, based on the ordering of
the key fields.

The member functions rbegin() and rend() produce iterators that yield the
elements in reverse order.

9.2.6 Searching and Counting

The member function size() will yield the number of elements held by a
container. The member function empty() will return a boolean true value if
the container is empty, and is generally faster than testing the size against
zero.

The member function find() takes a key argument, and returns an iterator
denoting the associated key/value pair. In the case of multimaps, the first
such value is returned. In both cases the past-the-end iterator is returned if
no such value is found.

 if (map_one.find(4) != map_one.end())
 cout << "contains a 4th element" << endl;

The member function lower_bound() yields the first entry that matches the
argument key, while the member function upper_bound() returns the first
value past the last entry matching the argument. Finally, the member
function equal_range() returns a pair of iterators, holding the lower and
upper bounds. An example showing the use of these procedures will be
presented later in this section.

The member function count() returns the number of elements that match
the key value supplied as the argument. For a map, this value is always
either zero or one, whereas for a multimap it can be any nonnegative value.
If you simply want to determine whether or not a collection contains an
element indexed by a given key, using count() is often easier than using the
find() function and testing the result against the end-of-sequence iterator.

 if (map_one.count(4))
 cout << "contains a 4th element" << endl;

9.2.7 Element Comparisons

The member functions key_comp() and value_comp(), which take no
arguments, return function objects that can be used to compare elements of

✍✍
No Iterator
Invalidation
Unlike a vector or
deque, the
insertion or
removal of
elements from a
map does not
invalidate iterators
which may be
referencing other
portions of the
container.

82 map and multimap Rogue Wave Standard C++ Library User's Guide and Tutorial

the key or value types. Values used in these comparisons need not be
contained in the collection, and neither function will have any effect on the
container.

if (map_two.key_comp (i, j))
 cout << "element i is less than j" << endl;

9.2.8 Other Map Operations

Because maps and multimaps are ordered collections, and because the
iterators for maps return pairs, many of the functions described in Sections
13 and 14 are meaningless or difficult to use. However, there are a few
notable exceptions. The functions for_each() , adjacent_find() , and
accumulate() each have their own uses. In all cases it is important to
remember that the functions supplied as arguments should take a key/value
pair as arguments.

9.3 Example Programs
We present three example programs that illustrate the use of maps and
multimaps. These are a telephone database, graphs, and a concordance.

9.3.1 A Telephone Database

A maintenance program for a simple telephone database is a good
application for a map. The database is simply an indexed structure, where
the name of the person or business (a string) is the key value, and the
telephone number (a long) is the associated entry. We might write such a
class as follows:

typedef map<string, long, less<string> > friendMap;
typedef friendMap::value_type entry_type;

class telephoneDirectory {
public:
 void addEntry (string name, long number) // add new entry to
 // database
 { database[name] = number; }

 void remove (string name) // remove entry from database
 { database.erase(name); }

 void update (string name, long number) // update entry
 { remove(name); addEntry(name, number); }

 void displayDatabase() // display entire database
 { for_each(database.begin(), database.end(), printEntry); }

 void displayPrefix(int); // display entries that match prefix

 void displayByPrefix(); // display database sorted by prefix

private:
 friendMap database;

✍✍
Obtaining the
Sample Program
The complete
example program
is included in the
file tutorial
tele.cpp in the
distribution.

Rogue Wave Standard C++ Library User's Guide and Tutorial map and multimap 83

};

Simple operations on our database are directly implemented by map
commands. Adding an element to the database is simply an insert ,
removing an element is an erase , and updating is a combination of the two.
To print all the entries in the database we can use the for_each() algorithm,
and apply the following simple utility routine to each entry:

void printEntry(const entry_type & entry)
 { cout << entry.first << ":" << entry.second << endl; }

We will use a pair of slightly more complex operations to illustrate how a
few of the algorithms described in Section 13 can be used with maps.
Suppose we wanted to display all the phone numbers with a certain three
digit initial prefix1 . We will use the find_if() function (which is different
from the find() member function in class map) to locate the first entry.
Starting from this location, subsequent calls on find_if() will uncover each
successive entry.

void telephoneDirectory::displayPrefix(int prefix)
{
 cout << "Listing for prefix " << prefix << endl;
 friendMap::iterator where;
 where =
 find_if (database.begin(), database.end(),
 checkPrefix(prefix));
 while (where != database.end()) {
 printEntry(*where);
 where = find_if (++where, database.end(),
 checkPrefix(prefix));
 }
 cout << "end of prefix listing" << endl;
}

For the predicate to this operation, we require a boolean function that takes
only a single argument (the pair representing a database entry), and tells us
whether or not it is in the given prefix. There is no obvious candidate
function, and in any case the test prefix is not being passed as an argument
to the comparison function. The solution to this problem is to employ a
technique that is commonly used with the standard library, defining the
predicate function as an instance of a class, and storing the test predicate as
an instance variable in the class, initialized when the class is constructed.
The desired function is then defined as the function call operator for the
class:

int prefix(const entry_type & entry)
 { return entry.second / 10000; }

class checkPrefix {
public:
 checkPrefix (int p) : testPrefix(p) { }

1 We apologize to international readers for this obviously North-
American-centric example.

84 map and multimap Rogue Wave Standard C++ Library User's Guide and Tutorial

 int testPrefix;
 bool operator () (const entry_type & entry)
 { return prefix(entry) == testPrefix; }
};

Our final example will be to display the directory sorted by prefix. It is not
possible to alter the order of the maps themselves. So instead, we create a
new map with the element types reversed, then copy the values into the new
map, which will order the values by prefix. Once the new map is created, it
is then printed.

typedef map<long, string, less<long> > sortedMap;
typedef sortedMap::value_type sorted_entry_type;

void telephoneDirectory::displayByPrefix()
{
 cout << "Display by prefix" << endl;
 sortedMap sortedData;
 friendMap::iterator itr;
 for (itr = database.begin(); itr != database.end(); itr++)
 sortedData.insert(sortedMap::value_type((*itr).second,
 (*itr).first));
 for_each(sortedData.begin(), sortedData.end(),
 printSortedEntry);
}

The function used to print the sorted entries is the following:

void printSortedEntry (const sorted_entry_type & entry)
 { cout << entry.first << ":" << entry.second << endl; }

9.3.2 Graphs

A map whose elements are themselves maps are a natural representation
for a directed graph. For example, suppose we use strings to encode the
names of cities, and we wish to construct a map where the value associated
with an edge is the distance between two connected cities. We could create
such a graph as follows:

typedef map<string, int> stringVector;
typedef map<string, stringVector> graph;

const string pendleton("Pendleton"); // define strings for
 // city names
const string pensacola("Pensacola");
const string peoria("Peoria");
const string phoenix("Phoenix");
const string pierre("Pierre");
const string pittsburgh("Pittsburgh");
const string princeton("Princeton");
const string pueblo("Pueblo");

graph cityMap; // declare the graph that holds the map

cityMap[pendleton][phoenix] = 4; // add edges to the graph
cityMap[pendleton][pueblo] = 8;
cityMap[pensacola][phoenix] = 5;
cityMap[peoria][pittsburgh] = 5;
cityMap[peoria][pueblo] = 3;

✍✍
Obtaining the
Sample Program
The executable
version of this
program is found
in the file
graph.cpp on
the tutorial
distribution disk.

Rogue Wave Standard C++ Library User's Guide and Tutorial map and multimap 85

cityMap[phoenix][peoria] = 4;
cityMap[phoenix][pittsburgh] = 10;
cityMap[phoenix][pueblo] = 3;
cityMap[pierre][pendleton] = 2;
cityMap[pittsburgh][pensacola] = 4;
cityMap[princeton][pittsburgh] = 2;
cityMap[pueblo][pierre] = 3;

The type stringVector is a map of integers indexed by strings. The type
graph is, in effect, a two-dimensional sparse array, indexed by strings and
holding integer values. A sequence of assignment statements initializes the
graph.

A number of classic algorithms can be used to manipulate graphs
represented in this form. One example is Dijkstra's shortest-path algorithm.
Dijkstra's algorithm begins from a specific city given as an initial location. A
priority_queue of distance/city pairs is then constructed, and initialized
with the distance from the starting city to itself (namely, zero). The
definition for the distance pair data type is as follows:

struct DistancePair {
 unsigned int first;
 string second;
 DistancePair() : first(0) { }
 DistancePair(unsigned int f, const string & s)
 : first(f), second(s) { }
};

bool operator < (const DistancePair & lhs, const DistancePair & rhs)
 { return lhs.first < rhs.first; }

In the algorithm that follows, note how the conditional test is reversed on
the priority queue, because at each step we wish to pull the smallest, and not
the largest, value from the collection. On each iteration around the loop we
pull a city from the queue. If we have not yet found a shorter path to the
city, the current distance is recorded, and by examining the graph we can
compute the distance from this city to each of its adjacent cities. This process
continues until the priority queue becomes exhausted.

void shortestDistance(graph & cityMap,
 const string & start, stringVector & distances)
{
 // process a priority queue of distances to cities
 priority_queue<DistancePair, vector<DistancePair>,
 greater<DistancePair> > que;
 que.push(DistancePair(0, start));

 while (! que.empty()) {
 // pull nearest city from queue
 int distance = que.top().first;
 string city = que.top().second;
 que.pop();
 // if we haven't seen it already, process it
 if (0 == distances.count(city)) {
 // then add it to shortest distance map
 distances[city] = distance;
 // and put values into queue
 const stringVector & cities = cityMap[city];

86 map and multimap Rogue Wave Standard C++ Library User's Guide and Tutorial

 stringVector::const_iterator start = cities.begin();
 stringVector::const_iterator stop = cities.end();
 for (; start != stop; ++start)
 que.push(DistancePair(distance + (*start).second,
 (*start).first));
 }
 }
}

Notice that this relatively simple algorithm makes use of vectors, maps,
strings and priority_queues. priority_queues are described in greater
detail in Section 11.

9.3.3 A Concordance

A concordance is an alphabetical listing of words in a text, that shows the
line numbers on which each word occurs. We develop a concordance to
illustrate the use of the map and multimap container classes. The data
values will be maintained in the concordance by a multimap, indexed by
strings (the words) and will hold integers (the line numbers). A multimap is
employed because the same word will often appear on multiple different
lines; indeed, discovering such connections is one of the primary purposes of
a concordance. Another possibility would have been to use a map and use
a set of integer elements as the associated values.

class concordance {
 typedef multimap<string, int less <string> > wordDictType;
public:
 void addWord (string, int);
 void readText (istream &);
 void printConcordance (ostream &);

private:
 wordDictType wordMap;
};

The creation of the concordance is divided into two steps: first the program
generates the concordance (by reading lines from an input stream), and then
the program prints the result on the output stream. This is reflected in the
two member functions readText() and printConcordance(). The first of
these, readText(), is written as follows:

void concordance::readText (istream & in)
{
 string line;
 for (int i = 1; getline(in, line, ‘\n’); i++) {
 allLower(line);
 list<string> words;
 split (line, " ,.;:", words);
 list<string>::iterator wptr;
 for (wptr = words.begin(); wptr != words.end(); ++wptr)
 addWord(*wptr, i);
 }
}

✍✍
Obtaining the
Sample Program
An executable
version of the
concordance
program is found
on the tutorial
distribution file
under the name
concord.cpp .

Rogue Wave Standard C++ Library User's Guide and Tutorial map and multimap 87

Lines are read from the input stream one by one. The text of the line is first
converted into lower case, then the line is split into words, using the
function split() described in Section 12.3. Each word is then entered into
the concordance. The method used to enter a value into the concordance is
as follows:

void concordance::addWord (string word, int line)
{
 // see if word occurs in list
 // first get range of entries with same key
 wordDictType::iterator low = wordMap.lower_bound(word);
 wordDictType::iterator high = wordMap.upper_bound(word);
 // loop over entries, see if any match current line
 for (; low != high; ++low)
 if ((*low).second == line)
 return;
 // didn't occur, add now
 wordMap.insert(wordDictType::value_type(word, line));
}

The major portion of addWord() is concerned with ensuring values are not
duplicated in the word map if the same word occurs twice on the same line.
To assure this, the range of values matching the key is examined, each value
is tested, and if any match the line number then no insertion is performed.
It is only if the loop terminates without discovering the line number that the
new word/line number pair is inserted.

The final step is to print the concordance. This is performed in the following
fashion:

void concordance::printConcordance (ostream & out)
{
 string lastword("");
 wordDictType::iterator pairPtr;
 wordDictType::iterator stop = wordMap.end();
 for (pairPtr = wordMap.begin(); pairPtr != stop; ++pairPtr)
 // if word is same as previous, just print line number
 if (lastword == (*pairPtr).first)
 out << " " << (*pairPtr).second;
 else { // first entry of word
 lastword = (*pairPtr).first;
 cout << endl << lastword << ": " << (*pairPtr).second;
 }
 cout << endl; // terminate last line
}

An iterator loop is used to cycle over the elements being maintained by the
word list. Each new word generates a new line of output − thereafter line
numbers appear separated by spaces. If, for example, the input was the text:

It was the best of times,

it was the worst of times.

The output, from best to worst, would be:

 best: 1

 it: 1 2

 of: 1 2

88 map and multimap Rogue Wave Standard C++ Library User's Guide and Tutorial

 the: 1 2

 times: 1 2

 was: 1 2

 worst: 1

S e c t i o n 10.
stack and queue

10.1

Overview

10.2

The stack Data Abstraction

10.3

The queue Data Abstraction

90 stack and queue Rogue Wave Standard C++ Library User's Guide and Tutorial

10.1 Overview
Most people have a good intuitive understanding of the stack and queue
data abstractions, based on experience with everyday objects. An excellent
example of a stack is a pile of papers on a desk, or a stack of dishes in a
cupboard. In both cases the important characteristic is that it is the item on
the top that is most easily accessed. The easiest way to add a new item to
the collection is to place it above all the current items in the stack. In this
manner, an item removed from a stack is the item that has been most
recently inserted into the stack; for example, the top piece of paper in the
pile, or the top dish in the stack.

An everyday example of a queue, on the other hand, is a bank teller line, or a
line of people waiting to enter a theater. Here new additions are made to the
back of the queue, as new people enter the line, while items are removed
from the front of the structure, as patrons enter the theater. The removal
order for a queue is the opposite of that for a stack. In a queue, the item that
is removed is the element that has been present in the queue for the longest
period of time.

In the standard library, both stacks and queues are adaptors, built on top of
other containers which are used to actually hold the values. A stack can be
built out of either a vector or a deque, while a queue can be built on top of
either a list or a deque. Elements held by either a stack or queue must
recognize both the operators < and == .

Because neither stacks nor queues define iterators, it is not possible to
examine the elements of the collection except by removing the values one by
one. The fact that these structures do not implement iterators also implies
that most of the generic algorithms described in Sections 12 and 13 cannot be
used with either data structure.

10.2 The stack Data Abstraction
As a data abstraction, a stack is traditionally defined as any object that
implements the following operations:

empty() return true if the collection is empty
size() return number of elements in collection
top() return (but do not remove) the topmost element in

the stack
push(newElement) push a new element onto the stack
pop() remove (but do not return) the topmost element from

the stack

✍✍
LIFO and FIFO
A stack is
sometimes
referred to as a
LIFO structure,
and a queue is
called a FIFO
structure. The
abbreviation LIFO
stands for Last In,
First Out. This
means the first
entry removed
from a stack is the
last entry that was
inserted. The term
FIFO, on the other
hand, is short for
First In, First Out.
This means the first
element removed
from a queue is
the first element
that was inserted
into the queue.

Rogue Wave Standard C++ Library User's Guide and Tutorial stack and queue 91

10.2.1 Include Files

Note that accessing the front element and removing the front element are
separate operations. Programs that use the stack data abstraction should
include the file stack , as well as the include file for the container type (e.g.,
vector).

 # include <stack>
 # include <vector>

10.2.2 Declaration and Initialization of stack

A declaration for a stack must specify two arguments; the underlying
element type, and the container that will hold the elements. For a stack, the
most common container is a vector or a deque, however a list can also be
used. The vector version is generally smaller, while the deque version may
be slightly faster. The following are sample declarations for a stack.

 stack< int, vector<int> > stackOne;
 stack< double, deque<double> > stackTwo;
 stack< Part *, list<Part * > > stackThree;
 stack< Customer, list<Customer> > stackFour;

The last example creates a stack of a programmer-defined type named
Customer.

10.2.3 Example Program −− A RPN Calculator

A classic application of a stack is in the implementation of calculator. Input
to the calculator consists of a text string that represents an expression written
in reverse polish notation (RPN). Operands, that is, integer constants, are
pushed on a stack of values. As operators are encountered, the appropriate
number of operands are popped off the stack, the operation is performed,
and the result is pushed back on the stack.

We can divide the development of our stack simulation into two parts, a
calculator engine and a calculator program. A calculator engine is
concerned with the actual work involved in the simulation, but does not
perform any input or output operations. The name is intended to suggest an
analogy to a car engine, or a computer processor – the mechanism performs
the actual work, but the user of the mechanism does not normally directly
interact with it. Wrapped around this is the calculator program, which
interacts with the user, and passes appropriate instructions to the calculator
engine.

We can use the following class definition for our calculator engine. Inside
the class declaration we define an enumerated list of values to represent
each of the possible operators that the calculator is prepared to accept. We
have made two simplifying assumptions: all operands will be integer values,
and we will handle only binary operators.

class calculatorEngine {

✍✍
Right Angle
Brackets
Note that on most
compilers it is
important to
leave a space
between the two
right angle
brackets in the
declaration of a
stack; otherwise
they are
interpreted by the
compiler as a right
shift operator.

✍✍
Obtaining the
Sample Program
This program is
found in the file
calc.cpp in the
distribution
package.

92 stack and queue Rogue Wave Standard C++ Library User's Guide and Tutorial

public:
 enum binaryOperator {plus, minus, times, divide};

 int currentMemory () // return current top of stack
 { return data.top(); }

 void pushOperand (int value) // push operand value on to stack
 { data.push (value); }

 void doOperator (binaryOperator); // pop stack and perform
 // operator

protected:
 stack< int, vector<int> > data;
};

The member function doOperator() performs the actual work. It pops
values from the stack, performs the operation, then pushes the result back
onto the stack.

void calculatorEngine::doOperator (binaryOperator theOp)
{
 int right = data.top(); // read top element
 data.pop(); // pop it from stack
 int left = data.top(); // read next top element
 data.pop(); // pop it from stack
 switch (theOp) {
 case plus: data.push(left + right); break;
 case minus: data.push(left - right); break;
 case times: data.push(left * right); break;
 case divide: data.push(left / right); break;
 }
}

The main program reads values in reverse polish notation, invoking the
calculator engine to do the actual work:

void main() {
 int intval;
 calculatorEngine calc;
 char c;

 while (cin >> c)
 switch (c) {
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 cin.putback(c);
 cin >> intval;
 calc.pushOperand(intval);
 break;

 case '+': calc.doOperator(calculatorEngine::plus);
 break;

 case '-': calc.doOperator(calculatorEngine::minus);
 break;

 case '*': calc.doOperator(calculatorEngine::times);
 break;

 case '/': calc.doOperator(calculatorEngine::divide);
 break;

✍✍
Defensive
Programming
A more robust
program would
check to see if the
stack was empty
before attempting
to perform the
pop() operation.

Rogue Wave Standard C++ Library User's Guide and Tutorial stack and queue 93

 case 'p': cout << calc.currentMemory() << endl;
 break;

 case 'q': return; // quit program
 }
}

10.3 The queue Data Abstraction
As a data abstraction, a queue is traditionally defined as any object that
implements the following operations:

empty() return true if the collection is empty

size() return number of elements in collection

front() return (but do not remove) the element at the front
of the queue

back() return the element at the end of the queue

push(newElement) push a new element on to the end of the queue

pop() remove (but do not return) the element at the front
of the queue

10.3.1 Include Files

Note that the operations of accessing and of removing the front elements are
performed separately. Programs that use the queue data abstraction should
include the file queue , as well as the include file for the container type (e.g.,
list).

 # include <queue>
 # include <list>

10.3.2 Declaration and Initialization of queue

A declaration for a queue must specify both the element type as well as the
container that will hold the values. For a queue the most common
containers are a list or a deque. The list version is generally smaller, while
the deque version may be slightly faster. The following are sample
declarations for a queue.

 queue< int, list<int> > queueOne;
 queue< double, deque<double> > queueTwo;
 queue< Part *, list<Part * > > queueThree;
 queue< Customer, list<Customer> > queueFour;

The last example creates a queue of a programmer-defined type named
Customer. As with the stack container, all objects stored in a queue must
understand the operators < and ==.

94 stack and queue Rogue Wave Standard C++ Library User's Guide and Tutorial

Because the queue does not implement an iterator, none of the generic
algorithms described in Sections 12 or 13 apply to queues.

10.3.3 Example Program −− Bank Teller Simulation

Queues are often found in businesses, such as supermarkets or banks.
Suppose you are the manager of a bank, and you need to determine how
many tellers to have working during certain hours. You decide to create a
computer simulation, basing your simulation on certain observed behavior.
For example, you note that during peak hours there is a ninety percent
chance that a customer will arrive every minute.

We create a simulation by first defining objects to represent both customers
and tellers. For customers, the information we wish to know is the average
amount of time they spend waiting in line. Thus, customer objects simply
maintain two integer data fields: the time they arrive in line, and the time
they will spend at the counter. The latter is a value randomly selected
between 2 and 8. (See Section 2.2.5 for a discussion of the randomInteger()

function.)

class Customer {
public:
 Customer (int at = 0) : arrival_Time(at),
 processTime(2 + randomInteger(6)) {}
 int arrival_Time;
 int processTime;

 bool done() // are we done with our transaction?
 { return --processTime < 0; }

 operator < (const Customer & c) // order by arrival time
 { return arrival_Time < c.arrival_Time; }

 operator == (const Customer & c) // no two customers are alike
 { return false; }
};

Because objects can only be stored in standard library containers if they can
be compared for equality and ordering, it is necessary to define the < and ==

operators for customers. Customers can also tell us when they are done with
their transactions.

Tellers are either busy servicing customers, or they are free. Thus, each teller
value holds two data fields; a customer, and a boolean flag. Tellers define a
member function to answer whether they are free or not, as well as a
member function that is invoked when they start servicing a customer.

class Teller {
public:
 Teller() { free = true; }

 bool isFree() // are we free to service new customer?
 { if (free) return true;
 if (customer.done())
 free = true;
 return free;

✍✍
Obtaining the
Sample Program
The complete
version of the
bank teller
simulation
program is found
in file
teller.cpp on
the distribution
disk.

Rogue Wave Standard C++ Library User's Guide and Tutorial stack and queue 95

 }

 void addCustomer(Customer c) // start serving new customer
 { customer = c;
 free = false;
 }

private:
 bool free;
 Customer customer;
};

The main program is then a large loop, cycling once each simulated minute.
Each minute a new customer is, with probability 0.9, entered into the queue
of waiting customers. Each teller is polled, and if any are free they take the
next customer from the queue. Counts are maintained of the number of
customers serviced and the total time they spent in queue. From these two
values we can determine, following the simulation, the average time a
customer spent waiting in the line.

void main() {
 int numberOfTellers = 5;
 int numberOfMinutes = 60;
 double totalWait = 0;
 int numberOfCustomers = 0;
 vector<Teller> teller(numberOfTellers);
 queue< Customer, deque<Customer> > line;

 for (int time = 0; time < numberOfMinutes; time++) {
 if (randomInteger(10) < 9)
 line.push(Customer(time));
 for (int i = 0; i < numberOfTellers; i++) {
 if (teller[i].isFree() & ! line.empty()) {
 Customer & frontCustomer = line.front();
 numberOfCustomers++;
 totalWait += (time - frontCustomer.arrival_Time);
 teller[i].addCustomer(frontCustomer);
 line.pop();
 }
 }
 }
 cout << "average wait:" <<
 (totalWait / numberOfCustomers) << endl;
}

By executing the program several times, using various values for the
number of tellers, the manager can determine the smallest number of tellers
that can service the customers while maintaining the average waiting time at
an acceptable amount.

S e c t i o n 11.
priority_queue

11.1

The priority queue Data Abstraction

11.2

The Priority Queue Operations

11.3

Application −− Event Driven Simulation

98 priority_queue Rogue Wave Standard C++ Library User's Guide and Tutorial

11.1 The priority queue Data Abstraction
A priority queue is a data structure useful in problems where you need to
rapidly and repeatedly find and remove the largest element from a collection
of values. An everyday example of a priority queue is the “to do” list of
tasks waiting to be performed that most of us maintain to keep ourselves
organized. Some jobs, such as “clean desktop,” are not imperative and can
be postponed arbitrarily. Other tasks, such as “finish report by Monday” or
“buy flowers for anniversary,” are time-crucial and must be addressed more
rapidly. Thus, we sort the tasks waiting to be accomplished in order of their
importance (or perhaps based on a combination of their critical importance,
their long term benefit, and the fun we will have doing them) and choose the
most pressing.

A more computer-related example of a priority queue is that used by an
operating system to maintain a list of pending processes, where the value
associated with each element is the priority of the job. For example, it may
be necessary to respond rapidly to a key pressed at a terminal, before the
data is lost when the next key is pressed. On the other hand, the process of
copying a listing to a queue of output waiting to be handled by a printer is
something that can be postponed for a short period, as long as it is handled
eventually. By maintaining processes in a priority queue, those jobs with
urgent priority will be executed prior to any jobs with less urgent
requirements.

Simulation programs use a priority queue of “future events.” The
simulation maintains a virtual “clock,” and each event has an associated
time when the event will take place. In such a collection, the element with
the smallest time value is the next event that should be simulated. These are
only a few instances of the types of problems for which a priority queue is a
useful tool. You probably have, or will, encounter others.

11.1.1 Include Files

Programs that use the priority queue data abstraction should include the file
queue , as well as the include file for the container type (e.g., vector).

 # include <queue>
 # include <vector>

✍✍
A Queue That is
Not a Queue
The term priority
queue is a
misnomer, in that
the data structure
is not a queue, in
the sense that we
used the term in
Section 10, since it
does not return
elements in a strict
first-in, first-out
sequence.
Nevertheless, the
name is now firmly
associated with
this particular
data type.

Rogue Wave Standard C++ Library User's Guide and Tutorial priority_queue 99

11.2 The Priority Queue Operations
A priority queue is a data structure that can hold elements of type T and that
implements the following five operations:

push(T) add a new value to the collection being maintained

top() return a reference to the smallest element in collection

pop() delete the smallest element from the collection

size() return the number of elements in the collection

empty() return true if the collection is empty

Elements of type T must be comparable to each other, either through the use
of the default less than operator (the < operator), or through a comparison
function passed either as a template argument or as an optional argument on
the constructor. The latter form will be illustrated in the example program
provided later in this section. As with all the containers in the Standard
Library, there are two constructors. The default constructor requires either
no arguments or the optional comparison function. An alternative
constructor takes an iterator pair, and initializes the values in the container
from the argument sequence. Once more, an optional third argument can be
used to define the comparison function.

The priority queue data type is built on top of a container class, which is the
structure actually used to maintain the values in the collection. There are
two containers in the standard library that can be used to construct priority
queues: vectors or deques.

11.2.1 Declaration and Initialization of priority queue

The following illustrates the declaration of several priority queues:

priority_queue< int, vector<int> > queue_one;
priority_queue< int, vector<int>, greater<int> > queue_two;
priority_queue< double, deque<double> >
 queue_three(aList.begin(), aList.end());
priority_queue< eventStruct, vector<eventStruct> >
 queue_four(eventComparison);
priority_queue< eventStruct, deque<eventStruct> >
 queue_five(aVector.begin(), aVector.end(), eventComparison);

Queues constructed out of vectors tend to be somewhat smaller, while
queues constructed out of deques can be somewhat faster, particularly if the
number of elements in the queue varies widely over the course of execution.
However, these differences are slight, and either form will generally work in
most circumstances.

Because the priority queue data structure does not itself know how to
construct iterators, very few of the algorithms noted in Section 13 can be

✍✍
Initializing Queues
from other
containers
As we noted in
earlier sections,
support for
initializing
containers using a
pair of iterators
requires a feature
that is not yet
widely supported
by compilers.
While we
document this
form of
constructor, it may
not yet be
available on your
system.

100 priority_queue Rogue Wave Standard C++ Library User's Guide and Tutorial

used with priority queues. Instead of iterating over values, a typical
algorithm that uses a priority queue constructs a loop, which repeatedly
pulls values from the structure (using the top() and pop() operations) until
the collection becomes empty (tested using the empty() operation). The
example program described in the next section will illustrate this use.

Priority queues are implemented by internally building a data structure
called a heap. Abstractly, a heap is a binary tree in which every node
possesses the property that the value associated with the node is smaller
than or equal to the value associated with either child node.

11.3 Application −− Event-Driven Simulation
An extended example will illustrate the use of priority queues. The example
illustrates one of the more common uses for priority queues, which is to
support the construction of a simulation model.

A discrete event-driven simulation is a popular simulation technique. Objects
in the simulation model objects in the real world, and are programmed to
react as much as possible as the real objects would react. A priority queue is
used to store a representation of “events” that are waiting to happen. This
queue is stored in order, based on the time the event should occur, so the
smallest element will always be the next event to be modeled. As an event
occurs, it can spawn other events. These subsequent events are placed into
the queue as well. Execution continues until all events have been processed.

✍✍
Information on
Heaps. Details of
the algorithms
used in
manipulating
heaps will not be
discussed here,
however such
information is
readily available
in almost any
textbook on data
structures.

Rogue Wave Standard C++ Library User's Guide and Tutorial priority_queue 101

Events can be represented as subclasses of a base class, which we will call
event. The base class simply records the time at which the event will take
place. A pure virtual function named processEvent will be invoked to
execute the event.

class event {
public:
 event (unsigned int t) : time(t) { }
 const unsigned int time;
 virtual void processEvent() = 0;
};

The simulation queue will need to maintain a collection of different types of
events. Each different form of event will be represented by a different
subclass of class event. Not all events will have the same exact type,
although they will all be subclasses of class event. (This is sometimes called
a heterogeneous collection.) For this reason the collection must store pointers to
events, instead of the events themselves. (In theory one could store
references, instead of pointers, however the standard library containers
cannot hold references).

Since comparison of pointers cannot be specialized on the basis of the
pointer types, we must instead define a new comparison function for
pointers to events. In the standard library this is accomplished by defining a
new structure, the sole purpose of which is to define the function invocation
operator (the () operator) in the appropriate fashion. Since in this
particular example we wish to use the priority queue to return the smallest
element each time, rather than the largest, the order of the comparison is
reversed, as follows:

struct eventComparison {
 bool operator () (event * left, event * right) const
 { return left->time > right->time; }
};

We are now ready to define the class simulation, which provides the
structure for the simulation activities. The class simulation provides two
functions. The first is used to insert a new event into the queue, while the
second runs the simulation. A data field is also provided to hold the current
simulation “time.”

✍✍
Finding Smallest
Elements
We describe the
priority queue as a
structure for
quickly
discovering the
largest element in
a sequence. If,
instead, your
problem requires
the discovery of
the smallest
element, there
are various
possibilities. One
is to supply the
inverse operator
as either a
template
argument or the
optional
comparison
function
argument to the
constructor. If you
are defining the
comparison
argument as a
function, as in the
example problem,
another solution is
to simply invert
the comparison
test.

102 priority_queue Rogue Wave Standard C++ Library User's Guide and Tutorial

class simulation {
public:
 simulation () : eventQueue(), time(0) { }

 void scheduleEvent (event * newEvent)
 { eventQueue.push (newEvent); }

 void run();

 unsigned int time;

protected:
 priority_queue<event *, vector<event *>, eventComparison>
eventQueue;
};

Notice the declaration of the priority queue used to hold the pending events.
In this case we are using a vector as the underlying container. We could
just as easily have used a deque.

The heart of the simulation is the member function run(), which defines
the event loop. This procedure makes use of three of the five priority queue
operations, namely top() , pop() , and empty() . It is implemented as follows:

void simulation::run()
{
 while (! eventQueue.empty()) {
 event * nextEvent = eventQueue.top();
 eventQueue.pop();
 time = nextEvent->time;
 nextEvent->processEvent();
 delete nextEvent; // free memory used by event
 }
}

11.3.1 An Ice Cream Store Simulation

To illustrate the use of our simulation framework, this example program
gives a simple simulation of an ice cream store. Such a simulation might be
used, for example, to determine the optimal number of chairs that should be
provided, based on assumptions such as the frequency that customers will
arrive, the length of time they will stay, and so on.

Our store simulation will be based around a subclass of class simulation,
defined as follows:

class storeSimulation : public simulation {
public:
 storeSimulation()
 : freeChairs(35), profit(0.0), simulation() { }

 bool canSeat (unsigned int numberOfPeople);
 void order(unsigned int numberOfScoops);
 void leave(unsigned int numberOfPeople);

private:
 unsigned int freeChairs;
 double profit;
} theSimulation;

✍✍
Storing Pointers
versus Storing
Values
Other example
programs in this
tutorial have all
used containers to
store values. In
this example the
container will
maintain pointers
to values, not the
values them-
selves. Note that
a consequence of
this is that the
programmer is
then responsible
for managing the
memory for the
objects being
manipulated.

✍✍
Obtaining the
sample program
The complete
event simulation is
found in the file
icecream.cpp
on the distribution
disk.

Rogue Wave Standard C++ Library User's Guide and Tutorial priority_queue 103

There are three basic activities associated with the store. These are arrival,
ordering and eating, and leaving. This is reflected not only in the three
member functions defined in the simulation class, but in three separate
subclasses of event.

The member functions associated with the store simply record the activities
taking place, producing a log that can later be studied to evaluate the
simulation.

bool storeSimulation::canSeat (unsigned int numberOfPeople)
 // if sufficient room, then seat customers
{
 cout << "Time: " << time;
 cout << " group of " << numberOfPeople << " customers arrives";
 if (numberOfPeople < freeChairs) {
 cout << " is seated" << endl;
 freeChairs -= numberOfPeople;
 return true;
 }
 else {
 cout << " no room, they leave" << endl;
 return false;
 }
}

void storeSimulation::order (unsigned int numberOfScoops)
 // serve icecream, compute profits
{
 cout << "Time: " << time;
 cout << " serviced order for " << numberOfScoops << endl;
 profit += 0.35 * numberOfScoops;
}

void storeSimulation::leave (unsigned int numberOfPeople)
 // people leave, free up chairs
{
 cout << "Time: " << time;
 cout << " group of size " << numberOfPeople <<
 " leaves" << endl;
 freeChairs += numberOfPeople;
}

As we noted already, each activity is matched by a subclass of event. Each
subclass of event includes an integer data field, which represents the size of
a group of customers. The arrival event occurs when a group enters. When
executed, the arrival event creates and installs a new instance of order event.
The function randomInteger() (see Section 2.2.5) is used to compute a
random integer between 1 and the argument value.

class arriveEvent : public event {
public:
 arriveEvent (unsigned int time, unsigned int groupSize)
 : event(time), size(groupSize) { }
 virtual void processEvent ();
private:
 unsigned int size;
};

void arriveEvent::processEvent()

104 priority_queue Rogue Wave Standard C++ Library User's Guide and Tutorial

{ // see if everybody can be seated
 if (theSimulation.canSeat(size))
 theSimulation.scheduleEvent
 (new orderEvent(time + 1 + randomInteger(4), size));
}

An order event similarly spawns a leave event.

class orderEvent : public event {
public:
 orderEvent (unsigned int time, unsigned int groupSize)
 : event(time), size(groupSize) { }
 virtual void processEvent ();
private:
 unsigned int size;
};

void orderEvent::processEvent()
{ // each person orders some number of scoops
 for (int i = 0; i < size; i++)
 theSimulation.order(1 + rand(3));
 theSimulation.scheduleEvent
 (new leaveEvent(time + 1 + randomInteger(10), size));
};

Finally, leave events free up chairs, but do not spawn any new events.

class leaveEvent : public event {
public:
 leaveEvent (unsigned int time, unsigned int groupSize)
 : event(time), size(groupSize) { }
 virtual void processEvent ();
private:
 unsigned int size;
};

void leaveEvent::processEvent ()
{ // leave and free up chairs
 theSimulation.leave(size);
}

To run the simulation we simply create some number of initial events (say,
30 minutes worth), then invoke the run() member function.

void main() {
 // load queue with some number of initial events
 unsigned int t = 0;
 while (t < 30) {
 t += rand(6);
 theSimulation.scheduleEvent(
 new arriveEvent(t, 1 + randomInteger(4)));
 }

 // then run simulation and print profits
 theSimulation.run();
 cout << "Total profits " << theSimulation.profit << endl;
}

S e c t i o n 12.
String

12.1

The string Abstraction

12.2

String Operations

12.3

An Example Function – Split a Line into Words

106 String Rogue Wave Standard C++ Library User's Guide and Tutorial

12.1 The string Abstraction
A string is basically an indexable sequence of characters. In fact, although a
string is not declared as a subclass of vector, almost all of the vector
operators discussed in Section 5 can be applied to string values. However, a
string is also a much more abstract quantity, and, in addition to simple
vector operators, the string data type provides a number of useful and
powerful high level operations.

In the standard library, a string is actually a template class, named
basic_string. The template argument represents the type of character that
will be held by the string container. By defining strings in this fashion, the
standard library not only provides facilities for manipulating sequences of
normal 8-bit ASCII characters, but also for manipulating other types of
character-like sequences, such as 16-bit wide characters. The data types
string and wstring (for wide string) are simply typedefs of basic_string,
defined as follows:

 typedef basic_string<char,strint_char_traits<char> > string;
 typedef basic_string<wchar_t> wstring;

As we have already noted, a string is similar in many ways to a vector of
characters. Like the vector data type, there are two sizes associated with a
string. The first represents the number of characters currently being stored
in the string. The second is the capacity, the maximum number of characters
that can potentially be stored into a string without reallocation of a new
internal buffer. As it is in the vector data type, the capacity of a string is a
dynamic quantity. When string operations cause the number of characters
being stored in a string value to exceed the capacity of the string, a new
internal buffer is allocated and initialized with the string values, and the
capacity of the string is increased. All this occurs behind the scenes,
requiring no interaction with the programmer.

12.1.1 Include Files

Programs that use strings must include the string header file:

 # include <string>

12.2 String Operations
In the following sections, we'll examine the standard library operations used
to create and manipulate strings.

✍✍
Strings and Wide
Strings
In the remainder
of this section we
will refer to the
string data type,
however all the
operations we will
introduce are
equally
applicable to
wide strings.

Rogue Wave Standard C++ Library User's Guide and Tutorial String 107

12.2.1 Declaration and Initialization of string

The simplest form of declaration for a string simply names a new variable,
or names a variable along with the initial value for the string. This form was
used extensively in the example graph program given in Section 9.3.2. A
copy constructor also permits a string to be declared that takes its value from
a previously defined string.

 string s1;
 string s2 ("a string");
 string s3 = "initial value";
 string s4 (s3);

In these simple cases the capacity is initially exactly the same as the number
of characters being stored. Alternative constructors let you explicitly set the
initial capacity. Yet another form allows you to set the capacity and
initialize the string with repeated copies of a single character value.

 string s6 ("small value", 100);// holds 11 values, can hold 100
 string s7 (10, '\n'); // holds ten newline characters

Finally, like all the container classes in the standard library, a string can be
initialized using a pair of iterators. The sequence being denoted by the
iterators must have the appropriate type of elements.

 string s8 (aList.begin(), aList.end());

12.2.2 Resetting Size and Capacity

As with the vector data type, the current size of a string is yielded by the
size() member function, while the current capacity is returned by
capacity(). The latter can be changed by a call on the reserve() member
function, which (if necessary) adjusts the capacity so that the string can hold
at least as many elements as specified by the argument. The member
function max_size() returns the maximum string size that can be allocated.
Usually this value is limited only by the amount of available memory.

 cout << s6.size() << endl;
 cout << s6.capacity() << endl;
 s6.reserve(200); // change capacity to 200
 cout << s6.capacity() << endl;
 cout << s6.max_size() << endl;

The member function length() is simply a synonym for size(). The
member function resize() changes the size of a string, either truncating
characters from the end or inserting new characters. The optional second
argument for resize() can be used to specify the character inserted into the
newly created character positions.

 s7.resize(15, '\t'); // add tab characters at end
 cout << s7.length() << endl; // size should now be 15

✍✍
Initializing from
Iterators
Remember, the
ability to initialize
a container using
a pair of iterators
requires the ability
to declare a
template member
function using
template
arguments
independent of
those used to
declare the
container. At
present not all
compilers support
this feature.

108 String Rogue Wave Standard C++ Library User's Guide and Tutorial

The member function empty() returns true if the string contains no
characters, and is generally faster than testing the length against a zero
constant.

 if (s7.empty())
 cout << "string is empty" << endl;

12.2.3 Assignment, Append and Swap

A string variable can be assigned the value of either another string, a literal
C-style character array, or an individual character.

 s1 = s2;
 s2 = "a new value";
 s3 = 'x';

The operator += can also be used with any of these three forms of argument,
and specifies that the value on the right hand side should be appended to the
end of the current string value.

 s3 += "yz"; // s3 is now xyz

The more general assign() and append() member functions let you specify
a subset of the right hand side to be assigned to or appended to the receiver.
A single integer argument n indicates that only the first n characters should
be assigned/appended, while two arguments, pos and n, indicate that the n
values following position pos should be used.

 s4.assign (s2, 3); // assign first three characters
 s4.append (s5, 2, 3); // append characters 2, 3 and 4

The addition operator + is used to form the catenation of two strings. The +
operator creates a copy of the left argument, then appends the right
argument to this value.

 cout << (s2 + s3) << endl; // output catenation of s2 and s3

As with all the containers in the standard library, the contents of two strings
can be exchanged using the swap() member function.

 s5.swap (s4); // exchange s4 and s5

12.2.4 Character Access

An individual character from a string can be accessed or assigned using the
subscript operator. The member function at() is a synonym for this
operation.

 cout << s4[2] << endl; // output position 2 of s4
 s4[2] = 'x'; // change position 2
 cout << s4.at(2) << endl; // output updated value

The member function c_str() returns a pointer to a null terminated
character array, whose elements are the same as those contained in the

Rogue Wave Standard C++ Library User's Guide and Tutorial String 109

string. This lets you use strings with functions that require a pointer to a
conventional C-style character array. The resulting pointer is declared as
constant, which means that you cannot use c_str() to modify the string. In
addition, the value returned by c_str() might not be valid after any
operation that may cause reallocation (such as append() or insert()). The
member function data() returns a pointer to the underlying character
buffer.

 char d[256];
 strcpy(d, s4.c_str()); // copy s4 into array d

12.2.5 Iterators

The member functions begin() and end() return beginning and ending
random-access iterators for the string. The values denoted by the iterators
will be individual string elements. The functions rbegin() and rend()

return backwards iterators.

12.2.6 Insertion, Removal and Replacement

The string member functions insert() and remove() are similar to the
vector functions insert() and erase() . Like the vector versions, they can
take iterators as arguments, and specify the insertion or removal of the
ranges specified by the arguments. The function replace() is a
combination of remove and insert, in effect replacing the specified range
with new values.

 s2.insert(s2.begin()+2, aList.begin(), aList.end());
 s2.remove(s2.begin()+3, s2.begin()+5);
 s2.replace(s2.begin()+3, s2.begin()+6, s3.begin(), s3.end());

In addition, the functions also have non-iterator implementations. The
insert() member function takes as argument a position and a string, and
inserts the string into the given position. The remove function takes two
integer arguments, a position and a length, and removes the characters
specified. And the replace function takes two similar integer arguments as
well as a string and an optional length, and replaces the indicated range
with the string (or an initial portion of a string, if the length has been
explicitly specified).

 s3.insert (3, "abc"); //insert abc after position 3
 s3.remove (4, 2); // remove positions 4 and 5
 s3.replace (4, 2, "pqr"); //replace positions 4 and 5 with pqr

12.2.7 Copy and Substring

The member function copy() generates a substring of the receiver, then
assigns this substring to the target given as the first argument. The range of
values for the substring is specified either by an initial position, or a position
and a length.

✍✍
Invalidating
Iterators
Note that the
contents of an
iterator are not
guaranteed to be
valid after any
operation that
might force a
reallocation of the
internal string
buffer, such as an
append or an
insertion.

110 String Rogue Wave Standard C++ Library User's Guide and Tutorial

 s3.copy (s4, 2); // assign to s4 positions 2 to end of s3
 s5.copy (s4, 2, 3); // assign to s4 positions 2 to 4 of s5

The member function substr() returns a string that represents a portion of
the current string. The range is specified by either an initial position, or a
position and a length.

 cout << s4.substr(3) << endl; // output 3 to end
 cout << s4.substr(3, 2) << endl; // output positions 3 and 4

12.2.8 String Comparisons

The member function compare() is used to perform a lexical comparison
between the receiver and an argument string. Optional arguments permit
the specification of a different starting position or a starting position and
length of the argument string. See Section 13.6.5 for a description of lexical
ordering. The function returns a negative value if the receiver is
lexicographically smaller than the argument, a zero value if they are equal
and a positive value if the receiver is larger than the argument.

The relational and equality operators (<, <=, ==, !=, >= and >) are all
defined using the comparison member function. Comparisons can be made
either between two strings, or between strings and ordinary C-style
character literals.

12.2.9 Searching Operations

The member function find() determines the first occurrence of the
argument string in the current string. An optional integer argument lets you
specify the starting position for the search. (Remember that string index
positions begin at zero.) If the function can locate such a match, it returns the
starting index of the match in the current string. Otherwise, it returns a
value out of the range of the set of legal subscripts for the string. The
function rfind() is similar, but scans the string from the end, moving
backwards.

 s1 = "mississippi";
 cout << s1.find("ss") << endl; // returns 2
 cout << s1.find("ss", 3) << endl; // returns 5
 cout << s1.rfind("ss") << endl; // returns 5
 cout << s1.rfind("ss", 4) << endl; // returns 2

The functions find_first_of(), find_last_of(), find_first_not_of(),

and find_last_not_of() treat the argument string as a set of characters. As
with many of the other functions, one or two optional integer arguments can
be used to specify a subset of the current string. These functions find the
first (or last) character that is either present (or absent) from the argument
set. The position of the given character, if located, is returned. If no such
character exists then a value out of the range of any legal subscript is
returned.

 i = s2.find_first_of ("aeiou"); // find first vowel
 j = s2.find_first_not_of ("aeiou", i); // next non-vowel

✍✍
Comparing Strings
Although the
function is
accessible, users
will seldom invoke
the member
function
compare()
directly. Instead,
comparisons of
strings are usually
performed using
the conventional
comparison
operators, which
in turn make use
of the function
compare() .

Rogue Wave Standard C++ Library User's Guide and Tutorial String 111

12.3 An Example Function −− Split a Line into Words
In this section we will illustrate the use of some of the string functions by
defining a function to split a line of text into individual words. We have
already made use of this function in the concordance example program in
Section 9.3.3.

There are three arguments to the function. The first two are strings,
describing the line of text and the separators to be used to differentiate
words, respectively. The third argument is a list of strings, used to return
the individual words in the line.

void split
 (string & text, string & separators, list<string> & words)
{
 int n = text.length();
 int start, stop;

 start = text.find_first_not_of(separators);
 while ((start >= 0) && (start < n)) {
 stop = text.find_first_of(separators, start);
 if ((stop < 0) || (stop > n)) stop = n;
 words.push_back(text.substr(start, stop - start));
 start = text.find_first_not_of(separators, stop+1);
 }
}

The program begins by finding the first character that is not a separator. The
loop then looks for the next following character that is a separator, or uses
the end of the string if no such value is found. The difference between these
two is then a word, and is copied out of the text using a substring operation
and inserted into the list of words. A search is then made to discover the
start of the next word, and the loop continues. When the index value
exceeds the limits of the string, execution stops.

✍✍
Obtaining the
Sample Program
The split function
can be found in
the concordance
program in file
concord.cpp .

S e c t i o n 13.
Generic Algorithms

13.1

Overview

13.2

Initialization Algorithms

13.3

Searching Operations

13.4

In-Place Transformations

13.5

Removal Algorithms

13.6

Scalar-Producing Algorithms

13.7

Sequence-Generating Algorithms

13.8

Miscellaneous Algorithms

114 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

13.1 Overview
In this section and in section 14 we will examine and illustrate each of the
generic algorithms provided by the standard library. The names and a short
description of each of the algorithms in this section are given in the
following table. We have divided the algorithms into several categories,
based on how they are typically used. This division differs from the
categories used in the C++ standard definition, which is based upon which
algorithms modify their arguments and which do not.

Name Purpose
algorithms used to initialize a sequence – Section 13.2

fill fill a sequence with an initial value
fill_n fill n positions with an initial value
copy copy sequence into another sequence
copy_backward copy sequence into another sequence
generate initialize a sequence using a generator
generate_n initialize n positions using a generator
swap_ranges swap values from two parallel sequences

searching algorithms – Section 13.3

find find an element matching the argument
find_if find an element satisfying a condition
adjacent_find find consecutive duplicate elements
search match a subsequence within a sequence
max_element find the maximum value in a sequence
min_element find the minimum value in a sequence
mismatch find first mismatch in parallel sequences

in-place transformations – Section 13.4

reverse reverse the elements in a sequence
replace replace specific values with new value
replace_if replace elements matching predicate
rotate rotate elements in a sequence around a point
partition partition elements into two groups
stable_partition partition preserving original ordering
next_permutation generate permutations in sequence
prev_permutation generate permutations in reverse sequence

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 115

Name Purpose
inplace_merge merge two adjacent sequences into one
random_shuffle randomly rearrange elements in a sequence

removal algorithms – Section 13.5
remove remove elements that match condition
unique remove all but first of duplicate values in

sequences
scalar generating algorithms – Section 13.6

count count number of elements matching value
count_if count elements matching predicate
accumulate reduce sequence to a scalar value
inner_product inner product of two parallel sequences
equal check two sequences for equality
lexicographical_compare compare two sequences

sequence generating algorithms – Section 13.7

transform transform each element
partial_sum generate sequence of partial sums
adjacent_difference generate sequence of adjacent differences

miscellaneous operations – Section 13.8

for_each apply a function to each element of collection

In this section we will illustrate the use of each algorithm with a series of
short examples. Many of the algorithms are also used in the sample
programs provided in the sections on the various container classes. These
cross references have been noted where appropriate.

All of the short example programs described in this section have been
collected in a number of files, named alg1.cpp through alg6.cpp . In the
files, the example programs have been augmented with output statements
describing the test programs and illustrating the results of executing the
algorithms. In order to not confuse the reader with unnecessary detail, we
have generally omitted these output statements from the descriptions here.
If you wish to see the text programs complete with output statements, you
can compile and execute these test files. The expected output from these
programs is also included in the distribution.

13.1.1 Include Files

To use any of the generic algorithms you must first include the appropriate
header file. The majority of the functions are defined in the header file

116 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

algorithm . The functions accumulate() , inner_product() , partial_sum() ,
and adjacent_difference() are defined in the header file numeric .

 # include <algorithm>
 # include <numeric>

13.2 Initialization Algorithms
The first set of algorithms we will cover are those that are chiefly, although
not exclusively, used to initialize a newly created sequence with certain
values. The standard library provides several initialization algorithms. In
our discussion we'll provide examples of how to apply these algorithms, and
suggest how to choose one algorithm over another.

13.2.1 Fill a Sequence with An Initial Value

The fill() and fill_n() algorithms are used to initialize or reinitialize a
sequence with a fixed value. Their declarations are as follows:

void fill (ForwardIterator first, ForwardIterator last, const T&);
void fill_n (OutputIterator, Size, const T&);

The example program illustrates several uses of the algorithm:

void fill_example ()
 // illustrate the use of the fill algorithm
{
 // example 1, fill an array with initial values
 char buffer[100], * bufferp = buffer;
 fill (bufferp, bufferp + 100, '\0');
 fill_n (bufferp, 10, 'x');

 // example 2, use fill to initialize a list
 list<string> aList(5, "nothing");
 fill_n (inserter(aList, aList.begin()), 10, "empty");

 // example 3, use fill to overwrite values in list
 fill (aList.begin(), aList.end(), "full");

 // example 4, fill in a portion of a collection
 vector<int> iVec(10);
 generate (iVec.begin(), iVec.end(), iotaGen(1));
 vector<int>::iterator & seven =
 find(iVec.begin(), iVec.end(), 7);
 fill (iVec.begin(), seven, 0);
}

In example 1, an array of character values is declared. The fill() algorithm
is invoked to initialize each location in this array with a null character value.
The first 10 positions are then replaced with the character 'x' by using the
algorithm fill_n() . Note that the fill() algorithm requires both starting
and past-end iterators as arguments, whereas the fill_n() algorithm uses a
starting iterator and a count.

Example 2 illustrates how, by using an insert iterator (see Section 2.4), the
fill_n() algorithm can be used to initialize a variable length container, such

✍✍
Obtaining the
source
The sample
programs
described in this
section can be
found in the file
alg1.cpp .

✍✍
Different
Initialization
Algorithms
The initialization
algorithms all
overwrite every
element in a
container. The
difference
between the
algorithms is the
source for the
values used in
initialization. The
fill() algorithm
repeats a single
value, the copy()
algorithm reads
values from a
second container,
and the
generate()
algorithm invokes
a function for
each new value.

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 117

as a list. In this case the list initially contains five elements, all holding the
text "nothing". The call on fill_n() then inserts ten instances of the string
"empty". The resulting list contains fifteen elements.

The third and fourth examples illustrate how fill() can be used to change
the values in an existing container. In the third example each of the fifteen
elements in the list created in example 2 is replaced by the string "full".

Example 4 overwrites only a portion of a list. Using the algorithm
generate() and the function object iotaGen, which we will describe in the
next section, a vector is initialized to the values 1 2 3 ... 10. The find()

algorithm (Section 13.3.1) is then used to locate the position of the element 7,
saving the location in an iterator appropriate for the vector data type. The
fill() call then replaces all values up to, but not including, the 7 entry with
the value 0. The resulting vector has six zero fields, followed by the values
7, 8, 9 and 10.

The fill() and fill_n() algorithm can be used with all the container
classes contained in the standard library, although insert iterators must be
used with ordered containers, such as a set.

13.2.2 Copy One Sequence Into Another Sequence

The algorithms copy() and copy_backward() are versatile functions that can
be used for a number of different purposes, and are probably the most
commonly executed algorithms in the standard library. The declarations for
these algorithms are as follows:

OutputIterator copy (InputIterator first, InputIterator last,
 OutputIterator result);

BidirectionalIterator copy_backward
 (BidirectionalIterator first, BidirectionalIterator last,
 BidirectionalIterator result);

Uses of the copy algorithm include:

• Duplicating an entire sequence by copying into a new sequence

• Creating subsequences of an existing sequence

• Adding elements into a sequence

• Copying a sequence from input or to output

• Converting a sequence from one form into another

These are illustrated in the following sample program.

void copy_example()
 // illustrate the use of the copy algorithm
{
 char * source = "reprise";
 char * surpass = "surpass";
 char buffer[120], * bufferp = buffer;

✍✍
Appending
Several Copies
The result returned
by the copy()
function is a
pointer to the end
of the copied
sequence. To
make a
catenation of
values, the result
of one copy()
operation can be
used as a starting
iterator in a
subsequent
copy().

118 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

 // example 1, a simple copy
 copy (source, source + strlen(source) + 1, bufferp);

 // example 2, self copies
 copy (bufferp + 2, bufferp + strlen(buffer) + 1, bufferp);
 int buflen = strlen(buffer) + 1;
 copy_backward (bufferp, bufferp + buflen, bufferp + buflen + 3);
 copy (surpass, surpass + 3, bufferp);

 // example 3, copy to output
 copy (bufferp, bufferp + strlen(buffer),
 ostream_iterator<char>(cout));
 cout << endl;

 // example 4, use copy to convert type
 list<char> char_list;
 copy (bufferp, bufferp + strlen(buffer),
 inserter(char_list, char_list.end()));
 char * big = "big ";
 copy (big, big + 4, inserter(char_list, char_list.begin()));

 char buffer2 [120], * buffer2p = buffer2;
 * copy (char_list.begin(), char_list.end(), buffer2p) = '\0';
 cout << buffer2 << endl;
}

The first call on copy(), in example 1, simply copies the string pointed to by
the variable source into a buffer, resulting in the buffer containing the text
"reprise". Note that the ending position for the copy is one past the
terminating null character, thus ensuring the null character is included in the
copy operation.

The copy() operation is specifically designed to permit self-copies, i.e.,
copies of a sequence onto itself, as long as the destination iterator does not
fall within the range formed by the source iterators. This is illustrated by
example 2. Here the copy begins at position 2 of the buffer and extends to
the end, copying characters into the beginning of the buffer. This results in
the buffer holding the value "prise".

The second half of example 2 illustrates the use of the copy_backward()

algorithm. This function performs the same task as the copy() algorithm,
but moves elements from the end of the sequence first, progressing to the
front of the sequence. (If you think of the argument as a string, characters
are moved starting from the right and progressing to the left.) In this case
the result will be that buffer will be assigned the value "priprise". The
first three characters are then modified by another copy() operation to the
values "sur", resulting in buffer holding the value "surprise".

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 119

Example 3 illustrates copy() being used to move values to an output stream.
(See Section 2.3.2). The target in this case is an ostream_iterator generated
for the output stream cout . A similar mechanism can be used for input
values. For example, a simple mechanism to copy every word in the input
stream into a list is the following call on copy():

list<string> words;
istream_iterator<string, ptrdiff_t> in_stream(cin), eof;

copy(in_stream, eof, inserter(words, words.begin()));

This technique is used in the spell checking program described in Section
8.3.

Copy can also be used to convert from one type of stream to another. For
example, the call in example 4 of the sample program copies the characters
held in the buffer one by one into a list of characters. The call on inserter()

creates an insert iterator, used to insert values into the list. The first call on
copy() places the string surprise , created in example 2, into the list. The
second call on copy() inserts the values from the string “big “ onto the front
of the list, resulting in the list containing the characters big surprise . The
final call on copy() illustrates the reverse process, copying characters from a
list back into a character buffer.

13.2.3 Initialize a Sequence with Generated Values

A generator is a function that will return a series of values on successive
invocations. Probably the generator you are most familiar with is a random
number generator. However, generators can be constructed for a variety of
different purposes, including initializing sequences.

Like fill() and fill_n(), the algorithms generate() and generate_n() are
used to initialize or reinitialize a sequence. However, instead of a fixed
argument, these algorithms draw their values from a generator. The
declarations of these algorithms are as follows:

void generate (ForwardIterator, ForwardIterator, Generator);
void generate_n (OutputIterator, Size, Generator);

Our example program shows several uses of the generate algorithm to
initialize a sequence.

string generateLabel () {
 // generate a unique label string of the form L_ddd
 static int lastLabel = 0;
 char labelBuffer[80];
 ostrstream ost(labelBuffer, 80);
 ost << "L_" << lastLabel++ << '\0';
 return string(labelBuffer);
}

void generate_example ()
 // illustrate the use of the generate and generate_n algorithms
{
 // example 1, generate a list of label values

✍✍
copy_backwards
In the
copy_backwards
algorithm, note
that it is the order
of transfer, and
not the elements
themselves that is
“backwards”; the
relative
placement of
moved values in
the target is the
same as in the
source.

120 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

 list<string> labelList;
 generate_n (inserter(labelList, labelList.begin()),
 4, generateLabel);

 // example 2, generate an arithmetic progression
 vector<int> iVec(10);
 generate (iVec.begin(), iVec.end(), iotaGen(2));
 generate_n (iVec.begin(), 5, iotaGen(7));
 }

A generator can be constructed as a simple function that “remembers”
information about its previous history in one or more static variables. An
example is shown in the beginning of the example program, where the
function generateLabel() is described. This function creates a sequence of
unique string labels, such as might be needed by a compiler. Each
invocation on the function generateLabel() results in a new string of the
form L_ddd , each with a unique digit value. Because the variable named
lastLabel is declared as static , its value is remembered from one
invocation to the next. The first example of the sample program illustrates
how this function might be used in combination with the generate_n()

algorithm to initialize a list of four label values.

As we described in Section 3, in the Standard Library a function is any object
that will respond to the function call operator. Using this fact, classes can
easily be constructed as functions. The class iotaGen, which we described
in Section 3.3, is an example. The iotaGen function object creates a
generator for an integer arithmetic sequence. In the second example in the
sample program, this sequence is used to initialize a vector with the integer
values 2 through 11. A call on generate_n() is then used to overwrite the
first 5 positions of the vector with the values 7 through 11, resulting in the
vector 7 8 9 10 11 7 8 9 10 11.

13.2.4 Swap Values from Two Parallel Ranges

The template function swap() can be used to exchange the values of two
objects of the same type. It has the following definition:

template <class T> void swap (T& a, T& b)
{
 T temp(a);
 a = b;
 b = temp;
}

The function is generalized to iterators in the function named iter_swap() .
The algorithm swap_ranges() then extends this to entire sequences. The
values denoted by the first sequence are exchanged with the values denoted
by a second, parallel sequence. The description of the swap_ranges()

algorithm is as follows:

ForwardIterator swap_ranges
 (ForwardIterator first, ForwardIterator last,
 ForwardIterator first2);

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 121

The second range is described only by a starting iterator. It is assumed (but
not verified) that the second range has at least as many elements as the first
range. We use both functions alone and in combination in the example
program.

void swap_example ()
 // illustrate the use of the algorithm swap_ranges
{
 // first make two parallel sequences
 int data[] = {12, 27, 14, 64}, *datap = data;
 vector<int> aVec(4);
 generate(aVec.begin(), aVec.end(), iotaGen(1));

 // illustrate swap and iter_swap
 swap(data[0], data[2]);
 vector<int>::iterator last = aVec.end(); last--;
 iter_swap(aVec.begin(), last);

 // now swap the entire sequence
 swap_ranges (aVec.begin(), aVec.end(), datap);
}

13.3 Searching Operations
The next category of algorithms we will describe are those that are used to
locate elements within a sequence that satisfy certain properties. Most
commonly the result of a search is then used as an argument to a further
operation, such as a copy (Section 13.4.4), a partition (Section 13.2.2) or an
in-place merge (Section 13.4.6.)

The searching routines described in this section return an iterator that
identifies the first element that satisfies the search condition. It is common to
store this value in an iterator variable, as follows:

 list<int>::iterator where;
 where = find(aList.begin(), aList.end(), 7);

If you want to locate all the elements that satisfy the search conditions you
must write a loop. In that loop, the value yielded by a previous search is
first advanced (since otherwise the value yielded by the previous search
would once again be returned), and the resulting value is used as a starting
point for the new search. For example, the following loop from the
adjacent_find() example program (Section 13.3.2) will print the value of all
repeated characters in a string argument.

✍✍
Parallel
Sequences
A number of
algorithms
operate on two
parallel
sequences. In
most cases the
second sequence
is identified using
only a starting
iterator, not a
starting and
ending iterator
pair. It is
assumed, but
never verified,
that the second
sequence is at
least as large as
the first. Errors will
occur if this
condition is not
satisfied.

✍✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg2.cpp .

122 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

 while ((where = adjacent_find(where, stop)) != stop) {
 cout << "double " << *where << " in position "
 << where - start << endl;
 ++where;
 }

Many of the searching algorithms have an optional argument that can
specify a function to be used to compare elements, in place of the equality
operator for the container element type (operator ==). In the descriptions of
the algorithms we write these optional arguments inside a square bracket, to
indicate they need not be specified if the standard equality operator is
acceptable.

13.3.1 Find an Element Satisfying a Condition

There are two algorithms, find() and find_if(), that are used to find the
first element that satisfies a condition. The declarations of these two
algorithms are as follows:

InputIterator find_if (InputIterator first, InputIterator last,
 Predicate);

InputIterator find (InputIterator first, InputIterator last,
 const T&);

The algorithm find_if() takes as argument a predicate function, which can
be any function that returns a boolean value (see Section 3.2). The find_if()

algorithm returns a new iterator that designates the first element in the
sequence that satisfies the predicate. The second argument, the past-the-end
iterator, is returned if no element is found that matches the requirement.
Because the resulting value is an iterator, the dereference operator (the *
operator) must be used to obtain the matching value. This is illustrated in
the example program.

The second form of the algorithm, find(), replaces the predicate function
with a specific value, and returns the first element in the sequence that tests
equal to this value, using the appropriate equality operator (the == operator)
for the given data type.

✍✍
Check Search
Results
The searching
algorithms in the
standard library all
return the end-of-
sequence iterator
if no value is
found that
matches the
search condition.
As it is generally
illegal to
dereference the
end-of-sequence
value, it is
important to
check for this
condition before
proceeding to use
the result of a
search.

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 123

The following example program illustrates the use of these algorithms:

void find_test ()
 // illustrate the use of the find algorithm
{
 int vintageYears[] = {1967, 1972, 1974, 1980, 1995};
 int * start = vintageYears;
 int * stop = start + 5;
 int * where = find_if (start, stop, isLeapYear);

 if (where != stop)
 cout << "first vintage leap year is " << *where << endl;
 else
 cout << "no vintage leap years" << endl;

 where = find(start, stop, 1995);

 if (where != stop)
 cout << "1995 is position " << where - start
 << " in sequence" << endl;
 else
 cout "1995 does not occur in sequence" << endl;
}

13.3.2 Find Consecutive Duplicate Elements

The adjacent_find() algorithm is used to discover the first element in a
sequence equal to the next immediately following element. For example, if a
sequence contained the values 1 4 2 5 6 6 7 5, the algorithm would return an
iterator corresponding to the first 6 value. If no value satisfying the
condition is found, then the end-of-sequence iterator is returned. The
declaration of the algorithm is as follows:

ForwardIterator adjacent_find (ForwardIterator first,
 ForwardIterator last [, BinaryPredicate]);

The first two arguments specify the sequence to be examined. The optional
third argument must be a binary predicate (a binary function returning a
boolean value). If present, the binary function is used to test adjacent
elements, otherwise the equality operator (operator ==) is used.

The example program searches a text string for adjacent letters. In the
example text these are found in positions 5, 7, 9, 21 and 37. The increment is
necessary inside the loop in order to avoid the same position being
discovered repeatedly.

void adjacent_find_example ()
 // illustrate the use of the adjacent_find instruction
{
 char * text = "The bookkeeper carefully opened the door.";

 char * start = text;
 char * stop = text + strlen(text);
 char * where = start;

 cout << "In the text: " << text << endl;
 while ((where = adjacent_find(where, stop)) != stop) {
 cout << "double " << *where
 << " in position " << where - start << endl;
 ++where;
 }
}

✍✍
Searching Sets
and Maps
These algorithms
perform a linear
sequential search
through the
associated
structures. The set
and map data
structures, which
are ordered,
provide their own
find() member
functions, which
are more efficient.
Because of this,
the generic
find() algorithm
should not be
used with set and
map.

124 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

13.3.3 Find a Subsequence within a Sequence

The algorithm search() is used to locate the beginning of a particular
subsequence within a larger sequence. The easiest example to understand is
the problem of looking for a particular substring within a larger string,
although the algorithm can be generalized to other uses. The arguments are
assumed to have at least the capabilities of forward iterators.

ForwardIterator search
 (ForwardIterator first1, ForwardIterator last1,
 ForwardIterator first2, ForwardIterator last2
 [, BinaryPredicate]);

Suppose, for example, that we wish to discover the location of the string
"ration" in the string "dreams and aspirations". The solution to this
problem is shown in the example program. If no appropriate match is
found, the value returned is the past-the-end iterator for the first sequence.

void search_example ()
 // illustrate the use of the search algorithm
{
 char * base = "dreams and aspirations";
 char * text = "ration";

 char * where = search(base, base + strlen(base),
 text, text + strlen(text));

 if (*where != '\0')
 cout << "substring position: " << where - base << endl;
 else
 cout << "substring does not occur in text" << endl;
}

Note that this algorithm, unlike many that manipulate two sequences, uses a
starting and ending iterator pair for both sequences, not just the first
sequence.

Like the algorithms equal() and mismatch(), an alternative version of
search() takes an optional binary predicate that is used to compare
elements from the two sequences.

13.3.4 Locate Maximum or Minimum Element

The functions max() and min() can be used to find the maximum and
minimum of a pair of values. These can optionally take a third argument
that defines the comparison function to use in place of the less-than operator
(operator <). The arguments are values, not iterators:

template <class T>
 const T& max(const T& a, const T& b [, Compare]);
template <class T>
 const T& min(const T& a, const T& b [, Compare]);

✍✍
Speed of Search
In the worst case,
the number of
comparisons
performed by the
algorithm
search() is the
product of the
number of
elements in the
two sequences.
Except in rare
cases, however,
this worst case
behavior is highly
unlikely.

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 125

The maximum and minimum functions are generalized to entire sequences
by the generic algorithms max_element() and min_element(). For these
functions the arguments are input iterators.

ForwardIterator max_element (ForwardIterator first,
 ForwardIterator last [, Compare]);
ForwardIterator min_element (ForwardIterator first,
 ForwardIterator last [, Compare]);

These algorithms return an iterator that denotes the largest or smallest of the
values in a sequence, respectively. Should more than one value satisfy the
requirement, the result yielded is the first satisfactory value. Both
algorithms can optionally take a third argument, which is the function to be
used as the comparison operator in place of the default operator.

The example program illustrates several uses of these algorithms. The
function named split() used to divide a string into words in the string
example is described in Section 12.3. The function randomInteger() is
described in Section 2.2.5.

void max_min_example ()
 // illustrate use of max_element and min_element algorithms
{
 // make a vector of random numbers between 0 and 99
 vector<int> numbers(25);
 for (int i = 0; i < 25; i++)
 numbers[i] = randomInteger(100);

 // print the maximum
 vector<int>::iterator max =
 max_element(numbers.begin(), numbers.end());
 cout << "largest value was " << * max << endl;

 // example using strings
 string text =
 "It was the best of times, it was the worst of times.";
 list<string> words;
 split (text, " .,!:;", words);
 cout << "The smallest word is "
 << * min_element(words.begin(), words.end())
 << " and the largest word is "
 << * max_element(words.begin(), words.end())
 << endl;
}

13.3.5 Locate the First Mismatched Elements in Parallel
Sequences

The name mismatch() might lead you to think this algorithm was the
inverse of the equal() algorithm, which determines if two sequences are
equal (see Section 13.6.4). Instead, the mismatch() algorithm returns a pair
of iterators that together indicate the first positions where two parallel
sequences have differing elements. (The structure pair is described in
Section 9.1). The second sequence is denoted only by a starting position,
without an ending position. It is assumed (but not checked) that the second

✍✍
Largest and
Smallest Elements
of a Set
The maximum and
minimum
algorithms can be
used with all the
data types
provided by the
standard library.
However, for the
ordered data
types, set and
map, the
maximum or
minimum values
are more easily
accessed as the
first or last
elements in the
structure.

126 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

sequence contains at least as many elements as the first. The arguments and
return type for mismatch() can be described as follows:

pair<InputIterator, InputIterator> mismatch
 (InputIterator first1, InputIterator last1,
 InputIterator first2 [, BinaryPredicate]);

The elements of the two sequences are examined in parallel, element by
element. When a mismatch is found, that is, a point where the two
sequences differ, then a pair containing iterators denoting the locations of
the two differing elements is constructed and returned. If the first sequence
becomes exhausted before discovering any mismatched elements, then the
resulting pair contains the ending value for the first sequence, and the last
value examined in the second sequence. (The second sequence need not yet
be exhausted).

The example program illustrates the use of this procedure. The function
mismatch_test() takes as arguments two string values. These are
lexicographically compared and a message printed indicating their relative
ordering. (This is similar to the analysis performed by the
lexicographic_compare() algorithm, although that function simply returns
a boolean value.) Because the mismatch() algorithm assumes the second
sequence is at least as long as the first, a comparison of the two string
lengths is performed first, and the arguments are reversed if the second
string is shorter than the first. After the call on mismatch() the elements of
the resulting pair are separated into their component parts. These parts are
then tested to determine the appropriate ordering.

 void mismatch_test (char * a, char * b)
 // illustrate the use of the mismatch algorithm
 {
 pair<char *, char *> differPositions(0, 0);
 char * aDiffPosition;
 char * bDiffPosition;

 if (strlen(a) < strlen(b)) {
 // make sure longer string is second
 differPositions = mismatch(a, a + strlen(a), b);
 aDiffPosition = differPositions.first;
 bDiffPosition = differPositions.second;
 }
 else {
 differPositions = mismatch(b, b + strlen(b), a);
 // note following reverse ordering
 aDiffPosition = differPositions.second;
 bDiffPosition = differPositions.first;
 }

 // compare resulting values
 cout << "string " << a;
 if (*aDiffPosition == *bDiffPosition)
 cout << " is equal to ";
 else if (*aDiffPosition < *bDiffPosition)
 cout << " is less than ";
 else
 cout << " is greater than ";
 cout << b << endl;
 }

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 127

A second form of the mismatch() algorithm is similar to the one illustrated,
except it accepts a binary predicate as a fourth argument. This binary
function is used to compare elements, in place of the == operator.

13.4 In-Place Transformations
The next category of algorithms in the standard library that we examine are
those used to modify and transform sequences without moving them from
their original storage locations. A few of these routines, such as replace(),

include a copy version as well as the original in-place transformation
algorithms. For the others, should it be necessary to preserve the original, a
copy of the sequence should be created before the transformations are
applied. For example, the following illustrates how one can place the
reversal of one vector into another newly allocated vector.

 vector<int> newVec(aVec.size());
 copy (aVec.begin(), aVec.end(), newVec.begin()); // first copy
 reverse (newVec.begin(), newVec.end()); // then reverse

Many of the algorithms described as sequence generating operations, such
as transform() (Section 13.7.1), or partial_sum() (Section 13.7.2), can also
be used to modify a value in place by simply using the same iterator as both
input and output specification.

13.4.1 Reverse Elements in a Sequence

The algorithm reverse() reverses the elements in a sequence, so that the last
element becomes the new first, and the first element the new last. The
arguments are assumed to be bidirectional iterators, and no value is
returned.

 void reverse (BidirectionalIterator first,
 BidirectionalIterator last);

The example program illustrates two uses of this algorithm. In the first, an
array of characters values is reversed. The algorithm reverse() can also be
used with list values, as shown in the second example. In this example, a list
is initialized with the values 2 to 11 in increasing order. (This is
accomplished using the iotaGen function object introduced in Section 3.3).
The list is then reversed, which results in the list holding the values 11 to 2 in
decreasing order. Note, however, that the list data structure also provides
its own reverse() member function.

void reverse_example ()
 // illustrate the use of the reverse algorithm
{
 // example 1, reversing a string
char * text = "Rats live on no evil star";
reverse (text, text + strlen(text));
cout << text << endl;

✍✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg3.cpp .

128 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

 // example 2, reversing a list
list<int> iList;
generate_n (inserter(iList, iList.begin()), 10, iotaGen(2));
reverse (iList.begin(), iList.end());
}

13.4.2 Replace Certain Elements With Fixed Value

The algorithms replace() and replace_if() are used to replace occurrences
of certain elements with a new value. In both cases the new value is the
same, no matter how many replacements are performed. Using the
algorithm replace(), all occurrences of a particular test value are replaced
with the new value. In the case of replace_if(), all elements that satisfy a
predicate function are replaced by a new value. The iterator arguments
must be forward iterators.

The algorithms replace_copy() and replace_copy_if() are similar to
replace() and replace_if() , however they leave the original sequence
intact and place the revised values into a new sequence, which may be a
different type.

void replace (ForwardIterator first, ForwardIterator last,
 const T&, const T&);

void replace_if (ForwardIterator first, ForwardIterator last,
 Predicate, const T&);

OutputIterator replace_copy (InputIterator, InputIterator,
 OutputIterator, const T&, const T&);

OutputIterator replace_copy (InputIterator, InputIterator,
 OutputIterator, Predicate, const T&);

In the example program, a vector is initially assigned the values 0 1 2 3 4 5 4
3 2 1 0. A call on replace() replaces the value 3 with the value 7, resulting
in the vector 0 1 2 7 4 5 4 7 2 1 0. The invocation of replace_if() replaces all
even numbers with the value 9, resulting in the vector 9 1 9 7 9 5 9 7 9 1 9.

void replace_example ()
 // illustrate the use of the replace algorithm
{
 // make vector 0 1 2 3 4 5 4 3 2 1 0
 vector<int> numbers(11);
 for (int i = 0; i < 11; i++)
 numbers[i] = i < 5 ? i : 10 - i;

 // replace 3 by 7
 replace (numbers.begin(), numbers.end(), 3, 7);

 // replace even numbers by 9
 replace_if (numbers.begin(), numbers.end(), isEven, 9);

 // illustrate copy versions of replace
 int aList[] = {2, 1, 4, 3, 2, 5};
 int bList[6], cList[6], j;
 replace_copy (aList, aList+6, &bList[0], 2, 7);
 replace_copy_if (bList, bList+6, &cList[0],
 bind2nd(greater<int>(), 3), 8);
}

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 129

The example program also illustrates the use of the replace_copy

algorithms. First, an array containing the values 2 1 4 3 2 5 is created. This is
modified by replacing the 2 values with 7, resulting in the array 7 1 4 3 7 5.
Next, all values larger than 3 are replaced with the value 8, resulting in the
array values 8 1 8 3 8 8. In the latter case the bind2nd() adaptor is used, to
modify the binary greater-than function by binding the 2nd argument to the
constant value 3, thereby creating the unary function x > 3 .

13.4.3 Rotate Elements Around a Midpoint

A rotation of a sequence divides the sequence into two sections, then swaps
the order of the sections, maintaining the relative ordering of the elements
within the two sections. Suppose, for example, that we have the values 1 to
10 in sequence.

1 2 3 4 5 6 7 8 9 10

If we were to rotate around the element 7, the values 7 to 10 would be
moved to the beginning, while the elements 1 to 6 would be moved to the
end. This would result in the following sequence.

7 8 9 10 1 2 3 4 5 6

When you invoke the algorithm rotate() , the starting point, midpoint, and
past-the-end location are all denoted by forward iterators:

void rotate (ForwardIterator first, ForwardIterator middle,
 ForwardIterator last);

The prefix portion, the set of elements following the start and not including
the midpoint, is swapped with the suffix, the set of elements between the
midpoint and the past-the-end location. Note, as in the illustration
presented earlier, that these two segments need not be the same length.

void rotate_example()
 // illustrate the use of the rotate algorithm
{
 // create the list 1 2 3 ... 10
 list<int> iList;
 generate_n(inserter(iList, iList.begin()), 10, iotaGen(1));

 // find the location of the seven
 list<int>::iterator & middle =
 find(iList.begin(), iList.end(), 7);

 // now rotate around that location
 rotate (iList.begin(), middle, iList.end());

 // rotate again around the same location
 list<int> cList;
 rotate_copy (iList.begin(), middle, iList.end(),
 inserter(cList, cList.begin()));
}

130 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

The example program first creates a list of the integers in order from 1 to 10.
Next, the find() algorithm (Section 13.3.1) is used to find the location of the
element 7. This is used as the midpoint for the rotation.

A second form of rotate() copies the elements into a new sequence, rather
than rotating the values in place. This is also shown in the example
program, which once again rotates around the middle position (now
containing a 3). The resulting list is 3 4 5 6 7 8 9 10 1 2. The values held in
iList remain unchanged.

13.4.4 Partition a Sequence into Two Groups

A partition is formed by moving all the elements that satisfy a predicate to
one end of a sequence, and all the elements that fail to satisfy the predicate
to the other end. Partitioning elements is a fundamental step in certain
sorting algorithms, such as “quicksort.”

BidirectionalIterator partition
 (BidirectionalIterator, BidirectionalIterator, Predicate);

BidirectionalIterator stable_partition
 (BidirectionalIterator, BidirectionalIterator, Predicate);

There are two forms of partition supported in the standard library. The first,
provided by the algorithm partition(), guarantees only that the elements
will be divided into two groups. The result value is an iterator that
describes the final midpoint between the two groups; it is one past the end of
the first group.

In the example program the initial vector contains the values 1 to 10 in order.
The partition moves the even elements to the front, and the odd elements to
the end. This results in the vector holding the values 10 2 8 4 6 5 7 3 9 1, and
the midpoint iterator pointing to the element 5.

void partition_example ()
 // illustrate the use of the partition algorithm
{
 // first make the vector 1 2 3 ... 10
 vector<int> numbers(10);
 generate(numbers.begin(), numbers.end(), iotaGen(1));

 // now put the even values low, odd high
 vector<int>::iterator result =
 partition(numbers.begin(), numbers.end(), isEven);
 cout << "middle location " << result - numbers.begin() << endl;

 // now do a stable partition
 generate (numbers.begin(), numbers.end(), iotaGen(1));
 stable_partition (numbers.begin(), numbers.end(), isEven);
}

The relative order of the elements within a partition in the resulting vector
may not be the same as the values in the original vector. For example, the
value 4 preceded the element 8 in the original, yet in the result it may follow
the element 8. A second version of partition, named stable_partition(),

✍✍
Partitions
While there is a
unique stable_
partition() for
any sequence,
the partition()
algorithm can
return any number
of values. The
following, for
example, are all
legal partitions of
the example
problem.

2 4 6 8 10 1 3 5 7 9

10 8 6 4 2 5 7 9 3 1

2 6 4 8 10 3 5 7 9 1

6 4 2 10 8 5 3 7 9 1.

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 131

guarantees the ordering of the resulting values. For the sample input shown
in the example, the stable partition would result in the sequence 2 4 6 8 10 1
3 5 7 9. The stable_partition() algorithm is slightly slower and uses more
memory than the partition() algorithm, so when the order of elements is
not important you should use partition().

13.4.5 Generate Permutations in Sequence

A permutation is a rearrangement of values. If values can be compared
against each other (such as integers, characters, or words) then it is possible
to systematically construct all permutations of a sequence. There are 2
permutations of two values, for example, and six permutations of three
values, and 24 permutations of four values.

The permutation generating algorithms have the following definition:

bool next_permutation (BidirectionalIterator first,
 BidirectionalIterator last, [Compare]);

bool prev_permutation (BidirectionalIterator first,
 BidirectionalIterator last, [Compare]);

The second example in the sample program illustrates the same idea, only
using pointers to character arrays instead of integers. In this case a different
comparison function must be supplied, since the default operator would
simply compare pointer addresses.

bool nameCompare (char * a, char * b) { return strcmp(a, b) <= 0; }

void permutation_example ()
 // illustrate the use of the next_permutation algorithm
{
 // example 1, permute the values 1 2 3
 int start [] = { 1, 2, 3};
 do
 copy (start, start + 3,
 ostream_iterator<int> (cout, " ")), cout << endl;
 while (next_permutation(start, start + 3));

 // example 2, permute words
 char * words = {"Alpha", "Beta", "Gamma"};
 do
 copy (words, words + 3,
 ostream_iterator<char *> (cout, " ")), cout << endl;
 while (next_permutation(words, words + 3, nameCompare));

 // example 3, permute characters backwards
 char * word = "bela";
 do
 cout << word << ' ';
 while (prev_permutation (word, &word[4]));
 cout << endl;
}

Example 3 in the sample program illustrates the use of the reverse
permutation algorithm, which generates values in reverse sequence. This
example also begins in the middle of a sequence, rather than at the

✍✍
Ordering
Permutations
Permutations can
be ordered, with
the smallest
permutation
being the one in
which values are
listed smallest to
largest, and the
largest being the
sequence that lists
values largest to
smallest.
Consider, for
example, the
permutations of
the integers 1 2 3.
The six
permutations of
these values are,
in order:

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

Notice that in the
first permutation
the values are all
ascending, while
in the last
permutation they
are all
descending.

132 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

beginning. The remaining permutations of the word “bela,” are beal,

bale, bael, aleb, albe, aelb, aebl, able , and finally, abel.

13.4.6 Merge Two Adjacent Sequences into One

A merge takes two ordered sequences and combines them into a single
ordered sequence, interleaving elements from each collection as necessary to
generate the new list. The inplace_merge() algorithm assumes a sequence
is divided into two adjacent sections, each of which is ordered. The merge
combines the two sections into one, moving elements as necessary. (The
alternative merge() algorithm, described elsewhere, can be used to merge
two separate sequences into one.) The arguments to inplace_merge() must
be bidirectional iterators.

void inplace_merge (BidirectionalIterator first,
 BidirectionalIterator middle,
 BidirectionalIterator last [, BinaryFunction]);

The example program illustrates the use of the inplace_merge() algorithm
with a vector and with a list. The sequence 0 2 4 6 8 1 3 5 7 9 is placed into a
vector. A find() call (Section 13.3.1) is used to locate the beginning of the
odd number sequence. The two calls on inplace_merge() then combine the
two sequences into one.

void inplace_merge_example ()
 // illustrate the use of the inplace_merge algorithm
{
 // first generate the sequence 0 2 4 6 8 1 3 5 7 9
 vector<int> numbers(10);
 for (int i = 0; i < 10; i++)
 numbers[i] = i < 5 ? 2 * i : 2 * (i - 5) + 1;

 // then find the middle location
 vector<int>::iterator midvec =
 find(numbers.begin(), numbers.end(), 1);

 // copy them into a list
 list<int> numList;
 copy (numbers.begin(), numbers.end(),
 inserter (numList, numList.begin()));
 list<int>::iterator midList =
 find(numList.begin(), numList.end, 1);

 // now merge the lists into one
 inplace_merge (numbers.begin(), midvec, numbers.end());
 inplace_merge (numList.begin(), midList, numList.end());
}

13.4.7 Randomly Rearrange Elements in a Sequence

The algorithm random_shuffle() randomly rearranges the elements in a
sequence. Exactly n swaps are performed, where n represents the number of
elements in the sequence. The results are, of course, unpredictable. Because
the arguments must be random access iterators, this algorithm can only be

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 133

used with vectors, deques, or ordinary pointers. It cannot be used with lists,
sets, or maps.

void random_shuffle (RandomAccessIterator first,
 RandomAccessIterator last [, Generator]);

An alternative version of the algorithm uses the optional third argument.
This value must be a random number generator. This generator must take as
an argument a positive value m and return a value between 0 and m-1. As
with the generate() algorithm, this random number function can be any
type of object that will respond to the function invocation operator.

void random_shuffle_example ()
 // illustrate the use of the random_shuffle algorithm
{
 // first make the vector containing 1 2 3 ... 10
 vector<int> numbers;
 generate(numbers.begin(), numbers.end(), iotaGen(1));

 // then randomly shuffle the elements
 random_shuffle (numbers.begin(), numbers.end());

 // do it again, with explicit random number generator
 struct RandomInteger {
 {
 operator() (int m) { return rand() % m; }
 } random;

 random_shuffle (numbers.begin(), numbers.end(), random);
}

134 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

13.5 Removal Algorithms
The following two algorithms can be somewhat confusing the first time they
are encountered. Both claim to remove certain values from a sequence. But,
in fact, neither one reduces the size of the sequence. Both operate by moving
the values that are to be retained to the front of the sequence, and returning
an iterator that describes where this sequence ends. Elements after this
iterator are simply the original sequence values, left unchanged. This is
necessary because the generic algorithm has no knowledge of the container
it is working on. It only has a generic iterator. This is part of the price we
pay for generic algorithms. In most cases the user will want to use this
iterator result as an argument to the erase() member function for the
container, removing the values from the iterator to the end of the sequence.

Let us illustrate this with a simple example. Suppose we want to remove the
even numbers from the sequence 1 2 3 4 5 6 7 8 9 10, something we could do
with the remove_if() algorithm. The algorithm remove_if() would leave us
with the following sequence:

1 3 5 7 9 | 6 7 8 9 10

The vertical bar here represents the position of the iterator returned by the
remove_if() algorithm. Notice that the five elements before the bar
represent the result we want, while the five values after the bar are simply
the original contents of those locations. Using this iterator value along with
the end-of-sequence iterator as arguments to erase() , we can eliminate the
unwanted values, and obtained the desired result.

Both the algorithms described here have an alternative copy version. The
copy version of the algorithms leaves the original unchanged, and places the
preserved elements into an output sequence.

13.5.1 Remove Unwanted Elements

The algorithm remove() eliminates unwanted values from a sequence. As
with the find() algorithm, these can either be values that match a specific
constant, or values that satisfy a given predicate. The declaration of the
argument types is as follows:

ForwardIterator remove
 (ForwardIterator first, ForwardIterator last, const T &);
ForwardIterator remove_if
 (ForwardIterator first, ForwardIterator last, Predicate);

The algorithm remove() copies values to the front of the sequence,
overwriting the location of the removed elements. All elements not removed
remain in their relative order. Once all values have been examined, the
remainder of the sequence is left unchanged. The iterator returned as the
result of the operation provides the end of the new sequence. For example,
eliminating the element 2 from the sequence 1 2 4 3 2 results in the sequence

✍✍
What is a Name?
The algorithms in
this section set up
a sequence so
that the desired
elements are
moved to the
front. The
remaining values
are not actually
removed, but the
starting location
for these values is
returned, making
it possible to
remove these
values by means
of a subsequent
call on erase() .
Remember, the
remove algorithms
do not actually
remove the
unwanted
elements.

✍✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg4.cpp .

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 135

1 4 3 3 2, with the iterator returned as the result pointing at the second 3.
This value can be used as argument to erase() in order to eliminate the
remaining elements (the 3 and the 2), as illustrated in the example program.

A copy version of the algorithms copies values to an output sequence, rather
than making transformations in place.

OutputIterator remove_copy
 (InputIterator first, InputIterator last,
 OutputIterator result, const T &);

OutputIterator remove_copy_if
 (InputIterator first, InputIterator last,
 OutputIterator result, Predicate);

The use of remove() is shown in the following program.

void remove_example ()
 // illustrate the use of the remove algorithm
{
 // create a list of numbers
 int data[] = {1, 2, 4, 3, 1, 4, 2};
 list<int> aList;
 copy (data, data+7, inserter(aList, aList.begin()));

 // remove 2's, copy into new list
 list<int> newList;
 remove_copy (aList.begin(), aList.end(),
 back_inserter(newList), 2);

 // remove 2's in place
 list<int>::iterator where;
 where = remove (aList.begin(), aList.end(), 2);
 aList.erase(where, aList.end());

 // remove all even values
 where = remove_if (aList.begin(), aList.end(), isEven);
 aList.erase(where, aList.end());
}

13.5.2 Remove Runs of Similar Values

The algorithm unique() moves through a linear sequence, eliminating all
but the first element from every consecutive group of equal elements. The
argument sequence is described by forward iterators.

ForwardIterator unique (ForwardIterator first,
 ForwardIterator last [, BinaryPredicate]);

As the algorithm moves through the collection, elements are moved to the
front of the sequence, overwriting the existing elements. Once all unique
values have been identified, the remainder of the sequence is left unchanged.

For example, a sequence such as 1 3 3 2 2 2 4 will be changed into 1 3 2 4 | 2
2 4. We have used a vertical bar to indicate the location returned by the
iterator result value. This location marks the end of the unique sequence,
and the beginning of the left-over elements. With most containers the value
returned by the algorithm can be used as an argument in a subsequent call

136 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

on erase() to remove the undesired elements from the collection. This is
illustrated in the example program.

A copy version of the algorithm moves the unique values to an output
iterator, rather than making modifications in place. In transforming a list or
multiset, an insert iterator can be used to change the copy operations of the
output iterator into insertions.

OutputIterator unique_copy
 (InputIterator first, InputIterator last,
 OutputIterator result [, BinaryPredicate]);

These are illustrated in the sample program:

void unique_example ()
 // illustrate use of the unique algorithm
{
 // first make a list of values
 int data[] = {1, 3, 3, 2, 2, 4};
 list<int> aList;
 set<int> aSet;
 copy (data, data+6, inserter(aList, aList.begin()));

 // copy unique elements into a set
 unique_copy (aList.begin(), aList.end(),
 inserter(aSet, aSet.begin()));

 // copy unique elements in place
 list<int>::iterator where;
 where = unique(aList.begin(), aList.end());

 // remove trailing values
 aList.erase(where, aList.end());
}

13.6 Scalar-Producing Algorithms
The next category of algorithms are those that reduce an entire sequence to a
single scalar value.

Remember that two of these algorithms, accumulate() and
inner_product(), are declared in the numeric header file, not the algorithm

header file as are the other generic algorithms.

13.6.1 Count the Number of Elements that Satisfy a Condition

The algorithms count() and count_if() are used to discover the number of
elements that match a given value or that satisfy a given predicate,
respectively. Both take as argument a reference to a counting value
(typically an integer), and increment this value. Note that the count is
passed as a by-reference argument, and is not returned as the value of the
function. The count() function itself yields no value.

void count (InputIterator first, InputIterator last,
 const T&, Size &);
void count_if (InputIterator first, InputIterator last,
 Predicate, Size &);

✍✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg5.cpp .

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 137

The example code fragment illustrates the use of these algorithms. The call
on count() will count the number of occurrences of the letter e in a sample
string, while the invocation of count_if() will count the number of vowels.

void count_example ()
 // illustrate the use of the count algorithm
{
 int eCount = 0;
 int vowelCount = 0;

 char * text = "Now is the time to begin";

 count (text, text + strlen(text), 'e', eCount);
 count_if (text, text + strlen(text), isVowel, vowelCount);

 cout << "There are " << eCount << " letter e's " << endl
 << "and " << vowelCount << " vowels in the text:"
 << text << endl;
}

13.6.2 Reduce Sequence to a Single Value

The result generated by the accumulate() algorithm is the value produced
by placing a binary operator between each element of a sequence, and
evaluating the result. By default the operator is the addition operator, +,
however this can be replaced by any binary function. An initial value (an
identity) must be provided. This value is returned for empty sequences, and
is otherwise used as the left argument for the first calculation.

ContainerType accumulate (InputIterator first, InputIterator last,
 ContainerType initial [, BinaryFunction]);

The example program illustrates the use of accumulate() to produce the
sum and product of a vector of integer values. In the first case the identity is
zero, and the default operator + is used. In the second invocation the
identity is 1, and the multiplication operator (named times) is explicitly
passed as the fourth argument.

void accumulate_example ()
// illustrate the use of the accumulate algorithm
{
 int numbers[] = {1, 2, 3, 4, 5};

// first example, simple accumulation
 int sum = accumulate (numbers, numbers + 5, 0);
 int product =
 accumulate (numbers, numbers + 5, 1, times<int>());

 cout << "The sum of the first five integers is " << sum << endl;
 cout << "The product is " << product << endl;

// second example, with different types for initial value
 list<int> nums;
 nums = accumulate (numbers, numbers+5, nums, intReplicate);
}

list<int>& intReplicate (list<int>& nums, int n)
 // add sequence n to 1 to end of list
{
 while (n) nums.push_back(n--);
 return nums;
}

✍✍
The Resulting
Count
Note that the
count()
algorithms do not
return the sum as
a function result,
but instead simply
add to the last
argument in their
parameter list,
which is passed
by reference. This
means successive
calls on these
functions can be
used to produce
a cumulative sum.
This also means
that you must
initialize the
variable passed to
this last argument
location prior to
calling one of
these algorithms.

138 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

Neither the identity value nor the result of the binary function are required
to match the container type. This is illustrated in the example program by
the invocation of accumulate() shown in the second example above. Here
the identity is an empty list. The function (shown after the example
program) takes as argument a list and an integer value, and repeatedly
inserts values into the list. The values inserted represent a decreasing
sequence from the argument down to 1. For the example input (the same
vector as in the first example), the resulting list contains the 15 values 1 2 1 3
2 1 4 3 2 1 5 4 3 2 1.

13.6.3 Generalized Inner Product

Assume we have two sequences of n elements each; a1, a2, ... an and b1, b2, ...
bn. The inner product of the sequences is the sum of the parallel products,
that is the value a1 * b1 + a2 * b2 + ... + an * bn. Inner products occur in a
number of scientific calculations. For example, the inner product of a row
times a column is the heart of the traditional matrix multiplication
algorithm. A generalized inner product uses the same structure, but permits
the addition and multiplication operators to be replaced by arbitrary binary
functions. The standard library includes the following algorithm for
computing an inner product:

ContainerType inner_product
 (InputIterator first1, InputIterator last1,
 InputIterator first2, ContainerType initialValue
 [, BinaryFunction add, BinaryFunction times]);

The first three arguments to the inner_product() algorithm define the two
input sequences. The second sequence is specified only by the beginning
iterator, and is assumed to contain at least as many elements as the first
sequence. The next argument is an initial value, or identity, used for the
summation operator. This is similar to the identity used in the accumulate()

algorithm. In the generalized inner product function the last two arguments
are the binary functions that are used in place of the addition operator, and
in place of the multiplication operator, respectively.

In the example program the second invocation illustrates the use of
alternative functions as arguments. The multiplication is replaced by an
equality test, while the addition is replaced by a logical or. The result is true
if any of the pairs are equal, and false otherwise. Using an and in place of
the or would have resulted in a test which was true only if all pairs were
equal; in effect the same as the equal() algorithm described in the next
section.

void inner_product_example ()
 // illustrate the use of the inner_product algorithm
{
 int a[] = {4, 3, -2};
 int b[] = {7, 3, 2};

 // example 1, a simple inner product

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 139

 int in1 = inner_product(a, a+3, b, 0);
 cout << "Inner product is " << in1 << endl;

 // example 2, user defined operations
 bool anyequal = inner_product(a, a+3, b, true,
 logical_or<bool>(), equal_to<int>());
 cout << "any equal? " << anyequal << endl;
}

13.6.4 Test Two Sequences for Pairwise Equality

The equal() algorithm tests two sequences for pairwise equality. By using
an alternative binary predicate, it can also be used for a wide variety of other
pair-wise tests of parallel sequences. The arguments are simple input
iterators:

bool equal (InputIterator first, InputIterator last,
 InputIterator first2 [, BinaryPredicate]);

The equal() algorithm assumes, but does not verify, that the second
sequence contains at least as many elements as the first. A true result is
generated if all values test equal to their corresponding element. The
alternative version of the algorithm substitutes an arbitrary boolean function
for the equality test, and returns true if all pair-wise elements satisfy the
predicate. In the sample program this is illustrated by replacing the
predicate with the greater_equal() function, and in this fashion true will
be returned only if all values in the first sequence are greater than or equal
to their corresponding value in the second sequence.

void equal_example ()
 // illustrate the use of the equal algorithm
{
 int a[] = {4, 5, 3};
 int b[] = {4, 3, 3};
 int c[] = {4, 5, 3};

 cout << "a = b is: " << equal(a, a+3, b) << endl;
 cout << "a = c is: " << equal(a, a+3, c) << endl;
 cout << "a pair-wise greater-equal b is: "
 << equal(a, a+3, b, greater_equal<int>()) << endl;
}

13.6.5 Lexical Comparison

A lexical comparison of two sequences can be described by noting the
features of the most common example, namely the comparison of two words
for the purposes of placing them in “dictionary order.” When comparing
two words, the elements (that is, the characters) of the two sequences are
compared in a pair-wise fashion. As long as they match, the algorithm
advances to the next character. If two corresponding characters fail to
match, the earlier character determines the smaller word. So, for example,
everybody is smaller than everything , since the b in the former word
alphabetically precedes the t in the latter word. Should one or the other
sequence terminate before the other, than the terminated sequence is

✍✍
Equal and
Mismatch
By substituting
another function
for the binary
predicate, the
equal and
mismatch
algorithms can be
put to a variety of
different uses. Use
the equal()
algorithm if you
want a pairwise
test that returns a
boolean result.
Use the
mismatch()
algorithm if you
want to discover
the location of
elements that fail
the test.

140 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

considered to be smaller than the other. So, for example, every precedes
both everybody and everything , but comes after eve . Finally, if both
sequences terminate at the same time and, in all cases, pair-wise characters
match, then the two words are considered to be equal.

The lexicographical_compare() algorithm implements this idea, returning
true if the first sequence is smaller than the second, and false otherwise.
The algorithm has been generalized to any sequence. Thus the
lexicographical_compare() algorithm can be used with arrays, strings,
vectors, lists, or any of the other data structures used in the standard library.

bool lexicographical_compare
 (InputIterator first1, InputIterator last1,
 InputIterator first2, InputIterator last2 [, BinaryFunction]);

Unlike most of the other algorithms that take two sequences as argument,
the lexicographical_compare() algorithm uses a first and a past-end
iterator for both sequences. A variation on the algorithm also takes a fifth
argument, which is the binary function used to compare corresponding
elements from the two sequences.

The example program illustrates the use of this algorithm with character
sequences, and with arrays of integer values.

void lexicographical_compare_example()
 // illustrate the use of the lexicographical_compare algorithm
{
 char * wordOne = "everything";
 char * wordTwo = "everybody";

 cout << "compare everybody to everything " <<
 lexicographical_compare(wordTwo, wordTwo + strlen(wordTwo),
 wordOne, wordOne + strlen(wordOne)) << endl;

 int a[] = {3, 4, 5, 2};
 int b[] = {3, 4, 5};
 int c[] = {3, 5};

 cout << "compare a to b:" <<
 lexicographical_compare(a, a+4, b, b+3) << endl;
 cout << "compare a to c:" <<
 lexicographical_compare(a, a+4, c, c+2) << endl;
}

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 141

13.7 Sequence-Generating Algorithms
The algorithms described in this section are all used to generate a new
sequence from an existing sequence by performing some type of
transformation. In most cases, the output sequence is described by an
output iterator. This means these algorithms can be used to overwrite an
existing structure (such as a vector). Alternatively, by using an insert
iterator (see Section 2.4), the algorithms can insert the new elements into a
variable length structure, such as a set or list. Finally, in some cases which
we will note, the output iterator can be the same as one of the sequences
specified by an input iterator, thereby providing the ability to make an in-
place transformation.

The functions partial_sum() and adjacent_difference() are declared in
the header file numeric , while the other functions are described in the header
file algorithm .

13.7.1 Transform One or Two Sequences

The algorithm transform() is used either to make a general transformation
of a single sequence, or to produce a new sequence by applying a binary
function in a pair-wise fashion to corresponding elements from two different
sequences. The general definition of the argument and result types are as
follows:

OutputIterator transform (InputIterator first, InputIterator last,
 OutputIterator result, UnaryFunction);

OutputIterator transform
 (InputIterator first1, InputIterator last1,
 InputIterator first2, OutputIterator result, BinaryFunction);

The first form applies a unary function to each element of a sequence. In the
example program given below, this is used to produce a vector of integer
values that hold the arithmetic negation of the values in a linked list. The
input and output iterators can be the same, in which case the transformation
is applied in-place, as shown in the example program.

The second form takes two sequences and applies the binary function in a
pair-wise fashion to corresponding elements. The transaction assumes, but
does not verify, that the second sequence has at least as many elements as
the first sequence. Once more, the result can either be a third sequence, or
either of the two input sequences.

int square(int n) { return n * n; }

void transform_example ()
// illustrate the use of the transform algorithm
{
// generate a list of value 1 to 6
 list<int> aList;
 generate_n (inserter(aList, aList.begin()), 6, iotaGen(1));

// transform elements by squaring, copy into vector

✍✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg6.cpp .

142 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

 vector<int> aVec(6);
 transform (aList.begin(), aList.end(), aVec.begin(), square);

// transform vector again, in place, yielding 4th powers
 transform (aVec.begin(), aVec.end(), aVec.begin(), square);

// transform in parallel, yielding cubes
 vector<int> cubes(6);
 transform (aVec.begin(), aVec.end(), aList.begin(),
 cubes.begin(), divides<int>());
}

13.7.2 Partial Sums

A partial sum of a sequence is a new sequence in which every element is
formed by adding the values of all prior elements. For example, the partial
sum of the vector 1 3 2 4 5 is the new vector 1 4 6 10 15. The element 4 is
formed from the sum 1 + 3, the element 6 from the sum 1 + 3 + 2, and so on.
Although the term “sum” is used in describing the operation, the binary
function can, in fact, be any arbitrary function. The example program
illustrates this by computing partial products. The arguments to the partial
sum function are described as follows:

OutputIterator partial_sum
 (InputIterator first, InputIterator last,
 OutputIterator result [, BinaryFunction]);

By using the same value for both the input iterator and the result the partial
sum can be changed into an in-place transformation.

void partial_sum_example ()
// illustrate the use of the partial sum algorithm
{
// generate values 1 to 5
 vector<int> aVec(5);
 generate (aVec.begin(), aVec.end(), iotaGen(1));

// output partial sums
 partial_sum (aVec.begin(), aVec.end(),
 ostream_iterator<int> (cout, " ")), cout << endl;

// output partial products
 partial_sum (aVec.begin(), aVec.end(),
 ostream_iterator<int> (cout, " "),
 times<int>());
}

13.7.3 Adjacent Differences

An adjacent difference of a sequence is a new sequence formed by replacing
every element with the difference between the element and the immediately
preceding element. The first value in the new sequence remains unchanged.
For example, a sequence such as (1, 3, 2, 4, 5) is transformed into (1, 3-1, 2-3,
4-2, 5-4), and in this manner becomes the sequence (1, 2, -1, 2, 1).

Rogue Wave Standard C++ Library User's Guide and Tutorial Generic Algorithms 143

As with the algorithm partial_sum() , the term “difference” is not
necessarily accurate, as an arbitrary binary function can be employed. The
adjacent sums for this sequence are (1, 4, 5, 6, 9), for example. The adjacent
difference algorithm has the following declaration:

OutputIterator adjacent_difference (InputIterator first,
 InputIterator last, OutputIterator result [, BinaryFunction]);

By using the same iterator as both input and output iterator, the adjacent
difference operation can be performed in place.

void adjacent_difference_example ()
// illustrate the use of the adjacent difference algorithm
{
// generate values 1 to 5
 vector<int> aVec(5);
 generate (aVec.begin(), aVec.end(), iotaGen(1));

// output adjacent differences
 adjacent_difference (aVec.begin(), aVec.end(),
 ostream_iterator<int> (cout, " ")), cout << endl;

// output adjacent sums
 adjacent_difference (aVec.begin(), aVec.end(),
 ostream_iterator<int> (cout, " "),
 plus<int>());
}

13.8 Miscellaneous Algorithms
In the final section we describe the remaining algorithms found in the
standard library.

13.8.1 Apply a Function to All Elements in a Collection

The algorithm for_each() takes three arguments. The first two provide the
iterators that describe the sequence to be evaluated. The third is a one-
argument function. The for_each() algorithm applies the function to each
value of the sequence, passing the value as an argument.

Function for_each
 (InputIterator first, InputIterator last, Function);

For example, the following code fragment, which uses the print_if_leap()

function, will print a list of the leap years that occur between 1900 and 1997:

 cout << "leap years between 1990 and 1997 are: ";
 for_each (1990, 1997, print_if_leap);
 cout << endl;

144 Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

The argument function is guaranteed to be invoked only once for each
element in the sequence. The for_each() algorithm itself returns the value
of the third argument, although this, too, is usually ignored.

The following example searches an array of integer values representing
dates, to determine which vintage wine years were also leap years:

 int vintageYears[] = {1947, 1955, 1960, 1967, 1994};
 ...

 cout << "vintage years which were also leap years are: ";
 for_each (vintageYears, vintageYears + 5, print_if_leap);
 cout << endl;

Side effects need not be restricted to printing. Assume we have a function
countCaps() that counts the occurrence of capital letters:

int capCount = 0;

void countCaps(char c) { if (isupper(c)) capCount++; }

The following example counts the number of capital letters in a string value:

 string advice = "Never Trust Anybody Over 30!";
 for_each(advice.begin(), advice.end(),countCaps);
 cout << "upper-case letter count is " << capCount << endl;

✍✍
Results Produced
by Side Effect
The function
passed as the
third argument is
not permitted to
make any
modifications to
the sequence, so
it can only
achieve any result
by means of a
side effect, such
as printing,
assigning a value
to a global or
static variable, or
invoking another
function that
produces a side
effect. If the
argument
function returns
any result, it is
ignored.

S e c t i o n 14.
Ordered Collection Algorithms

14.1

Overview

14.2

Sorting Algorithms

14.3

Partial Sort

14.4

nth Element

14.5

Binary Search

14.6

Merge Ordered Sequences

14.7

Set Operations

14.8

Heap Operations

146 Ordered Collection Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

14.1 Overview
In this section we will describe the generic algorithms in the standard library
that are specific to ordered collections. These are summarized by the
following table:

Name Purpose
Sorting Algorithms – Sections 14.2 and 14.3

sort rearrange sequence, place in order

stable_sort sort, retaining original order of equal
elements

partial_sort sort only part of sequence

partial_sort_copy partial sort into copy

Find Nth largest Element – Section 14.4

nth_element locate nth largest element

Binary Search – Section 14.5

binary_search search, returning boolean

lower_bound search, returning first position

upper_bound search, returning last position

equal_range search, returning both positions

Merge Ordered Sequences – Section 14.6

merge combine two ordered sequences

Set Operations – Section 14.7

set_union form union of two sets

set_intersection form intersection of two sets

set_difference form difference of two sets

set_symmetric_difference form symmetric difference of two
sets

includes see if one set is a subset of another

Heap operations – Section 14.8

make_heap turn a sequence into a heap

push_heap add a new value to the heap

Rogue Wave Standard C++ Library User's Guide and Tutorial Ordered Collection Algorithms 147

Name Purpose
pop_heap remove largest value from the heap

sort_heap turn heap into sorted collection

Ordered collections can be created using the standard library in a variety of
ways. For example:

• The containers set, multiset, map and multimap are ordered collections
by definition.

• A list can be ordered by invoking the sort() member function.

• A vector, deque or ordinary C++ array can be ordered by using one of
the sorting algorithms described later in this section.

Like the generic algorithms described in the previous section, the algorithms
described here are not specific to any particular container class. This means
they can be used with a wide variety of types. Many of them do, however,
require the use of random-access iterators. For this reason they are most
easily used with vectors, deques, or ordinary arrays.

Almost all the algorithms described in this section have two versions. The
first version uses the less than operator (operator <) for comparisons
appropriate to the container element type. The second, and more general,
version uses an explicit comparison function object, which we will write as
Compare. This function object must be a binary predicate (see Section 3.2).
Since this argument is optional, we will write it within square brackets in the
description of the argument types.

A sequence is considered to be ordered if for every valid (that is, denotable)
iterator i with a denotable successor j , it is the case that the comparison
Compare(*j, *i) is false. Note that this does not necessarily imply that
Compare(*i, *j) is true. It is assumed that the relation imposed by Compare

is transitive, and induces a total ordering on the values.

In the descriptions that follow, two values x and y are said to be equivalent if
both Compare(x, y) and Compare(y, x) are false. Note that this need not
imply that x == y .

14.1.1 Include Files

As with the algorithms described in Section 13, before you can use any of the
algorithms described in this section in a program you must include the
algorithm header file:

 # include <algorithm>

✍✍
Obtaining the
Sample Programs
The example
programs
described in this
section have
been combined
and are included
in the file
alg7.cpp in the
tutorial
distribution. As we
did in Section 13,
we will generally
omit output
statements from
the descriptions of
the programs
provided here,
although they are
included in the
executable
versions.

148 Ordered Collection Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

14.2 Sorting Algorithms
There are two fundamental sorting algorithms provided by the standard
library, described as follows:

void sort (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

void stable_sort (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

The sort() algorithm is slightly faster, but it does not guarantee that equal
elements in the original sequence will retain their relative orderings in the
final result. If order is important, then use the stable_sort() version.

Because these algorithms require random access iterators, they can be used
only with vectors, deques, and ordinary C pointers. Note, however, that the
list container provides its own sort() member function.

The comparison operator can be explicitly provided when the default
operator < is not appropriate. This is used in the example program to sort a
list into descending, rather than ascending order. An alternative technique
for sorting an entire collection in the inverse direction is to describe the
sequence using reverse iterators.

The following example program illustrates the sort() algorithm being
applied to a vector, and the sort() algorithm with an explicit comparison
operator being used with a deque.

void sort_example ()
 // illustrate the use of the sort algorithm
{
 // fill both a vector and a deque
 // with random integers
 vector<int> aVec(15);
 deque<int> aDec(15);
 generate (aVec.begin(), aVec.end(), randomValue);
 generate (aDec.begin(), aDec.end(), randomValue);

 // sort the vector ascending
 sort (aVec.begin(), aVec.end());

 // sort the deque descending
 sort (aDec.begin(), aDec.end(), greater<int>());

 // alternative way to sort descending
 sort (aVec.rbegin(), aVec.rend());
}

14.3 Partial Sort
The generic algorithm partial_sort() sorts only a portion of a sequence. In
the first version of the algorithm, three iterators are used to describe the
beginning, middle, and end of a sequence. If n represents the number of
elements between the start and middle, then the smallest n elements will be

✍✍
More Sorts
Yet another
sorting algorithm is
provided by the
heap operations,
to be described in
Section 14.8.

Rogue Wave Standard C++ Library User's Guide and Tutorial Ordered Collection Algorithms 149

moved into this range in order. The remaining elements are moved into the
second region. The order of the elements in this second region is undefined.

void partial_sort (RandomAccessIterator first,
 RandomAccessIterator middle,
 RandomAccessIterator last [, Compare]);

A second version of the algorithm leaves the input unchanged. The output
area is described by a pair of random access iterators. If n represents the size
of this area, then the smallest n elements in the input are moved into the
output in order. If n is larger than the input, then the entire input is sorted
and placed in the first n locations in the output. In either case the end of the
output sequence is returned as the result of the operation.

RandomAccessIterator partial_sort_copy
 (InputIterator first, InputIterator last,
 RandomAccessIterator result_first,
 RandomAccessIterator result_last [, Compare]);

Because the input to this version of the algorithm is specified only as a pair
of input iterators, the partial_sort_copy() algorithm can be used with any
of the containers in the standard library. In the example program it is used
with a list.

void partial_sort_example ()
 // illustrate the use of the partial sort algorithm
{
 // make a vector of 15 random integers
 vector<int> aVec(15);
 generate (aVec.begin(), aVec.end(), randomValue);

 // partial sort the first seven positions
 partial_sort (aVec.begin(), aVec.begin() + 7, aVec.end());

 // make a list of random integers
 list<int> aList(15, 0);
 generate (aList.begin(), aList.end(), randomValue);

 // sort only the first seven elements
 vector<int> start(7);
 partial_sort_copy (aList.begin(), aList.end(),
 start.begin(), start.end(), greater<int>());
}

14.4 nth Element
Imagine we have the sequence 2 5 3 4 7, and we want to discover the
median, or middle element. We could do this with the function
nth_element(). One result might be the following sequence:

3 2 | 4 | 7 5

The vertical bars are used to describe the separation of the result into three
parts; the elements before the requested value, the requested value, and the
values after the requested value. Note that the values in the first and third

150 Ordered Collection Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

sequences are unordered; in fact, they can appear in the result in any order.
The only requirement is that the values in the first part are no larger than the
value we are seeking, and the elements in the third part are no smaller than
this value.

The three iterators provided as arguments to the algorithm nth_element()

divide the argument sequence into the three sections we just described.
These are the section prior to the middle iterator, the single value denoted by
the middle iterator, and the region between the middle iterator and the end.
Either the first or third of these may be empty.

The arguments to the algorithm can be described as follows:

void nth_element (RandomAccessIterator first,
 RandomAccessIterator nth,
 RandomAccessIterator last [, Compare]);

Following the call on nth_element() , the nth largest value will be copied
into the position denoted by the middle iterator. The region between the
first iterator and the middle iterator will have values no larger than the nth
element, while the region between the middle iterator and the end will hold
values no smaller than the nth element.

The example program illustrates finding the fifth largest value in a vector of
random numbers.

void nth_element_example ()
 // illustrate the use of the nth_element algorithm
{
 // make a vector of random integers
 vector<int> aVec(10);
 generate (aVec.begin(), aVec.end(), randomValue);

 // now find the 5th largest
 vector<int>::iterator nth = aVec.begin() + 4;
 nth_element (aVec.begin(), nth, aVec.end());

 cout << "fifth largest is " << *nth << endl;
}

14.5 Binary Search
The standard library provides a number of different variations on binary
search algorithms. All will perform only approximately log n comparisons,
where n is the number of elements in the range described by the arguments.
The algorithms work best with random access iterators, such as those
generated by vectors or deques, when they will also perform approximately
log n operations in total. However, they will also work with non-random
access iterators, such as those generated by lists, in which case they will
perform a linear number of steps. Although legal, it is not necessary to
perform a binary search on a set or multiset data structure, since those
container classes provide their own search methods, which are more
efficient.

Rogue Wave Standard C++ Library User's Guide and Tutorial Ordered Collection Algorithms 151

The generic algorithm binary_search() returns true if the sequence
contains a value that is equivalent to the argument. Recall that to be
equivalent means that both Compare(value, arg) and Compare(arg, value)

are false. The algorithm is declared as follows:

bool binary_search (ForwardIterator first, ForwardIterator last,
 const T & value [, Compare]);

In other situations it is important to know the position of the matching
value. This information is returned by a collection of algorithms, defined as
follows:

 ForwardIterator lower_bound (ForwardIterator first,
 ForwardIterator last, const T& value [, Compare]);

 ForwardIterator upper_bound (ForwardIterator first,
 ForwardIterator last, const T& value [, Compare]);

 pair<ForwardIterator, ForwardIterator> equal_range
 (ForwardIterator first, ForwardIterator last,
 const T& value [, Compare]);

The algorithm lower_bound() returns, as an iterator, the first position into
which the argument could be inserted without violating the ordering,
whereas the algorithm upper_bound() finds the last such position. These
will match only when the element is not currently found in the sequence.
Both can be executed together in the algorithm equal_range() , which
returns a pair of iterators.

Our example program shows these functions being used with a vector of
random integers.

void binary_search_example ()
 // illustrate the use of the binary search algorithm
{
 // make an ordered vector of 15 random integers
 vector<int> aVec(15);
 generate (aVec.begin(), aVec.end(), randomValue);
 sort (aVec.begin(), aVec.end());

 // see if it contains an eleven
 if (binary_search (aVec.begin(), aVec.end(), 11))
 cout << "contains an 11" << endl;
 else
 cout << "does not contain an 11" << endl;

 // insert an 11 and a 14
 vector<int>::iterator where;
 where = lower_bound (aVec.begin(), aVec.end(), 11);
 aVec.insert (where, 11);

 where = upper_bound (aVec.begin(), aVec.end(), 14);
 aVec.insert (where, 14);

}

152 Ordered Collection Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

14.6 Merge Ordered Sequences
The algorithm merge() combines two ordered sequences to form a new
ordered sequence. The size of the result is the sum of the sizes of the two
argument sequences. This should be contrasted with the set_union()

operation, which eliminates elements that are duplicated in both sets. The
set_union() function will be described later in this section.

The merge operation is stable. This means, for equal elements in the two
ranges, not only is the relative ordering of values from each range preserved,
but the values from the first range always precede the elements from the
second. The two ranges are described by a pair of iterators, whereas the
result is defined by a single output iterator. The arguments are shown in the
following declaration:

OutputIterator merge (InputIterator first1, InputIterator last1,
 InputIterator first2, InputIterator last2,
 OutputIterator result [, Compare]);

The example program illustrates a simple merge, the use of a merge with an
inserter, and the use of a merge with an output stream iterator.

void merge_example ()
 // illustrate the use of the merge algorithm
{
 // make a list and vector of 10 random integers
 vector<int> aVec(10);
 list<int> aList(10, 0);
 generate (aVec.begin(), aVec.end(), randomValue);
 sort (aVec.begin(), aVec.end());
 generate_n (aList.begin(), 10, randomValue);
 aList.sort();

 // merge into a vector
 vector<int> vResult (aVec.size() + aList.size());
 merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),
 vResult.begin());

 // merge into a list
 list<int> lResult;
 merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),
 inserter(lResult, lResult.begin()));

 // merge into the output
 merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),
 ostream_iterator<int> (cout, " "));
 cout << endl;

}

The algorithm inplace_merge() (Section 13.4.6) can be used to merge two
sections of a single sequence into one sequence.

Rogue Wave Standard C++ Library User's Guide and Tutorial Ordered Collection Algorithms 153

14.7 Set Operations
The operations of set union, set intersection, and set difference were all
described in Section 8.2.7 when we discussed the set container class.
However, the algorithms that implement these operations are generic, and
applicable to any ordered data structure. The algorithms assume the input
ranges are ordered collections that represent multisets ; that is, elements can
be repeated. However, if the inputs represent sets , then the result will
always be a set. That is, unlike the merge() algorithm, none of the set
algorithms will produce repeated elements in the output that were not
present in the input sets.

The set operations all have the same format. The two input sets are specified
by pairs of input iterators. The output set is specified by an input iterator,
and the end of this range is returned as the result value. An optional
comparison operator is the final argument. In all cases it is required that the
output sequence not overlap in any manner with either of the input
sequences.

OutputIterator set_union
 (InputIterator first1, InputIterator last1,
 InputIterator first2, InputIterator last2,
 OutputIterator result [, Compare]);

The example program illustrates the use of the four set algorithms,
set_union, set_intersection, set_difference and
set_symmetric_difference. It also shows a call on merge() in order to
contrast the merge and the set union operations. The algorithm includes()

is slightly different. Again the two input sets are specified by pairs of input
iterators, and the comparison operator is an optional fifth argument. The
return value for the algorithm is true if the first set is entirely included in
the second, and false otherwise.

void set_example ()
 // illustrate the use of the generic set algorithms
{
 ostream_iterator<int> intOut (cout, " ");

 // make a couple of ordered lists
 list<int> listOne, listTwo;
 generate_n (inserter(listOne, listOne.begin()), 5, iotaGen(1));
 generate_n (inserter(listTwo, listTwo.begin()), 5, iotaGen(3));

 // now do the set operations
 // union - 1 2 3 4 5 6 7
 set_union (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;
 // merge - 1 2 3 3 4 4 5 5 6 7
 merge (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;
 // intersection - 3 4 5
 set_intersection (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;
 // difference - 1 2
 set_difference (listOne.begin(), listOne.end(),

154 Ordered Collection Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

 listTwo.begin(), listTwo.end(), intOut), cout << endl;
 // symmetric difference - 1 2 6 7
 set_symmetric_difference (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;

 if (includes (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end()))
 cout << "set is subset" << endl;
 else
 cout << "set is not subset" << endl;
}

14.8 Heap Operations
A heap is a binary tree in which every node is larger than the values
associated with either child. A heap (and, for that matter, a binary tree) can
be very efficiently stored in a vector, by placing the children of node i in
positions 2 * i + 1 and 2 * i + 2 .

Using this encoding, the largest value in the heap will always be located in
the initial position, and can therefore be very efficiently retrieved. In
addition, efficient (logarithmic) algorithms exist that both permit a new
element to be added to a heap and the largest element removed from a heap.
For these reasons, a heap is a natural representation for the priority_queue
data type, described in Section 11.

The default operator is the less-than operator (operator <) appropriate to the
element type. If desired, an alternative operator can be specified. For
example, by using the greater-than operator (operator >), one can construct a
heap that will locate the smallest element in the first location, instead of the
largest.

The algorithm make_heap() takes a range, specified by random access
iterators, and converts it into a heap. The number of steps required is a
linear function of the number of elements in the range.

void make_heap (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

A new element is added to a heap by inserting it at the end of a range (using
the push_back() member function of a vector or deque, for example),
followed by an invocation of the algorithm push_heap(). The push_heap()

algorithm restores the heap property, performing at most a logarithmic
number of operations.

void push_heap (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

The algorithm pop_heap() swaps the first and final elements in a range, then
restores to a heap the collection without the final element. The largest value
of the original collection is therefore still available as the last element in the
range (accessible, for example, using the back() member function in a
vector, and removable using the pop_back() member function), while the

✍✍
Heaps and
Ordered
Collections
Note that an
ordered collection
is a heap, but a
heap need not
necessarily be an
ordered
collection. In fact,
a heap can be
constructed in a
sequence much
more quickly than
the sequence
can be sorted.

Rogue Wave Standard C++ Library User's Guide and Tutorial Ordered Collection Algorithms 155

remainder of the collection continues to have the heap property. The
pop_heap() algorithm performs at most a logarithmic number of operations.

void pop_heap (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

Finally, the algorithm sort_heap() converts a heap into a ordered (sorted)
collection. Note that a sorted collection is still a heap, although the reverse is
not the case. The sort is performed using approximately n log n operations,
where n represents the number of elements in the range. The sort_heap()

algorithm is not stable.

void sort_heap (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

Here is an example program that illustrates the use of these functions.

void heap_example ()
 // illustrate the use of the heap algorithms
{
 // make a heap of 15 random integers
 vector<int> aVec(15);
 generate (aVec.begin(), aVec.end(), randomValue);
 make_heap (aVec.begin(), aVec.end());
 cout << "Largest value " << aVec.front() << endl;

 // remove largest and reheap
 pop_heap (aVec.begin(), aVec.end());
 aVec.pop_back();

 // add a 97 to the heap
 aVec.push_back (97);
 push_heap (aVec.begin(), aVec.end());

 // finally, make into a sorted collection
 sort_heap (aVec.begin(), aVec.end());
}

S e c t i o n 15.
Using Allocators

15.1
An Overview of Standard Library Allocators

15.2
Using Allocators with Existing Standard Library Containers

15.3
Building Your Own Allocators

158 Using Allocators Rogue Wave Standard C++ Library User's Guide and Tutorial

15.1 An Overview of the Standard Library Allocators
The Standard C++ allocator interface encapsulates the types and functions
needed to manage the storage of data in a generic way. The interface
provides:

• pointer and reference types;

• the type of the difference between pointers;

• the type for any object's size ;

• storage allocation and deallocation primitives;

• object construction and destruction primitives.

The allocator interface wraps the mechanism for managing data storage, and
separates this mechanism from the classes and functions used to maintain
associations between data elements. This eliminates the need to rewrite
containers and algorithms to suit different storage mechanisms. The
interface lets you encapsulate all the storage mechanism details in an
allocator, then provide that allocator to an existing container when
appropriate.

The Standard C++ Library provides a default allocator class, allocator, that
implements this interface using the Standard new and delete operators for
all storage management.

This section briefly describes how to use allocators with existing containers,
then discusses what you need to consider when designing your own
allocators. The later section of this guide, entitled "Building Containers and
Generic Algorithms" describes what you must consider when designing
containers that use allocators.

15.2 Using Allocators with Existing Standard Library
Containers
Using allocators with existing Standard C++ Library container classes is a
simple process. Merely provide an allocator type when you instantiate a
container, and provide an actual allocator object when you construct a
container object:

my_allocator alloc; // Construct an allocator
vector<int,my_allocator> v(alloc); // Use the allocator

All standard containers default the allocator template parameter type to
allocator and the object to Allocator() , where Allocator is the template
parameter type. This means that the simplest use of allocators is to ignore
them entirely. When you do not specify an allocator, the default allocator
will be used for all storage management.

If you do provide a different allocator type as a template parameter, then the
type of object that you provide must match the template type. For example,

Rogue Wave Standard C++ Library User's Guide and Tutorial Using Allocators 159

the following code will cause an compiler error because the types in the
template signature and the call to the allocator constructor don't match:

class my_allocator;
list <int, allocator> my_list(my_allocator()); \\ Wrong!

The following call to the allocator constructor does match the template
signature:

list <int, my_allocator> my_list(my_allocator());

Note that the container always holds a copy of the allocator object that is
passed to the constructor. If you need a single allocator object to manage all
storage for a number of containers, you must provide an allocator that
maintains a reference to some shared implementation.

15.3 Building Your Own Allocators
Defining your own allocator is a relatively simple process. The Standard
C++ Library describes a particular interface, consisting of types and
functions. An allocator that conforms to the Standard must match the
syntactic requirements for these member functions and types. The Standard
C++ Library also specifies a portion of the semantics for the allocator type.

The Standard C++ Library allocator interface relies heavily on member
templates. As of this writing, many compilers do not yet support both
member function templates and member class templates. This makes it
impossible to implement a standard allocator. Rogue Wave's
implementation of the Standard C++ Library provides an alternative
allocator interface that provides most of the power of the standard interface,
without requiring unavailable compiler features. This interface differs
significantly from the standard interface, and will not work with other
vendors' versions of the Standard C++ Library.

We recommend that when you define an allocator and implement
containers, you provide both the standard interface and the Rogue Wave
interface. This will allow you to use allocators now, and to take advantage
of the standard once it becomes available on your compiler.

The remainder of this section describes the requirements for the Standard
C++ Library allocator, the requirements for Rogue Wave's alternative
allocator, and some techniques that specify how to support both interfaces in
the same code base.

15.3.1 Using the Standard Allocator Interface

An allocator that conforms to the Standard C++ Library allocator
specification must have the following interface. The example uses
my_allocator as a place holder for your own allocator name:

class my_allocator
{
 typedef implementation_defined size_type;

160 Using Allocators Rogue Wave Standard C++ Library User's Guide and Tutorial

 typedef implementation_defined difference_type
 template <class T>
 struct types {
 typedef implementation_defined pointer;
 typedef implementation_defined const_pointer;
 typedef implementation_defined reference;
 typedef implementation_defined const_reference;
 typedef implementation_defined value_type;
 };

Each of the pointer types in this interface must have a conversion to void* .
It must be possible to use the resulting void* as a this value in a constructor
or destructor and in conversions to ::types<void>::pointer (for
appropriate B) for use by B::deallocate() .

Here is a description of the member functions that a Standard C++ Library
allocator must provide:

my_allocator ();
my_allocator (const my_allocator&);
~my_allocator ();

Constructors and destructor.

template <class T>
types<T>::pointer address (types<T>::reference r) const;

Returns the address of r as a pointer type. This function and the
following function are used to convert references to pointers.

template <class T>
types<T>::const_pointer address (types<T>::const_reference r)
 const;

Returns the address of r as a const_pointer type.

template <class T>
types<T>::pointer allocate (size_type n);

Allocate storage for n values of T .

template <class T, class U>
types<T>::pointer allocate (size_type n, U u);

Allocate storage for n values of T, using the value of u as an
implementation-defined hint for determining the best storage placement.

template <class T>
void
deallocate (types<T>::pointer);

Deallocate storage obtained by a call to allocate .

size_type
max_size ();

Return the largest possible storage available through a call to allocate .

template <class T, class U>
void
construct (types<T>::pointer p, U u);

Construct an object of type T at the location of p, using the value of u in the
call to the constructor for T. The effect is:
 new((void*)p) T(u)

Rogue Wave Standard C++ Library User's Guide and Tutorial Using Allocators 161

template <class T>
void
destroy (types<T>::pointer p);

Call the destructor on the value pointed to by p. The effect is:
 ((T*)p)->~T()

template <class T>
my_allocator ::types<T>::pointer
operator new (my_allocator ::types<T>::size_type, my_allocator&);

Allocate space for a single object of type T using my_allocator::allocate .
The effect is:
 new((void*)x.template allocate<T>(1)) T;

template <class T>
my_allocator ::types<T>::pointer
operator new[] (my_allocator ::types<T>::size_type,
 my_allocator&);

Allocate space for an array of objects of type T using
my_allocator::allocate . The effect is:
 new((void*)x.template allocate<T>(n)) T[n]

bool
operator== (const my_allocator & a, const my_allocator & b);

Return true if allocators b and a can be safely interchanged. "Safely
interchanged" means that b could be used to deallocate storage obtained
through a and vice versa.

15.3.2 Using Rogue Wave's Alternative Interface

Rogue Wave provides an alternative allocator interface for those compilers
that do not support both class templates and member function templates.

In this interface, the class allocator_interface provides all types and typed
functions. Memory is allocated as raw bytes using the class provide by the
Allocator template parameter. Functions within allocator_interface cast
appropriately before returning pointer values. Because multiple
allocator_interface objects can attach to a single allocator, one allocator can
allocate all storage for a container, regardless of how many types are
involved. The one real restriction is that pointers and references are hard-
coded as type T* and T&. (Note that in the standard interface they are
implementation_defined .). If your compiler supports partial specialization
instead of member templates you can use it to get around even this
restriction by specializing allocator_interface on just the allocator type.

To implement an allocator based on the alternative interface, supply the
class labeled my_allocator below.

//
// Alternative allocator uses an interface class
// (allocator_interface)
// to get type safety.
//
class my_allocator
{

162 Using Allocators Rogue Wave Standard C++ Library User's Guide and Tutorial

 public:
 typedef implementation_defined size_type;
 typedef implementation_defined difference_type;

 my_allocator ();
 ~ my_allocator ();

 void * allocate (size_type n, void * = 0);
 void deallocate (void* p);
 size_type max_size (size_type size) const
};

We've also included a listing of the full implementation of the
allocator_interface class, to show how a standard container will use your
class. The section entitled "Building Containers & Generic Algorithms"
provides a full description of how the containers use the alternative
interface.

template <class Allocator,class T>
class allocator_interface
{
public:
 typedef Allocator allocator_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 typedef typename Allocator::size_type size_type;
 typedef typename Allocator::difference_type difference_type;

protected:
 allocator_type* alloc_;

public:
 allocator_interface() : alloc_(0) { ; }
 allocator_interface(Allocator* a) : alloc_(a) { ; }

 void alloc(Allocator* a)
 {
 alloc_ = a;
 }

 pointer address (T& x)
 {
 return static_cast<pointer>(&x);
 }

 size_type max_size () const
 {
 return alloc_->max_size(sizeof(T));
 }

 pointer allocate(size_type n, pointer = 0)
 {
 return static_cast<pointer>(alloc_->allocate(n*sizeof(T)));
 }

 void deallocate(pointer p)
 {
 alloc_->deallocate(p);
 }

 void construct(pointer p, const T& val)
 {
 new (p) T(val);
 }

Rogue Wave Standard C++ Library User's Guide and Tutorial Using Allocators 163

 void destroy(T* p)
 {
 ((T*)p)->~T();
 }

};

class allocator_interface< my_allocator ,void>
{
 public:
 typedef void* pointer;
 typedef const void* const_pointer;
};

//
// allocator globals
//
void * operator new(size_t N, my_allocator & a);
inline void * operator new[](size_t N, my_allocator & a);
inline bool operator==(const my_allocator &, const my_allocator &);

15.3.3 How to Support Both Interfaces

Rogue Wave strongly recommends that you implement containers that
support both the Standard C++ Library allocator interface, and our
alternative interface. By supporting both interfaces, you can use allocators
now, and take advantage of the standard once it becomes available on your
compiler.

In order to implement both versions of the allocator interface, your
containers must have some mechanism for determining whether the
standard interface is available. Rogue Wave provides the macro
RWSTD_ALLOCATOR in stdcomp.h to define whether or not the standard
allocator is available. If RWSTD_ALLOCATOR evaluates to true, your compiler is
capable of handling Standard C++ Library allocators, otherwise you must
use the alternative.

The first place that you use RWSTD_ALLOCATOR is when determining which
typenames the container must use to reflect the interface. To do this, place
the equivalent of the following code in your container class definition:

#ifdef RWSTD_ALLOCATOR
 typedef typename Allocator::types<T>::reference
 reference;
 typedef typename Allocator::types<T>::const_reference
 const_reference;
 typedef typename Allocator::types<node>::pointer
 link_type;

 Allocator the_allocator;
#else
 typedef typename
 allocator_interface<Allocator,T>::reference reference;
 typedef typename
 allocator_interface<Allocator,T>::const_reference
 const_reference;
 typedef typename
 allocator_interface<Allocator,node>::pointer link_type;

 Allocator alloc;
 allocator_interface<Allocator,T> value_allocator;

164 Using Allocators Rogue Wave Standard C++ Library User's Guide and Tutorial

 allocator_interface<Allocator,node> node_allocator;
#endif

Notice that the alternative allocator (allocator_interface) has two parts:
value_allocator and node_allocator . You will need to assemble these
inside the constructor for your container, if you use the alternative allocator.
In our example, the mechanism for initializing allocator_interface objects
looks like this:

#ifndef RWSTD_ALLOCATOR
 node_allocator.alloc(alloc);
 value_allocator.alloc(alloc);
#endif

Let's look at some examples of how we support both interfaces in calls to
functions.

In this first example, the max_size member function will use the appropriate
allocator object.

size_type max_size () const
#ifdef RWSTD_ALLOCATOR
 { return the_allocator.max_size(); }
#else
 { return node_allocator.max_size(); }
#endif

A second example shows the use of the construct and address allocator
functions to construct a new value on an existing location. The tmp object in
this example is a node that contains a data member that is an actual stored
value.

#ifdef RWSTD_ALLOCATOR
 the_allocator.construct(
 the_allocator.address((*tmp).data), x);
#else
 value_allocator.construct(
 value_allocator.address((*tmp).data),x);
#endif

S e c t i o n 16.
Building Containers & Generic Algorithms

16.1
Extending the Library

16.2
Building on the Standard Containers

16.3
Creating Your Own Containers

16.4
Tips and Techniques for Building Algorithms

166 Building Containers & Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

16.1 Extending the Library
The adoption of the Standard Library for C++ marks a very important
development for users of the C++ programming language. Although the
library is written in an OOP language and provides plenty of objects, it also
employs an entirely different paradigm. This other approach, called
“generic programming,” provides a flexible way to apply generic algorithms
to a wide variety of different data structures. The flexibility of C++ in
combination with this synthesis of two advanced design paradigms results
in an unusual and highly-extensible library.

The clearest example of this synthesis is the ability to extend the library with
user-defined containers and algorithms. This extension is possible because
the definition of data structures has been separated from the definition of
generic operations on those structures. The library defines very specific
parameters for these two broad groups, giving users some confidence that
containers and algorithms from different sources will work together as long
as they all meet the specifications of the standard. At the same time,
containers encapsulate data and a limited range of operations on that data in
classic OOP fashion.

Each standard container is categorized as one of two types: a sequence or an
associative container. A user-defined container need not fit into either of
these two groups since the standard also defines rudimentary requirements
for a container, but the categorization can be very useful for determining
which algorithms will work with a particular container and how efficiently
those algorithms will work. In determining the category of a container, the
most important characteristics are the iterator category and element ordering.
(The Tutorial and Reference Guide sections on each container describe the
container types and iterator categories.)

Standard algorithms can be grouped into categories using a number of
different criteria. The most important of these are: 1) whether or not the
algorithm modifies the contents of a container; 2) the type of iterator
required by the algorithm; and 3) whether or not the algorithm requires a
container to be sorted. An algorithm may also require further state
conditions from any container it's applied to. For instance, all the standard
set algorithms not only require that a container be in sorted order, but also
that the order of elements was determined using the same compare function
or object that will be used by the algorithm.

16.2 Building on the Standard Containers
Let's examine a few of the ways you can use existing Standard C++ Library
containers to create your own containers. For example, say you want to
implement a set container that enforces unique values that are not inherently
sorted. You also want a group of algorithms to operate on that set. The
container is certainly a sequence, but not an associative container, since an

Rogue Wave Standard C++ Library User's Guide and Tutorial Building Containers & Generic Algorithms 167

associative container is, by definition, sorted. The algorithms will
presumably work on other sequences, assuming those sequences provide
appropriate iterator types, since the iterator required by a set of algorithms
determines the range of containers those algorithms can be applied to. The
algorithms will be universally available if they only require forward
iterators. On the other hand, they’ll be most restrictive if they require
random access iterators.

Simple implementations of this set container could make use existing
Standard Library containers for much of their mechanics. Three possible
ways of achieving this code re-use are:

• Inheritance;

• Generic inheritance;

• Generic composition.

Let's take a look at each of these approaches.

16.2.1 Inheritance

The new container could derive from an existing standard container, then
override certain functions to get the desired behavior. One approach would
be to derive from the vector container, as shown here:

#include <vector>

// note the use of a namespace to avoid conflicts with standard //
or global names

namespace my_namespace {

template <class T, class Allocator = std::allocator>
class set : public std::vector<T,Allocator>
{
public:
// override functions such as insert
 iterator insert (iterator position, const T& x)
 {
 if (find(begin(),end(),x) == end())
 return vector<T,Allocator>::insert(position,x);
 else
 return end(); // This value already present!
 }
…

};

} // End of my_namespace

168 Building Containers & Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

16.2.2 Generic Inheritance

A second approach is to create a generic adaptor, rather than specifying
vector. You do this by providing the underlying container through a
template parameter:

namespace my_namespace {

template <class T, class Container = std::vector<T> >
class set : public Container
{
public:
// Provide typedefs (iterator only for illustration)
 typedef typename Container::iterator iterator;

// override functions such as insert
 iterator insert (iterator position, const T& x)
 {
 if (find(begin(),end(),x) == end())
 return Container::insert(position,x);
 else
 return end(); // This value already present!
 }
…

};

} // End of my_namespace

If you use generic inheritance through an adaptor, the adaptor and users of
the adaptor cannot expect more than default capabilities and behavior from
any container used to instantiate it. If the adaptor or its users expect
functionality beyond what is required of a basic container, the
documentation must specify precisely what is expected.

16.2.3 Generic Composition

The third approach uses composition rather than inheritance. (You can see the
spirit of this approach in the Standard adaptors queue, priority_queue and
stack.) When you use generic composition, you have to implement all of
the desired interface. This option is most useful when you want to limit the
behavior of an adaptor by providing only a subset of the interface provided
by the container.

namespace my_namespace {

template <class T, class Container = std::vector<T> >
class set
{
protected:
 Container c;
public:
// Provide needed typedefs
 typedef typename Container::iterator iterator;

// provide all necessary functions such as insert
 iterator insert (iterator position, const T& x)

Rogue Wave Standard C++ Library User's Guide and Tutorial Building Containers & Generic Algorithms 169

 {
 if (find(c.begin(),c.end(),x) == c.end())
 return c.insert(position,x);
 else
 return c.end(); // This value already present!
 }
…

};

} // End of my_namespace

The advantages of adapting existing containers are numerous. For instance,
you get to reuse the implementation and reuse the specifications of the
container that you're adapting.

16.3 Creating Your Own Containers
All of the options that build on existing Standard C++ Library containers
incur a certain amount of overhead. When performance demands are
critical, or the container requirements very specific, there may be no choice
but to implement a container from scratch.

When building from scratch, there are three sets of design requirements that
you must meet:

• Container interface requirements;

• Allocator interface requirements;

• Iterator requirements.

We'll talk about each of these below.

16.3.1 Meeting the Container Requirements

The Standard C++ Library defines general interface requirements for
containers, and specific requirements for specialized containers. When you
create a container, the first part of your task is making sure that the basic
interface requirements for a container are met. In addition, if your container
will be a sequence or an associative container, you need to provide all
additional pieces specified for those categories. For anything but the
simplest container, this is definitely not a task for the faint of heart.

It’s very important to meet the requirements so that users of the container
will know exactly what capabilities to expect without having to read the
code directly. Review the sections on individual containers for information
about the container requirements.

170 Building Containers & Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

16.3.2 Meeting the Allocator Interface Requirements

A user-defined container will make use of the allocator interface for all
storage management. (An exception to this is a container that will exist in a
completely self-contained environment where there will be no need for
substitute allocators.)

The basic interface of an allocator class consists of a set of typedefs, a pair of
allocation functions, allocate and deallocate , and a pair of
construction/destruction members, construct and destroy . The typedefs
are used by a container to determine what pointers, references, sizes and
differences look like. (A difference is a distance between two pointers.) The
functions are used to do the actual management of data storage.

To use the allocator interface, a container must meet the following three
requirements.

1. A container needs to have a set of typedefs that look like the following:

 typedef Allocator allocator_type;
 typedef typename Allocator::size_type size_type;
 typedef typename Allocator::difference_type difference_type;
 typedef typename Allocator::types<T>::reference reference;
 typedef typename Allocator::types<T>::const_reference
 const_reference;
 typedef implementation_defined iterator;
 typedef implementation_defined iterator;

2. A container also needs to have an Allocator member that will contain a
copy the allocator argument provided by the constructors.

 protected:
 Allocator the_allocator;

3. A container needs to use that Allocator member for all storage
management. For instance, our set container might have a naïve
implementation that simply allocates a large buffer and then constructs
values on that buffer. Note that this not a very efficient mechanism, but
it serves as a simple example. We’re also going to avoid the issue of
Allocator::allocate throwing an exception, in the interest of brevity.

An abbreviated version of the set class appears below. The class interface
shows the required typedefs and the Allocator member for this class.

#include <memory>

namespace my_namespace {

template <class T, class Allocator = std::allocator>
class set
{
public:
 // typedefs and allocator member as above
 typedef Allocator allocator_type;
 typedef typename Allocator::size_type size_type;
 typedef typename Allocator::difference_type
 difference_type;
 typedef typename Allocator::types<T>::reference reference;

Rogue Wave Standard C++ Library User's Guide and Tutorial Building Containers & Generic Algorithms 171

 typedef typename Allocator::types<T>::const_reference
 const_reference;

 // Our iterator will be a simple pointer
 typedef Allocator::types<T>::pointer iterator;
 typedef Allocator::types<T>const_pointer iterator;

protected:
 Allocator the_allocator; // copy of the allocator

private:
 size_type buffer_size;
 iterator buffer_start;
 iterator current_end;
 iterator end_of_buffer;

public:
 // A constructor that initializes the set using a range
 // from some other container or array
 template <class Iterator>
 set(Iterator start, Iterator finish,
 Allocator alloc = Allocator());

 iterator begin() { return buffer_start; }
 iterator end() { return current_end; }
};

Given this class interface, here's a definition of a possible constructor that
uses the allocator. The numbered comments following this code briefly
describe the allocator's role. For a fuller treatment of allocators take a look at
the Tutorial and Class Reference sections for allocators.

template <class T, class Allocator>
template <class Iterator>
set<T,Allocator>::set(Iterator start, Iterator finish,
 Allocator alloc)
 : buffer_size(finish-start + DEFAULT_CUSHION),
 buffer_start(0),
 current_end(0), end_of_buffer(0)
{
 // copy the argument to our internal object
 the_allocator = alloc; // 1

 // Create an initial buffer
 buffer_start = the_allocator.allocate(buffer_size); // 2
 end_of_buffer = buffer_start + buffer_size;

 // construct new values from iterator range on the buffer
 for (current_end = buffer_start;
 start != finish;
 current_end++, start++)
 the_allocator.construct(current_end,*start); // 3

 // Now lets remove duplicates using a standard algorithm
 std::unique(begin(),end());
}

} // End of my_namespace

172 Building Containers & Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

//1 The allocator parameter is copied into a protected member of the
container. This private copy can then be used for all subsequent
storage management.

//2 An initial buffer is allocated using the allocator’s allocate function.

//3 The contents of the buffer are initialized using the values from the
iterator range supplied to the constructor by the start and finish

parameters. The construct function constructs an object at a particular
location. In this case the location is at an index in the container’s buffer.

16.3.3 Iterator Requirements

Every container must define an iterator type. Iterators allow algorithms to
iterate over the container's contents. Although iterators can range from
simple to very complex, it is the iterator category, not the complexity, that
most affects an algorithm. The iterator category describes capabilities of the
iterator, such as which direction it can traverse. The "Tips and Techniques"
section below, and the iterator entries in the reference provides additional
information about iterator categories.

The example in the previous section shows the implementation of a
container that uses a simple pointer. A simple pointer is actually an example
of the most powerful type of iterator: a random access iterator. If an iterator
supports random access, we can add to or subtract from it as easily as we
can increment it.

Some iterators have much less capability. For example , consider an iterator
attached to a singly-linked list. Since each node in the list has links leading
forward only, a naïve iterator can advance through the container in only one
direction. An iterator with this limitation falls into the category of forward
iterator.

Certain member functions such as begin() and end() produce iterators for a
container. A container’s description should always describe the category of
iterator that its member functions produce. That way, a user of the container
can see immediately which algorithms can operate successfully on the
container.

16.4 Tips and Techniques for Building Algorithms
This sections describes some techniques that use features of iterators to
increase the flexibility and efficiency of your algorithms.

16.4.1 The iterator_category Primitive

Sometimes an algorithm that can be implemented most efficiently with a
random access iterator can also work with less powerful iterators. The
Standard C++ Library includes primitives that allow a single algorithm to

Rogue Wave Standard C++ Library User's Guide and Tutorial Building Containers & Generic Algorithms 173

provide several different implementations, depending upon the power of
the iterator passed into it. The following example demonstrates the usual
technique for setting up multiple versions of the same algorithm.

// Note, this requires that the iterators be derived from
// Standard base types, unless the iterators are simple pointers.

namespace my_namespace {

template <class Iterator>
Iterator union(Iterator first1, Iterator last1,
 Iterator first2, Iterator last2,
 Iterator Result)
{
 return union_aux(first1,last1,first2,last2,Result,
 iterator_category(first1));
}

template <class Iterator>
Iterator union_aux(Iterator first1, Iterator last1,
 Iterator first2, Iterator last2,
 Iterator Result, forward_iterator_tag)
{
 // General but less efficient implementation
}

template <class Iterator>
Iterator union_aux(Iterator first1, Iterator last1,
 Iterator first2, Iterator last2,
 Iterator Result,
 random_access_iterator_tag)
{
 // More efficient implementation
}

} // End of my_namespace

The iterator primitive iterator_category() returns a tag that selects and
uses the best available implementation of the algorithm. In order for
iterator_category() to work, the iterator provided to the algorithm must
be either a simple pointer type, or derived from one of the basic Standard
C++ Library iterator types. When you use the iterator_category()

primitive, the default implementation of the algorithm should expect at most
a forward iterator. This default version will be used if the algorithm
encounters an iterator that is not a simple pointer or derived from a basic
standard iterator. (Note that input and output iterators are less capable than
forward iterators, but that the requirements of an algorithms generally
mandate read/write capabilities.)

16.4.2 The distance and advance Primitives

The value_type primitive lets you determine the type of value pointed to by
an iterator. Similarly, you can use the distance_type primitive to get a type
that represents distances between iterators.

174 Building Containers & Generic Algorithms Rogue Wave Standard C++ Library User's Guide and Tutorial

In order to efficiently find the distance between two iterators, regardless of
their capabilities, you can use the distance primitive. The distance

primitive uses the technique shown above to send a calling program to one
of four different implementations. This offers a considerable gain in
efficiency, since an implementation for a forward iterator must step through
the range defined by the two iterators:

Distance d = 0;
while (start++ != end)
 d++;

whereas an implementation for a random access iterator can simply subtract
the start iterator from the end iterator:

Distance d = end - start;

Similar gains are available with the advance primitive, which allows you to
step forward (or backward) an arbitrary number of steps as efficiently as
possible for a particular iterator.

S e c t i o n 17.
The Traits Parameter

17.1
Using the Traits Technique

176 The Traits Parameter Rogue Wave Standard C++ Library User's Guide and Tutorial

Consider the following problem. You have a matrix that must work for all
types of numbers, but the behavior of the matrix depends, in at least some
measure, on the type of number . This means your matrix can’t handle all
numbers in the same way.

Except for the behavioral difference, it sounds like the perfect problem for a
template. But you can’t hang extra information on the number type because
it’s often just a built-in type, so you can’t use a single template. The template
will do the same thing for every number type, which is just what we can’t do
in this case. You could specialize, but then you have to re-implement the
entire matrix class for every type of number. It may well be that most of the
class is the same. Worse yet, if you want to leave your interface open for use
with some unknown future type, you’re requiring that future user to
reimplement the entire class as well.

What you really want is to put everything that doesn’t change in one place,
and repeatedly specify only the small part that does change with the type.
The technique for doing this is generally referred to as using a traits
parameter.

17.1 Using thetTraits Technique
To implement a traits parameter for a class, you add it as an extra template
parameter to your class. You then supply a class for this parameter that
encapsulates all the specific operations. Usually that class is itself a
template.

As an example, let's look at the matrix problem described above. By using
the traits technique, when you want to add a new type to the matrix you
simply specialize the traits class, not the entire matrix. You do no more
work than you have to and retain the ability to use the matrix on any
reasonable number.

Here's how the matrix traits template and specializations for long and int

might look. The example also includes a skeleton of the matrix class that
uses the traits template.

template <class Num>
class matrix_traits
{
 // traits functions and literals
};

template <class Num, class traits>
class matrix
{
 // matrix
}

class matrix_traits<long>
{
 // traits functions and literals specific to long
};

Rogue Wave Standard C++ Library User's Guide and Tutorial The Traits Parameter 177

class matrix_traits<int>
{
 // traits functions and literals specific to int
};

… etc.

matrix<int, matrix_traits<int> > int_matrix;
matrix<long, matrix_traits<long> > long_matrix;

Of course you don’t even have to specialize on matrix_traits . You just
have to make sure you provide the interface that matrix expects from its
traits template parameter.

Most of the time, the operations contained in a traits class will be static
functions so that there’s no need to actually instantiate a traits object.

The Standard Library uses this technique to give the string class maximum
flexibility and efficiency across a wide range of types. The string traits class
provides elementary operations on character arrays. In the simplest case,
this means providing string a wstring with access to the ‘C’ library functions
for skinny and wide characters, for example Strcpy and wcstrcpy .

See the string_char_traits reference entry for a complete description of the
traits class.

S e c t i o n 18.
Exception Handling

18.1
Overview

18.2
The Standard Exception Hierarchy

18.3
Using Exceptions

18.4
Example Program

180 Exception Handling Rogue Wave Standard C++ Library User's Guide and Tutorial

18.1 Overview
The Standard C++ Library provides a set of classes for reporting errors.
These classes use the exception handling facility of the language. The library
implements a particular error model, which divides errors in two broad
categories: logic errors and runtime errors.

Logic errors are errors caused by problems in the internal logic of the
program. They are generally preventable.

Runtime errors, on the other hand, are generally not preventable, or at least
not predictable. These are errors generated by circumstances outside the
control of the program, such as peripheral hardware faults.

18.1.1 Include Files
#include <stdexcept>

18.2 The Standard Exception Hierarchy
The library implements the two-category error model described above with
a set of classes. These classes are defined in the stdexcept header file. They
can be used to catch exceptions thrown by the library and to throw
exceptions from your own code.

The classes are related through inheritance. The inheritance hierarchy looks
like this:

exception

 logic_error

 domain_error

 invalid_argument

 length_error

 out_of_range

 runtime_error

 range_error

 overflow_error

Classes logic_error and runtime_error inherit from class exception. All
other exception classes inherit from either logic_error or runtime_error.

Rogue Wave Standard C++ Library User's Guide and Tutorial Exception Handling 181

18.3 Using Exceptions
All exceptions thrown explicitly by any element of the library are
guaranteed to be part of the standard exception hierarchy. Review the
reference for these classes to determine which functions throw which
exceptions. You can then choose to catch particular exceptions, or catch any
that might be thrown (by specifying the base class exception).

For instance, if you are going to call the insert function on string with a
position value that could at some point be invalid, then you should use code
like this:

string s;
int n;
...
try
{
s.insert(n,"Howdy");
}
catch (const exception& e)
{
 // deal with the exception
}

To throw your own exceptions, simply construct an exception of an
appropriate type, assign it an appropriate message and throw it. For
example:

...
if (n > max)
 throw out_of_range("Your past the end, bud");

The class exception serves as the base class for all other exception classes.
As such it defines a standard interface. This interface includes the what()

member function, which returns a null-terminated string that represents the
message that was thrown with the exception. This function is likely to be
most useful in a catch clause, as demonstrated in the example program at the
end of this section.

The class exception does not contain a constructor that takes a message
string, although it can be thrown without a message. Calling what() on an
exception object will return a default message. All classes derived from
exception do provide a constructor that allows you to specify a particular
message.

To throw a base exception you would use the following code:

throw exception;

This is generally not very useful, since whatever catches this exception will
have no idea what kind of error has occurred. Instead of a base exception,
you will usually throw a derived class such as logic_error or one of its
derivations (such as out_of_range as shown in the example above). Better
still, you can extend the hierarchy by deriving your own classes. This allows

182 Exception Handling Rogue Wave Standard C++ Library User's Guide and Tutorial

you to provide error reporting specific to your particular problem. For
instance:

class bad_packet_error : public runtime_error
{
 public:
 bad_packet_error(const string& what);
};

if (bad_packet())
 throw bad_packet_error("Packet size incorrect");

This demonstrates how the Standard C++ exception classes provide you
with a basic error model. From this foundation you can build the right error
detection and reporting methods required for your particular application.

18.4 Example Program
This following example program demonstrates the use of exceptions.

#include <stdexcept>
#include <string>

static void f() { throw runtime_error("a runtime error"); }

int main ()
{
 string s;

 // First we'll try to incite then catch an exception from
 // the standard library string class.
 // We'll try to replace at a position that is non-existent.
 //
 // By wrapping the body of main in a try-catch block we can be
 // assured that we'll catch all exceptions in the exception
 // hierarchy. You can simply catch exception as is done below,
 // or you can catch each of the exceptions in which you have an
 // interest.
 try
 {
 s.replace(100,1,1,'c');
 }
 catch (const exception& e)
 {
 cout << "Got an exception: " << e.what() << endl;
 }

 // Now we'll throw our own exception using the function
 // defined above.
 try
 {
 f();
 }
 catch (const exception& e)
 {
 cout << "Got an exception: " << e.what() << endl;
 }

 return 0;
}

✍✍
Obtaining the
Sample Program.
This program can
be found in the
file
exceptn.cpp in
your code
distribution.

Rogue Wave Standard C++ Library User's Guide and Tutorial Exception Handling 183

S e c t i o n 19.
auto_ptr

19.1

Overview

19.2

Creating and Using Auto Pointers

19.3

Example Program

186 auto_ptr Rogue Wave Standard C++ Library User's Guide and Tutorial

19.1 Overview
The auto_ptr class wraps any pointer obtained through new and provides
automatic deletion of that pointer. The pointer wrapped by an auto_ptr
object is deleted when the auto_ptr itself is destroyed.

19.1.1 Include File

Include the memory header file to access the auto_ptr class.

#include <memory>

19.2 Declaration and Initialization of Auto Pointers
You attach an auto_ptr object to a pointer either by using one of the
constructors for auto_ptr, by assigning one auto_ptr object to another, or by
using the reset member function. Only one auto_ptr "owns" a particular
pointer at any one time, except for the NULL pointer (which all auto_ptrs
own by default). Any use of auto_ptr ' s copy constructor or assignment
operator transfers ownership from one auto_ptr object to another. For
instance, suppose we create auto_ptr a like this:

auto_ptr<string> a(new string);

The auto_ptr object a now "owns" the newly created pointer. When a is
destroyed (such as when it goes out of scope) the pointer will be deleted.
But, if we assign a to b, using the assignment operator:

auto_ptr<string> b = a;

b now owns the pointer. Use of the assignment operator causes a to release
ownership of the pointer. Now if a goes out of scope the pointer will not be
affected. However, the pointer will be deleted when b goes out of scope.

The use of new within the constructor for a may seem a little odd. Normally
we avoid constructs like this since it puts the responsibility for deletion on a
different entity than the one responsible for allocation. But in this case, the
auto_ptr ' s sole responsibility is to manage the deletion. This syntax is
actually preferable since it prevents us from accidentally deleting the pointer
ourselves.

Use operator* , operator-> , or the member function get() to access the
pointer held by an auto_ptr. For instance, we can use any of the three
following statements to assign "What's up Doc" to the string now pointed to
by the auto_ptr b.

*b = "What's up Doc";
*(b.get()) = "What's up Doc";
 b->assign("What's up Doc");

Rogue Wave Standard C++ Library User's Guide and Tutorial auto_ptr 187

auto_ptr also provides a release member function that releases ownership of
a pointer. Any auto_ptr that does not own a specific pointer is assumed to
point to the NULL pointer, so calling release on an auto_ptr will set it to the
NULL pointer. In the example above, when a is assigned to b, the pointer
held by a is released and a is set to the NULL pointer.

19.3 Example Program
This program illustrates the use of auto_ptr to ensure that pointers held in a
vector are deleted when they are removed. Often, we might want to hold
pointers to strings, since the strings themselves may be quite large and we'll
be copying them when we put them into the vector. Particularly in contrast
to a string, an auto_ptr is quite small: hardly bigger than a pointer. (Note
that the program runs as is because the vector includes memory.)

#include <vector>
#include <memory>
#include <string>

int main()
{
 {
 // First the wrong way
 vector<string*> v;
 v.insert(v.begin(), new string("Florence"));
 v.insert(v.begin(), new string("Milan"));
 v.insert(v.begin(), new string("Venice"));

 // Now remove the first element

 v.erase(v.begin());

 // Whoops, memory leak
 // string("Venice") was removed, but not deleted
 // We were supposed to handle that ourselves
 }
 {
 // Now the right way
 vector<auto_ptr<string> > v;
 v.insert(v.begin(),
 auto_ptr<string>(new string("Florence")));
 v.insert(v.begin(), auto_ptr<string>(new string("Milan")));
 v.insert(v.begin(), auto_ptr<string>(new string("Venice")));

 // Everything is fine since auto_ptrs transfer ownership of
 // their pointers when copied

 // Now remove the first element
 v.erase(v.begin());
 // Success
 // When auto_ptr(string("Venice")) is erased (and destroyed)
 // string("Venice") is deleted
 }

 return 0;
}

✍✍
Obtaining the
Sample Program.
You can find this
program in the file
autoptr.cpp in the
turorial
distribution.

S e c t i o n 20.
Complex

20.1

Overview

20.2

Creating and Using Complex Numbers

20.3

Example Program - Roots of a Polynomial

190 Complex Rogue Wave Standard C++ Library User's Guide and Tutorial

20.1 Overview
The class complex is a template class, used to create objects for representing
and manipulating complex numbers. The operations defined on complex
numbers allow them to be freely intermixed with the other numeric types
available in the C++ language, thereby permitting numeric software to be
easily and naturally expressed.

20.1.1 Include Files

Programs that use complex numbers must include the complex header file.

 # include <complex>

20.2 Creating and Using Complex Numbers
In the following sections we will describe the operations used to create and
manipulate complex numbers.

20.2.1 Declaring Complex Numbers

The template argument is used to define the types associated with the real
and imaginary fields. This argument must be one of the floating point
number data types available in the C++ language, either float , double , or
long double .

There are several constructors associated with the class. A constructor with
no arguments initializes both the real and imaginary fields to zero. A
constructor with a single argument initializes the real field to the given
value, and the imaginary value to zero. A constructor with two arguments
initializes both real and imaginary fields. Finally, a copy constructor can be
used to initialize a complex number with values derived from another
complex number.

 complex<double> com_one; // value 0 + 0i
 complex<double> com_two(3.14); // value 3.14 + 0i
 complex<double> com_three(1.5, 3.14) // value 1.5 + 3.14i
 complex<double> com_four(com_two); // value is also 3.14 + 0i

A complex number can be assigned the value of another complex number.
Since the one-argument constructor is also used for a conversion operator, a
complex number can also be assigned the value of a real number. The real
field is changed to the right hand side, while the imaginary field is set to
zero.

 com_one = com_three; // becomes 1.5 + 3.14i
 com_three = 2.17; // becomes 2.17 + 0i

The function polar() can be used to construct a complex number with the
given magnitude and phase angle.

Rogue Wave Standard C++ Library User's Guide and Tutorial Complex 191

 com_four = polar(5.6, 1.8);

The conjugate of a complex number is formed using the function conj() . If a
complex number represents x + iy , then the conjugate is the value x-iy .

 complex<double> com_five = conj(com_four);

20.2.2 Accessing Complex Number Values

The member functions real() and imag() return the real and imaginary
fields of a complex number, respectively. These functions can also be
invoked as ordinary functions with complex number arguments.

 // the following should be the same
 cout << com_one.real() << "+" << com_one.imag() << "i" << endl;
 cout << real(com_one) << "+" << imag(com_one) << "i" << endl;

20.2.3 Arithmetic Operations

The arithmetic operators +, -, *, and / can be used to perform addition,
subtraction, multiplication and division of complex numbers. All four work
either with two complex numbers, or with a complex number and a real
value. Assignment operators are also defined for all four.

 cout << com_one + com_two << endl;
 cout << com_one - 3.14 << endl;
 cout << 2.75 * com_two << endl;
 com_one += com_three / 2.0;

The unary operators + and - can also be applied to complex numbers.

20.2.4 Comparing Complex Values

Two complex numbers can be compared for equality or inequality, using the
operators == and !=. Two values are equal if their corresponding fields are
equal. Complex numbers are not well-ordered, and thus cannot be
compared using any other relational operator.

20.2.5 Stream Input and Output

Complex numbers can be written to an output stream, or read from an input
stream, using the normal stream I/O conventions. A value is written in
parentheses, either as (u) or (u,v), depending upon whether or not the
imaginary value is zero. A value is read as a set of parentheses surrounding
two numeric values.

20.2.6 Norm and Absolute Value

The function norm() returns the norm of the complex number. This is the
sum of the squares of the real and imaginary parts. The function abs()

✍✍
Functions and
Member Functions
Note that, with
the exception of
the member
functions real()
and imag(),
most operations
on complex
numbers are
performed using
ordinary functions,
not member
functions.

192 Complex Rogue Wave Standard C++ Library User's Guide and Tutorial

returns the absolute value, which is the square root of the norm. Note that
both are ordinary functions that take the complex value as an argument, not
member functions.

 cout << norm(com_two) << endl;
 cout << abs(com_two) << endl;

The directed phase angle of a complex number is yielded by the function
arg() .

 cout << com_four << " in polar coordinates is "
 << arg(com_four) << " and " << norm(com_four) << endl;

20.2.7 Trigonometric Functions

The trigonometric functions defined for floating point values (namely, sin() ,
cos() , tan() , asin() , acos() , atan() , sinh() , cosh(), and tanh()), have all
been extended to complex number arguments. Each takes a single complex
number as argument and returns a complex number as result. The function
atan2() takes two complex number arguments, or a complex number and a
real value (in either order), and returns a complex number result.

20.2.8 Transcendental Functions

The transcendental functions exp() , log() , log10() and sqrt() have been
extended to complex arguments. Each takes a single complex number as
argument, and returns a complex number as result.

The standard library defines several variations of the exponential function
pow() . Versions exist to raise a complex number to an integer power, to raise
a complex number to a complex power or to a real power, or to raise a real
value to a complex power.

20.3 Example Program −− Roots of a Polynomial
The roots of a polynomial a x 2 + b x + c = 0 are given by the formula:

x = (-b ± sqrt(b 2 - 4ac))/2a

The following program takes as input three double precision numbers, and
returns the complex roots as a pair of values.

typedef complex<double> dcomplex;

pair<dcomplex, dcomplex> quadratic
 (dcomplex a, dcomplex b, dcomplex c)
 // return the roots of a quadratic equation
{
 dcomplex root = sqrt(b * b - 4.0 * a * c);
 a *= 2.0;
 return make_pair(
 (-b + root)/a,
 (-b - root)/a);
}

✍✍
Obtaining the
Sample Program
This program is
found in the file
complx.cpp in
the distribution.

S e c t i o n 21.
Numeric Limits

21.1

Overview

21.2

Fundamental Data Types

21.3

Numeric Limit Members

194 Numeric Limits Rogue Wave Standard C++ Library User's Guide and Tutorial

21.1 Overview
A new feature of the C++ Standard Library is an organized mechanism for
describing the characteristics of the fundamental types provided in the
execution environment. In older C and C++ libraries, these characteristics
were often described by large collections of symbolic constants. For
example, the smallest representable value that could be maintained in a
character would be found in the constant named CHAR_MIN, while the similar
constant for a short would be known as SHRT_MIN, for a float FLT_MIN, and
so on.

The template class numeric_limits provides a new and uniform way of
representing this information for all numeric types. Instead of using a
different symbolic name for each new data type, the class defines a single
static function, named min() , which returns the appropriate values.
Specializations of this class then provide the exact value for each supported
type. The smallest character value is in this fashion yielded as the result of
invoking the function numeric_limits<char>::min() , while the smallest
floating point value is found by invoking numeric_limits<float>::min() ,
and so on.

Solving this problem by using a template class not only greatly reduces the
number of symbolic names that need to be defined to describe the operating
environment, but it also ensures consistency between the descriptions of the
various types.

21.2 Fundamental Data Types
The standard library describes a specific type by providing a specialized
implementation of the numeric_limits class for the type. Static functions
and static constant data members then provide information specific to the
type. The standard library includes descriptions of the following
fundamental data types.

bool char int float

signed char short double

unsigned char long long double

wchar_t unsigned short

unsigned int

unsigned long

Certain implementations may also provide information on other data types.
Whether or not an implementation is described can be discovered using the
static data member field is_specialized . For example, the following is

✍✍
Two Mechanisms,
One Purpose
For reasons of
compatibility, the
numeric_limits
mechanism is
used as an
addition to the
symbolic
constants used in
older C++ libraries,
rather than a strict
replacement.
Thus both
mechanisms will,
for the present,
exist in parallel.
However, as the
numeric_limits
technique is more
uniform and
extensible, it
should be
expected that
over time the
older symbolic
constants will
become
outmoded.

Rogue Wave Standard C++ Library User's Guide and Tutorial Numeric Limits 195

legal, and will indicate that the string data type is not described by this
mechanism.

cout << "are strings described " <<
 numeric_limits<string>::is_specialized << endl;

For data types that do not have a specialization, the values yielded by the
functions and data fields in numeric_limits are generally zero or false.

21.3 Numeric Limit Members
Since a number of the fields in the numeric_limits structure are meaningful
only for floating point values, it is useful to separate the description of the
members into common fields and floating-point specific fields.

21.3.1 Members Common to All Types

The following table summarizes the information available through the
numeric_limits static member data fields and functions.

Type Name Meaning
bool is_specialized true if a specialization exists, false

otherwise

T min() smallest finite value

T max() largest finite value

int radix the base of the representation

int digits number of radix digits that can be
represented without change

int digits10 number of base-10 digits that can be
represented without change

bool is_signed true if the type is signed

bool is_integer true if the type is integer

bool is_exact true if the representation is exact

bool is_bounded true if representation is finite

bool is_modulo true if type is modulo

bool traps true if trapping is implemented for the
type

Radix represents the internal base for the representation. For example, most
machines use a base 2 radix for integer data values, however some may also
support a representation, such as BCD, that uses a different base. The

196 Numeric Limits Rogue Wave Standard C++ Library User's Guide and Tutorial

digits field then represents the number of such radix values that can be
held in a value. For an integer type, this would be the number of non-sign
bits in the representation.

All fundamental types are bounded. However, an implementation might
choose to include, for example, an infinite precision integer package that
would not be bounded.

A type is modulo if the value resulting from the addition of two values can
wrap around, that is, be smaller than either argument. The fundamental
unsigned integer types are all modulo.

21.3.2 Members Specific to Floating Point Values

The following members are either specific to floating point values, or have a
meaning slightly different for floating point values than the one described
earlier for non-floating data types.

Type Name Meaning
T min() the minimum positive normalized

value
int digits the number of digits in the

mantissa
int radix the base (or radix) of the exponent

representation
T epsilon() the difference between 1 and the

least representable value greater
than 1

T round_error() a measurement of the rounding
error

int min_exponent minimum negative exponent
int min_exponent10 minimum value such that 10

raised to that power is in range
int max_exponent maximum positive exponent
int max_exponent10 maximum value such that 10

raised to that power is in range
bool has_infinity true if the type has a

representation of positive infinity
T infinity() representation of infinity, if

available
bool has_quiet_NaN true if there is a representation of a

quiet ``Not a Number”
T quiet_NaN() representation of quiet NaN, if

available
bool has_signaling_NaN true if there is a representation for

Rogue Wave Standard C++ Library User's Guide and Tutorial Numeric Limits 197

Type Name Meaning
a signaling NaN

T signaling_NaN() representation of signaling NaN, if
available

bool has_denorm true if the representation allows
denormalized values

T denorm_min() Minimum positive denormalized
value

bool is_iec559 true if representation adheres to
IEC 559 standard.

bool tinyness_before true if tinyness is detected before
rounding

round_style rounding style for type

For the float data type, the value in field radix , which represents the base
of the exponential representation, is equivalent to the symbolic constant
FLT_RADIX.

For the types float, double and long double the value of epsilon is also
available as FLT_EPSILON, DBL_EPSILON , and LDBL_EPSILON.

A NaN is a “Not a Number.” It is a representable value that nevertheless
does not correspond to any numeric quantity. Many numeric algorithms
manipulate such values.

The IEC 559 standard is a standard approved by the International
Electrotechnical Commission. It is the same as the IEEE standard 754.

Value returned by the function round_style() is one of the following:
round_indeterminate, round_toward_zero, round_to_nearest,
round_toward_infinity , or round_toward_neg_infinity.

Class Reference

200 Standard C++ Library Class Reference

This reference guide is an alphabetical listing of all of the classes, algorithms,
and function objects provided by this release of Rogue Wave's Standard C++
Library. The gray band on the first page of each entry indicates the category
(e.g., Algorithms, Containers, etc.) that the entry belongs to.

The tables on the next few pages list the contents organized by category.

For each class, the reference begins with a brief summary of the class; a
synopsis, which indicates the header file(s); and the signature of a class
object. The reference continues with a text description of the class followed
by the C++ code that describes the class interface. Next, all methods
associated with a class, including constructors, operators, member functions,
etc. are grouped in categories according to their general use and described.
The categories are not a part of the C++ language, but do provide a way of
organizing the methods. Following the member function descriptions, many
of the classes include examples. Finally, any warnings associated with using
the class are described.

Throughout the documentation, there are frequent references to “self,”
which should be understood to mean “*this ”.

The information presented in this reference conforms with the requirements
of the ANSI X3J16/ISO WG21 Joint C++ Committee.

Standards
Conformance

Standard C++ Library Class Reference 201

Algorithms

#include <algorithm>

adjacent_find
binary_search
copy
copy_backward
count
count_if
equal
equal_range
fill
fill_n
find
find_end
find_first_of
find_if
for_each
generate
generate_n
includes
inplace_merge
iter_swap
lexicographical_compare
lower_bound
make_heap
max
max_element
merge
min
min_element
mismatch
next_permutation
nth_element
partial_sort
partial_sort_copy
partition
pop_heap
prev_permutation
push_heap
random_shuffle
remove
remove_copy
remove_copy_if
remove_if
replace

202 Standard C++ Library Class Reference

replace_copy
replace_copy_if
replace_if
reverse
reverse_copy
rotate
rotate_copy
search
search_n
set_difference
set_intersection
set_symmetric_difference
set_union
sort
sort_heap
stable_partition
stable_sort
swap
swap_ranges
transform
unique
unique_copy
upper_bound

Complex Number Library

#include <complex>

complex

Containers

#include <bitset>
#include <deque>
#include <list>
#include <map> for map
and multimap
#include <queue> for
queue and priority_queue
#include <set> for set and
multiset
#include <stack>
#include <vector>

bitset
deque
list
map
multimap
multiset
priority_queue
queue
set
stack
vector

Standard C++ Library Class Reference 203

Function Adaptors

#include <functional>

bind1st
bind2nd
not1
not2
ptr_fun

Function Objects

#include <functional>

binary_function
binary_negate
binder1st
binder2nd
divides
equal_to
greater
greater_equal
less
less_equal
logical_and
logical_not
logical_or
minus
modulus
negate
not_equal_to
plus
pointer_to_binary-function
pointer_to_unary_function
times
unary_function
unary_negate

Generalized Numeric
Operations

#include <numeric>

accumulate
adjacent_difference
accumulate
inner_product
partial_sum

Insert Iterators

#include <iterator>

back_insert_iterator
back_inserter
front_insert_iterator
front_inserter
insert_iterator
inserter

204 Standard C++ Library Class Reference

Iterators

#include <iterator>

bidirectional iterator
forward iterator
input iterator
output iterator
random access iterator
reverse_bidirectional_iterator
reverse_iterator

Iterator operations

#include <iterator>

advance
distance

Memory Handling
Primitives

#include <memory>

get_temporary_buffer
return_temporary_buffer

Memory Management

#include <memory>

allocator
auto_ptr
raw_storage_iterator
uninitialized_copy
uninitialized_fill
uninitialized_fill_n

Numeric Limits Library

#include <limits>

numeric limits

String Library

#include <string>

basic_string
string
wstring

Utility Classes

#include <utility>

pair

Utility Operators

#include <utility>

operator!=
operator>
operator<=
operator>=

Standard C++ Library Class Reference 205

accumulate

Generalized Numeric Operation

Accumulate all elements within a range into a single value.

#include <numeric>
template <class InputIterator, class T>
T accumulate (InputIterator first,
 InputIterator last,
 T init);

template <class InputIterator,
 class T,
 class BinaryOperation>
T accumulate (InputIterator first,
 InputIterator last,
 T init,
 BinaryOperation binary_op);

accumulate applies a binary operation to init and each value in the range
[first,last). The result of each operation is returned in init . This
process aggregates the result of performing the operation on every element
of the sequence into a single value.

Accumulation is done by initializing the accumulator acc with the initial
value init and then modifying it with acc = acc + *i or acc =

binary_op(acc, *i) for every iterator i in the range [first, last) in
order. If the sequence is empty, accumulate returns init .

accumulate performs exactly last-first applications of the binary
operation (operator+ by default).

//
// accum.cpp
//
 #include <numeric> //for accumulate
 #include <vector> //for vector
 #include <functional> //for times
 #include <iostream.h>

 int main()
 {
 //
 //Typedef for vector iterators
 //
 typedef vector<int>::iterator iterator;
 //
 //Initialize a vector using an array of ints
 //

Summary

Synopsis

Description

Complexity

Example

accumulate

206 Standard C++ Library Class Reference

 int d1[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v1(d1, d1+10);
 //
 //Accumulate sums and products
 //
 int sum = accumulate(v1.begin(), v1.end(), 0);
 int prod = accumulate(v1.begin(), v1.end(),
 1, times<int>());
 //
 //Output the results
 //
 cout << "For the series: ";
 for(iterator i = v1.begin(); i != v1.end(); i++)
 cout << *i << " ";

 cout << " where N = 10." << endl;
 cout << "The sum = (N*N + N)/2 = " << sum << endl;
 cout << "The product = N! = " << prod << endl;
 return 0;
 }
Output :
For the series: 1 2 3 4 5 6 7 8 9 10 where N = 10.
The sum = (N*N + N)/2 = 55
The product = N! = 3628800

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

Warnings

Standard C++ Library Class Reference 207

adjacent_difference

Generalized Numeric Operation

Outputs a sequence of the differences between each adjacent pair of elements
in a range.

#include <numeric>

template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference (InputIterator first,
 InputIterator last,
 OutputIterator result);

template <class InputIterator,
 class OutputIterator,
 class BinaryOperation>
OutputIterator adjacent_difference (InputIterator first,
 InputIterator last,
 OutputIterator result,
 BinaryOperation bin_op);

Informally, adjacent_difference fills a sequence with the differences
between successive elements in a container. The result is a sequence in
which the first element is equal to the first element of the sequence being
processed, and the remaining elements are equal to the the calculated
differences between adjacent elements. For instance, applying
adjacent_difference to {1,2,3,5} will produce a result of {1,1,1,2}.

By default, subtraction is used to compute the difference, but you can supply
any binary operator. The binary operator is then applied to adjacent
elements. For example, by supplying the plus (+) operator, the result of
applying adjacent_difference to {1,2,3,5} is the sequence {1,3,5,8}.

Formally, adjacent_difference assigns to every element referred to by
iterator i in the range [result + 1, result + (last - first)) a value
equal to the appropriate one of the following:

*(first + (i - result)) - *(first + (i - result) - 1)

 or

binary_op (*(first + (i - result)), *(first + (i - result) - 1))

result is assigned the value of *first .

adjacent_difference returns result + (last - first) .

result can be equal to first . This allows you to place the results of
applying adjacent_difference into the original sequence.

Summary

Synopsis

Description

adjacent_difference

208 Standard C++ Library Class Reference

This algorithm performs exactly (last-first) - 1 applications of the
default operation (-) or binary_op .

//
// adj_diff.cpp
//
 #include<numeric> //For adjacent_difference
 #include<vector> //For vector
 #include<functional> //For times
 #include <iostream.h>

 int main()
 {
 //
 //Initialize a vector of ints from an array
 //
 int arr[10] = {1,1,2,3,5,8,13,21,34,55};
 vector<int> v(arr,arr+10);
 //
 //Two uninitialized vectors for storing results
 //
 vector<int> diffs(10), prods(10);
 //
 //Calculate difference(s) using default operator (minus)
 //
 adjacent_difference(v.begin(),v.end(),diffs.begin());
 //
 //Calculate difference(s) using the times operator
 //
 adjacent_difference(v.begin(), v.end(), prods.begin(),
 times<int>());
 //
 //Output the results
 //
 cout << "For the vector: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 cout << "The differences between adjacent elements are: "
 << endl << " ";
 copy(diffs.begin(),diffs.end(),
 ostream_iterator<int>(cout," "));
 cout << endl << endl;

 cout << "The products of adjacent elements are: "
 << endl << " ";
 copy(prods.begin(),prods.end(),
 ostream_iterator<int>(cout," "));

 cout << endl;

 return 0;

Ouput :
For the vector:
 1 1 2 3 5 8 13 21 34 55
The differences between adjacent elements are:
 1 0 1 1 2 3 5 8 13 21
The products of adjacent elements are:
 1 1 2 6 15 40 104 273 714 1870

Complexity

Example

adjacent_difference

Standard C++ Library Class Reference 209

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

Warning

Standard C++ Library Class Reference 211

adjacent_find

Algorithm

Find the first adjacent pair of elements in a sequence that are equivalent.

#include <algorithm>

template <class ForwardIterator>
 ForwardIterator
 adjacent_find(ForwardIterator first, ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>
 ForwardIterator
 adjacent_find(ForwardIterator first, ForwardIterator last,
 BinaryPredicate pred);

There are two versions of the adjacent_find algorithm. The first finds equal
adjacent elements in the sequence defined by iterators first and last and
returns an iterator i pointing to the first of the equal elements. The second
version lets you specify your own binary function to test for a condition. It
returns an iterator i pointing to the first of the pair of elements that meet the
conditions of the binary function. In other words, adjacent_find returns the
first iterator i such that both i and i + 1 are in the range [first, last)

for which one of the following conditions holds:

 *i == *(i + 1)

or

pred(*i,*(i + 1)) == true

If adjacent_find does not find a match, it returns last .

adjacent_find performs exactly find(first,last,value) - first

applications of the corresponding predicate.

//
// find.cpp
//
#include <vector>
#include <algorithm>
#include <iostream.h>

 int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[10] = {0,1,2,2,3,4,2,2,6,7};

Summary

Synopsis

Description

Complexity

Example

adjacent_find

212 Standard C++ Library Class Reference

 // Set up a vector
 vector<int> v1(d1,d1 + 10);

 // Try find
 iterator it1 = find(v1.begin(),v1.end(),3);

 // Try find_if
 iterator it2 =
 find_if(v1.begin(),v1.end(),bind1st(equal_to<int>(),3));

 // Try both adjacent_find variants
 iterator it3 = adjacent_find(v1.begin(),v1.end());

 iterator it4 =
 adjacent_find(v1.begin(),v1.end(),equal_to<int>());

 // Output results
 cout << *it1 << " " << *it2 << " " << *it3 << " "
 << *it4 << endl;

 return 0;
 }

Output :
3 3 2 2

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>
instead of:

vector<int>

find

Warning

See Also

Standard C++ Library Class Reference 213

advance

Iterator Operation

Move an iterator forward or backward (if available) by a certain distance.

#include <iterator>

template <class InputIterator, class Distance>
void advance (InputIterator& i, Distance n);

The advance template function allows an iterator to be advanced through a
container by some arbitrary distance. For bidirectional and random access
iterators, this distance may be negative. This function uses operator+ and
operator- for random access iterators, which provides a constant time
implementation. For input, forward, and bidirectional iterators, advance
uses operator ++ to provide linear time implementations. advance also
uses operator -- with bidirectional iterators to provide linear time
implementations of negative distances.

If n is positive, advance increments iterator reference i by n. For negative
n, advance decrements reference i . Remember that advance accepts a
negative argument n for random access and bidirectional iterators only.

//
// advance.cpp
//
 #include<iterator>
 #include<list>
 #include<iostream.h>

 int main()
 {

 //
 //Initialize a list using an array
 //
 int arr[6] = {3,4,5,6,7,8};
 list<int> l(arr,arr+6);
 //
 //Declare a list iterator, s.b. a ForwardIterator
 //
 list<int>::iterator itr = l.begin();
 //
 //Output the original list
 //
 cout << "For the list: ";
 copy(l.begin(),l.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

Summary

Synopsis

Description

Example

advance

214 Standard C++ Library Class Reference

 cout << "When the iterator is initialized to l.begin(),"
 << endl << "it points to " << *itr << endl << endl;
 //
 // operator+ is not available for a ForwardIterator,
 // so use advance.
 //

 advance(itr, 4);
 cout << "After advance(itr,4), the iterator points to "
 << *itr << endl;
 return 0;
 }

Output :
For the list: 3 4 5 6 7 8
When the iterator is initialized to l.begin(),
it points to 3
After advance(itr,4), the iterator points to 7

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

sequence, random_iterator, distance

Warnings

See Also

Standard C++ Library Class Reference 215

Algorithms

Generic algorithms for performing various operations on containers and
sequences.

#include <algorithm>

The synopsis of each algorithm appears in its entry in the reference guide.

The Standard C++ Library provides a very flexible framework for applying
generic algorithms to containers. The library also provides a rich set of these
algorithms for searching, sorting, merging, transforming, scanning, and
much more.

Each algorithm can be applied to a variety of containers, including those
defined by a user of the library. The following design features make
algorithms generic:

• Generic algorithms access the collection through iterators

• Algorithms are templatized on iterator types

• Each algorithm is designed to require the least number of services from
the iterators it uses

In addition to requiring certain iterator capabilities, algorithms may require
a container to be in a specific state. For example, some algorithms can only
work on previously sorted containers.

Because most algorithms rely on iterators to gain access to data, they can be
grouped according to the type of iterator they require, as is done in the
Algorithms by Iterator section below. They can also be grouped according to
the type of operation they perform.

Algorithms by Mutating/Non-mutating Function

The broadest categorization groups algorithms into two main types:
mutating and non-mutating. Algorithms that alter (or mutate) the contents
of a container fall into the mutating group. All others are considered non-
mutating. For example, both fill and sort are mutating algorithms, while find
and for_each are non-mutating.

Summary

Synopsis

Description

Algorithms

216 Standard C++ Library Class Reference

Non-mutating operations

accumulate find_end max_element
adjacent_find find_first_of min
binary_search find_if min_element
count_min for_each mismatch
count_if includes nth_element
equal lexicographical_compa

re
search

eqaul_range lower_bound search_n
find max

Mutating operations

copy remove_if
copy_backward replace
fill replace_copy
fill_n replace_copy_if
generate replace_if
generate_n reverse
inplace_merge reverse_copy
iter_swap rotate
make_heap rotate_copy
merge set_difference
nth_element set_symmetric_difference
next_permutation set_intersection
partial_sort set_union
partial_sort_copy sort
partition sort_heap
prev_permutation stable_partition
push_heap stable_sort
pop_heap swap
random_shuffle swap_ranges
remove transform
remove_copy unique
remove_copy_if unique_copy

Note that the library provides both in place and copy versions of many
algorithms, such as replace and replace_copy. The library also provides
versions of algorithms that allow the use of default comparators and
comparators supplied by the user. Often these functions are overloaded, but
in some cases (where overloading proved impractical or impossible) the
names differ (e.g., replace, which will use equality to determine
replacement, and replace_if, which accesses a user provided compare
function).

Algorithms by Operation

We can further distinguish algorithms by the kind of operations they
perform. The following lists all algorithms by loosely grouping them into
similar operations.

Algorithms

Standard C++ Library Class Reference 217

Initializing operations

fill generate
fill_n generate_n

Search operations

adjacent_find find_end search_n
count find_if
count_if find_first_of
find search

Binary search operations (Elements must be sorted)

binary_search lower_bound
equal_range upper_bound

Compare operations

equal mismatch
lexicographical_compare

Copy operations

copy copy_backward

Transforming operations

partition reverse
random_shuffle reverse_copy
replace rotate
replace_copy rotate_copy
replace_copy_if stable_partition
replace_if transform

Swap operations

swap swap_ranges

Scanning operations

accumulate for_each

Remove operations

remove remove_if
remove_copy unique
remove_copy_if unique_copy

Algorithms

218 Standard C++ Library Class Reference

Sorting operations

nth_element sort
partial_sort stable_sort
partial_sort_copy

Merge operations (Elements must be sorted)

inplace_merge merge

Set operations (Elements must be sorted)

includes set_symmetric_difference
set_difference set_union
set_intersection

Heap operations

make_heap push_heap
pop_heap sort_heap

Minimum and maximum

max min
max_element min_element

Permutation generators

next_permutation prev_permutation

Algorithms by Iterator Category

Each algorithm requires certain kinds of iterators (for a description of the
iterators and their capabilities see the Iterator entry in this manual). The
following set of lists groups the algorithms according to the types of iterators
they require.

Algorithms that use no iterators:

 max min swap

Algorithms that require only input iterators:

 accumulate find mismatch
 count find_if
 count_if includes
 equal inner_product
 for_each lexicographical_compare

Algorithms

Standard C++ Library Class Reference 219

Algorithms that require only output iterators:

 fill_n generate_n

Algorithms that read from input iterators and write to output iterators:

 adjacent_difference replace_copy transform
 copy replace_copy_if unique_copy
 merge set_difference
 partial_sum set_intersedtion
 remove_copy set_symmetric_difference
 remove_copy_if set_union

Algorithms that require forward iterators:

 adjacent_find iter_swap replace_if
 binary_search lower_bound rotate
 equal_range max_element search
 fill min_element search_n
 find_end remove swap_ranges
 find_first_of remove_if unique
 generate replace upper_bound

Algorithms that read from forward iterators and write to output iterators:

 rotate_copy

Algorithms that require bidirectional iterators

 copy_backward partition
 inplace_merge prev_permutation
 next_permutation reverse
 stable_permutation

Algorithms that read from bidirectional iterators and write to output
iterators:

 reverse_copy

Algorithms that require random access iterators:

 make_heap pop_heap sort
 nth_element push_heap sort_heap
 partial_sort random_shuffle stable_sort

Algorithms that read from input iterators and write to random access
iterators:

 partial_sort_copy

Algorithms

220 Standard C++ Library Class Reference

The complexity for each of these algorithms is given in the manual page for
that algorithm.

Manual pages for each of the algorithms named in the lists above.

Complexity

See Also

Standard C++ Library Class Reference 221

allocator

The default allocator object for storage management in Standard Library
containers.

#include <memory>
class allocator;

Containers in the Standard Library allow you control of storage
management through the use of allocator objects. Each container has an
allocator template parameter specifying the type of allocator to be used.
Every constructor, except the copy constructor, provides an allocator
parameter, allowing you to pass in a specific allocator. A container uses that
allocator for all storage management.

The library provides a default allocator, called allocator . This allocator
uses the global new and delete operators. By default, all containers use this
allocator. You can also design your own allocator, but if you do so it must
provide an appropriate interface. The standard interface and an alternate
interface are specified below. The alternate interface will work on all
supported compilers.

The Alternate Allocator

As of this writing, very few compilers support the full range features needed
by the standard allocator. If your compiler does not support member
templates (both classes and functions) then you must use the alternate
allocator interface we provide. This alternate interface requires no special
features of a compiler and offers most of the functionality of the standard
allocator interface. The only thing missing is the ability to use special pointer
and reference types. The alternate allocator fixes these as T* and T&. If your
compiler supports partial specialization then even this restriction is
removed.

From outside a container, use of the alternate allocator is transparent. Simply
pass the allocator as a template or function parameter exactly as you would
the standard allocator.

Within a container, the alternate allocator interface is more compilicated to
use because it requires two separate classes, rather than one class with
another class nested inside. If you plan to write your own containers and

Summary

Synopsis

Description

allocator

222 Standard C++ Library Class Reference

need to use the alternate allocator interface, we recommend that you support
the default interface as well, since that is the only way to ensure long-term
portability. See the User's Guide section on building containers for an
explanation of how to support both the standard and the alternate allocator
interfaces.

A generic allocator must be able to allocate space for objects of arbitrary
type, and it must be able to construct those objects on that space. For this
reason the allocator must be type aware; but it must be aware on any
arbitrary number of different types, since there is no way to predict the
storage needs of any given container.

Consider an ordinary template. Although you may be able to instantiate on
any fixed number of types, the resulting object is aware of only those types
and any other types that can be built up from them (T* , for instance), as well
as any types you specify up front. This won't work for an allocator, because
you can't make any assumptions about the types a container will need to
construct. It may well need to construct Ts (or it may not), but it may also
need to allocate node objects and other data structures necessary to manage
the contents of the container. Clearly there is no way to predict what an
arbitrary container might need to construct. As with everything else within
the Standard Library, it is absolutely essential to be fully generic.

The Standard Allocator interface solves the problem with member templates.
The precise type that you are going to construct is not specified when you
create an allocator but when you actually go to allocate space or construct an
object on existing space. This clever solution is well ahead of nearly all
existing compiler implementations.

Rogue Wave's alternative allocator interface uses a different technique. The
alternate interface breaks the allocator into two pieces: an interface and an
implementation. The implementation is a simple class providing raw un-
typed storage. Anything can be constructed on it. The interface is a template
class containing a pointer to an implementation. The interface template types
the raw memory provided by the implementation based on the template
parameter. Only the implementation object is passed into a container. The
container constructs interface objects as necessary, using the provided
implementation) to manage the storage of data.

Since all interface objects use the one copy of the implementation object to
allocate space, that one implementation object manages all storage aquisition
for the container. The container makes calls to the allocator_interface
objects in the same way it would make calls to a standard allocator object.

For example, if your container needs to allocate T objects and node objects,
you need to have two allocator_interface objects in your container:

allocator

Standard C++ Library Class Reference 223

allocator_interface<Allocator,T> value_allocator;
allocator_interface<Allocator,node> node_allocator;

You then use the value_allocator for all allocation, construction, etc. of
values (Ts), and use the node_allocator object to allocate and deallocate
nodes.

The only significant drawback is the inability to provide special pointer
types and alter the behavior of the construct and destroy functions
provided by an allocator, since these must reside in the interface class. If
your compiler provides partial specialization then this restriction goes away,
since you can provide specialized interface’s along with your
implementation.

class allocator; {
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 template <class T> struct types
 {
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 };

 allocator ();
 ~allocator ();
 template <class T> typename types<T>::pointer
 address (typename types<T>::reference) const;
 template<class T> typename types<T>::const_pointer
 address (typename types<T>::const_reference) const;
 template<class T, class U> typename types<T>::pointer
 allocate (size_type,typename types<U>::const_pointer = 0);
 template<class T> void deallocate(typename types<T>::pointer);
 template<class T> size_type max_size () const;
 template <class T1, class T2>
 void construct (T1*, const T2&);
 template <class T>
 void destroy (T*)
};
// specialization
class allocator::types <void>
{
 typedef void* pointer;
 typedef const void* const_pointer;
 typedef void value_type;
};
// globals
inline void * operator new (size_t, allocator&)
inline bool operator== (const allocator&, const allocator&)

Standard
Interface

allocator

224 Standard C++ Library Class Reference

size_type
Type used to hold the size of an allocated block of storage.

difference_type
Type used to hold values representing distances between storage
addresses.

types<T>::pointer
Type of pointer returned by allocator.

types<T>::const_pointer
Const version of pointer .

types<T>::reference
Type of reference to allocated objects.

const_reference
Const version of reference .

value_type
Type of allocated object.

allocator ()
Default constructor.

allocator ()
Destructor.

template <class T> typename types<T>::pointer
address (typename types<T>::reference x) const

Return the address of the reference x as a pointer.

template<class T> typename types<T>::const_pointer
address (typename types<T>::const_reference x) const;

Return the address of the reference x as a const_pointer .

template<class T, class U> typename types<T>::pointer
allocate (size_type n, typename types<U>::const_pointer p = 0)

Allocate storage. Returns a pointer to the first element in a block of storage
n*sizeof(T) bytes in size. The block will be aligned appropriately for
objects of type T. Throws the exception bad_alloc if the storage is
unavailable. This function uses operator new(size_t) . The second
parameter p can be used by an allocator to localize memory allocation, but
the default allocator does not use it.

Types

Operations

allocator

Standard C++ Library Class Reference 225

template<class T>
void deallocate(typename types<T>::pointer p)

Deallocate the storage indicated by p. The storage must have been
obtained by a call to allocate .

template<class T>
size_type max_size () const;

Returns the largest size for which a call to allocate might succeed.

template <class T1, class T2>
void construct (T1* p, const T2& val);

Construct an object of type T2 with the inital value of val at the location
specified by p. This function calls the placement new operator.

template <class T>
void destroy (T* p)

Call the destructor on the object pointed to by p, but do not delete.

class allocator
{
public:
typedef size_t size_type ;
typedef ptrdiff_t difference_type ;
 allocator ();
 ~allocator (); .
void * allocate (size_type, void * = 0);
void deallocate (void*);
};
template <class Allocator,class T>
class allocator_interface .
{
 public:
 typedef Allocator allocator_type ;
 typedef T* pointer ; .
 typedef const T* const_pointer ;
 typedef T& reference ; .
 typedef const T& const_reference ;
 typedef T value_type ; .
 typedef typename Allocator::size_type size_type ;
 typedef typename Allocator::size_type difference_type ;

protected:
 allocator_type* alloc_;

public:
 allocator_interface ();
 allocator_interface (Allocator*);
 void alloc (Allocator*);
 pointer address (T& x);
 size_type max_size () const;
 pointer allocate (size_type, pointer = 0);
 void deallocate (pointer);
 void construct (pointer, const T&);
 void destroy (T*);

Alternate
Interface

allocator

226 Standard C++ Library Class Reference

};
//
// Specialization
//
class allocator_interface <allocator,void>
 {
 typedef void* pointer ;
 typedef const void* const_pointer ;
 };

The description for the operations of allocator_interface<T> are the same
as for corresponding operations of the standard allocator, except that
allocator_interface members allocate and deallocate call respective
functions in allocator , which are in turn implemented as are the standard
allocator functions.

See the container section of the Class Reference for a further description of
how to use the alternate allocator within a user-defined container.

container

Alternate
Allocator

Description

See Also

Standard C++ Library Class Reference 227

associative containers

Associative containers are ordered containers. These containers provide
member functions that allow the efficient insertion, retrieval and
manipulation of keys. The standard library provides the map, multimap,
set and multiset associative containers. map and multimap associate values
with the keys and allow for fast retrieval of the value, based upon fast
retrieval of the key. set and multiset store only keys, allowing fast retrieval
of the key itself.

For more information about associative containers, see the Containers
section of this reference guide, or see the section on the specific container.

Summary

See Also

Standard C++ Library Class Reference 229

auto_ptr

Memory Management

A simple, smart pointer class.

#include <memory>
template <class X> class auto_ptr;

The template class auto_ptr holds onto a pointer obtained via new and
deletes that object when the auto_ptr object itself is destroyed (such as when
leaving block scope). auto_ptr can be used to make calls to operator new

exception-safe. The auto_ptr class provides semantics of strict ownership:
an object may be safely pointed to by only one auto_ptr, so copying an
auto_ptr copies the pointer and transfers ownership to the destination.

template <class X> class auto_ptr {

 public:

 // constructor/copy/destroy

 explicit auto_ptr (X* = 0);
 auto_ptr (const auto_ptr<X>&);
 void operator= (const auto_ptr<X>&);
 ~auto_ptr ();

 // members

 X& operator* () const;
 X* operator-> () const;
 X* get () const;
 X* release ();
 void reset (X* = 0);
 };

explicit
auto_ptr (X* p = 0);

Constructs an object of class auto_ptr<X> , initializing the held pointer to
p. Requires that p points to an object of class X or a class derived from X
for which delete p is defined and accessible, or that p is a null pointer.

auto_ptr (const auto_ptr<X>& a);
Copy constructor. Constructs an object of class auto_ptr<X> , and copies
the argument a to *this . *this becomes the new owner of the underlying
pointer.

Summary

Synopsis

Description

Interface

Constructors
and

Destructors

auto_ptr

230 Standard C++ Library Class Reference

~auto_ptr ();
Deletes the underlying pointer.

void
operator= (const auto_ptr<X>& a);

Assignment operator. Copies the argument a to *this . *this becomes
the new owner of the underlying pointer. If *this already owned a
pointer, then that pointer is deleted first.

X&
operator* () const;

 Returns a reference to the object to which the underlying pointer points.

X*
operator-> () const;

Returns the underlying pointer.

X*
get () const;

Returns the underlying pointer.

X*
release ();

Releases ownership of the underlying pointer. Returns that pointer.

void
reset (X* p = 0);

Requires that p points to an object of class X or a class derived from X for
which delete p is defined and accessible, or p is a null pointer. Deletes
the current underlying pointer, then resets it to p.

 //
 // auto_ptr.cpp
 //
 #include <iostream.h>
 #include <memory>

 //
 // A simple structure.
 //
 struct X
 {
 X (int i = 0) : m_i(i) { }
 int get() const { return m_i; }
 int m_i;
 };

 int main ()
 {
 //
 // b will hold a pointer to an X.
 //
 auto_ptr<X> b(new X(12345));

Operators

Member
Functions

Example

auto_ptr

Standard C++ Library Class Reference 231

 //
 // a will now be the owner of the underlying pointer.
 //
 auto_ptr<X> a = b;
 //
 // Output the value contained by the underlying pointer.
 //
 cout << a->get() << endl;
 //
 // The pointer will be deleted when a is destroyed on
 // leaving scope.
 //
 return 0;
 }

Output :
12345

Standard C++ Library Class Reference 233

back_insert_iterator, back_inserter

Insert Iterator

An insert iterator used to insert items at the end of a collection.

#include <iterator>

template <class Container>
class back_insert_iterator : public output_iterator;

Insert iterators let you insert new elements into a collection rather than copy
a new element's value over the value of an existing element. The class
back_insert_iterator is used to insert items at the end of a collection. The
function back_inserter creates an instance of a back_insert_iterator for a
particular collection type. A back_insert_iterator can be used with vectors,
deques, and lists, but not with maps or sets.

template <class Container>
 class back_insert_iterator : public output_iterator {

protected:
 Container& container;
public:
 back_insert_iterator (Container&);
 back_insert_iterator<Container>&
 operator= (const Container::value_type&);
 back_insert_iterator<Container>& operator* ();
 back_insert_iterator<Container>& operator++ ();
 back_insert_iterator<Container> operator++ (int);
};

template <class Container>
 back_insert_iterator<Container> back_inserter (Container&);

back_insert_iterator (Container& x);

Constructor. Creates an instance of a back_insert_iterator associated
with container x.

back_insert_iterator<Container>&
operator= (const Container::value_type& value);

Inserts a copy of value on the end of the container, and returns *this .

back_insert_iterator<Container>&
operator* ();

Returns *this .

Summary

Synopsis

Description

Interface

Constructor

Operators

back_insert_iterator, back_inserter

234 Standard C++ Library Class Reference

back_insert_iterator<Container>&
operator++ ();

back_insert_iterator<Container>
operator++ (int);

Increments the input iterator and returns *this .

template <class Container>
back_insert_iterator<Container>
back_inserter (Container& x)

Returns a back_insert_iterator that will insert elements at the end of
container x . This function allows you to create insert iterators inline.

//
// ins_itr.cpp
//
 #include <iterator>
 #include <deque>
 #include <iostream.h>

 int main ()
 {
 //
 // Initialize a deque using an array.
 //
 int arr[4] = { 3,4,7,8 };
 deque<int> d(arr+0, arr+4);
 //
 // Output the original deque.
 //
 cout << "Start with a deque: " << endl << " ";
 copy(d.begin(), d.end(), ostream_iterator<int>(cout," "));
 //
 // Insert into the middle.
 //
 insert_iterator<deque<int> > ins(d, d.begin()+2);
 *ins = 5; *ins = 6;
 //
 // Output the new deque.
 //
 cout << endl << endl;
 cout << "Use an insert_iterator: " << endl << " ";
 copy(d.begin(), d.end(), ostream_iterator<int>(cout," "));
 //
 // A deque of four 1s.
 //
 deque<int> d2(4, 1);
 //
 // Insert d2 at front of d.
 //
 copy(d2.begin(), d2.end(), front_inserter(d));
 //
 // Output the new deque.
 //
 cout << endl << endl;
 cout << "Use a front_inserter: " << endl << " ";
 copy(d.begin(), d.end(), ostream_iterator<int>(cout," "));

Helper
Function

Example

back_insert_iterator, back_inserter

Standard C++ Library Class Reference 235

 //
 // Insert d2 at back of d.
 //
 copy(d2.begin(), d2.end(), back_inserter(d));
 //
 // Output the new deque.
 //
 cout << endl << endl;
 cout << "Use a back_inserter: " << endl << " ";
 copy(d.begin(), d.end(), ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Output :
Start with a deque:
 3 4 7 8
Use an insert_iterator:
 3 4 5 6 7 8
Use a front_inserter:
 1 1 1 1 3 4 5 6 7 8
Use a back_inserter:
 1 1 1 1 3 4 5 6 7 8 1 1 1 1

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

insert iterators

Warning

See Also

Standard C++ Library Class Reference 237

basic_string

Strings Library

A templated class for handling sequences of character-like entities. string
and wstring are specialized versions of basic_string for char s and
wchar_t s, respectively.

typedef basic_string <char> string;
typedef basic_string <wchar_t> wstring;

#include <string>

template <class charT,
 class traits = string_char_traits<charT>,
 class Allocator = allocator>

class basic_string;

basic_string<charT, traits, Allocator> is a homogeneous collection of
character-like entities. It provides general string functionality such as
compare, append, assign, insert, remove, and replace , along with various
searches. basic_string also functions as an STL sequence container,
providing random access iterators. This allows some of the generic
algorithms to apply to strings.

Any underlying character-like type may be used as long as an appropriate
string_char_traits class is provided or the default traits class is
applicable.

template <class charT,
 class traits = string_char_traits<charT>,
 class Allocator = allocator>
class basic_string {

public:

// Types

typedef traits traits_type;
typedef typename traits::char_type value_type;
typedef Allocator allocator_type;

typename size_type;
typename difference_type;
typename reference;
typename const_reference;
typename pointer;
typename const_pointer;
typename iterator;

Summary

Synopsis

Description

Interface

basic_string

238 Standard C++ Library Class Reference

typename const_iterator;
typename const_reverse_iterator;
typename reverse_iterator;

static const size_type npos = -1;

// Constructors/Destructors

explicit basic_string(const Allocator& = Allocator());
basic_string(const basic_string&, size_type, size_type = npos);
basic_string(const charT*, size_type,
 const Allocator& = Allocator());
basic_string(const charT*, Allocator& = Allocator());
basic_string(size_type, charT,
 const Allocator& = Allocator());
template <class InputIterator>
basic_string(InputIterator, InputIterator,
 const Allocator& = Allocator());
~basic_string();

// Assignment operators
 basic_string& operator=(const basic_string&);
 basic_string& operator=(const charT*);
 basic_string& operator=(charT);

// Iterators

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;

 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;

// Capacity

 size_type size() const;
 size_type length() const;
 size_type max_size() const;
 void resize(size_type, charT);
 void resize(size_type);
 size_type capacity() const;
 void reserve(size_type);
 bool empty() const;

// Element access

 charT operator[](size_type) const;
 reference operator[](size_type);
 const_reference at(size_type) const;
 reference at(size_type);

// Modifiers

 basic_string& operator+=(const basic_string&);

basic_string

Standard C++ Library Class Reference 239

 basic_string& operator+=(const charT*);
 basic_string& operator+=(charT);

 basic_string& append(const basic_string&);
 basic_string& append(const basic_string&,
 size_type, size_type);
 basic_string& append(const charT*, size_type);
 basic_string& append(const charT*);
 basic_string& append(size_type, charT);
 template<class InputIterator>
 basic_string& append(InputIterator, InputIterator);

 basic_string& assign(const basic_string&);
 basic_string& assign(const basic_string&,
 size_type, size_type);
 basic_string& assign(const charT*, size_type);
 basic_string& assign(const charT*);
 basic_string& assign(size_type, charT);
 template<class InputIterator>
 basic_string& assign(InputIterator, InputIterator);

 basic_string& insert(size_type, const basic_string&);
 basic_string& insert(size_type, const basic_string&,
 size_type, size_type);
 basic_string& insert(size_type, const charT*, size_type);
 basic_string& insert(size_type, const charT*);
 basic_string& insert(size_type, size_type, charT);
 iterator insert(iterator, charT = charT());
 void insert(iterator, size_type, charT);
 template<class InputIterator>
 void insert(iterator, InputIterator,
 InputIterator);

 basic_string& erase(size_type = 0, size_type= npos);
 iterator erase(iterator);
 iterator erase(iterator, iterator);

 basic_string& replace(size_type, size_type,
 const basic_string&);
 basic_string& replace(size_type, size_type,
 const basic_string&,
 size_type, size_type);
 basic_string& replace(size_type, size_type,
 const charT*, size_type);
 basic_string& replace(size_type, size_type,
 const charT*);
 basic_string& replace(size_type, size_type,
 size_type, charT);
 basic_string& replace(iterator, iterator,
 const basic_string&);
 basic_string& replace(iterator, iterator,
 const charT*, size_type);
 basic_string& replace(iterator, iterator,
 const charT*);
 basic_string& replace(iterator, iterator,
 size_type, charT);
 template<class InputIterator>
 basic_string& replace(iterator, iterator,

basic_string

240 Standard C++ Library Class Reference

 InputIterator, InputIterator);

 size_type copy(charT*, size_type, size_type = 0);
 void swap(basic_string<charT, traits, Allocator>&);

// String operations

 const charT* c_str() const;
 const charT* data() const;
 const allocator_type& get_allocator() const;

 size_type find(const basic_string&,
 size_type = 0) const;
 size_type find(const charT*,
 size_type, size_type) const;
 size_type find(const charT*, size_type = 0) const;
 size_type find(charT, size_type = 0) const;
 size_type rfind(const basic_string&,
 size_type = npos) const;
 size_type rfind(const charT*,
 size_type, size_type) const;
 size_type rfind(const charT*,
 size_type = npos) const;
 size_type rfind(charT, size_type = npos) const;

 size_type find_first_of(const basic_string&,
 size_type = 0) const;
 size_type find_first_of(const charT*,
 size_type, size_type) const;
 size_type find_first_of(const charT*,
 size_type = 0) const;
 size_type find_first_of(charT, size_type = 0) const;

 size_type find_last_of(const basic_string&,
 size_type = npos) const;
 size_type find_last_of(const charT*,
 size_type, size_type) const;
 size_type find_last_of(const charT*, size_type = npos) const;
 size_type find_last_of(charT, size_type = npos) const;

 size_type find_first_not_of(const basic_string&,
 size_type = 0) const;
 size_type find_first_not_of(const charT*,
 size_type, size_type) const;
 size_type find_first_not_of(const charT*, size_type = 0) const;
 size_type find_first_not_of(charT, size_type = 0) const;

 size_type find_last_not_of(const basic_string&,
 size_type = npos) const;
 size_type find_last_not_of(const charT*,
 size_type, size_type) const;
 size_type find_last_not_of(const charT*,
 size_type = npos) const;
 size_type find_last_not_of(charT, size_type = npos) const;

 basic_string substr(size_type = 0, size_type = npos) const;
 int compare(const basic_string&) const;
 int compare(size_type, size_type, const basic_string&) const;

basic_string

Standard C++ Library Class Reference 241

 int compare(size_type, size_type, const basic_string&,
 size_type, size_type) const;
 int compare(size_type, size_type, charT*) const;
 int compare(charT*) const;
 int compare(size_type, size_type, const charT*, size_type)
const;
};

// Non-member Operators

template <class charT, class traits, class Allocator>
 basic_string operator+ (const basic_string&,
 const basic_string&);
template <class charT, class traits, class Allocator>
 basic_string operator+ (const charT*, const basic_string&);
template <class charT, class traits, class Allocator>
 basic_string operator+ (charT, const basic_string&);
template <class charT, class traits, class Allocator>
 basic_string operator+ (const basic_string&, const charT*);
template <class charT, class traits, class Allocator>
 basic_string operator+ (const basic_string&, charT);

template <class charT, class traits, class Allocator>
 bool operator== (const basic_string&, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator== (const charT*, const basic_string&);
template <class charT, class traits , class Allocator>
 bool operator== (const basic_string&, const charT*);

template <class charT, class traits, class Allocator>
 bool operator< (const basic_string&, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator< (const charT*, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator< (const basic_string&, const charT*);

template <class charT, class traits, class Allocator>
 bool operator!= (const basic_string&, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator!= (const charT*, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator!= (const basic_string&, const charT*);

template <class charT, class traits, class Allocator>
 bool operator> (const basic_&, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator> (const charT*, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator> (const basic_string&, const charT*);

template <class charT, class traits, class Allocator>
 bool operator<= (const basic_string&, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator<= (const charT*, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator<= (const basic_string&, const charT*);

basic_string

242 Standard C++ Library Class Reference

template <class charT, class traits, class Allocator>
 bool operator>= (const basic_string&, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator>= (const charT*, const basic_string&);
template <class charT, class traits, class Allocator>
 bool operator>= (const basic_string&, const charT*);

template<class charT, class traits, class Allocator>
 istream& operator>> (istream&, basic_string&);
template <class charT, class traits, class Allocator>
 ostream& operator<< (ostream&, const basic_string&);
template <class Stream, class charT,
 class traits, class Allocator>
 Stream& getline (Stream&, basic_string&, charT);

In all cases, the Allocator parameter will be used for storage management.

explicit
basic_string (const Allocator& a = Allocator());

The default constructor. Creates a basic_string with the following effects:

data() a non-null pointer that is copyable and can have
0 added to it

size() 0
capacity() an unspecified value

basic_string (const basic_string<T, traits, Allocator>& str);
Copy constructor. Creates a string that is a copy of str .

basic_string (const basic_string &str, size_type pos,
 size_type n= npos);

Creates a string if pos<=size() and determines length rlen of initial
string value as the smaller of n and str.size() - pos . This has the
following effects:

data() points at the first element of an allocated copy of
rlen elements of the string controlled by str

beginning at position pos

size() rlen
capacity() a value at least as large as size()

get_allocator() str.get_allocator()

An out_of_range exception will be thrown if pos>str.size() .

basic_string (const charT* s, size_type n,
 const Allocator& a = Allocator());

Creates a string that contains the first n characters of s . s must not be a
NULL pointer. The effects of this constructor are:

Constructors
and

Destructors

basic_string

Standard C++ Library Class Reference 243

data() points at the first element of an allocated copy of the
array whose first element is pointed at by s

size() n
capacity() a value at least as large as size()

An out_of_range exception will be thrown if n == npos.

basic_string (const charT * s,
 const Allocator& a = Allocator());

Constructs a string containing all characters in s up to, but not including, a
traits::eos() character. s must not be a null pointer. The effects of this
constructor are:

data() points at the first element of an allocated copy of the
array whose first element is pointed at by s

size() traits::length(s)
capacity() a value at least as large as size()

basic_string (size_type n, charT c,
 const Allocator& a = Allocator());

Constructs a string containing n repetitions of c . A length_error

exception is thrown if n == npos . The effects of this constructor are:

data() points at the first element of an allocated array of n
elements, each storing the initial value c

size() n
capacity() a value at least as large as size()

template <class InputIterator>
basic_string (InputIterator first, InputIterator last,
 const Allocator& a = Allocator());

Creates a basic_string of length last - first , filled with all values
obtained by dereferencing the InputIterators on the range [first,

last) . The effects of this constructor are:

data() points at the first element of an allocated copy of the
elements in the range [first,last)

size() distance between first and last

capacity() a value at least as large as size()

~basic_string ();

Releases any allocated memory for this basic_string.

basic_string

244 Standard C++ Library Class Reference

basic_string&
operator= (const basic_string& str);

Assignment operator. Sets the contents of this string to be the same as str .
The effects of operator= are:

data() points at the first element of an allocated copy of the array
whose first element is pointed at by str.size()

size() str.size()
capacity() a value at least as large as size()

basic_string&
operator= (const charT * s);

Assignment operator. Sets the contents of this string to be the same as s up
to, but not including, the traits::eos() character.

basic_string&
operator= (charT c);

Assignment operator. Sets the contents of this string to be equal to the
single charT c .

charT
operator[] (size_type pos) const;
reference
operator[] (size_type pos);

If pos < size() , returns the element at position pos in this string. If pos

== size() , the const version returns traits::eos() , the behavior of the
non-const version is undefined. The reference returned by the non-const

version is invalidated by any call to c_str() , data() , or any non-const

member function for the object.

basic_string&
operator+= (const basic_string& s);

basic_string&
operator+= (const charT* s);

basic_string&
operator+= (charT c);

Concatenates a string onto the current contents of this string. The second
member operator uses traits::length() to determine the number of
elements from s to add. The third member operator adds the single
character c . All return a reference to this string after completion.

iterator begin ();
const_iterator begin () const;

Return an iterator initialized to the first element of the string.

Operators

Iterators

basic_string

Standard C++ Library Class Reference 245

iterator end ();
const_iterator end () const;

Return an iterator initialized to the position after the last element of the
string.

reverse_iterator rbegin ();
const_reverse_iterator rbegin () const;

Returns an iterator equivalent to reverse_iterator(end()) .

reverse_iterator rend ();
const_reverse_iterator rend () const;

Returns an iterator equivalent to reverse_iterator(begin()) .

const allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

basic_string&
append (const basic_string& s, size_type pos, size_type npos);

basic_string&
append (const basic_string& s);

basic_string&
append (const charT* s, size_type n);

basic_string&
append (const charT* s);

basic_string&
append (size_type n, charT c);

template<class InputIterator>
basic_string&
append (InputIterator first, InputIterator last);

Append another string to the end of this string. The first two functions
append the lesser of n and s.size() - pos characters of s , beginning at
position pos to this string. The second member will throw an
out_of_range exception if pos > str.size() . The third member
appends n characters of the array pointed to by s . The fourth variation
appends elements from the array pointed to by s up to, but not including,
a traits::eos() character. The fifth variation appends n repetitions of c .
The final append function appends the elements specified in the range
[first, last) .

All functions will throw a length_error exception if the resulting length
will exceed max_size() . All return a reference to this string after
completion.

Allocator

Member
Functions

basic_string

246 Standard C++ Library Class Reference

basic_string&
assign (const basic_string& s);

basic_string&
assign (const basic_string& s,
 size_type pos, size_type n);

basic_string&
assign (const charT* s, size_type n);

basic_string&
assign (const charT* s);

basic_string&
assign (size_type n, charT c);

template<class InputIterator>
basic_string&
assign (InputIterator first, InputIterator last);

Replace the value of this string with the value of another.

All versions of the function assign values to this string. The first two
variations assign the lesser of n and s.size() - pos characters of s ,
beginning at position pos . The second variation throws an out_of_range

exception if pos > str.size() . The third version of the function assigns
n characters of the array pointed to by s . The fourth version assigns
elements from the array pointed to by s up to, but not including, a
traits::eos() character. The fifth assigns one or n repetitions of c . The
last variation assigns the members specified by the range [first, last) .

All functions will throw a length_error exception if the resulting length
will exceed max_size() . All return a reference to this string after
completion.

const_reference
at (size_type pos) const;

reference
at (size_type pos);

If pos < size() , returns the element at position pos in this string.
Otherwise, an out_of_range exception is thrown.

size_type
capacity () const;

Returns the current storage capacity of the string. This is guaranteed to be
at least as large as size() .

int
compare (const basic_string& str);

Returns the result of a lexographical comparison between elements of this
string and elements of str . The return value is:

basic_string

Standard C++ Library Class Reference 247

< 0 if size() < str.size()
0 if size() == str.size()
> 0 if size() > str.size()

int
compare (size_type pos1, size_type n1,
 const basic_string& str) const;

int
compare (size_type pos1, size_type n1, const basic_string& str,
 size_type pos2, size_type n2) const;

int
compare (charT* s) const;

int
compare (size_type pos, size_type n1, charT* s) const;

int
compare (size_type pos, size_type n1, charT* s,
 size_type n2) const;

Return the result of a lexographical comparison between elements of this
string and a given comparison string. The members return, respectively:

compare (str)
compare (basic_string (str, pos2, n2))
compare (basic_string(s))
compare (basic_string(s, npos))
compare (basic_string (s,n2))

size_type
copy (charT* s, size_type n, size_type pos = 0) const;

Replaces elements in memory with copies of elements from this string. An
out_of_range exception will be thrown if pos > size() . The lesser of n
and size() - pos elements of this string, starting at position pos are
copied into the array pointed to by s . No terminating null is appended to
s .

const charT*
c_str () const;
const charT*
data () const;

Return a pointer to the initial element of an array whose first size()

elements are copies of the elements in this string. A traits::eos()

element is appended to the end. The elements of the array may not be
altered, and the returned pointer is only valid until a non-const member
function of this string is called. If size() is zero, the data() function
returns a NULL pointer.

bool empty () const;
Returns size() == 0 .

basic_string

248 Standard C++ Library Class Reference

basic_string&
erase (size_type pos = 0, size_type n = npos);

iterator
erase (iterator p);

iterator
erase (iterator first, iterator last);

This function removes elements from the string, collapsing the remaining
elements, as necessary, to remove any space left empty. The first version
of the function removes the smaller of n and size() - pos starting at
position pos . An out_of_range exception will be thrown if pos >

size() . The second version requires that p is a valid iterator on this
string, and removes the character referred to by p. The last version of
erase requires that both first and last are valid iterators on this string,
and removes the characters defined by the range [first, last) . The
destructors for all removed characters are called. All versions of erase

return a reference to this string after completion.

size_type
find (const basic_string& str, size_type pos = 0) const;

Searches for the first occurance of the substring specified by str in this
string, starting at position pos . If found, it returns the index of the first
character of the matching substring. If not found, returns npos . Equality is
defined by traits::eq() .

size_type
find (const charT* s, size_type pos, size_type n) const;
size_type
find (const charT* s, size_type pos = 0) const;
size_type
find (charT c, size_type pos = 0) const;

Search for the first sequence of characters in this string that match a
specified string. The variations of this function return, respectively:

find(basic_string(s,n), pos)
find(basic_string(s), pos)
find(basic_string(1, c), pos)

size_type
find_first_not_of (const basic_string& str,
 size_type pos = 0) const;

Searches for the first element of this string at or after position pos that is
not equal to any element of str . If found, find_first_not_of returns the
index of the non-matching character. If all of the characters match, the
function returns npos . Equality is defined by traits::eq() .

basic_string

Standard C++ Library Class Reference 249

size_type
find_first_not_of (const charT* s,
 size_type pos, size_type n) const;

size_type
find_first_not_of (const charT* s,
 size_type pos = 0) const;

size_type
find_first_not_of (charT c, size_type pos = 0) const;

Search for the first element in this string at or after position pos that is not
equal to any element of a given set of characters. The members return,
respectively:

find_first_not_of(basic_string(s,n), pos)
find_first_not_of(basic_string(s), pos)
find_first_not_of(basic_string(1, c), pos)

size_type
find_first_of (const basic_string& str,
 size_type pos = 0) const;

Searches for the first occurence at or after position pos of any element of
str in this string. If found, the index of this matching character is
returned. If not found, npos is returned. Equality is defined by
traits::eq() .

size_type
find_first_of (const charT* s, size_type pos,
 size_type n) const;
size_type
find_first_of (const charT* s, size_type pos = 0) const;
size_type
find_first_of (charT c, size_type pos = 0) const;

Search for the first occurence in this string of any element in a specified
string. The find_first_of variations return, respectively:

find_first_of(basic_string(s,n), pos)
find_first_of(basic_string(s), pos)
find_first_of(basic_string(1, c), pos)

size_type
find_last_not_of (const basic_string& str,
 size_type pos = npos) const;

Searches for the last element of this string at or before position pos that is
not equal to any element of str . If find_last_not_of finds a non-
matching element, it returns the index of the character. If all the elements
match, the function returns npos . Equality is defined by traits::eq() .

basic_string

250 Standard C++ Library Class Reference

size_type
find_last_not_of (const charT* s,
 size_type pos, size_type n) const;

size_type
find_last_not_of (const charT* s, size_type pos = npos) const;

size_type
find_last_not_of (charT c, size_type pos = npos) const;

Search for the last element in this string at or before position pos that is
not equal to any element of a given set of characters. The members return,
respectively:

find_last_not_of(basic_string(s,n), pos)
find_last_not_of(basic_string(s), pos)
find_last_not_of(basic_string(1, c), pos)

size_type
find_last_of (const basic_string& str,
 size_type pos = npos) const;

Searches for the last occurence of any element of str at or before position
pos in this string. If found, find_last_of returns the index of the
matching character. If not found find_last_of returns npos . Equality is
defined by traits::eq() .

size_type
find_last_of (const charT* s, size_type pos,
 size_type n) const;
size_type
find_last_of (const charT* s, size_type pos = npos) const;
size_type
find_last_of (charT c, size_type pos = npos) const;

Search for the last occurence in this string of any element in a specified
string. The members return, respectively:

find_last_of(basic_string(s,n), pos)
find_last_of(basic_string(s), pos)
find_last_of(basic_string(1, c), pos)

basic_string

Standard C++ Library Class Reference 251

basic_string&
insert (size_type pos1, const basic_string& s);

basic_string&
insert (size_type pos, const basic_string& s,
 size_type pos2 = 0, size_type n = npos);

basic_string&
insert (size_type pos, const charT* s, size_type n);

basic_string&
insert (size_type pos, const charT* s);

basic_string&
insert (size_type pos, size_type n, charT c);

Insert additional elements at position pos in this string. All of the variants
of this function will throw an out_of_range exception if pos > size() .
All variants will also throw a length_error if the resulting string will
exceed max_size() . Elements of this string will be moved apart as
necessary to accommodate the inserted elements. All return a reference to
this string after completion.

The second variation of this function inserts the lesser of n and s.size()

- pos2 characters of s , beginning at position pos2 in this string. This
version will throw an out_of_range exception if pos2 > s.size() .
The third version inserts n characters of the array pointed to by s . The
fourth inserts elements from the array pointed to by s up to, but not
including, a traits::eos() character. Finally, the fifth variation inserts n
repetitions of c .

iterator
insert (iterator p, charT c = charT());

void
insert (iterator p, size_type n, charT c);

template<class InputIterator>
void
insert (iterator p, InputIterator first, InputIterator last);

Insert additional elements in this string immediately before the character
referred to by p. All of these versions of insert require that p is a valid
iterator on this string. The first version inserts a copy of c . The second
version inserts n repetitions of c . The third version inserts characters in
the range [first, last). The first version returns p.

size_type
length () const;

Return the number of elements contained in this string.

size_type
max_size () const;

Returns the maximum possible size of the string.

basic_string

252 Standard C++ Library Class Reference

size_type
rfind (const basic_string& str, size_type pos = npos) const;

Searches for the last occurrence of the substring specified by str in this
string, starting at position pos . Note that only the first character of the
substring must be <= pos; the remaining characters may extend beyond
pos . If found, the index of the first character of that matches substring is
returned. If not found, npos is returned. Equality is defined by
traits::eq() .

size_type
rfind (const charT* s, size_type pos, size_type n) const;

size_type
rfind (const charT* s, size_type pos = npos) const;

size_type
rfind (charT c, size_type pos = npos) const;

Searches for the last sequence of characters in this string matching a
specified string. The rfind variations return, respectively:

rfind(basic_string(s,n), pos)
rfind(basic_string(s), pos)
rfind(basic_string(1, c), pos)

basic_string&
replace (size_type pos, size_type n1, const basic_string& s);

basic_string&
replace (size_type pos1, size_type n1, const basic_string& str,
 size_type pos2, size_type n2);

basic_string&
replace (size_type pos, size_type n1, const charT* s,
 size_type n2);

basic_string&
replace (size_type pos, size_type n1, const charT* s);

basic_string&
replace (size_type pos, size_type n1, size_type n2, charT c);

The replace function replaces selected elements of this string with an
alternate set of elements. All of these versions insert the new elements in
place of n1 elements in this string, starting at position pos . They each
throw an out_of_range exception if pos1 > size() and a length_error

exception if the resulting string size exceeds max_size() .

The second version replaces elements of the original string with n2

characters from string s starting at position pos2 . It will throw the
out_of_range exception if pos2 > s.size(). The third variation of the
function replaces elements in the original string with n2 elements from the
array pointed to by s . The fourth version replaces elements in the string
with elements from the array pointed to by s , up to, but not including, a

basic_string

Standard C++ Library Class Reference 253

traits::eos() character. The fifth replaces n elements with n2

repetitions of character c .

basic_string&
replace (iterator i1, iterator i2,
 const basic_string& str);

basic_string&
replace (iterator i1, iterator i2, const charT* s,
 size_type n);

basic_string&
replace (iterator i1, iterator i2, const charT* s);

basic_string&
replace (iterator i1, iterator i2, size_type n,
 charT c);

template<class InputIterator>
basic_string&
replace (iterator i1, iterator i2,
 InputIterator j1, InputIterator j2);

Replace selected elements of this string with an alternative set of elements.
All of these versions of replace require iterators i1 and i2 to be valid
iterators on this string. The elements specified by the range [i1, i2) are
replaced by the new elements.

The first version shown here replaces with all members in str . The
second version starts at position i1 , and replaces the next n characters
with n characters of the array pointed to by s . The third variation replaces
string elements with elements from the array pointed to by s up to, but not
including, a traits::eos() character. The fourth version replaces string
elements with n repetitions of c . The last variation shown here replaces
string elements with the members specified in the range [j1, j2) .

void reserve (size_type res_arg);
Assures that the storage capacity is at least res_arg .

void
resize (size_type n, charT c);
void
resize (size_type n);

Changes the capacity of this string to n. If the new capacity is smaller than
the current size of the string, then it is truncated. If the capacity is larger,
then the string is padded with c characters. The latter resize member
pads the string with default characters specified by traits::eos() .

size type
size () const;

Return the number of elements contained in this string.

basic_string

254 Standard C++ Library Class Reference

basic_string
substr (size_type pos = 0, size_type n = npos) const;

Returns a string composed of copies of the lesser of n and size()

characters in this string starting at index pos . Throws an out_of_range
exception if pos <= size().

void
swap (basic_string& s);

Swaps the contents of this string with the contents of s .

template<class charT, class traits, class Allocator>
basic_string
operator+ (const basic_string& lhs, const basic_string& rhs);

Returns a string of length lhs.size() + rhs.size() , where the first
lhs.size() elements are copies of the elements of lhs , and the next
rhs.size() elements are copies of the elements of rhs .

template<class charT, class traits, class Allocator>
basic_string
operator+ (const charT* lhs, const basic_string& rhs);

template<class charT, class traits, class Allocator>
basic_string
operator+ (charT lhs, const basic_string& rhs);

template<class charT, class traits, class Allocator>
basic_string
operator+ (const basic_string& lhs, const charT* rhs);

template<class charT, class traits, class Allocator>
basic_string
operator+ (const basic_string& lhs, charT rhs);

Returns a string that represents the concatenation of two string-like
entities. These functions return, respectively:

basic_string(lhs) + rhs
basic_string(1, lhs) + rhs
lhs + basic_string(rhs)
lhs + basic_string(1, rhs)

template<class charT, class traits, class Allocator>
bool
operator== (const basic_string& lhs, const basic_string& rhs);

Returns a boolean value of true if lhs and rhs are equal, and false if
they are not. Equality is defined by the compare() member function.

Non-member
Operators

basic_string

Standard C++ Library Class Reference 255

template<class charT, class traits, class Allocator>
bool
operator== (const charT* lhs, const basic_string& rhs);

template<class charT, class traits, class Allocator>
bool
operator== (const basic_string& lhs, const charT* rhs);

Returns a boolean value indicating whether lhs and rhs are equal.
Equality is defined by the compare() member function. These functions
return, respectively:

basic_string(lhs) == rhs
lhs == basic_string(rhs)

template<class charT, class traits, class Allocator>
bool
operator!= (const basic_string& lhs,
 const basic_string& rhs);
Returns a boolean value representing the inequality of lhs and rhs .
Inequality is defined by the compare() member function.

template<class charT, class traits, class Allocator>
bool
operator!= (const charT* lhs, const basic_string& rhs);

template<class charT, class traits, class Allocator>
bool
operator!= (const basic_string& lhs, const charT* rhs);

Returns a boolean value representing the inequality of lhs and rhs .
Inequality is defined by the compare() member function. The functions
return, respectively:

basic_string(lhs) != rhs
lhs != basic_string(rhs)

template<class charT, class traits, class Allocator>
bool
operator< (const basic_string& lhs, const basic_string& rhs);

Returns a boolean value representing the lexigraphical less-than
relationship of lhs and rhs . Less-than is defined by the compare()

member.

template<class charT, class traits, class Allocator>
bool
operator< (const charT* lhs, const basic_string& rhs);

template<class charT, class traits, class Allocator>
bool
operator< (const basic_string& lhs, const charT* rhs);

Returns a boolean value representing the lexigraphical less-than
relationship of lhs and rhs . Less-than is defined by the compare()

member function. These functions return, respectively:

basic_string

256 Standard C++ Library Class Reference

basic_string(lhs) < rhs
lhs < basic_string(rhs)

template<class charT, class traits, class Allocator>
bool
operator> (const basic_string& lhs, const basic_string& rhs);

Returns a boolean value representing the lexigraphical greater-than
relationship of lhs and rhs . Greater-than is defined by the compare()

member function.

template<class charT, class traits, class Allocator>
bool
operator> (const charT* lhs, const basic_string& rhs);

template<class charT, class traits, class Allocator>
bool
operator> (const basic_string& lhs, const charT* rhs);

Returns a boolean value representing the lexigraphical greater-than
relationship of lhs and rhs . Greater-than is defined by the compare()

member. The functions return, respectively:

basic_string(lhs) > rhs
lhs > basic_string(rhs)

template<class charT, class traits, class Allocator>
bool
operator<= (const basic_string& lhs,
 const basic_string& rhs);

Returns a boolean value representing the lexigraphical less-than-or-equal
relationship of lhs and rhs . Less-than-or-equal is defined by the
compare() member function.

template<class charT, class traits, class Allocator>
bool
operator<= (const charT* lhs, const basic_string& rhs);
template<class charT, class traits, class Allocator>
bool
operator<= (const basic_string& lhs, const charT* rhs);

Returns a boolean value representing the lexigraphical less-than-or-equal
relationship of lhs and rhs . Less-than-or-equal is defined by the
compare() member function. These functions return, respectively:

basic_string(lhs) <= rhs
lhs <= basic_string(rhs)

basic_string

Standard C++ Library Class Reference 257

template<class charT, class traits, class Allocator>
bool
operator>= (const basic_string& lhs, const basic_string& rhs);

Returns a boolean value representing the lexigraphical greater-than-or-
equal relationship of lhs and rhs . Greater-than-or-equal is defined by the
compare() member function.

template<class charT, class traits, class Allocator>
bool
operator>= (const charT* lhs, const basic_string& rhs);

template<class charT, class traits, class Allocator>
bool
operator>= (const basic_string& lhs, const charT* rhs);

Returns a boolean value representing the lexigraphical greater-than-or-
equal relationship of lhs and rhs . Greater-than-or-equal is defined by the
compare() member. The functions return, respectively:

basic_string(lhs) >= rhs
lhs >= basic_string(rhs)

template<class charT, class traits, class Allocator>
istream&
operator>> (istream& is, basic_string& str);

Reads str from is using traits::char_in until a traits::is_del()

element is read. All elements read, except the delimiter, are placed in str .
After the read, the function returns is .

template<class charT, class traits, class Allocator>
ostream&
operator<< (ostream& os, const basic_string& str);

Writes all elements of str to os in order from first to last, using
traits::char_out() . After the write, the function returns os .

template <class Stream, class charT, class traits,
 class Allocator>
Stream&
getline (Stream& is, basic_string& str, charT delim);

An unformatted input function that extracts characters from is into str

until npos - 1 characters are read, the end of the input sequence is
reached, or the character read is delim . The characters are read using
traits::char_in() .

//
// string.cpp
//
 #include<string>
 #include <iostream.h>

 int main()
 {
 string test;

Non-member
Function

Example

basic_string

258 Standard C++ Library Class Reference

 //Type in a string over five characters long
 while(test.empty() || test.size() <= 5)
 {
 cout << "Type a string between 5 and 100 characters long. "
 << endl;
 cin >> test;
 }

 //Test operator[] access
 cout << "Changing the third character from " << test[2] <<
 " to * " << endl;
 test[2] = '*';
 cout << "now its: " << test << endl << endl;

 //Try the insertion member function
 cout << "Identifying the middle: ";
 test.insert(test.size() / 2, "(the middle is here!)");
 cout << test << endl << endl;

 //Try replacement
 cout << "I didn't like the word 'middle',so instead,I'll say:"
 << endl;
 test.replace(test.find("middle",0), 6, "center");
 cout << test << endl;

 return 0;
 }

Output :
Type a string between 5 and 100 characters long.
roguewave
Changing the third character from g to *
now its: ro*uewave
Identifying the middle: ro*u(the middle is here!)ewave
I didn't like the word 'middle', so instead, I'll say:
ro*u(the center is here!)ewave

Allocators, string, wstringSee Also

Standard C++ Library Class Reference 259

bidirectional iterator

Iterator

An iterator that can both read and write and can traverse a container in both
directions

For a complete discussion of iterators, see the Iterators section of this
reference.

Iterators are a generalization of pointers that allow a C++ program to
uniformly interact with different data structures. Bidirectional iterators can
move both forwards and backwards through a container, and have the
ability to both read and write data. These iterators satisfy the requirements
listed below.

Key to Iterator Requirements

The following key pertains to the iterator descriptions listed below:

a and b values of type X
n value of distance type
u, Distance, tmp and m identifiers
r value of type X&

t value of type T

Requirements for Bidirectional Iterators

A bidirectional iterator must meet all the requirements listed below. Note
that most of these requirements are also the requirements for forward
iterators.

X u u might have a singular value

X() X() might be singular

X(a) copy constructor, a == X(a) .

X u(a) copy constructor, u == a

X u = a assignment, u == a

Summary

Description

bidirectional iterator

260 Standard C++ Library Class Reference

a == b, a != b return value convertable to bool

a->m equivalent to (*a).m

*a return value convertable to T&

++r returns X&

r++ return value convertable to const X&

*r++ returns T&

--r returns X&

r-- return value convertable to const X&

*r-- returns T&

Like forward iterators, bidirectional iterators have the condition that a == b

implies *a== *b .

There are no restrictions on the number of passes an algorithm may make
through the structure.

Containers, Iterators, Forward IteratorsSee Also

Standard C++ Library Class Reference 261

binary_function

Function Object

Base class for creating binary function objects.

#include <functional>

template <class Arg1, class Arg2, class Result>
 struct binary_function{
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
 };

Function objects are objects with an operator() defined. They are
important for the effective use of the standard library's generic algorithms,
because the interface for each algorithmic template can accept either an
object with an operator() defined or a pointer to a function. The Standard
C++ Library provides both a standard set of function objects, and a pair of
classes that you can use as the base for creating your own function objects.

Function objects that take two arguments are called binary function objects.
Binary function objects are required to provide the typedefs
first_argument_type , second_argument_type , and result_type . The
binary_function class makes the task of creating templated binary function
objects easier by providing the necessary typedefs for a binary function
object. You can create your own binary function objects by inheriting from
binary_function.

function objects¸ unary_function, the Function Objects section of the User's
Guide.

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 263

binary_negate

Function Object

Function object that returns the complement of the result of its binary
predicate

#include <functional>

template<class Predicate>
class binary_negate ;

binary_negate is a function object class that provides a return type for the
function adaptor not2. not2 is a function adaptor, known as a negator, that
takes a binary predicate function object as its argument and returns a binary
predicate function object that is the complement of the original.

Note that not2 works only with function objects that are defined as
subclasses of the class binary_function.

template<class Predicate>
class binary_negate
 : public binary_function<typename
 predicate::first_argument_type,
 typename
 Predicate::second_argument_type,
 bool>
{
public:

 typedef typename binary_function<typename
 Predicate::first_argument_type, typename
 Predicate::second_argument_type, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<typename
 Predicate::first_argument_type, typename
 Predicate::second_argument_type, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<typename
 Predicate::first_argument_type, typename
 Predicate::second_argument_type, bool>::result_type
 result_type;

 explicit binary_negate (const Predicate&);
 bool operator() (const first_argument_type&,
 const second_argument_type&) const;
};

// Non-member Functions

template <class Predicate>
binary_negate<Predicate> not2 (const Predicate& pred);

Summary

Synopsis

Description

Interface

binary_negate

264 Standard C++ Library Class Reference

explicit binary_negate (const Predicate& pred);
Construct a binary_negate object from predicate pred .

bool
operator() (const first_argument_type& x,
 const second_argument_type& y) const;

Return the result of pred(x,y)

binary_function, not2, unary_negate

Constructor

Operator

See Also

Standard C++ Library Class Reference 265

binary_search

Algorithm

Performs a binary search for a value on a container.

#include <algorithm>

template <class ForwardIterator, class T>
bool
binary_search (ForwardIterator first, ForwardIterator last,
 const T& value);

template <class ForwardIterator, class T, class Compare>
bool
binary_search (ForwardIterator first, ForwardIterator last,
 const T& value, Compare comp);

The binary_search algorithm, like other related algorithms (equal_range,
lower_bound and upper_bound) performs a binary search on ordered
containers. All binary search algorithms have two versions. The first
version uses the less than operator (operator <) to perform the comparison,
and assumes that the sequence has been sorted using that operator. The
second version allows you to include a function object of type Compare ,
which it assumes was the function used to sort the sequence. The function
object must be a binary predicate.

The binary_search algorithm returns true if a sequence contains an
element equivalent to the argument value . The first version of
binary_search returns true if the sequence contains at least one element
that is equal to the search value. The second version of the binary_search
algorithm returns true if the sequence contains at least one element that
satisfies the conditions of the comparison function. Formally,
binary_search returns true if there is an iterator i in the range [first,

last) that satisfies the corresponding conditions:

!(*i < value) && !(value < *i)

or

comp(*i, value) == false && comp(value, *i) == false

binary_search performs at most log(last - first) + 2 comparisons.

Summary

Synopsis

Description

Complexity

binary_search

266 Standard C++ Library Class Reference

 //
 // b_serach.cpp
 //
 #include <vector>
 #include <algorithm>
 #include <iostream.h>

 int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[10] = {0,1,2,2,3,4,2,2,6,7};
 //
 // Set up a vector
 //
 vector<int> v1(d1,d1 + 10);
 //
 // Try binary_search variants
 //
 sort(v1.begin(),v1.end());
 bool b1 = binary_search(v1.begin(),v1.end(),3);
 bool b2 = binary_search(v1.begin(),v1.end(),11,less<int>());
 //
 // Output results
 //
 cout << "In the vector: ";
 copy(v1.begin(),v1.end(),
 ostream_iterator<int>(cout," "));

 cout << endl << "The number 3 was "
 << (b1 ? "FOUND" : "NOT FOUND");
 cout << endl << "The number 11 was "
 << (b2 ? "FOUND" : "NOT FOUND") << endl;
 return 0;
 }

Output :
In the vector: 0 1 2 2 2 2 3 4 6 7
The number 3 was FOUND
The number 11 was NOT FOUND

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

equal_range, lower_bound, upper_bound

Example

Warnings

See Also

Standard C++ Library Class Reference 267

bind1st, bind2nd, binder1st, binder2nd

Function Object

Templatized utilities to bind values to function objects

#include <functional>

template <class Operation>
class binder1st : public unary_function<typename
 Operation::second_argument_type,
 typename Operation::result_type> ;

template <class Operation, class T>
binder1st<Operation> bind1st (const Operation&, const T&);

template <class Operation>
class binder2nd : public unary_function<typename
 Operation::first_argument_type,
 typename Operation::result_type> ;

template <class Operation, class T>
binder2nd<Operation> bind2nd (const Operation&, const T&);

Because so many functions provided by the standard library take other
functions as arguments, the library includes classes that let you build new
function objects out of old ones. Both bind1st() and bind2nd() are
functions that take as arguments a binary function object f and a value x,

and return, respectively, classes binder1st and binder2nd. The underlying
function object must be a subclass of binary_function.

Class binder1st binds the value to the first argument of the binary function,
and binder2nd does the same thing for the second argument of the function.
The resulting classes can be used in place of a unary predicate in other
function calls.

For example, you could use the count_if algorithm to count all elements in a
vector that are less than or equal to 7, using the following:

count_if (v.begin, v.end, bind1st(greater<int> (),7), littleNums)

This function adds one to littleNums each time the predicate is true , i.e.,
each time 7 is greater than the element.

// Class binder1st
 template <class Operation>
 class binder1st
 : public unary_function<typename
 Operation::second_argument_type,
 typename Operation::result_type>

Summary

Synopsis

Description

Interface

bind1st, bind2nd, binder1st, binder2nd

268 Standard C++ Library Class Reference

{
public:

 typedef typename unary_function<typename
 Operation::second_argument_type, typename
 Operation::result_type>::argument_type argument_type;
 typedef typename unary_function<typename
 Operation::second_argument_type, typename
 Operation::result_type>::result_type result_type;

 binder1st(const Operation&,
 const typename Operation::first_argument_type&);
 result_type operator() (const argument_type&) const;
};

// Class binder2nd
 template <class Operation>
 class binder2nd
 : public unary_function<typename
 Operation::first_argument_type,
 typename Operation::result_type>
{
public:
 typedef typename unary_function<typename
 Operation::first_argument_type, typename
 Operation::result_type>::argument_type argument_type;
 typedef typename unary_function<typename
 Operation::first_argument_type, typename
 Operation::result_type>::result_type result_type;

 binder2nd(const Operation&,
 const typename Operation::second_argument_type&);
 result_type operator() (const argument_type&) const;
};

// Creator bind1st

 template <class Operation, class T>
 binder1st<Operation> bind1st (const Operation&, const T&);

// Creator bind2nd

 template<class Operation, class T>
 binder2nd <Operation> bind2nd(const Operation&, const T&);

//
// binders.cpp
//
 #include <functional>
 #include <algorithm>
 #include <vector>
 #include <iostream.h>
 int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[4] = {1,2,3,4};
 //
 // Set up a vector

Example

bind1st, bind2nd, binder1st, binder2nd

Standard C++ Library Class Reference 269

 //
 vector<int> v1(d1,d1 + 4);
 //
 // Create an 'equal to 3' unary predicate by binding 3 to
 // the equal_to binary predicate.
 //
 binder1st<equal_to<int> > equal_to_3 =
 bind1st(equal_to<int>(),3);
 //
 // Now use this new predicate in a call to find_if
 //
 iterator it1 = find_if(v1.begin(),v1.end(),equal_to_3);
 //
 // Even better, construct the new predicate on the fly
 //
 iterator it2 =
 find_if(v1.begin(),v1.end(),bind1st(equal_to<int>(),3));
 //
 // And now the same thing using bind2nd
 // Same result since == is commutative
 //
 iterator it3 =
 find_if(v1.begin(),v1.end(),bind2nd(equal_to<int>(),3));
 //
 // it3 = v1.begin() + 2
 //
 // Output results
 //
 cout << *it1 << " " << *it2 << " " << *it3 << endl;
 return 0;
 }

Output : 3 3 3

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>
instead of:

vector<int>

Function Object

Warnings

See Also

Standard C++ Library Class Reference 271

bitset

Container

A template class and related functions for storing and manipulating fixed-
size sequences of bits.

#include <bitset>

template <size_t N>
class bitset ;

bitset<size_t N> is a class that describes objects that can store a sequence
consisting of a fixed number of bits, N. Each bit represents either the value
zero (reset) or one (set) and has a non-negative position pos .

Errors and exceptions

Bitset constructors and member functions may report the following three
types of errors — each associated with a distinct exception:

• invalid-argument error or invalid_argument() exception;

• out-of-range error or out_of_range() exception;

• overflow error or over-flow_error() exception;

If exceptions are not supported on your compiler, you will get an assertion
failure instead of an exception.

template <size_t N>
class bitset {

public:

// bit reference:

 class reference {
 friend class bitset<N>;
 public:

 ~reference();
 reference& operator= (bool);
 reference& operator= (const reference&);
 bool operator~() const;
 operator bool() const;
 reference& flip();
 };

Summary

Synopsis

Description

Interface

bitset

272 Standard C++ Library Class Reference

// Constructors

 bitset ();
 bitset (unsigned long);
 explicit bitset (const string&, size_t = 0,
 size_t = (size_t)-1);
 bitset (const bitset<N>&);
 bitset<N>& operator= (const bitset<N>&);

// Bitwise Operators and Bitwise Operator Assignment

 bitset<N>& operator&= (const bitset<N>&);
 bitset<N>& operator|= (const bitset<N>&);
 bitset<N>& operator^= (const bitset<N>&);
 bitset<N>& operator<<= (size_t);
 bitset<N>& operator>>= (size_t);

// Set, Reset, Flip

 bitset<N>& set ();
 bitset<N>& set (size_t, int = 1);
 bitset<N>& reset ();
 bitset<N>& reset (size_t);
 bitset<N> operator~() const;
 bitset<N>& flip ();
 bitset<N>& flip (size_t);

// element access
 reference operator[] (size_t);
 unsigned long to_ulong() const;
 string to_string() const;
 size_t count() const;
 size_t size() const;
 bool operator== (const bitset<N>&) const;
 bool operator!= (const bitset<N>&) const;
 bool test (size_t) const;
 bool any() const;
 bool none() const;
 bitset<N> operator<< (size_t) const;
 bitset<N> operator>> (size_t) const;

};

// Non-member operators

template <size_t N>
bitset<N> operator& (const bitset<N>&, const bitset<N>&);

template <size_t N>
bitset<N> operator| (const bitset<N>&, const bitset<N>&);

template <size_t N>
bitset<N> operator ̂(const bitset<N>&, const bitset<N>&);

template <size_t N>
istream& operator>> (istream&, bitset<N>&);

template <size_t N>
ostream& operator<< (ostream&, const bitset<N>&);

bitset

Standard C++ Library Class Reference 273

bitset ();
Constructs an object of class bitset<N> , initializing all bit values to zero.

bitset (unsigned long val);
Constructs an object of class bitset<N> , initializing the first M bit values to
the corresponding bits in val . M is the smaller of N and the value CHAR_BIT

* sizeof(unsigned long) . If M < N , remaining bit positions are
initialized to zero. Note: CHAR_BIT is defined in <climits> .

explicit
bitset (const string& str, size_t pos = 0,
 size_t n = (size_t)-1);

Determines the effective length rlen of the initializing string as the
smaller of n and str.size() - pos . The function throws an
invalid_argument exception if any of the rlen characters in str ,
beginning at position pos ,is other than 0 or 1. Otherwise, the function
constructs an object of class bitset<N>, initializing the first M bit positions
to values determined from the corresponding characters in the string str .
M is the smaller of N and rlen . This constructor requires that pos <=

str.size() , otherwise it throws an out_of_range exception.

bitset (const bitset<N>& rhs);
Copy constructor. Creates a copy of rhs .

bitset<N>& operator= (const bitset<N>& rhs);
Erases all bits in self, then inserts into self a copy of each bit in rhs .
Returns a reference to *this .

bool
operator== (const bitset<N>& rhs) const;

Returns true if the value of each bit in *this equals the value of each
corresponding bit in rhs . Otherwise returns false .

bool
operator!= (const bitset<N>& rhs) const;

Returns true if the value of any bit in *this is not equal to the value of the
corresponding bit in rhs . Otherwise returns false .

bitset<N>&
operator&= (const bitset<N>& rhs);

Clears each bit in *this for which the corresponding bit in rhs is clear and
leaves all other bits unchanged. Returns *this .

bitset<N>&
operator|= (const bitset<N>& rhs);

Sets each bit in *this for which the corresponding bit in rhs is set, and
leaves all other bits unchanged. Returns *this .

Constructors

Assignment
Operator

Operators

bitset

274 Standard C++ Library Class Reference

bitset<N>&
operator^= (const bitset<N>& rhs);

Toggles each bit in *this for which the corresponding bit in rhs is set, and
leaves all other bits unchanged. Returns *this .

bitset<N>&
operator<<= (size_t pos);

Replaces each bit at position I with 0 if I < pos or with the value of the
bit at I - pos if I >= pos . Returns *this .

bitset<N>&
operator>>= (size_t pos);

Replaces each bit at position I with 0 if pos >= N-I or with the value of
the bit at position I + pos if pos < N-I . Returns *this .

bitset<N>&
operator>> (size_t pos) const;

Returns bitset<N>(*this) >>= pos .

bitset<N>&
operator<< (size_t pos) const;

Returns bitset<N>(*this) <<= pos .

bitset<N>
operator~ () const;

Returns the bitset that is the logical complement of each bit in *this .

bitset<N>
operator& (const bitset<N>& lhs,
 const bitset<N>& rhs);

lhs gets logical AND of lhs with rhs .

bitset<N>
operator| (const bitset<N>& lhs,
 const bitset<N>& rhs);

lhs gets logical OR of lhs with rhs .

bitset<N>
operator^ (const bitset<N>& lhs,
 const bitset<N>& rhs);

lhs gets logical XOR of lhs with rhs .

template <size_t N>
istream&
operator>> (istream& is, bitset<N>& x);

Extracts up to N characters (single-byte) from is . Stores these characters in
a temporary object str of type string , then evaluates the expression x =

bitset<N>(str) . Characters are extracted and stored until any of the
following occurs:

• N characters have been extracted and stored

bitset

Standard C++ Library Class Reference 275

• An end-of-file occurs on the input sequence

• The next character is neither '0' nor '1'. In this case, the character is
not extracted.

Returns is .

template <size_t N>
ostream&
operator<< (ostream& os, const bitset<N>& x);

Returns os << x.to_string()

bool
any () const;

Returns true if any bit in *this is set. Otherwise returns false .

size_t
count () const;

Returns a count of the number of bits set in *this .

bitset<N>&
flip ();

Flips all bits in *this , and returns *this .

bitset<N>&
flip (size_t pos);

Flips the bit at position pos in *this and returns *this . Throws an
out_of_range exception if pos does not correspond to a valid bit position.

bool
none () const;

Returns true if no bit in *this is set. Otherwise returns false .

bitset<N>&
reset ();

Resets all bits in *this , and returns *this .

bitset<N>&
reset (size_t pos);

Resets the bit at position pos in *this . Throws an out_of_range exception
if pos does not correspond to a valid bit position.

bitset<N>&
set ();

Sets all bits in *this , and returns *this .

bitset<N>&
set (size_t pos, int val = 1);

Stores a new value in the bits at position pos in *this. If val is nonzero,
the stored value is one, otherwise it is zero. Throws an out_of_range

exception if pos does not correspond to a valid bit position.

Member
Functions

bitset

276 Standard C++ Library Class Reference

size_t
size () const;

Returns the template parameter N.

bool
test (size_t pos) const;

Returns true if the bit at position pos is set. Throws an out_of_range

exception if pos does not correspond to a valid bit position.

string
to_string () const;

Returns an object of type string , N characters long.

Each position in the new string is initialized with a character ('0' for zero
and '1' for one) representing the value stored in the corresponding bit
position of *this . Character position N - 1 corresponds to bit position 0.
Subsequent decreasing character positions correspond to increasing bit
positions.

unsigned long
to_ulong () const;

Returns the integral value corresponding to the bits in *this . Throws an
overflow_error if these bits cannot be represented as type unsigned

long .

ContainersSee Also

Standard C++ Library Class Reference 277

compare

A binary function or a function object that returns true or false. compare
objects are typically passed as template parameters, and used for ordering
elements within a container.

binary_function, function object

Summary

See Also

Standard C++ Library Class Reference 279

complex

Complex Number Library

C++ complex number library

complex <float>
complex <double>
complex <long double>

#include <complex>

template <class T>
class complex ;

complex<T> is a class that supports complex numbers. A complex number
has a real part and an imaginary part. The complex class supports equality,
comparison and basic arithmetic operations. In addition, mathematical
functions such as exponentiation, logarithmic, power, and square root are
also available.

template <class T>
class complex {

public:

 complex (T = 0 , T = 0);
 template <class X> complex
 (const complex<X>&);

 T real () const;
 T imag () const;

 template <class X>
 complex<T>& operator= (const complex<X>&);
 template <class X>
 complex<T>& operator+= (const complex<X>&);
 template <class X>
 complex<T>& operator-= (const complex<X>&);
 template <class X>
 complex<T>& operator*= (const complex<X>&);
 template <class X>
 complex<T>& operator/= (const complex<X>&);
};

Summary

Specializations

Synopsis

Description

Interface

complex

280 Standard C++ Library Class Reference

// Non-member Operators

template<class T>
 complex<T> operator+ (const complex<T>&, const complex<T>&);
template<class T>
 complex<T> operator+ (const complex<T>&, T);
template<class T>
 complex<T> operator+ (T, const complex<T>&);

template<class T>
 complex<T> operator- (const complex<T>&, const complex<T>&);
template<class T>
 complex<T> operator- (const complex<T>&, T);
template<classT>
 complex<T> operator- (T, const complex<T>&);

template<class T>
 complex<T> operator* (const complex<T>&, const complex<T>&);
template<class T>
 complex<T> operator* (const complex<T>&, T);
template<class T>
 complex<T> operator* (T, const complex<T>&);

template<class T>
 complex<T> operator/ (const complex<T>&, const complex<T>&);
template<class T>
 complex<T> operator/ (const complex<T>&, T);
template<class T>
 complex<T> operator/ (T, const complex<T>&);

template<class T>
 complex<T> operator+ (const complex<T>&);
template<class T>
 complex<T> operator- (const complex<T>&);

template<class T>
 bool operator== (const complex<T>&, const complex<T>&);
template<class T>
 bool operator== (const complex<T>&, T);
template<class T>
 bool operator== (T, const complex<T>&);

template<class T>
 bool operator!= (const complex<T>&, const complex<T>&);
template<class T>
 bool operator!= (const complex<T>&, T);
template<class T>
 bool operator!= (T, const complex<T>&);

template <class X>
 istream& operator>> (istream&, complex<X>&);
template <class X>
 ostream& operator<< (ostream&, const complex<X>&);

// Values

template<class T> T real (const complex<T>&);
template<class T> T imag (const complex<T>&);

complex

Standard C++ Library Class Reference 281

template<class T> T abs (const complex<T>&);
template<class T> T arg (const complex<T>&);
template<class T> T norm (const complex<T>&);

template<class T> complex<T> conj (const complex<T>&);
template<class T> complex<T> polar (T, T);

// Transcendentals

template<class T> complex<T> acos (const complex<T>&);
template<class T> complex<T> asin (const complex<T>&);
template<class T> complex<T> atan (const complex<T>&);
template<class T> complex<T> atan2 (const complex<T>&,
 const complex<T>&);
template<class T> complex<T> atan2 (const complex<T>&, T);
template<class T> complex<T> atan2 (T, const complex<T>&);
template<class T> complex<T> cos (const complex<T>&);
template<class T> complex<T> cosh (const complex<T>&);
template<class T> complex<T> exp (const complex<T>&);
template<class T> complex<T> log (const complex<T>&);

template<class T> complex<T> log10 (const complex<T>&);

template<class T> complex<T> pow (const complex<T>&, int);
template<class T> complex<T> pow (const complex<T>&, T);
template<class T> complex<T> pow (const complex<T>&,
 const complex<T>&);
template<class T> complex<T> pow (T, const complex<T>&);

template<class T> complex<T> sin (const complex<T>&);
template<class T> complex<T> sinh (const complex<T>&);
template<class T> complex<T> sqrt (const complex<T>&);
template<class T> complex<T> tan (const complex<T>&);
template<class T> complex<T> tanh (const complex<T>&);

complex
(const T& re_arg = 0, const T& im_arg = 0);

Constructs an object of class complex, initializing re_arg to the real part
and im_arg to the imaginary part.

template <class X> complex
(const complex<X>&);

Copy constructor. Constructs a complex number from another complex
number.

template <class X>
complex<T>
operator= (const complex<X>& c);

Assigns c to itself.

template <class X>
complex<T>
operator+= (const complex<X>& c);

Adds c to itself, then returns the result.

Constructors

Assignment
Operators

complex

282 Standard C++ Library Class Reference

template <class X>
complex<T>
operator - = (const complex<X>& c);

Subtracts c from itself, then returns the result.

template <class X>
complex<T>
operator*= (const complex<X>& c);

Multiplies itelf by c then returns the result.

template <class X>
complex<T>
operator/= (const complex<X>& c);

Divides itself by c , then returns the result.

T
imag () const;

Returns the imaginary part of the complex number.

T
real () const;

Returns the real part of the complex number.

template<class T> complex<T>
operator+ (const complex<T>& lhs,const complex<T>& rhs);

template<class T> complex<T>
operator+ (const complex<T>& lhs, T rhs);

template<class T> complex<T>
operator+ (T lhs, const complex<T>& rhs);

Returns the sum of lhs and rhs .

template<class T> complex<T>
operator- (const complex<T>& lhs,const complex<T>& rhs);

template<class T> complex<T>
operator- (const complex<T>& lhs, T rhs);

template<class T> complex<T>
operator- (T lhs, const complex<T>& rhs);

Returns the difference of lhs and rhs .

template<class T> complex<T>
operator* (const complex<T>& lhs,const complex<T>& rhs);

template<class T> complex<T>
operator* (const complex<T>& lhs, T rhs);

template<class T> complex<T>
operator* (T lhs, const complex<T>& rhs);

Returns the product of lhs and rhs .

Member
Functions

Non-member
Operators

complex

Standard C++ Library Class Reference 283

template<class T> complex<T>
operator/ (const complex<T>& lhs,const complex<T>& rhs);

template<class T> complex<T>
operator/ (const complex<T>& lhs, T rhs);

template<class T> complex<T>
operator/ (T lhs, const complex<T>& rhs);

Returns the quotient of lhs divided by rhs .

template<class T> complex<T>
operator+ (const complex<T>& rhs);

Returns rhs .

template<class T> complex<T>
operator- (const complex<T>& lhs);

Returns complex<T>(-lhs.real(), -lhs.imag()) .

template<class T> bool
operator== (const complex<T>& x, const complex<T>& y);

Returns true if the real and imaginary parts of x and y are equal.

template<class T> bool
operator== (const complex<T>& x, T y);

Returns true if y is equal to the real part of x and the imaginary part of x
is equal to 0.

template<class T> bool
operator== (T x, const complex<T>& y);

Returns true if x is equal to the real part of y and the imaginary part of y
is equal to 0.

template<class T> bool
operator!= (const complex<T>& x, const complex<T>& y);

Returns true if either the real or the imaginary part of x and y are not
equal.

template<class T> bool
operator!= (const complex<T>& x, T y);

Returns true if y is not equal to the real part of x or the imaginary part of
x is not equal to 0.

template<class T> bool
operator!= (T x, const complex<T>& y);

Returns true if x is not equal to the real part of y or the imaginary part of
y is not equal to 0.

template <class X> istream&
operator>> (istream& is, complex<X>& x);

Reads a complex number x into the input stream is . x may be of the form
u, (u) , or (u,v) where u is the real part and v is the imaginary part. If
bad input is encountered, the ios::badbit flag is set.

complex

284 Standard C++ Library Class Reference

template <class X> ostream&
operator<< (ostream& os, const complex<X>& x);

Returns os << "(" << x.real() << "," << x.imag() << ")" .

template<class T> T
abs (const complex<T>& c);

Returns the absolute value or magnitude of c (the square root of the
norm).

template<class T> complex<T>
acos (const complex<T>& c);

Returns the arccosine of c .

template<class T> T
arg (const complex<T>& c);

Returns the phase angle of c .

template<class T> complex<T>
asin (const complex<T>& c);

Returns the arcsine of c .

template<class T> complex<T>
atan (const complex<T>& c);

Returns the arctangent of c .

template<class T> complex<T>
atan2 (T a, const complex<T>& b);

Returns the arctangent of a/b .

template<class T> complex<T>
atan2 (const complex<T>& a, T b);

Returns the arctangent of a/b .

template<class T> complex<T>
atan2 (const complex<T>& a, const complex<T>& b);

Returns the arctangent of a/b .

template<class T> complex<T>
conj (const complex<T>& c);

Returns the conjugate of c .

template<class T> complex<T>
cos (const complex<T>& c);

Returns the cosine of c .

template<class T> complex<T>
cosh (const complex<T>& c);

Returns the hyperbolic cosine of c .

Non-member
Functions

complex

Standard C++ Library Class Reference 285

template<class T> complex<T>
exp (const complex<T>& x);

Returns e raised to the x power.

template<class T> T
imag (const complex<T>& c) const;

Returns the imaginary part of c .

template<class T> complex<T>
log (const complex<T>& x);

Returns the natural logarithm of x .

template<class T> complex<T>
log10 (const complex<T>& x);

Returns the logarithm base 10 of x .

template<class T> T
norm (const complex<T>& c);

Returns the squared magnitude of c . (The sum of the squares of the real
and imaginary parts.)

template<class T> complex<T>
polar (const T& m, const T& a);

Returns the complex value of a complex number whose magnitude is m
and phase angle is a, measured in radians.

template<class T> complex<T>
pow (const complex<T>& x, int y);

template<class T> complex<T>
pow (const complex<T>& x, T y);

template<class T> complex<T>
pow (const complex<T>& x, const complex<T>& y);

template<class T> complex<T>
pow (T x, const complex<T>& y);

Returns x raised to the y power.

template<class T> T
real (const complex<T>& c);

Returns the real part of c.

template<class T> complex<T>
sin (const complex<T>& c);

Returns the sine of c .

template<class T> complex<T>
sinh (const complex<T>& c);

Returns the hyperbolic sine of c .

complex

286 Standard C++ Library Class Reference

template<class T> complex<T>
sqrt (const complex<T>& x);

Returns the square root of x .

template<class T> complex<T>
tan (const complex<T>& x);

Returns the tangent of x .

template<class T> complex<T>
tanh (const complex<T>& x);

Returns the hyperbolic tangent of x .

//
// complex.cpp
//
 #include <complex>
 #include <iostream.h>

 int main()
 {
 complex<double> a(1.2, 3.4);
 complex<double> b(-9.8, -7.6);

 a += b;
 a /= sin(b) * cos(a);
 b *= log(a) + pow(b, a);

 cout << "a = " << a << ", b = " << b << endl;

 return 0;
 }

Output :
a = (1.42804e-06,-0.0002873), b = (58.2199,69.7354)

On compilers that don't support member function templates, the arithmetic
operators will not work on any arbitrary type. (They will work only on float,
double and long doubles.) You also will only be able to perform binary
arithmetic on types that are the same.

Compilers that don't support non-converting constructors will permit unsafe
downcasts (i.e., long double to double, double to float, long double to float).

Example

Warnings

Standard C++ Library Class Reference 287

Containers

A standard template library (STL) collection.

Within the standard template library, collection classes are often described as
containers. A container stores a collection of other objects and provides
certain basic functionality that supports the use of generic algorithms.
Containers come in two basic flavors: sequences, and associative containers.
They are further distinguished by the type of iterator they support.

A sequence supports a linear arrangement of single elements. vector, list,
deque, bitset, and string fall into this category. Associative containers map
values onto keys, which provides efficient retrieval of the values based on
the keys. The STL provides the map, multimap, set and multiset
associative containers. map and multimap store the value and the key
separately and allow for fast retrieval of the value, based upon fast retrieval
of the key. set and multiset store only keys allowing fast retrieval of the key
itself.

Containers within the STL must meet the following requirements. Sequences
and associative containers must also meet their own separate sets of
requirements. The requirements for containers are:

• A container allocates all storage for the objects it holds.

• A container X of objects of type T provides the following types:

X::value_type a T
X::reference lvalue of T
X::const_reference const lvalue of T
X::iterator an iterator type pointing to T. X::iterator

cannot be an output iterator.
X::const_iterator an iterator type pointing to const T.

x::iterator cannot be an output iterator.
X::difference_type a signed integral type (must be the same as the

distance type for X::iterator and
X::const_iterator

X::size_type an unsigned integral type representing any
non-negative value of difference_type

Summary

Description

Container
Requirements

Containers

288 Standard C++ Library Class Reference

• A container provides a default constructor, a copy constructor, an
assignment operator, and a full complement of comparison operators
(==, !=, <, >, <=, >=).

• A container provides the following member functions:

begin() Returns an iterator or a const_iterator

pointing to the first element in the collection.

end() Returns an iterator or a const_iterator

pointing just beyond the last element in the
collection.

swap(container) Swaps elements between this container and the
swap's argument.

clear() Deletes all the elements in the container.

size() Returns the number of elements in the
collection as a size_type .

max_size() Returns the largest possible number of
elements for this type of container as a
size_type .

empty() Returns true if the container is empty, false

otherwise.

A container may be reversible. Essentially, a reversible container provides a
reverse iterator that allows traversal of the collection in a direction opposite
that of the default iterator. A reversible container must meet the following
requirements in addition to those listed above:

• A reversible container provides the following types:

X::reverse_iterator An iterator type pointing to T.

X::const_reverse_iterator An iterator type pointing to const
T

• A reversible container provides the following member functions:

rbegin() Returns a reverse_iterator or a
const_reverse_iterator pointing past the
end of the collection

rend() Returns a reverse_iterator or a
const_reverse_iterator pointing to the first
element in the collection.

Reversible
Containers

Containers

Standard C++ Library Class Reference 289

In addition to the requirements for containers, the following requirements
hold for sequences:

• iterator and const_iterator must be forward iterators, bidirectional
iterators or random access iterators.

• A sequence provides the following constructors:

X(n, t) Constructs a container with n copies of t .

X(i, j) Constructs a container with elements from the range
[i,j).

• A sequence provides the following member functions:

insert(p,t) Inserts the element t in front of the position
identified by the iterator p.

insert(p,n,t) Inserts n copies of t in front of the position
identified by the iterator p.

insert(p,i,j) Inserts elements from the range [i,j) in front of
the position identified by the the iterator p.

erase(q) Erases the element pointed to by the iterator q.

erase(q1,q2) Erases the elements in the range [q1,q2) .

• A sequence may also provide the following member functions if they
can be implemented with constant time complexity.

front() Returns the element pointed to by begin()

back() Returns the element pointed to by end()

push_front(x) Inserts the element x at begin()

push_back(x) Inserts the element x at end()

pop_front() Erases the element at begin()

pop_back() Erases the element at end() -1

operator[](n) Returns the element at a.begin() + n

In addition to the requirements for a container, the following requirements
hold for associative containers:

• For an associative container iterator and const_iterator must be
bidirectional iterators. Associative containers are inherently sorted.
Their iterators proceed through the container in the non-descending
order of keys (where non-descending order is defined by the comparison
object that was used to construct the container).

Sequences

Associative
Containers

Containers

290 Standard C++ Library Class Reference

• An associative container provides the following types:

X::key_type the type of the Key

X::key_compare the type of the comparison to use to put the
keys in order

X::value_compare the type of the comparison used on values
• The default constructor and copy constructor for associative containers

use the template parameter comparison class.

• An associative container provides the following additional constructors:

X(c) Construct an empty container using c as the
comparision object

X(i,j,c) Constructs a container with elements from the
range [i,j) and the comparison object c .

X(i, j) Constructs a container with elements from the
range [i,j) using the template parameter
comparison object.

• An associative container provides the following member functions:

key_comp() Returns the comparison object used in
constructing the associative container.

value_comp() Returns the value comparison object used in
constructing the associative container.

insert(t) Inserts t if and only if there is no element in
the container with key equal to the key of t .
Returns a pair<iterator,bool> . The bool

component of the returned pair indicates the
success or failure of the operation and the
iterator component points to the element
with key equal to key of t .

insert(p,t) If the container does not support redundant
key values then this function only inserts t if
there is no key present that is equal to the key
of t . If the container does support redundant
keys then this function always inserts the
element t . The iterator p serves as a hint of
where to start searching, allowing for some
optimization of the insertion. It does not
restrict the algorithm from inserting ahead of
that location if necessary.

Containers

Standard C++ Library Class Reference 291

insert(i,j) Inserts elements from the range [i,j) .

erase(k) Erases all elements with key equal to k .
Returns number of erased elements.

erase(q) Erases the element pointed to by q.

erase(q1,q2) Erases the elements in the range [q1,q2) .

find(k) Returns an iterator pointing to an element
with key equal to k or end() if such an
element is not found.

count(k) Returns the number of elements with key
equal to k .

lower_bound(k) Returns an iterator pointing to the first
element with a key greater than or equal to k .

upper_bound(k) Returns an iterator pointing to the first
element with a key less than or equal to k .

equal_range(k) Returns a pair of iterators such that the first
element of the pair is equivalent to
lower_bound(k) and the second element
equivelent to upper_bound(k) .

bitset, deque, list, map, multimap, multiset, priority_queue, queue, set,
stack, vector

See Also

Standard C++ Library Class Reference 293

copy, copy_backward

Algorithm

Copies a range of elements

#include <algorithm>

template <class InputIterator, class OutputIterator>
 OutputIterator copy(InputIterator first, InputIterator last,
 OutputIterator result);

template <class BidirectionalIterator1, class BidirectionalIterator2>
 BidirectionalIterator2 copy_backward(BidirectionalIterator1 first,
 BidirectionalIterator1 last,
 BidirectionalIterator2 result);

The copy algorithm copies values from the range specified by [first ,
last) to the range that specified by [result, result + (last - first)) .
copy can be used to copy values from one container to another, or to copy
values from one location in a container to another location in the same
container, as long as result is not within the range [first-last) . copy
returns result + (last - first) . For each non-negative integer n <

(last - first) , copy assigns *(first + n) to *(result + n) . The
result of copy is undefined if result is in the range [first, last) .

Unless result is an insert iterator, copy assumes that at least as many
elements follow result as are in the range [first, last) .

The copy_backward algorithm copies elements in the range specified by
[first, last) into the range specified by [result - (last - first),

result) , starting from the end of the sequence (last-1) and progressing to
the front (first). Note that copy_backward does not reverse the order of
the elements, it simply reverses the order of transfer. copy_backward
returns result - (last - first) . You should use copy_backward
instead of copy when last is in the range [result - (last - first),

result) . For each positive integer n <= (last - first) ,
copy_backward assigns *(last - n) to *(result - n) . The result of
copy_backward is undefined if result is in the range [first, last) .

Unless result is an insert iterator, copy_backward assumes that there
are at least as many elements ahead of result as are in the range [first,

last) .

Summary

Synopsis

Description

copy, copy_backward

294 Standard C++ Library Class Reference

Both copy and copy_backward perform exactly last - first

assignments.

 //
 // stdlib/examples/manual.copyex.cpp
 //
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 int d1[4] = {1,2,3,4};
 int d2[4] = {5,6,7,8};

 // Set up three vectors
 //
 vector<int> v1(d1,d1 + 4), v2(d2,d2 + 4), v3(d2,d2 + 4);
 //
 // Set up one empty vector
 //
 vector<int> v4;
 //
 // Copy v1 to v2
 //
 copy(v1.begin(),v1.end(),v2.begin());
 //
 // Copy backwards v1 to v3
 //
 copy_backward(v1.begin(),v1.end(),v3.end());
 //
 // Use insert iterator to copy into empty vector
 //
 copy(v1.begin(),v1.end(),back_inserter(v4));
 //
 // Copy all four to cout
 //
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;
 copy(v3.begin(),v3.end(),out);
 cout << endl;
 copy(v4.begin(),v4.end(),out);
 cout << endl;

 return 0;
 }

Output :
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Complexity

Example

copy, copy_backward

Standard C++ Library Class Reference 295

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance you’ll
have to write:

vector <int, allocator>

instead of:

vector <int>

Warning

Standard C++ Library Class Reference 297

count, count_if

Algorithm

Count the number of elements in a container that satisfy a given condition.

#include <algorithm>

template <class InputIterator, class T, class Size>
 void count(InputIterator first, InputIterator last,
 const T& value, Size& n);

template <class InputIterator, class Predicate, class Size>
 void count_if(InputIterator first, InputIterator last,
 Predicate pred, Size& n);

The count algorithm compares value to elements in the sequence defined
by iterators first and last , and increments a counting value n each time it
finds a match. i.e., count adds to n the number of iterators i in the range
[first, last) for which the following condition holds:

*i == value

The count_if algorithm lets you specify a predicate, and increments n each
time an element in the sequence satisfies the predicate. That is, count_if
adds to n the number of iterators i in the range [first, last) for which
the following condition holds:

pred(*i) == true.

Both count and count_if perform exactly last-first applications of the
corresponding predicate.

//
// count.cpp
//
 #include <vector>
 #include <algorithm>
 #include <iostream.h>

 int main()
 {
 int sequence[10] = {1,2,3,4,5,5,7,8,9,10};
 int i=0,j=0,k=0;
 //
 // Set up a vector

Summary

Synopsis

Description

Complexity

Example

count, count_if

298 Standard C++ Library Class Reference

 //
 vector<int> v(sequence,sequence + 10);

 count(v.begin(),v.end(),5,i); // Count fives
 count(v.begin(),v.end(),6,j); // Count sixes
 //
 // Count all less than 8
 // I=2, j=0
 //
 count_if(v.begin(),v.end(),bind2nd(less<int>(),8),k);
 // k = 7

 cout << i << " " << j << " " << k << endl;
 return 0;
 }

Output : 2 0 7

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance,
you’ll have to write:

vector <int, allocator>

instead of:

vector <int>

Warnings

Standard C++ Library Class Reference 299

deque

Container

A sequence that supports random access iterators and efficient
insertion/deletion at both beginning and end.

#include <deque>

template <class T, class Allocator = allocator>
 class deque;

deque<T, Allocator> is a type of sequence that supports random access
iterators. It supports constant time insert and erase operations at the
beginning or the end of the container. Insertion and erase in the middle take
linear time. Storage management is handled by the Allocator template
parameter.

Any type used for the template parameter T must provide the following
(where T is the type , t is a value of T and u is a const value of T):

Default constructor T()

Copy constructors T(t) and T(u)

Destructor t.~T()

Address of &t and &u yielding T* and const T*

respectively

Assignment t = a where a is a (possibly const) value of
T

template <class T, class Allocator = allocator>
 class deque {

public:

 // Types

 class iterator;
 class const_iterator;
 typedef T value_type;
 typedef Allocator allocator_type;
 typename reference;
 typename const_reference;
 typename size_type;

Summary

Synopsis

Description

Interface

deque

300 Standard C++ Library Class Reference

 typename difference_type;
 typename reverse_iterator;
 typename const_reverse_iterator;

 // Construct/Copy/Destroy

 explicit deque (const Allocator& = Allocator());
 explicit deque (size_type, const Allocator& = Allocator ());
 deque (size_type, const T& value,
 const Allocator& = Allocator ());
 deque (const deque<T,Allocator>&);
 template <class InputIterator>
 deque (InputIterator, InputIterator,
 const Allocator& = Allocator ());
 ~deque ();
 deque<T,Allocator>& operator= (const deque<T,Allocator>&);
 template <class InputIterator>
 void assign (InputIterator, InputIterator);
 template <class Size, class T>
 void assign (Size);
 template <class Size, class T>
 void assign (Size, const T&);
 allocator_type get allocator () const;

 // Iterators

 iterator begin ();
 const_iterator begin () const;
 iterator end ();
 const_iterator end () const;
 reverse_iterator rbegin ();
 const_reverse_iterator rbegin () const;
 reverse_iterator rend ();
 const_reverse_iterator rend () const;

// Capacity

 size_type size () const;
 size_type max_size () const;
 void resize (size_type);
 void resize (size_type, T);
 bool empty () const;

// Element access

 reference operator[] (size_type);
 const_reference operator[] (size_type) const;
 reference at (size_type);
 const_reference at (size_type) const;
 reference front ();
 const_reference front () const;
 reference back ();
 const_reference back () const;

 // Modifiers

 void push_front (const T&);

deque

Standard C++ Library Class Reference 301

 void push_back (const T&);
 iterator insert (iterator);
 iterator insert (iterator, const T&);
 void insert (iterator, size_type, const T&);
 template <class InputIterator>
 void insert (iterator, InputIterator, InputIterator);

 void pop_front ();
 void pop_back ();

 iterator erase (iterator);
 iterator erase (iterator, iterator);
 void swap (deque<T, Allocator>&);
 void clear();
};

 // Non-member Operators

template <class T, class Allocator>
 bool operator== (const deque<T, Allocator>&,
 const deque<T, Allocator>&);

template <class T, class Allocator>
 bool operator< (const deque<T, Allocator>&,
 const deque<T, Allocator>&);

// Specialized Algorithms

template <class T, class Allocator>
 voice swap (deque<T, Allocator>&, deque<T, Allocator>&);

explicit
deque (const Allocator& alloc = Allocator());

The default constructor. Creates a deque of zero elements. The deque will
use the allocator alloc for all storage management.

explicit
deque (size_type n, const Allocator& alloc = Allocator());

Creates a list of length n, containing n copies of the default value for type
T. Requires that T have a default constructor. The deque will use the
allocator alloc for all storage management.

deque (size_type n, const T& value,
 const Allocator& alloc = Allocator());

Creates a list of length n, containing n copies of value . The deque will use
the allocator alloc for all storage management.

deque (const deque<T, Allocator>& x);
Copy constructor. Creates a copy of x .

Constructors
and Destructor

deque

302 Standard C++ Library Class Reference

template <class InputIterator>
deque (InputIterator first, InputIterator last,
 const Allocator& alloc = Allocator());

Creates a deque of length last - first , filled with all values obtained
by dereferencing the InputIterators on the range [first, last) . The
deque will use the allocator alloc for all storage management.

~deque ();
The destructor. Releases any allocated memory for self.

allocator
allocator_type get_allocator () const;

Returns a copy of the allocator used by self for storage management.

iterator begin ();
Returns a random access iterator that points to the first element.

const_iterator begin () const;
Returns a constant random access iterator that points to the first element.

iterator end ();
Returns a random access iterator that points to the past-the-end value.

const_iterator end () const;
Returns a constant random access iterator that points to the past-the-end
value.

reverse_iterator rbegin ();
Returns a random access reverse_iterator that points to the past-the-
end value.

const_reverse_iterator rbegin () const;
Returns a constant random access reverse iterator that points to the past-
the-end value.

reverse_iterator rend ();
Returns a random access reverse_iterator that points to the first
element.

const_reverse_iterator rend () const;
Returns a constant random access reverse iterator that points to the first
element.

deque<T, Allocator>&
operator= (const deque<T, Allocator>& x);

Erases all elements in self then inserts into self a copy of each element in x .
Returns a reference to self.

Allocator

Iterators

Assignment
Operator

deque

Standard C++ Library Class Reference 303

reference operator [] (size_type n);
Returns a reference to element n of self. The result can be used as an
lvalue. The index n must be between 0 and the size less one.

const_reference operator [] (size_type n) const;
Returns a constant reference to element n of self. The index n must be
between 0 and the size() - 1 .

template <class InputIterator>
void
assign (InputIterator first, InputIterator last);

Erases all elements contained in self, then inserts new elements from the
range [first, last) .

template <class Size, class T>
void
assign (Size n);

Erases all elements contained in self, then inserts n instances of the default
value of type T.

template <class Size, class T>
void
assign (Size n, const T& t);

Erases all elements contained in self, then inserts n instances of the value
of t.

reference
at (size_type n);

Returns a reference to element n of self. The result can be used as an
lvalue. The index n must be between 0 and the size() - 1 .

const_reference
at (size_type) const;

Returns a constant reference to element n of self. The index n must be
between 0 and the size() - 1 .

reference
back ();

Returns a reference to the last element.

const_reference
back () const;

Returns a constant reference to the last element.

void
clear ();

Erases all elements from the self.

Reference
Operators

Member
Functions

deque

304 Standard C++ Library Class Reference

bool
empty () const;

Returns true if the size of self is zero.

reference
front ();

Returns a reference to the first element.

const_reference
front () const;

Returns a constant reference to the first element.

iterator
erase (iterator first, iterator last);

Deletes the elements in the range (first, last). Returns an iterator

pointing to the element following the last deleted element, or end() if
there were no elements after the deleted range.

iterator
erase (iterator position);

Removes the element pointed to by position . Returns an iterator

pointing to the element following the deleted element, or end() if there
were no elements after the deleted range.

iterator
insert (iterator position);

Inserts a copy of the default value of type T before position . The return
value points to the inserted element. Requires that type T have a default
constructor.

iterator
insert (iterator position, const T& x);

Inserts x before position . The return value points to the inserted x .

void
insert (iterator position, size_type n, const T& x);

Inserts n copies of x before position .

template <class InputIterator>
void
insert (iterator position, InputIterator first,
 InputIterator last);

Inserts copies of the elements in the range (first, last] before
position .

size_type
max_size () const;
 Returns size() of the largest possible deque.

deque

Standard C++ Library Class Reference 305

void
pop_back ();

Removes the last element. Note that this function does not return the
element.

void
pop_front ();

Removes the first element. Note that this function does not return the
element

void
push_back (const T& x);

Appends a copy of x to the end.

void
push_front (const T& x);

Inserts a copy of x at the front.

void
resize (size_type sz);

Alters the size of self. If the new size (sz) is greater than the current size
then sz-size() copies of the default value of type T are inserted at the end
of the deque. If the new size is smaller than the current capacity, then the
deque is truncated by erasing size()-sz elements off the end. Otherwise,
no action is taken. Requires that type T have a default constructor.

void
resize (size_type sz, T c);

Alters the size of self. If the new size (sz) is greater than the current size
then sz-size() c 's are inserted at the end of the deque. If the new size is
smaller than the current capacity, then the deque is truncated by erasing
size()-sz elements off the end. Otherwise, no action is taken.

size_type
size () const;

Returns the number of elements.

void
swap (deque<T,Allocator>& x);

Exchanges self with x .

template <class T, class Allocator>
bool operator== (const deque<T, Allocator>& x,
 const deque<T, Allocator>& y);

Equality operator. Returns true if x is the same as y .

Non-member
Functions

deque

306 Standard C++ Library Class Reference

template <class T, class Allocator>
bool operator< (const deque<T, Allocator>& x,
 const deque<T, Allocator>& y);

Returns true if the elements contained in x are lexicographically less than
the elements contained in y .

template <class T, class Allocator>
void swap (deque<T, Allocator>& a, deque<T, Allocator>& b);

Efficiently swaps the contents of a and b.

//
// deque.cpp
//
 #include <deque>
 #include <string>

 deque<string, allocator> deck_of_cards;
 deque<string, allocator> current_hand;

 void initialize_cards(deque<string, allocator>& cards) {
 cards.push_front("aceofspades");
 cards.push_front("kingofspades");
 cards.push_front("queenofspades");
 cards.push_front("jackofspades");
 cards.push_front("tenofspades");
 // etc.
 }

 template <class It, class It2>
 void print_current_hand(It start, It2 end)
 {
 while (start < end)
 cout << *start++ << endl;
 }

 template <class It, class It2>
 void deal_cards(It, It2 end) {
 for (int i=0;i<5;i++) {
 current_hand.insert(current_hand.begin(),*end);
 deck_of_cards.erase(end++);
 }
 }

 void play_poker() {
 initialize_cards(deck_of_cards);
 deal_cards(current_hand.begin(),deck_of_cards.begin());
 }

 int main()
 {
 play_poker();
 print_current_hand(current_hand.begin(),current_hand.end());
 return 0;
 }

Example

deque

Standard C++ Library Class Reference 307

Output :
aceofspades
kingofspades
queenofspades
jackofspades
tenofspades

Member function templates are used in all containers provided by the
Standard Template Library. An example of this is the constructor for
deque<T, Allocator> that takes two templated iterators:

template <class InputIterator>
 deque (InputIterator, InputIterator);

deque also has an insert function of this type. These functions, when not
restricted by compiler limitations, allow you to use any type of input iterator
as arguments. For compilers that do not support this feature we provide
substitute functions that allow you to use an iterator obtained from the same
type of container as the one you are constructing (or calling a member
function on), or you can use a pointer to the type of element you have in the
container.

For example, if your compiler does not support member function templates
you can construct a deque in the following two ways:

int intarray[10];
deque<int, allocator> first_deque(intarray, intarray + 10);
deque<int, allocator> second_deque(first_deque.begin(),
 first_deque.end());

But not this way:

deque<long, allocator> long_deque(first_deque.begin(),
 first_deque.end());

since the long_deque and first_deque are not the same type.

Additionally, many compilers do not support default template arguments. If
your compiler is one of these, you need to always supply the Allocator

template argument. For instance, you’ll have to write:

deque<int, allocator>

instead of:

deque<int>

Warnings

Standard C++ Library Class Reference 309

distance

Iterator Operation

Computes the distance between two iterators

#include <iterator>

template <class InputIterator, class Distance>
 void distance (InputIterator first,
 InputIterator last,
 Distance& n);

The distance template function computes the distance between two
iterators and stores that value in n. The last iterator must be reachable from
the first iterator.

distance increments n by the number of times it takes to get from first to
last . distance must be a three argument function that stores the result into
a reference instead of returning the result, because the distance type cannot
be deduced from built-in iterator types such as int* .

//
// distance.cpp
//

 #include <iterator>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 //
 //Initialize a vector using an array
 //
 int arr[6] = {3,4,5,6,7,8};
 vector<int> v(arr,arr+6);
 //
 //Declare a list iterator, s.b. a ForwardIterator
 //
 vector<int>::iterator itr = v.begin()+3;
 //
 //Output the original vector
 //
 cout << "For the vector: ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 cout << "When the iterator is initialized to point to "
 << *itr << endl;
 //
 // Use of distance

Summary

Synopsis

Description

Example

distance

310 Standard C++ Library Class Reference

 //
 vector<int>::difference_type dist = 0;
 distance(v.begin(), itr, dist);
 cout << "The distance between the beginning and itr is "
 << dist << endl;
 return 0;
 }

Output :
For the vector: 3 4 5 6 7 8
When the iterator is initialized to point to 6
The distance between the beginning and itr is 3

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance you’ll
have to write:

vector <int, allocator>

instead of:

vector <int>

sequence, random_iterator

Warning

See Also

Standard C++ Library Class Reference 311

distance_type

Iterator primitive

Determine the type of distance used by an iterator.

#include <iterator>

template <class T, class Distance>
inline Distance* distance_type (const input_iterator<T,
 Distance>&)

template <class T, class Distance>
inline Distance* distance_type (const forward_iterator<T,
 Distance>&)

template <class T, class Distance>
inline Distance*
distance_type (const bidirectional_iterator<T, Distance>&)

template <class T, class Distance>
inline Distance*
distance_type (const random_access_iterator<T, Distance>&)

template <class T>
inline ptrdiff_t* distance_type (const T*)

The distance_type family of function templates return a pointer to a value
that is of the same type as that used to represent a distance between two
iterators. The first four of these take an iterator of a particular type and
return a pointer to a default value of the distance_type for that iterator.
The T* form of the function returns ptrdiff_t* .

Generic algorithms use this function to create local variables of the correct
type. The distance_type functions are typically used like this:

template <class Iterator>
void foo(Iterator first, Iterator last)
{
 __foo(begin,end,distance_type(first));
}

template <class Iterator, class Distance>
void __foo(Iterator first, Iterator last, Distance*>
{
 Distance d = Distance();
 distance(first,last,d);
 …
}

Summary

Synopsis

Description

distance_type

312 Standard C++ Library Class Reference

The auxiliary function template allows the algorithm to extract a distance
type from the first iterator and then use that type to perform some useful
work.

Other iterator primitives: value_type, iterator_category, distance,
advance

See Also

Standard C++ Library Class Reference 313

divides

Function Object

Returns the result of dividing its first argument by its second.

#include <functional>

template <class T>
struct divides;

divides is a binary function object. Its operator() returns the result of
dividing x by y . You can pass a divides object to any algorithm that requires
a binary function. For example, the transform algorithm applies a binary
operation to corresponding values in two collections and stores the result.
divides would be used in that algorithm in the following manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(), vecResult.begin(),
 divides <int>());

After this call to transform, vecResult[n] will contain vec1[n] divided by
vec2[n] .

template <class T>
 struct divides : binary_function<T, T, T>
{
 typedef typename binary_function<T, T, T>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, T>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, T>::result_type
 result_type;

 T operator() (const T&, const T&) const;
};

binary_function, function objects

Summary

Synopsis

Description

Interface

See Also

Standard C++ Library Class Reference 315

equal

Algorithm

Compares two ranges for equality.

#include <algorithm>

template <class InputIterator1, class InputIterator2>
 bool equal(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2);

template <class InputIterator1, class InputIterator2,
 class BinaryPredicate>
 bool equal(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, BinaryPredicate binary_pred);

The equal algorithm does a pairwise comparison of all of the elements in
one range with all of the elements in another range to see if they match. The
first version of equal uses the equal operator (==) as the comparison
function, and the second version allows you to specify a binary predicate as
the comparison function. The first version returns true if all of the
corresponding elements are equal to each other. The second version of
equal returns true if for each pair of elements in the two ranges, the result
of applying the binary predicate is true . In other words, equal returns true

if both of the following are true:

1. There are at least as many elements in the second range as in the first;

2. For every iterator i in the range [first1, last1) the following
corresponding conditions hold:

 *i == *(first2 + (i - first1))

 or

 binary_pred(*i, *(first2 + (i - first1))) == true

Otherwise, equal returns false .

This algorithm assumes that there are at least as many elements available
after first2 as there are in the range [first1, last1).

equal performs at most last1-first1 comparisons or applications of the
predicate.

Summary

Synopsis

Description

Complexity

equal

316 Standard C++ Library Class Reference

//
// equal.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 int d1[4] = {1,2,3,4};
 int d2[4] = {1,2,4,3};
 //
 // Set up two vectors
 //
 vector<int> v1(d1+0, d1 + 4), v2(d2+0, d2 + 4);

 // Check for equality
 bool b1 = equal (v1.begin(),v1.end(),v2.begin());
 bool b2 = equal (v1.begin(),v1.end(),
 v2.begin(),equal_to<int>());

 // Both b1 and b2 are false
 cout << (b1 ? "TRUE" : "FALSE") << " "
 << (b2 ? "TRUE" : "FALSE") << endl;
 return 0;
 }

Output :
FALSE FALSE

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

Example

Warnings

Standard C++ Library Class Reference 317

equal_range

Algorithm

Find the largest subrange in a collection into which a given value can be
inserted without violating the ordering of the collection.

#include <algorithm>

template <class ForwardIterator, class T>
 pair<ForwardIterator, ForwardIterator>
 equal_range (ForwardIterator first, ForwardIterator last,
 const T& value);

 template <class ForwardIterator, class T, class Compare>
 pair<ForwardIterator, ForwardIterator>
 equal_range (ForwardIterator first, ForwardIterator last,
 const T& value, Compare comp);

The equal_range algorithm performs a binary search on an ordered
container to determine where the element value can be inserted without
violating the container's ordering. The library provides two versions of the
algorithm. The first version uses the less than operator (operator <) to
search for the valid insertion range, and assumes that the sequence was
sorted using the less than operator. The second version allows you to
specify a function object of type Compare , and assumes that Compare was the
function used to sort the sequence. The function object must be a binary
predicate.

equal_range returns a pair of iterators, i and j that define a range
containing elements equivalent to value , i.e., the first and last valid insertion
points for value . If value is not an element in the container, i and j are
equal. Otherwise, i will point to the first element not "less" than value, and
j will point to the first element greater than value. In the second version,
"less" is defined by the comparison object. Formally, equal_range returns a
sub-range [i, j) such that value can be inserted at any iterator k within the
range. Depending upon the version of the algorithm used, k must satisfy
one of the following conditions:

!(*k < value) && !(value < *k)

 or

comp(*k,value) == false && comp(value, *k) == false

The range [first,last) is assumed to be sorted.

Summary

Synopsis

Description

equal_range

318 Standard C++ Library Class Reference

equal_range performs at most 2 * log(last - first) + 1 comparisons.

//
// eqlrange.cpp
//
 #include <vector>
 #include <algorithm>
 #include <iostream.h>

 int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[11] = {0,1,2,2,3,4,2,2,2,6,7};
 //
 // Set up a vector
 //
 vector<int> v1(d1+0, d1 + 11);
 //
 // Try equal_range variants
 //
 pair<iterator,iterator> p1 =
 equal_range (v1.begin(),v1.end(),3);
 // p1 = (v1.begin() + 4,v1.begin() + 5)

 pair<iterator,iterator> p2 =
 equal_range (v1.begin(),v1.end(),2,less<int>());
 // p2 = (v1.begin() + 4,v1.begin() + 5)

 // Output results
 cout << endl << "The equal range for 3 is: "
 << "(" << *p1.first << " , "
 << *p1.second << ") " << endl << endl;

 cout << endl << "The equal range for 2 is: "
 << "(" << *p2.first << " , "
 << *p2.second << ") " << endl;
 return 0;
 }

Output :
The equal range for 3 is: (3 , 4)
The equal range for 2 is: (2 , 3)

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

binary_function, lower_bound, upper_bound

Complexity

Example

Warnings

See Also

Standard C++ Library Class Reference 319

equal_to

Function Object

Binary function object that returns true if its first argument equals its second

#include <functional>

template <class T>
struct equal_to;

equal_to is a binary function object. Its operator() returns true if x is
equal to y . You can pass an equal_to object to any algorithm that requires a
binary function. For example, the transform algorithm applies a binary
operation to corresponding values in two collections and stores the result.
equal_to would be used in that algorithm in the following manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(), vecResult.begin(),
 equal_to <int>());

After this call to transform, vecResult(n) will contain a "1" if vec1(n) was
equal to vec2(n) or a "0" if vec1(n) was not equal to vec2(n) .

template <class T>
 struct equal_to : binary_function<T, T, bool>
{
 typedef typename binary_function<T, T, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, bool>::result_type
 result_type;
 bool operator() (const T&, const T&) const;
};

binary_function, function objects

Summary

Synopsis

Description

Interface

See Also

Standard C++ Library Class Reference 321

exception

Standard Exception

Classes supporting logic and runtime errors.

 #include <exception>

 class exception;

The class exception defines the base class for the types of objects thrown as
exceptions by Standard C++ Library components, and certain expressions, to
report errors detected during program execution. User's can also use these
exceptions to report errors in their own programs.

class exception {

 public:
 exception () throw();
 exception (const exception&) throw();
 exception& operator= (const exception&) throw();
 virtual ~exception () throw();
 virtual const char* what () const throw();
 };

 class logic_error : public exception {
 public:
 logic_error (const string& what_arg);
 };

 class domain_error : public logic_error {
 public:
 domain_error (const string& what_arg);
 };

 class invalid_argument : public logic_error {
 public:
 invalid_argument (const string& what_arg);
 };

 class length_error : public logic_error {
 public:
 length_error (const string& what_arg);
 };

 class out_of_range : public logic_error {
 public:
 out_of_range (const string& what_arg);
 };

Summary

Synopsis

Description

Interface

exception

322 Standard C++ Library Class Reference

 class runtime_error : public exception {
 public:
 runtime_error (const string& what_arg);
 };

class range_error : public runtime_error {
 public:
 range_error (const string& what_arg);
 };

 class overflow_error : public runtime_error {
 public:
 overflow_error (const string& what_arg);
 };

exception () throw();
Constructs an object of class exception.

exception (const exception&) throw();
The copy constructor. Copies an exception object.

virtual
~exception () throw();

Destroys an object of class exception.

exception&
operator= (const exception&) throw();

The assignment operator. Copies an exception object.

virtual const char*
what ()const throw();

Returns an implementation-defined, null-terminated byte string
representing a human-readable message describing the exception. The
message may be a null-terminated multibyte string, suitable for
conversion and display as a wstring .

logic_error:: logic_error (const string& what_arg);
Constructs an object of class logic_error .

domain_error:: domain_error (const string& what_arg);
Constructs an object of class domain_error.

invalid_argument:: invalid_argument (const string& what_arg);
Constructs an object of class invalid_argument .

length_error:: length_error (const string& what_arg);
Constructs an object of class length_error .

out_of_range:: out_of_range (const string& what_arg);
Constructs an object of class out_of_range .

Constructors

Destructor

Operators

Member
Function

Constructors
for Derived

Classes

exception

Standard C++ Library Class Reference 323

runtime_error:: runtime_error (const string& what_arg);
Constructs an object of class runtime_error .

range_error:: range_error (const string& what_arg);
Constructs an object of class range_error .

overflow_error ::overflow_error (const string& what_arg);
Constructs an object of class overflow_error .

 //
 // exception.cpp
 //
 #include <iostream.h>
 #include <stdexcept>

 static void f() { throw runtime_error("a runtime error"); }

 int main ()
 {
 //
 // By wrapping the body of main in a try-catch block we can
 // be assured that we'll catch all exceptions in the
 // exception hierarchy. You can simply catch exception as is
 // done below, or you can catch each of the exceptions in
 // which you have an interest.
 //
 try
 {
 f();
 }
 catch (const exception& e)
 {
 cout << "Got an exception: " << e.what() << endl;
 }
 return 0;
 }

Example

Standard C++ Library Class Reference 325

fill, fill_n

Algorithm

Initializes a range with a given value.

#include <algorithm>

template <class ForwardIterator, class T>
 void fill (ForwardIterator first, ForwardIterator last,
 const T& value);

template <class OutputIterator, class Size, class T>
 void fill_n (OutputIterator first, Size n, const T& value);

The fill and fill_n algorithms are used to assign a value to the elements in a
sequence. fill assigns the value to all the elements designated by iterators in
the range [first, last) .

The fill_n algorithm assigns the value to all the elements designated by
iterators in the range [first, first + n) . fill_n assumes that there are at
least n elements following first , unless first is an insert iterator.

fill makes exactly last - first assignments, and fill_n makes exactly n
assignments.

//
// fill.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 int d1[4] = {1,2,3,4};
 //
 // Set up two vectors
 //
 vector<int> v1(d1,d1 + 4), v2(d1,d1 + 4);
 //
 // Set up one empty vector
 //
 vector<int> v3;
 //
 // Fill all of v1 with 9
 //
 fill (v1.begin(),v1.end(),9);

Summary

Synopsis

Description

Complexity

Example

fill, fill_n

326 Standard C++ Library Class Reference

 //
 // Fill first 3 of v2 with 7
 //
 fill_n (v2.begin(),3,7);

 //
 // Use insert iterator to fill v3 with 5 11's
 //
 fill_n (back_inserter(v3),5,11);
 //
 // Copy all three to cout
 //
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;
 copy(v3.begin(),v3.end(),out);
 cout << endl;
 //
 // Fill cout with 3 5's
 //
 fill_n (ostream_iterator<int>(cout," "),3,5);
 cout << endl;

 return 0;
 }

Output :
9 9 9 9
7 7 7 4
11 11 11 11 11
5 5 5

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

Warnings

Standard C++ Library Class Reference 327

find

Algorithm

Find an occurence of value in a sequence

#include <algorithm>

template <class InputIterator, class T>
 InputIterator find (InputIterator first, InputIterator last,
 const T& value);

The find algorithm lets you search for the first occurence of a particular
value in a sequence. find returns the first iterator i in the range [first,

last) for which the following condition holds:

*i == value.

If find does not find a match for value , it returns the iterator last .

find peforms at most last-first comparisons.

//
// find.cpp
//
 #include <vector>
 #include <algorithm>

 int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[10] = {0,1,2,2,3,4,2,2,6,7};

 // Set up a vector
 vector<int> v1(d1,d1 + 10);

 // Try find
 iterator it1 = find (v1.begin(),v1.end(),3);
 // it1 = v1.begin() + 4;

 // Try find_if
 iterator it2 =
 find_if(v1.begin(),v1.end(),bind1st(equal_to<int>(),3));
 // it2 = v1.begin() + 4

 // Try both adjacent_find variants
 iterator it3 = adjacent_find(v1.begin(),v1.end());
 // it3 = v1.begin() +2

Summary

Synopsis

Description

Complexity

Example

find

328 Standard C++ Library Class Reference

 iterator it4 =
 adjacent_find(v1.begin(),v1.end(),equal_to<int>());
 // v4 = v1.begin() + 2

 // Output results
 cout << *it1 << " " << *it2 << " " << *it3 << " "
 << *it4 << endl;

 return 0;
 }

Output : 3 3 2 2

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

adjacent_find, find_first_of, find_if

Warning

See Also

Standard C++ Library Class Reference 329

find_end

Algorithm

Finds a subsequence of equal values in a sequence.

#include <algorithm>

template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 find_end (ForwardIterator1 first1,
 ForwardIterator1 last1,
 ForwardIterator2 first2,
 ForwardIterator2 last2);
template <class Forward Iterator1, class ForwardIterator2,
 class BinaryPredicate>
 ForwardIterator1 find_end (ForwardIterator1 first1,
 ForwardIterator1 last1,
 ForwardIterator2 first2,
 ForwardIterator2 last2,
 BinaryPredicate pred);

The find_end algorithm finds the last occurrence of a subsequence,
indicated by [first2, last2) , in a sequence, [first1,last1) . The
algorithm returns an iterator pointing to the first element of the found
subsequence, or last1 if no match is found.

More precisely, the find_end algorithm returns the last iterator i in the
range [first1, last1 - (last2-first2)) such that for any non-negative
integer n < (last2-first2) , the following corresponding conditions
hold:

*(i+n) == *(first2+n),
pred(*(i+n),*(first2+n)) == true.

Or returns last1 if no such iterator is found.

Two versions of the algorithm exist. The first uses the equality operator as
the default binary predicate, and the second allows you to specify a binary
predicate.

At most (last2-first2)*(last1-first1-(last2-first2)+1)

applications of the corresponding predicate are done.

//
// find_end.cpp
//
#include<vector>
#include<iterator>
#include<algorithm>
#include<iostream.h>

Summary

Synopsis

Description

Complexity

Example

find_end

330 Standard C++ Library Class Reference

int main()
{
 typedef vector<int>::iterator iterator;
 int d1[10] = {0,1,6,5,3,2,2,6,5,7};
 int d2[4] = {6,5,0,0}

 //
 // Set up two vectors.
 //
 vector<int> v1(d1+0, d1+10), v2(d2+0, d2+2);
 //
 // Try both find_first_of variants.
 //
 iterator it1 = find_first_of (v1.begin(), v1.end(), v2.begin(),
 v2.end());

 iterator it2 = find_first_of (v1.begin(), v1.end(), v2.begin(),
 v2.end(), equal_to<int>());
 //
 // Try both find_end variants.
 //
 iterator it3 = find_end (v1.begin(), v1.end(), v2.begin(),
 v2.end());

 iterator it4 = find_end (v1.begin(), v1.end(), v2.begin(),
 v2.end(), equal_to<int>());
 //
 // Output results of find_first_of.
 // Iterator now points to the first element that matches one of
 // a set of values
 //
 cout << “For the vectors: “;
 copy (v1.begin(), v1.end(), ostream_iterator<int>(cout,” “));
 cout << “ and “;
 copy (v2.begin(), v2.end(), ostream_iterator<int>(cout,” “));
 cout<< endl ,, endl
 << “both versions of find_first_of point to: “
 << *it1 << endl << “with first_of address = “ << it1
 << endl ;
 //
 //Output results of find_end.
 // Iterator now points to the first element of the last find
 //subsequence.
 //
 cout << endl << endl
 << “both versions of find_end point to: “
 << *it3 << endl << “with find_end address = “ << it3
 << endl ;

 return 0;
}

Output :
For the vectors: 0 1 6 5 3 2 2 6 5 7 and 6 5
both versions of find_first_of point to: 6
with first_of address = 0x100005c0
both versions of find_end point to: 6
with find_end address = 0x100005d4

find_end

Standard C++ Library Class Reference 331

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int, allocator>

instead of:

vector<int>

Algorithms, find, find_if, adjacent_find

Warnings

See Also

Standard C++ Library Class Reference 333

find_first_of

Algorithm

Finds the first occurrence of any value from one sequence in another
sequence.

#include <algorithm>

template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 find_first_of (ForwardIterator1 first1,
 ForwardIterator1 last1,
 ForwardIterator2 first2,
 ForwardIterator2 last2);

template <class ForwardIterator1, class ForwardIterator2,
 class BinaryPredicate>
ForwardIterator1 find_first_of (ForwardIterator1 first1,
 ForwardIterator1 last1,
 ForwardIterator2 first2,
 ForwardIterator2 last2,
 BinaryPredicate pred);

The find_first_of algorithm finds a the first occurrence of a value from a
sequence, specified by first2, last2 , in a sequence specified by first1,

last1 . The algorithm returns an iterator in the range [first1, last1) that
points to the first matching element. If the first sequence [first1, last1)

does not contain any of the values in the second sequence, find_first_of
returns last1 .

In other words, find_first_of returns the first iterator i in the [first1,

last1) such that for some integer j in the range [first2, last2) :the
following conditions hold:

*i == *j, pred(*i,*j) == true.

Or find_first_of returns last1 if no such iterator is found.

Two versions of the algorithm exist. The first uses the equality operator as
the default binary predicate, and the second allows you to specify a binary
predicate.

At most (last1 - first1)*(last2 - first2) applications of the
corresponding predicate are done.

//
// find_f_o.cpp
//
 #include <vector>
 #include <iterator>

Summary

Synopsis

Description

Complexity

Example

find_first_of

334 Standard C++ Library Class Reference

 #include <algorithm>
 #include <iostream.h>

 int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[10] = {0,1,2,2,3,4,2,2,6,7};
 int d2[2] = {6,4};
 //
 // Set up two vectors
 //
 vector<int> v1(d1,d1 + 10), v2(d2,d2 + 2);
 //
 // Try both find_first_of variants
 //
 iterator it1 =
 find_first_of (v1.begin(),v1.end(),v2.begin(),v2.end());
 find_first_of (v1.begin(),v1.end(),v2.begin(),v2.end(),
 equal_to<int>());
 //
 // Output results
 //
 cout << "For the vectors: ";
 copy(v1.begin(),v1.end(),
 ostream_iterator<int>(cout," "));
 cout << " and ";
 copy(v2.begin(),v2.end(),
 ostream_iterator<int>(cout," "));
 cout << endl << endl
 << "both versions of find_first_of point to: "
 << *it1;

 return 0;
 }

Output :
For the vectors: 0 1 2 2 3 4 2 2 6 7 and 6 4
both versions of find_first_of point to: 4

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int, allocator>

instead of:

vector<int>

Algorithms, adjacent_find, find, find_if, find_next, find_end

Warnings

See Also

Standard C++ Library Class Reference 335

find_if

Algorithm

Find an occurrence of value in a sequence that satisfies a specifed predicate.

#include <algorithm>

template <class InputIterator, class Predicate>
 InputIterator find_if (InputIterator first,
 InputIterator last,
 Predicate pred);

The find_if algorithm allows you to search for the first element in a sequence
that satisfies a particular condition. The sequence is defined by iterators
first and last , while the condition is defined by the third argument: a
predicate function that returns a boolean value. find_if returns the first
iterator i in the range [first, last) for which the following condition
holds:

 pred(*i) == true.

If no such iterator is found, find_if returns last .

find_if performs at most last-first applications of the corresponding
predicate.

/
// find.cpp
//
#include <vector>
#include <algorithm>
#include <iostream.h>

int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[10] = {0,1,2,2,3,4,2,2,6,7};

 // Set up a vector
 vector<int> v1(d1,d1 + 10);

 // Try find
 iterator it1 = find(v1.begin(),v1.end(),3);
 // it1 = v1.begin() + 4;

 // Try find_if
 iterator it2 =
 find_if (v1.begin(),v1.end(),bind1st(equal_to<int>(),3));
 // it2 = v1.begin() + 4

Summary

Synopsis

Description

Complexity

Example

find_if

336 Standard C++ Library Class Reference

 // Try both adjacent_find variants
 iterator it3 = adjacent_find(v1.begin(),v1.end());
 // it3 = v1.begin() +2

 iterator it4 =
 adjacent_find(v1.begin(),v1.end(),equal_to<int>());
 // v4 = v1.begin() + 2

 // Output results
 cout << *it1 << " " << *it2 << " " << *it3 << " "
 << *it4 << endl;

 return 0;
 }

Output : 3 3 2 2

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int, allocator>

instead of:

vector<int>

adjacent_find, Algorithms, find, find_end, find_first_of

Warning

See Also

Standard C++ Library Class Reference 337

for_each

Algorithm

Applies a function to each element in a range.

#include <algorithm>

template <class InputIterator, class Function>
 void for_each (InputIterator first, InputIterator last,
 Function f);

The for_each algorithm applies function f to all members of the sequence in
the range [first, last) , where first and last are iterators that define
the sequence. Since this a non-mutating algorithm, the function f cannot
make any modifications to the sequence, but it can achieve results through
side effects (such as copying or printing). If f returns a result, the result is
ignored.

The function f is applied exactly last - first times.

//
// for_each.cpp
//
#include <vector>
#include <algorithm>
#include <iostream.h>

 // Function class that outputs its argument times x
 template <class Arg>
 class out_times_x : private unary_function<Arg,void>
 {
 private:
 Arg multiplier;

 public:
 out_times_x(const Arg& x) : multiplier(x) { }
 void operator()(const Arg& x)
 { cout << x * multiplier << " " << endl; }
 };

 int main()
 {
 int sequence[5] = {1,2,3,4,5};

 // Set up a vector
 vector<int> v(sequence,sequence + 5);

Summary

Synopsis

Description

Complexity

Example

for_each

338 Standard C++ Library Class Reference

 // Setup a function object
 out_times_x<int> f2(2);

 for_each (v.begin(),v.end(),f2); // Apply function

 return 0;
 }

Output : 2 4 6 8 10

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int, allocator>

instead of:

vector<int>

Algorithms, function object

Warning

See Also

Standard C++ Library Class Reference 339

forward iterator

Iterator

A forward-moving iterator that can both read and write.

For a complete discussion of iterators, see the Iterators section of this
reference.

Iterators are a generalization of pointers that allow a C++ program to
uniformly interact with different data structures. Forward iterators are
forward moving, and have the ability to both read and write data. These
iterators satisfy the requirements listed below.

Key to Iterator Requirements

The following key pertains to the iterator requirements listed below:

a and b values of type X
n value of distance type
u, Distance, tmp and m identifiers
r value of type X&

t value of type T

Requirements for Forward Iterators

The following expressions must be valid for forward iterators:

X u u might have a singular value

X() X() might be singular

X(a) copy constructor, a == X(a) .

X u(a) copy constructor, u == a

X u = a assignment, u == a

a == b, a != b return value convertible to bool

*a return value convertible to T&

a->m equivalent to (*a).m

Summary

Description

forward iterator

340 Standard C++ Library Class Reference

++r returns X&

r++ return value convertible to const X&

*r++ returns T&

Forward iterators have the condition that a == b implies *a == *b .

There are no restrictions on the number of passes an algorithm may make
through the structure.

Iterators, Bidirectional IteratorsSee Also

Standard C++ Library Class Reference 341

front_insert_iterator, front_inserter

Insert Iterator

An insert iterator used to insert items at the beginning of a collection.

#include <iterator>

template <class Container>
class front_insert_iterator : public output_iterator ;

Insert iterators let you insert new elements into a collection rather than copy
a new element's value over the value of an existing element. The class
front_insert_iterator is used to insert items at the beginning of a collection.
The function front_inserter creates an instance of a front_insert_iterator
for a particular collection type. A front_insert_iterator can be used with
deques and lists, but not with maps or sets.

Note that a front_insert_iterator makes each element that it inserts the new
front of the container. This has the effect of reversing the order of the
inserted elements. For example, if you use a front_insert_iterator to insert
"1" then "2" then "3" onto the front of container exmpl , you will find, after the
three insertions, that the first three elements of exmpl are "3 2 1".

template <class Container>
 class front_insert_iterator : public output_iterator {

public:
 explicit front_insert_iterator (Container&);
 front_insert_iterator<Container>&
 operator= (const typename Container::value_type&);
 front_insert_iterator<Container>& operator* ();
 front_insert_iterator<Container>& operator++ ();
 front_insert_iterator<Container> operator++ (int);
};

 template <class Container>
 front_insert_iterator<Container> front_inserter (Container&);

explicit
front_insert_iterator (Container& x);

Constructor. Creates an instance of a front_insert_iterator associated with
container x.

Summary

Synopsis

Description

Interface

Constructor

front_insert_iterator, front_inserter

342 Standard C++ Library Class Reference

front_insert_iterator<Container>&
operator= (const typename Container::value_type& value);

Assignment Operator. Inserts a copy of value on the front of the container,
and returns *this .

front_insert_iterator<Container>&
operator* ();

Returns *this (the input iterator itself).

front_insert_iterator<Container>&
operator++ ();

front_insert_iterator<Container>
operator++ (int);

Increments the insert iterator and returns *this .

template <class Container>
front_insert_iterator<Container>
front_inserter (Container& x)

Returns a front_insert_iterator that will insert elements at the beginning of
container x . This function allows you to create front insert iterators inline.

//
// ins_itr.cpp
//
#include <iterator>
#include <deque>
#include <iostream.h>

 int main ()
 {
 //
 // Initialize a deque using an array.
 //
 int arr[4] = { 3,4,7,8 };
 deque<int> d(arr+0, arr+4);
 //
 // Output the original deque.
 //
 cout << "Start with a deque: " << endl << " ";
 copy(d.begin(), d.end(), ostream_iterator<int>(cout," "));
 //
 // Insert into the middle.
 //
 insert_iterator<deque<int> > ins(d, d.begin()+2);
 *ins = 5; *ins = 6;
 //
 // Output the new deque.
 //
 cout << endl << endl;
 cout << "Use an insert_iterator: " << endl << " ";
 copy(d.begin(), d.end(), ostream_iterator<int>(cout," "));
 //
 // A deque of four 1s.
 //
 deque<int> d2(4, 1);

Operators

Non-member
Function

Example

front_insert_iterator, front_inserter

Standard C++ Library Class Reference 343

 //
 // Insert d2 at front of d.
 //
 copy(d2.begin(), d2.end(), front_inserter (d));
 //
 // Output the new deque.
 //
 cout << endl << endl;
 cout << "Use a front_inserter: " << endl << " ";
 copy(d.begin(), d.end(), ostream_iterator<int>(cout," "));
 //
 // Insert d2 at back of d.
 //
 copy(d2.begin(), d2.end(), back_inserter(d));
 //
 // Output the new deque.
 //
 cout << endl << endl;
 cout << "Use a back_inserter: " << endl << " ";
 copy(d.begin(), d.end(), ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Output :
Start with a deque:
 3 4 7 8
Use an insert_iterator:
 3 4 5 6 7 8
Use a front_inserter:
 1 1 1 1 3 4 5 6 7 8
Use a back_inserter:
 1 1 1 1 3 4 5 6 7 8 1 1 1 1

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

deque<int, allocator>

instead of:

deque<int>

Insert Iterators

Warnings

See Also

Standard C++ Library Class Reference 345

function object

Objects with an operator() defined. Function objects are used in place of
pointers to functions as arguments to templated algorithms.

 #include<functional>

 // typedefs

 template <class Arg, class Result>
 struct unary_function ;

 template <class Arg1, class Arg2, class Result>
 struct binary_function ;

Function objects are objects with an operator() defined. They are
important for the effective use of the standard library's generic algorithms,
because the interface for each algorithmic template can accept either an
object with an operator() defined, or a pointer to a function. The Standard
C++ Library provides both a standard set of function objects, and a pair of
classes that you can use as the base for creating your own function objects.

Function objects that take one argument are called unary function objects.
Unary function objects are required to provide the typedefs argument_type

and result_type . Similarly, function objects that take two arguments are
called binary function objects and, as such, are required to provide the
typedefs first_argument_type , second_argument_type , and
result_type .

The classes unary_function and binary_function make the task of
creating templated function objects easier. The necessary typedefs for a
unary or binary function object are provided by inheriting from the
appropriate function object class.

The function objects provided by the standard library are listed below,
together with a brief description of their operation. This class reference also
includes an alphabetic entry for each function.

Summary

Synopsis

Description

function object

346 Standard C++ Library Class Reference

Name Operation
arithmetic functions
plus addition x + y

minus subtraction x - y

times multiplication x * y

divides division x / y

modulus remainder x % y

negate negation - x

comparison functions
equal_to equality test x == y

not_equal_to inequality test x != y

greater greater comparison x > y

less less-than comparison x < y

greater_equal greater than or equal comparison x >= y

less_equal less than or equal comparison x <= y

logical functions
logical_and logical conjunction x && y

logical_or logical disjunction x || y

logical_not logical negation ! x

 template <class Arg, class Result>
 struct unary_function{
 typedef Arg argument_type;
 typedef Result result_type;
 };

 template <class Arg1, class Arg2, class Result>
 struct binary_function{
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
 };

 // Arithmetic Operations

 template<class T>
 struct plus : binary_function<T, T, T> {
 T operator() (const T&, const T&) const;
};

template <class T>
struct minus : binary_function<T, T, T> {
 T operator() (const T&, const T&) const;
};

Interface

function object

Standard C++ Library Class Reference 347

template <class T>
struct times : binary_function<T, T, T> {
 T operator() (const T&, const T&) const;
};

template <class T>
struct divides : binary_function<T, T, T> {
 T operator() (const T&, const T&) const;
};

template <class T>
struct modulus : binary_function<T, T, T> {
 T operator() (const T&, const T&) const;
};

template <class T>
struct negate : unary_function<T, T> {
 T operator() (const T&) const;
};

 // Comparisons

template <class T>
struct equal_to : binary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;
};

 template <class T>
 struct not_equal_to : binary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;
};

 template <class T>
 struct greater : binary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;
};

 template <class T>
 struct less : binary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;
};

 template <class T>
 struct greater_equal : binary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;
};

 template <class T>
 struct less_equal : binary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;
};

 // Logical Comparisons

 template <class T>
 struct logical_and : binary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;

function object

348 Standard C++ Library Class Reference

};

 template <class T>
 struct logical_or : binary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;
};

 template <class T>
 struct logical_not : unary_function<T, T, bool> {
 bool operator() (const T&, const T&) const;
};

//
// funct_ob.cpp
//
 #include<functional>
 #include<deque>
 #include<vector>
 #include<algorithm>
 #include <iostream.h>

 //Create a new function object from unary_function
 template<class Arg>
 class factorial : public unary_function<Arg, Arg>
 {
 public:

 Arg operator()(const Arg& arg)
 {
 Arg a = 1;
 for(Arg i = 2; i <= arg; i++)
 a *= i;
 return a;
 }
 };

 int main()
 {
 //Initialize a deque with an array of ints
 int init[7] = {1,2,3,4,5,6,7};
 deque<int> d(init, init+7);

 //Create an empty vector to store the factorials
 vector<int> v((size_t)7);

 //Transform the numbers in the deque to their factorials and
 // store in the vector
 transform(d.begin(), d.end(), v.begin(), factorial<int>());

 //Print the results
 cout << "The following numbers: " << endl << " ";
 copy(d.begin(),d.end(),ostream_iterator<int>(cout," "));

 cout << endl << endl;
 cout << "Have the factorials: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));

Example

function object

Standard C++ Library Class Reference 349

 return 0;
 }

Output :
The following numbers:
 1 2 3 4 5 6 7
Have the factorials:
 1 2 6 24 120 720 5040

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator> and deque<int, allocator>
instead of :

vector<int> and deque<int>

binary_function, unary_function

Warnings

See Also

Standard C++ Library Class Reference 351

generate, generate_n

Algorithm

Initialize a container with values produced by a value-generator class.

#include <algorithm>

template <class ForwardIterator, class Generator>
 void generate (ForwardIterator first, ForwardIterator last,
 Generator gen);

template <class OutputIterator, class Size, class Generator>
 void generate_n (OutputIterator first, Size n, Generator gen);

A value-generator function returns a value each time it is invoked. The
algorithms generate and generate_n initialize (or reinitialize) a sequence
by assigning the return value of the generator function gen to all the
elements designated by iterators in the range [first, last) or [first,

first + n) . The function gen takes no arguments. (gen can be a function or
a class with an operator () defined that takes no arguments.)

generate_n assumes that there are at least n elements following first ,
unless first is an insert iterator.

The generate and generate_n algorithms invoke gen and assign its return
value exactly last - first (or n) times.

//
// generate.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 // Value generator simply doubles the current value
 // and returns it
 template <class T>
 class generate_val
 {
 private:
 T val_;
 public:
 generate_val(const T& val) : val_(val) {}
 T& operator()() { val_ += val_; return val_; }
 };

 int main()
 {
 int d1[4] = {1,2,3,4};

Summary

Synopsis

Description

Complexity

Example

generate, generate_n

352 Standard C++ Library Class Reference

 generate_val<int> gen(1);

 // Set up two vectors
 vector<int> v1(d1,d1 + 4), v2(d1,d1 + 4);
 // Set up one empty vector
 vector<int> v3;

 // Generate values for all of v1
 generate (v1.begin(),v1.end(),gen);

 // Generate values for first 3 of v2
 generate_n (v2.begin(),3,gen);

 // Use insert iterator to generate 5 values for v3
 generate_n (back_inserter(v3),5,gen);

 // Copy all three to cout
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;
 copy(v3.begin(),v3.end(),out);
 cout << endl;

 // Generate 3 values for cout
 generate_n (ostream_iterator<int>(cout," "),3,gen);
 cout << endl;

 return 0;
 }

Output :
2 4 8 16
2 4 8 4
2 4 8 16 32
2 4 8

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write:

vector<int, allocator>

instead of :

vector<int>

function objects

Warnings

See Also

Standard C++ Library Class Reference 353

get_temporary_buffer

Memory Handling Primitive

Pointer based primitive for handling memory

#include <memory>

template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer (ptrdiff_t, T*);

The get_temporary_buffer templated function reserves from system
memory the largest possible buffer that is less than or equal to the size
requested (n*sizeof(T)), and returns a pair<T*, ptrdiff_t> containing
the address and size of that buffer. The units used to describe the capacity
are in sizeof(T) .

allocate, construct, deallocate, pair, return_temporary_buffer.

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 355

greater

Function Object

Binary function object that returns true if its first argument is greater than
its second.

#include <functional>

template <class T>
struct greater : binary_function<T, T, bool> {
 typedef typename binary_function<T, T, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, bool>::result_type
 result_type;
 bool operator() (const T&, const T&) const;
};

greater is a binary function object. Its operator() returns true if x is
greater than y . You can pass a greater object to any algorithm that requires
a binary function. For example, the transform algorithm applies a binary
operation to corresponding values in two collections and stores the result of
the function. greater would be used in that algorithm in the following
manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(), vecResult.begin(), greater<int>());

After this call to transform, vecResult(n) will contain a "1" if vec1(n) was
greater than vec2(n) or a "0" if vec1(n) was less than or equal to vec2(n) .

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator>

instead of

vector<int>

function objects

Summary

Synopsis

Description

Warnings

See Also

Standard C++ Library Class Reference 357

greater_equal

Function Object

Binary function object that returns true if its first argument is greater than or
equal to its second

#include <functional>

template <class T>
struct greater_equal ; : binary_function<T, T, bool> {
 typedef typename binary_function<T, T, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, bool>::result_type
 result_type;
 bool operator() (const T&, const T&) const;
};

greater_equal is a binary function object. Its operator() returns true if x
is greater than or equal to y . You can pass a greater_equal object to any
algorithm that requires a binary function. For example, the sort algorithm
can acceept a binary function as an alternate comparison object to sort a
sequence. greater_equal would be used in that algorithm in the following
manner:

vector<int> vec1;
.
.
sort(vec1.begin(), vec1.end(), greater_equal<int>());

After this call to sort, vec1 will be sorted in descending order.

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator>

instead of

vector<int>

function objects

Summary

Synopsis

Description

Warnings

See Also

Standard C++ Library Class Reference 359

Heap Operations

Algorithm

See the entries for make_heap, pop_heap, push_heap and sort_heap

Standard C++ Library Class Reference 361

includes

Algorithm

Basic set operation for sorted sequences.

#include <algorithm>

template <class InputIterator1, class InputIterator2>
 bool includes (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2);

template <class InputIterator1, class InputIterator2, class Compare>
 bool includes (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 Compare comp);

The includes algorithm compares two sorted sequences and returns true if
every element in the range [first2, last2) is contained in the range
[first1, last1) . It returns false otherwise. include assumes that the
sequences are sorted using the default comparison operator less than (<),
unless an alternative comparison operator (comp) is provided.

At most ((last1 - first1) + (last2 - first2)) * 2 -1 comparisons
are performed.

//
// includes.cpp
//
 #include <algorithm>
 #include <set>
 #include <iostream.h>

 int main()
 {

 //Initialize some sets
 int a1[10] = {1,2,3,4,5,6,7,8,9,10};
 int a2[6] = {2,4,6,8,10,12};
 int a3[4] = {3,5,7,8};
 set<int, less<int> > all(a1, a1+10), even(a2, a2+6),
 small(a3,a3+4);

 //Demonstrate includes
 cout << "The set: ";
 copy(all.begin(),all.end(),
 ostream_iterator<int>(cout," "));
 bool answer = includes(all.begin(), all.end(),
 small.begin(), small.end());
 cout << endl
 << (answer ? "INCLUDES " : "DOES NOT INCLUDE ");
 copy(small.begin(),small.end(),

Summary

Synopsis

Description

Complexity

Example

includes

362 Standard C++ Library Class Reference

 ostream_iterator<int>(cout," "));
 answer = includes(all.begin(), all.end(),
 even.begin(), even.end());
 cout << ", and" << endl
 << (answer ? "INCLUDES" : "DOES NOT INCLUDE ");
 copy(even.begin(),even.end(),
 ostream_iterator<int>(cout," "));
 cout << endl << endl;

 return 0;
 }

Output :
The set: 1 2 3 4 5 6 7 8 9 10
INCLUDES 3 5 7 8 , and
DOES NOT INCLUDE 2 4 6 8 10 12

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

set<int, less<int>, allocator>

instead of

set<int>

set, set_union, set_intersection, set_difference,
set_symmetric_difference

Warnings

See Also

Standard C++ Library Class Reference 363

inner_product

Generalized Numeric Operation

Computes the inner product A X B of two ranges A and B.

#include <numeric>

template <class InputIterator1, class InputIterator2,
 class T>
T inner_product (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, T init);

template <class InputIterator1, class InputIterator2,
 class T,
 class BinaryOperation1,
 class BinaryOperation2>
T inner_product (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, T init,
 BinaryOperation1 binary_op1,
 BinaryOperation2 binary_op2);

There are two versions of inner_product. The first computes an inner
product using the default multiplication and addition operators, while the
second allows you to specify binary operations to use in place of the default
operations.

The first version of the function computes its result by initializing the
accumulator acc with the initial value init and then modifying it with:

 acc = acc + ((*i1) * (*i2))

for every iterator i1 in the range [first1, last1) and iterator i2 in the
range [first2, first2 + (last1 - first1)) . The algorithm returns
acc .

The second version of the function initializes acc with init , then computes
the result:

acc = binary_op1(acc, binary_op2(*i1, *i2))

for every iterator i1 in the range [first1, last1) and iterator i2 in the
range [first2, first2 + (last1 - first1)) .

The inner_product algorithm computes exactly (last1 - first1)

applications of either:

acc + (*i1) * (*i2)

 or
binary_op1(acc, binary_op2(*i1, *i2)).

Summary

Synopsis

Description

Complexity

inner_product

364 Standard C++ Library Class Reference

//
// inr_prod.cpp
//
 #include <numeric> //For inner_product
 #include <list> //For list
 #include <vector> //For vectors
 #include <functional> //For plus and minus
 #include <iostream.h>

 int main()
 {
 //Initialize a list and an int using arrays of ints
 int a1[3] = {6, -3, -2};
 int a2[3] = {-2, -3, -2};

 list<int> l(a1, a1+3);
 vector<int> v(a2, a2+3);

 //Calculate the inner product of the two sets of values
 int inner_prod =
 inner_product (l.begin(), l.end(), v.begin(), 0);

 //Calculate a wacky inner product using the same values
 int wacky =
 inner_product (l.begin(), l.end(), v.begin(), 0,
 plus<int>(), minus<int>());

 //Print the output
 cout << "For the two sets of numbers: " << endl
 << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << " and ";
 copy(l.begin(),l.end(),ostream_iterator<int>(cout," "));

 cout << "," << endl << endl;
 cout << "The inner product is: " << inner_prod << endl;
 cout << "The wacky result is: " << wacky << endl;

 return 0;
 }

Output :
For the two sets of numbers:
 -2 -3 -2
 and 6 -3 -2 ,
The inner product is: 1
The wacky result is: 8

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

list<int, allocator> and vector<int, allocator>

instead of

list<int> and vector<int>

Example

Warnings

Standard C++ Library Class Reference 365

inplace_merge

Algorithm

Merge two sorted sequences into one.

#include <algorithm>
template <class BidirectionalIterator>
 void inplace_merge (BidirectionalIterator first,
 BidirectionalIterator middle,
 BidirectionalIterator last);

template <class BidirectionalIterator, class Compare>
 void inplace_merge (BidirectionalIterator first,
 BidirectionalIterator middle,
 BidirectionalIterator last, Compare comp);

The inplace_merge algorithm merges two sorted consecutive ranges
[first, middle) and [middle, last) , and puts the result of the merge
into the range [first, last) . The merge is stable, that is, if the two ranges
contain equivalent elements, the elements from the first range always
precede the elements from the second.

There are two versions of the inplace_merge algorithm. The first version
uses the less than operator (operator<) as the default for comparison, and
the second version accepts a third argument that specifies a comparison
operator.

When enough additional memory is available, inplace_merge does at most
(last - first) - 1 comparisons. If no additional memory is available, an
algorithm with O(NlogN) complexity (where N is equal to last-first) may
be used.

//
// merge.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 int d1[4] = {1,2,3,4};
 int d2[8] = {11,13,15,17,12,14,16,18};

 // Set up two vectors
 vector<int> v1(d1,d1 + 4), v2(d1,d1 + 4);

Summary

Synopsis

Description

Complexity

Example

inplace_merge

366 Standard C++ Library Class Reference

 // Set up four destination vectors
 vector<int> v3(d2,d2 + 8),v4(d2,d2 + 8),
 v5(d2,d2 + 8),v6(d2,d2 + 8);
 // Set up one empty vector
 vector<int> v7;

 // Merge v1 with v2
 merge(v1.begin(),v1.end(),v2.begin(),v2.end(),v3.begin());
 // Now use comparator
 merge(v1.begin(),v1.end(),v2.begin(),v2.end(),v4.begin(),
 less<int>());

 // In place merge v5
 vector<int>::iterator mid = v5.begin();
 advance(mid,4);
 inplace_merge (v5.begin(),mid,v5.end());
 // Now use a comparator on v6
 mid = v6.begin();
 advance(mid,4);
 inplace_merge (v6.begin(),mid,v6.end(),less<int>());

 // Merge v1 and v2 to empty vector using insert iterator
 merge(v1.begin(),v1.end(),v2.begin(),v2.end(),
 back_inserter(v7));

 // Copy all cout
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;
 copy(v3.begin(),v3.end(),out);
 cout << endl;
 copy(v4.begin(),v4.end(),out);
 cout << endl;
 copy(v5.begin(),v5.end(),out);
 cout << endl;
 copy(v6.begin(),v6.end(),out);
 cout << endl;
 copy(v7.begin(),v7.end(),out);
 cout << endl;

 // Merge v1 and v2 to cout
 merge(v1.begin(),v1.end(),v2.begin(),v2.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Output:
1 2 3 4
1 2 3 4
1 1 2 2 3 3 4 4
1 1 2 2 3 3 4 4
11 12 13 14 15 16 17 18
11 12 13 14 15 16 17 18
1 1 2 2 3 3 4 4
1 1 2 2 3 3 4 4

inplace_merge

Standard C++ Library Class Reference 367

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator>

instead of

vector<int>

merge

Warnings

See Also

Standard C++ Library Class Reference 369

input iterator

Iterator

A read-only, forward moving iterator.

For a complete discussion of iterators, see the Iterators section of this
reference.

Iterators are a generalization of pointers that allow a C++ program to
uniformly interact with different data structures. Input iterators are read-
only, forward moving iterators that satisfy the requirements listed below.

Key to Iterator Requirements

The following key pertains to the iterator requirement descriptions listed
below:

a and b values of type X
n value of distance type
u, Distance, tmp and m identifiers
r value of type X&

t value of type T

Requirements for Input Iterators

The following expressions must be valid for input iterators:

X u(a) copy constructor, u == a

X u = a assignment, u == a

a == b , a != b return value convertable to bool

*a a == b implies *a == *b

++r returns X&

r++ return value convertable to const X&

*r++ returns type T

a -> m returns (*a).m

Summary

Description

input iterator

370 Standard C++ Library Class Reference

For input iterators, a == b does not imply that ++a == ++b .

Algorithms using input iterators should be single pass algorithms. That is
they should not pass through the same iterator twice.

The value of type T does not have to be an lvalue .

iterators, output iteratorsSee Also

Standard C++ Library Class Reference 371

Insert Iterator

Insert Iterator

Iterator adaptor that allows an iterator to insert into a container rather than
overwrite elements in the container.

#include <iterator>

template <class Container>
class insert_iterator : public output_iterator;

template <class Container>
class back_insert_iterator :public output_iterator;

template <class Container>
class front_insert_iterator : public output_iterator;

Insert iterators are iterator adaptors that let an iterator insert new elements
into a collection rather than overwrite existing elements when copying to a
container. There are several types of insert iterator classes.

• The class back_insert_iterator is used to insert items at the end of a
collection. The function back_inserter can be used with an iterator
inline, to create an instance of a back_insert_iterator for a particular
collection type.

• The class front_insert_iterator is used to insert items at the start of a
collection. The function front_inserter creates an instance of a
front_insert_iterator for a particular collection type.

• An insert_iterator inserts new items into a collection at a location
defined by an iterator supplied to the constructor. Like the other insert
iterators, insert_iterator has a helper function called inserter , which
takes a collection and an iterator into that collection, and creates an
instance of the insert_iterator.

template <class Container>
 class insert_iterator : public output_iterator {

public:
 insert_iterator (Container&, typename Container::iterator);
 insert_iterator<Container>&
 operator= (const typename Container::value_type&);
 insert_iterator<Container>& operator* ();
 insert_iterator<Container>& operator++ ();
 insert_iterator<Container>& operator++ (int);
};

Summary

Synopsis

Description

Interface

Insert Iterator

372 Standard C++ Library Class Reference

template <class Container>
 class back_insert_iterator : public output_iterator {

public:
 explicit back_insert_iterator (Container&);
 back_insert_iterator<Container>&
 operator= (const typename Container::value_type&);
 back_insert_iterator<Container>& operator* ();
 back_insert_iterator<Container>& operator++ ();
 back_insert_iterator<Container> operator++ (int);
};

template <class Container>
 class front_insert_iterator : public output_iterator {

public:
 explicit front_insert_iterator (Container&);
 front_insert_iterator<Container>&
 operator= (const typename Container::value_type&);
 front_insert_iterator<Container>& operator* ();
 front_insert_iterator<Container>& operator++ ();
 front_insert_iterator<Container> operator++ (int);
};

 template <class Container, class Iterator>
 insert_iterator<Container> inserter (Container&, Iterator);

 template <class Container>
 back_insert_iterator<Container> back_inserter (Container&);

 template <class Container>
 front_insert_iterator<Container> front_inserter (Container&);

back_insert_iterator, front_insert_iterator, insert_iteratorSee Also

Standard C++ Library Class Reference 373

insert_iterator, inserter

Insert Iterator

An insert iterator used to insert items into a collection rather than overwrite
the collection.

#include <iterator>

template <class Container>
class insert_iterator : public output_iterator;

Insert iterators let you insert new elements into a collection rather than copy
a new element's value over the value of an existing element. The class
insert_iterator is used to insert items into a specified location of a collection.
The function inserter creates an instance of an insert_iterator given a
particular collection type and iterator. An insert_iterator can be used with
vectors, deques, lists, maps and sets.

template <class Container>
class insert_iterator : public output_iterator {

public:
 insert_iterator (Container&, typename Container::iterator);
 insert_iterator<Container>&
 operator= (const typename Container::value_type&);
 insert_iterator<Container>& operator* ();
 insert_iterator<Container>& operator++ ();
 insert_iterator<Container>& operator++ (int);
};

template <class Container, class Iterator>
insert_iterator<Container> inserter (Container&, Iterator)

insert_iterator (Container& x, typename Container::iterator i);

Constructor. Creates an instance of an insert_iterator associated with
container x and iterator i.

insert_iterator<Container>&
operator= (const typename Container::value_type& value);

Assignment operator. Inserts a copy of value into the container at the
location specified by the insert_iterator , increments the iterator, and
returns *this .

insert_iterator<Container>&
operator* ();

Returns *this (the input iterator itself).

Summary

Synopsis

Description

Interface

Constructor

Operators

insert_iterator, inserter

374 Standard C++ Library Class Reference

insert_iterator<Container>&
operator++ ();

insert_iterator<Container>&
operator++ (int);

Increments the insert iterator and returns *this .

template <class Container, class Iterator>
insert_iterator<Container>
inserter (Container& x, Iterator i);

Returns an insert_iterator that will insert elements into container x at
location i . This function allows you to create insert iterators inline.

 #include <iterator>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 //Initialize a vector using an array
 int arr[4] = {3,4,7,8};
 vector<int> v(arr,arr+4);

 //Output the original vector
 cout << "Start with a vector: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));

 //Insert into the middle
 insert_iterator <vector<int> > ins(v, v.begin()+2);
 *ins = 5;
 *ins = 6;

 //Output the new vector
 cout << endl << endl;
 cout << "Use an insert_iterator: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));

 return 0;
 }

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write:

vector<int, allocator>

instead of:

vector<int>

back_insert_iterator, front_insert_iterator, Insert Iterators

Non-member
Function

Example

Warnings

See Also

Standard C++ Library Class Reference 375

istream_iterator

Iterators

Stream iterator that provides iterator capabilities for istreams. This iterator
allows generic algorithms to be used directly on streams.

#include <iterator>

template <class T, class Distance = ptrdiff_t>
class istream_iterator : public input_iterator;

Stream iterators provide the standard iterator interface for input and output
streams.

The class istream_iterator reads elements from an input stream (using
operator >>). A value of type T is retrieved and stored when the iterator is
constructed and each time operator++ is called. The iterator will be equal to
the end-of-stream iterator value if the end-of-file is reached. Use the
constructor with no arguments to create an end-of-stream iterator. The only
valid use of this iterator is to compare to other iterators when checking for
end of file. Do not attempt to dereference the end-of-stream iterator; it plays
the same role as the past-the-end iterator provided by the end() function of
containers. Since an istream_iterator is an input iterator, you cannot assign
to the value returned by dereferencing the iterator. This also means that
istream_iterators can only be used for single pass algorithms.

Since a new value is read every time the operator++ is used on an
istream_iterator, that operation is not equality-preserving. This means that
i == j does not mean that ++i == ++j (although two end-of-stream
iterators are always equal).

template <class T, class Distance = ptrdiff_t>
 class istream_iterator : public input_iterator<T, Distance>
 {

 public:
 istream_iterator();
 istream_iterator (istream&);
 istream_iterator (const istream_iterator <T, Distance>&);
 ~istream_itertor ();

 const T& operator*() const;
 const T* operator ->() const;
 istream_iterator <T, Distance>& operator++();
 istream_iterator <T, Distance> operator++ (int)
 };

Summary

Synopsis

Description

Interface

istream_iterator

376 Standard C++ Library Class Reference

// Non-member Operators

template <class T, class Distance>
bool operator== (const istream_iterator<T, Distance>&,
 const istream_iterator<T, Distance>&);

istream_iterator ();
Construct an end-of-stream iterator. This iterator can be used to compare
against an end-of-stream condition. Use it to provide end iterators to
algorithms

istream_iterator (istream& s);

Construct an istream_iterator on the given stream.

istream_iterator (const istream_iterator<T, Distance>& x);
Copy constructor.

~istream_iterator ();
Destructor.

const T&
operator * () const;

Return the current value stored by the iterator.

const T*
operator-> () const;

Return a poinster to the current value stored by the iterator.

istream_iterator<T, Distance>&
operator ++ ()

istream_iterator<T, Distance>
operator ++ (int)
Retrieve the next element from the input stream.

bool
operator== (const istream_iterator<T, Distance>& x,
 const istream_iterator<T, Distance>& y)

Equality operator. Returns true if x is the same as y .

//
// io_iter.cpp
//
 #include <iterator>
 #include <vector>
 #include <numeric>
 #include <iostream.h>

 int main ()
 {
 vector<int> d;
 int total = 0;

Constructors

Destructors

Operators

Non-member
Operators

Example

istream_iterator

Standard C++ Library Class Reference 377

 //
 // Collect values from cin until end of file
 // Note use of default constructor to get ending iterator
 //
 cout << "Enter a sequence of integers (eof to quit): " ;
 copy(istream_iterator <int,vector<int>::difference_type>(cin),
 istream_iterator <int,vector<int>::difference_type>(),
 inserter(d,d.begin()));
 //
 // stream the whole vector and the sum to cout
 //
 copy(d.begin(),d.end()-1,ostream_iterator<int>(cout," + "));
 if (d.size())
 cout << *(d.end()-1) << " = " <<
 accumulate(d.begin(),d.end(),total) << endl;
 return 0;
 }

If your compiler does not support default template parameters, then you will
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator>

instead of :

vector<int>

iterators, ostream_iterators

Warning

See Also

Standard C++ Library Class Reference 379

iterator_category

Iterator primitive

Determines the category that an iterator belongs to.

#include <iterator>

template <class T, class Distance>
inline input_iterator_tag
iterator_category (const input_iterator<T, Distance>&)

inline output_iterator_tag iterator_category (const output_iterator&)

template <class T, class Distance>
inline forward_iterator_tag
iterator_category (const forward_iterator<T, Distance>&)

template <class T, class Distance>
inline bidirectional_iterator_tag
iterator_category (const bidirectional_iterator<T, Distance>&)

template <class T, class Distance>
inline random_access_iterator_tag
iterator_category (const random_access_iterator<T, Distance>&)

template <class T>
inline random_access_iterator_tag iterator_category (const T*)

The iterator_category family of function templates allows you to determine
the category that any iterator belongs to. The first five functions take an
iterator of a specific type and return the tag for that type. The last takes a T*

and returns random_access_iterator_tag .

Tag Types
input_iterator_tag
output_iterator_tag
forward_iterator_tag
bidirectional_iterator_tag
random_access_iterator_tag

The iterator_category function is particularly useful for improving the
efficiency of algorithms. An algorithm can use this function to select the
most efficient implementation an iterator is capable of handling without
sacrificing the ability to work with a wide range of iterator types. For
instance, both the advance and distance primitives use iterator_category

Summary

Synopsis

Description

iterator_category

380 Standard C++ Library Class Reference

to maximize their efficiency by using the tag returned from
iterator_category to select from one of several different auxiliary functions.
Because this is a compile time selection, use of this primitive incurs no
significant runtime overhead.

iterator_category is typically used like this:

template <class Iterator>
void foo(Iterator first, Iterator last)
{
 __foo(begin,end,iterator_category(first));
}

template <class Iterator>
void __foo(Iterator first, Iterator last,
 input_iterator_tag>
{
 // Most general implementation
}

template <class Iterator>
void __foo(Iterator first, Iterator last,
 bidirectional_iterator_tag>
{
 // Implementation takes advantage of bi-diretional
 // capability of the iterators
}

…etc.

See the iterator section in the Class Reference for a description of iterators
and the capabilities associated with each type of iterator tag.

Other iterator primitives: value_type, distance_type,
distance,advance, iterator

See Also

Standard C++ Library Class Reference 381

Iterators

Pointer generalizations for traversal and modification of collections.

Iterators are a generalization of pointers that allow a C++ program to
uniformly interact with different data structures. The illustration below
displays the five iterator categories defined by the standard library, and
shows their heirarchical relationship. Because standard library iterator
categories are hierarchical, each category includes all the requirements of the
categories above it.

Summary

Description

Input Iterator

Read only,
forward moving

Output Iterator

Write only,
forward moving

Forward Iterator

Read & write,
forward moving

Bidirectional
Iterator

Read & write,
moves forward or
backward.

Random Access
Iterator:

Read and write,
random access

Iterators

382 Standard C++ Library Class Reference

Because iterators are used to traverse and access containers, the nature of the
container determines what type of iterator it generates. And, because
algorithms require specific iterator types as arguments, it is iterators that, for
the most part, determine which standard library algorithms can be used with
which standard library containers.

To conform to the C++ standard, all container and sequence classes must
provide their own iterators. An instance of a container or sequence's iterator
may be declared using either of the following:

class name ::iterator
class name ::const_iterator

Containers and sequences must also provide const iterators to the beginning
and end of their collections. These may be accessed using the class members,
begin() and end() .

The semantics of iterators are a generalization of the semantics of C++
pointers. Every template function that takes iterators will work using C++
pointers for processing typed contiguous memory sequences.

Iterators may be constant or mutable depending upon whether the result of
the operator* behaves as a reference or as a reference to a constant.
Constant iterators cannot satisfy the requirements of an output_iterator .

Every iterator type guarantees that there is an iterator value that points past
the last element of a corresponding container. This value is called the past-
the-end value. No guarantee is made that this value is dereferencable.

Every function provided by an iterator is required to be realized in
amortized constant time.

Key to Iterator Requirements

The following key pertains to the iterator requirements listed below:

a and b values of type X
n value of distance type
u, Distance, tmp and m identifiers
r value of type X&

t value of type T

Requirements for Input Iterators

The following expressions must be valid for input iterators:

X u(a) copy constructor, u == a

Iterators

Standard C++ Library Class Reference 383

X u = a assignment, u == a

a == b , a != b

return value convertible to bool

*a a == b implies *a == *b

a->m equivalent to (*a).m

++r returns X&

r++ return value convertible to const X&

*r++ returns type T

For input iterators, a == b does not imply that ++a == ++b .

Algorithms using input iterators should be single pass algorithms. That is
they should not pass through the same iterator twice.

The value of type T does not have to be an lvalue .

Requirements for Output Iterators

The following expressions must be valid for output iterators:

X(a) copy constructor, a == X(a)

X u(a) copy constructor, u == a

X u = a assignment, u == a

*a = t result is not used

++r returns X&

r++ return value convertable to const X&

*r++ = t result is not used

The only valid use for the operator* is on the left hand side of the
assignment statement.

Algorithms using output iterators should be single pass algorithms. That is
they should not pass through the same iterator twice.

Iterators

384 Standard C++ Library Class Reference

Requirements for Forward Iterators

The following expressions must be valid for forward iterators:

X u u might have a singular value

X() X() might be singular

X(a) copy constructor, a == X(a)

X u(a) copy constructor, u == a

X u = a assignment, u == a

a == b, a != b return value convertible to bool

*a return value convertible to T&

a->m equivalent to (*a).m

++r returns X&

r++ return value convertable to const X&

*r++ returns T&

Forward iterators have the condition that a == b implies *a== *b .

There are no restrictions on the number of passes an algorithm may make
through the structure.

Requirements for Bidirectional Iterators

A bidirectional iterator must meet all the requirements for forward iterators.
In addition, the following expressions must be valid:

--r returns X&

r-- return value convertable to const X&

*r-- returns T&

Requirements for Random Access Iterators

A random access iterator must meet all the requirements for bidirectional
iterators. In addition, the following expressions must be valid:

r += n Semantics of --r or ++r n times depending
on the sign of n

Iterators

Standard C++ Library Class Reference 385

a + n, n + a returns type X

r -= n returns X&, behaves as r += -n

a - n returns type X

b - a returns Distance

a[n] *(a+n) , return value convertable to T

a < b total ordering relation

a > b total ordering relation opposite to <

a <= b !(a > b)

a >= b !(a < b)

All relational operators return a value convertable to bool .

Standard C++ Library Class Reference 387

iter_swap

Algorithm

Exchange values pointed at in two locations

#include <algorithm>

template <class ForwardIterator1, class ForwardIterator2>
void iter_swap (ForwardIterator1, ForwardIterator2);

The iter_swap algorithm exchanges the values pointed at by the two
iterators a and b.

#include <vector>
#include <algorithm>
#include <iostream.h>

 int main ()
 {
 int d1[] = {6, 7, 8, 9, 10, 1, 2, 3, 4, 5};
 //
 // Set up a vector.
 //
 vector<int> v(d1+0, d1+10);
 //
 // Output original vector.
 //
 cout << "For the vector: ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 //
 // Swap the first five elements with the last five elements.
 //
 swap_ranges(v.begin(), v.begin()+5, v.begin()+5);
 //
 // Output result.
 //
 cout << endl << endl
 << "Swaping the first 5 elements with the last 5 gives: "
 << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 //
 // Now an example of iter_swap -- swap first and last elements.
 //
 iter_swap (v.begin(), v.end()-1);
 //
 // Output result.
 //
 cout << endl << endl
 << "Swaping the first and last elements gives: "
 << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl;

Summary

Synopsis

Description

Example

iter_swap

388 Standard C++ Library Class Reference

 return 0;
 }

Output :
For the vector: 6 7 8 9 10 1 2 3 4 5
Swaping the first five elements with the last five gives:
 1 2 3 4 5 6 7 8 9 10
Swaping the first and last elements gives:
 10 2 3 4 5 6 7 8 9 1

If your compiler does not support default template parameters, then you will
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator>

instead of :

vector<int>

Iterators, swap, swap_ranges

Warning

See Also

Standard C++ Library Class Reference 389

less

Function Object

Binary function object that returns true if its first argument is less than its
second

#include<functional>

template <class T>
struct less : public binary_function<T, T, bool> ;

less is a binary function object. Its operator() returns true if x is less than
y . You can pass a less object to any algorithm that requires a binary
function. For example, the transform algorithm applies a binary operation
to corresponding values in two collections and stores the result of the
function. less would be used in that algorithm in the following manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(),
 vecResult.begin(), less<int>());

After this call to transform, vecResult(n) will contain a "1" if vec1(n) was
less than vec2(n) or a "0" if vec1(n) was greater than or equal to vec2(n) .

template <class T>
struct less : binary_function<T, T, bool> {
 typedef typename binary_function<T, T, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, bool>::result_type
 result_type;
 bool operator() (const T&, const T&) const;
};

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator>

instead of

vector<int>

Summary

Synopsis

Description

Interface

Warning

less

390 Standard C++ Library Class Reference

binary_function, function objectsSee Also

Standard C++ Library Class Reference 391

less_equal

Function Object

Binary function object that returns true if its first argument is less than or
equal to its second

#include<functional>

template <class T>
struct less_equal : public binary_function<T, T, bool>;

less_equal is a binary function object. Its operator() returns true if x is
less than or equal to y . You can pass a less_equal object to any algorithm
that requires a binary function. For example, the sort algorithm can accept a
binary function as an alternate comparison object to sort a sequence.
less_equal would be used in that algorithm in the following manner:

vector<int> vec1;
.
.
.
sort(vec1.begin(), vec1.end(), less_equal<int>());

After this call to sort, vec1 will be sorted in ascending order.

template <class T>
struct less_equal : binary_function<T, T, bool> {
 typedef typename binary_function<T, T, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, bool>::result_type
 result_type;
 bool operator() (const T&, const T&) const;
};

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator>

instead of

vector<int>

binary_function, function objects

Summary

Synopsis

Description

Interface

Warning

See Also

Standard C++ Library Class Reference 393

lexicographical_compare

Algorithm

Compares two ranges lexicographically.

#include <algorithm>

template <class InputIterator1, class InputIterator2>
 bool
 lexicographical_compare (InputIterator1 first,
 InputIterator2 last1,
 InputIterator2 first2,
 InputIterator last2);

template <class InputIterator1, class InputIterator2, class Compare>
 bool
 lexicographical_compare (InputIterator1 first,
 InputIterator2 last1,
 InputIterator2 first2,
 InputIterator last2, Compare comp);

The lexicographical_compare functions compare each element in the
range [first1, last1) to the corresponding element in the range
[first2, last2) using iterators i and j .

The first version of the algorithm uses operator< as the default comparison
operator. It immediately returns true if it encounters any pair in which *i is
less than *j , and immediately returns false if *j is less than *i . If the
algorithm reaches the end of the first sequence before reaching the end of the
second sequence, it also returns true .

The second version of the function takes an argument comp that defines a
comparison function that is used in place of the default operator<.

The lexicographical_compare functions can be used with all the
datatypes provided by the standard library.

lexicographical_compare performs at most min((last1 - first1),

(last2 - first2)) applications of the comparison function.

//
// lex_comp.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

Summary

Synopsis

Description

Complexity

Example

lexicographical_compare

394 Standard C++ Library Class Reference

 int main(void)
 {
 int d1[5] = {1,3,5,32,64};
 int d2[5] = {1,3,2,43,56};

 // set up vector
 vector<int> v1(d1,d1 + 5), v2(d2,d2 + 5);

 // Is v1 less than v2 (I think not)
 bool b1 = lexicographical_compare (v1.begin(),
 v1.end(), v2.begin(), v2.end());

 // Is v2 less than v1 (yup, sure is)
 bool b2 = lexicographical_compare (v2.begin(),
 v2.end(), v1.begin(), v1.end(), less<int>());
 cout << (b1 ? "TRUE" : "FALSE") << " "
 << (b2 ? "TRUE" : "FALSE") << endl;

 return 0;
 }

Output:
 FALSE TRUE

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance,
you’ll have to write :

vector<int, allocator>

instead of :

vector<int>

Warning

Standard C++ Library Class Reference 395

limits

Numeric Limits library

Refer to the numeric_limits section of this reference guide.

Standard C++ Library Class Reference 397

list

Container

A sequence that supports bidirectional iterators

#include <list>

template <class T, class Allocator = allocator>
class list ;

list<T,Allocator> is a type of sequence that supports bidirectional iterators.
A list<T,Allocator> allows constant time insert and erase operations
anywhere within the sequence, with storage management handled
automatically. Constant time random access is not supported.

Any type used for the template parameter T must provide the following
(where T is the type, t is a value of T and u is a const value of T):

 Default constructor T()
 Copy constructors T(t) and T(u)
 Destructor t.~T()
 Address of &t and &u yielding T* and
 const T* respectively
 Assignment t = a where a is a
 (possibly const) value of T

template <class T, class Allocator = allocator>
 class list {

public:

// typedefs

 class iterator;
 class const_iterator;
 typename reference;
 typename const_reference;
 typename size_type;
 typename difference_type;
 typedef T value_type;
 typedef Allocator allocator_type;

 typename reverse_iterator;
 typename const_reverse_iterator;

// Construct/Copy/Destroy

 explicit list (const Allocator& = Allocator());
 explicit list (size_type, const Allocator& = Allocator());

Summary

Synopsis

Description

Interface

list

398 Standard C++ Library Class Reference

 list (size_type, const T&, const Allocator& = Allocator())
 template <class InputIterator>
 list (InputIterator, InputIterator,
 const Allocator& = Allocator());
 list(const list<T, Allocator>& x);
 ~list();
 list<T,Allocator>& operator= (const list<T,Allocator>&);
 template <class InputIterator>
 void assign (InputIterator, InputIterator);
 template <class Size, class T>
 void assign (Size n);
 template <class Size, class T>
 void assign (Size n, const T&);

 allocator_type get allocator () const;

// Iterators

 iterator begin ();
 const_iterator begin () const;
 iterator end ();
 const_iterator end () const;
 reverse_iterator rbegin ();
 const_reverse_iterator rbegin () const;
 reverse_iterator rend ();
 const_reverse_iterator rend () const;

// Capacity

 bool empty () const;
 size_type size () const;
 size_type max_size () const;
 void resize (size_type);
 void resize (size_type, T);

// Element Access

 reference front ();
 const_reference front () const;
 reference back ();
 const_reference back () const;

// Modifiers

 void push_front (const T&);
 void pop_front ();
 void push_back (const T&);
 void pop_back ();

 iterator insert (iterator);
 iterator insert (iterator, const T&);
 void insert (iterator, size_type, const T&);
 template <class InputIterator>
 void insert (iterator, InputIterator, InputIterator);

 iterator erase (iterator);
 iterator erase (iterator, iterator);

list

Standard C++ Library Class Reference 399

 void swap (list<T, Allocator>&);
 void clear ();

// Special mutative operations on list

 void splice (iterator, list<T, Allocator>&);
 void splice (iterator, list<T, Allocator>&, iterator);
 void splice (iterator, list<T, Allocator>&, iterator,
iterator);

 void remove (const T&);
 template <class Predicate>
 void remove_if (Predicate);

 void unique ();
 template <class BinaryPredicate>
 void unique (BinaryPredicate);

 void merge (list<T, Allocator>&);
 template <class Compare>
 void merge (list<T, Allocator>&, Compare);

 void sort ();
 template <class Compare>
 void sort (Compare);

 void reverse();
};

// Non-member List Operators

template <class T>
 bool operator== (const list<T, Allocator>&,
 const list<T, Allocator>&);

template <class T>
 bool operator< (const list<T, Allocator>&,
 const list<T, Allocator>&);

// Specialized Algorithms

template <class T, class Allocator>
void swap (list<T,Allocator>&, list<T, Allocator>&);

explicit list (const Allocator& alloc = Allocator());
Creates a list of zero elements. The list will use the allocator alloc for all
storage management.

explicit list (size_type n,
 const Allocator& alloc = Allocator());

Creates a list of length n, containing n copies of the default value for type
T. Requires that T have a default constructor. The list will use the allocator
alloc for all storage management.

Constructors
and

Destructors

list

400 Standard C++ Library Class Reference

list (size_type n, const T& value,
 const Allocator& alloc = Allocator());

Creates a list of length n, containing n copies of value . The list will use the
allocator alloc for all storage management.

template <class InputIterator>
list (InputIterator first, InputIterator last,
 const Allocator& alloc = Allocator());

Creates a list of length last - first , filled with all values obtained by
dereferencing the InputIterators on the range [first, last) . The list
will use the allocator alloc for all storage management.

list (const list<T, Allocator>& x);
Copy constructor. Creates a copy of x .

~list ();
The destructor. Releases any allocated memory for this list.

list<T, Allocator>& operator= (const list<T, Allocator>& x)
Erases all elements in self then inserts into self a copy of each element in x .
Returns a reference to *this .

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

iterator begin ();
Returns a bidirectional iterator that points to the first element.

const_iterator begin () const;
Returns a constant bidirectional iterator that points to the first element.

iterator end ();
Returns a bidirectional iterator that points to the past-the-end value.

const_iterator end () const;
Returns a constant bidirectional iterator that points to the past-the-end
value.

reverse_iterator rbegin ();
Returns a bidirectional iterator that points to the past-the-end value.

const_reverse_iterator rbegin () const;
Returns a constant bidirectional iterator that points to the past-the-end
value.

reverse_iterator rend ();
Returns a bidirectional iterator that points to the first element.

Assignment
Operator

Allocator

Iterators

list

Standard C++ Library Class Reference 401

const_reverse_iterator rend () const;
Returns a constant bidirectional iterator that points to the first element.

template <class InputIterator>
void
assign (InputIterator first, InputIterator last);

Erases all elements contained in self, then inserts new elements from the
range [first, last) .

template <class Size, class T>
void
assign (Size n);

Erases all elements contained in self, then inserts n instances of the default
value of t.

template <class Size, class T>
void
assign (Size n, const T& t);

Erases all elements contained in self, then inserts n instances of the value

of t.

reference
back ();

Returns a reference to the last element.

const_reference
back () const;

Returns a constant reference to the last element.

void
clear ();

Erases all elements from the list.

bool
empty () const;

Returns true if the size is zero.

iterator
erase (iterator position);

Removes the element pointed to by position . Returns an iterator

pointing to the element following the deleted element, or end() if the
deleted item was the last one in this list.

iterator
erase (iterator first, iterator last);

Removes the elements in the range (first, last). Returns an iterator

pointing to the element following the element following the last deleted
element, or end() if there were no elements after the deleted range.

Member
Functions

list

402 Standard C++ Library Class Reference

reference
front ();

Returns a reference to the first element.

const_reference
front () const;

Returns a constant reference to the first element.

iterator
insert (iterator position);

Inserts a copy of the default value for type T before position . Returns an
iterator that points to the inserted value. Requires that type T have a
default constructor.

iterator
insert (iterator position, const T& x);

Inserts x before position . Returns an iterator that points to the
inserted x .

void
insert (iterator position, size_type n, const T& x);

Inserts n copies of x before position .

template <class InputIterator>
void
insert (iterator position, InputIterator first,
 InputIterator last);

Inserts copies of the elements in the range [first, last) before
position .

size_type
max_size () const;

Returns size() of the largest possible list.

void merge (list<T, Allocator>& x);
Merges a sorted x with a sorted self using operator< . For equal elements
in the two lists, elements from self will always precede the elements from
x . The merge function leaves x empty.

template <class Compare>
void
merge (list<T, Allocator>& x, Compare comp);

Merges a sorted x with sorted self using a compare function object, comp.
For same elements in the two lists, elements from self will always precede
the elements from x . The merge function leaves x empty.

void
pop_back ();

Removes the last element.

list

Standard C++ Library Class Reference 403

void
pop_front ();

Removes the first element.

void
push_back (const T& x);

Appends a copy of x to the end of the list.

void
push_front (const T& x);

Appends a copy of x to the front of the list.

void
remove (const T& value);

template <class Predicate>
void
remove_if (Predicate pred);

Removes all elements in the list referred by the list iterator i for which *i
== value or pred(*i) == true , whichever is applicable. This is a stable
operation, the relative order of list items that are not removed is
preserved.

void
resize (size_type sz);

Alters the size of self. If the new size (sz) is greater than the current size,
sz -size() copies of the default value of type T are inserted at the end of
the list. If the new size is smaller than the current capacity, then the list is
truncated by erasing size()-sz elements off the end. Otherwise, no
action is taken. Requires that type T have a default constructor.

void
resize (size_type sz, T c);

Alters the size of self. If the new size (sz) is greater than the current size,
sz -size() c 's are inserted at the end of the list. If the new size is smaller
than the current capacity, then the list is truncated by erasing size()-sz

elements off the end. Otherwise, no action is taken.

void
reverse ();

Reverses the order of the elements.

size_type
size () const;

Returns the number of elements.

void
sort ();

Sorts self according to the operator< . sort maintains the relative order
of equal elements.

list

404 Standard C++ Library Class Reference

template <class Compare>
void
sort (Compare comp);

Sorts self according to a comparison function object, comp. This is also a
stable sort.

void
splice (iterator position, list<T, Allocator>& x);

Inserts x before position leaving x empty.

void
splice (iterator position, list<T, Allocator>& x, iterator i);

Moves the elements pointed to by iterator i in x to self, inserting it before
position . The element is removed from x .

void
splice (iterator position, list<T, Allocator >& x,
 iterator first, iterator last);

Moves the elements in the range [first, last) in x to self, inserting
before position . The elements in the range [first, last) are removed
from x .

void
swap (list <T, Allocator>& x);

Exchanges self with x .

void
unique ();

Erases copies of consecutive repeated elements leaving the first
occurrrence.

template <class BinaryPredicate>
void
unique (BinaryPredicate binary_pred);

Erases consecutive elements matching a true condition of the
binary_pred . The first occurrence is not removed.

template <class T, class Allocator>
bool operator== (const list<T, Allocator>& x,
 const list<T, Allocator>& y);

Equality operator. Returns true if x is the same as y .

template <class T, class Allocator>
bool operator< (const list<T, Allocator>& x,
 const list<T,Allocator>& y);

Returns true if the sequence defined by the elements contaned in x is
lexicographically less than the sequence defined by the elements contained
in y .

Non-member
Operators

list

Standard C++ Library Class Reference 405

template <class T, class Allocator>
void swap (list<T, Allocator>& a, list<T, Allocator>& b);

Efficiently swaps the contents of a and b.

//
// list.cpp
//
 #include <list>
 #include <string>
 #include <iostream.h>

 // Print out a list of strings
 ostream& operator<<(ostream& out, const list<string>& l)
 {
 copy(l.begin(), l.end(), ostream_iterator<string>(cout," "));
 return out;
 }

 int main(void)
 {
 // create a list of critters
 list<string> critters;
 int i;

 // insert several critters
 critters.insert(critters.begin(),"antelope");
 critters.insert(critters.begin(),"bear");
 critters.insert(critters.begin(),"cat");

 // print out the list
 cout << critters << endl;

 // Change cat to cougar
 *find(critters.begin(),critters.end(),"cat") = "cougar";
 cout << critters << endl;

 // put a zebra at the beginning
 // an ocelot ahead of antelope
 // and a rat at the end
 critters.push_front("zebra");
 critters.insert(find(critters.begin(),critters.end(),
 "antelope"),"ocelot");
 critters.push_back("rat");
 cout << critters << endl;

 // sort the list (Use list's sort function since the
 // generic algorithm requires a random access iterator
 // and list only provides bidirectional)
 critters.sort();
 cout << critters << endl;

 // now let's erase half of the critters
 int half = critters.size() >> 1;
 for(i = 0; i < half; ++i) {
 critters.erase(critters.begin());
 }
 cout << critters << endl;

 return 0;
 }

Example

list

406 Standard C++ Library Class Reference

Output :
cat bear antelope
cougar bear antelope
zebra cougar bear ocelot antelope rat
antelope bear cougar ocelot rat zebra
ocelot rat zebra

Member function templates are used in all containers provided by the
Standard Template Library. An example of this feature is the constructor for
list<T, Allocator> that takes two templated iterators:

template <class InputIterator>
list (InputIterator, InputIterator, const Allocator& =
Allocator());

list also has an insert function of this type. These functions, when not
restricted by compiler limitations, allow you to use any type of input iterator
as arguments. For compilers that do not support this feature, we provide
substitute functions that allow you to use an iterator obtained from the same
type of container as the one you are constructing (or calling a member
function on), or you can use a pointer to the type of element you have in the
container.

For example, if your compiler does not support member function templates
you can construct a list in the following two ways:

int intarray[10];
list<int> first_list(intarray,intarray + 10);
list<int> second_list(first_list.begin(),first_list.end());

But not this way:

list<long> long_list(first_list.begin(),first_list.end());

since the long_list and first_list are not the same type.

Additionally, list provides a merge function of this type.

template <class Compare> void merge (list<T, Allocator>&,
 Compare);

This function allows you to specify a compare function object to be used in
merging two lists. In this case, we were unable to provide a substitute
function in addition to the merge that uses the operator< as the default.
Thus, if your compiler does not support member function templates, all list
mergers will use operator< .

Warnings

list

Standard C++ Library Class Reference 407

Also, many compilers do not support default template arguments. If your
compiler is one of these, you need to always supply the Allocator template
argument. For instance, you’ll have to write:

list<int, allocator>

instead of:

list<int>

allocator, Containers, IteratorsSee Also

Standard C++ Library Class Reference 409

logical_and

Function Object

Binary function object that returns true if both of its arguments are true .

#include <functional>

template <class T>
struct logical_and : public binary_function<T, T, bool>;

logical_and is a binary function object. Its operator() returns true if both
x and y are true . You can pass a logical_and object to any algorithm that
requires a binary function. For example, the transform algorithm applies a
binary operation to corresponding values in two collections and stores the
result of the function. logical_and is used in that algorithm in the following
manner:

vector<bool> vec1;
vector<bool> vec2;
vector<bool> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(),
 vecResult.begin(), logical_and<bool>());

After this call to transform, vecResult(n) will contain a "1" (true) if both
vec1(n) and vec2(n) are true or a "0" (false) if either vec1(n) or vec2(n)

is false .

template <class T>
struct logical_and : binary_function<T, T, bool> {
 typedef typename binary_function<T, T, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, bool>::result_type
 result_type;
 bool operator() (const T&, const T&) const;
};

If your compiler does not support default template parameters, you will
need to always supply the Allocator template arguement. For instance,
you will have to write :

vector<bool, allocator>

Summary

Synopsis

Description

Interface

Warning

logical_and

410 Standard C++ Library Class Reference

instead of:

vector<bool>

binary_function, function objectsSee Also

Standard C++ Library Class Reference 411

logical_not

Function Object

Unary function object that returns true if its argument is false .

#include <functional>

template <class T>
struct logical_not : unary_function<T, bool> ;

logical_not is a unary function object. Its operator() returns true if its
argument is false . You can pass a logical_not object to any algorithm that
requires a unary function. For example, the replace_if algorithm replaces
an element with another value if the result of a unary operation is true.
logical_not is used in that algorithm in the following manner:

vector<int> vec1;
.
.
.
void replace_if(vec1.begin(), vec1.end(),
 logical_not<int>() ,1);

This call to replace_if replaces all zeros in the vec1 with "1".

template <class T>
struct logical_not : unary_function<T, bool> {
 typedef typename unary_function<T, bool>::argument_type
 argument_type;
 typedef typename unary_function<T, bool>::result_type result_type;
 bool operator() (const T&) const;
};

If your compiler does not support default template parameters, you will
need to always supply the Allocator template arguement. For instance,
you will have to write :

vector<int, allocator>

instead of :

vector<int>

function objects, unary_function

Summary

Synopsis

Description

Interface

Warning

See Also

Standard C++ Library Class Reference 413

logical_or

Function Object

Binary function object that returns true if either of its arguments are true .

#include <functional>

template <class T>
struct logical_or : binary_function<T, T, bool> ;

logical_or is a binary function object. Its operator() returns true if either
x or y are true . You can pass a logical_or object to any algorithm that
requires a binary function. For example, the transform algorithm applies a
binary operation to corresponding values in two collections and stores the
result of the function. logical_or is used in that algorithm in the following
manner:

vector<bool> vec1;
vector<bool> vec2;
vector<bool> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(),
 vecResult.begin(), logical_or<bool>());

After this call to transform, vecResult(n) will contain a "1" (true) if either
vec1(n) or vec2(n) is true or a "0" (false) if both vec1(n) and vec2(n)

are false .

template <class T>
struct logical_or : binary_function<T, T, bool> {
 typedef typename binary_function<T, T, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, bool>::result_type
 result_type;
 bool operator() (const T&, const T&) const;
};

If your compiler does not support default template parameters, you will
need to always supply the Allocator template arguement. For instance,
you will have to write :

vector<bool, allocator>

Summary

Synopsis

Description

Interface

Warning

logical_or

414 Standard C++ Library Class Reference

instead of:

vector<bool>

binary_function, function objectsSee Also

Standard C++ Library Class Reference 415

lower_bound

Algorithm

Determine the first valid position for an element in a sorted container.

template <class ForwardIterator, class T>
 ForwardIterator lower_bound (ForwardIterator first,
 ForwardIterator last,
 const T& value);

 template <class ForwardIterator, class T, class Compare>
 ForwardIterator lower_bound (ForwardIterator first,
 ForwardIterator last,
 const T& value, Compare comp);

The lower_bound algorithm compares a supplied value to elements in a
sorted container and returns the first postition in the container that value

can occupy without violating the container's ordering. There are two
versions of the algorithm. The first uses the less than operator (operator<)
to perform the comparison, and assumes that the sequence has been sorted
using that operator. The second version lets you include a function object of
type Compare , and assumes that Compare is the function used to sort the
sequence. The function object must be a binary predicate.

lower_bound ' s return value is the iterator for the first element in the
container that is greater than or equal to value , or, when the comparison
operator is used, the first element that does not satisfy the comparison
function. Formally, the algorithm returns an iterator i in the range [first,

last) such that for any iterator j in the range [first, i) the following
corresponding conditions hold:

*j < value

or

 comp(*j, value) == true

lower_bound performs at most log(last - first) + 1 comparisons.

//
// ul_bound.cpp
//
 #include <vector>
 #include <algorithm>

Summary

Synopsis

Description

Complexity

Example

lower_bound

416 Standard C++ Library Class Reference

 #include <iostream.h>

 int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[11] = {0,1,2,2,3,4,2,2,2,6,7};

 // Set up a vector
 vector<int> v1(d1,d1 + 11);

 // Try lower_bound variants
 iterator it1 = lower_bound (v1.begin(),v1.end(),3);
 // it1 = v1.begin() + 4

 iterator it2 =
 lower_bound (v1.begin(),v1.end(),2,less<int>());
 // it2 = v1.begin() + 4

 // Try upper_bound variants
 iterator it3 = upper_bound(v1.begin(),v1.end(),3);
 // it3 = vector + 5

 iterator it4 =
 upper_bound(v1.begin(),v1.end(),2,less<int>());
 // it4 = v1.begin() + 5

 cout << endl << endl
 << "The upper and lower bounds of 3: ("
 << *it1 << " , " << *it3 << "]" << endl;

 cout << endl << endl
 << "The upper and lower bounds of 2: ("
 << *it2 << " , " << *it4 << "]" << endl;

 return 0;
 }

Output :
The upper and lower bounds of 3: (3 , 4]
The upper and lower bounds of 2: (2 , 3]

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

upper_bound, equal_range

Warning

See Also

Standard C++ Library Class Reference 417

make_heap

Algorithm

Creates a heap.

#include <algorithm>

template <class RandomAccessIterator>
 void
 make_heap (RandomAccessIterator first,
 RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
 void
 make_heap (RandomAccessIterator first,
 RandomAccessIterator last, Compare comp);

A heap is a particular organization of elements in a range between two
random access iterators [a, b) . Its two key properties are:

1. *a is the largest element in the range.

2. *a may be removed by the pop_heap algorithm, or a new element can
be added by the push_heap algorithm, in O(logN) time.

These properties make heaps useful as priority queues.

The heap algorithms use less than (operator<) as the default comparison. In
all of the algorithms, an alternate comparison operator can be specified.

The first version of the make_heap algorithm arranges the elements in the
range [first, last) into a heap using less than (operator<) to perform
comparisons. The second version uses the comparison operator comp to
perform the comparisons. Since the only requirements for a heap are the
two listed above, make_heap is not required to do anything within the range
(first, last - 1) .

This algorithm makes at most 3 * (last - first) comparisons.

//
// heap_ops.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main(void)

Summary

Synopsis

Description

Complexity

Example

make_heap

418 Standard C++ Library Class Reference

 {
 int d1[4] = {1,2,3,4};
 int d2[4] = {1,3,2,4};

 // Set up two vectors
 vector<int> v1(d1,d1 + 4), v2(d2,d2 + 4);

 // Make heaps
 make_heap (v1.begin(),v1.end());
 make_heap (v2.begin(),v2.end(),less<int>());
 // v1 = (4,x,y,z) and v2 = (4,x,y,z)
 // Note that x, y and z represent the remaining
 // values in the container (other than 4).
 // The definition of the heap and heap operations
 // does not require any particular ordering
 // of these values.

 // Copy both vectors to cout
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // Now let's pop
 pop_heap(v1.begin(),v1.end());
 pop_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (3,x,y,4) and v2 = (3,x,y,4)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // And push
 push_heap(v1.begin(),v1.end());
 push_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (4,x,y,z) and v2 = (4,x,y,z)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // Now sort those heaps
 sort_heap(v1.begin(),v1.end());
 sort_heap(v2.begin(),v2.end(),less<int>());
 // v1 = v2 = (1,2,3,4)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 return 0;

make_heap

Standard C++ Library Class Reference 419

 }
Output :
4 2 3 1
4 3 2 1
3 2 1 4
3 1 2 4
4 3 1 2
4 3 2 1
1 2 3 4
1 2 3 4

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

pop_heap, push_heap and sort_heap

Warning

See Also

Standard C++ Library Class Reference 421

map

Container

An associative container providing access to non-key values using unique
keys. A map supports bidirectional iterators.

#include <map>

template <class Key, class T, class Compare = less<Key>
 class Allocator = allocator>
class map;

map <Key, T, Compare, Allocator> provides fast access to stored values of
type T which are indexed by unique keys of type Key. The default
operation for key comparison is the < operator.

map provides bidirectional iterators that point to an instance of
pair<const Key x, T y> where x is the key and y is the stored value
associated with that key. The definition of map provides a typedef to this
pair called value_type .

The types used for both the template parameters Key and T must provide
the following (where T is the type , t is a value of T and u is a const value

of T):

 Copy constructors - T(t) and T(u)
 Destructor - t.~T()
 Address of - &t and &u yielding T* and
 const T* respectively
 Assignment - t = a where a is a
 (possibley const) value of T

The type used for the Compare template parameter must satisfy the
requirements for binary functions.

template <class Key, class T, class Compare = less<Key>
 class Allocator = allocator, >
 class map {

public:

// types

 typedef Key key_type;
 typedef T mapped_type;
 typedef pair<const Key, T> value_type;
 typedef Compare key_compare;
 typedef Allocator allocator_type;
 typename reference;
 typename const_reference;
 typename iterator;

Summary

Synopsis

Description

Interface

map

422 Standard C++ Library Class Reference

 typename const_iterator;
 typename size_type;
 typename difference_type;
 typename reverse_iterator;
 typename const_reverse_iterator;

 class value_compare
 : public binary_function<value_type, value_type, bool>
 {
 friend class map<Key, T, Compare, Allocator>;

 public :
 bool operator() (const value_type&,
 const value_type&) const;
 };

// Construct/Copy/Destroy

 explicit map (const Compare& = Compare(),
 const Allocator& = Allocator ());
 template <class InputIterator>
 map (InputIterator, InputIterator,
 const Compare& = Compare(),
 const Allocator& = Allocator ());
 map (const map<Key, T, Compare, Allocator>&);
 ~map();
 map<Key, T, Compare, Allocator>&
 operator= (const map<Key, T, Compare, Allocator>&);
 allocator_type get_allocator () const;

// Iterators

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;

// Capacity

 bool empty() const;
 size_type size() const;
 size_type max_size() const;

// Element Access

 mapped_type& operator[] (const key_type&);
 const mapped_type& operator[] (const key_type&) const;

// Modifiers

 pair<iterator, bool> insert (const value_type&);
 iterator insert (iterator, const value_type&);
 template <class InputIterator>
 void insert (InputIterator, InputIterator);

map

Standard C++ Library Class Reference 423

 iterator erase (iterator);
 size_type erase (const key_type&);
 iterator erase (iterator, iterator);
 void swap (map<Key, T, Compare, Allocator>&);

// Observers

 key_compare key_comp() const;
 value_compare value_comp() const;

// Map operations

 iterator find (const key_value&);
 const_iterator find (const key_value&) const;
 size_type count (const key_type&) const;
 iterator lower_bound (const key_type&);
 const_iterator lower_bound (const key_type&) const;
 iterator upper_bound (const key_type&);
 const_iterator upper_bound (const key_type&) const;
 pair<iterator, iterator> equal_range (const key_type&);
 pair<const_iterator, const_iterator>
 equal_range (const key_type&) const;
};

// Non-member Map Operators

template <class Key, class T, class Compare, class Allocator>
 bool operator== (const map<Key, T, Compare, Allocator>&,
 const map<Key, T, Compare, Allocator>&);

template <class Key, class T, class Compare, class Allocator>
 bool operator< (const map<Key, T, Compare, Allocator>&,
 const map<Key, T, Compare, Allocator>&);

// Specialized Algorithms

template <class Key, class T, class Compare, class Allocator>
 void swap (map<Key,T,Compare,Allocator>&,
 map<Key,T,Compare,Allocator>&);

explicit map (const Compare& comp = Compare (),
 const Allocator& alloc = Allocator());

Default constructor. Constructs an empty map that will use the relation
comp to order keys, if it is supplied. The map will use the allocator alloc

for all storage management.

template <class InputIterator>
map (InputIterator first, InputIterator last,
 const Compare& comp = Compare (),
 const Allocator& alloc = Allocator());

Constructs a map containing values in the range [first, last) . Creation
of the new map is only guaranteed to succeed if the iterators first and
last return values of type pair<class Key, class Value> and all
values of Key in the range[first, last) are unique. The map will use

Constructors
and

Destructors

map

424 Standard C++ Library Class Reference

the relation comp to order keys, and the allocator alloc for all storage
management.

map (const map<Key,T,Compare,Allocator>& x);
Copy constructor. Creates a new map by copying all pairs of key and
value from x .

~map ();
The destructor. Releases any allocated memory for this map.

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

iterator begin () ;
Returns an iterator pointing to the first element stored in the map.
"First" is defined by the map's comparison operator, Compare .

const_iterator begin () const;
Returns a const_iterator pointing to the first element stored in the map.

iterator end () ;
Returns an iterator pointing to the last element stored in the map, i.e.,
the off-the-end value.

const_iterator end () const;
Returns a const_iterator pointing to the last element stored in the map.

reverse_iterator rbegin ();
Returns a reverse_iterator pointing to the first element stored in the
map. "First" is defined by the map's comparison operator, Compare .

const_reverse_iterator rbegin () const;
Returns a const_reverse_iterator pointing to the first element stored
in the map.

reverse_iterator rend () ;
Returns a reverse_iterator pointing to the last element stored in the
map, i.e., the off-the-end value.

const_reverse_iterator rend () const;
Returns a const_reverse_iterator pointing to the last element stored in
the map

map<Key, T, Compare, Allocator>&
operator= (const map<Key, T, Compare, Allocator>& x);

Assignment. Replaces the contents of *this with a copy of the map x .

Allocator

Iterators

Member
Operators

map

Standard C++ Library Class Reference 425

mapped_type& operator[] (const key_type& x);
If an element with the key x exists in the map, then a reference to its
associated value will be returned. Otherwise the pair x,T() will be
inserted into the map and a reference to the default object T() will be
returned.

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

void
clear ();

Erases all elements from the self.

size_type
count (const key_type& x) const;

Returns a 1 if a value with the key x exists in the map, otherwise returns a
0.

bool
empty () const;

Returns true if the map is empty, false otherwise.

pair<iterator, iterator>
equal_range (const key_type& x);

Returns the pair, (lower_bound(x), upper_bound(x)) .

pair<const_iterator,const_iterator>
equal_range (const key_type& x) const;

Returns the pair, (lower_bound(x), upper_bound(x)) .

iterator
erase (iterator position);

Deletes the map element pointed to by the iterator position . Returns an
iterator pointing to the element following the deleted element, or end() if
the deleted item was the last one in this list.

iterator
erase (iterator first, iterator last);

Providing the iterators first and last point to the same map and last is
reachable from first, all elements in the range (first, last) will be
deleted from the map. Returns an iterator pointing to the element
following the last deleted element, or end() if there were no elements after
the deleted range.

size_type
erase (const key_type& x);

Deletes the element with the key value x from the map, if one exists.
Returns 1 if x existed in the map, 0 otherwise.

Allocator

Member
Functions

map

426 Standard C++ Library Class Reference

iterator
find (const key_type& x);

Searches the map for a pair with the key value x and returns an iterator

to that pair if it is found. If such a pair is not found the value end() is
returned.

const_iterator find (const key_type& x) const;
Same as find above but returns a const_iterator .

pair<iterator, bool>
insert (const value_type& x);

iterator
insert (iterator position, const value_type& x);

If a value_type with the same key as x is not present in the map, then x
is inserted into the map. Otherwise, the pair is not inserted. A position
may be supplied as a hint regarding where to do the insertion. If the
insertion may be done right after position then it takes amortized
constant time. Otherwise it will take O(log N) time.

template <class InputIterator>
void
insert (InputIterator first, InputIterator last);

Copies of each element in the range [first, last) which posess a
unique key, one not already in the map, will be inserted into the map. The
iterators first and last must return values of type pair<T1,T2> . This
operation takes approximately O(N*log(size()+N)) time.

key_compare
key_comp () const;

Returns a function object capable of comparing key values using the
comparison operation, Compare , of the current map.

iterator
lower_bound (const key_type& x);

Returns a reference to the first entry with a key greater than or equal to x .

const_iterator
lower_bound (const key_type& x) const;

Same as lower_bound above but returns a const_iterator .

size_type
max_size () const;

Returns the maximum possible size of the map. This size is only
constrained by the number of unique keys which can be represented by
the type Key.

size_type
size () const;

Returns the number of elements in the map.

map

Standard C++ Library Class Reference 427

void swap (map<Key, T, Compare, Allocator>& x);
Swaps the contents of the map x with the current map, *this .

iterator
upper_bound (const key_type& x);

Returns a reference to the first entry with a key less than or equal to x .

const_iterator
upper_bound (const key_type& x) const;

Same as upper_bound above but returns a const_iterator.

value_compare
value_comp () const;

Returns a function object capable of comparing pair<const Key, T>

values using the comparison operation, Compare , of the current map. This
function is identical to key_comp for sets.

template <class Key, class T, class Compare, class Allocator>
bool operator== (const map<Key, T, Compare, Allocator>& x,
 const map<Key, T, Compare, Allocator>& y);

Returns true if all elements in x are element-wise equal to all elements in
y , using (T::operator==) . Otherwise it returns false .

template <class Key, class T, class Compare, class Allocator>
bool operator< (const map<Key, T, Compare, Allocator>& x,
 const map<Key, T, Compare, Allocator>& y);

Returns true if x is lexicographically less than y . Otherwise, it returns
false .

template <class Key, class T, class Compare, class Allocator>
void swap (map<Key, T, Compare, Allocator>& a,
 map<Key, T, Compare, Allocator>& b);

Efficiently swaps the contents of a and b.

//
// map.cpp
//
 #include <string>
 #include <map>
 #include <iostream.h>

 typedef map<string, int, less<string> > months_type;

 // Print out a pair
 template <class First, class Second>
 ostream& operator<<(ostream& out,
 const pair<First,Second> & p)
 {
 cout << p.first << " has " << p.second << " days";
 return out;
 }

 // Print out a map

Non-member
Operators

Example

map

428 Standard C++ Library Class Reference

 ostream& operator<<(ostream& out, const months_type & l)
 {
 copy(l.begin(),l.end(), ostream_iterator
 <months_type::value_type>(cout,"\n"));
 return out;
 }

 int main(void)
 {
 // create a map of months and the number of days
 // in the month
 months_type months;

 typedef months_type::value_type value_type;

 // Put the months in the multimap
 months.insert(value_type(string("January"), 31));
 months.insert(value_type(string("Febuary"), 28));
 months.insert(value_type(string("Febuary"), 29));
 months.insert(value_type(string("March"), 31));
 months.insert(value_type(string("April"), 30));
 months.insert(value_type(string("May"), 31));
 months.insert(value_type(string("June"), 30));
 months.insert(value_type(string("July"), 31));
 months.insert(value_type(string("August"), 31));
 months.insert(value_type(string("September"), 30));
 months.insert(value_type(string("October"), 31));
 months.insert(value_type(string("November"), 30));
 months.insert(value_type(string("December"), 31));

 // print out the months
 // Second Febuary is not present
 cout << months << endl;

 // Find the Number of days in June
 months_type::iterator p = months.find(string("June"));

 // print out the number of days in June
 if (p != months.end())
 cout << endl << *p << endl;

 return 0;
 }

Output :
April has 30 days
August has 31 days
December has 31 days
February has 28 days
January has 31 days
July has 31 days
June has 30 days
March has 31 days
May has 31 days
November has 30 days
October has 31 days
September has 30 days

map

Standard C++ Library Class Reference 429

Member function templates are used in all containers provided by the
Standard Template Library. An example of this feature is the constructor for
map<Key,T,Compare,Allocator> that takes two templated iterators:

template <class InputIterator>
 map (InputIterator, InputIterator, const Compare& = Compare(),
 const Allocator& = Allocator());

map also has an insert function of this type. These functions, when not
restricted by compiler limitations, allow you to use any type of input iterator
as arguments. For compilers that do not support this feature, we provide
substitute functions that allow you to use an iterator obtained from the same
type of container as the one you are constructing (or calling a member
function on), or you can use a pointer to the type of element you have in the
container.

For example, if your compiler does not support member function templates,
you can construct a map in the following two ways:

map<int, int, less<int> >::value_type intarray[10];
map<int, int, less<int> > first_map(intarray, intarray + 10);
map<int, int, less<int> > second_map(first_map.begin(),
 first_map.end());

But not this way:

map<long, long, less<long> > long_map(first_map.begin(),
 first_map.end());

Since the long_map and first_map are not the same type.

Also, many compilers do not support default template arguments. If your
compiler is one of these, you need to always supply the Compare template
argument and the Allocator template argument. For instance, you’ll have
to write:

map<int, int, less<int>, allocator>

instead of:

map<int, int>

allocator, Containers, Iterators, multimap

Warning

See Also

Standard C++ Library Class Reference 431

max

Algorithm

Find and return the maximum of a pair of values

#include <algorithm>

template <class T>
 const T& max(const T&, const T&);

template <class T, class Compare>
 const T& max(const T&, const T&, Compare);

The max algorithm determines and returns the maximum of a pair of
values. The optional argument Compare defines a comparison function that
can be used in place of the default operator< . This function can be used
with all the datatypes provided by the standard library.

max returns the first argument when the arguments are equal.

//
// max.cpp
//
 #include <algorithm>
 #include <iostream.h>
 #include <iostream.h>

 int main(void)
 {
 double d1 = 10.0, d2 = 20.0;

 // Find minimum
 double val1 = min(d1, d2);
 // val1 = 10.0

 // the greater comparator returns the greater of the
 // two values.
 double val2 = min(d1, d2, greater<double>());
 // val2 = 20.0;

 // Find maximum
 double val3 = max(d1, d2);
 // val3 = 20.0;

 // the less comparator returns the smaller of the two values.
 // Note that, like every comparison in the STL, max is
 // defined in terms of the < operator, so using less here
 // is the same as using the max algorithm with a default
 // comparator.
 double val4 = max(d1, d2, less<double>());
 // val4 = 20

Summary

Synopsis

Description

Example

max

432 Standard C++ Library Class Reference

 cout << val1 << " " << val2 << " "
 << val3 << " " << val4 << endl;

 return 0;
 }

Output :
10 20 20 20

max_element, min, min_elementSee Also

Standard C++ Library Class Reference 433

max_element

Algorithm

Finds maximum value in a range.

#include <algorithm>

template <class ForwardIterator>
 ForwardIterator
 max_element (ForwardIterator first, ForwardIterator last);

template <class ForwardIterator, class Compare>
 ForwardIterator
 max_element (ForwardIterator first, ForwardIterator last,
 Compare comp);

The max_element algorithm returns an iterator that denotes the maximum
element in a sequence. If the sequence contains more than one copy of the
element, the iterator points to its first occurrence. The optional argument
comp defines a comparison function that can be used in place of the default
operator< . This function can be used with all the datatypes provided by the
standard library.

Algorithm max_element returns the first iterator i in the range [first,

last) such that for any iterator j in the same range the following
corresponding conditions hold:

!(*i < *j)

or

comp(*i, *j) == false.

Exactly max((last - first) - 1, 0) applications of the corresponding
comparisons are done for max_element.

//
// max_elem.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main(void)
 {
 typedef vector<int>::iterator iterator;

Summary

Synopsis

Description

Complexity

Example

max_element

434 Standard C++ Library Class Reference

 int d1[5] = {1,3,5,32,64};

 // set up vector
 vector<int> v1(d1,d1 + 5);

 // find the largest element in the vector
 iterator it1 = max_element (v1.begin(), v1.end());
 // it1 = v1.begin() + 4

 // find the largest element in the range from
 // the beginning of the vector to the 2nd to last
 iterator it2 = max_element (v1.begin(), v1.end()-1,
 less<int>());
 // it2 = v1.begin() + 3

 // find the smallest element
 iterator it3 = min_element(v1.begin(), v1.end());
 // it3 = v1.begin()

 // find the smallest value in the range from
 // the beginning of the vector plus 1 to the end
 iterator it4 = min_element(v1.begin()+1, v1.end(),
 less<int>());
 // it4 = v1.begin() + 1

 cout << *it1 << " " << *it2 << " "
 << *it3 << " " << *it4 << endl;

 return 0;
 }

Output :
64 32 1 3

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

max, min, min_element

Warning

See Also

Standard C++ Library Class Reference 435

merge

Algorithm

Merge two sorted sequences into a third sequence.

#include <algorithm>

template <class InputIterator1, class InputIterator2,
 class OutputIterator>
 OutputIterator
 merge (InputIterator first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator last2,
 OutputIterator result);

template <class InputIterator1, class InputIterator2,
 class OutputIterator, class Compare>
 OutputIterator
 merge (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator last2,
 OutputIterator result, Compare comp);

The merge algorithm merges two sorted seqeunces, specified by [first1,

last1) and [first2, last2) , into the sequence specified by [result,

result + (last1 - first1) + (last2 - first2)) . The first version of
the merge algorithm uses the less than operator (<) to compare elements in
the two sequences. The second version uses the comparision function
provided by the function call. If a comparison function is provided, merge
assumes that both sequences were sorted using that comparison function.

The merge is stable. This means that if the two original sequences contain
equivalent elements, the elements from the first sequence will always
precede the matching elements from the second in the resulting sequence.
The size of the result of a merge is equal to the sum of the sizes of the two
argument sequences. merge returns an iterator that points to the end of the
resulting sequence, i.e., result + (last1 - first1) + (last2 -first2) .
The result of merge is undefined if the resulting range overlaps with either
of the original ranges.

merge assumes that there are at least (last1 - first1) + (last2 -

first2) elements following result , unless result has been adapted by an
insert iterator.

For merge at most (last - first1) + (last2 - first2) - 1

comparisons are performed.

Summary

Synopsis

Description

Complexity

merge

436 Standard C++ Library Class Reference

//
// merge.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 int d1[4] = {1,2,3,4};
 int d2[8] = {11,13,15,17,12,14,16,18};

 // Set up two vectors
 vector<int> v1(d1,d1 + 4), v2(d1,d1 + 4);
 // Set up four destination vectors
 vector<int> v3(d2,d2 + 8),v4(d2,d2 + 8),
 v5(d2,d2 + 8),v6(d2,d2 + 8);
 // Set up one empty vector
 vector<int> v7;

 // Merge v1 with v2
 merge (v1.begin(),v1.end(),v2.begin(),v2.end(),v3.begin());
 // Now use comparator
 merge (v1.begin(),v1.end(),v2.begin(),v2.end(),v4.begin(),
 less<int>());

 // In place merge v5
 vector<int>::iterator mid = v5.begin();
 advance(mid,4);
 inplace_merge(v5.begin(),mid,v5.end());
 // Now use a comparator on v6
 mid = v6.begin();
 advance(mid,4);
 inplace_merge(v6.begin(),mid,v6.end(),less<int>());

 // Merge v1 and v2 to empty vector using insert iterator
 merge (v1.begin(),v1.end(),v2.begin(),v2.end(),
 back_inserter(v7));

 // Copy all cout
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;
 copy(v3.begin(),v3.end(),out);
 cout << endl;
 copy(v4.begin(),v4.end(),out);
 cout << endl;
 copy(v5.begin(),v5.end(),out);
 cout << endl;
 copy(v6.begin(),v6.end(),out);
 cout << endl;
 copy(v7.begin(),v7.end(),out);
 cout << endl;

 // Merge v1 and v2 to cout
 merge (v1.begin(),v1.end(),v2.begin(),v2.end(),

Example

merge

Standard C++ Library Class Reference 437

 ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Output :
1 2 3 4
1 2 3 4
1 1 2 2 3 3 4 4
1 1 2 2 3 3 4 4
11 12 13 14 15 16 17 18
11 12 13 14 15 16 17 18
1 1 2 2 3 3 4 4
1 1 2 2 3 3 4 4

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

Containers, inplace_merge

Warning

See Also

Standard C++ Library Class Reference 439

min

Algorithm

Find and return the minimum of a pair of values

#include <algorithm>

template <class T>
 const T& min (const T&, const T&);

template <class T, class Compare>
 const T& min (const T& a, const T&, Compare);

The min algorithm determines and returns the minimum of a pair of values.
In the second version of the algorithm, the optional argument Compare

defines a comparison function that can be used in place of the default
operator< . This function can be used with all the datatypes provided by the
standard library.

min returns the first argument when the two arguments are equal.

//
// max.cpp
//
 #include <algorithm>
 #include <iostream.h>

 int main(void)
 {
 double d1 = 10.0, d2 = 20.0;

 // Find minimum
 double val1 = min (d1, d2);
 // val1 = 10.0

 // the greater comparator returns the greater of the
 // two values.
 double val2 = min (d1, d2, greater<double>());
 // val2 = 20.0;

 // Find maximum
 double val3 = max(d1, d2);
 // val3 = 20.0;

 // the less comparator returns the smaller of the
 // two values.
 // Note that, like every comparison in the STL, max is
 // defined in terms of the < operator, so using less here
 // is the same as using the max algorithm with a default
 // comparator.

Summary

Synopsis

Description

Example

min

440 Standard C++ Library Class Reference

 double val4 = max(d1, d2, less<double>());
 // val4 = 20

 cout << val1 << " " << val2 << " "
 << val3 << " " << val4 << endl;

 return 0;
 }

Output :
10 20 20 20

max, max_element, min_elementSee Also

Standard C++ Library Class Reference 441

min_element

Algorithm

Finds the minimum value in a range.

#include <algorithm>

template <class ForwardIterator>
 ForwardIterator
 min_element (ForwardIterator first, ForwardIterator last);

template <class ForwardIterator, class Compare>
 InputIterator
 min_element (ForwardIterator first, ForwardIterator last,
 Compare comp);

The min_element algorithm returns an iterator that denotes the minimum
element in a sequence. If the sequence contains more than one copy of the
minimum element, the iterator points to the first occurrence of the element.
In the second version of the function, the optional argument comp defines a
comparison function that can be used in place of the default operator< .
This function can be used with all the datatypes provided by the standard
library.

Algorithm min_element returns the first iterator i in the range [first,

last) such that for any iterator j in the range same range, the following
corresponding conditions hold:

 !(*j < *i)

or

comp(*j, *i) == false.

min_element performs exactly max((last - first) - 1, 0) applications
of the corresponding comparisons.

//
// max_elem.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main(void)
 {
 typedef vector<int>::iterator iterator;
 int d1[5] = {1,3,5,32,64};

Summary

Synopsis

Description

Complexity

Example

min_element

442 Standard C++ Library Class Reference

 // set up vector
 vector<int> v1(d1,d1 + 5);

 // find the largest element in the vector
 iterator it1 = max_element(v1.begin(), v1.end());
 // it1 = v1.begin() + 4

 // find the largest element in the range from
 // the beginning of the vector to the 2nd to last
 iterator it2 = max_element(v1.begin(), v1.end()-1,
 less<int>());
 // it2 = v1.begin() + 3

 // find the smallest element
 iterator it3 = min_element (v1.begin(), v1.end());
 // it3 = v1.begin()

 // find the smallest value in the range from
 // the beginning of the vector plus 1 to the end
 iterator it4 = min_element (v1.begin()+1, v1.end(),
 less<int>());
 // it4 = v1.begin() + 1

 cout << *it1 << " " << *it2 << " "
 << *it3 << " " << *it4 << endl;

 return 0;
 }

Output :
64 32 1 3

If your compiler does not support default template parameters then you
need to always supply the Allocator template argument. For instance
you’ll have to write:

vector<int,allocator>

instead of:

vector<int>

max, max_element, min

Warning

See Also

Standard C++ Library Class Reference 443

minus

Function Object

Returns the result of subtracting its second argument from its first.

#include<functional>

 template <class T>
 struct minus : public binary_function<T, T, T>;

minus is a binary function object. Its operator() returns the result of x
minus y . You can pass a minus object to any algorithm that requires a
binary function. For example, the transform algorithm applies a binary
operation to corresponding values in two collections and stores the result.
minus would be used in that algorithm in the following manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(),
 vecResult.begin(), minus<int>());

After this call to transform, vecResult(n) will contain vec1(n) minus
vec2(n) .

template <class T>
struct minus : binary_function<T, T, T> {
 typedef typename binary_function<T, T, T>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, T>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, T>::result_type result_type;
 T operator() (const T&, const T&) const;
};

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will have to write :

vector<int, allocator>

instead of :

vector<int>

Summary

Synopsis

Description

Interface

Warning

minus

444 Standard C++ Library Class Reference

binary_function, function objectsSee Also

Standard C++ Library Class Reference 445

mismatch

Algorithm

Compares elements from two sequences and returns the first two elements
that don't match each other.

#include <algorithm>

template <class InputIterator1, class InputIterator2>
 pair<InputIterator1,InputIterator2>
 mismatch (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2);

template <class InputIterator1, class InputIterator2,
 class BinaryPredicate>
 pair<InputIterator1, Inputiterator2>
 mismatch (InputIterator first1, InputIterator1 last1,
 InputIterator2 first2,
 BinaryPredicate binary_pred);

The mismatch algorithm compares members of two sequences and returns
two iterators (i and j) that point to the first location in each sequence where
the sequences differ from each other. Notice that the algorithm denotes both
a starting position and an ending position for the first sequence, but denotes
only a starting position for the second sequence. mismatch assumes that
the second sequence has at least as many members as the first sequence. If
the two sequences are identical, mismatch returns a pair of iterators that
point to the end of the first sequence and the corresponding location at
which the comparison stopped in the second sequence.

The first version of mismatch checks members of a sequence for equality,
while the second version lets you specify a comparison function. The
comparison function must be a binary predicate.

The iterators i and j returned by mismatch are defined as follows:

j == first2 + (i - first1)

and i is the first iterator in the range [first1, last1) for which the
appropriate one of the following conditions hold:

!(*i == *(first2 + (i - first1)))

or

binary_pred(*i, *(first2 + (i - first1))) == false

Summary

Synopsis

Description

mismatch

446 Standard C++ Library Class Reference

If all of the members in the two sequences match, mismatch returns a pair
of last1 and first2 + (last1 - first1) .

At most last1 - first1 applications of the corresponding predicate are
done.

//
// mismatch.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main(void)
 {
 typedef vector<int>::iterator iterator;
 int d1[4] = {1,2,3,4};
 int d2[4] = {1,3,2,4};

 // Set up two vectors
 vector<int> vi1(d1,d1 + 4), vi2(d2,d2 + 4);

 // p1 will contain two iterators that point to the
 // first pair of elements that are different between
 // the two vectors
 pair<iterator, iterator> p1 = mismatch (vi1.begin(), vi1.end(),
 vi2.begin());

 // find the first two elements such that an element in the
 // first vector is greater than the element in the second
 // vector.
 pair<iterator, iterator> p2 = mismatch (vi1.begin(), vi1.end(),
 vi2.begin(),
 less_equal<int>());

 // Output results
 cout << *p1.first << ", " << *p1.second << endl;
 cout << *p2.first << ", " << *p2.second << endl;

 return 0;
 }

Output :
2, 3
3, 2

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of:

vector<int>

Complexity

Example

Warning

Standard C++ Library Class Reference 447

modulus

Function Object

Returns the remainder obtained by dividing the first argument by the second
argument.

#include<functional>

 template <class T>
 struct modulus : public binary_function<T, T, T> ;

modulus is a binary function object. Its operator() returns the remainder
resulting from of x divided by y . You can pass a modulus object to any
algorithm that requires a binary function. For example, the transform
algorithm applies a binary operation to corresponding values in two
collections and stores the result. modulus would be used in that algorithm
in the following manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(),
 vecResult.begin(), modulus<int>());

After this call to transform, vecResult(n) will contain the remainder of
vec1(n) divided by vec2(n) .

template <class T>
struct modulus : binary_function<T, T, T> {
 typedef typename binary_function<T, T, T>::second_argument_type
 n second_argument_type;
 typedef typename binary_function<T, T, T>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, T>::result_type result_type;
 T operator() (const T&, const T&) const;
};

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of

vector<int>

Summary

Synopsis

Description

Interface

Warning

modulus

448 Standard C++ Library Class Reference

binary_function, function objectSee Also

Standard C++ Library Class Reference 449

multimap

Container

An associative container providing access to non-key values using keys.
multimap keys are not required to be unique. A multimap supports
bidirectional iterators.

#include <map>

template <class Key, class T, class Compare = less<Key>,
 class Allocator = allocator>
class multimap ;

multimap <Key ,T, Compare, Allocator> provides fast access to stored
values of type T which are indexed by keys of type Key. The default
operation for key comparison is the < operator. Unlike map, multimap
allows insertion of duplicate keys.

multimap provides bidirectional iterators which point to an instance of
pair<const Key x, T y> where x is the key and y is the stored value
associated with that key. The definition of multimap provides a typedef

to this pair called value_type .

The types used for both the template parameters Key and T must provide
the following (where T is the type , t is a value of T and u is a const value of
T):

Copy constructors - T(t) and T(u)
 Destructor - t.~T()
 Address of - &t and &u yielding T* and
 const T* respectively
 Assignment - t = a where a is a
 (possibley const) value of T

The type used for the Compare template parameter must satisfy the
requirements for binary functions.

template <class Key, class T, class Compare = less<Key>,
 class Allocator = allocator>
 class multimap {

public:

// types

 typedef Key key_type;
 typedef T mapped_type;
 typedef pair<const Key, T> value_type;
 typedef Compare key_compare;
 typedef Allocator allocator_type;

Summary

Synopsis

Description

Interface

multimap

450 Standard C++ Library Class Reference

 typename reference;
 typename const_reference;
 typename iterator;
 typename const_iterator;
 typename size_type;
 typename difference_type;
 typename reverse_iterator;
 typename const_reverse_iterator;

 class value_compare
 : public binary_function<value_type, value_type, bool>

 {
 friend class multimap<Key, T, Comapare, Allocator>;

 public :
 bool operator() (const value_type&, const value_type&) const;
 };

// Construct/Copy/Destroy

 explicit multimap (const Compare& = Compare(), const Allocator& =
 Allocator());
 template <class InputIterator>
 multimap (InputIterator, InputIterator,
 const Compare& = Compare(),
 const Allocator& = Allocator());
 multimap (const multimap<Key, T, Compare, Allocator>&);
 ~multimap ();
 multimap<Key, T, Compare, Allocator>& operator=
 (const multimap<Key, T, Compare, Allocator>&);

// Iterators

 iterator begin ();
 const_iterator begin () const;
 iterator end ();
 const_iterator end () const;
 reverse_iterator rbegin ();
 const_reverse_iterator rbegin () const;
 reverse_iterator rend ();
 const_reverse_iterator rend () const;

// Capacity

 bool empty () const;
 size_type size () const;
 size_type max_size () const;

// Modifiers

 iterator insert (const value_type&);
 iterator insert (iterator, const value_type&);
 template <class InputIterator>
 void insert (InputIterator, InputIterator);

 iterator erase (iterator);
 size_type erase (const key_type&);
 iterator erase (iterator, iterator);

multimap

Standard C++ Library Class Reference 451

 void swap (multimap<Key, T, Compare, Allocator>&);

// Observers

 key_compare key_comp () const;
 value_compare value_comp () const;

// Multimap operations

 iterator find (const key_type&);
 const_iterator find (const key_type&) const;
 size_type count (const key_type&) const;

 iterator lower_bound (const key_type&);
 const_iterator lower_bound (const key_type&) const;
 iterator upper_bound (const key_type&);
 const_iterator upper_bound (const key_type&) const;
 pair<iterator, iterator> equal_range (const key_type&);
 pair<const_iterator, const_iterator>
 equal_range (const key_type&) const;
};

// Non-member Operators

template <class Key, class T,class Compare, class Allocator>
 bool operator== (const multimap<Key, T, Compare, Allocator>&,
 const multimap<Key, T, Compare, Allocator>&);

template <class Key, class T, class Compare, class Allocator>
 bool operator< (const multimap<Key, T, Compare, Allocator>&,
 const multimap<Key, T, Compare, Allocator>&);

// Specialized Algorithms

template <class Key, class T, class Compare, class Allocator>
 void swap (multimap<Key, T, Compare, Allocator>&,
 multimap<Key, T, Compare, Allocator>&;

explicit multimap (const Compare& comp = Compare(),
 const Allocator& alloc = Allocator());

Default constructor. Constructs an empty multimap that will use the
optional relation comp to order keys and the allocator alloc for all storage
management.

template <class InputIterator>
multimap (InputIterator first,
 InputIterator last,
 const Compare& comp = Compare()
 const Allocator& alloc = Allocator ());

Constructs a multimap containing values in the range [first, last) .
Creation of the new multimap is only guaranteed to succeed if the iterators
first and last return values of type pair<class Key, class T>.

Constructors
and

Destructors

multimap

452 Standard C++ Library Class Reference

multimap (const multimap<Key, T, Compare, Allocator>& x);
Copy constructor. Creates a new multimap by copying all pairs of key

and value from x .

~multimap ();
The destructor. Releases any allocated memory for this multimap.

multimap<Key, T, Compare, Allocator>&
operator= (const multimap<Key, T, Compare, Allocator>& x);

Replaces the contents of *this with a copy of the multimap x .

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

iterator begin () ;
Returns a bidirectional iterator pointing to the first element stored in
the multimap. "First" is defined by the multimap's comparison operator,
Compare .

const_iterator begin () const;
Returns a const_iterator pointing to the first element stored in the
multimap. "First" is defined by the multimap's comparison operator,
Compare .

iterator end () ;
Returns a bidirectional iterator pointing to the last element stored in the
multimap, i.e. the off-the-end value.

const_iterator end () const;
Returns a const_iterator pointing to the last element stored in the
multimap.

reverse_iterator rbegin () ;
Returns a reverse_iterator pointing to the first element stored in the
multimap. "First" is defined by the multimap's comparison operator,
Compare .

const_reverse_iterator rbegin () const;
Returns a const_reverse_iterator pointing to the first element stored in
the multimap.

reverse_iterator rend () ;
Returns a reverse_iterator pointing to the last element stored in the
multimap, i.e., the off-the-end value.

const_reverse_iterator rend () const;
Returns a const_reverse_iterator pointing to the last element stored in
the multimap.

Assignment
Operator

Allocator

Iterators

multimap

Standard C++ Library Class Reference 453

void
clear ();

Erases all elements from the self.

size_type
count (const key_type& x) const;

Returns the number of elements in the multimap with the key value x .

bool
empty () const;

Returns true if the multimap is empty, false otherwise.

pair<iterator,iterator>
equal_range (const key_type& x);

pair<const_iterator,const_iterator>
equal_range (const key_type& x) const;

Returns the pair (lower_bound(x), upper_bound(x)) .

iterator
erase (iterator first, iterator last);

Providing the iterators first and last point to the same multimap and
last is reachable from first, all elements in the range (first, last) will be
deleted from the multimap. Returns an iterator pointing to the element
following the last deleted element, or end(), if there were no elements
after the deleted range.

iterator
erase (iterator position);

Deletes the multimap element pointed to by the iterator position . Returns
an iterator pointing to the element following the deleted element, or
end(), if the deleted item was the last one in this list.

size_type
erase (const key_type& x);

Deletes the elements with the key value x from the map, if any exist.
Returns the number of deleted elements, or 0 otherwise.

iterator
find (const key_type& x);

Searches the multimap for a pair with the key value x and returns an
iterator to that pair if it is found. If such a pair is not found the value
end() is returned.

const_iterator
find (const key_type& x) const;

Same as find above but returns a const_iterator .

Member
Functions

multimap

454 Standard C++ Library Class Reference

iterator
insert (const value_type& x);

iterator
insert (iterator position, const value_type& x);

x is inserted into the multimap. A position may be supplied as a hint
regarding where to do the insertion. If the insertion may be done right
after position then it takes amortized constant time. Otherwise it will
take O(log N) time.

template <class InputIterator>
void
insert (InputIterator first, InputIterator last);

Copies of each element in the range [first, last) will be inserted into
the multimap. The iterators first and last must return values of type
pair<T1,T2> . This operation takes approximately O(N*log(size()+N))

time.

key_compare
key_comp () const;

Returns a function object capable of comparing key values using the
comparison operation, Compare , of the current multimap.

iterator
lower_bound (const key_type& x);

Returns an iterator to the first multimap element whose key is greater
than or equal to x . If no such element exists then end() is returned.

const_iterator
lower_bound (const key_type& x) const;

Same as lower_bound above but returns a const_iterator.

size_type
max_size () const;

Returns the maximum possible size of the multimap.

size_type
size () const;

Returns the number of elements in the multimap.

void
swap (multimap<Key, T, Compare, Allocator>& x);

Swaps the contents of the multimap x with the current multimap, *this .

iterator
upper_bound (const key_type& x);

Returns an iterator to the first element whose key is less than or equal
to x . If no such element exists, then end() is returned.

multimap

Standard C++ Library Class Reference 455

const_iterator
upper_bound (const key_type& x) const;

Same as upper_bound above but returns a const_iterator .

value_compare
value_comp () const;

Returns a function object capable of comparing value_types (key,value

pairs) using the comparison operation, Compare , of the current multimap.

bool
operator== (const multimap<Key, T, Compare, Allocator>& x,
 const multimap<Key, T, Compare, Allocator>& y);

Returns true if all elements in x are element-wise equal to all elements in
y , using (T::operator==). Otherwise it returns false .

bool
operator< (const multimap<Key, T, Compare, Allocator>& x,
 const multimap<Key, T, Compare, Allocator>& y);

Returns true if x is lexicographically less than y . Otherwise, it returns
false .

template<class Key, class T, class Compare, class Allocator>
void swap (multimap<Key, T, Compare, Allocator>& a,
 multimap<Key, T, Compare, Allocator>& b);

Efficiently swaps the contents of a and b.

//
// multimap.cpp
//
 #include <string>
 #include <map>
 #include <iostream.h>

 typedef multimap <int, string, less<int> > months_type;

 // Print out a pair
 template <class First, class Second>
 ostream& operator<<(ostream& out,
 const pair<First,Second>& p)
 {
 cout << p.second << " has " << p.first << " days";
 return out;
 }

 // Print out a multimap
 ostream& operator<<(ostream& out, months_type l)
 {
 copy(l.begin(),l.end(), ostream_iterator
 <months_type::value_type>(cout,"\n"));
 return out;
 }

 int main(void)
 {
 // create a multimap of months and the number of

Non-member
Operators

Example

multimap

456 Standard C++ Library Class Reference

 // days in the month
 months_type months;

 typedef months_type::value_type value_type;

 // Put the months in the multimap
 months.insert(value_type(31, string("January")));
 months.insert(value_type(28, string("Febuary")));
 months.insert(value_type(31, string("March")));
 months.insert(value_type(30, string("April")));
 months.insert(value_type(31, string("May")));
 months.insert(value_type(30, string("June")));
 months.insert(value_type(31, string("July")));
 months.insert(value_type(31, string("August")));
 months.insert(value_type(30, string("September")));
 months.insert(value_type(31, string("October")));
 months.insert(value_type(30, string("November")));
 months.insert(value_type(31, string("December")));

 // print out the months
 cout << "All months of the year" << endl << months << endl;

 // Find the Months with 30 days
 pair<months_type::iterator,months_type::iterator> p =
 months.equal_range(30);

 // print out the 30 day months
 cout << endl << "Months with 30 days" << endl;
 copy(p.first,p.second,
 ostream_iterator<months_type::value_type>(cout,"\n"));

 return 0;
 }

Output :
All months of the year
February has 28 days
April has 30 days
June has 30 days
September has 30 days
November has 30 days
January has 31 days
March has 31 days
May has 31 days
July has 31 days
August has 31 days
October has 31 days
December has 31 days

Months with 30 days
April has 30 days
June has 30 days
September has 30 days
November has 30 days

multimap

Standard C++ Library Class Reference 457

Member function templates are used in all containers provided by the
Standard Template Library. An example of this feature is the constructor for
multimap<Key,T,Compare,Allocator> that takes two templated iterators:

template <class InputIterator>
 multimap (InputIterator, InputIterator,
 const Compare& = Compare(),
 const Allocator& = Allocator());

multimap also has an insert function of this type. These functions, when
not restricted by compiler limitations, allow you to use any type of input
iterator as arguments. For compilers that do not support this feature we
provide substitute functions that allow you to use an iterator obtained from
the same type of container as the one you are constructing (or calling a
member function on), or you can use a pointer to the type of element you
have in the container.

For example, if your compiler does not support member function templates
you can construct a multimap in the following two ways:

multimap<int, int, less<int>, allocator>::value_type intarray[10];
multimap<int, int, less<int>, allocator> first_map(intarry,
 intarray + 10);
multimap<int, int, less<int>, allocator>
 second_multimap(first_multimap.begin(), first_multimap.end());

but not this way:

multimap<long, long, less<long>, allocator>
 long_multimap(first_multimap.begin(),first_multimap.end());

since the long_multimap and first_multimap are not the same type.

Also, many compilers do not support default template arguments. If your
compiler is one of these you need to always supply the Compare template
argument and the Allocator template argument. For instance you’ll have to
write:

multimap<int, int, less<int>, allocator>

instead of:

multimap<int, int>

allocator, Containers, Iterators, map

Warnings

See Also

Standard C++ Library Class Reference 459

multiset

Container Class

An associative container providing fast access to stored key values. Storage
of duplicate keys is allowed. A multiset supports bidirectional iterators.

#include <set>

template <class Key, class Compare = less<Key>,
 class Allocator = allocator>
class multiset ;

multiset <Key, Compare, Allocator> provides fast access to stored key
values. The default operation for key comparison is the < operator. Insertion
of dupliate keys is allowed with a multiset.

multiset provides bidirectional iterators which point to a stored key.

Any type used for the template parameter Key must provide the following
(where T is the type , t is a value of T and u is a const value of T):

 Copy constructors T(t) and T(u)
 Destructor t.~T()
 Address of &t and &u yielding T* and
 const T* respectively
 Assignment t = a where a is a
 (possibley const) value of T

The type used for the Compare template parameter must satisfy the
requirements for binary functions.

template <class Key, class Compare = less<Key>,
 class Allocator = allocator>
 class multiset {

public:

// typedefs

 typedef Key key_type;
 typedef Key value_type;
 typedef Compare key_compare;
 typedef Compare value_compare;
 typedef Allocator allocator_type;
 typename reference;
 typename const_reference;

Summary

Synopsis

Description

Interface

multiset

460 Standard C++ Library Class Reference

 typename iterator;
 typename const_iterator;
 typename size_type;
 typename difference_type;
 typename reverse_iterator;
 typename const_reverse_iterator;

// Construct/Copy/Destroy

 explicit multiset (const Compare& = Compare(),
 const Allocator& = Allocator());
 template <class InputIterator>
 multiset (InputIterator, InputIterator,
 const Compare& = Compare(),
 const Allocator& = Allocator());
 multiset (const multiset<Key, Compare, Allocator>&);
 ~multiset ();
 multiset<Key, Compare, Allocator>& operator= (const multiset<Key,
 Compare,
 Allocator>&);

// Iterators

 iterator begin ();
 const_iterator begin () const;
 iterator end ();
 const_iterator end () const;
 reverse_iterator rbegin ();
 const_reverse_iterator rbegin () const;
 reverse_iterator rend ();
 const_reverse_iterator rend () const;

// Capacity

 bool empty () const;
 size_type size () const;
 size_type max_size () const;

// Modifiers

 iterator insert (const value_type&);
 iterator insert (iterator, const value_type&);
 template <class InputIterator>
 void insert (InputIterator, InputIterator);

 iterator erase (iterator);
 size_type erase (const key_type&);
 iterator erase (iterator, iterator);
 void swap (multiset<Key, Compare, Allocator>&);
 void clear ();

// Observers

 key_compare key_comp () const;
 value_compare value_comp () const;

// Multiset operations

multiset

Standard C++ Library Class Reference 461

 iterator find (const key_type&) const;
 size_type count (const key_type&) const;
 iterator lower_bound (const key_type&) const;
 iterator upper_bound (const key_type&) const;
 pair<iterator, iterator> equal_range (const key_type&) const;
 };

// Non-member Operators

template <class Key, class Compare, class Allocator>
 bool operator==
 (const multiset<Key, Compare, Allocator>&,
 const multiset<Key, Compare, Allocator>&);

template <class Key, class Compare, class Allocator>
 bool operator<
 (const multiset<Key, Compare, Allocator>&,
 const multiset<Key, Compare, Allocator>&);

// Specialized Algorithms

template <class Key, class Compare, class Allocator>
 void swap (multiset<Key, Compare, Allocator>&,
 multiset<Key, Compare, Allocator>&);

explicit multiset (const Compare& comp = Compare(),
 const Allocator& alloc = Allocator());
Default constructor. Constructs an empty multiset which will use the
optional relation comp to order keys, if it is supplied, and the allocator alloc

for all storage management.

template <class InputIterator>
multiset (InputIterator first, InputIterator last,
 const Compare& = Compare(),
 const Allocator& = Allocator());

Constructs a multiset containing values in the range [first, last).

multiset (const multiset<Key, Compare, Allocator>& x);
Copy constructor. Creates a new multiset by copying all key values from
x .

~multiset ();
The destructor. Releases any allocated memory for this multiset.

multiset<Key, Compare, Allocator>&
operator= (const multiset<Key, Compare, Allocator>& x);

Replaces the contents of *this with a copy of the contents of x .

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

Constructor
and Destructor

Assignment
Operator

Allocator

multiset

462 Standard C++ Library Class Reference

iterator begin ();
Returns an iterator pointing to the first element stored in the multiset.
"First" is defined by the multiset's comparison operator, Compare .

const_iterator begin ();
Returns a const_iterator pointing to the first element stored in the
multiset.

iterator end ();
Returns an iterator pointing to the last element stored in the multiset,
i.e., the off-the-end value.

const_iterator end ();
Returns a const_iterator pointing to the last element stored in the
multiset, i.e., the off-the-end value.

reverse_iterator rbegin ();
Returns a reverse_iterator pointing to the first element stored in the
multiset. "First" is defined by the multiset's comparison operator,
Compare .

const_reverse_iterator rbegin ();
Returns a const_reverse_iterator pointing to the first element stored
in the multiset.

reverse_iterator rend ();
Returns a reverse_iterator pointing to the last element stored in the
multiset, i.e., the off-the-end value.

const_reverse_iterator rend ();
Returns a const_reverse_iterator pointing to the last element stored in
the multiset, i.e., the off-the-end value.

void
clear ();

Erases all elements from the self.

size_type
count (const key_type& x) const;

Returns the number of elements in the multiset with the key value x .

bool
empty () const;

Returns true if the multiset is empty, false otherwise.

pair<iterator,iterator>
equal_range (const key_type& x)const;

Returns the pair (lower_bound(x), upper_bound(x)) .

Iterators

Member
Functions

multiset

Standard C++ Library Class Reference 463

size_type
erase (const key_type& x);

Deletes all elements with the key value x from the multiset, if any exist.
Returns the number of deleted elements.

iterator
erase (iterator position);

Deletes the multiset element pointed to by the iterator position . Returns
an iterator pointing to the element following the deleted element, or
end() if the deleted item was the last one in this list.

iterator
erase (iterator first, iterator last);

Providing the iterators first and last point to the same multiset and last
is reachable from first, all elements in the range (first, last) will be
deleted from the multiset. Returns an iterator pointing to the element
following the last deleted element, or end() if there were no elements after
the deleted range.

iterator
find (const key_type& x) const;

Searches the multiset for a key value x and returns an iterator to that key
if it is found. If such a value is not found the iterator end() is returned.

iterator
insert (const value_type& x);

iterator
insert (iterator position, const value_type& x);

x is inserted into the multiset. A position may be supplied as a hint
regarding where to do the insertion. If the insertion may be done right
after position, then it takes amortized constant time. Otherwise, it will
take O(log N) time.

template <class InputIterator>
void
insert (InputIterator first, InputIterator last);

Copies of each element in the range [first, last) will be inserted into
the multiset. This insert takes approximately O(N*log(size()+N)) time.

key_compare
key_comp () const;

Returns a function object capable of comparing key values using the
comparison operation, Compare , of the current multiset.

iterator
lower_bound (const key_type& x) const;

Returns an iterator to the first element whose key is greater than or equal
to x . If no such element exists, end() is returned.

multiset

464 Standard C++ Library Class Reference

size_type
max_size () const;

Returns the maximum possible size of the multiset size_type.

size_type
size () const;

Returns the number of elements in the multiset.

void
swap (multiset<Key, Compare, Allocator>& x);

Swaps the contents of the multiset x with the current multiset, *this .

iterator
upper_bound (const key_type& x) const;

Returns an iterator to the first element whose key is smaller than or
equal to x. If no such element exists then end() is returned.

value_compare
value_comp () const;
Returns a function object capable of comparing key values using the
comparison operation, Compare , of the current multiset.

template <class Key, class Compare, class Allocator>
operator== (const multiset<Key, Compare, Allocator>& x,
 const multiset<Key, Compare, Allocator>& y);

Returns true if all elements in x are element-wise equal to all elements in
y , using (T::operator==) . Otherwise it returns false .

template <class Key, class Compare, class Allocator>
operator< (const multiset<Key, Compare, Allocator>& x,
 const multiset<Key, Compare, Allocator>& y);

Returns true if x is lexicographically less than y. Otherwise, it returns
false .

template <class Key, class Compare, class Allocator>
void swap (multiset<Key,Compare,Allocator>& a,
 multiset<Key,Compare,Allocator>&b);

Efficiently swaps the contents of a and b.

//
// multiset.cpp
//
#include <set>
#iclude <iostream.h>

 typedef multiset <int, less<int>, allocator> set_type;

 ostream& operator<<(ostream& out, const set_type& s)
 {
 copy(s.begin(),s.end(),
 ostream_iterator<set_type::value_type>(cout," "));

Non-member
Operators

Example

multiset

Standard C++ Library Class Reference 465

 return out;
 }

 int main(void)
 {
 // create a multiset of ints
 set_type si;
 int i;

 for (int j = 0; j < 2; j++)
 {
 for(i = 0; i < 10; ++i) {
 // insert values with a hint
 si.insert(si.begin(), i);
 }
 }

 // print out the multiset
 cout << si << endl;

 // Make another int multiset and an empty multiset
 set_type si2, siResult;
 for (i = 0; i < 10; i++)
 si2.insert(i+5);
 cout << si2 << endl;

 // Try a couple of set algorithms
 set_union(si.begin(),si.end(),si2.begin(),si2.end(),
 inserter(siResult,siResult.begin()));
 cout << "Union:" << endl << siResult << endl;

 siResult.erase(siResult.begin(),siResult.end());
 set_intersection(si.begin(),si.end(),
 si2.begin(),si2.end(),
 inserter(siResult,siResult.begin()));
 cout << "Intersection:" << endl << siResult << endl;

 return 0;
 }

Output:
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
5 6 7 8 9 10 11 12 13 14
Union:
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 13 14
Intersection:
5 6 7 8 9

Member function templates are used in all containers provided by the
Standard Template Library. An example of this feature is the constructor for
multiset<Key, Compare, Allocator>, which takes two templated iterators:

template <class InputIterator>
multiset (InputIterator, InputIterator,
 const Compare& = Compare(),
 const Allocator& = Allocator());

Warnings

multiset

466 Standard C++ Library Class Reference

multiset also has an insert function of this type. These functions, when not
restricted by compiler limitations, allow you to use any type of input iterator
as arguments. For compilers that do not support this feature, we provide
substitute functions that allow you to use an iterator obtained from the same
type of container as the one you are constructing (or calling a member
function on). You can also use a pointer to the type of element you have in
the container.

For example, if your compiler does not support member function templates,
you can construct a multiset in the following two ways:

int intarray[10];
multiset<int, less<int>, allocator> first_multiset(intarray,
 intarray +10);
multiset<int, less<int> , allocator>
 second_multiset(first_multiset.begin(), first_multiset.end());

but not this way:

multiset<long, less<long>, allocator>
 long_multiset(first_multiset.begin(),first_multiset.end());

since the long_multiset and first_multiset are not the same type.

Also, many compilers do not support default template arguments. If your
compiler is one of these you need to always supply the Compare template
argument and the Allocator template argument. For instance, you’ll have
to write:

multiset<int, less<int>, allocator>

instead of:

multiset<int>

allocator, Containers, Iterators, setSee Also

Standard C++ Library Class Reference 467

negate

Function Object

Unary function object that returns the negation of its argument.

#include <functional>

 template <class T>
 struct negate : public unary_function<T, T>;

negate is a unary function object. Its operator() returns the negation of its
argument, i.e., true if its argument is false , or false if its arguement is
true . You can pass a negate object to any algorithm that requires a unary
function. For example, the transform algorithm applies a unary operation to
the values in a collection and stores the result. negate could be used in that
algorithm in the following manner:

vector<int> vec1;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vecResult.begin(), negate<int>());

After this call to transform, vecResult(n) will contain the negation of the
element in vec1(n) .

template <class T>
struct negate : unary_function<T, T> {
 typedef typename unary_function<T,T>::argument_type argument_type;
 typedef typename unary_function<T,T>::result_type result_type;
 T operator() (const T&) const;
};

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

function objects, unary_function

Summary

Synopsis

Description

Interface

Warning

See Also

Standard C++ Library Class Reference 469

negators

Function Object

Function adaptors and function objects used to reverse the sense of predicate
function objects.

#include <functional>

template <class Predicate>
class unary_negate ;

template <class Predicate>
unary_negate<Predicate> not1 (const Predicate&);

template <class Predicate>
class binary_negate ;

template <class Predicate>
binary_negate<Predicate> not2 (const Predicate&);

Negators not1 and not2 are functions that take predicate function objects as
arguments and return predicate function objects with the opposite sense.
Negators work only with function objects defined as subclasses of the classes
unary_function and binary_function. not1 accepts and returns unary
predicate function objects. not2 accepts and returns binary predicate
function objects.

unary_negate and binary_negate are function object classes that provide
return types for the negators, not1 and not2.

template <class Predicate>
class unary_negate
 : public unary_function<typename Predicate::argument_type, bool> {

public:
 typedef typename unary_function<typename Predicate::argument_type,
 bool>::argument_type argument_type;
 typedef typename unary_function<typename Predicate::argument_type,
 bool>::result_type result_type;
 explicit unary_negate (const Predicate&);
 bool operator() (const argument_type&) const;
};

template<class Predicate>
unary_negate <Predicate> not1 (const Predicate&);

template<class Predicate>
class binary_negate
 : public binary_function<typename Predicate::first_argument_type,

Summary

Synopsis

Description

Interface

negators

470 Standard C++ Library Class Reference

 typename Predicate::second_argument_type,
 bool>
{
public:
 typedef typename binary_function<typename
 Predicate::first_argument_type,
 typename Predicate::second_argument_type,
 bool>::second_argument_type second_argument_type;
 typedef typename binary_function<typename
 Predicate::first_argument_type,
 typename Predicate::second_argument_type,
 bool>::first_argument_type first_argument_type;
 typedef typename binary_function<typename
 Predicate::first_argument_type,
 typename Predicate::second_argument_type, bool>::result_type
 result_type;
 explicit binary_negate (const Predicate&);
 bool operator() (const first_argument_type&,
 const second_argument_type&) const;
};

template <class Predicate>
binary_negate<Predicate> not2 (const Predicate&);

//
// negator.cpp
//
 #include<functional>
 #include<algorithm>
 #include <iostream.h>

 //Create a new predicate from unary_function
 template<class Arg>
 class is_odd : public unary_function<Arg, bool>
 {
 public:
 bool operator()(const Arg& arg1) const
 {
 return (arg1 % 2 ? true : false);
 }
 };

 int main()
 {
 less<int> less_func;

 // Use not2 on less
 cout << (less_func(1,4) ? "TRUE" : "FALSE") << endl;
 cout << (less_func(4,1) ? "TRUE" : "FALSE") << endl;
 cout << (not2 (less<int>())(1,4) ? "TRUE" : "FALSE")
 << endl;
 cout << (not2 (less<int>())(4,1) ? "TRUE" : "FALSE")
 << endl;

 //Create an instance of our predicate
 is_odd<int> odd;

Example

negators

Standard C++ Library Class Reference 471

 // Use not1 on our user defined predicate
 cout << (odd(1) ? "TRUE" : "FALSE") << endl;
 cout << (odd(4) ? "TRUE" : "FALSE") << endl;
 cout << (not1 (odd)(1) ? "TRUE" : "FALSE") << endl;
 cout << (not1 (odd)(4) ? "TRUE" : "FALSE") << endl;

 return 0;
 }
Output :
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
FALSE
TRUE

algorithm, binary_function, function_object, unary_functionSee Also

Standard C++ Library Class Reference 473

next_permutation

Algorithm

Generate successive permutations of a sequence based on an ordering
function.

#include <algorithm>

template <class BidirectionalIterator>
bool next_permutation (BidirectionalIterator first,
 BidirectionalIterator last);

template <class BidirectionalIterator, class Compare>
 bool next_permutation (BidirectionalIterator first,
 BidirectionalIterator last, Compare comp);

The permutation-generating algorithms (next_permutation and
prev_permutation) assume that the set of all permutions of the elements in
a sequence is lexicographically sorted with respect to operator< or comp.
So, for example, if a sequence includes the integers 1 2 3, that sequence has
six permutations, which, in order from first to last are: 1 2 3 , 1 3 2, 2 1 3,
2 3 1, 3 1 2, and 3 2 1.

The next_permutation algorithm takes a sequence defined by the range
[first, last) and transforms it into its next permutation, if possible. If
such a permutation does exist, the algorithm completes the transformation
and returns true . If the permutation does not exist, next_permutation
returns false , and transforms the permutation into its "first" permutation
(according to the lexicographical ordering defined by either operator< , the
default used in the first version of the algorithm,or comp, which is user-
supplied in the second version of the algorithm.)

For example, if the sequence defined by [first, last) contains the
integers 3 2 1 (in that order), there is not a "next permutation." Therefore, the
algorithm transforms the sequence into its first permutation (1 2 3) and
returns false .

At most (last - first)/2 swaps are performed.

//
// permute.cpp
//
 #include <numeric> //for accumulate
 #include <vector> //for vector
 #include <functional> //for less

Summary

Synopsis

Description

Complexity

Example

next_permutation

474 Standard C++ Library Class Reference

 #include <iostream.h>

 int main()
 {
 //Initialize a vector using an array of ints
 int a1[] = {0,0,0,0,1,0,0,0,0,0};
 char a2[] = "abcdefghji";

 //Create the initial set and copies for permuting
 vector<int> m1(a1, a1+10);
 vector<int> prev_m1((size_t)10), next_m1((size_t)10);
 vector<char> m2(a2, a2+10);
 vector<char> prev_m2((size_t)10), next_m2((size_t)10);

 copy(m1.begin(), m1.end(), prev_m1.begin());
 copy(m1.begin(), m1.end(), next_m1.begin());
 copy(m2.begin(), m2.end(), prev_m2.begin());
 copy(m2.begin(), m2.end(), next_m2.begin());

 //Create permutations
 prev_permutation(prev_m1.begin(),
 prev_m1.end(),less<int>());
 next_permutation (next_m1.begin(),
 next_m1.end(),less<int>());
 prev_permutation(prev_m2.begin(),
 prev_m2.end(),less<int>());
 next_permutation (next_m2.begin(),
 next_m2.end(),less<int>());

 //Output results
 cout << "Example 1: " << endl << " ";
 cout << "Original values: ";
 copy(m1.begin(),m1.end(),
 ostream_iterator<int>(cout," "));
 cout << endl << " ";
 cout << "Previous permutation: ";
 copy(prev_m1.begin(),prev_m1.end(),
 ostream_iterator<int>(cout," "));

 cout << endl<< " ";
 cout << "Next Permutation: ";
 copy(next_m1.begin(),next_m1.end(),
 ostream_iterator<int>(cout," "));
 cout << endl << endl;

 cout << "Example 2: " << endl << " ";
 cout << "Original values: ";
 copy(m2.begin(),m2.end(),
 ostream_iterator<char>(cout," "));
 cout << endl << " ";
 cout << "Previous Permutation: ";
 copy(prev_m2.begin(),prev_m2.end(),
 ostream_iterator<char>(cout," "));
 cout << endl << " ";

 cout << "Next Permutation: ";
 copy(next_m2.begin(),next_m2.end(),
 ostream_iterator<char>(cout," "));
 cout << endl << endl;

 return 0;
 }

next_permutation

Standard C++ Library Class Reference 475

Output :
Example 1:
 Original values: 0 0 0 0 1 0 0 0 0 0
 Previous permutation: 0 0 0 0 0 1 0 0 0 0
 Next Permutation: 0 0 0 1 0 0 0 0 0 0
Example 2:
 Original values: a b c d e f g h j i
 Previous Permutation: a b c d e f g h i j
 Next Permutation: a b c d e f g i h j

If your compiler does not support default template parameters, the you need
to always supply the Allocator template argument. For instance, you will
need to write :

vector<int, allocator>

instead of :

vector<int>

prev_permutation

Warning

See Also

Standard C++ Library Class Reference 477

not1

Function Adaptor

Function adaptor used to reverse the sense of a unary predicate function
object.

#include <functional>

template<class Predicate>
unary_negate <Predicate> not1 (const Predicate&);

not1 is a function adaptor, known as a negator, that takes a unary predicate
function object as its argument and returns a unary predicate function object
that is the complement of the original. unary_negate is a function object
class that provides a return type for the not1 negator.

Note that not1 works only with function objects that are defined as
subclasses of the class unary_function.

negators, not2, unary_function, unary_negate,
pointer_to_unary_function

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 479

not2

Function Adaptor

Function adaptor used to reverse the sense of a binary predicate function
object.

#include <functional>

template <class Predicate>
binary_negate<Predicate> not2 (const Predicate& pred);

not2 is a function adaptor, known as a negator, that takes a binary predicate
function object as its argument and returns a binary predicate function object
that is the complement of the original. binary_negate is a function object
class that provides a return type for the not2 negator.

Note that not2 works only with function objects that are defined as
subclasses of the class binary_function.

binary_function, binary_negate, negators, not1,
pointer_to_binary_function, unary_negate

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 481

not_equal_to

Function Object

Binary function object that returns true if its first argument is not equal to its
second.

#include <functional>

template <class T>
struct not_equal_to : public binary_function<T, T, bool> ;

not_equal_to is a binary function object. Its operator() returns true if x is
not equal to y . You can pass a not_equal_to object to any algorithm that
requires a binary function. For example, the transform algorithm applies a
binary operation to corresponding values in two collections and stores the
result. not_equal_to would be used in that algorithm in the following
manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(),
 vecResult.begin(), not_equal_to<int>());

After this call to transform, vecResult(n) will contain a "1" if vec1(n) was
not equal to vec2(n) or a "1" if vec1(n) was equal to vec2(n) .

template <class T>
struct not_equal_to : binary_function<T, T, bool> {
 typedef typename binary_function<T, T, bool>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, bool>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, bool>::result_type
 result_type;
 bool operator() (const T&, const T&) const;
};

Summary

Synopsis

Description

Interface

not_equal_to

482 Standard C++ Library Class Reference

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

binary_function, function object

Warning

See Also

Standard C++ Library Class Reference 483

nth_element

Algorithm

Rearranges a collection so that all elements lower in sorted order than the
nth element come before it and all elements higher in sorter order than the
nth element come after it.

#include <algorithm>

template <class RandomAccessIterator>
 void nth_element (RandomAccessIterator first,
 RandomAccessIterator nth,
 RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
 void nth_element (RandomAccessIterator first,
 RandomAccessIterator nth,
 RandomAccessIterator last,
 Compare comp);

The nth_element algorithm rearranges a collection according to either the
default comparison operator (>) or the provided comparison operator. After
the algorithm applies, three things are true:

• The element that would be in the nth position if the collection were
completely sorted is in the nth position

• All elements prior to the nth position would precede that position in an
ordered collection

• All elements following the nth position would follow that position in an
ordered collection

That is, for any iterator i in the range [first, nth) and any iterator j in the
range [nth, last) it holds that !(*i > *j) or comp(*i, *j) == false .

Note that the elements that precede or follow the nth postion are not
necessarily sorted relative to each other. The nth_element algorithm does
not sort the entire collection.

The algorithm is linear, on average, where N is the size of the range [first,

last) .

//
// nthelem.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

Summary

Synopsis

Description

Complexity

Example

nth_element

484 Standard C++ Library Class Reference

 template<class RandomAccessIterator>
 void quik_sort(RandomAccessIterator start,
 RandomAccessIterator end)
 {
 size_t dist = 0;
 distance(start, end, dist);

 //Stop condition for recursion
 if(dist > 2)
 {
 //Use nth_element to do all the work for quik_sort
 nth_element (start, start+(dist/2), end);

 //Recursive calls to each remaining unsorted portion
 quik_sort(start, start+(dist/2-1));
 quik_sort(start+(dist/2+1), end);
 }

 if(dist == 2 && *end < *start)
 swap(start, end);
 }

 int main()
 {
 //Initialize a vector using an array of ints
 int arr[10] = {37, 12, 2, -5, 14, 1, 0, -1, 14, 32};
 vector<int> v(arr, arr+10);

 //Print the initial vector
 cout << "The unsorted values are: " << endl << " ";
 vector<int>::iterator i;
 for(i = v.begin(); i != v.end(); i++)
 cout << *i << ", ";
 cout << endl << endl;

 //Use the new sort algorithm
 quik_sort(v.begin(), v.end());

 //Output the sorted vector
 cout << "The sorted values are: " << endl << " ";
 for(i = v.begin(); i != v.end(); i++)
 cout << *i << ", ";
 cout << endl << endl;

 return 0;
 }

Output :
The unsorted values are:
 37, 12, 2, -5, 14, 1, 0, -1, 14, 32,
The sorted values are:
 -5, -1, 0, 1, 2, 12, 14, 14, 32, 37,

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

Warning

nth_element

Standard C++ Library Class Reference 485

vector<int, allocator>

instead of :

vector<int>

AlgorithmsSee Also

Standard C++ Library Class Reference 487

numeric_limits

Numeric Limits Library

A class for representing information about scalar types.

numeric_limits<float>
numeric_limits<double>
numeric_limits<long double>
numeric_limits<short>
numeric_limits<unsigned short>
numeric_limits<int>
numeric_limits<unsigned int>
numeric_limits<long>
numeric_limits<unsigned long>
numeric_limits<char>
numeric_limits<wchar_t>
numeric_limits<unsigned char>
numeric_limits<signed char>
numeric_limits<bool>

#include <limits>

template <class T>
class numeric_limits ;

numeric_limits is a class for representing information about scalar types.
Specializations are provided for each fundamental type, both floating point
and integer, including bool .

This class encapsulates information that is contained in the <climits> and
<cfloat> headers, as well as providing additional information that is not
contained in any existing C or C++ header.

Not all of the information provided by members is meaningful for all
specializations of numeric_limits. Any value which is not meaningful for a
particular type is set to 0 or false .

template <class T>
 class numeric_limits {

 public:

 // General -- meaningful for all specializations.

 static const bool is_specialized ;
 static T min ();
 static T max ();
 static const int radix ;

Summary

Specializations

Synopsis

Description

Interface

numeric_limits

488 Standard C++ Library Class Reference

 static const int digits ;
 static const int digits10 ;
 static const bool is_signed ;
 static const bool is_integer ;
 static const bool is_exact ;
 static const bool traps ;
 static const bool is_modulo ;
 static const bool is_bounded ;

 // Floating point specific.

 static T epsilon ();
 static T round_error ();
 static const int min_exponent10 ;
 static const int max_exponent10 ;
 static const int min_exponent ;

 static const int max_exponent ;
 static const bool has_infinity ;
 static const bool has_quiet_NaN ;
 static const bool has_signaling_NaN ;
 static const bool is_iec559 ;
 static const bool has_denorm ;
 static const bool tinyness_before ;
 static const float_round_style round_style ;
 static T denorm_min ();
 static T infinity ();
 static T quiet_NaN ();
 static T signaling_NaN ();
 };

 enum float_round_style {
 round_indeterminate = -1,
 round_toward_zero = 0,
 round_to_nearest = 1,
 round_toward_infinity = 2,
 round_toward_neg_infinity = 3
 };

static T
denorm_min () ;

Returns the minimum denormalized value. Meaningful for all floating
point types. For types that do not allow denormalized values, this method
must return the minimum normalized value.

static const int
digits ;

Number of radix digits which can be represented without change. For
built-in integer types, digits will usually be the number of non-sign bits
in the representation. For floating point types, digits is the number of
radix digits in the mantissa. This member is meaningful for all
specializations that declare is_bounded to be true .

Member fields
and functions

numeric_limits

Standard C++ Library Class Reference 489

static const int
digits10 ;

Number of base 10 digits that can be represented without change.
Meaningful for all specializations that declare is_bounded to be true .

static T
epsilon ();

Returns the machine epsilon (the difference between 1 and the least value
greater than 1 that is representable). This function is meaningful for
floating point types only.

static const bool
has_denorm ;

This field is true if the type allows denormalized values (variable number
of exponent bits). It is meaningful for floating point types only.

static const bool
has_infinity ;

This field is true if the type has a representation for positive infinity. It is
meaningful for floating point types only. This field must be true for any
type claiming conformance to IEC 559.

static const bool
has_quiet_NaN ;

This field is true is the type has a representation for a quiet (non-
signaling) "Not a Number". It is meaningful for floating point types only
and must be true for any type claiming conformance to IEC 559.

static const bool
has_signaling_NaN ;

This field is true if the type has a representation for a signaling "Not a
Number". It is meaningful for floating point types only, and must be true

for any type claiming conformance to IEC 559.

static T
infinity ();

Returns the representation of positive infinity, if available. This member
function is meaningful for only those specializations that declare
has_infinity to be true . Required for any type claiming conformance to
IEC 559.

static const bool
is_bounded ;

This field is true if the set of values representable by the type is finite. All
built-in C types are bounded; this member would be false for arbitrary
precision types.

numeric_limits

490 Standard C++ Library Class Reference

static const bool
is_exact ;

This static member field is true if the type uses an exact representation.
All integer types are exact, but not vice versa. For example, rational and
fixed-exponent representations are exact but not integer. This member is
meaningful for all specializations.

static const bool
is_iec559 ;

This member is true if and only if the type adheres to the IEC 559
standard. It is meaningful for floating point types only. Must be true for
any type claiming conformance to IEC 559.

static const bool
is_integer ;

This member is true if the type is integer. This member is meaningful for
all specializations.

static const bool
is_modulo ;

This field is true if the type is modulo. Generally, this is false for
floating types, true for unsigned integers, and true for signed integers on
most machines. A type is modulo if it is possible to add two positive
numbers, and have a result that wraps around to a third number, which is
less.

static const bool
is_signed ;

This member is true if the type is signed. This member is meaningful for
all specializations.

static const bool
is_specialized ;

Indicates whether numeric_limits has been specialized for type T. This
flag must be true for all specializations of numeric_limits . In the default
numeric_limits<T> template, this flag must be false .

static T
max ();

Returns the maximum finite value. This function is meaningful for all
specializations that declare is_bounded to be true .

static const int
max_exponent ;

Maximum positive integer such that the radix raised to that power is in
range. This field is meaningful for floating point types only.

numeric_limits

Standard C++ Library Class Reference 491

static const int
max_exponent10 ;

Maximum positive integer such that 10 raised to that power is in range.
This field is meaningful for floating point types only.

static T
min ();

Returns the minimum finite value. For floating point types with
denormalization, min() must return the minimum normalized value. The
minimum denormalized value is provided by denorm_min() . This
function is meaningful for all specializations that declare is_bounded to be
true .

static const int
min_exponent ;

Minimum negative integer such that the radix raised to that power is in
range. This field is meaningful for floating point types only.

static const int
min_exponent10 ;

Minimum negative integer such that 10 raised to that power is in range.
This field is meaningful for floating point types only.

static T
quiet_NaN () ;

Returns the representation of a quiet "Not a Number", if available. This
function is meaningful only for those specializations that declare
has_quiet_NaN to be true. This field is required for any type claiming
conformance to IEC 559.

static const int
radix ;

For floating types, specifies the base or radix of the exponent
representation (often 2). For integer types, this member must specify the
base of the representation. This field is meaningful for all specializations.

static T
round_error () ;

Returns the measure of the maximum rounding error. This function is
meaningful for floating point types only.

static const float_round_style
round_style ;

The rounding style for the type. Specializations for integer types must
return round_toward_zero . This is meaningful for all floating point
types.

numeric_limits

492 Standard C++ Library Class Reference

static T
signaling_NaN() ;

Returns the representation of a signaling "Not a Number", if available.
This function is meaningful for only those specializations that declare
has_signaling_NaN to be true . This function must be meaningful for any
type claiming conformance to IEC 559.

static const bool
tinyness_before ;

This member is true if tinyness is detected before rounding. It is
meaningful for floating point types only.

static const bool
traps ;

This field is true if trapping is implemented for this type. The traps field
is meaningful for all specializations.

//
// limits.cpp
//
 #include <limits>

 int main()
 {
 numeric_limits <float> float_info;
 if (float_info.is_specialized && float_info.has_infinity)
 {
 // get value of infinity
 float finfinity=float_info.infinity();
 }
 return 0;
 }

The specializations for wide chars and bool will only be available if your
compiler has implemented them as real types and not simulated them with
typedefs.

IEEE Standard for Binary Floating-Point Arithmetic, 345 East 47th Street,
New York, NY 10017

Language Independent Arithmetic (LIA-1)

Example

Warning

See Also

Standard C++ Library Class Reference 493

operator!=, operator>, operator<=, operator>=

Utility Operators

Operators for the C++ Standard Template Library

#include <utility>

template <class T>
bool operator!= (const T&, const T&);

template <class T>
 bool operator> (const T&, const T&);

template <class T>
 bool operator<= (const T&, const T&);

template <class T>
 bool operator>= (const T&, const T&);

To avoid redundant definitions of operator!= out of operator== and of
operators > , <=, and >= out of operator< , the library provides these
definitions:

 operator!= returns !(x==y),
 operator> returns y<x,
 operator<= returns !(y<x), and
 operator>= returns !(x<y).

Summary

Synopsis

Description

Standard C++ Library Class Reference 495

ostream_iterator

Iterator

Stream iterators provide iterator capabilities for ostreams and istreams.
They allow generic algorithms to be used directly on streams.

#include <iterator>

template <class T>
class ostream_iterator : public output_iterator;

Stream iterators provide the standard iterator interface for input and output
streams.

The class ostream_iterator writes elements to an output stream. If you use
the constructor that has a second, char * argument, then that string will be
written after every element . (The string must be null-terminated.) Since an
ostream iterator is an output iterator, it is not possible to get an element out
of the iterator. You can only assign to it.

template <class T>
 class ostream_iterator : public output_iterator
{
 public:
 ostream_iterator(ostream&);
 ostream_iterator (ostream&, const char*);
 ostream_iterator (const ostream_iterator<T>&);
 ~ostream_itertor ();

 ostream_iterator<T>& operator=(const T&);
 ostream_iterator<T>& operator* () const;
 ostream_iterator<T>& operator++ ();
 ostream_iterator<T> operator++ (int);
 };

ostream_iterator (ostream& s);

Construct an ostream_iterator on the given stream.

ostream_iterator (ostream& s, const char* delimiter);

Construct an ostream_iterator on the given stream. The null terminated
string delimitor is written to the stream after every element.

ostream_iterator (const ostream_iterator<T>& x);
 Copy constructor.

~ostream_iterator ();
 Destructor

Summary

Synopsis

Description

Interface

Constructors

Destructor

ostream_iterator

496 Standard C++ Library Class Reference

const T&
operator= (const T& value);

 Shift the value T onto the output stream.

const T& ostream_iterator<T>&
operator* ();

ostream_iterator<T>&
operator++ ();

ostream_iterator<T>
operator++ (int);

These operators all do nothing. They simply allow the iterator to be used
in common constructs.

 #include <iterator>
 #include <numeric>
 #include <deque>
 #include <iostream.h>

 int main ()
 {
 //
 // Initialize a vector using an array.
 //
 int arr[4] = { 3,4,7,8 };
 int total=0;
 deque<int> d(arr+0, arr+4);
 //
 // stream the whole vector and a sum to cout
 //
 copy(d.begin(),d.end()-1, ostream_iterator <int>(cout," + "));
 cout << *(d.end()-1) << " = " <<
 accumulate(d.begin(),d.end(),total) << endl;
 return 0;
 }

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

deque<int, allocator>

instead of :

deque<int>

istream_iterator, iterators

Operators

Example

Warning

See Also

Standard C++ Library Class Reference 497

output iterator

Iterator

A write-only, forward moving iterator.

For a complete discussion of iterators, see the Iterators section of this
reference.

Iterators are a generalization of pointers that allow a C++ program to
uniformly interact with different data structures. Output iterators are write-
only, forward moving iterators that satisfy the requirements listed below.
Note that unlike other iterators used with the standard library, output
iterators cannot be constant.

Key to Iterator Requirements

The following key pertains to the iterator requirements listed below:

a and b values of type X
n value of distance type
u, Distance, tmp and m identifiers
r value of type X&

t value of type T

Requirements for Output Iterators

The following expressions must be valid for output iterators:

X(a) copy constructor, a == X(a) .

X u(a) copy constructor, u == a

X u = a assignment, u == a

*a = t result is not used

++r returns X&

r++ return value convertable to const X&

*r++ = t result is not used

Summary

Description

output iterator

498 Standard C++ Library Class Reference

The only valid use for the operator * is on the left hand side of the
assignment statement.

Algorithms using output iterators should be single pass algorithms. That is,
they should not pass through the same iterator twice.

Iterators, Input IteratorsSee Also

Standard C++ Library Class Reference 499

pair

Utility Class

A template for heterogenous pairs of values.

#include <utility>

template <class T1, class T2>
struct pair ;

The pair class provides a template for encapsulating pairs of values that may
be of different types.

template <class T1, class T2>
 struct pair {
 T1 first;
 T2 second;
 pair();
 pair (const T1&, const T2&);
 ~pair();
};

template <class T1, class T2>
 bool operator== (const pair<T1, T2>&,
 const pair T1, T2>&);

template <class T1, class T2>
 bool operator< (const pair<T1, T2>&,
 const pair T1, T2>&);

template <class T1, class T2>
 pair<T1,T2> make_pair (const T1&, const T2&);

pair ();
Default contructor. Initializes first and second using their default
constructors.

pair (const T1& x, const T2& y);
The constructor creates a pair of types T1 and T2, making the necessary
conversions in x and y .

~pair ();
Destructor.

Summary

Synopsis

Description

Interface

Constructors
and

Destructors

pair

500 Standard C++ Library Class Reference

template <class T1, class T2>
 bool operator== (const pair<T1, T2>& x,
 const pair T1, T2>& y);

Returns true if (x.first == y.first && x.second == y.second) is
true . Otherwise it returns false .

template <class T1, class T2>
bool operator< (const pair<T1, T2>& x,
 const pair T1, T2>& y);

Returns true if (x.first < y.first || (!(y.first < x.first) &&

x.second < y.second)) is true . Otherwise it returns false .

template <class T1, class T2>
pair<T1,T2>
make_pair (x,y);

make_pair(x,y) creates a pair by deducing and returning the types of x
and y .

Non-member
Operators

Non-member
Functions

Standard C++ Library Class Reference 501

partial_sort

Algorithm

Templated algorithm for sorting collections of entities.

#include <algorithm>

template <class RandomAccessIterator>
 void partial_sort (RandomAccessIterator first,
 RandomAccessIterator middle,
 RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
 void partial_sort (RandomAccessIterator first,
 RandomAccessIterator middle,
 RandomAccessIterator last, Compare comp);

The partial_sort algorithm takes the range [first,last) and places the
first middle - first values into sorted order. The result is that the range
[first, middle) is sorted like it would be if the entire range [first,last)

were sorted. The remaining elements in the range (those in [middle,

last)) are not in any defined order. The first version of the algorithm uses
less than (operator<) as the comparison operator for the sort. The second
version uses the comparision function comp.

partial_sort does approximately (last - first) * log(middle-first)

comparisons.

//
// partsort.cpp
//
#include <vector>
#include <algorithm>
#include <iostream.h>

int main()
 {
 int d1[20] = {17, 3, 5, -4, 1, 12, -10, -1, 14, 7,
 -6, 8, 15, -11, 2, -2, 18, 4, -3, 0};
 //
 // Set up a vector.
 //
 vector<int> v1(d1+0, d1+20);
 //
 // Output original vector.
 //
 cout << "For the vector: ";
 copy(v1.begin(), v1.end(), ostream_iterator<int>(cout," "));
 //

Summary

Synopsis

Description

Complexity

Example

partial_sort

502 Standard C++ Library Class Reference

 // Partial sort the first seven elements.
 //
 partial_sort (v1.begin(), v1.begin()+7, v1.end());
 //
 // Output result.
 //
 cout << endl << endl << "A partial_sort of seven elements
 gives: "
 << endl << " ";
 copy(v1.begin(), v1.end(), ostream_iterator<int>(cout," "));
 cout << endl;
 //
 // A vector of ten elements.
 //
 vector<int> v2(10, 0);
 //
 // Sort the last ten elements in v1 into v2.
 //
 partial_sort_copy(v1.begin()+10, v1.end(), v2.begin(),
 v2.end());
 //
 // Output result.
 //
 cout << endl << "A partial_sort_copy of the last ten elements
 gives: "
 << endl << " ";
 copy(v2.begin(), v2.end(), ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Output :
For the vector: 17 3 5 -4 1 12 -10 -1 14 7 -6 8 15 -11 2 -2 18 4 -
3 0
A partial_sort of seven elements gives:
 -11 -10 -6 -4 -3 -2 -1 17 14 12 7 8 15 5 3 2 18 4 1 0
A partial_sort_copy of the last ten elements gives:
 0 1 2 3 4 5 7 8 15 18

If your compiler does not support default template parameters, then you
need to always provide the Allocator template argument. For instance,
you will need to write :

vector<int, allocator>

instead of :

vector<int>

sort, stable_sort, partial_sort_copy

Warning

See Also

Standard C++ Library Class Reference 503

partial_sort_copy

Algorithm

Templated algorithm for sorting collections of entities.

#include <algorithm>

template <class InputIterator,
 class RandomAccessIterator>
 void partial_sort_copy (InputIterator first,
 InputIterator last,
 RandomAccessIterator result_first,
 RandomAccessIterator result_last);

template <class InputIterator,
 class RandomAccessIterator,
 class Compare>
 void partial_sort_copy (InputIterator first,
 InputIterator last,
 RandomAccessIterator result_first,
 RandomAccessIterator result_last,
 Compare comp);

The partial_sort_copy algorithm places the smaller of last - first and
result_last - result_first sorted elements from the range [first,

last) into the range beginning at result_first . (i.e., the range:
[result_first, result_first+min(last - first, result_last -
result_first)) . Basically, the effect is as if the range [first,last) were
placed in a temporary buffer, sorted and then as many elements as possible
were coppied into the range [result_first, result_last) .

The first version of the algorithm uses less than (operator<) as the
comparison operator for the sort. The second version uses the comparision
function comp.

partial_sort_copy does approximately (last-first) * log(min(last-

first, result_last-result_first)) comparisons.

//
// partsort.cpp
// #include <vector>
 #include <algorithm>
 #include <iostream.h>

 int main()
 {
 int d1[20] = {17, 3, 5, -4, 1, 12, -10, -1, 14, 7,
 -6, 8, 15, -11, 2, -2, 18, 4, -3, 0};
 //
 // Set up a vector.
 //

Summary

Synopsis

Description

Complexity

Example

partial_sort_copy

504 Standard C++ Library Class Reference

 vector<int> v1(d1+0, d1+20);
 //
 // Output original vector.
 //
 cout << "For the vector: ";
 copy(v1.begin(), v1.end(), ostream_iterator<int>(cout," "));
 //
 // Partial sort the first seven elements.
 //
 partial_sort(v1.begin(), v1.begin()+7, v1.end());
 //
 // Output result.
 //
 cout << endl << endl << "A partial_sort of 7 elements gives: "
 << endl << " ";
 copy(v1.begin(), v1.end(), ostream_iterator<int>(cout," "));
 cout << endl;
 //
 // A vector of ten elements.
 //
 vector<int> v2(10, 0);
 //
 // Sort the last ten elements in v1 into v2.
 //
 partial_sort_copy (v1.begin()+10, v1.end(), v2.begin(),
 v2.end());
 //
 // Output result.
 //
 cout << endl << "A partial_sort_copy of the last ten elements
 gives: " << endl << " ";
 copy(v2.begin(), v2.end(), ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Output :
For the vector: 17 3 5 -4 1 12 -10 -1 14 7 -6 8 15 -11 2 -2 18 4 -
3 0
A partial_sort of seven elements gives:
 -11 -10 -6 -4 -3 -2 -1 17 14 12 7 8 15 5 3 2 18 4 1 0
A partial_sort_copy of the last ten elements gives:
 0 1 2 3 4 5 7 8 15 18

If your compiler does not support default template parameters, then you
need to always provide the Allocator template argument. For instance,
you will need to write :

vector<int, allocator>

instead of :

vector<int>

sort¸ stable_sort, partial_sort

Warning

See Also

Standard C++ Library Class Reference 505

partial_sum

Generalized Numeric Operation

Calculates successive partial sums of a range of values.

#include <numeric>

template <class InputIterator, class OutputIterator>
OutputIterator partial_sum (InputIterator first,
 InputIterator last,
 OutputIterator result);

template <class InputIterator,
 class OutputIterator,
 class BinaryOperation>
OutputIterator partial_sum (InputIterator first,
 InputIterator last,
 OutputIterator result,
 BinaryOperation binary_op);

The partial_sum algorithm creates a new sequence in which every element
is formed by adding all the values of the previous elements, or, in the second
form of the algorithm, applying the operation binary_op successively on
every previous element. That is, partial_sum assigns to every iterator i in
the range [result, result + (last - first)) a value equal to:

((...(*first + *(first + 1)) + ...) + *(first + (i - result)))

 or, in the second version of the algorithm:

binary_op(binary_op(..., binary_op (*first, *(first +
1)),...),*(first + (i - result)))

For instance, applying partial_sum to (1,2,3,4,) will yield (1,3,6,10).

The partial_sum algorithm returns result + (last - first) .

If result is equal to first , the elements of the new sequence successively
replace the elements in the original sequence, effectively turning
partial_sum into an inplace transformation.

Exactly (last - first) - 1 applications of the default + operator or
binary_op are performed.

//
// partsum.cpp
//
 #include <numeric> //for accumulate
 #include <vector> //for vector

Summary

Synopsis

Description

Complexity

Example

partial_sum

506 Standard C++ Library Class Reference

 #include <functional> //for times
 #include <iostream.h>

 int main()
 {
 //Initialize a vector using an array of ints
 int d1[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(d1, d1+10);

 //Create an empty vectors to store results
 vector<int> sums((size_t)10), prods((size_t)10);

 //Compute partial_sums and partial_products
 partial_sum (v.begin(), v.end(), sums.begin());
 partial_sum (v.begin(), v.end(), prods.begin(), times<int>());

 //Output the results
 cout << "For the series: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 cout << "The partial sums: " << endl << " " ;
 copy(sums.begin(),sums.end(),
 ostream_iterator<int>(cout," "));
 cout <<" should each equal (N*N + N)/2" << endl << endl;

 cout << "The partial products: " << endl << " ";
 copy(prods.begin(),prods.end(),
 ostream_iterator<int>(cout," "));
 cout << " should each equal N!" << endl;

 return 0;
 }

Output :
For the series:
 1 2 3 4 5 6 7 8 9 10

The partial sums:
 1 3 6 10 15 21 28 36 45 55 should each equal (N*N + N)/2
The partial products:
 1 2 6 24 120 720 5040 40320 362880 3628800 should each equal N!

If your compiler does not support default template parameters, then you
need to always provide the Allocator template argument. For instance,
you will need to write :

vector<int, allocator>

instead of :

vector<int>

Warning

Standard C++ Library Class Reference 507

partition

Algorithm

Places all of the entities that satisfy the given predicate before all of the
entities that do not.

#include <algorithm>

template <class BidirectionalIterator, class Predicate>
BidirectionalIterator
partition (BidirectionalIterator first,
 BidirectionalIterator last,
 Predicate pred);

The partition algorithm places all the elements in the range [first, last)

that satisfy pred before all the elements that do not satisfy pred . It returns
an iterator that is one past the end of the group of elements that satisfy pred .
In other words, partition returns i such that for any iterator j in the
range[first, i) , pred(*j) == true , and, for any iterator k in the range
[i, last) , pred(*j) == false .

Note that partition does not necessarily maintain the relative order of the
elements that match and elements that do not match the predicate. Use the
algorithm stable_partition if relative order is important.

The partition algorithm does at most (last - first)/2 swaps, and
applies the predicate exactly last - first times.

//
// prtition.cpp
//
 #include <functional>
 #include <deque>
 #include <algorithm>
 #include <iostream.h>

 //
 // Create a new predicate from unary_function.
 //
 template<class Arg>
 class is_even : public unary_function<Arg, bool>
 {
 public:
 bool operator()(const Arg& arg1) { return (arg1 % 2) == 0; }
 };

 int main ()
 {

Summary

Synopsis

Description

Complexity

Example

partition

508 Standard C++ Library Class Reference

 //
 // Initialize a deque with an array of integers.
 //
 int init[10] = { 1,2,3,4,5,6,7,8,9,10 };
 deque<int> d1(init+0, init+10);
 deque<int> d2(init+0, init+10);
 //
 // Print out the original values.
 //
 cout << "Unpartitioned values: " << "\t\t";
 copy(d1.begin(), d1.end(), ostream_iterator<int>(cout," "));
 cout << endl;
 //
 // A partition of the deque according to even/oddness.
 //
 partition (d2.begin(), d2.end(), is_even<int>());
 //
 // Output result of partition.
 //
 cout << "Partitioned values: " << "\t\t";
 copy(d2.begin(), d2.end(), ostream_iterator<int>(cout," "));
 cout << endl;
 //
 // A stable partition of the deque according to even/oddness.
 //
 stable_partition(d1.begin(), d1.end(), is_even<int>());
 //
 // Output result of partition.
 //
 cout << "Stable partitioned values: " << "\t";
 copy(d1.begin(), d1.end(), ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Output :
Unpartitioned values: 1 2 3 4 5 6 7 8 9 10
Partitioned values: 10 2 8 4 6 5 7 3 9 1
Stable partitioned values: 2 4 6 8 10 1 3 5 7 9

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
need to write :

deque<int, allocator>

instead of :

deque<int>

stable_partition

Warning

See Also

Standard C++ Library Class Reference 509

permutation

Algorithm

Generate successive permutations of a sequence based on an ordering
function.

See the entries for next_permutation and prev_permutation.

Summary

Standard C++ Library Class Reference 511

plus

Function Object

A binary function object that returns the result of adding its first and second
arguments.

#include <functional>

 template<class T>
 struct plus : public binary_function<T, T, T> ;

plus is a binary function object. Its operator() returns the result of adding
x and y . You can pass a plus object to any algorithm that uses a binary
function. For example, the transform algorithm applies a binary operation
to corresponding values in two collections and stores the result. plus would
be used in that algorithm in the following manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(),
 vecResult.begin(), plus<int>());

After this call to transform, vecResult(n) will contain vec1(n) plus
vec2(n) .

template<class T>
struct plus : binary_function<T, T, T> {
 typedef typename binary_function<T, T, T>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, T>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, T>::result_type result_type;
 T operator() (const T&, const T&) const;
};

If your compiler does not support default template parameters, you need to
always supply the Allocator template argument. For instance, you will
need to write :

vector<int, allocator>

instead of :

vector<int>

Summary

Synopsis

Description

Interface

Warning

plus

512 Standard C++ Library Class Reference

binary_function, function objectsSee Also

Standard C++ Library Class Reference 513

pointer_to_binary-function

Function Object

A function object which adapts a pointer to a binary function to work where
a binary_function is called for.

#include <functional>

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2,
 Result> ;

The pointer_to_binary_function class encapsulates a pointer to a two-
argument function. The class provides an operator() so that the resulting
object serves as a binary function object for that function.

The ptr_fun function is overloaded to create instances of a
pointer_to_binary_function when provided with the appropriate pointer to
a function.

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2,
 Result> {
 public:
 typedef typename binary_function<Arg1, Arg2,
 Result>::second_argument_type
 second_argument_type;
 typedef typename binary_function<Arg1, Arg2,
 Result>::first_argument_type
 first_argument_type;
 typedef typename binary_function<Arg1, Arg2, Result>::result_type
 result_type;
 explicit pointer_to_binary_function (Result (*f)(Arg1, Arg2));
 Result operator() (const Arg1&, const Arg2&) const;
};

template<class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1, Arg2, Result>
 ptr_fun (Result (*x)(Arg1, Arg2));

binary_function, function_objects, pointer_to_unary_function, ptr_fun

Summary

Synopsis

Description

Interface

See Also

Standard C++ Library Class Reference 515

pointer_to_unary_function

Function Object

A function object class that adapts a pointer to a function to work where a
unary_function is called for.

#include <functional>

template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result>;

The pointer_to_unary_function class encapsulates a pointer to a single-
argument function. The class provides an operator() so that the resulting
object serves as a function object for that function.

The ptr_fun function is overloaded to create instances of
pointer_to_unary_function when provided with the appropriate pointer to
a function.

template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result>
{

 public:
 typedef typename unary_function<Arg,Result>::argument_type
 argument_type;
 typedef typename unary_function<Arg,Result>::result_type
 result_type;
 explicit pointer_to_unary_function (Result (*f)(Arg));
 Result operator() (const Arg&) const;
};

template<class Arg, class Result>
pointer_to_unary_function<Arg, Result>
 ptr_fun (Result (*f)(Arg));

function_objects, pointer_to_binary_function, ptr_fun, unary_function

Summary

Synopsis

Description

Interface

See Also

Standard C++ Library Class Reference 517

pop_heap

Algorithms

Moves the largest element off the heap.

template <class RandomAccessIterator>
 void
 pop_heap (RandomAccessIterator first,
 RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
 void
 pop_heap (RandomAccessIterator first,
 RandomAccessIterator last, Compare comp);

A heap is a particular organization of elements in a range between two
random access iterators [a, b) . Its two key properties are:

1. *a is the largest element in the range.

2. *a may be removed by the pop_heap algorithm or a new element
added by the push_heap algorithm, in O(logN) time.

These properties make heaps useful as priority queues.

The pop_heap algorithm uses the less than (<) operator as the default
comparison. An alternate comparison operator can be specified.

The pop_heap algorithm can be used as part of an operation to remove the
largest element from a heap. It assumes that the range [first, last) is a
valid heap (i.e., that first is the largest element in the heap or the first
element based on the alternate comparison operator). It then swaps the
value in the location first with the value in the location last - 1 and
makes [first, last -1) back into a heap. You can then access the
element in last using the vector or deque back() member function, or
remove the element using the pop_back member function. Note that
pop_heap does not actually remove the element from the data structure,
you must use another function to do that.

pop_heap performs at most 2 * log(last - first) comparisons.

//
// heap_ops.cpp
//
 #include <algorithm>

Summary

Synopsis

Description

Complexity

Example

pop_heap

518 Standard C++ Library Class Reference

 #include <vector>
 #include <iostream.h>

 int main(void)
 {
 int d1[4] = {1,2,3,4};
 int d2[4] = {1,3,2,4};

 // Set up two vectors
 vector<int> v1(d1,d1 + 4), v2(d2,d2 + 4);

 // Make heaps
 make_heap(v1.begin(),v1.end());
 make_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (4,x,y,z) and v2 = (4,x,y,z)
 // Note that x, y and z represent the remaining
 // values in the container (other than 4).
 // The definition of the heap and heap operations
 // does not require any particular ordering
 // of these values.

 // Copy both vectors to cout
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // Now let's pop
 pop_heap (v1.begin(),v1.end());
 pop_heap (v2.begin(),v2.end(),less<int>());
 // v1 = (3,x,y,4) and v2 = (3,x,y,4)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // And push
 push_heap(v1.begin(),v1.end());
 push_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (4,x,y,z) and v2 = (4,x,y,z)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // Now sort those heaps
 sort_heap(v1.begin(),v1.end());
 sort_heap(v2.begin(),v2.end(),less<int>());
 // v1 = v2 = (1,2,3,4)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;

pop_heap

Standard C++ Library Class Reference 519

 copy(v2.begin(),v2.end(),out);
 cout << endl;

 return 0;
 }

Output :
4 2 3 1
4 3 2 1
3 2 1 4
3 1 2 4
4 3 1 2
4 3 2 1
1 2 3 4
1 2 3 4

If your compiler does not support default template parameters, you need to
always supply the Allocator template argument. For instance, you need to
write :

vector<int, allocator>

instead of :

vector<int>

make_heap, push_heap, sort_heap

Warning

See Also

Standard C++ Library Class Reference 521

predicate

A function or a function object that returns a boolean (true/false) value or an
integer value.

Summary

Standard C++ Library Class Reference 523

prev_permutation

Algorithm

Generate successive permutations of a sequence based on an ordering
function.

#include <algorithm>

template <class BidirectionalIterator>
bool prev_permutation (BidirectionalIterator first,
 BidirectionalIterator last);

template <class BidirectionalIterator, class Compare>
bool prev_permutation (BidirectionalIterator first,
 BidirectionalIterator last, Compare comp);

The permutation-generating algorithms (next_permutation and
prev_permutation) assume that the set of all permutions of the elements in
a sequence is lexicographically sorted with respect to operator< or comp.
So, for example, if a sequence includes the integers 1 2 3, that sequence has
six permutations, which, in order from first to last, are: 1 2 3 , 1 3 2, 2 1 3,
2 3 1, 3 1 2, and 3 2 1.

The prev_permutation algorithm takes a sequence defined by the range
[first, last) and transforms it into its previous permutation, if possible.
If such a permutation does exist, the algorithm completes the transformation
and returns true . If the permutation does not exist, prev_permutation
returns false , and transforms the permutation into its "last" permutation
(according to the lexicographical ordering defined by either operator < , the
default used in the first version of the algorithm,or comp, which is user-
supplied in the second version of the algorithm.)

For example, if the sequence defined by [first, last) contains the
integers 1 2 3 (in that order), there is not a "previous permutation."
Therefore, the algorithm transforms the sequence into its last permutation
(3 2 1) and returns false .

At most (last - first)/2 swaps are performed.

//
// permute.cpp
//
 #include <numeric> //for accumulate
 #include <vector> //for vector
 #include <functional> //for less
 #include <iostream.h>

Summary

Synopsis

Description

Complexity

Example

prev_permutation

524 Standard C++ Library Class Reference

 int main()
 {
 //Initialize a vector using an array of ints
 int a1[] = {0,0,0,0,1,0,0,0,0,0};
 char a2[] = "abcdefghji";

 //Create the initial set and copies for permuting
 vector<int> m1(a1, a1+10);
 vector<int> prev_m1((size_t)10), next_m1((size_t)10);
 vector<char> m2(a2, a2+10);
 vector<char> prev_m2((size_t)10), next_m2((size_t)10);

 copy(m1.begin(), m1.end(), prev_m1.begin());
 copy(m1.begin(), m1.end(), next_m1.begin());
 copy(m2.begin(), m2.end(), prev_m2.begin());
 copy(m2.begin(), m2.end(), next_m2.begin());

 //Create permutations
 prev_permutation (prev_m1.begin(),
 prev_m1.end(),less<int>());
 next_permutation(next_m1.begin(),
 next_m1.end(),less<int>());
 prev_permutation (prev_m2.begin(),
 prev_m2.end(),less<int>());
 next_permutation(next_m2.begin(),
 next_m2.end(),less<int>());

 //Output results
 cout << "Example 1: " << endl << " ";
 cout << "Original values: ";
 copy(m1.begin(),m1.end(),
 ostream_iterator<int>(cout," "));
 cout << endl << " ";
 cout << "Previous permutation: ";
 copy(prev_m1.begin(),prev_m1.end(),
 ostream_iterator<int>(cout," "));

 cout << endl<< " ";
 cout << "Next Permutation: ";
 copy(next_m1.begin(),next_m1.end(),
 ostream_iterator<int>(cout," "));
 cout << endl << endl;

 cout << "Example 2: " << endl << " ";
 cout << "Original values: ";
 copy(m2.begin(),m2.end(),
 ostream_iterator<char>(cout," "));
 cout << endl << " ";
 cout << "Previous Permutation: ";
 copy(prev_m2.begin(),prev_m2.end(),
 ostream_iterator<char>(cout," "));
 cout << endl << " ";

 cout << "Next Permutation: ";
 copy(next_m2.begin(),next_m2.end(),
 ostream_iterator<char>(cout," "));
 cout << endl << endl;

prev_permutation

Standard C++ Library Class Reference 525

 return 0;
 }

Output :
Example 1:
 Original values: 0 0 0 0 1 0 0 0 0 0
 Previous permutation: 0 0 0 0 0 1 0 0 0 0
 Next Permutation: 0 0 0 1 0 0 0 0 0 0
Example 2:
 Original values: a b c d e f g h j i
 Previous Permutation: a b c d e f g h i j
 Next Permutation: a b c d e f g i h j

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

next_permutation

Warning

See Also

Standard C++ Library Class Reference 527

priority_queue

Container Adaptor

A container adapter which behaves like a priority queue. Items are popped
from the queue are in order with respect to a "priority."

#include <queue>

template <class T,
 class Container = vector<T>,
 class Compare = less<Container::value_type>,
 class Allocator = allocator>
class priority_queue ;

priority_queue is a container adaptor which allows a container to act as a
priority queue. This means that the item with the highest priority, as
determined by either the default comparison operator (operator <) or the
comparison Compare , is brought to the front of the queue whenever anything
is pushed onto or popped off the queue.

priority_queue adapts any container that provides front() , push_back()

and pop_back() . In particular, deque, list, and vector can be used.

template <class T,
 class Container = vector<T>,
 class Compare = less<typename Container::value_type>,
 class Allocator = allocator>
 class priority_queue {

public:

// typedefs

 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Allocator allocator_type;

// Construct

 explicit priority_queue (const Compare& = Compare(),
 const Allocator&=Allocator());
 template <class InputIterator>
 priority_queue (InputIterator first,
 InputIterator last,
 const Compare& = Compare(),
 const Allocator& = Allocator());
 allocator_type get_allocator() const;
 bool empty () const;
 size_type size () const;
 const value_type& top () const;
 void push (const value_type&);
 void pop();
};

Summary

Synopsis

Description

Interface

priority_queue

528 Standard C++ Library Class Reference

explicit priority_queue (const Compare& x = Compare(),
 const Allocator& alloc = Allocator());

Default constructor. Constructs a priority queue that uses Container for
its underlying implementation, x as its standard for determining priority,
and the allocator alloc for all storage management.

template <class InputIterator>
priority_queue (InputIterator first, InputIterator last,
 const Compare& x = Compare(),
 const Allocator& alloc = Allocator());

Constructs a new priority queue and places into it every entity in the range
[first, last) . The priority_queue will use x for determining the
priority, and the allocator alloc for all storage management.

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

bool
empty () const;

Returns true if the priority_queue is empty, fal se otherwise.

void
pop ();

Removes the item with the highest priority from the queue.

void
push (const value_type& x);

Adds x to the queue.

size_type
size () const;

Returns the number of elements in the priority_queue.

const value_type&
top () const;

Returns a constant reference to the element in the queue with the highest
priority.

//
// p_queue.cpp
//
 #include <queue>
 #include <deque>
 #include <vector>
 #include <string>
 #include <iostream.h>

 int main(void)
 {
 // Make a priority queue of int using a vector container

Constructors

Allocator

Member
Functions

Example

priority_queue

Standard C++ Library Class Reference 529

 priority_queue <int, vector<int>, less<int>, allocator> pq;

 // Push a couple of values
 pq.push(1);
 pq.push(2);

 // Pop a couple of values and examine the ends
 cout << pq.top() << endl;
 pq.pop();
 cout << pq.top() << endl;
 pq.pop();

 // Make a priority queue of strings using a deque container
 priority_queue <string, deque<string>, less<string>, allocator>
 pqs;

 // Push on a few strings then pop them back off
 int i;
 for (i = 0; i < 10; i++)
 {
 pqs.push(string(i+1,'a'));
 cout << pqs.top() << endl;
 }
 for (i = 0; i < 10; i++)
 {
 cout << pqs.top() << endl;
 pqs.pop();
 }

 // Make a priority queue of strings using a deque
 // container, and greater as the compare operation
 priority_queue<string,deque<string>, greater<string>,
 allocator> pgqs;

 // Push on a few strings then pop them back off
 for (i = 0; i < 10; i++)
 {
 pgqs.push(string(i+1,'a'));
 cout << pgqs.top() << endl;
 }

 for (i = 0; i < 10; i++)
 {
 cout << pgqs.top() << endl;
 pgqs.pop();
 }

 return 0;
 }

Output :
2
1
a
aa
aaa
aaaa
aaaaa

priority_queue

530 Standard C++ Library Class Reference

aaaaaa
aaaaaaa
aaaaaaaa
aaaaaaaaa
aaaaaaaaaa
aaaaaaaaa
aaaaaaaa
aaaaaaa
aaaaaa
aaaaa
aaaa
aaa
aa
a
a
a
a
a
a
a
a
a
a
a
a
aa
aaa
aaaa
aaaaa
aaaaaa
aaaaaaa
aaaaaaaa
aaaaaaaaa
aaaaaaaaaa

If your compiler does not support default template parameters, you must
always provide a Container template parameter, a Compare template
parameter, and an Allocator template parameter when declaring an
instance of priority_queue. For example, you would not be able to write,

priority_queue<int> var;

Instead, you would have to write,

priority_queue<int, vector<int>,
 less<typename vector<int>::value_type, allocator> var;

Containers, queue

Warning

See Also

Standard C++ Library Class Reference 531

ptr_fun

Function Adaptor

A function that is overloaded to adapt a pointer to a function to work where a
function is called for.

#include <functional>

template<class Arg, class Result>
pointer_to_unary_function<Arg, Result>
 ptr_fun (Result (*f)(Arg));

template<class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1, Arg2, Result>
 ptr_fun (Result (*x)(Arg1, Arg2));

The pointer_to_unary_function and pointer_to_binary_function classes
encapsulate pointers to functions and provide an operator() so that the
resulting object serves as a function object for the function.

The ptr_fun function is overloaded to create instances of
pointer_to_unary_function or pointer_to_binary_function when provided
with the appropriate pointer to a function.

//
// pnt2fnct.cpp
//
 #include <functional>
 #include <deque>
 #include <vector>
 #include <algorithm>
 #include <iostream.h>

 //Create a function
 int factorial(int x)
 {
 int result = 1;
 for(int i = 2; i <= x; i++)
 result *= i;
 return result;
 }

 int main()
 {
 //Initialize a deque with an array of ints
 int init[7] = {1,2,3,4,5,6,7};
 deque<int> d(init, init+7);

 //Create an empty vector to store the factorials
 vector<int> v((size_t)7);

 //Transform the numbers in the deque to their factorials and

Summary

Synopsis

Description

Example

ptr_fun

532 Standard C++ Library Class Reference

 //store in the vector
 transform(d.begin(), d.end(), v.begin(), ptr_fun (factorial));

 //Print the results
 cout << "The following numbers: " << endl << " ";
 copy(d.begin(),d.end(),ostream_iterator<int>(cout," "));

 cout << endl << endl;
 cout << "Have the factorials: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));

 return 0;
 }

Output :
The following numbers:
 1 2 3 4 5 6 7
Have the factorials:
 1 2 6 24 120 720 5040

If your compiler does not support default template parameters, you need to
always supply the Allocator template argument. For instance, you will
need to write :

vector<int, allocator>

instead of :

vector<int>

function_objects, pointer_to_binary_function,
pointer_to_unary_function

Warning

See Also

Standard C++ Library Class Reference 533

push_heap

Algorithms

Places a new element into a heap.

#include <algorithm>

template <class RandomAccessIterator>
 void
 push_heap (RandomAccessIterator first,
 RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
 void
 push_heap (RandomAccessIterator first,
 RandomAccessIterator last, Compare comp);

A heap is a particular organization of elements in a range between two
random access iterators [a, b) . Its two key properties are:

1. *a is the largest element in the range.

2. *a may be removed by the pop_heap algorithm, or a new element
added by the push_heap algorithm, in O(logN) time.

These properties make heaps useful as priority queues.

The push_heap algorithms uses the less than (<) operator as the default
comparison. As with all of the heap manipulation algorithms, an alternate
comparison function can be specified.

The push_heap algorithm is used to add a new element to the heap. First, a
new element for the heap is added to the end of a range. (For example, you
can use the vector or deque member function push_back() to add the
element to the end of either of those containers.) The push_heap algorithm
assumes that the range [first, last - 1) is a valid heap. It then properly
positions the element in the location last - 1 into its proper position in the
heap, resulting in a heap over the range [first, last) .

Note that the push_heap algorithm does not place an element into the
heap's underlying container. You must user another function to add the
element to the end of the container before applying push_heap.

For push_heap at most log(last - first) comparisons are performed.

Summary

Synopsis

Description

Complexity

push_heap

534 Standard C++ Library Class Reference

//
// heap_ops.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main(void)
 {
 int d1[4] = {1,2,3,4};
 int d2[4] = {1,3,2,4};

 // Set up two vectors
 vector<int> v1(d1,d1 + 4), v2(d2,d2 + 4);

 // Make heaps
 make_heap(v1.begin(),v1.end());
 make_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (4,x,y,z) and v2 = (4,x,y,z)
 // Note that x, y and z represent the remaining
 // values in the container (other than 4).
 // The definition of the heap and heap operations
 // does not require any particular ordering
 // of these values.

 // Copy both vectors to cout
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // Now let's pop
 pop_heap(v1.begin(),v1.end());
 pop_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (3,x,y,4) and v2 = (3,x,y,4)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // And push
 push_heap (v1.begin(),v1.end());
 push_heap (v2.begin(),v2.end(),less<int>());
 // v1 = (4,x,y,z) and v2 = (4,x,y,z)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // Now sort those heaps
 sort_heap(v1.begin(),v1.end());
 sort_heap(v2.begin(),v2.end(),less<int>());
 // v1 = v2 = (1,2,3,4)

Example

push_heap

Standard C++ Library Class Reference 535

// Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 return 0;
 }

Output :
4 2 3 1
4 3 2 1
3 2 1 4
3 1 2 4
4 3 1 2
4 3 2 1
1 2 3 4
1 2 3 4

If your compiler does not support default template parameters, you need to
always supply the Allocator template argument. For instance, you will
need to write :

vector<int, allocator>

instead of :

vector<int>

make_heap, pop_heap, sort_heap

Warning

See Also

Standard C++ Library Class Reference 537

queue

Container Adaptor

A container adaptor that behaves like a queue (first in, first out).

#include <queue>

template <class T, class Container = deque<T>,
 class Allocator = allocator> class queue ;

The queue container adaptor lets a container function as a queue. In a
queue, items are pushed into the back of the container and removed from the
front. The first items pushed into the queue are the first items to be popped
off of the queue (first in, first out, or "FIFO").

queue can adapt any container that supports the front() , back() ,
push_back() and pop_front() operations. In particular, deque, list, and
vector can be used.

template <class T, class Container = deque<T>,
 class Allocator = allocator>
 class queue {

public:

// typedefs

 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Allocator allocator_type;

// Construct/Copy/Destroy
 explicit queue (const Allocator& = Allocator());
 allocator_type get_allocator () const;

// Accessors

 bool empty () const;
 size_type size () const;
 value_type& front ();
 const value_type& front () const;
 value_type& back ();
 const value_type& back () const;
 void push (const value_type&);
 void pop ();
};

// Non-member Operators

template <class T, class Container, class Allocator>

Summary

Synopsis

Description

Interface

queue

538 Standard C++ Library Class Reference

 bool operator== (const queue<T, Container, Allocator>&,
 const queue<T, Container, Allocator>&);

template <class T, class Container, class Allocator>
 bool operator< (const queue<T, Container, Allocator>&,
 const queue<T, Container, Allocator>&);

explicit queue (const Allocator& alloc= Allocator());
Creates a queue of zero elements. The queue will use the allocator alloc

for all storage management.

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

value_type&
back ();

Returns a reference to the item at the back of the queue (the last item
pushed into the queue).

const value_type&
back () const;

Returns a constant reference to the item at the back of the queue as a
const_value_type .

bool
empty () const;

Returns true if the queue is empty, otherwise false .

value_type&
front ();

Returns a reference to the item at the front of the queue. This will be the
first item pushed onto the queue unless pop() has been called since then.

const value_type&
front () const;

Returns a constant reference to the item at the front of the queue as a
const_value_type .

void
pop ();

Removes the item at the front of the queue.

void
push (const value_type& x);

Pushes x onto the back of the queue.

size_type
size () const;

Returns the number of elements on the queue.

Constructors

Allocator

Member
Functions

queue

Standard C++ Library Class Reference 539

template <class T, class Container, class Allocator>
 bool operator== (const queue<T, Container, Allocator>& x,
 const queue<T, Container, Allocator>& y);
 Equality operator. Returns true if x is the same as y .

template <class T, class Container, class Allocator>
 bool operator< (const queue<T, Container, Allocator>& x,
 const queue<T, Container, Allocator>& y);

Returns true if the queue defined by the elements contained in x is
lexicographically less than the queue defined by the elements contained in
y .

//
// queue.cpp
//
 #include <queue>
 #include <string>
 #include <deque>
 #include <list>
 #include <iostream.h>

 int main(void)
 {
 // Make a queue using a list container
 queue <int, list<int>, allocator> q;

 // Push a couple of values on then pop them off
 q.push(1);
 q.push(2);
 cout << q.front() << endl;
 q.pop();
 cout << q.front() << endl;
 q.pop();

 // Make a queue of strings using a deque container
 queue <string,deque<string>, allocator> qs;

 // Push on a few strings then pop them back off
 int i;
 for (i = 0; i < 10; i++)
 {
 qs.push(string(i+1,'a'));
 cout << qs.front() << endl;
 }
 for (i = 0; i < 10; i++)
 {
 cout << qs.front() << endl;
 qs.pop();
 }

 return 0;
 }

Output :
1
2

Non-member
Operators

Example

queue

540 Standard C++ Library Class Reference

a
a
a
a
a
a
a
a
a
a
a
aa
aaa
aaaa
aaaaa
aaaaaa
aaaaaaa
aaaaaaaa
aaaaaaaaa
aaaaaaaaaa

If your compiler does not support default template parameters, you must
always provide a Container template parameter and an Allocator

template parameter. For example you would not be able to write:

queue<int> var;

rather, you would have to write,

queue<int, deque<int>, allocator> var;

allocator, Containers, priority_queue

Warnings

See Also

Standard C++ Library Class Reference 541

random access iterator

Iterator

An iterator that reads and writes, and provides random access to a container.

For a complete discussion of iterators, see the Iterators section of this
reference.

Iterators are a generalization of pointers that allow a C++ program to
uniformly interact with different data structures. Random access iterators
can read and write, and provide random access to the containers they serve.
These iterators satisfy the requirements listed below.

Key to Iterator Requirements

The following key pertains to the iterator requirements listed below:

a and b values of type X
n value of distance type
u, Distance, tmp and m identifiers
r value of type X&

t value of type T

Requirements for Random Access Iterators

The following expressions must be valid for random access iterators:

X u u might have a singular value

X() X() might be singular

X(a) copy constructor, a == X(a) .

X u(a) copy constructor, u == a

X u = a assignment, u == a

a == b, a != b return value convertable to bool

*a return value convertable to T&

Summary

Description

random access iterator

542 Standard C++ Library Class Reference

a->m equivalent to (*a).m

++r returns X&

r++ return value convertable to const X&

*r++ returns T&

--r returns X&

r-- return value convertable to const X&

*r-- returns T&

r += n Semantics of --r or ++r n times
depending on the sign of n

a + n, n + a returns type X

r -= n returns X&, behaves as r += -n

a - n returns type X

b - a returns Distance

a[n] *(a+n) , return value convertable to T

a < b total ordering relation

a > b total ordering relation opposite to <

a <= b !(a < b)

a >= b !(a > b)

Like forward iterators, random access iterators have the condition that
a == b implies *a == *b .

There are no restrictions on the number of passes an algorithm may make
through the structure.

All relational operators return a value convertable to bool .

Iterators, Forward Iterators, Bidirectional IteratorsSee Also

Standard C++ Library Class Reference 543

random_shuffle

Algorithm

Randomly shuffles elements of a collection.

#include <algorithm>

template <class RandomAccessIterator>
 void random_shuffle (RandomAccessIterator first,
 RandomAccessIterator last);

template <class RandomAccessIterator,
 class RandomNumberGenerator>
 void random_shuffle (RandomAccessIterator first,
 RandomAccessIterator last,
 RandomNumberGenerator& rand);

The random_shuffle algorithm shuffles the elements in the range [first,

last) with uniform distribution. random_shuffle can take a particular
random number generating function object rand , where rand takes a
positive argument n of distance type of the RandomAccessIterator and
returns a randomly chosen value between 0 and n - 1 .

In the random_shuffle algorithm, (last - first) -1 swaps are done.

//
// rndshufl.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 //Initialize a vector with an array of ints
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr, arr+10);

 //Print out elements in original (sorted) order
 cout << "Elements before random_shuffle: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 //Mix them up with random_shuffle
 random_shuffle (v.begin(), v.end());

 //Print out the mixed up elements
 cout << "Elements after random_shuffle: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl;

Summary

Synopsis

Description

Complexity

Example

random_shuffle

544 Standard C++ Library Class Reference

 return 0;
 }

Output :
Elements before random_shuffle:
 1 2 3 4 5 6 7 8 9 10
Elements after random_shuffle:
 7 9 10 3 2 5 4 8 1 6

If your compiler does not support default template parameters, you need to
always supply the Allocator template argument. For instance, you will
need to write :

vector<int, allocator>

instead of :

vector<int>

Warning

Standard C++ Library Class Reference 545

raw_storage_iterator

Memory Management

Enables iterator-based algorithms to store results into uninitialized memory.

#include <memory>

template <class OutputIterator, class T>
 class raw_storage_iterator : public output_iterator {

public:
 explicit raw_storage_iterator (OutputIterator);
 raw_storage_iterator<OutputIterator, t>& operator*();
 raw_storage_iterator<OutputIterator, T>&
 operator= (const T&);
 raw_storage_iterator<OutputIterator>& operator++();
 raw_storage_iterator<OutputIterator> operator++ (int);
};

Class raw_storage_iterator enables iterator-based algorithms to store their
results in uninitialized memory. The template parameter, OutputIterator

is required to have its operator* return an object for which operator& is
both defined and returns a pointer to T.

raw_storage_iterator (OutputIterator x);
Initializes the iterator to point to the same value that x points to.

raw_storage_iterator <OutputIterator, T>&
 operator = (const T& element);

Constructs an instance of T, initialized to the value element , at the
location pointed to by the iterator.

raw_storage_iterator <OutputIterator, T>&
operator++ ();

 Pre-increment: advances the iterator and returns a reference to the
updated iterator.

raw_storage_iterator<OutputIterator>
 operator++ (int);

Post-increment: advances the iterator and returns the old value of the
iterator.

Summary

Synopsis

Description

Constructor

Member
Operators

Standard C++ Library Class Reference 547

remove

Algorithm

Move desired elements to the front of a container, and return an iterator that
describes where the sequence of desired elements ends.

#include <algorithm>

template <class ForwardIterator, class T>
ForwardIterator
remove (ForwardIterator first,
 ForwardIterator last,
 const T& value);

The remove algorithm eliminates all the elements referred to by iterator i in
the range [first, last) for which the following condition holds: *i ==

value . remove returns an iterator that designates the end of the resulting
range. remove is stable, that is, the relative order of the elements that are
not removed is the same as their relative order in the original range.

remove does not actually reduce the size of the sequence. It actually
operates by: 1) copying the values that are to be retained to the front of the
sequence, and 2) returning an iterator that describes where the sequence of
retained values ends. Elements that are after this iterator are simply the
original sequence values, left unchanged. Here's a simple example:

Say we want to remove all values of "2" from the following sequence:

354621271

Applying the remove algorithm results in the following sequence:

3546171 | XX

The vertical bar represents the position of the iterator returned by remove.
Note that the elements to the left of the vertical bar are the original sequence
with the "2's" removed.

If you want to actually delete items from the container, use the following
technique:

container.erase(remove(first,last,value),container.end());

Exactly last1 - first1 applications of the corresponding predicate are
done.

Summary

Synopsis

Description

Complexity

remove

548 Standard C++ Library Class Reference

//
// remove.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <iostream.h>

 template<class Arg>
 struct all_true : public unary_function<Arg, bool>
 {
 bool operator()(const Arg& x){ return 1; }
 };

 int main ()
 {
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr, arr+10);

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 // remove the 7
 vector<int>::iterator result =
 remove (v.begin(), v.end(), 7);
 // delete dangling elements from the vector
 v.erase(result, v.end());

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 // remove everything beyond the fourth element
 result = remove_if(v.begin()+4,
 v.begin()+8, all_true<int>());
 // delete dangling elements
 v.erase(result, v.end());

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 return 0;
 }

Output :
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 8 9 10
1 2 3 4
1 2 4

If your compiler does not support default template parameters, you need to
always supply the Allocator template argument. For instance, you will
need to write :

vector<int, allocator>

instead of :

vector<int>

remove_if, remove_copy, remove_copy_if

Example

Warning

See Also

Standard C++ Library Class Reference 549

remove_copy

Algorithm

Move desired elements to the front of a container, and return an iterator that
describes where the sequence of desired elements ends.

#include <algorithm>

template <class InputIterator,
 class OutputIterator,
 class T>
 OutputIterator remove_copy (InputIterator first,
 InputIterator last,
 OutputIterator result,
 const T& value);

The remove_copy algorithm copies all the elements referred to by the
iterator i in the range [first, last) for which the following
corresponding condition does not hold: *i == value . remove_copy
returns the end of the resulting range. remove_copy is stable, that is, the
relative order of the elements in the resulting range is the same as their
relative order in the original range. The elements in the original sequence
are not altered by remove_copy.

Exactly last1 - first1 applications of the corresponding predicate are
done.

//
// remove.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <iostream.h>

 template<class Arg>
 struct all_true : public unary_function<Arg, bool>
 {
 bool operator() (const Arg&) { return 1; }
 };

 int main ()
 {
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr+0, arr+10);

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Remove the 7.
 //

Summary

Synopsis

Description

Complexity

Example

remove_copy

550 Standard C++ Library Class Reference

 vector<int>::iterator result = remove(v.begin(), v.end(), 7);
 //
 // Delete dangling elements from the vector.
 //
 v.erase(result, v.end());

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Remove everything beyond the fourth element.
 //
 result = remove_if(v.begin()+4, v.begin()+8, all_true<int>());
 //
 // Delete dangling elements.
 //
 v.erase(result, v.end());

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Now remove all 3s on output.
 //
 remove_copy (v.begin(), v.end(),
 ostream_iterator<int>(cout," "), 3);
 cout << endl << endl;
 //
 // Now remove everything satisfying predicate on output.
 // Should yield a NULL vector.
 //
 remove_copy_if(v.begin(), v.end(),
 ostream_iterator<int>(cout," "),
 all_true<int>());

 return 0;
 }

Output :
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 8 9 10
1 2 3 4
1 2 4

If your compiler does not support default template parameters, you need to
always supply the Allocator template argument. For instance, you will
need to write :

vector<int, allocator>

instead of :

vector<int>

remove, remove_if, remove_copy_if

Warning

See Also

Standard C++ Library Class Reference 551

remove_copy_if

Algorithm

Move desired elements to the front of a container, and return an iterator that
describes where the sequence of desired elements ends.

#include <algorithm>

template <class InputIterator,
 class OutputIterator,
 class Predicate>
 OutputIterator remove_copy_if (InputIterator first,
 InputIterator last,
 OutputIterator result,
 Predicate pred);

The remove_copy_if algorithm copies all the elements referred to by the
iterator i in the range [first, last) for which the following condition
does not hold: pred(*i) == true . remove_copy_if returns the end of the
resulting range. remove_copy_if is stable, that is, the relative order of the
elements in the resulting range is the same as their relative order in the
original range.

Exactly last1 - first1 applications of the corresponding predicate are
done.

//
// remove.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <iostream.h>

 template<class Arg>
 struct all_true : public unary_function<Arg, bool>
 {
 bool operator() (const Arg&) { return 1; }
 };

 int main ()
 {
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr+0, arr+10);

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Remove the 7.
 //
 vector<int>::iterator result = remove(v.begin(), v.end(), 7);

Summary

Synopsis

Description

Complexity

Example

remove_copy_if

552 Standard C++ Library Class Reference

 //
 // Delete dangling elements from the vector.
 //
 v.erase(result, v.end());

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Remove everything beyond the fourth element.
 //
 result = remove_if(v.begin()+4, v.begin()+8, all_true<int>());
 //
 // Delete dangling elements.
 //
 v.erase(result, v.end());

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Now remove all 3s on output.
 //
 remove_copy(v.begin(), v.end(),
 ostream_iterator<int>(cout," "), 3);
 cout << endl << endl;
 //
 // Now remove everything satisfying predicate on output.
 // Should yield a NULL vector.
 //
 remove_copy_if (v.begin(), v.end(),
 ostream_iterator<int>(cout," "),
 all_true<int>());

 return 0;
 }

Output :
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 8 9 10
1 2 3 4
1 2 4

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

remove, remove_if, remove_copy

Warning

See Also

Standard C++ Library Class Reference 553

remove_if

Algorithm

Move desired elements to the front of a container, and return an iterator that
describes where the sequence of desired elements ends.

#include <algorithm>

template <class ForwardIterator, class Predicate>
ForwardIterator remove_if (ForwardIterator first,
 ForwardIterator last,
 Predicate pred);

The remove_if algorithm eliminates all the elements referred to by iterator i
in the range [first, last) for which the following corresponding
condition holds: pred(*i) == true . remove_if returns the end of the
resulting range. remove_if is stable, that is, the relative order of the
elements that are not removed is the same as their relative order in the
original range.

remove_if does not actually reduce the size of the sequence. It actually
operates by: 1) copying the values that are to be retained to the front of the
sequence, and 2) returning an iterator that describes where the sequence of
retained values ends. Elements that are after this iterator are simply the
original sequence values, left unchanged. Here's a simple example:

Say we want to remove all even numbers from the following sequence:

123456789

Applying the remove_if algorithm results in the following sequence:

13579 | XXXX

The vertical bar represents the position of the iterator returned by
remove_if. Note that the elements to the left of the vertical bar are the
original sequence with the even numbers removed. The elements to the
right of the bar are simply the untouched original members of the original
sequence.

If you want to actually delete items from the container, use the following
technique:

container.erase(remove(first,last,value),container.end());

Exactly last1 - first1 applications of the corresponding predicate are
done.

Summary

Synopsis

Description

Complexity

remove_if

554 Standard C++ Library Class Reference

//
// remove.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <iostream.h>

 template<class Arg>
 struct all_true : public unary_function<Arg, bool>
 {
 bool operator()(const Arg& x){ return 1; }
 };

 int main ()
 {
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr, arr+10);

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 // remove the 7
 vector<int>::iterator result =
 remove(v.begin(), v.end(), 7);
 // delete dangling elements from the vector
 v.erase(result, v.end());

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 // remove everything beyond the fourth element
 result = remove_if (v.begin()+4,
 v.begin()+8, all_true<int>());
 // delete dangling elements
 v.erase(result, v.end());

 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 return 0;
 }

Output :
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 8 9 10
1 2 3 4
1 2 4

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

remove, remove_copy, remove_copy_if

Example

Warning

See Also

Standard C++ Library Class Reference 555

replace

Algorithm

Substitutes elements stored in a collection with new values.

#include <algorithm>

template <class ForwardIterator, class T>
void replace (ForwardIterator first,
 ForwardIterator last,
 const T& old_value,
 const T& new_value);

The replace algorithm replaces elements referred to by iterator i in the
range [first, last) with new_value when the following condition holds:
*i == old_value

Exactly last - first comparisons or applications of the corresponding
predicate are done.

//
// replace.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <iostream.h>

 template<class Arg>
 struct all_true : public unary_function<Arg, bool>
 {
 bool operator()(const Arg&){ return 1; }
 };

 int main()
 {

 //Initialize a vector with an array of integers
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr, arr+10);

 //Print out original vector
 cout << "The original list: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 //Replace the number 7 with 11
 replace (v.begin(), v.end(), 7, 11);

Summary

Synopsis

Description

Complexity

Example

replace

556 Standard C++ Library Class Reference

 // Print out vector with 7 replaced,
 // s.b. 1 2 3 4 5 6 11 8 9 10
 cout << "List after replace " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 //Replace 1 2 3 with 13 13 13
 replace_if(v.begin(), v.begin()+3, all_true<int>(), 13);

 // Print out the remaining vector,
 // s.b. 13 13 13 4 5 6 11 8 9 10
 cout << "List after replace_if " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 return 0;
 }

Output :
The original list:
 1 2 3 4 5 6 7 8 9 10
List after replace:
 1 2 3 4 5 6 11 8 9 10
List after replace_if:
 13 13 13 4 5 6 11 8 9 10
List using replace_copy to cout:
 17 17 17 4 5 6 11 8 9 10
List with all elements output as 19s:
 19 19 19 19 19 19 19 19 19 19

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

replace_if, replace_copy, replace_copy_if

Warning

See Also

Standard C++ Library Class Reference 557

replace_copy

Algorithm

Substitutes elements stored in a collection with new values.

#include <algorithm>

template <class InputIterator,
 class OutputIterator,
 class T>
OutputIterator replace_copy (InputIterator first,
 InputIterator last,
 OutputIterator result,
 const T& old_value,
 const T& new_value);

The replace_copy algorithm leaves the original sequence intact and places
the revised sequence into result . The algorithm compares elements referred
to by interator i in the range [first, last) with old_value . If *i does
not equal old_value , then the replace_copy copies *i to result+(first-

i) . If *i==old_value , then replace_copy copies new_value to
result+(first-i) . replace_copy returns result+(last-first) .

Exactly last - first comparisons between values are done.

//
// replace.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <iostream.h>

 template<class Arg>
 struct all_true : public unary_function<Arg, bool>
 {
 bool operator() (const Arg&) { return 1; }
 };

 int main ()
 {
 //
 // Initialize a vector with an array of integers.
 //
 int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
 vector<int> v(arr+0, arr+10);
 //
 // Print out original vector.

Summary

Synopsis

Description

Complexity

Example

replace_copy

558 Standard C++ Library Class Reference

 //
 cout << "The original list: " << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Replace the number 7 with 11.
 //
 replace(v.begin(), v.end(), 7, 11);
 //
 // Print out vector with 7 replaced.
 //
 cout << "List after replace:" << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Replace 1 2 3 with 13 13 13.
 //
 replace_if(v.begin(), v.begin()+3, all_true<int>(), 13);
 //
 // Print out the remaining vector.
 //
 cout << "List after replace_if:" << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Replace those 13s with 17s on output.
 //
 cout << "List using replace_copy to cout:" << endl << " ";
 replace_copy (v.begin(), v.end(),
 ostream_iterator<int>(cout, " "), 13, 17);
 cout << endl << endl;
 //
 // A simple example of replace_copy_if.
 //
 cout << "List w/ all elements output as 19s:" << endl << " ";
 replace_copy_if(v.begin(), v.end(),
 ostream_iterator<int>(cout, " "),
 all_true<int>(), 19);
 cout << endl;

 return 0;
 }
Output :
The original list:
 1 2 3 4 5 6 7 8 9 10
List after replace:
 1 2 3 4 5 6 11 8 9 10
List after replace_if:
 13 13 13 4 5 6 11 8 9 10
List using replace_copy to cout:
 17 17 17 4 5 6 11 8 9 10
List with all elements output as 19s:
 19 19 19 19 19 19 19 19 19 19

replace_copy

Standard C++ Library Class Reference 559

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

replace, replace_if, replace_copy_if

Warning

See Also

Standard C++ Library Class Reference 561

replace_copy_if

Algorithm

Substitutes elements stored in a collection with new values.

#include <algorithm>
template <class InputIterator,
 class OutputIterator,
 class Predicate,
 class T>
OutputIterator replace_copy_if (InputIterator first,
 InputIterator last,
 OutputIterator result,
 Predicate pred,
 const T& new_value);

The replace_copy_if algorithm leaves the original sequence intact and
places a revised sequence into result . The algorithm compares each
element *i in the range [first,last) with the conditions specified by pred .
If pred(*i)==false , replace_copy_if copies *i to result+(first-i) . If
pred(*i)==true , then replace_copy copies new_value to
result+(first-i) . replace_copy_if returns result+(last-first) .

Exactly last - first applications of the predicate are performed.

//
// replace.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <iostream.h>

 template<class Arg>
 struct all_true : public unary_function<Arg, bool>
 {
 bool operator() (const Arg&) { return 1; }
 };

 int main ()
 {
 //
 // Initialize a vector with an array of integers.
 //
 int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
 vector<int> v(arr+0, arr+10);
 //
 // Print out original vector.

Summary

Synopsis

Description

Complexity

Example

replace_copy_if

562 Standard C++ Library Class Reference

 //
 cout << "The original list: " << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Replace the number 7 with 11.
 //
 replace(v.begin(), v.end(), 7, 11);
 //
 // Print out vector with 7 replaced.
 //
 cout << "List after replace:" << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Replace 1 2 3 with 13 13 13.
 //
 replace_if(v.begin(), v.begin()+3, all_true<int>(), 13);
 //
 // Print out the remaining vector.
 //
 cout << "List after replace_if:" << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Replace those 13s with 17s on output.
 //
 cout << "List using replace_copy to cout:" << endl << " ";
 replace_copy(v.begin(), v.end(),
 ostream_iterator<int>(cout, " "), 13, 17);
 cout << endl << endl;
 //
 // A simple example of replace_copy_if.
 //
 cout << "List w/ all elements output as 19s:" << endl << " ";
 replace_copy_if (v.begin(), v.end(),
 ostream_iterator<int>(cout, " "),
 all_true<int>(), 19);
 cout << endl;

 return 0;
 }
Output :
The original list:
 1 2 3 4 5 6 7 8 9 10
List after replace:
 1 2 3 4 5 6 11 8 9 10
List after replace_if:
 13 13 13 4 5 6 11 8 9 10
List using replace_copy to cout:
 17 17 17 4 5 6 11 8 9 10
List with all elements output as 19s:
 19 19 19 19 19 19 19 19 19 19

replace_copy_if

Standard C++ Library Class Reference 563

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

replace, replace_if, replace_copy

Warning

See Also

Standard C++ Library Class Reference 565

replace_if

Algorithm

Substitutes elements stored in a collection with new values.

#include <algorithm>

template <class ForwardIterator,
 class Predicate,
 class T>
void replace_if (ForwardIterator first,
 ForwardIterator last,
 Predicate pred
 const T& new_value);

The replace_if algorithm replaces element referred to by iterator i in the
range [first, last) with new_value when the following condition holds:
pred(*i) == true .

Exactly last - first applications of the predicate are done.

//
// replace.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <iostream.h>

 template<class Arg>
 struct all_true : public unary_function<Arg, bool>
 {
 bool operator()(const Arg&){ return 1; }
 };

 int main()
 {

 //Initialize a vector with an array of integers
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr, arr+10);

 //Print out original vector
 cout << "The original list: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 //Replace the number 7 with 11
 replace(v.begin(), v.end(), 7, 11);

Summary

Synopsis

Description

Complexity

Example

replace_if

566 Standard C++ Library Class Reference

 // Print out vector with 7 replaced,
 // s.b. 1 2 3 4 5 6 11 8 9 10
 cout << "List after replace " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 //Replace 1 2 3 with 13 13 13
 replace_if (v.begin(), v.begin()+3, all_true<int>(), 13);

 // Print out the remaining vector,
 // s.b. 13 13 13 4 5 6 11 8 9 10
 cout << "List after replace_if " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 return 0;
 }

Output :
The original list:
 1 2 3 4 5 6 7 8 9 10
List after replace:
 1 2 3 4 5 6 11 8 9 10
List after replace_if:
 13 13 13 4 5 6 11 8 9 10
List using replace_copy to cout:
 17 17 17 4 5 6 11 8 9 10
List with all elements output as 19s:
 19 19 19 19 19 19 19 19 19 19

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

replace, replace_copy, replace_copy_if

Warning

See Also

Standard C++ Library Class Reference 567

return_temporary_buffer

Memory Handling Primitive

Pointer based primitive for handling memory

#include <memory>

template <class T>
void return_temporary_buffer (T* p, T*);

The return_temporary_buffer templated function returns a buffer,
previously allocated through get_temporary_buffer, to available memory.
Parameter p points to the buffer.

allocate, deallocate, construct, get_temporary_buffer

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 569

reverse

Algorithm

Reverse the order of elements in a collection.

#include <algorithm>

template <class BidirectionalIterator>
void reverse (BidirectionalIterator first,
 BidirectionalIterator last);

The algorithm reverse reverses the elements in a sequence so that the last
element becomes the new first element, and the first element becomes the
new last. For each non-negative integer i <= (last - first)/2 , reverse
applies swap to all pairs of iterators first + I, (last - I) - 1 .

Because the iterators are assumed to be bidirectional, reverse does not
return anything.

reverse performs exactly (last - first)/2 swaps.

//
// reverse.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>
 int main()
 {
 //Initialize a vector with an array of ints
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr, arr+10);

 //Print out elements in original (sorted) order
 cout << "Elements before reverse: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 //Reverse the ordering
 reverse (v.begin(), v.end());

 //Print out the reversed elements
 cout << "Elements after reverse: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Summary

Synopsis

Description

Complexity

Example

reverse

570 Standard C++ Library Class Reference

Output :
Elements before reverse:
 1 2 3 4 5 6 7 8 9 10
Elements after reverse:
 10 9 8 7 6 5 4 3 2 1
A reverse_copy to cout:
 1 2 3 4 5 6 7 8 9 10

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

reverse_copy, swap

Warning

See Also

Standard C++ Library Class Reference 571

reverse_bidirectional_iterator, reverse_iterator

Iterator

An iterator that traverses a collection backwards.

#include <iterator>

template <class BidirectionalIterator,
 class T,
 class Reference = T&,
 class Pointer = T*
 class Distance = ptrdiff_t>
class reverse_bidirectional_iterator : public
 bidirectional_iterator<T, Distance> ;

template <class RandomAccessIterator,
 class T,
 class Reference = T&,
 class Pointer = T*,
 class Distance = ptrdiff_t>
class reverse_iterator : public random_access_iterator<T, Distance>;

The iterators reverse_iterator and reverse_bidirectional_iterator
correspond to random_access_iterator and bidirectional_iterator, except
they traverse the collection they point to in the opposite direction. The
fundamental relationship between a reverse iterator and its corresponding
iterator i is established by the identity:

&*(reverse_iterator(i)) == &*(i-1);

This mapping is dictated by the fact that, while there is always a pointer past
the end of a container, there might not be a valid pointer before its
beginning.

The following are true for reverse_bidirectional_iterators :

• These iterators may be instantiated with the default constructor or by a
single argument constructor that initializes the new
reverse_bidirectional_iterator with a bidirectional_iterator .

• operator* returns a reference to the current value pointed to.

• operator++ advances the iterator to the previous item (--current) and
returns a reference to *this .

Summary

Synopsis

Description

reverse_bidirectional_iterator, reverse_iterator

572 Standard C++ Library Class Reference

• operator++(int) advances the iterator to the previous item (--
current) and returns the old value of *this .

• operator-- advances the iterator to the following item (++current) and
returns a reference to *this .

• operator--(int) Advances the iterator to the following item
(++current) and returns the old value of *this.

• operator== This non-member operator returns true if the iterators x
and y point to the same item.

The following are true for reverse_iterators :

• These iterators may be instantiated with the default constructor or by a
single argument constructor which initializes the new
reverse_iterator with a random_access_iterator .

• operator* returns a reference to the current value pointed to.

• operator++ advances the iterator to the previous item (--current) and
returns a reference to *this .

• operator++(int) advances the iterator to the previous item (--
current) and returns the old value of *this .

• operator-- advances the iterator to the following item (++current)
and returns a reference to *this .

• operator--(int) advances the iterator to the following item
(++current) and returns the old value of *this .

• operator== is a non-member operator returns true if the iterators x
and y point to the same item.

• The remaining operators (<, +, - , +=, -=) are redefined to behave
exactly as they would in a random_access_iterator , except with the
sense of direction reversed.

All iterator operations are required to take at most amortized constant time.

template <class BidirectionalIterator,
 class T,
 class Reference = T&,
 class Pointer = T*,
 class Distance = ptrdiff_t>
class reverse_bidirectional_iterator
 : public bidirectional_iterator<T, Distance> {

Complexity

Interface

reverse_bidirectional_iterator, reverse_iterator

Standard C++ Library Class Reference 573

 typedef reverse_bidirectional_iterator<BidirectionalIterator, T,
 Reference,
 Pointer, Distance> self;
 friend bool operator== (const self&, const self&);
 public:
 reverse_bidirectional_iterator ();
 explicit reverse_bidirectional_iterator
 (BidirectionalIterator);
 BidirectionalIterator base ();
 Reference operator* ();
 self& operator++ ();
 self operator++ (int);
 self& operator-- ();
 self operator-- (int);
 };

// Non-member Operator

 template <class BidirectionalIterator,
 class T,
 class Reference,
 class Pointer
 class Distance>
 bool operator== (
 const reverse_bidirectional_iterator
 <BidirectionalIterator,
 T,
 Reference,
 Pointer
 Distance>&,
 const reverse_bidirectional_iterator
 <BidirectionalIterator,
 T,
 Reference,
 Pointer,
 Distance>&);

template <class RandomAccessIterator,
 class T,
 class Reference = T&,
 class Pointer = T*,
 class Distance = ptrdiff_t>
class reverse_iterator
 : public random_access_iterator<T, Distance> {

 typedef reverse_iterator<RandomAccessIterator, T, Reference,
 Pointer, Distance> self;

 friend bool operator== (const self&, const self&);
 friend bool operator< (const self&, const self&);
 friend Distance operator- (const self&, const self&);
 friend self operator+ (Distance, const self&);

public:
 reverse_iterator ();
 explicit reverse_iterator (RandomAccessIterator);
 RandomAccessIterator base ();
 Reference operator* ();

reverse_bidirectional_iterator, reverse_iterator

574 Standard C++ Library Class Reference

 self& operator++ ();
 self operator++ (int);
 self& operator-- ();
 self operator-- (int);

 self operator+ (Distance) const;
 self& operator+= (Distance);
 self operator- (Distance) const;
 self& operator-= (Distance);
 Reference operator[] (Distance);
};

// Non-member Operators

 template <class RandomAccessIterator, class T,
 class Reference, class Pointer,
 class Distance> bool operator== (
 const reverse_iterator<RandomAccessIterator, T,
 Reference, Pointer,
 Distance>&,
 const reverse_iterator<RandomAccessIterator, T,
 Reference, Pointer,
 Distance>&);

 template <class RandomAccessIterator, class T,
 class Reference, class Pointer,
 class Distance> bool operator< (
 const reverse_iterator<RandomAccessIterator, T,
 Reference, Pointer,
 Distance>&,
 const reverse_iterator<RandomAccessIterator, T,
 Reference, Pointer,
 Distance>&);

 template <class RandomAccessIterator, class T,
 class Reference, class Pointer,
 class Distance> Distance operator- (
 const reverse_iterator<RandomAccessIterator, T,
 Reference, Pointer,
 Distance>&,
 const reverse_iterator<RandomAccessIterator, T,
 Reference, Pointer,
 Distance>&);

 template <class RandomAccessIterator, class T,
 class Reference, class Pointer,
 class Distance>
 reverse_iterator<RandomAccessIterator, T,
 Reference, Pointer,
 Distance> operator+ (
 Distance,
 const reverse_iterator<RandomAccessIterator, T,
 Reference, Pointer,
 Distance>&);

reverse_bidirectional_iterator, reverse_iterator

Standard C++ Library Class Reference 575

//
// rev_itr.cpp
//
 #include <iterator>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 //Initialize a vector using an array
 int arr[4] = {3,4,7,8};
 vector<int> v(arr,arr+4);

 //Output the original vector
 cout << "Traversing vector with iterator: " << endl << " ";
 for(vector<int>::iterator i = v.begin(); i != v.end(); i++)
 cout << *i << " ";

 //Declare the reverse_iterator
 vector<int>:: reverse_iterator rev(v.end());
 vector<int>:: reverse_iterator rev_end(v.begin());

 //Output the vector backwards
 cout << endl << endl;
 cout << "Same vector, same loop, reverse_itertor: " << endl
 << " ";
 for(; rev != rev_end; rev++)
 cout << *rev << " ";

 return 0;
 }

Output :
Traversing vector with iterator:
 3 4 7 8
Same vector, same loop, reverse_itertor:
 8 7 4 3

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

Iterators

Example

Warning

See Also

Standard C++ Library Class Reference 577

reverse_copy

Algorithm

Reverse the order of elements in a collection while copying them to a new
collecton.

#include <algorithm>

template <class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy (BidirectionalIterator first,
 BidirectionalIterator last,
 OutputIterator result);

The reverse_copy algorithm copies the range [first, last) to the range
[result, result + (last - first)) such that for any non- negative
integer i < (last - first) , the following assignment takes place:

 *(result + (last - first) -i) = *(first + i)

reverse_copy returns result + (last - first) . The ranges [first,

last) and [result, result + (last - first)) must not overlap.

reverse_copy performs exactly (last - first) assignments.

//
// reverse.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main ()
 {
 //
 // Initialize a vector with an array of integers.
 //
 int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
 vector<int> v(arr+0, arr+10);
 //
 // Print out elements in original (sorted) order.
 //
 cout << "Elements before reverse: " << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;
 //
 // Reverse the ordering.
 //
 reverse(v.begin(), v.end());
 //
 // Print out the reversed elements.

Summary

Synopsis

Description

Complexity

Example

reverse_copy

578 Standard C++ Library Class Reference

 //
 cout << "Elements after reverse: " << endl << " ";
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;

 cout << "A reverse_copy to cout: " << endl << " ";
 reverse_copy (v.begin(), v.end(),
 ostream_iterator<int>(cout, " "));
 cout << endl;

 return 0;
 }

Output :
Elements before reverse:
 1 2 3 4 5 6 7 8 9 10
Elements after reverse:
 10 9 8 7 6 5 4 3 2 1
A reverse_copy to cout:
 1 2 3 4 5 6 7 8 9 10

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

reverse

Warning

See Also

Standard C++ Library Class Reference 579

reverse_iterator

See the reverse_bidirectional_iterator section of this reference.

Standard C++ Library Class Reference 581

rotate, rotate_copy

Algorithm

Left rotates the order of items in a collection, placing the first item at the end,
second item first, etc., until the item pointed to by a specified iterator is the
first item in the collection.

#include <algorithm>

template <class ForwardIterator>
void rotate (ForwardIterator first,
 ForwardIterator middle,
 ForwardIterator last);

template <class ForwardIterator, class OutputIterator>
OutputIterator rotate_copy (ForwardIterator first,
 ForwardIterator middle,
 ForwardIterator last,
 OutputIterator result);

The rotate algorithm takes three iterator arguments, first , which defines
the start of a sequence, last , which defines the end of the sequence, and
middle which defines a point within the sequence. rotate "swaps" the
segment that contains elements from first through middle-1 with the
segment that contains the elements from middle through last . After rotate
has been applied, the element that was in position middle , is in position
first , and the other elements in that segment are in the same order relative
to each other. Similarly, the element that was in position first is now in
position last-middle +1 . An example will illustrate how rotate works:

Say that we have the sequence:

 2 4 6 8 1 3 5

If we call rotate with middle = 5 , the two segments are

 2 4 6 8 and 1 3 5

After we apply rotate, the new sequence will be:

 1 3 5 2 4 6 8

Note that the element that was in the fifth position is now in the first
position, and the element that was in the first position is in position 4 (last

- first + 1 , or 8 - 5 +1 =4).

The formal description of this algorithms is: for each non-negative integer i
< (last - first) , rotate places the element from the position first + i

Summary

Synopsis

Description

rotate, rotate_copy

582 Standard C++ Library Class Reference

into position first + (i + (last - middle)) % (last - first) .
[first, middle) and [middle, last) are valid ranges.

rotate_copy rotates the elements as described above, but instead of
swapping elements within the same sequence, it copies the result of the
rotation to a container specified by result . rotate_copy copies the range
[first, last) to the range [result, result + (last - first)) such
that for each non- negative integer i < (last - first) the following
assignment takes place:

*(result + (i + (last - middle)) % (last -first)) = *(first + i).

The ranges [first, last) and [result, result, + (last - first))

may not overlap.

For rotate at most last - first swaps are performed.

For rotate_copy last - first assignments are performed.

//
// rotate
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main()
 {
 //Initialize a vector with an array of ints
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v(arr, arr+10);

 //Print out elements in original (sorted) order
 cout << "Elements before rotate: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 //Rotate the elements
 rotate (v.begin(), v.begin()+4, v.end());

 //Print out the rotated elements
 cout << "Elements after rotate: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));
 cout << endl;

 return 0;
 }

Output :
Elements before rotate:
 1 2 3 4 5 6 7 8 9 10
Elements after rotate:
 5 6 7 8 9 10 1 2 3 4

Complexity

Example

rotate, rotate_copy

Standard C++ Library Class Reference 583

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

Warning

Standard C++ Library Class Reference 585

search, search_n

Algorithm

Finds a subsequence within a sequence of values that is element-wise equal
to the values in an indicated range.

#include <algorithm>

template <class ForwardIterator1, class ForwardIterator2>
 ForwardIterator1 search (ForwardIterator1 first1,
 ForwardIterator1 last1,
 ForwardIterator2 first2,
 ForwardIterator2 last2);

template <class ForwardIterator1,
 class ForwardIterator2,
 class BinaryPredicate>
 ForwardIterator1 search (ForwardIterator1 first1,
 ForwardIterator1 last1,
 ForwardIterator2 first2,
 ForwardIterator2 last2,
 BinaryPredicate binary_pred);

template <class ForwardIterator,
 class Size,
 class T>
ForwardIterator search_n (ForwardIterator first,
 ForwardIterator last,
 Size count, const T& value);

template <class ForwardIterator,
 class Size,
 class T,
 class BinaryPredicate>
ForwardIterator search_n (ForwardIterator first,
 ForwardIterator last,
 Size count, const T& value,
 BinaryPredicate pred)

The search and search_n are used for searching for a subsequence within a
sequence. The search algorithm searches for a subsequence [first2,

last2) within a sequence [first1, last1) , and returns the beginning
location of the subsequence. If it does not find the subsequence, search
returns last1 . The first version of search uses the equality (==) operator as
a default, and the second version allows you to specify a binary predicate to
perform the comparison.

The search_n algorithm searches for the subsequence composed of count

occurrences of value within a sequence [first, last) , and returns first

if this subsequence is found. If it does not find the subsequence, search_n

Summary

Synopsis

Description

search, search_n

586 Standard C++ Library Class Reference

returns last . The first version of search_n uses the equality (==) operator as
a default, and the second version allows you to specify a binary predicate to
perform the comparison.

search performs at most (last1 - first1)*(last2-first2) applications
of the corresponding predicate.

search_n performs at most (last - first) applications of the
corresponding predicate.

//
// search.cpp
//
 #include <algorithm>
 #include <list>
 #include <iostream.h>

 int main()
 {
 // Initialize a list sequence and
 // subsequence with characters
 char seq[40] = "Here's a string with a substring in it";
 char subseq[10] = "substring";
 list<char> sequence(seq, seq+39);
 list<char> subseqnc(subseq, subseq+9);

 //Print out the original sequence
 cout << endl << "The subsequence, " << subseq
 << ", was found at the ";
 cout << endl << "location identified by a '*'"
 << endl << " ";

 // Create an iterator to identify the location of
 // subsequence within sequence
 list<char>::iterator place;

 //Do search
 place = search (sequence.begin(), sequence.end(),
 subseqnc.begin(), subseqnc.end());

 //Identify result by marking first character with a '*'
 place = '';

 //Output sequence to display result
 for(list<char>::iterator i = sequence.begin();
 i != sequence.end(); i++)
 cout << *i;
 cout << endl;

 return 0;
 }

Output :
The subsequence, substring, was found at the
location identified by a '*'
 Here's a string with a *ubstring in it

Complexity

Example

search, search_n

Standard C++ Library Class Reference 587

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

list<char, allocator>

instead of :

list<char>

Warning

Standard C++ Library Class Reference 589

Sequence

A sequence is a container that organizes a set of objects, all the same type,
into a linear arrangement. vector, list, deque, and string fall into this
category.

Sequences offer different complexity trade-offs. vector offers fast inserts
and deletes from the end of the container. deque is useful when insertions
and deletions will take place at the beginning or end of the sequence. Use
list when there are frequent insertions and deletions from the middle of the
sequence.

For more information about sequences and their requirements, see the
Containers section of this reference guide, or see the section on the specific
container.

Summary

See Also

Standard C++ Library Class Reference 591

set

Container

An associative container that supports unique keys. A set supports
bidirectional iterators.

#include <set>

template <class Key, class Compare = less<Key>,
 class Allocator = allocator>
class set ;

set<Key, Compare, Allocator> is an associative container that supports
unique keys and provides for fast retrieval of the keys. A set contains at
most one of any key value. The keys are sorted using Compare .

Since a set maintains a total order on its elements, you cannot alter the key
values directly. Instead, you must insert new elements with an
insert_iterator .

Any type used for the template parameter Key must provide the following
(where T is the type , t is a value of T and u is a const value of T):

 Copy constructors T(t) and T(u)
 Destructor t.~T()
 Address of &t and &u yielding T* and
 const T* respectively
 Assignment t = a where a is a
 (possibly const) value of T

The type used for the Compare template parameter must satisfy the
requirements for binary functions.

template <class Key, class Compare = less<Key>,
 class Allocator = allocator>
 class set {

public:

 // types

 typedef Key key_type;
 typedef Key value_type;
 typedef Compare key_compare;
 typedef Compare value_compare;
 typedef Allocator allocator_type;
 typename reference;
 typename const_reference;

Summary

Synopsis

Description

Interface

set

592 Standard C++ Library Class Reference

 typename iterator;
 typename const_iterator;
 typename size_type;
 typename difference_type;
 typename reverse_iterator;
 typename const_reverse_iterator;

 // Construct/Copy/Destroy

 explicit set (const Compare& = Compare(),
 const Allocator& = Allocator ());
 template <class InputIterator>
 set (InputIterator, InputIterator, const Compare& = Compare(),
 const Allocator& = Allocator ());
 set (const set<Key, Compare, Allocator>&);
 ~set ();
 set<Key, Compare, Allocator>& operator= (const set <Key, Compare,
 Allocator>&);
 allocator_type get_allocator () const;

 // Iterators

 iterator begin ();
 const_iterator begin () const;
 iterator end ();
 const_iterator end () const;
 reverse_iterator rbegin ();
 const_reverse_iterator rbegin () const;
 reverse_iterator rend ();
 const_reverse_iterator rend () const;

 // Capacity

 bool empty () const;
 size_type size () const;
 size_type max_size () const;

 // Modifiers

 pair<iterator, bool> insert (const value_type&);
 iterator insert (iterator, const value_type&);
 template <class InputIterator>
 void insert (InputIterator, InputIterator);
 iterator erase (iterator);
 size_type erase (const key_type&);
 iterator erase (iterator, iterator);
 void swap (set<Key, Compare, Allocator>&);
 void clear ();

 // Observers

 key_compare key_comp () const;
 value_compare value_comp () const;

 // Set operations

 size_type count (const key_type&) const;
 pair<iterator, iterator> equal_range (const key_type&) const;

set

Standard C++ Library Class Reference 593

 iterator find (const key_type&) const;
 iterator lower_bound (const key_type&) const;
 iterator upper_bound (const key_type&) const

};

 // Non-member Operators

template <class Key, class Compare, class Allocator>
 bool operator== (const set<Key, Compare, Allocator>&,
 const set<Key, Compare, Allocator>&);

template <class Key, class Compare, class Allocator>
 bool operator< (const set<Key, Compare, Allocator>&,
 const set<Key, Compare, Allocator>&);

// Specialized Algorithms

template <class Key, class Compare, class Allocator>
void swap (set <Key, Compare, Allocator>&,
 set <Key, Compare, Allocator>&);

explicit
set (const Compare& comp = Compare(),
 const Allocator& alloc = Allocator ());

The default constructor. Creates a set of zero elements. If the function
object comp is supplied, it is used to compare elements of the set.
Otherwise, the default function object in the template argument is used.
The template argument defaults to less (<) . The allocator alloc is used
for all storage management.

template <class InputIterator>
set (InputIterator first, InputIterator last,
 const Compare& comp = Compare ()
 const Allocator& alloc = Allocator());

Creates a set of length last - first , filled with all values obtained by
dereferencing the InputIterators on the range [first, last) . If the
function object comp is supplied, it is used to compare elements of the set.
Otherwise, the default function object in the template argument is used.
The template argument defaults to less (<) . Uses the allocator alloc for
all storage management.

set (const set<Key, Compare, Allocator>& x);
Copy constructor. Creates a copy of x .

~set ();
The destructor. Releases any allocated memory for self.

Constructors
and

Destructors

set

594 Standard C++ Library Class Reference

set<Key, Compare, Allocator>&
operator= (const set<Key, Compare, Allocator>& x);

Assignment operator. Self will share an implementation with x . Returns a
reference to self.

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

iterator begin ();
Returns an iterator that points to the first element in self.

const_iterator begin () const;
Returns a const_iterator that points to the first element in self.

iterator end ();
Returns an iterator that points to the past-the-end value.

const_iterator end () const;
Returns a const_iterator that points to the past-the-end value.

reverse_iterator rbegin ();
Returns a reverse_iterator that points to the past-the-end value.

const_reverse_iterator rbegin () const;
Returns a const_reverse_iterator that points to the past-the-end value.

reverse_iterator rend ();
Returns a reverse_iterator that points to the first element.

const_reverse_iterator rend () const;
Returns a const_reverse_iterator that points to the first element.

void
clear ();

Erases all elements from the set.

size_type
count (const key_type& x) const;

Returns the number of elements equal to x . Since a set supports unique
keys, count will always return 1 or 0.

bool
empty () const;

Returns true if the size is zero.

pair<iterator, iterator>
equal_range (const key_type& x) const;

Returns pair(lower_bound(x),upper_bound(x)) . The equal_range

function indicates the valid range for insertion of x into the set.

Assignment
Operator

Allocator

Iterators

Member
Functions

set

Standard C++ Library Class Reference 595

size_type
erase (const key_type& x);

Deletes all the elements matching x . Returns the number of elements
erased. Since a set supports unique keys, erase will always return 1 or 0.

iterator
erase (iterator position);

Deletes the map element pointed to by the iterator position . Returns an
iterator pointing to the element following the deleted element, or end()

if the deleted item was the last one in this list.

iterator
erase (iterator first, iterator last);

Deletes the elements in the range (first, last). Returns an iterator

pointing to the element following the last deleted element, or end() if
there were no elements after the deleted range.

iterator
find (const key_value& x) const;

Returns an iterator that points to the element equal to x . If there is no
such element, the iterator points to the past-the-end value.

pair<iterator, bool>
insert (const value_type& x);

Inserts x into self according to the comparison function object. The
template's default comparison function object is less (<) . If the insertion
succeeds, it returns a pair composed of the iterator position where the
insertion took place, and true . Otherwise, the pair contains the end value,
and false .

iterator
insert (iterator position, const value_type& x);

x is inserted into the set. A position may be supplied as a hint regarding
where to do the insertion. If the insertion may be done right after position
then it takes amortized constant time. Otherwise it will take 0 (log N)

time. The return value points to the inserted x .

template <class InputIterator>
void
insert (InputIterator first, InputIterator last);

Inserts copies of the elements in the range [first, last] .

key_compare
key_comp () const;

Returns the comparison function object for the set.

set

596 Standard C++ Library Class Reference

iterator
lower_bound (const key_type& x) const;

Returns an iterator that points to the first element that is greater than or
equal to x . If there is no such element, the iterator points to the past-the-
end value.

size_type
max_size () const;
Returns size of the largest possible set.

size_type
size () const;

Returns the number of elements.

void
swap (set<Key, Compare, Allocator>& x);

Exchanges self with x .

iterator
upper_bound (const key_type& x) const

Returns an iterator that points to the first element that is greater than or
equal to x . If there is no such element, the iterator points to the past-the-
end value.

value_compare
value_comp () const;
Returns the set's comparison object. This is identical to the function
key_comp() .

template <class Key, class Compare, class Allocator>
 bool operator== (const set<Key, Compare, Allocator>& x,
 const set<Key, Compare, Allocator>& y);

Equality operator. Returns true if x is the same as y .

template <class Key, class Compare, class Allocator>
bool operator< (const set <Key, Compare, Allocator>& x,
 const set <Key, Compare, Allocator>& y);

Returns true if the elements contained in x are lexicographically less than
the elements contained in y .

template <class Key, class Compare, class Allocator>
void swap (set <Key, Compare, Allocator>& a,
 set <Key, Compare, Allocator>& b);

Efficiently swaps the contents of a and b.

//
// set.cpp
//
 #include <set>
 #include <iostream.h>

Non-member
Operators

Example

set

Standard C++ Library Class Reference 597

 typedef set <double, less<double>, allocator> set_type;

 ostream& operator<<(ostream& out, const set_type& s)
 {
 copy(s.begin(), s.end(),
 ostream_iterator<set_type::value_type>(cout," "));
 return out;
 }

 int main(void)
 {
 // create a set of doubles
 set_type sd;
 int i;

 for(i = 0; i < 10; ++i) {
 // insert values
 sd.insert(i);
 }

 // print out the set
 cout << sd << endl << endl;

 // now let's erase half of the elements in the set
 int half = sd.size() >> 1;
 set_type::iterator sdi = sd.begin();
 advance(sdi,half);

 sd.erase(sd.begin(),sdi);

 // print it out again
 cout << sd << endl << endl;

 // Make another set and an empty result set
 set_type sd2, sdResult;
 for (i = 1; i < 9; i++)
 sd2.insert(i+5);
 cout << sd2 << endl;

 // Try a couple of set algorithms
 set_union(sd.begin(),sd.end(),sd2.begin(),sd2.end(),
 inserter(sdResult,sdResult.begin()));
 cout << "Union:" << endl << sdResult << endl;

 sdResult.erase(sdResult.begin(),sdResult.end());
 set_intersection(sd.begin(),sd.end(),
 sd2.begin(),sd2.end(),
 inserter(sdResult,sdResult.begin()));
 cout << "Intersection:" << endl << sdResult << endl;

 return 0;
 }

Output :

0 1 2 3 4 5 6 7 8 9
5 6 7 8 9

set

598 Standard C++ Library Class Reference

6 7 8 9 10 11 12 13
Union:
5 6 7 8 9 10 11 12 13
Intersection:
6 7 8 9

Member function templates are used in all containers provided by the
Standard Template Library. An example of this feature is the constructor for
set <Key, Compare, Allocator> that takes two templated iterators:

template <class InputIterator>
 set (InputIterator, InputIterator,
 const Compare& = Compare(),
 const Allocator& = Allocator());

set also has an insert function of this type. These functions, when not
restricted by compiler limitations, allow you to use any type of input iterator
as arguments. For compilers that do not support this feature, we provide
substitute functions that allow you to use an iterator obtained from the same
type of container as the one you are constructing (or calling a member
function on), or you can use a pointer to the type of element you have in the
container.

For example, if your compiler does not support member function templates
you can construct a set in the following two ways:

int intarray[10];
set<int, less<int>, allocator> first_set(intarray, intarray + 10);
set<int, less<int>, allocator> second_set(first_set.begin(),
 first_set.end());

but not this way:

set<long, less<long>, allocator> long_set(first_set.begin(),
 first_set.end());

since the long_set and first_set are not the same type.

Also, many compilers do not support default template arguments. If your
compiler is one of these you need to always supply the Compare template
argument, and the Allocator template argument. For instance, you need to
write :

set<int, less<int>, allocator>

instead of :

set<int>

allocator, bidirectional_iterator, Container, lexicographical_compare

Warnings

See Also

Standard C++ Library Class Reference 599

set_difference

Algorithm

Basic set operation for sorted sequences.

#include <algorithm>

template <class InputIterator1, class InputIterator2,
 class OutputIterator>
OutputIterator
set_difference (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result);

template <class InputIterator1, class InputIterator2,
 class OutputIterator, class Compare>
OutputIterator
set_difference (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result, Compare comp);

The set_difference algorithm constructs a sorted difference that includes
copies of the elements that are present in the range [first1, last1) but are
not present in the range [first2, last2) . It returns the end of the
constructed range.

As an example, assume we have the following two sets:

1 2 3 4 5

and

3 4 5 6 7

The result of applying set_difference is the set:

1 2

The result of set_difference is undefined if the result range overlaps with
either of the original ranges.

set_difference assumes that the ranges are sorted using the default
comparision operator less than (<), unless an alternative comparison
operator (comp) is provided.

Use the set_symetric_difference algorithm to return a result that contains
all elements that are not in common between the two sets.

Summary

Synopsis

Description

set_difference

600 Standard C++ Library Class Reference

At most ((last1 - first1) + (last2 - first2)) * 2 -1 comparisons
are performed.

//
// set_diff.cpp
//
 #include <algorithm>
 #include <set>
 #include <iostream.h>

 int main()
 {

 //Initialize some sets
 int a1[10] = {1,2,3,4,5,6,7,8,9,10};
 int a2[6] = {2,4,6,8,10,12};

 set<int, less<int> > all(a1, a1+10), even(a2, a2+6),
 odd;

 //Create an insert_iterator for odd
 insert_iterator<set<int, less<int> > >
 odd_ins(odd, odd.begin());

 //Demonstrate set_difference
 cout << "The result of:" << endl << "{";
 copy(all.begin(),all.end(),
 ostream_iterator<int>(cout," "));
 cout << "} - {";
 copy(even.begin(),even.end(),
 ostream_iterator<int>(cout," "));
 cout << "} =" << endl << "{";
 set_difference (all.begin(), all.end(),
 even.begin(), even.end(), odd_ins);
 copy(odd.begin(),odd.end(),
 ostream_iterator<int>(cout," "));
 cout << "}" << endl << endl;

 return 0;
 }

Output :
The result of:
{1 2 3 4 5 6 7 8 9 10 } - {2 4 6 8 10 12 } =
{1 3 5 7 9 }

If your compiler does not support default template parameters, then you
need to always supply the Compare template argument and the Allocator

template argument. For instance, you will need to write :

set<int, less<int> allocator>

instead of :

set<int>

includes, set, set_union, set_intersection, set_symmetric_difference

Complexity

Example

Warning

See Also

Standard C++ Library Class Reference 601

set_intersection

Algorithm

Basic set operation for sorted sequences.

#include <algorithm>

template <class InputIterator1, class InputIterator2,
 class OutputIterator>
OutputIterator
set_intersection (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator last2,
 OutputIterator result);

template <class InputIterator1, class InputIterator2,
 class OutputIterator, class Compare>
OutputIterator
set_intersection (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result, Compare comp);

The set_intersection algorithm constructs a sorted intersection of elements
from the two ranges. It returns the end of the constructed range. When it
finds an element present in both ranges, set_intersection always copies the
element from the first range into result . This means that the result of
set_intersection is guaranteed to be stable. The result of set_intersection
is undefined if the result range overlaps with either of the original ranges.

set_intersection assumes that the ranges are sorted using the default
comparision operator less than (<), unless an alternative comparison
operator (comp) is provided.

At most ((last1 - first1) + (last2 - first2)) * 2 -1 comparisons
are performed.

//
// set_intr.cpp
//
 #include <algorithm>
 #include <set>
 #include <iostream.h>
 int main()
 {

 //Initialize some sets
 int a1[10] = {1,3,5,7,9,11};
 int a3[4] = {3,5,7,8};
 set<int, less<int> > odd(a1, a1+6),
 result, small(a3,a3+4);

Summary

Synopsis

Description

Complexity

Example

set_intersection

602 Standard C++ Library Class Reference

 //Create an insert_iterator for result
 insert_iterator<set<int, less<int> > >
 res_ins(result, result.begin());

 //Demonstrate set_intersection
 cout << "The result of:" << endl << "{";
 copy(small.begin(),small.end(),
 ostream_iterator<int>(cout," "));
 cout << "} intersection {";
 copy(odd.begin(),odd.end(),
 ostream_iterator<int>(cout," "));
 cout << "} =" << endl << "{";
 set_intersection (small.begin(), small.end(),
 odd.begin(), odd.end(), res_ins);
 copy(result.begin(),result.end(),
 ostream_iterator<int>(cout," "));
 cout << "}" << endl << endl;

 return 0;
 }

Output :
The result of:
{3 5 7 8 } intersection {1 3 5 7 9 11 } =
{3 5 7 }

If your compiler does not support default template parameters, then you
need to always supply the Compare template argument and the Allocator
template argument. For instance, you will need to write :

set<int, less<int> allocator>

instead of :

set<int>

includes, set, set_union, set_difference, set_symmetric_difference

Warning

See Also

Standard C++ Library Class Reference 603

set_symmetric_difference

Algorithm

Basic set operation for sorted sequences.

#include <algorithm>

template <class InputIterator1, class InputIterator2,
 class OutputIterator>
OutputIterator
set_symmetric_difference (InputIterator1 first1,
 InputIterator1 last1,
 InputIterator2 first2,
 InputIterator2 last2,
 OutputIterator result);

template <class InputIterator1, class InputIterator2,
 class OutputIterator, class Compare>
OutputIterator
set_symmetric_difference (InputIterator1 first1,
 InputIterator1 last1,
 InputIterator2 first2,
 InputIterator2 last2,
 OutputIterator result, Compare comp);

set_symmetric_difference constructs a sorted symmetric difference of the
elements from the two ranges. This means that the constructed range
includes copies of the elements that are present in the range [first1,

last1) but not present in the range [first2, last2) and copies of the
elements that are present in the range [first2, last2) but not in the range
[first1, last1) . It returns the end of the constructed range.

For example, suppose we have two sets:

1 2 3 4 5

and

3 4 5 6 7

The set_symmetric_difference of these two sets is:

1 2 6 7

The result of set_symmetric_difference is undefined if the result range
overlaps with either of the original ranges.

Summary

Synopsis

Description

set_symmetric_difference

604 Standard C++ Library Class Reference

set_symmetric_difference assumes that the ranges are sorted using the
default comparision operator less than (<), unless an alternative comparison
operator (comp) is provided.

Use the set_symmetric_difference algorithm to return a result that
includes elements that are present in the first set and not in the second.

At most ((last1 - first1) + (last2 - first2)) * 2 -1 comparisons
are performed.

//
// set_s_di.cpp
//
 #include<algorithm>
 #include<set>
 #include <istream.h>

 int main()
 {

 //Initialize some sets
 int a1[] = {1,3,5,7,9,11};
 int a3[] = {3,5,7,8};
 set<int, less<int> > odd(a1,a1+6), result,
 small(a3,a3+4);

 //Create an insert_iterator for result
 insert_iterator<set<int, less<int> > >
 res_ins(result, result.begin());

 //Demonstrate set_symmetric_difference
 cout << "The symmetric difference of:" << endl << "{";
 copy(small.begin(),small.end(),
 ostream_iterator<int>(cout," "));
 cout << "} with {";
 copy(odd.begin(),odd.end(),
 ostream_iterator<int>(cout," "));
 cout << "} =" << endl << "{";
 set_symmetric_difference (small.begin(), small.end(),
 odd.begin(), odd.end(), res_ins);
 copy(result.begin(),result.end(),
 ostream_iterator<int>(cout," "));
 cout << "}" << endl << endl;

 return 0;
 }

Output :
The symmetric difference of:
{3 5 7 8 } with {1 3 5 7 9 11 } =
{1 8 9 11 }

If your compiler does not support default template parameters, then you
need to always supply the Compare template argument and the Allocator
template argument. For instance, you will need to write :

Complexity

Example

Warning

set_symmetric_difference

Standard C++ Library Class Reference 605

set<int, less<int>, allocator>

instead of :

set<int>

includes, set, set_union, set_intersection, set_differenceSee Also

Standard C++ Library Class Reference 607

set_union

Algorithm

Basic set operation for sorted sequences.

#include <algorithm>

template <class InputIterator1, class InputIterator2, class
OutputIterator>
OutputIterator
set_union (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result);

template <class InputIterator1, class InputIterator2,
 class OutputIterator, class Compare>
OutputIterator
set_union (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result, Compare comp);

The set_union algorithm constructs a sorted union of the elements from the
two ranges. It returns the end of the constructed range. set_union is stable,
that is, if an element is present in both ranges, the one from the first range is
copied. The result of of set_union is undefined if the result range overlaps
with either of the original ranges. Note that set_union does not merge the
two sorted sequences. If an element is present in both sequences, only the
element from the first sequence is copied to result . (Use the merge
algorithm to create an ordered merge of two sorted sequences that contains
all the elements from both sequences.)

set_union assumes that the sequences are sorted using the default
comparision operator less than (<), unless an alternative comparison
operator (comp) is provided.

At most ((last1 - first1) + (last2 - first2)) * 2 -1 comparisons
are performed.

//
// set_unin.cpp
//
 #include <algorithm>
 #include <set>
 #include <iostream.h>

 int main()

Summary

Synopsis

Description

Complexity

Example

set_union

608 Standard C++ Library Class Reference

 {

 //Initialize some sets
 int a2[6] = {2,4,6,8,10,12};
 int a3[4] = {3,5,7,8};
 set<int, less<int> > even(a2, a2+6),
 result, small(a3,a3+4);

 //Create an insert_iterator for result
 insert_iterator<set<int, less<int> > >
 res_ins(result, result.begin());

 //Demonstrate set_union
 cout << "The result of:" << endl << "{";
 copy(small.begin(),small.end(),
 ostream_iterator<int>(cout," "));
 cout << "} union {";
 copy(even.begin(),even.end(),
 ostream_iterator<int>(cout," "));
 cout << "} =" << endl << "{";
 set_union (small.begin(), small.end(),
 even.begin(), even.end(), res_ins);
 copy(result.begin(),result.end(),
 ostream_iterator<int>(cout," "));
 cout << "}" << endl << endl;

 return 0;
 }

Output :
The result of:
{3 5 7 8 } union {2 4 6 8 10 12 } =
{2 3 4 5 6 7 8 10 12 }

If your compiler does not support default template parameters, then you
need to always supply the Compare template argument and the Allocator
template argument. For instance, you will need to write :

set<int, less<int>, allocator>

instead of :

set<int>

includes, set, set_intersection, set_difference,
set_symmetric_difference

Warning

See Also

Standard C++ Library Class Reference 609

sort

Algorithm

Templated algorithm for sorting collections of entities.

#include <algorithm>

template <class RandomAccessIterator>
void sort (RandomAccessIterator first,
 RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first,
 RandomAccessIterator last, Compare comp);

The sort algorithm sorts the elements in the range [first, last) using
either the less than (<) operator or the comparison operator comp. If the
worst case behavior is important stable_sort or partial_sort should be used.

sort performs approximately NlogN , where N equals last - first ,
comparisons on the average.

//
// sort.cpp
//
 #include <vector>
 #include <algorithm>
 #include <functional>
 #include <iostream.h>

 struct associate
 {
 int num;
 char chr;

 associate(int n, char c) : num(n), chr(c){};
 associate() : num(0), chr('\0'){};
 };

 bool operator<(const associate &x, const associate &y)
 {
 return x.num < y.num;
 }

 ostream& operator<<(ostream &s, const associate &x)
 {
 return s << "<" << x.num << ";" << x.chr << ">";
 }

Summary

Synopsis

Description

Complexity

Example

sort

610 Standard C++ Library Class Reference

 int main ()
 {
 vector<associate>::iterator i, j, k;

 associate arr[20] =
 {associate(-4, ' '), associate(16, ' '),
 associate(17, ' '), associate(-3, 's'),
 associate(14, ' '), associate(-6, ' '),
 associate(-1, ' '), associate(-3, 't'),
 associate(23, ' '), associate(-3, 'a'),
 associate(-2, ' '), associate(-7, ' '),
 associate(-3, 'b'), associate(-8, ' '),
 associate(11, ' '), associate(-3, 'l'),
 associate(15, ' '), associate(-5, ' '),
 associate(-3, 'e'), associate(15, ' ')};

 // Set up vectors
 vector<associate> v(arr, arr+20), v1((size_t)20),
 v2((size_t)20);

 // Copy original vector to vectors #1 and #2
 copy(v.begin(), v.end(), v1.begin());
 copy(v.begin(), v.end(), v2.begin());

 // Sort vector #1
 sort (v1.begin(), v1.end());

 // Stable sort vector #2
 stable_sort(v2.begin(), v2.end());

 // Display the results
 cout << "Original sort stable_sort" << endl;
 for(i = v.begin(), j = v1.begin(), k = v2.begin();
 i != v.end(); i++, j++, k++)
 cout << *i << " " << *j << " " << *k << endl;

 return 0;
 }

Output :
Original sort stable_sort
<-4; > <-8; > <-8; >
<16; > <-7; > <-7; >
<17; > <-6; > <-6; >
<-3;s> <-5; > <-5; >
<14; > <-4; > <-4; >
<-6; > <-3;e> <-3;s>
<-1; > <-3;s> <-3;t>
<-3;t> <-3;l> <-3;a>
<23; > <-3;t> <-3;b>
<-3;a> <-3;b> <-3;l>
<-2; > <-3;a> <-3;e>
<-7; > <-2; > <-2; >
<-3;b> <-1; > <-1; >
<-8; > <11; > <11; >
<11; > <14; > <14; >
<-3;l> <15; > <15; >

sort

Standard C++ Library Class Reference 611

<15; > <15; > <15; >
<-5; > <16; > <16; >
<-3;e> <17; > <17; >
<15; > <23; > <23; >

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

stable_sort, partial_sort, partial_sort_copy

Warning

See Also

Standard C++ Library Class Reference 613

sort_heap

Algorithm

Converts a heap into a sorted collection.

#include <algorithm>

template <class RandomAccessIterator>
 void
 sort_heap (RandomAccessIterator first,
 RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
 void
 sort_heap (RandomAccessIterator first,
 RandomAccessIterator last, Compare comp);

A heap is a particular organization of elements in a range between two
random access iterators [a, b) . Its two key properties are:

1. *a is the largest element in the range.

2. *a may be removed by pop_heap() , or a new element added by
push_heap() , in O(logN) time.

These properties make heaps useful as priority queues.

The sort_heap algorithm converts a heap into a sorted collection over the
range [first, last) using either the default operator (<) or the
comparison function supplied with the algorithm. Note that sort_heap is
not stable, i.e., the elements may not be in the same relative order after
sort_heap is applied.

sort_heap performs at most NlogN comparisons where N is equal to last -

first .

//
// heap_ops.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>

 int main(void)
 {
 int d1[4] = {1,2,3,4};
 int d2[4] = {1,3,2,4};

 // Set up two vectors

Summary

Synopsis

Description

Complexity

Example

sort_heap

614 Standard C++ Library Class Reference

 vector<int> v1(d1,d1 + 4), v2(d2,d2 + 4);

 // Make heaps
 make_heap(v1.begin(),v1.end());
 make_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (4,x,y,z) and v2 = (4,x,y,z)
 // Note that x, y and z represent the remaining
 // values in the container (other than 4).
 // The definition of the heap and heap operations
 // does not require any particular ordering
 // of these values.

 // Copy both vectors to cout
 ostream_iterator<int> out(cout," ");
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // Now let's pop
 pop_heap(v1.begin(),v1.end());
 pop_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (3,x,y,4) and v2 = (3,x,y,4)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // And push
 push_heap(v1.begin(),v1.end());
 push_heap(v2.begin(),v2.end(),less<int>());
 // v1 = (4,x,y,z) and v2 = (4,x,y,z)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 // Now sort those heaps
 sort_heap (v1.begin(),v1.end());
 sort_heap (v2.begin(),v2.end(),less<int>());
 // v1 = v2 = (1,2,3,4)

 // Copy both vectors to cout
 copy(v1.begin(),v1.end(),out);
 cout << endl;
 copy(v2.begin(),v2.end(),out);
 cout << endl;

 return 0;
 }

Output :
4 2 3 1
4 3 2 1

sort_heap

Standard C++ Library Class Reference 615

3 2 1 4
3 1 2 4
4 3 1 2
4 3 2 1
1 2 3 4
1 2 3 4

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

make_heap, pop_heap, push_heap

Warning

See Also

Standard C++ Library Class Reference 617

stable_partition

Algorithm

Places all of the entities that satisfy the given predicate before all of the
entities that do not, while maintaining the relative order of elements in each
group.

#include <algorithm>

template <class BidirectionalIterator, class Predicate>
BidirectionalIterator
stable_partition (BidirectionalIterator first,
 BidirectionalIterator last,
 Predicate pred);

The stable_partition algorithm places all the elements in the range [first,

last) that satisfy pred before all the elements that do not satisfy it. It
returns an iterator i that is one past the end of the group of elements that
satisfy pred . In other words stable_partition returns i such that for any
iterator j in the range [first, i) , pred(*j) == true , and for any iterator
k in the range [i, last) , pred(*j) == false . The relative order of the
elements in both groups is preserved.

The partition algorithm can be used when it is not necessary to maintain the
relative order of elements within the groups that do and do not match the
predicate.

The stable_partition algorithm does at most (last - first) * log(last

- first) swaps. and applies the predicate exactly last - first times.

//
// prtition.cpp
//
 #include <functional>
 #include <deque>
 #include <algorithm>
 #include <iostream.h>

 //Create a new predicate from unary_function
 template<class Arg>
 class is_even : public unary_function<Arg, bool>
 {
 public:
 bool operator()(const Arg& arg1)
 {
 return (arg1 % 2) == 0;
 }
 };

Summary

Synopsis

Description

Complexity

Example

stable_partition

618 Standard C++ Library Class Reference

 int main()
 {
 //Initialize a deque with an array of ints
 int init[10] = {1,2,3,4,5,6,7,8,9,10};
 deque<int> d(init, init+10);

 //Print out the original values
 cout << "Unpartitioned values: " << endl << " ";
 copy(d.begin(),d.end(),ostream_iterator<int>(cout," "));
 cout << endl << endl;

 //Partition the deque according to even/oddness
 stable_partition (d.begin(), d.end(), is_even<int>());

 //Output result of partition
 cout << "Partitioned values: " << endl << " ";
 copy(d.begin(),d.end(),ostream_iterator<int>(cout," "));

 return 0;
 }

Output :
Unpartitioned values: 1 2 3 4 5 6 7 8 9 10
Partitioned values: 10 2 8 4 6 5 7 3 9 1
Stable partitioned values: 2 4 6 8 10 1 3 5 7 9

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

deque<int, allocator>

instead of :

deque<int>

partition

Warning

See Also

Standard C++ Library Class Reference 619

stable_sort

Algorithm

Templated algorithm for sorting collections of entities.

#include <algorithm>

template <class RandomAccessIterator>
void stable_sort (RandomAccessIterator first,
 RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void stable_sort (RandomAccessIterator first,
 RandomAccessIterator last,
 Compare comp);

The stable_sort algorithm sorts the elements in the range [first, last) .
The first version of the algorithm uses less than (<) as the comparison
operator for the sort. The second version uses the comparision function
comp.

The stable_sort algorithm is considered stable because the relative order of
the equal elements is preserved.

stable_sort does at most N(logN) **2, where N equals last -first ,
comparisons; if enough extra memory is available, it is NlogN.

//
// sort.cpp
//
 #include <vector>
 #include <algorithm>
 #include <functional>
 #include <iostream.h>

 struct associate
 {
 int num;
 char chr;

 associate(int n, char c) : num(n), chr(c){};
 associate() : num(0), chr('\0'){};
 };

 bool operator<(const associate &x, const associate &y)
 {
 return x.num < y.num;
 }

Summary

Synopsis

Description

Complexity

Example

stable_sort

620 Standard C++ Library Class Reference

 ostream& operator<<(ostream &s, const associate &x)
 {
 return s << "<" << x.num << ";" << x.chr << ">";
 }

 int main ()
 {
 vector<associate>::iterator i, j, k;

 associate arr[20] =
 {associate(-4, ' '), associate(16, ' '),
 associate(17, ' '), associate(-3, 's'),
 associate(14, ' '), associate(-6, ' '),
 associate(-1, ' '), associate(-3, 't'),
 associate(23, ' '), associate(-3, 'a'),
 associate(-2, ' '), associate(-7, ' '),
 associate(-3, 'b'), associate(-8, ' '),
 associate(11, ' '), associate(-3, 'l'),
 associate(15, ' '), associate(-5, ' '),
 associate(-3, 'e'), associate(15, ' ')};

 // Set up vectors
 vector<associate> v(arr, arr+20), v1((size_t)20),
 v2((size_t)20);

 // Copy original vector to vectors #1 and #2
 copy(v.begin(), v.end(), v1.begin());
 copy(v.begin(), v.end(), v2.begin());

 // Sort vector #1
 sort(v1.begin(), v1.end());

 // Stable sort vector #2
 stable_sort (v2.begin(), v2.end());

 // Display the results
 cout << "Original sort stable_sort" << endl;
 for(i = v.begin(), j = v1.begin(), k = v2.begin();
 i != v.end(); i++, j++, k++)
 cout << *i << " " << *j << " " << *k << endl;

 return 0;
 }

Output :
Original sort stable_sort
<-4; > <-8; > <-8; >
<16; > <-7; > <-7; >
<17; > <-6; > <-6; >
<-3;s> <-5; > <-5; >
<14; > <-4; > <-4; >
<-6; > <-3;e> <-3;s>
<-1; > <-3;s> <-3;t>
<-3;t> <-3;l> <-3;a>
<23; > <-3;t> <-3;b>
<-3;a> <-3;b> <-3;l>
<-2; > <-3;a> <-3;e>
<-7; > <-2; > <-2; >

stable_sort

Standard C++ Library Class Reference 621

<-3;b> <-1; > <-1; >
<-8; > <11; > <11; >
<11; > <14; > <14; >
<-3;l> <15; > <15; >
<15; > <15; > <15; >
<-5; > <16; > <16; >
<-3;e> <17; > <17; >
<15; > <23; > <23; >

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

sort, partial_sort, partial_sort_copy

Warning

See Also

Standard C++ Library Class Reference 623

stack

Container Adaptor

A container adaptor which behaves like a stack (last in, first out).

#include <stack>

template <class T, class Container = deque<T>,
 class Allocator = allocator>
class stack ;

The stack container adaptor causes a container to behave like a "last in, first
out" (LIFO) stack. The last item that was put ("pushed") onto the stack is the
first item removed ("popped" off). The stack can adapt to any container that
provides the operations, back() , push_back() , and pop_back() . In
particular, deque , list , and vector can be used.

template <class T, class Container = deque<T>,
 class Allocator = allocator>
 class stack {

public:

// typedefs

 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Allocator allocator_type

// Construct

 explicit stack (const Allocator& = Allocator());
 allocator_type get_allocator () const;

// Accessors

 bool empty () const;
 size_type size () const;
 value_type& top ();
 const value_type& top () const;
 void push (const value_type&);
 void pop ();
};

// Non-member Operators

template <class T, class Container, class Allocator>
 bool operator== (const stack<T, Container, Allocator>&,
 const stack<T, Container, Allocator>&);

Summary

Synopsis

Description

Interface

stack

624 Standard C++ Library Class Reference

template <class T, class Container, class Allocator>
 bool operator< (const stack<T, Container, Allocator>&,
 const stack<T, Container, Allocator>&);
explicit
stack (const Allocator& alloc = Allocator());

Constructs an empty stack. The stack will use the allocator alloc for all
storage management.

allocator_type get_allocator () const;
 Returns a copy of the allocator used by self for storage management.

bool
empty () const;

Returns true if the stack is empty, otherwise false .

void
pop ();

Removes the item at the top of the stack.

void
push (const value_type& x);

Pushes x onto the stack.

size_type
size () const;

Returns the number of elements on the stack.

value_type&
top ();

Returns a reference to the item at the top of the stack. This will be the last
item pushed onto the stack unless pop() has been called since then.

const value_type&
top () const;

Returns a constant reference to the item at the top of the stack as a const

value_type .

template <class T, class Container, class Allocator>
 bool operator== (const stack<T, Container, Allocator>& x,
 const stack<T, Container, Allocator>& y);

Equality operator. Returns true if x is the same as y .

template <class T, class Container, class Allocator>
 bool operator< (const stack<T, Container, Allocator>& x,
 const stack<T, Container, Allocator>& y);

Returns true if the stack defined by the elements contained in x is
lexicographically less than the stack defined by the elements of y .

//
// stack.cpp
//
 #include <stack>

Constructor

Allocator

Member
Functions

Non-member
Operators

Example

stack

Standard C++ Library Class Reference 625

 #include <vector>
 #include <deque>
 #include <string>
 #include <iostream.h>

 int main(void)
 {
 // Make a stack using a vector container
 stack <int,vector<int>, allocator> s;

 // Push a couple of values on the stack
 s.push(1);
 s.push(2);
 cout << s.top() << endl;

 // Now pop them off
 s.pop();
 cout << s.top() << endl;
 s.pop();

 // Make a stack of strings using a deque
 stack <string,deque<string>, allocator> ss;

 // Push a bunch of strings on then pop them off
 int i;
 for (i = 0; i < 10; i++)
 {
 ss.push(string(i+1,'a'));
 cout << ss.top() << endl;
 }
 for (i = 0; i < 10; i++)
 {
 cout << ss.top() << endl;
 ss.pop();
 }

 return 0;
 }

Output :
2
1
a
aa
aaa
aaaa
aaaaa
aaaaaa
aaaaaaa
aaaaaaaa
aaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaa
aaaaaaaa
aaaaaaa
aaaaaa

stack

626 Standard C++ Library Class Reference

aaaaa
aaaa
aaa
aa
a

If your compiler does not support template parameter defaults, you are
required to supply a template parameter for Container and for Allocator .
For example:

You would not be able to write,

stack<int> var;

Instead, you would have to write,

stack<int, deque<int>, allocator> var;

allocator, Containers, deque, list, vector

Warnings

See Also

Standard C++ Library Class Reference 627

Stream Iterators

Iterators

Stream iterators provide iterator capabilities for ostreams and istreams.
They allow generic algorithms to be used directly on streams.

See the sections istream_iterator and ostream_iterator for a description of
these iterators.

Summary

Standard C++ Library Class Reference 629

string

String Library

A specialization of the basic_string class. For more information about
strings, see the entry basic_string.

Summary

Standard C++ Library Class Reference 631

string_char_traits

A traits class providing types and operations to the basic_string container.

#include <string>
template <class charT> struct string_char_traits
struct string_char_traits<char>; .
struct string_char_traits<wchar_t>;

The string_char_traits struct provides elementary operations to
instantiations of basic_string. As with all traits classes, string_char_traits is
used to specialize the behavior of a template. In this case, the traits class
provides functions based on character type to the basic_string template.

Specializations of string_char_traits are provided for char and wchar_t .
These are used to define, respectively, string and wstring .

template <class charT> struct string_char_traits .
{
typedef charT char_type;
static void assign (char_type&, const char_type&); .
static char_type* assign (char_type*, size_t, const char_type&);

static bool eq (const char_type&, const char_type&); .
static bool ne (const char_type&, const char_type&); .
static bool lt (const char_type&, const char_type&); .
static char_type eos (); .
static int compare (const char_type*, const char_type*, size_t);
.
static size_t length (const char_type * s); .
static char_type* copy (char_type*, const char_type*, size_t);
.
static char_type* move (char_type*, const char_type*, size_t);
.
static const char_type* .
find (const char_type*, int, const char_type&);
};

char_type
The basic character type. Same as the template parameter.

static
void assign (char_type& c1, const char_type& c2)

Assign one character value to another. The value of c2 is assigned to c1 .

static
char_type* assign (char_type* s, size_t n, const char_type& a)

Assign one character value to n elements of a character array. The value of
a is assigned to n elements of s .

Summary

Synopsis

Description

Interface

Type

Operations

string_char_traits

632 Standard C++ Library Class Reference

static
bool eq (const char_type& c1, const char_type& c2)

Return true if c1 equals c2 .

static
bool ne (const char_type& c1, const char_type& c2)

Return true if c1 does not equal c2 .

static
bool lt (const char_type& c1, const char_type& c2)

Return true if c1 is less than c2 .

static
char_type eos ()

Return the end of string value for the the character type. Typically
char_type() .

static
int compare (const char_type* s1, const char_type* s2,
 size_t n)

Compare n values from s1 with n values from s2 . Return 1 if s1 is greater
than s2 , -1 if s1 is less than s2 , or 0 if they are equal.

static
size_t length (const char_type * s)

Return the length of the null terminated character array s . The eos

terminator is not counted.

static
char_type* copy (char_type* s1, const char_type* s2, size_t n)

Copy n values from s1 to s2 . The ranges of (s1,s1+n) and (s2,s2+n)

may not overlap.

static
char_type* move (char_type* s1, const char_type* s2, size_t n)

Move n values from s1 to s2 . The ranges of (s1,s1+n) and (s2,s2+n)

may overlap.

static
const char_type* find (const char_type* s, int n,
 const char_type& a)

Look for the value of a in s . Only n elements of s are examined. Returns a
pointer to the matched element if one is found. Otherwise returns s + n .

basic_string, traitsSee Also

Standard C++ Library Class Reference 633

swap

Algorithm

Exchange values.

#include <algorithm>

template <class T>
 void swap (T& a, T& b);

The swap algorithm exchanges the values of a and b. The effect is:

T tmp = a
a = b
b = tmp

iter_swap, swap_ranges

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 635

swap_ranges

Algorithm

Exchange a range of values in one location with those in another

#include <algorithm>

template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 swap_ranges (ForwardIterator1 first1,
 ForwardIterator1 last1,
 ForwardIterator2 first2);

The swap_ranges algorithm exchanges corresponding values in two ranges,
in the following manner:

For each non-negative integer n < (last - first) the function exchanges
*(first1 + n) with *(first2 + n)) . After completing all exchanges,
swap_ranges returns an iterator that points to the end of the second
container, i.e., first2 + (last1 -first1) . The result of swap_ranges is
undefined if the two ranges [first, last) and [first2, first2 +

(last1 - first1)) overlap.

//
// swap.cpp
//
 #include <vector>
 #include <algorithm>

 int main()
 {
 int d1[] = {6, 7, 8, 9, 10, 1, 2, 3, 4, 5};

 // Set up a vector
 vector<int> v(d1,d1 + 10);

 // Output original vector
 cout << "For the vector: ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));

 // Swap the first five elements with the last five elements
 swap_ranges (v.begin(),v.begin()+5, v.begin()+5);

 // Output result
 cout << endl << endl
 << "Swapping the first five elements "
 << "with the last five gives: "
 << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));

 return 0;
 }

Summary

Synopsis

Description

Example

swap_ranges

636 Standard C++ Library Class Reference

Output :
For the vector: 6 7 8 9 10 1 2 3 4 5
Swaping the first five elements with the last five gives:
 1 2 3 4 5 6 7 8 9 10
Swaping the first and last elements gives:
 10 2 3 4 5 6 7 8 9 1

If your compiler does not support default template parameters, you need to
always supply the Allocator template argument. For instance, you will
need to write :

vector<int, allocator>

instead of :

vector<int>

iter_swap, swap

Warning

See Also

Standard C++ Library Class Reference 637

times

Function Object

A binary function object that returns the result of multiplying its first and
second arguments.

#include<functional>

template <class T>
struct times : binary_function<T, T, T> {
 typedef typename binary_function<T, T, T>::second_argument_type
 second_argument_type;
 typedef typename binary_function<T, T, T>::first_argument_type
 first_argument_type;
 typedef typename binary_function<T, T, T>::result_type result_type;
 T operator() (const T&, const T&) const;
};

times is a binary function object. Its operator() returns the result of
multiplying x and y . You can pass a times object to any algorithm that uses
a binary function. For example, the transform algorithm applies a binary
operation to corresponding values in two collections and stores the result.
times would be used in that algorithm in the following manner:

vector<int> vec1;
vector<int> vec2;
vector<int> vecResult;
.
.
.
transform(vec1.begin(), vec1.end(),
 vec2.begin(), vec2.end(),
 vecResult.begin(), times<int>());

After this call to transform, vecResult(n) will contain vec1(n) times
vec2(n) .

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will have to write :

vector<int, allocator>

instead of :

vector<int>

binary_function, function objects

Summary

Synopsis

Description

Warning

See Also

Standard C++ Library Class Reference 639

transform

Algorithm

Applies an operation to a range of values in a collection and stores the result.

#include <algorithm>

template <class InputIterator,
 class OutputIterator,
 class UnaryOperation>
OutputIterator transform (InputIterator first,
 InputIterator last,
 OutputIterator result,
 UnaryOperation op);

template <class InputIterator1,
 class InputIterator2,
 class OutputIterator,
 class BinaryOperation>
OutputIterator transform (InputIterator1 first1,
 InputIterator1 last1,
 InputIterator2 first2,
 OutputIterator result,
 BinaryOperation binary_op);

The transform algorithm has two forms. The first form applies unary
operation op to each element of the range [first, last) , and sends the
result to the output iterator result . For example, this version of transform,
could be used to square each element in a vector. If the output iterator
(result) is the same as the input iterator used to traverse the range,
transform, performs its transformation inplace.

The second form of transform applies a binary operation, binary_op , to
corresponding elements in the range [first1, last1) and the range that
begins at first2 , and sends the result to result . For example, transform
can be used to add corresponding elements in two sequences, and store the
set of sums in a third. The algorithm assumes, but does not check, that the
second sequence has at least as many elements as the first sequence. Note
that the output iterator result can be a third sequence, or either of the two
input sequences.

Formally, transform assigns through every iterator i in the range [result,

result + (last1 - first1)) a new corresponding value equal to:

op(*(first1 + (i - result))

Summary

Synopsis

Description

transform

640 Standard C++ Library Class Reference

 or

binary_op(*(first1 + (i - result), *(first2 + (i - result)))

transform returns result + (last1 - first1) . op and binary_op must
not have any side effects. result may be equal to first in case of unary
transform, or to first1 or first2 in case of binary transform.

Exactly last1 - first1 applications of op or binary_op are performed.

//
// trnsform.cpp
//
 #include <functional>
 #include <deque>
 #include <algorithm>
 #include <iostream.h>
 #include <iomanip.h>

 int main()
 {
 //Initialize a deque with an array of ints
 int arr1[5] = {99, 264, 126, 330, 132};
 int arr2[5] = {280, 105, 220, 84, 210};
 deque<int> d1(arr1, arr1+5), d2(arr2, arr2+5);

 //Print the original values
 cout << "The following pairs of numbers: "
 << endl << " ";
 deque<int>::iterator i1;
 for(i1 = d1.begin(); i1 != d1.end(); i1++)
 cout << setw(6) << *i1 << " ";
 cout << endl << " ";
 for(i1 = d2.begin(); i1 != d2.end(); i1++)
 cout << setw(6) << *i1 << " ";

 // Transform the numbers in the deque to their
 // factorials and store in the vector
 transform (d1.begin(), d1.end(), d2.begin(),
 d1.begin(), times<int>());

 //Display the results
 cout << endl << endl;
 cout << "Have the products: " << endl << " ";
 for(i1 = d1.begin(); i1 != d1.end(); i1++)
 cout << setw(6) << *i1 << " ";

 return 0;
 }

Output :
The following pairs of numbers:
 99 264 126 330 132
 280 105 220 84 210
Have the products:
 27720 27720 27720 27720 27720

Complexity

Example

transform

Standard C++ Library Class Reference 641

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

deque<int, allocator>

instead of:

deque<int>

Warning

Standard C++ Library Class Reference 643

unary_function

Function Object

Base class for creating unary function objects.

#include <functional>

template <class Arg, class Result>
struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
};

Function objects are objects with an operator() defined. They are
important for the effective use of the standard library's generic algorithms,
because the interface for each algorithmic template can accept either an
object with an operator() defined or a pointer to a function. The standard
library provides both a standard set of function objects, and a pair of classes
that you can use as the base for creating your own function objects.

Function objects that take one argument are called unary function objects.
Unary function objects are required to provide the typedefs argument_type

and result_type . The unary_function class makes the task of creating
templated unary function objects easier by providing the necessary typedefs
for a unary function object. You can create your own unary function objects
by inheriting from unary_function.

function objects, and Function Objects Section in User's Guide.

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 645

unary_negate

Function Adaptor (Negator)

Function object that returns the complement of the result of its unary
predicate

#include<functional>

template <class Predicate>
class unary_negate : public unary_function<typename
 Predicate::argument_type,
 bool>;

unary_negate is a function object class that provides a return type for the
function adaptor not1. not1 is a function adaptor, known as a negator, that
takes a unary predicate function object as its argument and returns a unary
predicate function object that is the complement of the original.

Note that not1 works only with function objects that are defined as
subclasses of the class unary_function.

template <class Predicate>
class unary_negate
 : public unary_function<Predicate::argument_type, bool> {
 typedef typename unary_function<typename
 Predicate::argument_type,bool>::argument_type argument_type;
 typedef typename unary_function<typename
 Predicate::argument_type,bool>::result_type result_type;
public:
 explicit unary_negate (const Predicate&);
 bool operator() (const argument_type&) const;
};

template<class Predicate>
unary_negate <Predicate> not1 (const Predicate&);

explicit unary_negate (const Predicate& pred);
Construct a unary_negate object from predicate pred .

bool operator() (const argument_type& x) const;
Return the result of pred(x)

not1, not2, unary_function, binary_negate

Summary

Synopsis

Description

Interface

Constructor

Operator

See Also

Standard C++ Library Class Reference 647

uninitialized_copy

Memory Management

An algorithms that uses construct to copy values from one range to another
location.

#include <memory>

template <class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_copy (InputIterator first,
 InputIterator last,
 ForwardIterator result);

uninitialized_copy copies all items in the range [first, last) into the
location beginning at result using the construct algorithm.

construct

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 649

uninitialized_fill

Memory Management

Algorithm that uses the construct algorithm for setting values in a
collection.

#include <memory>

template <class ForwardIterator, class T>
void uninitialized_fill (ForwardIterator first,
 ForwardIterator last,
 const T& x);

uninitialized_fill initializes all of the items in the range [first, last) to
the value x , using the construct algorithm.

construct, uninitialized_fill_n

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 651

uninitialized_fill_n

Memory Management

Algorithm that uses the construct algorithm for setting values in a
collection.

#include <memory>

template <class ForwardIterator,
 class Size, class T>
void uninitialized_fill_n (ForwardIterator first,
 Size n, const T& x);

unitialized_fill_n starts at the iterator first and initializes the first n items to
the value x , using the construct algorithm.

construct, uninitialized_fill

Summary

Synopsis

Description

See Also

Standard C++ Library Class Reference 653

unique, unique_copy

Algorithm

Removes consecutive duplicates from a range of values and places the
resulting unique values into the result.

#include <algorithm>

template <class ForwardIterator>
ForwardIterator unique (ForwardIterator first,
 ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>
ForwardIterator unique (ForwardIterator first,
 ForwardIterator last,
 BinaryPredicate binary_pred);

template <class InputIterator, class OutputIterator>
OutputIterator unique_copy (InputIterator first,
 InputIterator last,
 OutputIterator result);

template <class InputIterator,
 class OutputIterator,
 class BinaryPredicate>
OutputIterator unique_copy (InputIterator first,
 InputIterator last,
 OutputIterator result,
 BinaryPredicate binary_pred);

The unique algorithm moves through a sequence and eliminates all but the
first element from every consecutive group of equal elements. There are two
versions of the algorithm, one tests for equality, and the other tests whether
a binary predicate applied to adjacent elements is true. An element is unique
if it does not meet the corresponding condition listed here:

 *i == *(i - 1)

or

binary_pred(*i, *(i - 1)) == true.

If an element is unique, it is copied to the front of the sequence, overwriting
the existing elements. Once all unique elements have been identified. The
remainder of the sequence is left unchanged, and unique returns the end of
the resulting range.

The unique_copy algorithm copies the first element from every consecutive
group of equal elements, to an OutputIterator. The unique_copy algorithm,

Summary

Synopsis

Description

unique, unique_copy

654 Standard C++ Library Class Reference

also has two versions--one that tests for equality and a second that tests
adjacent elements against a binary predicate.

unique_copy returns the end of the resulting range.

Exactly (last - first) - 1 applications of the corresponding predicate
are performed.

//
// unique.cpp
//
 #include <algorithm>
 #include <vector>
 #include <iostream.h>
 int main()
 {
 //Initialize two vectors
 int a1[20] = {4, 5, 5, 9, -1, -1, -1, 3, 7, 5,
 5, 5, 6, 7, 7, 7, 4, 2, 1, 1};
 vector<int> v(a1, a1+20), result;

 //Create an insert_iterator for results
 insert_iterator<vector<int> > ins(result,
 result.begin());

 //Demonstrate includes
 cout << "The vector: " << endl << " ";
 copy(v.begin(),v.end(),ostream_iterator<int>(cout," "));

 //Find the unique elements
 unique_copy(v.begin(), v.end(), ins);

 //Display the results
 cout << endl << endl
 << "Has the following unique elements:"
 << endl << " ";
 copy(result.begin(),result.end(),
 ostream_iterator<int>(cout," "));

 return 0;
}

Output :
The vector:
 4 5 5 9 -1 -1 -1 3 7 5 5 5 6 7 7 7 4 2 1 1
Has the following unique elements:
 4 5 9 -1 3 7 5 6 7 4 2 1

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of:

vector<int>

Complexity

Example

Warning

Standard C++ Library Class Reference 655

upper_bound

Algorithm

Determines the last valid position for a value in a sorted container.

#include <algorithm>
template <class ForwardIterator, class T>
 ForwardIterator
 upper_bound (ForwardIterator first, ForwardIterator last,
 const T& value);
 template <class ForwardIterator, class T, class Compare>
 ForwardIterator
 upper_bound (ForwardIterator first, ForwardIterator last,
 const T& value, Compare comp);

The upper_bound algorithm is part of a set of binary search algorithms. All
of these algorithms perform binary searches on ordered containers. Each
algorithm has two versions. The first version uses the less than operator
(operator<) to perform the comparison, and assumes that the sequence has
been sorted using that operator. The second version allows you to include a
function object of type Compare , and assumes that Compare is the function
used to sort the sequence. The function object must be a binary predicate.

The upper_bound algorithm finds the last position in a container that
value can occupy without violating the container's ordering.
upper_bound's return value is the iterator for the first element in the
container that is greater than value , or, when the comparison operator is
used, the first element that does not satisfy the comparison function. Because
the algorithm is restricted to using the less than operator or the user-defined
function to perform the search, upper_bound returns an iterator i in the
range [first, last) such that for any iterator j in the range [first, i)

the appropriate version of the following conditions holds:

!(value < *j)

or

 comp(value, *j) == false

upper_bound performs at most log(last - first) + 1 comparisons.

//
// ul_bound.cpp
//

Summary

Synopsis

Description

Complexity

Example

upper_bound

656 Standard C++ Library Class Reference

 #include <vector>
 #include <algorithm>
 #include <iostream.h>

 int main()
 {
 typedef vector<int>::iterator iterator;
 int d1[11] = {0,1,2,2,3,4,2,2,2,6,7};

 // Set up a vector
 vector<int> v1(d1,d1 + 11);

 // Try lower_bound variants
 iterator it1 = lower_bound(v1.begin(),v1.end(),3);
 // it1 = v1.begin() + 4

 iterator it2 =
 lower_bound(v1.begin(),v1.end(),2,less<int>());
 // it2 = v1.begin() + 4

 // Try upper_bound variants
 iterator it3 = upper_bound (v1.begin(),v1.end(),3);
 // it3 = vector + 5

 iterator it4 =
 upper_bound (v1.begin(),v1.end(),2,less<int>());
 // it4 = v1.begin() + 5

 cout << endl << endl
 << "The upper and lower bounds of 3: ("
 << *it1 << " , " << *it3 << "]" << endl;

 cout << endl << endl
 << "The upper and lower bounds of 2: ("
 << *it2 << " , " << *it4 << "]" << endl;

 return 0;
 }

Output :
The upper and lower bounds of 3: (3 , 4]
The upper and lower bounds of 2: (2 , 3]

If your compiler does not support default template parameters, then you
need to always supply the Allocator template argument. For instance, you
will need to write :

vector<int, allocator>

instead of :

vector<int>

lower_bound, equal_range

Warning

See Also

Standard C++ Library Class Reference 657

value_type

Type primitive

Determine the type of value an iterator points to.

#include <iterator>

template <class T, class Distance>
inline T* value_type (const input_iterator<T, Distance>&)

template <class T, class Distance>
inline T* value_type (const forward_iterator<T, Distance>&)

template <class T, class Distance>
inline T* value_type (const bidirectional_iterator<T, Distance>&)

template <class T, class Distance>
inline T* value_type (const random_access_iterator<T, Distance>&)

template <class T>
inline T* value_type (const T*)

The value_type function template returns a pointer to a default value of
the type pointed to by an iterator. Five overloaded versions of this function
template handle the four basic iterator types and simple arrays. Each of the
first four take an iterator of a specific type, and return the value used to
instantiate the iterator. The fifth version takes and returns a T* in order to
handle the case when an iterator is a simple pointer.

This family of function templates can be used to extract a value type from an
iterator and subsequently use that type to create a local variable. Typically
the value_type functions are used like this:

template <class Iterator>
void foo(Iterator first, Iterator last)
{
 __foo(begin,end,value_type(first));
}

template <class Iterator, class T>
void __foo(Iterator first, Iterator last, T*>
{
 T temp = *first;
 …
}

The auxiliary function __foo extracts a usable value type from the iterator
and then puts the type to work.

Summary

Synopsis

Description

value_type

658 Standard C++ Library Class Reference

Other iterator primitives: distance_type, iterator_category,
distance, advance

See Also

Standard C++ Library Class Reference 659

vector

Container

Sequence that supports random access iterators.

#include <vector>

template <class T, class Allocator = allocator>
class vector ;

vector<T, Allocator> is a type of sequence that supports random access
iterators. In addition, it supports amortized constant time insert and erase
operations at the end. Insert and erase in the middle take linear time.
Storage management is handled automatically. In vector, iterator is a
random access iterator referring to T. const_iterator is a constant random
access iterator that returns a const T& when being dereferenced. A
constructor for iterator and const_iterator is guaranteed. size_type is
an unsigned integral type. difference_type is a signed integral type.

Any type used for the template parameter T must provide the following
(where T is the type , t is a value of T and u is a const value of T):

Default constructor T()
 Copy constructors T(t) and T(u)
 Destructor t.~T()
 Address of &t and &u yielding T* and
 const T* respectively
 Assignment t = a where a is a
 (possibly const) value of T

Vectors of bit values (boolean 1/0 values) are handled as a special case by
the standard library, so that they can be efficiently packed several elements
to a word. The operations for a boolean vector, vector<bool>, are a
superset of those for an ordinary vector, only the implementation is more
efficient.

Two member functions are available to the the boolean vector data type.
One is flip() , which inverts all the bits of the vector. Boolean vectors also
return as reference an internal value that also supports the flip() member
function. The other vector<bool>-specific member function is a second
form of the swap() function

template <class T, class Allocator = allocator>
 class vector {

public:

Summary

Synopsis

Description

Special Case

Interface

vector

660 Standard C++ Library Class Reference

 // Types

 typedef T value_type;
 typedef Allocator allocator_type;
 typename reference;
 typename const_reference;
 typename iterator;
 typename const_iterator;
 typename size_type;
 typename difference_type;
 typename reverse_iterator;
 typename const_reverse_iterator;

 // Construct/Copy/Destroy

 explicit vector (const Allocator& = Allocator());
 explicit vector (size_type, const Allocator& = Allocator ());
 vector (size_type, const T&, const Allocator& = Allocator());
 vector (const vector<T, Allocator>&);
 template <class InputIterator>
 vector (InputIterator, InputIterator,
 const Allocator& = Allocator ());
 ~vector ();
 vector<T,Allocator>& operator= (const vector<T, Allocator>&);
 template <class InputIterator>
 void assign (InputIterator first, InputIterator last);
 template <class Size, class TT>
 void assign (Size n);
 template <class Size, class TT>
 void assign (Size n, const TT&);
 allocator_type get_allocator () const;

 // Iterators

 iterator begin ();
 const_iterator begin () const;
 iterator end ();
 const_iterator end () const;
 reverse_iterator rbegin ();
 const_reverse_iterator rbegin () const;
 reverse_iterator rend ();
 const_reverse_iterator rend () const;

 // Capacity

 size_type size () const;
 size_type max_size () const;
 void resize (size_type);
 void resize (size_type, T);
 size_type capacity () const;
 bool empty () const;
 void reserve (size_type);

 // Element Access

 reference operator[] (size_type);
 const_reference operator[] (size_type) const;

vector

Standard C++ Library Class Reference 661

 reference at (size_type);
 const_reference at (size_type) const;
 reference front ();
 const_reference front () const;
 reference back ();
 const_reference back () const;

 // Modifiers

 void push_back (const T&);
 void pop_back ();
 iterator insert (iterator);
 iterator insert (iterator, const T&);
 void insert (iterator, size_type, const T&);
 template <class InputIterator>
 void insert (iterator, InputIterator, InputIterator);
 iterator erase (iterator);
 iterator erase (iterator, iterator);
 void swap (vector<T, Allocator>&);

};

 // Non-member Operators

template <class T>
 bool operator== (const vector<T,Allocator>&,
 const vector <T,Allocator>&);

template <class T>
 bool operator< (const vector<T,Allocator>&,
 const vector<T,Allocator>&);

// Specialized Algorithms

template <class T, class Allocator>
 void swap (const vector<T,Allocator>&, const vector<T,Allocator>&);

explicit vector (const Allocator& alloc = Allocator());
The default constructor. Creates a vector of length zero. The vector will
use the allocator alloc for all storage management.

explicit vector (size_type n,
 const Allocator& alloc = Allocator());

Creates a vector of length n, containing n copies of the default value for
type T. Requires that T have a default constructor. The vector will use the
allocator alloc for all storage management.

vector (size_type n, const T& value,
 const Allocator& alloc = Allocator());

Creates a vector of length n, containing n copies of value. The vector will
use the allocator alloc for all storage management.

vector (const vector<T, Allocator>& x);
Creates a copy of x .

Constructors
and

Destructors

vector

662 Standard C++ Library Class Reference

template <class InputIterator>
vector (InputIterator first, InputIterator last,
 const Allocator& alloc = Allocator());

Creates a vector of length last - first , filled with all values obtained by
dereferencing the InputIterators on the range [first, last) . The
vector will use the allocator alloc for all storage management.

~vector ();
The destructor. Releases any allocated memory for this vector.

iterator begin ();
Returns a random access iterator that points to the first element.

const_iterator begin () const;
Returns a random access const_iterator that points to the first element.

iterator end ();
Returns a random access iterator that points to the past-the-end value.

const_iterator end () const;
Returns a random access const_iterator that points to the past-the-end
value.

reverse_iterator rbegin ();
Returns a random access reverse_iterator that points to the past-the-
end value.

const_reverse_iterator rbegin () const;
Returns a random access const_reverse_iterator that points to the
past-the-end value.

reverse_iterator rend ();
Returns a random access reverse_iterator that points to the first
element.

const_reverse_iterator rend () const;
Returns a random access const_reverse_iterator that points to the first
element.

vector<T, Allocator>& operator= (const vector<T, Allocator>&
 x);

Erases all elements in self then inserts into self a copy of each element in x .
Returns a reference to self.

allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.

Iterators

Assignment
Operator

Allocator

vector

Standard C++ Library Class Reference 663

reference operator[] (size_type n);
Returns a reference to element n of self. The result can be used as an
lvalue. The index n must be between 0 and the size less one.

const_reference operator[] (size_type n) const;
Returns a constant reference to element n of self. The index n must be
between 0 and the size less one.

template <class InputIterator>
void
assign (InputIterator first, InputIterator last);

Erases all elements contained in self, then inserts new elements from the
range [first, last) .

template <class Size, class T>
void
assign (Size n, const T& t);

Erases all elements contained in self, then inserts n instances of the default
value of type T.

template <class Size, class T>
void
assign (Size n, const T& t);

Erases all elements contained in self, then inserts n instances of the value
of t .

reference
at (size_type n);

Returns a reference to element n of self. The result can be used as an
lvalue. The index n must be between 0 and the size less one.

const_reference
at (size_type) const;

Returns a constant reference to element n of self. The index n must be
between 0 and the size less one.

reference
back ();

Returns a reference to the last element.

const_reference
back () const;

Returns a constant reference to the last element.

size_type
capacity () const;

Returns the size of the allocated storage, as the number of elements that
can be stored.

Reference
Operators

Member
Functions

vector

664 Standard C++ Library Class Reference

void clear () ;
 Deletes all elements from the vector.

bool
empty () const;
 Returns true if the size is zero.

iterator
erase (iterator position);

Deletes the vector element pointed to by the iterator position . Returns an
iterator pointing to the element following the deleted element, or end()

if the deleted element was the last one in this vector.

iterator
erase (iterator first, iterator last);

Deletes the vector elements in the range (first, last). Returns an iterator

pointing to the element following the last deleted element, or end() if
there were no elements in the deleted range.

void
flip ();

Flips all the bits in the vector. This member function is only defined for
vector<bool>.

reference
front ();

Returns a reference to the first element.

const_reference
front () const;

Returns a constant reference to the first element.

iterator
insert (iterator position);

Inserts x before position . The return value points to the inserted x .

iterator
insert (iterator position, const T& x);

Inserts x before position . The return value points to the inserted x .

void
insert (iterator position, size_type n, const T& x);

Inserts n copies of x before position .

vector

Standard C++ Library Class Reference 665

template <class InputIterator>
void
insert (iterator position, InputIterator first,
 InputIterator last);

Inserts copies of the elements in the range [first, last] before
position .

size_type
max_size () const;

Returns size() of the largest possible vector.

void
pop_back ();

Removes the last element of self.

void
push_back (const T& x);

Inserts a copy of x to the end of self.

void
reserve (size_type n);

Increases the capacity of self in anticipation of adding new elements.
reserve itself does not add any new elements. After a call to reserve,

capacity() is greater than or equal to n and subsequent insertions will
not cause a reallocation until the size of the vector exceeds n. Reallocation
does not occur if n is less than capacity() . If reallocation does occur, then
all iterators and references pointing to elements in the vector are
invalidated. reserve takes at most linear time in the size of self.

void
resize (size_type sz);

Alters the size of self. If the new size (sz) is greater than the current size,
then sz-size() instances of the default value of type T are inserted at
the end of the vector. If the new size is smaller than the current capacity ,
then the vector is truncated by erasing size()-sz elements off the end. If
sz is equal to capacity then no action is taken.

void
resize (size_type sz, T c);

Alters the size of self. If the new size (sz) is greater than the current size,
then sz-size() c 's are inserted at the end of the vector. If the new size is
smaller than the current capacity , then the vector is truncated by erasing
size()-sz elements off the end. If sz is equal to capacity then no action
is taken.

size_type
size () const;

Returns the number of elements.

vector

666 Standard C++ Library Class Reference

void
swap (vector<T, Allocator>& x);

Exchanges self with x , by swapping all elements.

void
swap(reference x, reference y);

Swaps the values of x and y . This is a member function of vector<bool>
only.

template <class T, class Allocator>
bool operator== (const vector<T, Allocator>& x,
 const vector<T, Allocator>& y);

Returns true if x is the same as y .

template <class T>
bool operator< (const vector<T, Allocator>& x,
 const vector<T, Allocator>& y);

Returns true if the elements contained in x are lexicographically less than
the elements contained in y .

template <class T, class Allocator>
void swap (vector <T, Allocator>& a, vector <T, Allocator>& b);

Efficiently swaps the contents of a and b.

//
// vector.cpp
//
 #include <vector>
 #include <iostream.h>

 ostream& operator<< (ostream& out,
 const vector<int, allocator>& v)
 {
 copy(v.begin(), v.end(), ostream_iterator<int>(out," "));
 return out;
 }

 int main(void)
 {
 // create a vector of doubles
 vector <int, allocator> vi;
 int i;

 for(i = 0; i < 10; ++i) {
 // insert values before the beginning
 vi.insert(vi.begin(), i);
 }

 // print out the vector
 cout << vi << endl;

 // now let's erase half of the elements
 int half = vi.size() >> 1;

 for(i = 0; i < half; ++i) {
 vi.erase(vi.begin());
 }

Non-member
Operators

Example

vector

Standard C++ Library Class Reference 667

 // print ir out again
 cout << vi << endl;

 return 0;
 }

Output :

9 8 7 6 5 4 3 2 1 0
4 3 2 1 0

Member function templates are used in all containers provided by the
Standard Template Library. An example of this feature is the constructor for
vector<T, Allocator> that takes two templated iterators:

template <class InputIterator>
 vector (InputIterator, InputIterator,
 const Allocator = Allocator());

vector also has an insert function of this type. These functions, when not
restricted by compiler limitations, allow you to use any type of input iterator
as arguments. For compilers that do not support this feature we provide
substitute functions that allow you to use an iterator obtained from the same
type of container as the one you are constructing (or calling a member
function on), or you can use a pointer to the type of element you have in the
container.

For example, if your compiler does not support member function templates
you can construct a vector in the following two ways:

int intarray[10];
vector<int, allocator> first_vector(intarray, intarray + 10);
vector<int, allocator> second_vector(first_vector.begin(),
 first_vector.end());

but not this way:

vector<long, allocator>
long_vector(first_vector.begin(),first_vector.end());

since the long_vector and first_vector are not the same type.

Additionally, if your compiler does not support default template parameters,
you will need to supply the Allocator template argument. For instance,
you will need to write :

vector<int, allocator>

instead of :

vector<int>

allocator, Containers, Iterators, lexicographical_compare

Warnings

See Also

Standard C++ Library Class Reference 669

wstring

String Library

A specialization of the basic_string class. For more information about
strings, see the entry basic_string.

Summary

Rogue Wave Standard C++ Library Glossary 671

 Glossary

bidirectional iterator An iterator that can be used for reading and writing,
and which can move in either a forward or backward direction.

binary function A function that requires two arguments.

binder A function adaptor that is used to convert a two-argument binary
function object into a one-argument unary function object, by binding one of
the argument values to a specific constant.

constant iterator An iterator that can be used only for reading values,
which cannot be used to modify the values in a sequence.

container class A class used to hold a collection of similarly typed values.
The container classes provided by the standard library include vector, list,
deque, set, map, stack, queue, and priority_queue.

deque An indexable container class. Elements can be accessed by their
position in the container. Provides fast random access to elements.
Additions to either the front or the back of a deque are efficient. Insertions
into the middle are not efficient.

forward iterator An iterator that can be used either for reading or writing,
but which moves only forward through a collection.

function object An instance of a class that defines the parenthesis operator
as one of its member functions. When a function object is used in place of a
function, the parenthesis member function will be executed when the
function would normally be invoked.

generic algorithm A templated algorithm that is not specialized to any
specific container type. Because of this, generic algorithms can be used with
a wide variety of different forms of container.

heap A way of organizing a collection so as to permit rapid insertion of
new values, and rapid access to and removal of the largest value of the
collection.

heterogeneous collection A collection of values that are not all of the same
type. In the standard library a heterogeneous collection can only be
maintained by storing pointers to objects, rather than objects themselves.

insert iterator An adaptor used to convert iterator write operations into
insertions into a container.

672 Glossary Rogue Wave Standard C++ Library

iterator A generalization of the idea of a pointer. An iterator denotes a
specific element in a container, and can be used to cycle through the
elements being held by a container.

generator A function that can potentially return a different value each time
it is invoked. A random number generator is one example.

input iterator An iterator that can be used to read values in sequence, but
cannot be used for writing.

list A linear container class. Elements are maintained in sequence.
Provides fast access only to the first and last elements. Insertions into the
middle of a list are efficient.

map An indexed and ordered container class. Unlike a vector or deque, the
index values for a map can be any ordered data type (such as a string or
character). Values are maintained in sequence, and can be efficiently
inserted, accessed or removed in any order.

multimap A form of map that permits multiple elements to be indexed
using the same value.

multiset A form of set that permits multiple instances of the same value to
be maintained in the collection.

negator An adaptor that converts a predicate function object, producing a
new function object that when invoked yields the opposite value.

ordered collection A collection in which all values are ordered according to
some binary comparison operator. The set data type automatically
maintains an ordered collection. Other collections (vector, deque, list) can be
converted into an ordered collection.

output iterator An iterator that can be used only to write elements into a
container, it cannot be used to read values.

past the end iterator An iterator that marks the end of a range of values,
such as the end of the set of values maintained by a container.

predicate A function or function object that when invoked returns a
boolean (true/false) value or an integer value.

predicate function A predicate.

priority_queue An adaptor container class, usually built on top of a vector
or deque. The priority queue is designed for rapidly accessing and
removing the largest element in the collection.

queue An adaptor container class, usually built on top of a list or deque.
The queue provides rapid access to the topmost element. Elements are
removed from a queue in the same order they are inserted into the queue.

random access iterator An iterator that can be subscripted, so as to access
the values in a container in any order.

Rogue Wave Standard C++ Library Glossary 673

range A subset of the elements held by a container. A range is typically
specified by two iterators.

reverse iterator An iterator that moves over a sequence of values in reverse
order, such as back to front.

sequence A portion or all of the elements held by a container. A sequence
is usually described by a range.

set A ordered container class. The set container is optimized for insertions,
removals, and tests for inclusion.

stack An adaptor container class, built usually on top of a vector or deque.
The stack provides rapid access to the topmost element. Elements are
removed from a stack in the reverse of the order they are inserted into the
stack.

stream iterator An adaptor that converts iterator operations into stream
operations. Can be use to either read from or write to an iostream.

unary function A function that requires only one argument. Applying a
binder to a binary function results in a unary function.

vector An indexable container class. Elements are accessed using a key that
represents their position in the container. Provides fast random access to
elements. Addition to the end of a vector is efficient. Insertion into the
middle is not efficient.

wide string A string with 16-bit characters. Wide strings are necessary for
many non-roman alphabets, i.e., Japanese.

Rogue Wave Standard C++ Library Index 675

 Index

abs(), 191

accumulate(), 137

adaptor

function, 26

priority queue, 99

queue, 93

stack, 90

adaptors, 168

adjacent_difference(), 142

adjacent_find(), 123

advance, 174

advance(), 20

algorithm, 6

algorithms

building, 172

categories, 166

tips and techniques, 172

user-defined, 166

allocator, 158

alternate interface, 161

alternative interface, 163

conforming, 159

defining, 159

required member functions,
160

standard interface, 163

supporting both interfaces,
163

allocator interface, 158

basic interface, 170

requirements, 170

allocator_interface, 161

American National Standards
Institute, 2

any(), 74

append(), 108

arg(), 192

assign(), 38, 50, 108

at(), 39, 108

auto_ptr class, 186

back(), 39, 54

back_inserter, 19

basic_string, 106

begin(), 13, 42, 70, 81

bidirectional iterator, 15

binary search tree, 33

binary_function, 25, 58

binary_search(), 151

binder, 26

bitset, 73

bit-wise operators, 73

c_str(), 108

676 Index Rogue Wave Standard C++ Library

capacity(), 39, 107

catenation, 117

characteristics, of containers, 30

code re-use

composition, 168

generic inheritance, 168

inheritance, 167

compare(), 110

complex numbers, 190

composition, 168

conj(), 191

conjugate, complex, 191

constant iterator, 11

containers

creating your own, 169

design requirements, 169

designing, 158

designing your own, 172

iterator requirements, 172

user-defined, 166, 170

containers not in standard library,
33

conventions, presentation, 6

copy(), 49, 109, 117

copy_backward(), 117

count(), 69, 81, 136

count_if(), 136

Curry, Haskell P., 27

data(), 109

deep copy, 32

default constructor, 37

design requirements

containers, 169

designing your own containers

iterators, 172

distance, 174

distance(), 20

empty(), 40, 54, 69, 81, 108

end(), 13, 42, 70, 81

equal(), 125, 139

equal_range(), 69, 81, 151

erase(), 42, 53, 69, 80, 109

Eratosthenes, 45

errors, 180

event driven simulation, 100

exception classes, 180

exceptions

using, 181

exponential function, 192

fill(), 116

fill_n(), 116

find(), 69, 81, 110, 122

find_first_not_of(), 110

find_first_of(), 110

find_if(), 122

find_last_not_of(), 110

find_last_of(), 110

flip(), 44, 74

for_each(), 143

forward iterator, 14

front(), 39, 54

front_inserter, 19

function object, 23

functions as arguments, 22

Rogue Wave Standard C++ Library Index 677

future of OOP, 5

generate(), 119

generate_n(), 119

generator, 26, 120

generic adaptor, 168

generic algorithms, 114

generic composition, 168

generic programming, 166

graph, 33

hash table, 33

heap, 100, 154

heterogeneous collection, 101

imag(), 191

in place transformations, 127

includes(), 70, 153

initialization algorithms, 116

inner_product(), 138

inplace_merge(), 132, 152

input iterator, 12

insert iterator, 18, 49, 116, 119, 141

insert(), 41, 51, 68, 80, 109

inserter, 19

International Standards
Organization, 2

intersection, bit, 74

iotaGen, 26, 120

istream_iterator, 17

iter_swap(), 120

iterator, 10

bidirectional, 15

constant, 11

forward, 14

input, 12

insert, 18

output, 13

random access, 15

reverse, 16

stream, 17

iterator_category

primitive, 172

iterators, 172

iterator requirements, 172

key_comp(), 81

length(), 107

lexicographical_compare(), 140

list, 48

logic_error, 180

logical operators, 73

lower_bound(), 69, 81, 151

make_heap(), 154

map, 78

max(), 124

max_element(), 125

max_size(), 39, 107

memory management, 33

merge(), 52, 132, 152

min(), 124

min_element(), 125

mismatch(), 125, 139

multidimensional array, 33

negation operator, 74

negator, 26

new operator, 33

next_permutation(), 131

678 Index Rogue Wave Standard C++ Library

none(), 74

norm(), 191

nth_element(), 149

numeric_limits, 194

ordered collections, 146

ostream_iterator, 18

output iterator, 13

pairwise equality, 139

parallel Sequences, 121

partial_sort(), 148

partial_sum(), 142

partition(), 130

permutations, 131

phase angle, complex, 192

pointers, as container values, 33,
101

polar(), 190

pop_back(), 41

pop_heap(), 154

predicate, 22

prev_permutation(), 131

priority queue, 85, 98

push_back(), 41, 51

push_front(), 51

push_heap(), 154

queue, 90

radix sort, 61

random access iterators, 15

random_shuffle(), 132

randomInteger(), 16, 103

rbegin(), 42, 70, 81

reachable iterator, 11

real(), 191

reduction. See accumulate()

removal algorithms, 134

remove(), 53, 109, 134

remove_copy(), 134

remove_copy_if(), 134

remove_if(), 53, 134

rend(), 42, 70, 81

replace(), 128

replace_copy(), 128

replace_copy_if(), 128

replace_if(), 128

reserve(), 40, 107

reset(), 74

resize(), 40, 54, 107

reverse iterator, 16

reverse(), 56, 127

rfind(), 110

rotate(), 129

running the tutorial programs, 7

runtime_error, 180

scalar producing algorithms, 136

Schonfinkel, Moses, 27

search(), 124

searching algorithms, 121

selecting a container, 30

sequence generating algorithms,
141

set, 66

iterator category, 12

set operations, 153

set(), 74

Rogue Wave Standard C++ Library Index 679

set_difference(), 71, 153

set_intersection(), 71, 153

set_symmetric_difference(), 71,
153

set_union(), 70, 152

shallow copy, 32

shift operators, 74

sieve of Eratosthenes, 45

simulation programs, 98

size(), 39, 54, 69, 81, 107

sort(), 148

sort_heap(), 155

sparse array, 33

splice(), 52

stable_sort(), 148

stack, 90

Standard Template Library, 2

stream iterator, 17

string, 106

string traits class, 177

string_char_trait, 177

subscript operator, 39, 80, 108

substr(), 110

swap(), 38, 50, 67, 79, 108, 120

swap_ranges(), 120

symbolic constants, 194

test(), 74

to_string(), 75

to_ulong(), 75

traits, 177

traits template, 176

transcendental functions, 192

transform(), 141

transformation algorithms, 127

tree, 33

trigonometric functions, 192

two-category error model, 180

unary_function, 25

unique(), 54, 135

unique_copy(), 136

unordered sets, 33

upper_bound(), 69, 81, 151

user-defined algorithms, 166

user-defined containers, 166

using exceptions, 181

using the standard library, 7

value_comp(), 81

value_type, 173

vector, 36

wstring, 106

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Introduction
	What is the Standard C++ Library?
	Does the Standard C++ Library Differ From Other Libraries?
	What are the Effects of Non-Object-Oriented Design?
	How Should I Use the Standard C++ Library?
	Reading This Manual
	Conventions
	Using the Standard Library
	Running the Tutorial Programs

	Iterators
	Introduction to Iterators
	Varieties of Iterators
	Input Iterators
	Output Iterators
	Forward Iterators
	Bidirectional Iterators
	Random Access Iterators
	Reverse Iterators

	Stream Iterators
	Input Stream Iterators
	Output Stream Iterators

	Insert Iterators
	Iterator Operations

	Functions and Predicates
	Functions
	Predicates
	Function Objects
	Negators and Binders

	Container Classes
	Overview
	Selecting a Container
	Memory Management Issues
	Container Types Not Found in the Standard Library

	vector and vector<bool>
	The vector Data Abstraction
	Include Files

	Vector Operations
	Declaration and Initialization of Vectors
	Type Definitions
	Subscripting a Vector
	Extent and Size-Changing Operations
	Inserting and Removing Elements
	Iteration
	Test for Inclusion
	Sorting and Sorted Vector Operations
	Useful Generic Algorithms

	Boolean Vectors
	Example Program - Sieve of Eratosthenes

	list
	The list Data Abstraction
	Include files

	List Operations
	Declaration and Initialization of Lists
	Type Definitions
	Placing Elements into a List
	Removing Elements
	Extent and Size-Changing Operations
	Access and Iteration
	Test for Inclusion
	Sorting and Sorted List Operations
	Searching Operations
	In Place Transformations
	Other Operations

	Example Program - An Inventory System

	deque
	The deque Data Abstraction
	Include Files

	Deque Operations
	Example Program - Radix Sort

	set, multiset, and bitset
	The set Data Abstraction
	Include Files

	set and multiset Operations
	Declaration and Initialization of Set
	Type Definitions
	Insertion
	Removal of Elements from a Set
	Searching and Counting
	Iterators
	Set Operations
	Other Generic Algorithms

	Example Program: - A Spelling Checker
	The bitset Abstraction
	Include Files
	Declaration and Initialization of bitset
	Accessing and Testing Elements
	Set operations
	Conversions

	map and multimap
	The map Data Abstraction
	Include files

	Map and Multimap Operations
	Declaration and Initialization of map
	Type Definitions
	Insertion and Access
	Removal of Values
	Iterators
	Searching and Counting
	Element Comparisons
	Other Map Operations

	Example Programs
	A Telephone Database
	Graphs
	A Concordance

	stack and queue
	Overview
	The stack Data Abstraction
	Include Files
	Declaration and Initialization of stack
	Example Program - A RPN Calculator

	The queue Data Abstraction
	Include Files
	Declaration and Initialization of queue
	Example Program - Bank Teller Simulation

	priority_queue
	The priority queue Data Abstraction
	Include Files

	The Priority Queue Operations
	Declaration and Initialization of priority queue

	Application - Event-Driven Simulation
	An Ice Cream Store Simulation

	String
	The string Abstraction
	Include Files

	String Operations
	Declaration and Initialization of string
	Resetting Size and Capacity
	Assignment, Append and Swap
	Character Access
	Iterators
	Insertion, Removal and Replacement
	Copy and Substring
	String Comparisons
	Searching Operations

	An Example Function - Split a Line into Words

	Generic Algorithms
	Overview
	Include Files

	Initialization Algorithms
	Fill a Sequence with An Initial Value
	Copy One Sequence Into Another Sequence
	Initialize a Sequence with Generated Values
	Swap Values from Two Parallel Ranges

	Searching Operations
	Find an Element Satisfying a Condition
	Find Consecutive Duplicate Elements
	Find a Subsequence within a Sequence
	Locate Maximum or Minimum Element
	Locate the First Mismatched Elements in Parallel Sequences

	In-Place Transformations
	Reverse Elements in a Sequence
	Replace Certain Elements With Fixed Value
	Rotate Elements Around a Midpoint
	Partition a Sequence into Two Groups
	Generate Permutations in Sequence
	Merge Two Adjacent Sequences into One
	Randomly Rearrange Elements in a Sequence

	Removal Algorithms
	Remove Unwanted Elements
	Remove Runs of Similar Values

	Scalar-Producing Algorithms
	Count the Number of Elements that Satisfy a Condition
	Reduce Sequence to a Single Value
	Generalized Inner Product
	Test Two Sequences for Pairwise Equality
	Lexical Comparison

	Sequence-Generating Algorithms
	Transform One or Two Sequences
	Partial Sums
	Adjacent Differences

	Miscellaneous Algorithms
	Apply a Function to All Elements in a Collection

	Ordered Collection Algorithms
	Overview
	Include Files

	Sorting Algorithms
	Partial Sort
	nth Element
	Binary Search
	Merge Ordered Sequences
	Set Operations
	Heap Operations

	Using Allocators
	An Overview of the Standard Library Allocators
	Using Allocators with Existing Standard Library Containers
	Building Your Own Allocators
	Using the Standard Allocator Interface
	Using Rogue Wave's Alternative Interface
	How to Support Both Interfaces

	Building Containers & Generic Algorithms
	Extending the Library
	Building on the Standard Containers
	Inheritance
	Generic Inheritance
	Generic Composition

	Creating Your Own Containers
	Meeting the Container Requirements
	Meeting the Allocator Interface Requirements
	Iterator Requirements

	Tips and Techniques for Building Algorithms
	The iterator_category Primitive
	The distance and advance Primitives

	The Traits Parameter
	Using the Traits Technique

	Exception Handling
	Overview
	Include Files

	The Standard Exception Hierarchy
	Using Exceptions
	Example Program

	auto_ptr
	Overview
	Include File

	Declaration and Initialization of Auto Pointers
	Example Program

	Complex
	Overview
	Include Files

	Creating and Using Complex Numbers
	Declaring Complex Numbers
	Accessing Complex Number Values
	Arithmetic Operations
	Comparing Complex Values
	Stream Input and Output
	Norm and Absolute Value
	Trigonometric Functions
	Transcendental Functions

	Example Program - Roots of a Polynomial

	Numeric Limits
	Overview
	Fundamental Data Types
	Numeric Limit Members
	Members Common to All Types
	Members Specific to Floating Point Values

	Class Reference
	accumulate
	adjacent_difference
	adjacent_find
	advance
	Algorithms
	Algorithms by Mutating/Non-mutating Function
	Algorithms by Operation
	Algorithms by Iterator Category

	allocator
	The Alternate Allocator

	associative containers
	auto_ptr
	back _ insert_iterator, back_inserter
	basic_string
	bidirectional iterator
	Key to Iterator Requirements
	Requirements for Bidirectional Iterators

	binary_function
	binary_negate
	binary_search
	bind Ist, bind2nd, binderlst, binder2nd
	bitset
	Errors and exceptions

	compare
	complex
	Containers
	copy, copy_backward
	count, count_if
	deque
	distance
	distance_type
	divides
	equal
	equal_range
	equal_to
	exception
	fill, fill n
	find
	find_end
	find_first_of
	find if
	for_each
	forward iterator
	Key to Iterator Requirements
	Requirements for Forward Iterators

	front_insert_iterator, front_inserter
	function object
	generate, generate_n
	get_temporary_buffer
	greater
	greater_equal
	Heap Operations
	includes
	inner_product
	inplace_merge
	input iterator
	Key to Iterator Requirements
	Requirements for Input Iterators

	Insert Iterator
	insert_iterator, inserter
	istream_iterator
	iterator_Category
	Tag Types
	Iterators
	Key to Iterator Requirements
	Requirements for Input Iterators
	Requirements for Output Iterators
	Requirements for Forward Iterators
	Requirements for Bidirectional Iterators
	Requirements for Random Access Iterators

	iter_swap
	less
	less_equal
	lexicographical_compare
	limits
	list
	logical_and
	logical_not
	logical_or
	lower_bound
	make_heap
	map
	max
	max_element
	merge
	min
	min_element
	minus
	mismatch
	modulus
	multimap
	multiset
	negate
	negators
	next_permutation
	notl
	not2
	not_equal_to
	nth_element
	numeric_limits
	operator!=, operator>, operator<=, operator>=
	ostream_iterator
	output iterator
	Key to Iterator Requirements
	Requirements for Output Iterators

	pair
	partial_sort
	partial_sort_copy
	partial_sum
	partition
	permutation
	plus
	pointer _ to_binary-function
	pointer_to_unary_function
	pop_heap
	predicate
	prev_permutation
	priority_queue
	ptr_fun
	push_heap
	queue
	random access iterator
	Key to Iterator Requirements
	Requirements for Random Access Iterators

	random_shuffle
	raw_storage_iterator
	remove
	remove_copy
	remove_copy_if
	remove_if
	replace
	replace_copy
	replace_copy_if
	replace_if
	return_temporary_buffer
	reverse
	reverse_bidirectional iterator, reverse_iterator
	reverse_copy
	reverse_iterator
	rotate, rotate_copy
	search, search_n
	Sequence
	set
	set_difference
	set_intersection
	set_symmetric_difference
	set_union
	sort
	sort_heap
	stable_partition
	stable sort
	stack
	Stream Iterators
	string
	string_char_traits
	swap
	swap_ranges
	times
	transform
	unary_function
	unary_negate
	uninitialized_copy
	uninitialized_fill
	uninitialized_fill_n
	unique, unique_copy
	upper_bound
	value_type
	vector
	wstring

	Glossary
	Index

