
Edition December 2017

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.5
_1

7
00

90
0

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
or

English

openUTM V6.5
Administering Applications

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2017 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Administering Applications

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ez

em
b

er
 2

01
7

 S
ta

n
d

08
:3

9.
12

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
iv

z

Contents

1 Preface . 13

1.1 Summary of contents and target group . 15

1.2 Summary of contents of the openUTM documentation 16
1.2.1 openUTM documentation . 16
1.2.2 Documentation for the openSEAS product environment 20
1.2.3 Readme files . 21

1.3 Changes in openUTM V6.5 . 22
1.3.1 New server functions . 22
1.3.2 Discontinued server functions . 29
1.3.3 New client functions . 30
1.3.4 New functions for openUTM WinAdmin . 31
1.3.5 New functions for openUTM WebAdmin . 31

1.4 Notational conventions . 32

2 Overview of openUTM administration . 35

2.1 Command interface . 38

2.2 KDCADMI program interface . 41

2.3 Sample programs . 45

2.4 PADM, DADM for administering message queues and printers 46

2.5 Administration tool CALLUTM . 46

2.6 openUTM WinAdmin and openUTM WebAdmin 47

Contents

 Administering Applications

3 Administering objects and setting parameters 49

3.1 Information functions in openUTM . 50

3.2 Performance check . 52
3.2.1 Information about the utilization level of the application 52
3.2.2 Diagnosing errors and bottlenecks . 54
3.2.3 Possible measures . 55

3.3 Avoiding a page pool bottleneck . 62
3.3.1 Page pool of a standalone application . 62
3.3.2 Page pools of a UTM cluster application . 66

3.4 Exchanging the application program . 67

3.5 Clients and printers . 68

4 Changing the configuration dynamically . 71

4.1 Requirements for KDCDEF generation . 73

4.2 Adding objects to the configuration dynamically 77
4.2.1 Adding clients, printers and LTERM partners . 78
4.2.2 Adding program units, transaction codes, TAQ queues and VORGANG exits 82
4.2.3 Creating user IDs . 83
4.2.4 Creating key sets . 83
4.2.5 Entering LU6.1 connections for distributed processing 84
4.2.6 Entering LTACs . 85
4.2.7 Format and uniqueness of object names . 86

4.3 Deleting objects dynamically from the configuration 89
4.3.1 Deleting clients/printers and LTERM partners . 91
4.3.2 Deleting program units, transaction codes and VORGANG exits 93
4.3.3 Deleting user IDs . 95
4.3.4 Deleting key sets . 97
4.3.5 Deleting LU6.1 connections and sessions . 97
4.3.6 Deleting LTACs . 98

4.4 Modifying object properties . 99
4.4.1 Modifying clients/printers and LTERM partners . 100
4.4.2 Modifying transaction codes and TAC queues . 101
4.4.3 Modifying user IDs . 102
4.4.4 Modifying key sets . 102
4.4.5 Modifying LU6.1 sessions . 103

Contents

Administering Applications

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

9
95

P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.5
_1

70
0

90
0\

04
_

A
dm

in
\e

n\
ut

m
_a

dm
_e

.iv
z

5 Generating KDCDEF statements from the KDCFILE 105

5.1 Starting the inverse KDCDEF . 107

5.2 Result of the inverse KDCDEF run . 109

5.3 Inverse KDCDEF for version migrations . 110

5.4 Recommendations for regeneration of an application 111

6 Administration using commands . 113

6.1 Administration in dialog . 114

6.2 Administration using message queuing . 116

7 Writing your own administration programs . 119

7.1 Dialog administration programs . 120
7.1.1 Several administration calls . 120
7.1.2 Multi-step service . 121

7.2 Diagnostic options for the administration interface 123

8 Central administration of several applications 125

8.1 Administration using WinAdmin and WebAdmin 127
8.1.1 Adapting generation of the UTM application . 128
8.1.2 Configuration of WinAdmin and WebAdmin . 129

8.2 Configuration models for own application of administration 131
8.2.1 Administration via UPIC clients . 132
8.2.2 Administration via distributed processing . 137
8.2.3 Administration via a TS application . 142

8.3 Central Administration using commands . 144

8.4 Central Administration using programs . 145
8.4.1 Decentralized administration programs . 145
8.4.2 Central administration programs . 148

Contents

 Administering Applications

9 Automatic administration . 151

9.1 Control using the MSGTAC program . 152

9.2 Control via user-specific message destinations 155

10 Access rights and data access control . 157

10.1 Configuring the administrator connection . 159

10.2 Granting administration privileges . 160

10.3 Generating administration commands . 161

11 Program interface for administration - KDCADMI 163

11.1 Calling the KDCADMI functions . 164
11.1.1 The KDCADMI function call . 165
11.1.2 Description of the data areas to be supplied . 166
11.1.3 Return codes . 178
11.1.4 Supplying the fields of the data structure with data when passing data 181

11.2 KDCADMI operation codes . 182
11.2.1 KC_CHANGE_APPLICATION- Exchange application program 183
11.2.2 KC_CREATE_DUMP - Create a UTM dump . 190
11.2.3 KC_CREATE_OBJECT - Add objects to the configuration 192
11.2.3.1 obj_type=KC_CON . 197
11.2.3.2 obj_type=KC_KSET . 199
11.2.3.3 obj_type=KC_LSES . 200
11.2.3.4 obj_type=KC_LTAC . 201
11.2.3.5 obj_type=KC_LTERM . 204
11.2.3.6 obj_type=KC_PROGRAM . 209
11.2.3.7 obj_type=KC_PTERM . 211
11.2.3.8 obj_type=KC_TAC . 219
11.2.3.9 obj_type=KC_USER . 227
11.2.3.10 Returncodes . 235
11.2.4 KC_CREATE_STATEMENTS -

Create KDCDEF control statements (inverse KDCDEF) 251
11.2.5 KC_DELETE_OBJECT - Delete objects . 261
11.2.6 KC_ENCRYPT - Create, delete, read RSA key pairs 272
11.2.7 KC_GET_OBJECT - Query information . 282
11.2.8 KC_LOCK_MGMT - Release locks in UTM cluster applications 310

Contents

Administering Applications

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

9
95

P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.5
_1

70
0

90
0\

04
_

A
dm

in
\e

n\
ut

m
_a

dm
_e

.iv
z

11.2.9 KC_MODIFY_OBJECT -
Modify object properties and application parameters 315

11.2.9.1 obj_type=KC_CLUSTER_NODE . 325
11.2.9.2 obj_type=KC_DB_INFO . 327
11.2.9.3 obj_type=KC_KSET . 328
11.2.9.4 obj_type=KC_LOAD_MODULE . 329
11.2.9.5 obj_type=KC_LPAP . 332
11.2.9.6 obj_type=KC_LSES . 336
11.2.9.7 obj_type=KC_LTAC . 338
11.2.9.8 obj_type=KC_LTERM . 340
11.2.9.9 obj_type=KC_MUX . 344
11.2.9.10 obj_type=KC_OSI_CON . 346
11.2.9.11 obj_type=KC_OSI_LPAP . 347
11.2.9.12 obj_type=KC_PTERM . 352
11.2.9.13 obj_type=KC_TAC . 356
11.2.9.14 obj_type=KC_TACCLASS . 360
11.2.9.15 obj_type=KC_TPOOL . 364
11.2.9.16 obj_type=KC_USER . 366
11.2.9.17 obj_type=KC_CLUSTER_CURR_PAR . 371
11.2.9.18 obj_type=KC_CLUSTER_PAR . 372
11.2.9.19 obj_type=KC_CURR_PAR . 374
11.2.9.20 obj_type=KC_DIAG_AND_ACCOUNT_PAR . 378
11.2.9.21 obj_type=KC_MAX_PAR . 386
11.2.9.22 obj_type=KC_TASKS_PAR . 389
11.2.9.23 obj_type=KC_TIMER_PAR . 391
11.2.9.24 Return codes . 394
11.2.10 KC_ONLINE_IMPORT - Import application data online 408
11.2.11 KC_PTC_TA - Roll back transaction in PTC state 411
11.2.12 KC_SEND_MESSAGE - Send message (BS2000 systems) 413
11.2.13 KC_SHUTDOWN - Terminate the application run 418
11.2.14 KC_SPOOLOUT - Establish connections to printers 427
11.2.15 KC_SYSLOG - Administer the system log file . 431
11.2.16 KC_UPDATE_IPADDR - Update IP addresses . 442
11.2.17 KC_USLOG - Administer the user log file . 449

11.3 Data structures used to pass information . 452
11.3.1 Data structures for describing object properties . 454

kc_abstract_syntax_str - Abstract syntax for communication
via OSI TP . 455

kc_access_point_str - OSI TP access point . 456
kc_application_context_str - Application context for communication via OSI TP . . . 461
kc_bcamappl_str - Names and addresses of the local application 462
kc_cluster_node_str -

Node applications of a UTM cluster application 465

Contents

 Administering Applications

kc_con_str - LU6.1 connections . 471
kc_db_info_str - Output database information . 476
kc_edit_str - EDIT profile options (BS2000 systems) 478
kc_gssb_str - Global secondary storage areas of the application 482
kc_kset_str - Key sets of the application . 483
kc_load_module_str -

Load modules (BS2000 systems) or shared objects/DLLs (Unix, Linux and
Windows systems) . 485

kc_lpap_str - Properties of LU6.1 partner applications 489
kc_lses_str - LU6.1 sessions . 495
kc_ltac_str - Transaction codes of remote services (LTAC) 498
kc_lterm_str - LTERM partners . 503
kc_message_module_str - User message modules 513
kc_mux_str - Multiplex connections (BS2000 systems) 515
kc_osi_association_str -

Associations to OSI TP partner applications 519
kc_osi_con_str - OSI TP connections . 521
kc_osi_lpap_str - Properties of OSI TP partner applications 528
kc_program_str - Program units and VORGANG exits 534
kc_ptc_str - Transactions in PTC state . 537
kc_pterm_str - Clients and printers . 539
kc_queue_str - Properties of temporary queues 552
kc_sfunc_str - Function keys . 553
kc_subnet_str - Information on subnets . 555
kc_tac_str - Transaction codes of local services 556
kc_tacclass_str - TAC classes for the application 568
kc_tpool_str - LTERM pools for the application . 571
kc_transfer_syntax_str - Transfer syntax for communication via OSI TP 581
kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user IDs . . 582

11.3.2 Data structures used to describe the application parameters 600
kc_cluster_curr_par_str - Statistics values of a UTM cluster application 601
kc_cluster_par_str - Global properties of a UTM cluster application 602
kc_curr_par_str - Current values of the application parameters 609
kc_diag_and_account_par_str - Diagnostic and accounting parameters 620
kc_dyn_par_str - Dynamic objects . 629
kc_max_par_str - Maximum values for the application (MAX parameters) 634
kc_msg_dest_par_str - Properties of the user-specific message destinations 651
kc_pagepool_str - Current utilization of the page pool 652
kc_queue_par_str - Properties of queue objects 654
kc_signon_str - Properties of the sign-on process 655
kc_system_par_str - System parameters . 659
kc_tasks_par_str - Number of processes . 663
kc_timer_par_str - Timer settings . 667
kc_utmd_par_str - Parameters for distributed processing 672

Contents

Administering Applications

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

9
95

P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.5
_1

70
0

90
0\

04
_

A
dm

in
\e

n\
ut

m
_a

dm
_e

.iv
z

12 Administration commands - KDCADM . 675

KDCAPPL - Change properties and limit values for an operation 678
KDCBNDL - Replace Master LTERM . 692
KDCDIAG - Switch diagnostic aids on and off . 693
KDCHELP - Query the syntax of administration commands 702
KDCINF - Request information on objects and application parameters 703
KDCLOG - Change the user log file . 754
KDCLPAP - Administer connections to (OSI-)LPAP partners 755
KDCLSES - Establish/shut down connections for LU6.1 sessions 763
KDCLTAC - Change the properties of LTACs . 766
KDCLTERM - Change the properties of LTERM partners 768
KDCMUX - Change properties of multiplex connections (BS2000 systems) 771
KDCPOOL - Administer LTERM pools . 775
KDCPROG - Replace load modules/shared objects/DLLs 777
KDCPTERM - Change properties of clients and printers 783
KDCSEND - Send a message to LTERM partners (BS2000 systems) 789
KDCSHUT - Terminate an application run . 790
KDCSLOG - Administer the SYSLOG file . 794
KDCSWTCH - Change the assignment of clients and printers to LTERM partners . . 800
KDCTAC - Lock/release transaction codes and TAC queues 805
KDCTCL - Change number of processes of a TAC class 808
KDCUSER - Change user properties . 813

13 Administering message queues and controlling printers 815

13.1 Authorizations concept (BS2000, Unix and Linux systems) 818

13.2 Administering message queues (DADM) . 821
13.2.1 Displaying information on messages in a queue - DADM RQ 824
13.2.2 Reading user information about a message - DADM UI 825
13.2.3 Prioritizing messages in the queue - DADM CS . 825
13.2.4 Deleting messages from a queue - DADM DA/DL 826
13.2.5 Move messages from the dead letter queue - DADM MA/MV 827

13.3 Administering printers and control print output (PADM) 828
13.3.1 Administering printers with PADM . 828
13.3.1.1 Querying information about a printer PADM PI 829
13.3.1.2 Changing the printer status - PADM CS . 830
13.3.1.3 Assigning a printer to another LTERM partner - PADM CA 830
13.3.2 Print control with PADM . 831
13.3.2.1 Activating/deactivating confirmation mode - PADM AC/AT 833
13.3.2.2 Confirming or repeating print output - PADM OK/PR 834
13.3.2.3 Querying information about print jobs to be confirmed - PADM AI 834

Contents

 Administering Applications

13.3.3 Handling of errors during print output . 835

13.4 UTM program units for DADM and PADM functions 836
13.4.1 Generating KDCDADM and KDCPADM . 836
13.4.2 KDCDADM - Administer messages . 837

DELETE - Delete messages from the message queue 838
INFORM - Display information about message queues and messages 840
MOVE - Move messages from the dead letter queue 843
NEXT - Prioritize messages in the message queue 845

13.4.3 KDCPADM - Print control and printer administration 846
INFORM - Display information about printers for a printer control LTERM 847
MODE - Change the confirmation mode for a printer 851
PRINT - Confirm / repeat print job . 852
STATE - Change the status of a printer . 853
SWITCH - Change the assignment of printers to LTERM partners 854

14 Appendix . 855

14.1 Program interface for administration in COBOL 855
14.1.1 COPY members for the program interface in COBOL 856
14.1.2 KDCADMI function call . 858
14.1.3 Notes on programming . 859

14.2 Sample programs . 860
14.2.1 The C program unit HNDLUSR . 860
14.2.2 The C program unit SUSRMAX . 861
14.2.3 The COBOL program unit COBUSER . 862
14.2.4 The C program unit ENCRADM . 862
14.2.5 The C program units ADJTCLT . 863

14.3 CALLUTM -
Tool for administration and client/server communication 869

14.3.1 Instructions for use . 870
14.3.1.1 Generation . 870
14.3.2 Description of program statements . 876
14.3.3 Components, system environment, software configuration 892
14.3.4 Integration in a UTM application . 892
14.3.5 Execution . 892
14.3.6 Program-monitoring job variables . 893
14.3.7 Messages issued by CALLUTM . 894

Contents

Administering Applications

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

9
95

P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.5
_1

70
0

90
0\

04
_

A
dm

in
\e

n\
ut

m
_a

dm
_e

.iv
z

Glossary . 897

Abbreviations . 935

Related publications . 941

Index . 949

Contents

 Administering Applications

Administering Applications 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

1 Preface

Today, vast quantities of data are used and analyzed to support corporate decision-making.
Supplied by a wide range of networked users, devices, and “things”, the huge volume of
data poses a major challenge to the IT infrastructure. Since these data quantities are going
to continue growing, efficient transport, processing, and storage are also required. And, to
be able to exploit the potential of digitalization, there also has to be a means of integrating
large numbers of new applications at short notice.

In essence, therefore, modern IT infrastructure is required to

● Enable flexible, gradual scalability – without limits for the foreseeable future

● Provide server, storage, and network resources with self-service portals and automated
solutions

● Enable flexible settlement models, such as consumption-based pricing

● Allow the integration of additional options for adjustments based on customer-specific
requirements – such as different security requirements, etc.

To meet these challenges, Fujitsu offers an extensive portfolio of innovative enterprise
hardware, software, and support services within the environment of our enterprise
mainframe platforms, and is therefore your

● Reliable service provider, giving you longterm, flexible, and innovative support in
running your company’s mainframe-based core applications

● Ideal partner for working together to meet the requirements of digital transformation

● Longterm partner, thanks to high levels of investment in the continuous adjustment of
modern interfaces required by a modern IT landscape with AI applications, robotics,
and IoT, etc.

With openUTM, Fujitsu provides you with a thoroughly tried-and-tested solution from the
middleware area.

Preface

14 Administering Applications

openUTM is a high-end platform for transaction processing that offers a runtime
environment that meets all these requirements of modern, business-critical applications,
because openUTM combines all the standards and advantages of transaction monitor
middleware platforms and message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

An UTM application can be run as a standalone UTM application or sumultanously on
several different computers as a UTM cluster application.

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the
Oracle Fusion middleware, openSEAS delivers all the functions required for application
innovation and mode rn application development. Innovative products use the sophisticated
technology of openUTM in the context of the openSEAS product offering:

● BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA)
and supports standardized connection of UTM applications to Java EE application
servers. This makes it possible to integrate tried-and-tested legacy applications in new
business processes.

● The WebTransactions member of the openSEAS family is a product that allows tried-
and-tested host applications to be used flexibly in new business processes and modern
application scenarios. Existing UTM applications can be migrated to the Web without
modification.

Preface Summary of contents and target group

Administering Applications 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

1.1 Summary of contents and target group

The manual “Administering Applications” is intended for UTM application administrators
and administration programmers. It describes the program interface for administration
which you can use to write your own administration programs, the administration command
interface, and the options available for administering message queues.

Readers are expected to have a thorough grasp of the C programming language and to be
familiar with openUTM. It is particularly important to have competent knowledge of the
generation tool KDCDEF and the program interface KDCS. For further information, please
refer also to the openUTM manuals “Generating Applications” and “Programming Applica-
tions with KDCS”.

Chapters 2, 3, 8, 9 and 10 of this manual contain general information about UTM adminis-
tration. They are intended both for programmers who write their own administration
programs and for the users who use the administration programs. For example, they
provide information on the various interfaces that openUTM offers for administering your
UTM application, contain examples of how you can use the openUTM administration
functions to ensure that your application offers lasting performance and reliability, and
introduce you to the options available for central and automatic administration. Chapter 8
also examines the administration of UTM cluster applications in greater detail.

Chapters 4, 5, 7 and 11 contain special information for programmers who write their own
administration programs. They provide a detailed description of the structure of adminis-
tration programs and of the dynamic entry and deletion of clients, printers, services and
user IDs. Chapter 11 contains all the administration calls for the C program interface and
the C data structures of the interface. It also describes in detail which administration
functions you can implement with the aid of the interface.

Chapters 6 and 12 address the particular needs of the users of administration commands.
Chapter 6 gives you information on synchronous and asynchronous administration using
administration commands. Chapter 12 includes a description of the administration
commands, and of the functions that you can execute with these commands.

Chapter 13 contains information on administering local message queues and on the admin-
istration of printers via a printer control LTERM.

For technical reasons the printed manual is divided into two volumes.

i Wherever the term Unix system is used in the following, then this should be under-
stood to mean a Unix-based operating system such as Solaris or HP-UX.

Wherever the term Linux system is used in the following, then this should be under-
stood to mean a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is used below, this should
be understood to mean all the variants of Windows under which openUTM runs.

Summary of contents of the openUTM documentation Preface

16 Administering Applications

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various
related products.

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help systems for the
graphical administration workstation openUTM WinAdmin and the graphical administration
tool WebAdmin, and a release note for each platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000 systems
or to Unix, Linux and Windows systems.

All the manuals are available as PDF files on the internet at

http://manuals.ts.fujitsu.com

On this site, enter the search term “openUTM V6.5“ in the Search by product field to
display all openUTM manuals of version 6.5.

The following sections provide a task-oriented overview of the openUTM V6.5 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related
publications at the back of the manual.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential
functions, features and areas of application of openUTM. It contains all the information
required to plan a UTM operation and to design an UTM application. The manual explains
what openUTM is, how it is used, and how it is integrated in the BS2000, Unix, Linux and
Windows based platforms.

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++
manual to create server applications via the KDCS interface. This manual describes the
KDCS interface as used for COBOL, C and C++. This interface provides the basic
functions of the universal transaction monitor, as well as the calls for distributed
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want
to use the X/Open interface. This manual contains descriptions of the openUTM-
specific extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as

http://manuals.ts.fujitsu.com

Preface Summary of contents of the openUTM documentation

Administering Applications 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

notes on configuring and operating UTM applications which use X/Open interfaces. In
addition, you will require the X/Open-CAE specification for the corresponding X/Open
interface.

● If you want to interchange data on the basis of XML, you will need the document entitled
openUTM XML for openUTM. This describes the C and COBOL calls required to work
with XML documents.

● For BS2000 systems there is supplementary documentation on the programming
languages Assembler, Fortran, Pascal-XT and PL/1.

Configuration

The Generating Applications manual is available to you for defining configurations. This
describes for both standalone UTM applications and UTM cluster applications how to use
the UTM tool KDCDEF to

● define the configuration

● generate the KDCFILE

● and generate the UTM cluster files for UTM cluster applications

In addition, it also shows you how to transfer important administration and user data to a
new KDCFILE using the KDCUPD tool. You do this, for example, when moving to a new
openUTM version or after changes have been made to the configuration. In the case of
UTM cluster applications, it also indicates how you you can use the KDCUPD tool to
transfer this data to the new UTM cluster files.

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using UTM Applications
manual for the relevant operating system (BS2000 or Unix, Linux and Windows systems).
This describes how to link and start a UTM application program, how to sign on and off to
and from a UTM application and how to replace application programs dynamically and in a
structured manner. It also contains the UTM commands that are available to the terminal
user. Additionally, those issues are described in detail that need to be considered when
operating UTM cluster applications.

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for admin-
istration and the UTM administration commands. It provides information on how to
create your own administration programs for operating a standalone UTM application
or a UTM cluster application and on the facilities for administering several different
applications centrally. It also describes how to administer message queues and printers
using the KDCS calls DADM and PADM.

Summary of contents of the openUTM documentation Preface

18 Administering Applications

● If you are using the graphical administration workstation openUTM WinAdmin or the
Web application openUTM WebAdmin, which provides comparable functionality, then
the following documentation is available to you:

– A description of WinAdmin and description of WebAdmin, which provide a
comprehensive overview of the functional scope and handling of WinAdmin/
WebAdmin. These documents are shipped with the associated software and are
also available online as a PDF file.

– The respective online help systems, which provide context-sensitive help infor-
mation on all dialog boxes and associated parameters offered by the graphical user
interface. In addition, it also tells you how to configure WinAdmin or WebAdmin in
order to administer standalone UTM applications and UTM cluster applications.

i For detailed information on the integration of openUTM WebAdmin in SE Server's
SE Manager, see the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are
separate manuals for Unix, Linux and Windows systems and for BS2000 systems) to carry
out the tasks mentioned above. These manuals describe how to debug a UTM application,
the contents and evaluation of a UTM dump, the behavior of openUTM in the event of an
error, and the openUTM message system, and also lists all messages and return codes
output by openUTM.

Creating openUTM clients

The following manuals are available to you if you want to create client applications for
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and
operation of client applications based on UPIC. In addition to the description of the
CPI-C and XATMI interfaces, you will find information on how you can use the C++
classes to create programs quickly and easily.

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to
install and configure OpenCPIC and configure an OpenCPIC application. It describes
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates
what needs to be taken into account when programming a CPI-C application and what
restrictions apply compared with the X/Open CPI-C interface.

● The documentation for the product openUTM-JConnect shipped with BeanConnect
is supplied with the software. This documentation consists of Word and PDF files that
describe its introduction and installation and of Java documentation with a description
of the Java classes.

Preface Summary of contents of the openUTM documentation

Administering Applications 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

● The BizXML2Cobol manual describes how you can extend existing COBOL programs
of a UTM application in such a way that they can be used as an XML-based standard
Web service. How to work with the graphical user interface is described in the online
help system.

● If you want to provide UTM services on the Web quickly and easily then you need the
manual WebServices for openUTM. The manual describes how to use the software
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. The use of the graphical user interface is described in
the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the
manual Distributed Transaction Processing between openUTM and CICS, IMS and
LU6.2 Applications. This describes the CICS commands, IMS macros and UTM calls that
are required to link UTM applications to CICS and IMS applications. The link capabilities
are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and
administration.

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix, Linux and
Windows systems. The functions of PCMX are described in the following documents:

● CMX manual “Betrieb und Administration“ (Unix-Systeme) for Unix, Linux and Windows
systems (only available in German)

● PCMX online help system for Windows systems

Summary of contents of the openUTM documentation Preface

20 Administering Applications

1.2.2 Documentation for the openSEAS product environment

The Concepts and Functions manual briefly describes how openUTM is connected to the
openSEAS product environment. The following sections indicate which openSEAS
documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect
adapter implements the connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications
in Java applications.

● The manual BeanConnect describes the product BeanConnect, that provides a JCA
1.5- and JCA 1.6-compliant adapter which connects UTM applications with applications
based on Java EE, e.g. the Oracle application server.
The manuals for the Oracle application server can be obtained from Oracle.

Connecting to the web and application integration

You require the WebTransactions manuals to connect new and existing UTM applications
to the Web using the product WebTransactions.

The manuals will also be supplemented by JavaDocs.

Preface Summary of contents of the openUTM documentation

Administering Applications 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

1.2.3 Readme files

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. For the BS2000 platform, you will also find
the Readme files on the Softbook DVD.

Information on BS2000 systems

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

Readme files on Unix and Linux systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under /docs/language.

Readme files on Windows systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under \Docs\language.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes in openUTM V6.5 Preface

22 Administering Applications

1.3 Changes in openUTM V6.5

The following sections provide more details about the changes in the individual functional
areas.

1.3.1 New server functions

Long computer names of up to 64 characters

openUTM supports computer names that can be up to 64 characters in length. This means
it is no longer necessary to map the name from the UTM generation to a real long name
using configuration or mapping files.

The following interfaces have been changed to support this:

● Generation

All systems:

– KDCDEF statements CON, OSI-CON, PTERM and TPOOL:
For PRONAM= or OSI-CON NETWORK-SELECTOR=, a name of up to 64
characters in length can be specified for the partner computer.

BS2000 systems:

– KDCDEF statements CON:
The LISTENER-PORT= operand can also be specified on BS2000 systems.

Unix, Linux and Windows systems:

– KDCDEF statement CLUSTER-NODE:
For HOSTNAME= and VIRTUAL-HOST=, a name of up to 64 characters in length
can be specified.

– KDCDEF statement MAX:
For HOSTNAME=, a name of up to 64 characters in length can be specified.

● Programming

– KDCS call INFO SI:
– To receive the available information in full, value 180 must be specified in the

KCLA field.
– New fields KCHSTNML and KCPRONML for returning long computer names.

– KDCS call INIT PU:
– The interface version has been increased to 6.
– To receive the available information in full, value 356 must be specified in the

KCLI field.

Preface Changes in openUTM V6.5

Administering Applications 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

– New fields KCHSTNML and KCPRONML for returning the long computer
names.

– KDCS call SIGN ST:
– The interface version has been increased to 4.
– To receive the available information in full, value 180 must be specified in the

KCLA field.
– The node name in the KCCLNODE field can be up to 64 characters in length.

● KDCADMI administration interface

– New structure kc_long_triple_str in the identification area to support long computer
names. This structure must be used for all objects except KC_MUX. As a result, the
data structure version of KDCADMI has also been changed to version 10
(version_data field in the parameter area).

– New fields for the long computer names:

● KDCADM command interface

– KDCINF command:
If an object of the type CON, LSES, LTERM, OSI-CON, PTERM, or TPOOL
contains a long computer name, the information is output in two screen lines.

– Commands KDCLSES, KDCPOOL, KDCPTERM, and KDCSWTCH:
If an object contains a long computer name, the information is output in two screen
lines.

● Messages

Message K037 is output every time the long computer name is converted to the short
local name and vice versa.

● KDCNAMEINFO tool (Unix, Linux and Windows systems)

The KDCNAMEINFO tool is provided for assigning IP address to computer name.

Data structure Field name(s)

kc_cluster_node_str hostname_long and virtual_host_long

kc_con_str
kc_lses_str
kc_lterm_str
kc_pterm_str
kc_tpool_str

proname_long

kc_osi_con_str network_selector_long

kc_max_par_str
kc_system_par_str

hostname_long

Changes in openUTM V6.5 Preface

24 Administering Applications

Load-module version *HIGHEST-EXISTING (BS2000 systems)

A UTM application on a BS2000 system can be generated in such a way that the highest
version of the load module available in the library is always loaded, i.e., the version no
longer has to be explicitly specified.

The following interfaces have been changed to support this:

● Generation

KDCDEF statement LOAD-MODULE:

New operand values VERSION = *HIGHEST-EXISTING and *UPPER-LIMIT.
*UPPER-LIMIT is a synonym for the VERSION=@ value that was already possible.

● KDCADMI administration interface

Data structure kc_load_module_str:
– version field: New values *HIGHEST-EXISTING and *UPPER-LIMIT. These can be

specified when using KC_MODIFY_OBJECT to perform modifications.
– New field version_gen for the generated version of the load module or shared object.

i The version_gen field is also filled on Unix, Linux and Windows systems.

● KDCADM command interface

– KDCINF command:
For the LOAD-MODULE object type, the generated version of the load module is
output in VERSION (GENERATED).

– KDCPROG command:
For the VERSION parameter, *HIGHEST-EXISTING and *UPPER-LIMIT can also
be specified.

Password length of up to 16 characters

The password for a UTM user ID can be up to 16 characters in length.

● Generation

– KDCDEF statement USER:
For PASS=, a password of up to 16 characters in length can be specified.
For PROTECT-PW=, the maximum value for the minimum length has been
increased to 16.

● Programming

– KDCS call SIGN ON, CK: In the KCLA field, value 16 must be specified.

– KDCS call SIGN CP: In the KCLA field, value 32 must be specified.

Preface Changes in openUTM V6.5

Administering Applications 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

– KDCS call SIGN ST:
– The interface version has been increased to 4.
– To receive the available information in full, value 120 must be specified in the

KCLA field.
– New field KCRPASSL for returning the password from the UPIC protocol.

● KDCADMI administration interface

– Data structure kc_user_str and kc_user_dyn2_str:
New fields password16, protect_pw16_lth and pw_encrypted.

● KDCADM command interface

– KDCUSER command
For PASS=, a password of up to 16 characters in length can be specified.

● Program CALLUTM (BS2000 systems)

– CREATE-CONFIGURATION statement
For PASSWORD=, a password of up to 16 characters in length can be specified.

Dead letter queue for LPAP and OSI-LPAP

Messages to LU6.1 or OSI-TP partners that are deleted because they could not be
delivered due to a permanent error can now be saved in the dead letter queue.

The interfaces have been changed as follows to support this:

● Generation

KDCDEF statements LPAP and OSI-LPAP:

The new operand DEAD-LETTER-Q= controls whether undeliverable messages that
are deleted from their message queue are to be saved in the dead letter queue.

● Programming

For KDCS call DADM with KCOM=MV or MA (moving messages from the dead letter
queue), an LPAP or OSI-LPAP partner can also be specified.

● KDCADMI administration interface

Data structures kc_lpap_str and kc_osi_lpap_str: New field dead_letter_q for controlling
the saving of undeliverable messages in the dead letter queue.

Changes in openUTM V6.5 Preface

26 Administering Applications

Code conversion tables

For code conversion between ASCII-compatible codes and EBCDIC codes, openUTM
provides tables for four code conversions on all platforms (two 8-bit conversions and two 7-
bit conversions). By default, openUTM uses an 8-bit conversion between ISO8859-i and
EBCDIC.DF.04-i on BS2000, Unix and Linux systems, and an 8-bit conversion between
Windows-1252 and EBCDIC.DF.04-F on Windows systems.

The following interfaces have been changed to support this:

● Generation

– KDCDEF statements PTERM and TPOOL:
The operand values MAP=SYS1, SYS2, SYS3, and SYS4 can also be specified on
Unix, Linux and Windows systems. The values may be specified only for transport
system applications (partner type APPLI or SOCKET).

– KDCDEF statements OSI-CON and SESCHA:
New operand values MAP=SYS1, SYS2, SYS3, and SYS4 on Unix, Linux and
Windows systems for the four conversions.

● Programming

The sources with the conversion tables are delivered on all platforms (BS2000:
assembler module KDCEA; Unix, Linux and Windows systems: C source kcsaeea.c)
and can be adjusted or replaced by custom tables on all platforms.

● KDCADMI administration interface

– Data structures kc_pterm_str and kc_tpool_str:
For the map field, additional values “1”, “2”, “3”, and “4” are available on Unix, Linux
and Windows systems (for the four conversions). The values may be specified only
for transport system applications (partner type APPLI or SOCKET).

– Data structures kc_lpap_str and kc_osi_con_str:
For the map field, additional values “1”, “2”, “3”, and “4” are available on Unix, Linux
and Windows systems (for the four conversions).

User-specific error handling (Unix and Linux systems)

On Unix and Linux systems, a separate user signal routine can be created. This routine is
called as soon as a signal occurs. It replaces the default error handling in openUTM
(abnormal service termination + PENDER dump), i.e., it enables a service to be continued
despite errors.

Preface Changes in openUTM V6.5

Administering Applications 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

The following interfaces have been changed to support this:

● Programming

– New functions KCX_REG_SIGNAL_HANDLER and
KCX_UN_REG_SIGNAL_HANDLER for registering and deregistering the signal
routine in openUTM.

– New functions KCX_SET_RELOAD_FLAG for exchanging a work process after
end-of-transaction, and KCX_WRITE_DUMP for creating a UTM dump without
service cancellation.

The functions are available in COBOL and C.

Access data for the XA database connection

● The access data for the XA database connection can (as was previously the case) be
specified in the start parameters.

● The user name and the password for the XA database connection can be changed via
administration (KDCADMI):

– Operation code KC_MODIFY_OBJECT:
– New object type KC_DB_INFO
– New values KC_IMMEDIATE and KC_DELAY in the subopcode1 field for

controlling the time of the password change.

– Data structure kc_db_info_str: New fields db_userid and db_password.

● The access data for the XA database connection can be transferred with KDCUPD:

– TRANSFER statement: New operand DB-CREDENTIALS=.

KDCUPD with changed number of databases

KDCUPD transfers all data even if the number of databases in the new generation
increases. Prerequisites for this are that the openUTM version does not change and the
sequence of the existing databases in the generation remains unchanged.

Multi DBs on BS2000 systems

Up to three databases can be generated on BS2000 systems.

Changes in openUTM V6.5 Preface

28 Administering Applications

Moving pending asynchronous messages for LTERM, LPAP, and OSI-LPAP bundles

For LTERM, LPAP, and OSI-LPAP bundles, pending asynchronous messages for slave
LTERMS, slave LPAPs, or slave OSI-LPAPs can be automatically moved to a slave with an
established connection after the waiting time has elapsed.

● Generation, KDCDEF statement MAX: New operand MOVE-BUNDLE-MSGS= for
controlling automatic moving.

● Administration interface KDCADMI, data structure kc_max_par_str: New field
move_bundle_msgs for output of the generated value.

Other changes

● Output of the generation time at the administration interface:

– KDCADMI data structure kc_curr_par_str: New fields gen_date_xxx and gen_time_xxx
for the output of the date and time of generation.

– Command KDCINF STAT: Additional output of the date and time of generation.

● Message when a message to OSI TP and LU6.1 partner is lost

If a message to an OSI TP and LU6.1 partner is deleted because it could not be
delivered due to a permanent error, the new message K239 is output.

● Improved performance during communication between UPIC clients and UTM server
applications.

● Modification of UTM messages on Unix, Linux and Windows systems

– Message texts of K and P messages can also be changed on Windows.

To do this, the UTM tool KDCMMOD and the new UTM tool KDCWMSG are used.

– Message texts and targets of U messages can be changed on Unix, Linux and
Windows systems. As a result, U messages can also be output to the system log
file SYSLOG.

The existing procedure for changing K and P messages can now also be used for
U messages.

● The port number range for Unix, Linux and Windows systems is no longer restricted,
i.e., all port numbers from 1 to 65535 can be specified.

● For CON statements as well as PTERM and TPOOL statements with PTYPE=APPLI/
UPIC-R/SOCKET, the specification of the PRONAM= parameter is now mandatory for
Unix, Linux and Windows systems. The same applies to the NETWORK-SELECTOR
parameter of the OSI-CON statement.

Preface Changes in openUTM V6.5

Administering Applications 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

● The UTM tool KDCEVAL has been extended as follows:

– New operand SHOW-TSN in the KDCEVAL command OPTION for activating or
deactivating the repeated output of the TSN or the PID in the TRACE2 list.

– Additional outputs in the list header, such as appli mode or test mode.

● Encryption

– BS2000 systems: The encryption functionality of the BS2000 system is used.

– Unix, Linux and Windows systems: The functionality of the OpenSSL library is used.

1.3.2 Discontinued server functions

Several functions have been deleted and can no longer be generated in KDCDEF. If they
are still specified, this will be rejected with a syntax error in the KDCDEF run.

The following has been deleted:

● BS2000 systems

– KDCDEF statement USER: Operand CERTIFICATE= and CERTIFICATE-
AUTHORITY= for assigning certificates.

– KDCDEF statement DATABASE: Operand value TYPE=PRISMA for the database
system PRISMA.

● Unix, Linux and Windows systems

– The conversion file between short and long computer names (mapping function)
and the environment variable UTM_NET_HOSTNAME are no longer supported,
because by default openUTM supports computer names of up to 64 characters in
length.

– KDCDEF statement MAX: Operand NET-ACCESS= for setting up the network
connection (single-threaded/multi-threaded). The multi-threaded network
connection is always used.

– KDCDEF statement FORMSYS for a formatting system.

– KDCDEF statement OPTION: Operand CHECKTNS= for comparing the UTM
generation with the TNS generation.

Changes in openUTM V6.5 Preface

30 Administering Applications

1.3.3 New client functions

UPIC routing

A list of partner applications can be specified in the program or via static configuration in
the upicfile. This enables the implementation of, e.g., flexible addressing or load distri-
bution. Up to now, this type of functionality was only offered for the static configuration of a
UTM cluster application.

The following interfaces have been changed to support this:

● upicfile: New code ND that can be used to define a list of standalone UTM applica-
tions.

● CPI-C interface:

– New call Set_Partner_Index for setting the index for a list entry of a partner appli-
cation. The partner application must be defined then using Set_Partner_xyz calls.
Further partner applications can be inserted subsequently in the partner list.

– New call Get_Max_Partner_Index for querying the maximum index of the list of
partner applications.

Other changes

● 64-bit support of openUTM client for the AIX and HP Itanium platforms.

● Support of long passwords for UTM user IDs.

The following interfaces have been changed to support this:

– CPI-C calls Set_Conversation_Security_Password and
Set_Conversation_Security_New_Password:
Both the existing password and the new password for the UTM user ID can be up
to 16 characters in length.

– XATMI call tpinit:
The password for the UTM user ID can be up to 16 characters in length.

● Code conversion tables

For the code conversion between ASCII-compatible codes and EBCDIC codes on the
client side, openUTM client provides tables for four code conversions on all platforms
(two 8-bit conversions and two 7-bit conversions). By default, an 8-bit conversion
between ISO8859-i and EBCDIC.DF.04-i is used on BS2000, Unix, and Linux systems,
and an 8-bit conversion between Windows 1252 and EBCDIC.DF.04-F is used on
Windows systems.

Preface Changes in openUTM V6.5

Administering Applications 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

The tables can be adjusted. Only one table can be used in a client application at any
one time.

● Encryption

– BS2000 systems: The encryption functionality of the BS2000 system is used.

Unix, Linux and Windows systems: The functionality of the OpenSSL library is used.

1.3.4 New functions for openUTM WinAdmin

WinAdmin supports all new features of openUTM V6.5 relating to the program interface for
the administration and extension of the DADM call at the KDCS interface.

1.3.5 New functions for openUTM WebAdmin

WebAdmin supports all new features of openUTM V6.5 relating to the program interface for
the administration and extension of the DADM call at the KDCS interface.

Notational conventions Preface

32 Administering Applications

1.4 Notational conventions

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this
manual:

Representation Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote constants
(names of calls, statements, field names,
commands and operands etc.) that are to
be entered in this format.

LOAD-MODE=STARTUP

lowercase letters In syntax diagrams and operand descrip-
tions, lowercase letters are used to denote
place-holders for the operand values.

KDCFILE=filebase

lowercase letters in
italics

In running text, variables and the names of
data structures and fields are indicated by
lowercase letters in italics.

utm-installationpath is the UTM
installation directory

Typewriter font Typewriter font (Courier) is used in running
text to identify commands, file names,
messages and examples that must be
entered in exactly this form or which
always have exactly this name or form.

The call tpcall

{ } and | Curly brackets contain alternative entries,
of which you must choose one. The
individual alternatives are separated within
the curly brackets by pipe characters.

STATUS={ ON | OFF }

[] Square brackets contain optional entries
that can also be omiited.

KDCFILE=(filebase
[, { SINGLE| DOUBLE}])

() Where a list of parameters can be
specified for an operand, the individual
parameters are to be listed in parentheses
and separated by commas. If only one
parameter is actually specified, you can
omit the parentheses.

KEYS=(key1,key2,...keyn)

Underscoring Underscoring denotes the default value. CONNECT= { A/YES | NO }

abbreviated form The standard abbreviated form of state-
ments, operands and operand values is
emphasized in boldface type. The abbre-
viated form can be entered in place of the
full designation.

TRANSPORT-SELECTOR=c‘C‘

Preface Notational conventions

Administering Applications 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

1

Other symbols

This symbol is used in the left-hand margin to indicate BS2000 system specific elements of
a description.

This symbol is used in the left-hand margin to indicate Unix and Linux system specific
elements of a description.

This symbol is used in the left-hand margin to indicate Windows specific elements of a
description.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM on BS2000, Unix and Linux systems.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM on BS2000 and Windows systems.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM on Unix, Linux and Windows systems.

 Indicates references to comprehensive, detailed information on the relevant topic.

i Indicates notes that are of particular importance.

v Indicates warnings.

utmpath
On Unix, Linux and Windows systems, designates the directory under which
openUTM was installed.

$userid
On BS2000 systems, designates the user ID under which openUTM was installed.

. . . An ellipsis indicates that a syntactical unit
can be repeated.
It can also be used to indicate sections of a
program or syntax description etc.

Start KDCDEF
...
OPTION
DATA=statement_file
...
END

Representation Meaning Example

B

B

X

X

W

W

B/X

B/X

B/W

B/W

X/W

X/W

X/W

X/W

X/W

BB

BB

Notational conventions Preface

34 Administering Applications

Administering Applications 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

2

2 Overview of openUTM administration

The term “administration” covers all activities involved in the control and administration of
the current application. “Administering” means adapting the application to changing circum-
stances and requirements without interrupting the application run.

To help you administer your UTM application, openUTM provides you with the interfaces
and tools in the following list.

● The command interface on which the basic administration functions are available. This
is implemented in the KDCADM administration program.

● The KDCADMI program interface for administration which you can use to generate
administration programs specifically tailored to your application. The UTM adminis-
tration functions are provided at this program interface.

● The PADM and DADM calls at the KDCS program interface with which you administer
local message queues and printers, enabling you to control the output of print jobs. The
UTM program units KDCDADM and KDCPADM provide you with all the functions of the
KDCS calls DADM and PADM (see the section “UTM program units for DADM and
PADM functions” on page 836).

● The openUTM component WinAdmin with which you can administer several UTM appli-
cations in a network from the graphical user interface on your PC.

● The openUTM WebAdmin component that provides a Web application for the adminis-
tration of UTM applications.

WebAdmin can be integrated into the SE Manager as an add-on.

● The administration tool CALLUTM with which you can start also administration services
in UTM applications while in a BS2000 task, and which enables you to call up adminis-
tration commands.

● The KDCISAT and KDCMSAT commands (dialog transaction codes) with which you
can control the SAT logging function for your application. These commands are
described in the openUTM manual “Using UTM Applications on BS2000 Systems”.

B

B

B

B

B

B

BB

Overview of openUTM administration

36 Administering Applications

openUTM provides you with a comprehensive range of administration functions via the
command interface and the program interfaces KDCADMI and KDCS, enabling you to
obtain optimum performance and flexibility from your application, and ensuring that the
application can operate without interruption (7∗24-hour operation). You can, for example,
perform the following actions:

● Check the performance of the application by querying information about the current
utilization level of the application, diagnosing performance bottlenecks and errors and,
where necessary, taking measures to improve performance.

● Replace parts of the application program or the entire application program at runtime.
This enables you to modify program units during the application run or to add new
program units.

● Assign the restart information and/or print queues on terminals and printers where
hardware faults arise to other terminals or printers. This enables the user to continue
work from a different terminal, or to redirect print jobs to an intact printer.

● Disable/enable clients, printers, LTERM pools, user IDs, services and the connection
points for communication partners (LTERM, LPAP and OSI-LPAP partners) where
necessary.

● Establish and shut down connections to clients, printers and partner applications or
switch to replacement connections.

● Request information about the configuration of an application and the current settings
for application and operating parameters.

● Modify the configuration of an application at runtime by adding to the configuration
services, user IDs, clients, printers, connections and session names for distributed
processing by means of LU6.1, key sets and transaction codes for partner applications
or by deleting them from it.

● Administer TAC, USER and temporary queues as well as the local message queues of
LTERM partners and transaction codes.

● Terminate an application.

You can call up the administration functions of openUTM (with the exception of the SAT
administration command) in dialog mode or by means of message queuing. The message
queuing form of administration for a UTM application involves the use of “programmed
administrators”, i.e. you can generate programs which execute administration functions at
a given time (DPUT call) or in response to specific events. The program interface calls and
administration commands can, in particular, be called by the MSGTAC event service.

Overview of openUTM administration

Administering Applications 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

2

You can also take advantage of the opportunities offered by the user-specific message
destinations. These message destinations allow you to read messages in a TAC or USER
queue, for example, by means of the KDCS program interface and the DGET function. With
this function and corresponding follow-up processing, you can design MSGTAC-like
programs that respond specifically to a message.

 For information on automatic administration refer to chapter “Automatic adminis-
tration” on page 151.

UTM administration privileges are required for all administration functions which involve
write access to configuration data of the application. There is also a slightly lower level of
authorization which entitles users to use administration functions which have read-only
access to the application data.

 For details of the authorizations concept, see chapter “Access rights and data
access control” on page 157ff.

The following section provides a summary of the range of functions for individual interfaces
and tools and also describes the differences between them and their respective areas of
application.

Command interface Overview of openUTM administration

38 Administering Applications

2.1 Command interface

openUTM is supplied with the standard administration program KDCADM in which some of
the functions at the program interface for administration (KDCADMI) are implemented. The
command interface for administration supports some of the functions of the program
interface for administration (KDCADMI).

KDCADM provides the basic administration functions which you need in order to ensure
that the application is available continuously, and to check the performance of the appli-
cation. KDCADM is not able to add new objects dynamically or to delete objects from the
configuration.

In order to call up individual KDCADM functions, you must assign specified transaction
codes to the program KDCADM. These transaction codes are referred to as administration
codes.

There is a dialog transaction code (dialog command) for each KDCADM function and an
asynchronous transaction code (asynchronous command). You can therefore call the
KDCADM administration functions synchronously in dialog mode or asynchronously by
means of message queuing.

When you call a command you can specify operands. With these operands, you can define
the type of action which is to be executed and specify the objects in the application to which
the action must relate. The operands are identical for the respective dialog and
asynchronous commands.

 The KDCADM administration commands and their operands are described in
chapter “Administration commands - KDCADM” on page 675ff.

Administration commands can only be entered in line mode. Similarly, administration
commands are also output in line mode. It is not possible to use formats.

 You will find information about the layout of output for administration in message
queuing mode in chapter “Administration using commands” on page 113ff.

You will need to use KDCDEF to generate both the administration commands you wish to
use at runtime and the administration program KDCADM. Alternatively, you can use the
KDCADMI program interface to include them dynamically. You must always enter the
KDCSHUT command used for terminating the application normally in the configuration for
your application.

The following table contains a summary of KDCADM functions and the commands which
you use to call up these functions.

Overview of openUTM administration Command interface

Administering Applications 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

2

KDCADM administration function Dialog
command

Asynchronous
command

Adjust the settings for application parameters and timers,
define current number of processes for the application,
establish connections to the printers for which print jobs exist,
replace the entire application program,
replace sections of the application marked in the common memory
pool for replacement.

KDCAPPL KDCAPPLA

Producing diagnostic documentation, e.g. request a UTM diagnosis
dump

KDCDIAG KDCDIAGA

Exchange master LTERMs of two LTERM bundles KDCBNDL KDCBNDLA

Query properties of objects and the current settings of application
parameters, request statistical information

KDCINF KDCINFA

Switch the user log file to the next file generation KDCLOG KDCLOGA

Disable/enable LTERM partners, set up and shut down connections KDCLTERM KDCLTRMA

Change the number of clients approved for an LTERM pool KDCPOOL KDCPOOLA

Replace load modules/shared objects/DLLs in the application KDCPROG KDCPROGA

Disable/enable clients/printers, set up and shut down connections KDCPTERM KDCPTRMA

Terminate the UTM application run KDCSHUT KDCSHUTA

Switch the system log file (SYSLOG) of the application,
activate/deactivate size monitoring, modify the control value for
size monitoring, query information via the SYSLOG

KDCSLOG KDCSLOGA

Change the assignment of clients/printers to LTERM partners KDCSWTCH KDCSWCHA

Disable/enable transaction codes (local services) KDCTAC KDCTACA

Modify the maximum number of processes entitled to process jobs
for a TAC class simultaneously

KDCTCL KDCTCLA

Disable/enable user IDs, change passwords KDCUSER KDCUSERA

Disable/enable multiplex connections, set up and shut down
connections

KDCMUX KDCMUXA

Send a message to one or more dialog terminals KDCSEND KDCSENDA

The following functions are available for the administration of server-server communication via LU6.1 and
OSI TP:

Set up and shut down logical connections to partner applications,
switch replacement connections to OSI TP partners, disable/enable
LPAP or OSI-LPAP partners, change timers for monitoring sessions
and associations.

KDCLPAP KDCLPAPA

Set up and shut down logical connections for a session KDCLSES KDCLSESA

KDCADM functions and transaction codes

B
B

B
B
BB

BBB

Command interface Overview of openUTM administration

40 Administering Applications

Disable/enable a remote service (LTAC) for the local application,
and adjust timer settings for monitoring the establishment of
sessions/associations and their response times.

KDCLTAC KDCLTACA

KDCADM administration function Dialog
command

Asynchronous
command

KDCADM functions and transaction codes

Overview of openUTM administration KDCADMI program interface

Administering Applications 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

2

2.2 KDCADMI program interface

You can use the program interface for administration (KDCADMI) to create administration
programs specifically tailored to suit your application. This program interface is provided in
C/C++ and COBOL. This manual describes the program interface for C/C++. Since the
COBOL interface is broadly similar to the C/C++ interface, you can also use the description
in this manual as a guide when creating COBOL administration programs. For additional
information about creating administration programs in COBOL, see also the appendix,
starting on page 855.

The program interface offers functions which go beyond the basic administration functions
of KDCADM. The KDCADMI program interface also offers you the following additional
functions:

● Functions with which you can modify the configuration dynamically:
You can add new services (program units, transaction codes), clients, printers, user IDs,
connections and session names for distributed processing by means of LU6.1, key sets,
transaction codes for partner applications and service-controlled queues to the config-
uration dynamically, delete them from the configuration or change the properties of
objects or application parameters.

● Inverse KDCDEF:
You can generate control statements for generation tool KDCDEF from the configu-
ration information stored in the KDCFILE.
This means that changes to the configuration made during the application run can be
transferred when the application is regenerated.

● Output all configuration data when information is requested:
When information is requested for individual objects or application parameters, all the
configuration data stored in the KDCFILE for this object or parameter is returned. In a
custom-made administration program you can analyze and process exactly the data
that is of interest for a given application. When requesting information, you can restrict
output to those objects which satisfy particular criteria by entering these selection
criteria when you make the call.

The following table lists the functions of KDCADMI and the operation codes which are used
to call up program functions.

 The KDCADMI program interface and all data structures are described in chapter
“Program interface for administration - KDCADMI” on page 163ff.
Information about dynamic administration and inverse KDCDEF can be found in
chapter “Changing the configuration dynamically” on page 71 and chapter “Gener-
ating KDCDEF statements from the KDCFILE” on page 105.

KDCADMI program interface Overview of openUTM administration

42 Administering Applications

KDCADMI Function KDCADMI operation code

Replace the entire application program without shutting down the
application.
Replace sections of the application in the common memory pool
which are marked for replacement.
When doing this, you must specify whether the next higher version,
the next lower version or the current version of the application
program is to be loaded.

KC_CHANGE_APPLICATION

Generate a UTM diagnosis dump without terminating the application. KC_CREATE_DUMP

Extend the configuration of an application dynamically to include new
services (program units, transaction codes), clients, printers, user
IDs, connections and session names for distributed processing by
means of LU6.1, key sets, transaction codes for partner applications
and service-controlled queues.

KC_CREATE_OBJECT

Start an inverse KDCDEF run online KC_CREATE_STATEMENTS

Delete clients, printers, user IDs, services, connections and session
names for distributed processing by means of LU6.1, key sets, trans-
action codes for partner applications and service-controlled queues
from the configuration of the application.

KC_DELETE_OBJECT

Generate, activate or delete RSA key pair.
Read public key of RSA key pair.

KC_ENCRYPT

Query the names and properties of objects, the current settings of
application parameters and statistical information

KC_GET_OBJECT

Permit a new sign-on for all users or for an individual user still
recorded as signed on at a failed node application or who have/has
a service bound to the failed node application,.
Release cluster user file lock after incorrectly terminated KDCDEF
run.
(Only in UTM cluster applications)

KC_LOCK_MGMT

Administration functions in the program interface for administration

B
B

X/W
X/W
X/W

Overview of openUTM administration KDCADMI program interface

Administering Applications 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

2

In addition to the greater range of functions that you can use in administration programs you
write yourself, administration programs which utilize the functions of the program interface
also offer the following advantages:

● For administration by means of message queuing, you can choose any recipient for the
results. This means that, depending on the result of a KDCADMI call, you can call up
various follow-up transactions.

This yields advantages for automatic and programmed administration.

Modify the properties of objects or application parameters, e.g.:
change the settings for application parameters and timers,
define current process numbers for the application,
activate/deactivate traces,
replace load modules/shared objects/DLLs in the application,
disable/enable user IDs, transaction codes, clients/printers or
connections to partner applications,
establish and shut down connections to clients, printers and partner
applications, activate OSI TP replacement connections,
change the number of clients approved for an LTERM pool,
change the assignment of clients/printers to LTERM partners,
reset counter for statistics data,
change keys in key sets,
change the data access control for transaction codes, users and TAC
queues.

KC_MODIFY_OBJECT

Import application data from a terminated into a running node appli-
cation (only for UTM cluster applications).

KC_ONLINE_IMPORT

Roll back transaction in PTC state (prepare to commit). KC_PTC_TA

Send message to a dialog terminal or to all active dialog terminals. KC_SEND_MESSAGE

Terminate the UTM application run. KC_SHUTDOWN

Establish connections to printers for which print jobs exist. KC_SPOOLOUT

Switch the system log file (SYSLOG) in the application,
activate/deactivate size monitoring on/off, modify the control value
for size monitoring, request information via SYSLOG

KC_SYSLOG

Determine IP addresses of generated communication partners;
on BS2000 systems: only for T-PROT=SOCKET

KC_UPDATE_IPADDR

Switch the user log file(s) to the next generation of file KC_USLOG

KDCADMI Function KDCADMI operation code

Administration functions in the program interface for administration

B

KDCADMI program interface Overview of openUTM administration

44 Administering Applications

● The results of an administration call can be analyzed and further processed in the
program unit containing the The number of administration calls which are subject to
transaction management and which are to be executed in a single transaction is,
however, limited by the generated size of the restart area (generation statement MAX,
parameter RECBUF, see openUTM manual “Generating Applications”).

● You can use formats for the entry and output of administration programs.

Calls for administration functions must be made between the KDCS calls INIT and PEND.
The data structures required for the exchange of data between openUTM and the program
are predefined. For C/C++, the data structures are provided in the include file kcadminc.h
(Unix, Linux and Windows systems) or in the include member kcadminc.h in the
SYSLIB.UTM.065.C library (BS2000 systems).

 For information about setting up a program, see chapter chapter “Writing your own
administration programs” on page 119.

openUTM on BS2000, Unix, Linux and Windows systems use the identical data structures.
These data structures contain a few fields which only relate to one of these operating
systems. In the other operating system, binary zeroes must be entered in these fields. The
program is able to determine which operating system it is running on with the aid of a
KDCADMI call.

Since the KDCADMI calls and the data structures used are platform-independent, you can
use KDCADMI to create administration programs which:

● allow the user to administer several UTM applications from one “central” location.
These UTM applications can even be running on different platforms. In particular, you
can administer UTM applications on BS2000 systems from a UTM application on Unix,
Linux or Windows system and vice versa. These applications can be running under
different versions of openUTM.

● are portable. You can compile the same source of an administration program on any of
the three platforms and link it to a UTM application from there.

 For information on central administration of applications, see chapter “Central
administration of several applications” on page 125ff.

KDCADMI calls can, with one exception (termination of application run: KC_SHUTDOWN
with subcode KC_KILL), be submitted in dialog as well as asynchronous services.

These dialog services can be started by users at the terminal, via UPIC clients or
OpenCPIC partners, or by a partner application.
The asynchronous services can be started by users at the terminal, by partner applications
and by OpenCPIC partners or from a program unit.

B

Overview of openUTM administration Sample programs

Administering Applications 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

2

i The program interface for administration is subject to the compatibility guarantee,
i.e. it is offered source-compatible across several different versions of openUTM.
For this reason, administration programs do not need to be adapted to changes of
version if they set those version as KDCADMI data structure version for which they
had been developed. I.e. the administration programs should be recompiled as they
are and then linked into a UTM application running under the follow-up version.

2.3 Sample programs

openUTM is shipped with sample programs in the form of source code and object modules.
You can use these as a basis for your own administration programs, modify them as
required, compile them and integrate them in your application. The sample programs are
the programs HNDLUSR (only BS2000 systems), ENCRADM, SUSRMAX and COBUSER.
You will find an introduction to these in the section “Sample programs” on page 860).

PADM and DADM Overview of openUTM administration

46 Administering Applications

2.4 PADM, DADM for administering message queues and
printers

You can use the PADM and DADM calls at the KDCS program interface to administer the
message queues and printers for an application and to control the printer output.

For example, you can change the sequence of the jobs or messages in a queue, delete jobs
or messages from the queues, generate printer pools and, in the event of a printer fails, you
can redirect print jobs to another printer. In addition, you can move messages from the dead
letter queue into other message queues in order to edit them.

The calls PADM and DADM enable users or clients with no administration privileges to
administer printers, control printer output and administer the message queues for a printer.
In other words, “normal” users can administer their own “local” printers and administer the
print jobs sent to these printers. Administration can be performed from the print control
LTERM to which the printer being administered is assigned.

PADM and DADM can also be used by the event service MSGTAC. The MSGTAC routine
can be started automatically if a printer fails and appropriate action can be taken in
response to PADM and DADM calls.

Program units KDCDADM and KDCPADM are supplied with openUTM. These sample
programs provide access to all services requested by the DADM and PADM calls without
requiring you to create your own program units.

 The PADM and DADM calls and the KDCDADM and KDCPADM programs are
described in chapter “Administering message queues and controlling printers” on
page 815ff.

i Print output from a UTM application is not supported by openUTM on Windows
systems. Consequently, the PADM function in UTM applications on Windows
systems is not relevant.

2.5 Administration tool CALLUTM

CALLUTM is an UPIC client on a BS2000 system with the aid of which you can call UTM
services from any BS2000 task. Using CALLUTM’s SDF interface, you can start adminis-
tration services in UTM applications on the same computer and also on other computers on
the network. In particular, you can administer several UTM applications in the network
centrally. These can either be UTM applications on BS2000 systems or UTM on Unix, Linux
or Windows systems. CALLUTM is capable of running in dialog or in batch mode.

 CALLUTM is described in the appendix, starting on page 863.

W

W

W

B

B

B

B

B

B

BB

Overview of openUTM administration openUTM WinAdmin and openUTM WebAdmin

Administering Applications 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

2

2.6 openUTM WinAdmin and openUTM WebAdmin

The openUTM components WinAdmin and WebAdmin provide you with a convenient
graphical user interface for the administration of individual or multiple UTM applications.

WinAdmin and WebAdmin both provide much the same function scope. While openUTM
WinAdmin is a Java application that runs on Windows, Unix and Linux systems, openUTM
WebAdmin is a web application which can be accessed from any computers or mobile
devices using a web browser.

The UTM applications may be distributed across the network. They can run on all approved
platforms and possess different version levels. Both WinAdmin and WebAdmin support the
full function scope of the program interface offered by the version in question.

The UTM applications requiring administration can be grouped into pools which can then
be administered jointly. For example, it is possible in one step to modify objects in several
applications.

You have to generate the KDCWADMI administration program and the relevant transaction
code KDCWADMI, in order to be able to administer a UTM application through WinAdmin
or WebAdmin. Specify ADMIN=YES for the transaction code. KDCWADMI is part of the
delivery scope of openUTM.

You can also use WinAdmin and WebAdmin to start and end UTM applications. When you
start a UTM application, the system assumes that openFT is available on the relevant
computer. Consequently the openUTM WebAdmin add-on in the SE Manager cannot start
any UTM applications.

Security

The full range of UTM security functions, starting with access control using UTM user IDs
and passwords through to password and data encryption, is at your disposal in WinAdmin
and WebAdmin.

WinAdmin and WebAdmin, moreover, also offer their own user concept, allowing you to
define several users with different rights, from read-only users through to “master” users,
i.e. the WinAdmin or WebAdmin administrators. Each user’s access to WinAdmin or
WebAdmin is password-protected.

Differences between WinAdmin and WebAdmin

Using WinAdmin it is possible to modify objects in multiple applications in a single step or
to combine multiple administration steps in a single transaction.

 You will find an introduction to WinAdmin and WebAdmin in section “Administration
using WinAdmin and WebAdmin” on page 127.

openUTM WinAdmin and openUTM WebAdmin Overview of openUTM administration

48 Administering Applications

Administering Applications 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

3 Administering objects and setting parameters

This chapter provides a summary of the options made available by UTM’s administration
functionality. A few application areas of UTM administration are illustrated here by way of
example. The administration commands and program interface calls with which you can
perform individual actions are merely referred to.

The chapter “Program interface for administration - KDCADMI” on page 163ff and the
chapter “Administration commands - KDCADM” on page 675ff contain a detailed
description of the actions which you are able to perform with the aid of the program interface
and the administration commands.

The present chapter does not provide details of the administration functions for dynamically
entering new objects in the configuration, changing object properties or deleting objects.
These administration functions are described in chapter “Changing the configuration
dynamically” on page 71.

The following symbols are used in the ensuing description:

 refers to the administration command with which you can perform actions. Only the
dialog command is indicated in each case. However, you can also use the appro-
priate asynchronous command to execute the specified actions (see table on
page 39).

 refers to the function call at the program interface for administration with which you
can execute the required administration function.

You call also use all of the functions described in this section with the administration tools,
WinAdmin and WebAdmin.

C

P

Information functions in openUTM Administering objects and setting parameters

50 Administering Applications

3.1 Information functions in openUTM

openUTM provides you with information functions with which you can obtain an overview
of the configuration of your application, the settings for application parameters and the
current utilization level of the application. You can call the information functions of UTM
administration with:

 KDCINF

 KC_GET_OBJECT

These information functions can also be utilized by users who do not have administration
privileges (see chapter “Access rights and data access control” on page 157ff).

With the aid of information functions, you can, for instance, arrange for output of the
following information:

● Application and system parameters defined during KDCDEF generation with the MAX
statement
(page 745 / page 634).

● Number of processes currently active for the application, maximum number of
processes that can be available for asynchronous processing at one time, maximum
number of processes that are available for processing services at one time and that
contain blocking calls, such as the KDCS call PGWT or the XATMI call tpcall
(page 745 / page 663).

● Data about the current utilization level of the application. This information can, for
example, include utilization of the page pool or the cluster page pool, the total number
of messages being exchanged, the number of users and clients signed on, the number
of services open at the present time, the number of transactions performed per unit of
time, the number of jobs buffered in the message queues etc.
(see page 738 and 745 / page 609).

● Current settings for the timers. In UTM, for example, timers are defined for assigning
and waiting for resources, waiting for an answer from a dialog partner both during and
outside of a transaction, waiting for confirmations, and waiting for a connection or
session to be established (see page 745 / page 667).

● Configuration data on all objects which appear in the configuration. This includes the
names and logical properties defined when adding objects to the configuration. It also
includes control values for the message queues, the number of LTERM partners in an
LTERM pool or the maximum number of parallel connections generated to an OSI TP
partner application.

C

P

Administering objects and setting parameters Information functions in openUTM

Administering Applications 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

● Status of individual communication partners and printers in the application, and of
connections to these. For example, the output can show whether the communication
partner is connected to the application and the length of time that such a connection
has been in existence, as well as whether or not the communication partner is currently
disabled, the number of messages exchanged on the connection, and whether
automatic connection setup is generated.

● Maximum number of objects of a given type that the configuration of the application can
maintain.

● Number of objects that can still be added dynamically to the configuration.

Details of which specific data are returned is described in section “Data structures used to
pass information” on page 452 for queries with KC_GET_OBJECT and as of page 715 for
queries using the administration command KDCINF.

With information queries you can specify the selection criteria, i.e. you can request infor-
mation on objects which have particular properties, e.g.:

● all LU6.1 connections currently established

● the association ID of all associations currently established to an OSI TP partner appli-
cation

● all clients and printers currently connected to the application

● all users currently connected to the application

● all LTERMs of a connection bundle or all (OSI-)LPAPs of a LPAP bundle

Performance check Administering objects and setting parameters

52 Administering Applications

3.2 Performance check

openUTM offers you numerous functions which you can use to obtain up-to-date infor-
mation about the utilization level of the application, to diagnose bottlenecks and to initiate
actions to improve performance.

Reasons for performance bottlenecks can include such things as:

● Increased requirements on service calls during peak times

● Too many users/clients are working with the application at the same time

● The processes that are available to the application are occupied by jobs for an extended
period because they have to wait for resources locked by other processes

● Processing of a large number of asynchronous jobs impairs dialog operation

● Too many long-running program units are running at the same time, e.g. program units
which conduct a search of all data for specific information

● Many program units containing blocking calls are running at the same time, e.g. the
KDCS call PGWT or the XATMI call tpcall. During the waiting period, each of these
program units occupies a process in the application on an exclusive basis.

● With distributed processing using OSI TP or LU6.1, the system waits long for an associ-
ation or session to be assigned

● Frequent I/O accesses to the page pool
Frequent read accesses may indicate that the cache generated for the UTM application
is too small.

● Bottlenecks to connections to communication partners in the application

3.2.1 Information about the utilization level of the application

On the basis of data relating to the current and maximum utilization level of the application
and of individual objects supplied by the information functions of UTM, you can identify
pending bottlenecks and introduce measures in good time to prevent these bottlenecks
from occurring.

You can obtain important data for performance control purposes with the following calls:

 KDCINF STATISTICS or SYSPARM (general data)
KDCINF object type (query about data for individual objects)
The data actually returned by KDCINF STATISTICS are described from page 738.

 KC_GET_OBJECT with obj_type=KC_CURR_PAR (general data)
For queries about object-related data, enter the type of the object in obj_type.

C

P

Administering objects and setting parameters Performance check

Administering Applications 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

The data actually returned in response to queries with KC_CURR_PAR is described
from page 609. Object-specific data can be found in section “Data structures for
describing object properties” on page 454.

 KC_GET_OBJECT with obj_type=KC_CLUSTER_CURR_PAR
Supplies information about the occupancy of the cluster page pool in UTM cluster
applications, see page 601.

If the information functions mentioned above indicate bottlenecks, you should carry out a
more detailed analysis using the UTM metering monitor KDCMON which gathers statistical
data, e.g. on the utilization level of the application, the progress of application program
units, and the time needed to process a job. With the aid of system administration, you can
activate KDCMON and deactivate it again after a desired period of time while the system is
running. You can evaluate the data thus obtained using the UTM tool KDCEVAL.

 KDCAPPL KDCMON

 KC_MODIFY_OBJECT with obj_type=KC_DIAG_AND_ACCOUNT_PAR

KDCMON and the tool KDCEVAL are described in the openUTM manual “Using UTM Appli-
cations”, where you will also find interpretation aids for the statistics produced by KDCMON
and the measures you can take to eliminate bottlenecks.

For performance control purposes, you also have the software monitor openSM2.
openSM2 supplies statistical data on the performance of the complete application program
and the utilization level of the system resources. You can activate/deactivate the supply of
data to openSM2 through Administration. For further information on openSM2 also refer to
the openUTM manual “Using UTM Applications”.

 KDCAPPL SM2

 KC_MODIFY_OBJECT with obj_type=KC_MAX_PAR

P

C

P

C

P

Performance check Administering objects and setting parameters

54 Administering Applications

3.2.2 Diagnosing errors and bottlenecks

openUTM provides the following functions which assist you during the diagnosis of perfor-
mance bottlenecks and incorrect program behavior:

● You can check the maximum utilization of an application in a particular period.

● You can log events in the form of UTM messages in the SYSLOG.

● In order to diagnose bottlenecks and errors in connections to communication partners,
you can activate the UTM BCAM trace or the OSS trace. The UTM BCAM trace can be
activated for all connections, for a specific user only or just for connections to specific
partner applications and clients.

● You can enable the CPI-C trace, TX trace or XATMI trace to diagnose errors that occur
in program units that use the X/Open interfaces CPI-C, TX or XATMI.

● You can enable the ADMI trace to diagnose errors that occur at the administration
program interface (KDCADMI).

● You can activate test mode. Test mode is used to generate diagnostic documentation
when errors occur in the UTM system code. Since test mode has a negative impact on
UTM application performance, you should only activate test mode when requested to
do so by Systems Support. In test mode, additional internal UTM plausibility checks are
conducted and internal trace information is logged.

● You can request a diagnostic dump without having to interrupt the execution of the
application. In this case, you can do the following by issuing a command or via the
program interface:
– immediately request a general diagnosis dump. This has the ID DIAGDP ID.
– or request a dump as soon as a particular event (message, KDCS return code, sign-

on return code) is generated by openUTM. The dump ID is dependent on the event.
You must first activate test mode since the dump is only written when test mode is
active.

 KDCDIAG

 KC_MODIFY_OBJECT with obj_type=KC_DIAG_AND_ACCOUNT_PAR

C

P

Administering objects and setting parameters Performance check

Administering Applications 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

3.2.3 Possible measures

The following section describes some of the measures you can take to avoid performance
bottlenecks or to remedy existing bottlenecks.

Increasing the total number of processes for an application

If extended wait periods arise when processing jobs, particularly in dialog mode, you can
increase the number of processes in which the application program runs.

This makes particular sense in the event that the current application load rises above 80 %
and at the same time sufficient system resources are still free on the computer (memory
space, CPU capacity). This value should fall again after the total number of processes has
been increased sufficiently.

The maximum permitted number of processes is defined in MAX TASKS during KDCDEF
generation.This maximum number cannot be increased at the administrative level.
However, if the number of processes currently set is less than this maximum number, you
can start additional processes for the application.

 KDCINF SYSPARM:
Query the current maximum number of processes and the maximum permitted
number of processes.
KDCAPPL TASKS: define a new number of processes.

 KC_GET_OBJECT with obj_type=KC_TASKS_PAR:
Query the maximum permitted number of processes and the current number of
processes.
KC_MODIFY_OBJECT with obj_type=KC_TASKS_PAR: change the number of
processes.

Reducing the total number of processes for an application

Because of the possibility of load fluctuations, it is generally not sensible to reduce the total
number of processes if the application is not loaded to capacity part of the time.

The total number of processes should only be reduced when the computer as a whole
encounters a bottleneck which leads to reduced throughput and/or slower response times
on the part of the application.

C

P

Performance check Administering objects and setting parameters

56 Administering Applications

If you reduce the total number of processes, you must note the following points:

● If the total number of processes is reduced to such a level that it is less than the
currently set maximum number of processes that can be used at the same time for
asynchronous processing (hereafter referred to as ASYNTASKS), openUTM resets the
value for ASYNTASKS to the specified total number of processes. For subsequent
changes to the total number of processes, openUTM adapts the value of ASYNTASKS
automatically until the value is reached which was previously set by administration or in
the startup parameter for ASYNTASKS.

The same applies to the maximum number of program units with blocking calls (TASKS-
IN-PGWT) permitted to run simultaneously. Note that the maximum number of
processes must be at least 2 if a transaction code or a TAC class is generated with
PGWT=YES or if the application is a UTM cluster application.

● If, in a dialog TAC class, the value for TASKS-FREE is greater than the current total
number of processes, one process then continues to process the jobs going to this TAC
class.

● If, in the application, job processing is priority controlled (TAC-PRIORITIES is
generated), and the value for FREE-DIAL-TASKS is greater than the current total
number of processes, one process then continues to process the jobs going to this TAC
class.

To ensure that, after the total number of processes has been reduced, dialog operation is
not impaired by long-running asynchronous services or by programs with blocking calls, it
is advisable to adapt the value of ASYNTASKS and TASKS-IN-PGWT to reflect the
reduction you make in the total number of processes, i.e. you should also reduce this value.

Reducing the number of processes available for asynchronous processing and for
the processing of program units with blocking calls

If the dialog mode for an application is delayed by time-consuming asynchronous
processing (in other words, if dialog jobs wait because too many processes are handling
asynchronous jobs at the same time), you can reduce the maximum number of processes
(ASYNTASKS) that can be used at one time for asynchronous processing. This means that
there remain more processes free for synchronous processing. The number of processes
in ASYNTASKS is restricted by the maximum value generated in MAX ASYNTASKS.

You can occasionally set ASYNTASKS to 0. However, when doing so, you should note that
all asynchronous jobs are placed in buffer storage in the page pool. If the page pool is not
large enough, this can cause bottlenecks in the page pool.

When you reduce ASYNTASKS and if jobs are controlled through process restrictions for
the individual TAC classes in your application (TAC-PRIORITIES is not generated), you
must also note the following:

Administering objects and setting parameters Performance check

Administering Applications 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

If an asynchronous TAC class exists for which the current value set in TASKS-FREE is
greater than or equal to ASYNTASKS, then this TAC class is disabled, i.e. no further jobs
are processed for this TAC class. In this instance, TASKS-FREE is the minimum number of
processes which should be kept free for processing other jobs going to other asynchronous
TAC classes.

To maintain a check, you should request information about the TAC classes after reducing
the ASYNTASKS.

The same applies to the maximum number of processes (TASKS-IN-PGWT) in which
program units with blocking calls are allowed to run at the same time. In contrast to
ASYNSTASKS, however, note that you cannot set the value to 0, if such tasks exist.

 KDCINF SYSPARM:
Display current settings
KDCAPPL ASYNTASKS / TASKS-IN-PGWT: change number of processes

 KC_GET_OBJECT with obj_type=KC_TASKS_PAR:
Determine generated maximum number and currently set number of processes
KC_MODIFY_OBJECT with obj_type=KC_TASKS_PAR:
change number of processes

In applications without TAC-PRIORTIES:
changing the number of processes for individual TAC classes

If your application is generated with TAC classes, you can define a specific maximum
number of processes for each TAC class, i.e. the number of processes able to process jobs
in one TAC class, and you can change this number if so required.

When creating the transaction code, you indicate the TAC class to which a transaction code
is to belong. You can therefore group transaction codes belonging to long-running program
units into one TAC class or several TAC classes. The proportion of processes in the appli-
cation that are authorized to process jobs in this TAC class at the same time can then be
set by you at a level which reflects the utilization of that application. In the case of dialog
TAC classes, at least one process must be allowed to process jobs in the TAC class. In the
case of asynchronous TAC classes, the number can be reduced to 0.

In particular you should group the dialog TACs in program units containing blocking calls
(e.g. KDCS call PGWT, or XATMI call tpcall) in one TAC class (with PGWT=YES). After a
blocking call, the program unit waits until the data required for continuing the program has
been received. For this period of time, the program unit and the related transaction code
assigns a process in the application on an exclusive basis. If several similar program units
are running concurrently, this can cause other jobs to remain waiting in the queue because
no processes are available to process them. The performance of the application is thus
severely impaired. The wait time following a blocking call can also be restricted using the
timer PGWTTIME (see below).

C

P

Performance check Administering objects and setting parameters

58 Administering Applications

 KDCINF TACCLASS:
Determine current setting
KDCTCL: change number of processes

 KC_GET_OBJECT with obj_type=KC_TACCLASS:
Determine current setting
KC_MODIFY_OBJECT with obj_type=KC_TACCLASS:
change number of processes

Changing the setting for timers

Timers are defined to prevent processes from remaining assigned for excessive periods of
time while waiting for resources to be freed up or for connections and sessions to be estab-
lished. The timers monitor these wait times and roll back the waiting transaction after the
specified time elapses. The timers are defined during KDCDEF generation and can be
adapted at runtime.

In openUTM, timers are defined for the following wait times:

● Wait time after a blocking call (pgwttime)

● The timer monitors the maximum length of time which a program unit waits before
returning to the program unit after placing a blocking call.

● Maximum length of time during a transaction that is spent waiting for an answer from a
dialog partner (termwait...).

● Maximum period of time over which resources can remain assigned by a transaction
and the maximum period of time that a program unit can wait for resources to be freed
up (reswait...).

Using the information functions (parameter type STATISTICS/KC_CURR_PAR) you
can, for example, determine how frequently program units have had to wait for locked
resources (relative figure).

● Maximum length of time to wait for a session/association to the partner application to
be assigned.

i The timers are intended as "emergency brakes" for unforeseen situations.
You should therefore set the timer values in such a way that they do not run when
the application is executing normally. Timeouts should only be caused by excep-
tional situations, for example when a program error occurs or no response is
received from a partner application.

If the timers pgwttime or reswait are set for an excessively long period, particularly in
bottleneck situations, then individual processes in the application can be assigned by
program units which either lock resources for too long at a time (long-running units) or wait

C

P

Administering objects and setting parameters Performance check

Administering Applications 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

too long for required resources to become free. However, if the timers are not set for long
enough periods, system performance is impaired by transactions being rolled back
frequently.

 KDCINF SYSPARM or STATISTICS:
Determine current timer settings and request information about current wait times
KDCAPPL: change timer setting

 KC_GET_OBJECT with obj_type=KC_TIMER_PAR / KC_CURR_PAR:
Determine current timer settings and request information about current wait times
KC_MODIFY_OBJECT with obj_type=KC_TIMER_PAR: change timer setting

Restricting the number of users/clients signed on

At runtime you can influence the number of users/clients that can connect to the application
and request services from the application at the same time. For this purpose, you are
offered the following options:

● You can restrict the total number of users/clients able to sign on to an application at the
same time.

● You can restrict the number of clients able to connect via individual LTERM pools at the
same time. To do this, you disable some of the LTERM partners in the pool.

● You can disable individual clients/LTERM partners/users.

● You can disable LTERM pools completely. At this point, it is no longer possible for
users/clients to sign on to the application via a disabled LTERM pool.

● You allow only a small number of parallel sessions access to a multiplex connection.

 KDCAPPL MAX-CONN-USERS: total number of users/clients
KDCPOOL: disable a number of approved pool LTERM partners / LTERM pool

 KC_MODIFY_OBJECT
obj_type=KC_MAX_PAR: define total number of users/clients
obj_type=KC_TPOOL:
disable a number of approved pool LTERM partners / LTERM pool
obj_type=KC_PTERM: disable clients/printers
obj_type=KC_LTERM: disable LTERM partners
obj_type=KC_USER: disable users

C

P

B

C

P

Performance check Administering objects and setting parameters

60 Administering Applications

Disabling services

It is, for example, possible to disable long-running services for a certain period by disabling
the relevant transaction code (State OFF). As of this point, jobs are no longer accepted for
disabled transaction codes. In the case of disabled asynchronous TACs, no further jobs are
written to the message queue either.

You can disable a transaction code either exclusively as a service TAC or as both a service
TAC and a follow-up TAC (complete lock: State STOP).

You can also lock asynchronous services using the KEEP status, which means that jobs for
the asynchronous TAC are accepted, but not processed immediately. They can subse-
quently be processed when the application is less busy, e.g. at night.

 KDCTAC

 KC_MODIFY_OBJECT obj_type=KC_TAC

Preventing or remedying bottlenecks for connections to partner applications

If bottlenecks occur during communication with LU6.1 or OSI TP partner applications, you
can perform the following actions:

● Establish other transport connections to an LU6.1 partner application.

● Before you can communicate with a partner application, you must first have created or
generated several parallel connections, but not all the connections created or
generated should yet have been established.

● Increase the number of parallel logical connections to an OSI TP partner application.
The maximum possible number of parallel connections is defined during generation in
the OSI-LPAP statement.

● Adapt the timer (access wait) for the wait time following a request for a remote service
within which a session or association with a partner application is to become available
or be established. You can set this timer individually for each LTAC. If the timer is set to
0 for an asynchronous LTAC, asynchronous jobs for this LTAC are also not arranged in
the local message queue of the partner application.

● Adapt the timer (reply wait) which monitors the wait time for an answer from the partner
application. This timer is also set individually for each LTAC.

● Adapt the setting of the idle timer. This timer indicates the length of time that a session
or association can remain unused before openUTM terminates the connection to the
partner application. If the timer setting is too long, an inordinate number of resources
will be reserved by unnecessary connections. If the timer setting is too short, too may
resources will be used up to allow the connection to be set up again. The timer is set
individually for each partner.

C

P

Administering objects and setting parameters Performance check

Administering Applications 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

If a large amount of connections in your application are handled by the same BCAMAPPL
name or access point in your application, this can give rise to bottlenecks since processes
can come up against system limitations (e.g. the maximum number of file descriptors).
During the next KDCDEF generation, you should then generate more BCAMAPPL names
and access points.

 KDCLPAP / KDCLSES: establish connections, adjust idle time
KDCLTAC: change access wait and reply wait

 KC_CREATE_OBJECT obj_type=KC_CON/KC_LSES:
create connections and sessions

 KC_MODIFY_OBJECT
obj_type=KC_LPAP/KC_OSI_LPAP/KC_LSES:
establish connections, adjust idle time
obj_type=KC_LTAC: change access wait and reply wait

Enabling or disabling data compression

If GSSBs, LSSBs, ULS, TLS, or KB program areas are frequently read or written in a length
which is greater than one UTM page, you should check whether enabling data compression
will enhance the performance of the UTM application.

You can check whether data compression is worthwhile while it is enabled as follows:

 KDCINF STAT, AVG COMPRESS PAGES SAVED field

 KC_GET_OBJECT with obj_type=KC_CURR_PAR, avg_saved_pgs_by_compr field

X/W
X/W

X/W

X/W

X/W

C

P

P

C

P

Avoiding a page pool bottleneck Administering objects and setting parameters

62 Administering Applications

3.3 Avoiding a page pool bottleneck

The content and role of the page pool depends on whether the application is a standalone
application (see below) or a UTM cluster application (see page 65).

3.3.1 Page pool of a standalone application

User data generated during the application run is stored in the page pool of a standalone
application. In addition to UTM memory areas and service data, this includes:

● the message queues of the asynchronous TACs, LTERM, LPAP and OSI-LPAP
partners and the user, TAC and temporary queues (i.e. jobs to local services and
communication partners and print jobs to the printers of the application) that are not
being processed

● dialog jobs or asynchronous jobs buffered for transaction codes of TAC classes, which
are interrupted as a result of TAC class control

The page pool size is defined during KDCDEF generation and cannot be modified at
runtime.

While an application is running, it is necessary to ensure that the page pool is assigned
completely. To this end, two warning levels are defined for KDCDEF generation (page pool
assignment in %). If page pool assignment reaches one of these warning levels, openUTM
generates message K041. If the destination MSGTAC is defined for this message, you can
respond to this event in an MSGTAC routine. If the second warning level (default setting
95%) is reached, no more asynchronous jobs are written to the message queues and no
more user log records (LPUT jobs) are written to the user log file. Asynchronous jobs and
LPUT calls then are rejected.

For this reason, when the first warning level is reached, measures must be taken to release
memory space in the page pool. While the application is running, you can obtain information
about the current assignment of the page pool.

 KDCINF STATISTICS
KDCINF PAGEPOOL

 KC_GET_OBJECT with obj_type=KC_CURR_PAR
KC_GET_OBJECT with obj_type=KC_PAGEPOOL

However, if page pool bottlenecks occur frequently, the page pool is simply not large
enough. In this case, you should regenerate the application and increase the size of the
page pool.

C

P

Administering objects and setting parameters Avoiding a page pool bottleneck

Administering Applications 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

The following section describes how to terminate message queues and dialog jobs in buffer
storage in order to clear space, i.e. relieve congestion, in the page pool.

Reducing the size of message queues

You can implement the following measures to reduce the size of message queues:

● Reduce printer queues by establishing connections to all printers for which print jobs
are waiting. These print jobs will then be processed immediately even if a control value
(plev) has been generated for a printer and this has not yet been reached.

● Request connections to TS applications and partner applications for which
asynchronous jobs are in buffer store in the page pool. If the communication partners
are disabled, they must first be re-enabled.

● Increase the number of processes that can be used concurrently for asynchronous
processing purposes.

● Increase the number of processes that can be used concurrently for processing jobs of
a specific TAC class (in applications without priority control).

● Unlock (status ON) or lock with status OFF any asynchronous transaction codes and
TAC queues that are locked with the KEEP status or blocked. The KEEP status means
that jobs for the transaction code or queue in question are accepted, but are not
processed immediately, whereas the status OFF means that no further jobs are
accepted, but any waiting jobs will be processed.

● Delete the asynchronous jobs in the message queues of dynamically deleted LTERM
partners and asynchronous TACs.

● Delete older messages from service-controlled queues if they are no longer expected
to be read.

● Assign messages from the dead letter queue to a new destination again in order to
allow them to be edited.

 KDCINF STATISTICS:
total number of all messages in the buffer store in the page pool

KDCINF LTERM / LPAP / OSI-LPAP / TAC:
query the assignment of message queues for individual objects

KDCINF PAGEPOOL:
query the page pool page utilization subdivided according to types

KDCAPPL SPOOLOUT: reduce size of printer queues

KDCLTERM or KDCLPAP: establish connection to communication partners

KDCAPPL ASYNTASKS: change the number of processes

C

Avoiding a page pool bottleneck Administering objects and setting parameters

64 Administering Applications

KDCTAC STATUS: change the status of a transaction code

KDCTCL: change the number of processes in a TAC class

 KC_GET_OBJECT with obj_type=KC_CURR_PAR:
query the total number of messages in buffer store in the page pool
with obj_type=KC_LTERM / KC_LPAP / KC_OSI-LPAP / KC_TAC:
assignment of message queues of individual objects
with obj_type=KC_PAGEPOOL:
query the page pool page utilization subdivided according to types

KC_SPOOLOUT: reduce the size of printer queues

KC_MODIFY_OBJECT
with obj_type=KC_LTERM/ KC_LPAP/KC_OSI_LPAP: establish connections
with obj_type=KC_TASKS_PAR: change number of ASYNTASKS processes
with obj_type=KC_TAC: change the status of a transaction code or a TAC queue
with obj_type=KC_TACCLASS: change the number of processes in a TAC class

DADM (KDCS call): delete jobs and move messages from the dead letter queue

In applications without TAC-PRIORITIES:
reducing the size of job queues in TAC classes

The information functions enable you to determine the number of jobs in buffer storage in
the page pool in any given TAC class. The information which openUTM issues on a TAC
class includes the number of messages stored in buffer storage in the page pool.

In order to reduce the size of these queues you can increase the maximum number of
processes able to process jobs in this TAC class at the same time.

 KDCINF TACCLASS query number of dialog jobs in buffer storage
KDCTCL: change number of processes

 KC_GET_OBJECT with obj_type=KC_TACCLASS:
query number of dialog jobs in buffer storage

KC_MODIFY_OBJECT with obj_type=KC_TACCLASS:
change number of processes

P

C

P

Administering objects and setting parameters Avoiding a page pool bottleneck

Administering Applications 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

Enabling or disabling data compression

When a large number of page pool pages are utilized for GSSBs, LSSBs, TLS, or ULS
(KDCINF PAGEPOOL or KC_GET_OBJECT with obj_type=KC_PAGEPOOL), you should
check whether enabling data compression might possibly reduce the number of utilized
pages.

You can check whether data compression is worthwhile while it is enabled as follows:

 KDCINF STAT, AVG COMPRESS PAGES SAVED field

 KC_GET_OBJECT with obj_type=KC_CURR_PAR, avg_saved_pgs_by_compr field

C

P

Avoiding a page pool bottleneck Administering objects and setting parameters

66 Administering Applications

3.3.2 Page pools of a UTM cluster application

Every node application in a UTM cluster application has its own page pool for data that is
local to the node. In addition, there is a common cluster page pool for data that is valid
globally throughout the cluster. This results in certain special characteristics compared to
standalone applications:

● Data that applies locally to the node is stored only in the page pool of the relevant node
application. Data that applies locally in the node includes, for example, the TLS areas,
message queues as well as buffered dialog or asynchronous jobs to transaction codes
of TAC classes which have been interrupted due to TAC class control activities.

● Data that applies globally throughout the cluster is stored in the cluster page pool. This
type of data includes GSSB, ULS or cluster-wide service data.

Properties of the cluster page pool

The cluster page pool forms part of the UTM cluster files and consists of a management file
and one or more files containing the user data. The following are defined during generation
with KDCDEF:

– The size of the cluster page pool file(s)
– The number of cluster page pool files
– A warning level for the cluster page pool

The message that the value has risen above or fallen below the warning level is always
output by the node application that triggered the change of state.

The administration functions permit the following actions:

● You can determine the current occupancy of the cluster page pool and reset the statis-
tical values, e.g. by means of WinAdmin, WebAdmin or the KDCADMI program
interface.

 KC_GET_OBJECT and KC_MODIFY_OBJECT with obj_type=KC_CLUS-
TER_CURR_PAR

● You can increase the size of the cluster page pool files without terminating the UTM
cluster application.

 openUTM manual “Using UTM Applications”, entry for "Increasing the size of
the cluster pagepool" in the section "Update generation in a cluster".

P

Administering objects and setting parameters Exchanging the application program

Administering Applications 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

3.4 Exchanging the application program

You can use the administration functions of openUTM to exchange the entire application
program or parts of the application program (individual load modules or shared objects)
without having to terminate the application.

In order to exchange individual parts of the application program, the application program
must have been generated with load modules (on BS2000 systems) or with shared objects
(on Unix or Linux systems) or DLLs (on Windows systems).

For more detailed information about program exchange and the conditions governing
program exchange, see the openUTM manual “Using UTM Applications”.

 KDCAPPL PROGRAM: exchange of the entire application program
KDCPROG: exchange of individual load modules, shared objects or DLLs

 KC_CHANGE_APPLICATION: exchange of the entire application program
KC_MODIFY_OBJECTS with obj_type= KC_LOAD_MODULE:
exchange of individual load modules, shared objects or DLLs

In standalone UTM applications, please proceed as follows when replacing load modules
stored in a common memory pool:

1. Identify the load modules to be exchanged. To do this, call KC_MODIFY_OBJECT with
obj_type= KC_LOAD_MODULE for these load modules and indicate which version is to
be loaded during the ensuing exchange operation. Alternatively, you can use the
KDCPROG command.

2. In order to exchange the identified load modules, the entire application program must
be terminated (all individual processes) and reloaded. To do this, you call
KC_CHANGE_APPLICATION or use the KDCAPPL command.

In UTM cluster applications, the exchange of the entire application program is initiated
immediately when the version of a load module is changed.

C

P

B

B

B

B

B

B

B

B

B

B

B

Clients and printers Administering objects and setting parameters

68 Administering Applications

3.5 Clients and printers

For clients and printers in an openUTM application, you can perform the actions described
in the following section.

i Printers are not supported by openUTM on Windows systems.

Transferring logical properties from one terminal to another

If a terminal is defective, or if the user previously connected to the terminal wishes in future
to work from a different terminal, you can transfer the logical properties of one terminal to
another one in stand-alone UTM applications. You do this by assigning the LTERM partner
of one terminal to another terminal (of the same type). In so doing, you can for example
transfer the following properties to the new terminal:

– restart information
– access rights (key set)
– access protection (access list or lock code)
– message queue with asynchronous messages
– user ID for the automatic KDCSIGN, where defined
– language environment, where defined
– start format, where defined
– control value qlev for the message queue, where defined

 KDCSWTCH

 KC_MODIFY_OBJECT with obj_type=KC_PTERM

Assigning the message queue of one printer to another printer

In standalone UTM applications, if one printer malfunctions, the printer queue can be
assigned to another printer (of the same type). This printer then processes the print jobs in
that queue. To do this, you must disable the defective printer and assign the LTERM partner
of the printer to a different one.

In addition to the printer queue, defined logical properties are also transferred to the new
printer. This includes the control value qlev for the printer queue and the value plev. As soon
as plev print jobs are waiting in the printer queue, openUTM automatically sets up a
connection to the printer.

 KDCPTERM: Disable a printer
KDCSWTCH: Assign an LTERM partner to a different printer

 KC_MODIFY_OBJECT with obj_type=KC_PTERM

W

C

P

C

P

Administering objects and setting parameters Clients and printers

Administering Applications 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

3

Generating printer pools

In standalone UTM applications, at runtime you can group printers in the application
together into printer pools. Printer pools are created when you assign additional printers to
the LTERM partner of one printer. The printer queue belonging to the LTERM partner is then
processed jointly by all printers assigned to that LTERM partner. Good reasons for gener-
ating a printer pool can include:

● The message queue of a printer may become too large. It may prove necessary to wait
too long for requested print outputs and the page pool in which jobs are kept in buffer
storage can be placed under excessive strain. To process print jobs in the queue,
several printers should be implemented.

● When a printer is entered, if the maximum specified number of print jobs which can be
stored in a printer queue at one time (plev) is too small, print jobs sent to this printer will
be rejected frequently.

● Additional printers have recently become available in a branch office. These printers are
to process all print jobs from this branch office on a joint basis, i.e. when a print job is
issued, it is sent for processing to a printer which is free at the time. You can load these
new printers in the configuration dynamically and group them in printer pools with the
existing printers.

 KDCSWTCH

 KC_MODIFY_OBJECT with obj_type=KC_PTERM

Disabling printers/clients and their LTERM partners

You can disable clients and printers and their LTERM printers. It is not possible to establish
a connection to disabled clients or via disabled LTERM partners. You can still send
asynchronous jobs to disabled LTERM partners. These are then stored in the message
queue until the control value for that message queue is reached. However, the jobs are not
processed until the LTERM partners are re-enabled.

 KDCLTERM, KDCPTERM

 KC_MODIFY_OBJECT with obj_type=KC_PTERM or KC_LTERM

C

P

C

P

Clients and printers Administering objects and setting parameters

70 Administering Applications

Connections to clients and printers

If necessary you can establish and terminate connections to TS applications, terminals and
printers.
In the case of terminals, TS applications and printers that are always connected to the appli-
cation, you can arrange for connections to be established automatically each time the appli-
cation starts.

 KDCLTERM, KDCPTERM

 KC_MODIFY_OBJECT with obj_type=KC_PTERM or KC_LTERM

Reading information about the availability of clients and printers

Using the information functions of openUTM you can query information about the avail-
ability of clients and printers. The following information is provided:

– Current status of client/printer (is it disabled at present or not?)
– Does a connection exist at present, or is an attempt currently being made to establish

a connection?
– Period of time where the printer or client has already been connected to the application
– Number of messages replaced on the connection
– Number of failures in the connection to client/printer
– Control value of message queue (qlev)
– Number of jobs in the message queue of a printer/printer pool for which a connection

to the printer (pool) is established automatically.

 KDCINF LTERM or PTERM

 KC_GET_OBJECT with obj_type=KC_PTERM or KC_LTERM

C

P

C

P

Administering Applications 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4 Changing the configuration dynamically

openUTM provides you with functions at the administration program interface with which
you can create new objects in the configuration or delete them from the configuration during
application runtime.

These functions further increase the availability of UTM applications. Regeneration of the
application with KDCDEF, for which operation has to be interrupted, is now required much
less frequently. In addition, regeneration of a UTM application is now much easier and a
great deal less time-consuming. You will find appropriate recommendations for regener-
ating a UTM application in section “Recommendations for regeneration of an application”
on page 111.

Using the functions UTM provides for changing the configuration dynamically, you can
create and delete the following objects:

– user IDs, including the associated queues
– key sets
– transport connections to remote LU6.1 applications
– LU6.1 sessions
– transaction codes for your own application
– transaction codes, via which service programs can be started in partner applications
– LTERM partners
– clients, printers
– program units and VORGANG exits

(only in applications with load modules, shared objects or DLLs)
– TAC queues

Changing the configuration dynamically

72 Administering Applications

To add and delete objects, use either the administration tools WinAdmin and WebAdmin or
administration programs you have generated yourself. Using the KC_CREATE_OBJECT
call at the administration program interface, you can add new objects to the configuration.
With the KC_DELETE_OBJECT call, you can delete objects from the configuration. The
KC_MODIFY_OBJECT call allows you to change individual object properties.

i The full range of functions for dynamically changing the configuration can also be
used in the function variant UTM-F. openUTM saves all the changes made to the
configuration (including the entry, deletion and modification of dynamic objects) in
the KDCFILE. The modified configuration data is then available for the next appli-
cation run.

The following section describes a number of things you need to be aware of during
KDCDEF generation of the application if you wish to add or delete objects to/from the
configuration at runtime. It also describes points you must consider when dynamically
creating objects from your application configuration.

Changing the configuration dynamically KDCDEF generation

Administering Applications 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.1 Requirements for KDCDEF generation

To enable you to add objects dynamically to the configuration of your UTM application, you
must make the following preparations when generating the application with KDCDEF.

No preparations are required for deleting objects from the configuration during KDCDEF
generation.

Reserving spaces in the object tables of the KDCFILE

The configuration data of a UTM application is stored in the object tables of the KDCFILE
that is created during KDCDEF generation of the application. During KDCDEF generation,
the space required to accommodate these tables is also defined. For this reason, during
KDCDEF generation, you must reserve table spaces for any objects which you wish to add
to the configuration of your application at runtime. You are assisted in this process by the
KDCDEF statement RESERVE (see the openUTM manual “Generating Applications”).

In the RESERVE statement you indicate how many table spaces are to be set aside for
each single type of object, i.e. how many LTERM partners are to be created dynamically,
how many transaction codes etc. Table spaces are reserved individually for each object
type, i.e. a table space which you have reserved for an LTERM partner cannot be occupied
by a transaction code etc.

During the application run, you can dynamically create as many objects of one type as you
have reserved table spaces with KDCDEF. Deleting another object of the same type does
not free up a table space for a new object. An exception to this are user IDs and connections
for distributed processing by means of LU6.1 for stand-alone applications. These you can
delete from the configuration immediately (see section “Deleting objects dynamically from
the configuration” on page 89). The table spaces occupied by these user IDs or LU6.1
connections are then freed up immediately and are thus available for new user IDs and
LU6.1 connections.

When reserving table spaces with RESERVE, always consider the following points:

openUTM internally creates one user ID for each UPIC and for each TS application (client
of type APPLI or SOCKET) which you add dynamically to the configuration. In UTM appli-
cations generated with user IDs (i.e. where KDCDEF generation contains at least one
USER statement), an additional table space is reserved for user IDs for every APPLI,
SOCKET or UPIC-R type client created dynamically. These table spaces are not freed up,
when clients are deleted. In applications with no user IDs, these table spaces are reserved
by openUTM internally.

For further information about reserving table spaces, see the openUTM manual “Gener-
ating Applications”, RESERVE control statement.

KDCDEF generation Changing the configuration dynamically

74 Administering Applications

Generating lock codes, BCAMAPPL names and the formatting system

In the KDCDEF run you must have already generated objects or values statically in
advance if you want to reference them later in dynamic configuration; examples of this are
the value range of lock codes and the names of the transport system access points of the
local application.

● Lock codes (access protection) which you wish to assign to the transaction codes and
LTERM partners must fall in the range between 1 and the maximum value defined in
KEYVALUE (MAX statement). For this reason, you should select a sufficiently high
number for KEYVALUE and also generate keysets containing the appropriate keycodes
(see notes on the lock/keycode concept in the openUTM manual “Concepts und
Functions”).

● All names in the local application (BCAMAPPL names) which are to be set up using
connections to clients or printers must be generated using KDCDEF. In particular,
remember that you have to generate special BCAMAPPL names in order to link TS
applications through the socket interface (PTYPE=SOCKET).

● If start formats are to be assigned to user IDs and LTERM partners, a formatting system
must be generated during KDCDEF generation (FORMSYS statement). If #formats are
used as start formats, an additional sign-on service must be generated.

Requirements for adding program units and VORGANG exits

You can only add new program units and VORGANG exits to the configuration of your appli-
cation dynamically if the application satisfies the following requirements:

● UTM applications on BS2000 systems must be generated with load modules (KDCDEF
generation with LOAD MODULE statements).

● UTM applications on Unix or Linux systems must be generated with shared objects
(KDCDEF generation with SHARED-OBJECTS statements).

● UTM applications on Windows systems must use Windows DLLs. You will find further
details on how to generate the application in the openUTM manual “Generating Appli-
cations”.

A program unit which you wish to create dynamically at runtime must be linked to a load
module, shared object or a DLL which was defined during KDCDEF generation.

However, the program unit should not be linked to a load module which is linked statically
to the application program (STATIC load mode)

At least one program unit must have been generated with KDCDEF for each programming
language in which you wish to create program units in your application. Only then does the
application program contain the language link modules and runtime systems it requires in
order to run.

B

B

B

B

B

X

X

W

W

W

B

B

Changing the configuration dynamically KDCDEF generation

Administering Applications 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

In the case of program units compiled with ILCS-capable compilers (COMP=ILCS), it is
sufficient to generate a program unit with COMP=ILCS during KDCDEF generation. No
PROGRAM statements have to be submitted for the various programming languages.

i In the case of COBOL programs, the relevant LOAD-MODULE must be generated
with ALTERNATE-LIBRARIES=YES in order to allow the required RTS modules to
be dynamically loaded by autolink.

Requirements for the dynamic creation of transaction codes

If you wish to add transaction codes dynamically to the configuration, you must take
account of the following points:

● Transaction codes for program units which use an X/Open program interface can only
be created dynamically if at least one transaction code for an X/Open program unit was
generated statically with KDCDEF (TAC statement with API≠KDCS).

● If you wish to divide the transaction codes into TAC classes, in order to be able to
control job processing, then you must create at least one TAC class during KDCDEF
generation.

During KDCDEF generation you can create TAC classes in three ways:

1. Generate a transaction code for which you specify a TAC class in the TACCLASS
operand (TAC statement). KDCDEF will then implicitly generate the specified TAC
class.

2. If you are running the application without priority control (it contains no TAC-
PRIORITIES statement), you can generate TAC classes by writing a TACCLASS
statement.

3. You can create TAC classes implicitly by writing a TAC-PRORITIES statement.

Once you have created a TAC class during KDCDEF generation you can assign the
transaction codes which you create dynamically to any TAC class of your choice
between 1 and 8 (dialog) or 9 and 16 (asynchronous). The TAC classes are created by
openUTM implicitly. These implicitly created TAC classes can be administered.

If you generated the application without TAC-PRIORITIES, openUTM specifies the
number of processes (TASKS) in implicitly generated TAC classes as follows:
1 for dialog TAC classes (classes 1 to 8),
and 0 for asynchronous TAC classes (classes 9 to 16).

However, openUTM only creates asynchronous TAC classes if you set
ASYNTASKS > 0 in the MAX statement during KDCDEF generation.

B
B

B

B

B

B

KDCDEF generation Changing the configuration dynamically

76 Administering Applications

In applications containing TAC classes without priority control, you can only create
transaction codes dynamically which start program unit procedures with blocking calls
if TAC classes with PGWT=YES (dialog and/or asynchronous TAC class) were explicitly
created with TACCLASS statements in KDCDEF generation and MAX TASKS-IN-
PGWT > 0.

● In applications with priority control (with TAC-PRIORITIES statement), you can only
create transaction codes dynamically which start program unit procedures with blocking
calls (kc_tac_str.pgwt=´Y´) if MAX TASKS-IN-PGWT>0 was specified during KDCDEF
generation.

Requirements for the dynamic creation of user IDs

You can only add user IDs to the configuration dynamically if your application was
generated with user IDs. For this, your KDCDEF generation must contain at least one
USER statement and at least one user ID must have administration privileges (USER with
PERMIT=ADMIN).

If new user IDs with ID cards are also to be added to the configuration at runtime then, when
reserving table spaces with the RESERVE statement, you must explicitly indicate what
percentage of user ID table spaces is to be set aside for user IDs with ID cards (CARDS
operand in the RESERVE statement).

If user IDs with Kerberos authentication are to be dynamically generated during operation,
they must be reserved using the PRINCIPALS operand of the RESERVE statement.

B/X

B/X

B/X

B/X

B

B

Changing the configuration dynamically Adding objects to the configuration

Administering Applications 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.2 Adding objects to the configuration dynamically

Using the KC_CREATE_OBJECT call you can add new objects to the configuration of your
application during an application run.

 KC_CREATE_OBJECT on page 192

You can create exactly one object per KC_CREATE_OBJECT call. However, within the
administration program, you can call KC_CREATE_OBJECT several times in order to
create several objects. When you place a call, you indicate the type of object, its name and
the properties you wish the object to have.

The creation of objects is subject to transaction management. Configuration data is not
written to the object table until the transaction has been logged successfully. This means
that an object created in a program unit cannot be accessed until the transaction has been
concluded successfully. The object cannot be used before this happens and it is also not
possible to read or modify the object’s properties. Calls such as KC_MODIFY_OBJECT or
KC_GET_OBJECT can be submitted for the new object only after successful completion of
the new create operation, i.e. after successful completion of the transaction.

During the transaction in which an object is created, access to this object is only permitted
in order to establish a relational link to another object created in the same transaction. For
example, a relationship of this kind can be established between a client or printer and its
connection point, the LTERM partner, between a transaction code and the related program
unit, between a transaction code and its VORGANG exit, or between a key set and the
objects (such as LTERMs, USERs, TACs or LTACs) to which it refers.

If two objects which relate to one another are created in one transaction, you must pay
careful attention to the order in which the objects were created. For example, you can
create a client together with its connection point (LTERM partner) in one and the same
transaction. However, the LTERM partner must be created before the client since the name
of the LTERM partner is indicated when the client is created.

As a general rule, all objects to which you refer when creating a new object must either
already feature in the configuration or have been created in the same transaction prior to
the new object. The following section provides a detailed description of each type of object
showing the sequence in which the objects must be created.

UTM cluster applications

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. the objects are dynamically entered in the config-
uration in all the node applications.

P

Adding objects to the configuration Changing the configuration dynamically

78 Administering Applications

Availability of dynamically created objects

Dynamically created objects are a component of the configuration, even in subsequent
application runs, unless they were deleted with KC_DELETE_OBJECT. The same applies
to objects in a UTM-S and a UTM-F application.

4.2.1 Adding clients, printers and LTERM partners

To add a client or printer you must call KC_CREATE_OBJECT with object type
KC_PTERM. To add an LTERM partner, you must specify object type KC_LTERM.

i Printers are not supported in UTM applications running on Windows systems.

To enable you to connect a client or printer to the application, an LTERM partner must be
assigned to it. If you specify this LTERM partner when adding a client or printer, the LTERM
partner must either already exist in the configuration of that application or have been
created in the same transaction prior to the client/printer. The following rule therefore
applies:

When adding clients/printers, you must distinguish between the following two cases:

– terminals and printers
– TS applications and UPIC clients

Terminals and printers

You can add terminals and printers to the configuration without assigning an LTERM partner
directly to them, i.e. you do not have to specify an LTERM partner when adding them. You
can then assign the LTERM partner to the terminal or printer at a later date. To do this, you
are provided with the administration command KDCSWTCH and the call KC_MODIFY_-
OBJECT (object type KC_PTERM). Actual assignment must then take place in a separate
transaction.

However, if you do specify an LTERM partner when adding a terminal or printer then,
according to the rule stated above, this LTERM partner must already exist in the configu-
ration of that application or have been created in the same transaction as the terminal or
printer before the terminal or printer was added.

You can assign an LTERM partner to a printer even if the LTERM partner is already
assigned to another printer. This does not cancel the previous assignment. One LTERM
partner can be assigned to a number of printers. These printers then form a printer pool and
process the message queue of the LTERM partner jointly.

LTERM partner (KC_LTERM) before client/printer (KC_PTERM)

W

W

Changing the configuration dynamically Adding objects to the configuration

Administering Applications 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

You can only assign an LTERM partner which is not already assigned to another client. Any
assignment to another terminal which already exists must be cancelled before the client is
created in a separate transaction (with the administration command KDCSWTCH or the call
KC_MODIFY_OBJECT).

If an LTERM partner is to be created explicitly with an automatic KDCSIGN to connect a
terminal, you must, during the create operation, assign the user ID under which the
automatic KDCSIGN is to be executed when a connection is being established. The user
ID must already feature in the configuration before the LTERM partner is added, or have
been created in the same transaction before the LTERM partner. Generally speaking, the
following rule applies:

As a general rule, the following applies:
The property usage_type (D for dialog partner or O for output medium) of the LTERM partner
must match the value which you specify in usage when adding the client/printer.

If an LTERM partner is created for a printer which is to be administered by a print control
LTERM (CTERM), you must assign the printer control LTERM when adding the LTERM
partner. Before adding the LTERM partner, the printer control LTERM must either already
be in the configuration of the application (created statically or dynamically) or in the same
transaction as the LTERM partner, where it must have been created before the LTERM
partner. The following rule applies:

User ID (KC_USER) before LTERM partner (KC_LTERM)
before terminal (KC_PTERM).

Printer control LTERM (KC_LTERM) before LTERM partner (KC_LTERM)
before printer (KC_PTERM)

B

B

B

Adding objects to the configuration Changing the configuration dynamically

80 Administering Applications

TS applications and UPIC Clients

You must assign an LTERM partner when creating TS applications or UPIC clients (APPLI,
SOCKET, UPIC-R or UPIC-L type clients). This LTERM partner must be added in the same
transaction as the client but before the client itself. In other words, the KC_CREATE_-
OBJECT call which creates the LTERM partner must be processed in the same transaction
and before the KC_CREATE_OBJECT call which creates the client. In this instance, the
rule to apply is as follows:

The assignment of a client to an LTERM partner cannot be cancelled as long as the client
remains in the configuration.

For the LTERM partner of a client of this type, openUTM requires a permanently assigned
user ID, i.e. the connection user ID.

You can create a connection user ID explicitly, in which case it has to be included in the
same transaction as the LTERM partner and the client. However, the user ID must be added
to the configuration before the client. When assigning a user ID to an LTERM partner, you
must distinguish between the following cases:

● You are explicitly creating a user ID with the name of the LTERM partner. In this case,
assignment is automatic when you add the LTERM partner.

● You are creating a user ID with any name. In this case, you must explicitly enter the
name when adding the LTERM partner (field kc_lterm_str.user_gen).

If you do not create the connection user ID explicitly, openUTM implicitly creates a user ID
with the name of the LTERM partner.

The connection user ID is always reserved for this client. No other user or client can log on
with the application under this user ID.

The user ID is assigned one of the reserved table spaces. If there are no more spare table
spaces for this user ID, the LTERM partner and client are not added to the configuration.
The KC_CREATE_OBJECT calls are then rejected.

In general terms, the following applies:
In applications with user IDs, you need three reserved table spaces to add a client of type
APPLI, SOCKET or UPIC-R/UPIC-L: one for object type PTERM, one for object type
LTERM and one for object type USER.

LTERM partner (KC_LTERM) before the TS application/UPIC client (KC_PTERM)
in the same transaction

Changing the configuration dynamically Adding objects to the configuration

Administering Applications 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

The following sequence must be observed:

A connection user ID cannot be administered, i.e. once you have created the user ID, you
can no longer modify its properties.

Example of creating a TS application or an UPIC client

A program which creates a TS application or an UPIC client and which explicitly assigns it
a connection user ID must have the structure illustrated in the diagram below. The KDCS
calls in angle brackets are optional. The individual KC_CREATE_OBJECT calls, in
particular, can be located in various different KDCS programs. However, these programs
must run in the same transaction (terminate program, for example with PEND PA).

User ID (KC_USER) before LTERM partner (KC_LTERM) before
TS application/UPIC client (KC_PTERM)

All three objects must be created in the same transaction

#include <kcadminc.h> /* Record definitions */

INIT /* KDCS call for signing on with
/* UTM

*/

[MGET] /* KDCS call for reading the
/* calling TACs and the
/* passing parameters

*/
*/
*/

KC_CREATE_OBJECT with obj_type=KC_USER /* KDCADMI call for creating the
/* user ID

*/
*/

/* Possible error handling: the following KC_CREATE_OBJECT call should
/* only be submitted if the previous call was error-free.

*/
*/

KC_CREATE_OBJECT with
obj_type=KC_LTERM

/* KDCADMI call for creating the
/* LTERM partner

*/
*/

/* Possible error handling */

KC_CREATE_OBJECT with
obj_type=KC_PTERM

/* KDCADMI call for creating the
/* client

*/
*/

/* Possible error handling */

MPUT
....

/* KDCS call for sending a message
/* to the job-submitting service

*/
*/

PEND FI / RE / SP / FC /* KDCS call to terminate the
/* transaction

*/
*/

Adding objects to the configuration Changing the configuration dynamically

82 Administering Applications

4.2.2 Adding program units, transaction codes, TAQ queues and VORGANG
exits

To add a new program unit or VORGANG exit you must call KC_CREATE_OBJECT for the
object type KC_PROGRAM.
When adding a new transaction code or a new TAQ queue, you must specify the object type
KC_TAC.

You can only add new program units and VORGANG exits dynamically if the application
was generated with load modules (BS2000 systems), shared objects (Unix or Linux
systems) or DLLs (Windows systems).

You should assign at least one transaction code to one program unit to enable it to be
called. You cannot add the transaction code to the configuration until the program unit has
been created. This means that program units must either already be in the application
configuration at the time the transaction code is created with KC_CREATE_OBJECT, or
they must have been created in the same transaction but before the transaction code was
created. The program unit can be created with KDCDEF or may have been created in a
separate transaction.

You can also assign new transaction codes to program units already in the configuration.

A newly created program unit cannot be called until it has been loaded and at least one
transaction code has been assigned to it. To add the program unit, it must be compiled and
linked into the application by a load module, shared object or DLL created with KDCDEF.
Following this, this load module, shared object or DLL must be replaced (see KDCPROG
on page 777 or KC_MODIFY_OBJECT with obj_type=KC_LOAD_MODULE on page 329).

If the public slice of the load module is located in a common memory pool, you must then
still submit a KDCAPPL PROG=NEW or KC_CHANGE_APPLICATION call to arrange for
this load module to be replaced. You cannot use the new or modified service until this has
been done.

A new program unit cannot be linked into a load module which is statically linked to the
application program (STATIC load mode).

If a VORGANG exit is to be assigned to a transaction code which you are creating dynam-
ically (kc_tac_str.exit_name) then this VORGANG exit must exist in the configuration of your
application before the transaction code is created or must have been created first (before
the code) in the same transaction in which the transaction code itself was created.

B

B

B

B

B

B

Changing the configuration dynamically Adding objects to the configuration

Administering Applications 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

To ensure that the VORGANG exit is able to run properly, the relevant program must be
created. Dynamically created VORGANG exits must, like program units, be linked to a load
module, shared object or DLL which then has to be replaced.

When creating program units, transaction codes and VORGANG exits, the following
general rule applies:

i The transaction codes for the event services BADTAC, MSGTAC and SIGNON
(KDCBADTC, KDCMSGTC, KDCSGNTC) cannot be created in the configuration
dynamically.

4.2.3 Creating user IDs

When creating a new user ID and an associated USER queue, you must call KC_CRE-
ATE_OBJECT for object type KC_USER. User IDs which are to have a fixed assignment to
specific LTERM partners for an automatic KDCSIGN must be created before the LTERM
partner is added. See also section “Adding clients, printers and LTERM partners” on
page 78 for details of things you will need to remember.

4.2.4 Creating key sets

To create a new key set, you have to call KC_CREATE_OBJECT for the object type
KC_KSET. You can then assign the new key set in the same transaction to a new user ID,
a new LTERM partner, a new transaction code or TAC queue or a new LTAC.

The following rule applies:

Program unit (KC_PROGRAM) and VORGANG exit (KC_PROGRAM)
before transaction codes (KC_TAC)

Key set (KC_KSET) before LTERM partner (KC_LTERM)
and user ID (KC_USER) and transaction code (KC_TAC) and LTAC (KC_LTAC)

Adding objects to the configuration Changing the configuration dynamically

84 Administering Applications

4.2.5 Entering LU6.1 connections for distributed processing

In the case of a link by means of the LU6.1 protocol, for communication between the local
UTM application and a remote application you must define one or more transport connec-
tions and sessions by means of which the communication relationships are set up.

For the entry of a transport connection, call KC_CREATE_OBJECT for the object type
KC_CON. To define a session, call KC_CREATE_OBJECT for the object type KC_LSES.

The prerequisite is that LPAP partners must be known and session properties defined in
each application.

A number of CON and LSES objects must be created for each LPAP; the number of CON
and LSES objects determines the number of parallel connections that are possible with a
partner application via an LPAP.

In cluster applications, it is necessary to generate, for each CON object, as many LSES
objects as there are node applications in order to enable the partner application to commu-
nicate with all the node applications.

A CON object and an LSES object are created for each parallel connection via an LPAP
and assigned to the LPAP. Every CON object and every LSES object in each of the appli-
cations involved must be created appropriately so that the following applies:

● A CON name in the local application is the same as a BCAMAPPL name in the remote
application and vice versa.

● An LSES name in the local application is the same as an RSES name in the remote
application and vice versa.

v CAUTION!
It is not permissible for an LPAP name to create a number of CON objects that lead
to different applications or are assigned to different LPAPs in the partner application
via their corresponding CON objects.

Such configurations are not recognized by UTM and lead to errors when connec-
tions and sessions are set up and when sessions are restarted.

Changing the configuration dynamically Adding objects to the configuration

Administering Applications 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.2.6 Entering LTACs

In order to dynamically create a transaction code for starting a service or a remote service
program in a partner application, you have to call KC_CREATE_OBJECT for the object type
KC_LTAC.

The local transaction code is assigned either

● the name of a transaction code in a specific partner application (with single-step
addressing), in which case the local transaction code addresses both the partner appli-
cation and the transaction code in this application, or

● the name of a transaction code in any partner application (with double-step addressing).
The partner application in which the service program addressed by the local transaction
code is to run must be specified explicitly in the program interface.

If access rights are to be granted by means of an access list, the key set used for this must
either already exist or be dynamically created beforehand; the dynamic creation of the key
set and the referenced LTAC can also take place within a transaction. If the access rights
are to be controlled by means of a lock code, the numeric value for the lock code must not
be less than 1 or greater than the maximum value permitted in the application (KDCDEF
statement MAX, KEYVALUE operand).

The following rule applies:

Key set (KC_KSET) before LTAC (KC_LTAC)

Adding objects to the configuration Changing the configuration dynamically

86 Administering Applications

4.2.7 Format and uniqueness of object names

You must assign a name or logical address (clients and printers) to every object which you
create dynamically in the configuration using KC_CREATE_OBJECT. Using this name and
its logical address, it must be possible to uniquely identify the object in its application. Note
the following rules when assigning names.

– You cannot use any reserved names. (→ Reserved names)
– The name of an object must be unique in the class of name belonging to the object

name. (→ Unique names and addresses)
– The names must not exceed the specified maximum length and can only contain certain

characters (format). (→ Format of the names)

The names of objects tagged for deleting at a later point in time with KC_DELETE_OBJECT
may not be used for objects in the same class of name. The names of user IDs and the
names of connections for distributed processing by means of LU6.1 that are deleted
immediately can be reassigned again immediately.

Reserved names

Names of transaction codes starting with KDC are reserved for transaction codes in the
event services and the administration commands. Names starting with KDC must not
therefore be used for other objects.

In UTM applications on BS2000 systems, program unit names must not begin with a prefix
that is used for compiler runtime modules (e.g. IT, IC).

In UTM applications on Unix, Linux or Windows systems, names of objects must also not
start with KC, x, ITS or mF.

External names (e.g. program unit names) should not begin with ‘f_’, ‘n_’, ‘t_’, ‘a_’, ‘o_’, ‘p_’
or ‘s_’. ‘t_’ is reserved for PCMX. ‘a_’, ‘o_’, ‘p_’ and ‘s_’ are reserved for OSS.

Any names reserved on a specific platform should not be used on any of the other
platforms, in order to render the applications portable.

B

B

X/W

X/W

X/W

X/W

Changing the configuration dynamically Adding objects to the configuration

Administering Applications 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

Unique names and addresses

The names and addresses of objects in a UTM application are summarized in name
classes. Within each name class, the object names must be uniquely identified. They
cannot be assigned to several objects. There are three classes of name:

The following objects belong to the 1st class of names:

– LTERM partners (object type KC_LTERM);
the LTERM partners of the LTERM pools also belong to this class.

– Transaction codes and TAC queues (object type KC_TAC).
– LPAP and OSI-LPAP partners for the server-server communication (object type

KC_LPAP and KC_OSI_LPAP).

The following objects belong to the 2nd class of names:

– User IDs, including the associated queues (object type KC_USER)
– Sessions for distributed processing using LU6.1 (object type KC_LSES)
– Connections and associations for distributed processing using OSI TP (object type

KC_OSI_ASSOCIATION)

The following objects belong to the 3rd class of names:

– Clients and printers (object type KC_PTERM).
In this context, clients are: terminals, UPIC clients, TS applications (DCAM, CMX appli-
cations and UTM applications) which do not use LU6.1 and OSI TP protocols for
communication.

– Name of the partner application for distributed processing using protocol LU6.1 (object
type KC_CON).

– Name of the partner application in the case of distributed processing using the
OSI TP protocol.
Even if it is not possible to generate OSI-CONs dynamically, the names already
generated for OSI-CONs are already allocated to this name class and cannot be used
for other objects of this name class.

– Multiplex connections (object type KC_MUX). B

Adding objects to the configuration Changing the configuration dynamically

88 Administering Applications

The objects listed in the 3rd class of name are communication partners for the UTM appli-
cation. They or the connections to them must be uniquely identifiable for openUTM. For this
reason, every communication partner must be identified with a logical address. The logical
address is a name triplet made up of the following components:

1. Name of the communication partner (pt_name, co_name of the LU6.1 connection,
mx_name). This is the symbolic name by which the communication partner is known to
the transport system.

2. Name of the computer on which the communication partner is located (pronam).

3. Name of the local application via which the connection to the communication partner is
established (bcamappl or ACCESS-POINT). Even if OSI TP connections cannot be
generated dynamically, the names that have already been generated for ACCESS
POINTS must be taken into account.

Each communication partner must have a different name triplet.

Format of the names

All names which you define must conform to the following conventions:

– The names of LTERM partners, clients and printers (KC_PTERM), transaction codes,
user IDs, LU6.1 connections and sessions as well as transaction codes for remote
services must only be 1 to 8 characters in length.

– The names of program units can be up to 32 characters in length if the application was
generated using load modules/shared objects/DLLs.

– Permissible characters for object names in a UTM application on BS2000 systems are:
A,B,C,...,Z, 0,1,...,9, #, @, $. Any combination of these characters is permitted.

– Permissible characters for object names in a UTM application on Unix, Linux systems
and Windows systems are: A,B,C,...,Z, a, b, c,..., z, 0,1,...,9, #, @, $.

B

B

X/W

X/W

Changing the configuration dynamically Deleting objects

Administering Applications 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.3 Deleting objects dynamically from the configuration

You can use the KC_DELETE_OBJECT call at the program interface for administration to
delete objects from the configuration of your application while the application is running.

 KC_DELETE_OBJECT on page 261

We distinguish two methods for deleting objects: delayed delete and immediate delete.

● delayed delete (KC_DELETE_OBJECT subopcode1=KC_DELAY)

The term delayed delete is used to mean that objects are simply designated as deleted.
The objects and their properties remain in the object table as before. Delayed deletion
acts like a permanent lock which cannot be undone. Physical deletion of objects from
the object table only takes place during regeneration if you are working with the inverse
KDCDEF.

Users no longer have access to an object designated for delayed deleting. Only the
administrator still has read-only access to such objects, i.e. you can read the names
and properties of objects designated for “delayed delete” with KC_GET_OBJECT or
with the administration command KDCINF. However, it is no longer possible to change
the properties of these objects. User IDs designated for a “delayed delete” can,
however, be completely removed from the configuration using an “immediate delete”.

A delayed delete frees up no space in the object table. The names of deleted objects
remain assigned, i.e. no more new objects can be created dynamically in their name
class. In particular, no new objects can be created dynamically with the same name and
the same object type.

Key sets, LU6.1 sessions, LTACs, LTERM partners, program units, transaction codes
and TAC queues can only be removed from the configuration using the delayed delete
method.

● immediate delete (KC_DELETE_OBJECT subopcode1=KC_IMMEDIATE)

Immediate deletion is only permitted for the user IDs and LU6.1 connections of stand-
alone UTM applications.

Immediate delete removes an object and its properties from the object table with
immediate effect. The table space assigned to a user ID or CON object removed using
the “immediate delete” method is available for a newly created user ID or CON object
right away without the application needing to be regenerated. The name of a user ID or
CON object that is deleted immediately does not remain locked. You can generate a
new user ID or CON object using the same name right away.

Once an object is deleted in this fashion, nobody, including the administrator, any longer
has any kind of access to it, neither read nor write access.

P

Deleting objects Changing the configuration dynamically

90 Administering Applications

You can delete just one object with each KC_DELETE_OBJECT call (delayed or immediate
delete). In any one program unit, you can make several KC_DELETE_OBJECT calls in
succession, i.e. you can delete several objects of different types. In the case of objects
related to one another, it is nevertheless important to pay attention to the sequence in which
these objects are deleted. An object to which other objects are related cannot be deleted
until the other related objects have been deleted, i.e. until their relationship has been
cancelled by means of administration functions (e.g. KDCSWTCH can be used to terminate
the relationship between terminal/printer and LTERM partner). The following sections
describe the rules you must observe when deleting objects.

Object deletion, be it delayed or immediate, is subject to transaction management. The
object is not deleted until the transaction in which the KC_DELETE-OBJECT is being
processed has been completed successfully.

However, only objects that are featured in the configuration can be deleted. In other words,
you cannot delete an object created dynamically in the configuration until the transaction in
which the create operation took place has been completed.

Deletion in UTM-F and UTM-S applications applies beyond the end of these applications
and cannot be undone.

UTM cluster applications

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. objects are deleted from the configuration in all
the node applications. Only delayed deletion is permitted in UTM cluster applications.

Changing the configuration dynamically Deleting objects

Administering Applications 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.3.1 Deleting clients/printers and LTERM partners

Clients/printers and LTERM partners can only be removed from the configuration with a
delayed delete.

To delete a client or printer from the configuration you must call KC_DELETE_OBJECT
(with subopcode1=KC_DELAY) for the object type KC_PTERM. To delete an LTERM partner,
you have to indicate the object type KC_LTERM.

You are only allowed to delete a client/printer and its related LTERM partners if the
client/printer is not connected to the application. For this reason, you should disable the
client/printer before deletion to prevent errors from occurring. Such disabling operations
must take place in a separate transaction. To disable the client/printer, see KDCPTERM on
page 783 or KC_MODIFY_OBJECT with obj_type=KC_PTERM as of page 352.

Clients/printers and their associated LTERM partners have a logical relationship to one
another. For this reason, you must pay attention to the sequence when deleting clients,
printers and their LTERM partners. In general terms, the following rule applies:

If the client/printer and the related LTERM partner are to be deleted from the configuration,
the following rule applies:

Both objects can only be deleted from the configuration one after the other in different trans-
actions.

When deleting LTERM partners, please note:

● With UPIC clients (type UPIC-R and UPIC-L) and TS applications (type APPLI or
SOCKET), you must delete the client from the configuration before deleting the LTERM
partner.

● With terminals and printers, you can delete the LTERM partner without removing the
terminal or printer from the configuration. In this event, before deleting the LTERM
partner, you must assign the client or printer to another LTERM partner in a separate
transaction (KDCSWTCH on page 800 or KC_MODIFY_OBJECT with
obj_type=KC_PTERM on page 352).

An LTERM partner cannot be deleted while a.client/printer is assigned to it.

Client/printer (KC_PTERM) before LTERM partner (KC_LTERM).

Deleting objects Changing the configuration dynamically

92 Administering Applications

You cannot delete the following LTERM and PTERM partners:

– LTERM partners belonging to an LTERM pool
– LTERMs, belonging to LTERM bundles or LTERM groups,
– printer control LTERMs
– the LTERM partner KDCMSGLT which openUTM creates internally for the MSGTAC

service
– LTERM partners belonging to a multiplex connection
– LTERM and PTERM partners that are used for cluster-internal communication in UTM

cluster applications.

You can delete all other LTERM partners and clients/printers from the configuration if you
comply with the above rules, regardless of whether they were added to the configuration
statically (with KDCDEF) or dynamically.

i You can delete the LTERM partner defined as recipient (destadm) for the results of
asynchronous administration commands. However, in this case, you should define
a new recipient, as otherwise the results of asynchronously processed adminis-
tration commands are lost. To do this, you have the KC_MODIFY_OBJECT call with
parameter type KC_MAX_PAR and the administration command KDCAPPL.

Deleting clients, printers and LTERM partners has the following effects:

● It is no longer possible to set up a connection to a deleted client/printer. This means that
no more messages can be sent to a client or printer once it has been deleted.

● No more asynchronous messages can be created for a deleted LTERM partner. In other
words, no more asynchronous jobs can be added to the message queue of the LTERM
partner.

● Asynchronous jobs in the message queue of the LTERM partner at the time of deletion,
i.e. jobs created before the deletion process, can no longer be read from the queue by
the client/printer. In other words, the asynchronous jobs in the queue can no longer be
processed. However, they can still be accessed by administration functions: they can
be deleted from the queue. To do this, you can use the KDCS call DADM (see openUTM
manual „Programming Applications with KDCS”).

● Asynchronous jobs created by an LTERM partner which has already been deleted are
still able to run and can be administered. However, when processing jobs, it is no longer
possible to create any further asynchronous jobs (follow-up jobs).

● TLS areas (TLS = terminal-specific long-term storage area) belonging to a deleted
LTERM partner are still available for read and write accesses.

B

Changing the configuration dynamically Deleting objects

Administering Applications 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.3.2 Deleting program units, transaction codes and VORGANG exits

Program units, transaction codes, TAC queues and VORGANG exits can only be deleted
from the configuration using the delayed delete method.

To delete a program unit or VORGANG exit from the configuration you must call
KC_DELETE_OBJECT (with subopcode1=KC_DELAY) for the object type KC_PROGRAM.
To delete a transaction code or a TAC queue, you must specify the object type KC_TAC.

Transaction codes and the program unit to which this transaction code is assigned are
related to one another. In the same way, a VORGANG exit is related to the transaction
codes to which it is assigned. For this reason, you must note the sequence followed when
deleting transaction codes, program units and VORGANG exits. The following rule applies:

The following program units must not be deleted:

● program units belonging to the event exits, START, SHUT, FORMAT or INPUT.

● program units and VORGANG exits linked to load modules with the STATIC load mode.

● program units and VORGANG exits linked statically to the application program, i.e. you
can only delete program units and VORGANG exits that are contained in shared objects
or DLLs.

The following transaction codes must not be deleted:

● transaction codes KDCMSGTC, KDCSGNTC, KDCBADTC in event services MSGTAC,
SIGNON and BADTACS

● the administration command KDCSHUT in the administration program KDCADM

● transaction codes KDCTXCOM and KDCTXRLB created internally by openUTM for
XATMI.

● Transaction codes defined in the SIGNON-TAC parameter of the BCAMAPPL
statement.

The following TAC queue must not be deleted:

● the dead letter queue KDCDLETQ.

You can delete all other program units and VORGANG exits (that are not statically linked)
and transaction codes from the configuration, regardless of whether they were created in
the configuration dynamically or statically.

A program unit/VORGANG exit cannot be deleted until all related transaction codes have
been deleted.

B

X/W

X/W

X/W

Deleting objects Changing the configuration dynamically

94 Administering Applications

i You can delete an asynchronous TAC or a TAC queue defined as a recipient
(destadm) for the results of the asynchronous commands. In this event, you should
define a new recipient, otherwise the results are lost. To do this, you can use the
call KC_MODIFY_OBJECT with parameter type KC_MAX_PAR and the adminis-
tration command KDCAPPL.

Deletion of program units, VORGANG exits, transaction codes and TAC queues has the
following effects:

● Deleted program units and VORGANG exits can no longer be called.

● Asynchronous jobs to a deleted transaction code can no longer be created.

● Asynchronous jobs that are still in the message queue of a transaction code at the time
of deletion are no longer processed. They do, however, remain in the message queue
of the asynchronous TAC. To relieve capacity constraints in the page pool you should
delete these asynchronous jobs from the queue (see KDCS call DADM in the openUTM
manual „Programming Applications with KDCS”).

● No dialog services can be started to a deleted TAC. Dialog services that are open at the
time of deletion can still be processed normally provided that only the service TAC is
deleted. They are, however, terminated if a follow-up TAC is called which has already
been deleted.

● When a TAC queue is deleted, its messages are deleted immediately. New messages
cannot be created for a deleted TAC queue.

Changing the configuration dynamically Deleting objects

Administering Applications 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.3.3 Deleting user IDs

You can remove a user ID from the configuration using either the “delayed” or the
“immediate” delete method (see page 89). In UTM cluster applications only the delayed
delete method is possible.

To delete a user ID from the configuration you must call KC_DELETE_OBJECT (with subop-
code1=KC_DELAY or KC_IMMEDIATE) for the object type KC_USER.

Apart from the exceptions listed below, you can delete any user ID created explicitly in the
configuration (statically or dynamically).

You cannot delete the following user IDs:

● KDCMSGUS, which openUTM creates internally for the MSGTAC service

● user IDs assigned to a terminal for an automatic KDCSIGN (see page 80)

● connection user IDs (i.e. user IDs that are permanently assigned to a client of the type
UPIC, APPLI or socket)

In applications without explicitly generated user IDs, the deletion of user IDs created inter-
nally is generally not possible.

The following restrictions apply with regard to the point in time at which a user ID may be
deleted:

You can only delete a user ID (delayed or immediate delete) if no user or client is signed on
to the application at the time of deletion. For this reason, you should disable the user ID
before deletion to avoid errors. Such disabling operations must occur in a separate trans-
action. To disable a user ID, see KDCUSER on page 813 or KC_MODIFY_OBJECT with
obj_type=KC_USER on page 366.

Deleting a user ID is also temporarily not possible in the following cases:

● an asynchronous job is being processed, i.e. has been retrieved from the message
queue and started.

● a distributed transaction is in PTC status (PTC = Prepare to Commit).

● the user-specific long-term storage area (ULS) of the user ID cannot be locked, e.g.
because the administrator or an administration program is accessing it.

Deleting objects Changing the configuration dynamically

96 Administering Applications

Delayed delete

Delayed deletion of a user ID has the following effects:

● No users/clients are able to sign on to the application with a user ID designated for a
delayed delete.

● Asynchronous services which were started before the user ID was deleted and which
are not being processed at the time of deletion are still able to run and can be adminis-
tered. These services are not, however, able to create any more asynchronous jobs
themselves.

● An open dialog service cannot be continued any further. Any service data that has been
saved for a user (e.g. LSSB data, dialog messages) is deleted:

– in the case of standalone applications, the next time the application is started
– in UTM cluster applications, on the next start-up of the node application at which the

user was last signed on

The data is not deleted if an open service has a transaction in the PTC state. In this
case, the transaction must first either be committed or rolled back. You can, for
example, roll back transactions with the PTC state using the program interface (opcode
KC_PTC_TA).

● ULS areas (ULS = user-specific long-term storage area) belonging to the user ID are
still available for read and write accesses.

● All the messages in the message queue for this user ID are deleted immediately. No
new messages can be created for this message queue.

Immediate delete

Immediate deletion of a user ID has the following effects:

● No users/clients are able to sign on to the application with an immediately deleted user
ID.

● Asynchronous jobs which were generated and placed in the message queue by
openUTM before the user ID was deleted, do not start, i.e. openUTM does not process
them. They are deleted the moment openUTM retrieved them from the message queue
for processing.

If you query the information on jobs in the message queue using DADM RQ (see
page 824), openUTM, instead of the user ID that issued the job, will output *NONE for
the jobs of a deleted user ID.

● Jobs for LTERM or LPAP partners that are started before the user ID is deleted and are
still in the partner’s message queue, are sent.

Changing the configuration dynamically Deleting objects

Administering Applications 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

● An open dialog service that was started by a deleted user ID, is also deleted immedi-
ately. There may be open dialog services for a user who is not signed on, e.g. if the user
signed off during the service using KDCOFF after a synchronization point had already
been reached.

● ULS areas (ULS = user-specific long-term storage area) belonging to the deleted user
ID cannot be accessed. They are deleted.

● All the messages in the message queue for this user ID are deleted immediately.

4.3.4 Deleting key sets

Key sets can only be deleted from the configuration after a delay. To delete a key set, you
have to call KC_DELETE_OBJECT (with subopcode1=KC_DELAY) for the object type
KC_KSET.

Restriction: The KDCAPLKS key set cannot be deleted at all.

Objects that reference a deleted key set lose their access rights. However, other key sets
can be assigned dynamically to TACs, TAC queues and user IDs.

4.3.5 Deleting LU6.1 connections and sessions

To delete an LU6.1 transport connection between the local UTM application and a partner
application, you must call KC_DELETE_OBJECT (in standalone applications with subop-
code1=KC_IMMEDIATE, in UTM cluster applications with KC_DELAY) for the object type
KC_CON. If you want to delete an LU6.1 session, call KC_DELETE_OBJECT (withsubop-
code1=KC_DELAY) for the object type KC_LSES.

Deleting LU6.1 connections

It is not possible to delete a CON object when it is linked to the application.

Points to note when deleting LU6.1 sessions

An LSES object (LU6.1 session) can only be deleted when:

– The session is not set up, and
– Neither of the two half-sessions have the status PTC.

In order to check whether a session has the status PTC, you can query the status of the
session (e.g. by means of KC_GET_OBJECT with the object type LSES).

Deleting objects Changing the configuration dynamically

98 Administering Applications

The following procedure is recommended for deleting an LSES object:

1. Set up the session before deleting the object.
2. Set the session to “quiet”.
3. Once the connection is set up, delete the object by means of the above call.

4.3.6 Deleting LTACs

Transaction codes by means of which service programs are started in partner applications
can only be deleted from the configuration after a delay.

To delete an LTAC, you have to call KC_DELETE_OBJECT (with subopcode1=KC_DELAY)
for the object type KC_LTAC.

Changing the configuration dynamically Modifying object properties

Administering Applications 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.4 Modifying object properties

You can use the KC_MODIFY_OBJECT call during an application run to modify the
properties of objects and parameters of the application program and initiate actions (e.g.
resetting of statistical values).

 KC_MODIFY_OBJECT on page 315

The following object types have properties that can be modified dynamically:

KC_CLUSTER_NODE, KC_DB_INFO, KC_KSET, KC_LOAD_MODULE, KC_LPAP,
KC_LSES, KC_LTAC, KC_LTERM, KC_MUX, KC_OSI_CON, KC_OSI_LPAP,
KC_PTERM, KC_TAC, KC_TACCLASS, KC_TPOOL, KC_USER.

The following sections describe how to modify certain object types in more detail
(KC_PTERM, KC_LTERM, KC_TAC, KC_USER, KC_KSET and KC_LSES).

The following parameter types have properties that can be modified dynamically:

KC_CLUSTER_CURR_PAR, KC_CLUSTER_PAR, KC_CURR_PAR, KC_DI-
AG_AND_ACCOUNT_PAR, KC_MAX_PAR, KC_TASKS_PAR, KC_TIMER_PAR.

You can modify a single object with each KC_MODIFY_OBJECT call. However, it is
possible in an administration program to call KC_MODIFY_OBJECT more than once in
order to modify the properties of multiple objects. In the call you specify the type of the
object, its name and the properties to be modified.

When modifying application parameters, in a single call you can modify all the parameters
that belong to the same parameter type.

The section entitled “KC_MODIFY_OBJECT - Modify object properties and application
parameters” on page 315 explains which properties can be modified for which object type
or application parameter and which actions are thus initiated.

The effectiveness and duration of a change depends on the object type or application
parameter and on the property that is changed. Some changes apply only to the current
application run, whereas others apply beyond it as well (durable). A change can take effect:

– immediately
– after transaction processing (PEND)
– when the utilization of the application permits it

P

Modifying object properties Changing the configuration dynamically

100 Administering Applications

UTM cluster applications

The following applies in a UTM cluster application:
Depending on the object, the call can initiate actions that apply either globally in the cluster
or locally in the node. Actions with a global effect apply to all the node applications in the
UTM cluster application irrespective of whether a node application is currently active or not.
Actions with a local effect only apply to the node applications at which they are executed.

4.4.1 Modifying clients/printers and LTERM partners

In order to modify the properties of a client or printer, you have to call KC_MODIFY_-
OBJECT with the object type KC_PTERM. To modify the properties of an LTERM partner,
you must specify the object type KC_LTERM.

LTERM partners that belong to an LTERM pool or clients/printers that are connected via an
LTERM pool cannot be modified.

In the case of clients/printers and LTERM partners, you can change the status and the
current state of the connection to the client/printer. A change of status (enabled/disabled)
continues to apply after transaction processing beyond the end of the application run. A
change to the current state (connection in existence, not in existence, currently being set
up) applies when permitted by the utilization level of the application, but not after the end of
the application run.

If the LTERM partner is assigned to a terminal, you can change the format attributes.
However, a specific start format can only be used for applications without user IDs or when
a separate sign-on service is defined. A change to the format attributes continues to apply
after transaction processing beyond the end of the application run.

If you want to change the assignment of a client/printer to an LTERM partner, the partner
must be in existence (it must not have been deleted). The LTERM partner must not be
configured for connection to a client of the type UPIC. In addition, the LTERM partner must
not be the master slave of an LTERM bundle or an alias or primary LTERM of an LTERM
group. A change to the assignment continues to apply after transaction processing beyond
the end of the application run.

In the case of clients/printers, only the LTERM partner, if assigned, or only one mode may
be modified for automatic connection setup at the startup of the application. It is only
possible to request automatic connection setup at startup of the application if the
client/printer is not disabled. A change to connection setup at application startup continues
to apply after transaction processing beyond the end of the application run.

B

B

B

B

Changing the configuration dynamically Modifying object properties

Administering Applications 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.4.2 Modifying transaction codes and TAC queues

In order to modify the properties of a TAC or a TAC queue, you must call KC_MODIFY_-
OBJECT with the object type KC_TAC.

It is not possible to change the status of a TAC and at the same time reset specific statistical
values.

Changes to the status of a TAC or a TAC queue take effect immediately and continue to
apply beyond the end of the application run. Changes to the statistical values of a trans-
action code take effect immediately.

If you want to control accesses to a transaction code by means of a key set, you can assign
an existing key set to the access list of the transaction code. If there is a lock code, you have
to remove it (set it to zero). Conversely, if access to the transaction code is protected by a
lock code, there must not be a key set defined in the access list.

You can also protect a TAC queue against unauthorized reading/deletion and writing by
means of a key set. To do this, assign the desired key set to the q_read_acl and/or
q_write_acl parameters.

Changes to the parameters that control access continue to apply after transaction
processing beyond the end of the application run.

Backup of messages in the dead letter queue in the event of processing errors can be
enabled or disabled for asynchronous transaction codes using CALL=BOTH/FIRST and
TAC queues. This backup option is not possible for MSGTAC and KDCDLETQ. Enabling
and disabling of backup to the dead letter queue remains in effect after the end of the trans-
action and beyond the application run.

Modifying object properties Changing the configuration dynamically

102 Administering Applications

4.4.3 Modifying user IDs

In order to modify the properties of a user ID or the assigned USER queue, you have to call
KC_MODIFY_OBJECT with the object type KC_USER.

You cannot disable user IDs with administration authorization, nor can you modify
properties of user IDs that are assigned to a client of the type APPLI, SOCKET or UPIC.

If you want to change the password for a user ID, ensure that:

● The new password corresponds to the complexity level defined for the user ID.

● The existing password is not reused when it is only possible to use passwords with a
limited period of validity for the user ID.

You can supply a user ID with access rights (key set) or change them.

You can use a key set to protect a USER queue against unauthorized reading/deletion and
writing. To do this, assign the desired key set to the q_read_acl and/or q_write_acl param-
eters (see page 582).

Any changes you make to the properties of a user ID or a USER queue continue to apply
after transaction processing beyond the end of the application run.

4.4.4 Modifying key sets

In order to modify the keys of a key set, you must call KC_MODIFY_OBJECT with the
object type KC_KSET.

Note that the KDCAPLKS key set cannot be modified and that it is not permissible to specify
a key less than 1 or greater than the maximum value permitted in the application (KDCDEF
statement MAX, KEYVALUE operand).

Key sets with the MASTER attribute cannot be modified either.

Changing the configuration dynamically Modifying object properties

Administering Applications 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

4

4.4.5 Modifying LU6.1 sessions

In order to modify the properties of an LU6.1 session, you must call KC_MODIFY_OBJECT
with the object type KC_LSES.

For an LU6.1 session you can initiate connection establishment or connection cleardown
and, in the case of connection establishment, assign a transport connection to the session.

If you request the immediate establishment of a connection, the QUIET property must not
be set and the LPAP partner must not be disabled. If you request the immediate cleardown
of a connection, none of the other properties must be modified.

When specifying a transport connection for the session, you should ensure that the
connection exists and is generated for the associated LPAP partner.

Any changes you make to an LSES object do not take effect unless the utilization level of
the application permits it.

Modifying object properties Changing the configuration dynamically

104 Administering Applications

Administering Applications 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

5

5 Generating KDCDEF statements from the
KDCFILE

To ensure that regeneration does not cause you to lose the changes you made to your
configuration while the application was running, openUTM provides you with the inverse
KDCDEF. You can use this inverse KDCDEF to generate control statements for the UTM
tool KDCDEF from current configuration data in the KDCFILE.

KDCDEF control statements generated by the inverse KDCDEF

The inverse KDCDEF generates control statements for the object types for which dynamic
entry and deletion is possible. The inverse KDCDEF does not generate control statements
for other objects and components in the application or for application parameters. However,
you can use the inverse KDCDEF to generate the following KDCDEF control statements:

● USER statements

For all user IDs that currently exist in the application. The inverse KDCDEF does not
create any USER statements for the user IDs created internally by openUTM.

In applications without user IDs, the inverse KDCDEF does not generate any USER
statements.

● LTERM statements

For all LTERM partners in the application which do not belong to an LTERM pool or a
multiplex connection.

● PTERM statements

For all clients and printers entered in the configuration. For clients belonging to an
LTERM pool or a multiplex connection, no PTERM statements are generated.

● PROGRAM statements

For all program units and exits currently contained in the configuration of that appli-
cation.

● TAC statements

For all transaction codes and TAC queues in the application.

Generating KDCDEF statements

106 Administering Applications

● KSET statements

For all the application’s key sets.

● CON statements

For all the application’s LU6.1 connections.

● LSES statements

For all the application’s LU6.1 sessions.

● LTAC statements

For all the transaction codes for partner applications.

The inverse KDCDEF generates control statements for all objects in the application
belonging to one of these object types, regardless of whether the objects were entered in
the configuration dynamically or were generated statically during a previous KDCDEF
generation process. All modifications which you performed for this object during the appli-
cation run are taken into account.

The inverse KDCDEF does not generate any control statements for objects which were
deleted dynamically from the configuration of this application. After the next regeneration,
these objects are therefore deleted completely from the configuration. They then cease to
occupy any space in the table and the names of these objects can reused during regener-
ation.

Over and above this, after regeneration with KDCDEF, the UTM tool KDCUPD does not
transmit any application data relating to the dynamically deleted objects from the old
KDCFILE to the new KDCFILE, even if there is an object with the same name and object
type as a deleted object in the new KDCDEF generation process. In particular, no
asynchronous jobs generated by LTERM partners or user IDs which have subsequently
been deleted are passed from KDCUPD.

The USER statements generated by the inverse KDCDEF do not contain any passwords.
For user IDs generated with a password, the inverse KDCDEF generates USER control
statements in this form:

USER name, PASS=∗RANDOM,....

After a new KDCFILE has been generated, i.e. after the following KDCDEF run, you must
pass the passwords for user IDs to the new KDCFILE using the UTM tool KDCUPD (see
the openUTM manual “Generating Applications”). This is also possible in a UTM-F appli-
cation.

i In the case of UTM cluster applications, the passwords are present in the cluster
user file and do no have to be transferred to a new KDCFILE using KDCUPD.

Generating KDCDEF statements Starting the inverse KDCDEF

Administering Applications 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

5

5.1 Starting the inverse KDCDEF

You can start the inverse KDCDEF “online” or “offline”. “Online” means that you start the
inverse KDCDEF during the application is running. “Offline” means that you start the inverse
KDCDEF after shutting down the application run.

In both cases, you can call the inverse KDCDEF in such a way that it produces KDCDEF
control statements for all possible objects. However, you can also call the inverse KDCDEF
in such a way that it only generates control statements for specified object types, which are
grouped together in the object groups CON, DEVICE, KSET, LSES, LTAC, PROGRAM and
USER.

You can request KDCDEF control statements for just one or more of these groups.

Starting inverse KDCDEF online

In order to start an inverse KDCDEF run online, you must generate your own application
program which calls KC_CREATE_STATEMENTS.

 KC_CREATE_STATEMENTS on page 251

The time at which the KDCDEF run actually starts depends on whether or not, when the
KC_CREATE_STATEMENTS call is placed, another service in the application currently has
write access to the configuration data in that application. Distinctions must be drawn
between the following cases:

● At the time the KC_CREATE_STATEMENTS call is made, transactions may be running
which modify the configuration data of the application or which change the passwords
or locales.
In this case, the KC_CREATE_STATEMENTS call will generate an asynchronous job.
The inverse KDCDEF run is not started until these transactions have been completed.
However, new transactions of this kind cannot be started until the inverse KDCDEF run
has been completed, i.e. until the asynchronous job has been processed.

The following also applies in UTM cluster applications:
In all running node applications, an administration action which applies globally to the
cluster results in a transaction which may delay the start of the inverse KDCDEF.
Conversely, the execution of a global administration action at a running node may be
delayed if an inverse KDCDEF is currently running there.

● At the time of the KC_CREATE_STATEMENTS call, no transactions are running which
modify the configuration data, passwords or locales.
In this case, the inverse KDCDEF run is started immediately (synchronously). The run
will already have been terminated when control is returned to the program unit. In other
words, by this time, all requested KDCDEF control statements have been generated
and stored in files.

P

Starting the inverse KDCDEF Generating KDCDEF statements

108 Administering Applications

Note on UTM cluster applications:
It is not possible to start an online inverse KDCDEF as long as node applications with
different generations are running in a UTM cluster application.

An inverse KDCDEF run is not subject to transaction management.

With the aid of the inverse KDCDEF executed online, you can make all preparations for
regenerating your application parallel to the application run. This minimizes the amount of
downtime incurred.

i You can also start the inverse KDCDEF online using the administration tools
WinAdmin and WebAdmin.

Starting the inverse KDCDEF offline

You can start the inverse KDCDEF offline, i.e. not during application runtime, by calling the
UTM generation tool KDCDEF and submitting the control statement CREATE-CONTROL-
STATEMENTS.

 CREATE-CONTROL-STATEMENTS; see the openUTM manual “Generating Appli-
cations”

Files generated by the inverse KDCDEF can then be processed in the same KDCDEF run,
or in a later one.

Generating KDCDEF statements Result of the inverse KDCDEF run

Administering Applications 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

5

5.2 Result of the inverse KDCDEF run

The inverse KDCDEF either writes all control statements to one file or it writes the control
statements for each group of objects to separate files.

On BS2000 systems, the control statements can also be written to an LMS library element
instead of a file.

You can pass the files written by inverse KDCDEF as input to KDCDEF when the appli-
cation is regenerated. To do so, you must enter the control statement OPTION
DATA=filename for each of these files.

You can pass the files generated by inverse KDCDEF as input files direct to KDCDEF.
However, you can also edit the files as well, i.e. you can modify them before the next
KDCDEF run.
Whether or not LMS library elements can be modified depends on their type – only text-type
elements can be modified.

You define the names of files generated by inverse KDCDEF when starting the inverse
KDCDEF. If no file with this name exists, a new one is created automatically. If a file of this
name does exist, you can define whether it should be overwritten or appended.

B

B

B

B

Inverse KDCDEF for version migrations Generating KDCDEF statements

110 Administering Applications

5.3 Inverse KDCDEF for version migrations

When migrating to a new version of openUTM, you must first generate the KDCDEF control
statements in the previous version, i.e. you must start the inverse KDCDEF in the previous
version. You can use the files this KDCDEF generates as input files for KDCDEF in the new
version of openUTM.

Generating KDCDEF statements Recommendations for regeneration

Administering Applications 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

5

5.4 Recommendations for regeneration of an application

When operating a UTM application, it may prove unavoidable to regenerate the application,
i.e. to perform another KDCDEF run. Possible reasons can include:

● The maximum values defined during generation must be adapted.

● New objects may have to be generated for distributed processing via LU6.1 or OSI TP
because the server network has to be extended for distributed processing.

A KDCDEF run is only required for distributed processing via LU6.1 when new LPAP
objects have to be inserted. Objects of the type CON, LSES and LTAC, on the other
hand, can also be created by means of dynamic administration (provided enough table
spaces have been kept free by means of the RESERVE statement).

● New load modules, shared objects or DLLs must be inserted in the application program.

● The table spaces reserved for dynamic entry of objects in the configuration are
occupied. The tables must be extended or objects marked for deletion must be deleted
now to create spare table spaces.

You can minimize the application downtime resulting from this type of regeneration. To do
this, please note the following recommendations:

● When first generating your application, you should distribute the control statements for
KDCDEF across several files before making them available to KDCDEF with OPTION
DATA=. In particular, you should write the control statements USER, LTERM, PTERM,
PROGRAM, TAC, CON, KSET, LSES and LTAC and TAC to separate files. When doing
so, ensure that all statements relating to one specific group (see page 107) are written
to one file. In this way, you can replace these files with files generated by an inverse
KDCDEF if you regenerate the application at a later time.

● Before regenerating the application and before starting the inverse KDCDEF run, you
should dynamically delete all objects no longer intended for the new configuration
(KC_DELETE_OBJECT). Compared with manual deletion, dynamic deletion of related
control statements from the input file has the following advantages for KDCDEF:

– Manual deletion of KDCDEF statements from the KDCDEF input file is messy and
prone to errors. Due account must be taken of relationships between the objects
and, hence, between the KDCDEF statements during the manual deletion process.
If any such relationships are overlooked, you must repeat the KDCDEF run. This
only adds to the downtime.

– You can automate the procedures involved in regeneration by calling the offline
inverse KDCDEF followed by KDCUPD, see openUTM manual “Generating Appli-
cations”.

Recommendations for regeneration Generating KDCDEF statements

112 Administering Applications

Over and above this, please note that under certain circumstances, when objects are being
deleted manually, data stored in the KDCFILE and relating to the deleted objects can be
passed to the new KDCFILE by KDCUPD, which is executed in conjunction with the
following regeneration operation:

You wish to prevent KDCUPD from transferring the data from the old KDCFILE for a given
file (e.g. because the "new" object has the same name and type but different properties).
However, with KDCUPD you can only exclude the transfer of data for all objects of a given
type, but not for a given object. You should therefore delete the object from the configuration
dynamically. The object should be included again in the new generation.

In this case, KDCUPD does not transfer the data belonging to this object, as KDCUPD does
not transfer the data of deleted objects.

 For information on update generations in a UTM cluster application, see the corre-
sponding subsection in the openUTM manual “Using UTM Applications”.

Example

The new configuration should contain a transaction code with the name of an asynchronous
transaction code which existed in the “old” configuration. However, the new transaction
code calls a different service (i.e. it is assigned to a different program unit). A distinction
must be made between the following cases:

● The properties of the "old" transaction code have been changed:
In this case, if you enter TRANSFER ASYNTACS=YES, KDCUPD transfers the
message queue of the “old” transaction code to the new KDCFILE together with the
asynchronous jobs in the queue and assigns them to the “new” transaction code.
Entering KDCUPD with TRANSFER ASYNTACS=NO ensures that none of the
message queues for asynchronous transaction codes are transferred from the old
KDCFILE to the new one.

● The old transaction code was dynamically deleted from the configuration. In the new
configuration, it is included again:
In this case, even if you enter TRANSFER ASYNTACS=YES, KDCUPD does not
transfer the message queue for the old transaction code to the new KDCFILE because
KDCUPD does not transfer any data from deleted objects.

The same applies to message queues for LTERM partners and USER queues of users.

Administering Applications 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

6

6 Administration using commands

To enable you to use the administration commands of openUTM, the following require-
ments must first be fulfilled:

● The standard administration program KDCADM must have been generated (KDCDEF
statement PROGRAM) or included in the configuration dynamically (administration
program with KC_CREATE_OBJECT and obj_type=KC_PROGRAM).

● The administration commands which you want to use must have been generated as
transaction codes (KDCDEF statement TAC) or included in the configuration dynami-
cally (administration program with KC_CREATE_OBJECT and obj_type=KC_TAC).

For details of KDCDEF generation for commands and of the authorization level required for
calling commands, see chapter “Access rights and data access control” on page 157f.

The openUTM command interface provides a dialog command and an asynchronous
command for every KDCADM administration function. You can therefore terminate all
actions (exception: shutting down the application run with KDCSHUT KILL), either in dialog
or message queuing.

i openUTM commands can be issued by users on a terminal, by client programs and
by partner applications. However, in the first instance, they are intended for terminal
input. For administration by client programs and other applications, the program
interface to administration is far more suitable.

Administration in dialog Administration using commands

114 Administering Applications

6.1 Administration in dialog

The dialog administration commands can be used by:

– users on terminals
– UPIC clients
– TS applications
– LU6.1 or OSI TP partner applications
– other dialog program units in the application

i The user IDs, LPAPs and OSI-LPAPs, which are calling the commands must have
administrator authorization.

Input of administration commands

A user on the terminal must enter the commands in line mode. Formatted entries are not
accepted (exception: commands which have no operands).

The advantage of entering commands in line mode is that command processing does not
take much time and administration tasks can also be performed in conjunction with other
services.

i In the UTM application on a BS2000 system, entries for administration commands
will be rejected if an edit profile was used the last time that output was issued.

Output of results

openUTM returns the result of command processing to the job-submitting service. Output
to the terminal also occurs in line mode.

If output to a terminal does not fit on one page of the screen, openUTM offers a continuation
prompt on the last line of each screen display which can be used to continue output from
the current position.

The chapter “Administration commands - KDCADM” on page 675 describes what the result
message for each command looks like in the section describing the relevant commands.

B

B

Administration using commands Administration in dialog

Administering Applications 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

6

Output after successful processing of an administration command does not necessarily
mean that the action you requested has been completed successfully. With some
commands, the message merely means that openUTM has initiated the action (e.g. to
establish a connection, to exchange programs). The reason for this is that it takes an
extended period for these actions to be carried out or that openUTM is not able to execute
the action until a later time. You can find out whether the appropriate action was carried out
successfully by submitting a KDCINF query at a later date. With some of these actions (e.g.
program exchange), openUTM generates K messages after processing is complete which
indicate to you whether or not the action was performed successfully. These messages are
usually sent to the message destination SYSLOG; output takes place in standard form
(SYSOUT/stderr).

Administration using message queuing Administration using commands

116 Administering Applications

6.2 Administration using message queuing

The asynchronous commands can be called by:

– terminal users
– TS applications
– LU6.1 or OSI TP partner applications
– other dialog or asynchronous program units in the application

i The users/(OSI-)LPAPs that call the commands must have administration
authorization.

When an asynchronous command is submitted, an asynchronous job is generated which
openUTM adds to the message queue of the relevant administration TACs of KDCADM.
The job is then executed independently of the job-submitting service or program unit.

The asynchronous commands make “programmed or automatic administration” possible.
The data supplied by the standard administration program KDCADM can be passed to
another program unit which analyzes the data and initiates appropriate actions (calling
additional commands or transaction codes). The asynchronous commands can, for
example, be called by event service MSGTAC which responds to certain events (UTM
messages) when an administration command is called.

Submitting administration commands

At a terminal, asynchronous commands must be entered in line mode, as they are with
administration in dialog mode. Partner applications pass commands together with operands
to the application. The same operands are passed as in dialog mode. The asynchronous
commands differ from dialog commands only in terms of their name.

A KDCS program unit calls an asynchronous command, either by submitting an FPUT NE
call or, if the command is to be executed by a certain time, by submitting a DPUT NE call.

You supply the name of the asynchronous command (=transaction code) to the KDCS
parameter field KCRN of the call. The message area for the call must contain the operand
list of the administration command. You must pass every administration command in an
FPUT or DPUT call.

Administration using commands Administration using message queuing

Administering Applications 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

6

You can send several calls relating to the same administration command and which are to
be processed in one transaction as message sections. Every message section must
contain an administration command (including the operands). The administration program
KDCADM reads the message sections in a loop of FGET calls and processes them.

The user ID under which the program unit is running must have administration privileges.
The MSGTAC program unit always has administration privileges (see also the description
of the MSGTAC program unit in the openUTM manual „Programming Applications with
KDCS”).

Output of the result

After the job has been processed, openUTM informs you of the result via an asynchronous
message. This message has the following format:

Header
1st line of result (= 1st line on screen, as for dialog output)
2nd line of result (= 2nd line on screen, as for dialog output)

:

:

The result is output with the same number of lines as the corresponding dialog command.
Only the line output in dialog mode for the scrolling function is omitted.

The structure of screen lines for dialog output is illustrated in chapter “Administration
commands - KDCADM” on page 675 beside the description of the appropriate command.

Structure of header

FPUT NT
FPUT NT
...
FPUT NE

or
DPUT NT
DPUT NT
...
DPUT NE

First call of the administration command, e.g. KDCLTRMA
Second call from KDCLTRMA
Further calls from KDCLTRMA
Last call from KDCLTRMA

ADMCMD: Command name Operands in the administration command

Byte: 0 8 16 17 variable

Administration using message queuing Administration using commands

118 Administering Applications

Recipient for the result

All messages generated by the asynchronous commands go to the same recipient
(DESTADM) which can be defined either during KDCDEF generation or at runtime by
administration using either WinAdmin, WebAdmin or the KDCADMI program interface
(opcode=KC_MODIFY_OBJECT and object_type=KC_MAX_PAR, see page 388). Adminis-
tration can define a different recipient at any time. A recipient can take the form of an
asynchronous TAC which further processes the result or the LTERM partner of a terminal,
printer or a TS application.

If no recipient has been defined, openUTM still carries out the administration commands
but the result messages are lost in the process.

However, if an asynchronous TAC is defined as the recipient, and if it is not available, e.g.
because it is disabled, the command is not executed and openUTM generates the message
K076.

If the recipient is an LTERM partner, the result is issued as an asynchronous message.
If the recipient is an asynchronous TAC, the relevant program unit must read every single
line of the result with an FGET call. The first FGET call supplies the header. Every subse-
quent call supplies one line of screen output.

i The layout of the output is not subject to the compatibility guarantee, i.e. it may vary
when changing to a new version of openUTM. Program units which evaluate the
output from administration commands may therefore have to be adapted when a
new version is installed.

Assignment of jobs to results for the recipient

When entering the operands of an asynchronous command, you can also enter a comment
in inverted commas (“comment”). This comment can then be evaluated by the recipient for
the results message.

As a comment you can, for example, enter a job number. The recipient can use this job
number to identify the job.

In this case, the comment should be entered before the operand to ensure that job identifi-
cation is always at the start of each message and is easy to address.

asynchronous command "comment" operands

Administering Applications 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

7

7 Writing your own administration programs

The KDCADMI program interface allows you to write your own administration programs.
You must always write an administration program as a KDCS program unit, i.e. it must be
framed by an INIT and a PEND call. The PEND call should always terminate the trans-
action.

You can create administration programs:

– as dialog program units for administration in dialog mode
– as asynchronous program units for administration by means of message queues, e.g.

for automatic administration, see chapter “Automatic administration” on page 151.

Every administration program has the following structure:

You can submit several administration calls in an administration program. If you start a
number of calls in a transaction, you must take account of the fact that some calls have to
be made in a certain order and that a number of actions prompted by administration
programs are subject to transaction management, i.e. they are not executed until a PEND
call has been carried out successfully. In this case, you should provide a RSET call in the
event of a fault.

A UTM application can have several administration programs for different purposes. An
administration program can be started from a terminal, a client or another program unit (e.g.
MSGTAC) or indeed from another application.

INIT
...
MGET (or FGET, if it is an asynchronous program)

... Analyse input

KDCADMI (call administration interface)
[KDCADMI] (several calls if necessary)

...

[RSET]

MPUT (or FPUT/DPUT)
PEND

Dialog administration programs Writing your own administration programs

120 Administering Applications

7.1 Dialog administration programs

If you wish to perform administration tasks in dialog mode, you can:

– group several administration jobs in one program, or
– program the administration tasks as a multi-step service and
– input and output the data using formats

The two examples below outline how you can implement this.

7.1.1 Several administration calls

In this example, a load module, shared object or a DLL available in several versions is to
be replaced at runtime with a new version and extended by a new program unit with a new
TAC. The exchange operation runs in three steps.

First of all, a number of files must be requested by KDCADMI, e.g. the version of load
module/shared object/DLL loaded that is before the configuration (TAC, PROGRAM
statement) is modified in a second step. The actual exchange takes place in the final step.

#include <kcadminc.h> /* Include file for the administration */

INIT
...
MGET /* Read in data (name, TAC,...) */
 /* of prog. unit being replaced */
... Analyse input

/********************* 1st section:check and query *********************/

KDCADMI opcode=KC_GET_OBJECT /* Is space for the TAC PROGRAM,... */
 /* statements reserved ? */

KDCADMI opcode=KC_GET_OBJECT /* Check whether TAC PROGRAM statements ... */
 /* already exist */
KDCADMI opcode=KC_GET_OBJECT /* Determine current version of load module */
 /* shared object */
if {error in section 1:
 MPUT with PEND FI } /* If error message appears on screen */

B

Writing your own administration programs Dialog administration programs

Administering Applications 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

7

If errors occur in section 2, the RSET call is necessary to prevent inconsistent generation
from occurring. The KC_CREATE_OBJECT operations must be specified for the objects
shown in this sequence (PROGRAM TAC), otherwise openUTM is unable to generate the
necessary references.

7.1.2 Multi-step service

In this example, information about the UTM application is retrieved in a first step and then,
if necessary, object properties are modified in a second step. Both programs operate using
a #format.

/********************* 2nd section: dyn. generation *****************/
KDCADMI opcode=KC_CREATE_OBJECT
 /* Insert PROGRAM statement */
KDCADMI opcode=KC_CREATE_OBJECT
 /* Insert TAC statement */
if {error in section 2: RSET}/* roll back if fault in transaction */

/********************* 3rd section: replacing program ********************/

KDCADMI opcode=KC_MODIFY_OBJECT
 /* Exchange program unit */

MPUT /* Message on screen */
PEND FI

/************************ Program unit ADMREAD ***************************/

#include <kcadminc.h> /* Header file for administration */
INIT

MGET ... KCMF=#FORMADM /* Entries are read in with a format */
 /* and the input is analyzed */
KDCADMI opcode=KC_GET_OBJECT
 /* Administration call, UTM sends data to */
 /* the program */
MPUT KCMF=#FORMADM /* Output data/result to screen */

PEND RE KCRN=ADMMOD /* Service is continued */

Dialog administration programs Writing your own administration programs

122 Administering Applications

You can extend these programs, for instance, as follows:

– analyze the responses to the KDCADMI call and, in the event of errors, issue an appro-
priate message or

– write the data supplied to an LSSB in ADMREAD which can be reused in ADMMOD.

openUTM on Unix, Linux and Windows systems does not support a formatting system, so
if you want to call the program using utmdtp in a shell resp. DOS window, you must program
the MGET and MPUT calls in line mode

You can also address this program using a UPIC client.

/************************ Program unit ADMMOD ****************************/

#include <kcadminc.h> /* Header file for administration */
INIT
MGET ... KCMF=#FORMADM /* Entries are read in with a format */
 /* and the input is analyzed */
KDCADMI opcode=KC_MODIFY_OBJECT
 /* The required object is modified */
 /* Several KDCADMI calls are possible */
MPUT KCMF=#FORMADM /* Output data/result to screen */

PEND FI /* Service is terminated */

X/W

X/W

X/W

Writing your own administration programs Diagnostic options

Administering Applications 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

7

7.2 Diagnostic options for the administration interface

For error diagnosis for calls made to the administration interface, there are the two areas
Administration DIAGAREA and Administration USERAREA in the UTM dump and the ADMI
trace as a individual file. openUTM offers the following diagnosis options:

– In the UTM Diagarea, the KDCS opcode ADMI displays the administration interface.

– A simultaneous log is kept for all calls in Administration DIAGAREA. The Administration
DIAGAREA is structured in a similar manner to the UTM Diagarea and is described
cyclically.

– A simultaneous service-specific log is kept for all data transferred to openUTM in
Administration USERAREA (data area or selection area). In each case, the Administ-
ration USERAREA only receives the data of one call to the administration interface.

– You can enable the ADMI trace to diagnose errors that occur in programs that use the
administration program interface (KDCADMI).

– On BS2000 systems, if SAT logging is activated and the UTM event ADM-CMD is
selected, all calls to the administration interface are logged. In addition, in the case of
opcode=KC_GET_OBJECT, the return codes KC_MC_OK and KC_MC_LAST_ELT
are logged successfully.

For a description of Administration DIAGAREA, Administration USERAREA, ADMI trace
and of the structure of the SAT log records, please refer to the relevant openUTM manual
”Messages, Debugging and Diagnostics” for the platform you are using.

B

B

B

B

Diagnostic options Writing your own administration programs

124 Administering Applications

Administering Applications 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

8 Central administration of several applications

If you want to administer several UTM applications centrally, you can either use WinAdmin
or WebAdmin or perform administration using your own command procedures or adminis-
tration programs.

● WinAdmin and WebAdmin provide all the functions of the programming interface in a
convenient user interface. You can administer several UTM applications running on
different computers with BS2000, Unix, Linux or Windows systems at the same time.

WinAdmin and WebAdmin are easy and quick to use, as no programming is required,
either on the administration computer or in the UTM applications to be administered.

● You can create your own command procedures or programs if, for instance, you wish
to use functions that are not provided by WinAdmin or WebAdmin.

The administration tasks are split into a centralized part, the administration application,
and a remote part which runs on the particular UTM application to be administered.

You can handle central administration either via the command interface or via the
program interface. You are advised to always use the program interface for the admin-
istration of the program interface.

A number of basic models are available for configuring the central administration
functions, see page 131.

Central administration

126 Administering Applications

Administration of UTM cluster applications

You can administer the node applications of a UTM cluster application together.

● WinAdmin and WebAdmin provide administration functions which you can apply
globally to all of the node applications of the UTM cluster application. Furthermore,
WinAdmin and WebAdmin allow you, for example, to display statistical summaries
which include all the running node applications.

For this reason, you are recommended to use WinAdmin or WebAdmin to administer
UTM cluster applications.

● You can create your own command procedures or programs in the usual way. Additional
data structures are available for administering UTM cluster applications:

– The data structure kc_cluster_par_str is defined for the parameter type KC_CLUS-
TER_PAR. UTM uses kc_cluster_par_str to return the current settings for the global
properties made in a UTM cluster application together with current data (e.g. gener-
ation time, start time, number of active and generated node applications) (see
section “kc_cluster_par_str - Global properties of a UTM cluster application” on
page 602).

– The data structure kc_cluster_node_str is defined for the object type KC_CLUS-
TER_NODE. UTM uses kc_cluster_node_str to return the properties of the individual
node applications (instances) in a UTM cluster application (see section “kc_clus-
ter_node_str - Node applications of a UTM cluster application” on page 465.

– The data structure kc_cluster_curr_par_str is defined for the object type KC_CLUS-
TER_CURR_PAR. UTM returns current values for the UTM cluster application in
kc_cluster_curr_par_str (see section “kc_cluster_curr_par_str - Statistics values of a
UTM cluster application” on page 601). In addition, kc_cluster_curr_par_str can be
used to reset the statistics counters of the UTM cluster application.

On page 135, you can find a generation example for the administration of a UTM cluster
application via a UPIC client.

 You can find further information on administering UTM cluster applications in the
following manuals:

– openUTM manual “Using UTM Applications on BS2000 Systems”

– openUTM manual “Using UTM Applications on Unix, Linux and Windows
Systems”

B

X/W

X/W

Central administration Administration using WinAdmin

Administering Applications 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

8.1 Administration using WinAdmin and WebAdmin

This section provides you with an introduction to working with WinAdmin and WebAdmin.
For detailed information, see

● the WinAdmin Description which provides a comprehensive overview of the range of
functions and the WinAdmin handling. This document is supplied together with
WinAdmin and is also available online as a PDF file.

● the WebAdmin Description which provides a comprehensive overview of the range of
functions and WebAdmin handling. This document is supplied together with WebAdmin
and is also available online as a PDF file.

● the online help system which describes context-sensitively all the dialog boxes and
associated parameters available in the graphical user interface of WinAdmin and
WebAdmin. It also illustrates how to configure WinAdmin and WebAdmin in order to
administer UTM applications.

WinAdmin and WebAdmin allow you to use the complete range of functions of KDCADMI,
for instance to add objects to configurations dynamically, delete objects or start and
terminate UTM applications. Furthermore, additional functions are available which cannot
be accessed using KDCADMI:

– Definition of message collectors in order to query, display and archive UTM messages
from the live UTM applications,

– Administration of message queues,
– Administration and control of printers,
– Reviewing the contents of GSSBs and deleting GSSBs,
– Creation and deletion of temporary queues,
– Grouping of several administration steps in a single transaction (only WinAdmin),
– Extremely comprehensive support for the UTM security concept using roles and access

lists,
– Definition of actions such as storing statitic values in files or reacting to thresholds being

exceeded or not met,
– Collection and archiving of statistical data on the UTM applications.

As far as openUTM is concerned, WinAdmin and WebAdmin area UPIC-R type clients.
Before you can administer a UTM application using WinAdmin or WebAdmin, you must
therefore

– generate WinAdmin or WebAdmin access in the UTM application (see page 128),
– and configure the connection parameters in WinAdmin or WebAdmin (see page 129).

Administration using WinAdmin Central administration

128 Administering Applications

8.1.1 Adapting generation of the UTM application

On the UTM application side, access to the program KDCWADMI and the UPIC connection
from WinAdmin or WebAdmin must be generated.

Enabling access to the program interface

In order to enable access to the program interface, the program KDCWADMI and the TAC
KDCWADMI must be generated. The following KDCDEF statements are required for this:

The program unit KDCWADMI is supplied with openUTM and can be linked to the appli-
cation or be dynamically loaded by the application.

openFT must be installed and configured if you want to use WinAdmin or WebAdmin to start
UTM applications or use WinAdmin to initiate KDCDEF/KDCUPD runs. WinAdmin can send
or retrieve data via FTP.

Making WinAdmin and WebAdmin known as a UPIC client

In addition, WinAdmin or WebAdmin must be generated as a UPIC client in all the
openUTM applications to be administered using WinAdmin or WebAdmin. The following
KDCDEF statements serve as an example (PTERM/LTERM):

BCAMAPPL bcamappl_name, T-PROT=RFC1006 (BS2000 system)
BCAMAPPL bcamappl_name, T-PROT=RFC1006, LISTENER-PORT=port (Unix, Linux and
Windows system)

Note: Although LISTENER-PORT is not a mandatory parameter, it is required in practice.

PTERM pterm-name, LTERM=lterm-name, BCAMAPPL=bcamappl-name,
 PRONAM=processor-name, PTYPE=UPIC-R 1)
LTERM lterm-name
MAX PRIVILEGED-LTERM=lterm-name
USER wadmin, PASS=C’XYZ’, PERMIT=ADMIN, RESTART=NO

1) WinAdmin or WebAdmin can also be generated via TPOOL instead of via
PTERM/LTERM. However, it is then not possible to set up this connection as a privi-
leged LTERM:

TPOOL LTERM=upiclt, NUMBER=10,PRONAM=*ANY,PTYPE=UPIC-R,
BCAMAPPL=bcamappl-name

PROGRAM KDCWADMI, COMP=ILCS BS2000 systems

PROGRAM KDCWADMI, COMP=C Unix, Linux and
Windows systems

and TAC KDCWADMI, PROGRAM=KDCWADMI, CALL=BOTH, ADMIN=Y

BB

X/WX/W

X/W

B

X/W

X/W

X/W

Central administration Administration using WinAdmin

Administering Applications 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

The names pterm-name, lterm-name, bcamappl-name, upiclt, and wadmin are freely selectable
in accordance with the naming conventions.
pterm-name is the name you give to the WinAdmin or WebAdmin client. bcamappl-name is the
name you give to the application for client/server communication. upiclt is the prefix for the
name of the LTERM partner, wadmin is an administration-authorized user ID for the appli-
cation, and XYZ is the password for the wadmin user ID.

The assignment of a password is not mandatory, but a password should nevertheless
always be used to maintain the security of the application.

You need the application name assigned here, the user ID and possibly the password in
order to configure WinAdmin or WebAdmin.

8.1.2 Configuration of WinAdmin and WebAdmin

A configuration database is set up when WinAdmin and WebAdmin are started for the first
time. The administration data of the UTM applications to be administered using WinAdmin
or WebAdmin must be stored in this database to begin with. You use this data to specify the
following on the WinAdmin and WebAdmin side:

– what the application is called
– the system on which the application runs
– the properties of the connection
– the users who can administer this application

This data is assigned to the WinAdmin or WebAdmin objects “Hosts”, “UTM Applications”,
“UPIC Connections” and “WinAdmin Users“ or „WebAdmin Users”.

You can also define collections. A collection contains one or more UTM applications. By
default, the collection <All UTM Applications> is set up.

i When changing the WinAdmin or WebAdmin version, you can import the data of the
previous version.

Configuration of WinAdmin and WebAdmin objects

The following table lists WinAdmin’s and WebAdmin‘s objects that have to be defined.

Object Description and properties

Hosts This object describes in WinAdmin or WebAdmin the system on which the UTM
application runs (application host).

UTM Applications This object describes the UTM application to be administered.

UPIC
Connections

You use this object to define the connection from WinAdmin or WebAdmin to
the application.

Administration using WinAdmin Central administration

130 Administering Applications

For details, see the description of WinAdmin and/or WebAdmin.

Working with collections

A WinAdmin/WebAdmin user can combine multiple applications to form a collection in order
to simplify their administration.

Using WinAdmin, it is even possible to administer objects from different applications in an
open collection together, i.e. in a single step.

Checking availability

When you have performed the necessary configuration steps in UTM and
WinAdmin/WebAdmin, you can check that the UTM application is accessible.

If the application is available, you can view its objects. These are displayed graphically in
the WinAdmin/WebAdmin user interface in a tree structure or as a table.

WinAdmin /
WebAdmin
Users

After installation, only the WinAdmin/WebAdmin user ID “Master” is authorized
to do everything. It is advisable to define further user IDs with restricted autho-
rizations.

Collections This object combines UTM applications to form a collection.

Object Description and properties

Central administration Configuration models

Administering Applications 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

8.2 Configuration models for own application of administration

You can implement the administration application as a UPIC client application, as a UTM
application with distributed processing (with or without global transaction management) or
as a TS application (SOCKET, CMX, DCAM, UTM...). The figure below illustrates all possi-
bilities and the interfaces they use.

In all cases, the administration application must be generated with administration privileges
in the applications to be administered.

The diagram applies equivalently for the administration of UTM cluster applications, see
also “Generation example for a UTM cluster application” on page 135.

UTM UTM

UTM
client

CPI-C

UTM UTM

UTM
server

KDCS

UTM UTM

CMX/
DCAM...

ICMX/IDCAM

UPIC client UTM-VTV TS application

UTM applications

Administrations applications

PTERM
,PTYPE=UPIC-R

PTERM
,PTYPE=APPLI

LPAP/OSI-LPAP...

UTM UTM

SOCKET

TS application

PTERM
,PTYPE=SOCKET

Configuration models Central administration

132 Administering Applications

8.2.1 Administration via UPIC clients

A UPIC client can run on BS2000, Unix, Linux and Windows systems. If the platform you
select is Windows system, you have the advantage of being able to generate a friendly
graphical user interface for the administration program.

A client can also be restarted in that it can request the latest output message and continue
the interrupted service; see the manual „openUTM-Client for the UPIC Carrier System”.

Please note that a UPIC client

● can only communicate with one application at any one time, if it is running under a
BS2000 system

● cannot itself send any asynchronous jobs to openUTM

● always has to take the initiative, i.e. it cannot be started from the application to be
administered.

i UPIC clients for Unix, Linux and Windows systems are available for the products
WinAdmin and WebAdmin.
WinAdmin and WebAdmin offer the full function scope of the KDCADMI program
interface (see the section “Administration using WinAdmin and WebAdmin” on
page 127).

UTM on BS2000 systems is supplied with a UPIC client program complete with an
SDF command interface in the form of a fully compiled object code. You can adapt
the configuration for this program to the needs of your own configuration. For more
details, see section “The C program units ADJTCLT” on page 863 of the appendix.

Central administration Configuration models

Administering Applications 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

Programming

What you program is a UPIC program which sends the data required for administration (the
administration command or input for the administration command) to the remote application
and receives the corresponding output from the application being administered. The
diagram below gives a rough outline of a UPIC program for Unix, Linux or Windows
systems.

How the UPIC program can send and receive data is described in section “Central Admin-
istration using commands” on page 144 and in section “Central Administration using
programs” on page 145.

#include <upic.h>

Enable_UTM_UPIC /* Sign on to UPIC carrier system */
Initialize_Conversation /* Initialize conversation; */
 /* sym_dest_name addresses the */
 /* application to be administered. */
Set_TP_Name /* TAC for administration program */
 /* or KDC.... administration TAC. */

Set_Conversation_Security_Type=CM_SECURITY_PROGRAM
 /* Use UTM user concept */
Set_Conversation_Security_User_ID /* Set UTM user ID which must have */
 /* administration privileges. */
Set_Conversation_Security_Password /* Password for user ID */
...
Allocate /* Set up conversation. */

memcpy (buffer,) /* Supply data area with */
 /* command or program input */

Send_Data /* Send command/program input to */
 /* the administered application. */

Receive /* Message returned by UTM appli- */
 /* cation and then evaluated by */
 /* the program. */

Disable_UTM_UPIC /* Sign off UPIC carrier system */

Configuration models Central administration

134 Administering Applications

Generation example (standalone UTM application)

The UPIC program on a Unix or Linux system computer UNIX0001 is to administer three
UTM applications. One application is running on a BS2000 system computer D123ZE45, the
second on a Unix computer D234S012 and the third on a Windows computer WSERV01. The
UTM applications are to be able to shut down with the administration TAC KDCSHUT and
to call the administration program with the TAC TPADMIN.

1. Entries in the UPIC client’s upicfile

upicfile:

* Local name of the CPI-C application
LNADMIN001 UPIC0001;
* UTM application on a BS2000 system
HDUTMAW001 APPLIBS2.D123ZE45 TPADMIN;
* UTM application on a Unix or Linux system
SDUTMAW002 APPLUnix.D234S012 TPADMIN PORT=30000;
* UTM application on a Windows system
SDUTMAW003 APPLIWIN.WSERV01 TPADMIN PORT=30000;

2. UTM generation on the BS2000 system:

BCAMAPPL APPLIBS2,T-PROT=ISO
PTERM UPIC0001,PTYPE=UPIC-R,LTERM=UPICLTRM,
 ,BCAMAPPL=APPLIBS2,PRONAM=UNIX0001,...
LTERM UPICLTRM,KSET=ALLKEYS,USER=REMADMIN,RESTART=N
USER REMADMIN,PERMIT=ADMIN,RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y **)
TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

The processor name UNIX0001 must be generated in BCAM (by means of a BCIN or
CREATE-PROCESSOR command or in the RDF). BCMAP entries are not required for
RFC1006 via port 102.

3. UTM generation on Unix and Linux systems:

BCAMAPPL APPLUnix,LISTENER-PORT=30000,TSEL-FORMAT=T,T-PROT=RFC1006
PTERM UPIC0001,PRONAM=UNIX0001,TSEL-FORMAT=T,PTYPE=UPIC-R,LTERM=UPICLTRM,
 ,BCAMAPPL=APPLUnix
LTERM UPICLTRM,KSET=ALLKEYS,USER=REMADMIN,RESTART=N
USER REMADMIN,PERMIT=ADMIN,RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y **)
TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

Central administration Configuration models

Administering Applications 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

4. UTM generation on WIndows systems:

BCAMAPPL APPLIWIN,LISTENER-PORT=30000,TSEL-FORMAT=T,T-PROT=RFC1006
PTERM UPIC0001,PRONAM=UNIX0001,TSEL-FORMAT=T
 PTYPE=UPIC-R,LTERM=UPICLTRM,BCAMAPPL=APPLIWIN
LTERM UPICLTRM,KSET=ALLKEYS,USER=REMADMIN,RESTART=N
USER REMADMIN,PERMIT=ADMIN,RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y **)
TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

*) The connection user ID is used here, for which no password protection applies. If you
require greater security, the UPIC client has to pass on a “genuine” user ID to openUTM
using the CPI-C calls Set_Conversation_Security_Type/_User_ID/_Password. In this case
the user ID must have administrator privileges and be password protected.

**) You should generate all the relevant TACs. KDCSHUT must always be generated. In
the UPIC, program, the TAC can be set via the program (the default is TPADMIN).

Generation example for a UTM cluster application

The UPIC program on Unix or Linux system UNIX0002 is to administer a UTM cluster appli-
cation on the BS2000 systems C123DE10, C123DE11 and C123DE12. The UTM cluster
application APPLBS2C consists of three nodes and the administration program should be
able to call it by means of the TAC REMADMIN.

1. Entries in the UPIC client’s upicfile:

The UPIC client is configured in a way that requires a separate Symbolic Destination
Name to be specified for each node.

* Local name of the CPI-C application
LNADMIN001 UPIC0001;
* UTM cluster application on the BS2000 system
CDclnode01 APPLBS2C.C123DE10 REMADMIN CONVERTION=IMPLICIT
CDclnode02 APPLBS2C.C123DE11 REMADMIN CONVERTION=IMPLICIT
CDclnode03 APPLBS2C.C123DE12 REMADMIN CONVERTION=IMPLICIT

In this case, the UPIC program must explicitly address the relevant node (clnode01,
clnode02 or clnode03).

Configuration models Central administration

136 Administering Applications

2. UTM generation on the BS2000 system (initial KDCFILE):

BCAMAPPL APPLBS2C,T-PROT=ISO
PTERM UPIC0001,PTYPE=UPIC-R,LTERM=UPICLTRM,
 ,BCAMAPPL=APPLBS2C,PRONAM=UNIX0002,...
LTERM UPICLTRM,KSET=ALLKEYS,USER=REMADMIN,RESTART=N
USER ADMUSR01,PERMIT=ADMIN,RESTART=NO *)
USER ADMUSR02,PERMIT=ADMIN,RESTART=NO *)
USER ADMUSR03,PERMIT=ADMIN,RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y **)
TAC REMADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM
...
CLUSTER ...
CLUSTER-NODE ...,HOSTNAME=C123DE10
CLUSTER-NODE ...,HOSTNAME=C123DE11
CLUSTER-NODE ...,HOSTNAME=C123DE12

*) For each node, you should generate a user ID with administration authorizations
since, by default, a user in a UTM cluster application continues to be signed on
when the conversation terminates. The UPIC program must assign the user ID.

**) You should generate all the relevant administration TACs. In the UPIC, program, the
TAC can be set via the program (the default is REMADMIN).

The processor name UNIX0002 must be generated in BCAM (by means of a BCIN or
CREATE-PROCESSOR command or in the RDF). BCMAP entries are not required for
RFC1006 via port 102.

Central administration Configuration models

Administering Applications 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

8.2.2 Administration via distributed processing

If you want to handle central administration for openUTM via distributed processing, you
have the following advantages:

● Several applications can be administered simultaneously.

● Administration jobs can be started both from the administration application itself and
from the applications being administered (the polling function).

● Time-driven administration jobs can be set up very easily (DPUT).

● You can, if necessary, work with global transaction management. This allows you, for
example, to ensure that certain application parameters are modified simultaneously for
all applications, which cannot be guaranteed when administering applications via a
UPIC client or a TS application (as network failures can mean that the operation cannot
be performed for one of the applications while the others are already working with the
new values).

You can use the LU6.1 or OSI TP protocols for communication between the administration
application and the servers being administered.

Programming

If you require global transaction management for your administration operations, one trans-
action from the administration application will need to communicate with several job
receivers. The figure below illustrates this principle using the example of two administered
applications, each of which submits several administration calls.

Configuration models Central administration

138 Administering Applications

The program TPADM sends jobs to both applications. The program TPREC is called only
after responses have been received from both applications. Once both applications have
completed their respective jobs properly, TPREC terminates the global transaction and the
service.

The following example gives an idea of what the programs TPADM and TPREC might look
like. The administrative task is, from a Unix computer, to initiate the simultaneous exchange
of a program in a UTM application on a Unix or Linux system and a UTM application on a
BS2000 system. Program exchange is handled differently on Unix, Linux and Windows
systems and BS2000 systems, however. BS2000 systems determine the current version of
the load module, marks the load module for exchange and then reloads the application. On
Unix, Linux and Windows systems, the program is replaced immediately. The administered
applications can use a program like the one on page 120. The figure below illustrates this
example for LU6.1 and OSI TP without global transaction management.

INIT

PEND KP

INIT

PEND FI

INIT

PEND FI

INIT

PEND FI

KDCADMI
...
KDCADMI

KDCADMI
...
KDCADMI

Administration
application Administered applications

APP1

APP2

Job to APP1

Job to APP2

TPADM

TPREC

Data returned by APP1

Data returned by APP2

Central administration Configuration models

Administering Applications 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

If you are using a UTM application on Windows systems, either instead of the administered
or the administering UTM application on Unix or Linux systems, or both, then programming
and generation are the same. Note that port number 102 cannot be used for UTM applica-
tions on Unix, Linux and Windows systems.

For OSI TP with global transaction management, additional statements are required in
order to:

– select the commit functional unit
(APRO... KCOF=C)

– request UTMAPPL1 to initiate the end of the transaction and dialog
(CTRL PE, KCRN=VGID1)

/* Program unit TPADM sends data to applications UTMAPPL1 and UTMAPPL2 */

INIT
memcpy (buffer, ...) /* Edit data. */
APRO DM KCPI=VGID1 KCPA=UTMAPPL1 /* Address job-receiving service */
 KCRN=TPADMIN /* TPADMIN in UTMAPPL1. */

MPUT NE buffer /* Send data to UTMAPPL1. */
 KCRN=VGID1

APRO DM KCPI=VGID2 KCPA=UTMAPPL2 /* Address job-receiving service */
 KCRN=TPADMIN /* TPADMIN in UTMAPPL2. */

MPUT NE buffer /* Send data to UTMAPPL2. */
 KCRN=VGID2

PEND KP KCRN=TPREC /* Wait for job receiver. */

Configuration models Central administration

140 Administering Applications

– request UTMAPPL2 to initiate the end of the transaction and dialog
(CTRL PE, KCRN=VGID1)

Generation example

The example shows an LU6.1 generation; the administration application uses two-level
addressing.

In the example the port numbers and computer names (BS20HOST, UnixHOST, UnixADMI)
are specified in the generation statements. See the openUTM manual “Generating Applica-
tions” under "Providing address information" for further information.

1. Generation of the UTM administration application on Unix or Linux systems

BCAMAPPL ADMINAPP,LISTENER-PORT=1234,T-PROT=RFC1006,T-SEL-FORMAT=T

*** Connection to application on Unix or Linux system; the administrator
*** application is the job submitter.
SESCHA ADMAPPL1,PLU=Y,CONNECT=Y
LPAP UTMAPPL1,SESCHA=ADMAPPL1
LSES ADMAG1,LPAP=UTMAPPL1,...

/* Follow-up program TPREC receives confirmation from job-receiving */
/* service */

INIT
 KCRPI=VGIDx /* 1st message comes from JS */
 /* service with service ID VGIDx. */
MGET NT KCRN=VGIDx /* Read response from JS service 1,*/
 KCRCCC=12Z KCRPI=VGIDy /* Further message from other JS */
 /* service (VGIDy) already waiting */

if (OK) /* JS service 1 has initiated */
 { /* program exchange. */
 MGET NT KCRN=VGIDy /* Read response from JS service 2.*/
 KCRCCC=10Z KCRPI=SPACES /* No further messages waiting. */

 if (OK) /* JS service 2 has initiated */
 { /* program exchange . */
 MPUT NE /* Send message to administrator. */
 PEND FI /* Terminate global transaction. */
 } else error_routine();
 } else error_routine();
....
error_routine () /* Error routine */
 { MPUT NE /* Notify administrator */
 PEND FR } /* roll back and terminate */
 /* global transaction. */

Central administration Configuration models

Administering Applications 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

CON APPLUnix,BCAMAPPL=ADMINAPP,PRONAM=UnixHOST -
 ,LISTENER-PORT=2345,LPAP=UTMAPPL1,...

*** Connection to application on the BS2000 system;
*** the administrator application is the job submitter.
SESCHA ADMAPPL2,PLU=Y,CONNECT=Y
LPAP UTMAPPL2,SESCHA=ADMAPPL2
LSES ADMAG2,LPAP=UTMAPPL2,...
CON APPLIBS2,BCAMAPPL=ADMINAPP,PRONAM=BS20HOST -
 ,LISTENER-PORT=102,LPAP=UTMAPPL2,...

*** LTAC for the remote administration program; two-level addressing
*** LTAC=RTAC is the TAC in the remote application.
LTAC TPADMIN

*** TACs for both administration programs
TAC TPADM,PROGRAM=...
TAC TPREC,PROGRAM=...

2. Generation of the administered UTM application on the BS2000 system

BCAMAPPL APPLIBS2,T-PROT=ISO

*** LU6 generation for the job receiver
SESCHA ADMINREC,PLU=N,CONNECT=N
LPAP UTMADMIN,SESCHA=ADMINREC,PERMIT=ADMIN
LSES ADMAN,LPAP=UTMADMIN,...
CON ADMINAPP,BCAMAPPL=APPLIBS2,PRONAM=UnixADMI,LPAP=UTMADMIN,...

TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y
PROGRAM ADMINPRG,...

3. Generation of the administered UTM application on Unix or Linux systems

BCAMAPPL APPLUnix,LISTENER-PORT=1234,T-PROT=RFC1006,T-SEL-FORMAT=T

*** LU6 generation for the job receiver
SESCHA ADMINREC,PLU=N,CONNECT=N
LPAP UTMADMIN,SESCHA=ADMINREC,PERMIT=ADMIN
LSES ADMAN,LPAP=UTMADMIN,...
CON ADMINAPP,BCAMAPPL=APPLUnix,PRONAM=UnixADMI -
 ,LISTENER-PORT=2345,LPAP=UTMADMIN,...

TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y
PROGRAM ADMINPRG,...

Configuration models Central administration

142 Administering Applications

8.2.3 Administration via a TS application

The application can be any TS application such as a CMX application (PTYPE=APPLI) or
a socket application (PTYPE=SOCKET), for example. However, you can also use a UTM
application, which you generate as a TS application. The administration application is linked
to the administered UTM applications by means of an LTERM/PTERM or TPOOL
statement.

In all cases, the application can:

● simultaneously administer several UTM applications

● be started by the administered applications

How the application can be programmed depends on the type of TS application used. If you
are using a UTM application, you can also use DPUT to send time-driven jobs to the admin-
istered applications.

In order to carry out administration by means of a TS application, one of the following cases
must apply:

● The connection user ID must have administration authorization, e.g.:

LTERM ADMINLTM,KSET=ALLKEYS,RESTART=N, USER=ADMINUS
USER ADMINUS, PERMIT=ADMIN, RESTART=N

or

● A genuine user ID with administration authorization must be signed on during the sign-
on process for the TS application.

Generation

For the generation of an administered UTM application on a BS2000 system, it should be
possible to call the command KDCSHUT and to call the administration program with the
TAC TPADMIN.

To achieve this, the following statements will be required in the decentralized application for
LTERM, TAC and PROGRAM, irrespective of whether the central application is a socket,
CMX or DCAM application:

Central administration Configuration models

Administering Applications 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

*** LTERM, TAC and PROGRAM

LTERM ADMINLTM,KSET=ALLKEYS,RESTART=N
USER ADMINLTM, PERMIT=ADMIN,RESTART=N
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y
TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

To address the central application you must write the following statements depending on
which type of application (DCAM or CMX) you are using. If you are using a UTM application,
the same applies depending on whether the application is linked via NEA or via TCP/IP.

*** DCAM application which communicates via
*** NEA protocols with openUTM applications: on BS2000 systems

BCAMAPPL APPLIBS2,T-PROT=NEA
PTERM dcam-name,PTYPE=APPLI,LTERM=ADMINLTM,
BCAMAPPL=APPLIBS2,PRONAM=dcam-computer

*** CMX application on Unix or Linux system via TCP/IP-RFC1006

BCAMAPPL APPLUnix,T-PROT=RFC1006
PTERM t-selector,PTYPE=APPLI,LTERM=ADMINLTM,BCAMAPPL=APPLUnix,

LISTENER-PORT=port-number, PRONAM=unix-computer

*** Socket application on Unix or Linux system

BCAMAPPL SOCKETBS,LISTENER-PORT=12000,T-PROT=SOCKET
PTERM SOCKPTRM,PTYPE=SOCKET,LTERM=ADMINLTM, BCAMAPPL=SOCKETBS,

LISTENER-PORT=port-number, PRONAM=unix-computer

dcam-name and dcam-computer are the respective names of the DCAM application and
computer on which the DCAM application is running. t-selector is the T selector for the
remote CMX application. unix-computer is the name of the computer on which the CMX or
socket application runs. port-number is the port number at which the central CMX or socket
application waits for connection setup requests.

Administration using commands Central administration

144 Administering Applications

8.3 Central Administration using commands

Alongside the program interface, openUTM also provides the command interface for
administration. However, the command interface only provides a subset of the functionality
available in the program interface.

You can use both synchronous and asynchronous commands for central administration. In
either case, the central administration program will have to:

– make the command available in the prescribed syntax
– send it to the administered UTM application in the form of a message.

The application being administered executes the command as if it had issued it itself. To be
able to evaluate the command output in the central application you will, however, need to
observe the differences inherent in synchronous and asynchronous methods.

Synchronous commands

If you use synchronous administration commands for central administration, the command
output will be returned automatically to the sender, i.e. to the administration program.

This means that any configuration model is suitable for central administration with
synchronous commands. If you are using a UPIC client for Windows systems, you can, for
example, write a program using Microsoft Visual Studio which allows you to enter the
administration commands via a friendly Windows interface. The program is able to filter
openUTM’s response before issuing any output so that you only see the parameters that
are of importance to you. You can then implement the message interface to openUTM via
a CPI-C program as described in section “Administration via UPIC clients” on page 132f.

Asynchronous commands

If you use asynchronous administration commands for central administration, the output is
not returned automatically to the sender. The destination for command output must
therefore be generated with MAX DESTADM in the decentralized applications.

If the central application is a TS application, then specify the LTERM name for the central
application in MAX DESTADM. However, please note that the central application receives
this output asynchronously, i.e. it has to determine the sender.
If you want to handle administration operations in the context of distributed processing, you
must also use MAX DESTADM=TAC to add a further decentralized asynchronous program
which receives the output and forwards it with FPUT to the administration application.

Central administration Administration using programs

Administering Applications 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

8.4 Central Administration using programs

If you are using the program interface, you can split the tasks in one of two ways between
the administration application and the applications to be administered:

● Decentralized administration programs:
You can use the program interface in such a way that a complete administration
program exists within the administered application which can autonomously determine
the necessary parameters and evaluate the data returned to it.

● Central administration programs
You can use the program interface in the administered application purely as a message
interface, i.e. it receives all parameters from the administration application and returns
the results of the call (return codes, data) without verification.

8.4.1 Decentralized administration programs

If the administered applications use complete administration programs as described in
chapter “Writing your own administration programs” on page 119, the control of an admin-
istration service will essentially reside with the application that is being administered. The
administration program must therefore:

● interpret a message received from the administration application or - in the case of
automatic administration, for example - from an application-internal MSGTAC program

● correctly supply all areas for the administration call

● evaluate and respond to the return codes, i.e. it must notify the administration appli-
cation in the event of errors and, where appropriate, roll back the transaction

● evaluate the returned data and decide what data is to be sent to the administration
application.

It is advisable to write individual program units for the various administration tasks or, if you
are using a complete administration program, to address the program with different TACs
depending on the task required. This will ensure that the tasks is selected on the basis of
the TAC and not on the basis of the message.

Administration using programs Central administration

146 Administering Applications

Portable administration programs

If you want to use your administration programs in different applications running on different
platforms, you can write the relevant programs in such a way that they can run both on Unix,
Linux or Windows systems and BS2000 systems.

This task is simplified by the fact that the program interface has the same data structures
on all platforms. You will, however, need to note the following platform-specific differences:

● There are certain fields and substructures which only have any meaning on one
platform

– When reading data, fields which are not relevant to the given platform are always
populated with binary zeros.

– When modifying or generating objects, the fields which are not relevant to the given
platform must be populated with binary zeros. For this reason, the program should
first establish the platform on which it is running. To do this it has to evaluate the
field system_type in the structure kc_system_par_str after calling KDCADMI with the
following parameters:

opcode=KC_GET_OBJECT
subcode1=KC_APPLICATION_PAR
obj_type=KC_SYSTEM_PAR

Once it has determined which platform it is running on, the program must first
reserve the fields that are valid for all of the operating systems for the administration
calls themselves. It then reserves the fields that are needed for the relevant
platform.

● The sort order for characters differs between BS2000 systems and Unix, Linux and
Windows systems: BS2000 systems generally use an EBCDIC code and Unix, Linux
and Windows systems an ISO code.

● Names on BS2000 applications only use uppercase letters, whereas Unix, Linux and
Windows systems names can use both lowercase and uppercase.

● Unix, Linux or Windows systems normally use other character sets than BS2000
systems (ASCII/EBCDIC problem).

The following example shows a portable administration program which replaces a load
module, shared object or DLL in the decentralized application. The program verifies which
platform it is running on and uses the result to effect a program-internal branch.

Central administration Administration using programs

Administering Applications 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

On Unix, Linux and Windows systems, only the shared object/DLL is replaced, whereas
BS2000 systems check whether the load module is in a common memory pool and,
therefore, whether the application in fact needs to be replaced.

The program can also be supplemented by means of dynamic generation (TAC,
PROGRAM,...) as described in the example on page 120.

#include <kcadminc.h> /* Include file for the administration */

INIT
...
MGET /* Read in name/date of the program unit */

... Analyze input

KDCADMI opcode=KC_GET_OBJECT /* Query operating system */

KDCADMI opcode=KC_GET_OBJECT
 /* Determine current version of load */
 /* module and check whether it is at all */
 /* possible to replace it. */

if (BS2000) /* BS2000 routine */
 { KDCADMI opcode=KC_GET_OBJECT
 /* Query load mode and determine whether */
 /* program is marked for exchange . */
 KDCADMI opcode=KC_MODIFY_OBJECT
 /* Replace or mark load module if it is */
 /* in a common memory pool. */
 if (common memory pool)
 KDCADMI opcode=KC_CHANGE_APPLICATION
 /* Replace application */
 } /* End of the BS2000 routine */

else /* Unix/Linux/Windows routine */
 KDCADMI opcode=KC_MODIFY_OBJECT
 /* Replace shared object/DLL */
 /* End of the Unix/Linux/Windows routine */

MPUT /* Message to the initiator */
PEND FI

Administration using programs Central administration

148 Administering Applications

8.4.2 Central administration programs

You can use the program interface on the side of the applications to be administered as a
dedicated message interface. In this case, control of the administration functions lies
entirely with the administration application. This application supplies the four areas needed
for each administration call with the data they require and uses MPUT NT/NE to send it to
the administered application.

The administered application merely converts the data supplied to the syntax required by
the administration interface and then calls it. This means that it checks neither the data
supplied with MGET nor the codes and data returned by the call. The diagram below
outlines a program of this type.

/**/
/* Dialog program for the administered application */
/* */
/* The program has four buffers in which data is received: */
/* parameter_area, identification_area, selection_area, data_area */
/**/

INIT

MGET NT in parameter_area /* Fully supplied parameter area */
 /* for the administration interface */
MGET NT in identification_area /* The identification area is */
 /* supplied as a function of the */
 /* opcode for the parameter area. */
MGET NT in selection_area /* The data supplied to the selection */
 /* area depends on the operation and */
 /* may only have the length 0. */
MGET NE in data_area /* Data is supplied where necessary; */
 /* otherwise the length 0 is supplied */

KDCADMI (¶meter_area, /* The program calls KDCADMI without */
 &identification_area, /* checking the data. */
 &selection_area,
 &data_area);

MPUT NT parameter_area /* Parameter area with the return */
 /* codes and other returned data */
MPUT NE data_area /* Data area with returned data or */
 /* the length 0 if no data is */
 /* returned */

PEND FI /* Terminate service; info is returned*/
 /* to the administration application */

Central administration Administration using programs

Administering Applications 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

8

The administration application has to send a commensurate number of message parts. In
the case of a UPIC client, the result may look something like this:

For details of how to generate this kind of UPIC client, see page 132ff.

/**/
/* UPIC program for the administration application */
/* */
/* The program sends four message parts */
/**/

Enable_UTM_UPIC

Initialize_Conversation
[Set_TP_Name] /* Set TAC if necessary */
Set_Conversation_Security_Type /* Sign on as a UTM user */
Set_Conversation_Security_User_ID
Set_Conversation_Security_Password

memcpy (...) /* Supply all data areas */
...
memcpy (...)

Send_Data parameter_area /* Send parameter area */
Send_Data identification_area /* Send identification area */
Send_Data selection_ara /* Send selection area */
Send_Data data_area /* Send data area */

Receive parameter_area /* Contains return codes/info */
Receive data_area /* Data area containing the */
 /* requested information */

Disable_UTM_UPIC

Administration using programs Central administration

150 Administering Applications

If the administration application is running on a different platform to the application being
administered, the characters in the areas supplied may be converted. No problems will
arise as long as these areas only contain printable characters, i.e. the identification,
selection and data areas. In the parameter area (parameter_area), which can also contain
non-printable characters and numeric values, you will need to apply a conversion
mechanism.

● Define an interim parameter area in both applications which only contains printable
characters.

● The administration application converts the characters in the original parameter area
into printable characters, puts these in the interim parameter area and then sends this
to the applications being administered.

● The administered applications write the values received to the interim parameter area,
convert them to the correct numeric values and then copy these to the parameter area
used for the administration call.

Administering Applications 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

9

9 Automatic administration

You can use asynchronous programs or administration commands to administer an appli-
cation automatically. This can involve having parameters raised or lowered depending on
load values or triggering responses to errors. For control purposes you can, for example,
use an MSGTAC program and/or time-controlled jobs.

This is how application control using the MSGTAC program proceeds:

1. An event occurs in the application and generates a message.

2. The message is passed on to the MSGTAC program.

3. MSGTAC analyses the message and then initiates the appropriate operation.

Such operations can, for instance, include calling the KDCADMI program interface, calling
an administration command or starting an asynchronous administration program
(FPUT/DPUT), which executes further administration tasks.

Instead of the MSGTAC program it is also possible to use a program to which a TAC is
assigned that is defined as an additional message destination (KDCDEF statement
MSG-DEST).

If you are using WinAdmin or WebAdmin as your administration tool, you can also use it to
execute scripts or start programs when particular events occur, for instance when a
threshold value is exceeded.

Another possible form of automatic administration is to have statistical data queried at
regular intervals and to trigger the appropriate responses.

Diagnostic activities are yet another potential application. For certain events you can, for
example, activate test mode, generate traces, create UTM dumps or have data supplied to
the openSM2 event monitor.

Control using the MSGTAC program Automatic administration

152 Administering Applications

9.1 Control using the MSGTAC program

How you can automate the administration of an application using the MSGTAC program is
illustrated using an example in which the message K041 Warning level xx for
PAGEPOOL exceeded triggers an automatic response. In place of K041 you can also insert
other messages such as K091 Due to resource bottleneck ... for control purposes.

For this example, the message destination MSGTAC must be defined for K041, and an
MSGTAC program must be written which processes this message and issues an FPUT
output message to start an asynchronous program PRGK041.

You will find two versions of PRGK041 illustrated below. In one example it carries out the
administration operations through the program interface and in the other it uses the
command interface. The functions may also be realized within the MSGTAC routine itself.

Structure of an MSGTAC program

The MSGTAC program can be set up along the following lines:

The program PRGK041 controls the operations necessitated by the occurrence of K041.
The diagram below outlines what PRGK041 might look like if it uses the program interface
and the command interface.

/***************************** MSGTAC program ****************************/
#include <kcmsg.h>

INIT
FGET message /* Read message */
...
switch (msg-id)
 { case Kxx:...
 case K041:
 { FPUT data KCRN=PRGK041 /* Call program unit PRGK041 */
 break;
 ...
 case Kyy:..
 }
PEND FI

Automatic administration Control using the MSGTAC program

Administering Applications 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

9

Control via the program interface

The following asynchronous administration program is started with MSGTAC.

You can have the application data read and analyzed within a program; any number of
KDCADMI calls is permitted. This means that a number of application parameters can be
modified if this should be necessary as a result of the current application data.

/********** Program unit PRGK041 for KDCADMI program interface ***********/

#include <kcadminc.h> /* Head file for administration */
INIT

FGET data /* Read data supplied by MSGTAC */

KDCADMI opcode=KC_GET_OBJECT
 /* Administration call: UTM returns the */
 /* requested statistical data to the */
 /* program. */

 if {... } /* Analyze data and prepare operations */

KDCADMI opcode=KC_MODIFY_OBJECT
 /* The appropriate parameter is modified. */
 /* Additional KDCADMI calls may be needed */
 /* to modify other parameters. */

FPUT /* Message to administrator if necessary */

PEND FI

Control using the MSGTAC program Automatic administration

154 Administering Applications

Example: activating/deactivating automatic diagnostics

The following example is a response to the message

K119 OSI-TP error information...

An MSGTAC program such as the one outlined on page 152 intercepts K119 and uses
FPUT to start the administration program. Depending on the information supplied in K119,
this program activates the OSI trace functions.

You can also use this program structure, for example, to respond to the message
K065 Net message ... You can follow the same pattern to write a program which creates
a UTM dump in response to a message with KDCADMI opcode=KC_CREATE_DUMP.

#include <kcadminc.h> /* Header file for administration */
...
INIT

FGET /* Read data from MSGTAC */
 if {... } /* Analyze data */

KDCADMI opcode=KC_MODIFY_OBJECT
 /* Activate OSI trace functions under */
 /* certain circumstances. */

FPUT KCRN=admin-lterm /* Message to administrator: trace running */

DPUT KCRN=TRACEOFF /* After a while, a further asynchronous */
 /* program (TRACEOFF) deactivates the */
 /* trace again. */

PEND FI

Automatic administration Control via user-specific message destinations

Administering Applications 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k0

9

9.2 Control via user-specific message destinations

For messages created by UTM, UTM provides four further freely available message desti-
nations that can be used to control administrative activities. These message destinations
are referred to as USER-DEST-1, USER-DEST-2,
USER-DEST-3 and USER-DEST-4 and can be explicitly assigned the following objects:

– a USER queue (the message queue of a user ID)
– a TAC queue
– an asynchronous TAC or
– an LTERM partner that is not assigned to a UPIC client

These message destinations allow you to read messages in a TAC or USER queue, for
example, via the KDCS program interface using the DGET function. By means of this
function and corresponding follow-up processing you can design MSGTAC-like programs
that respond specifically to a message.

By assigning a USER or TAC queue to a user-specific message destination you can, for
example, output UTM messages at the WinAdmin or WebAdmin administration workstation
(see the openUTM manual ”Messages, Debugging and Diagnostics” or the online help for
WinAdmin/WebAdmin, keyword „message collector“).

The user-specific message destinations are configured by means of the generation
statement MSG-DEST. You can obtain specific information on a message destination by
means of the KC_GET_OBJECT statement and the KC_MSG_DEST_PAR object type.

You assign a message to a message destination by means of the KDCMMOD utility. The
openUTM manual ”Messages, Debugging and Diagnostics” describes which messages
can be assigned to the user-specific message destinations.

When a message occurs for which USER-DEST-n is defined as the message destination,
UTM creates an asynchronous job to this message destination.

If the asynchronous job is rejected because, for example, the assigned object is disabled,
the message is lost to the message destination. If there is another message for the
message destination, openUTM tries again to create an asynchronous job for this message
destination.

If an asynchronous TAC is assigned to a message destination USER-DEST-n, openUTM
starts the program that is assigned to the TAC once for each message created. In contrast
to the situation with MSGTAC, only one message can ever be read by means of FGET in a
program run. In the KB header, KDCMSGUS is defined as the user and KDCMSGLT as the
LTERM for this program unit run.

Control via user-specific message destinations Automatic administration

156 Administering Applications

Administering Applications 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

0

10 Access rights and data access control

Administration authorization is defined in the UTM generation. It is not bound to a certain
person (user ID) or to a specific location (console). Administration can be carried out
through any LTERM partner, regardless of whether this is in the form of a terminal, UPIC
client or TS application. Furthermore, you can assign administration authorization to partner
applications of your UTM application, allowing you to administer each your UTM applica-
tions from another application. In particular, you can administer a number of applications
running on different computers centrally from one application (see the chapter “Central
administration of several applications” on page 125).

In addition to general security functions (access via user IDs and the lock/key code and
access list concept), openUTM also provides a special authorizations concept specially for
administering a UTM application via the program interface KDCADMI and via the adminis-
tration commands.

Authorization level 1

Users, clients and partner applications can call administration services which merely query,
collate and analyze the information offered with regard to objects and application param-
eters (i.e. which only require read access to the configuration data) without any adminis-
tration authorization (also referred to as administration privileges). This assumes that you
have assigned the authorization level ADMIN=READ to the transaction codes via which
these administration services are called.

ADMIN=READ can only be specified in the following cases:

● for the commands KDCINF, KDCINFA, KDCHELP and KDCHELPA

● for transaction codes which start program runs in which the following calls are issued:
– KC_GET_OBJECT
– KC_ENCRYPT with subopcode1=KC_READ_ACTIV_PUBLIC_KEY or subop-

code1=KC_READ_NEW_PUBLIC_KEY
– KC_SYSLOG with subopcode1=KC_INFO

Access rights and data access control

158 Administering Applications

In such cases, program units and transaction codes can be generated as follows:

PROGRAM ADMPROG,COMP=ILCS
TAC ADMTAC,PROGRAM=ADMPROG,ADMIN=READ

PROGRAM ADMPROG,COMP=C
TAC ADMTAC,PROGRAM=ADMPROG,ADMIN=READ

Authorization level 2

Administration services which modify the configuration, the application data and object
properties (i.e. which require write access to the configuration data) can only ever be called
by user IDs and partner applications with administration privileges (PERMIT=ADMIN). The
transaction codes for these services must be configured with ADMIN=YES.

In these cases, program units and transaction codes must be generated as follows:

PROGRAM ADMPROG,COMP=ILCS
TAC ADMTAC,PROGRAM=ADMPROG,ADMIN=Y

PROGRAM ADMPROG,COMP=C
TAC ADMTAC,PROGRAM=ADMPROG,ADMIN=Y

The following transaction codes must be generated with ADMIN=Y:

– all administration commands, apart from KDCINF[A] and KDCHELP[A]

– transaction codes which start program runs in which KDCADMI calls other than
KC_GET_OBJECT,
KC_ENCRYPT with subopcode1=KC_READ_ACTIV_PUBLIC_KEY or subop-
code1=KC_READ_NEW_PUBLIC_KEY or
KC_SYSLOG with subopcode1=KC_INFO are issued:

Other program units which call transaction codes with authorization level 2 must run under
a user ID which has administration privileges.

B
B

X/W
X/W

B
B

X/W
X/W

Access rights and data access control Configuring the administrator connection

Administering Applications 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

0

Example

You can write an administration program which, if it is called by the transaction code
ADMTAC1, merely queries whether a printer is connected to the application. If the same
program is called with the transaction code ADMTAC2, the program unit again uses
KC_GET_OBJECT to query whether the printer is connected to the application. However,
if the printer is not connected to the application, the program unit will then also request that
a connection be established to the printer (KC_MODIFY_OBJECT). ADMTAC1 can be
called from any user ID and from any partner application. ADMTAC2, however, can be
called only from user IDs and partner applications that have administration privileges.

The KDCDEF generation would consequently look like this:

PROGRAM ADMPROG,COMP=ILCS (BS2000 systems)
PROGRAM ADMPROG,COMP=C (Unix, Linux and Windows systems)
TAC ADMTAC1,PROGRAM=ADMPROG,ADMIN=READ
TAC ADMTAC2,PROGRAM=ADMPROG,ADMIN=Y

You can then allocate access authorizations in detail using the lock/key code and access
list concept.

10.1 Configuring the administrator connection

The connection via which an administrator performs the local administration of a UTM appli-
cation can be generated in different ways. It is possible to generate the connection via

● a TPOOL statement

● a PTERM and LTERM statement

Recommendation

The connection for the (main) administrator should be generated via a PTERM and an
LTERM statement. On the one hand, this type of connection offers better protection against
unauthorized access than an open terminal pool. On the other, an LTERM that is explicitly
generated as an administrator workstation can be identified as privileged using the
following statement:

MAX PRIVILEGED-LTERM = lterm-name

In bottleneck situations, UTM treats a connection generated in this way as privileged in
order to make it easier for an administrator to access applications that are subject to high
load.

B

X/W

Granting administration privileges Access rights and data access control

160 Administering Applications

10.2 Granting administration privileges

Administration privileges in applications with user IDs

In applications with user IDs, transaction codes for authorization level 2 can only be called
under user IDs and partner applications to which administration privileges were assigned
when they were entered in the configuration. User IDs and partner applications that are to
administer the local application must be generated as follows:

USER ADMUS,[PASS=C'.....',PROTECT-PW=(...,....,...)], PERMIT=ADMIN.....

LPAP ADMPA,SESCHA=...,PERMIT=ADMIN....

OSI-LPAP ADMPAO,ASS-NAMES=...,CONTWIN=...,PERMIT=ADMIN....

Administration functions can also be carried out via an OSI TP partner application, if the
OSI-LPAP does not have administration privileges. The application context of the OSI-
LPAP must contain the abstract syntax UTMSEC in this case, and the partner has to pass
on a user ID that has administration authorization in the local application.

User IDs with administration privileges can also be dynamically linked into the application
configuration.

Applications without user IDs

In applications which do not have user IDs, any user or client that is connected to the appli-
cation via an LTERM partner can execute administration commands and other adminis-
tration TACs. Data access protection for these services can then only be implemented by
means of the lock/key code and access list concept. To do so you will need to protect the
administration commands with a lock code or an access list, and then only allocate a key
set with a suitable key code to clients and terminals (LTERM partners) via which it should
be possible to administer applications. Even in applications without user IDs, partner appli-
cation can only execute administration functions with authorization level 2 if they were
generated with PERMIT=ADMIN.

Access rights and data access control Generating administration commands

Administering Applications 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

37
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

0

10.3 Generating administration commands

The openUTM administration commands you want to use when running the application
must be specified during KDCDEF generation or they must be entered dynamically into the
configuration using WinAdmin, WebAdmin or an administration program you have written
yourself.

To do this you will need to define the administration program KDCADM with a PROGRAM
statement and generate the necessary commands as KDCADM transaction codes.

An exhaustive generation of KDCADM and of all administration commands is given below.
Your KDCDEF generation must only include the TAC statements for those administration
commands that you want to use when running the program. The administration command
KDCSHUT must be generated in all cases.

REMARK Generate KDCADM for openUTM on BS2000 systems

PROGRAM KDCADM,COMP=ILCS

REMARK Generate KDCADM for openUTM on Unix, Linux and Windows systems:

PROGRAM KDCADM,COMP=C

REMARK Generate dialog TACs (commands) from KDCADM:

TAC KDCAPPL ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCBNDL ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCDIAG ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCHELP ,PROGRAM=KDCADM,ADMIN=READ "ADMIN=Y is also permitted"
TAC KDCINF ,PROGRAM=KDCADM,ADMIN=READ "ADMIN=Y is also permitted"
TAC KDCLOG ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCLPAP ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCLSES ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCLTAC ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCLTERM,PROGRAM=KDCADM,ADMIN=Y
TAC KDCPOOL ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCPROG ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCPTERM,PROGRAM=KDCADM,ADMIN=Y
TAC KDCSHUT ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCSLOG ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCSWTCH,PROGRAM=KDCADM,ADMIN=Y
TAC KDCTAC ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCTCL ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCUSER ,PROGRAM=KDCADM,ADMIN=Y

TAC KDCMUX ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCSEND ,PROGRAM=KDCADM,ADMIN=Y

B

B

X/W

X/W

B
B

Generating administration commands Access rights and data access control

162 Administering Applications

REMARK Generate asynchronous TACs (commands) from KDCADM:

TAC KDCAPPLA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCBNDLA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCDIAGA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCHELPA,PROGRAM=KDCADM,ADMIN=READ,TYPE=A "ADMIN=Y is also permitted"
TAC KDCINFA ,PROGRAM=KDCADM,ADMIN=READ,TYPE=A "ADMIN=Y is also permitted"
TAC KDCLOGA ,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCLPAPA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCLSESA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCLTACA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCLTRMA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCPOOLA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCPROGA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCPTRMA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCSHUTA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCSLOGA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCSWCHA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCTACA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCTCLA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCUSERA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A

TAC KDCMUXA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCSENDA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A

As with the ADMIN=READ generation above, the commands KDCINF[A] and KDCHELP[A]
can be called from any user ID and from any partner application. However, you can assign
a lock code to these commands (with the operand LOCK; e.g. LOCK=1). These commands
can then only be called from user IDs and partner applications to which a keyset with the
associated keycode (keycode 1) is assigned.

The access list concept provides another way of controlling access to these commands. An
access list is assigned a key set containing a number of key/access codes, which can be
for a specific group of commands, for example. If an access list like this is assigned to a
command, only one user can access this command when the key set of the user’s user ID
and the key set of the LTERM partner via which the user is logged in each contain at least
one key/access code that is also contained in the access list of the command.

You can generate the administration commands dynamically by generating the commands
required using KC_CREATE_OBJECT and obj_type KC_TAC.

B
B

Administering Applications 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

11 Program interface for administration -
KDCADMI

This chapter describes the C/C++ program interface for administration. The COBOL
program interface corresponds largely to the C/C++ program interface. For this reason, the
following interface description will also be useful for reference if you are writing adminis-
tration programs in COBOL. COBOL-specific issues that you will need to be aware of when
programming in this language are described in the appendix on page 855ff.

The same C or COBOL data structures are passed to the interface in all of the supported
platforms. The data fields that are irrelevant for an operating system are set to binary zero.

The C data structures are defined on Unix, Linux and Windows systems in the kcadminc.h
header file and, on BS2000 systems, in the include element kcadminc.h in the library
SYSLIB.UTM.065.C.

In this chapter you will find:

● a general description of a KDCADMI function call and the data areas you must pass to
openUTM in the call.

● a description of the operations you can execute and the values of the parameters that
need to be passed to openUTM for these operations, as well as the values returned by
openUTM, for every KDCADMI operation code.

The descriptions are ordered alphabetically according to the operation codes.

● a description of the C data structures used to pass properties of the application objects
and application parameters to the program interface. This chapter begins by describing
the data structures for application objects and continues with descriptions of the data
structures for application parameters.

The descriptions are arranged alphabetically by the names of the data structures.

● a detailed description of the effect of the KDCADMI call in standalone UTM applications
and UTM cluster applications.

Calling the KDCADMI functions KDCADMI program interface

164 Administering Applications

11.1 Calling the KDCADMI functions

The UTM administration functions provided by the program interface for administration
purposes are called using the KDCADMI function. You can pass pointers to four different
data areas to UTM when calling KDCADMI. They are:

● the parameter area (parameter_area)

In the parameter area you can tell UTM which operation it is to execute. This means,
for example, that you can instruct UTM to return information on objects or operation
parameters of the application, add an object to the configuration, change the properties
of objects or delete an object.
If the operation is to be carried out on a certain object or group of objects, then you must
specify the object type of the object(s) in the parameter area.
Once it has executed or initiated a task to carry out the operation, UTM stores the return
code and the length of the data returned in the parameter area. The return code informs
you whether the call was successful or unsuccessful.

● the identification area (identification_area)

You require the identification area to specify the object names if, for example, an object
is to be deleted from the configuration, an object’s properties are to be changed or
object properties are to be output. In this case, you will, in the identification area, need
to pass all data required by UTM to uniquely identify the objects to be administered.

● the selection area (selection_area)

In the selection area, you can pass selection criteria to UTM when querying information
(see the KC_GET_OBJECT operation). UTM will then only return information on those
objects meeting the selection criteria.
Example: information on all users currently signed onto the application.

● the data area (data_area)

In the data area you can pass to UTM the information that it needs, for example the
names and properties of new objects if you are adding new objects to the configuration.

UTM then returns the requested information to the program in the data area, e.g. when
outputting object properties.

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

11.1.1 The KDCADMI function call

A C program which issues KDCADMI calls must always contain an #include statement
referring to the header file or include element kcadminc.h. In kcadminc.h, the function
KDCADMI is declared as follows:

void KDCADMI(struct kc_adm_parameter * , /* parameter_area */
void * , /* identification_area */
void * , /* selection_area */
void *); /* data_area */

The KDCADMI function is called as follows:

#include <kcadminc.h>

KDCADMI(¶meter_area,
&identification_area,
&selection_area,
&data_area);

where:

¶meter_area
is the address of the parameter area named parameter_area.

&identification_area
is the address of the identification area named identification_area.

&selection_area
is the address of the selection area named selection_area.

&data_area
is the address of the data area named data_area.

If one of the four areas is not needed for a particular call, then the null pointer must be
passed as the address of that area.

Calling the KDCADMI functions KDCADMI program interface

166 Administering Applications

11.1.2 Description of the data areas to be supplied

This section contains a general description of the parameters and data that can be passed
to UTM when calling KDCADMI.

More detailed information concerning how to assign data to the identification area, selection
area, data area and fields of the parameter area for individual operations can be found in
section “KDCADMI operation codes” on page 182.

The following symbols have the following meanings:

→ The field is an input field. You can pass information to UTM using this field.

← The field is an output field. UTM returns information to the administration program in this
field.

Parameter area

You can instruct UTM to perform a specific operation using the parameter area. The opcode,
subopcode1 and subopcode2 fields are provided for this purpose. In the obj_type field, you
specify the object type of the target object.

After processing, UTM stores the return code and the length of the data returned in the
parameter area. You can determine if the call was successful or not from the return code.

The parameter area is defined as followed by the structure kc_adm_parameter:

struct kc_adm_parameter

int version;

KC_ADM_RETCODE retcode;

int version_data;

KC_ADM_OPCODE opcode;

KC_ADM_SUBOPCODE subopcode1;

KC_ADM_SUBOPCODE subopcode2;

KC_ADM_TYPE obj_type;

int obj_number;

int number_ret;

int id_lth;

int select_lth;

int data_lth;

int data_lth_ret;

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

Input fields in the kc_adm_parameter structure (hereafter indicated using the → character)
that are not used must always be set to binary zero. The version, version_data and opcode
fields must contain data every time KDCADMI is called.

The fields in the data structure have the following meanings:

→ version
Designates the version of the program interface used by the user program.

The version of the program interface indicates the variant of the program interface
and the layout of the parameter areas passed at call time. You must explicitly
specify the version of the program interface on each call of KDCADMI. So far, only
KC_ADMI_VERSION_1 has been defined as a version.

If the variant of the program interface is modified in a subsequent version then the
version of the program interface is increased. If the extensions are compatible and
you would like to continue to use the existing program interface in the new
openUTM version then you do not need to adapt your existing administration
programs and can continue to specify the version of the interface as KC_AD-
MI_VERSION_1. If you want the administration program to use the new program
interface then you must adapt your programs and specify the program interface
version of the current openUTM version in version.

The interface is designed to be source-compatible across multiple openUTM
versions.

← retcode
Ιn the retcode field, UTM returns the code of the function call.

There are general and function-specific return codes.
The general return codes can be returned by all functions. They are described on
page 178.
The function-specific return codes only occur in connection with certain program
interface calls, and they are listed in the relevant call descriptions.

If the entire length of data in the parameter area cannot be accessed, then the
KDCS return code in the return area of the communication area for the service
processing the KDCADMI call is assigned ’70Z’, the KCRCDC return code is
assigned ’A100’, and the service is aborted with PEND ER.

The retcode field must be assigned the constant KC_RC_NIL before the function is
called.

→ version_data
Version of the data structures used.

Calling the KDCADMI functions KDCADMI program interface

168 Administering Applications

The version of the data structures determines the layout of the data structures used.
You must specify the value of version_data explicitly for each KDCADMI call. In
openUTM V6.5, the constant KC_VERSION_DATA_10 should be used for
version_data.

i KC_VERSION_DATA (without suffix) always refers to the current version of
the data structures. Programs that want to benefit from the source compa-
tibility of the interface should not use the constant KC_VERSION_DATA,
but for version_data should always specify the version constant
KC_VERSION_DATA_xx for the interface version for which the program
was written. KC_VERSION_DATA_10 is the version valid for openUTM
V6.5, while KC_VERSION_DATA_9 refers to the version valid for openUTM
V6.3 and V6.4 for example.

If the layout of the data structures is modified to remain object-compatible,
KC_VERSION_DATA is not increased and the program units can run in the new
UTM version.

If the layout of the data structures changes in a way that is incompatible in an
openUTM version, for example if the data structures receive new fields and
therefore become larger, then the version number of the data structure is incre-
mented. The constants KC_VERSION_DATA and KC_VERSION_DATA_10 are
defined in the same include file as the data structures. Because the interface is
source-compatible, program units must be only recompiled in this case.

→ opcode, subopcode1, subopcode2
In these fields you tell UTM which action to execute. The opcode field must be
assigned a value each time KDCADMI is called. This field determines which
operation will be executed. In the subopcode1 and subopcode2 fields, you can specify
in more detail what action should be taken depending on the value of opcode.

The values you will need to use for opcode to execute certain operations are
summarized in the following table. The operation codes indicated by a (*) are so-
called standard operations that are explained in more detail in the section “Data
structures for object and parameter types” on page 174.

Function Value of opcode

Replace the entire application program.
Replace application sections that have been marked for
exchange in the Common Memory Pool.
In subopcode1 you specify whether the next highest, next
lowest or the current version of the application program is
to be loaded.

KC_CHANGE_APPLICATION

Create a UTM dump KC_CREATE_DUMP

Create a new object in the configuration KC_CREATE_OBJECT (*)

B
B

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

Create KDCDEF control statements online
(inverse KDCDEF)

KC_CREATE_STATEMENTS

Delete an object, i.e. remove it from the configuration KC_DELETE_OBJECT (*)

Generate, activate, delete or read RSA key pairs for data
encryption ot the communication with clients

KC_ENCRYPT

Query information on objects and application parameters.
You control the type and amount of detail of information
returned using subopcode1 and subopcode2.

KC_GET_OBJECT (*)

Only in UTM cluster applications:
Permit a new sign-on for all users or for an individual user
still recorded as signed on at a failed node application or
who have/has a service bound to the failed node appli-
cation,.
Release cluster user file lock after incorrectly terminated
KDCDEF run.

KC_LOCK_MGMT

Modify object properties or application parameters KC_MODIFY_OBJECT (*)

Only in UTM cluster applications:
Import TACs, TAC queues and open asynchronous
services from a terminated into a running node application.

KC_ONLINE_IMPORT

Roll back transaction in PTC state. KC_PTC_TA

Send a message to one dialog terminal or to all dialog
terminals connected to the application.

KC_SEND_MESSAGE

Terminate an application run.
Specify how the application is to be terminated (kill, normal
termination) in subopcode1 and subopcode2 .
In the case of UTM cluster applications, specify whether an
individual node application or the complete UTM cluster
application is to be terminated.

KC_SHUTDOWN

Establish connections to printers for which messages have
been queued.

KC_SPOOLOUT

Carry out an operation on the system log file SYSLOG.
You specify which operation is to be executed using subop-
code1.

KC_SYSLOG

Update the IP address of an individual or of all communi-
cation partners.
BS2000 systems:
The communication partners must be generated with
T-PROT=SOCKET.

KC_UPDATE_IPADDR

Switch to the next generation of the user log file(s) KC_USLOG

Function Value of opcode

B
B
B

B
B
B

Calling the KDCADMI functions KDCADMI program interface

170 Administering Applications

The information you may or must supply in the other fields of the parameter area
and in the identification area, selection area and data area are dependent on the
opcode passed. For each operation code (value of opcode), section “Calling the
KDCADMI functions” on page 164 contains a description of the operations that can
be carried out and of the information that the data area must contain to be passed
to UTM in order to carry out these operations. The list is ordered alphabetically
according to the operation code.

→ obj_type
The obj_type field must contain either the type of the target object or the type of the
application parameter whose value is queried or is to be changed.

The object or parameter types that you can enter depend on which operation you
require, and therefore on the values in the opcode, subopcode1 and subopcode2 fields

The two tables below contain the objects and parameter types that are supported
for the standard operations in UTM. Standard operations are:

– Display
– Create
– Modify
– Delete

The column “opcode” in the table contains the operation codes for which each
object type or parameter type can be specified. The following abbreviations are
used:

Object types

CRE
DEL
GET
MOD

KC_CREATE_OBJECT (Create)
KC_DELETE_OBJECT (Delete)
KC_GET_OBJECT (Show)
KC_MODIFY_OBJECT (Modify)

Object type Value of obj_type opcode

Abstract syntax for communication via
OSI TP

KC_ABSTRACT_SYNTAX GET

OSI TP access points for local application KC_ACCESS_POINT GET

Application context for communication via
OSI TP

KC_APPLICATION_CONTEXT GET

Names for the local application that were
generated with KDCDEF (in a BCAMAPPL
statement or in MAX APPLINAME)

KC_BCAMAPPL GET

Names and properties of a node application
in a UTM cluster application

KC_CLUSTER_NODE GET, MOD

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

Connections for distributed processing via
LU6.1

KC_CON GET, CRE,
DEL

Database connection KC_DB_INFO GET, MOD

Edit options for screen output in line mode KC_EDIT GET

Global secondary storage areas for KDCS
program units used to exchange data
between services (GSSB)

KC_GSSB GET

Keysets for the application. Keysets
determine the access privileges of clients
and users accessing services and LTERM
partners.

KC_KSET GET,
MOD,
CRE, DEL

Load modules of a UTM application
onBS2000 systems or the shared
objects/DLLs of a UTM application on Unix,
Linux or Windows systems

KC_LOAD_MODULE GET, MOD

LPAP partner for connecting partner applica-
tions for distributed processing via LU6.1

KC_LPAP GET, MOD

Sessions for distributed processing via
LU6.1

KC_LSES GET,
MOD,
CRE, DEL

Local transaction codes for services
provided by partner applications for
distributed processing via LU6.1 or OSI TP

KC_LTAC GET,
MOD,
CRE, DEL

LTERM partner for connecting clients and
printers

KC_LTERM CRE, DEL,
GET, MOD

User-defined message module KC_MESSAGE_MODULE GET

Multiplex connections 1 KC_MUX GET, MOD

Associations with partner applications for
distributed processing via OSI TP

KC_OSI_ASSOCIATION GET

Connections for distributed processing via
OSI TP

KC_OSI_CON GET, MOD

OSI-LPAP partner for connecting partner
applications for distributed processing via
OSI TP

KC_OSI_LPAP GET, MOD

Transactions in PTC state KC_PTC GET

Program units of the UTM application and
VORGANG exits

KC_PROGRAM CRE, DEL,
GET

Object type Value of obj_type opcode

BB

BB

BB

Calling the KDCADMI functions KDCADMI program interface

172 Administering Applications

Parameter types

Clients and printers.
"Clients" can be: terminals, UPIC clients, TS
applications

KC_PTERM CRE, DEL,
GET, MOD

Temporary queues KC_QUEUE GET

Allocation of UTM function keys KC_SFUNC GET

Properties of sign-on procedure KC_SIGNON GET

IP subnets KC_SUBNET GET

Transaction codes for local services and
TAC queues

KC_TAC CRE, DEL,
GET, MOD

TAC classes for the application KC_TACCLASS GET, MOD

LTERM pools for the application KC_TPOOL GET, MOD

Transfer syntax for communication via
OSI TP

KC_TRANSFER_SYNTAX GET

User IDs of the application, including queues KC_USER CRE, DEL,
GET, MOD

User IDs of the application including their
queues (optimized access for UTM cluster
applications)

KC_USER_FIX, KC_US-
ER_DYN1, KC_USER_DYN2

GET

Parameter type Value of obj_type opcode

Current statistics values on the capacity utili-
zation of a UTM cluster application

KC_CLUSTER_CURR_PAR GET,
MOD

Properties of a UTM cluster application (e.g.
name of the cluster filebase, node appli-
cation monitoring settings) as well as current
settings (e.g. number of started node appli-
cations)

KC_CLUSTER_PAR GET,
MOD

Current settings of the application param-
eters and statistics concerning the appli-
cation capacity utilization

KC_CURR_PAR GET,
MOD

Parameters for diagnosis and UTM
Accounting

KC_DIAG_AND_ACCOUNT_PAR GET,
MOD

Object type Value of obj_type opcode

X/W

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

Data for dynamic configuration:
Number of existing and reserved objects, i.e.
the total number of objects available in the
individual object tables and the number of
objects that can still be configured dynami-
cally

KC_DYN_PAR GET

Application name, KDCFILE name and
maximum values for the application, such as
the size of the cache, size and number of
storage areas for KDCS program units, and
the maximum number of processes
permitted for the application

KC_MAX_PAR GET,
MOD

Name, type and format of a user-specific
message destination

KC_MSG_DEST_PAR GET

Current page pool assignment KC_PAGEPOOL GET

General information on the generated
temporary queues: maximum number of
queues, maximum number of messages for
a queue, behavior of full queues.

KC_QUEUE_PAR GET

System parameters:
Type and version of the operating system,
name of the computer and the basic appli-
cation data (application name, application
with or without distributed processing, etc.)

KC_SYSTEM_PAR GET

Process parameters for the application:
Maximum and current number of application
processes as well as of the processes
available for processing asynchronous jobs
and program unit runs with blocking calls.

KC_TASKS_PAR GET,
MOD

Application timer KC_TIMER_PAR GET,
MOD

Global values for distributed processing,
except for the timer defined for distributed
processing

KC_UTMD_PAR GET

Parameter type Value of obj_type opcode

Calling the KDCADMI functions KDCADMI program interface

174 Administering Applications

Data structures for object and parameter types

For each of the object and parameter types associated with the standard opera-
tions, a data structure is provided in the header file kcadminc.h with which you can
pass object properties and/or parameter values to UTM or get them from UTM.
There are also corresponding data structures for some of the operations that do not
form part of the standard operations. The data structures are described in section
“Data structures used to pass information” on page 452. The names of the data
structures are created as follows:

The data structure "typ_str" belongs to the object or parameter type "TYP". For
example, the data structure kc_user_str belongs to KC_USER, and kc_max_par_str
to KC_MAX_PAR.

A similar principle applies to non-standard operations. E.g. the data structure kc_ap-
plication_par_str belongs to the operation code KC_APPLICATION_PAR.

→ obj_number
Number of objects for which the required operation is to be carried out. In
obj_number you specify the number of objects about which UTM is to supply infor-
mation when information is requested (KC_GET_OBJECT).

← number_ret
UTM returns the actual number of objects for which the operation was carried out
in number_ret.

→ id_lth
In the id_lth field you must specify the length of the identification area identifica-
tion_area passed in the call.
If no identification area is passed, then id_lth=0 must be specified.

→ select_lth
In the select_lth field you must specify the length of the data structure that is passed
to UTM in the selection area selection_area.
If no selection area is passed, then select_lth=0 must be specified.

→ data_lth
In the data_lth field you must specify the length of the data area data_area passed in
the call or in which UTM shall return data.
If no data will be passed in the data area, then data_lth=0 must be specified.

← data_lth_ret
UTM returns the actual length of the data returned in the data area in the data_lth_ret
field.

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

Identification area

The identification area identification_area is used to identify the target object for the admin-
istration operation. All objects within a group of a certain object type must be uniquely
identified by their object_name.

The following union is provided for passing the object name using the identification area.

Whether or not an object in the identification area needs to be uniquely specified depends
on the function called.

The object name must be specified as follows in order to uniquely identify it:

● For the object types KC_CON an KC_PTERM, you must pass the triplet name, processor-
name and bcamappl-name as the object name to UTM using the union field long_triple of
type kc_long_triple_str. Here name is the name of the object (for example the PTERM
name), processor-name is the name of the computer on which the object is located, and
bcamappl-name is the name of the local application via which the connection between
the object and the application is established.

● For the object type KC_MUX, you must pass the triplet name, processor-name and
bcamappl-name as the object name to UTM using the union field triple of type
kc_triple_str. Here name is the name of the object, processor-name is the name of the

union kc_id_area

char kc_name2[2];

char kc_name4[4];

char kc_name8[8];

char kc_name32[32];

struct kc_triple_str triple;

struct kc_long_triple_str long_triple;

struct kc_ptc_id_str ptc_id;

struct kc_long_triple_str

char p_name[8];

char pronam[64];

char bcamappl[8];

B

B

B

Calling the KDCADMI functions KDCADMI program interface

176 Administering Applications

computer on which the object is located, and bcamappl-name is the name of the local
application via which the connection between the object and the application is estab-
lished.

● For an LTERM pool (object type KC_TPOOL) you must pass the LTERM prefix, from
which the names of the LTERM partners in the LTERM pool can be created, as the
object name. The LTERM prefix must be passed to UTM using the kc_name8 union field.

● For the object type KC_TACCLASS you must pass the TAC class number as the object
name using the kc_name2 union field if the function call applies to a particular TAC class.
Otherwise specify binary 0 to indicate that the call applies to all TAC classes.

● For the object type KC_DB_INFO you must adopt the identification of the database
(db_id) as the object name in the union element kc_name2 if the function call is to be valid
for a particular database. db_id is a number and represents the databases in the order
in which they were generated in the KDCDEF run.

● For load modules, shared objects, DLLs (object type KC_LOAD_MODULE) and
program units (KC_PROGRAM), pass the name specified at generation using the
kc_name32 union field.

● For the object type KC_SFUNC (UTM function keys) you must pass the short
description of the function key as the object name in the union element kc_name4.

● For the function KC_PTC_TA (roll back a transaction in PTC state), you must fill the
union element kc_ptc_id_str with the values from the structure ptc_ident. You can get the
content of ptc_ident by first calling KC_GET_OBJECT with object type KC_PTC.

The data structure kc_ptc_id_str is defined as follows:

● For the remaining object types, pass the object name specified at generation using the
kc_name8 union field if the function call applies for a particular object. Otherwise specify
binary 0 to indicate that the call applies to all objects of this type.

If the identification area is not supported for a call, then you must set the area address to
the null pointer. You must then set id_lth=0 in the parameter area.

struct kc_triple_str

char p_name[8];

char pronam[8];

char bcamappl[8];

struct kc_ptc_id_str

char vg_indx[10];

char vg_nr[10];

char ta_nr_in_vg[5];

B
BB

B

B

B

B

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

Selection area

In the selection area you can pass a data structure containing selection criteria to UTM
when querying information (operation code KC_GET_OBJECT). UTM then returns only the
names and properties of the objects of the specified object type which meet the selection
criteria.
The selection criteria must be passed in the data structure defined in kcadminc.h for that
object type (obj_type). In the data structure you must set the search values for the fields to
be used for selection.

Example

You would like to query information on which user IDs are currently signed on as users
or clients. To do this, you specify the value ’Y’ in the connect_mode field in the data
structure kc_user_str in the selection area.

If several selection criteria are specified simultaneously, then only those objects meeting all
of the selection criteria will be returned. The remaining fields in the structure must be set to
binary zero. The selection criteria that can be used in a search can be found in the
description of KC_GET_OBJECT starting on page 296.

If you want to pass selection criteria, then when calling KDCADMI, you must pass the
address of the selection area and, in the select_lth field in the parameter area, specify the
length of the data structure passed in the selection area.

If the selection area is not used for a call, then you must set the &selection_area area
address to the null pointer. You must then set select_lth=0 in the parameter area.

Data area

The data area is used to pass object properties, parameter values and information to or
from UTM. The structure of the data depends on the operation code and on the type of the
target object.

If data is to be passed in the data area during a KDCADMI call, then you must pass the
address of the data area and set the data_lth field of the parameter area to the length of the
data structure passed in the data area.

If information is queried which is to be stored in the data area, then you must, when calling
KDCADMI, pass the address of the data area you have provided to store the return data
and set the data_lth field of the parameter area to the length of this data area.

If the data area is not used in a call, then you must pass the null pointer as the address of
the area. You must then set data_lth=0 in the parameter area.

The data area must not exceed 16 MB.

Calling the KDCADMI functions KDCADMI program interface

178 Administering Applications

11.1.3 Return codes

The KDCADMI return code consists of a main code and a subcode. The main code tells you
whether the requested function has been executed or whether the execution has been
initiated in a task (return code KC_MC_OK), or whether execution could not be carried out
(return code not equal to KC_MC_OK). The subcode contains further information pertaining
to the main code returned if the subcode is not equal to KC_SC_NO_INFO.

The code is returned in the following data structure:

typedef struct
{ KC_MAINCODE mc;

KC_SUBCODE sc;
} KC_ADM_RETCODE;

UTM returns the code in the retcode field of the parameter area. If it is not possible to access
the entire length of the parameter area or if the area is not oriented toward word boundaries,
then UTM sets the return code KCRCCC ́ 70Z´ and the return code KCRCDC ́ A100´ in the
return code area of the communication area. The service is aborted with PEND ER.

Both the main codes and the subcodes are defined as enumeration type (enum) in the
header file. KDCADMI therefore returns a numeric constant.

In order to facilitate the diagnostics process when an error occurs, you can have the main
codes and the subcodes listed in the form of strings (e.g. "KC_MC_OK"). For this, in your
program, you must define the symbolic name KC_ADM_GEN_STRING using the #define
statement before you include kcadminc.h.

#define KC_ADM_GEN_STRING
#include kcadminc.h

General return codes (independent of operation codes)

The following table lists the return codes that can be returned for any operation (i.e. for all
operation codes) executed using KDCADMI. Other return codes only arise in conjunction
with certain operation codes. These return codes are listed in the descriptions of the
individual operation codes.

Main code = KC_MC_OK
The function was executed or a task was initiated to execute the function.

Subcode:

KC_SC_NO_INFO

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

Main code = KC_MC_VERS_DATA_NOT_SUPPORTED
A version of the data structure which is not supported by UTM was specified in the version_data
field of the parameter area.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_VERSION_NOT_SUPPORTED
A version of the program interface which is not supported by UTM was specified in the version
field of the parameter area.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_AREA_INVALID
One of the data areas passed in a KDCADMI call cannot be accessed over its entire length
because, for example, the area address is invalid or the required length of the area is not
allocated.

Subcodes:

KC_SC_ID_AREA
The identification area cannot be accessed over its entire length.

KC_SC_SEL_AREA
The selection area cannot be accessed over its entire length.

KC_SC_DATA_AREA
The data area cannot be accessed over its entire length,
or the address of the parameter area is within the data area.

Main code = KC_MC_NO_ADM_TAC
The transaction code that initiated the administration call does not have the privileges required
to execute the operation requested (administration privileges or ADM-READ privileges)

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_PAR_INVALID
An invalid value was specified or a field was not set in the parameter area.

Subcodes:

KC_SC_RETCODE
The retcode field of the parameter area was not set to KC_RC_NIL.

KC_SC_OPCODE
The operation code specified in the opcode field of the parameter area is invalid.

KC_SC_SUBOPCODE1
The operation modifier specified in the subopcode1 field of the parameter area is invalid.

Calling the KDCADMI functions KDCADMI program interface

180 Administering Applications

KC_SC_SUBOPCODE2
The operation modifier specified in the subopcode2 field of the parameter area is invalid.

KC_SC_TYPE
The object type specified in the obj_type field of the parameter area is invalid.

KC_SC_NUMBER
The number of objects specified in the obj_number field of the parameter area is invalid.

KC_SC_ID_LTH
The length specified in the id_lth field of the parameter area is invalid.

Possible reasons:
– id_lth is not equal to the length of the name field for the object type.
– id_lth > 0, although no identification area may be passed.

KC_SC_SELECT_LTH
The length specified in the select_lth field of the parameter area is invalid.

Possible reasons:
– select_lth is not equal to the length of the data structure for the object type.
– select_lth > 0, although selection is not allowed.

KC_SC_DATA_LTH
The length specified in the data_lth field of the parameter area is invalid.

Possible reasons:
– data_lth is not equal to the length of the data structure for the object type or, for KC_GET_-

OBJECT, it is smaller than obj_number ∗ length of the data structure for the object type.
– data_lth > 0, but no data area was passed.
– data_lth > 16 MB.

KC_SC_NUMBER_RET
The number_ret field of the parameter area was not set to binary zero.

KC_SC_DATA_LTH_RET
The data_lth_ret field of the parameter area is not set to binary zero.

Main code = KC_MC_FUNCT_NOT_SUPPORTED
The operation requested is not supported by the operating system or by the version of the
operating system under which the application is running.
This return code is returned by UTM when, for example, an operation has been requested in a
UTM application on Unix, Linux or Windows systems that is only defined for UTM applications
on BS2000 systems.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_PAR_INVALID
An invalid value was specified or a field was not set in the parameter area.

Subcodes:

KDCADMI program interface Calling the KDCADMI functions

Administering Applications 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

17

S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\a

uf
ru

f_
e.

do
c

11.1.4 Supplying the fields of the data structure with data when passing data

The data structure fields used in the identification area, selection area and data area to pass
data between UTM and the administration programs are all of the type "char". The square
brackets following the name of the field contain the length of the field. If there are no square
brackets, then the field is one byte long.

The following points should be observed when passing data between an administration
program and UTM:

● Names and keywords must be left-justified and any bytes left over to the right must be
padded with spaces.
The data passed to UTM can only contain uppercase letters, except for object names.

Object names can also contain lowercase letters. The letters are not converted to
uppercase. The requirements specified in section “Format and uniqueness of object
names” on page 86 must be observed when creating new objects using KC_CREATE_-
OBJECT.

Example: The ptype (kc_pterm_str) field is 8 bytes long. ptype =APPLI would be stored
as follows: ´APPLIËËË´.

● The numerical data returned by UTM is stored right-justified with leading spaces. Left-
and right-justified numerical data is accepted when data is passed from an adminis-
tration program to UTM. Right-justified entries with leading spaces or zeroes are
accepted. Left-justified entries can be terminated by the null byte (\0, if the field is suffi-
ciently large) or padded with blanks.

Example: The conn_users field (kc_max_par_str) is 10 bytes long. conn_users =155 can
for example be passed as follows:
´ËËËËËËË155´ or ´0000000155´ or ´155\0´ or ´155ËËËËËËË´

● Fields in the data structures in which no values are passed must be supplied with binary
zeroes.

Operation codes KDCADMI program interface

182 Administering Applications

11.2 KDCADMI operation codes

In this section you will find an overview of the parameters you need to pass to UTM
depending on the operation you wish to execute. The descriptions are organized according
to the operation codes passed in the opcode field of the parameter area and are listed in
alphabetical order.

Description format

The description of an operation code consists of four parts:

1. The first part offers a general outline of the actions that can be executed, a list of the
requirements that must be fulfilled so that UTM can execute the relevant action, and
notes and special cases to consider when executing the actions.

If changes are made to the configuration and the properties then information is provided
concerning the period during which the performed modifications will remain effective
and whether these changes have a global or local effect for UTM cluster applications.

If the administration function or a portion of the function described can also be executed
by means of an administration command (KDCADM transaction code), then the
symbol is used to indicate this command.

2. The second part is a table containing a short description of which areas (parameter,
identification, selection or data area) require data for each action, and of the data that
must be specified in these areas.

3. The third part consists of a schematic representation of the call, containing all optional
and mandatory entries and the information that is returned by UTM. Fields requiring
data before the call is made are shaded gray in the graphics. All fields in the parameter
area that are not listed in the tables must be set to binary zero before you call
KDCADMI.

The symbol "—" in a table means that no data needs to be passed to UTM in this area.

4. The fourth part contains comments and notes on the graphic, i.e. regarding the entries
that need to be made and the information that is returned by UTM.

C

KDCADMI program interface KC_CHANGE_APPLICATION

Administering Applications 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.1 KC_CHANGE_APPLICATION- Exchange application program

You can initiate the exchange of the entire application program during the application run
using KC_CHANGE_APPLICATION. In this way, you can exchange program units and add
new program units to the application program without having to terminate the application.
See the openUTM manual “Using UTM Applications” for more information on exchanging
programs.

You can carry out the following operations using KC_CHANGE_APPLICATION:

● Terminate a UTM application on a BS2000 system that was generated with load
modules in all processes and reload it.

You will need this function in standalone UTM applications to exchange load modules
in a common memory pool. During a reloading, the current version of the load module
i loaded that has been previously specified with a KC_MODIFY_OBJECT call for the
object type KC_LOAD_MODULE.

In addition, termination of the application program in all processes and a subsequent
reload will unload all load modules generated with the load mode set to ONCALL.

Only subopcode1=KC_NEW and KC_SAME are possible. KC_SAME has the same
effect as KC_NEW

● An entire UTM application program on Unix, Linux or Windows systems can be
exchanged (subopcode1=KC_NEW) by the application program of the next highest file
generation in the file generation directory filebase/PROG (filebase= base name of the
application).

You can also undo program exchange using KC_CHANGE_APPLICATION, meaning
you can switch back to the previously loaded application program (subop-
code1=KC_OLD) or you can reload the application program (subopcode1=KC_SAME)
without switching to another file generation.

The following requirements must be met:

● For UTM applications on a BS2000 system generated with load modules, you need to
mark the parts of the application that are in a common memory pool and are to be
exchanged beforehand using KC_MODIFY_OBJECT calls and the KC_LOAD_-
MODULE object type (see page 329).

● When exchanging a UTM application program on Unix, Linux or Windows systems, the
different versions of the application program (including the version currently loaded)
should be administered using the UTM tool KDCPROG in the file generation directory
filebase/PROG. The file generation directory must have been created using KDCPROG
(KDCPROG CREATE).

B

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

B

B

X/W

X/W

X/W

X/W

X/W

KC_CHANGE_APPLICATION KDCADMI program interface

184 Administering Applications

If the file generation directory filebase/PROG does not exist, UTM will reload the appli-
cation program filebase/utmwork (on Unix or Linux systems) or filebase\utmwork (on
Windows systems).

The program exchange is described in the openUTM manual “Using UTM Applications”.

The following points should be noted when exchanging the application program:

● The program units added to the new application program must have been defined at
the time of the KDCDEF generation or they must have been dynamically configured by
means of administration functions.

● No previously existing program units may be missing in the new application program.
Jobs accepted for a transaction code for which no program unit exists after program
exchange will be terminated abnormally (PEND ER) by UTM during execution.

Procedure / period of validity / transaction logging / cluster:

The call initiates program exchange, meaning that a job is created to exchange the
programs. The exchange itself will not have been completed when control is returned to the
program unit. Program exchange is not subject to transaction logging - it cannot be undone
in the same transaction by following it up with a RSET call.

Each process in the application program is exchanged individually. This is done by termi-
nating the application program running for this process and then loading the new appli-
cation program. The application program is only exchanged for one process at a time in
order to avoid having to interrupt operations to implement program exchange. While the
application program is being exchanged for a given process, jobs from other processes are
also being processed concurrently. These jobs may then contain processes in which the old
application program is still running. This leads to a situation where jobs are processed by
both the old and the new application programs during the exchange phase.

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. the application exchange is initiated in every
running node application.

After the job has been processed, UTM sends you a UTM message informing you of the
success or failure of the program exchange procedure. UTM sends the UTM message
K074 if program exchange was carried out successfully. If UTM could not execute the
program exchange, then it sends UTM message K075. If an error occurred, then UTM
message K078 is sent in addition to K074 or 075. UTM message K078 contains the cause
of the error as an insert.

 KDCAPPL (page 678), PROG operand

X/W
X/W

X/W

C

KDCADMI program interface KC_CHANGE_APPLICATION

Administering Applications 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Data to be supplied

Function of the call Data to be entered in the

parameter
area1

1 The operation code KC_CHANGE_APPLICATION must be specified in the parameter area in all cases.

identification
area

selection
area

data area

In UTM application on Unix,
Linux and Windows systems
with Shared Objects/ DLLs:
Exchange the current appli-
cation program with the next
highest version of the appli-
cation program

subopcode1:
KC_NEW

—— ——

——

(A pointer to a data
area to which UTM
can return data must
be passed in the
call.)

In UTM application on Unix,
Linux and Windows systems
with Shared Objects/ DLLs:
Undo program exchange, i.e.
exchange the current appli-
cation program with the next
lowest version of the appli-
cation program

subopcode1:
KC_OLD

—— ——

In UTM applications on Unix,
Linux and Windows systems
with Shared Objects/DLLs:
Reload application program
from the same file generation.

subopcode1:
KC_SAME

—— ——

In UTM applications on
BS2000 systems with load
modules:
Terminate the application
program in all processes and
then restart it in order to
exchange parts of the appli-
cation in the common memory
pool. Static application parts
can therefore also be
exchanged when the appli-
cation is linked before.

subopcode1:
KC_NEW /
KC_SAME

—— —— ——

X/W
X/W
X/W
X/W
X/W
X/W
X/W

X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W

X/W
X/W
X/W
X/W
X/W

X/W
X/W
X/WX/W

B
B
B
B
B
B
B
B
B
B

BB

KC_CHANGE_APPLICATION KDCADMI program interface

186 Administering Applications

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_CHANGE_APPLICATION

1. subopcode1 KC_NEW / KC_SAME /

KC_OLD

select_lth 0

2. data_lth Length of the data area / 0

Identification area

—

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area)

Data returned by UTM

Parameter area (starting on page 188)

Field name Contents

3. retcode Return codes

4. data_lth_ret Actual length of the data in the data area

Data area

5. Data structure kc_change_application_str / —

X/W

KDCADMI program interface KC_CHANGE_APPLICATION

Administering Applications 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

1. You can use subopcode1 to set which type of program exchange is to be executed. The
following types of exchanges can be carried out:

KC_NEW
When exchanging a UTM application on a Unix, a Linux or a Windows
system, UTM loads the application program from the next highest file
generation.

For a UTM application on a BS2000 system generated with load modules,
UTM terminates the application program successively in all processes and
reloads it again immediately. The current version of each of the load
modules is loaded, meaning that the load modules in the common memory
pool marked in KC_MODIFY_OBJECT calls are exchanged.

Static application parts can therefore also be exchanged when the appli-
cation is linked before.

KC_OLD When exchanging a UTM application on Unix, Linux or Windows systems,
UTM loads the application program from the next lowest file generation.

In this way, the old application program can be reloaded if errors are
detected in the application program after switching to a new file generation.

KC_SAME
On Unix, Linux and Windows systems, openUTM loads the application
program from the same file generation.

On BS2000 systems, KC_SAME has the same effect as KC_NEW.

2. in the data_lth field you specify the length of the data area provided to contain the data
returned by UTM.

When exchanging a UTM application on Unix, Linux or Windows systems, you must
specify data_lth ≥ sizeof (kc_change_application_str).

You must pass a pointer to the data area in the function call.

When exchanging a UTM application program under a BS000 system generated with
load modules, you must set data_lth=0. UTM does not return any data.

X/W

X/W

X/W

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

B

B

B

KC_CHANGE_APPLICATION KDCADMI program interface

188 Administering Applications

3. in the retcode field UTM stores the return code of the call. In addition to the return codes
listed in section “Return codes” on page 178, the following codes can also be returned
when the application program has been exchanged:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_CHANGEABLE
The application was started in the dialog. Program exchange is not possible.

KC_SC_FILE_ERROR
An error occurred while accessing the file generation of the application program to be
loaded. UTM produced UTM message K043 with the DMS return code.

KC_SC_NOT_GEN
The UTM application is gererated without load modules.

KC_SC_NO_GLOB_CHANG_POSSIBLE
Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applica-
tions is not consistent at present.

KC_SC_JFCT_RT_CODE_NOT_OK
Only for UTM cluster applications:
Internal UTM error
Please contact system support.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the current time.

Subcode:

KC_SC_CHANGE_RUNNING
A program exchange is already being executed, meaning a program exchange started
earlier is not yet complete.

KC_SC_INVDEF_RUNNING
Only for UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO
Only for UTM cluster applications:
The buffer containing the restart data is full (see openUTM manual “Generating Applica-
tions”, KDCDEF control statement MAX, RECBUF parameter).

B
B

KDCADMI program interface KC_CHANGE_APPLICATION

Administering Applications 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

4. In the data_lth_ret field of the parameter area, UTM returns the actual length of the data
in the data area.

5. When exchanging a UTM application on Unix, Linux or Windows systems, UTM returns
the data structure kc_change_application_str to the data area if a pointer to a data area
was passed in the KDCADMI call.

program_fgg_new
UTM returns the file generation number of the application program loaded
as a result of program exchange.

program_fgg_old
UTM returns the file generation number of the application program loaded
before program exchange was executed.

struct kc_change_application_str

char program_fgg_new[4];

char program_fgg_old[4];

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

KC_CREATE_DUMP KDCADMI program interface

190 Administering Applications

11.2.2 KC_CREATE_DUMP - Create a UTM dump

KC_CREATE_DUMP allows you to create a UTM dump for diagnostic purposes (with
REASON=´DIAGDP´) without having to abort the application run.

The dump is created by the process that initiated the KDCADMI call.

Procedure / period of validity / transaction management / cluster

The call is not subject to transaction management. It has an immediate effect. The opera-
tions initiated by the call will already have been completed when control is returned to the
program unit.

The following applies in UTM cluster applications:
The call applies locally to the node, i.e. a UTM dump for diagnostic purposes is only
generated in this node application.

 KDCDIAG (page 693), DUMP operand

Data to be supplied

Function of the call Data to be entered in the

parameter area identification
area

selection area data area

Create a UTM dump KC_CREATE_DUMP —— —— ——

C

KDCADMI program interface KC_CREATE_DUMP

Administering Applications 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

1. UTM only returns the codes listed in section “Return codes” on page 178.

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_CREATE_DUMP

id_lth 0

select_lth 0

data_lth 0

Identification area

—

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Contents

1. retcode Return codes

KC_CREATE_OBJECT KDCADMI program interface

192 Administering Applications

11.2.3 KC_CREATE_OBJECT - Add objects to the configuration

KC_CREATE_OBJECT allows you to add the following objects dynamically to the appli-
cation configuration:

– transport connections to remote LU6.1 applications (KC_CON)
– key sets (KC_KSET)
– LU6.1 sessions (KC_LSES)
– transaction codes by means of which service programs are started in partner applica-

tions (KC_LTAC)
– an LTERM partner to connect clients and printers (KC_LTERM)
– application program units and VORGANG exits (KC_PROGRAM)
– clients and printers (KC_PTERM)
– transaction codes and TAC queues (KC_TAC)
– user IDs, including their queues (KC_USER)

i openUTM on Windows systems does not support any printers.

Exactly one object can be created per KC_CREATE_OBJECT call. Within any given
program unit, however, KC_CREATE_OBJECT can be called several times, i.e. several
objects with the same type or with different object types can be created.

You will find more detailed information on dynamically adding objects to the configuration in
chapter “Changing the configuration dynamically” on page 71.

i If an object which can be dynamically generated in a UTM cluster application has
to be deleted then you must always delete it using the administration functions.
These objects cannot be deleted simply by means of a regeneration.

Requirements for dynamically adding an object

● During KDCDEF generation of the UTM application, RESERVE was used to reserve
spaces in the table for the object type; one of these spaces in the table is still empty.
You can determine if there are still free spaces available in the table for the corre-
sponding object type using KC_GET_OBJECT and the KC_DYN_PAR parameter type.

● You can only add application program units and VORGANG exits dynamically if the
application was generated with load modules (BS2000 systems) or shared
objects/DLLs (Unix, Linux and Windows systems). The program unit or VORGANG exit
must be created by a compiler for which a program unit has already been statically
configured (PROGRAM statement) during the KDCDEF generation.

For ILCS-capable compilers, it is sufficient to statically generate a program unit with
COMP=ILCS.

W

W

B

B

KDCADMI program interface KC_CREATE_OBJECT

Administering Applications 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

● Transaction codes for program units that use an X/Open program interface can only be
added dynamically if at least one transaction code for an X/Open program unit was
configured during the KDCDEF generation.

● User IDs can only be configured dynamically if the application was generated with user
IDs.
– User IDs with ID cards or can only be added dynamically if space in the table was

reserved explicitly for user IDs with ID cards during the KDCDEF generation, and if
one of these table spaces is still free.

– You can only dynamically enter user IDs with Kerberos authentication if table
spaces for user IDs with Kerberos authentication have been reserved explicitly and
if one of these spaces is still free.

The following must be observed when adding new objects / cluster

Certain rules must be observed when adding objects that are related to each other. These
rules are described in chapter “Changing the configuration dynamically” on page 71. The
following are examples of objects that are related to each other:

● transaction codes and the program units and VORGANG exits assigned to them

● clients/printers and the associated LTERM partners and the connection user IDs or user
IDs for the automatic KDCSIGN

● key sets referenced by user IDs, LTERM partners and transaction codes

Procedure / period of validity / transaction management / cluster

The call is subject to transaction management. Until the transaction has been completed,
a dynamically created object can only be accessed within the transaction itself. Application-
wide access is only possible after the transaction has been completed. In particular, the
object can only be manipulated by means of administration functions after the transaction
has been completed (this includes information queries). Within the same transaction, the
object can only be accessed when adding additional objects that are related to it.

The call’s effects extend beyond the end of the current application run. This means that
objects added dynamically are also part of the configuration for later application runs (as
long as the objects are not deleted again).

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. the objects are dynamically entered in the config-
uration in all the node applications.

B

B

B

B

B

B

KC_CREATE_OBJECT KDCADMI program interface

194 Administering Applications

Data to be supplied

Function of the call Data to be entered in the

parameter area 1

1 The operation code KC_CREATE_OBJECT must be specified in the parameter area in all cases.

identifi-
cation area

selection
area

data area

Add transport connec-
tions to the remote LU6.1
application to the
configuration

obj_type:
KC_CON

—— —— Data structure kc_con_str
with the name and
properties of the partner
and the connection

Add key set to the
configuration

obj_type:
KC_KSET

—— —— Data structure kc_kset_str
with the name and
properties of the key set

Add LU6.1 session to the
configuration

obj_type:
KC_LSES

—— —— Data structure kc_lses_str
with the name and
properties of the partners
involved

Add transaction code by
means of which service
programs are started in
partner applications to
the configuration

obj_type:
KC_LTAC

—— —— Data structure kc_ltac_str
with the name and
properties of the LTAC
and the partner

Add an LTERM partner
to the configuration

obj_type:
KC_LTERM

—— —— Data structure kc_lter-
m_str with the name and
properties of the LTERM
partner

Add a program unit or
VORGANG exit to the
configuration

obj_type:
KC_PROGRAM

—— —— Data structure kc_pro-
gram_str with the name
and properties of the
program unit or
VORGANG exit

Add a client/printer
(PTERM) to the
configuration

obj_type:
KC_PTERM

—— —— Data structure kc_pter-
m_str with the name and
properties of the
client/printer

Add a transaction code
or TAC queue to the
configuration

obj_type:
KC_TAC

—— —— Data structure kc_tac_str
with the name and
properties of the trans-
action code or TAC queue

Add a user ID (including
queue) to the
configuration

obj_type:
KC_USER

—— —— Data structure kc_user_str
with the name and
properties of the user ID
and queue

KDCADMI program interface KC_CREATE_OBJECT

Administering Applications 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_CREATE_OBJECT

1. obj_type Object type

2. obj_number 1

id_lth 0

select_lth 0

3. data_lth Length of the data in the data area

Identification area

—

Selection area

—

Data area

4. Data structure of the object type

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area)

Data returned by UTM

Parameter area (starting on page 235)

Field name Contents

5. retcode Return codes

KC_CREATE_STATEMENTS: return codes KDCADMI program interface

196 Administering Applications

1. In the obj_type field you must specify the type of object to be created. You can specify
the following object types:

KC_CON, KC_KSET, KC_LSES, KC_LTAC, KC_LTERM, KC_PROGRAM,
KC_PTERM, KC_TAC, KC_USER.

2. Only one object can be created per call. Therefore you must set obj_number = 1.

3. In the data_lth field you specify the length of the data structure you are passing to UTM
in the data area.

4. You must pass a data structure in the data area containing the name of the new object
and the properties to be assigned to this object. A unique data structure is provided for
each individual object type, and you must place this data structure in the data area.

The tables on the following pages as of page 197 contain descriptions of the data struc-
tures as a function of the type of the object to be created. The table shows you which
fields in the relevant data structure must be supplied with data.

The entries in the first column of the table have the following meanings:

o Supplying the field with data is optional

m Supplying the field with data is mandatory

(m) Supplying the field with data may be mandatory, depending on the data you
have entered for the other mandatory parameters or at the level of the
operating system under which the UTM application is running.

Fields in the data structures that you have not explicitly specified must be set to binary
zero. UTM will use the default values for these fields. You can find the default values
listed in the descriptions of the data structures in section “Data structures used to pass
information” on page 452.

5. In the retcode field UTM outputs the return codes of the call, see “Returncodes” on
page 235.

KDCADMI program interface KC_CREATE_OBJECT: transport connection (CON)

Administering Applications 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.3.1 obj_type=KC_CON

In order to create a new LU6.1 transport connection to a remote application, you must place
the data structure kc_con_str in the data area.

The following table shows how the fields in the data structure are to be supplied with data.

Field name1 Meaning

m co_name[8] Name of the partner application with which there is to be communication
via the logical connection. For the format of the name see the section
“Format and uniqueness of object names” on page 86.

BS2000 systems:
co_name can be either the BCAM name of a UTM partner application (in
the case of a homogeneous link) or the name of a TRANSIT application
(in the case of a heterogeneous link).

Unix, Linux and Windows systems:
You must specify the T-selector which the partner application uses to
sign on to the transport system for co_name.
The first character must be a letter.

m2

o3
pronam_long[64] Name of the partner system.

For pronam_long you specify the name of the processor on which the
partner application co_name runs. This is the name of a Unix, Linux,
Windows or BS2000 system.
The complete host name (FQDN) under which the host is known in the
DNS has to be specified. The name can be up to 64 characters long.
Instead of a 64 character FQDN name, a short local name (on BS2000
systems: BCAM name) of the partner computer may be used (max. 8
characters). In this case, it must be possible for the transport system to
map the local name to an FQDN name or an IP address using external
additional information (in BS2000 systems: FQDN file, in Unix, Linux or
Windows systems: hosts file).

o bcamappl[8] Specifies a name of the local application, as defined at generation in the
control statement MAX or BCAMAPPL. A BCAMAPPL name for which
T-PROT=SOCKET is generated must not be specified.

Default: If nothing is specified, the primary application name in
MAX ...,APPLINAME= applies.

m lpap[8] Name of the LPAP partner of the partner application to which the
connection is to be set up. The name of the LPAP partner by means of
which the partner application obtains a connection must have been
defined by means of the LPAP statement at generation.

By creating a number of CON objects with the same LPAP name,
parallel connections to the partner application are configured. You must
ensure that the parallel connections lead to the same partner appli-
cation (co_name and pronam).

B
B
B
B

X/W
X/W
X/W
X/W

KC_CREATE_OBJECT: transport connection (CON) KDCADMI program interface

198 Administering Applications

o termn[2] Identifier for the type of the communication partner with a maximum
length of 2 characters. termn is not queried by UTM; it is set by the user
for evaluation purposes in order, for example, to query or group terminal
types. The identifier termn is entered in the KB header for job-receiving
services (i.e. for services started in the local application by a partner
application).

o3 listener_port[5] Port number of the partner application.

A port number not equal 0 may only be specified, if the local application
specified in the bcamappl parameter was not generated with
T-PROT=NEA.

o3 t_prot Contains the address format with which the partner application signs on
to the transport system. The address format is specified as follows:

´R´ RFC1006, ISO transport protocol class 0 via TCP/IP and
RFC1006 convergence protocol.

o3 tsel_format Contains the format indicator of the T-selector of the partner address:

’T´ TRANSDATA format

´E´ EBCDIC character format

´A´ ASCII character format

The significance of the address formats is described in the “PCMX
documentation” on page 19.

1 All fields of the kc_con_str data structure that are not listed and all the fields that are not relevant to the operating
system used are to be set to binary zero. The data structure is described in full on page 471.

2 Mandatory on BS2000 systems
3 Optional on Unix, Linux and Windows systems

Field name1 Meaning

X/W

X/W
X/W
X/W

X/W
X/W

X/WX/W
X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W
X/W

KDCADMI program interface KC_CREATE_OBJECT: key set

Administering Applications 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.3.2 obj_type=KC_KSET

In order to create a new key set, you have to place the data structure kc_kset_str in the data
area. The following table shows how the fields in the data structure are to be supplied with
data.

Field name1

1 All fields of the kc_kset_str data structure that are not listed and all the fields that are not relevant to the operating
system used are to be set to binary zero. The data structure is described in full on page 483.

Meaning

m ks_name[8] Name of the key set.

o master Specifies whether the key set is a master key set. A master key set
contains all the key or access codes required to access the objects of the
application (i.e. all key codes between 1 and the maximum value defined
at KDCDEF generation in MAX KEYVALUE).

’Y’ The key set is a master key set.

’N’ The key set is not a master key set.

o keys[4000] In this field you select the key or access codes to be assigned to this key
set. Only keys up to the maximum value generated (MAX KEYVALUE)
can be selected.
For each key to be contained in the key set, the corresponding byte in the
field must be set to 1; all the keys fields that are not selected must contain
the value 0. If the key 10 is to be created, for example, keys[9] must
contain the value 1 (note: the array begins with an index of 0).
A recovery buffer size of at least 16,500 bytes is recommended for 4,000
keys
(MAX generation statement, RECBUF parameter).

KC_CREATE_OBJECT: LU6.1 session KDCADMI program interface

200 Administering Applications

11.2.3.3 obj_type=KC_LSES

In order to create a new LU6.1 session, you must place the data structure kc_lses_str in the
data area. The following table shows how the fields in the data structure are to be supplied
with data.

Field name1

1 All fields of the kc_lses_str data structure that are not listed and all the fields that are not relevant to the operating
system used are to be set to binary zero. The data structure is described in full on page 495.

Meaning

m ls_name[8] This is the name of the session in the local application (local half-session
name).

The specified name must be unique and may not be assigned to any other
object of name class 2. See also the section “Format and uniqueness of
object names” on page 86.

m lpap[8] Name of the LPAP partner assigned to the partner application. ls_name is
used for communication with the partner application assigned to the LPAP
partner lpap in the local application.

o rses[8] This is the name that describes the session in the remote application
(remote half-session name). The name can be up to 8 characters long.

KDCADMI program interface KC_CREATE_OBJECT: TAC for remote services (LTAC)

Administering Applications 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.3.4 obj_type=KC_LTAC

In order to create a new transaction code by means of which service programs can be
started in partner applications, you must place the data structure kc_ltac_str in the data area.
The following table shows how the fields in the data structure are to be supplied with data.

Field name1 Meaning

m lc_name[8] Name of a local transaction code for the remote service program.

o lpap[8] Specifies the partner application to which the service program
belongs. lpap contains
– the name of the LPAP or OSI-LPAP partner assigned to the

partner application,
– or the name of a master LPAP partner.
If lpap is not specified, the name of the partner application must be
specified in the APRO function call (in the KCPA field).

o rtac[64] ´The name of the associated transaction code in the remote appli-
cation (recipient_TPSU_title).

o rtac_lth[2] Specifies the length of the name rtac. The number of relevant bytes is
specified in rtac.
Minimum value: ´1´, maximum value: ´64´

o code_type Specifies which code type is used by UTM internally for the rtac name:

´I´ INTEGER
The TAC name in rtac is a positive integer between 0 and
67108863.
rtac names of the code type INTEGER are only permitted for
partner applications that are not UTM applications and that
communicate via the OSI TP protocol.

´P´ PRINTABLE-STRING
The TAC name in rtac is specified as a string with a maximum
length of 64 characters. A distinction is drawn between
uppercase and lowercase.
A TAC name with the code type PRINTABLE-STRING can
contain the following characters:

– A, B, C, . . . , Z
– a, b, c, . . . , z
– 0, 1, 2, . . . , 9
– the special characters ´ - : ? = , + . () / Ë (blank)

´T´ T61-STRING
rtac contains a T61 string. For the code type T61-STRING, UTM
supports all the characters of the code type PRINTABLE-
STRING as well as the following special characters:
$ > < & @ # % ; ∗ _

KC_CREATE_OBJECT: TAC for remote services (LTAC) KDCADMI program interface

202 Administering Applications

o state Specifies whether or not lc_name is disabled for the remote service
program after the startup of the local application.

’Y’ lc_name is not disabled. Jobs are accepted for the associated
remote service.

’N’ lc_name is disabled. Jobs are not accepted for the associated
remote service.

o accesswait_sec[5] Maximum time waited in seconds for a session to be occupied
(possibly including connection establishment) or for an association to
be established after the remote service is requested (the LTAC is
called).

In the case of asynchronous jobs (LTAC with ltac_type=´A´), a wait
time ≠ 0 means the job is always entered in the local message queue
for the partner application. Dialog jobs are accepted.

A wait time accesswait_sec=0 means that dialog jobs are rejected if no
session/association for which the local application is the contention
winner has been generated.
In the case of asynchronous jobs, the FPUT call is rejected with a
return code if there is no logical connection to the partner application.
If there is a logical connection to the partner application, the message
is entered in the local message queue.

Dialog jobs are rejected regardless of the value in accesswait_sec if
there is no logical connection to the partner application. The estab-
lishment of a connection is initiated at the same time.

Minimum value: ´0´ (jobs are rejected)
Maximum value: ´32767´

o replywait_sec[5] Maximum time in seconds waited by UTM for a reply from the remote
service.
By limiting the wait time you can ensure that clients or users on the
terminal do not have to wait too long.

replywait_sec=´0´ means the wait time is not limited.

Minimum value: ´0´
Maximum value: ´32767´

Field name1 Meaning

KDCADMI program interface KC_CREATE_OBJECT: TAC for remote services (LTAC)

Administering Applications 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o lock_code[4] Contains the lock code assigned to the remote service in the local
application (data access control). lock_code can contain a number
between ´0´ and the maximum value defined by means of the
KEYVALUE operand of the KDCDEF statement MAX. ́ 0´ means that
the LTAC is not protected by a lock code.

If lock_code is specified, access_list cannot be specified.

o ltac_type Specifies whether the local application processes jobs in a dialog with
the remote service or whether asynchronous jobs are transferred to
the partner service.

´D´ Jobs to the partner service are processed in a dialog.

´A´ The partner service is started asynchronously (by means of
message queuing).

o ltacunit[4] Contains the number of accounting units calculated in the UTM
accounting phase for each ltac call.
The accounting units are added to the accounting unit counter of the
user ID that called the ltac.

Minimum value: ´0´, maximum value: ´4095´

o access_list[8] Describes a key set that specifies the access rights that a user of the
local UTM application must have in order to send a job to the remote
service program. Whether the job is executed in the remote appli-
cation depends on the access rights defined there.
The key set must be created first or already have been defined at
generation.

If access_list is specified, lock_code cannot be specified.

A user can only access the LTAC if the key set of the user, the key set
of the LTERM partner via which the user is signed on and the
specified key set have at least one key code in common.

1 All fields of the kc_ltac_str data structure that are not listed and all the fields that are not relevant to the operating
system used are to be set to binary zero. The data structure is described in full on page 498.

Field name1 Meaning

KC_CREATE_OBJECT: LTERM partner KDCADMI program interface

204 Administering Applications

11.2.3.5 obj_type=KC_LTERM

To create a new LTERM partner you must place the data structure kc_lterm_str in the data
area. You cannot create LTERMs for bundles and groups.

The following table shows how the fields in the data structure are to be supplied with data.

Field name1 Meaning

m lt_name[8] Name of the LTERM partner. The name may be up to 8 characters long.
The name may be entered in upper or lowercase letters. The name must
be unique within its name class. See section “Format and uniqueness of
object names” on page 86 for information on the format and uniqueness
of the name. Names of LTERM partners and transaction codes that have
been deleted may not be used.

o kset[8] Only relevant for dialog partners (usage_type=´D´):
Key set of the application to which the LTERM partner is to be assigned.
The key set must have been created dynamically first or defined at
generation.
A client or client program can only start a service secured with a lock
code or access list if the corresponding key or access code for the lock
code or access list is contained both in the key set of the user ID under
which the client or client program signs on and in the key set of the
associated LTERM partner.

Note
If you do not want to define any access protection for LTERM partners in
an application generated with user IDs (USER), then assign key sets to
the LTERM partners containing all of the key codes of the application
(MASTER).

o locale_lang_id[2]
locale_terr_id[2]
locale_ccsname[8]

Specifies the language environment (locale) of the LTERM partner.

In locale_lang_id you specify the language code of the language to be
used when sending UTM messages to the LTERM partner. It is a
maximum of 2 bytes long.

In locale_terr_id you specify the territory code.
This parameter specifies territorial particularities of the main language. It
is a maximum of 2 bytes long.

In locale_ccsname you specify the CCS name of the expanded coded
character set. The CCS name can be up to 8 bytes long .It must belong
to one of the EBCDIC character sets defined on the BS2000 system, see
XHCS User Giude.

o lock_code[4] Only relevant for dialog partners (usage_type=´D´):
Lock code to be assigned to the LTERM partner (access security). The
lock code must lie within the range defined in the KEYVALUE operand
of the MAX KDCDEF command.

B

B
B
B

B
B
B

B
B
B
B

KDCADMI program interface KC_CREATE_OBJECT: LTERM partner

Administering Applications 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o state Specifies whether the LTERM partner is to be disabled or not after
generation.

´Y´
´N´

The LTERM partner is not to be disabled. (ON)
The LTERM partner is to be disabled. (OFF)

o usage_type Specifies whether the LTERM partner is to be configured for connecting
dialog partners or for connecting printers:

´D´
´O´

LTERM partner for connecting dialog partners.
LTERM partner for connecting output media such as printers.

o user_gen[8] Only relevant for dialog partners (usage_type=´D´):
For LTERM partners of terminals:
User ID for which UTM will execute an automatic KDCSIGN when estab-
lishing the logical connection. This user ID must have been entered in
the configuration dynamically or statically before the LTERM partner.
For LTERM partners of UPIC clients and TS applications:
The connection user ID must be created in the same transaction in which
the LTERM partner was created. See chapter “Changing the configu-
ration dynamically” on page 71ff for more information.

Default for LTERM partners of terminals:
No automatic KDCSIGN
Default for LTERM partners of UPIC clients (ptype=´UPIC-R´) or TS
applications (ptype=´APPLI´ or ´SOCKET´):
Connection user ID with the name of the LTERM partner.
If this user ID is not created explicitly in the same transaction as the
LTERM partner, then UTM creates this user ID implicitly. This user ID
must not already exist, however.

Note:
The use of the automatic KDCSIGN on terminals restricts access
protection.

o cterm[8] Only relevant for LTERM partners used to connect printers
(usage_type=´O´).
Name of the printer control LTERM that is to administer the printer. The
printer control LTERM must have been dynamically or statically added to
the configuration before the LTERM partner (see chapter “Changing the
configuration dynamically” on page 71ff).

Every printer assigned to this LTERM partner (KC_PTERM) must be
assigned a printer ID (cid) that is unique to this printer control LTERM.

Field name1 Meaning

BB
B
B
B
B
B

B
B

KC_CREATE_OBJECT: LTERM partner KDCADMI program interface

206 Administering Applications

o format_attr
format_name[7]

Only relevant if a terminal is to be assigned to the LTERM partner.
With the help of these fields you can assign an LTERM-specific start
format to the LTERM partner.
One requirement for assigning a start format is that a formatting system
has been generated (KDCDEF command FORMSYS). If the start format
is a #Format, then a sign-on service must also have been generated.

You must always specify a format_name and a format_attr when defining
a start format.

In format_attr you specify the format code of the start format:

´A´
´N´
´E´

for the format attribute ATTR (+Format).
for the format attribute NOATTR (*Format).
for the format attribute EXTEND (#Format).

See page 506 for descriptions of the format attributes.

In format_name you specify the name of the start format. The name can
be up to 7 characters long and may only contain alphanumeric
characters.

o plev[5] Only relevant for LTERM partners of output media (usage_type =´O´).
In plev you specify the control value for the message queue of the
LTERM partner. As soon as the number of output jobs in the queue
equals the value specified in plev, UTM attempts automatically to
establish a connection to the printer. If a printer pool is assigned to the
LTERM partner, then UTM establishes connections to all printers. UTM
automatically shuts the connection down as soon as the message queue
is empty.
You may only specify plev in conjunction with qamsg=´Y´.

plev=´0´ means that no control value is defined.

Minimum value: ´0´ Maximum value: ´32767´

o qamsg Specifies whether asynchronous jobs (FPUT and DPUT jobs) sent to the
client/printer assigned to this LTERM partner are to be temporarily stored
in the message queue of the LTERM partner, even if the client/printer is
not connected to the application.

´Y´

´N´

An asynchronous job is added to the message queue.
qamsg=´Y´ is not possible for restart=´N´.
An asynchronous job is rejected if the corresponding client/printer
is not connected to the application.

o qlev[5] Specifies the maximum number of asynchronous messages that may be
temporarily stored in the message queue of the LTERM partner at any
one time. If the control value in qlev is exceeded, then UTM rejects any
further asynchronous jobs sent to this LTERM partner or to the
client/printer assigned to it.
Minimum value:´0´ Maximum value:´32767´

Field name1 Meaning

B
B
B
B
B
B
B
B

B
B

B

B
B
B

B
B
B

B

B
B
B

B/XB/X
B/X
B/X
B/X
B/X
B/X
B/X
B/X
B/X

B/X

B/X

KDCADMI program interface KC_CREATE_OBJECT: LTERM partner

Administering Applications 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o restart Is only relevant for dialog partners (LTERM partners with
usage_type=´D´).
In restart you specify how UTM will deal with asynchronous messages in
the message queue of the LTERM partner at the time when the
connection is being established.

´Y´

´N´

Asynchronous messages to the client remain queued.
In an application without user IDs, UTM executes an automatic
service restart for this LTERM partner.
In a UTM cluster application without user IDs, ’Y’ is only permitted
if it was generated with
CLUSTER USER-RESTART=YES.
UTM deletes all asynchronous messages from the queue when
the connection is established.
If the job is a job complex, then a negative confirmation job is
activated.
UTM does not execute an automatic restart for the LTERM partner
in an application without user IDs.

if qamsg=´Y´ then restart=´Y´ must be set.

o annoamsg Only relevant for the LTERM partner of a terminal.
In annoamsg you specify if UTM is to announce an asynchronous
message to the terminal before outputting:

´Y´

´N´

Asynchronous messages are announced by a message
appearing in the system line.
Asynchronous messages are output immediately (without
announcement).

o netprio Specifies the transport priority used for the transport connection between
the application and the client/printer.

´M´
´L´

"Medium" transport priority
"Low" transport priority

For native TCP/IP connections (t_prot = SOCKET) this field has no
significance.

Field name1 Meaning

B
B
B

B

B

B
B
B
B

B
B

B
B
B
B

B
B

KC_CREATE_OBJECT: LTERM partner KDCADMI program interface

208 Administering Applications

i Clients/printers are assigned to LTERM partners (LTERM - PTERM) when
clients/printers are being added to the configuration, or with the aid of KC_MODI-
FY_OBJECT.

o kerberos_dialog Specifies whether a Kerberos dialog is performed on the establishment
of a connection for clients that support Kerberos and are connected with
the application directly via via this LTERM partner (not via OMNIS).

´Y´ A Kerberos dialog is performed.

´N´ No Kerberos dialog is performed.

1 All fields in the data structure kc_lterm_str that are not listed and all fields that are not relevant to the operating
system you are using are to be set to binary zero. The data structure is described on page 503.

Field name1 Meaning

BB
B
B

BB

BB

KDCADMI program interface KC_CREATE_OBJECT: program units

Administering Applications 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.3.6 obj_type=KC_PROGRAM

To add a new program unit or VORGANG exit to the configuration you must place the data
structure kc_program_str in the data area.

The table below shows you how to supply data to the fields in the data structure kc_pro-
gram_str.

Field name1 Meaning

m pr_name[32] Name of the program unit. The name may be up to 32 bytes long.
You must observe the conventions in section “Format and uniqueness of
object names” on page 86 when specifying a name. The name of a program
unit that has been deleted from the configuration cannot be used.
In UTM applications on BS2000 systems you specify the ENTRY or CSECT
name of the program unit.

(m) compiler Compiler or ILCS-capability of the compiler used to compile the program
unit.

In UTM applications on BS2000 systems the compiler specification is
mandatory.
For all program units that support ILCS you must specify ́ I´ for ILCS for the
compiler.

In UTM applications on BS2000 systems the following settings are possible
:

´I´
´A´
´C´
´1´
´F´
´X´
´P´
´S´

for ILCS (Inter Language Communication Services)
for the assembler compiler ASSEMB
for the C compiler (UTM sets this to ´I´)
for the COBOL compiler (COB1)
for the FORTRAN compiler (FOR1)
for PASCAL-XT
for PLI1
for SPL4

In a UTM application on a Unix, Linux and Windows system the following
values are possible:

´C´
´+´
´2´
´3´

for the C compiler
C++ compiler
COBOL compiler of Micro Focus
NetCOBOL compiler from Fujitsu

B
B

B
B
B
B

B
B

B
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B

X/W
X/W

X/W
X/W
X/W
X/W

X/W
X/W
X/W
X/W

KC_CREATE_OBJECT: program units KDCADMI program interface

210 Administering Applications

m load_module[32] Name of the load module (BS2000 systems) or of the shared object/DLL
(Unix, Linux and Windows systems) into which the program unit is linked.
The name can be up to 32 characters long.

The load module must be statically configured using the KDCDEF control
statement LOAD-MODULE. It may not be statically linked to the application
program.

The shared object must/DLL be statically configured using the KDCDEF
command SHARED-OBJECT.

1 All fields in the data structure kc_program_str that are not listed and all fields that are not relevant to the operating
system you are using are to be set to binary zero. The data structure is described in full on page 534.

Field name1 Meaning

B
B
B

X/W
X/W

KDCADMI program interface KC_CREATE_OBJECT: clients/printers

Administering Applications 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.3.7 obj_type=KC_PTERM

To add a printer or client (i.e. a terminal, an UPIC client or a TS application) to the configu-
ration, you must place the data structure kc_pterm_str in the data area in which you will pass
the name, address and properties of the client or printer to UTM. The table below shows
you how to supply the fields of the structure with data.

i openUTM on Windows systems does not support any printers.

Field name1 Meaning

m pt_name[8] Name of the client or printer. The name may be up to 8 characters long.
The symbolic name under which the client/printer is known to the
transport system should be specified in pt_name.
See section “Format and uniqueness of object names” on page 86 for
information on the format of the name and its uniqueness. Names of
objects that have been deleted and which belong to the same name
class may not be used.
If your application contains an LTERM pool with connect_mode=´M´
(multi), then the triplet (pt_name, pronam,bcamappl) must not be the same
as any naming triplet in the LTERM pool (= the triplet made up of the
name of an LTERM partner in the pool, the processor name of the pool
client and the BCAMAPPL name of the application which is used to
establish the connection from the client). Otherwise, no other client will
be able to connect via this LTERM pool.

Special features of communication via the socket interface:
If the connection between the communication partner and the UTM
application is to be realized via the socket interface (SOCKET), and if the
partner is to use a specific port number when establishing the
connection, you must supply the value PRTnnnnn for pt_name, nnnnn
being the port number in the remote system, via which the partner will
establish the connection. If the partner is a UTM application, the port
number cannot be supplied, because UTM does not set the port number
itself.
If it is only the local application that establishes the connection, and not
the partner application, the name is only required internally, e.g. for
administration purposes.

W

W

KC_CREATE_OBJECT: clients/printers KDCADMI program interface

212 Administering Applications

(m) pronam_long[64] Name of the computer on which the client/printer is located.

The complete host name (FQDN) under which the host is known in the
DNS has to be specified. The name can be up to 64 characters long.
Instead of a 64 character FQDN name, a short local name (on BS2000
systems: BCAM name) of the partner computer may be used (max. 8
characters). In this case, it must be possible for the transport system to
map the local name to an FQDN name or an IP address using external
additional information (in BS2000 systems: FQDN file, in Unix, Linux or
Windows systems: hosts file).

If ptype=´*RSO´, then pronam_long=´*RSO´ must be specified.

If the connection to the partner is established through the socket
interface (TCP-IP-APPLI, t_prot=´T´ protocol) you must specify the
system’s symbolic address or the real host name in pronam_long.

On Unix, Linux and Windows systems pronam_long may be specified
only with ptype=´UPIC-R´, ´APPLI´ or ´SOCKET´. openUTM uses the
default value (blanks) for terminals and printers.

o bcamappl[8] Name of the UTM application through which the connection between the
UTM application and the client/printer is to be established. The appli-
cation name must have been statically generated using a BCAMAPPL
command or during the KDCDEF generation by defining it in MAX
APPLINAME.

If the connection to the communication partner is to be established vie
the SOCKET protocol, you must specify a BCAMAPPL name with
t_prot=´T´.

When ptype is not equal to ´APPLI´, ´SOCKET´ or ´UPIC-R´, only the
application name generated in MAX APPLINAME (default value) may be
specified for bcamappl.

(m) ptype[8] Type of client/printer
You will find a list of possible types on page 541f.
When ptype=´APPLI´, ´SOCKET´ or ´UPIC-R´, lterm must be specified.

The specification of a ptype is mandatory for UTM applications on
BS2000 systems.

It is not permissible to specify ptype='PRINTER' on Windows systems.

o ptype_fotyp[8] Only relevant for printers (ptype = ´PRINTER´).
In ptype_fotyp you specify the type of the printer (printertype).

o ptype_class[40] Only relevant for printers (ptype = ´PRINTER´).
In ptype_class you specify the name of the printer group (printer class) to
which the printer belongs. The printer group is determined during the
generation on the Unix or Linux system.

Field name1 Meaning

B

X/W
X/W
X/W

B
B
B

B
B

W

X
X

X
X
X
X

KDCADMI program interface KC_CREATE_OBJECT: clients/printers

Administering Applications 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

(m) lterm[8] Name of the LTERM partner to be assigned to this client/printer.
This parameter is optional for terminals and printers. An LTERM partner
can be assigned to them at a later time using the administration
functions.
If the name of an LTERM partner is specified in lterm, then it must have
been statically or dynamically added to the configuration before the
terminal/printer.

For UPIC clients and TS applications (ptype = ´UPIC-R´, ´APPLI´ or
´SOCKET´) lterm is a mandatory parameter. The LTERM partner
specified must be created in the same transaction as the client. See
“Changing the configuration dynamically” on page 71 for more infor-
mation.

o auto_connect Specifies if the connection to the client/printer is to be established
automatically when the application is started:

´Y´

´N´

UTM is to try to establish a connection to the client/printer every
time the application is started.
UTM is not to try automatically to establish the connection.

For UPIC clients, only auto_connect=´N´ is allowed.

o state Specifies if the client/printer is to be disabled at first after being added.

´Y´
´N´

The client/printer is not be disabled (ON).
The client/printer is to be disabled (OFF).

o cid[8] Only relevant for printers.
In cid you specify the printer ID (CID). The CID may contain a maximum
of 8 characters.
The CID is required if the printer is to be administered using a printer
control LTERM. The printer control LTERM identifies the printer using the
CID. The CID must be unique to the printer control LTERM.

Field name1 Meaning

B/XB/X
B/X
B/X
B/X
B/X
B/X

KC_CREATE_OBJECT: clients/printers KDCADMI program interface

214 Administering Applications

o map Only relevant for TS applications (ptype = ´APPLI´ or ´SOCKET´):

In map you specify whether or not UTM is to perform a code conversion
(EBCDIC <-> ASCII) for the user messages exchanged between the
communication partners. User messages are transferred at the KDCS
interface with the calls for message handling (MPUT/FPUT/DPUT) in the
message area.

´U´ (USER)
UTM does not convert the data in the KDCS message area, i.e. the
data of the message area are exchanged between the communi-
cation partners without any changes.

´S´, ´1´ , ´2´, ´3´, ´4´
is only permitted for the following TS applications:
– BS2000 systems: ptype=´SOCKET´
– Unix, Linux and Windows systems: ptype=´APPLI´ or

´SOCKET´
If you specify one of these values, UTM converts the user
messages according to the code tables provided for the code
conversion, see the "Code conversion" section in the openUTM
manual "Generating Applications", i.e.:
– Prior to sending, the code is converted from ASCII to EBCDIC

on Unix, Linux and Windows systems and from EBCDIC to
ASCII on BS2000 systems.

– After receival, the code is converted from EBCDIC to ASCII on
Unix, Linux and Windows systems and from ASCII to EBCDIC
on BS2000 systems.

openUTM assumes that the messages contain only printable
characters.
In this case, the specifications ´S´ and ´S1´ are synonymous.

For more information on code conversion, please refer to the
openUTM manual „Programming Applications with KDCS”;
keyword „code conversion“.

o termn[2] Code for the type of client/printer (terminal mnemonic). The code is a
maximum of 2 characters long. Default values for termn can be found in
the table on page 541 (BS2000 systems) or on page 543 (Unix, Linux
and Windows systems).

Field name1 Meaning

B
X/W
X/W

KDCADMI program interface KC_CREATE_OBJECT: clients/printers

Administering Applications 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o protocol Specifies if the NEABT user utility protocol is to be used for connections
to the client/printer.

´N´

´S´

(NO)
Do not use NEABT.
(STATION)
Use NEABT.

For clients connected through a multiplex connection, you must set
protocol = ´S´.

For UPIC clients, RSO printers and TS applications connected via the
socket interface, you must set protocol = ´N´. In these cases, protocol =
´N´ is ignored.

o usage_type Specifies whether a dialog partner or an output medium is to be
configured. You can specify the following:

´D´
´O´

for a dialog partner
for an output medium (printer, for example)

o listener_port[5] You specify in listener_port the port number in the remote system at
which the partner application awaits requests for connection estab-
lishment from outside.
All port numbers are allowed.

On BS2000 systems, listener_port is only allowed in the case of
ptype=´APPLI´ or ´SOCKET´.
The specification is mandatory for ptype=´SOCKET´.
A port number not equal 0 may only be specified, if the local application
specified in the bcamappl parameter was not generated with
T-PROT=NEA.

On Unix, Linux and Windows systems, listener_port is only relevant for
t_prot=´T´ and ´R´.

o t_prot Only relevant for clients of the type pttype=’APPLI’, ’SOCKET’ or ’UPIC-
R’. You specify the address format of the client’s transport address.
Possible values are:

´R´

’T’

RFC1006, ISO transport protocol class 0 using TCP/IP and the
RFC1006 convergence protocol (APPLI, UPIC-R)
Native TCP-IP transport protocol for communication via the socket
interface (SOCKET)

o tsel_format Only relevant for clients of the type pttype=’APPLI’, ’SOCKET’ or ’UPIC-
R’. You specify the format of the T-selector for the client address.
Possible values are:

´T´
´E´
´A´

TRANSDATA format
EBCDIC character format
ASCII character format

Field name1 Meaning

B
B

B

B

B
B
B
B

B
B

B
B
B

B
B

B
B
B
B

B
B
B
B
B
B

X/W
X/W

X/W
X/W
X/W

X/W

X/W

X/W
X/W
X/W
X/W

X/W
X/W
X/W

X/W
X/W
X/W

X/W
X/W
X/W

KC_CREATE_OBJECT: clients/printers KDCADMI program interface

216 Administering Applications

o idletime[5] May only be specified for dialog partners.
In idletime you define the maximum duration in seconds which UTM waits
for a response from the client after the end of a transaction or after a
sign-off (KDCSIGN). If the time is exceeded, the connection to the client
is closed down. If the client is a terminal, message K021 is issued before
the connection is closed down. The value for idletime must not be
smaller than the timer value in kc_timer_par_str.termwait_in_ta_sec and
kc_timer_par_str.pgwttime_sec (see page 669).

The purpose of this function is to improve data protection:
If a user forgets to sign off when interrupting or finishing work at a
terminal, the connection is automatically closed down when the idle time
expires. This reduces the danger of unauthorized access.

Maximum value: ´32767´
Minimum value: ´60´
The value 0 means wait without time limit.
In the case of values smaller then 60 but not equal to 0, the value 60 is
used.

In the case of an invalid value, UTM sets idletime to the lowest value
allowed and issues the return code KC_MC_OK with the subcode
KC_SC_ INVALID_IDLETIME.

o encryption_level Only relevant for UPIC clients and also for some terminal emulations on
BS2000 systems.

In encryption_level you define the lowest encryption level for communi-
cation with a client,
– whether the encryption of messages is demanded by default or not
– which encryption level is demanded,
– or whether the client is a “trusted” client.
Possible values are:

´N´ (NONE)
UTM does not demand data encryption by default.
The client can only activate services for whose service TACs
encryption was generated (see kc_tac_str.encryption_level on
page 565), if the client agrees encryption.

´1´ (LEVEL 1)
By default, UTM demands that messages are encrypted with
encryption level 1. In other words, the messages are encrypted
with the DES algorithm and an RSA key with a key length of 200
bits is used for exchange of the DES key.

´2´ (LEVEL 2)
By default, UTM demands that messages are encrypted with
encryption level 2. In other words, the messages are encrypted
with the AES algorithm and an RSA key with a key length of 512
bits is used for exchange of the AES key.

Field name1 Meaning

KDCADMI program interface KC_CREATE_OBJECT: clients/printers

Administering Applications 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

encryption_level
(cont.)

´3´ (LEVEL 3)
By default, UTM demands that messages are encrypted with
encryption level 3. In other words, the messages are encrypted
with the AES algorithm and an RSA key with a key length of 1024
bits is used for exchange of the AES key.

´4´ (LEVEL 4)
By default, UTM demands that messages are encrypted with
encryption level 4. In other words, the messages are encrypted
with the AES algorithm and an RSA key with a key length of 2048
bits is used for exchange of the AES key.

Establishment of a connection to the client is rejected by UTM if
the client does not support at least the specified encryption level
(1, 2, 3, or 4).
Specifying encryption_level=1 ... 4 is meaningful only if the
encryption functionality of openUTM is installed on your system. If
no encryption functionality is installed, the client cannot connect.

´T´ (TRUSTED)
The client is a trusted client.
Messages exchanged between the client and the application are
not encrypted.
A “trusted client” can activate services for which the service TACs
require encryption (generated with kc_tac_str.encryption_level =´1´;
see page 565).
Select this setting only if the client is not generally accessible and
communication runs through a protected connection.

The following applies for the individual client types with regard to the
encryption level:
– Encryption levels 1 to 4 are meaningful for remote UPIC clients

(PTYPE=UPIC-R).
– Only encryption level 1 (encryption_level=1) is meaningful for clients

with PTYPE= T9763 or *ANY on BS2000 systems. Levels 2, 3 and
4 are replaced by 1 by openUTM.

– Encryption level 1, 2, 3 or 4 is replaced by TRUSTED by openUTM
for local UPIC clients (PTYPE=UPIC-L) of an application on Unix,
Linux or Windows systems.

– If 1 ... 4 is specified for a partner of another type, the value is
replaced by NONE by openUTM without issue of a message.

For data to be encrypted on a connection to the client the corresponding
RSA keys must be available.
If the application is generated with OPTION GEN-RSA-KEYS=NO,
KDCDEF does not create RSA keys, i.e. by default no RSA keys are
available. It is however possible to transfer RSA keys by means of
KDCUPD or to create them with KC_ENCRYPT. These keys can then be
used by newly generated objects.

Field name1 Meaning

B
B
B

X/W
X/W
X/W

KC_CREATE_OBJECT: clients/printers KDCADMI program interface

218 Administering Applications

o usp_hdr This parameter is only significant for PTERMs with
ptype=´SOCKET´.
It specifies the output messages for which UTM sets up a UTM socket
protocol header on this connection. The possible values are:

’A’ UTM creates a UTM socket protocol header for all output
messages (dialog, asynchronous, K messages) and precedes the
message with it.

’M’ UTM creates a UTM socket protocol header for the output of
K messages only and precedes the message with this.

’N’ UTM does not create a UTM socket protocol header for any output
message.

1 All fields in the data structure kc_pterm_str that are not listed and all fields that are not relevant to the operating
system you are using are to be set to binary zero. The data structure is described in full on page 539.

Field name1 Meaning

KDCADMI program interface KC_CREATE_OBJECT: transaction code

Administering Applications 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.3.8 obj_type=KC_TAC

To create a new transaction code or a TAC queue, you must place the data structure
kc_tac_str in the data area.

The following fields are involved in the creation of a TAC queue:

tc_name, admin, qlev, q_mode, q_read_acl, q_write_acl, state and type.

None of the other fields are evaluated for TAC queues.

The table below shows how to supply data to the fields in the data structure kc_tac_str.

Field name1 Meaning

m tc_name[8] Name of the transaction code (tac_type=’A’ or ’D’) or the TAC queue
(tac_type=’Q’). The name may be up to 8 characters long.
See section “Format and uniqueness of object names” on page 86 for
information on the format and uniqueness of the name. Names of
deleted objects that belong to the same name class cannot be used.

(m) program[32] Name of the program unit to which the transaction code is to be
assigned. The name can be up to 32 characters long. The program unit
must already exist in the configuration or it must have been added before
the transaction code.
This parameter is not permitted for TAC queues.

o lock_code[4] Lock code (access security) to be assigned to the transaction code. The
lock code is a whole number. It must lie within the range defined in MAX
KEYVALUE during the KDCDEF generation.

Note
Jobs from a user/client will only be processed if both the key set of the
user/client and the key set of the LTERM partner via which the user/client
is connected to the application contain the keycode corresponding to the
lock code of the service TAC.

KC_CREATE_OBJECT: transaction code KDCADMI program interface

220 Administering Applications

o state Specifies whether or not the transaction code or the TAC queue is to be
disabled initially after generation.

´Y´ A TAC is not disabled (ON).
Reading and writing are permitted for a TAC queue.

´N´ A TAC is disabled (OFF).
If it is the TAC of a KDCS program unit of the type call_type=´B´ or
´N´, the TAC is disabled as a service TAC (1st TAC of a service)
but not as a follow-up TAC of a service.
Reading is permitted for a TAC queue, but not writing.

´H´ UTM does not accept any jobs for the TAC. The TAC is completely
disabled (HALT).
If this TAC is called as a follow-up TAC, the service is terminated
with PEND ER (74Z). Asynchronous jobs that are already buffered
in the message queue of the TAC are not started. They remain in
the message queue until the status of the TAC is reset to ON or
OFF.
A TAC queue is disabled for write and read accesses.

´K´ ’K’ can only be specified for asynchronous transaction codes that
are also service TACs (call_type=´B´ or ´F´) and for TAC queues.
UTM accepts jobs for the transaction code. However, the jobs are
not processed; they are merely written to the job queue of the
transaction code. They are processed when you change the status
of the transaction code to ´Y´ or ´N´.
You can use state=´K´ to collect jobs that are not to be executed
until the application is subject to a lighter load (e.g. at night).
In order to avoid overloading the page pool with too many buffered
jobs, you should use the qlev parameter to limit the size of the job
queue for the transaction code.
Writing is permitted for a TAC queue, but not reading.

UTM always sets state=’Y’ for the administration commands KDCSHUT
and KDCTAC, even if you have entered another value. This ensures that
you can administer your application at all times.

Field name1 Meaning

KDCADMI program interface KC_CREATE_OBJECT: transaction code

Administering Applications 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o tacclass[2] Can only be specified if a TAC class was created during KDCDEF gener-
ation.
In tacclass you specify which TAC class is to be assigned to the trans-
action code.
You must observe the following points:
– A dialog transaction code (tac_type = ´D´) can only be assigned a

TAC class between 1 and 8 (1 ≤ tacclass ≤ 8).
– An asynchronous transaction code (tac_type = ´A´) can only be

assigned a TAC class between 9 and 16 (9 ≤ tacclass ≤ 16).
– If your application is generated without a TAC-PRIORITIES

statement, all dialog TACs (tac_type=´D´) from program units that
use blocking calls (such as the KDCS call PGWT) must be assigned
to the same dialog TAC class for which PGWT=YES must be set.
Accordingly, all asynchronous TACs that use blocking calls must
also be assigned to the asynchronous TAC class for which
PGWT=YES is set.

– If your application is generated with a TAC-PRIORITIES statement,
all dialog TACs from program units that use blocking calls can be
assigned to any dialog TAC class. You only need to set pgwt=´Y´.
Similarly, this applies to asynchronous TACs

Default (assuming that at least one TAC class exists):
dialog TACs are not assigned a TAC class,
asynchronous TACs are assigned TAC class 16.

o admin Specifies which privileges a user or client must have to be able to call
this transaction code or a service containing this transaction code as the
follow-up TAC. In the case of a TAC queue, the authorization refers to
write and read accesses. Possible values are:

´Y´ This transaction code can only be called by a user with adminis-
tration privileges. admin=´Y´ must be assigned to transaction
codes of administration programs that do more than just read
application data. In the case of a TAC queue, only a user with
administration authorization can read messages from this queue
or write messages to the queue.

´N´ No administration authorization is required to call the transaction
code or to access the TAC queue. Program units that are started
by means of a transaction code with admin=´N´ may not issue
KDCADMI calls.

´R´ As in the case of admin=´N´, no administration authorization is
required in order to call this transaction code or access the TAC
queue. However, the associated program unit can use all the
functions of KDCADMI that have read access to the application
data.

Field name1 Meaning

KC_CREATE_OBJECT: transaction code KDCADMI program interface

222 Administering Applications

o call_type Specifies whether a service is started using the transaction code or if the
transaction code is a follow-up TAC in a service. The following can be
specified:

´B´

´F´
´N´

The TAC can be the first TAC as well as a follow-up TAC in a
service (BOTH).
The TAC can only be the first TAC in a service (FIRST).
The TAC can only be a follow-up TAC in a service (NEXT).

o exit_name[32] Name of the VORGANG event exit to be assigned to this TAC. exit_name
can only be specified if call_type = ´F´ or ´B´ has been set.
The VORGANG exit specified in exit_name must already be contained in
the configuration as a program unit of the application (dynamically with
object type KC_PROGRAM or with the KDCDEF command
PROGRAM).
If the program unit in program is linked into a load module with the load
mode set to ONCALL, then the VORGANG exit must be contained in the
same load module.

o qlev[5] Only relevant for asynchronous TACs (tac_type = ´A´) or TAC queues
(tac_type=’Q’).
UTM only takes the jobs into account at the end of the transaction. The
number of messages specified in qlev for a message queue may
therefore be exceeded when several messages are created for the same
queue in a single transaction.
If the number specified in qlev is exceeded, how UTM responds depends
on the setting for q_mode.

Minimum value: ´0´, Maximum value: ´32767´

If a value > 32767 is specified for qlev, then UTM will reset it to the default
value without notification.

o tac_type Specifies whether jobs sent to this transaction code are to be processed
asynchronously or in dialog mode or whether a TAC queue is created:

´D´
´A´
’Q’

The transaction code is a dialog TAC
The transaction code is an asynchronous TAC
A TAC queue is created.
A DPUT call can be used to write a message to a queue like this,
and a DGET queue can be used to read a message from it.

o real_time_sec[5] Specifies the maximum amount of real time in seconds that a program
unit run started with this TAC may use. If the program unit runs for a
longer time, then UTM aborts the service.
real_time_sec = ´0´ means there is no limit to the amount of real time that
may be used.

Minimum value: ´0´, Maximum value: ´32767´

Field name1 Meaning

KDCADMI program interface KC_CREATE_OBJECT: transaction code

Administering Applications 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o cpu_time_msec[8] Specifies the maximum amount of CPU time in milliseconds that a
program unit run started with this TAC may use. If the program unit runs
for a longer time, then UTM aborts the service.
cpu_time_msec = ´0´ means there is no limit to the amount of CPU time
that may be used.

Minimum value: ´0´, Maximum value: ´86400000´

The values from 1 to 999 are invalid and will be rounded up to 1000 by
UTM.

o dbkey[8] Is only relevant if the program unit belonging to the transaction code
sends database calls and the database system is linked to UTM.

In dbkey you specify the database key that UTM passes to the database
system when a program unit makes a database call. The format of the
key depends on the database system used. The key can be up to 8
characters long.
At the present time, dbkey is only supported for UDS.

Setting dbkey=’UTM’ causes the value of the start parameter DBKEY to
be passed to the database (see “Start parameters” in the openUTM
manual “Using UTM Applications”).

o runprio[3] Run priority of the process in the operating system in which the program
unit belonging to the transaction code is running.
runprio = ́ 0´ means that the transaction code is not assigned any special
run priority.

Minimum value: ´30´ (highest priority),
Maximum value: ´255´ (lowest priority)

o api UTM program interface used by the program unit belonging to the trans-
action code.

´K´
´X´
´C´

KDCS
X/Open interface XATMI
X/Open interface CPI-C

o satadm Specifies if UTM SAT administration privileges are required to call the
transaction code.

´Y´

´N´

The transaction code may only be called by users and partner
applications that have UTM SAT administration privileges.
satadm=´Y´ must be specified if the transaction code uses the UTM
SAT administration functions.
UTM SAT administration privileges are not required to call the
transaction code.

Field name1 Meaning

B
B
B
B
B

B

B
B

B
B

B
B
B
B
B

B
B
B

B
B
B
B

B
B

B
B

B

B

B
B
B
B
B
B

KC_CREATE_OBJECT: transaction code KDCADMI program interface

224 Administering Applications

o satsel Type of SAT logging for this transaction code.

´B´

´S´
´F´
´N´

Both successful and unsuccessful events are to be logged
(BOTH).
Only successful events are to be logged (SUCC).
Only unsuccessful events are to be logged (FAIL).
No TAC-specific SAT logging is defined.

Logging can only take place if SAT logging is activated for the appli-
cation. (See the openUTM manual “Generating Applications” for more
information on SAT logging.)

o tacunit[4] Only relevant if the application uses accounting functions (see openUTM
manual “Generating Applications”; Accounting and KDCDEF statement
ACCOUNT and openUTM manual “Using UTM Applications”; SAT
logging).

In tacunit, you enter the number of accounting units that will be charged
to a user’s account for calling this transaction code.
Only integers are allowed for tacunit.

Minimum value: ´0´, maximum value: ´4095´

o pgwt Specify only if your application processes job to TAC classes using
priority control, i.e. the KDCDEF generation contains the TAC-PRIOR-
ITIES statement.

In pgwt, you specify whether blocking calls (e.g. PGWT) can be run in a
program unit started for this transaction code.

´Y´

´N´

Blocking call can be run. Specify ’Y’ only if you assign the TAC to
a TAC class.
Blocking calls are not allowed.

Field name1 Meaning

B

B

B
B
B

B
B
B
B
B

B
B
B

KDCADMI program interface KC_CREATE_OBJECT: transaction code

Administering Applications 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o encryption_level Only for service TACs (call_type=´F´or ´B´).
In encryption_level, you specify whether messages for this transaction
code must be encrypted or not.

´1´ (Level 1)
Input messages must be encrypted using the DES algorithm for
access to the transaction code.

´2´ (Level 2)
Input messages must be encrypted using the AES algorithm for
access to the transaction code.

If encryption_level =´1´ or ´2´ is specified, the client can only start a
service using this transaction code, if one of the following condi-
tions is met:
– The client is a “trusted“ client (see kc_pterm_str or kc_tpool_str

field encryption_level).
– The client has encrypted the input message to the transaction

code with at least the specified encryption level. If a “not
trusted” client does not encrypt the first input message or does
not encrypt it to the required level or if the client does not
support encryption, no service is started.

If the transaction code is called without user data of if it is started
via service concatenation, the client must be able to encrypt data,
because UTM encrypts all dialog output messages it transmits
and, in multi-step services, expects all input messages received
from a “not trusted” client also to be encrypted.

´N´ (NONE)
No message encryption required.

o access_list[8] You use this to specify a key set that controls the access rights of users
for this transaction code. The key set must have been created dynami-
cally beforehand or defined at generation.
access_list must not be specified together with lock_code.
A user can only access the transaction code if the key set of the user, the
key set of the LTERM partner by means of which the user is signed on
and the specified key set have at least one key code in common.
If you specify neither access_list nor lock_code, the transaction code is not
protected, and any user can call it.

o q_mode Specifies how UTM responds when the maximum number of saved but
not yet executed jobs to this asynchronous TAC or to the TAC queue is
reached. The possible values are:

’S’ UTM rejects any further jobs.

’W’ Only when tac_type=’Q’:
UTM accepts further messages but deletes the oldest messages
in the queue.

Field name1 Meaning

KC_CREATE_OBJECT: transaction code KDCADMI program interface

226 Administering Applications

o q_read_acl[8] Only when tac_type=’Q’:
Specifies the rights (name of a key set) that a user requires in order to
read and delete messages from this queue.
A user only has read access to this TAC queue when the key set of the
user and the key set of the logical terminal via which the user is signed
on contain at least one key code that is also contained in the specified
key set.
If q_read_acl does not contain a value, all users can read and delete
messages from this queue.

o q_write_acl[8] Only when tac_type=’Q’:
Specifies the rights (name of a key set) that a user requires in order to
write messages to this queue.
A user only has write access to this TAC queue when the key set of the
user and the key set of the logical terminal via which the user is signed
on contain at least one key code that is also contained in the specified
key set.
If q_write_acl does not contain a value, all users can write messages to
this queue.

o dead_letter_q Specifies whether a queued message should be retained in the dead
letter queue if it was not processed correctly and it has not been
redelivered.

'Y' Messages to this asynchronous TAC or this TAC queue which
could not be processed are backed up in the dead letter queue if
they are not redelivered and (with message complexes) no
negative acknowledgement job has been defined.

'N' Messages to this asynchronous TAC or this TAC queue which
could not be processed are not backed up in the dead letter
queue. This value must be specified for all interactive TACs and
for asynchronous TACs with CALL=NEXT, as well as for
KDCMSGTC and KDCDLETQ.

1 All fields in the data structure kc_tac_str that are not listed and all fields that are not relevant to the operating
system you are using are to be set to binary zero. The data structure is described in full on page 556.

Field name1 Meaning

KDCADMI program interface KC_CREATE_OBJECT: user IDs

Administering Applications 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.3.9 obj_type=KC_USER

To create a new user ID you must place the data structure kc_user_str in the data area.

A permanent queue is available to every user ID. This queue is addressed using the name
of the user ID. The access of other users to this USER queue is controlled by means of the
values in the q_read_acl and q_write_acl fields. The maximum number of messages that can
be buffered and the response of UTM when this value is reached is determined by the
values in the qlev and q_mode fields.

The table below shows you how to supply the fields of the data structure with data.

Field name1 Meaning

m us_name[8] Name of the user ID. It can be up to 8 characters long.
If the name of the user ID matches the name of an LTERM partner
to which a UPIC client or TS application, but no user ID, has been
assigned, then no user may sign on to the UTM application using
this user ID. UTM then assigns this user ID exclusively to the client.
See section “Format and uniqueness of object names” on page 86
for more information on the format and uniqueness of the name.
Names of objects of the same name class that have been tagged for
delayed delete with KC_DELAY cannot be used.

o kset[8] Key set of the user ID. The key set must have been created dynam-
ically beforehand or generated statically. The key set determines the
access privileges of the user/client that signs on to the application
using this user ID.

o state Specifies if the user ID is to be disabled or not. No user/client can
sign on to the application using a disabled user ID. The user ID must
be released (enabled) explicitly by the administrator.

´Y´
´N´

The user ID is not to be disabled (ON).
The user ID is to be disabled (OFF).

KC_CREATE_OBJECT: user IDs KDCADMI program interface

228 Administering Applications

o card_position[3]
card_string_lth[3]
card_string_type
card_string[200]

These fields are only relevant if access to the application for this
user ID is only possible using a magnetic stripe card. The fields
specify which subfield of the identification information on the
magnetic stripe is to be checked and what information must be
contained therein.
Specifying card... excludes the possibility of specifying principal.

You must specify the following information in these fields:

card_position
Number of the byte on the magnetic stripe card where the infor-
mation to be checked begins.
card_string_lth
Length of the identification information to be checked in bytes.
Maximum value: ´100´, Minimum value: ´1´

card_position and card_string_lth must define a section of the field of
identification information within the area defined by the MAX
CARDLTH generation parameter.

card_string_type
Encoding format of the identification information to be checked:

´X´

´C´

The identification information is passed as a hexadecimal
string.
The identification information is passed as a character string.

card_string
Character string that must be contained in the section to be checked
on the magnetic stripe card. Only the length of the contents specified
in card_string_lth is relevant if card_string_type= ´C´. For
card_string_type= ´X´, the length of the relevant data is equal to
2∗card_string_lth.

The union kc_string is provided for passing identification information
(see page 587).

Field name1 Meaning

B
B
B
B

B
B
B
B
B
B

B

B
B
B
B
B
B

B
B
B

B
B

B

B

B
B
B

B
B
B
B
B
B

B
B

KDCADMI program interface KC_CREATE_OBJECT: user IDs

Administering Applications 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o password16 Password for this user ID.
The password can be up to 16 characters long. The password
specified must correspond to the complexity level specified in
protect_pw_compl and protect_pw16_lth. You must also specify how
UTM is to interpret the data in password using the password_type field.
The password must consist of characters which are permitted in the
UTM application, see the openUTM manual “Generating Applica-
tions”, USER statement.
Specifying password16 excludes the possibility of specifying
principal.

The union kc_pw16 is provided for passing the password.

union kc_pw16

char x[32]; /* for X'...' */

char c[16]; /* for C'...' */

In UTM applications on BS2000 systems you can specify the
password either as a character string or as a hexadecimal string. For
a hexadecimal password (password_type=´X´), each half byte is
displayed as a character. If you specify a password containing less
than 16 characters, then you must pad password16 to the right with
spaces (password_type= ´C´), or with the hexadecimal value for a
space (password_type=´X´).

In UTM applications running on Unix, Linux or Windows systems
you must always pass the password as a character string (field
password16.c). If you specify a password containing less than 16
characters, then you must pad password16.c to the right with blanks.

You must specify password16 if password_type =´C´ or ´X´.
You may not specify password16 if password_type = ´R´ or ´N´.

If a user ID is to be created without a password, then you cannot
specify anything in password16 and password_type. For
protect_pw_compl, you must set it to ´0´ and for protect_pw16_lth to
´00´ (default).

o password_type In password_type you must specify how the password in password is
to be interpreted.
The following entries are possible:

´C´
´X´

´N´
´R´

The password in password is interpreted as a character string.
The password in password is interpreted as a hexadecimal
password. Only allowed for user IDs in a UTM application on
a BS2000 system.
No password may be specified in password.
The password generated is a random password. Before the
user thus generated can sign on, the administrator must
explicitly reset the password.

Field name1 Meaning

B
B

B
B
B
B
B
B
B

X/W
X/W
X/W
X/W

BB
B
B

KC_CREATE_OBJECT: user IDs KDCADMI program interface

230 Administering Applications

o password_dark Specifies if a password is to be hidden when entered at a terminal.

´Y´

´N´

After KDCSIGN, UTM requests the user in an interim dialog to
enter the password in a darkened field.
The user conveys the password directly at KDCSIGN. The
password is visible on the screen during sign-on (default
value).

You can also set password_dark=´Y´ if you have not specified a
password. If the user ID is assigned a password later (with
KC_MODIFY_OBJECT, for example), the password entry will be
darkened.

Note
In applications running on Unix, Linux or Windows systems,
password entry is never darkened.

o format_attr
format_name[7]

With the aid of this field you can assign the user ID a user-specific
start string.
You must specify format_name and format_attr.

A requirement for assigning a start format is that a formatting system
must have been generated (KDCDEF command FORMSYS). If the
start format is a #Format, then a sign-on service must also have
been generated.

In format_attr you specify the format key of the start format:

´A´
´N´
´E´

for the format attribute ATTR (+Format).
for the format attribute NOATTR (*Format).
for the format attribute EXTEND (#Format).

See page 506 for the meaning of the format attributes.

In format_name you specify the name of the start format. The name
can be up to 7 characters long and may only contain alphanumeric
characters.

Field name1 Meaning

X/W
X/W
X/W

B
B
B
B
B

B
B
B
B

B

B
B
B

B
B
B

B

B
B
B

KDCADMI program interface KC_CREATE_OBJECT: user IDs

Administering Applications 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o locale_lang_id[2]
locale_terr_id[2]
locale_ccsname[8]

Language environment (locale) of the user ID.
The language environment is relevant if messages and notifications
from the application are to be output in different languages. See the
openUTM manual “Generating Applications” for details of multi-
lingual operation.

In locale_lang_id you specify the language code of the language in
which messages and notifications are to be passed. The code is a
maximum of 2 bytes long.

In locale_terr_id you specify the territorial code.
It specifies territorial particularities of the language. It is a maximum
of 2 bytes long.

In locale_ccsname you specify the CCS name of the expanded
character set (coded character set) to be used for outputting data.
The CSS name can be up to 8 characters long and must belong to
a EBCDIC character set defined on the BS2000 system (see also
the XHCS User Manual).

o protect_pw16_lth Specifies the minimum number of characters a password must
contain to be accepted as such by UTM (minimum length of the
password). The password for a user ID can only be deleted if
protect_pw16_lth =´00´.

Maximum value: ´16´,
The minimum length is dependent on the complexity level specified
in protect_pw_compl. The minimum value for protect_pw16_lth is:
´0´ for protect_pw_compl = ´0´
´1´ for protect_pw_compl = ´1´
´2´ for protect_pw_compl = ´2´
´3´ for protect_pw_compl = ´3´

Field name1 Meaning

B
B
B
B
B

B
B
B

B
B
B

B
B
B
B
B

KC_CREATE_OBJECT: user IDs KDCADMI program interface

232 Administering Applications

o protect_pw_compl Specifies the complexity level that the password for the user ID must
meet.

´0´ (NONE)
Any character string may be entered as the password.

´1´ (MIN)
A maximum of 2 characters in a row may be identical in a
password. The minimum length of a password is one
character.

´2´ (MEDIUM)
A maximum of 2 characters in a row may be identical in a
password. The password must contain at least one letter and
one number and be at least two characters long.

´3´ (MAX)
A maximum of 2 characters in a row may be identical in a
password. The password must contain at least one letter, one
number and one special character. The minimum length is 3
characters. Special characters are all characters not between
a-z, A-Z, 0-9. The space key is not a special character.

o protect_pw_time[3] Specifies the maximum number of days for which the password
remains valid (period of validity).
If protect_pw_time = ́ 0´ is specified, then the password is valid for an
unlimited amount of time.

Minimum value: ´0´, Maximum value: ´180´

o restart Specifies whether UTM saves service data for the user ID so that a
service restart is possible on the next sign-on using this user ID.

´Y
´N´

UTM saves service data
UTM does not save any service data.

o permit Specifies the administration privileges for the user ID.

´A´

´N´

´B´

´S´

 (ADMIN)
The user ID is to be able to execute administration functions
in the local application.
(NONE)
The user ID is not have any administration privileges.
In UTM applications on BS2000 systems, no UTM SAT
administration functions may be executed under this user ID.
(BOTH)
Both administration and UTM SAT administration functions
may be executed under this user ID.
(SAT)
The user ID has UTM SAT administration privileges. Prese-
lection functions may be executed.

Field name1 Meaning

B

B

B
B
B
B
B
B
B
B

KDCADMI program interface KC_CREATE_OBJECT: user IDs

Administering Applications 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

o satsel Specifies the type of SAT logging for the user ID.

´B´

´S´
´F´
´N´

Both successful and unsuccessful events are to be logged
(BOTH).
Only successful events are to be logged (SUCC).
Only unsuccessful events are to be logged (FAIL).
No user-specific SAT logging is defined (NONE).

Logging can only take place if SAT logging is activated for the appli-
cation. (See the openUTM manual “Generating Applications” and
openUTM manual “Using UTM Applications” for more information on
SAT logging.)

o protect_pw_min_time[3] Specifies the minimum term of validity in days for the password.

After changing the password, the user must not change it again
before the minimum term of validity is expired.
If a minimum term of 1 day is specified, the password cannot be
changed again before 00.00 hrs of the following day (local time of
generation).

If the password is changed by the administrator or following a regen-
eration, the user can always change the password, regardless of
whether the minimum term of validity is expired or not.

protect_pw_min_time must not be larger than protect_pw_time
(maximum term of validity).

Minimum value: ´0´
Maximum value: ´180´

o qlev[5] Specifies the maximum number of messages that can be stored
temporarily in the user’s message queue. If the threshold value is
exceeded, what happens depends on the value in the q_mode field.
When qlev=0, no messages can be stored temporarily in the queue.
When qlev=32767, there is no limit on the length of the queue.
Minimum value: 0, maximum value: 32767

o q_read_acl[8] Specifies the rights (name of a key set) that another user requires in
order to be able to read and delete messages from this USER
queue.
Another user only has read access to this USER queue if the key set
of the user’s user ID and the key set of the logical terminal via which
the user is signed on each contain at least one key code that is also
contained in the specified key set.
If q_read_acl does not contain a value, all users can read and delete
messages from this queue.

Field name1 Meaning

B

B

B
B
B

B
B
B
B
B

B
B
B
B

KC_CREATE_OBJECT: user IDs KDCADMI program interface

234 Administering Applications

o q_write_acl[8] Specifies the rights (name of a key set) that another user requires in
order to be able to write messages to this USER queue.
Another user only has write access to this queue if the key set of the
user ID and the key set of the logical terminal via which the user is
signed on each contain at least one key code that is also contained
in the specified key set.
If q_write_acl does not contain a value, all users can write messages
to this queue.

o q_mode Specifies how UTM responds when the maximum number of not yet
executed jobs in the user’s queue is reached. The possible values
are:

’S’ UTM rejects any further jobs (default).

’W’ UTM accepts further messages but deletes the oldest
messages in the queue.

o principal[100] Specifies that the user is to be authenticated via Kerberos.
Specifying principal excludes the possibility of specifying card and
password.
principal must be specified as an alphanumeric string in the form
windowsaccount@NT-DNS-REALM-NAME.
windowsaccount: Domain account of the user
NT-DNS-REALM-NAME: DNS name of the Active Directory domain

1 All fields in the data structure kc_user_str that are not listed and all fields that are not relevant to the operating
system you are using are to be set to binary zero. The data structure is described in full on page 582.

Field name1 Meaning

BB
B
B
B
B
B
B

KDCADMI program interface KC_CREATE_OBJECT: return codes

Administering Applications 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.3.10 Returncodes

in the retcode field UTM outputs the return code of the call. In addition to the return codes
listed in section “Return codes” on page 178, the following codes can also be returned.
Some of these return codes may arise independently of the object type specified; others
only occur for certain object types.

Main code = KC_MC_DATA_INVALID
A field in the data structure in the data area contains an invalid value.

Subcodes:

KC_SC_NOT_NULL
A field in the data structure that should contain a binary zero contains something else.

KC_SC_NO_INFO
A field in the data structure contains an invalid value.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NAME_MISSING
No name was specified for the object to be configured.

KC_SC_TAB_FULL
No more objects of the specified object type can be created because the table spaces reserved
during KDCDEF generation are already filled or because no table spaces for this object type
have been reserved. Please note that the table spaces occupied by objects deleted with delay
are not released.

KC_SC_EXISTENT
An object with this object name class already exists with the object name specified (see section
“Format and uniqueness of object names” on page 86). Please note that the names of deleted
objects should not be reused.

KC_SC_OBJ_DEL
The object to be configured was deleted with delay.

KC_SC_INVALID_NAME
The object name begins with ’KDC’.

KC_SC_NO_GLOB_CHANG_POSSIBLE
Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is
not consistent at present.

KC_CREATE_OBJECT: return codes for KC_CON KDCADMI program interface

236 Administering Applications

Return codes for obj_type = KC_CON:

KC_SC_GLOB_CRE_DEL_LOCKED
Only in UTM cluster applications:
It is not possible to generate an object at present because the generation or deletion of an object
or the generation, deletion or activation of an RSA key pair has not yet been completed in a node
application.

KC_SC_JCTL_RT_CODE_NOT_OK
Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING
An inverse KDCDEF is currently running or an inverse KDCDEF run is being prepared
(asynchronous), see KC_CREATE_STATEMENTS on page 251.

Main code = KC_MC_RECBUF_FULL
The buffer containing restart information is full. The buffer size is set using the KDCDEF control
statement MAX, operand RECBUF.
See the openUTM manual “Generating Applications”.

Subcode:

KC_SC_NO_INFO

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_PROCESSOR_MISSING
A processor name was not specified in pronam_long. It is mandatory to specify pronam_long in
UTM applications on BS2000 systems.

KC_SC_PROCESSOR_NOT_ALLOWED
In pronam_long a computer name has been specified that is longer than 8 characters and
contains no full stops (‘.’) which means it cannot be a DNS name.

KC_SC_LPAP_MISSING
No LPAP partner was specified.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

B
B
B

KDCADMI program interface KC_CREATE_OBJECT: return codes for KC_KSET

Administering Applications 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Return codes for obj_type = KC_KSET:

Return codes for obj_type = KC_LSES:

Return codes for obj_type = KC_LTAC:

KC_SC_LPAP_NOT_EXISTENT
The specified LPAP partner does not exist.

KC_SC_BCAMAPPL_NOT_EXISTENT
The application name specified in bcamappl does not exist.

KC_SC_TPROT_NOT_ALLOWED
A BCAMAPPL is referenced with t_prot=socket.

KC_SC_INVALID_LISTENID
The number specified in listener_port is impermissible.

KC_SC_LISTENER_PORT_MISSING
No listener_port was specified.

KC_SC_INVALID_BCAMAPPL_PORT
The specified port number is invalid.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_INVALID_KEY_VALUE
An attempt was made to create more keys than are permitted by the maximum value generated
in the application.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_LPAP_MISSING
No LPAP partner was specified.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_INVALID_WAITTIME
A negative wait time was assigned to the waittime parameter.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

X/W
X/W

X/W
X/W

X/W
X/W

X/W
X/W

KC_CREATE_OBJECT: return codes for KC_LTERM KDCADMI program interface

238 Administering Applications

Return codes for obj_type = KC_LTERM:

KC_SC_INVALID_LTACUNIT
A value less than 0 or greater than 4095 was assigned to the ltacunit parameter.

KC_SC_INVALID_LOCK
The lockcode specified in the LTAC statement is less than 0 or greater than the permitted
maximum value (KDCDEF statement MAX, KEYVALUE operand).

KC_SC_NOT_ALLOWED
lock_code and access_list cannot be specified together.

KC_SC_INVALID_ACL
The specified key set does not exist.

KC_SC_INVALID_RTAC
When code=INTEGER: The value for recipient_TPSU_title exceeds the max. permitted value.
When code=PRINTABLE-STRING: The RTAC name is incorrect.

KC_SC_LPAP_NOT_EXISTENT
The specified LPAP, OSI-LPAP or master LPAP partner does not exist.

KC_SC_KSET_DEL
The key referenced via access_list was deleted.

KC_SC_NAME_TOO_LONG
The name assigned to the rtac parameter is too long.

KC_SC_NAME_TOO_SHORT
The name assigned to the rtac parameter is too short.

KC_SC_INVALID_CHAR_IN_STRING
The RTAC name is incorrect.

Main code = KC_MC_OK
The call was processed without errors.

Subcode:

KC_SC_INVALID_LEVEL
You have specified values in plev and/or qlev that exceed the maximum value allowed. The value
specified is replaced by the default value.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_INVALID_NAME
The name specified for the object begins with "KDC". See section “Format and uniqueness of
object names” on page 86 for information on object names.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KDCADMI program interface KC_CREATE_OBJECT: return codes for KC_LTERM

Administering Applications 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

KC_SC_NAME_EXISTENT
The name specified for the object to be created already exists as a TAC name.

KC_SC_INVALID_FORMAT
The format specified in format_name is a #Format, but no sign-on service was generated (there
is no TAC with the name KDCSGNTC).

KC_SC_NO_FORMAT_ALLOWED
A start format was specified in format_name and format_attr but no formatting system was
generated (KDCDEF control statement FORMSYS).

KC_SC_INVALID_FORMAT_USAGE
A start format was specified in format_name, format_attr although usage_type =´O´ has been
specified.

KC_SC_INVALID_PLEV_RESTART
plev > ´0´ and restart =´N´ has been set.

KC_SC_INVALID_PLEV_QAMSG
plev > ´0´ and qamsg = ´N´ has been set.

KC_SC_INVALID_PLEV_USAGE
plev > ´0´ and usage_type = ´D´ has been set.

KC_SC_INVALID_RESTART_QAMSG
restart = ´N´ and qamsg = ´Y´ have been set.

KC_SC_KSET_NOT_EXISTENT
No key set exists for the name specified in kset.

KC_SC_INVALID_USAGE_CTERM
The LTERM partner is to be assigned a printer control LTERM (specified in cterm), although
usage_type = ´D´ has been specified (dialog partner).

KC_SC_CTERM_NOT_EXISTENT
The name specified in cterm (printer control LTERM) does not exist.

KC_SC_CTERM_DEL
The LTERM partner belonging to the name specified in cterm has been deleted.

KC_SC_INVALID_CTERM_USAGE
The LTERM partner belonging to the name specified in cterm is not a dialog partner
(usage_type=´D´).

KC_SC_INVALID_USER_USAGE
The LTERM partner is to be assigned a user ID (specified in user_gen); however, usage_type is
set to ´O´ (printer).

KC_SC_USER_NOT_ALLOWED
A user ID is specified in the user_gen field, but the application was generated without user IDs.

KC_SC_KSET_DEL
The referenced key set was deleted.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_CREATE_OBJECT: return codes for KC_PROGRAM KDCADMI program interface

240 Administering Applications

Return codes for obj_type = KC_PROGRAM:

KC_SC_USER_NOT_EXISTENT
The user ID specified in user_gen does not exist; the application was generated with user IDs.

KC_SC_USER_DEL
The user ID specified in user_gen has been deleted.

KC_SC_USER_NOT_ADMINISTRABLE
The user ID specified in user_gen cannot be administered because, for example, it is a user ID
that was created internally by UTM.

KC_SC_USER_ALREADY_EXISTS
The application was generated without user IDs.
A user ID created implicitly by UTM already exists with the name you have specified in lt_name
(name of the LTERM partner).

KC_SC_CTERM_IS_TPOOL
The object specified in cterm is an LTERM partner that belongs to an LTERM pool. It cannot be
specified as a printer control LTERM.

KC_SC_CTERM_IS_MUX
The object specified in cterm is an LTERM partner that belongs to a multiplex connection. It
cannot be specified as a printer control LTERM.

KC_SC_CTERM_IS_UTM_D
The name specified in cterm belongs to an LPAP or OSI-LPAP partner for the purpose of
connecting partner servers.

KC_SC_INVALID_LOCK
The lock code specified in lock_code does not lie in the range between 1 and the maximum value
allowed for the application (KDCDEF command MAX, KEYVALUE operand).

KC_SC_INVALID_BUNDLE_CTERM
The specified CTERM is a master or slave of an LTERM bundle.

KC_SC_PRINCIPAL_AND_KERBEROS
The value 'Y' in kerberos _dialog is not permitted if both MAX PRINCIPAL-LTH and MAX
CARDLTH have the value 0.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_LMOD_MISSING
No load module / shared object / DLL was specified in load_module.

KC_SC_COMP_MISSING
No compiler was specified in compiler.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

B
B
B

B
B

KDCADMI program interface KC_CREATE_OBJECT: return codes for KC_PTERM

Administering Applications 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Return codes for obj_type = KC_PTERM:

KC_SC_LMOD_NOT_EXISTENT
The load module / shared object / DLL specified in load_module does not exist.

KC_SC_LMOD_NOT_CHANGEABLE
The load module / shared object / DLL specified in load_module cannot be exchanged.

KC_SC_NO_LMOD
The application was not generated with load modules / shared objects / DLLs. No program unit
can be added dynamically to the configuration using KC_CREATE_OBJECT.

KC_SC_COMP_NOT_GEN
The application does not contain a language connection module that corresponds to the
compiler specified in compiler.

KC_SC_KDCADM_ONCALL_LMOD
The default administration program KDCADM may not be created with the load mode set to
ONCALL.

KC_SC_MFCOBOL_AND_NETCOBOL
It is not permitted to use programs for MFCOBOL (Micro Focus COBOL) and NETCOBOL
simultaneously in a UTM application.

KC_SC_LANG_ENV_MISSING
No language environment is available for MFCOBOL or NETCOBOL

Main code = KC_MC_OK
The call was processed without any errors.

Subcodes:

KC_SC_INVALID_USAGE_APPLI_UPIC
The values specified in ptype and usage_type are not compatible. ptype = ́ UPIC-...´ was specified
with usage_type = ´O´. The value in usage_type was automatically set to ´D´.

KC_SC_INVALID_IDLETIME
The value of the idletime parameter was changed because you entered a value between 1 and
59. UTM has set idletime to the smallest valid value.

KC_SC_INVALID_PROTOCOL
The values specified in ptype and protocol are not compatible. The following cases can arise:

– ptype = ´UPIC-...´ or ´*RSO´ and protocol = ´S´ were specified. The value in protocol was
automatically set to ´N´.

– ptype=´*ANY´ and protocol =´N´ were specified. The value in protocol was automatically set
to ´S´.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

X/W
X/W
X/W

X/W
X/W

KC_CREATE_OBJECT: return codes for KC_PTERM KDCADMI program interface

242 Administering Applications

KC_SC_INVALID_USAGE_AND_PROT
The values specified in ptype, protocol and usage_type are not compatible. ptype = ´UPIC-...´ was
specified with usage_type = ´O´ and protocol = ´S´. The value in usage_type was automatically set
to ´D´, the value in protocol was set to ´N´.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_PROCESSOR_MISSING
No computer name was specified in pronam_long. It is mandatory to specify pronam_long in UTM
applications on BS2000 systems.

KC_SC_PTYPE_MISSING
No partner type was specified in ptype. It is mandatory to specify it for UTM applications on
BS2000 systems.

KC_SC_PROCESSOR_NOT_ALLOWED
In pronam_long a computer name has been specified that is longer than 8 characters and
contains no full stops (‘.’) which means it cannot be a DNS name,

or - on Unix, Linux and Windows systems - a computer name has been specified in pronam_long
although ptype=´TTY´, ´PRINTER´ or ´UPIC-L´ has been set.

KC_SC_INVALID_NAME
The object name specified begins with "KDC". This name is reserved for UTM. See section
“Format and uniqueness of object names” on page 86 for information on the format of object
names.

KC_SC_INVALID_STATUS_CONNECT
state = ´N´ was specified together with auto_connect = ´Y´.

KC_SC_INVALID_PROTOCOL_USAGE
protocol = ́ N´ was specified together with usage_type = ́ O´, and ptype was not assigned to ́ RSO´
or ´APPLI´ or ´SOCKET´.

KC_SC_INVALID_CID_USAGE
A printer ID was specified in cid although usage_type = ´D´ (on BS2000 systems) or ptype=´tty´
(on Unix, Linux and Windows systems) was specified.

KC_SC_BCAMAPPL_NOT_EXISTENT
The application name specified in bcamappl does not exist.

KC_SC_INVALID_BCAMAPPL_PORT
Invalid listener port

KC_SC_INVALID_BCAMAPPL_PTYPE
The name specified in bcamappl is not identical to the application name (APPLINAME) defined
in the KDCDEF control statement MAX, although ptype ≠ ´APPLI´, ´SOCKET´ or ´UPIC-R´.

Main code = KC_MC_OK
The call was processed without any errors.

Subcodes:

B
B
B

B
B
B

X/W
X/W

KDCADMI program interface KC_CREATE_OBJECT: return codes for KC_PTERM

Administering Applications 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

KC_SC_LTERM_NOT_EXISTENT
The LTERM partner specified in lterm does not exist.

KC_SC_PTYPE_NO_LTERM
ptype = ´APPLI´, ´SOCKET´ or ´UPIC-...´ was specified, but no LTERM partner was specified in
lterm.

KC_SC_INVALID_USAGE_LTERM
The value specified in usage_type is not compatible with the LTERM partner specified in lterm.

KC_SC_INVALID_BUNDLE_USAGE
usage_type=´O´ not permitted for bundle

KC_SC_INVALID_BUNDLE
usage_type=´D´ was specified and an LTERM partner was specified in lterm that already has
been assigned a client.

KC_SC_INVALID_GROUP_USAGE
usage_type=´O´ not permitted for group

KC_SC_INVALID_PROV_BUNDLE
usage_type=´D´ was specified and an LTERM partner was specified in lterm that already has
been assigned a client in this transaction.

KC_SC_LTERM_DEL
The LTERM partner specified in lterm has been deleted.

KC_SC_CID_MISSING
No data was specified in cid:
The LTERM partner specified in lterm is assigned a printer control LTERM (specified in cterm).
A printer ID must then be specified for the printer.

KC_SC_INVALID_CID
The printer ID specified in cid already belongs to another printer that has been assigned to the
same printer control LTERM.

KC_SC_CTERM_DEL
The printer control LTERM of the LTERM partner specified in lterm has been deleted.

KC_SC_USRT_TAB_FULL
For ptype = ́ APPLI´, ́ SOCKET´ or ́ UPIC-...´: UTM cannot create a connection user ID because
all table spaces reserved for user IDs during generation have been used.

KC_SC_PROCESSOR_NOT_ALLOWED
The name of a computer was specified in pronam although ptype = ´TTY´, ´PRINTER´ or
´UPIC-L´ was specified.

KC_SC_INVALID_MAP_PTYPE
map ≠ ´U´ was specified although ptype ≠ ´APPLI´ or ´SOCKET´ was specified.

KC_SC_INVALID_MAP_AND_PROT
map ≠ ´U´ was specified although ptype ≠ ´SOCKET´ was specified.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

X/W
X/W
X/W

X/W
X/W

B
B

KC_CREATE_OBJECT: return codes for KC_PTERM KDCADMI program interface

244 Administering Applications

KC_SC_INVALID_CONNECT_PTYPE
auto_connect=´Y´ was specified together with ptype = ´TTY´ or ´UPIC-...´.

KC_SC_INVALID_AUTOUSER_PTYPE
ptype = ´APPLI´, ´SOCKET´ or ´UPIC-...´:
The connection user ID (user_gen) defined for the LTERM partner specified in lterm is not
created in the same transaction.

KC_SC_INVALID_LTERM_PTYPE
ptype= ´APPLI´, ´SOCKET´ or ´UPIC-...´:
The LTERM partner specified in lterm is not created in the same transaction.

KC_SC_LTERM_IS_TPOOL
The LTERM partner specified in lterm belongs to an LTERM pool.

KC_SC_LTERM_IS_MUX
The LTERM partner specified in lterm belongs to a multiplex connection, i.e. it has been created
implicitly by UTM for a multiplex connection.

KC_SC_LTERM_IS_UTM_D
The name specified in lterm belongs to an LPAP or OSI-LPAP partner for connecting partner
servers.

KC_SC_LTERM_IS_MASTER
The specified LTERM is a master Lterm.

KC_SC_LTERM_IS_ALIAS
The specified LTERM is an alias Lterm.

KC_SC_INVALID_GROUP_PTYPE
The specified LTERM is a primary Lterm and the PTYPE is not APPLI or SOCKET.

KC_SC_INVALID_LTERM_SLAVE_PTYP
The specified LTERM is a slave Lterm and the PTYPE is not APPLI or SOCKET.

Different PTYPEs within a bundle.

KC_SC_INVALID_APPLI_USER
ptype = ´APPLI´, ´SOCKET´ or ´UPIC-R´:
For the LTERM partner specified in the lterm field, no connection user ID has been specified,
i.e. user_gen was not specified when the LTERM partner was added. A user ID with the name of
the LTERM partner exists, but it was not created in the same transaction as the client (see
page 78f).

KC_SC_INVALID_LISTENID
The number specified in listener_port is invalid.

KC_SC_PRONAM_NOT_RSO
´∗RSO´ was specified in ptype, but pronam_long was not set to ´*RSO´.

KC_SC_PTYPE_NOT_RSO
´∗RSO´ was specified in pronam_long, but ptype was not set to ´*RSO´.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

X/W
X/W

B
B
B

B

B
B

B
B

B
B

KDCADMI program interface KC_CREATE_OBJECT: return codes for KC_PTERM

Administering Applications 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

KC_SC_INVALID_USAGE_APPLI_UPIC
ptype=´APPLI´, ´SOCKET´ or ´UPIC-...´ was specified with USAGE=´O´.

KC_SC_INVALID_IDLETIME_USAGE
idletime was specified for an output station.

KC_SC_INVALID_AUTOUSER_PTYPE
ptype =´APPLI´, ´SOCKET´ or ´UPIC-...´ was specified, but the USER with the name of the
specified LTERM is not created by the same transaction.

KC_SC_PRINTER_NT_NOT_SUPPORTED
ptype=´PRINTER´ was specified in the UTM application on Windows systems, however,
openUTM on Windows systems does not support printers.

KC_SC_INVALID_PTYPE_AND_PROT
The PTERM has not been generated with ptype=´SOCKET´ and the referenced BCAMAPPL
has been generated with TCP/IP.

BS2000 systems: The PTERM has been generated with ptype=´SOCKET´ and the referenced
BCAMAPPL has not been generated with TCP/IP.

KC_SC_INVALID_TPROT_AND_TPROT
The PTERM referenced with ptype=´SOCKET´ and the referenced BCAMAPPL is not generated
with TCP/IP.

KC_SC_INVALID_USP_AND_PROT
A value not equal to NO is contained in the usp_hdr field, and the referenced BCAMAPPL does
not have TCP/IP.

KC_SC_TPROT_NOT_ALLOWED
Transport protocol not permitted.

KC_SC_KEY_NOT_GEN_CREA_IT
An encryption level for which no RSA key pair was created at generation was selected in the
encryption_level field. If a PTERM is to be created with this encryption level, you must first
dynamically generate an RSA key pair with the desired encryption level. Note that this can take
quite a long time for encryption levels 3 and 4.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

W
W
W

B
B

X/W
X/W
X/W

KC_CREATE_OBJECT: return codes for KC_TAC KDCADMI program interface

246 Administering Applications

Return codes for obj_type = KC_TAC:

Main code = KC_MC_OK
The call was processed without error.

Subcode:

KC_SC_INVALID_VALUE
One or more of the following values were invalid or were set automatically:

– A number was specified in qlev that is larger than the maximum number permitted. UTM
replaced the value with the maximum value.

– A time between ´1´ and ´999´ msec was specified in cpu_time_msec. The time was set to
´1000´. T

– A time was specified in cpu_time_msec that is larger than the maximum value permitted. The
value was replaced with the maximum value.

– A time was specified in real_time_sec that is larger than the maximum value permitted. The
value was replaced with the maximum value.

– A priority between ´1´ and ´29´ was specified in runprio. The value was set to ´30´.
– A value was specified in tacunit that is larger than the maximum value allowed. The value

was replaced with the maximum value.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED
The specification of lock_code and access_list together is not permitted.

KC_SC_PROGRAM_MISSING
No data was entered in program.

KC_SC_INVALID_TYPE
No queues are permitted in UTM-FF.

KC_SC_INVALID_NAME
You tried to generate an administration TAC without setting admin=’Y’ or the TAC name
(tc_name) begins with "KDC". These names are reserved for UTM. See section “Format and
uniqueness of object names” on page 86 for information on the format of object names.

KC_SC_TACUNIT_ILL
Invalid value for tacunit.

KC_SC_PROGRAM_NOT_EXISTENT
The program unit specified in program does not exist.

KC_SC_INVALID_EXIT_PROGRAM
The VORGANG exit specified in exit_name belongs to a load module / shared object / DLL
generated with the load mode set to ONCALL. However, this load module does not contain the
program unit specified in program.

KDCADMI program interface KC_CREATE_OBJECT: return codes for KC_TAC

Administering Applications 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

KC_SC_NAME_EXISTENT
The transaction code specified in tc_name is already defined as an LTERM partner. The names
of transaction codes and LTERM partners belong to the same name class (see section “Format
and uniqueness of object names” on page 86).

KC_SC_EXIT_NEXT_TAC
A VORGANG exit was specified in exit_name although the transaction code should have been
configured as a follow-up (next) TAC (call_type=´N´).

KC_SC_PROGRAM_DEL
The program unit specified in program has been deleted.

KC_SC_EXIT_NOT_EXISTENT
The VORGANG exit specified in exit_name does not exist.

KC_SC_INVALID_TCBENTRY
Specifying tcbentry is not allowed.

KC_SC_EXIT_DELETED
The VORGANG exit specified in exit_name has been deleted.

KC_SC_XOPEN_NOT_ALLOWED
A value not equal to ´K´ (KDCS) was specified in api and the application was generated without
X/Open TACs. You can only dynamically configure a transaction code for a program unit that
uses the X/Open program interface functions if at least one transaction code of this type was
statically generated with KDCDEF.

KC_SC_INVALID_QMODE
q_mode=´W´ is only permitted for TAC queues.

KC_SC_INVALID_QMODE_QLEV
q_mode=´W´ but qlev is not between 1 and 32766.

KC_SC_INVALID_QMODE_FF
Invalid q_mode for UTM-FF.

KC_SC_KSET_DEL
The key set referenced via kset or access_list was deleted.

KC_SC_READ_ACL_DEL
The key set referenced via q_read_acl was deleted.

KC_SC_WRITE_ACL_DEL
The key set referenced via q_write_acl was deleted.

KC_SC_INVALID_LOCK
The lock code specified in lock_code is not between 1 and the maximum value (KEYVALUE
operand of the MAX command) allowed for the application.

KC_SC_INVALID_TACCLASS
The data specified in tacclass and tac_type is incompatible:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_CREATE_OBJECT: return codes for KC_USER KDCADMI program interface

248 Administering Applications

Return codes for obj_type = KC_USER:

– tac_type=´D´ (dialog TAC) was specified and a value was specified in tacclass that is not
between ´1´ and ´8´.

– tac_type=´A´ (asynchronous TAC) was specified and a value was specified in tacclass that
is not between ´9´ and ´16´.

KC_SC_NO_TACCLASS_GENERATED
Data was specified in the tacclass field, but the application was generated without TAC classes.

KC_SC_PGWT_TACCLASS
’Y’ was specified in pgwt. That is not allowed if the TAC-PRIORITIES statement was issued,
during the KDCDEF generation.

KC_SC_PGWT_NO_PGWT_TASKS
’Y’ was specified in pgwt, but MAX TASKS-IN-PGWT=0 (default) was specified in KDCDEF
generation of the application.

KC_SC_ILLEGAL_STATUS
’K’ (Keep) was specified in state, although tac_type=´D´ (i.e. the transaction code is not an
asynchronous TAC) and/or call_type≠´F´or ´B´ (the transaction code is not defined as the first
TAC of a service).

KC_SC_PGWT_YES_NO_TACCLASS
You entered ’Y’ for pgwt, although the application was generated without TAC classes.

KC_SC_CALLTYPE_N_ENCRYPT
You entered ’1’ for encryption_level ́ 1´, although the TAC is not a service TAC, i.e. call_type=´N´.

KC_SC_INVALID_READ_ACL
The key set specified in q_read_acl does not exist.

KC_SC_INVALID_WRITE_ACL
The specified key specified in q_write_acl set does not exist.

KC_SC_INVALID_ACL
The specified key set specified in access_list does not exist.

KC_SC_DLETQ_YES_NOT_ALLOWED
Invalid value for dead_letter_q.

Main code = KC_MC_OK
The call was processed without error.

Subcode:

KC_SC_INVALID_PROTECT_PW
The value specified in protect_pw16_lth and/or in protect_pw_time were larger than the maximum
value allowed. The value was set to the maximum value.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KDCADMI program interface KC_CREATE_OBJECT: return codes for KC_USER

Administering Applications 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcodes:

KC_SC_CARD_TAB_FULL
The table space reserved for CARD during KDCDEF generation is already occupied or no
table spaces were reserved for CARD.

KC_SC_NO_CARD_ALLOWED
card... was specified even though no formatting has been generated.

KC_SC_INVALID_NAME
The user ID (us_name) specified begins with "KDC". These names are reserved for UTM. See
section “Format and uniqueness of object names” on page 86 for information on the format of
the object names.

KC_SC_INVALID_FORMAT
The start format specified in format_name and format_attr is a #Format, but no sign-on service
was generated (there exists no TAC with the name KDCSGNTC).

KC_SC_NO_FORMAT_ALLOWED
A start format was specified in format_name and format_attr, but no formatting system was
generated (KDCDEF control statement FORMSYS).

KC_SC_COMPL_MISSING
The password specified in password does not meet the complexity level required in protect_pw_-
compl.

KC_SC_KSET_NOT_EXISTENT
No key set exists for the name specified in kset.

KC_SC_INVALID_POSITION
The value specified in card_position is invalid.

KC_SC_MIN_LTH_WITHOUT_PASSWORD
No password was specified in password16 although protect_pw16_lth > ´0´ is set.

KC_SC_APPLICATION_WITHOUT_USER
You cannot create a user ID because the application was generated without user IDs.

KC_SC_INVALID_READ_ACL
The key set specified in q_read_acl does not exist.

KC_SC_INVALID_WRITE_ACL
The specified key specified in q_write_acl set does not exist.

KC_SC_INVALID_QMODE_QLEV
q_mode=´W´ but qlev is not between 1 and 32766

KC_SC_INVALID_QMODE_FF
Invalid q_mode for UTM-FF

KC_SC_KSET_DEL
The key set referenced via kset was deleted.

KC_SC_READ_ACL_DEL
The key set referenced via q_read_acl was deleted.

X/W
X/W

B
B
B

B
B
B

B
B

KC_CREATE_OBJECT: return codes for KC_USER KDCADMI program interface

250 Administering Applications

KC_SC_WRITE_ACL_DEL
The key set referenced via q_write_acl was deleted.

KC_SC_INVALID_PRINCIPAL
A principal was specified and at the same time the CARD or PASSWORD parameter was
specified.

KC_SC_INVALID_QLEV_FF
Invalid qlev for UTM-FF

KC_SC_PRINCIPAL_AND_PW
It is not possible to generate a USER with both a principal and a password.

KC_SC_PRINCIPAL_AND_CARD
It is not possible to generate a USER with both a principal and a chip card.

KC_SC_PRINCIPAL_TABLE_FULL
The table space reserved for PRINCIPAL during KDCDEF generation is already occupied or no
table spaces were reserved for PRINCIPAL.

KC_SC_PRINCIPAL_TOO_LONG
The principal is longer than the value specified in MAX PRINCIPAL-LTH.

KC_SC_INVALID_CLUSTER_RESTART
Only for UTM cluster applications:
Invalid value for restart.

Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcodes:

B
B
B

B
B

B
B

B
B
B

B
B

KDCADMI program interface KC_CREATE_STATEMENTS

Administering Applications 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.4 KC_CREATE_STATEMENTS -
Create KDCDEF control statements (inverse KDCDEF)

KC_CREATE_STATEMENTS allows you to start an inverse KDCDEF run during the appli-
cation run (online). The inverse KDCDEF creates KDCDEF control statements from the
configuration data. In this way, all changes resulting from dynamically adding, modify and
deleting objects can be carried over to a new generation.

The KDCDEF control statements created by the inverse KDCDEF represent a consistent
state of the configuration of the running application in the following sense:

The changes to the configuration data carried out by a transaction are always taken fully
into account by an inverse KDCDEF running simultaneously.

See also the section on inverse KDCDEF runs in the openUTM manual “Generating Appli-
cations”.

● The inverse KDCDEF allows you to create the following KDCDEF control statements:

● CON statements for transport connections to remote LU6.1 applications

● KSET statements for all key sets

● LSES statements for all LU6.1 sessions

● LTAC statements for transaction codes by means of which service programs are started
in partner applications.

● LTERM statements for all LTERM partners that do not belong to an LTERM pool or a
multiplex connection

● PTERM statements for all clients and printers that have been explicitly added to the
configuration

● PROGRAM statements for all program units and VORGANG exits

● TAC statements for all transaction codes and TAQ queues in the application

● USER statements for all user IDs including their queues

The inverse KDCDEF creates a control statement for each object of the specified type that
is contained in the configuration, irrespective of whether these objects were loaded dynam-
ically or not and whether their properties have been modified or not. The inverse KDCDEF
does not create control statements for objects deleted with KC_DELETE_OBJECT.

You can find detailed information on the inverse KDCDEF in chapter “Generating KDCDEF
statements from the KDCFILE” on page 105.

KC_CREATE_STATEMENTS KDCADMI program interface

252 Administering Applications

Controlling the inverse KDCDEF run

The inverse KDCDEF differentiates between the following seven object groups

You can use the KC_CREATE_STATEMENTS call to create KDCDEF control statements
for objects of one or more of these groups.

You must specify the file in which UTM is to write the KDCDEF control statements in the
KC_CREATE_STATEMENTS call. You can have all control statements written into one file
or you can specify a file for each of the object groups. You may also specify in the call
whether UTM is to create a new file or append the data to an existing file.
On BS2000 systems, the control statements can also be written to an LMS library element
instead of a file. The procedure for library elements is similar to the procedure for files.

Execution of an inverse KDCDEF run

The time at which the inverse KDCDEF run is started and execution itself are dependent on
the current state of the application. The following two cases can occur:

● The inverse KDCDEF run is started asynchronously if transactions that have write
access to the configuration data of the objects are running at the time of the KC_CRE-
ATE_STATEMENTS call. The inverse KDCDEF run is only started after these transac-
tions have been completed. In the case of new transactions that are intended to change
data in the object tables, the corresponding calls to change the configuration data of the
application are rejected until the inverse KDCDEF run is completed (i.e. until the
asynchronous job is processed).

The following also applies in UTM cluster applications:
In all running node applications, an administration action which applies globally to the
cluster results in this type of transaction which may delay the start on the inverse
KDCDEF. Conversely, the execution of a global administration action at a running node
may be delayed if an inverse KDCDEF is currently running there.

First group LTERM partners, clients, printers (object types: KC_LTERM, KC_PTERM)

Second group program units, transaction codes, TAC queues
(object types: KC_PROGRAM, KC_TAC)

Third group user IDs (object type: KC_USER)

Fourth group key sets (object type: KC_KSET)

Fifth group transaction codes via which the service programs are started in partner
applications (object type: KC_LTAC)

Sixth group transport connections to LU6.1 applications
(object type: KC_CON)

Seventh
group

LU6.1 sessions (object type: KC_LSES)

B

B

KDCADMI program interface KC_CREATE_STATEMENTS

Administering Applications 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

● The inverse KDCDEF run is started synchronously if no transactions that have write
access to the configuration data of the objects are running at the time of the KC_CRE-
ATE_STATEMENTS call. The run is already finished when control returns to the admin-
istration program. This means that, at this point in time, all of the KDCDEF control state-
ments requested have been created and written to the files specified.

Results of the inverse KDCDEF runs

After a successful inverse KDCDEF run, the control statements requested are stored in the
files specified in the call. These files can be used as input for the UTM generation tool
KDCDEF when regenerating the application. You must pass each of the files to KDCDEF
with the KDCDEF control statement OPTION DATA=filename. The files can be edited and
modified.
The same applies if the control statements on BS2000 systems are written to LMS library
elements instead of to files. However, whether or not elements can be edited depends on
their type: only text-type elements can be modified.

Transaction management / cluster

The KC_CREATE_STATEMENTS call only reads the data in the KDCFILE. For this reason,
the call is not subject to transaction management. The call cannot be undone in the same
transaction using an RSET call.

The following applies in UTM cluster applications:
The call applies locally to the node, i.e. an inverse KDCDEF run for the generation of control
statements from the configuration data is only started in this node application. It is sufficient
for the effect to be local to the node since the same objects exist in every node application.
An effect global to the cluster would simply generate identical KDCDEF statements.

If node applications with different generations are running (during an online update), then
the call is rejected since the result would otherwise depend on the application at which the
call was executed.

B

B

B

KC_CREATE_STATEMENTS KDCADMI program interface

254 Administering Applications

Data to be supplied

Function of the call Data to be entered in the

parameter area identifi-
cation area

selection
area

data area

Create KDCDEF
control statements
online

Operation code:
KC_CREATE_

STATEMENTS

—— —— Data structure with infor-
mation on the type of control
statements to be created as
well as the names and write
modes of the files

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_CREATE_STATEMENTS

id_lth 0

select_lth 0

1. data_lth Length of data in the data area

Identification area

—

Selection area

—

Data area

2. Data structure kc_create_statements_str

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area)

KDCADMI program interface KC_CREATE_STATEMENTS

Administering Applications 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

1. In data_lth you specify the length of the data structure kc_create_statements_str.

2. In the data area you must specify whether or not UTM is to create the KDCDEF control
statements for each of the object groups. If UTM is to create control statements for an
object group, you must also specify the file in which UTM is to write the control state-
ments and the write mode of the file. The header file kcadminc.h contains the following
data structure definition for passing information to UTM.

Definition of constants

#define KC_FILE_NAME_LTH 54
#define KC_ELEM_NAME_LTH 64
#define KC_VERSION_LTH 24
#define KC_TYPE_LTH 8

Definition of the index constant

typedef enum
{ KC_DEVICE_STMT = 0,

KC_PROGRAM_STMT = 1,
KC_USER_STMT = 2,
KC_KSET_STMT = 3,
KC_LTAC_STMT = 4,
KC_CON_STMT = 5,
KC_LSES_STMT = 6,
KC_MAX_STMT_TYPE = 6,
KC_DUMMY_STMT_TYPE = 7

} KC_INVDEF_TYPE;

Definition of the data structure

struct kc_create_statements_str
{ struct

{ char create_control_stmts;
char file_name[KC_FILE_NAME_LTH];
char file_mode;
char lib_name[KC_FILE_NAME_LTH];
char elem_name[KC_ELEM_NAME_LTH];
char vers[KC_VERSION_LTH];
char type[KC_TYPE_LTH];

} type_list[(int)KC_MAX_STMT_TYPE + 1];

Data returned by UTM

Parameter area

Field name Contents

3. retcode Return codes

KC_CREATE_STATEMENTS KDCADMI program interface

256 Administering Applications

 char stmt_type;
 char file_error_code[4];
};

The KC_INVDEF_TYPE index of the type_list array specifies the group to which the
objects belong:

KC_DEVICE_STMT
stands for the first group, consisting of the LTERM partners, clients and
printers. The KDCDEF control statements LTERM and PTERM are created
in this group.

KC_PROGRAM_STMT
stands for the second group, consisting of the program units, transaction
codes and TAC queues. The KDCDEF control statements PROGAM and
TAC are created in this group.

KC_USER_STMT
stands for the third group, consisting of the UTM user IDs. The KDCDEF
USER control statements are created in this group.

KC_KSET_STMT
Stands for the 4th group, the KSETs. The KDCDEF control statements
KSET are generated in this group.

KC_LTAC_STMT
stands for the 5th group, the transaction codes by means of which service
programs are started in partner applications. The KDCDEF LTAC control
statements are created in this group.

KC_CON_STMT
Stands for the 4th group, the transport connections to LU6.1 applications.
The KDCDEF control statements CON are generated in this group.

KC_LSES_STMT
stands for the 7th group, the LU6.1 sessions. The KDCDEF LSES control
statements are created in this group.

The fields in the data structures must be supplied with the following data:

create_control_stmts
You specify here whether or not KDCDEF control statements are to be
created for the object group belonging to KC_INVDEF_TYPE.

´Y´ KDCDEF control statements are to be created for this object group.

´N´ No KDCDEF control statements are to be created for this object group. You
can also specify the null byte (´\0´) in place of the ´N´.

KDCADMI program interface KC_CREATE_STATEMENTS

Administering Applications 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

file_name The name of the file in which the KDCDEF control statements are to be
written. The name may be up to 54 characters long. It must conform to the
file naming conventions of the operating system under which the application
is running.

On Unix, Linux and Windows systems, the file name can be specified as an
absolute or relative path name. A relative file name specification will write
the KDCDEF control statements to a file in the directory in which the appli-
cation was started.

file_mode Write mode of the file in file_name bor of the element in elem_name

´C´ Create:
UTM is to create a new file with the name file_name or a new element with
the name elem_name.

On BS2000 systems, inverse KDCDEF generates an SAM file or an LMS
library element. Here, the following applies:
– If a file of the same name already exists then it must be a SAM file. The

existing SAM file is then overwritten.
– If an element of the same name already exists and if *HIGHEST-

EXISTING or *UPPER-LIMIT is specified for vers=C'<version> then an
existing element of the specified version is overwritten.

´E´ Extend:
UTM is to append the KDCDEF control statements to an existing file or to
an existing element.

– If the file with the name file_name does not exist, UTM will create it.

– If an LMS library is specified in lib_name on BS2000 systems then the
library must already exist. In this case, an existing element of the
specified version is extended. If the element does not yet exist in this
version then it is created.

lib_name Name of the LMS library in which the KDCDEF control statements are to be
stored. The name can be up to 54 characters in length. It must comply with
the conventions for file names on the BS2000 system.

If the name is shorter than the field length then it must be padded with
spaces.

It is not permissible to specify file_name and lib_name at the same time.

If lib_name is specified then it is also necessary to enter values for
elem_name, vers and type.

X/W

X/W

X/W

X/W

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

KC_CREATE_STATEMENTS KDCADMI program interface

258 Administering Applications

elem_name
Name of the LMS library element to which the KDCDEF control statements
are to be written. The name can be up to 64 characters in length. If the name
is shorter than the field length then it must be padded with spaces. The
name must comply with the conventions for LMS element names

vers Version of the LMS library element to which the KDCDEF control state-
ments are to be written. The version can be up to 24 characters in length
and must comply with the conventions for LMS version specifications. If the
version is shorter than the field length then it must be padded with spaces.

You can also enter the following character strings as the version:

*HIGHEST-EXISTING
The statements are written to the highest version of the specified element
present in the library.

*UPPER-LIMIT
The statements are written to the highest possible version of the specified
element. LMS indicates this version by means of an "@".

*INCREMENT
A new version is created for the specified element. *INCREMENT may only
be specified if file_mode=´C´.

These character strings may not be truncated!

type Type of the LMS library element to which the KDCDEF control statements
are to be written. The type can be up to 8 characters in length and must
comply with the conventions for LMS type specifications. If the type is
shorter than the field length then it must be padded with spaces.

It is recommended to use the LMS type "S" for type.

i KDCDEF does not check whether the specifications in elem_name, vers or
type comply with the LMS syntax rules. For further information on the syntax
rules for the names of LMS elements and a specification of version and
type, see the manual "LMS SDF Format".

stmt_type If a value other than KC_MC_OK is returned as the main code then the field
stmt_type contains the index from KC_INVDEF_TYPE, to which the error
message refers.

file_error_code
If the subcode KC_SC_FILE_ERROR is returned when an error occurs
then the field file_error_code contains the DMS error code or (on BS2000
systems) the associated PLAM error code.

BB
B

B

B

B

BB

B

B

B

B

BB

B

B

BB

B

B

BB

B

B

B

BB

B

B

B

B

BB

B

B

B

KDCADMI program interface KC_CREATE_STATEMENTS: return codes

Administering Applications 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

The type_list array is processed in order starting with the first array element (index
KC_DEVICE_STMT) and proceeding to the last array element (index
KC_LSES_STMT) when UTM is called.

If UTM is to create KDCDEF control statements for all three object groups, then the
create_control_stmts field must be set to ´Y´, the file_name field must be set to the file
name and the file_mode field must be set to the write mode of the file in each array
element.

If all of the control statements are to be written to one file, then you should ensure that
the correct write mode has been set.

You can set the write mode to ´C´ or ´E´ for the first entry of the file or the LMS library
element. In the following array elements, however, the write mode must be set to ´E´.
Otherwise, the control statements just created will be overwritten.

If UTM is not to create control statements for one of the object groups, then create_con-
trol_stmts=´N´ (or nothing at all) is to be specified in the corresponding array element.

3. In the retcode field UTM outputs the return codes of the call. In addition to the codes
listed in section “Return codes” on page 178, the following return codes can also arise:

Main code = KC_MC_OK
The call was processed without errors.

Subcode:

KC_SC_ASYN_INIT
The job was accepted; the inverse KDCDEF will be started asynchronously as soon as all
transactions that modify configuration data have terminated.

Main code = KC_MC_DATA_INVALID
Invalid or missing data in the data area.

Subcodes:

KC_SC_DATA_MISSING
No data was specified in the data structure passed in the data area.

KC_SC_NO_INFO
Invalid data was specified in the data structure passed in the data area.

KC_SC_FILE_LIBRARY_MISMATCH
Both a file name (file_name) and an LMS library (lib_name) have been specified.

KC_SC_LMS_ELEMENT_MISSING
An LMS library (lib_name) was specified but no element name (elem_name).

KC_SC_LMS_VERSION_MISSING
An LMS library (lib_name) was specified but no element version (vers).

KC_SC_LMS_TYPE_MISSING
An LMS library (lib_name) was specified but no element type (type).

B
B

B
B

B
B

B
B

KC_CREATE_STATEMENTS: return codes KDCADMI program interface

260 Administering Applications

KC_SC_LMS_VERSION_MODE_MISMATCH
*INCREMENT was specified as LMS version but file_mode is not ´C´.

Main code = KC_MC_MEMORY_INSUFF
There is not enough internal UTM memory available.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING
An inverse KDCDEF is currently running or an inverse KDCDEF run is being prepared
asynchronously, i.e. the job cannot be processed at the present time.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_GEN
KDCDEF control statements are to be generated for objects whose types were not
generated, such as USER commands for an application without user IDs.

KC_SC_FILE_ERROR
One of the files in which the KDCDEF control statements are to be written cannot be written
to. A DMS error code or (on BS2000 systems) a PLAM error code is returned in the field
file_error_code. This code provides ingormation about the error that has occurred

KC_SC_NO_INFO
The page pool used to temporarily store the parameters passed is full.

KC_SC_CLUSTER_CONF_INCONS
Only for UTM cluster applications:
The running node applications have different generations.

Main code = KC_MC_DATA_INVALID
Invalid or missing data in the data area.

Subcodes:

B
B

KDCADMI program interface KC_DELETE_OBJECT

Administering Applications 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

11.2.5 KC_DELETE_OBJECT - Delete objects

KC_DELETE_OBJECT allows you to delete objects belonging to one of the following object
types from the configuration:

– transport connections to remote LU6.1 applications (KC_CON)
– key sets (KC_KSET)
– LU6.1 sessions (KC_LSES)
– transaction codes by means of which service programs can be started in partner appli-

cations (KC_LTAC)
– LTERM partners used to connect clients and printers (KC_LTERM)
– clients and printers (KC_PTERM)
– application program units and VORGANG exits (KC_PROGRAM)
– transaction codes and TAC queues (KC_TAC)
– user IDs including their queues (KC_USER)

You can find more detailed information on dynamically deleting objects from the configu-
ration in chapter “Changing the configuration dynamically” on page 71.

Objects that you are not allowed to delete

– LTERM partners that belong to an LTERM pool or multiplex connection
– LTERM partners belonging to an LTERM group (group or primary LTERM) or to an

LTERM bundle (master or slave LTERM),
– printer control LTERMs
– the LTERM partner KDCMSGLT that UTM creates internally for the MSGTAC service
– program units that belong to the START, SHUT, FORMAT or INPUT event exits
– program units and VORGANG exits that are statically linked into the application

program
– the KDCMSGTC, KDCSGNTC, KDCBADTC transaction codes of the event services
– transaction codes assigned to a transport system access point (BCAMAPPL) as

SIGNON-TAC
– the dead letter queue KDCDLETQ,
– statically linked programs with event exits
– the KDCSHUT administration command of the KDCADM administration program
– the KDCTXCOM and KDCTXRLB transaction codes reserved for XATMI
– the KDCMSGUS user ID that UTM creates internally for the MSGTAC service.
– a user ID assigned to a terminal for automatic KDSIGN or to a UPIC, APPLI or SOCKET

client as a connection user ID

KC_DELETE_OBJECT KDCADMI program interface

262 Administering Applications

The following must be observed when deleting objects:

● A program unit or a VORGANG exit may only be deleted after all the transaction codes
belonging to them have been deleted.

● An LTERM partner may only be deleted if no more clients or printers are assigned to it.

● A user ID may only be deleted if there are no more users or clients signed on under this
user ID, i.e.:

– The user must not be signed on in a standalone application with
SIGNON MULTI-SIGNON=NO.

– In a standalone application with SIGNON MULTI-SIGNON=YES,
– a user with RESTART=YES must not be signed on,
– a user with RESTART=NO must not be signed on via a terminal connection.

– In a UTM cluster application with SIGNON MULTI-SIGNON=NO,
– no genuine user may be signed on,
– a connection user must not be signed on at the node application at which the

administration ’Delete’ call is executed.

– In a cluster application with SIGNON MULTI-SIGNON=YES,
– no genuine user with RESTART=YES may be signed on,
– a connection user must not be signed on at the node application at which the

administration ’Delete’ call is executed,
– a user with RESTART=NO may not be signed on via a terminal connection at

the node application at which the administration ’Delete’ call is executed.

● When a client/printer is deleted, it must not be connected to the application.

● A logical connection for distributed processing by means of LU6.1 may not be deleted
when it is not set up.

● An LU6.1 session may only be deleted when it is not set up and is not in the P state
(prepare to commit).

Effects of deletion during the application run

We distinguish two methods of deletion:

● immediate delete (with subopcode1=KC_IMMEDIATE).
This method is only possible in conjunction with user IDs (KC_USER) and transport
connections to LU6.1 applications (KC_CON). The immediate deletion of a user ID or
a CON object causes the space in the object table to be freed up and made available
for further use immediately. Immediate deletion is only possible for users IDs
(KC_USER) and transport connections to LU6.1 applications (KC_CON). You can
generate a new user ID using the same name after the deletion.
Immediate deletion is only possible in standalone UTM applications.

KDCADMI program interface KC_DELETE_OBJECT

Administering Applications 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

● delayed delete (with subopcode1=KC_DELAY)
Delayed deletion has the effect of a “permanent lock”. This process does not free up
space in the object table.
The object’s name remains reserved, i.e. you cannot generate dynamically a new object
using this name within the same name class.
The delayed deletion of transport connections to LU6.1 applications (KC_CON) is not
possible in standalone UTM applications.

In UTM cluster applications, only delayed deletion is possible.
In UTM cluster applications, it is possible to delete objects with an update generation
without having to terminate the entire UTM cluster application. To implement this
change in all the running node applications, it is necessary to terminate the individual
node applications one after the other and then start them with the new generation.

For details see openUTM manual “Using UTM Applications” subsection "Update gener-
ation in a cluster”.

The deletion of an object cannot be undone.

The inverse KDCDEF does not create KDCDEF control statements for deleted objects.

The effects of the deletion of an object on unprocessed asynchronous jobs, asynchronous
messages, open dialog services etc. that relate to that object are described in chapter
“Changing the configuration dynamically” on page 71.

Procedure / period of validity / transaction management / cluster

The call is subject to transaction management. The object is deleted from the configuration
only after the program unit run has ended (for PEND). The call can be rolled back with an
RSET call that is executed in the same transaction.

The deletion remains effective even after the UTM-S- and UTM-F applications have termi-
nated; it cannot be undone.

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. objects are deleted from the configuration in all
the node applications.

KC_DELETE_OBJECT KDCADMI program interface

264 Administering Applications

Data to be supplied

Function of the call Data to be entered in the

parameter area 1

1 The operation code KC_DELETE_OBJECT must be specified in the parameter area in all cases.

identification area selection
area

data area

Delete transport connec-
tions to LU6.1 applica-
tions

subopcode1:
KC_DELAY or
KC_IMMEDIATE
(see page 262)
obj_type: KC_CON

Name of the partner
application, name of
the computer, name
of the local application

—— ——

Delete a key set subopcode1:
KC_DELAY
obj_type: KC_KSET

Name of the key set —— ——

Delete an LU6.1 session subopcode1:
KC_DELAY
obj_type: KC_LSES

Local half-session
name

—— ——

Delete a transaction code
by means of which
service programs are
started in partner applica-
tions

subopcode1:
KC_DELAY
obj_type: KC_LTAC

Name of the trans-
action code

—— ——

Delete an LTERM partner
from the configuration

subopcode1:
KC_DELAY
obj_type: KC_LTERM

Name of the
LTERM partner

—— ——

Delete a client or printer
from the configuration

subopcode1:
KC_DELAY
obj_type: KC_PTERM

Name of the
client/printer,
computer name,
BCAMAPPL name

—— ——

Delete a program unit
from the configuration

subopcode1:
KC_DELAY
obj_type:
KC_PROGRAM

Program name —— ——

Delete a transaction code
or TAC queue from the
configuration

subopcode1:
KC_DELAY
obj_type: KC_TAC

TAC name —— ——

Delete a user ID including
its queue from the config-
uration

subopcode1:
KC_DELAY or
KC_IMMEDIATE
(see page 262)
obj_type: KC_USER

User ID —— ——

KDCADMI program interface KC_DELETE_OBJECT

Administering Applications 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_DELETE_OBJECT

1. subopcode1 KC_DELAY / KC_IMMEDIATE

2. obj_type Object type

3. obj_number 1

4. id_lth Length of the object name in the identification
area

select_lth 0

data_lth 0

Identification area

5. Object name

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, NULL)

Data returned by UTM

Parameter area

Field name Contents

6. retcode Return codes

KC_DELETE_OBJECT KDCADMI program interface

266 Administering Applications

1. In subopcode1 you specify the method of deletion.

KC_DELAY
if an object is to be marked as deleted, i.e. it is to be permanently locked
(delayed delete).
KC_DELAY in obj_type=KC_CON is not permitted in standalone openUTM
applications.

KC_IMMEDIATE
is only allowed in standalone openUTM applications with obj_type=KC_USER
and obj_type=KC_CON.
You must specify KC_IMMEDIATE, if a user ID or LU6.1 connection is to be
deleted immediately.

2. In the obj_type field you must specify the type of object to be deleted.
You can specify the following object types:

KC_CON, KC_KSET, KC_LSES, KC_LTAC, KC_LTERM, KC_PROGRAM,
KC_PTERM, KC_TAC (transaction code including TAC queue) and KC_USER (user ID
including associated queue)

3. Only one object can be deleted per call. For this reason, obj_number = 1 must be
specified.

4. In the id_lth field you must specify the length of the object name that you are passing in
the identification area to UTM.

5. In the identification area you must pass the name of the object to be deleted. The full
name of the object must be specified. You must enter the following data:

for obj_type=KC_CON:
in the data structure kc_long_triple_str in the union kc_id_area; the name of the partner
application, the name of the computer on which the application can be found and the
name of the local application (BCAMAPPL name of the CON).

for obj_type=KC_KSET:
the name of the key set (kc_name8 in the union kc_id_area).

for obj_type=KC_LSES:
the name of the local half session (kc_name8 in the union kc_id_area).

for obj_type=KC_LTAC:
the name of the transaction code by means of which remote service programs are
started (kc_name8 in the Union kc_id_area).

for obj_type=KC_PTERM:
in the data structure kc_long_triple_str in the union kc_id_area; the name of the
client/printer, the name of the computer on which it can be found and the name of the
local application (i.e. the BCAMAPPL name of the PTERM).

KDCADMI program interface KC_DELETE_OBJECT: return codes

Administering Applications 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

for obj_type=KC_PROGRAM:
the name of the program unit (kc_name32 in the union kc_id_area).

for obj_type=KC_TAC:
the name of the transaction code or the TAC queue (kc_name8 in the union kc_id_area).

for obj_type=KC_USER:
the name of the user ID (kc_name8 in the union kc_id_area).

6. In the retcode field UTM outputs the return codes of the call. In addition to the return
codes listed in section “Return codes” on page 178, the following codes can also be
returned. Some of these return codes may arise independently of the object type
specified; others only occur for certain object types.

Type-independent return codes:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_INVALID_OBJECT
The object specified does not exist.

KC_SC_DELETE_NOT_ALLOWED
The object cannot be deleted, it has already been deleted or it has just been created (in the
same transaction).

KC_SC_JCTL_RT_CODE_NOT_OK
Only in UTM cluster applications:
An internal UTM error occurred during the global deletion of a object.
Please contact system support.

KC_SC_NO_GLOB_CHANG_POSSIBLE
Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applica-
tions is not consistent at present.

KC_SC_GLOB_CRE_DEL_LOCKED
Only in UTM cluster applications:
It is not possible to delete an object at present because the generation or deletion of an
object or the generation, deletion or activation of an RSA key pair has not yet been
completed in a node application.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING
An inverse KDCDEF is running, i.e. the job cannot be processed at the present time.

KC_DELETE_OBJECT: return codes KDCADMI program interface

268 Administering Applications

Return codes for obj_type = KC_CON:

Return codes for obj_type = KC_KSET:

Return codes for obj_type = KC_LSES:

Main code = KC_MC_RECBUF_FULL
The buffer containing the restart information is full. (See the openUTM manual “Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF).

Subcode:

KC_SC_NO_INFO

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED
The specified LU6.1 connection cannot be deleted because it is currently set up.

Maincode = KC_MC_PAR_INVALID
An invalid value has been entered or a field has not been set in the parameter area.

Subcode:

KC_SC_SUBOPCODE1
Only in UTM cluster applications:
The specified LU6.1 connection cannot be deleted, deletion with subcode KC_IMMEDIATE
not permitted.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_KSET_NOT_ADMINISTRABLE
The KDCAPLKS key set cannot be deleted.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED
The LU6.1 session cannot be deleted because it is currently assigned to a connection.

KC_SC_PTC_STATE
The session has the transaction status P (prepare to commit). When it has this status it
cannot be deleted.

KC_SC_NOT_ALLOWED
The session is currently occupied (not active).

KDCADMI program interface KC_DELETE_OBJECT: return codes

Administering Applications 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Return codes for obj_type = KC_LTERM:

Return codes for obj_type = KC_PROGRAM:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_LTERM_IS_MASTER
The LTERM partner cannot be deleted because it is the master of an LTERM bundle.

KC_SC_LT_DEL_GROUP_MASTER
The LTERM partner cannot be deleted because it is the primary LTERM of an LTERM
group.

KC_SC_LT_DEL_SLAVE
The LTERM partner cannot be deleted because it is the slave of an LTERM bundle.

KC_SC_LT_DEL_ALIAS
The LTERM partner cannot be deleted because it is the group LTERM of an LTERM group.

KC_SC_REF_PTERM_NOT_DELETED
The LTERM partner cannot be deleted because a client/printer assigned to the LTERM
partner has not yet been deleted.

KC_SC_LTERM_IS_CTERM
The LTERM partner specified is a printer control LTERM. It cannot be deleted.

KC_SC_OBJECT_TYPE_NOT_LTERM
The object specified cannot be deleted because:

– it is an LTERM partner that belongs to an LTERM pool or multiplex connection
– the name specified belongs to an LPAP or OSI-LPAP partner.

KC_SC_LTERM_NOT_ADMINISTRABLE
The LTERM partner specified cannot be administered (for example, the LTERM partner
KDCMSGLT which is created internally by UTM for the event service MSGTAC).

Main code = KC_MC_REJECTED
The call was rejected by UTM. The object cannot be deleted.

Subcodes:

KC_SC_REF_TAC_NOT_DELETED
A transaction code belonging to the program unit specified has not yet been deleted.

KC_SC_PROGRAM_IS_STATIC
The program unit cannot be deleted from the configuration because it belongs to a load
module with load mode STATIC.

KC_SC_PROGRAM_IS_USER_EXIT
The object specified is an event exit that was statically configured with the KDCDEF control
statement EXIT (START, SHUT, FORMAT or INPUT exit).

KC_DELETE_OBJECT: return codes KDCADMI program interface

270 Administering Applications

Return codes for obj_type = KC_PTERM:

Return codes for obj_type = KC_TAC:

Return codes for obj_type = KC_USER (subopcode1 = KC_DELAY or KC_IMME-
DIATE):

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_PTERM_CONNECTED
The client/printer specified cannot be deleted because it is currently connected to the appli-
cation.

KC_SC_OBJECT_TYPE_NOT_PTERM
The object specified cannot be deleted because:

– it is a client that is connected to the application through an LTERM pool, i.e. that was
not configured explicitly

– the specified name was created during KDCDEF generation with a MUX statement
(multiplex connection)

– the name specified belongs to an object that was configured for distributed processing
through OSI TP or LU6.1.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_TAC_NOT_ADMINISTRABLE
The transaction code or the queue specified cannot be administered (KDCMSGTC,
KDCBADTC, KDCSGNTC, for example) or cannot be deleted (the transaction code
KDCSHUT and the Dead Letter Queue).

KC_SC_DELETE_NOT_ALLOWED
The specified transaction code cannot be deleted (for example, a transaction code
assigned to a transport access point as SIGNON-TAC)

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_USER_CONNECTED
A client/user with the user ID specified is currently signed on to the application.

KC_SC_APPLICATION_WITHOUT_USER
The application was generated without user IDs.

KC_SC_USER_NOT_ADMINISTRABLE
The user ID cannot be administered because it is, for example, the user ID KDCMSGUS
that UTM creates internally for the MSGTAC event service.

KDCADMI program interface KC_DELETE_OBJECT: return codes

Administering Applications 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

obj_type = KC_USER and subopcode1 = KC_IMMEDIATE:

KC_SC_AUTO_SIGN_USER
The user ID cannot be deleted, because it is assigned to an LTERM partner for automatic
KDSIGN or as a connection user ID.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_ASYN_SERVICE_RUNNING
The user ID currently cannot be deleted because there is still an asynchronous service
running under this user ID.

KC_SC_CLIENT_SIGNED
Immediate deletion of the user ID is currently not possible because a UPIC client, TS appli-
cation or OSI TP partner is still signed on with this user ID.

KC_SC_DEADLOCK
Deadlock locking user-specific long-term storage (ULS)

KC_SC_TIMEOUT
Timeout locking user-specific long-term storage (ULS)

KC_SC_OWNER_IN_TA
User-specific long-term storage (ULS) cannot be locked because it is disabled by a trans-
action in which one of the KDCS calls PEND KP or PGWT KP was issued.

KC_SC_PTC_STATE
There is a transaction in the state PTC (prepare to commit) for the user ID.

KC_SC_BOTTLENECK
Services are stacked for the user ID, and a memory bottleneck has occurred.

KC_SC_ALREADY_LOCKED
The assigned ULS is locked by another transaction.

KC_SC_NOT_ENOUGH_TASKS
The UTM application does not currently have enough free processes to be able to wait for
the lock of user-specific long-term storage (ULS) locked by a PTC transaction. Attempt to
delete the user again later.

Maincode = KC_MC_PAR_INVALID
An invalid value has been entered or a field has not been set in the parameter area.

Subcode:

KC_SC_SUBOPCODE1
Only in UTM cluster applications:
Deletion with subcode KC_IMMEDIATE is not permitted.

KC_ENCRYPT KDCADMI program interface

272 Administering Applications

11.2.6 KC_ENCRYPT - Create, delete, read RSA key pairs

With KC_ENCRYPT, you can create a new application’s RSA key pair, replace an appli-
cation’s RSA key pair by a new pair, delete an RSA key pair or read the public key of an
RSA key pair.

i UTM applications on BS2000 systems also support encryption for connections with
some terminal emulations. However, these connections do not use the openUTM
RSA key pair. Instead, a key pair generated by VTSU-B is employed. Consequently,
changing the RSA key pair of openUTM has no effect whatsoever on encryption
using VTSU-B.

Prerequisites

You can only use the encryption functions, if the add-on openUTM-CRYPT is installed (see
release information on openUTM).

Encryption methods

openUTM offers encryption functions for passwords and user data (messages), in order to
improve the security for connections between openUTM server applications and UPIC
clients.

For encryption purposes openUTM uses a combination of the AES method (Advanced
Encryption Standard) and the RSA method (named after Rivest, Shamir and Adleman).
The DES method (Data Encryption Standard) can be used for partners who do not support
the AES method.

For transferring on a connection, user data and passwords are encrypted with an AES or
DES key. Client and UTM application use the same AES/DES key to encrypt and decrypt
messages. This key is generated by the client and is transferred to the UTM application
when a connection is established. The key is connection-specific, i.e. for each connection
it is created a individual key which is used only for this connection only.

The AES or DES key itself is transferred in encrypted form. For this purpose, one or more
RSA key pairs are created for the UTM application at generation. An RSA key pair consists
of a public and a private key. The public key is transferred to the client by the openUTM
application when the connection is set up. The client uses it to encrypt the AES or DES key.
To decrypt this key, the UTM application uses the private key which is known only to the
UTM application.

Several encryption levels are possible and a separate RSA key pair with a specific key
length is used for each level. The longest available RSA key is always exchanged for clients
whose encryption level was not defined at generation. If this key is not needed, it should be
deleted for performance reasons.

You will find further information on encryption in the openUTM manuals “Concepts and
Functions” and “Generating Applications”.

B

B

B

B

B

KDCADMI program interface KC_ENCRYPT

Administering Applications 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Functional scope of KC_ENCRYPT

An RSA key pair that is valid for a specific encryption level is used for all encrypted client
connections that use this encryption level. For reasons of security, you should therefore
replace the RSA key pairs of your UTM application by new key pairs at regular intervals.

For this purpose, KC_ENCRYPT offers the following functions:

● Create a new RSA key pair

KC_ENCRYPT with subopcode1=KC_CREATE_KEY makes UTM generate a new RSA
key pair. However, UTM does not use this new key pair for encryption, before you
activate it by dispatching a further KC_ENCRYPT call (with subopcode1=KC_ACTI-
VATE_KEY).

You cannot create a new key pair unless the key pair last created with the same
encryption level has already been activated with subopcode1=KC_ACTIVATE_KEY or
has been deleted with subopcode1=KC_DELETE_KEY, i.e. there must be no not yet
activated key pair of the same encryption level for the application.

● Delete a key pair

You use KC_ENCRYPT with subopcode1=KC_DELETE_KEY to delete a key pair that
has not yet been activated. You use KC_ENCRYPT with subopcode1 =
KC_DELETE_ACTIVE_KEY to delete an activated key pair.

You can delete activated key pairs of encryption levels 3 and 4 only. Activated key pairs
of encryption levels 1 and 2 are always needed by openUTM.

● Activate a previously created RSA key pair

KC_ENCRYPT with subopcode1=KC_ACTIVATE_KEY causes an RSA key pair
currently being used to be replaced by a RSA key pair created using KC_ENCRYPT,
i.e. the next time a connection is established to an appropriately generated client, the
public key of the new RSA key pair is transmitted to the client.

● Read a public key

You can read the public key of an RSA key pair that was last created and that is not
activated yet using KC_ENCRYPT subopcode1=KC_READ_NEW_PUBLIC_KEY.
KC_ENCRYPT subopcode1=KC_READ_ACTIV_PUBLIC_KEY allows you to read the
public key of an currently active RSA key pair.

This function gives you added possibilities of increasing data security on your
connection:

In order for a client to be able to verify whether the public key received via the
connection to the UTM application actually truly comes from that UTM application, you
should read the public key, transfer it to the client using the appropriate procedure and
deposit it there.

KC_ENCRYPT KDCADMI program interface

274 Administering Applications

When the UTM application transmits the public key to the client the next time a
connection is established, the client can compare the transmitted key with the one
already stored.

It is therefore a good idea to transmit the public key of a newly created RSA key pair to
all clients involved, i.e. all clients that support message encryption.

Transaction management / duration of effectiveness / cluster

Creating, activating and deleting a RSA key pair is subject to transaction management. You
can create or activate a new key pair within a transaction. A new public key can only be read
after the transaction is terminated.

The RSA key pair remains active until a new pair is created and activated or until the appli-
cation is regenerated. In the event of regeneration, UTM automatically generates a new
RSA key pair if the OPTION GEN-RSA-KEYS=YES statement is specified for the KDCDEF
run (default setting).

The effect of the call persists beyond the current application run.

Reading the public key is not subject to transaction management.

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e.
– if you use the KC_ENCRYPT function to generate a new key pair at a node application

then this key pair is also distributed to the other node applications so that all the node
applications possess the same key pairs.

– if you activate or delete a previously generated key pair at a node application then this
action is replicated at all the other node applications.

KDCADMI program interface KC_ENCRYPT

Administering Applications 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Data to be supplied

Function of the call Data to be entered in the

parameter area 1

1 In all cases, the operation code KC_ENCRYPT must be specified in the parameter area.

identifica-
tions area

selection
area

data area

Create RSA key pair subopcode1:
KC_CREATE_KEY
subopcode2:
encryption level

—— —— ——

Delete non-activated
RSA key pair

subopcode1:
KC_DELETE_KEY
subopcode2:
encryption level

—— —— ——

Delete activated
RSA key pair

subopcode1:
KC_DELETE_ACTIVE_KEY
subopcode2:
encryption level

—— —— ——

Activate RSA key
pair

subopcode1:
KC_ACTIVATE_KEY
subopcode2:
encryption level

—— —— ——

Public key of a not
yet activated RSA
key pair

subopcode1:
KC_READ_NEW_PUBLIC_KEY
subopcode2:
encryption level

—— —— Pointer to a
data area into
which UTM
can return the
public key.

Public key of the
currently active RSA
key pair

subopcode1:
KC_READ_ACTIV_PUBLIC_KEY
subopcode2:
encryption level

—— —— Pointer to a
data area into
which UTM
can return the
public key.

KC_ENCRYPT KDCADMI program interface

276 Administering Applications

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_ENCRYPT

1. subopcode1 KC_CREATE_KEY / KC_ACTIVATE_KEY /
KC_DELETE_KEY/
KC_DELETE_ACTIVE_KEY /
KC_READ_NEW_PUBLIC_KEY /
KC_READ_ACTIV_PUBLIC_KEY

2. subopcode2 KC_NO_SUBOPCODE /
KC_ENC_LEV_1 / KC_ENC_LEV_2 /
KC_ENC_LEV_3 / KC_ENC_LEV_4 /

obj_number 0

id_lth 0

select_lth 0

3. data_lth length of data area / 0

Identification area

—

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, NULL) or
KDCADMI (¶meter_area, NULL, NULL, &data_area)

KDCADMI program interface KC_ENCRYPT

Administering Applications 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

1. In the field subopcode1, you must specify which action UTM is to execute. You can enter
the following subcodes:

KC_CREATE_KEY
Generates a new RSA key pair.

KC_ACTIVATE_KEY
Activates a RSA key pair created with KC_ENCRYPT.

KC_DELETE_KEY
Deletes a not yet activated RSA key pair.

KC_DELETE_ACTIVE_KEY
An activated RSA key pair is to be deleted. Only activated keys of
encryption levels 3 and 4 can be deleted.
This function is permitted only if the key pair has not been used by any
object before deletion. It can be used, for example, after application regen-
eration and a subsequent KDCUPD to delete RSA keys that are no longer
needed in the newly generated application.

KC_READ_NEW_PUBLIC_KEY
Reads the public key of a previously created and not yet activated RSA key
pair.

KC_READ_ACTIV_PUBLIC_KEY
Reads the public key of the active RSA key pair.

Data returned by UTM

Parameter area

Field name Field contents

4. retcode return code

5. data_lth_ret length of data returned/ 0

Data area

6. Data structure kc_encrypt_str / kc_encrypt_advanced_str / —

KC_ENCRYPT KDCADMI program interface

278 Administering Applications

2. In the field subopcode2, you must indicate to which encryption level the action specified
in subopcode1 applies:

KC_ENC_LEV_1
The action applies for keys of encryption level 1 (DES encryption and RSA
key pair with a key length of 200 bits).

KC_ENC_LEV_2
The action applies for keys of encryption level 2 (AES encryption and RSA
key pair with a key length of 512 bits).

KC_ENC_LEV_3
The action applies for keys of encryption level 3 (AES encryption and RSA
key pair with a key length of 1024 bits).

KC_ENC_LEV_4
The action applies for keys of encryption level 4 (AES encryption and RSA
key pair with a key length of 2048 bits.

KC_NO_SUBOPCODE
This value is supported to ensure source compatibility for existing clients.
KC_NO_SUBOPCODE has the same effect as KC_ENC_LEV_1. However,
different data structures are used when reading, see page 280.

3. In the field data_lth, you enter the following:

– with subopcode1=KC_CREATE_KEY, KC_DELETE_KEY, KC_DELETE_AC-
TIVE_KEY or KC_ACTIVATE_KEY:
data_lth=0. When you call KDCADMI, you should pass the zero pointer to UTM for
&data_area.

– with subopcode1=KC_READ_NEW_PUBLIC_KEY or KC_READ_ACTIV_PUB-
LIC_KEY:
Length of the data area to which UTM is to return the public key of the RSA key pair.
This data area must have the length of data structure kc_encrypt_advanced_str. For
existing clients that work with subopcode2=KC_NO_SUBOPCODE, it must have the
length of data structure kc_encrypt_str.
When you call KDCADMI, you must pass the pointer to the data area to UTM.

KDCADMI program interface KC_ENCRYPT: return codes

Administering Applications 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

4. In the field retcode, UTM supplies the return code of the call. Beside the return codes
listed in section “Return codes” on page 178, one of the following return codes can also
occur:

Maincode = KC_MC_REJECTED
UTM rejected the call.

Subcode:

KC_SC_NO_ENCRYPTION
Encryption is not supported, because openUTM-CRYPT is not present.

KC_SC_NEW_KEY_ALREADY_EXISTS
With subopcode1= KC_CREATE_KEY:
A new key pair has already been generated for this encryption level.

KC_SC_NO_NEW_KEY_EXISTS
With subopcode1=KC_READ_NEW_PUBLIC_KEY, KC_ACTIVATE_KEY,
KC_DELETE_KEY:
There is no new key for the specified encryption level.

KC_SC_NO_ACTIV_KEY_EXISTS
With subopcode1= KC_READ_ACTIV_PUBLIC_KEY, KC_DELETE_ACTIVE_KEY:
There is no activated key for the specified encryption level.

KC_SC_IN_USE_DEL_NOT_ALLOWED
With subopcode1=KC_DELETE_ACTIVE_KEY:

– The key pair for the specified encryption level may not be deleted because it is required
by at least one object.

– It is not permitted to delete a key pair of encryption level 1 or (these two key pairs are
always needed by UTM).

KC_SC_NO_GLOB_CHANG_POSSIBLE
Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applica-
tions is not consistent at present.
Action: Please try again later.

KC_SC_GLOB_CRE_DEL_LOCKED
Only in UTM cluster applications:
It is not possible to generate, delete or activate an RSA key pair at present because the
generation or deletion of an object or the generation, deletion or activation of an RSA key
pair has not yet been completed in a node application.
Action: Please try again later.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO
The buffer containing the restart information is full. (See openUTM manual “Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF)

KC_ENCRYPT: return codes KDCADMI program interface

280 Administering Applications

5. data_lth_ret contains the data length returned to the data area by UTM.

– With subopcode1=KC_READ_NEW_PUBLIC_KEY and KC_READ_ACTIV_PUB-
LIC_KEY data_lth_ret ≠ 0.
If the value in data_lth_ret is smaller than the data area available (data_lth), the
contents of the data area is only defined in data_lth_ret.

– In all other cases data_lth_ret=0

6. In the case where subopcode1=KC_READ_NEW_PUBLIC_ KEY or. KC_READ_AC-
TIV_PUBLIC_KEY, UTM returns the data structure kc_encrypt_advanced_str together
with the public key of the specified encryption level. KC_READ_NEW_PUBLIC_KEY
returns the key of the RSA key pair not yet activated. KC_READ_ACTIV_PUBLIC_KEY
returns the key of the activated RSA key pair.
UTM returns the data structure kc_encrypt_str for existing clients that work with
subopcode2=KC_NO_SUBOPCODE.

The data structure kc_encrypt_advanced_str is defined as follows:

The fields of the data structure have the following meanings:

buf_lth length of the data buffer en_buffer used.

en_buffer contains the public key that was read.

en_key_lth length of the key (200, 512, 1024 or 2048).

Maincode = KC_MC_REJECTED_CURR
The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING
Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

struct kc_encrypt_advanced_str

char buf_lth[4];

char en_buffer[2048];

char en_key_lth[4];

KDCADMI program interface KC_ENCRYPT: return codes

Administering Applications 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Note

If the compatibility mode is used (subopcode2=KC_NO_SUBOPCODE), the „old“ data
structure kc_encrypt_str must be used:

struct kc_encrypt_str

char buf_lth[4];

char en_buffer[256];

char filler[4];

KC_GET_OBJECT KDCADMI program interface

282 Administering Applications

11.2.7 KC_GET_OBJECT - Query information

KC_GET_OBJECT allows you to query information on all objects in the configuration and
to query the application parameters.

Different kinds of information can be queried. You can control the type of information UTM
shall return using the subopcode1 parameter.

The following information can be returned by UTM:

● A list of the names of objects of an object type (subopcode1=KC_NAME or
KC_NAME_NEXT).

● Properties, status and statistical information on the objects of an object type (subop-
code1=KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT).

Properties are understood here to mean the parameters that have been set during the
configuration of the objects. UTM returns the current values of these parameters, so
any modifications by means of administration functions will be reflected in the data
returned.

Status information describes the current status of an object, e.g. whether a connection
is currently being set up or a user is currently signed on.

Statistical information includes counter values and internally measured wait times. UTM
returns the following values, for example: the number of messages that the application
has exchanged with a partner application of a client since its start, the number of
messages being stored temporarily in a partner-specific message queue or the number
of program unit runs that have been started using a transaction code.

The properties of an object and status and statistical information on an object are
returned by UTM in the data area in the data structure for the object type (see
page 454f). If UTM returns information on several objects, then UTM stores an array of
data structures for the object type in the data area.

Where the properties of an object are discussed in the following text, this refers to object
properties, status and statistical information.

● The current settings for the application parameters
(subopcode1= KC_APPLICATION_PAR)

The values returned by UTM are dependent on the parameter type you have specified
in obj_type. You can, for example, choose between the maximum values of the appli-
cation set during the KDCDEF generation, the system parameters, the current timer
settings or statistical information on the current application load. In point 3 on page 291
is a list of the parameter types you may select from.

For each parameter type there is a data structure in which UTM returns the application
parameters queried. The data structures are described on page 600f.

KDCADMI program interface KC_GET_OBJECT

Administering Applications 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Controlling the output of object names and object properties

UTM returns the object names sorted alphabetically. Accordingly, the properties of the
objects are also returned in order of the object names. In subopcode2 you can specify if UTM
is to return the names in ascending (KC_ASCENDING) or descending (KC_DE-
SCENDING) alphabetical order.

Because the amount of information returned from a query of all objects of an object type
can be very large, you should limit the amount of information requested. You have the
following options available to limit the amount of information:

● You can specify the point in the alphabetical list at which output is to start in the identi-
fication area. You can enter any string for this purpose.

If the string does not correspond to any object name of the object type specified, then
UTM starts the output at the next object in the list, meaning the next highest or next
lowest object alphabetically, depending on what you specified in subopcode2.

If the string in the identification area corresponds to an object name, then the starting
point of the output is dependent on subopcode1:
– for subopcode1=KC_NAME and KC_ATTRIBUTES, the output begins with this

object.
– for subopcode1=KC_NAME_NEXT and KC_ATTRIBUTES_NEXT, the output begins

with the next object, meaning the next highest or next lowest object alphabetically,
depending on what you specified in subopcode2.

The list of names or properties output will extend at most to the last (for subop-
code2=KC_ASCENDING) or to the first (for subopcode2= KC_DESCENDING) object in
the alphabetically ordered list of objects.

If the names or properties of the objects are to be read starting with the first object
alphabetically of an object type, then you must specify subopcode2=KC_ASCENDING
and set the identification area to binary zero.

If the names or properties of the objects are to be read in alphabetically descending
order starting with the last object of an object type, then you must specify subop-
code2=KC_DESCENDING and pass the string X´FF...‘ in the identification area.

● In the obj_number field of the parameter area you can specify the maximum number of
objects for which UTM is to return information.

● In the selection area you can pass selection criteria to UTM.

UTM will then only return information on those objects meeting the specified selection
criteria. A selection criterion is an object property. You could then, for example, output
all the names of clients/printers that are currently connected to the application
(obj_type =KC_PTERM). A list of all the selection criteria that you can specify can be
found under point 9 on page 296.

KC_GET_OBJECT KDCADMI program interface

284 Administering Applications

Using selection criteria, you can target specific objects for selection and can therefore
limit the amount of data returned.
The use of selection criteria does, however, influence the performance of the call,
especially if only object names are queried. UTM must then read and check the
properties for each object to see if each property satisfies its selection criterion. This
means that, in this case, a call using selection criteria results in much more work than
a call without selection criteria.

The following should be observed when querying information

When querying object names or object properties, information is also returned for objects
that have been marked as deleted. You can limit the output to those objects not deleted
using the selection criterion delete=´N´. With the selection criterion delete=´Y´, you can also
output all objects of the object type that have been deleted.

Note in the case of UTM cluster applications

● In UTM cluster applications, information is only supplied concerning the objects of the
node application at which the call is executed.

● The specifications KC_NO_READ_GSSBFILE and KC_NO_READ_USERFILE in
subopcode2 allow you to determine whether or not the cluster GSSB file or cluster user
file are accessed on follow-up calls for objects of type GSSB or USER. This makes it
possible to improve performance when there are a large number of follow-up calls.

If subopcode2=KC_NO_READ_GSSBFILE or KC_NO_READ_USERFILE then the
objects are always supplied in ascending order.

This improved performance is coupled with a level of uncertainty regarding the infor-
mation that is returned by the follow-up calls. Since the data is not read again from the
file, it may not be up-to-date.

KDCADMI program interface KC_GET_OBJECT

Administering Applications 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Possible applications

You should consider the following points when using the subopcodes KC_... and
KC_..._NEXT:

● You should use KC_ATTRIBUTES or KC_NAME if you want to check whether or not an
object with the object name specified already exists. To do this, specify the object name
you want in the identification area and enter obj_number=1. The return code, with which
you can determine whether an object exists (sub-return code = KC_SC_SAME) or not
(sub-return code = KC_SC_NEXT), is evaluated after the call.

● You can use KC_ATTRIBUTES or KC_NAME as the "starting point" of a succession of
queries if you want to query the object names starting with a certain string but do not
know if an object exists for this string.

For example, the string ´SËËËËËËË´ can be specified as the name if the objects are to
be read starting with the first object name that begins with an "S" (as long as it is
ensured that the binary representation of spaces is lexicographically smaller than the
representation of letters and digits).

● In a follow-up call in which you have specified in the identification area that the last
object read in the previous call is to be the new starting point (successive query), then
KC_ATTRIBUTES and KC_NAME are not suitable for use. For these parameter values
the object name specified will be returned. If obj_number=1 was specified and you are
executing a successive query, then this same object will always be read.
In this case, you must specify KC_ATTRIBUTES_NEXT or KC_NAME_NEXT. The
following object will then be read as the first object.

You will find an example of a successive query of objects on page 308.

 KDCINF (page 703)
Less information than with the program interface is returned with KDCINF, however.

C

KC_GET_OBJECT KDCADMI program interface

286 Administering Applications

Data to be supplied

Function of the call Data to be entered in the

parameter area 1

1 The operation code KC_GET_OBJECT must be specified in the parameter area in all cases.

identifi-
cation area

selection
area

data area

Output the names of all
objects of a certain object
type

subopcode1:
KC_NAME_NEXT or KC_NAME
subopcode2:
output in alphabetically ascending or
descending order
obj_type: object type
obj_number:
maximum number of object names

Name of the
object
with/after
which the
output of
names is to
begin

——

A pointer to a
data area for
the data
returned by
UTM must be
passed in the
call.

Output the names of all
objects of a certain type
with certain properties Selection

criteria used
by UTM to
limit the
amount of
data output

Output properties and
statistical information of
objects of a certain type
with certain properties

subopcode1:
KC_ATTRIBUTES_NEXT or KC_AT-
TRIBUTES
subopcode2:
output in alphabetically ascending or
descending order
obj_type: object type
obj_number:
maximum number of objects for which
UTM is to output properties.

Output properties and
statistical information of
objects of a certain type

subopcode1:
KC_ATTRIBUTES_NEXT or KC_AT-
TRIBUTES
subopcode2:
output in alphabetically ascending or
descending order
obj_type: object type
obj_number:
maximum number of objects for which
the UTM properties and statistical
information are to be output.

——

Output application param-
eters

subopcode1:
KC_APPLICATION_PAR
obj_type: parameter type
obj_number: 0

—— ——

KDCADMI program interface KC_GET_OBJECT

Administering Applications 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_GET_OBJECT

1. subopcode1 KC_NAME_NEXT / KC_NAME /
KC_ATTRIBUTES_NEXT / KC_ATTRIBUTES /
KC_APPLICATION_PAR

2. subopcode2 KC_ASCENDING / KC_DESCENDING /
KC_READ_NO_GSSBFILE /
KC_READ_NO_USERFILE /
binary zero

3. obj_type Object type / parameter type

4. obj_number Number of objects / 0

5. id_lth Length of the object name in the identification
area/ 0

6. select_lth Length of the data in the selection area/ 0

7. data_lth Length of the data area

Identification area (starting on page 294)

8. Object name/ —

Selection area (starting on page 296)

9. Data structure of the object type with selection criteria / —

Data area

—

KDCADMI call

KDCADMI (¶meter_area, &identification_area, &selection_area, &data_area) or
KDCADMI (¶meter_area, &identification_area, NULL, &data_area) or

KDCADMI (¶meter_area, NULL, NULL, &data_area)

KC_GET_OBJECT KDCADMI program interface

288 Administering Applications

1. In subopcode1 you specify the type of information to be returned by UTM. You can
specify the following values:

KC_NAME
UTM is to return the names of objects of the object type obj_type.

If the string specified in the identification area matches an object name, then
the output is to begin with the name of this object.

If the string in the identification area does not match an object name of the
object type specified, then UTM is to begin the output with the next object,
i.e. with the next highest object alphabetically for subopcode2=KC_AS-
CENDING or the next lowest object alphabetically for subopcode2= KC_DE-
SCENDING.

KC_NAME_NEXT
UTM is to return the names of objects of the object type obj_type.

The output is to begin with the object name following the string specified in
the identification area, i.e. with the next highest object alphabetically for
subopcode2=KC_ASCENDING or the next lowest object alphabetically for
subopcode2= KC_DESCENDING (see also point 2).

Data returned by UTM

Parameter area (starting on page 302)

Field name Contents

10. retcode Return code

11. number_ret Number of objects

12. data_lth_ret Length of the return data

Data area (starting on page 305)

13. Data structures of the object or parameter type / array of object names

KDCADMI program interface KC_GET_OBJECT

Administering Applications 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

KC_ATTRIBUTES
UTM is to return properties of objects of the object type obj_type.

If the string specified in the identification area matches an object name, then
the output is to begin with the properties of this object.

If the string in the identification area does not match an object name of the
object type specified, then UTM is to begin the output with the next object,
i.e. with the next highest object alphabetically for subopcode2=KC_AS-
CENDING or the next lowest object alphabetically for subopcode2= KC_DE-
SCENDING.

KC_ATTRIBUTES_NEXT
UTM is to return properties of objects of the object type obj_type.

The output is to begin with the object whose name follows the name
specified in the string, i.e. with the next highest object alphabetically for
subopcode2=KC_ASCENDING or the next lowest object alphabetically for
subopcode2= KC_DESCENDING.

KC_APPLICATION_PAR
UTM is to return the application parameters of the parameter type specified
in obj_type.

2. The data you must specify in the subopcode2 field depends on the value specified in
subopcode1.

– For subopcode1=KC_APPLICATION_PAR you must set subopcode2 to binary zero
(KC_NO_SUBOPCODE).

– For KC_NAME_NEXT, KC_NAME, KC_ATTRIBUTES_NEXT, and KC_ATTRI-
BUTES, you must specify one of the two following values in subopcode2:

KC_ASCENDING,
UTM returns the information on the objects in alphabetically ascending
order according to object name, i.e. the next highest name alphabetically.

KC_DESCENDING
UTM returns the information on the objects in alphabetically descending
order according to object name, i.e. the next lowest name alphabetically.

KC_READ_NO_GSSBFILE
This value may only be specified in the case of follow-up calls in a UTM
cluster application with object type=KC_GSSB.
If KC_READ_NO_GSSBFILE is specified, then UTM does not access the
cluster GSSB file again but instead uses the data from the last call with
KC_ASCENDING. This improves performance when reading GSSBs, see
note below.
UTM returns the information on the GSSBs in ascending object name order.

KC_GET_OBJECT KDCADMI program interface

290 Administering Applications

KC_READ_NO_USERFILE
This value may only be specified in the case of follow-up calls in a UTM
cluster application with object type=KC_USER.
If KC_READ_NO_USERFILE is specified, then UTM does not access the
cluster user file again but instead uses the data from the last call with
KC_ASCENDING. This improves performance when reading large
numbers of user IDs, see note.

UTM returns the information on the user IDs in ascending object name
order.

i If, in UTM cluster applications, you read in GSSBs or user IDs with subop-
code2=KC_ASCENDING or subopcode2=KC_DESCENDING then all the
objects are read in locally from the cluster GSSB file or cluster user file and
sorted. Each time you reread the GSSBs/user IDs with this subopcode2, all
the GSSBs (max. 30000) or all the user IDs are again read in and sorted.

If you require a high performance level, only specify KC_ASCENDING for
the first call and use KC_READ_NO_GSSBFILE or KC_READ_NO_US-
ERFILE for all follow-up calls. However, this means that any changes made
after the first call are not displayed.

KDCADMI program interface KC_GET_OBJECT

Administering Applications 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

3. in the obj_type field you must specify the type of the objects or application parameters
for which UTM is to return information. The data you must specify in obj_type depends
on the value specified in subopcode1. Please consult the following table for the values
allowed. The meanings of the object/parameter types are described on page 170f.

Object/parameter type Permissible specifications for subopcode1=

Object type:
KC_ABSTRACT_SYNTAX
KC_ACCESS_POINT
KC_APPLICATION_CONTEXT
KC_BCAMAPPL
KC_CON
KC_EDIT
KC_GSSB
KC_KSET
KC_LOAD_MODULE
KC_LPAP
KC_LSES
KC_LTAC
KC_LTERM
KC_MESSAGE_MODULE
KC_MUX
KC_OSI_ASSOCIATION
KC_OSI_CON
KC_OSI_LPAP
KC_PROGRAM
KC_PTERM
KC_QUEUE
KC_TAC
KC_TPOOL
KC_TRANSFER_SYNTAX
KC_USER
KC_USER_DYN1
KC_USER_DYN2
KC_USER_FIX

KC_ATTRIBUTES,
KC_ATTRIBUTES_NEXT,
KC_NAME,
KC_NAME_NEXT

Object type:
KC_DB_INFO
KC_PTC
KC_SFUNC
KC_SUBNET
KC_TACCLASS

KC_ATTRIBUTES,
KC_ATTRIBUTES_NEXT

Object type:
KC_CLUSTER_NODE KC_ATTRIBUTES

B

B

X/W

KC_GET_OBJECT KDCADMI program interface

292 Administering Applications

In the case of obj_type=KC_USER, KC_USER_DYN1, KC_USER_DYN2 and KC_US-
ER_FIX, please note the following:

– The data structures kc_user_str, kc_user_fix_str, kc_user_dyn1_str and
kc_user_dyn2_str are defined for the object types KC_USER, KC_USER_DYN1,
KC_USER_DYN2 and KC_USER_FIX.

In stand-alone UTM applications, the data belonging to a user can always queried
using kc_user_str structure.

The fields present in the three data structures kc_user_fix_str, kc_user_dyn1_str and
kc_user_dyn2_str are also present in the data structure kc_user_str. This subdivision
into three data structures was undertaken in order to make it possible to access
specific user information values and consequently improve performance, in
particular when reading user information in UTM cluster applications.

– All the data relating to the cluster user file is located in the data structure
kc_user_dyn2_str.
To read this data, openUTM must access the cluster user file. That is why, when
reading user information in UTM cluster applications, you should preferably use the
new object types and only call KC_USER_DYN2 if you currently need the data that
this call returns.

Parameter type:
KC_CLUSTER_CURR_PAR
KC_CLUSTER_PAR
KC_CURR_PAR
KC_DIAG_AND_ACCOUNT_PAR
KC_DYN_PAR
KC_MAX_PAR
KC_MSG_DEST_PAR
KC_PAGEPOOL
KC_QUEUE_PAR
KC_SIGNON
KC_SYSTEM_PAR
KC_TASKS_PAR
KC_TIMER_PAR
KC_UTMD_PAR

KC_APPLICATION_PAR

Object/parameter type Permissible specifications for subopcode1=

KDCADMI program interface KC_GET_OBJECT

Administering Applications 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Note the following for obj_type=OSI_ASSOCIATION:

– For subopcode1=KC_NAME and KC_NAME_NEXT, UTM returns the names of the
OSI TP associations set during KDCDEF generation. The names consist of an
association prefix specified in an OSI-LPAP command and a serial number.
You can specify an association name in the identification area for these values of
subopcode1.

– For subopcode1=KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT, UTM only
returns the properties of associations that belong to a particular partner application
and that have been or are currently being established. For this reason, you must
specify the partner application as a selection criterion when calling the OSI-LPAP
partner. You pass the data structure kc_osi_association_str containing the name of
the OSI-LPAP partner in the selection area (see page 519).

The properties of an association are not stored internally under the association
name, but under an association ID assigned by UTM to an association as long as it
is in existence. It is not possible to assign an association ID to the name of an
association. UTM therefore interprets the string specified in the identification area
(field kc_name8 in the union kc_id_area) as an association ID. UTM returns the
properties of the active associations to a partner application sorted according to the
association IDs. It is not possible to query the properties of an association name.

In the case of obj_type=KC_SUBNET, please note the following:

– subopcode2 must contain binary zero (KC_NO_SUBOPCODE).

– The identification area can be used.

– The selection area may not be specified.

– The output of the information on the subnets is not sorted according to the subnet
names (mapped_name), but takes place in the order in which the statements were
specified during generation - separated according to IPv4 and IPv6 subnets.

This corresponds to the order in which the SUBNET entries are evaluated when a
connection is established from outside.

4. In obj_number you can specify the number of objects for which UTM is to return infor-
mation. The following can be specified:

– For subopcode1=KC_NAME,KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRI-
BUTES_NEXT:
obj_number specifies the maximum number of objects for which UTM is to return
information.
If you specify obj_number=0, then UTM will return information on as many objects
as will fit in the data area, or less if there are no more objects of the object type
available.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KC_GET_OBJECT KDCADMI program interface

294 Administering Applications

In the case of obj_type=KC_CLUSTER_NODE, please note the following:
If you specify an obj_number > 32, openUTM sets obj_number to 32.

– For subopcode1=KC_APPLICATION_PAR you must always specify obj_number=0.

5. The data you must specify in the id_lth is dependent on the data contained in the subop-
code1 field:

– For subopcode1=KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRI-
BUTES_NEXT:

In id_lth you must specify the length of the data structure you have passed to UTM
in the identification area.

– For subopcode1=KC_APPLICATION_PAR you must always set id_lth=0. The
contents of the identification area are irrelevant.

6. In select_lth you must specify a value ≠0 if you want to pass selection criteria to UTM in
the selection area.

For subopcode1=KC_APPLICATION_PAR you may not pass any selection criteria to
UTM and must therefore always set select_lth=0 in this case.

For subopcode1= KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT and
obj_type= KC_OSI_ASSOCIATION, you must pass the data structure kc_osi_associa-
tion_str with the name of an OSI-LPAP partner in the selection area. In this case, the
length of the data structure kc_osi_association_str is to be specified in select_lth.

For obj_type=KC_SUBNET you must always specify select_lth=0.

7. In data_lth you must specify the length of the data area that you are providing to UTM
for returning the information queried.

– For subopcode1= KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRI-
BUTES_NEXT, the following is true:

If you specify obj_number≠0, then the data area provided for returning the number
of objects requested must be large enough. For obj_number=n (see 4.) you must
specify in data_lth a minimum length of (n∗ maximum length of the object name) or
(n ∗ length of the data structure of the object type in obj_type).

– For subopcode1=KC_APPLICATION_PAR, you must specify at least the length of
the data structure of the parameter type set in obj_type.

8. The data you must specify in the identification area is dependent on the data contained
in the subopcode1 field and the value of obj_type:

– For subopcode1=KC_NAME,KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRI-
BUTES_NEXT:

You must pass a string to UTM in the identification area. The string specifies the
object at which UTM is to begin outputting information.

X/W

KDCADMI program interface KC_GET_OBJECT

Administering Applications 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

You can also pass binary zero or a string containing non-printable characters in the
identification area. UTM takes the string as it is and searches for the next highest
(for subopcode2=KC_ASCENDING) or next lowest (for subopcode2= KC_DE-
SCENDING) object name.

You place a kc_id_area union (see page 175) in the identification area. The string
must be passed in the union element that belongs to the object type specified in
obj_type.

– For obj_type=KC_PROGRAM and KC_LOAD_MODULE:
you pass the string in the element kc_name32. The name must be left-justified,
and the rest of the field must either be padded with blanks or end with the null
byte (\0).
The string specified does not have to be an object name.

– For obj_type=KC_CON and KC_PTERM:
you must pass the string in the union element kc_long_triple_str. A name triplet
(object name, computer name, name of the local application) can be specified
in kc_long_triple_str. The object name and the name of the local application can
be up to 8 characters long, the computer name up to 64 characters.
You can specify any string for each of the three names. The name does not
need to exist. It is sufficient just to specify a string for the object name, you do
not need to specify the computer name and the name of the local application.
You may set these to binary zero.
When evaluating the strings in the identification area, UTM interprets the three
names as a 80 character long object name. The starting point of the output is
determined accordingly.

– For obj_type=KC_MUX:
you must pass the string in the union element kc_triple_str. A name triplet (object
name, computer name, name of the local application) can be specified in
kc_triple_str. Each of the names can be up to 8 characters long.
You can specify any string for each of the three names. The name does not
need to exist. It is sufficient just to specify a string for the object name, you do
not need to specify the computer name and the name of the local application.
You may set these to binary zero.
When evaluating the strings in the identification area, UTM interprets the three
names as a 24 character long object name. The starting point of the output is
determined accordingly.

– With obj_type=KC_DB_INFO

you can specify a number to identify a database in the union element kc_name2.
This number represents the databases in the order in which they were
generated in the KDCDEF run. If you specify a different string, the call is
rejected.

KC_GET_OBJECT: selection criteria KDCADMI program interface

296 Administering Applications

– For obj_type=KC_SFUNC
you can specify a valid function key in the union element kc_name4. If you use a
different string, the call will be rejected.
The following options are valid:
on BS2000 systems: F1 to F20 and K1 to K14
on Unix, Linux and Windows systems: F1 to F20
If you do not make an entry in the identification area, UTM will return data on all
function keys.
If you enter a valid function key, UTM will start output with that function key

– For obj_type = KC_TACCLASS:
you can specify the values of an existing TAC class, a LOW VALUE or a HIGH
VALUE in the union element kc_name2. If you specify any other string, the call
will be rejected.

– For obj_type = KC_OSI_ASSOCIATION
you must pass the string in the union element kc_name8.
For subopcode1=KC_NAME and KC_NAME_NEXT,
UTM interprets the string as the name of an OSI TP association.
For subopcode1= KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT,
UTM interprets the string as an association ID. See the description in point 3 on
page 291.

– For obj_type=KC_CLUSTER_NODE
you must pass LOW VALUE, HIGH VALUE or empty fields in the identification
area. Otherwise the call is rejected. No specific node is addressed. Choose a
value for data_lth that is large enough for information to be passed to all the
nodes.
For all other object types, the string must be passed in the union element
kc_name8. The string must be stored left-justified and the rest of the field is to be
padded with blanks.
The string specified does not have to be an object name.

– If the identification area is used for obj_type=KC_SUBNET, the name specified
there must be an object name, i.e. it must correspond to a generated subnet
name (mapped_name) as the information on the subnets is not sorted in alpha-
betical order when it is stored but in the order specified in the generation. If no
generated mapped_name is specified, KC_MC_NO_ELT is returned as the return
code with subcode KC_SC_NOT_EXISTENT.

– For subopcode1=KC_APPLICATION_PAR the null pointer should be passed for the
identification area.

9. In the selection area, if select_lth ≠0, then you must pass the data structure of the object
type to UTM together with the selection criteria. The rest of the fields in the data
structure must be set to binary zero.

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCADMI program interface KC_GET_OBJECT: selection criteria

Administering Applications 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

The data structures are described in section “Data structures for describing object
properties” on page 454f. The name of each data structure is created as follows: data
structure "typ_str" belongs to the object type "TYP", so, for example, the data structure
kc_lterm_str belongs to KC_LTERM.

If select_lth = 0, the selection area, and therefore the selection criteria, are not
evaluated.

A selection criterion is an object property. If selection criteria are specified, then UTM
executes a selective search of the objects. Only information on the objects meeting the
selection criteria is returned. The selection criteria you may specify for each object type
is listed in the following text.

Possible selection criteria

● obj_type=KC_CON: connections to LU6.1 partner applications

In the selection area you pass the data structure kc_con_str with the selection
criteria. The following data may be specified:

You can also specify multiple selection criteria together, meaning you can specify
multiple fields at the same time.

● obj_type=KC_LPAP: LPAP partner

In the selection area, you pass the data structure kc_lpap_str with the selection
criteria. The following specifications are permitted:

Field name Meaning

connect_mode=´Y´ UTM returns information on LU6.1 connections currently open.

pronam_long UTM returns information on LU6.1 connections to partner applica-
tions that are running on a certain computer. You specify the name of
the computer in pronam_long.

delete delete=´Y´:
UTM returns information on LU6.1 connections that were deleted
from the configuration.
delete=´N´:
UTM returns information on LU6.1 connections that were not deleted
from the configuration.

Field name Meaning

master master contains the name of a master LPAP in an LPAP bundle.
UTM returns information on the slave LPAPs in this LPAP bundle.

KC_GET_OBJECT: selection criteria KDCADMI program interface

298 Administering Applications

● obj_type=KC_LSES: sessions to LU6.1 partner applications

In the selection area you pass the data structure kc_lses_str with the selection
criteria. The following data may be specified:

You can also specify multiple selection criteria, meaning you can specify multiple
fields at the same time.

● obj_type=KC_LTERM: LTERM partner

In the selection area, you pass the data structure kc_lterm_str with the selection
criteria. The following specifications are permitted:

You can also specify both selection criteria, meaning you can specify both fields at
the same time.

Field name Meaning

connect_mode=´Y´ UTM returns information on sessions for which a transport connection
is currently established.

lpap UTM returns information on sessions that are assigned to a certain
LU6.1 partner application. You specify the name of the LPAP partner
assigned to this partner application in lpap.

delete delete=´Y´:
UTM returns information on sessions that were deleted from the
configuration.
delete=´N´:
UTM returns information on sessions that were not deleted from the
configuration.

Field name Meaning

master master contains the name of a master LTERM in an LTERM bundle:
UTM returns information on the slave LTERMs of the LTERM bundle
for the specified master LTERM.
master contains the name of a primary LTERM in an LTERM group:
UTM returns information on the group LTERMs of the LTERM group
for the specified primary LTERM.

delete delete=´Y´:
UTM returns information on LTERMs that were deleted from the
configuration.
delete=´N´:
UTM returns information on LTERMs that were not deleted from the
configuration.

KDCADMI program interface KC_GET_OBJECT: selection criteria

Administering Applications 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

● obj_type=KC_MUX: multiplex connections

In the selection area you pass the data structure kc_mux_str with the selection
criteria. The following data may be specified:

You can also specify both selection criteria, meaning you can specify both fields at
the same time.

● obj_type=KC_OSI_ASSOCIATION: associations to OSI TP partner applications

For subopcode1= KC_NAME and KC_NAME_NEXT, no selection criterion may be
specified.

For subopcode1= KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT, you must pass
the following selection criterion to UTM (see the description under point 3 on
page 291). To do this, pass the data structure kc_osi_association_str in the selection
area with the following data:

● obj_type=KC_OSI_LPAP: Properties of OSI TP partner applications

In the selection area, you pass the data structure kc_osi_lpap_str with the selection
criteria. The following specifications are permitted:

Field name Meaning

connect_mode=´Y´ UTM returns information on multiplex connections for which a
transport connection to the message router is currently established.

pronam UTM returns information on multiplex connections that are defined for
message routers on a certain computer. You specify the name of the
computer in pronam.

Field name Meaning

osi_lpap UTM returns information on associations that are assigned to a certain
OSI TP partner application. You specify the name of the OSI-LPAP
partner assigned to this partner application in osi_lpap.

Field name Meaning

master master contains the name of a master LPAP in an OSI-LPAP bundle:
UTM returns information on the slave LPAPs of the LPAP bundle for
the specified master LPAP.

B

B

B

B

B
B

B
B
B

B

B

KC_GET_OBJECT: selection criteria KDCADMI program interface

300 Administering Applications

● obj_type=KC_PROGRAM: program units

In the selection area you pass the data structure kc_program_str with the selection
criteria. The following data may be specified:

You can also specify both selection criteria, meaning you can specify both fields at
the same time.

● obj_type=KC_PTERM: clients and printers

In the selection area you pass the data structure kc_pterm_str with the selection
criteria. The following data may be specified:

You may only specify the selection criterion lterm alone. All other fields of the data
structure must then be set to binary zero.
Either connect_mode and pronam_long or pronam_long and delete can be specified
together. connect_mode and delete cannot be set at the same time.

Field name Meaning

load_module UTM returns information on program units and VORGANG exits that are
linked into a certain load module / shared object/DLL. You specify the
name of the load module / shared object /DLL in load_module.

delete delete=´Y´:UTM returns information on program units that have been
deleted from the configuration.
delete=´N´: UTM returns information on program units that have not been
deleted from the configuration.

Field name Meaning

lterm Is only useful for printers:
UTM is to return information on the printers in a printer pool. The
printers in a printer pool are assigned to the same LTERM partner.
The name of the LTERM partner is to be specified in lterm.

connect_mode=´Y´ UTM returns information on clients/printers that are currently
connected to the application.

pronam_long UTM returns information on clients and printers running on a certain
computer or which are connected to this computer. You specify the
name of the computer in pronam_long.

delete delete=´Y´:UTM returns information on clients and printers that have
been deleted from the configuration.
delete=´N´: UTM returns information on clients and printers that have
not been deleted from the configuration.

KDCADMI program interface KC_GET_OBJECT: selection criteria

Administering Applications 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

● obj_type=KC_USER, KC_USER_DYN1, KC_USER_DYN2, KC_USER_FIX:
user IDs

In the selection area you pass the data structure kc_user_str or kc_user_dyn1_str with
the selection criteria. The following data may be specified:

The selection criteria must not be specified together, i.e. only one field may be set
per call.

● obj_type=KC_LTAC or KC_TAC: transaction codes.

In the selection area you pass the data structure kc_ltac (KC_LTAC) or kc_tac_str
(KC_TAC) with the selection criteria. The following data may be specified:

Field name Meaning

connect_mode=´Y´ UTM returns information on user IDs with which a user/client is
currently signed on to the application.

delete delete=´Y´:
UTM returns information on user IDs that have been deleted from the
configuration.
delete=´N´:
UTM returns information on user IDs that have not been deleted from
the configuration.

Field name Meaning

delete delete=´Y´:UTM returns information on transaction codes that have been
deleted from the configuration.
delete=´N´: UTM returns information on transaction codes that have not
been deleted from the configuration.

KC_GET_OBJECT: return codes KDCADMI program interface

302 Administering Applications

10. in the retcode field UTM outputs the return codes of the call. In addition to the return
codes listed in section “Return codes” on page 178, the following return codes can also
be returned.

Main code = KC_MC_OK
The call was processed without error.

Subcodes:

KC_SC_SAME
subopcode1 = KC_NAME or KC_ATTRIBUTES was set, and an object exists that corre-
sponds to the object name specified in the identification area.
This object is passed in the data area as the first object.

KC_SC_NEXT
subopcode1 = KC_NAME_NEXT or KC_ATTRIBUTES_NEXT was set.
Or subopcode1 = KC_NAME or KC_ATTRIBUTES was set but no object exists that corre-
sponds to the object name specified in the identification area. The next highest or next
lowest object (depending on subopcode2) is passed in the data area as the first object.

Main code = KC_MC_LAST_ELT
The call was processed without error, but fewer objects were read than were queried, and
the last object has already been reached.

Subcodes:

KC_SC_SAME
subopcode1 = KC_NAME or KC_ATTRIBUTES was specified. An object corresponding to
the object name specified in the identification area exists.
UTM has written object names or properties to the data area, but for fewer objects than
were requested in obj_number or (for obj_number = 0) for fewer objects than could fit in the
space provided in the data area passed. The last or first object, respectively, was reached
beforehand.

KC_SC_NEXT
subopcode1 = KC_NAME_NEXT or KC_ATTRIBUTES_NEXT was set.
Or subopcode1 = KC_NAME or KC_ATTRIBUTES was set but no object exists that corre-
sponds to the object name specified in the identification area. The next highest or next
lowest object (depending on subopcode2) is passed in the data area as the first object.
UTM has written object names or properties into the data area, but for fewer objects than
were requested in obj_number or (for obj_number = 0) for fewer objects than could fit in the
space provided in the data area passed. The last or first object, respectively, was reached
beforehand.

KDCADMI program interface KC_GET_OBJECT: return codes

Administering Applications 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Main code = KC_MC_NO_ELT
subopcode1 = KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES or KC_ATTRI-
BUTES_NEXT was specified. There is no element or no next element corresponding to the
object name specified.

Subcode:

KC_SC_NO_INFO

KC_SC_NOT_EXISTENT
The object name specified in the identification area was not found in obj_type.

Main code = KC_MC_MEMORY_INSUFF
UTM cannot execute the function because that would require more internal storage space
than UTM has available.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_REJECTED
The call was rejected by UTM because no object of the specified type exists.

Subcode:

KC_SC_NOT_GEN
If obj_type=KC_DB_INFO, then no database was generated during the KDCDEF gener-
ation.
If obj_type=KC_GSSB, then no global secondary storage areas exist at the present time.
If obj_type = KC_MESSAGE_MODULE, then the application was generated without the
KDCDEF control statement MESSAGE.
If obj_type = KC_UTMD_PAR, then the application was generated without the KDCDEF
control statement UTMD.
If obj_type =KC_TACCLASS, then no TAC class was created during the KDCDEF gener-
ation.
If obj_type=KC_SUBNET, then
either no IP subnet was generated (Unix, Linux, or Windows systems) or
subnet generation is generally not possible for the application (BS2000 systems).

KC_SC_NO_F_KEYS_GENERATED
You specified obj_type=KC_SFUNC, but no function keys were generated for the appli-
cation.
(See the openUTM manual “Generating Applications”)

KC_SC_CCFG_FILE_READ_ERROR
Only in UTM cluster applications:
You have specified obj_type=KC_CLUSTER_PAR or KC_CLUSTER_NODE in order to
obtain information about a UTM cluster application. An error occurred while reading the
cluster configuration file.

X/W
X/W

X/W
B

KC_GET_OBJECT: return codes KDCADMI program interface

304 Administering Applications

11. After a call with subopcode1=KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES or
KC_ATTRIBUTES_NEXT, number_ret contains the number of objects for which UTM
has returned information in the data area.

If no more objects corresponding to the string specified in the identification area exist,
then UTM returns number_ret=0 and data_lth_ret=0 and sets the corresponding return
code.

KC_SC_CCFG_INVAL_NODE_BUFF_LTH
Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_LOCK_ERROR
Only in UTM cluster applications:
The cluster configuration file is locked.

KC_SC_CCFG_RT_CODE_NOT_OK
Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

KC_SC_CUSF_USER_NOT_FOUND
Only in UTM cluster applications:
Specified user does not exist.

KC_SC_CUSF_RT_CODE_NOT_OK
Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

Main code = KC_MC_NOT_EXISTENT
The object specified does not exist.

Subcode:

KC_SC_NO_INFO
obj_type=KC_DB_INFO, KC_SFUNC or KC_TACCLASS:
no valid database ID, function key or TAC class was specified in the identification area.

Main code = KC_MC_SEL_INVALID
Invalid data was specified in the selection area.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_REJECTED
The call was rejected by UTM because no object of the specified type exists.

Subcode:

KDCADMI program interface KC_GET_OBJECT: return codes

Administering Applications 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

After a call with subopcode1=KC_APPLICATION_PAR, UTM always returns
number_ret=0.

12. In data_lth_ret UTM returns the length of the data that UTM has stored in the data area.

The length of the data returned is:

– for subopcode1=KC_NAME, KC_NAME_NEXT:
number of objects ∗ length of the name field belonging to the object type

– for subopcode1= KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT:
number of objects ∗ length of the data structure of the object type

– for subopcode1=KC_APPLICATION_PAR:
length of the data structure of the parameter type

If no object or no more objects corresponding to the string specified in the identification
area exist, then UTM returns data_lth_ret=0 and sets the corresponding return code.

13. in the data area UTM returns the information queried.

– subopcode1=KC_NAME, KC_NAME_NEXT:

UTM returns an array of object names. The object names are ordered alphabetically
in the array in ascending (for subopcode2=KC_ASCENDING) or descending (for
subopcode2=KC_DESCENDING) order.

The length of the individual names corresponds to the length of the name field in
the data structure of the object type.

For obj_type=KC_CON and KC_PTERM, UTM returns an array of name structures
with the following format:

For obj_type=KC_MUX, UTM returns an array of name structures with the following
format:

The three fields of the data structure contain the following for each of the objects:

struct kc_long_triple_str

char p_name[8];

char pronam[64];

char bcamappl[8];

struct kc_triple_str

char p_name[8];

char pronam[8];

char bcamappl[8];

KC_GET_OBJECT: return codes KDCADMI program interface

306 Administering Applications

p_name
object name, i.e. the name of the connection, client, printer or multiplex
connection

pronam
Name of the computer on which the object is located

bcamappl
Name of the local application via which the connection to this object has
been established.

For subopcode1=KC_NAME_NEXT the name array always begins with the object
name that is the next highest or next lowest alphabetically, depending on the value
of subopcode2, with respect to the string specified in the identification area.
There are two cases for subopcode1=KC_NAME:

If an object name exists that corresponds to the string you have specified in the
identification area, then the name array begins with this object name. UTM returns
the KC_SC_SAME return subcode.

If the string specified in the identification area does not correspond to an object
name, then, just as with subopcode1=KC_NAME_NEXT, the name array begins with
the object name that is the next highest or next lowest alphabetically, depending on
the value of subopcode2, with respect to the string specified in the identification area.
UTM returns the KC_SC_NEXT return subcode.

– subopcode1= KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT:

UTM places an array of data structures of the object type in the data area. Each
data structure contains the properties of an object. The data structures are placed
one after the other and are put in ascending or descending alphabetical order
according to the object names, depending on the value of subopcode2.

The data structures are described in section “Data structures for describing object
properties” on page 454f. The name of each data structure is created as follows: the
data structure "typ_str" belongs to the object type "TYP", so, for example, the data
structure kc_lterm_str belongs to KC_LTERM.

In the data structures, the fields that were not specified when the object was added
to the configuration contain the default values, blanks or ´0´. Fields only relevant to
other operating systems are set to binary zero.

The object with which the array begins depends on the value of subopcode1 and on
the name specified in the identification area.

For subopcode1=KC_ATTRIBUTES_NEXT the array begins with the object that is
the next highest or next lowest alphabetically, depending on the value of subop-
code2, with respect to the string specified in the identification area.

There are two cases for subopcode1=ATTRIBUTES:

KDCADMI program interface KC_GET_OBJECT: return codes

Administering Applications 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

If an object name exists that corresponds to the string you have specified in the
identification area, then the name array begins with this object name. UTM returns
the KC_SC_SAME return subcode.

If the string specified in the identification area does not correspond to an object
name, then, just as with subopcode1=KC_ATTRIBUTES_NEXT, the name array
begins with the object name that is the next highest or next lowest alphabetically,
depending on the value of subopcode2, with respect to the string specified in the
identification area. UTM returns the KC_SC_NEXT return subcode.

– subopcode1= KC_APPLICATION_PAR:

UTM places the data structure of the parameter type specified in obj_type in the data
area. UTM returns the application parameters requested in the data structure.

The data structures are described in section “Data structures used to describe the
application parameters” on page 600f. The name of each data structure is created
as follows: the data structure "typ_str" belongs to the object type "TYP", so, for
example, the data structure kc_max_par_str belongs to KC_UKC_MAX_PAR.

KC_GET_OBJECT: example KDCADMI program interface

308 Administering Applications

Example of a successive query with KC_ATTRIBUTES_NEXT

Task

All information on user IDs whose names begin with "S" is to be read. It is assumed in the
following that such user IDs exist.

Solution

1. KC_GET_OBJECT call:
(It is assumed that n objects are found by this call, i.e. that n_ret=n.)

Data returned by UTM:

If the last user ID returned still begins with "S", then another call must be made.

Data to be entered in the parameter area:

version
retcode
version_data
opcode
subopcode1
subopcode2
obj_type
obj_number
id_lth
select_lth
data_lth

KC_ADMI_VERSION_1
KC_RC_NIL
KC_VERSION_DATA_10
KC_GET_OBJECT
KC_ATTRIBUTES
KC_ASCENDING
KC_USER
n
8
0
n ∗ sizeof(struct kc_user_str)

Data to be entered in the identification area:

´SËËËËËËË´ or ´S\0´ (\0 = null byte in C)

Data to be entered in the selection area:

none

Data to be entered in the data area:

none

Data returned in the parameter area:

retcode
number_ret
data_lth_ret

KC_MC_OK with subcode KC_SC_SAME or KC_SC_NEXT
n_ret
n_ret∗sizeof(struct kc_user_str)

Data returned in the data area:

n_ret ∗ data structure kc_user_str with the properties of the user IDs

KDCADMI program interface KC_GET_OBJECT: example

Administering Applications 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

2. KC_GET_OBJECT call:
(Data to be entered which differs from that in the first call is underlined)

Data returned by UTM:

The second call is repeated until all user IDs beginning with "S" have been read. Whether
or not all user IDs beginning with "S" have been read can be determined by evaluating the
return data. This means that if the name of the last user ID returned by UTM begins with
"S", then the call must be repeated again. If it does not begin with "S" or if
number_ret ≠ obj_number in the last call, then all user IDs beginning with "S" have been read.

Data to be entered in the parameter area:

version
retcode
version_data
opcode
subopcode1
subopcode2
obj_type
obj_number
id_lth
select_lth
data_lth

KC_ADMI_VERSION_1
KC_RC_NIL
KC_VERSION_DATA_10
KC_GET_OBJECT
KC_ATTRIBUTES_NEXT
KC_ASCENDING
KC_USER
n
8
0
n ∗ sizeof(struct kc_user_str)

Data to be entered in the identification area:

Name of the last user ID returned by UTM in the first call

Data to be entered in the selection area:

none

Data to be entered in the data area:

none

Data returned in the parameter area:

retcode
number_ret
data_lth_ret

KC_MC_OK with subcode KC_SC_NEXT 1

n_ret (≤ n)
n_ret ∗ sizeof(struct kc_user_str)

1 The return codes KC_MC_LAST_ELT (if less than n objects were found) and KC_MC_NO_ELT (if no
further object was found) can also occur.

Data returned in the data area:

n_ret ∗ data structure kc_user_str with the data of the user IDs

KC_LOCK_MGMT KDCADMI program interface

310 Administering Applications

11.2.8 KC_LOCK_MGMT - Release locks in UTM cluster applications

You can use KC_LOCK_MGMT to:

● Sign off all users or an individual user who are/is signed on at an abnormally terminated
node application (KDCOFF). Any service data for this user that is valid globally in the
cluster is lost when you do this.

For this function, you use the sub-opcodes KC_SIGNOFF_ALL and KC_SIGNOFF_S-
INGLE.

● For all users or an individual user who have/has a service bound to a terminated node
application, you can mark this service for abnormal termination and this way make it
possible for the users or user to sign on again at another node application. The bound
service is terminated abnormally the next time the node application to which it is bound
is started.

For this function, you use the sub-opcodes KC_ABORT_BOUND_SERVICE,
KC_ABORT_ALL_BOUND_SERVICES and KC_ABORT_PTC_SERVICE.

● Release a cluster user file lock set on an abnormally terminated KDCDEF run
(subopcode KC_UNLOCK_USF).

Period of validity / transaction management /clusters

The call permanently modifies the cluster user file. The modification takes effect immedi-
ately and cannot be undone by rolling back the transaction.

This function is only available for UTM cluster applications.

KDCADMI program interface KC_LOCK_MGMT

Administering Applications 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_LOCK_MGMT

1. subopcode1 KC_ABORT_ALL_BOUND_SERVICES /
KC_ABORT_BOUND_SERVICE /
KC_ABORT_PTC_SERVICE /
KC_SIGNOFF_ALL / KC_SIGNOFF_SINGLE /
KC_UNLOCK_USF

id_lth 0

select_lth 0

2. data_lth Length of the data structure / 0

Identification area

—

Selection area

—

Data area

3. Data structure / 0

KDCADMI-Aufruf

KDCADMI (¶meter_area, NULL, NULL, &data_area)

Data returned by UTM

Parameter area

Field name Content

4. retcode Return codes

KC_LOCK_MGMT KDCADMI program interface

312 Administering Applications

1. In subopcode1, you specify the action that openUTM is to perform. You can specify the
following subcodes:

KC_ABORT_ALL_BOUND_SERVICES
Marks all the services that are bound to a terminated node application for
abnormal termination. This allows the corresponding users to sign on at other
node applications (KDCSIGN). The bound services are terminated abnormally
the next time the node application to which they are bound is started.

KC_ABORT_BOUND_SERVICE
Marks a user service that is bound to a terminated node application for
abnormal termination. This allows the user to sign on at another node appli-
cation (KDCSIGN). The bound service is terminated abnormally the next time
the node application to which it is bound is started.

KC_ABORT_PTC_SERVICE
Marks a user service that is bound to a terminated node application and has a
transaction in PTC state for abnormal termination. This allows the user to sign
on at another node application (KDCSIGN). The bound service is terminated
abnormally the next time the node application to which it is bound is started.

KC_SIGNOFF_ALL
Sign off all users who are signed on at an abnormally terminated node appli-
cation so that these users can sign on at another node application. Service data
that is valid throughout the cluster for these users is lost.

KC_SIGNOFF_SINGLE
Sign off a single user who is signed on at an abnormally terminated node appli-
cation so that this user can sign on at another node application. Service data
that is valid throughout the cluster for this user is lost

KC_UNLOCK_USF
Releases the lock in the cluster user file after a KDCDEF run was terminated
abnormally. It is only necessary to issue the call with subopcode KC_UN-
LOCK_USF if a KDCDEF has terminated abnormally and a subsequent
KDCDEF run outputs message K516 with error code 8.

2. In data_lth, enter the length of the data structure in the data area or 0.

KDCADMI program interface KC_LOCK_MGMT

Administering Applications 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
1_

e.
do

c

3. In the data area, you must specify the data structure kc_lock_mgmt_str for all subopcode1
values excluding KC_UNLOCK_USF:

The data structure kc_lock_mgmt_str is defined as follows:

The fields in the data structure have the following meanings:

mg_name –
Only for subopcode1=KC_SIGNOFF_SINGLE:
Name of the user who is to be signed off.

– If subopcode1=KC_ABORT_BOUND_SERVICE:
Name of the user with service which is bound to a terminated node appli-
cation and is to be marked for abnormal termination.

– If subopcode1=KC_ABORT_PTC_SERVICE:
Name of the user with a service in the PTC state which is bound to a termi-
nated node application and is to be marked for abnormal termination.

– Other values for subopcode1: irrelevant
You do not need to specify the node number. openUTM identifies this.

mg_node
– Only for subopcode1=KC_SIGNOFF_ALL:

Number of the node from which all the users are to be signed off.
– If subopcode1=KC_ABORT_ALL_BOUND_SERVICES:
– Number of the node that was terminated. All the service bound to this node

should be marked for abnormal termination.
– Other values for subopcode1: irrelevant

struct kc_lock_mgmt_str

char mg_name[8];

char mg_node[4];

KC_LOCK_MGMT KDCADMI program interface

314 Administering Applications

4. openUTM indicates the return code from the call in the retcode field. Alongside the return
codes listed in section “Return codes” on page 178, the following return codes may also
occur:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CUSF_TRANSIENT_ERROR
For each subopcode1:
Temporary error when accessing the cluster user file; please repeat the call.

KC_SC_CUSF_RT_CODE_NOT_OK
For each subopcode1: Internal UTM error.
Please contact system support.

KC_SC_CUSF_INVALID_STATE
For subopcode1= KC_SIGNOFF_ALL/KC_ABORT_ALL_BOUND_SERVICES:
The specified node application has never been started or is currently running. The call can
only be executed in the node statuses FAIL or ABTERM.
For subopcode1= KC_SIGNOFF_SINGLE:
The node application at which the specified user is signed in is currently running.
If subopcode1= KC_ABORT_BOUND_SERVICE/KC_ABORT_PTC_SERVICE:
The node application to which the service of the specified user is bound is currently running.

KC_SC_CUSF_USER_HAS_NO_BND_SRV
For subopcode1=KC_ABORT_BOUND_SERVICE: The user has no bound service.

KC_SC_CUSF_USER_HAS_NO_PTC
For subopcode1=KC_ABORT_PTC_SERVICE: The user has no node-bound service with a
transaction in the PTC state.

KC_SC_CUSF_USER_HAS_PTC
For subopcode1=KC_ABORT_BOUND_SERVICE: The user has a node-bound service with
a transaction in the PTC state.

KC_SC_CUSF_USER_NOT_FOUND
For subopcode1=KC_SIGNOFF_SINGLE/KC_ABORT_BOUND_SERVICE/
KC_ABORT_PTC_SERVICE: The user was not found.

KC_SC_CUSF_USER_NOT_SIGNED
For subopcode1=KC_SIGNOFF_SINGLE: The user is not signed in at any node.

KC_SC_DATA_MISSING
mg_name is not binary zero and subopcode1=KC_SIGNOFF_ALL, KC_ABORT_BOUND_-
SERVICE or KC_ABORT_ALL_BOUND_SERVICES.

KC_SC_NOT_NULL
mg_node is not binary zero and subopcode1=KC_SIGNOFF_SINGLE,
KC_ABORT_BOUND_SERVICE or KC_ABORT_PTC_SERVICE.

B
B
B

KDCADMI program interface KC_MODIFY_OBJECT

Administering Applications 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.9 KC_MODIFY_OBJECT -
Modify object properties and application parameters

KC_MODIFY_OBJECT allows you to modify application parameters and object properties
and perform other operations on application objects. You can make the following modifica-
tions:

Actions for the application’s objects

● establish or shut down connections to clients, printers, partner applications

● initiate automatic connections to clients, printers, partner applications

● disable and enable clients, printers, partner applications, user IDs, including their
queues, transaction codes and TAC queues

● modify the assignment between client/printer and LTERM partner

● modify the password for a user ID

● change keys in key sets

● alter the timer for monitoring idle states during a session, or deactivate monitoring

● activate or deactivate the UTM BCAM trace for specific objects and users

● replace an application program’s load modules or shared objects / DLLs

● Exchange the master LTERMs of two LTERM bundles or add the LTERM to an LTERM
group

● Specify that queued messages are to be stored in the dead letter queue (TAC queue
KDCDLETQ)

● mark load modules which are loaded in common memory pools for exchange with
KC_CHANGE_APPLICATION

● modify the maximum number of clients that can be connected concurrently to the appli-
cation through a multiplex connection

● modify the computer name and filebase name of a node application

● modify the database user ID and password

B

B

B

B

KC_MODIFY_OBJECT KDCADMI program interface

316 Administering Applications

Actions for the application parameters

● change the application timers

● reset the statistics data

● modify maximum values for the application

● activate and deactivate diagnostic functions (e.g. BCAM trace)

● define the number of processes (TASKS) that are to run for the application

● set the maximum number of processes that asynchronous jobs or services with
blocking function calls (e.g. KDCS call PGWT) can process concurrently.

● modify the timers for the reciprocal monitoring of the node applications

● in UTM cluster applications, reset the statistics values for the utilization of the cluster
page pool

Passing new object properties and application parameter values

Data structures for passing new object properties or application parameters are available
in the header file kcadminc.h. Each object type and each parameter type has its own data
structure. The name of the data structure matches that of the object type/parameter type (in
lowercase) with the suffix “_str“ (objecttyp_str, parametertyp_str). The following description
specifies the fields to which you must pass the new properties. You will find a complete
description of the data structures in section “Data structures used to pass information” on
page 452.

The following points should be noted when modifying object properties or application program
parameters

When modifying object properties, you can only modify the properties of one object with one
KC_MODIFY_OBJECT call.
You must specify the full object name in the identification area so that UTM can unambigu-
ously identify the object.
Object names cannot be modified.

When modifying application parameters, you can modify all parameters belonging to the
same parameter type, i.e. which are contained in a single data structure, within a single call.

The transactional modifications specified in a KC_MODIFY_OBJECT call are either made
in their entirety or not at all. This does not apply for changes which are not subject to trans-
action management.

KDCADMI program interface KC_MODIFY_OBJECT

Administering Applications 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management / cluster

The time at which a modification takes effect and the period for which it is applicable depend
on the type of modification. The type of modification also determines whether or not it is
subject to transaction management.

The following applies in a UTM cluster application:
The call can initiate actions which either have an effect either globally in the cluster or locally
in the node. Actions with a global effect apply to all the node applications in the UTM cluster
application irrespective of whether they are currently active or not. Actions with a local effect
only apply to the node applications at which they are performed. Depending on the object,
all its parameters apply either globally or locally or have a mixed global/local effect. The
change may continue to apply beyond the current application run or may apply only to the
current run. Modifications which have an impact on the UTM configuration always apply
globally to the cluster to ensure that the generation remains consistent. Global validity is
indicated by a "G" in the KC_MODIFY_OBJECT operation code column. If no "G" is present
in the ID then the effect in a UTM cluster application is local to the node.
A detailed description of the scope of validity of the individual parameters of each object
can be found in the description of the data structures.

The following types of modification may occur:

IR/GIR
The modification is not subject to transaction management. It takes effect
immediately (Immediate), and applies only to the current application/UTM cluster
application run (Run). A RSET call issued in the same transaction but after the
modification rolls back the modification.

ID/GID
 The modification is not subject to transaction management. It takes effect immedi-

ately (Immediate) and, regardless of the generation version (UTM-S or UTM-F), it
applies beyond the current application/UTM cluster application run (Durable). A
RSET call issued in the same transaction but after the modification rolls back the
modification.

PR/GPR
 The modification is subject to transaction management. It takes effect after the end

of transaction (PEND) and it applies only to the current application/UTM cluster
application run (Run). It can be rolled back with a RSET call issued in the same
transaction.

P/GP The modification is subject to transaction management. It takes effect after the end
of transaction (PEND) and its duration depends on the generation version of the
application. In the case of UTM-F, it only applies to the current application run, with
UTM-S, however, it goes beyond the current application run. It can be rolled back
within the same transaction with a RSET call.

KC_MODIFY_OBJECT KDCADMI program interface

318 Administering Applications

PD/GPD
 The modification is subject to transaction management. It takes effect after the end

of transaction (PEND) and, independent of the generation version, its effect goes
beyond the current application/UTM cluster application run (Durable). It can be
rolled back within the same transaction with a RSET call.

A/GA This generates an announcement (Announcement), which causes the desired
modification (e.g. establishment of a connection/disconnection or exchange of
application program) . When the job is executed depends on the load on the appli-
cation. You can only tell whether the job was executed successfully or not in an
information query issued later (e.g. using KC_GET_OBJECT). The job cannot be
rolled back.

Note on period of validity in UTM cluster applications:

● If the modification cannot be generated then the administrative modification continues
to apply even when a node application is started with a new generation, but persists no
later than the end of the UTM cluster application run. The UTM cluster application run
begins with the start of the first node application and terminates with the end of the last
node application.

● If the modification can be generated, then the generation value and not the administra-
tively modified value applies when a node application is started with a new generation.

The description of the possible modifications under point 7 on page 323ff tells you to which
modification type the various modifications belong. The abbreviations listed above are
used.

 You can also perform some of the modifications using the administration
commands. The description under point 7 on page 323ff identifies the commands
concerned.

KDCADMI program interface KC_MODIFY_OBJECT

Administering Applications 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Data to be supplied

Function of the call Data to be entered in the

parameter area1

1 The operation code KC_MODIFY_OBJECT must always be specified in the parameter area.

identification
area

selection
area

data area

Modification of
object properties

obj_type:
object type

Name of object —— Data structure of the
object type with the
new values of the
properties

Modification of appli-
cation parameters

obj_type:
parameter type

—— —— Data structure of the
parameter type with the
new parameter values

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_MODIFY_OBJECT

1. subopcode1 KC_NO_SUBOPCODE / KC_IMMEDIATE /
KC_DELAY

2. obj_type Object type / parameter type

3. obj_number 1 / 0

4. id_lth Length of object name in identification area / 0

select_lth 0

5. data_lth Length of data structure in data area

Identification area

6. Object name / —

Selection area

—

KC_MODIFY_OBJECT KDCADMI program interface

320 Administering Applications

1. With obj_type = KC_DB_INFO you must specify KC_IMMEDIATE in the subopcode1 field
if the change to the database password is to take effect immediately. With KC_DELAY
the change to the database password only takes effect the next time the application is
started. A change to the database user name only ever takes effect the next time the
application is started.

For all other values of obj_type you must specify KC_NO_SUBOPCODE in subopcode1.

2. In the obj_type field you specify the type of object whose properties are to be modified
or the type of application parameters which are to be modified. The following modifica-
tions are permissible:

Object types

– KC_CLUSTER_NODE
(only possible in a UTM cluster application)
Specify if you want to modify the computer names and/or filebase names of a node
application.
You must, for example, specify KC_CLUSTER_NODE if you want to assign actual
values for the computer name of the node and the base name of the node appli-
cation’s KDCFILE to a reserve node application (see openUTM manual “Generating
Applications” and openUTM manual “Using UTM Applications”).

– KC_DB_INFO
Specify if you want to change the database password and/or the database user
name for a XA database.

– KC_KSET

Data area

7. Data structure of object type or parameter type / —

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, &data_area) or
KDCADMI (¶meter_area, NULL, NULL, &data_area) or

KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area (from page 394)

Field name Content

7. retcode Return codes

KDCADMI program interface KC_MODIFY_OBJECT

Administering Applications 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Specify if you want to change keys in a key set.

– KC_LOAD_MODULE
Specify if you want to replace load modules of a UTM application on BS2000
systems or shared objects/DLLs of a UTM application on a Unix, Linux or a
Windows system, i.e. if you want to load another version of a load module/shared
object/DLL.

– KC_LPAP
Specify if you want to perform an operation for an LPAP partner of the application,
i.e. if you want to modify the logical properties of an LU6.1 partner application.

– KC_LSES
Specify if you want to modify the properties of a session with an LU6.1 partner appli-
cation.

– KC_LTAC
Specify if you want to modify the local properties of a remote service, i.e. the
properties of an LTAC.

– KC_LTERM
Specify if you want to modify the properties of an LTERM partner.

– KC_MUX
Specify if you want to modify the properties of a multiplex connection.

– KC_OSI_CON
Specify if you want to modify the properties of the connections to an OSI TP partner
application.

– KC_OSI_LPAP
Specify if you want to perform an operation for an OSI-LPAP partner, i.e. you want
to modify the logical properties of an OSI TP partner application.

– KC_PTERM
Specify if you want to perform operations for terminals, printers, client applications
or TS applications.

– KC_TAC
Specify if you want to modify the properties of a transaction code which is assigned
to a local service or a TAC queue.

– KC_TACCLASS
Specify if you want to modify the maximum number of processes that can process
jobs concurrently for a certain TAC class.

– KC_TPOOL
Specify if you want to modify the properties of the LTERM partner or the number of
active LTERM partners of an LTERM pool.

B

B

KC_MODIFY_OBJECT KDCADMI program interface

322 Administering Applications

– KC_USER
Specify if you want to modify the properties of a user ID or its queue.

Parameter types

– KC_CLUSTER_CURR_PAR
Specify if you want to reset the statistics values of the cluster page pool in a UTM
cluster application.

– KC_CLUSTER_PAR
Specify if, for a UTM cluster application, you want to

– modify the parameters which control the way the individual node applications
interact to check their availability.

– modify the parameters which control node application accesses to the cluster
configuration file and the cluster administration journal.

– KC_CURR_PAR
Specify if you want to reset application-specific statistical values.

– KC_DIAG_AND_ACCOUNT_PAR
Specify if you want to activate or deactivate diagnostic functions or if you want to
modify the UTM accounting settings.

– KC_MAX_PAR
Specify if you want to modify maximum values for applications (the MAX parameter)
or, in UTM(BS2000) applications, if you want to activate or deactivate the supply of
data to openSM2.

– KC_TASKS_PAR
Specify if you want to modify values relating to the number of application processes,
i.e. the total number of processes, maximum number of processes for executing
asynchronous jobs etc.

– KC_TIMER_PAR
Specify if you want to modify timer settings.

Point 7 on page 323f states which modifications are possible for each object type and
parameter type.

3. What you have to specify in the obj_number field is determined by what is entered in the
obj_type field:

– specify obj_number=1 when you specify an object type in obj_type (exception:
KC_TACCLASS, see below).

– specify obj_number=0 when you specify a parameter type in obj_type or if you want
to reset values in obj_type = KC_TACCLASS for all TAC classes.

4. What you have to specify in the id_lth field is determined by what is specified in the
obj_type field:

KDCADMI program interface KC_MODIFY_OBJECT

Administering Applications 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

– if you specify an object type in obj_type, you must specify the length of the data
structure in id_lth which you pass to UTM in the identification area.
Exception: If obj_type = KC_DB_INFO and KC_TACCLASS you must specify
id_lth=2.

– if you specify a parameter type in obj_type, you must set id_lth=0.

5. In the data_lth field you specify the length of the data structure which you are passing
to UTM in the data area.

data_lth=0 is not permitted.

6. In the identification area you pass to UTM the name of the object whose properties you
want to modify. This means that:

– If you specify an object type in obj_type, then, in the identification area, you must
pass the complete name of the object to UTM.

exceptions.
– If obj_type = KC_TACCLASS and you reset values for all TAC classes then you

must enter binary 0.
– With obj_type = KC_DB_INFO you must specify a number to identify a database.

This number represents the databases in the order in which they were
generated in the KDCDEF run and are returned on the administration interface
for KC_GET_OBJECT.

Section 7 specifies for each object type the information you must state in the identi-
fication area.

– If you specify a parameter type in obj_type, then you do not need to pass any identi-
fication area to UTM. UTM ignores any information specified in the identification
area.

7. In the data area you pass the data structure of the object or parameter type specified in
obj_type. Each individual object or parameter type has its own data structure, which you
must assign via the data area. You must pass the new property or parameter values to
UTM in the data structure. You must complete the remaining fields of the data structure,
i.e. the property or parameter value fields, which you do not wish to or cannot modify
with binary zero before the call.

In openUTM on Unix or Linux systems, it is not always necessary to pass data in the
data area for obj_type = KC_LOAD_MODULE since, when transferring shared objects
without any version specification, the name of the shared object in the identification
area is sufficient.

X

X

X

X

KC_MODIFY_OBJECT KDCADMI program interface

324 Administering Applications

The following tables as of page 325 describe the modifications that are permitted as a
function of object type/parameter type. You will be able to see from the description
which properties/parameters you are able to modify and how the fields are to be
completed. All the data structures are described in section “Data structures used to
pass information” on page 452.

8. UTM writes the return code for the call to the retcode field, see “Return codes” on
page 394.

KDCADMI program interface KC_MODIFY_OBJECT: KC_CLUSTER_NODE

Administering Applications 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.9.1 obj_type=KC_CLUSTER_NODE

The modifications relate to a node application in a UTM cluster application.

In the identification area, you must specify the internal number in the cluster (index of the
entry for this node in KC_GET_OBJECT for the object KC_CLUSTER_NODE) of the node
application (field kc_name2 in union kc_id_area). In the data area, you must pass the data
structure kc_cluster_node_str with the new property values. You can only modify nodes that
are not active.

Enter the following in the data structure kc_cluster_node_str:

Field name Meaning

hostname_long hostname_long contains the primary host name of the node on which this node
application is running.
hostname_long can be up to 64 characters in length.

filebase Base name of the KDCFILE, the user log file and the system log file SYSLOG
for the node application. When the node application is started, the UTM system
files are expected under the name specified here. This file structure must be
accessible from all node applications.
The name is passed in the element filebase of type kc_file_base:

struct kc_file_base
char length[2];
char fb_name[42];

fb_name Base name

length Length of the base name

Please note the following when modifying the base name of a node appli-
cation:
– The base names of the individual node applications of a UTM cluster

application must differ from each other.
– BS2000 systems:

Specify the name without catalog ID. You must specify the catalog ID in
the operand catid_A.
The base name may contain a BS2000 user ID and be up to 42
characters in length.

– Unix, Linux and Windows systems:
Specify the directory which contains the UTM system files for the node
applications. The name specified here must identify the same directory for
all the nodes. It may be up to 27 characters in length.

catid_A Catalog ID assigned to the UTM system files of the node application (in
particular the KDCFILE).

B
B
B
B
B

X/W
X/W
X/W
X/W

BB
B

KC_MODIFY_OBJECT: KC_CLUSTER_NODE KDCADMI program interface

326 Administering Applications

Period of validity / transaction management: type GID (page 317)

The effect is permanent. The information is stored in the cluster configuration file. The
modification takes effect immediately and cannot be undone by rolling back the transaction.

virtual_host_long In UTM cluster applications, this has the same function as the HOSTNAME
parameter in the MAX generation statement. You may not specify MAX
HOSTNAME in UTM cluster applications.

BS2000 systems:
Name of the virtual host on which the node application is to run from the
perspective of BCAM.

Unix or Linux systems:
Specifying virtual_host_long permits the specification of the sender address for
network connections established from this node application.

Field name Meaning

B
B
B

X
X
X

KDCADMI program interface KC_MODIFY_OBJECT: KC_CLUSTER_NODE

Administering Applications 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.9.2 obj_type=KC_DB_INFO

The changes relate to a database.

In the identification area, you must specify a number to identify a database (kc_name2 field
for the union kc_id_area). This number represents the databases in the order in which they
were generated in the KDCDEF run and are returned on the administration interface for
KC_GET_OBJECT.

In the data area, you must transfer the data structure kc_db_info_str with the new property
values.

Possible modification

For an XA database, you can change the database password and the database user name.

Specify the following in the data structure kc_db_info_str:

Period of validity / transaction management: Type GPD (page 317)

Field name Meaning

db_userid In the db_userid field, specify the new user name for this database system. The
change takes effect the next time the UTM application is started.

db_password In the db_password field, specify the new password for this database system.
Depending on the entry in subcode1 the change either takes effect immediately or
the next time the UTM application is started, see page 320.

KC_MODIFY_OBJECT: key set KDCADMI program interface

328 Administering Applications

11.2.9.3 obj_type=KC_KSET

The changes apply to the keys (key/access codes) of a key set.

In the identification area you must specify the name of the key set (kc_name8 field of the
kc_id_area union). In the data area you must pass the kc_kset_str data structure with the new
property values.

Possible modification

With the exception of the MASTER key set, you can change one or more keys in a key set.
The key set must exist in the configuration of the application.

Specify the following in the kc_kset_str data structure:

Period of validity/ transaction management: type GPD (page 317)

Field name Meaning

keys[4000] A key or access code is an integer between 1 and the value KEYVALUE, which was
specified in the MAX statement at KDCDEF generation.
keys consist of 4000 field elements (keys[0] to keys[3999]). The contents of the field
elements are to be interpreted as follows:

keys[0]= ´0´: The key/access code 1 does not belong to this key set.
´1´: The key/access code 1 belongs to this key set.

keys[n]= ´0´: The key/access code n+1 does not belong to this key set.
´1´: The key/access code n+1 belongs to this key set.

keys[3999]= ´0´: The key/access code 4000 does not belong to this key set.
´1´: The key/access code 4000 belongs to this key set.

KDCADMI program interface KC_MODIFY_OBJECT: load modules/shared objects/DLLs

Administering Applications 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.9.4 obj_type=KC_LOAD_MODULE

This operation relates to a load module (BS2000) or to a shared object or DLL (Unix, Linux
and Windows systems).

You must pass the name of the load module/shared object to UTM in the identification area
(field kc_name32 of union kc_id_area).

You must pass the data structure kc_load_module_str in the data area.

Possible modification

You can exchange a load module, a shared object or a DLL in an application program or
mark a load module in the common memory pool (BS2000 systems) for exchange.

KC_MODIFY_OBJECT: load modules/shared objects/DLLs KDCADMI program interface

330 Administering Applications

The specified load module/shared object/DLL must exist in the application configuration,
i.e. it must have been statically generated with KDCDEF. Specify the following in the data
structure kc_load_module_str:

Period of validity/ transaction management: type GID (page 317)

How exchange is made is determined by the load mode of the load module/shared
object/DLL (field load_mode in kc_load_module_str, see page 485):

Field name Meaning

version[24] Pass in version the version of the load module or shared object to be loaded.

In UTM applications on BS2000 systems, you must always specify the version of the
load module to be loaded.
For load modules which are generated with LOAD-MODE=STARTUP the version
number of the old and the new load module may match.
For load modules which are generated with LOAD-MODE=ONCALL or which are
located completely or partially in a common memory pool the new version number
must differ from the old version number.

You can also specify *HIGHEST-EXISTING as the version. UTM then determines the
highest version available in the library and loads it. In this case, after a successful call,
UTM returns the highest element version determined in the version field.
If a load module is generated with LOAD-MODE=POOL, (POOL,STARTUP) or
(POOL,ONCALL) and with the version *HIGHEST-EXISITING, for version only
*HIGHEST-EXISTING can be specified. This kind of module can only be reloaded by
an application exchange; the highest available version is always loaded for a module
generated in this way.
If the string *UPPER-LIMIT is specified in the version field, UTM replaces this value
with "@” in the output.

When the exchange is initiated, the library assigned to the load module during
KDCDEF generation (see also lib in kc_load_module_str, page 485), an element with
the name specified in the identification area and the version specified in version must
all be available. In UTM cluster applications, this applies for all node applications.

If this kind of load module is not available in the program library, the administration
call is rejected and the load module previously loaded remains loaded. In addition, the
message K234 is output.

You cannot replace load modules that have the STATIC load mode (load_mode=´S´).
Neither can load modules with the STARTUP load mode (load_mode=´U´) and which
contain TCB entries be replaced.

In UTM applications on Unix, Linux or Windows systems, you must specify the version
if the shared object/DLL is generated with ONCALL load mode (load_mode=´O´).
In the case of shared objects/DLLs with STARTUP load mode (load_mode=´U´), speci-
fying the version is optional if you are not using the version concept.

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

X/W
X/W
X/W
X/W

KDCADMI program interface KC_MODIFY_OBJECT: load modules/shared objects/DLLs

Administering Applications 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

– load_mode=´U´ (STARTUP)

The exchange is executed for each process before the next job is processed, without
the current application program being terminated. Several application processes can be
replaced simultaneously. You cannot initiate any further exchanges until program
exchange has been completed by all application processes.

– load_mode=´O´ (ONCALL)

The exchange is performed for each process only when a program unit from this load
module/shared object/DLL is next called in this process. Exchange can be performed
simultaneously be several processes.

– load_mode=´P´, ´T´, ´C´ (POOL, POOL/STARTUP, POOL/ONCALL)

In standalone UTM applications,
a call to KC_MODIFY_OBJECT does not result in the exchange of the load module.
Instead, the new version of the load module is marked.

You must explicitly request the exchange of the load module by calling
KC_CHANGE_APPLICATION or by restarting the application. By using several
KC_MODIFY_OBJECT calls, you can mark several load modules which are then
replaced when KC_CHANGE_APPLICATION is next invoked. If no KC_CHANGE_AP-
PLICATION call is made in the same application run, the marked versions are then
replaced when next the application is started.

If you issue a KC_GET_OBJECT call between the KC_MODIFY_OBJECT call and the
KC_CHANGE_APPLICATION call, then the marked version is already output as the
current version, even if it has not yet been loaded. The KC_MODIFY_OBJECT call
ensures that the new version of the load module is entered in the UTM tables as the
current version and the currently loaded version is entered as the preceding version.
You can tell from the change_necessary field whether a program exchange with
KC_CHANGE_APPLICATION is still necessary in order to load the specified version.

In UTM cluster applications,
the version of the load module is modified and the exchange of the entire application
program is initiated. The call causes the application to be unloaded and then immedi-
ately reloaded again. The application that is loaded in this case contains the new
versions of the load modules that were marked with KC_MODIFY_OBJECT.

 KDCPROG (page 777)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

C

KC_MODIFY_OBJECT: LPAP partner KDCADMI program interface

332 Administering Applications

11.2.9.5 obj_type=KC_LPAP

These operations relate to an LPAP partner, i.e. to the logical properties of an LU6.1 partner
application or to the connection to this partner application.

You must specify the name of the LPAP partner in the identification area (field kc_name8 of
the union kc_id_area). This is the name that was defined during KDCDEF generation in the
LPAP statement for the partner application. In the data area you must pass the data
structure kc_lpap_str with the new values of the properties.

Possible modifications

● Disable an LPAP partner or release a disabled LPAP partner.

It is no longer possible to establish a connection to the partner application through a
disabled LPAP partner.

Specify the following in the data structure kc_lpap_str.

Period of validity/ transaction management: type GPD (page 317)

● Activate or deactivate automatic connection setup.

Automatic connection setup means that, whenever the application starts, UTM attempts
to establish a connection to the partner application.

If automatic connection is defined in both applications (the local application and the
partner application), the connection between the two of them is established automati-
cally as soon as they are both available.

Specify the following in the data structure kc_lpap_str:

Period of validity/ transaction management: type GPD (page 317)

Field name Meaning

state=´N´ The LPAP partner is to be disabled.
There must be no connection to the partner application in existence at the time
the partner is disabled. You must shut down existing connections before disabling
the partner with connect_mode=´N´ or quiet_connect=´Y´.
It is not possible to shut down the connection and disable the LPAP partner in a
single call as shutting down the connection may take a relatively long time.

state=´Y´ The LPAP partner is to be released, i.e. any existing lock is to be cancelled.

Field name Meaning

auto_connect=´Y´ As of the next application start, UTM is to attempt to establish the
connection to the partner application automatically whenever it starts.

auto_connect=´N´ As of the next application start, the connection to the partner application is
no longer to be established automatically.

KDCADMI program interface KC_MODIFY_OBJECT: LPAP partner

Administering Applications 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● Change the period of time for which UTM monitors the idle state of a session to the
partner application; i.e. if the session is not occupied by a job, UTM waits for this period
of time before shutting down the connection.

Specify the following in the data structure kc_lpap_str:

Period of validity/ transaction management: type GPD (page 317)

The timer modification only takes effect when the session next reaches the idle state,
but not before the end of the program unit run (PEND) in which the call is processed.

● Set up or shut down the connection to the partner application.

The connection can be shut down in two ways:

– The connection can be shut down immediately, i.e. UTM shuts down the connection
irrespective of whether or not jobs are currently being processed via the connection
(connect_mode).

– You can set the connection to QUIET (quiet_connect). QUIET means that UTM shuts
down the connection to the partner application as soon as the sessions generated
for the LPAP partner are no longer occupied by jobs (dialog or asynchronous jobs).

However, no new dialog jobs are accepted for the LPAP partner. New asynchronous
jobs are accepted, but no longer sent; they remain in the output queue.

Period of validity / transaction management: type A (page 317)

Field name Meaning

idletime_sec[5] Specify in idletime_sec the time in seconds for which UTM is to monitor the
idle state of a session with the partner application
idletime_sec = ´0´ means that the idle state is not monitored.

Maximum value: ´32767´
Minimum value: ´60´,
In the case of values that are smaller than 60 but not equal to 0 then the
value 60 is used.

Field name Meaning

connect_mode=´Y´ UTM is to establish the connection to the partner application.

If the LPAP partner is disabled, it must be released in a separate trans-
action before the connection is established (state=´Y´).

connect_mode=´N´ The connection to the partner application is to be shut down immediately.
If the connection is shut down with connect_mode = ´N´, it is possible that
services or conversations may be aborted abnormally. It is better to shut
down the connection with quiet_connect = ´Y´.

KC_MODIFY_OBJECT: LPAP partner KDCADMI program interface

334 Administering Applications

Period of validity / transaction management: type IR (page 317)

The fields connect_mode and quiet_connect cannot be set simultaneously within a call.
Moreover, connect_mode=´Y´ cannot be set simultaneously with state =´N´. If a
KC_MODIFY call with connect_mode=´N´ is transmitted for a connection which has been
set to QUIET, the connection is then shut down immediately.

connect_mode=´N´ “overwrites” quiet_connect=´Y´.

● Activate or deactivate the BCAM trace for the connection to the partner application.

The precondition for LPAP-specific activation is that the BCAM trace is not generally
activated, i.e. the trace is either completely deactivated or is only explicitly activated for
selected LTERM/LPAP partners or USERs.

The precondition for LPAP-specific deactivation is that the BCAM trace can be deacti-
vated for a specific LPAP partner only if the BCAM trace is not generally activated.

You will find information about the general activation and deactivation of the BCAM
trace in the description of the data structure kc_diag_and_account_par_str starting on
page 620.

Period of validity / transaction management: type IR (page 317)

● Enables/disables the saving of asynchronous messages in the dead letter queue for
this LPAP partner. This can prevent the loss of messages for this LPAP partner in case
of permanent errors.

Field name Meaning

quiet_connect=´Y´ The property QUIET is set for the connection to the partner application.

The property QUIET can be reversed with connect_mode=´Y´.

Field name Meaning

bcam_trace=´Y´ The BCAM trace is specifically activated for this LPAP partner. Events are
logged on all transport connection to the partner application assigned to this
LPAP partner.
When the trace function is activated, each application process creates its
own trace file.

bcam_trace=´N´ The BCAM trace is explicitly deactivated for this LPAP partner.
The trace files are closed only when the trace function is deactivated
generally (object type KC_DIAG_AND_ACCOUNT_PAR; page 378).

KDCADMI program interface KC_MODIFY_OBJECT: LPAP partner

Administering Applications 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Specify the following in the data structure kc_lpap_str:

Period of validity / transaction management: type GPD (page 317)

i If the LPAP is the master LPAP of a LPAP bundle then you can only modify the state
field.

 KDCLPAP (page 755) / KDCDIAG (on page 693) for the BCAM trace

Field name Meaning

dead_letter_q='Y' Asynchronous messages to this LPAP partner which could not be
sent because of a permanent error are saved in the dead letter
queue, as long as (in case of message complexes) no negative
confirmation job was defined.

dead_letter_q='N' Asynchronous messages to this LPAP partner which could not be
sent because of a permanent error are not saved in the dead letter
queue but deleted.

C

KC_MODIFY_OBJECT: LU6.1 session KDCADMI program interface

336 Administering Applications

11.2.9.6 obj_type=KC_LSES

This modification relates to a session for distributed processing using the LU6.1 protocol.

In the identification area you must pass the session name (LSES name from KDCDEF
generation) to UTM (kc_name8 in the union kc_id_area).

In the data area you must pass the data structure kc_lses_str with the new values of the
properties.

Possible modifications

● Establish a transport connection to the partner application for the session.

Period of validity / transaction management: type A (page 317)

Field name Meaning

connect_mode=´Y´
con,
pronam,
bcamappl

A transport connection is to be established for the session.

If a specific transport connection is to be established for a session, then
you must unambiguously specify this transport connection in con, pronam,
bcamappl. To do this, you must specify the following information:

– in con, the name of the connection defined at creation or generation
of the CON object

– in pronam the name of the computer on which the partner application
is running

– in bcamapp the name of the local UTM application (BCAMAPPL
name) through which the connection to the partner application is
established.

If you do not specify con, pronam, bcamappl, then UTM establishes any of
the transport connections configured dynamically or generated for the
partner application with the KDCDEF control statement CON.

A connection cannot be established if the associated LPAP partner is
disabled (see KC_LPAP state =´N´ on page 332).
If the LPAP partner is disabled, it must be released with an explicit
KC_MODIFY_OBJECT call before the connection is established
(KC_LPAP with state=´Y´).

KDCADMI program interface KC_MODIFY_OBJECT: LU6.1 session

Administering Applications 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● Shut down the transport connection that exists for the session.

You can instruct UTM to shut down the connection immediately or you can assign the
property QUIET to the connection. QUIET means that UTM shuts down the connection
to the partner application as soon as the session is no longer occupied by jobs (dialog
or asynchronous jobs). No further new dialog jobs are accepted. New asynchronous
jobs are accepted, but no longer sent; they remain in the output queue.

Period of validity / transaction management: type A (page 317)

Period of validity / transaction management: type IR (page 317)

No other field in the data structure can be occupied at the same time as
connect_mode=´N´. In particular, connect_mode and quiet_connect cannot be set simulta-
neously.

If a connection which has previously been set to QUIET is now set to connect_mode=´N´,
the connection is shut down immediately. The property QUIET is overwritten by
connect_mode=´N´.

 KDCLSES (page 763)

Field name Meaning

connect_mode=´N´ The connection to the partner application that exists for the session is to
be shut down immediately.
Shutting down the connection with connect_mode = ´N´ takes immediate
effect, with the result that services or conversations may be terminated
abnormally. It is better to shut down the connection with
quiet_connect = ´Y´.

Field name Meaning

quiet_connect=´Y´ Set the property QUIET for the connection to the partner application.
The property QUIET is cancelled with connect_mode=´Y´.

C

KC_MODIFY_OBJECT: LTAC KDCADMI program interface

338 Administering Applications

11.2.9.7 obj_type=KC_LTAC

This modification relates to an LTAC, i.e. to a local application transaction code for a service
in a partner application.

You must pass the name of the LTAC to UTM in the identification area (kc_name8 in the
union kc_id_area).

In the data area you must pass the data structure kc_ltac_str with the new values of the
properties.

Possible modifications

● You can modify the maximum time which UTM will wait to access a session when
requesting a remote service. To do this, specify the following in kc_ltac_str:

Period of validity / transaction management: type GPR (page 317)

Field name Meaning

accesswait_sec[5] Specify in accesswait_sec the time in seconds which UTM at most is to wait
after the LTAC call to reserve a session or to establish an association.
When specifying the time, you should remember that the actual transport
connection to the partner application may still have to be established.

In asynchronous LTACs, accesswait_sec ≠ 0 means that the job is always
entered in the local message queue for the partner application.

Wait time accesswait_sec=0 means:
In dialog LTACs, the local service that is calling the remote service is
immediately continued with the appropriate return code if no session or
association to the partner application is free or if the local application is the
“contention loser” (see kc_lpap_str page 489f; field contwin).
In asynchronous LTACs, the asynchronous job is rejected with a return
code at the FPUT call if no connection to the partner application exists. If
there is a connection to the partner application, the message is entered in
the message queue.

Minimum value: ´0´; maximum value: ´32767´

KDCADMI program interface KC_MODIFY_OBJECT: LTAC

Administering Applications 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● You can modify the maximum time which UTM will wait for a reply from a remote
service. To do this, specify the following in kc_ltac_str:

Period of validity / transaction management: type GPR (page 317)

● You can disable the LTAC or release it again. Disabling an LTAC means that no further
jobs are accepted from the local application for the remote service to which the LTAC is
assigned. To do this, specify the following in kc_ltac_str:

Period of validity / transaction management: type GPR (page 317)

 KDCLTAC (page 766)

Field name Meaning

replywait_sec[5] Specify in replywait_sec the maximum time in seconds which UTM is to wait
for a reply from the remote service.
By limiting the waiting time, it can be ensured that users do not have to wait
indefinitely at the terminal.
replywait_sec = ´0´ means: wait without a time limit.
Minimum value: ´0´; maximum value: ´32767´

Field name Meaning

state=´N´ The LTAC is to be disabled, UTM is to accept no further jobs for the associated
remote service.

state=´Y´ The (disabled) LTAC is to be released, i.e. the lock is to be cancelled.

C

KC_MODIFY_OBJECT: LTERM partner KDCADMI program interface

340 Administering Applications

11.2.9.8 obj_type=KC_LTERM

This modification relates to an LTERM partner.

You must pass the name of the LTERM partner to UTM in the identification area (kc_name8
in the union kc_id_area).

In the data area you must pass the data structure kc_lterm_str with the new values of the
properties.

Possible modifications

● Disable the LTERM partner or release the disabled LTERM partner. LTERM partners in
an LTERM pool cannot be disabled or released with obj_type=KC_LTERM (see in this
connection obj_type= KC_TPOOL; page 364).

To disable or release an LTERM partner, specify the following in kc_lterm_str:

Period of validity / transaction management: Type GPD (page 317)

● Set up or shut down the connection to the client or printer assigned to this LTERM
partner.

Field name Meaning

state=´N´ Disables the LTERM partner.

Disabling a dialog partner (usage_type=´D´) has the following effect:
– A client connection request is performed. The connection is disabled and

UTM message K027 is output. With the exception of KDCOFF, no client/user
jobs are performed.

– Any existing connection is maintained. Any input with the exception of
KDCOFF is acknowledged with UTM message K027.
The lock does not take effect until a synchronization point (end of trans-
action) is reached on this connection.
If the LTERM partner is disabled, KDCOFF BUT has the same effect as
KDCOFF.

If the LTERM partner of a printer is disabled, the print jobs are retained in the
message queue. Print jobs initiated after a disable operation are not rejected;
they are entered in the message queue.

state=´Y´ Releases the LTERM partner, i.e. cancels a lock.

Field name Meaning

connect_mode=´Y´ The connection to the client/printer is to be set up.
connect_mode=´Y´ is not permitted if the LTERM partner you have specified
in the identification area belongs to an LTERM pool or is assigned to a
UPIC client.

KDCADMI program interface KC_MODIFY_OBJECT: LTERM partner

Administering Applications 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: type A (page 317)

● Assign a new start format to the LTERM partner or delete the start format of the LTERM
partners.

You can assign a start format to each LTERM partner that has been configured for
connecting terminals. In order to modify the start format, you must always specify the
format name and the format attribute of the new start format.

A precondition for allocation of a start format is that a formatting system must have been
generated (KDCDEF statement FORMSYS). If the start format is a #format, then a sign-
on service must also have been generated.

To delete the start format, enter blanks in format_attr and format_name.

Period of validity / transaction management: type GPD (page 317)

connect_mode=´N´ The connection to the client/printer is to be shut down immediately.
A connection shutdown initiated with connect_mode = ´N´ takes immediate
effect, with the result that services may be terminated abnormally (PEND
ER).
Using connect_mode=´N´, you can also shut down the connection to a
client that is connected to the application via an LTERM pool, i.e. you can
also specify in the identification area the name of an LTERM partner that
belongs to an LTERM pool.

Field name Meaning

format_attr Format identifier for the new start format:

´A´

´N´

´E´

for the format attribute ATTR. The format name at the KDCS
program interface is +format_name.
for the format attribute NOATTR. The format name at the KDCS
program interface is ∗format_name.
for the format attribute EXTEND. The format name at the KDCS
program interface is #format_name.

The meanings of the format attributes are described on page 506.

format_name[7] Name of the start format. The name may be up to 7 characters long and
may contain only alphanumeric characters.

Field name Meaning

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B
B
B
B

B

B
B

B

B

KC_MODIFY_OBJECT: LTERM partner KDCADMI program interface

342 Administering Applications

● Activate the BCAM trace for the connections for this LTERM partner.

The BCAM trace function monitors all connection-related activity.

The precondition for LTERM-specific activation is:

The BCAM trace is not generally activated for all LTERM and LPAP partners, i.e. the
trace is either completely deactivated or explicitly activated only for selected
LTERM/LPAP partners and USERs.

The precondition for LTERM-specific deactivation is:

The BCAM trace can only be deactivated for specific LTERM partners if the BCAM trace
is not generally activated.

You will find information about general activation and deactivation of the BCAM trace in
the description of the data structure kc_diag_and_account_par_str starting on page 620.

Period of validity / transaction management: type IR (page 317)

● Exchange the master LTERMs of two LTERM bundles or add a group LTERM to a
different LTERM group.

This function is only permitted in standalone UTM applications.

If the LTERM is the master LTERM of the LTERM bundle, you can replace all the slave
LTERMs and the associated PTERMs with a different master LTERM. In this event, a
master LTERM of an LTERM bundle must be specified in the master parameter.

If the LTERM is a group LTERM of an LTERM group, you can assign it to a different
LTERM group. The primary LTERM that you specify in the master parameter must either
be a normal LTERM, a primary LTERM of an LTERM group or a master LTERM of an
LTERM bundle. A normal LTERM must fulfill the following conditions:

– A PTERM with the PTYPE APPLI or SOCKET must be assigned to the LTERM.
– The LTERM must not be a slave LTERM of an LTERM bundle.
– The LTERM must have been generated with USAGE=D.

Field name Meaning

bcam_trace=´Y´ The BCAM trace is explicitly activated for this LTERM partner. All events on
the connection to the client/printer assigned to this LTERM partner are
logged.
When the trace function is activated, each application process creates its
own trace file.

bcam_trace=´N´ The BCAM trace is explicitly deactivated for this LTERM partner.
The trace files are closed only when the trace function is deactivated
generally (object type KC_DIAG_AND_ACCOUNT_PAR; page 378).

KDCADMI program interface KC_MODIFY_OBJECT: LTERM partner

Administering Applications 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Specify the following in the data structure kc_lterm_str:

Period of applicability / transaction management: type PD (page 317)

 Some of the modifications can also be performed with KDCLTERM (page 768) or
KDCDIAG (page 693).

Field name Meaning

master[8] The name of a master LTERM in an LTERM bundle, the name of a primary
LTERM in an LTERM group or the name of the normal LTERM. The name
can be up to 8 characters in length and may only contain alphanumeric
characters.

C

KC_MODIFY_OBJECT: MUX KDCADMI program interface

344 Administering Applications

11.2.9.9 obj_type=KC_MUX

This operation relates to a multiplex connection.

You must identify the multiplex connection unambiguously in the identification area. To do
this, in the data structure kc_triple_str of the union kc_id_area, pass the name of the multiplex
connection, the name of the computer on which the associated message router is located,
and the name of the UTM application through which the multiplex connection is to be estab-
lished.

In the data area you must pass the data structure kc_mux_str with the new values of the
properties.

Possible modifications

● Disable a multiplex connection or release a disabled multiplex connection.

No connection between the message router and the UTM application can be set up via
a disabled multiplex connection. Specify the following in the data structure kc_mux_str:

Period of validity / transaction management: type GPD (page 317)

● Increase or reduce the maximum number of clients that can be connected concurrently
via this multiplex connection.

Period of validity / transaction management: type GPR (page 317)

● Activate or deactivate automatic connection setup to the multiplex connection.

In automatic connection setup, UTM attempts to establish a connection to the multiplex
connection automatically whenever the application starts.

Field name Meaning

state=´N´ Disables a multiplex connection
There must be no current connection to the multiplex connection. You must
shut down any existing connections with connect_mode=´N´.
It is not possible to shut down the connection and disable a multiplex
connection in a single KC_MODIFY_OBJECT call as shutting down the
connection can take some time.

state=´Y´ Releases a multiplex connection, i.e. cancels a lock.

Field name Meaning

maxses[5] Specify in maxses the maximum number of sessions that can exist between the
message router and the application.

Minimum value:´1´;
Maximum value:´65000´ (theoretical value)

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B
B
B
B

B

B

B

B

B

B
B

B
B

B

B

B

B

KDCADMI program interface KC_MODIFY_OBJECT: MUX

Administering Applications 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Specify the following in the data structure kc_mux_str.

Period of validity / transaction management: type GPD (page 317)

● Set up or shut down the connection to the message router for the multiplex connection.

Specify the following in the data structure kc_mux_str:

Period of validity / transaction management: Type A (page 317)

● Activate or deactivate the BCAM trace for this multiplex connection. Specify the
following in the kc_mux_str data structure:

Period of validity / transaction management: type IR (page 317)

 KDCMUX (page 771) / KDCDIAG (page 693) for the BCAM trace

Field name Meaning

auto_connect=´Y´ As of the next application start, UTM is to attempt to establish the
connection to the multiplex connection automatically.

auto_connect=´N´ As of the next application start, UTM is no longer to establish the connection
the multiplex connection automatically. It must then be established explicitly
by the administrator.

Field name Meaning

connect_mode=´Y´ UTM is to establish the connection to the message router.
If a connection is to be established for a disabled multiplex connection, the
multiplex connection must be released before connection setup with its
own KC_MODIFY_OBJECT call (state=´Y´). connect_mode = ́ Y´ cannot be
set at the same time as state =´N´ (disable multiplex connection).

connect_mode=´N´ The connection to the message router is to be shut down immediately. A
connection shutdown initiated with connect_mode = ´N´ takes immediate
effect, so it is possible for sessions to be terminated abnormally.

Field name Meaning

bcam_trace=´Y´ The BCAM trace is activated explicitly for this multiplex connection. All the
events on the connection to the message router assigned to this multiplex
connection are recorded.
When the trace function is created, every process of the application
generates its own trace file.

bcam_trace=´N´ The BCAM trace is deactivated explicitly for this multiplex connection.
The trace files are not closed until the trace is deactivated with general
validity (object type KC_DIAG_AND_ACCOUNT_PAR; page 378).

B

B

BB
B

BB
B
B

B

B

B

B

BB
B
B
B
B

BB
B
B

B

B

B

B

BB
B
B
B
B

BB
B
B

B

CBB

KC_MODIFY_OBJECT: OSI TP connections KDCADMI program interface

346 Administering Applications

11.2.9.10 obj_type=KC_OSI_CON

This operation relates to a connection for distributed processing via OSI TP.

In the identification area you must specify the name of the connection defined during
KDCDEF generation in OSI-CON (field kc_name8 of the union kc_id_area).

In the data area, you must specify the data structure kc_osi_con_str with the new values of
the properties.

Possible modification

You can activate a replacement connection (connection set to inactive) to an OSI TP
partner application. Specify the following in the data structure kc_osi_con_str:

Period of validity / transaction management: type GIR (page 317)

 KDCLPAP (page 755) operand OSI-CON

Field name Meaning

active=´Y´ UTM is to activate the replacement connection. Before UTM activates the
replacement connection, UTM deactivates the previously active connection. No
association to the related partner application may therefore be in existence when the
replacement connection is activated.

C

KDCADMI program interface KC_MODIFY_OBJECT: OSI-LPAP partners

Administering Applications 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.9.11 obj_type=KC_OSI_LPAP

This operation relates to an OSI-LPAP partner, i.e. to the logical properties of an OSI TP
partner application or to the connection to this partner application.

In the identification area you must specify the name of the associated OSI-LPAP partner
(field kc_name8 of the union kc_id_area). The name is defined during KDCDEF generation in
the OSI-LPAP statement for the partner application.

In the data area you must pass the data structure kc_osi_lpap_str with the new values of the
properties.

Possible modifications

i If the OSI-LPAP is the master LPAP of an OSI-LPAP bundle, you can only modify
the state field.

● Disable an OSI-LPAP partner or release a disabled OSI-LPAP partner.

It is not possible to make a connection to the partner application via a disabled
OSI-LPAP partner.

Specify the following in the data structure kc_osi_lpap_str:

Period of validity / transaction management: type GPD (page 317)

● Increase or reduce the number of connections to the partner application which UTM
automatically establishes when the application starts.

In automatic connection setup, UTM attempts to establish the required number of
connections to the partner application whenever the application starts.

If automatic connection setup is defined in both applications (the local application and
the partner application), the connection between the two of them is established
automatically as soon as both applications are available.

Field name Meaning

state=´N´ The OSI-LPAP partner is to be disabled.
There must be no current connection to the partner application at the time of the
disable operation. You must shut down existing connections before disabling the
partner, using a separate call with connect_number=´0´ or quiet_connect=´Y´.
You cannot shut down the connection and disable the OSI-LPAP partner in a
single transaction.

state=´Y´ The OSI-LPAP partner is to be released, i.e. there is a lock in existence which is
to be cancelled.

KC_MODIFY_OBJECT: OSI-LPAP partners KDCADMI program interface

348 Administering Applications

Specify the following in the data structure kc_osi_lpap_str:

Period of validity / transaction management: type GPD (page 317)

● Increase or decrease the number of parallel connections that should currently exist
between the UTM application and the partner application; i.e. additional connections
can be established or some of the existing connections can be shut down. Setting up
additional connections is only possible if the maximum number of parallel connections
to the partner application generated with KDCDEF has not already been established.

Field name Meaning

auto_connect_number Specify in auto_connect_number the number of connections to the
partner application which UTM is to establish automatically when the
application next (and subsequently) starts.
The OSI-LPAP partner via which the partner application connects must
not be disabled.
If you specify auto_connect_number = ´0´, automatic connection setup
does not occur when the application next starts.
If a number is specified that is greater than the generated maximum
number of parallel connections (see field associations in kc_osi_lpa-
p_str), then, on the next start, UTM attempts to establish all generated
parallel connections (= number in associations). The value specified in
auto_connect_number must, however be less than or equal to ´32767´.

Minimum value: ´0´.
Maximum value: generated maximum number of parallel connections
(associations)

KDCADMI program interface KC_MODIFY_OBJECT: OSI-LPAP partners

Administering Applications 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Specify the following in the data structure kc_osi_lpap_str:

Period of validity / transaction management: type A (page 317)

Field name Meaning

connect_number Specify in connect_number the total number of connections to the partner
application that should exist. The effect of the call is thus determined by
what is specified for connect_number. Distinctions must be drawn between
the following situations:
– If you specify a number in connect_number which is less than the

number of parallel connections that are currently established, UTM
shuts down connections to the partner application until only
connect_number connections are in existence.
To begin with, UTM shuts down any connections that are not currently
reserved by jobs. When this has been done, if there are still more
connections open than the number specified in connect_number, then
UTM begins to also shut down connections that are reserved by jobs.
Any currently active services or conversations are aborted when this
happens.
If you specify connect_number = ´0´, UTM shuts down all connections to
the partner application.

– If you specify a number in connect_number which is greater than the
number of parallel connections that are currently established, UTM
attempts to establish further connections to the partner application until
a total of connect_number connections are in existence. However, the
maximum number of parallel connections which UTM will establish to
the partner application is that established during KDCDEF generation
for the OSI-LPAP partner belonging to the partner application. This
maximum number is returned when information is requested in the
associations field of kc_osi_lpap_str.
In other words, if connect_number > associations, then UTM only estab-
lishes the generated maximum number of connections.

If connections are to be established to a disabled OSI-LPAP partner, you
must re-enable this partner beforehand (see state field on page 347). The
OSI-LPAP partner must be released in a separate KC_MODIFY_OBJECT.
connect_number and quiet_connect cannot be specified together in a single
KC_MODIFY_OBJECT call. Likewise, connect_number must not be
specified together with state=´N´.

Minimum value: ´0´
Maximum value: the number returned by UTM in associations; a numeric
value greater than ´32767´ will be rejected.

KC_MODIFY_OBJECT: OSI-LPAP partners KDCADMI program interface

350 Administering Applications

● Shut down all parallel connections to the partner application.

You can instruct UTM to shut down all connections immediately or to assign the
property QUIET to the connections. QUIET means that UTM shuts down the connection
to the partner application as soon as the partner application is no longer occupied by
jobs (dialog or asynchronous jobs). No further new dialog jobs are accepted. New
asynchronous jobs are accepted, but no longer sent; they remain in the output queue.

Period of validity / transaction management: type A (page 317)

Period of validity / transaction management: type IR (page 317)

connect_number and quiet_connect cannot be set concurrently within a single KC_MOD-
IFY_OBJECT call.

● Modify the period of time for which the idle state of the UTM application association to
the partner application is monitored. In other words, if the association is not occupied
by a job, UTM waits for this period of time before UTM shuts down the connection.

Specify the following in the data structure kc_osi_lpap_str:

Period of validity / transaction management: type GPD (page 317)

The modification of the timer takes effect when the association next reaches the idle
state, but not before the end of the program unit run (PEND) in which the call is
processed.

Field name Meaning

connect_number=´0´ If you specify connect_number = ´0´, UTM shuts down all connections to
the partner application.
The connections are shut down even if there are active services or
conversations on the connection. These are aborted. It is thus better to
shut down connections with quiet_connect = ´Y´.

Field name Meaning

quiet_connect=´Y´ The property QUIET is set for the connections to the partner application.
The property QUIET can be reset with connect_number > ´0´.

Field name Meaning

idletime_sec[5] Specify in idletime_sec the time in seconds for which UTM is to monitor the idle
state of an association to the partner application.
idletime_sec = ´0´ means that the idle state it not monitored.
Maximum value: ´32767´
Minimum value: ´0´,
In the case of values that are smaller than 60 but not equal to 0 then the value
60 is used.

KDCADMI program interface KC_MODIFY_OBJECT: OSI-LPAP partners

Administering Applications 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● Enables/disables the saving of asynchronous messages in the dead letter queue for
this OSI-LPAP partner. This can prevent the loss of messages for this LPAP partner in
case of permanent errors.

Specify the following in the data structure kc_osi_lpap_str:

Period of validity / transaction management: type GPD (page 317)

 KDCLPAP (page 755)

Field name Meaning

dead_letter_q='Y' Asynchronous messages to this OSI-LPAP partner which could not
be sent because of a permanent error are saved in the dead letter
queue, as long as (in case of message complexes) no negative
confirmation job was defined.

dead_letter_q='N' Asynchronous messages to this OSI-LPAP partner which could not
be sent because of a permanent error are not saved in the dead
letter queue but deleted.

C

KC_MODIFY_OBJECT: clients/printers KDCADMI program interface

352 Administering Applications

11.2.9.12 obj_type=KC_PTERM

This operation relates to a client or printer for the application.

You must identify the client/printer unambiguously in the identification area. To do this, in
the data structure kc_long_triple_str of the union kc_id_area, pass the name of the client
printer, the name of the computer on which it is located, and the name of the UTM appli-
cation via which the connection is to be established.

In the data area you must pass the data structure kc_pterm_str with the new values of the
properties.

Possible modifications

● Change the client/printer assignment to the LTERM partner.

In this way you can modify the logical properties of the client/printer. In particular, you
can use them to assign a printer to a printer pool or to a printer control LTERM.
When the assignment is modified, neither the client/printer nor the LTERM partner to
which the client/printer is assigned may be connected to the application.

Restriction:

Reassignment of the LTERM partner is possible only for terminals and printers. For
UPIC clients, TS applications (APPLI/SOCKET) generated as dialog partners, and
clients that connect to the application using an LTERM pool, it is not possible to change
the assignment to an LTERM partner defined at configuration.

When you assign a new LTERM partner to a terminal or printer, the LTERM partner
must not be currently assigned or have been previously assigned to a client/printer of
another protocol type. Distinctions are drawn here between the following four protocol
types: terminals, TS applications, printers and RSO printers. It is not possible, for
example,

– to assign an LTERM partner that is or was assigned to a UPIC client or to a TS appli-
cation to a terminal ,

– to assign an LTERM partner that is or was assigned to a normal printer to an RSO
printer (and vice-versa).

B

B

KDCADMI program interface KC_MODIFY_OBJECT: clients/printers

Administering Applications 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: type PD (page 317)

● Activate or deactivate automatic connection setup to the client/printer.

With automatic connection setup, UTM attempts to establish the connection to the
client/printer automatically.

Exception:

Automatic connection setup cannot be achieved to clients which are connected to the
application via an LTERM pool nor to UPIC clients. In both these cases, connection
setup is always initiated by the client and not by the UTM application.

Specify the following in the data structure kc_pterm_str:

Period of validity / transaction management: type GPD (page 317)

Field name Meaning

lterm[8] Specify in lterm the name of the LTERM partner that is to be assigned to this
client/printer.

This function is only permitted in standalone UTM applications.

The LTERM partner must exist in the application configuration.
It must not be an LTERM partner of an LTERM pool, a master or slave LTERM of
an LTERM bundle or a group or primary LTERM of an LTERM group.
The maximum length of the name is 8 characters.

For clients, the old assignment of this LTERM partner is implicitly cancelled.
Only printers that have been configured for output (usage_type=´O´) can be
assigned to LTERM partners. For printers, the old assignment of LTERM partner
specified in lterm is not cancelled if a printer was previously assigned to it. Both
printers are combined into a printer pool. Any required number of printers may
belong to a printer pool.
If the LTERM partner is assigned to a printer control LTERM, the printer must
have a printer ID which is unique in the printer control LTERM area, otherwise the
call is rejected.
connect_mode and lterm cannot be specified together in a single call.

Field name Meaning

auto_connect=´Y´ As of the next application start, UTM is to establish the connection to the
client/printer automatically, provided that the client/printer is available.
The client/printer must not be disabled (state=´N´).

auto_connect=´N´ As of the next application start, UTM is no longer to establish the connection
to the client/printer automatically.

KC_MODIFY_OBJECT: clients/printers KDCADMI program interface

354 Administering Applications

● Disable a client or printer or cancel an existing lock.

You can disable only those clients and printers that have been entered explicitly and
statically in the configuration, using a PTERM statement, or dynamically as an object of
the type KC_PTERM. Clients which connect via an LTERM pool or a multiplex
connection cannot be disabled.

Specify the following in kc_pterm_str in order to disable or release a client/printer:

Period of validity / transaction management: type GPD (page 317)

● Set up or shut down t the connection to the client/printer.

connect_mode and lterm cannot be specified to together in a single call.

Period of validity / transaction management: type A (page 317)

Field name Meaning

state=´N´ Disable the client/printer.
A lock on a client does not take effect until the client next attempts to establish
a connection to the UTM application. The connection request is then rejected
by UTM. Any connection that exists at the time of disable operation is
maintained.

state=´Y´ The client/printer lock is to be cancelled.

Field name Meaning

connect_mode=´Y´ The connection to the client/printer is to be established.
Exception:
connect_mode=´Y´ cannot be specified for clients which are connected to
the application via an LTERM pool, nor for UPIC clients.
The client/printer must not be disabled. A disabled client/printer must be
released prior to setting up the connection (state=´Y´). Releasing the
client/printer and setting up the connection cannot be performed in a
single call.

connect_mode=´N´ The connection to the client/printer is to be shut down immediately.
A connection shutdown initiated with connect_mode = ́ N´ takes immediate
effect. If the connection is occupied by a job at that time, processing of the
job is aborted.

connect_mode=´R´ May only be specified for clients which are connected to a UTM appli-
cation on a BS2000 system through a multiplex connection.
connect_mode=´R´ (Release pending connections) instructs UTM to
release a session in the DISCONNECT PENDING state once the timer
has expired. The session cannot be released if the timer has not yet
expired.
See openUTM manual “Generating Applications” in relation to the
DISCONNECT PENDING state.

BB
B
B
B
B
B
B
B

KDCADMI program interface KC_MODIFY_OBJECT: clients/printers

Administering Applications 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● Change the maximum period for which UTM will wait for an entry from the client after
the end of a transaction or after the sign-on. When the time is exceeded, the connection
to the client is cleared down (only relevant in the case of dialog partners).

Specify the following in the kc_pterm_str data structure:

Period of validity / transaction management: type GPD (page 317)

The modification of the timer takes effect at the next end of transaction but not before
the end of the program unit run (PEND) in which the call is processed.

 KDCPTERM (page 783) with the exception of idletime

Field name Meaning

idletime[5] In idletime you specify the maximum period in seconds for which openUTM
waits outside a transaction (i.e. after the end of a transaction or after sign-
on) for an entry from the client.
When idletime=0 is specified, openUTM waits for an unlimited period.

Maximum value: ´32767´
Minimum value: ´60´
In the case of values that are smaller than 60 but not equal to 0 then the
value 60 is used.

C

KC_MODIFY_OBJECT: transaction codes KDCADMI program interface

356 Administering Applications

11.2.9.13 obj_type=KC_TAC

This operation relates to a local service transaction code (tac_type=’A’ or ’D’) or a TAC
queue (tac_type=’Q’).

In the identification area, you must pass the name of the transaction code or TAC queue
(field kc_name8 of the union kc_id_area). In the data area, you must pass the data structure
kc_tac_str with the new values of the properties.

You can change the status and data access control for transaction codes and TAC queues.
For transaction codes you can also reset TAC-specific statistics values to 0. Statistics
values cannot, however, be changed in a KC_MODIFY_OBJECT call.

Possible modification

● Modifying the status of a transaction code or TAC queue.

You can either disable a transaction code or TAC queue or enable a disabled trans-
action code or TAC queue again.

The administration command KDCTAC cannot be disabled.

If you change the status of a transaction code in a call, the statistics values cannot be
reset.

Specify the following in kc_tac_str to disable or release the transaction code:

Field name Meaning

state=´N´ The transaction code/TAC queue is to be disabled.
Lock means that UTM will accept no further jobs for this transaction code or TAC
queue.
– tac_type=´A´ or ´D´:

The transaction code is disabled as a service TAC (1st TAC of a service). It
is not disabled as a follow-up TAC in a service (call type=´B´).
Asynchronous jobs which are in the transaction code’s message queue at
the time of disabling are still started.

– tac_type=´Q´:
The TAC queue is disabled for write accesses; read accesses are possible.

You cannot use state=´N´ to disable transaction codes for which call_type= ´N´ is
set.

KDCADMI program interface KC_MODIFY_OBJECT: transaction codes

Administering Applications 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: type GID (page 317)

If the transaction code KDCMSGTC is disabled, then all UTM messages having a UTM
message destination MSGTAC and which are still located in the page pool are deleted.

 KDCTAC (page 805)

● Resetting statistical information for the transaction code to 0.

You can reset the statistics values to 0 during a run by entering 0 in one of the following
fields in kc_tac_str. UTM will then reset all fields to 0. A value ≠ 0 is rejected.

state=´H´ The transaction code or TAC queue is to be completely disabled (Halt).
– tac_type=´A´ or ´D´:

The transaction code is disabled both as a service TAC and as a follow-up
TAC in an asynchronous or dialog service.
Asynchronous jobs which are in the transaction code’s message queue at
the time of the disable operation are not started. They remain in the queue
until the transaction code is released again or is set to state=´N´.

– tac_type=´Q´:
The TAC queue is disabled for write and read accesses.

state=´K´ This state may only be specified for asynchronous transaction codes
(tac_type=´A´) that are also service TACs (call_type=´B´ or ´F´) and for TAC
queues.
The transaction code or TAC queue is disabled.
– tac_type=´A´:

Jobs for the transaction code are accepted, but they are not processed. They
are merely entered into its job queue. They are not processed until you
change the status of the transaction code to ´Y´ or ´N´.

– tac_type=´Q´:
The TAC queue is disabled for read accesses; write access is still possible.

You can use state=´K´ (Keep) to collect jobs that are not to be processed until
such time as the load on the application is reduced (e.g. at night).

state=´Y´ The transaction code or TAC queue is to be released again. state=´Y´ resets both
state=´N´, state=´H´ and state=´K´.

Field name Meaning

used Number of program unit runs with this transaction code

number_errors Number of program unit runs which were terminated with errors.

db_counter Average number of database calls from program units started using this
transaction code.

tac_elap_msec Average runtime of program units started using this transaction code
(elapsed time)

Field name Meaning

C

KC_MODIFY_OBJECT: transaction codes KDCADMI program interface

358 Administering Applications

You can either reset the statistics values for a specific transaction code or for all trans-
action codes in the application. If you want to reset the values for a specific transaction
code you must enter the name of the transaction code in the identification area. In all
other cases you must supply the identification area with binary zero.

Period of validity / transaction management: type GIR (page 317)

● You can modify the data access control for a transaction code. If the transaction code
was protected up to now by a lock code, you can remove the lock code and control data
access by means of an access list. The reverse also applies. Please note that a lock
code and access list are mutually exclusive; only one type of data access control is
permitted at any one time.

A user can only access the transaction code when the key set of the user and the key
set of the LTERM partner by means of which the user is signed on contain at least one
key code that:

– corresponds to the lock code or

– is also contained in the key set specified in access_list

Period of validity / transaction management: type GPD (page 317)

db_elap_msec Average time needed to process database calls with this TAC in the
program units.

taccpu_msec Average CPU time in milliseconds needed to process this transaction code
in the program unit. The value corresponds to the CPU time used by UTM
and by the database system.

taccpu_micro_sec Average CPU time in microseconds taken to process this transaction code
in the program unit. This corresponds to the CPU time consumed by UTM
plus the CPU time required by the database system.

nbr_ta_commits Number of program unit runs for this TAC that have successfully concluded
a transaction.

number_er-
rors_ex

See number_errors.

Field name Meaning

lock_code[4] lock_code can be a number between ´0´ and the upper limit defined in the
MAX statement (KEYVALUE operand).
´0´ removes data access control.

access_list[8] In access_list you can specify an existing key set or fill the field with blanks.
Blanks remove the data access control.

Field name Meaning

KDCADMI program interface KC_MODIFY_OBJECT: transaction codes

Administering Applications 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● You can modify the data access control for a ZAC queue. Specify the following in the
kc_tac_str data structure:

A user only has read (delete) access or write access to this TAC queue if the key set of
the user and the key set of the logical terminal by means of which the user is signed on
each contain at least one key code that is also contained in the specified key set.

Period of validity / transaction management: type GPD (page 317)

● Specify that queued messages are to be stored in the dead letter queue (TAC queue
KDCDLETQ). Specify the following in the data structure kc_tac_str:

Period of validity / transaction management: type GPD (page 317)

Field name Meaning

q_read_acl[8] In q_read_acl you specify the name of an existing key set by means of which
the queue is protected against unauthorized reading and deletion.

You can also remove the protection by specifying blanks. In this case, all
users can read and delete messages from this queue.

q_write_acl[8] In q_write_acl you specify the name of an existing key set by means of
which the queue is protected against unauthorized write accesses.

You can also remove the protection by specifying blanks. In this case, all
users can write messages to this queue.

Field name Meaning

dead_letter_q='Y' Messages to this asynchronous TAC or this TAC queue which could
not be processed are backed up in the dead letter queue if they are
not redelivered and (with message complexes) no negative
acknowledgement job has been defined.
dead_letter_q='Y' is not permitted for KDCDLETQ, KDCMSGTC, all
interactive TACs and asynchronous TACs with CALL=NEXT.

dead_letter_q='N' Messages to this asynchronous TAC or this TAC queue which could
not be processed are not backed up in the dead letter queue but
deleted. This value must be specified for all interactive TACs and for
asynchronous TACs with CALL=NEXT, as well as for KDCMSGTC
and KDCDLETQ.

KC_MODIFY_OBJECT: TAC classes KDCADMI program interface

360 Administering Applications

11.2.9.14 obj_type=KC_TACCLASS

This operation relates to a UTM application TAC class.

In the identification area you must pass the number of the TAC class (field kc_name2 of the
union kc_id_area). In the data area you must pass the data structure kc_tacclass_str with the
new values of the properties.

● Possible modification

You can increase or decrease the number of processes which may simultaneously
process jobs for transaction codes of the TAC class. To do this, you can:

– Specify the number of processes in absolute terms (tasks), i.e.:

you specify the number of processes which may simultaneously perform jobs for
this TAC class. If the number is specified in absolute terms, the number of
processes is independent of the currently set total number of processes in which
the application program is running. This applies provided that the current total
number of process in the application is no less than the number of processes set
for the TAC class. If this is case, the number of processes is reduced accordingly.

– Specify the number of processes in relative terms (tasks_free), i.e.:

you specify the number of processes which must remain free to process jobs for
transaction codes of other TAC classes. If the number is stated in relative terms, the
number of processes for this TAC class is determined by the currently set total
number of application processes. If the total number of processes is reduced, then
the maximum number of processes which process jobs for the TAC class is also
reduced implicitly. Similarly, if the total number is increased, the number of
processes for this TAC class is also increased implicitly.

The number of processes of a TAC class can only be modified, if the application was
generated without priority control, i.e. if the KDCDEF generation does not contain a
TAC-PRIORITIES statement.

KDCADMI program interface KC_MODIFY_OBJECT: TAC classes

Administering Applications 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

For this modification, you must specify the following in the structure kc_tacclass_str:

tasks and tasks_free must not be specified together in a single KC_MODIFY_OBJECT
call.

The permitted maximum value for tasks and tasks_free is determined by the following
factors:

– whether or not program units with blocking calls (pgwt=´Y´) can run in the TAC class.

– by the values for TASKS, TASKS-IN-PGWT and ASYNTASKS generated statically
in the KDCDEF control statement MAX.

Field name Meaning

tasks Specify in tasks the maximum number of processes which may simultaneously
perform jobs for transaction codes of the TAC class. A relative statement previ-
ously made by tasks_free for this TAC class is deactivated.

Minimum value of tasks:
For dialog TAC classes (TAC classes 1-8), tasks must be ≥ ́ 1´, as dialog services
would otherwise be locked and users would have to wait at the terminal until the
processes were released again.
For asynchronous TAC classes (classes 9-16) tasks may be ≥ ´0´.

Maximum value: see table on page 362.
If the value specified for tasks is greater than the total number of processes for the
application, then UTM automatically reduces the value to this number.

tasks_free Specify the following in tasks_free:
– for dialog TAC classes:

the minimum number of processes which are to be kept free to process jobs
for other TAC classes.
If the number of processes in tasks_free becomes greater than the total
number of processes available to the application program, then one process
nevertheless remains available to this TAC class to process its transaction
codes.

– for asynchronous TAC classes:
the minimum number of processes which are to be kept free to process trans-
action codes of other asynchronous TAC classes.
If the number of processes in tasks_free becomes greater than the total
number of processes which may simultaneously be used for asynchronous
processing, then no further jobs are performed on transaction codes of this
TAC class.

Minimum value: ´0´
Maximum value: see table on page 362.

KC_MODIFY_OBJECT: TAC classes KDCADMI program interface

362 Administering Applications

The following table contains the maximum permitted values for tasks and tasks_free. If
you specify greater values, the KC_MODIFY_OBJECT call is rejected.

Period of validity / transaction management: Type A (page 317)

 KDCTCL (page 808)

● Reset the statistical values “Average wait time of the jobs in the job queues” and
“Number of wait situations”. These two values can only be reset together.

The values can be reset either for the TAC class specified in the Id area or for all the
TAC classes:

– If the values are to be reset for all TAC classes then binary zero must be specified
in the Id area. In this case, tasks and tasks_free must not be modified.

– If only a specific TAC class is to be modified then avg_wait_time_msec and nr_waits
can be specified together with tasks and tasks_free.

Specify the following in the kc_tacclass_str data structure:

TAC class Content
of pgwt

Permitted maximum value
for tasks

Permitted maximum
value for tasks_free

1 - 8
(dialog TACs)

´N´ TASKS *) TASKS - 1 *)

´Y´ TASKS-IN-PGWT *) TASKS - 1 *)

9 - 16
(asynchronous
TACs)

´N´ ASYNTASKS *) ASYNTASKS *)

´Y´ the smaller of the values:
ASYNTASKS, TASKS-IN-PGWT*)

ASYNTASKS *)

*) As statically generated in the KDCDEF control statement MAX

Field name Meaning

avg_wait_time_msec[10] Contains the average wait time of the jobs in the job queues
assigned to the transaction codes of this TAC class. The unit of
the avg_wait_time_msec value is milliseconds.

If there is no process available for the TAC class, UTM accepts
jobs for the TAC class (with free processes that “cannot” process
jobs to this TAC class) and stores them temporarily in the
KDCFILE.
This is always the case when there are jobs pending for TAC
classes of a higher priority (in the case of priority control) or
when the number of processes is limited and the maximum
permitted number of processes is already processing trans-
action codes of the TAC class (see tasks, tasks_free).

The time between the acceptance of a job and the start of its
processing is the wait time displayed here.
You can reset this value to ´0´.

C

KDCADMI program interface KC_MODIFY_OBJECT: TAC classes

Administering Applications 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: type GIR (page 317)

nr_waits[10] Number of wait situations taken into account for the calculation
of the value avg_wait_time_msec.
You can reset this value to ’0’.

nr_calls[10] Number of proram unit runs for this TAC class.

Field name Meaning

KC_MODIFY_OBJECT: LTERM pools KDCADMI program interface

364 Administering Applications

11.2.9.15 obj_type=KC_TPOOL

This operation relates to an LTERM pool for the UTM application.

In the identification area you must pass the name of the LTERM pool (LTERM prefix). For
this the field kc_name8 of the union kc_id_area is available.

In the data area you must pass the data structure kc_tpool_str with the new values of the
properties.

Possible modification

● You can increase or decrease the number of clients which may be connected concur-
rently via this LTERM pool, i.e. you specify how many LTERM partners of the LTERM
pool are to be released or disabled. One client can connect to the application via each
enabled LTERM partner in the LTERM pool. The number of LTERM partners included
in the LTERM pool, i.e. the maximum number of LTERM partners which can be
permitted for this LTERM pool, is defined during KDCDEF generation. Specify the
following in the data structure kc_tpool_str:

The fields state and state_number must always be specified together.

Field name Meaning

state=´N´
state_number=...

Of the total number of LTERM partners in this LTERM pool (see
kc_tpool_str.max_number on page 573), the number specified in state_number
is to be disabled. The number of permitted LTERM partners for this LTERM
pool is consequently:
max_number - state_number.

If the entire LTERM pool is to be disabled, you must specify the value of
max_number in state_number.

If you want to release all the LTERM partners in the LTERM pool, specify
state_number= ´0´.

Minimum value for state_number: ´0´
Maximum value for state_number:
the maximum number returned in kc_tpool_str.max_number

state=´Y´
state_number=...

Of the total number of LTERM partners, only the number specified in
state_number is to be permitted.

If all the LTERM partners in the LTERM pools are to be permitted, you must
specify the generated maximum value (kc_tpool_str.max_number on
page 573) in state_number.

You can disable the entire LTERM pool if you specify state_number=´0´.

Minimum value for state_number: ´0´
Maximum value for state_number:
the maximum number returned in kc_tpool_str.max_number

KDCADMI program interface KC_MODIFY_OBJECT: LTERM pools

Administering Applications 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

If the number in state_number exceeds the generated maximum number of LTERM
partners, UTM automatically resets the value of state_number to this maximum number.

Period of validity / transaction management: type GP (page 317)

Disabling LTERM partners in the LTERM pool has the following effect:

– A connection setup request from a client via this LTERM pool is rejected by UTM as
soon as the permitted number of clients is reached which are connected to the
application via this LTERM pool (all permitted LTERM partners are occupied).

– If, at the time at which the call is processed by UTM, the number of live connections
to this LTERM pool exceeds the number of permitted LTERM partners for the
LTERM pool, all existing connections are initially maintained.

The lock only comes into effect for new connection setup requests.

If terminal users sign off with KDCOFF BUT, they can sign on again with KDCSIGN,
even if at that time more clients than permitted are connected to the application
through the LTERM pool. This is possible because the connection remains in this
case.

 KDCPOOL (page 775)

● You can change the maximum period for which UTM waits for an entry from the client
after the end of a transaction or after sign-on. If the time is exceeded, the connection to
the client is cleared down. Specify the following in the kc_tpool_str data structure:

Period of validity / transaction management: type GP (page 317)

The modification of the timer takes effect at the next end of transaction, but not before
the end of the program unit run (PEND) in which the call is processed.

Field name Meaning

idletime[5] In idletime you specify the maximum time in seconds that openUTM waits
for an entry from the client outside a transaction (i.e. after the end of a trans-
action or after sign-on).
When idletime=0 is specified, openUTM waits for an unlimited period.

Maximum value: ´32767´
Minimum value: ´60´,
In the case of values that are smaller than 60 but not equal to 0 then the
value 60 is used.

C

KC_MODIFY_OBJECT: user IDs KDCADMI program interface

366 Administering Applications

11.2.9.16 obj_type=KC_USER

This operation relates to a UTM application user ID and its queue.

In the identification area you must specify the name of the user ID (field kc_name8 of the
union kc_id_area). In the data area you must pass the data structure kc_user_str with the new
values of the properties.

Possible modifications

● Lock or release a user ID.

Neither users nor clients can then sign on to the application under a locked user ID.
User IDs with administration privileges cannot be locked.

Period of validity / transaction management: type GPD (page 317)

● Change the key set assigned to the user ID. Specify the following in the kc_user_str data
structure:

Period of validity / transaction management: type GPD (page 317)

Field name Meaning

state=´N´ The user ID is to be disabled.
If the user is signed on to the application at the time at which the user ID is
disabled, the user is not disconnected. The lock does not take effect until the user
or client next attempts to sign on to the application under this user ID.
Read and write accesses to the queue of a locked user ID are possible.

state=´Y´ The user ID is to be released, i.e. there is a lock in existence which is to be
cancelled.

Field name Meaning

kset[8] In kset you specify the name of an existing key set that sets the access rights
of the user ID in the application. The name of a key set can be up to 8
characters long.

The user or client program can only access a service protected by means
of a lock code or an access list if:
– the key set of the user ID and
– the key set of the LTERM partner by means of which the terminal user

or the client program connects to the application
contain a key/access code that corresponds either to the lock code of the
service or to at least one key of the access list of the service.

If you want to cancel the assignment that has applied up to now, enter
blanks.

KDCADMI program interface KC_MODIFY_OBJECT: user IDs

Administering Applications 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● Change or delete the password for a user ID.

When changing a password, you must take account of the level of complexity and
minimum password length defined when the user ID was created. You can ascertain the
level of complexity and minimum length using KC_GET_OBJECT (object type
KC_USER). UTM reports the settings in the fields protect_pw_compl and
protect_pw16_lth of the data structure kc_user_str. The levels of complexity and the
criteria which must be fulfilled by a password of a certain level of complexity are
described on page 590.

You can only delete passwords if:

– the minimum password length defined when the user ID was created
(protect_pw16_lth) is equal to ´0´ and

– no particular level of complexity is defined for the user (protect_pw_compl=´0´).

If a password with a limited period of validity has been defined for a user ID
(protect_pw_time≠´0´, page 591), you cannot use the old password as the new password
when changing the password.

In applications generated with SIGNON GRACE=Y, you can choose one of the
following options when changing the password (protect_pw_time_left):

– the generated period of validity is to apply to the new password (from the time the
change is implemented) or

– the password is to become invalid immediately and must be changed immediately
the next time the user signs on.

If a password with a limited period of validity is deleted, no period of validity applies. If
a new password is issued subsequently, the period of validity again takes effect.

When changing a password, you must specify both the new password and the
password type. Specify the following in the data structure kc_user_str:

Field name Meaning

password16 Specify the new password for this user ID in the password16 field. You
must also specify in the password_type field how UTM is to interpret the
value specified in password16.
In the protect_pw_time_left field you can prevent a password with a limited
period of validity from becoming invalid immediately in applications
generated with SIGNON GRACE=Y. If the password is invalid, it is
necessary to assign a new password at sign-on.
The password can be up to 16 characters long.
The union kc_pw is available for passing the password (see page 229).

KC_MODIFY_OBJECT: user IDs KDCADMI program interface

368 Administering Applications

Period of validity / transaction management: type GPD (page 317)

password16
(cont.)

You can specify the password either as a character string or as a
sequence of hexadecimal characters.

On Unix, Linux and Windows systems, a hexadecimal specification is
only permitted if an already encrypted password is passed, i.e. the field
pw_encrypted contains the value ´Y´ or ´A´.

In the case of a hexadecimal password, each half byte is represented as
a character. If you specify a password which consists of less than 16
characters, password16 must be padded to the right with blanks
(password_type= ´C´), or with the hexadecimal value for blanks
(password_type=´X´).

In order to delete a password, specify only blanks in password16 or
specify ‘N’ in password_type

password_type In password_type you must specify how the password in password16 is to
be interpreted.The following values are possible:

´C´ The password in password16 is to be interpreted as character string.

´X´ The password in password16 is to be interpreted as hexadecimal
string.

On Unix, Linux and Windows systems, this is only permitted if an
already encrypted password is passed (pw_encrypted =´Y´ or ´A´).

´N´ No password. Nothing may be specified in password16. An existing
password will be deleted.

´R´ A random password is created.

The administrator has to define explicitly a new password before the
user generated in this way is able to sign on.

If you want to delete the password of a user ID, pass ́ N´ in password_type.
In this case, nothing further need be specified in password

pw_encrypted This field must be set to the value ´Y´ or ´A´ if the password is passed in
encrypted format. This may occur, for example, if the encrypted
password results from a K159 message of a standby application.

´N´ The password is passed in unencrypted format (default).

´Y´/´A´ The password is passed in encrypted format. No complexity
check is carried out.

Field name Meaning

X/W
X/W
X/W

X/W
X/W

KDCADMI program interface KC_MODIFY_OBJECT: user IDs

Administering Applications 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● You can change write, read and delete authorization for a USER queue. Specify the
following in the kc_user_str data structure:

Another user (≠us_name) can have read (delete) or write access to the USER queue
when both the key set of the user’s user ID and the key set of the LTERM partner by
means of which the user is signed on contain at least one key code of the q_read_acl or
q_write_acl key set.

Period of validity / transaction management: type GPD (page 317)

Field name Meaning

protect_pw_time_left This only applies to applications generated with SIGNON GRACE=Y
and for user IDs whose passwords are generated with a limited period
of validity.

In protect_pw_time_left, you can specify whether the generated period of
validity is to apply to the new password:

If you enter protect_pw_time_left=’-1’ (right or left-justified) the generated
period of validity applies to the new password (from the time it was
implemented).
protect_pw_time_left=’-1’ only has effect together with password16 and
password_type. protect_pw_time_left=’-1’ without a password is ignored.

If you make no entries for protect_pw_time_left the password immediately
becomes invalid, because the period of validity is expired. The user must
change the password at the next sign-on.

A value other than ’-1’ is rejected.

Field name Meaning

q_read_acl[8] In q_read_acl you specify the name of an existing key set by means of which
the queue is protected against other users who want to access the queue to
read and delete messages.

You can remove the protection by specifying blanks. In this case, all users
can read and delete messages from this queue.

q_write_acl[8] In q_write_acl you specify the name of an existing key set by means of which
the queue is protected against other users who want write access to it.

You can remove the protection by specifying blanks. In this case, all users
can write messages to this queue.

KC_MODIFY_OBJECT: user IDs KDCADMI program interface

370 Administering Applications

● Assign a new start format to the user ID.

You can assign a specific start format to each user ID. This start format is automatically
output after each successful sign-on if no service is currently open for this user ID. In
order to modify the start format, you must always specify both the format name and the
format attribute.

The precondition for assigning a start format is that a formatting system has been
generated (KDCDEF statement FORMSYS). If the start format is a #format, a sign-on
service must also be generated.

If you want to delete the start format of a user ID, you must specify blanks in format_attr
and format_name.

Period of validity / transaction management: type GPD (page 317)

● Enable or disable the BCAM trace for this user ID.

To allow USER-specific enabling:

The BCAM trace must not be generally enabled for all connections, i.e. the trace is
either completely disabled or only explicitly enabled for certain selected LTERM and
LPAP partners or USERs.

Specify the following in the data structure kc_user_str:

Period of validity / transaction management: type GIR (page 317)

 Some modifications can also be performed using KDCUSER (page 813).

Field name Meaning

format_attr Format identifier of the new start format:

´A´

´N´

´E´

 for the format attribute ATTR. The format name at the KDCS program
interface is +format_name.
for the format attribute NOATTR. The format name at the KDCS
program interface is ∗format_name.
for the format attribute EXTEND. The format name at the KDCS
program interface is #format_name.

The meanings of the format attributes are described on page 589.

format_name[7] Name of the start format. The name can be up to 7 characters long and may
contain only alphanumeric characters.

Field name Meaning

bcam_trace='Y' The BCAM trace is explicitly enabled for this USER. This is only possible
– if the BCAM trace is disabled for all connections (see kc_diag_and_ac-

count_par_str) or
– if the BCAM trace has already been enabled for individual USERs.

bcam_trace='N' The BCAM trace is disabled for this USER.

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B
B
B
B

B

B
B

B

B

B

C

KDCADMI program interface KC_MODIFY_OBJECT: cluster page pool

Administering Applications 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.9.17 obj_type=KC_CLUSTER_CURR_PAR

In UTM cluster applications, it is necessary to reset the statistics values of the cluster page
pool.

You must enter the data structure kc_cluster_curr_par_str via the data area.

Possible modifications

The following table indicates the values you are able to reset.

If you reset one of the two values then the other value is also implicitly reset.

Period of validity / transaction management: type GID (page 317)

Unless explicitly reset, the values continue to apply after the complete cluster application
has terminated and are not reset until the size of the cluster page pool is increased and the
UTM cluster files are generated using KDCDE.

Field name Meaning

max_cpgpool_size=´0´ Maximum utilization of the cluster page pool.
The counter is reset to 0.

avg_cpgpool_size=´0´ Average utilization of the cluster page pool.
The counter is reset to 0.

KC_MODIFY_OBJECT: KC_CLUSTER_PAR KDCADMI program interface

372 Administering Applications

11.2.9.18 obj_type=KC_CLUSTER_PAR

You want to modify the circular monitoring settings for the node applications in a UTM
cluster application and/or the settings for node application access to the cluster configu-
ration file and the administration journal of the UTM cluster application.

To do this, you must enter the new property values in the the data structure kc_clus-
ter_par_str via the data area.

Possible modification

The following table indicates the settings that you are able to modify.

Field name Meaning

check_alive_timer_sec In a UTM cluster application, every node application is monitored by
another node application (circular monitoring), i.e. each node appli-
cation monitors the availability of another node application and is itself
monitored by a node application. To do this, the monitoring node appli-
cation sends messages to the monitored node application at defined
intervals (check_alive_timer_sec). If the monitored application is
available, it acknowledges the message.
check_alive_timer_sec specifies the interval in seconds at which
monitoring messages are sent to the monitored node application.
openUTM also uses this timer in order to access the cluster configu-
ration file and the administration journal periodically in order to check
for possible updates.

Minimum value
Maximum value

‘30'’
‘3600'’

communication_retry communication_retry specifies how often a node application repeats an
attempt to send a monitoring message if the monitored node appli-
cation does not respond within the defined time.
If a value greater than zero is set for communication_retry, then the
target node application is only assumed to have failed if, additionally,
no response to the monitoring message is received after the final retry.

Minimum value: ‘0'’
Maximum value: ‘10'’

communication_reply_
timer_sec

communication_reply_timer_sec specifies the maximum time in seconds
that a node application waits for a response after sending a monitoring
message.
If the monitored node application does not respond in the defined time,
then it is assumed to have failed (abnormal end of application) and the
command sequence defined in failure_cmd is executed (e.g. a restart).

Minimum value: ‘1’
Maximum value: ’60’

KDCADMI program interface KC_MODIFY_OBJECT: KC_CLUSTER_PAR

Administering Applications 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: type GID (page 317)

restart_timer_sec Maximum time in seconds that a node application requires for a warm
start after a failure.
If a value of 0 is specified, no timer is set for monitoring the restart of a
failed node application.
Minimum value: 0, i.e. restart of the application is not monitored.
Maximum value: 3600

file_lock_timer_sec
file_lock_retry

file_lock_timer_sec is the maximum time in seconds that a node appli-
cation waits for a lock to be assigned for accessing the cluster config-
uration file or the cluster administration journal.
file_lock_retry specifies how often a node application repeats the
request for a lock on the cluster configuration file or the cluster admin-
istration journal if the lock was not assigned in the time specified in
file_lock_timer_sec.
Note: Do not choose too small a value since a timeout when accessing
the cluster configuration file can lead to the abnormal termination of the
application.

file_lock_timer_sec:
Minimum value: ‘10’
Maximum value: ‘60'

file_lock_retry:
Minimum value: ‘1'
Maximum value: ‘10'

deadlock_prevention=´N´ UTM does not perform any additional verifications for the GSSB, TLS
and ULS data areas in order to prevent deadlocks. If a deadlock occurs
in one of these data areas then it is resolved via a timeout.

deadlock_prevention=´Y´ UTM performs additional verifications for the GSSB, TLS and ULS data
areas in order to prevent deadlocks.
In productive operation it is advisable to set this parameter to ´Y´ only
if timeouts occur frequently when accessing these data areas.

Field name Meaning

KC_MODIFY_OBJECT: reset statistical values KDCADMI program interface

374 Administering Applications

11.2.9.19 obj_type=KC_CURR_PAR

The counters for application-specific statistical values are to be reset. For this you must
assign the data structure kc_curr_par_str to the data area.

Furthermore, you can enable or disable data compression, see page 377.

Possible modifications

All the counters listed below can be set in one call. In order to reset the counters you must
pass the value ´0´ to UTM in the relevant field, unless there is a note to the contrary. You
can reset the following counters or statistical values:

Field name Specification

term_input_msgs=´0´ Number of messages which the application received from
clients or partner applications since the last reset.
The counter is reset to 0.

term_output_msgs=´0´ Number of messages which the application sent to clients,
printers or partner applications since the last reset.
The counter is reset to 0.

max_dial_ta_per_100sec=´0´ Maximum number of dialog transactions carried out within the
space of 100 seconds.
The counter is reset to 0 (page 613).

max_asyn_ta_per_100sec=´0´ Maximum number of asynchronous transactions carried out
within the space of 100 seconds.
The counter is reset to to 0 (page 613).

max_dial_step_per_100sec=´0´ Maximum number of dialog steps carried out within the space of
100 seconds.
The counter is reset to to 0 (page 613).

max_pool_size=´0´ Maximum utilization of the page pool in percent since the last
reset.
The counter is reset to 0.
If this value is reset then the value of avg_pool_size is also
implicitly reset to 0.

avg_pool_size=´0´ Average utilization of the page pool in percent since the last
reset of the counter.
The counter is reset to 0.
If this value is reset then the value of max_pool_size is also
implicitly set to 0.

cache_hit_rate=´0´ Hit rate for pages in the cache memory since the counter was
last reset (in percent).
The counter is reset to 0.
If this value is reset then the values cache_wait_buffer,
nr_cache_rqs and nr_cache_searches are also impicitly reset to 0.

KDCADMI program interface KC_MODIFY_OBJECT: reset statistical values

Administering Applications 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

cache_wait_buffer=´0´ Percentage of buffer requests in the cache, that led to a wait
time.
The counter is reset to 0.
If this value is reset then the values cache_hit_rate , nr_cache_rqs
and nr_cache_searches are also impicitly reset to 0.

abterm_services=´0´ Number of abnormally terminated services since the last reset.
The counter is reset to 0.

deadlocks=´0´ Number of known and resolved deadlocks of UTM resources
since the last reset.
The counter is reset to 0.

periodic_writes=´0´ Number of periodic writes since the last reset
(periodic write = backup of all relevant administration data in the
UTM application).
The counter is reset to 0.

pages_pwrite=´0´ Number of UTM pages saved on average in a periodic write.
The counter is reset to 0.

logfile_writes=´0´ Number of requests to write log records to the user log file
((USLOG).
The counter is reset to 0.

maximum_jr=´0´ In distributed processing only:
Maximum number of remote job receiver services addressed in
the local application at the same time in relation to the generated
value MAXJR (see kc_utmd_par_str on page 672). This is a
percent value
The counter is reset to the value of curr_jr (page 616).

max_load=´0´ max_load specifies as a percentage the maximum load of the
UTM application registered since the start of the application or
the last reset.
The value is reset to the value in curr_load (see page 616).

max_wait_resources=´0´ max_wait_resources specifies the maximum conflict rate for user
data locks over the application run. The value is specified as an
amount per thousand.
The counter is reset to 0.
If this value is reset then the values max_wait_system_resources,
nr_res_rqs_for_max and nr_sys_res_rqs_for_max are also impicitly
reset to 0.

Field name Specification

KC_MODIFY_OBJECT: reset statistical values KDCADMI program interface

376 Administering Applications

Period of validity / transaction management: type GIR (page 317)

i If you wish to reset the statistical values listed above yourself, you should set MAX
STATISTICS-MSG =NONE in KDCDEF generation. This stops UTM resetting the
counters to 0 at hourly intervals and creating the statistics message K081.

max_wait_system_resources=´0´ max_wait_system_resources specifies the maximum conflict rate
for system resource locks (system locks) across the application
run. The value is specified as an amount per thousand.
The counter is reset to 0.
If this value is reset then the values max_wait_resources,
nr_res_rqs_for_max and nr_sys_res_rqs_for_max are also implicitly
reset to 0.

nr_cache_rqs=´0´ Number of buffer requests taken into account to calculate the
value cache_wait_buffer.
The counter is reset to 0.
If this value is reset then the values cache_hit_rate,
cache_wait_buffer and nr_cache_searches are also implicitly reset
to 0.

nr_cache_searches=´0´ Number of search operations for UTM pages in the cache taken
into account to calculate the value cache_hit_rate.
The counter is reset to 0.
If this value is reset then the values cache_hit_rate,
cache_wait_buffer and nr_cache_rqs are also implicitly reset to 0.

nr_res_rqs_for_max=´0´ Number of requests for transaction resources in the 100 second
period during which the maximum conflict rate
max_wait_resources was reached.
The counter is reset to 0.
If this value is reset then the values max_wait_resources,
max_wait_system_resources and nr_sys_res_rqs_for_max are also
implicitly reset to 0.

nr_sys_res_rqs_for_max=´0´ Number of requests for system resources in the 100 second
period during which the maximum conflict rate
max_wait_system_resources was reached.
The counter is reset to 0.
If this value is reset then the values max_wait_resources,
max_wait_system_resources and nr_res_rqs_for_max are also
implicitly reset to 0.

avg_saved_pgs_by_compr=´0´ Average value for the UTM pages saved per data compression.
The counter is reset to 0.

Field name Specification

KDCADMI program interface KC_MODIFY_OBJECT: reset statistical values

Administering Applications 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Enabling/Disabling data compression

Period of validity / transaction management: type GIR (page 317)

Field name Specification

data_compression=´Y´ Data compression is enabled. For this purpose data compression
must be permitted by means of UTM generation, see openUTM
manual “Generating Applications”, MAX DATA-
COMPRESSION=

data_compression=´N´ Data compression is disabled.

KC_MODIFY_OBJECT: diagnostics/account KDCADMI program interface

378 Administering Applications

11.2.9.20 obj_type=KC_DIAG_AND_ACCOUNT_PAR

Diagnostic functions are to be activated or deactivated. You must pass the data structure
kc_diag_and_account_par_str in the data area.

Possible modifications

● Activate or deactivate the ADMI trace function. The ADMI trace function logs all calls of
the KDCADMI program interface.

Period of validity / transaction management: Type IR (page 317)

It is also possible to enable the trace via the start parameters when the application is
started, see openUTM manual “Using UTM Applications”. The names of the trace files
are also described there.

● Activate or deactivate BCAM trace for all connections to the application, i.e. for all:

– LTERM partners, LPAP partners
– USER
– MUX connections

BCAM trace records all connection-related events.

You can also activate or deactivate the BCAM trace LTERM-, LPAP-, MUX or USER-
specifically. Use the object types KC_LTERM (page 340), KC_LPAP (page 332),
KC_MUX (page 344) or KC_USER (page 366) for this purpose.

Field name Meaning

admi_trace=´Y´ The ADMI trace function is enabled.

admi_trace=´N´ The ADMI trace function is disabled.
All ADMI trace files are closed and can be analyzed. For more infor-
mation, see also openUTM manual ”Messages, Debugging and
Diagnostics”.

Field name Meaning

bcam_trace=´Y´ The BTRACE function is activated for all connections.
When the BTRACE function is activated, each application process creates
its own trace file in which it records connection-related events.

bcam_trace=´N´ The BTRACE function is deactivated for all connections, even if it had previ-
ously only been activated for specific LTERM, LPAP, MUX or USER.
If the BTRACE function is deactivated (for all LTERM, LPAP, MUX partners
and USERs), the trace files are closed and can be evaluated subsequently.
Trace file content and evaluation are described in the openUTM manual
”Messages, Debugging and Diagnostics”.

B

KDCADMI program interface KC_MODIFY_OBJECT: diagnostics/account

Administering Applications 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: type GIR (page 317)

The BCAM trace can be activated by means of start parameters when the application
is started.

● Control the CPI-C trace function. The CPI-C trace function logs calls at the X/Open
interface CPI-C.

Period of validity / transaction management: Type IR (page 317)

It is also possible to enable the CPI-C trace via the start parameters when the appli-
cation is started, see openUTM manual “Using UTM Applications”. The names of the
trace files are also described there.

● Activate or deactivate OSI trace functions for all application OSI connections.

The OSI trace functions record all events occurring during distributed processing
through OSI TP. The events recorded are restricted to certain record types, i.e. to
events relating to certain components.

Field name Meaning

cpic_trace=´T´ The CPI-C trace function is enabled with the level TRACE. The content
of the input and output parameters is output for each CPI-C function call.
Only the first 16 bytes are output from the data buffers. The return codes
of the KDCS calls to which the CPI-C calls are mapped are output.

cpic_trace=´B´ The CPI-C trace function is enabled with the level BUFFER. This trace
level includes the TRACE level. However, the data buffers are logged in
their full length.

cpic_trace=´D´ The CPI-C trace function is enabled with the level DUMP. This trace level
includes the TRACE level and also writes diagnostic information to the
trace file.

cpic_trace=´A´ The CPI-C trace function is enabled with the level ALL. This trace level
includes the levels BUFFER, DUMP and TRACE.

cpic_trace=´N´ The CPI-C trace function is disabled (OFF).
All CPI-C trace files are closed and can be analyzed. For more infor-
mation, see also openUTM manual “Creating Applications with X/Open
Interfaces”.

KC_MODIFY_OBJECT: diagnostics/account KDCADMI program interface

380 Administering Applications

It is not possible to deactivate logging for individual record types. If the trace is to be
deactivated for individual record types, it must first be completely deactivated
(osi_trace=´N´) and then reactivated for those record types that are still to be logged
(appropriate specified values in osi_trace_records).

Period of validity / transaction management: type GIR (page 317)

Tracing can be activated by means of start parameters when the application is started.

● Control the TX trace function. The TX trace function logs calls at the X/Open interface
TX.

Field name Meaning

osi_trace=´Y´ The OSI trace function is activated for all record types.
When the OSI trace function is activated, each application process
creates its own trace file.

osi_trace=´N´ The OSI trace is deactivated for all record types.
All OSI trace files are closed and can be evaluated. See also openUTM
manual ”Messages, Debugging and Diagnostics”.

osi_trace_records[5] Activate the OSI trace function for certain record types.
Nothing further need be specified in the osi_trace field to activate the OSI
trace.

Each field element of osi_trace_records represents a record type:
1st field, record type “SPI“
2nd field, record type “INT“
3rd field, record type “OSS“
4th field, record type “SERV“
5th field, record type “PROT“

The meaning of the record types is summarized on page 623.

To activate trace functions for certain record types, specify ‘Y’ in the
appropriate field elements.
The call activates logging for the specified record types in addition to any
log files that may already exist.

Field name Meaning

tx_trace=´E´ The TX trace function is enabled with the level ERROR. Only errors are
logged.

tx_trace=´I´ The TX trace function is enabled with the level INTERFACE. The level
INTERFACE includes the level ERROR, and all TX calls are also logged.

tx_trace=´F´ The TX trace function is enabled with the level FULL. The FULL level
includes the INTERFACE level. All KDCS calls to which the TX calls are
mapped are also logged.

KDCADMI program interface KC_MODIFY_OBJECT: diagnostics/account

Administering Applications 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: Type IR (page 317)

It is also possible to enable the TX trace via the start parameters when the application
is started, see openUTM manual “Using UTM Applications”. The names of the trace
files are also described there.

● Control the XATMI trace function. The XATMI trace function logs calls at the X/Open
interface XATMI.

Period of validity / transaction management: Type IR (page 317)

It is also possible to enable the XATMI trace via the start parameters when the appli-
cation is started, see openUTM manual “Using UTM Applications”. The names of the
trace files are also described there.

tx_trace=´D´ The TX trace function is enabled with the level DEBUG. The level
DEBUG includes the level FULL, and diagnostic information is also
logged.

tx_trace=´N´ The TX trace function is disabled.
All TX trace files are closed and can be analyzed. For more information,
see also openUTM manual “Creating Applications with X/Open Inter-
faces”.

Field name Meaning

xatmi_trace=´E´ The XATMI trace function is enabled with the level ERROR. Only errors
are logged.

xatmi_trace=´I´ The XATMI trace function is enabled with the level INTERFACE. The
level INTERFACE includes the level ERROR, and all XATMI calls are
also logged.

xatmi_trace=´F´ The XATMI trace function is enabled with the level FULL. The FULL level
includes the INTERFACE level. All KDCS calls to which the XATMI calls
are mapped are also logged.

xatmi_trace=´D´ The XATMI trace function is enabled with the level DEBUG. The level
DEBUG includes the level FULL, and diagnostic information is also
logged.

xatmi_trace=´N´ The XATMI trace function is disabled.
All XATMI trace files are closed and can be analyzed. For more infor-
mation, see also openUTM manual “Creating Applications with X/Open
Interfaces”.

Field name Meaning

KC_MODIFY_OBJECT: diagnostics/account KDCADMI program interface

382 Administering Applications

● Activate and deactivate application test mode.

Test mode should only be activated to generate diagnostic documents. Internal UTM
plausibility check routines also run in test mode and internal TRACE data is recorded.

Period of validity / transaction management: type GIR (page 317)

Test mode can be activated by means of start parameters when the application is
started.

● You can create a diagnostic dump for defined messages/events.

You can define an event for which, on its occurrence, UTM generates a diagnostic dump
which contains an event-dependent ID. The prerequisite for this is that test mode must
be activated (testmode=´Y´). Test mode can be activated and the event defined in a
KC_MODIFY_OBJECT call. You can also define the event when test mode is not
activated. However, the diagnostic dump is only written on the occurrence of the event
when test mode is activated.

You can specify the following events:

– the output of a specific K or P message, possibly depending on the inserts in the
message

– the occurrence of a specific KDCS return code (KCRCCC or KCRCDC) in a
program unit run

– the occurrence of a specific SIGN status when a user signs on

The events are specified in kc_diag_and_accout_par_str in the data structure
kc_dump_event_str, which contains the data structure kc_insert_str in addition to the fields
event_type and event.

Any message inserts which further restrict generation of the dump are defined in
kc_insert_str. You can specify up to three inserts. A dump is only generated if all the
criteria for the message inserts specified in kc_insert_str apply.

Field name Meaning

testmode=´Y´ Test mode is activated (ON).

testmode=´N´ Test mode is deactivated (OFF).

KDCADMI program interface KC_MODIFY_OBJECT: diagnostics/account

Administering Applications 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Data structure kc_dump_event_str

Data structure kc_insert_str

In the case of messages K023, K043, K061 or K062, UTM creates a UTM dump only
once, namely when the message next occurs. The message dump function is then
automatically deactivated.

In the case of all other UTM message numbers, a UTM dump is created each time the
specified event occurs. This is done until the event is explicitly reset.

In the case of KDCS return codes or SIGNON status codes, the function is automati-
cally deactivated after the message dump has been generated.

Period of validity / transaction management: type GIR (page 317)

 KDCDIAG (page 693)

Field name Meaning

event_type[4] Type of event for which a UTM dump is to be generated:

MSG
RCDC
RCCC
SIGN
NONE

K or P message
Incompatible return code
Compatible return code
SIGNON status code
Explicit deactivation of an individual event

event[4] Message number, KDCS return code (CC or DC) or SIGNON status code,
depending on the event_type

Field name Meaning

value[64] value can be specified as follows, depending on value_type:

value_type=N
value_type=C
value_type=X

numeric, integers between 0 and 231-1
alphanumeric, maximum of 32 characters
hexadecimal, maximum of 64 characters

UTM represents the string in a union of the type kc_value:
union kc_value
{ char x[64];
char c[32];

};

value_type value_type specifies how the contents of the field value are to be inter-
preted:

N
C
X

numeric
alphanumeric
hexadecimal

comp[2] Specifies whether the system is to test for equality or inequality. The
possible values are EQ (equality) or NE (inequality)

C

KC_MODIFY_OBJECT: diagnostics/account KDCADMI program interface

384 Administering Applications

● You can activate and deactivate the accounting and calculation phase of UTM
Accounting.

See also the openUTM manual “Generating Applications” and the openUTM manual
“Using UTM Applications” for information on accounting in UTM.

Period of validity / transaction management: type GIR (page 317)

After the application is started, the value set in ACCOUNT ACC= during KDCDEF
generation applies.

● Activate or deactivate the event monitor KDCMON

See the openUTM manual “Using UTM Applications” in relation to event monitor
KDCMON and the UTM tools for evaluating the measured values (KDCEVAL).

Period of validity / transaction management: type IR (page 317)

 KDCDIAG (page 693) / KDCAPPL (page 678)

● Switch over the log files from the UTM application.

It is possible to switch over the log files for the application (SYSOUT and SYSLST or
stderr and stdout) during live operation. This allows you to avoid a disk bottleneck and
permits evaluation and archiving of the log files while the application is running.

Period of applicability / transaction management: type GA (page 317)

 KDCAPPL (page 678)

Field name Meaning

account=´Y´ Activate the accounting phase.
UTM Accounting is always deactivated after a BS2000 accounting failure,
even if BS2000 accounting is still available. UTM accounting must then be
reactivated with account =´Y´.

account=´N´ Deactivate the accounting phase (OFF).

calc=´Y´ Activate the calculation phase in UTM accounting (ON).

calc=´N´ Deactivate the calculation phase of UTM accounting (OFF).

Field Meaning

kdcmon=´Y´ Activate KDCMON (ON)

kdcmon=´N´ Deactivate KDCMON (OFF)

Field name Meaning

sysprot_switch='Y' The log files are switched over.

BB
B
B
B

C

C

KDCADMI program interface KC_MODIFY_OBJECT: diagnostics/account

Administering Applications 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

● Enable or disable STXIT logging

If STXIT logging is enabled, multiple K099 messages are output to SYSOUT when an
STXIT event occurs.

Period of applicability / transaction management: type IR (page 317)

 KDCDIAG (page 693)

● Output debug information for the database connection.

You can specify the extent to which calls to the XA interface will be logged and the desti-
nation for such logging.

If you use only the field xa_debug without providing a value for xa_debug_out, any
value you specified in the start parameter when starting the UTM application will be
used (see openUTM Manual “Using openUTM Applications”). Otherwise, the log is
written to SYSOUT/stderr.

Period of applicability / transaction management: type IR (page 317)

 KDCDIAG (page 693)

Field name Meaning

stxit_log='Y' Enables Stxit logging.

stxit_log='N' Disables Stxit logging.

Field name Meaning

xa_debug='Y' Enables XA-DEBUG (ON).
Calls to the XA interface are logged.

xa_debug='A' Extended XA-DEBUG (ALL).
Specific data areas are output in addition to the calls to the XA interface.

xa_debug='N' Disables XA-DEBUG (OFF).

xa_debug_out='S' Output to SYSOUT/stderr.

xa_debug_out='F' Output to a file.

B

B

BB

BB

B

B

B

CB

C

KC_MODIFY_OBJECT: application parameters KDCADMI program interface

386 Administering Applications

11.2.9.21 obj_type=KC_MAX_PAR

Application parameters and maximum values for the application are to be modified. You
must assign the data structure kc_max_par_str in the data area.

Possible modifications

All the modifications described below can proceed in a single call.

● You can modify application maximum values, which were defined in the MAX statement
during KDCDEF generation. These modifications may affect application performance
(see also “Performance check” on page 52).

The following table shows which maximum values can be modified and the fields of the
data structure kc_max_par_str to which you must pass the new maximum values.

Period of validity / transaction management: type GIR (page 317)

Field name Meaning

bretrynr[5] Specify in bretrynr how often UTM is to attempt to pass a message to the
transport system (BCAM) if BCAM cannot immediately accept the
message.
The selected value of bretrynr should not be too high because the
process attempting to the pass the message to BCAM is blocked for the
duration of the attempts.

For asynchronous messages to a dialog partner type of the
ptype=´APPLI´ (TS application), bretrynr is not relevant (see bretrynr on
page 638)

Minimum value: ´1´
Maximum value: ´32767´

cachesize_paging[3] Specify in cachesize_paging the percentage of the cache which is to be
written to the KDCFILE in the event of a bottleneck so that the cache
memory can be used for other data.
UTM replaces at least 8 UTM pages out to cache in a single paging, even
if the value of cachesize_paging is smaller.

Minimum value: ´0´, i.e. 8 UTM pages are swapped out to cache
Maximum value: ´100´ (%)

Cache size is defined in the MAX statement during KDCDEF generation
and can be ascertained, for example, by using KC_GET_OBJECT for
obj_type=KC_MAX_PAR (cache_size_pages).

BB
B
B
B
B
B

B
B
B

B
B

KDCADMI program interface KC_MODIFY_OBJECT: application parameters

Administering Applications 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: type IR (page 317)

Field name Meaning

conn_users[10] By using conn_users you can prevent the application from being
overloaded by too many active users. To do this, specify in conn_users
the maximum number of users or clients that can currently be signed on
to the UTM application.

The following situation applies in applications generated with user IDs:
– If the number specified for conn_users is greater than the number of

generated users, conn_users has no effect.
– User IDs which have been generated with administration privileges

can still sign on to the UTM application after the maximum number
of concurrent user IDs has been reached.

The following situation applies in applications which are generated
without user IDs:
– The number of dialog partners which can concurrently be connected

to the UTM application is restricted by conn_users.
– If the number specified for conn_users is greater than the number of

generated dialog LTERM partners, conn_users has no effect. Dialog
LTERM partners are all those LTERM partners entered with
usage_type= ´D´, LTERM partners of the LTERM pool and the
LTERM partners created internally by UTM for multiplex connec-
tions.

If the number of simultaneously active users is not to be restricted or if a
restriction is to be cancelled, specify conn_users= ´0´.

Minimum value: ´0´ (i.e. no restriction)
Maximum value: ´500000´
On Unix, Linux and Windows systems, the maximum value may not
exceed the value generated in the generation parameter
MAX ... CONN-USERS.

X/W
X/W
X/W

KC_MODIFY_OBJECT: application parameters KDCADMI program interface

388 Administering Applications

You can define a new destination for the results of the KDCADM administration
commands which were called by KDCADM through asynchronous TACs.

Period of validity / transaction management: type GPD (page 317)

● You can change the number of failed attempts which UTM allows before UTM triggers
the silent alarm.

Period of validity / transaction management: type GIR (page 317)

● You can activate or deactivate the supply of data to openSM2:

Period of validity / transaction management: type GIR (page 317)

 Some of the modifications can also be performed with the administration command
KDCAPPL (page 678).

Field name Meaning

destadm[8] Specify in destadm the new recipient for the results of KDCADM administration
calls which have been processed asynchronously (asynchronous KDCADM
transaction codes). This overwrites the old value of destadm.

You can specify the following for destadm:
– the name of an LTERM partner
– an asynchronous transaction code or
– a TAC queue

If you specify blanks for destadm no recipient is defined any longer. The results
of the asynchronous KDCADM transaction code then are lost.

Field name Meaning

signon_fail Specify in signon_fail the number of unsuccessful sign-on attempts (security
violations) from a client following in immediate succession after which a “silent
alarm” (K094-UTM message) is triggered.

Minimum value: ´1´
Maximum value: ´100´

Field name Meaning

sm2=´Y´ UTM is to supply data to openSM2 for the purpose of monitoring performance
data.
The supply of data can only be activated if it was not excluded at a general
level during KDCDEF generation (MAX statement operand SM2).

sm2=´N´ The supply of data to openSM2 is to be deactivated.

C

KDCADMI program interface KC_MODIFY_OBJECT: process numbers

Administering Applications 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.9.22 obj_type=KC_TASKS_PAR

The values relating to the number of application processes can to be modified, i.e. the total
number of processes, maximum number of processes for processing asynchronous jobs
and for processing program units with blocking calls and the number of processes reserved
for UTM-internal jobs and dialog jobs that do not belong to a TAC class.

You must assign the data structure kc_tasks_par_str in the data area.

Possible modifications

All the modifications described below can be made in a single call.

Field name Meaning

mod_max_tasks[3]; Change the total number of processes running.

In this field you specify the maximum number of processes that are
running for the application. mod_max_tasks is a target value for the
current number of processes.
The number of actually active processes that currently process jobs
of the application is stored in the curr_tasks field (see kc_tasks_par_str
as of page 663). This can differ from mod_max_tasks for a short period
at the startup or termination of a process.

Maximum value: the maximum value (tasks) defined in MAX at
KDCDEF generation
Minimum value: ´1´

mod_max_asyntasks[3] Modify the maximum number of processes that can process
asynchronous jobs simultaneously.
Specify in mod_max_asyntasks the maximum number of processes that
can simultaneously be used for asynchronous processing.

The number specified here serves as a upper limit value.
The actual maximum number of processes that can be used concur-
rently for asynchronous processing (see kc_tasks_par_str as of
page 663, curr_max_asyntasks parameter) may be lower than the
value specified in mod_max_asyntasks, because the actual number is
limited by the number of processes of the application that are
currently running (curr_tasks).

Minimum value: ´0´
Maximum value: the maximum value defined in MAX at KDCDEF
generation (asyntasks).

KC_MODIFY_OBJECT: process numbers KDCADMI program interface

390 Administering Applications

Period of validity / transaction management: type A (page 317)

 KDCAPPL (page 678)

mod_max_tasks_in_pgwt[3] Modifies the maximum number of processes which may simultane-
ously process jobs for program units in which blocking calls are
permitted.
Specify in mod_max_tasks_in_pgwt the maximum number of processes
in which program units that have blocking calls can run simultane-
ously.

The number specified here serves as a upper limit value.
The actual maximum number of processes processing program units
with blocking calls simultaneously (see kc_tasks_par_str as of
page 663, curr_max_tasks_in_pgwt parameter) may be lower than the
value specified in mod_max_tasks_in_pgwt because the actual number
must be at least 1 below the number of currently running processes
of the application (curr_tasks).

mod_max_tasks_in_pgwt=´0´ is rejected if the application contains
transaction codes or TAC classes with pgwt=´Y´.

Minimum value: ´0´
Maximum value: the maximum value defined in MAX during KDCDEF
generation (tasks_in_pgwt).

mod_free_dial_tasks[3] This value can only be modified if a TAC-PRIORITIES statement was
issued during KDCDEF generation.

In mod_free_dial_tasks, you enter the number of processes in the appli-
cation reserved for UTM-internal jobs and for dialog jobs that do not
belong to a specific dialog TAC class.
This portion of the total percentage is then not available for
processing jobs to dialog TAC classes.

If mod_free_dial_tasks ≥ mod_max_tasks after the process figures have
been modified, an application process may still process jobs to dialog
TAC classes.

Minimum value: ´0´
Maximum value: value in tasks -1

Field name Meaning

C

KDCADMI program interface KC_MODIFY_OBJECT: timer settings

Administering Applications 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.9.23 obj_type=KC_TIMER_PAR

Application timer settings are to be modified. You must enter the data structure kc_tim-
er_par_str in the data area.

Possible modifications

The following table shows which timers can be modified. You can modify as many of these
timers as you wish in a single call.

Field name Meaning

conrtime_min[5] Specify here the time in minutes after which UTM is to attempt to
re-establish a lost connection to a printer or a TS application. The precon-
dition is that the connection must previously have been established
automatically by UTM (kc_pterm_str.auto_connect=´Y´ or
kc_lterm_str.plev > 0; see also page 668).

At conrtime_min=´0´ UTM makes no attempt to re-establish a lost
connection.

Maximum value: ´32767´
Minimum value: ´0´

pgwttime_sec[5] The maximum time in seconds which a program unit is to wait for the arrival
of messages after a blocking function call (e.g. PGWT).
During this waiting period, one process remains exclusively reserved by
this program unit.

Maximum value: ´32767´
Minimum value: ´60´

reswait_ta_sec[5] The maximum time in seconds which a program unit is to wait for a device
currently being used by another transaction.
See also page 669 in relation to reswait_ta_sec.

reswait_ta_sec=´0´ means that the program unit does not wait. A program
unit run wishing to access a reserved device immediately receives an
appropriate return code.

Maximum value: ´32767´
Minimum value: ´0´

KC_MODIFY_OBJECT: timer settings KDCADMI program interface

392 Administering Applications

reswait_pr_sec[5] The maximum time in seconds which UTM is to wait for a device currently
being used by another process. If this time is exceeded, the application
terminates with a UTM error message.
It should be noted that the value of reswait_pr_sec must be as long as the
longest (real time) processing time for the following cases:
– In TS applications that are not SOCKET applications (clients with

PTYPE=APPLI) the devices are locked for the duration of a processing
stage, including a VORGANG exit at the beginning and/or end of the
service.

– At the end of the service, the devices are reserved for as long as the
VORGANG exit program is running.

Minimum value: ´300´, Maximum value: ´32767´

If you specify a value of < 300, the call is rejected.

termwait_in_ta_sec[5] The maximum time in seconds in a multi-step transaction (i.e. in the PEND
KP program) which may elapse between an output to a dialog partner and
the subsequent dialog response.

If the time termwait_in_ta_sec is exceeded, the transaction is rolled back.
The devices reserved by the transaction are released. The connection to
the partner is shut down.

Maximum value: ´32767´
Minimum value: ´60´

logackwait_sec[5] The maximum time in seconds which UTM is to wait for a logical print confir-
mation from the printer or a transport confirmation for an asynchronous
message to another application (created using the KDCS call FPUT).
If the confirmation does not arrive after this time, e.g. due to a printer being
out of paper, UTM shuts down the logical connection to the device.

Minimum value: ´10´
Maximum value: ´32767´

Field name Meaning

BB
B
B
B
B

B
B

KDCADMI program interface KC_MODIFY_OBJECT: timer settings

Administering Applications 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Period of validity / transaction management: type GIR (page 317)

The modifications do not take effect on timers which are already running; they only apply to
timers started after the modification.

 Some of the modifications can also be performed with the administration command
KDCAPPL (page 678).

The following timers are relevant only in the context of UTM applications with distributed processing
via LU 6.1 or OSI TP.

conctime1_sec[5] The time in seconds for monitoring the setup of a session (LU6.1) or
association (OSI TP). If the session or association is not established within
the specified time, UTM shuts down the transport connection to the partner
application.

conctime1_sec=´0´ means:
– for LU6.1 connections: session setup is not monitored (UTM will wait

indefinitely).
– for OSI TP connections: UTM waits up to 60 seconds for an association

to be set up.

Minimum value: ´0´
Maximum value: ´32767´

conctime2_sec[5] The maximum waiting time in seconds for a confirmation from the recipient
when transferring an asynchronous message. Once the time conctime2_sec
has expired, UTM shuts down the transport connection. The asynchronous
job is not lost, but remains in the local message queue.

conctime2_sec = ´0´ means that monitoring is not performed.

Minimum value: ´0´
Maximum value: ´32767´

ptctime_sec[5] This timer is relevant only in the context of distributed processing via LU6.1
connections. ptctime_sec defines the maximum time in seconds which a
local job-receiving service will wait in the PTC state (prepare to commit,
transaction status P) for a confirmation from the job-submitting service.
When the time expires, the connection to the job submitter is shut down, the
transaction in the job-receiving service is rolled back and the service termi-
nated. This may possibly result in a mismatch.
If KDCSHUT WARN or GRACE has already been issued for the application
and the value of ptc_time_sec is not 0, then the waiting time is chosen
independently of ptc_time_sec in such a way that the transaction is rolled
back before the application is terminated in order to avoid abnormal termi-
nation of the application with ENDPET if possible.

ptctime_sec = ´0´ means that UTM waits indefinitely for a confirmation.

Minimum value: ´0´
Maximum value: ´32767´

Field name Meaning

C

KC_MODIFY_OBJECT: return codes KDCADMI program interface

394 Administering Applications

11.2.9.24 Return codes

In addition to the return codes listed in section “Return codes” on page 178, the following
codes can also occur. Some of these return codes may occur independently of the specified
object type; others occur only for certain object types.

Type-independent return codes:

Main code = KC_MC_DATA_INVALID
Information is missing from the data structure in the data area or a field contains an invalid value.

Subcodes:

KC_SC_DATA_MISSING
Data is missing from the data structure. Possible causes:

– The field to be modified was not specified.
– Several fields must be specified together for the requested modification, and one of these

values is missing (e.g. obj_type=KC_TPOOL: state and state_number).

KC_SC_INVALID_MOD
A field in the data structure which can be modified was completed with an invalid value.

KC_SC_NOT_NULL
A field in the data structure which cannot be modified was not completed with binary zero.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING
An inverse KDCDEF is currently running and configuration data cannot be changed during the
run.

Main code = KC_MC_NOT_EXISTENT
No object of the type specified in obj_type exists under the name or name triplet passed in the
identification area.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_DELETED
The specified object has been deleted. Its properties cannot be modified.

Subcode:

KC_SC_NO_INFO

KDCADMI program interface KC_MODIFY_OBJECT: return codes

Administering Applications 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Return codes for obj_type=KC_CLUSTER_NODE:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NOT_GEN
No explicitly generated object of the object type specified in obj_type exists. Implicitly generated
objects might, however, exist, e.g. user IDs for clients with ptype=´APPLI´.

KC_SC_JCTL_RT_CODE_NOT_OK
Only in UTM cluster applications:
An internal UTM error occurred during the global modification of an object.
Please contact system support.

KC_SC_NO_CLUSTER_APPLI
This action is only possible in a UTM cluster application.

KC_SC_NO_GLOB_CHANG_POSSIBLE
No global administration changes are possible since the generations of the node applications
are not consistent at present.

KC_SC_NOT_ALLOWED_IN_CLUSTER
The administration action is not permitted in a UTM cluster application.

Main code = KC_MC_RECBUF_FULL
The buffer with recovery information is full (see KDCDEF control statement MAX, operand
RECBUF).

Subcode:

KC_SC_NO_INFO

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_CCFG_NO_CLUSTER_APPLI
The specified application is not a UTM cluster application

KC_SC_CCFG_FILE_NOT_OPEN
Internal UTM error.
Please contact system support.

KC_SC_CCFG_RT_CODE_NOT_OK
Modification was not performed. Possible cause, e.g. timer expired.

KC_SC_CCFG_FILE_LOCK_ERROR
Cluster configuration file is locked.

KC_SC_CCFG_FILE_READ_ERROR
Error reading the cluster configuration file.

KC_MODIFY_OBJECT: return codes KDCADMI program interface

396 Administering Applications

Return codes for obj_type = KC_DB_INFO:

KC_SC_CCFG_FILE_WRITE_ERROR
Error writing the cluster configuration file.

KC_SC_CCFG_INVALID_BUFFER_LTH
Internal UTM error.
Please contact system support.

KC_SC_CCFG_INVALID_NODE_INDEX
Internal UTM error.
Please contact system support.

KC_SC_CCFG_INVALID_NODE_STATE
Invalid node application status.
Note: You may not make any modifications for a running node application.

KC_SC_CCFG_INVAL_FILEBASE_NAME
Base name of UTM cluster invalid.

KC_SC_CCFG_INVALID_HOSTNAME
The host name is invalid.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NOT_GEN
No database is generated for the application.

KC_SC_INVALID_TYPE
The database selected in the identification area is not an XA database.

KC_SC_NO_INFO
Internal error in UTM when encoding the new password.

Maincode = KC_MC_NOT_EXISTENT
The object specified in the identification area does not exist.

Subcode:

KC_SC_NO_INFO

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KDCADMI program interface KC_MODIFY_OBJECT: return codes

Administering Applications 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Return codes for obj_type=KC_KSET:

Return codes for obj_type=KC_LOAD_MODULE (program replacement):

Return codes for obj_type=KC_LPAP:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED
It is not permissible to modify the KDCAPLKS or MASTER key set.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_CHANGE_RUNNING
A program exchange is running.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_CHANGEABLE
The load module / shared object / DLL specified in the identification area is not interchangeable.
Possible reasons include, for example:

– the load module has the load mode STATIC.
– the load module contains TCB entries.

KC_SC_SAME_VERSION
load_mode ≠´U´ (not STARTUP):
The currently loaded version of the load module was specified in version.

KC_SC_LMOD_NOT_EXISTENT
No module with the specified version could be found in the library.

KC_SC_INVALID_VALUE
The load module is generated with LOAD-MODE=POOL, (POOL,STARTUP) or
(POOL,ONCALL) and with version *HIGHEST-EXISTING, but in version was specified a value
not equal *HIGHEST-EXISTING.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED
state = ´N´: There is a connection to the partner application. The partner application thus cannot
be disabled. Before the partner application is disabled, all connections to it must be shut down.

B
B

B
B
B
B

KC_MODIFY_OBJECT: return codes KDCADMI program interface

398 Administering Applications

Return codes for obj_type=KC_LSES:

Return codes for obj_type=KC_LTAC:

There are no type-specific return codes for KC_LTAC.

KC_SC_NOT_ALLOWED
Possible causes:

– you have attempted to establish a connection to a disabled partner application (state = ´N´)
with connect_mode = ´Y´, or

– you have set state = ´N´ together with connect_mode = ´Y´, or
– you have specified connect_mode and quiet_connect together, or
– the value specified in bcam_trace is not permissible.

KC_SC_NOT_EXISTENT
The specified object does not exist.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED
Possible causes:

– The combination of the specified modifications is not permitted, i.e. both connect_mode and
quiet_connect were set.

– There is no connection to the partner application and it is not possible to establish one
because the LPAP partner of the partner application is disabled. The LPAP partner must
first be enabled in a separate transaction.

KC_SC_INVALID_CON
The connection specified by (con, pronam, bcamappl) is invalid. It does not exist or is intended
for another partner application (LPAP partner).

KC_SC_CONNECTED
A connection to be established was specified in (con, pronam, bcamappl). However, the session
already has another connection.

Maincode = KC_MC_NOT_EXISTENT
The specified object does not exist.

Subcode:

KC_SC_NO_INFO
No LU6.1 connection was created or generated.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KDCADMI program interface KC_MODIFY_OBJECT: return codes

Administering Applications 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Return codes for obj_type=KC_LTERM:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_POOL_LTERM
The LTERM partner specified in the identification area belongs to an LTERM pool. The
requested modification is not permissible for this LTERM partner.

KC_SC_NO_PTERM
connect_mode = ´Y´ was set:
UTM cannot establish a connection because no client/printer is currently assigned to the
LTERM partner or the associated client/printer is disabled.

KC_SC_NOT_ALLOWED
Possible causes:

– an attempt was made to define a start format for an LTERM partner with usage_type=´O´.
– format_attr=´E´ (#format) was specified, but no sign-on service is defined.
– an inadmissible value was specified in bcam_trace.
– The replacement of two master LTERMs was rejected because one of the LTERMs is not

a master LTERM or the same master was specified for both. The replacement of two master
LTERMs is not permitted in a UTM cluster application.

KC_SC_NO_FORMAT_ALLOWED
Values specified in format_name and format_attr (modifying the start format) are not permitted as
no formatting system has been generated for the application.

KC_SC_INVALID_ALIAS
The primary LTERM is itself an alias LTERM.

KC_SC_INVALID_ALIAS_CTERM
The primary LTERM is a CTERM.

KC_SC_INVALID_ALIAS_BUNDLE
The primary LTERM is a slave LTERM in an LTERM bundle.

KC_SC_ALIAS_STATE_ILL
The primary LTERM has been generated with RESTART=NO or QAMSG=NO.

KC_MODIFY_OBJECT: return codes KDCADMI program interface

400 Administering Applications

Return codes for obj_type=KC_MUX:

Return codes for obj_type=KC_OSI_CON:

Return codes for obj_type=KC_OSI_LPAP:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED
state=´N´: There is a connection to the multiplex connection. It therefore cannot be
disabled.
connect_mode = ´Y´: There is already a connection to the multiplex connection.

KC_SC_NOT_ALLOWED
You have tried to establish a connection to a disabled multiplex connection, or the value
specified in bcam_trace is not permitted.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_CONNECTED
There is a connection to the partner application. It is only possible to switch to a replacement
connection if no active association to the partner application currently exists.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED
Specified value state = ́ N´: a connection to the partner application exists. The OSI-LPAP partner
of the partner application therefore cannot be disabled. All connections to the partner application
must be shut down before the disable operation.

KC_SC_NOT_ALLOWED
Possible causes:

– you have attempted to establish a connection (connect_number>0) to a disabled partner
application (OSI-LPAP partner) or to a partner application for which no connection is set to
active (see kc_osi_con_str field active)

– you have set state = ´N´ together with connect_number, or
– you have set state = ´N´ together with quiet_connect, or
– you have set quiet_connect together with connect_number.

B

B
B
B

B
B
B
B

B
B
B

KDCADMI program interface KC_MODIFY_OBJECT: return codes

Administering Applications 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Return codes for obj_type=KC_PTERM:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED
Possible causes:

– an attempt was made to establish a connection to a disabled client/printer, or
– connect_mode = ´R´ is not permitted for the client specified in the identification area, or
– the fields lterm and connect_mode were specified together.
– state = ´N´ and auto_connect = ´Y´ were specified together.

KC_SC_POOL_PTERM
The requested modification is not permitted for clients connected via an LTERM pool.

 KC_SC_UPIC_PTERM
The requested modification is not permitted for clients with ptype= ´UPIC-R´ or ´UPIC-L´ (on
Unix, Linux and Windows systems).

KC_SC_TTY_PTERM
The requested modification is not permitted for a terminal (ptype=´TTY´).

KC_SC_MUX_DIS_PENDING
The specified client is connected to the application via a multiplex connection and the session
is in the state DISCONNECT PENDING.
An attempt was made either to establish or shut down the session (connect_mode=´Y´ or ´N‘) or
to release the session explicitly while the timer was still running (connect_mode=´R´).

KC_SC_LTERM_NOT_EXISTENT
The client/printer assignment to the LTERM partner cannot be modified as the LTERM partner
specified in lterm does not exist.

KC_SC_LTERM_DEL
The client/printer assignment to the LTERM partner cannot be modified as the LTERM partner
specified in lterm has been deleted.

KC_SC_LTERM_NOT_ALLOWED
The client/printer assignment to the LTERM partner cannot be modified.
Possible causes:

– The LTERM partner specified in lterm belongs to an LTERM pool.
– The specified LTERM partner has been configured for connection to a client with

ptype=´UPIC-...´ and cannot be assigned to any other client.
– KDCMSGLT was specified in lterm. KDCMSGLT is generated internally by UTM for the

event service MSGTAC. It cannot be assigned to any client/printer.

X/W
X/W

B
B
B
B
B

KC_MODIFY_OBJECT: return codes KDCADMI program interface

402 Administering Applications

KC_SC_CONNECTED
The client/printer assignment to the LTERM partner cannot be modified.
Possible causes:

– The client/printer which is to be assigned to the LTERM partner is currently connected to
the application.

– A client which is connected to the application is currently assigned to the LTERM partner.
The old assignment of the LTERM partner cannot be cancelled as one of the two clients is
entered as a dialog partner (usage_type=´D´).

KC_SC_OUT_PTERM_DIAL_LTERM
The name of an output medium (usage_type=´O´) was stated in the identification area, but the
LTERM partner specified in lterm is configured as a dialog partner.
An output medium cannot be assigned to a dialog LTERM partner.

KC_SC_DIAL_PTERM_TO_BUNDLE
The new client/printer assignment to the LTERM partner cannot be created.
The name of a dialog partner (usage_type=´D´) was passed in the identification area, but the
LTERM partner specified in lterm belongs to a printer pool.

KC_SC_PTYPE_APPLI
The new client/printer assignment to the LTERM partner cannot be created.
The name of a client having ptype=´APPLI´ or ’SOCKET’ was specified in the identification area.
The LTERM partner specified in lterm is not suitable for this client because no user ID has been
generated for the LTERM partner.

KC_SC_PTERM_WITHOUT_CID
The new client/printer assignment to the LTERM partner cannot be created.
The specified LTERM partner is assigned to a printer control LTERM, but no printer ID (CID) has
been defined for the specified printer.

KC_SC_CID_AMBIGUOUS
The new client/printer assignment to the LTERM partner cannot be created.
The specified LTERM partner is assigned to a printer control LTERM, but the printer ID defined
for the specified printer is not unambiguous at the level of the printer control LTERM.

KC_SC_NO_LTERM
connect_mode = ́ Y´ is not permitted: no LTERM partner is assigned to the specified client/printer,
so no connection can be established.

KC_SC_INVALID_PROTOCOL_USAGE
PTYPE and protocol cannot be combined.

KC_SC_BUNDLE_NOT_ALLOWED
It is not possible to make the new assignment between the client and the LTERM partner
because the LTERM partner belongs to an LTERM bundle.

KC_SC_GROUP_NOT_ALLOWED
It is not possible to make the new assignment between the client and the LTERM partner
because the LTERM partner belongs to an LTERM group.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KDCADMI program interface KC_MODIFY_OBJECT: return codes

Administering Applications 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Return codes for obj_type=KC_TAC:

KC_SC_NOT_ALLOWED_IN_CLUSTER
This function is not permitted in a UTM cluster application, e.g. KDCSWTCH or replacement of
two bundle masters

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED
Possible causes:

– An attempt was made to modify state and to reset statistics values at the same time.
– It is possible that an attempt was made to modify the lock_code and access_list parameters.

It is not permitted to modify access_list if lock_code is generated.
– It is not permitted to modify access_list in the case of the TACs KDCBADTC, KDCMSGTC

and KDCSGNTC.
– An attempt was made to disable KDCTAC.
– A TAC generated with the NEXT property should be disabled with state=’N’. This is not

permissible. Disabling it has no effect.
– In the case of a TAC that is not of the type ’Q’, an attempt was made to modify ’q_read_acl’

or ’q_write_acl’.
– An attempt was made to set dead_letter_q = 'Y' for an interactive or asynchronous TAC with

CALL=NEXT or for a KDCDLETQ or KDCMSGTC TAC.

KC_SC_INVALID_READ_ACL
The key set specified in q_read_acl does not exist.

KC_SC_INVALID_WRITE_ACL
The key set specified in q_write_acl does not exist.

KC_SC_INVALID_ACL
The key set specified in access_list does not exist.

KC_SC_READ_ACL_DEL
The key set was deleted.

KC_SC_WRITE_ACL_DEL
The key set was deleted.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_MODIFY_OBJECT: return codes KDCADMI program interface

404 Administering Applications

Return codes for obj_type=KC_TACCLASS:

Return codes for obj_type = KC_TPOOL:

There are no type-specific return codes for KC_TPOOL.

Return codes for obj_type=KC_USER:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED

– An invalid number of processes was specified in tasks or tasks_free.
– Both tasks and tasks_free were specified.

KC_SC_NOT_CHANGEABLE
tasks and tasks_free cannot be modified because the application was generated with priority
control (TAC-PRIORITIES).

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_TOO_SIMPLE
The requested password change was not performed as the new password is not of the
complexity level (protect_pw_compl) defined for the user ID.

KC_SC_OLD_PW
The requested password change was not performed as the old password was specified in
password^16 and a limited period of validity is defined in the user ID for the password (protect_p-
w_time≠´0´). The old password cannot be specified as the new password for this user ID.

KC_SC_NOT_ALLOWED
The requested modification was not performed. Possible causes:

– state=´N´: you have attempted to disable a user ID that has administration privileges
(permit=´A´ or ´B´).

– you have attempted to modify a user ID which is assigned to a client having ptype=´APPLI´,
’SOCKET’ or ´UPIC-...´.

– you have attempted to modify the user ID KDCMSGUS which UTM has generated inter-
nally for the event exit MSGTAC.

– you have specified format_attr=´E´ (#format), but no sign-on service has been defined.
– It is only permitted to enable or disable the BCAM trace if the BTRACE module is set to

SELECT mode.

KC_SC_NO_FORMAT_ALLOWED
It is not permitted to specify information in format_name and format_attr (modifying the start
format), as no formatting system has been generated for the application.

KDCADMI program interface KC_MODIFY_OBJECT: return codes

Administering Applications 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Return codes for obj_type=KC_CLUSTER_PAR:

KC_SC_INVALID_READ_ACL
The key set specified in q_read_acl does not exist.

KC_SC_INVALID_WRITE_ACL
The key set specified in q_write_acl does not exist.

KC_SC_READ_ACL_DEL
The referenced key set was deleted.

KC_SC_WRITE_ACL_DEL
The specified key set was deleted.

KC_SC_KSET_DEL
The referenced key set was deleted.

KC_SC_KSET_NOT_EXISTENT
The specified key set does not exist.

KC_SC_INVALID_PRINCIPAL
Error on sign-on with principal.

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CCFG_NO_CLUSTER_APPLI
The application is not a UTM cluster application.

KC_SC_CCFG_RT_CODE_NOT_OK
Modification was not performed.
Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_LOCK_ERROR
Cluster configuration file is locked.

KC_SC_CCFG_FILE_WRITE_ERROR
Error writing the cluster configuration file.

KC_SC_CCFG_FILE_READ_ERROR
Error reading the cluster configuration file.

KC_SC_INVALID_BUFFER_LTH
Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_NOT_OPEN
Internal UTM error.
Please contact system support.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

B
B

KC_MODIFY_OBJECT: return codes KDCADMI program interface

406 Administering Applications

Return codes for obj_type=KC_DIAG_AND_ACCOUNT:

Return codes for obj_type=KC_MAX_PAR:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_AVAILABLE
The event monitor KDCMON cannot be activated. It is not available.

KC_SC_KDCMON_ERROR
Possible causes:

– The KDCMON sub system was not started
– The KDCMON event monitor was not started or has been terminated in the meantime.

KC_SC_NOT_GEN
The OSI trace is to be activated although no objects have been generated for distributed
processing through OSI TP.

KC_SC_SYSPROT_SWITCH_RUNNING
A log file is currently in the process of being switched over to the next log file. It is therefore not
possible to execute a new switchover command.

KC_SC_TRCFILE_HANDLING_RUNNING
Trace files are currently being opened or closed, with the result that it is not possible to modify
the trace settings at present.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_GEN
Data supply to openSM2 was not generated, i.e. it cannot be activated or deactivated.

KC_SC_NOT_AVAILABLE
openSM2 is currently unavailable.

KC_SC_NOT_ALLOWED
An invalid destination was specified when modifying destadm (recipient of results from KDCADM
asynchronous TACs). Possible causes:

– an LTERM partner which has been disabled or deleted was specified in destadm.
– a transaction code which has been disabled or deleted was specified in destadm.
– a dialog TAC was specified in destadm, but only an asynchronous TAC or an LTERM partner

may be specified as the recipient.
– an LTERM partner was specified in destadm to which a client of the type UPIC_... is

assigned.

KC_SC_NOT_EXISTENT
Invalid information in destadm. The specified name belongs neither to an LTERM partner nor to
a transaction code.

B
B

B
B

KDCADMI program interface KC_MODIFY_OBJECT: return codes

Administering Applications 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Return codes for obj_type=KC_TASKS_PAR:

Return codes for obj_type=KC_TIMER_PAR:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED

– The number of processes specified in mod_max_tasks, mod_max_asyntasks or mod_max-
_tasks_in_pgwt is greater than the value generated in the KDCDEF statement MAX.

– mod_max_tasks_in_pgwt=´0´ is not allowed, since the application allows blocking call, i.e.
transaction codes or TAC classes with pgwt=´Y´ were generated.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NO_UTMD
An attempt was made to set a timer for distributed processing through LU6.1 or OSI TP,
although no objects have been generated for distributed processing.

KC_ONLINE_IMPORT KDCADMI program interface

408 Administering Applications

11.2.10 KC_ONLINE_IMPORT - Import application data online

In a UTM cluster application, following the normal termination of a node application, another
running node application can import messages to LTERMs, (OSI) LPAPs, asynchronous
TACs, TAC queues and open asynchronous services from the terminated node application
provided that its KDCFILE comes from the same generation run. The imported data is
deleted in the terminated node application. Prior to import, a check is performed to
determine whether an online import is running. If it is, the new import is rejected. Online
import is only possible in UTM-S applications. Open asynchronous services are not
imported if the service contains database transactions with SESAM/SQL.

Execution / period of validity / transaction management / clusters

KC_ONLINE_IMPORT initiates the online import of the application data, i.e. an online
import job is generated. When control returns to the program unit, the online import has not
yet been performed. Online imports are not subject to transaction management. It cannot
be rolled back by a subsequent RSET call in the same transaction. Online import is
performed by a process in the application.

When the job has been processed, UTM issues a message informing you of the success
or failure of the online import. If the import was successful but it was not possible to import
all the data due to a temporary resource bottleneck, another online import can be run to
import the outstanding data into another node application or, once the bottleneck has been
cleared, into the same node application.

This function is only permitted in cluster operation. The online import operation is performed
in the node application in which the call is made.

KDCADMI program interface KC_ONLINE_IMPORT

Administering Applications 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

1. With subopcode1=KC_ALL, you specify that all messages, i.e. messages to (OSI)
LPAPs, asynchronous TACs, TAC queues and open asynchronous services are to be
imported.

2. In data_lth, you enter the length of the data structure in the data area.

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_ONLINE_IMPORT

1. subopcode1 KC_ALL

id_lth 0

select_lth 0

2. data_lth Length of the data structure

Identification area

—

Selection area

—

Data area

3. Data structure

Data returned by UTM

Parameter area

Field name Content

4. retcode Return codes

KC_ONLINE_IMPORT KDCADMI program interface

410 Administering Applications

3. Specify the data structure kc_online_import_str in the data area.

In kc_online_import_str, specify the number of the node from which the application data
is to be imported.

The data structure kc_online_import_str is defined as follows.

The field in the data structure has the following meaning:

import_node
Number of the node from which the application data is to be imported.

4. openUTM indicates the return code from the call in the retcode field. Alongside the return
codes listed in section “Return codes” on page 178, the following return codes may also
occur:

struct kc_online_import_str

char import_node[4];

Maincode = KC_MC_REJECTED
The call was rejected by openUTM.

Subcode:

KC_ONLINE_IMPORT_RUNNING
An attempt has been made to start an online import while an online import is already
running.

KC_SC_CCFG_INVALID_NODE_INDEX
The number of the node application from which the application data is to be imported is
invalid. The number is either the number of the local node application or a number that does
not belong to the UTM cluster application.

KC_SC_CCFG_INVALID_NODE_STATE
The node application from which the application data is to be imported has a status that is
not valid for online imports. An invalid status means that the node application

– has either never been started, or
– has been terminated abnormally, or
– is not running

Maincode = KC_MC_NOT_EXISTENT
The number of the node application from which the import is to be performed lies outside
of the valid range of values from 1 to 32.

Subcode:

KC_SC_NO_INFO

KDCADMI program interface KC_PTC_TA

Administering Applications 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.11 KC_PTC_TA - Roll back transaction in PTC state

KC_PTC_TA rolls back a transaction that is in the state PTC (prepare to commit).

The transaction’s identification data consists of a triad of elements: the service index,
service number and transaction number. You can obtain this data by first issuing a
KC_GET_OBJECT call with operation code KC_PTC.

Execution / period of validity / transaction management / cluster

This call rolls back the local element of a distributed transaction.

The distributed transaction itself cannot be be rolled back using the administration capabil-
ities. Only the local element of such a transaction can be rolled back. This type of adminis-
trative rollback is a heuristic decision concerning the result of the transaction and may in
certain cases lead to inconsistencies in the distributed data stock if the distributed
transaction is committed by the Commit Coordinator.

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_PTC_TA

1. subopcode1 KC_ROLLBACK

2. id_lth 25

select_lth 0

data_lth 0

Identification area

3. Triad with the transaction’s identification data

Selection area

—

Data area

—

KC_PTC_TA KDCADMI program interface

412 Administering Applications

1. With subopcode1=KC_ROLLBACK, you specify that the transaction is to be rolled back.

2. You specify the length of the data structure kc_ptc_id_str in the id_lth field.

3. In the identification area, you specify the data structure kc_pct_id_str.

kc_ptc_id_str must be filled with the values returned by the call KC_GET_OBJECT with
operation code KC_PTC in the structure ptc_ident. ptc_ident is present in the data structure
kc_ptc_str, see page 537. The data structure kc_ptc_id_str is defined as follows.

vg_indx is the index of the service, vg_nr the number of the service and ta_nr_in_vg the
number of the transaction in the service.

4. openUTM returns the return code for the call in the retcode field. Alongside the return
codes listed in section “Return codes” on page 178, the following return codes may also
occur

Data returned by UTM

Parameter area

Field name Content

4. retcode Return codes

struct kc_ptc_id_str

char vg_indx[10];

char vg_nr[10];

char ta_nr_in_vg[5];

Maincode = KC_MC_REJECTED
The call was rejected by openUTM.

Subcode:

KC_SC_NO_MORE_PTC
The transaction is no longer in the PTC state.

KC_SC_END_TA_ALREADY_INITIATED
The termination of the transaction has already been initiated. There may be the following
reasons for this:

– The partner of the distributed transaction that determines the result of the transaction
(Commit Coordinator) has initiated the termination of the transaction

– The termination of the transaction has been initiated by the administration functions.

KC_SC_PARTNER_CONNECTED
The connection has been established to the partner of the distributed transaction that deter-
mines the result of the transaction (Commit Coordinator). This initiates termination of the
transaction.

KDCADMI program interface KC_SEND_MESSAGE

Administering Applications 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.12 KC_SEND_MESSAGE - Send message (BS2000 systems)

Using KC_SEND_MESSAGE, you can send a message to one or more or all active
terminals of a UTM application on a BS2000 system. The message text may be up to 74
characters in length and it is passed to UTM in the data area. UTM then sends the message
as UTM message K023 with the specified message as an insert. By default, the message
is output in the system line on the terminal. However, the message destination of message
K023 can also be changed. If the message destination PARTNER is selected for the UTM
message K023 (see the openUTM manual ”Messages, Debugging and Diagnostics”), you
can also send the message to one or more or all connected TS applications. The message
only goes to dialog partners (LTERM with USAGE=D).

Using KC_SEND_MESSAGE, you can:

● send a message to all terminals currently connected to the application. This also applies
to terminals connected to the application via an LTERM pool.

● send a message to all TS applications connected to the UTM application, provided the
message destination PARTNER is generated for K023.

● send a message to a certain terminal user or, provided the message destination
PARTNER is generated, to a specific TS application. In this case, you must specify in
the identification area the name of the LTERM partner via which the terminal is
connected to the application. The precondition for delivery of the message is that the
terminal must be connected to the application at the time the KC_SEND_MESSAGE
call is issued.

If you want to send a message to a certain user, you can ascertain the LTERM partner
through which the user is signed on to the application in the following manner:

First, using KC_GET_OBJECT, request information about the user ID under which the
user has signed on to the application (object type KC_USER).

UTM then returns the properties of the user ID in the data structure kc_user_str. If, at the
time of the request, the user is connected to the application, the field lterm_curr contains
the name of the LTERM partner through which the user is signed on. This is the name
which you pass in the identification area when sending the message with
KC_SEND_MESSAGE.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KC_SEND_MESSAGE KDCADMI program interface

414 Administering Applications

Execution / transaction management / cluster

A KC_SEND_MESSAGE call is not subject to transaction management. It cannot be rolled
back by an RSET in the same transaction.

If you do not specify a recipient in the identification area and the parameter area to
number=0, UTM identifies all currently active LTERM partners entered with usage_type=´D´
and sends them the message. The message will already have been sent when control is
returned to the program unit.

If you specify the name of an LTERM partner in the identification area and set the parameter
area to number=1, successful processing of the KC_SEND_MESSAGE call means that the
message has been sent to this LTERM partner. If the LTERM partner cannot currently be
reached, UTM returns an appropriate return code.

The following applies to UTM cluster applications:
The call is effective locally in the node, i.e. the transmission of a message to one, several
or all active UTM terminals of a UTM application on a BS2000 system is executed only in
the node application at which the call is performed.

 KDCSEND (page 789)

Data to be supplied

Function of the call Data to be entered in the

parameter area 1

1 The operation code KC_SEND_MESSAGE must always be specified in the parameter area.

identification
area

selection
area

data area

Send message to all active
LTERM partners

obj_number: 0 —— —— Message

Send message to one
LTERM partner

obj_number: 1 Name of
LTERM partner

—— Message

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B CB

B

B

BB
B

B
B

B
B

KDCADMI program interface KC_SEND_MESSAGE

Administering Applications 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_SEND_MESSAGE

1. obj_number 1 / 0

2. id_lth Length of object name / 0

select_lth 0

3. data_lth Length of message

Identification area

4. Object name / —

Selection area

—

Data area

5. Message

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, &data_area) or
KDCADMI (¶meter_area, NULL, NULL, &data_area)

Data returned by UTM

Parameter area

Field name Content

6. retcode Return codes

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

B

KC_SEND_MESSAGE KDCADMI program interface

416 Administering Applications

1. Specify in obj_number whether the message is to be sent to all currently active LTERM
partners or only to a specific LTERM partner.

– obj_number=0 means:
The message is to be sent to all active LTERM partners. The null pointer must be
passed as the address of the identification area.

– obj_number=1 means:
The message is to be sent to only one LTERM partner. The name of the LTERM
partner must be passed in the identification area.

2. The length of the identification area must be specified in id_lth, i.e.:

– for obj_number=0 you must specify id_lth=0.

– for obj_number=1 you must specify in id_lth the length of the object name which is
passed in the identification area.

3. Length of the message to be sent. You must pass the message in the data area. The
following must apply: 1 ≤ data_lth ≤ 74.

4. How you have to complete the identification area depends on the value set for
obj_number.

– for obj_number= 0 you must pass the null pointer in the KC_SEND_MESSAGE call.

– for obj_number= 1 you must specify in the identification area the union kc_id_area
with the name of the LTERM partner (field kc_name8), to which the message is to be
sent.

5. The message which UTM is to send is to be passed in the data area. The message must
be no more than 74 characters in length.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCADMI program interface KC_SEND_MESSAGE: return codes

Administering Applications 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

6. UTM writes the return codes for the call to the retcode field.
In addition to the return codes listed in section “Return codes” on page 178, the
following codes can also occur.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_EXISTENT
The name specified in the identification area is unknown, no LTERM partner with this name
exists.

KC_SC_NOT_ALLOWED
The operation is not allowed for the LTERM partner specified in the identification area or for
the client assigned to this LTERM partner.
Possible reasons for rejection are:

– there is currently no connection to the client; the LTERM partner is not active
– no client is currently assigned to the LTERM partner
– the specified LTERM partner is not a dialog partner, i.e. it has been configured with

usage_type=´O´
– the client assigned to the specified LTERM partner has been deleted from the configu-

ration.

KC_SC_DELETED
The specified LTERM partner no longer exists, it has been deleted from the application
configuration.

B
B

B

B
B
B

B
B
B

B
B
B
B

B
B
B
B
B
B

B
B
B

KC_SHUTDOWN KDCADMI program interface

418 Administering Applications

11.2.13 KC_SHUTDOWN - Terminate the application run

Using KC_SHUTDOWN you can terminate the current application run.

In UTM cluster applications, you can specify whether the application run is to be terminated
at all nodes or only at the node at which the call is issued.

The following options are open to you:

● You can terminate the application run normally. UTM terminates the application run as
soon as all running dialog steps have terminated (KC_NORMAL).

● You can schedule the application to terminate after a specified period (KC_WARN).

● You can terminate the application run once all the UTM-D dialogs have been terminated
and all the UTM-D connections have been disconnected and at the latest, however,
after a specified period (KC_GRACEFUL).

● You can abort the application run, i.e. immediately terminate (KC_KILL).

See also the openUTM manual “Using UTM Applications” for more information on termi-
nating a UTM application run.

Please note the following when aborting the application:

Aborting the application (KC_KILL) cannot be handled as an asynchronous service: it is
only permitted as a dialog. A call containing subopcode1=KC_KILL in an asynchronous
service is rejected by UTM.

Please note the following when shutting down applications involving distributed processing:

You should preferably terminate applications with distributed processing with
KC_GRACEFUL, alternatively with KC_WARN. When doing this, you should specify a time
that is greater than the maximum period that a distributed transaction remains in the state
PTC (i.e. transaction status P). This reduces the probability of distributed transactions still
being in this state at the end of the application and of the application being terminated
abnormally with ENDPET.

The following generally applies:
An application involving distributed processing is not terminated normally if, at the time of
the abort operation, there are still services with transaction status P (’preliminary end of
transaction’) or if confirmations have not yet been received for asynchronous messages to
a partner server. UTM then outputs UTM message K060 stating ENDPET as the cause of
the abort. No dumps are generated.

KDCADMI program interface KC_SHUTDOWN

Administering Applications 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Execution / period of validity / transaction management / cluster

The KC_SHUTDOWN call is not subject to transaction management. It cannot be rolled
back by an RSET call.

Aborting an application run (KC_KILL) takes immediate effect, there is no return to the
program unit.

If the application is to be terminated (KC_NORMAL, KC_WARN and KC_GRACEFUL), the
call originates a job, i.e. actions leading to shutdown are initiated.

The shutdown sequence, i.e. how and when UTM terminates the application run is deter-
mined by the value specified for subopcode1 in the parameter area. The shutdown sequence
is described in section 1 on page 422.

The following applies in UTM cluster applications:
The effect of the call may be either global to the cluster or local to the node, i.e. the current
application run may be terminated at all nodes or only at the node at which the call was
issued.

 KDCSHUT (page 790)C

KC_SHUTDOWN KDCADMI program interface

420 Administering Applications

Data to be supplied

Function of the call Data to be entered in the

parameter area1

1 The operation code KC_SHUTDOWN must always be specified in the parameter area.

identifi-
cation area

selection
area

data area

Abort application run
immediately
(only as dialog)

subopcode1:
KC_KILL

—— —— ——
or

kc_shutdown_str

Terminate application run
normally

subopcode1:
KC_NORMAL

—— —— ——
or

kc_shutdown_str

Terminate application run
normally on expiry of a
timer

openUTM on a BS2000
system outputs a standard
UTM message to all active
users)

subopcode1:
KC_WARN

—— —— kc_shutdown_str

Terminate application run
normally after expiration of
a message and send a
UTM message to all active
users

subopcode1:
KC_WARN,
subopcode2:
KC_USER_MSG

—— —— kc_shutdown_str

Terminate the application
run normally after all
UTM-D connections have
been cleared, and at the
latest after the timer has
expired.

subopcode1:
KC_GRACEFUL

—— —— kc_shutdown_str

B
B
B
B

B
B
B
B
B

KDCADMI program interface KC_SHUTDOWN

Administering Applications 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_SHUTDOWN

1. subopcode1 KC_GRACEFUL / KC_KILL / KC_NORMAL /
KC_WARN

2. subopcode2 KC_USER_MSG / —

id_lth 0

select_lth 0

3. data_lth Length of data in data area / 0

Identification area

—

Selection area

—

Data area

4. Data structure kc_shutdown_str / —

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area) or
KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Content

5. retcode Return codes

KC_SHUTDOWN KDCADMI program interface

422 Administering Applications

1. Specify in subopcode1 how UTM is to terminate the application. You can choose from the
following options:

KC_GRACEFUL
UTM prepares for the shutdown. The application is terminated as soon as
all UTM-D dialogs have terminated and all UTM D connections have been
disconnected or, at the latest, when the specified timer has expired. You
must pass the value of the timer in the data area.

The application is always terminated after the specified timer has expired.
If there are no UTM-D connections, the application is immediately termi-
nated normally.

The following applies after the KC_GRACEFUL call has been processed:

– It is only possible for users with administration authorization to sign on.
Signon attempts from other users will be rejected.

– It is only possible to call transaction codes for administration programs
and the UTM user commands other than KDCOUT. No other services
will be started by UTM.

– All active connections to LPAP and OSI-LPAP partners are set to
QUIET.

KC_KILL The application run is aborted, i.e. it is terminated immediately. Open
services are no longer terminated. A UTM dump is created for all processes
stating REASON=’ASIS99’.

KC_NORMAL
The application run is terminated normally.
Shutdown is initiated immediately. The following applies after the
KC_SHUTDOWN call:

– Users/clients can no longer sign on to the application.

– No further jobs are accepted from partner servers. Users/clients which
are already signed on cannot start any new services.

– New dialog inputs are no longer processed. If the new dialog input is
part of a multi-step transaction, the multi-step transaction is rolled back
to the last synchronization point.

– All logical connections to clients, printers and partner applications are
shut down.

Open services can be further processed after the next application start.

KDCADMI program interface KC_SHUTDOWN

Administering Applications 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

KC_WARN
UTM prepares for shutdown. The application is terminated once the
specified timer has expired. You must pass the timer value in the data area.
The following applies once the KC_SHUTDOWN call has been processed:

– Only users having administration privileges can sign on. Sign-on
attempts by other users are rejected

– Only administration program transaction codes and UTM user
commands other than KDCOUT can still be called. UTM will no longer
start any other services.

– All active connections to LPAP and OSI-LPAP partners are set to
QUIET.

2. subopcode2 is only relevant if it specifies subopcode1=KC_WARN. In any other case,
nothing may be specified in subopcode2.

Specify subopcode2= KC_USER_MSG if UTM is to send a message to all currently
active users in preparation for shutdown. You must pass the message which UTM is to
send in the data area.

The message is accepted in UTM applications on Unix, Linux and Windows systems,
but no warning messages are output.

If you do not specify subopcode2 with KC_WARN on BS2000, all active users are
informed by a standard UTM message of the forthcoming shutdown and the time
remaining until shutdown.

3. Specify in the data_lth field, the length of the data area which you are passing to UTM.

– for subopcode1=KC_KILL, KC_NORMAL:
No data is passed to/from UTM in the data area (data_lth=´0´), or the length of the
data structure kc_shutdown_str which you pass in the data area.

– for subopcode1= KC_GRACEFUL, KC_WARN:
Specify in the data_lth field the length of the data structure kc_shutdown_str which
you are passing to UTM in the data area.

4. For subopcode1=KC_WARN and subopcode1=KC_GRACEFUL, you must pass the data
structure kc_shutdown_str to UTM in the data area. kc_shutdown_str must contain the size
of the timer and, if subopcode2= KC_USER_MSG, the message to be sent as a warning
to all terminal users.

In the case of standalone UTM applications, values only need to be entered for
KC_WARN and KC_GRACEFUL in the data area. The field scope in kc_shutdown_str is
not evaluated.

X/W

X/W

B

B

B

KC_SHUTDOWN KDCADMI program interface

424 Administering Applications

The following applies in UTM cluster applications:
For each subopcode1: In the data structure kc_shutdown_str, you can use the scope field
to control whether only the local node application is to be terminated or whether you
want to terminate the entire UTM cluster application, i.e. all the node applications. If you
want to initiate a global shutdown of the UTM cluster application, you must enter
scope=´G´ in the data structure kc_shutdown_str . If you do not specify any data structure
in the cluster then a local shutdown is performed.

The data structure kc_shutdown_str has the following structure:

time_min Specify in time_min the time in minutes after which UTM is to terminate the
application run normally.

You should specify a time that is greater than the maximum period that a
distributed transaction remains in the state PTC (i.e. transaction status P).
In job receiver services, this is the time generated with MAX PTCTIME and
in LU6.1 job submitter services, it is the generated time time2 of the
WAITTIME operand in the employed LTAC.

Minimum value: ´1´
Maximum value: ´255´

The entry time_min=´0´ is rejected by UTM. If the application is to be termi-
nated normally without any delay, you must specify subop-
code1=KC_NORMAL.

Features specific to UTM applications on BS2000 systems:

time_min is always output to active terminals together with the shutdown
warning.

In large UTM applications on BS2000 systems (configurations with many
clients), UTM requires a certain amount of time to output the shutdown
notice. The selected value of time_min should thus not be too small.
In addition, you should define a sufficiently large value for cpu_time_msec
(see kc_tac_str on page 556) for the transaction code by means of which the
program unit is started with this KC_SHUTDOWN call. cpu_time_msec
specifies the maximum CPU time which the program unit run may take up.
If the time selected is too short, the shutdown may be aborted.

struct kc_shutdown_str

char time_min[3];

char user_message[74];

char scope;

B

B

B

B

B

B

B

B

B

B

B

KDCADMI program interface KC_SHUTDOWN

Administering Applications 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

user_message
Only relevant for subopcode2=KC_USER_MESSAGE. If no subopcode2 was
specified, this area is ignored.

Using user_message you can pass your own message which UTM is to send
to all terminal users as a warning before shutdown. Maximum message
length is 74 characters.

openUTM on BS2000 systems:
If you do not pass your own warning message in user_message, UTM outputs
UTM message K023 with the following inserts to all terminal users currently
connected to the application:

´hour´:´minutes´:´seconds´
APPLICATION ´name´ WILL BE TERMINATED IN ´minutes´ MINUTES

openUTM on Unix, Linux and Windows systems:
No warning messages are output on Unix, Linux and Windows systems.

scope Determines whether the local node application is terminated or the entire
UTM cluster application, i.e. all the node applications. scope is only
evaluated for UTM cluster applications.

´L´ Only the local node application is terminated.

´G´ All the node applications in the cluster and therefore also the entire
UTM cluster application are terminated.

5. UTM writes the return codes for the call to the retcode field. In addition to the return
codes listed in section “Return codes” on page 178, the following codes may also occur:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED
subopcode1 = KC_KILL has been used in an asynchronous service.

KC_SC_NO_GLOB_CHANG_POSSIBLE
The generation of the node applications is not currently consistent. You should first shut
down the node applications with an old generation..

B

B

B

B

B

B

X/W

X/W

KC_SHUTDOWN KDCADMI program interface

426 Administering Applications

Main code = KC_MC_DATA_INVALID
A field in the data structure in the data area contains an invalid value.

Subcode:

KC_SC_INVALID_MOD
Only for subopcode1=KC_GRACEFUL and subopcode1=KC_WARN:
The application run was not terminated because the time specified in time_min is invalid.

Maincode = KC_MC_REJECTED_CURR
The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING
Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

Maincode = KC_MC_RECBUF_FULL
Only in UTM cluster applications:

Subcode:

KC_SC_NO_INFO
The buffer containing the restart information is full (see openUTM manual “Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF).

KDCADMI program interface KC_SPOOLOUT

Administering Applications 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.14 KC_SPOOLOUT - Establish connections to printers

Using KC_SPOOLOUT you can establish connections to printers. You can:

● establish connections to all printers for which there are print jobs in the associated
message queue and to which no connection yet exists.

● establish a connection to the printers which are assigned to a certain LTERM partner.
The name of the LTERM partner must be passed in the identification area.

Execution / transaction management / cluster

The KC_SPOOLOUT call is not subject to transaction management. It cannot be rolled
back by an RSET call.

Connection setup is triggered by the call, i.e. a job is merely initiated; this fact, however,
gives no information as to whether and when a connection will actually be established. You
can subsequently ascertain the existence of the connection with an information query
(e.g. KC_GET_OBJECT with obj_type=KC_LTERM).

The following applies in UTM cluster applications:
The call applies locally to the node, i.e. the connections to the printers are only established
in the node application at which the call is issued.

Duration of a connection

Connections to printers for which no print level (PLEV) has been defined remain in
existence until they are shut down explicitly (see KC_MODIFY_OBJECT) or the application
run is terminated. Connections to printers for which a print level has been defined
(PLEV > 0) are shut down after printing.

 Using KDCAPPL SPOOLOUT=ON (page 688) you can establish connections to all
printers for which print jobs exist.

C

KC_SPOOLOUT KDCADMI program interface

428 Administering Applications

Data to be supplied

Function of the call Data to be entered in the

parameter
area 1

1 The operation code KC_SPOOLOUT must always be stated in the parameter area.

identification area selection
area

data
area

Establish a connection to a
printer or to the printers of a
printer pool

obj_number: 1 Name of the LTERM
partner assigned to
the printer or printer
pool

—— ——

Establish connections to all
currently unconnected printers
for which there are print jobs

obj_number: 0 —— —— ——

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_SPOOLOUT

1. obj_number 1 / 0

2. id_lth Length of object name in identification area / 0

select_lth 0

data_lth 0

Identification area

3. Object name / —

Selection area

—

Data area

—

KDCADMI program interface KC_SPOOLOUT

Administering Applications 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

1. The values specified in obj_number have the following meanings:

– obj_number = 0:
UTM is to establish a connection to all printers to which connection currently exists
and for which there are print jobs.

– obj_number = 1:
UTM is to establish a connection to the printer or printer pool assigned to a certain
LTERM partner. You must pass the name of the LTERM partner in the identification
area.

2. You must specify in id_lth the length of the object name which you are passing to UTM
in the identification area.

– for obj_number = 0 you should specify id_lth = 0.

– for obj_number = 1 you should specify in id_lth the length of the name which is
passed in the identification area.

3. The information you must specify in the identification area is determined by obj_number:

– obj_number = 0:
You may not specify any object name in the identification area. In the KDCADMI call
you must pass the null pointer.

– obj_number = 1:
In the identification area, pass the name of the LTERM partner assigned to the
printer or printer pool. To do this, assign the union kc_id_area through the identifi-
cation area and pass the name of the LTERM partner in the kc_name8 field.

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, NULL) or
KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Content

4. retcode Return codes

KC_SPOOLOUT: return codes KDCADMI program interface

430 Administering Applications

4. UTM writes the return codes for the call to the retcode field. In addition to the return
codes listed in section “Return codes” on page 178, the following codes may also occur:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_EXISTENT
The LTERM partner specified in the identification area does not exist.

KC_SC_NOT_ALLOWED
The operation is not allowed for the stated LTERM partner.
Possible reasons are:

– the LTERM partner is a dialog partner, i.e. it is not defined for printers (usage_type ≠ ́ O´)
– no printer/printer pool is currently assigned to the LTERM partner
– the LTERM partner or the associated printer is currently disabled
– the printer belonging to the LTERM partner has been deleted from the configuration
– there are no messages for the specified printer, i.e. the LTERM partner’s message

queue is empty.

KC_SC_DELETED
The specified LTERM partner has been deleted from the configuration.

KDCADMI program interface KC_SYSLOG

Administering Applications 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.15 KC_SYSLOG - Administer the system log file

Using KC_SYSLOG you can administer the system log file SYSLOG during operation. The
extent of the functions available to you to administer SYSLOG is determined by whether
SYSLOG was created as a simple file or as a file generation group (BS2000 systems) or
file generation directory (Unix, Linux and Windows systems). The abbreviation FGG (File
Generation Group) is used hereafter to refer to both file generation directories and file
generation groups.

See also the openUTM manual “Generating Applications” and the relevant openUTM
manual “Using UTM Applications” in relation to SYSLOG.

The following functions are available to you, irrespective of whether SYSLOG is maintained
as a simple file or as an FGG:

● Write the content of the UTM-internal message buffer to SYSLOG.

This function is useful if the SYSLOG file, which was created as a simple file, is to be
evaluated during operation. All UTM messages with the destination SYSLOG that have
been generated by UTM up to this time are then taken into account in the evaluation.

If SYSLOG was created as an FGG, the following applies:
When SYSLOG switches over to the next file generation, UTM automatically writes the
UTM message buffer to the “old” SYSLOG file generation before switching.

● Have information about the SYSLOG file displayed.

You can also use the following functions if SYSLOG was created as an FGG:

● Activate and deactivate automatic SYSLOG size control.

Automatic size control means that UTM automatically switches SYSLOG over to the
next file generation of the SYSLOG FGG as soon as the size of the current SYSLOG
file generation exceeds a certain control value.

● Modify the control value for size monitoring.

● Switch SYSLOG over to the next file generation of the SYSLOG FGG.

SYSLOG size control can even be activated if SYSLOG was not generated with KDCDEF.

KC_SYSLOG KDCADMI program interface

432 Administering Applications

Procedure when switching SYSLOG to another file generation

Before switching over to a new file generation, UTM writes the UTM messages still stored
in the internal UTM message buffer to the old file generation. All UTM messages generated
before switching over are thus written to the “old” SYSLOG. UTM ensures that UTM
messages generated after the switch-over time (successful execution of the KC_SYSLOG
call) are no longer written to the “old” SYSLOG file generation.

The following should be noted in UTM applications on BS2000 systems:

It is possible that the old file generation may not be available immediately after switch-over
(i.e. successful processing of the KC_SYSLOG call). The old file generation may still be
kept open for a relatively long period by UTM processes, e.g. because the processing of a
program unit which was started before the switchover has not yet been concluded and no
UTM message with the UTM message destination SYSLOG has yet been written from the
associated process.

Using subopcode1=KC_INFO, you can enquire which SYSLOG file generations have
already been closed by all UTM processes. These are all file generations that have a gener-
ation number of less than lowest_open_gen (see kc_syslog_str on page 439).

Period of validity / transaction management / cluster

The call is not subject to transaction management. It takes immediate effect, and the opera-
tions initiated by the call will already have been performed when control is returned to the
program unit. The call cannot be rolled back.

Modifications to the SYSLOG file size threshold remain in effect until the end of the appli-
cation run.

If the base of the SYSLOG FGG is within the valid range for the SYSLOG FGG (between
the first and last file generation), UTM initially logs in the base file generation in the next
application run. If the base is outside the valid range, UTM creates a new file generation for
logging as of the next start. The base is specified in the data structure kc_syslog_str in the
base_gen field.

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. the system log file SYSLOG is administered for
each node application. The size monitoring persists beyond the current UTM cluster appli-
cation run. Switching or writing of the buffer apply only to the current UTM cluster appli-
cation run, i.e. to all the node applications that are currently running.

 KDCSLOG (page 794)

B

B

B

B

B

B

B

B

B

B

C

KDCADMI program interface KC_SYSLOG

Administering Applications 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Data to be supplied

Function of the call Data to be entered in the

parameter area 1

1 The operation code KC_SYSLOG must always be specified in the parameter area.

identifi-
cation area

selection
area

data area

Provide information
about SYSLOG

subopcode1:
KC_INFO
data_lth:
Length of the data
area for the return
from UTM

—— —— ——
(when the call is made
you must pass the
pointer to a data area
for the returns from
UTM (kc_syslog_str).)

Set or modify the
control value for
automatic size control

subopcode1:
KC_CHANGE_SIZE
data_lth:
length of the data in
the data area

—— —— Data structure kc_sys-
log_str with the new
control value

Switch SYSLOG over
to the next file gener-
ation of the FGG

subopcode1:
KC_SWITCH
data_lth: 0

—— —— ——

Modify the control value
for automatic size
control and switch
SYSLOG over to the
next file generation of
the FGG

subopcode1:
KC_SWITCH_AND_

 CHANGE
data_lth:
Length of the data in
the data area

—— —— Data structure kc_sys-
log_str with the new
control value

Write UTM message
buffer to SYSLOG

subopcode1:
KC_WRITE_BUFFER
data_lth: 0

—— —— ——

KC_SYSLOG KDCADMI program interface

434 Administering Applications

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_SYSLOG

1. subopcode1 KC_INFO / KC_CHANGE_SIZE / KC_SWITCH
/ KC_SWITCH_AND_CHANGE /
KC_WRITE_BUFFER

id_lth 0

select_lth 0

2. data_lth Length of the data structure /
length of the data area / 0

Identification area

—

Selection area

—

Data area

3. Data structure kc_syslog_str / —

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area)
KDCADMI (¶meter_area, NULL, NULL, NULL)

KDCADMI program interface KC_SYSLOG

Administering Applications 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

1. You must specify the operation UTM is to perform in the subopcode1 field. You can
specify the following subopcodes:

KC_WRITE_BUFFER
All UTM messages output with a SYSLOG message destination and which
are still stored in the UTM-internal message buffer are immediately written
to the current SYSLOG file. If the buffer is empty, the call has no effect.

KC_INFO Specify if UTM is to return information about the SYSLOG file or SYSLOG
FGG. In this case, you must specify in the data_lth field the length of the data
area which you are making available to UTM to pass the information. For
the KDCADMI call you must pass the pointer to this data area.

You may specify the following values for subopcode1 only if SYSLOG was created as an
FGG.

KC_CHANGE_SIZE
Specify whether you want:

– to modify the control value for automatic size control. You must pass the
threshold in the data area.

– to activate automatic size control. To do this, pass a control value of > ‘0’
in the data area.

– to deactivate automatic size control. To do this, pass the control value
‘0’ in the data area.

KC_SWITCH
Specify whether UTM is to switch the SYSLOG file over to the next file
generation. If this file generation does not yet exist, UTM creates it.

KC_SWITCH_AND_CHANGE
Corresponds to a combination of the functions of KC_CHANGE_SIZE and
KC_SWITCH. Using KC_SWITCH_AND_CHANGE you can switch
SYSLOG over to the next file generation and simultaneously modify the

Data returned by UTM

Parameter area

Field name Content

4. retcode Return codes

5. data_lth_ret Length of the data supplied in the data area

Data area

6. Data structure kc_syslog_str

KC_SYSLOG KDCADMI program interface

436 Administering Applications

control value for automatic size control. UTM ensures in this case that either
both operations are performed successfully or neither is performed; i.e. only
if SYSLOG switching was successful does UTM set the new control value.

If UTM cannot switch over to the following file generation, the control value
is not modified. Size control is suspended and UTM ignores the new control
value. Size control can be reactivated only by a subsequent successful
switch-over attempt (repeated KC_SYSLOG call). If a new control value
was not specified, UTM carries over the “old” control value.

2. Specify the following in the data_lth field.

– for subopcode1=KC_INFO:
the length of the data area to which UTM is to return the information. When calling
KDCADMI, you must pass the pointer to the data area to UTM.

– for subopcode1= KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
the length of the data in the data area which you are passing to UTM. Pass the data
structure kc_syslog_str with the new size control value in the data area.

– for subopcode1= KC_SWITCH or KC_WRITE_BUFFER:
data_lth =0.
When calling KDCADMI you must specify the null pointer for &data_area.

3. The information which you must specify in the data area is determined by subopcode1:

– subopcode1=KC_WRITE_BUFFER or KC_SWITCH:
You must not pass any data to UTM in the data area.

– subopcode1=KC_INFO:
You may not pass any data to UTM in the data area. You must, however, make a
data area available to UTM to which it can return the requested information.

– subopcode1=KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
You must pass the data structure kc_syslog_str with the new control value to UTM in
the data area.
Specify the control value in the size_control_utmpages field. The value is specified as
the number of UTM pages. Permitted values are between 0 and 231-1 (specified as
char). However, UTM automatically replaces values of between ‘1’ and ‘99’ with
‘100’.
By using size_control_utmpages = ´0´ you deactivate automatic size control.
You must complete the remaining fields of kc_syslog_str with binary zeroes. kc_sys-
log_str is described on page 439.

KDCADMI program interface KC_SYSLOG: return codes

Administering Applications 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

4. UTM writes the return code for the call to the retcode field. In addition to the return codes
listed in section “Return codes” on page 178, the following codes may also occur:

Main code = KC_MC_OK
The call was processed without errors.

Subcodes:

KC_SC_MIN_SIZE
For subopcode1 = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
While the size control value was indeed modified, the value specified in size_control_utm-
pages was too low (< 100). The minimum control value of 100 UTM pages was thus set.

KC_SC_BUFFER_EMPTY
For subopcode1 = KC_WRITE_BUFFER:
The UTM message buffer is empty and is thus not written to SYSLOG.

KC_SC_SWITCHED
The UTM message buffer could not be written to SYSLOG until SYSLOG had been
switched to a new file generation.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NO_FGG
The requested operation cannot be performed as SYSLOG was not created as an FGG.

KC_SC_NO_INFO
The operation cannot be performed.

KC_SC_NO_GLOB_CHANG_POSSIBLE
Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applica-
tions is not consistent at present.

Main code = KC_MC_DATA_INVALID
A field in the data structure in the data area contains an invalid value.

Subcodes:

KC_SC_INVALID_MOD
For subopcode1 = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
The size control value specified in size_control_utmpages is invalid (number too high or no
number or not printable). The control value has thus not been modified.

KC_SC_DATA_MISSING
For subopcode1 = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
No size control value was specified in size_control_utmpages. The control value has thus not
been modified and (for KC_SWITCH_AND_CHANGE) SYSLOG has not been switched.

KC_SYSLOG: return codes KDCADMI program interface

438 Administering Applications

5. data_lth_ret contains the lengths of the data which UTM returns to the data area.

– for subopcode1=KC_INFO returns the information about SYSLOG in the data area
(kc_syslog_str). data_lth_ret ≠ 0 applies.

– If the length in data_lth_ret is less than the data area provided (data_lth), the content
of the data area is only defined in the length data_lth_ret.

– for subopcode1≠ KC_INFO data_lth_ret = 0 applies

KC_SC_DATA_NOT_NULL
For subopcode1 = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
A field that cannot be set in the data structure kc_syslog_str, was not supplied with binary
zeros.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO
The buffer containing the restart information is full (see openUTM manual “Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF).

Maincode = KC_MC_REJECTED_CURR
The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING
Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

Main code = KC_MC_DATA_INVALID
A field in the data structure in the data area contains an invalid value.

Subcodes:

KDCADMI program interface KC_SYSLOG: return codes

Administering Applications 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

6. Where subopcode1=KC_INFO, UTM returns the data structure kc_syslog_str with infor-
mation about SYSLOG to the application in the data area. The data structure has the
following fields:

The data structure fields have the following meanings:

file_name Name of the current SYSLOG file or file generation in which logging is
currently being performed.

curr_size_utmpages
Contains the current size of the SYSLOG file or file generation in which logging
is currently being performed. The size is specified as the number of UTM pages
occupied by the file or file generation.

curr_size_kbyte
Contains the current size of the SYSLOG file or file generation in which logging
is currently being performed. The size is specified in kbytes.

curr_size_percent
If automatic size control is activated, curr_size_percent contains the percentage
utilization of the SYSLOG file relative to the specified size control value. If size

struct kc_syslog_str

char file_name[54];

char curr_size_utmpages[10];

char curr_size_kbyte[10];

char curr_size_percent[3];

char fgg;

char last_switch_ok;

char size_control_engaged;

char size_control_suspended;

char size_control_utmpages[10];

char size_control_kbyte[10];

char start_gen[4];

char curr_gen[4];

char lowest_open_gen[4];

char base_gen[4];

char first_valid_gen[4];

char last_valid_gen[4];

KC_SYSLOG: return codes KDCADMI program interface

440 Administering Applications

control has been suspended by UTM or deactivated by means of administration
functions, utilization of the SYSLOG file can exceed 100%. In this case, UTM
returns blanks in curr_size_percent.

If size control has not been defined (either by generation or by means of admin-
istration functions), UTM fills curr_size_percent with blanks.

fgg Indicates whether SYSLOG was created as an FGG or as a simple file.

´Y´ SYSLOG was created as an FGG.

´N´ SYSLOG was created as a simple file.

All the following items of information are only relevant if SYSLOG was created as an
FGG. If SYSLOG was created as a simple file, the following fields will not contain any
relevant information.

last_switch_ok
States whether UTM’s last attempt to switch over to the next file generation
executed without errors. This relates only to switching attempts within the
current application run. The following values are possible:

´Y´ The last switch attempt executed without errors.

´N´ An error occurred during UTM’s last switch attempt.
UTM could not switch to the next file generation.

´ ´ (Blank)
No switch attempt has yet been made in the current application run or SYSLOG
was not created as an FGG.

size_control_engaged
States whether automatic size control is activated. The following values are
possible:

´Y´ Size control is activated

´N´ Size control is deactivated

size_control_suspended
States whether automatic size control has been suspended by UTM.

´Y´ The last attempt to switch over to another file generation failed. Size control
has, accordingly, been suspended. UTM no longer attempts to switch over to
the next file generation even if the defined size control value is exceeded.

Remedy:
You can explicitly attempt to switch the SYSLOG. If switching proceeds without
error, size control is reactivated by UTM.

´N´ Size control is not suspended.

KDCADMI program interface KC_SYSLOG: return codes

Administering Applications 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

size_control_utmpages
Contains the control value set for automatic size control. The control value is
output as the number of UTM pages.

size_control_utmpages = ´0´ means that size control is deactivated.

For subopcode1 = KC_CHANGE_SIZE and KC_SWITCH_AND_CHANGE, pass
the new size control value in size_control_utmpages.

Minimum value: ´0´
Maximum value: 231 -1 (specified as char)

If you specify size_control_utmpages = ´0´, automatic size control is deactivated.
UTM automatically replaces values between ‘1’ and ‘99’ with ‘100’.

size_control_kbyte
Contains the control value set for automatic size control. The control value is
output in kilobytes. For very large thresholds, the kilobyte value is not displayed
(e.g. for 231 kb).

size_control_kbyte = 0 means that the kilobyte value cannot be displayed
because it is too high or that high size control is deactivated.

start_gen Contains the number of the first SYSLOG file generation written by UTM in
the current application run.

curr_gen Number of the file generation in which UTM is currently logging data.

lowest_open_gen
Contains the number of the oldest SYSLOG file generation which is still kept
open by an application process.

base_gen Generation number of the defined base for the SYSLOG FGG.

first_valid_gen
Number of the first valid file generation of the SYSLOG FGG.

On BS2000 systems, this corresponds to the specification FIRST-GEN from the
SHOW-FILE-ATTRIBUTES command.

last_valid_gen
Generation number of the last valid file generation of the SYSLOG FGG.

On BS2000 systems, this corresponds to the specification LAST-GEN from the
SHOW-FILE-ATTRIBUTES command.

B

B

B

B

KC_UPDATE_IPADDR KDCADMI program interface

442 Administering Applications

11.2.16 KC_UPDATE_IPADDR - Update IP addresses

With KC_UPDATE_IPADDR, while the UTM application is running, you can update the IP
addresses stored in the application’s object tables using the IP addresses in the hostname
database. The host name database that applies to your system can be the hosts file (on
Unix, Linux and Windows systems), the DNS (domain name service) or on BS2000
systems the processor table and the socket host table.

The prerequisite for a comparison on BS2000 systems is that the SOCKET protocol type is
generated for the partner or partners.

UTM stores the IP addresses of the following communication partners in the UTM appli-
cation:

● communication partners that use the socket interface (transport protocol SOCKET) to
communicate with the UTM application. These communication partners are generated
as clients of the type SOCKET (partner type KC_PTERM).

● communication partners that use the transport protocol RFC1006 to communicate with
the application. These can be clients with type=´APPLI´ or ´UPIC-R´ (KC_PTERM),
LU6.1 partner applications (KC_CON) or OSI TP partner applications (KC_OSI_CON).

For further information on communication using the socket interface and the communi-
cation via RFC1006, see the openUTM manual “Generating Applications”.

Each time the application is started, UTM reads the IP addresses of the communication
partners from the name service and stores them in the object tables.

If the IP addresses of the relevant communication partners change while the application is
running, you can request a dynamic update with KC_UPDATE_IPADDR.

With KC_UPDATE_IPADDR you can carry out the following operations:

● update the IP address of a specific communication partner using the name service.

● update the IP address of all communication partners using the name service.

In order to check, you can query the IP addresses stored for the communication partners in
the UTM application using KC_GET_OBJECT. UTM returns the IP address in the field
ip_addr of the data structure of the object type (kc_con_str, kc_osi_con_str or kc_pterm_str).

B

B

X/W

X/W

X/W

KDCADMI program interface KC_UPDATE_IPADDR

Administering Applications 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

Execution / period of validity / transaction management / cluster

The job is not subject to transaction management. It takes immediate effect and the IP
addresses will already be updated on return to the program unit. The job cannot be undone.

The IP addresses updated with KC_UPDATE_IPADDR remain stored in the UTM appli-
cation until the application is terminated or until KC_UPDATE_IPADDR is next applied
within the current application run.

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. the IP address update is performed at all
currently running node applications.

Data to be supplied

Function of the call Data to be entered in the

parameter
area 1

1 In all cases the operation code KC_UPDATE_IPADDR must be supplied in the parameter area.

identification
area

selection
area

data area

Update IP addresses of a
communication partner

subopcode1:
KC_PARTNER
obj_type:
partner types
obj_number: 1

Union kc_id_area
with the name or
triad of names of
the partner

—— Pointer to the data
area in which UTM
returns the data
structure of the
object type with the
new IP address.

Update the IP addresses
of all communication
partners concerned with
the database for the host
names

subopcode1:
KC_ALL
obj_type:
KC_NO_TYPE
obj_number: 0

—— —— ——

KC_UPDATE_IPADDR KDCADMI program interface

444 Administering Applications

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_UPDATE_IPADDR

1. subopcode1 KC_PARTNER / KC_ALL

2. obj_type KC_CON / KC_OSI_CON / KC_PTERM /
KC_NO_TYPE

3. obj_number 1 / 0

4. id_lth Length of the partner name / 0

select_lth 0

5. data_lth Length of the data area / 0

Identification area

6. Partner name / —

Selection area

—

Data area

7. Data structure of the object type / —

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, &data_area) or
KDCADMI (¶meter_area, NULL, NULL, NULL)

KDCADMI program interface KC_UPDATE_IPADDR

Administering Applications 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

1. In the field subopcode1 you must specify:

KC_PARTNER
if UTM is to update the IP address of a specific communication partner.
Pass the name of the partner in the identification area.

KC_ALL if UTM is to update the IP addresses of all communication partners that
communicate with the UTM application using the appropriate protocol with
the data in the host name database.
The appropriate protocol types are:

– SOCKET
– RFC1006

2. In the field obj_type you must specify the object type of the communication partner.

With subopcode1=KC_ALL you must specify obj_type=KC_NO_TYPE.

With subopcode1=KC_PARTNER you can make any of the following entries:

KC_PTERM
for partner applications configured as clients of the following type
– SOCKET (BS2000 systems)
– APPLI, UPIC-R or SOCKET (Unix, Linux and Windows systems)

KC_CON for an LU6.1 partner application

KC_OSI_CON
for an OSI TP partner application

3. In obj_number you must specify the number of objects for which the IP address is to be
updated.

– for subopcode1=KC_PARTNER you must enter obj_number=1

– for subopcode1=KC_ALLyou must enter obj_number=0. UTM will then update the IP
address of all communication partners with the relevant configuration.

Data returned by UTM

Parameter area

Field name Content

8. retcode Return code

9. data_lth_ret Length of the date returned in the data area / 0

Data area

10. Data structure of the object type/ —

X/W

B

X/W

X/WX/W

X/W

X/W

KC_UPDATE_IPADDR KDCADMI program interface

446 Administering Applications

4. Which entries you must make in the field id_lth depends on the entry in the field subop-
code1:

– for subopcode1=KC_PARTNER:
you must enter the length of the data structure in id_lth which you pass to UTM in
the identification area.

– for subopcode1=KC_ALL:
you must set id_lth=0.

5. In the field data_lth you enter the length of the data area. You must make the following
entries:

– for subopcode1=KC_PARTNER:
length of the data structure of the object type in obj_type.

– for subopcode1=KC_ALL:
data_lth=0.

6. Which data you must supply to the identification area depends on subopcode1.

– for subopcode1=KC_PARTNER:
In the identification area, you must supply the union kc_id_area and the name of the
communication partner. The entry must identify the partner unambiguously.

for obj_type=KC_PTERM you must supply the name triad comprising client name
(PTERM), the processor name and the BCAMAPPL name in the kc_long_triple_str
structure of the union.

for obj_type=KC_CON you must supply the name triad comprising the application
name, the processor name and the BCAMAPPL name in the structure
kc_long_triple_str of the union.

for obj_type=KC_OSI_CON you must enter the name of the connection to the
OSI TP partner application in the kc_name8 field of the union.

– for subopcode1=KC_ALL you must pass the null pointer.

7. What values you enter in the data area depends on subopcode1:

– for subopcode1=KC_PARTNER specify the data structure of the object type
(kc_con_str, kc_osi_con_str or kc_pterm_str).

– for subopcode1=KC_ALL you must pass the null pointer.

X/W

X/W

X/W

X/W

X/W

KDCADMI program interface KC_UPDATE_IPADDR: return codes

Administering Applications 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

8. In the field retcode UTM supplies the return code of the call. Beside the return codes
listed in section “Return codes” on page 178, the follow return codes can also occur:

Maincode = KC_MC_REJECTED
UTM rejected the call.

Subcodes:

KC_SC_TPROT_NOT_ALLOWED
This transport protocol is not supported, i.e. no communication partners for communication
via SOCKET are generated in the application.
This return code can also occur when, although a communication partner is generated in
the application for communication via SOCKET (e.g. BCAMAPPL), KC_PARTNER is
specified with the object type KC_CON or KC_OSI_CON. On BS2000 systems it is only
possible to specify the object type KC_PTERM for KC_PARTNER.
This code is also returned if at least one communication partner and the associated
BCAMAPPL with T-PROT=SOCKET has not been generated in the application.

KC_SC_SOCKET_ERROR
It was not possible to update the IP address(es) due to an error in the communication
interface (socket call).

KC_SC_INVALID_NAME
The communication partner specified in the identification area does not exist or it does not
use the required transport protocol for communication with UTM.

KC_SC_NO_IPADDR_FOUND
subopcode1=KC_PARTNER:
No IP address was found for the specified communication partner in the name service.
subopcode1=KC_ALL:
UTM did not find an IP address for any of the communication partners of the specified object
type in the name service

KC_SC_AT_LEAST_ONE_OBJ_FAILED
The IP addresses have been compared using subopcode1=KC_ALL. However, an error
occurred with at least one object.
This may possibly be caused by errors described in the previous return codes.
You will find information on the partner(s) on which an error occurred in message K154,
which is by default output to SYSLOG and SYSOUT.

KC_SC_NO_GLOB_CHANG_POSSIBLE
Only in UTM cluster applications:
No global administration is possible since the generation of the node applications is not
consistent at present.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO
The buffer containing the restart information is full (see openUTM manual “Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF).

B
B
B
B
B
B
B
B
B

KC_UPDATE_IPADDR: return codes KDCADMI program interface

448 Administering Applications

9. data_lth_ret contains the length of the data returned by UTM in the data area.

– for subopcode1=KC_PARTNER: length of the data returned by UTM in the data area

– for subopcode1=KC_ALL: data_lth_ret=0

10. For subopcode1=KC_PARTNER UTM returns the data structure of the object type
(kc_con_str, kc_osi_con_str or kc_pterm_str) in the data area with the following infor-
mation:

– If the new IP address of the communication partner is an IPv4 address, it is located
in the ip_addr field of the data structure and has a length of 15. The ip_v field
contains V4.

– If the new IP address of the communication partner is an IPv6 address, it is located
in the ip_addr_v6 field of the data structure and has a length of 39. The ip_v field
contains V6.

– The other fields of the data structure do not contain any information.

Maincode = KC_MC_REJECTED_CURR
The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING
Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

KDCADMI program interface KC_USLOG

Administering Applications 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

11.2.17 KC_USLOG - Administer the user log file

The user log file is managed as the file generation directory USLOG. Using KC_USLOG,
you can close the current user log file (file generation of USLOG) and simultaneously open
a new user log file, which is the file generation with the next generation number. The closed
log file may then be put to any use you require.

Switching with dual USLOG

If the user log file of your application is operated with dual files (see the openUTM manual
“Generating Applications”), the KC_USLOG call acts on both files.

Period of validity of the change / cluster

Successful processing of the call means that UTM has successfully switched to the next file
generation. UTM writes all LPUT messages generated after the switch to the new log file.
After switching, UTM also writes the LPUT messages to the new USLOG file generation(s)
until you again switch to the following file generation.

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. the current user log file is closed and a new user
log file is opened at all currently running node applications.

 KDCLOG (page 754)

Data to be supplied

Function of the call Data to be entered in the

parameter area 1

1 The operation code KC_USLOG must be specified in the parameter area.

identifi-
cation area

selection
area

data area

Switch the user log file
over to the next file
generation of the FGG

subopcode1:
KC_SWITCH
data_lth: 0

—— —— ——

C

KC_USLOG KDCADMI program interface

450 Administering Applications

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_10

opcode KC_USLOG

subopcode1 KC_SWITCH

id_lth 0

select_lth 0

data_lth 0

Identification area

—

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Content

1. retcode Return codes

KDCADMI program interface LC_USLOG: return codes

Administering Applications 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
D

e
ce

m
be

r
20

1
7

 S
ta

nd
 0

8:
37

.3
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.5

_1
70

0
90

0\
04

_
A

dm
in

\e
n\

ut
m

_a
dm

_e
.v

11
\o

pc
od

e
2_

e.
do

c

1. UTM writes the return codes for the call to the retcode field. In addition to the return
codes listed in section “Return codes” on page 178, the following codes may also occur:

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_LWRT_IN_PROGRESS
USLOG cannot be switched to the next file generation at the present time as UTM is
currently writing data to the USLOG.

KC_SC_INVDEF_RUNNING
Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_FILE_ERROR
It is not possible to switch USLOG to the next file generation due to a DMS error.

KC_SC_NO_GLOB_CHANG_POSSIBLE
Only in UTM cluster applications:
No global administration is possible since the generation of the node applications is not
consistent at present.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO
The buffer containing the restart information is full (see openUTM manual “Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF).

Data structures KDCADMI program interface

452 Administering Applications

11.3 Data structures used to pass information

The data structures that you must place in the data area when calling KC_GET_OBJECT,
KC_MODIFY_OBJECT or KC_CREATE_OBJECT are described in this section.

● For KC_GET_OBJECT UTM returns the object properties, application parameters and
statistical data queried in the format of these data structures. The data structures are
defined in the kcadminc.h header file.

● The data are passed to UTM in this format when changing object properties and appli-
cation parameters (KC_MODIFY_OBJECT) and when dynamically adding new objects
to the configuration (KC_CREATE_OBJECT).

The following two sections describe the data structures and the meanings of their
constituent elements.
The section “Data structures for describing object properties” on page 454 describes the
structures used to pass information about objects of the application.
The section “Data structures used to describe the application parameters” on page 600
describes the structures used to pass application parameters.
There are other data structures that do not belong to any object or parameter type in
addition to those described in these sections. You will need these for certain calls to pass
data to UTM. These data structures are covered in the descriptions of the corresponding
operation codes.

Their names are created as follows: operationscode_str.

The following data structures belong to this group:

● You need kc_change_application_str when passing data for a program exchange with
KC_CHANGE_APPLICATION (page 183f).

● You need kc_create_statements_str to pass data to UTM when requesting an inverse
KDCDEF run with KC_CREATE_STATEMENTS (page 251).

● You need kc_encrypt_advanced_str or kc_encrypt_str to read the public key of an RSA key
pair with KC_ENCRYPT (page 272f).

● You need kc_shutdown_str to pass data to UTM when requesting a shutdown with
KC_SHUTDOWN (page 418f).

● You need kc_syslog_str when administering the SYSLOG file with KC_SYSLOG
(page 431f).

● You need kc_online_import_str to import application data online with KC_ON-
LINE_IMPORT.

● You need kc_lock_mgmt_str to release locks in UTM cluster applications using
KC_LOCK_MGMT.

KDCADMI program interface Data structures

Administering Applications 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

General information on the structure of the data structures

The fields in the data structures are not all of the data type "char”. The square brackets
following the name of the field contain the length of the field. If there are no square brackets,
then the field is 1 byte long.

The following points must be observed when exchanging data between UTM and an admin-
istration program unit:

● Names and keywords are left-justified and are padded to the right with blanks.
The data passed to UTM must be in uppercase letters, except for object names.

Example
The ptype (kc_pterm_str) field is 8 bytes long. ptype =APPLI is stored as follows:
´APPLIËËË´.

● Numeric data is stored right-justified by UTM and is returned with leading blanks. When
data is passed from an administration program to UTM, left- and right-justified data is
accepted. Right-justified data is accepted with leading blanks or zeros. Left-justified
data can also be terminated by the null byte (\0) or padded with blanks.

Example
The conn_users (kc_max_par_str) field is 10 bytes long. conn_users =155 is stored by UTM
as follows: ´ËËËËËËË155´.

● When passing data to UTM, fields in the data structures in which no values are specified
are to be supplied with binary zero.

Data structures KDCADMI program interface

454 Administering Applications

Description format

The data structures in kcadminc.h are presented in tables. The tables have the following
structure:

1. The first column (shaded gray) specifies which parameters, i.e. field contents, you can
modify with KC_MODIFY_OBJECT. If the "mod" column does not contain data, then
you cannot modify any parameters.

The abbreviations used in the first column have the following meanings:

– The parameter cannot be modified.

x(y) The value of the parameter can be modified.

The value in brackets (y) informs you of how long the modification is effective
and in which way. y can take on one of the following values: IR/GIR, ID/GID,
PR/GPR, PD/GPD, P/GP, A/GA. See page 317 for the meaning of the abbrevi-
ations.

2. The second column contains the fields of the data structure as they are defined in
kcadminc.h.

3. The third column is only used for presenting very large data structures. This column lists
the page where you can find the description corresponding to the data structure field.

The meanings of the contents of the fields are described at the end of each table.

11.3.1 Data structures for describing object properties

All data structures provided for passing object properties are described in this section. Each
individual object type is provided with a data structure of its own. You will find these data
structures in the kcadminc.h header file. The name of the data structure is created from the
name of the object type and the "_str" suffix. The descriptions are listed in alphabetically
ascending order according to the names of the data structures.

i Data structures can contain filler fields at the end. These are not listed here.

mod Data structure kc_..._str Page

1. 2. 3.

KDCADMI program interface kc_abstract_syntax_str

Administering Applications 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_abstract_syntax_str - Abstract syntax for communication
via OSI TP

The data structure kc_abstract_syntax_str is defined for object type KC_AB-
STRACT_SYNTAX. With KC_GET_OBJECT, UTM returns the local name, the object
identifier and the name of the allocated syntax for an abstract syntax.

In communication using OSI TP, the abstract syntax specifies how the user data is to be
encrypted before being transferred to the communication partner.
Both communication partners must use the same abstract syntax.

The fields in the data structure have the following meanings:

abstract_syntax_name
Contains the local name of the abstract syntax.

The local name must be specified in an MGET/MPUT or FGET/FPUT if data with
this abstract syntax is to be sent or received.

object_id
Contains the object identifier of the abstract syntax.

The object identifier consists of at least 2 and at most 10 components. These
components are positive integers between 0 and 67 108 863.

For each component of the object identifier, UTM returns a field element, i.e. the
number of field elements occupied in object_id corresponds to the number of
components. The other field elements contain binary zeros.

For further information on the object identifier see the openUTM manual “Gener-
ating Applications”.

transfer_syntax
Contains the local name of the transfer syntax allocated to the abstract syntax.

Data structure kc_abstract_syntax_str

char abstract_syntax_name [8];

char object_id[10][8];

char transfer_syntax[8];

kc_access_point_str KDCADMI program interface

456 Administering Applications

kc_access_point_str - OSI TP access point

The data structure kc_access_point_str is defined for the object type KC_ACCESS_POINT.
In the case of KC_GET_OBJECT, UTM returns the name and address of a local OSI TP
access point in kc_access_point_str.

A local OSI TP access point is statically generated using the KDCDEF control statement
ACCESS-POINT.

The fields in the data structure have the following meanings:

ap_name
Name of the OSI TP access point. The OSI TP access point is uniquely identified
within the local UTM application by this name.

Data structure kc_access_point_str

char ap_name[8];

char application_entity_qualifier[8];

union kc_selector presentation_selector;

union kc_selector session_selector;

char presentation_selector_type;

char presentation_selector_lth[2];

char presentation_selector_code;

char session_selector_type;

char session_selector_lth[2];

char session_selector_code;

char transport_selector[8];

char listener_id[5];

char listener_port[5];

char t_prot[6];

char tsel_format;

X/W

X/W

X/W

X/W

KDCADMI program interface kc_access_point_str

Administering Applications 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

application_entity_qualifier
The application entity qualifier (AEQ) of the access point. The AEQ is required for
addressing purposes when communicating with heterogeneous communication
partners. These communication partners address the access point via the appli-
cation process title (APT) of the local application and the AEQ of the access point.
The AEQ is a positive integer between 1 and 67108863 (= 226-1). You will find more
information on the AEQ in the openUTM manual “Generating Applications”.

application_entity_qualifier=´0´ means that no AEQ is defined for the access point.

presentation_selector
Contains the presentation selector for the address of the OSI TP access point.

presentation_selector is a field of type kc_selector:

UTM generally returns the presentation selector as character string (c) in a
machine-specific code format (presentation_selector_code=´S´). The string is a
maximum of 16 characters long. The presentation_selector field is padded with blanks
starting after the position specified in the presentation_selector_lth length field.

In special cases the presentation selector is returned as a hexadecimal string (x).
Each half byte is represented by a character. For example, the hexadecimal number
A2 is returned as the string ´A2 ´ (2 characters). If the presentation selector is a
hexadecimal number, then UTM returns up to 32 bytes.

You determine how to interpret the contents of the presentation_selector with the
presentation_selector_type field.

If the address of the access point does not contain a presentation selector, then the
presentation_selector field contains only blanks. In this case, presentation_selec-
tor_type = ´N´ and presentation_selector_lth = ´0´.

session_selector
Contains the session selector of the address of the OSI TP access point.

session_selector is a union of type kc_selector (see presentation_selector).

UTM generally returns the session selector as character string (c) in a machine-
specific code format (session_selector_code=´S´). The string is a maximum of
16 characters long. The session_selector field is padded with blanks starting after the
position specified in the session_selector_lth length field.

union kc_selector

char x[32];

char c[16];

kc_access_point_str KDCADMI program interface

458 Administering Applications

In special cases the session selector is returned as a hexadecimal string (x). Each
half byte is represented by a character. If the session selector is a hexadecimal
number, then UTM returns up to 32 bytes in session_selector.

You determine how to interpret the contents of the session_selector with the
session_selector_type field.

If the address of the access point does not contain a presentation selector, then the
session_selector field contains only blanks. In this case, session_selector_type = ´N´
and session_selector_lth = ´0´.

presentation_selector_type
Specifies if the address of the access point contains a presentation selector and
how to interpret the data returned in presentation_selector.

´N´ N stands for *NONE. The address of the access point does not contain a
presentation selector, presentation_selector contains only blanks and presen-
tation_selector_lth=´0´.

´C´ The data of the presentation selector in presentation_selector is to be inter-
preted as a character string. A maximum of the first 16 bytes of presenta-
tion_selector contain data.

´X´ The presentation selector in presentation_selector is a hexadecimal number.

presentation_selector_lth
Contains the length of the presentation selector (presentation_selector) in bytes. If
presentation_selector_lth =´0´, then the address of the OSI TP access point does not
contain any presentation components (presentation_selector contains blanks).
Otherwise, the value of presentation_selector_lth lies between ´1´ and ´16´.

If presentation_selector_type=´X´, then the string length specified in presentation_se-
lector is: 2 ∗ presentation_selector_lth bytes.

Example
The presentation selector of the access point is X´A2B019CE´. presentation_selector
then contains the string ´A2B019CE´, presentation_selector_type=´X´ and presenta-
tion_selector_lth =´ 4´ (four hexadecimal numbers).

presentation_selector_code
Specifies how the presentation selector in presentation_selector is encoded.

UTM returns ́ S´ if the presentation selector is returned as a character string (presen-
tation_selector_type = ´C´).
´S´ means: machine-specific code (default code: EBCDIC on BS2000 systems and
ASCII on Unix, Linux and Windows systems).

If presentation_selector_type = ´X´ or ´N´, then UTM returns a blank in the presenta-
tion_selector_code field.

KDCADMI program interface kc_access_point_str

Administering Applications 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

session_selector_type
Specifies if the address of the access point contains a session selector and how to
interpret the data returned in session_selector.

´N´ N stands for *NONE. The address of the access point does not contain a
session selector, session_selector contains only blanks and session_selec-
tor_lth=´0´.

´C´ The data of the session selector in session_selector is to be interpreted as a
character string. A maximum of the first 16 bytes of session_selector contain
data.

´X´ The session selector in session_selector is a hexadecimal number.

session_selector_lth
Contains the length of the session selector (session_selector) in bytes.

If session_selector_lth =´0´, then the address of the OSI TP access point does not
contain any session components (session_selector contains blanks).
Otherwise, the value of session_selector_lth lies between ´1´ and ´16´.

If session_selector_type=´X´, then the string length specified in session_selector is:
2 ∗ session_selector_lth bytes.

session_selector_code
Specifies how the session selector in session_selector is encoded.

UTM returns ´S´ if the session selector will be returned as a character string
(session_selector_type = ´C´).
´S´ means: machine-specific code (default code: EBCDIC on BS2000 systems and
ASCII on Unix, Linux and Windows systems).

If session_selector_type = ´X´ or ´N´, then UTM returns a blank in the session_selec-
tor_code field.

transport_selector
Contains the transport selector of the address of the OSI TP access point. trans-
port_selector always contains a valid value because each access point must be
assigned a transport selector in the KDCDEF generation. The transport selector is
always to be interpreted as a character string and consists of 1 to 8 printable
characters.

The value of transport_selector is a local BCAM application name on BS2000
systems.

B

B

kc_access_point_str KDCADMI program interface

460 Administering Applications

listener_id
Contains the listener ID of the access point. The listener ID is a positive integer
between 0 and 32767.

The listener ID determines which connections are to be administered by the same
net process. All connections established via access points and BCAMAPPL names
with the same listener ID will be administered by a single net process.

An exception to this are the BCAMAPPL names for communication via the socket
interface (SOCKET). They form a number set of their own, i.e. access points with
these BCAMAPPL names are not bundled in a single net process, even if the
listener ID is the same.

The following fields are only significant for access points of a UTM application under UNXI
systems and Windows systems. These fields contain the address components of the
access point in the local system. See the openUTM manual “Generating Applications” for
more information.

listener_port
Contains the port number of the access point for establishing TCP IP connections.
The port number specified is the port number defined in the KDCDEF generation.

If listener_port = ´0´, then no listener port number was generated for this access
point in the KDCDEF generation.

t_prot Contains the address format assigned to the access point during KDCDEF gener-
ation.

The address formats are specified as follows:

´R´ RFC1006, ISO transport protocol class 0 using TCP/IP and the conver-
gence protocol RFC1006.

If t_prot contains only blanks, then no address format was defined in the KDCDEF
generation.

tsel_format
Contains the format indicator of the T-selectors in the address of the access point.

´T´ TRANSDATA format

´E´ EBCDIC character format

´A´ ASCII character format

If tsel_format contains a blank, then no format indicator was defined in the KDCDEF
generation.

The meaning of the address format is described in the “PCMX documentation” on
page 19.

X/WX/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/W

X/W

X/W

KDCADMI program interface kc_application_context_str

Administering Applications 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_application_context_str - Application context for communication
via OSI TP

The data structure kc_application_context_str is defined for object type KC_APPLICATION_-
CONTEXT. In the case of KC_GET_OBJECT, UTM returns the local name and the
properties of an application context in this data structure.

The application context defined the rules governing data communication between the
communication partners. It specifies how the user data is coded for transfer (abstract
syntax) and in which form the data is transferred (transfer syntax).

The application context must be agreed with the partner. For further information on the
application context see the openUTM manual “Generating Applications”.

The fields in the data structure have the following meanings:

application_context_name
Contains the name generated locally for the application context.

object_id
Contains the object identifier of the application context.

The object identifier consists of at least 2 and at most 10 components. The
individual components are positive integers between 0 and 67108863.

For each component of the object identifier, UTM returns a field element, i.e. the
number of field elements occupied in object_id corresponds to the number of
components. The other field elements contain binary zeros.

For further information on the object identifier see the openUTM manual “Gener-
ating Applications”

abstract_syntax
Contains the local names of the abstract syntax allocated to the application context.
Up to 9 abstract syntaxes can be allocated to one application context. For each
abstract syntax, UTM returns a field element, i.e. the number of occupied field
elements in abstract_syntax corresponds to the number of abstract syntaxes
allocated to the application context. The remaining field elements are filled with
binary zeros.

Each application context is assigned at least one abstract syntax.

Data structure kc_application_context_str

char application_context_name [8];

char object_id[10][8];

char abstract_syntax[9][8];

kc_bcamappl_str KDCADMI program interface

462 Administering Applications

kc_bcamappl_str - Names and addresses of the local application

The data structure kc_bcamappl_str is defined for the object type KC_BCAMAPPL. In the
case of KC_GET_OBJECT, UTM returns the names and properties of the local application
in kc_bcamappl_str.

UTM informs about the properties of the local application that are assigned tithe application
name as defined in MAX APPLI or to the BCAMAPPL names of the application.
BCAMAPPL names are also the application names that are used for distributed processing
with LU6.1 and for connecting to clients; they are generated with the KDCDEF statement
BCAMAPPL. The names assigned to the application are used to establish connections
between the communication partners and the application. Each name of the application is
assigned its own address for establishing a connection.

The fields in the data structure have the following meanings:

bc_name
Contains the name of the local application whose properties UTM returns.

t_prot The meaning of the data returned in t_prot depends on the operating system under
which the UTM application is running.

BS2000 systems:

t_prot contains the transport protocol used for connections to partner applications
established using this application name.
Only the first field element of t_prot contains data. The rest contain blanks.

Data structure kc_bcamappl_str

char bc_name[8];

char t_prot[6];

char listener_id[5];

char listener_port[5];

char tsel_format;

char signon_tac[8];

X/W

X/W

B

B

B

B

KDCADMI program interface kc_bcamappl_str

Administering Applications 463

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The transport protocol is specified as follows:

´N´ NEA transport protocol

´I´ ISO transport protocol

´R´ TCP/IP together with the convergence protocol RFC1006
(TCP-RFC1006)

´T´ Native TCP/IP communication via the socket interface

Unix, Linux and Windows systems:

t_prot contains the address format assigned to the BCAMAPPL names during
KDCDEF generation.

The address formats are specified as follows:

´R´ RFC1006, ISO transport protocol class 0 using TCP/IP and the conver-
gence protocol RFC1006.

´T´ Native TCP/IP communication via the socket interface

listener_id
Contains the listener ID of the BCAMAPPL names. The listener ID is a positive
integer between 0 and 32767.

The listener ID determines which connections are to be administered together by
the same net process. All connections established via access points and
BCAMAPPL names with the same listener ID will be administered by a single net
process.

BCAMAPPL names with t_prot=´T´ (SOCKET) form a separate set of numbers, i.e.
no BCAMAPPL names for communication via socket interface are bundled with
BCAMAPPL names/access points for other transport protocols in a single net
process, even if the listener ID is the same.

listener_port
Only applies if t_prot=´T´ or ´R´ (´R´ only on Unix, Linux and Windows systems).

listener_port contains the port number at which openUTM waits for connection
requests from outside. The port number specified at KDCDEF generation is passed.
See also the openUTM manual “Generating Applications”.

In UTM applications on BS2000 systems, listener_port is only used if t_prot=´T´ is
generated. In all other cases listener_port=´0´.

If listener_port = ´0´, then no listener port number was generated.

B

BB

BB

BB

B

BB

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

X/W

kc_bcamappl_str KDCADMI program interface

464 Administering Applications

tsel_format
Contains the format indicator of the T-selector in the address.

´T´ TRANSDATA format

´E´ EBCDIC character format

´A´ ASCII character format

If tsel_format contains a blank, then no format indicator was defined in the KDCDEF
generation.

The meanings of the address formats are described in the “PCMX documentation”
on page 19.

signon_tac
signon_tac either contains the name of the transaction code of the sign-on service
assigned to this transport system access point or is empty (no sign-on service).

X/WX/W
X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/W

X/W

X/W

KDCADMI program interface kc_cluster_node_str

Administering Applications 465

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_cluster_node_str -
Node applications of a UTM cluster application

The data structure kc_cluster_node_str is defined for the parameter type KC_CLUS-
TER_NODE. In the case of KC_GET_OBJECT, openUTM uses kc_cluster_node_str to return
the properties of the individual node applications (instances) in a UTM cluster application.

mod1

1 Field content can be modified with KC_MODIFY_OBJECT , see page 315f

Data structure kc_cluster_node_str

– char node_indx[4];

x(GID) char hostname[8];

x(GID) struct kc_file_base filebase;

x(GID) char catid_a[4];

– char bcamappl[8];

– char port_nbr[8];

– struct kc_admi_date_time_model kdcdef_time;

– struct kc_admi_date_time_model startup_time;

– struct kc_admi_date_time_model shut_n_time;

– char start_type;

– char node_state;

– char monitored_node[4];

– char monitoring_node[4];

– struct kc_admi_date_time_model state_change_time;

x(GID) char virtual_host[8];

– node_name[8]

x(GID) char hostname_long[64];

x(GID) char virtual_host_long[64];

B

kc_cluster_node_str KDCADMI program interface

466 Administering Applications

The fields in the data structure have the following meanings:

node_indx
Number (index) of the node application in the UTM cluster application. The number
is assigned internally in the cluster and is used for diagnostic purposes. The index
uniquely identifies the node application within the UTM cluster application.
The node index is determined on the basis of the sequence of CLUSTER-NODE
statements in the KDCDEF input: The node that is described by the first statement
to occur has the index ‘1', the second '2' etc.
KC_MODIFY_OBJECT:
In order to modify the properties of a node application, you must pass the number
of the node application in the identification area. You may first need to determine
the number by means of a KC_GET_OBJECT call. You can only modify nodes that
are not active.

hostname
Contains the primary host name of the node on which this node application is
running.
The name returned in this field may be shortened to 8 characters. The complete
computer name, up to 64 characters long, is returned in the hostname_long field.

KC_MODIFY_OBJECT:
Specify the primary name of the node on which the node application is to run.

The name can be up to 8 characters in length.

filebase
Base name of the KDCFILE, the user log file and the system log file SYSLOG for
the node application. When the node application is started, the UTM system files
are expected under the name specified here.

The name is passed in the element filebase of type kc_file_base:

fb_name contains the base name and length the length of the base name.

KC_MODIFY_OBJECT:
You can modify the base name of the node application. When doing so, please note
the following:

– The base names of the individual node applications of a UTM cluster application
must differ from each other.

struct kc_file_base

char length[2];

char fb_name[42];

X/W

X/W

KDCADMI program interface kc_cluster_node_str

Administering Applications 467

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

– BS2000 systems:
Specify the name without the catalog ID. You must specify the catalog ID in the
operand catid_a.
The base name may contain a BS2000 user ID and may be up to 42 characters
in length.

– Unix, Linux and Windows systems:
Specify the directory which contains the UTM system files of the node appli-
cation. The name specified here must identify the same directory for all the
nodes. It may be up to 27 characters in length.

catid_a
Catalog ID, the UTM system files of the node application are assigned to (in
particular the KDCFILE).

bcamappl
Name of the transport system endpoint (BCAMAPPL name) that is used for commu-
nication within the cluster. It is defined in the CLUSTER statement during gener-
ation.

port_nbr
Number of the listener port used for communication within the cluster. It is defined
in the CLUSTER statement during generation.

kdcdef_time
Time at which the KDCFILE of this node application was generated.

The date and time are returned in the element kdcdef_time of type kc_admi_date_-
time_model:

where

struct kc_admi_date_time_model

struct kc_admi_date_model admi_date;

struct kc_admi_time_model admi_time

struct kc_admi_date_model

char admi_day [2];

char admi_month [2];

char admi_year_4 [4];

char admi_julian_day [3];

char admi_daylight_saving_time

B
B

B

B

B

X/W

X/W

X/W

X/W

BB

B

B

kc_cluster_node_str KDCADMI program interface

468 Administering Applications

and

startup_time
Time of the last start of this node application.

The date and time of the start are returned in the element startup_time of type kc_ad-
mi_date_time_model (see kdcdef_time).

shut_n_time
Time at which this node application was last terminated normally.

The date and time are returned in the element shut_n_time of type kc_admi_date_-
time_model (see kdcdef_time).

state_change_time;
Time of the last status change of this node application (see node_state).

The date and time are returned in the element state_change_time of type kc_admi_-
date_time_model (see kdcdef_time).

start_type

Type of the last start of this node application:

’C’ The last start of the application was a cold start following a normal termi-
nation of the application (COLD).

’W’ The last start of the application was a warm start following an abnormal
termination of the application (WARM).

’D’ The node application was started for the first time after the generation run
(DEF).

’U’ The node application was started after a KDCUPD run
(UPDATE).

node_state
State of the node application:

’G’ (Generated)
The node application has not yet been started after the generation run.

’R’ (Running)
The node application is currently running.

struct kc_admi_time_model

admi_hours [2];

admi_minutes [2];

admi_seconds [2]

KDCADMI program interface kc_cluster_node_str

Administering Applications 469

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

’T’ (Terminated)
The node application is not running. It was terminated normally.

’A’ (Abnormally terminated)
The node application is not running. It was terminated abnormally.

’F’ (Failure)
The node application was identified as failed by its monitoring node appli-
cation.

monitored_node
Number (index) of the node application which is monitored by this node application,
i.e. whose availability is cyclically checked.

monitoring_node
Number (index) of the node application which monitors the availability of this node
application.

virtual_host

BS2000 systems:

Name of the virtual host, as understood by BCAM, in which the node application
should run.

Blanks mean that the node application runs under the name of the real host.

Unix, Linux and Windows systems:

By specifying HOSTNAME, it is possible to specify the sender address for network
connections which are established from this node application.

Blanks mean that the default sender address of the transport system is used when
connections are established. This function is required in a cluster if the relocatable
IP address is to be used as the sender address instead of the static IP address
when establishing a connection.

The name returned in this field may be shortened to 8 characters. The complete
computer name, up to 64 characters long, is returned in the virtual_host_long field.

node_name
Reference name of the node application.

Default: NODEnn
nn = 01..32, where nn is determined by the sequence of the CLUSTER-NODE state-
ments during generation.

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B/X

B/X

B/X

kc_cluster_node_str KDCADMI program interface

470 Administering Applications

hostname_long
Contains the primary host name of the node on which this node application is
running.

KC_MODIFY_OBJECT:
Specify the primary name of the node on which the node application is to run.

virtual_host_long

BS2000 systems:

Name of the virtual host (from the BCAM perspective) on which the node application
is to run. Blanks mean that the node application runs under the name of the real
computer.

Unix, Linux and Windows systems:

Specifying virtual_host_long enables the sender address for network connections
established from this node application to be specified.

Blanks mean that the default sender address of the transport system is used for
establishing connections. This function is required in a cluster if the relocatable IP
address is to be used as the sender address instead of the static IP address when
establishing a connection.

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCADMI program interface kc_con_str

Administering Applications 471

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_con_str - LU6.1 connections

The data structure kc_con_str is defined for the object type KC_CON. In the case of
KC_GET_OBJECT, UTM returns the properties and the current status of partner applica-
tions and connections for distributed processing via LU6.1 in kc_con_str.

Connections for distributed processing and their properties can be created and deleted
dynamically (KC_CREATE_OBJECT object type KC_CON, KC_DELETE_OBJECT subop-
code1=KC_IMMEDIATE or KC_DELAY, object type KC_CON, see also page 262).

Data structure kc_con_str

char co_name[8];

char pronam[8];

char bcamappl[8];

char lpap[8];

char termn[2];

char listener_port[5];

char t_prot;

char tsel_format;

char state;

char auto_connect;

char connect_mode;

char contime_min[10];

char letters[10];

char conbad[5];

char ip_addr[15];

char co_deleted;

char ip_addr_v6[39];

char ip_v[2];

char pronam_long[64];

X/W

X/W

X/W

kc_con_str KDCADMI program interface

472 Administering Applications

The fields in the data structure have the following meanings:

co_name
Contains the name of the partner application that will be communicated with via the
logical connection. The name is up to 8 characters long.

pronam
Contains the name of the computer on which the partner application co_name is
located.

If the real computer name is longer than 8 characters:

– The pronam field contains a symbolic local name assigned for this computer by
the transport system.

– If no connection was established yet, pronam contains blanks.

– The complete name, up to 64 characters long, can be taken from the
pronam_long field.

In a UTM application on BS2000 systems it is either the name of a Unix, Linux or
Windows system, or the name of a BS2000.

In a UTM application on Unix, Linux or Windows systems, pronam contains the
name of the partner computer that UTM uses to search for the IP address of the
partner in the Name Service.

bcamappl
Contains the name of the local application via which the connection to the partner
application will be established. bcamappl can be the application name defined in the
KDCDEF control statement MAX (APPLINAME) or a BCAMAPPL name of the
application. The name is a maximum of 8 characters long. In order to be able to
establish connections using this name, the local transport system must be known.

lpap Specifies the partner application to which the logical connection will be established.
The name of the LPAP partner via which the partner application connects is
specified.

termn Contains the code for the type of communication partner. The code is entered in the
communication area header for the job-receiving services, i.e. for services in the
local application that are started by a partner application. The code is defined by the
user and serves to arrange the communication partners in groups of certain types.
It is not evaluated by UTM.
The terminal code is two characters long.

listener_port
Contains the port number of the transport address of the partner application.

If listener_port = ´0´, then no port number was specified when the CON object was
created.

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCADMI program interface kc_con_str

Administering Applications 473

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

t_prot t_prot contains the address format with which the partner application signs on to the
transport system. The address formats are specified as follows:

´R´ RFC1006, ISO transport protocol class 0 using TCP/IP and the conver-
gence protocol RFC1006.

tsel_format
Contains the format indicator of the T-selectors of the partner address generated by
the TNS generation tool.

´T´ TRANSDATA format

´E´ EBCDIC character format

´A´ ASCII character format

The meanings of the address formats are described in the “PCMX documentation”
on page 19.

state Specifies the status of the partner application or its LPAP partner:

´Y´ The partner application is not disabled (ON). The connection to the partner
application is or can be established.

´N´ The partner application is disabled (OFF). No logical connection to the
partner application can be created.

The lock must be explicitly removed by the administration in order for the
application to be able to work with the partner application (see kc_lpa-
p_str.state on page 491).

auto_connect
Specifies if the connection to the partner application is automatically established at
the start of the application:

´Y´ When the application is started, UTM will attempt to establish the
connection automatically, i.e. if the partner application is available when the
local application is started, then the connection is established after starting.

´N´ No automatic connection when starting.

connect_mode
Specifies the current status of the connection:

´Y´ The connection is established.

´W´ UTM is now attempting to establish the connection (waiting for connection)

´N´ The connection is not established.

contime_min
Specifies how many minutes the connection to the partner application has existed
until now.

X/WX/W
X/W

X/WX/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/W

kc_con_str KDCADMI program interface

474 Administering Applications

letters Contains the number of input and output messages for the partner application since
the last start of the local application.

conbad
Specifies how often the connection has been lost since the last start of the local
application.

ip_addr
Returns the IP address used by UTM for this connection from the object table of the
application if the address is an IPv4 address.

BS2000 systems: openUTM always returns blanks in the ip_addr field.

An IPv6 address is returned in the ip_addr_v6 field (see below).

UTM uses the address to set up connections to partner applications. UTM reads the
IP address from the name service when the application is started using the
generated processor name (pronam).

If the object tables do not contain an IPv4 address for the partner computer, UTM
will return blanks in ip_addr.

co_deleted
Indicates whether the transport connection was deleted from the configuration
dynamically:

´Y´ The transport connection is deleted.

´N´ The transport connection is not deleted.

ip_addr_v6
Returns the IP address used by UTM for this connection from the object table of the
application if the address is an IPv6 address or an IPv4 address embedded in IPv6
format.

BS2000 systems: openUTM always returns blanks in the ip_addr_v6 field.

An IPv4 address is returned in the ip_addr field (see above).

UTM uses the address in order to establish connections to the partner application.
UTM reads the IP address from the Name Service using the generated computer
name (pronam) when the application is started.
If there is no IPv6 address in the object tables for the partner computer, UTM returns
blanks in ip_addr_v6.

ip_v Specifies whether the IP address used by UTM for this connection is an IPv4 or an
IPv6 address:

'V4' IPv4 Address.

'V6' IPv6 address or IPv4 address embedded in IPv6 format.

B

X/W

X/W

X/W

X/W

X/W

X/W

B

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/WX/W

KDCADMI program interface kc_con_str

Administering Applications 475

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

BS2000 systems: openUTM always returns blanks in the ip_v field.

pronam_long
Name of the computer on which the partner application co_name is located.

In a UTM application on BS2000 systems, this is either the name of a Unix, Linux
or Windows system, or of a BS2000 host. pronam_long is always supplied.

In a UTM application on Unix, Linux or Windows systems, pronam_long contains the
name of the partner computer by means of which UTM searches the IP address of
the partner computer in the name service.

B

B

B

X/W

X/W

X/W

kc_db_info_str KDCADMI program interface

476 Administering Applications

kc_db_info_str - Output database information

The data structure kc_db_info_str is defined for the object type KC_DB_INFO. If KC_GET_-
OBJECT is specified then UTM returns information on the generated database connections
in kc_db_info_str.

With KC_MODIFY_OBJECT, you can modify the database password and/or the database
user.

Database connections are generated with the KDCDEF control statement DATABASE
(BS2000 systems) or RMXA (Unix, Linux and Windows systems).

The fields in the data structure have the following meanings:

db_id
Specifies the ID of the database. The ID is a digit which represents the databases
in the order in which they were generated. The ID is assigned internally by
openUTM.

db_type
Specifies the type of database system:

´UDS´
´LEASY´
´SESAM´
´CIS´
´DB´
´XA´

mod1

1 Field content can be modified with KC_MODIFY_OBJECT, see page 315f

Data structure kc_db_info_str

– char db_id[2]

– char db_type[8]

– char db_entry_name[8]

– char db_lib_info[54]

– char db_xaswitch[54]

x(GPD) char db_userid[30];

x(GPD) char db_password[30];

B

B

B

B

B

KDCADMI program interface kc_db_info_str

Administering Applications 477

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

db_entry_name
In the case of a BS2000 database, the entry name of the BS2000 database is
output. In the case of a BS2000 database with db_type=XA, the name of the XA
switch generated with the ENTRY operand of the DATABASE statement is returned
in db_entry_name. In a BS2000 system, this XA switch name is also returned in the
db_xaswitch field.

In the case of Unix, Linux and Windows systems, db_entry_name does not contain
any relevant information.

db_lib_info
The meaning of this field is platform-specific.

– On BS2000 systems, this field corresponds exactly to the LIB field in the
KDCDEF statement DATABASE, i.e. it outputs information on the library from
which the connection module to the database system was dynamically loaded.
The field contains either the name of an object module library itself or a
LOGICAL-ID as used during IMON installation in the format
"LOGICAL-ID(logical-id)".

– On Unix, Linux and Windows systems, this field contains the internal name of
the loaded XA switch, e.g. "Oracle_XA".

db_xaswitch

The meaning of this field is platform-specific.

– On BS2000 systems, the content of db_entry_name is returned in db_xaswitch.

– On Unix, Linux and Windows systems, this field contains the name of the
Resource Manager’s XA switch. This name is defined in the XASWITCH
parameter of the KDCDEF statement RMXA.

db_userid
For XA databases, with KC_GET_OBJECT UTM returns the user name generated
for this database system in the db_userid field.

For an XA database, the database user name in this field can also be changed
using KC_MODIFY_OBJECT. The change always takes effect the next time the
application is started.

db_password
In the db_password field, a new database password for an XA database can be
assigned using KC_MODIFY_OBJECT.

For KC_GET_OBJECT, UTM always supplies blanks to this field.

B

B

B

B

B

X/W

X/W

B

B

B

B

B

B

X/W

X/W

B

X/W

X/W

X/W

kc_edit_str KDCADMI program interface

478 Administering Applications

kc_edit_str - EDIT profile options (BS2000 systems)

The data structure kc_edit_str is defined for the object type KC_EDIT. With KC_GET_-
OBJECT, UTM returns information on EDIT profiles in kc_edit_str.

EDIT profiles are generated with the KDCDEF control statement EDIT. Screen functions
and properties of the screen output in line mode are summarized in EDIT profiles. Each
EDIT profile is assigned a name in the KDCDEF generation via which the corresponding
set of edit options can be accessed from a program unit run.

A complete description of the edit options discussed in the following can be found in the
TRANSDATA TIAM User Guide. You will find more detailed information on working with
EDIT profiles in the openUTM manual „Programming Applications with KDCS”.

Data structure kc_edit_str

char ed_name[8];

char edit_mode;

char edit_bell;

char hcopy;

char hom;

char ihdr;

char locin;

char low;

char nolog;

char ohdr;

char saml;

char specin;

char ccsname[8];

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCADMI program interface kc_edit_str

Administering Applications 479

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The fields in the data structure have the following meanings:

ed_name
Contains the name of the EDIT profile whose edit options UTM will return. It is an
alphanumeric name up to seven characters long.

edit_mode
Specifies the mode in which the messages will be output:

´E´ (extended line mode)
The messages are output in "extended line mode".

´I´ (info)
The message can be indicated in a special information line (system line)
without important data being overwritten at the terminal.

´L´ (line mode)
The message is output in line mode. It can be structured using logical
control characters. The message is prepared by the system.

´P´ (physical mode)
The message is physically input or output, i.e. without being prepared by the
system.

´T´ (transparent mode)
The output message is transmitted transparently.

edit_bell
Specifies if an acoustic alarm is to be triggered when the message is output on the
terminal. The contents of the field mean:

´Y´ An acoustic alarm will be triggered.

´N´ An acoustic alarm will not be triggered.

hcopy (hard copy)
Specifies if an output message is also to be logged by a hardcopy printer connected
to the terminal in addition to the output on the terminal.

´Y´ Logging of output messages on a hard-copy printer

´N´ No logging

hom (homogeneous)
Specifies if the output message is output without structure, i.e. homogeneously
output.

´Y´ The message will be without structure

´N´ The message will be structured. In this case, a logical line is considered to
be the unit of output.

B

BB

B

B

BB

B

BB

B

BB

B

B

BB

B

B

BB

B

B

BB

B

BB

B

B

BB

BB

BB

B

B

BB

BB

BB

B

B

BB

BB

B

kc_edit_str KDCADMI program interface

480 Administering Applications

ihdr (input header)
Specifies if the message header of the input message is to be passed to the
program unit.

´Y´ The message header of the input message will be passed.

´N´ The message header will not be passed.

locin (local input parameter)
Specifies if local attributes in the input message are passed to the user as logical
control characters.

´Y´ Local attributes in the input message are passed as logical control
characters.

´N´ Local attributes are removed and not passed.

low (lower case)
Specifies if the input message passed to the program unit may also contain
lowercase letters.

´Y´ Lowercase letters in the input message are passed to the program unit.

´N´ Lowercase letters are converted to uppercase before being passed to the
program unit.

nolog (no logical characters)
Specifies how non-printable characters will be handled by the system.

´Y´ The logical control characters will not be evaluated. All characters that are
smaller than X’40’ in the EBCDIC code will be replaced by substitute
characters (SUB). Only printable characters will be allowed through.

´N´ All logical control characters are evaluated. Special physical control
characters will be allowed through. Other characters smaller than X’40’ will
be replaced by substitute characters (SUB). Printable characters will be
allowed through.

ohdr (output header)
Specifies if the output message contains a message header. The length of the
message header +1 will be entered in binary in the first byte of the message.

´Y´ The output message contains a message header.

´N´ The output message does not contain a message header.

BB
B

B

BB

BB

BB

B

B

BB

B

BB

BB

B

B

BB

BB

B

BB

B

BB

B

B

BB

B

B

B

BB

B

B

BB

BB

KDCADMI program interface kc_edit_str

Administering Applications 481

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

saml (same line)
Specifies if a line feed at the beginning of the message is to be suppressed. The
contents of saml is only significant for printers. The contents of the saml field have
the following meaning:

´Y´ No line feed is executed at the beginning of the message.

´N´ The message starts at the beginning of the next line.

specin (special input)
Specifies which special options the edit profile contains for the input.

´C´ (confidential)
The input data is darkened when displayed on the terminal.

´I´ (ID card)
The next entry will be input via the ID reader.

´N´ (normal)
Normal input from the terminal.

ccsname (coded character set name)
Contains the name of the character set (CCS name) used to prepare a message
(see also the XHCS User Guide).

BB
B

B

B

BB

BB

BB

B

BB

B

BB

B

BB

B

B

B

B

kc_gssb_str KDCADMI program interface

482 Administering Applications

kc_gssb_str - Global secondary storage areas of the application

The data structure kc_gssb_str is defined for the object type KC_GSSB. With KC_GET_-
OBJECT, UTM returns the names of the global secondary storage areas (GSSB) currently
exeisting in the application in kc_gssb_str. A global secondary storage area is used by KDCS
program units for passing data between services.

The field has the following meaning:

gs_name
Contains the name of the global secondary storage area.

Data structure kc_gssb_str

char gs_name[8];

KDCADMI program interface kc_kset_str

Administering Applications 483

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_kset_str - Key sets of the application

The data structure kc_kset_str is defined for the object type KC_KSET. With KC_GET_-
OBJECT, UTM returns information on a key set in kc_kset_str.

The key or access codes of the application that were defined for data access control are
grouped together in a logical key set.

You can assign a key set to a user, an LTERM partner, an LTERM pool, an (OSI-)LPAP
partner or an access list. This controls access to TAC objects, for example. In this manner,
the key set and the access privileges associated with it are made available to the clients or
the partner application after establishing the logical connection or to the user after signing
on to the application (see also the openUTM manual “Concepts und Functions”).

The key sets can be created with KC_CREATE_OBJECT, deleted with LKC_DELETE_-
OBJECT, or dynamically modified with KC_MOFDIFY_OBJECT. Which key set is assigned
to a client, a partner application or a user is returned in the data structure of the object in
the kset field.

KDCDEF implicitly creates the KDCAPLKS key set, which already contains all key codes.

The fields in the data structure have the following meanings:

ks_name
Contains the name of the key sets. It is specified in KSET when the key set is
created with KC_CREATE_OBJECT object type KC_KSET or at KDCDEF gener-
ation (KSET statement).

master
Specifies if the key set is a master key set. A master key set contains all key or
access codes needed to access the objects of the application, i.e. all key codes
between 1 and the maximum specified in the KDCDEF generation in MAX
KEYVALUE.

´Y´ The key set is a master key set.

´N´ The key set is not a master key set (default).

mod1

1 Field contents can be modified with KC_MODIFY_OBJECT, see page 329f

Data structure kc_kset_str

– char ks_name[8];

– char master;

x(GPD) char keys[4000];

– char ks_deleted;

kc_kset_str KDCADMI program interface

484 Administering Applications

keys Specifies the key or access codes that belong to the key set.

A key or access code is an integer between 1 and the KEYVALUE set during the
KDCDEF generation in the MAX statement. KEYVALUE is the largest possible key
or access code of the application. KEYVALUE can lie between 1 and 4000.

keys consists of 4000 field elements, keys[0] to keys[3999]. The contents of the field
elements are interpreted as follows:

keys[0] =
´0´: The key/access code 1 does not belong to this key set.
´1´: The key/access code 1 belongs to this key set.

keys[n] =
´0´: The key/access code n+1 does not belong to this key set.
´1´: The key/access code n+1 belongs to this key set.

keys[3999] =
´0´: The key/access code 4000 does not belong to this key set.
´1´: The key/access code 4000 belongs to this key set.

ks_deleted
Indicates whether the key set was deleted from the configuration dynamically:

´Y´ The key set is deleted.

´N´ The key set is not deleted.

KDCADMI program interface kc_load_module_str

Administering Applications 485

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_load_module_str -
Load modules (BS2000 systems) or shared objects/DLLs (Unix, Linux
and Windows systems)

The data structure kc_load_module_str is defined for the object type KC_LOAD_MODULE.
In the case of KC_GET_OBJECT, UTM returns the following in kc_load_module_str:

● Information on the load modules that were generated with the KDCDEF control
statement LOAD-MODULE.

● Information on the shared objects or DLLs that were generated with the KDCDEF
control statement SHARED-OBJECT.

Load modules and shared objects/DLLs must be statically generated.

Using a KDCADMI call with the operation code KC_MODIFY_OBJECT and the object type
KC_LOAD_MODULE, you can replace individual load modules or shared objects or DLLs
during the application run.

The fields in the data structure have the following meanings:

lm_name
Contains the name of the load module or shared object or DLL.

version
UTM returns the version number of the load module, shared object or DLL currently
loaded or is being loaded in version. If the load module could not be found in the
library, then version contains blanks.

mod1

1 The contents of the field can be modified using KC_MODIFY_OBJECT; see page 329f

Data structure kc_load_module_str

– char lm_name[32];

x(GID) char version[24];

– char lib[54];

– char load_mode;

– char poolname[50];

– char version_prev[24];

– char changeable;

– char change_necessary;

– char altlib;

– char version_gen[24];

B

B

X/W

X/W

B

B

B

B

kc_load_module_str KDCADMI program interface

486 Administering Applications

*HIGHEST-EXISTING
In the case of KC_MODIFY_OBJECT, the highest version of the load
module existing in the library is loaded.

*UPPER-LIMIT (or @)
With KC_MODIFY_OBJECT the load module is loaded which was last
entered in this PLAM library without an explicit version specification.

lib The contents of lib have the following meaning:

– In UTM applications on BS2000 systems, UTM returns the program library from
which the load module will be loaded in lib.

– In UTM applications running on Unix, Linux or Windows systems, lib contains
the directory in which the shared object /DLL is stored.

load_mode
Contains the load mode of the load module, shared object or DLL. The load mode
determines when and to where a load module/shared object/DLL will be loaded.

´U´ (STARTUP)
The load module or shared object/DLL is loaded as an independent unit at
the start of the application.

When a load module is loaded, external references from all modules of the
UTM application that were already loaded, from all nonprivileged
subsystems and from the class 4 storage are resolved.

´O´ (ONCALL)
The load module/shared object/DLL is loaded as an independent unit when
one of its program units or VORGANG exits are called for the first time.

When a load module is loaded, external references from all modules of the
UTM application that were already loaded, from all non-privileged
subsystems and from the class 4 storage are resolved.

If several processes are utilized at one time, then this load module must not
be overwritten in the library (LIB=...) during the application run. Otherwise,
different states of the load module may perhaps be executed in an appli-
cation run.

´S´ (STATIC)
The load module is statically bound in the application program. The load
module cannot be replaced during an application run.

´P´ (POOL)
The load module is loaded into a common memory pool (see poolname) at
the start of the application. The load module consists only of one public slice
(no private slice).

BB
B

B

BB

B

B

B

B

X/W

X/W

B

B

B

B

B

B

B

B

B

B

BB

B

B

BB

B

B

B

KDCADMI program interface kc_load_module_str

Administering Applications 487

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

´T´ (POOL/ STARTUP)
The public slice of the load module is loaded into a common memory pool
(see poolname) at the start of the application. The private slice belonging to
the load module is loaded into the local process memory after that (private
slice with load mode STARTUP).

´C´ (POOL/ONCALL)
The public slice of the load module is loaded into a common memory pool
(see poolname) at the start of the application. The private slice belonging to
the load module is loaded into the local process memory when the first
program unit assigned to this load module is called (private slice with load
mode ONCALL).

poolname
poolname is only specified if the load module or its public slice will be loaded into a
common memory pool (load_mode=´P´, ́ T´ or ́ C´). poolname then contains the name
of the common memory pool. The name can be up to 50 characters long.

version_prev
Contains the previous version of the load module/shared object/DLL, i.e. the
version that was loaded before the last program change.
If the load module/shared object/DLL has not yet been replaced or is not
replaceable, then version_prev contains blanks.

changeable
Specifies if the load module/shared object/DLL can be replaced.

´Y´ The load module/shared object/DLL can be replaced during the application
run.

´N´ The load module/shared object/DLL cannot be replaced during the appli-
cation run.

change_necessary
change_necessary is only relevant for load modules that either lie completely within a
common memory pool or whose public slice lies in common memory pool.
change_necessary specifies if this load module has been marked for a program
change.

Load modules in the common memory pool must then be marked for a program
change with KC_MODIFY_OBJECT. The actual exchange must then be executed
with KC_CHANGE_APPLICATION.

´Y´ The load module is marked for exchange. A program change using
KC_CHANGE-APPLICATION is necessary to replace the load module.

´N´ The load module is not marked for exchange.

BB
B

B

B

B

BB

B

B

B

B

B

BB

B

B

B

BB

B

B

B

B

B

B

B

BB

B

BB

kc_load_module_str KDCADMI program interface

488 Administering Applications

altlib Specifies if the load module will be loaded with the BLS autolink function.

´Y´ Load with autolink

´N´ Load without autolink

version_gen
Contains the version with which the load module/shared object/DLL has been
generated.

BB

BB

BB

KDCADMI program interface kc_lpap_str

Administering Applications 489

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_lpap_str - Properties of LU6.1 partner applications

The data structure kc_lpap_str is defined for the object type KC_LPAP. In the case of
KC_GET_OBJECT, UTM returns the properties of an LPAP partner in kc_lpap_str.

An LPAP partner is a logical connection point for an LU6.1 partner application. LPAP
partners are defined during the static generation with KDCDEF and are assigned to the
LU6.1 partner applications. You can make the assignment to a real partner application at
generation or dynamically when creating a new CON object.

mod1

1 The contents of the field can be modified using KC_MODIFY_OBJECT; see page 332f

Data structure kc_lpap_str

– char lp_name[8];

– char kset[8];

– char lnetname[8];

– char netprio;

– char permit;

– char qlev[5];

– char rnetname[8];

x(GPD) char state;

x(GPD) char auto_connect;

– char contwin;

– char dpn[8];

x(GPD) char idletime_sec[5];

– char map;

– char paccnt[2];

– char plu;

x(A) char connect_mode;

x(IR) char quiet_connect;

x(IR) char bcam_trace;

– char out_queue[5];

– char nbr_dputs[10];

– char master[8];

– char bundle;

– char out_queue_ex[10];

x(GPD) char dead_letter_q;

B

X/W

kc_lpap_str KDCADMI program interface

490 Administering Applications

The fields in the data structure have the following meanings:

lp_name
Contains the name of the LPAP partners, i.e. the logical name of the partner appli-
cation. Through this name the local application initiates communication with the
partner application. lp_name only has meaning in the local application.

kset Contains the name of the key set that is assigned to the partner application. The key
set specifies the access privileges of the partner application within the local appli-
cation, meaning that the partner application may only use the transaction codes that
are either secured by a lock code for which the key set contains the appropriate key
or access code or that are not secured by a lock code.

lnetname
lnetname is only relevant for heterogeneous links.

lnetname contains the name of the local UTM application under which the local appli-
cation is known in the partner application.

netprio Contains the transport priority used in the transport connection assigned to this
LPAP partner.

´M´ "Medium" transport priority

´L´ "Low" transport priority

permit Specifies the privileges that the partner application has within the local application.

´A´ (ADMIN)
The partner application has administration privileges, it may execute all
administration functions in the local application.

´N´ (NONE)
The partner application does not have any administration privileges.

If the local application is a UTM application on a BS2000 system, then the
partner application is also not allowed to execute any UTM SAT adminis-
tration functions.

´B´ (BOTH)
The partner application may execute administration functions as well as
UTM SAT administration functions in the local application.

´S´ (SAT)
The partner application has UTM SAT administration privileges. It may
execute preselection functions in the local application, i.e. it can enable or
disable the SAT logging for certain events.

BB

B

BB

BB

B

B

B

BB

B

B

BB

B

B

B

KDCADMI program interface kc_lpap_str

Administering Applications 491

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

qlev (queue level)
qlev specifies the maximum number of asynchronous messages that may be in the
local message queue for the partner application. If this control value is exceeded,
then any additional asynchronous jobs sent to the partner application will be
rejected (i.e. ´40Z´ will be returned for any APRO-AM calls thereafter).

rnetname
rnetname is only relevant for heterogeneous links.

rnetname contains the VTAM name of the partner CICS application or IMS appli-
cation.

state Contains the status of the LPAP partner:

´Y´ The LPAP partner is not disabled. A connection to the partner application
can be established or there already is an established connection.

´N´ The LPAP partner is disabled. No connections to the partner application can
be established.

auto_connect
Specifies if the connection to the partner application is automatically established
when the local application is started:

´N´ The connection is not automatically established; it must be established by
the administrator.

´Y´ When the local application is started, UTM will automatically establish the
connection to the partner application as long as the partner application is
available at that time.

If automatic connecting is defined in both applications (local application and partner
application), then the connection between the two is automatically established as
soon as both applications are available.

contwin (contention winner)
Specifies if the partner application is the contention winner in the session
connecting the local application and the partner application. The contention winner
administers the session and controls how resources are allocated for jobs in the
session.

´Y´ The partner application is the contention winner.

´N´ The local application is the contention winner.

In any case, jobs from the local application as well as from the partner application
may be started. In case of a conflict, such as when the local and the partner appli-
cation want to start a job at the same time, the job from the contention winner will
be started in the session.

kc_lpap_str KDCADMI program interface

492 Administering Applications

dpn (destination process name)
dpn is only meaningful for connections to IBM systems.

dpn contains the name of the instance that processes asynchronous messages.

idletime_sec
Contains the maximum time in seconds that a session to the partner application
may be in the idle state before UTM closes the connection to the partner application.
The idle state means that the session is not handling any jobs.

idletime_sec = ´0´ means that the idle state will not be monitored.

Minimum value: ´60´
Maximum value: ´32767´

map Specifies whether UTM performs a code conversion (ASCII <-> EBCDIC) for user
messages without any formatting flags which are exchanged between the partner
applications.

´U´ (USER)
UTM does not convert user messages, i.e. the data in the message is trans-
mitted unchanged to the partner application.

´1´, ´2´, ´3´, ´4´ (SYS1 | SYS2 | SYS3 | SYS4)
UTM converts the user messages according to the code tables provided for
the code conversion, i.e.:

– Prior to sending, the code is converted from ASCII to EBCDIC.

– After receival, the code is converted from EBCDIC to ASCII.

openUTM assumes that the messages contain only printable characters.

For more information on code conversion, please refer to the openUTM manual
„Programming Applications with KDCS”; keyword „code conversion".

paccnt (pacing count)
Contains the number of parts of a long message that the local application may
receive without having to acknowledge.

A pacing value in paccnt that is too large can lead to bottlenecks in the network.
If paccnt = ´0´, there is no limit to the number of parts of a message that can be
received before acknowledging.

plu (primary logical unit)
Specifies if the partner application is responsible for establishing the session, i.e. if
the partner application is the ’primary logical unit’ (PLU).

´Y´ The partner application is the ’primary logical unit’.

´N´ The local application is the ’primary logical unit’.

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCADMI program interface kc_lpap_str

Administering Applications 493

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

connect_mode
Specifies the status of the connection to the partner application.

´Y´ The partner application is currently connected to the application.

´N´ The partner application is not currently connected to the application.

´W´ UTM is currently attempting to establish a connection to the partner appli-
cation (WAIT).

quiet_connect
Specifies if the QUIET property is set for the connection to the LPAP partner. QUIET
means that UTM closes the connection to the partner application as soon as the
sessions generated for the partner application do not contain any more jobs. No
more new dialog jobs are accepted for the partner application.

´Y´ The QUIET property is set.

´N´ The QUIET property is not set.

bcam_trace
Specifies whether the BCAM trace is explicitly enabled or disabled for the LPAP
partner of the partner application. The trace function that monitors connection-
specific activity within a UTM application (for example, the BCAM trace function on
BS2000 systems) is called the BCAM trace. The BCAM trace can be enabled for all
connections of the application (i.e. for all LPAP and LTERM partners) or explicitly
for certain LTERM or LPAP partners.

´Y´ The BCAM trace was explicitly enabled for this LPAP partner.
If the BCAM trace was enabled for all connections of the UTM application,
then ´N´ will be returned in bcam_trace.
You can determine if the BCAM trace is enabled for all connections by, for
example, calling KC_GET_OBJECT with the KC_DIAG_AND_AC-
COUNT_PAR parameter type. Then bcam_trace=´Y´ will be returned in
kc_diag_and_account_par_str.

´N´ The BCAM trace was not explicitly enabled for this LPAP partner.

You can enable or disable the BCAM trace during the application run.

out_queue
The number of messages currently being stored temporarily in the local message
queue of the partner application and which must still be sent to the partner appli-
cation.

If the number of messages is greater than 99999, then the number is not displayed in
full. You should therefore use the field out_queue_ex since larger numbers can be
entered in full here.

kc_lpap_str KDCADMI program interface

494 Administering Applications

nbr_dputs
The number of pending time-driven jobs for this LPAP whose starting time has not
yet been reached.

master
If the LPAP partner is a slave in an LU6.1 LPAP bundle then the master LPAP
partner of the bundle is returned in master.

bundle
Specifies whether the LPAP partner belongs to an LPAP bundle.

´N´ The LPAP partner does not belong to an LPAP bundle.

´M´ The LPAP partner is the master of an LPAP bundle.

´S´ The LPAP partner is a slave in an LPAP bundle.

out_queue_ex
see out_queue on page 493.

dead_letter_q
specifies whether an asynchronous message to an LPAP partner is saved in the
dead letter queue if it could not be sent because of a permanent error.

´Y´ Asynchronous messages to this LPAP partner which could not be sent
because of a permanent error are saved in the dead letter queue, as long
as (in case of message complexes) no negative confirmation job was
defined.

N´ Asynchronous messages to this LPAP partner which could not be sent
because of a permanent error are not saved in the dead letter queue but
deleted.

KDCADMI program interface kc_lses_str

Administering Applications 495

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_lses_str - LU6.1 sessions

The data structure kc_lses_str is defined for the object type KC_LSES. In the case of
KC_GET_OBJECT, UTM returns the properties of sessions to LU6.1 partners of the appli-
cation in kc_lses_str.

Sessions to LU6.1 partners can be dynamically created with KC_CREATE_OBJECT,
deleted with KC_DELETE_OBJECT, or modified with KC_MODIFY_OBJECT.

A session is identified using the name specified in the LSES statement.

The fields in the data structure have the following meanings:

ls_name (locale session name)
Contains the name of the session within the local application (local half-session
name).

lpap Specifies to which partner application the session is assigned. lpap contains the
name of the LPAP partner via which the partner application is connected.

rses (remote session name)
Contains the name that the session has in the partner application (remote half-
session name).

mod1

1 The contents of the field can be modified using KC_MODIFY_OBJECT; see page 336f

Data structure kc_lses_str

– char ls_name[8];

– char lpap[8];

– char rses[8];

– char con[8];

– char pronam[8];

– char bcamappl[8];

x(A) char connect_mode;

x(IR) char quiet_connect;

– char lses_user[8];

– char ls_deleted;

– char ls_used;

– char ptc;

– char node_name[8];

char pronam_long[64];

kc_lses_str KDCADMI program interface

496 Administering Applications

con, pronam, bcamappl
These parameters uniquely identify the transport connection that has been or will
be established for this session.

con
Contains the name of the transport connection to the partner application defined at
dynamic creation (KC_CREATE_OBJECT object type KC_CON) or during the
KDCDEF generation in the CON statement.

pronam
The name of the computer on which the partner application is running.

bcamappl
Contains the name of the local UTM application (BCAMAPPL name) via which the
connection to the partner application will be established.

pronam
If the real computer name is longer than 8 characters:

– The pronam field contains a symbolic local name assigned for this computer by
the transport system.

– If no connection was established yet, pronam contains blanks.

connect_mode
Specifies if a transport connection is established for the session.

´Y´ A transport connection to the partner application is established for the
session.

´N´ No transport connection is established for the session at the present time.

quiet_connect
Specifies if the QUIET property is set for the connection. QUIET means that UTM
closes the connection as soon as the session contains no more jobs. No more new
dialog jobs are accepted for the partner application.

´Y´ The QUIET property is set.

´N´ The QUIET property is not set.

lses_user
Name of the job submitter currently using the session. lses_user specifies who
started the job-submitting service.
If the job-submitting service is running in the local application for a dialog job, then
the user ID or LTERM partner of the client that started the service is specified in
lses_user.

If the job-receiving service is running in the local application for a dialog job, i.e. the
local application is processing the job, then the local session name (ls_name) is
output in lses_user.

KDCADMI program interface kc_lses_str

Administering Applications 497

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

If asynchronous messages are transmitted in the session, then the local session
name (ls_name) is output in lses_user in this case, too.

ls_deleted
Indicates whether the LSES object was deleted from the configuration dynamically.

´Y´ The session is deleted.

´N´ The session is not deleted.

ls_used
Indicates whether or not the session is being used.

´Y´ The session is being used.

´N´ The session is not being used.

ptc Indicates the state of the session.

´Y´ The session is in the PTC state (prepare to commit).

´N´ The session is not in the PTC state.

node_name
Only in UTM cluster applications: Reference name of the node application to which
the session is assigned.

pronam_long
The name of the computer on which the partner application is running.

The names in the con, pronam_long and bcamappl fields uniquely identify the
transport connection that is or is to be established for this session.

kc_ltac_str KDCADMI program interface

498 Administering Applications

kc_ltac_str - Transaction codes of remote services (LTAC)

The data structure kc_ltac_str is defined for the object type KC_LTAC. In the case of
KC_GET_OBJECT, UTM returns the properties of transaction codes that are defined in the
local application for remote service programs in kc_ltac_str.

LTAC objects can be dynamically created with KC_CREATE_OBJECT, deleted with
KC_DELETE_OBJECT, or modified with KC_MODIFY_OBJECT.

The fields in the data structure have the following meanings:

lc_name
Contains the local transaction code that was defined for the remote service program
(LTAC name).

lpap Specifies to which partner application the service program belongs. lpap contains
the name of the LPAP or OSI-LPAP partner assigned to the partner application, or
the name of a master LPAP partner.

If lpap contains blanks, then the LTAC is not assigned explicitly to any partner appli-
cation. An assignment must then be carried out via the KDCS call APRO.

mod1

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 338f

Data structure kc_ltac_str

– char lc_name[8];

– char lpap[8];

– union kc_rtac rtac;

– char rtac_lth[2];

– char code_type;

x(GPR) char state;

x(GPR) char accesswait_sec[5];

x(GPR) char replywait_sec[5];

– char lock_code[4];

– char ltac_type;

– char ltacunit[4];

– char used[10];

– char access_list[8];

– char deleted;

KDCADMI program interface kc_ltac_str

Administering Applications 499

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

rtac (remote tac)
Name of the transaction code for the service or service program in the partner appli-
cation (recipient TPSU title; RTAC name). The name can be a string or a number.
The name is returned in the following data structure:

The field of the union in which the RTAC name is stored depends on the code type
assigned to the RTAC name. The code type is returned in the code_type field.

rtac_lth
Specifies how long the name (recipient TPSU title) returned in rtac is. The number
of bytes used is specified in rtac.

Minimum value: ´1´
Maximum value: ´64´

code_type
Specifies which code type will be used internally by UTM for the RTAC name. Based
on the code_type you can determine in which field of the union the RTAC name is
stored.

´I´ (INTEGER)
The TAC name in rtac is a positive integer between 0 and 67108863.

The RTAC name will be returned in the name8 field of the rtac union (the first
8 bytes of the union are right-justified).

RTAC names of code type INTEGER are only permitted for partner applica-
tions that are not UTM applications and that communicate using the OSI TP
protocol.

´P´ (PRINTABLE-STRING)
The TAC name in rtac is specified as a string. It is a maximum of
64 characters long. It is case sensitive.

A TAC name with the PRINTABLE-STRING code type can contain the
following characters:
– A, B, C, . . . , Z
– a, b, c, . . . , z
– 0, 1, 2, . . . , 9
– the special characters - : ? = , + . () / Ë (blank)
The TAC name will be returned in the name64 field of the rtac union. The
elements in kc_rtac.name64 after the length specified in rtac_lth are filled with
blanks.

union kc_rtac

char name64[64];

char name8[8];

kc_ltac_str KDCADMI program interface

500 Administering Applications

´T´ T61-STRING
rtac contains a T61 string. For the T61-STRING code type UTM supports all
characters of the PRINTABLE-STRING code type in addition to the
following special characters: $ > < & @ # % ; * _

The TAC name will be returned in the name64 field of the rtac union. The
elements in kc_rtac.name64 after the length specified in rtac_lth are filled with
blanks.

RTAC names for which the STANDARD code type was specified at dynamic
creation or at KDCDEF generation are stored internally, depending on the
characters used, as a PRINTABLE-STRING or a T61-STRING. For this reason,
either PRINTABLE-STRING or T61-STRING is output for RTACs generated with
´S´ or STANDARD.

state Contains the status of the transaction codes in lc_name:

´Y´ The transaction code is not disabled. Jobs for the corresponding remote
service will be accepted.

´N´ The transaction code is disabled. Jobs for the corresponding remote service
will not be accepted.

accesswait_sec
The time to wait in seconds after a remote service (LTAC call) requests the appro-
priation of a session (possibly including the establishing of the connection) or the
maximum time to wait for an association to be established.

A wait time accesswait_sec ≠ 0 for asynchronous jobs (LTAC with ltac_type=´A´)
means that the job will always be placed in the local message queue for the partner
application. Dialog jobs are accepted.

A wait time accesswait_sec=0 means:
Dialog TACs will be rejected if no session or association to the partner application
is generated for which the local application is the "contention loser".
For asynchronous TACs, the asynchronous job will be rejected with a return code
in the FPUT call if there is no logical connection to the partner application. If a logical
connection to the partner application exists, then the message will be placed in the
local message queue.

Dialog jobs are rejected, independent of the value in accesswait_sec, if no logical
connection to the partner exists. At the same time, a connection shutdown is
initiated.

Minimum value: ´0´
Maximum value: ´32767´

KDCADMI program interface kc_ltac_str

Administering Applications 501

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

replywait_sec
The maximum time in seconds that UTM will wait for an response from a remote
service. By limiting the wait time you can guarantee that the wait time for clients or
users on the terminal will not be indefinite.

replywait_sec = ´0´ means: no wait time limit.

Minimum value: ´0´
Maximum value: ´32767´

lock_code
Contains the lock code assigned to the remote service within the local application
(access protection). lock_code can contain a number between ´0´ and ´4000´.
In KC_CREATE_OBJECT, the maximum value that can be contained by lock_code
is the maximum value defined using the KEYVALUE operand of the KDCDEF
statement MAX. ´0´ means that the LTAC is not protected by a lock code.

When an LTAC object is created, only lock_code or access_list can be specified (see
below). If you modify an LTAC object, you can change the current value or remove
the lock code by specifying ´0´.

If neither lock_code nor access_list is defined, lc_name is not protected and every user
of the local application can start the remote service program.

ltac_type
Specifies if the local application with the remote service jobs processes in the dialog
or if asynchronous jobs will be passed to the partner service.

´D´ Jobs sent to the partner service are processed in dialog mode.

´A´ The partner service is started asynchronously (by means of message
queuing).

used Contains the number of jobs sent to the remote service since the start of the local
application. used also specifies how often the LTAC has been called within the
current application run.

The counter is reset to 0 every time the application is started.

ltacunit
Contains the number of accounting units charged for each ltac call in the accounting
phase of UTM Accounting. The accounting units are added to the accounting unit
counter of the user ID that called ltac.

For more information on accounting see also the openUTM manual “Generating
Applications” and openUTM manual “Using UTM Applications”.

kc_ltac_str KDCADMI program interface

502 Administering Applications

access_list
Can contain the name of a key set that describes the access rights of users who are
permissible for lc_name.

When an LTAC object is created, only lock_code or access_list can be specified (see
above). When you modify an LTAC object, you can change the current entry or
remove the key set by specifying 8 blanks.

If neither lock_code nor access_list is defined, lc_name is not protected and any user
of the local UTM application can start the remote service program.

deleted
Indicates whether lc_name was deleted from the configuration dynamically.

´Y´ lc_name is deleted.

´N´ lc_name is not deleted.

KDCADMI program interface kc_lterm_str

Administering Applications 503

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_lterm_str - LTERM partners

The data structure kc_lterm_str is defined for the object type KC_LTERM. In the case of
KC_GET_OBJECT, UTM returns the properties of LTERM partners and specifies to which
client or printer the LTERM partner is presently assigned in kc_lterm_str.

LTERM partners can be dynamically created with KC_CREATE_OBJECT, deleted with
KC_DELETE_OBJECT or modified with KC_MODIFY_OBJECT.

mod1 Data structure kc_lterm_str

– char lt_name[8];

– char kset[8];

– char locale_lang_id[2];

– char locale_terr_id[2];

– char locale_ccsname[8];

– char lock_code[4];

x(GPD) char state;

– char usage_type;

– char user_gen[8];

– char cterm[8];

x(GPD)2 char format_attr;

x(GPD)2 char format_name[7];

– char plev[5];

– char qamsg;

– char qlev[5];

– char restart;

– char annoamsg;

– char netprio;

x(PD) char master[8];

– char pterm[8];

– char pronam[8];

– char bcamappl[8];

– char user_curr[8];

x(A) char connect_mode;

x(IR) char bcam_trace;

– char bundle;

– char pool;

B

B

B

B

B

B

B

kc_lterm_str KDCADMI program interface

504 Administering Applications

The fields in the data structure have the following meanings:

lt_name
Name of the LTERM partner; It can also be an LTERM partner that belongs to an
LTERM pool.

The program units of the application communicate with the clients, printers and TS
applications (no server-server communication) that are assigned to the LTERM
partner using this name.

kset Specifies which key set is assigned to this LTERM partner (access privileges). kset
contains the name of the key set.

The key set limits the access privileges of a client/user that connects via this LTERM
partner. A client or client program can only start a service protected by a lock code
or an access list when the key or access code corresponding to the lock code or the
access list is contained both in the key set of the user ID under which the client or
client program signs on and in the key set of the associated LTERM partner.

locale_lang_id, locale_terr_id, locale_ccsname
These contain the three components of the locale assigned to the partner. The
locale defines the language environment of the client that is connected to the appli-
cation via this LTERM partner. The language environment is relevant if messages
and UTM messages of the application are to be output in different languages. The
LTERM-specific language environment is set when outputting asynchronous
messages and in the first part of the sign-on service if the user-specific environment
has not been set.

See the openUTM manual “Generating Applications” for more information on multi-
lingual capabilities.

– char out_queue[5];

– char incounter[10];

– char seccounter[5];

– char deleted;

– char nbr_dputs[10];

– char lt_group;

– char out_queue_ex[10];

– char kerberos_dialog

– char pronam_long[64];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 340f
2 When changing the start format with KC_MODIFY_OBJECT you must always enter data in format_name and

format_attr.

mod1 Data structure kc_lterm_str

B

BB

B

B

B

B

B

B

B

B

B

KDCADMI program interface kc_lterm_str

Administering Applications 505

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territory code.

locale_ccsname
(coded character set name)
Contains the up to 8 characters long name of an extended character set
(CCS name; see also the XHCS User Guide).

lock_code
Contains the lock code assigned to the LTERM partner (access protection). Only
users/clients who possess the corresponding key code may connect via this
LTERM partner.

The lock_code can contain a number between ´0´ and ´4000´.
In KC_CREATE_OBJECT, the maximum value that can be contained by lock_code
is the maximum value defined using the KEYVALUE operand of the KDCDEF
statement MAX.
´0´ means that the LTERM partner is not protected by a lock code.

state Specifies if the LTERM partner is currently disabled.

´Y´ The LTERM partner is not disabled.

´N´ The LTERM partner is disabled. No user/client can connect to the appli-
cation at the present time via this LTERM partner.

usage_type
Type of LTERM partner

´D´ The LTERM partner is configured as a dialog partner. The client as well as
the local application can send messages via the connections between the
client (pterm) and local application.

´O´ The LTERM partner is configured for an output medium (printer). Messages
can only be sent from the application to the client/printer (pterm).

user_gen
user_gen contains data if the LTERM partner was configured as a dialog partner
(usage_type = ´D´).

If the LTERM partner is assigned with a terminal, user_gen contains the user ID for
which UTM is to execute an automatic KDCSIGN (automatic sign-on) when the
logical connection between the client and the application is established (defined in
kc_lterm_str.user).

If the LTERM partner is assigned to a UPIC client or a TS application (ptype=´APPLI´
or ´SOCKET´), then user_gen contains the connection user ID.

B
B

B

B

B

B

B

B

kc_lterm_str KDCADMI program interface

506 Administering Applications

cterm cterm only contains data if the LTERM partner (usage_type = ´O´) is assigned to a
printer control LTERM. cterm then contains the name of the printer control LTERM,
which can be a maximum of 8 characters long.

A printer control LTERM is assigned one or more printers. Asynchronous jobs in the
message queues of the printers, the output of messages on the printers and the
printer itself can be administered via the printer control LTERM (see chapter
“Administering message queues and controlling printers” on page 815).

format_attr, format_name
These parameters are only relevant when the LTERM partner is assigned to a
terminal.

format_attr and format_name define the LTERM-specific start format. An LTERM-
specific start format is only useful in applications without user IDs and in applica-
tions with their own sign-on service.

In applications without user IDs, the start format will be output on the terminal after
establishing the connection between the terminal and the application instead of the
message K001 as long as no LTERM-specific restart is being executed.

In applications generated with user IDs, the name of the start format can be queried
during the first part of the sign-on service (with SIGN ST).

format_attr
Contains the format code:

´A´ (format attribute ATTR)
The start format is a format with user attributes. The properties of the format
fields can be changed by the KDCS program unit. The format name at the
KDCS program interface is +format_name.

´N´ (format attribute NOATTR)
The start format is a format without user attributes. Neither field properties
nor format properties can be changed by the KDCS program units. The
format name at the KDCS program interface is *format_name.

´E´ (format attribute EXTEND)
The start format is a format with expanded user attributes. The properties of
the format fields as well as global format properties can be changed by the
KDCS program unit. The format name at the KDCS program interface is
#format_name.

format_name
Contains the name of the start format. The name can be up to 7 characters long and
contains only alphanumeric characters.

BB

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

BB

B

B

B

BB

B

B

B

B

B

B

B

KDCADMI program interface kc_lterm_str

Administering Applications 507

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

plev (print level)
If the LTERM partner is a dialog partner, then plev=´0´ is always returned.

If the LTERM partner is assigned to an output medium (printer), then plev contains
the control value for the number of print jobs that are temporarily stored in the
message queue of the LTERM partner. UTM collects the messages for the corre-
sponding printer until the control value specified in plev is reached. Then UTM
attempts to establish the connection to the printer. The connection is closed when
no more messages for the printer are in the queue. The control value is specified
when adding the LTERM partner to the configuration.

plev=´0´ means that no control value is defined and UTM can temporarily store any
number of print jobs in the queue without having to close the connection to the
printer.

qamsg (queue asynchronous message)
Specifies whether asynchronous jobs are temporarily stored in the message queue
of the LTERM partner even if the client/printer of the LTERM partner is not
connected to the application.

´Y´ An asynchronous job is placed in the message queue of the LTERM partner
even if no connection to the client/printer exists.
qamsg=´Y´ is not possible for restart=´N´.

´N´ An asynchronous job sent to this LTERM partner is rejected (return codes
KCRCCC=44Z and KCRCDC=K705) if the corresponding client/printer is
not connected to the application.

qlev (queue level)
Contains the maximum number of asynchronous messages that UTM may tempo-
rarily store in the message queue of the LTERM partner at one time. If this control
value is exceeded, openUTM rejects any further FPUT or DPUT calls for this
LTERM partner with 40Z. The control value is specified when adding the LTERM
partner to the configuration.

restart Only relevant if the LTERM partner is assigned to a client. restart specifies how UTM
will handle asynchronous messages that are in the message queue of the LTERM
partner when shutting down a connection to the client.

´Y´ Asynchronous messages to this client remain in the queue when a
connection is shut down. If no user IDs (USER) were generated in the appli-
cation, then UTM will execute an automatic restart for these LTERM
partners.

´N´ UTM deletes all asynchronous messages that are temporarily stored in the
message queue of the LTERM partner when a connection is shut down.
If the job is a job complex, then a negative confirmation job is activated.

kc_lterm_str KDCADMI program interface

508 Administering Applications

If no user IDs (USER) were generated in this application, then UTM will not
execute an automatic restart for the LTERM partner.

annoamsg (announce asynchronous message)
Is only of relevance for LTERM partners assigned to a terminal.

annoamsg specifies if UTM will announce asynchronous messages on the terminal
with a UTM message in the system line before outputting.

´Y´ UTM announces every asynchronous message to this terminal with the
K012 UTM message in the system line. The user must then explicitly
request the asynchronous message with the KDCOUT command.

´N´ Asynchronous messages are output on the terminal immediately, i.e.
without announcement. KDCOUT is not permitted.

netprio Specifies the transport priority used on the transport connection between the appli-
cation and the client/printer.

´M´ "Medium" transport priority

´L´ "Low" transport priority

master
The meaning of this field varies according to the operation code. You can establish
what type of LTERM is involved from the lt_group parameter.

KC_GET_OBJECT

– The associated master LTERM is returned here in the case of a slave LTERM
of an LTERM bundle.

– The associated primary LTERM is returned here in the case of an alias LTERM
of an LTERM group.

KC_MODIFY_OBJECT

– For connection bundles: Exchange of two master LTERMs. The LTERM
specified in master must be the master of an LTERM bundle. The master is
specified with which the slaves are to be exchanged.

You can only use this functionality in standalone UTM applications.

– For LTERM groups: Reassignment of a group LTERM to a different LTERM
group. The LTERM that you specify in master must either be a normal LTERM,
a primary LTERM of an LTERM group or a master LTERM of an LTERM bundle.

You can only use this functionality in standalone UTM applications.

BB

B

B

B

BB

B

B

BB

B

BB

B

BB

BB

KDCADMI program interface kc_lterm_str

Administering Applications 509

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

A normal LTERM must fulfill the following conditions:

– A PTERM with the PTYPE APPLI or SOCKET must be assigned to the
LTERM.

– The LTERM must not be a slave LTERM of an LTERM bundle.

– The LTERM must have been generated with USAGE=D.

The primary LTERM of the group to which the LTERM is to be added is
specified.
If the LTERM specified in master is already a primary LTERM of an LTERM
group, the LTERM specified for lt_name is added to its LTERM group.
If the LTERM specified in master was not a primary LTERM, a new LTERM group
is created. The LTERM specified in lt_name is added to the new LTERM group.
Primary LTERM is the LTERM specified in master.

pterm Name of the client/printer (PTERM name) currently assigned to this LTERM partner.
If the LTERM partner is not currently assigned to a client/printer, then pterm contains
blanks. The assignments between the LTERM partner and the client/printer can be
changed; see also kc_pterm_str on page 539.

pronam
Name of the computer on which the client can be found or to which the printer is
connected.

If the real computer name is longer than 8 characters:

– The pronam field contains a symbolic local name assigned for this computer by
the transport system.

– If no connection was established yet, pronam contains blanks.

– The complete name, up to 64 characters long, can be taken from the
pronam_long field.

If the LTERM partner is not currently assigned a client/printer, the field contains
blanks.

In UTM applications on BS2000 systems pronam is unequal blanks if the LTERM
partner is assigned a client or printer. The name in pronam is identical to the name
of the computer specified for the BCAM generation for this computer. If the LTERM
partner is assigned to an RSO printer, then pronam contains the value ´*RSO´.

In UTM applications running on Unix, Linux or Windows systems, pronam contains
blanks if the LTERM partner is assigned to a local client or printer.

bcamappl
Name of the local UTM application (BCAMAPPL name) via which the connection to
the client/printer will be established.

B

B

B

B

X/W

X/W

kc_lterm_str KDCADMI program interface

510 Administering Applications

If the LTERM partner is assigned to a terminal or printer, then bcamappl always
contains the name of the application that was specified for the KDCDEF generation
in MAX APPLINAME.
If the LTERM partner is assigned to a UPIC client or a TS application, then bcamappl
contains the application name (BCAMAPPL name) assigned to the client when it
was added.

user_curr
User ID of the user currently connected with the application through this LTERM
partner. If there is currently no connection, user_curr is padded with blanks.

If a connection to a terminal is established, but no user is as yet signed on, user_curr
is also padded with blanks.

If a connection to a UPIC client or to a TS application is established, we distinguish
the following situations:

– The application is generated with SIGNON MULTI-SIGNON=YES (see
kc_signon_str.multi_signon on page 657)
user-curr contains the connection user ID (user_gen) until a client signs on with
a “true” user ID for which kc_user_str.restart=´Y´.

– The application is generated with SIGNON MULTI-SIGNON=NO.
user_curr contains the connection user ID (user_gen) until a client signs on with
a “true” user ID.

connect_mode
Specifies if the client or printer presently assigned to this LTERM partner is currently
connected to the application.

´Y´ The client/printer is currently connected to the application.

´W´ UTM is currently attempting to establish a connection to the client/printer.

´N´ The client/printer is not currently connected to the application.

bcam_trace
Specifies if the BCAM trace is explicitly enabled or disabled for this LTERM partner.
The trace function that monitors connection-specific activity within a UTM appli-
cation (for example the BCAM trace function on BS2000 systems) is called the
BCAM trace. The BCAM trace can be enabled for all connections of the application
(i.e. for all LPAP and LTERM partners) or explicitly for certain LTERM or LPAP
partners.

´Y´ The BCAM trace was explicitly enabled for this LTERM partner.
If the BCAM trace was enabled for all connections of the UTM application,
then ´N´ will be returned in bcam_trace.

KDCADMI program interface kc_lterm_str

Administering Applications 511

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

You can determine if the BCAM trace is enabled for all connections by, for
example, calling KC_GET_OBJECT with the KC_DIAG_AND_AC-
COUNT_PAR parameter type. Then bcam_trace=´Y´ will be returned in
kc_diag_and_account_par_str.

´N´ The BCAM trace was not explicitly enabled for this LTERM partner.

You can enable or disable the BCAM trace during the application run.

bundle bundle is only relevant for LTERM partners that are assigned to a printer or an
LTERM bundle. bundle specifies if the LTERM partner belongs to a printer pool or
an LTERM bundle.

´Y´ The printer is assigned to a printer pool.

´N´ The printer is not assigned to a printer pool.

'M' The LTERM partner is a master of an LTERM bundle.

'S' The LTERM partner is a slave of an LTERM bundle.

pool Specifies if the LTERM partner belongs to an LTERM pool.

´Y´ The LTERM partner is assigned to an LTERM pool.

´N´ The LTERM partner is not assigned to an LTERM pool.

out_queue
The number of asynchronous messages presently in the message queue of the
LTERM partner for outputting.

If the number of messages is greater than 99999, then the number is not displayed in
full. You should therefore use the field out_queue_ex since larger numbers can be
entered in full here.

incounter
The number of messages entered via this LTERM partner; if a printer is connected
via this LTERM partner, then the number of print confirmations from the printer is
entered here.
The incounter counter is reset to 0 at every start of the application.

seccounter
The number of security violations by users and clients that were connected to the
application via this LTERM partner (for example, due to entering an unauthorized
transaction code).
The counter is reset to 0 at every start of the application.

kc_lterm_str KDCADMI program interface

512 Administering Applications

deleted
Specifies whether or not the LTERM partner was dynamically deleted from the
configuration.

´Y´ The LTERM partner was deleted. No more clients or printers may be
connected to the application via this LTERM partner.

´N´ The LTERM partner was not deleted.

nbr_dputs
Number of time-controlled jobs for this LTERM partner whose start time has not yet
been reached

lt_group
Specifies whether the LTERM is a "normal" LTERM, part of an LTERM bundle or
part of an LTERM group.

´ ´ The LTERM is not part of an LTERM bundle or an LTERM group.

'P' The LTERM is the primary LTERM of an LTERM group.

'A' The LTERM is an alias LTERM of an LTERM group.

out_queue_ex
see out_queue.

kerberos_dialog
Y When the connection is established, a Kerberos dialog is conducted for

clients that support Kerberos and are directly connected with the application
via this LTERM partner (not via OMNIS).

N No Kerberos dialog is performed.

pronam_long
Name of the computer on which the client or the printer is located.

If no client/printer is currently assigned to the LTERM partner, the field is filled with
blanks.

In UTM applications on BS2000 systems, pronam_long is not blank if a client or
printer is assigned to the LTERM partner. The name in pronam_long is identical to
the computer name specified for this computer during BCAM generation. If the
LTERM partner is assigned to an RSO printer, pronam_long contains the value
´*RSO´.

In UTM applications on Unix, Linux and Windows systems, pronam_long contains
blanks if the LTERM partner is assigned to a local client or printer.

BB

BB

B

B

BB

X/W

X/W

KDCADMI program interface kc_message_module_str

Administering Applications 513

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_message_module_str - User message modules

The data structure kc_message_module_str is defined for the object type KC_MESSAGE_-
MODULE. In the case of KC_GET_OBJECT, UTM returns the properties of the user-
defined UTM message module of the application in kc_message_module_str.

In UTM applications on BS2000 systems, you can create several user-defined message
modules that contain the UTM messages in various languages for the purpose of interna-
tionalization of the application. A language code and a territory code are assigned to each
UTM message module to precisely define the language. The combination of the language
code and the territory code must be assigned to exactly one UTM message module of the
application. Through the "language and territory code" the user-defined UTM message
modules are assigned to the users and LTERM partners whose locale contains the same
language and territory code.

In UTM applications running on Unix, Linux or Windows systems, you can create user-
defined message modules. UTM only returns the name of the message module. The other
fields of the data structure are of no relevance.

User-defined UTM message modules are defined in the KDCDEF generation with a
MESSAGE statement.

How a user-defined UTM message module is created is described in the openUTM manual
”Messages, Debugging and Diagnostics”.

Data structure kc_message_module_str

char mm_name[8];

char lib[54];

char locale_lang_id[2];

char locale_terr_id[2];

char standard_module;

B

B

B

B

B

B

B

B

X/W

X/W

X/W

B

B

B

B

kc_message_module_str KDCADMI program interface

514 Administering Applications

The fields in the data structure have the following meanings:

mm_name
Contains the name of the UTM message module whose properties are returned by
UTM.

lib Contains the name of the library that contains the UTM message module.

locale_lang_id, locale_terr_id
Specifies the language environment for which the UTM message module will be
used.

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territory code.

The UTM messages of user-defined UTM message modules are used for the
STATION, SYSLINE and PARTNER message lines. The UTM message module
used corresponds to the locale_lang_id and locale_terr_id that is identical to the
language and territory code of the locale of the respective user or LTERM partner.

standard_module
Specifies if the message module is the user-defined standard message module of
the application.

The standard message module is the user-defined message module that is
assigned to the language and territory code of the standard language environment.
The standard language environment is specified in the KDCDEF generation in MAX
LOCALE.
The standard message module is always used by UTM for messages in the
SYSLST, SYSOUT and CONSOLE message lines

´Y´ The message module is the standard message module.

´N´ The message module is not the standard message module.

BB

BB

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

BB

BB

KDCADMI program interface kc_mux_str

Administering Applications 515

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_mux_str - Multiplex connections (BS2000 systems)

The data structure kc_mux_str is defined for the object type KC_MUX. In the case of
KC_GET_OBJECT, UTM returns the names and properties of a multiplex connection via
which a message router can connect to the application in kc_mux_str.

Several terminal clients can be connected simultaneously to the UTM application via a
multiplex connection.

mod1

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 344f

Data structure kc_mux_str

– char mx_name[8];

– char pronam[8];

– char bcamappl[8];

x(GPD) char auto_connect;

x(GPR) char maxses[5];

x(GPD) char state;

– char netprio;

x(A) char connect_mode;

– char actcon[5];

– char maxcon[5];

– char letters[10];

– char incnt[5];

– char wait_go[5];

– char shortage[5];

– char rtryo[5];

– char rtryi[5];

x(IR) char bcam_trace;

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

kc_mux_str KDCADMI program interface

516 Administering Applications

The fields in the data structure have the following meanings:

mx_name
Contains the name of the multiplex connection.

pronam
The name of the computer containing the message router.

The name in pronam is identical to the name of the computer specified for the BCAM
generation for this computer.

bcamappl
The name of the local UTM application (BCAMAPPL name) via which the
connection to the message router will be established, i.e. the message router must
specify this application name as the partner name when the connection to the UTM
application is established.

If several multiplex connections (the same computer name is always in pronam) with
different BCAMAPPL names exist in the local application for a message router, then
several parallel connections can be established to the message router.

auto_connect
Specifies if the local application automatically establishes a transport connection to
the message router during the application start.

´N´ The connection is not automatically established, it must be established by
the administrator (see connect_mode, page 593).

´Y´ UTM attempts to establish the connection to the message router at the start
of the local application.
If no connection can be made, for example because the message router is
not available, then UTM will repeat the attempt to establish the connection
at the intervals specified in the conrtime_min timer. The timer can be
changed (see the data structure kc_timer_par_str, conrtime_min field
page 667).

maxses
Specifies the maximum number of simultaneously open sessions that can exist
between the message router and the application, i.e. maxses contains the maximum
number of clients that can be simultaneously connected to the application via the
message router.

Minimum value: ´1´
Maximum value: ´65000´ (theoretical value)

B

BB

B

BB

B

B

B

BB

B

B

B

B

B

B

B

BB

B

B

BB

B

BB

B

B

B

B

B

B

BB

B

B

B

B

B

B

KDCADMI program interface kc_mux_str

Administering Applications 517

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

state Specifies whether the multiplex connection is currently disabled.

´Y´ The multiplex connection is not disabled.

´N´ The multiplex connection is disabled. No connection between the message
router and the application can be established at the present time.

netprio
Specifies the transport priority used on the transport connection between the appli-
cation and the message router.

´M´ "Medium" transport priority

´L´ "Low" transport priority

connect_mode
Specifies whether the message router is currently connected to the application.

´Y´ The message router is currently connected to the application.

´W´ UTM is attempting to establish a connection to the message router.

´N´ The message router is not currently connected to the application.

actcon Contains the number of clients currently connected to the application via this
multiplex connection.

maxcon
Contains the maximum value that actcon has reached during the current application
run. maxcon also specifies the maximum number of clients that were simultaneously
connected to the application via this multiplex connection during the previous appli-
cation run.
The counter is reset to 0 at the start of the application.

letters Contains the number of messages replaced between the message router and the
application since the start of the application (input and output messages).

incnt Contains the number of input messages received from the application via this
multiplex connection.
The counter is reset to 0 at the start of the application.

wait_go
Specifies how often BCAM needed to request the multiplex connection to resend a
message because BCAM was not able to accept this message before due to a
BCAM bottleneck (WAIT FOR GO).
The counter is reset to 0 at the start of the application.

BB

BB

BB

B

BB

B

B

BB

BB

BB

B

BB

BB

BB

BB

B

BB

B

B

B

B

B

BB

B

BB

B

B

BB

B

B

B

B

kc_mux_str KDCADMI program interface

518 Administering Applications

shortage
Contains the number of BCAM bottlenecks (shortages) for this multiplex connection
since the start of the application.

rtryo (retry out)
Specifies how often the application needed to retry sending an output message to
the message router since the application start.

rtryi (retry in)
Specifies how often the application needed to retry reading a message from the
message router since the application start.
If a message from the message router is received by BCAM, then BCAM informs
UTM that a message is available. UTM then tries to read the message from BCAM.
rtryi contains the number of failed attempts to read the message from BCAM before
UTM was finally able to read the message.

bcam_trace
Specifies whether the BCAM trace for this multiplex connection is explicitly
activated or deactivated.

´Y´ The BCAM is explicitly activated.

´N´ The BCAM trace is not explicitly activated.

There is only any point evaluating this field if the BCAM trace is activated explicitly
for a number of LTERM partners, LPAP partners or multiplex connections.

If the BCAM trace is activated or deactivated generally (kc_diag_and_ac-
count_par_str), ´N´ is returned for bcam_trace.

If the value of bcam_trace is to be modified, the following prerequisites apply to
explicit activation:

– The BCAM trace must be deactivated for everything (kc_diag_and_account_par).

– The BCAM trace must be deactivated explicitly for this multiplex connection.

The prerequisite for explicit deactivation is that the BCAM trace is activated
explicitly for a number of LTERM partners, LPAP partners or multiplex connections.

BB
B

B

BB

B

B

BB

B

B

B

B

B

B

B

B

B

BB

BB

B

B

B

B

B

B

B

B

B

B

KDCADMI program interface kc_osi_association_str

Administering Applications 519

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_osi_association_str -
Associations to OSI TP partner applications

The data structure kc_osi_association_str is defined for the object type KC_OSI_ASSOCI-
ATION. In the case of KC_GET_OBJECT, UTM returns the properties of an association
currently existing or being established for distributed processing via OSI TP in kc_osi_asso-
ciation_str.

The fields in the data structure have the following meanings:

association_id
Contains the identification (ID) assigned to the association when the connection is
established. It is only unique as long as the association is established. If this associ-
ation is closed, then the ID is released and can be assigned to another association
(established thereafter).

The association ID is an integer with a maximum of 8 digits.

osi_lpap
Specifies the partner application with which the association has been established.
UTM returns the name of the OSI-LPAP partner assigned to the partner application
in osi_lpap.

contwin (contention winner)
Specifies if the local application for this association is the contention winner or the
contention loser.

The contention winner takes over the administration of the association. Jobs can be
started, however, by the contention winner as well as by the contention loser. In
case of a conflict, such as when both communication partners want to start a job at
the same time, the association from the job of the contention winner will be used.

´Y´ The local application is the contention winner.

´N´ The local application is the contention loser.

Data structure kc_osi_association_str

char association_id[8];

char osi_lpap[8];

char contwin;

char connect_state;

char contime_min[10];

char request_calls[10];

char indication_calls[10];

kc_osi_association_str KDCADMI program interface

520 Administering Applications

connect_state
Specifies the status of the association.

´C´ The association is established.

´W´ The association is being created. It is waiting for a "GO" from OSS.

´S´ The association is being created and is in "STOP" state. It is waiting for a
"GO" signal from OSS.

contime_min
Specifies the connect time of the existing connection in minutes.

request_calls
The number of request/response presentation calls to OSS since the creation of the
association.

indication_calls
The number of indication/confirmation presentation calls to OSS since the creation
of the association.

KDCADMI program interface kc_osi_con_str

Administering Applications 521

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_osi_con_str - OSI TP connections

The data structure kc_osi_con_str is defined for the object type KC_OSI_CON. In the case
of KC_GET_OBJECT, UTM returns the name and address of an OSI TP partner application
and the status of the connection to the partner application in kc_osi_con_str.

An OSI TP connection is created with the KDCDEF control statement OSI-CON.

mod1

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 346

Data structure kc_osi_con_str

– char oc_name[8];

– char osi_lpap[8];

– char local_access_point[8];

– union kc_selector presentation_selector;

– union kc_selector session_selector;

– char presentation_selector_type;

– char presentation_selector_lth[2];

– char presentation_selector_code;

– char session_selector_type;

– char session_selector_lth[2];

– char session_selector_code;

– char transport_selector[8];

– char network_selector[8];

x(GIR) char active;

– char map;

– char listener_port[5];

– char t_prot;

– char tsel_format;

– char ip_addr[15];

– char ip_addr_V6[39];

– char ip_v[2];

–s char network_selector_long[64];

X/W

X/W

X/W

X/W

X/W

X/W

X/W

kc_osi_con_str KDCADMI program interface

522 Administering Applications

The fields in the data structure have the following meanings:

oc_name
Contains the name of a connection that was generated with OSI-CON for the
communication via the OSI TP protocol. oc_name uniquely identifies the connection
in the local UTM application.

osi_lpap
Specifies the partner application for which the connection is defined. osi_lpap
contains the name of the OSI-LPAP partner assigned to the partner application.

local_access_point
Contains the name of an OSI TP access point that is defined for the local application
(KDCDEF statement ACCESS-POINT). The connection to the partner application
is established via this access point.

presentation_selector
Contains the presentation selector of the partner application. The presentation
selector is a component of the partner address.

presentation_selector is a field of type kc_selector:

UTM generally returns the presentation selector as character string (c) in a
machine-specific code format (presentation_selector_code=´S´). The character string
is a maximum of 16 characters long. The presentation_selector field is padded with
blanks starting after the position specified in the presentation_selector_lth length field.

In special cases, the presentation selector is returned as a hexadecimal string (x).
Each half byte is represented by a character, for example the hexadecimal number
A2 is returned as the string ´A2´ (2 characters). If the presentation selector is a
hexadecimal number, then UTM returns up to 32 bytes.

You determine how to interpret the contents of the presentation_selector with the
presentation_selector_type field.

If the address of the access point does not contain a presentation selector, then the
presentation_selector field contains only blanks. In this case, presentation_selec-
tor_type = ´N´ and presentation_selector_lth = ´0´.

union kc_selector

char x[32];

char c[16];

KDCADMI program interface kc_osi_con_str

Administering Applications 523

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

session_selector
Contains the session selector of the partner application. The session selector is a
component of the partner address.

session_selector is a union of type kc_selector (see presentation_selector).

UTM generally returns the session selector as character string (c) in machine-
specific code (session_selector_code=´S´). The character string is a maximum of
16 characters long. The session_selector field is padded with blanks starting after the
position specified in the session_selector_lth length field.

In special cases, the session selector is returned as a hexadecimal string (x). Each
half byte is represented by a character. If the session selector is a hexadecimal
number, then UTM returns up to 32 bytes in session_selector.

You determine how to interpret the contents of the session_selector with the
session_selector_type field.

If the address of the access point does not contain a presentation selector, then the
session_selector field contains only blanks. In this case, session_selector_type = ´N´
and session_selector_lth = ´0´.

presentation_selector_type
Specifies if the address of the partner application contains a presentation selector
and how to interpret the data returned in presentation_selector.

´N´ N stands for *NONE. The address of the partner application does not
contain a presentation selector, presentation_selector contains only blanks
and presentation_selector_lth=´0´.

´C´ The data of the presentation selector in presentation_selector is to be inter-
preted as a character string. A maximum of the first 16 bytes of presenta-
tion_selector contain data.

´X´ The presentation selector in presentation_selector is a hexadecimal number.

presentation_selector_lth
Contains the length of the presentation selector (presentation_selector) in bytes. If
presentation_selector_lth =´0´, then the address of the partner application does not
contain any presentation components (presentation_selector contains blanks).
Otherwise, the value of presentation_selector_lth lies between ´1´ and ´16´.

If presentation_selector_type=´X´, then the string length specified in presentation_se-
lector is: 2 ∗ presentation_selector_lth bytes.

Example
The presentation selector is X´A2B019CE´. presentation_selector then contains the
string ́ A2B019CE´, presentation_selector_type=´X´ and presentation_selector_lth =´ 4´.

kc_osi_con_str KDCADMI program interface

524 Administering Applications

presentation_selector_code
Specifies how the presentation selector in presentation_selector is encoded.

UTM returns ´S´ if the presentation selector will be returned as a character string
(presentation_selector_type = ´C´).
´S´ means: machine-specific code (default code, EBCDIC on BS2000 systems and
ASCII on Unix, Linux and Windows systems).

If presentation_selector_type = ´X´ or ´N´, then UTM returns a blank in the presenta-
tion_selector_code field.

session_selector_type
Specifies if the address of the partner application contains a session selector and
how to interpret the data returned in session_selector.

´N´ N stands for *NONE. The address of the partner application does not
contain a session selector, session_selector contains only blanks and
session_selector_lth=´0´.

´C´ The data of the session selector in session_selector is to be interpreted as a
character string. A maximum of the first 16 bytes of session_selector contain
data.

´X´ The session selector in session_selector is a hexadecimal number.

session_selector_lth
Contains the length of the session selector (session_selector) in bytes. If session_se-
lector_lth =´0´, then the address does not contain any session components
(session_selector contains blanks). Otherwise, the value of session_selector_lth lies
between ´1´ and ´16´.

session_selector_code
Specifies how the session selector in session_selector is encoded.

UTM returns ´S´ if the session selector will be returned as a character string
(session_selector_type = ´C´).
´S´ means: machine-specific code (default code, EBCDIC on BS2000 systems and
ASCII on Unix, Linux and Windows systems).

If session_selector_type = ´X´ or ´N´, then UTM returns a blank in the session_selec-
tor_code field.

transport_selector
Contains the transport selector of the address of the partner application. The
transport selector is a component of the partner address. transport_selector always
contains a valid value because each communication partner must be assigned a
transport selector so that it is addressable within its system. The transport selector
is always to be interpreted as a character string and consists of 1 to 8 printable
characters.

KDCADMI program interface kc_osi_con_str

Administering Applications 525

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

network_selector
Network component (network selector) of the partner address.

BS2000 systems:

network_selector contains the name of the computer on which the partner application
runs. This is the name under which the computer is known to BCAM.

Unix, Linux or Windows systems:

network_selector contains the name of the partner computer by means of which UTM
searches the IP address of the partner computer in the name service.

If the real computer name is longer than 8 characters:

– The network_selector field contains a symbolic local name assigned for this
computer by the transport system.

– The complete name, up to 64 characters long, can be taken from the
network_selector_long field.

active Specifies if this connection is set to active or if the connection is a substitute
connection that is presently inactive. It is possible to generate several connections
to a partner application. Only one of these connections, however, may be active at
any one time.

´Y´ The connection is set to active.

´N´ The connection is inactive.

map Specifies whether UTM performs a code conversion (ASCII <-> EBCDIC) for user
messages without any formatting flags (abstract syntax UDT) which are exchanged
between the partner applications.

´U´ (USER)
UTM does not convert user messages, i.e. the data in the message is trans-
mitted unchanged to the partner application.

´1´, ´2´, ´3´, ´4´ (SYS1 | SYS2 | SYS3 | SYS4)
UTM converts the user messages according to the code tables provided for
the code conversion, see section "Code conversion" in the openUTM
manual “Generating Applications”, i.e.:

– Prior to sending, the code is converted from ASCII to EBCDIC.

– After receival, the code is converted from EBCDIC to ASCII.

openUTM assumes that the messages contain only printable characters.

For more information on code conversion, please refer to the openUTM manual
„Programming Applications with KDCS”; keyword „code conversion".

B

B

B

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

kc_osi_con_str KDCADMI program interface

526 Administering Applications

UTM returns the components of the transport address of the partner application in the
following fields. See also the openUTM manual “Generating Applications” for more infor-
mation.

listener_port
Contains the port number of the address of the partner application.

If listener_port = ´0´, then no listener port number was generated in the KDCDEF
generation.

t_prot Contains the address format of the transport address. The address format specifies
the transport protocol used for communication with the partner application.

´R´ RFC1006, ISO transport protocol class 0 using TCP/IP and the conver-
gence protocol RFC1006.

If t_prot contains a blank, then no address format was defined in the KDCDEF
generation.

tsel_format
Specifies the format in which the T-selectors of the partner address is stored in the
TS directory:

´T´ TRANSDATA format
´E´ EBCDIC character format
´A´ ASCII character format

If tsel_format contains a blank, then no format indicator was defined in the KDCDEF
generation.

The meanings of the address formats are described in the “PCMX documentation”
on page 19.

ip_addr
Returns the IP address used by UTM for this connection from the object table of the
application if the address is an IPv4 address.

UTM uses the address to establish connections to partner applications. UTM reads
the IP address from the host name database when the application is started using
the generated processor name (networ_selector).

An IPv6 address is returned in the ip_addr_v6 field.

If there is no IPv4 address in the object tables for the client, UTM returns blanks in
ip_addr.

ip_addr_v6
Returns the IP address used by UTM for this connection from the object table of the
application if the address is an IPv6 address or an IPv4 address embedded in IPv6
format.

X/W
X/W

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCADMI program interface kc_osi_con_str

Administering Applications 527

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

An IPv4 address is returned in the ip_addr field (see above).

If there is no IPv6 address in the object tables for the client, UTM returns blanks in
ip_addr_v6.

ip_v Specifies whether the IP address used by openUTM for this connection is an IPv4
or an IPv6 address:

'V4' IPv4 Address.
'V6' IPv6 address or IPv4 address embedded in IPv6 format.

network_selector_long
Network component (network selector) of the partner address.

BS2000 systems:

network_selector_long contains the name of the computer on which the partner appli-
cation runs. This is the name under which the computer is known to BCAM.

Unix, Linux or Windows systems:

network_selector_long contains the name of the partner computer by means of which
UTM searches the IP address of the partner computer in the name service.

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/WX/W

B

B

B

X/W

X/W

X/W

kc_osi_lpap_str KDCADMI program interface

528 Administering Applications

kc_osi_lpap_str - Properties of OSI TP partner applications

The data structure kc_osi_lpap_str is defined for the object type KC_OSI_LPAP. In the case
of KC_GET_OBJECT, UTM returns the following in kc_osi_lpap_str:

– The logical properties of an OSI TP partner application.
The logical properties of an OSI TP partner application are defined in the KDCDEF
generation in which an OSI-LPAP partner is created and assigned to this partner appli-
cation.

– The status of the connection to the partner application.
– Statistical information on the connection load.

mod1

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 347

Data structure kc_osi_lpap_str

– char ol_name[8];

– char application_context[8];

– char application_entity_qualifier[8];

– char application_process_title[10][8];

– char association_names[8];

– char associations[5];

x(GPD) char auto_connect_number[5];

– char contwin[5];

– char kset[8];

x(GPD) char idletime_sec[5];

x(GPD) char state;

– char permit;

– char qlev[5];

– char termn[2];

x(A) char connect_number[5];

x(IR) char quiet_connect;

– char osi_con[8];

– char out_queue[5];

– char ass_kset[8];

– char nbr_dputs[10];

– char master[8];

– char bundle;

– char out_queue_ex[10];

x(GPD) char dead_letter_q;

KDCADMI program interface kc_osi_lpap_str

Administering Applications 529

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The fields in the data structure have the following meanings:

ol_name
Contains the name of the OSI-LPAP partner of the partner application. The partner
application will be addressed by the program units of the local application using this
name. The name consists of a maximum of 8 alphanumeric characters.

application_context
Specifies which application context from the partner application will be used. For
details on application context, please refer to the openUTM manual “Generating
Applications”, KDCDEF statement APLLICATION-CONTEXT.

application_entity_qualifier
Contains the application entity qualifier of the partner application. The application
entity qualifier is used together with the application process title for addressing a
partner application for a heterogeneous link. The application entity qualifier is a
positive integer between 1 and 67108863 (= 226-1).

You will find more information on the application entity qualifier in the openUTM
manual “Generating Applications”.

application_entity_qualifier=´0´ means that no AEQ is defined for the partner appli-
cation.

application_process_title
Contains the application process title (APT) of the partner application. The APT is
used together with the application entity qualifier for addressing a partner appli-
cation for a heterogeneous link.

An APT consists of at least two, but at most ten components. The individual compo-
nents are positive integers.

The position of the individual components as well as their number is relevant in an
application process title. For example, (1,2,3), (1,2,3,0,0) and (0,1,2,3,0) indicate
different application process titles.

You will find more information on the application process title in the openUTM
manual “Generating Applications”.

UTM returns one field element per component of the APT, i.e. the number of field
elements containing data in application_process_title corresponds to the number of
components generated. The remaining field elements contain binary zero.

If no APT was generated for the partner application, then all field elements of appli-
cation_process_title contain binary zero.

association_names
Contains the prefix of the names that are assigned to the logical connections
(associations) to the partner application within the local application.

kc_osi_lpap_str KDCADMI program interface

530 Administering Applications

The name of the connection is composed of the value of association_names as its
prefix and a sequential number. The sequential number lies between 1 and the
number of parallel connections (associations field) generated. The entire name for a
connection can be up to 8 characters long. The maximum length of associa-
tion_names depends, therefore, on the number of parallel connections in associa-
tions.

Example
association_names =´ASSOC´ and associations = ´10´, then the connections to the
partner application that are assigned to the OSI-LPAP partner have the following
names: ASSOC01, ASSOC02, ..., ASSOC10.

associations
Contains the maximum number of parallel connections to the partner application.
The maximum possible number of parallel connections to a partner application
depends on the transport system used and on the size of the name space of the
UTM application (see the openUTM manual “Generating Applications”).

auto_connect_number
Contains the number of connections to the partner application that will be automat-
ically established at start of the local application as long as the partner application
is available at this point in time. The establishing of a connection at the start of the
application can be requested by the local application as well as by the partner appli-
cation. In this manner, you can ensure that the connection is automatically estab-
lished as soon as both partners are available.

auto_connect_number = ´0´ means that the connection is not set up automatically.

Minimum value: ´0´
Maximum value: maximum number of parallel connections (associations)

contwin
Contains the number of connections for which the local application is the contention
winner. For the rest of the connections (difference: associations - contwin), the local
application is the contention loser.

The contention winner takes over the administration of the association. Jobs can be
started, however, by the contention winner as well as by the contention loser. In
case of a conflict, such as when both communication partners want to start a job at
the same time, the association from the job of the contention winner will be used.

kset Contains the name of the key set with the maximum access privileges of the OSI
TP partner application in the local application.

If the OSI TP partner passed a user ID when an association is established, the key
set in kset becomes effective. The access privileges of the association correspond
to the key codes contained both in kset and in the key set of the user ID.

KDCADMI program interface kc_osi_lpap_str

Administering Applications 531

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

If the OSI TP partner application for the association does not pass a user ID to
openUTM the access privileges for the association form the subset of the key codes
in kset and ass_kset (minimum access privileges).

If the partner application is not assigned a key set, then kset contains blanks.

idletime_sec
Contains the maximum time in seconds that an association to the partner appli-
cation may be in the idle state before UTM closes the connection to the partner
application. The idle state means that the session is not handling any jobs.
idletime_sec = ´0´ means that the idle state will not be monitored. The connection
remains established until an explicit request to close the connection is sent.

Minimum value: ´60´
Maximum value: ´32767´

state Specifies if the OSI-LPAP partner is currently disabled.

´Y´ The OSI-LPAP partner is not disabled. Connections between the partner
application and the local application can be established or connections
already exist.

´N´ The OSI-LPAP partner is disabled. No connections between the partner
application and the local application can be established.

permit Specifies which privileges the partner application has within the local application.

´A´ (ADMIN)
The partner application has administration privileges. It may execute all
administration functions in the local application.

´N´ (NONE)
The partner application does not have any administration privileges.

If the local application is a UTM application on a BS2000 system, then the
partner application is also not allowed to execute any UTM SAT adminis-
tration functions.

´B´ (BOTH)
The partner application may execute administration functions and UTM SAT
administration functions in the local application.

´S´ (SAT)
The partner application only has UTM SAT administration privileges. It may
execute preselection functions in the local application, i.e. it can enable or
disable the SAT logging for certain events.

B

B

B

BB

B

B

BB

B

B

B

kc_osi_lpap_str KDCADMI program interface

532 Administering Applications

qlev (queue level)
qlev specifies the maximum number of asynchronous messages allowed in the
message queue of the OSI-LPAP partner. If this control value is exceeded, then any
additional asynchronous jobs sent to this OSI-LPAP partner will be rejected (i.e.
´40Z´ will be returned for any APRO-AM calls thereafter).

termn Contains the code for the type of communication partner. The code is entered in the
communication area header of the job-receiving service that was started in the local
application by the partner application. The code is defined by the user and serves
to divide the communication partners into groups of a certain type. It is not
evaluated by UTM. The code is a maximum of 2 characters long.

connect_number
Contains the number of parallel connections to the partner application that are
currently established or that are currently to be established.

connect_number = ´0´ means that no connection to the partner application currently
exists or all existing connections are to be disconnected.

Minimum value: ´0´
Maximum value: the number in associations

quiet_connect
Specifies if the QUIET property is set or is to be set for the partner application.
QUIET means that UTM closes all connections to the partner application as soon
as they are not being used for dialog jobs or asynchronous jobs. No more new
dialog jobs are accepted for the partner application.

´Y´ The QUIET property is set for the partner application.

´N´ The QUIET property is not set.

osi_con
Contains the name of the transport connection via which communication with the
partner application will occur, i.e. all connections (associations) with the partner
application are handled via this transport connection. The name is assigned to the
transport connection in the KDCDEF generation (OSI-CON statement assigned to
the OSI-LPAP partner). osi_con indicates the transport connection that is currently
set to active, i.e. that is not deactivated as a substitute connection (see the
openUTM manual “Generating Applications”).

out_queue
The number of messages in the message queue of the OSI-LPAP partners that still
have to be sent to the partner application.

If this number of messages is greater than 99999, then the number is not displayed
in full. You should therefore use the field out_queue_ex since larger numbers can be
entered in full here.

KDCADMI program interface kc_osi_lpap_str

Administering Applications 533

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

ass_kset
Only applies if the application is generated with user IDs.
ass_kset contains the name of the key set specifying the minimum access privileges
of the OSI TP partner which the partner application can use in the local application.

The key set specifies in ass_kset becomes effective when the partner application
does not pass a user ID to openUTM while an association is established (see also
kset). ass_kset describes the access privileges of the association user.

Default: no key set, i.e. the access privileges in kset always apply.

nbr_dputs
The number of pending time-driven jobs for this OSI-LPAP whose starting time has
not yet been reached.

master
Associated OSI-LPAP if the OSI-LPAP is a slave OSI-LPAP in an OSI-LPAP bundle.

bundle
Specifies whether the OSI-LPAP belongs to an OSI-LPAP bundle.

’N’ The OSI-LPAP does not belong to an OSI-LPAP bundle.

’M’ The OSI-LPAP is the master OSI-LPAP in an OSI-LPAP bundle. In this
event, the following applies:
– Only the state field can be modified with KC_MODIFY_OBJECT.
– Only the ol_name, application_context, state and bundle fields are relevant

with KC_GET_OBJECT.

’S’ The OSI-LPAP is the slave OSI-LPAP in an OSI-LPAP bundle.

out_queue_ex
See out_queue on page 493.

dead_letter_q
specifies whether an asynchronous message to an OSI-LPAP partner is saved in
the dead letter queue if it could not be sent because of a permanent error.

´Y´ Asynchronous messages to this OSI-LPAP partner which could not be sent
because of a permanent error are saved in the dead letter queue, as long
as (in case of message complexes) no negative confirmation job was
defined.

´N´ Asynchronous messages to this OSI-LPAP partner which could not be sent
because of a permanent error are not saved in the dead letter queue but
deleted.

kc_program_str KDCADMI program interface

534 Administering Applications

kc_program_str - Program units and VORGANG exits

The data structure kc_program_str is defined for the object type KC_PROGRAM. In the case
of KC_GET_OBJECT, UTM returns information in kc_program_str on the program units and
VORGANG exits of the UTM application.

Program units can be dynamically created with KC_CREATE_OBJECT and deleted with
KC_DELETE_OBJECT.

The fields in the data structure have the following meanings:

pr_name
Contains the name of the program unit.

In UTM applications on BS2000 systems, UTM returns the ENTRY or CSECT name
of the program unit.

compiler
Specifies the run time system or the compiler that has been assigned to the
program unit in the generation. The values returned by UTM depend on the
operating system platform on which the program unit is running.

In a UTM applications on BS2000 systems compiler=´I´ will be returned for all
program units that support ILCS.

The following values are possible in a UTM application on BS2000 systems:

´I´ for ILCS (Inter Language Communication Services)
´A´ for the ASSEMB assembly compiler
´C´ for the C compiler (only for KC_CREATE_OBJECT call)
´1´ for the COBOL compiler COB1
´F´ for the FORTRAN compiler FOR1
´X´ for PASCAL-XT
´P´ for PLI1
´S for SPL4

Data structure kc_program_str

char pr_name[32];

char compiler;

char load_module[32];

char load_mode;

char poolname[50];

char lib[54];

char deleted;

B

B

B

B

B

BB

BB

BB

BB

BB

BB

BB

BB

KDCADMI program interface kc_program_str

Administering Applications 535

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The following values are possible for a UTM application on Unix, Linux or Windows
systems:

´C´ for the C compiler
´2´ for the COBOL compiler of Micro Focus
´3´ for the NetCOBOL compiler of Fujitsu
´+´ for the C++ compiler

load_module
Contains the name of the load module (BS2000 systems) or shared object/DLL
(Unix, Linux and Windows systems) in which the program unit is bound. load_module
can be up to 32 characters long.
If the program unit is not assigned to any load module or shared object/DLL, then
UTM returns blanks.

load_mode
Contains the load mode of the program unit or of the load module/shared
object/DLL in which the program unit is bound. The load mode specifies when and
to where the program unit or load module/shared object/DLL will be loaded.

´U´ (STARTUP)
The program unit or load module/shared object/DLL will be loaded as an
independent unit at the start of the application.

´O´ (ONCALL)
The load module/shared object/DLL is loaded as an independent unit when
one of its VORGANG exits is called for the first time.

The following values can additionally be returned in load_mode for load modules of
a UTM application on a BS2000 system:

´S´ (STATIC)
The program unit or load module is statically bound in the application
program.

´P´ (POOL)
The program unit or load module is loaded into a common memory pool
(see poolname) at the start of the application. The load module consists only
of one public slice (no private slice).

´T´ (POOL/ STARTUP)
The public slice of the load module is loaded into a common memory pool
(see poolname) at the start of the application. The private slice belonging to
the load module is then loaded into the local process storage area (private
slice with load mode STARTUP).

X/W
X/W

X/WX/W

X/WX/W

X/WX/W

X/WX/W

B

B

BB

B

B

BB

B

B

B

BB

B

B

B

B

kc_program_str KDCADMI program interface

536 Administering Applications

´C´ (POOL/ONCALL)
The public slice of the load module is loaded into a common memory pool
(see poolname) at the start of the application. The private slice belonging to
the load module is then loaded into the local process storage area as soon
as a program unit is called that is assigned to this load module (private slice
with load mode ONCALL).

poolname
For load_mode=´P´, ´T´ or ´C´, poolname contains the name of the common memory
pool in which the program unit or the public slice of its load module was loaded at
the start of the application.

For load_mode ≠ ´P´, ´T´ or ´C´, poolname contains blanks.

lib lib contains following:

– In a UTM application on a BS2000 system generated without load modules, the
object module library from which the program unit was loaded or bound is
returned.

– In a UTM application on a BS2000 system generated with load modules, the
program library from which the load module was loaded is returned.

– In a UTM application running on Unix, Linux or Windows systems generated
with shared objects, the directory in which the shared object/DLL is stored is
returned.

deleted
Specifies in the case of KC_GET_OBJECT if the program unit was deleted from the
configuration by the dynamic administration.

´Y´ The program unit was deleted. The name is disabled, meaning no new
program unit with this name may be added.

´N´ The program unit was not deleted from the configuration.

BB
B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

KDCADMI program interface kc_ptc_str

Administering Applications 537

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_ptc_str - Transactions in PTC state

The data structure kc_ptc_str is defined for the object type KC_PTC. If KC_GET_OBJECT
is specified then kc_ptc_str shows all the distributed transactions in the state PTC (prepare
to commit) and for which there is no connection (LU6.1 session or OSI-TP) to the Commit
Coordinator. The Commit Coordinator is the partner application that determines the result
of the transaction.
prepare to commit indicates the state of a transaction in which a partner has already initiated
the end of the transaction and is waiting for a communication partner’s decision on the
transaction output. In this state, the local transaction sets locks on application or database
resources.

openUTM returns the following:

– Information about the transaction
– Job-submitter user ID of the distributed transaction.
– Name of the partner (LPAP or OSI-LPAP partner)
– Name of the session (in the case of LU6.1)

i The PTC state can be caused by the establishment of a connection to the specified
partner or by an administrative rollback of the local element of the distributed trans-
action (e.g. with operation code KC_PTC_TA and subopcode1=KC_ROLLBACK,
see page 411).

v Caution: An administrative rollback can lead to data inconsistencies and should
only be performed in exceptional cases.

The fields in the data structure have the following meanings:

ptc_ident
Specifies information relating to the transaction in the element ptc_ident of type
kc_ptc_id_str:

Data structure kc_ptc_str

struct kc_ptc_id_str ptc_ident;

char ptc_user[8];

char ptc_lpap[8];

char ptc_lses[8];

char ptc_user_type;

struct kc_ptc_id_str

char vg_indx[10];

char vg_nr[10];

char ta_nr_in_vg[5];

kc_ptc_str KDCADMI program interface

538 Administering Applications

vg_indx is the index of the service, vg_nr the number of the service and ta_nr_in_vg
the number of the transaction in the service.

In the case of operation code KC_PTC_TA with subopcode1=KC_ROLLBACK the
structure must be passed in the identification area if you wish to reset the trans-
action.

ptc_user
Specifies the job submitter user ID of the distributed transaction.

In the case of OSI TP, the field contains the name of an OSI TP association.

In the case of LU6.1, the field can contain the name of a user (USER), an LU6.1
session (LSES) or 8 spaces:

– If the field contains 8 spaces then the transaction is in the PTC state in an
asynchronous LU6.1 job-submitter service.

– If the field contains the name of a user then the transaction is in the PTC state
in the highest level LU6.1 job-submitter dialog service.

– If the content of the field is not the same as the content of the ptc_lses field then
the transaction is in the PTC state in an LU6.1 job-submitter service.

– If the content of the field is the same as the content of the ptc_lses field then the
transaction is in the PTC state in an LU6.1 job-receiver service.

ptc_lpap
Specifies the LPAP or OSI-LPAP name of the partner that determines the result of
the transaction (Commit Coordinator).

ptc_lses
In the case of LU6.1 connections, specifies the session name of the partner that
determines the outcome of the transaction (Commit Coordinator).

In the case of a PTC transaction in the job receiver, ptc_lses has the same content
as ptc_user.

In the case of OSI TP connections, the field contains spaces.

ptc_user_type
Type of entry in the field ptc_user:

U User

L LU6.1 session

O OSI TP Association

Blank If the ptc_user field is empty

KDCADMI program interface kc_pterm_str

Administering Applications 539

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_pterm_str - Clients and printers

The data structure kc_pterm_str is defined for the object type KC_PTERM. In the case of
KC_GET_OBJECT, UTM returns the following information in kc_pterm_str:

● The properties of clients and printers that were statically or dynamically added to the
configuration of the application.

● The properties of clients that are presently connected to the application via an LTERM
pool or multiplex connection.

● The properties and status of the connection to the corresponding client or printer.

● Statistical information on the connection load and the demands on the application for
the individual clients/printers.

Clients and printers can be dynamically created with KC_CREATE_OBJECT, deleted with
KC_DELETE_OBJECT or modified with KC_MODIFY_OBJECT.

mod1 Data structure kc_pterm_str Page2

– char pt_name[8]; 540

– char pronam[8]; 540

– char bcamappl[8]; 541

– char ptype[8]; 541

– char ptype_fotyp[8]; 543

– char ptype_class[40]; 543

x(PD) char lterm[8]; 544

x(GPD) char auto_connect; 544

x(GPD) char state; 544

– char cid[8]; 544

– char map; 544

– char termn[2]; 545

– char protocol; 545

– char usage_type; 546

– char listener_port[5]; 546

– char t_prot; 546

– char tsel_format; 546

x(A) char connect_mode; 547

– char pool; 547

– char mux; 547

B

B

X/W

B

kc_pterm_str KDCADMI program interface

540 Administering Applications

The fields in the data structure have the following meanings:

pt_name
Contains the name of the client or printer. The client/printer is known to the transport
system (BCAM, PCMX) under this (symbolic) name.

pronam
The name of the computer on which the client can be found or to which the printer
is connected.

In UTM applications on BS2000 systems pronam always contains data. For an RSO
printer pronam contains the value ´*RSO´.

In UTM applications running on Unix, Linux or Windows systems pronam contains
blanks for a local client or printer.

If the real computer name is longer than 8 characters:

– The pronam field contains a symbolic local name assigned for this computer by
the transport system.

– If no connection was established yet, pronam contains blanks.

– The complete name, up to 64 characters long, can be taken from the
pronam_long field.

– char contime_min[10]; 547

– char letters[10]; 547

– char conbad[5]; 547

– char deleted; 548

X(GPD) char idletime[5]; 548

– char encryption_level; 548

– char ip_addr[15]; 548

– char curr_encryption; 548

– char t_mode; 3

– char usp_hdr; 550

– char ip_addr_v6[39]; 550

– char ip_v[2]; 551

– char pronam_long[64]; 551

1 Field contents can be modified with KC_MODIFY_OBJECT; see page 352.
2 The meaning of the fields is described on the pages indicated in this column.
3 UTM-internal field; the field contents is irrelevant and will not be discussed.

mod1 Data structure kc_pterm_str Page2

B

B

X/W

X/W

KDCADMI program interface kc_pterm_str

Administering Applications 541

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

bcamappl
Name of the local UTM application via which the connection to the client/printer will
be established.

For terminals and printers bcamappl always contains the name of the application
that was specified for the KDCDEF generation in MAX APPLINAME.

For UPIC clients and TS applications bcamappl always (even if no connection is
presently established) contains the application name assigned to the client when it
was added to the configuration.

For clients that are connected to the application via a multiplex connection,
bcamappl contains the application name assigned to the multiplex connection when
it was added to the configuration as long as the connection is established.

ptype The type of client or printer.

For clients/printers that are connected to a UTM application on a BS2000 system,
either the partner type or the value ́ *ANY´ or ´*RSO´ is returned. The partner types
supported are listed in the following table:

ptype Type of client/printer termn field

*ANY The client was added to the configuration without an
exact specification of its device type. In this case, UTM
uses the device type of the client from the user service
log when establishing the connection. Only then will it
be decided if the partner type is supported or not.
Advantage of ptype=´*ANY´:
You can add clients to the configuration without
knowing their type. In addition, the administration of
the configuration is made easier because even if the
type is modified in the configuration, for example, this
client will still be able to establish a connection to the
application without you having to change the configu-
ration of the application.

If the terminal
mnemonic was not
explicitly specified
during configuration,
then the standard
terminal mnemonic of
the partner type is
used when estab-
lishing the connection.
Otherwise, the value
specified during
configuration is stored
here.

T100 Teletype T100 C0

T1000 Teletype T1000 E1

T8103 8103 FD

T8110 8110 C2

T8121V12 Printer 8121 on 8112 F7

T8122V12 Printer 8122 on 8112 F8

T8124 Printer 8124 FC

T8151 DSS 8151 F1

T8152 DSS 8152 F2

B

B

B

B

B

B

BB
B
B
B
B
B
B
B
B
B
B
B
B

BB

BB

BB

BB

BB

BB

BB

BB

BB

kc_pterm_str KDCADMI program interface

542 Administering Applications

T8160 DSS 8160 F4

T8162 DSS 8162 F6

T8167 DSS 8167 FB

T9748 1 DSS 9748 FE

T9749 DSS 9749 FE

T9750 1 DSS 9750 FE

T9751 DSS 9751 FE

T9752 DSS 9752 FF

T9753 DSS 9753 FE

T9754 DSS 9754 FI

T9755 2 DSS 9755 FG

T9756 2 DSS 9756 FG

T9763 DSS 9763 FH

T9770 DSS 9770 FK

T9770R DSS 9770R FK

T3270 DSS 3270 (IBM) FL

THCTX28 DSS X28 (TELETYPE) C5

TVDTX28 DSS X28 (VIDEO) C6

TPT80 Data station PT80 C4

T9001 9001 printer C7

T9002 9002 printer FA

T9003 9003 printer F9

T9004 9004 printer FD

T9001-3 9001-3 printer CA

T9001-89 9001-893 printer CB

T9011-18 9011-18 printer CC

T9011-19 9011-19 printer CD

T9012 9012 printer CE

T9013 9013 printer C9

T9021 9021 printer CH

T9022 9022 printer CF

T3287 3287 printer CG

ptype Type of client/printer termn field

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

KDCADMI program interface kc_pterm_str

Administering Applications 543

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The VTSU versions that support the individual terminals can be obtained from the
DCAM, FHS or TIAM Manual.
If a terminal is not supported by VTSU, then UTM rejects a request for connection
from this terminal. UTM triggers the UTM messages K064 and K107.

In a UTM application on Unix, Linux or Windows systems, ptype can contain the
following values.

*RSO Printer supported by RSO.
Instead of establishing a transport connection, UTM
reserves the printer with RSO and transmits the
message to be printed to RSO.

RS

THOST Intelligent terminal A3

APPLI Transport system application that is not a socket appli-
cation (e.g. : DCAM, CMX or UTM application)

A1

SOCKET Socket application A7

UPIC-R UPIC client A5

1 T9748 and T9750 designate the same terminal type.
2 T9755 and T9756 designate the same terminal type.

ptype Type of client/printer termn field

TTY The client is a terminal.
Default value

F1

PRINTER The significance of ptype =´PRINTER´ depends on the contents
of the ptype_fotyp field.

F2

pt_name specifies the name of a printer to which the spool on Unix
or Linux systems will print.
ptype_fotyp and ptype_class either contains blanks or the appro-
priate printer type or printer group of pt_name.

ptype =´PRINTER´ is not allowed under openUTM on Windows
systems.

APPLI The client is a TS application that does not use the socket
interface (e.g. UTM, CMX, or DCAM application).

A1

SOCKET The client is a socket application. A7

UPIC-L The client is a local Client application with the UPIC carrier
system.

A5

UPIC-R The client is a remote Client application with the UPIC carrier
system.

A5

ptype Type of client/printer termn field

BB
B
B
B

BB

BB
B

B

B

B

B

B

B

X/W

X/W

X/W

X/WX/W
X/W
X/W

XX
X

X
X
X
X

W
W

X/WX/W
X/W
X/W

X/WX/W

X/WX/W
X/W
X/W

X/WX/W
X/W
X/W

kc_pterm_str KDCADMI program interface

544 Administering Applications

lterm Name of the LTERM partner assigned to this client/printer.

auto_connect
Specifies if the connection to the client/printer will be automatically established at
the start of the application:

´Y´ When starting the application, UTM attempts to establish the connection
automatically if the client/printer is available when the local application is
started.

´N´ No automatic establishing of the connection when starting.

state Specifies if the client or printer is currently disabled.

´Y´ The client/printer is not disabled, i.e. as long as the LTERM partner
assigned to this client/printer is not disabled, connections between the
client/printer and the local application can be established, or there are
already established connections.

´N´ The client/printer is disabled. No connections between the client/printer and
the local application can be established.

cid (control identification)
Only contains data if information about a printer is requested. cid contains the
printer ID (CID) as long as a CID was assigned to the printer when it was added to
the configuration.

The CID has the following function:
– Using the CID, the printer can be identified at the program interface for the

purpose of printer control.
– If the printer is assigned to a printer control LTERM, then the printer will be

identified by the administration from the printer control LTERM using the CID.

map Specifies whether UTM performs a code conversion (ASCII <-> EBCDIC) for user
messages without any formatting flags which are exchanged between the partner
applications.

User messages are passed in the message area on the KDCS interface in the
message handling calls (MPUT/FPUT/DPUT).

´U´ (USER)
UTM does not convert user messages, i.e. the data in the message is trans-
mitted unchanged to the partner application.

´1´, ´2´, ´3´, ´4´ (SYS1 | SYS2 | SYS3 | SYS4)

is only permitted for the following TS applications:
– BS2000 systems: ptype=´SOCKET´
– Unix, Linux and Windows systems: ptype=´APPLI´ or ´SOCKET´

B

X/W

KDCADMI program interface kc_pterm_str

Administering Applications 545

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

If you specify one of these values, UTM converts the user messages
according to the code tables provided for the code conversion, see the
"Code conversion" section in the openUTM manual "Generating Applica-
tions", i.e.:

– Prior to sending, the code is converted from ASCII to EBCDIC on Unix,
Linux and Windows systems and from EBCDIC to ASCII on BS2000
systems.

– After receival, the code is converted from EBCDIC to ASCII on Unix,
Linux and Windows systems and from ASCII to EBCDIC on BS2000
systems.

openUTM assumes that the messages contain only printable characters.

For more information on code conversion, please refer to the openUTM
manual „Programming Applications with KDCS”; keyword „code
conversion".

termn (terminal mnemonic)
Contains the code for the type of communication partner. UTM KDCS program units
provide the code in the KCTERMN field of the communication area header.
The values that termn may contain can be obtained from the table for ptype on
page 541 (BS2000 systems) or on page 543 (Unix, Linux and Windows systems).

protocol
Specifies if the NEABT user protocol service ("station protocol") will be used on
connections between the UTM application and the client/printer.

´N´ The user protocol service will not be used between the UTM application and
the client/printer.

protocol=´N´ will always be output for:
– UPIC clients (ptype=´UPIC-R´)
– TS applications (ptype=´APPLI´ or ´SOCKET´)
– printers access via RSO (ptype=´*RSO´)

Clients for which protocol=´N´ is specified cannot connect to the application
over a multiplex connection.

´S´ (STATION)
The user protocol service (NEABT) is used between the UTM application
and the client/printer.

UTM uses the user protocol service NEABT, among others, to determine
the type (ptype) of a client or printer if the type was not explicitly specified
when the client/printer was added to the configuration (added with
ptype=´*ANY´).

BB

B

B

BB

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

kc_pterm_str KDCADMI program interface

546 Administering Applications

usage_type
Specifies if the communication partner in pt_name is a dialog partner or purely an
output medium.

´D´ The client is a dialog partner. The client as well as the local application can
send messages on the connections between the client and the local appli-
cation.
UPIC clients are always dialog partners (ptype=´UPIC-R´).

´O´ The client/printer is used purely as an output medium. Messages can only
be sent from the application to the client/printer. usage_type=´O´ is always
output for printers.

listener_port
Only relevant if t_prot='T'.
Only relevant if t_prot='T' or 'R'.

listener_port contains the port number of the partner application in the remote
system in TCP/IP connections. In the case of KC_GET_OBJECT, the port number
defined when the client was generated is returned.

If listener_port = ´0´, then no listener port number was generated.

t_prot Contains the address format that the client uses to sign on to the transport system.

The following address formats are possible:

´T´ native TCP/IP transport protocol TCP-IP for communication via the socket
interface (SOCKET)

´R´ RFC1006, ISO transport protocol class 0 using TCP/IP and the conver-
gence protocol RFC1006.

If the client was not assigned an address format when added to the configuration,
then the t_prot field contains a blank.

tsel_format
Contains the format indicator of the T-selector in the address of the client.

The following format indicators may occur:

´T´ TRANSDATA format

´E´ EBCDIC character format

´A´ ASCII character format

The meanings of the address formats are described in the “PCMX documentation”
on page 19.

If the client was not assigned a format indicator when added to the configuration,
then the tsel_format field contains a blank.

BB
B

B

BB

B

B

B

BB

B

B

B

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/W

X/W

X/W

KDCADMI program interface kc_pterm_str

Administering Applications 547

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

connect_mode
Specifies the current status of the connection to the client:

´Y´ The connection is established.

´W´ UTM is currently attempting to establish the connection (waiting for
connection).

´N´ The connection is not established.

In UTM applications on BS2000 systems connect_mode can also contain the
following values for clients/printers that are connected to the application via a
multiplex connection
(mux = ´Y´):

´T´ (timer)
The session with the client is in the DISCONNECT-PENDING state; the
timer used for timing the wait for the confirmation of the closing of the
connection is running.

´E´ (expired)
The session is in the DISCONNECT-PENDING state and the timer used for
timing the wait for the confirmation of the closing of the connection has run
down before the confirmation was received. The session must be explicitly
released (for example using KC_MODIFY_OBJECT and
connect_mode = ´R´,see page 354).

pool Specifies if the client is connected to the application via an LTERM pool.

´Y´ The client is connected to the application via an LTERM pool.

´N´ The client is not connected to the application via an LTERM pool.

mux Specifies if the client is connected to the application via a multiplex connection.

´Y´ The client is connected to the application via a multiplex connection.

´N´ The client is not connected to the application via a multiplex connection.

contime_min
Specifies how long the connection to the client/printer has already existed. The
length of time is specified in minutes.

letters Contains the number of input and output messages for the client/printer since the
last start of the local application.

conbad
Specifies how often the connection to the client/printer has been lost since the last
start of the application.

B

B

B

B

BB

B

B

B

BB

B

B

B

B

B

BB

BB

BB

kc_pterm_str KDCADMI program interface

548 Administering Applications

deleted
Specifies whether or not the client/printer has been deleted from the configuration.

´Y´ The client/printer has been deleted. The name, however, is disabled, i.e. no
new client/printer can be added using this name.

´N´ The client/printer has not been deleted.

idletime
Only relevant for dialog partners.

idletime contains the time in seconds, which UTM waits for a response from a client,
after a transaction is terminated or after sign-off. If the time is exceeded the
connection to the client is closed down. If the client is a terminal, the message K021
was issued before connection close-down.
0 means indefinite wait.

encryption_level
Only relevant for UPIC clients and, on BS2000 systems, with some terminal emula-
tions.
encryption_level specifies whether the UTM application demands by default for all
messages on the connection to the client
– to be encrypted or not,
– which encryption level is demanded,
– or whether the client is a “trusted” client.

The following values are possible:

´N´ (NONE)
UTM does not demand the messages exchanged between the client and
the UTM application to be encrypted by default.
Services for which encryption was generated (see kc_tac_str.encryption_level
on page 565) can only be started by a client if the client explicitly selects
encryption.

´1´ (LEVEL 1)
UTM demands by default the encryption of messages with encryption level
1. In other words, the messages are encrypted with the DES algorithm and
an RSA key with a key length of 200 bits is used for exchange of the DES
key.
Connection establishment to the client is rejected by UTM if the client does
not support at least this encryption level.

´2´ (LEVEL 2)
UTM demands by default the encryption of messages with encryption level
2. In other words, the messages are encrypted with the AES algorithm and
an RSA key with a key length of 512 bits is used for exchange of the AES
key.

KDCADMI program interface kc_pterm_str

Administering Applications 549

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

Connection establishment to the client is rejected by UTM if the client does
not support at least this encryption level.

´3´ (LEVEL 3)
UTM demands by default the encryption of messages with encryption level
3. In other words, the messages are encrypted with the AES algorithm and
an RSA key with a key length of 1024 bits is used for exchange of the AES
key.
Connection establishment to the client is rejected by UTM if the client does
not support at least this encryption level.

´4´ (LEVEL 4)
UTM demands by default the encryption of messages with encryption level
4. In other words, the messages are encrypted with the AES algorithm and
an RSA key with a key length of 2048 bits is used for exchange of the AES
key.
Connection establishment to the client is rejected by UTM if the client does
not support at least this encryption level.

´T´ (TRUSTED)
The client is a “trusted” client.
Messages exchanged between the client and the application are not
encrypted.
A “trusted” client can also start services for which the service TAC requires
encryption (generated with kc_tac_str.encryption_level =´1´ or ´2´; see
page 565).

ip_addr
Returns the partner IP address used by UTM for this connection if the address is an
IPv4 address.

On BS2000 systems, IP adresses are output only for partners where
ptype='SOCKET' ,

An IPv6 address is returned in the ip_addr_v6 field (see page 550)

In ip_addr, UTM returns the IP address of the client computer. The address is stored
in the object table of the application. UTM uses this address to establish the
connection to the client. UTM reads the IP address from the name service with the
aid of the generated processor name (pronam) when the application is started.

If the object table does not contain an IPv4 address for the client, e.g. because the
client does not use the appropriate protocol, UTM returns blanks in ip_addr.

B

B

kc_pterm_str KDCADMI program interface

550 Administering Applications

curr_encryption
Only relevant for UPIC clients and on BS2000 systems for some terminal emula-
tions.
In curr_encryption, UTM returns the encryption level for an existing connection to a
client which was agreed between the UTM application and the client for this specific
connection. For information on the properties of encryption levels 1 to 4 see also
page 548.

´N´ (NONE)
Messages exchanged on this connection are not encrypted.

´1´ (LEVEL 1)
All messages on the connection are encrypted. Encryption level 1 is used.

´2´ (LEVEL 2)
All messages on the connection are encrypted. Encryption level 2 is used.

´3´ (LEVEL 3)
All messages on the connection are encrypted. Encryption level 3 is used.

´4´ (LEVEL 4)
All messages on the connection are encrypted. Encryption level 4 is used.

´ ´ (Blank)
There is currently no connection to this client.

usp_hdr
This is only relevant for socket partners.
It indicates for which output messages UTM sets up a UTM socket protocol header
on this connection. Possible values are:

´A´ UTM creates a UTM socket protocol header for all output messages (dialog,
asynchronous, K messages) and precedes the message with it.

´M´ UTM creates a UTM socket protocol header for the output of K messages
and precedes the message with it.

´N´ UTM does not create a UTM socket protocol header for any output
message.

ip_addr_v6
Returns the partner IP address used by UTM for this connection if the address is an
IPv6 address or an IPv4 address embedded in an IPv6 format.

On BS2000 systems, IP adresses are output only for partners where
ptype='SOCKET' ,

An IPv6 address is returned in the ip_addr_v6 field (see page 550)

B

B

KDCADMI program interface kc_pterm_str

Administering Applications 551

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

UTM returns the IP address of the client computer stored in the object table of the
application in ip_addr_v6. UTM uses this address to establish the connection to the
client. UTM reads the IP address from the Name Service using the generated
computer name (pronam) when the application is started.

If there is no IPv6 address in the object tables for the client, UTM returns blanks in
ip_addr_v6.

ip_v Specifies whether the IP address used by UTM for this connection is an IPv4 or an
IPv6 address:

'V4' IPv4 Address.

'V6' IPv6 address or IPv4 address embedded in IPv6 format.

If no IP address can be returned, openUTM returns blanks.

pronam_long
Name of the computer on which the client or the printer is located.

In UTM applications on BS2000 systems, pronam_long is always filled. The
computer name in pronam_long is identical to the name specified during BCAM
generation or in the RTF file for this computer. For an RSO printer pronam_long
contains the value ´*RSO´.

In UTM applications on Unix, Linux and Windows systems, pronam_long contains
blanks for a local client or a printer.

B

B

B

B

X/W

X/W

kc_queue_str KDCADMI program interface

552 Administering Applications

kc_queue_str - Properties of temporary queues

The kc_queue_str data structure is defined for the KC_QUEUE object type. In the case of
KC_GET_OBJECT, UTM returns information in kc_queue_str about the temporary queues
that exist in the application.

The fields of the data structure have the following meanings:

qu_name
Name defined or assigned automatically by UTM when the queue was created with
QCRE.

qlev Contains the maximum number of messages that can be in the queue at any one
time.

UTM does not take into account the messages created for the queue until the end
of the transaction. The number of messages defined in qlev for a message queue
can therefore be exceeded if several messages were created for the same queue
in a single transaction.

qlev=32767 means there is no limit on the number of messages in the queue.

queue_length
Contains the number of messages in the queue that are currently being processed
or waiting to be processed.

q_mode
Indicates how UTM responds when the maximum number of messages permitted
for the queue is reached. Possible values are:

´S´ (STD)
UTM rejects any further messages for this queue.

´W´ (WRAP-AROUND)
UTM accepts any further messages. When a new message is entered, the
oldest message in the queue is deleted.

Data structure kc_queue_str

char qu_name[8];

char qlev[5];

char queue_length[8];

char q_mode;

KDCADMI program interface kc_sfunc_str

Administering Applications 553

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_sfunc_str - Function keys

The data structure r kc_sfunc_str is defined for object type KC_SFUNC. In kc_sfunc_str, In
the case of KC_GET_OBJECT, UTM returns the short description of a function key
generated in the application and specifies which function is allocated to this function key.

A transaction code, a command, a KDCS return code can be assigned to a function key or
it can be used for the stacking of services.

For UPIC clients, only the parameter ret is evaluated.

The fields in the data structure have the following meanings:

sf_name
Contains the short description of the function key. Possible values are:

BS2000 systems: K1 to K14 and F1 to F24

Unix, Linux and Windows systems: F1 to F20

Short messages containing only the value of the key are issued with the K keys.
K14 is used for ID card readers (see openUTM manual „Programming Applications
with KDCS”, ID card readers).

You can transfer the value of the F key and an input message with the F keys.

tac Contains the name of the transaction code (service TAC) allocated to this function
key.

If the function key is pressed when the service is not activated, the service
belonging to the transaction code is started.

If the function key is pressed while a service is running, then the function assigned
to the function key with ret or stack takes effect. If these two fields do not contain any
values, the first MGET call returns the code 19Z in the next program unit of the
service.

Data structure kc_sfunc_str

char sf_name[4];

char tac[8];

char stack[8];

char ret[3];

char cmd[8];

B

X/W

B

B

B

kc_sfunc_str KDCADMI program interface

554 Administering Applications

stack This is used to stack services. stack contains the name of the dialog transaction
code assigned to this function key.

If the function key is pressed while a service is active, the current service is stacked
and the service with the transaction code in stack is started.

If the function key is pressed when no service is active the transaction code
contained in the tac field is started. If the field tac contains no value, pressing the
function key causes the service to be started that has the transaction code
contained in stack.

ret Contains a KDCS return code.

If this function key is pressed while a service is running, then the field KCRCCC in
the communication area will contain the return code after the MGET call.

If this key is pressed when a service is started and if tac does not contain a value,
UTM issues message K009 or starts the BADTACS program unit. This program unit
contains the return code assigned to the function key in the first MGET call in the
field KCRCCC.

Possible values: 20Z ≤ ret ≤ 39Z.

If a UPIC client transmits the function key, on the field ret is evaluated.

cmd Name of a KDC command (e.g. KDCOFF or an administration command such as
KDCINF) which is activated when the function key is pressed.

If cmd contains a value, the fields tac, ret and stack contain blanks.

KDCADMI program interface kc_subnet_str

Administering Applications 555

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_subnet_str - Information on subnets

The data structure kc_subnet_str is defined for object type KC_SUBNET. For KC_GET_-
OBJECT, UTM returns the generation data for subnets.

The fields in the data structure have the following meanings:

mapped_name
Contains the mapped_name from the KDCDEF statement SUBNET.

relevant_bits
Contains the number of bits relevant for the subnet mask.

ip_addr_format
Specifies the address format:

V4 The address is an IPv4 subnet address.

V6 The address is an IPv6 subnet address.

ipv4_address
For ip_addr_format=V4 contains the IPv4 subnet address, otherwise blanks.

ipv6_address
For ip_addr_format=V6 contains the IPv6 subnet address, otherwise blanks.

bcamappl
Contains the BCAMAPPL name from the KDCDEF statement SUBNET.

data structure kc_subnet_str

char mapped_name[8];

char relevant_bits[3];

char ip_addr_format[2];

char ipv4_address[15];

char ipv6_address[39];

char bcamappl[8];

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

kc_tac_str KDCADMI program interface

556 Administering Applications

kc_tac_str - Transaction codes of local services

The data structure kc_tac_str is defined for the object type KC_TAC. In the case of
KC_GET_OBJECT, UTM returns the following information in kc_tac_str:

– properties of a transaction codes or a TAC queue
– statistical information on the load on the service
– the current state of the transaction code or TAC queue

Only the fields tc_name, admin, qlev, q_mode, q_read_acl, q_write_acl and state are of any
significance to the evaluation of the information of TAC queues (tac_type=´Q´).

Transaction codes can be created dynamically with KC_CREATE_OBJECT, deleted with
KC_DELETE_OBJECT or modified with KC_MODIFY_OBJECT

mod1 Data structure kc_tac_str

– char tc_name[8];

– char program[32];

x(GPD) char lock_code[4];

x(GID) char state;

– char tacclass[2];

– char admin;

– char call_type;

– char exit_name[32];

– char qlev[5];

– char tac_type;

– char real_time_sec[5];

– char cpu_time_msec[8];

– char dbkey[8];

– char runprio[3];

– char api;

– char satadm;

– char satsel;

– char tacunit[4];

– char tcbentry[8];

– char in_queue[5];

x(GIR) char used[10];

x(GIR) char number_errors[5];

x(GIR) char db_counter[10];

B

B

B

B

B

B

KDCADMI program interface kc_tac_str

Administering Applications 557

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The fields in the data structure have the following meanings:

tc_name
Contains the name of the transaction code or TAC queue whose properties UTM
returns. The name is up to 8 characters long.

program
Contains the name of the program unit assigned to this transaction code.

For TAC queues, blanks are returned.

lock_code
Contains the lock code assigned to the transaction code (access protection). Only
users/clients who possess the corresponding key code may call this transaction
code. The key code must be contained both in the key set assigned to the user ID
and in the key set assigned to the LTERM partner via which the user/client is to
connect to the application.

x(GIR) char tac_elap_msec[10];

x(GIR) char db_elap_msec[10];

x(GIR) char taccpu_msec[10];

– char deleted;

– char pgwt;

– char encryption_level;

x(GPD) char access_list[8];

– char q_mode;

x(GPD) char q_read_acl[8];

x(GPD) char q_write_acl[8];

– char nbr_dputs[10];

– char nbr_ack_jobs[10];

x(GPD) char dead_letter_q;

x(GIR) char nbr_ta_commits[10];

x(GIR) char number_errors_ex[10];

– char in_queue_ex[10];

x(GIR) char taccpu_micro_sec[10];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 356

mod1 Data structure kc_tac_str

kc_tac_str KDCADMI program interface

558 Administering Applications

The lock_code can contain a number between ´0´ and ´4000´.
In KC_CREATE_OBJECT, the maximum value that can be contained by lock_code
is the maximum value defined using the KEYVALUE operand of the KDCDEF
statement MAX.
´0´ means there is no lock code (i.e. the transaction code is not protected by a lock
code).

If you want to change the lock code, a key set must not be entered in the access_list
field.

This parameter is not permitted for TAC queues. In this case, blanks are returned.

state Specifies whether the TAC or the TAC queue is enabled or disabled:

´Y´ TACs: The transaction code is not disabled. It is available after the appli-
cation has been started. It is available until it is explicitly disabled or deleted.

TAC queues: Writing and reading is permitted.

´N´ TACs: The transaction code is disabled. The lock state=´N´ means that UTM
will not accept any more jobs for this TAC.
If the transaction code is a KDCS program unit with call_type=´B´, then the
transaction code is disabled if it is a service TAC (first TAC of a service). If
it is a follow-up TAC in a service, however, it is not disabled. Follow-up TACs
(call_type=´N´) cannot be disabled with state=´N´.

TAC queues: Reading is permitted, writing not.

´H´ (HALT)
TACs: The transaction code is completely disabled. The corresponding
program unit will not be started anymore by UTM when it is called with this
transaction code. For the transaction code of a KDCS program unit, this
means that it is disabled if it is a service TAC and if it is a follow-up TAC in
an asynchronous or dialog service.
If the transaction code is a service TAC no jobs are accepted for it.
If this TAC is called as a follow-up TAC, then the service is aborted (internal
PEND ER with 74Z).

Asynchronous jobs that have already been placed in the message queue of
the TAC for temporary storage before the lock are not started. They remain
in the queue until the TAC is released or is set to state=´N´.

TAC queues: Neither reading nor writing is possible.

KDCADMI program interface kc_tac_str

Administering Applications 559

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

´K´ (KEEP)
TACs: This value can only occur in conjunction with asynchronous trans-
action codes, that are at the same time service TACs (call_type=´B´or ´F´).

UTM accepts jobs for this transaction code. However, instead of being
processed, they are simply entered in the job queue for that transaction
code. They are processed when you change the status of the transaction
code to ´Y´ or ´N´.

TAC queues: writing is permitted, but reading not.

You can disable or release a transaction code or a TAC queue while programs are
running.

tacclass
Contains the TAC class assigned to the transaction code. tacclass contains a
number between 1 and 16 or blanks. The numbers signify:

1 - 8 dialog TAC classes

9 -16 asynchronous TAC classes

If UTM returns blanks in tacclass, then the following is true:

– No TAC classes were created during the KDCDEF generation or

– the transaction code in tc_name is a dialog TAC (tac_type=´D´) that is not
assigned to any TAC class.

admin When tac_type=´A´ or ´D´, specifies the privileges a user or client requires in order
to be able to call this transaction code or a service that contains this transaction
code as a follow-up TAC. When tac_type=´Q´, admin indicates the authorization a
user or client needs in order to access this TAC queue.

´Y´ TACs: This transaction code can only be called by a user who has adminis-
tration privileges.

TAC queues: Only a user with administration privileges can write messages
to and read messages from this queue.

´N´ No administration privileges are required for this TAC or TAC queue.

´R´ (READ)
No administration privileges are required for this TAC or TAC queue.

The program unit belonging to the transaction code can use all the functions
of KDCADMI that read the application data.

In addition, the access rights to the TAC (tac_type=´A´ or ´D´) can be limited by
means of a lock code or an access list. If it is a TAC queue (tac_type=´Q´), it is
possible to restrict the access rights by means of the parameters q_read_acl and/or
q_write_acl.

kc_tac_str KDCADMI program interface

560 Administering Applications

call_type
Specifies if a service (for example the first TAC of a service) is being started with
the transaction code or if the transaction code is a follow-up TAC in a service.

´B´ (BOTH)
A service can be started with the TAC. The TAC can also be a follow-up TAC
in a service, however.

´F´ (FIRST)
A service can be started with the transaction code.

´N´ (NEXT)
The transaction code can only be a follow-up TAC in a service. It can only
be disabled with state=´H´.

exit_name
Contains the name of the event exit VORGANG assigned to this TAC.

qlev (queue level)
For asynchronous transaction codes (tac_type=´A´) or queues (tac_type=´Q´), qlev
specifies the maximum number of messages allowed in the message queue for this
transaction code or in the TAC queues. If this control value is exceeded, how
openUTM responds depends on the value in the q_mode field.

UTM does not take into account the messages created for the queue until the end
of the transaction. The number of messages specified for a message queue in qlev
can therefore be exceeded if several messages are created for the same queue in
a single transaction.

tac_type
Specifies if jobs sent to this transaction code will be processed in the dialog or
asynchronously or whether a TAC queue was generated.

´D´ This transaction code is a dialog TAC, i.e. jobs sent to this transaction code
will be processed in the dialog with the job-submitter.

´A´ This transaction code is an asynchronous transaction code. When calling
this transaction code, an asynchronous job is created that is temporarily
stored in the message queue of the transaction code. The job is processed
separately from the job-submitter.

´Q´ A TAC queue was generated.

A message can be written to such a queue with a DPUT call and read from
the queue with a DGET call.

KDCADMI program interface kc_tac_str

Administering Applications 561

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

real_time_sec
Contains the maximum amount of real time in seconds that a program unit may use
if it is started via this transaction code. If the program unit runs longer, then UTM
aborts the service and outputs a UTM message.

real_time_sec=´0´ means that the real time used by the program unit will not be
monitored.

cpu_time_msec
Contains the maximum CPU time in milliseconds that the program unit with this
transaction code may use while processing. If the program unit runs longer, then
UTM aborts the service and outputs a UTM message.
The value ´0´ means that the time will not be monitored for the program unit started
via this transaction code.

dbkey dbkey is only relevant if the program unit belonging to the transaction code makes
database calls and if the database system is linked to UTM.
dbkey contains the database key that UTM passes from the program unit to the
database system in a database call. The format of the key depends on the database
system used. The key is a maximum of 8 characters long.
dbkey is only supported for UDS at the present.

The value dbkey=’UTM’ will result in the value of the start parameter DBKEY being
passed to the database (see the openUTM manual “Using UTM Applications on
BS2000 Systems”; start parameters).

runprio
Contains the run priority setting of the BS2000 system for the transaction code. This
run priority will be assigned to the UTM process in which the corresponding
program unit runs. In this manner you can utilize the scheduling mechanism of the
BS2000 system for run-time control of UTM program unit runs. The run priority does
not have any influence, however, on the point in time at which UTM starts a program
unit.

When a program unit is started, UTM attempts to set the run priority of the current
process to the value in runprio. If the run priority generated is not compatible with
the JOIN entries of the corresponding user ID, then the run priority of the current
process is not changed. UTM outputs the corresponding K message. If the
maximum number of runprio values allowed for the user ID and the job class are
different, then the value most favorable for the user is allowed to be used. If there
are no JOIN entries, then the run priority specified in runprio is used.

After the end of a program unit run, UTM sets the run priority back to the original
value unless the run priority was changed again during the program unit run with
the CHANGE TASK PRIORITY command. In this case, the run priority that was set
externally will be maintained after the end of the program unit run.

If runprio=´0´, then no specific run priority is generated for this transaction code.

BB

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

kc_tac_str KDCADMI program interface

562 Administering Applications

api (application programming interface)
Specifies which programming interface is used by the program unit belonging to the
transaction code.

´K´ KDCS

´C´ CPI-C

´X´ XATMI

satadm
Specifies if UTM SAT administration privileges are required to call the transaction
code.

´Y´ The TAC may only be called by users, clients or partner applications that are
permitted to carry out administration operations on the SAT logging within
the application (UTM SAT administration privileges).

´N´ The transaction code may also be called by users, clients and partner appli-
cations that do not have UTM SAT administration privileges.

satsel Specifies which events SAT will log during the corresponding program unit run
(TAC-specific setting). One requirement for logging is that SAT logging is enabled
for the application (kc_max_par_str.sat=´Y´). See also the openUTM manual “Gener-
ating Applications” and openUTM manual “Using UTM Applications on BS2000
Systems” for more information on SAT logging.

´B´ (BOTH)
Both successful and unsuccessful events are logged.

´S´ (SUCCESS)
Only successful events are logged.

´F´ (FAIL)
Only unsuccessful events are logged.

´N´ (NONE)
No TAC-specific type of SAT logging is defined.

tacunit Contains the number of accounting units charged for each call of the transaction
code in the accounting phase of UTM Accounting.
The accounting units are added to the accounting unit counter of the user ID that
called the transaction code.

tcbentry
Contains the name of the KDCDEF control statement TCBENTRY in which the TCB
entries assigned to this TAC are collected.

BB

B

B

BB

B

B

BB

B

BB

B

B

B

B

BB

B

BB

B

BB

B

BB

B

BB

B

B

KDCADMI program interface kc_tac_str

Administering Applications 563

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

in_queue
Only contains data for asynchronous TACs.
Specifies how many asynchronous messages are temporarily stored in the
message queue of the transaction code that must still be processed by the corre-
sponding program unit.

If this number of messages is greater than 99999, then the number is not displayed
in full. You should therefore use the field in_queue_ex (see page 567) since larger
numbers can be entered in full here.

used Specifies the number of program unit runs processed in all with this transaction
code since the used counter was last reset.

You can reset the counter to 0 using KC_MODIFY_OBJECT.
In UTM-S applications used is automatically rest to 0 only in regenerations with
KDCDEF and in each update generation with KDCDEF/KDCUPD. In UTM-F appli-
cations the used counter is automatically reset to 0 when the application is started.

number_errors
Specifies how many of the program unit runs started with this transaction code
terminated with errors since the number_errors counter was last reset to 0.

You can reset the counter to 0 using KC_MODIFY_OBJECT.
In UTM-S applications number_errors is automatically rest to 0 only in regenerations
with KDCDEF and in each update generation with KDCDEF/KDCUPD. In UTM-F
applications the number_errors counter is automatically reset to 0 when the appli-
cation is started.

If the number of program unit runs is greater than 99999, then the number is not
displayed in full. You should therefore use the field number_errors_ex (see page 567)
since larger numbers can be entered in full here.

db_counter
Contains the average number of database calls from a program unit started using
this transaction code since the db_counter counter was last reset to binary 0.

db_counter is always 0 for database link via the XA interface.
You can reset the counter to 0 using KC_MODIFY_OBJECT.

tac_elap_msec
Contains the average runtime of the program units started using this transaction
code since the tac_elap_msec counter was last reset (elapsed time); specified in
milliseconds. You can reset the counter to 0 using KC_MODIFY_OBJECT.

kc_tac_str KDCADMI program interface

564 Administering Applications

db_elap_msec
Contains the average time needed for processing database calls in program unit
runs using this TAC; specified in milliseconds. db_elap_msec considers all database
calls made since the counter was last reset.

db_elap_msec is always binary 0 for database link via the XA interface.
You can reset the counter to 0 using KC_MODIFY_OBJECT.

taccpu_msec
Contains the average CPU time in milliseconds needed to process this transaction
code in the program unit. The value corresponds to the CPU time needed by UTM
plus the CPU time used by the database system; specified in milliseconds.
taccpu_msec considers all program unit runs since the counter was last reset to 0.
You can reset the counter to 0 using KC_MODIFY_OBJECT.

deleted
Specifies whether or not the transaction code or the TAC queue was deleted from
the configuration.

´Y´ The transaction code or the TAC queue was deleted but the name is
disabled. You cannot generate a new transaction code or a new TAC queue
with this name.

´N´ The transaction code or the TAC queue was not deleted.

pgwt Only contains a value if your application processes jobs to the TAC classes using
priority control, i.e. only if the KDCDEF generation contains the TAC-PRIORITIES
statement.

pgwt specifies, whether blocking calls (e.g. PGWT) can be processed in a program
unit run started for this transaction.

´Y´ Blocking calls are allowed.

´N´ Blocking calls are not allowed.

KDCADMI program interface kc_tac_str

Administering Applications 565

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

encryption_level
Only relevant for service TACs (call_type=´F´or ´B´)
encryption_level specifies, whether messages for this transaction code must be
encrypted or not.

´N´ (NONE)
Message encryption is not required. A client can start a service using this
transaction code, even if the client does not encrypt the input message. The
output message to the client is only encrypted if the relevant input message
from the client was encrypted also.

´1´ (Level 1)
The input message has to be encrypted using the DES algorithm in order to
access this transaction code.

´2´ (Level 2)
The input message has to be encrypted using the AES algorithm in order to
access this transaction code.

If encryption_level =´1´ or ´2´ is specified, a client can only start a service
through this transaction code if the client meets one of the following
prerequisites:

– The client is a “trusted” client (see kc_pterm_str or kc_tpool_str field
encryption_level). A “trusted” client can start a service through the trans-
action code, even if the input message is not encrypted.

– The client has encrypted the input message to the transaction code with
at least the specified encryption level. If a “not trusted” client does not
encrypt the first input message or does not encrypt it to the required
level or if the client does not support encryption, no service is started.

All output messages to a not trusted client are encrypted.

If the transaction code is started using service concatenation, the first input
message from the client does not need to be encrypted.

If the transaction code is called without user data or if it is started through
service concatenation, then the client must be able to encrypt data.
openUTM encrypts all output dialog messages to the client and expects all
consequent input messages from a not trusted client to be encrypted in
multistep services.

kc_tac_str KDCADMI program interface

566 Administering Applications

access_list
Contains the name of a key set that describes the access rights of users to this
transaction code.

It is not permitted to specify access_list with TAC queues.

access_list and lock_code must not have the same values.

A user can only access the transaction code when the key set of the user, the key
set of the LTERM partner by means of which the user is signed on and the key set
specified by means of access_list contain at least one key code in common.

You can remove data access control by filling access_list with blanks.

If neither access_list nor lock_code contains a value, any user can access the trans-
action code.

q_mode (queue mode)
Defines how openUTM responds when a queue already contains the maximum
number of messages and the queue level has thus been reached.

´S´ UTM rejects any further jobs.

´W´ (only when tac_type=´Q´)
UTM accepts further jobs but deletes the oldest messages in the queue.

q_read_acl (only when tac_type=´Q´)
Indicates the rights (name of a key set) required by a user in order to be able to read
and delete messages from this queue.

A user can only have read access to this TAC queue if the key set of the user and
the key set of the logical terminal by means of which the user is signed on each
contain at least one key code that is also contained in the displayed key set.

If q_read_acl does not contain a value, all users can read and delete messages from
this queue.

q_write_acl (only when tac_type=´Q´)
Indicates the rights (name of a key set) required by a user in order to be able to write
messages to this queue.

A user can only have write access to this TAC queue if the key set of the user and
the key set of the logical terminal by means of which the user is signed on each
contain at least one key code that is also contained in the displayed key set.

If q_write_acl does not contain a value, all users can write messages to this queue.

nbr_dputs
Number of pending time-controlled jobs for this TAC whose start point has not yet
been reached.

KDCADMI program interface kc_tac_str

Administering Applications 567

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

nbr_ack_jobs
Number of pending acknowledgment jobs for this TAC that have not yet been
activated.

dead_letter_q
Specifies whether a queued message should be retained in the dead letter queue if
it was not processed correctly and it has not been redelivered.

'Y' Errored queued messages are backed up in the dead letter queue.

dead_letter_q ='Y' is not permitted for KDCDLETQ, KDCMSGTC, all inter-
active TACs and asynchronous TACs with CALL=NEXT.

'N' Errored queued messages are deleted if they are not redelivered.

nbr_ta_commits
Number of program unit runs for this TAC which have successfully completed a
transaction.

You can reset the counter to 0 using KC_MODIFY_OBJECT.

number_errors_ex
See number_errors on page 563.

in_queue_ex
See in_queue on page 563.

taccpu_micro_sec
Contains the average CPU time in microseconds taken to process this transaction
code in the program unit. This corresponds to the CPU time consumed by UTM plus
the CPU time required by the database system.
taccpu_micro_sec takes account of all program runs since the counter was last reset.
You can use KC_MODIFY_OBJECT to reset the counter to 0.

kc_tacclass_str KDCADMI program interface

568 Administering Applications

kc_tacclass_str - TAC classes for the application

The data structure kc_tacclass_str is defined for the object type KC_TACCLASS. In the case
of KC_GET_OBJECT, UTM returns the following information in kc_tacclass_str:

● properties of the TAC class

● statistical information on how often and for how long jobs for the TAC class had to wait
for processing

● the current maximum number of processes that may simultaneously process jobs for
the transaction code of the TAC class if the application was generated without priority
control (i.e. without the TAC-PRIORITIES statement).

The fields in the data structure have the following meanings:

tacclass
Contains the number of the TAC class. A number between 1 and 16 is output for
tacclass.

The TAC classes from 1 to 8 are dialog TAC classes.
The TAC classes from 9 to 16 are asynchronous TAC classes.

mod1

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 360

Data structure kc_tacclass_str

– char tacclass[2];

x(A)2

2 These properties can only by modified if the application was generated without the TAC-PROPERTIES
statement. Only one of these fields may be specified in a KC_MODIFY_OBJECT call.

char tasks[3];

x(A)2 char tasks_free[3];

– char pgwt;

– char waiting_msgs[10];

x(GIR) char avg_wait_time_msec[10];

– char prio[3];

x(GIR) nr_calls[10];

x(GIR) nr_waits[10];

KDCADMI program interface kc_tacclass_str

Administering Applications 569

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

tasks Only relevant if priority control was not generated for the TAC class (KDCDEF
generation without TAC-PRIORITIES statement).

Specifies how many processes of the application may process TACs of the TAC
class tacclass at the same time (absolute number).

See also page 362.

If the application is generated with priority control, tasks contains a blank.

tasks_free
Only relevant if the application was generated without the TAC-PRIORITIES
statement.

For dialog TAC classes tasks_free contains the minimum number of processes of the
application that must be kept free for processing transaction codes from other TAC
classes. For asynchronous TAC classes tasks_free contains the minimum number of
processes that must be kept free for processing transaction codes from other
asynchronous TAC classes.

UTM returns ´0´ to tasks_free if the value of tasks_free was defined neither during
KDCDEF generation nor by means of administration functions, or if a value was
defined for tasks the last time the number of processes for the TAC class was
modified.

See also page 362.

If the application is generated with priority control, tasks_free contains blanks.

pgwt Specifies if program units that contain blocking calls, for example the KDCS call
PGWT, are allowed to run in this TAC class.

´Y´ Blocking calls are allowed in this TAC class.

´N´ Blocking calls are not allowed in this TAC class.

Program units containing blocking calls are allowed in at most one dialog TAC class
and one asynchronous TAC class.

waiting_msgs
Contains the number of jobs for transaction codes of this TAC class that are
currently in temporary storage in UTM and that have not yet been processed.

avg_wait_time_msec
Contains the average wait time of jobs in the job queue assigned to the transaction
code of this TAC class.

If there is no process for the TAC class, UTM accepts jobs for the TAC class (using
free processes that are not “allowed” to process jobs to this TAC class) and tempo-
rarily stores them in the KDCFILE. This is always the case when there are jobs for

kc_tacclass_str KDCADMI program interface

570 Administering Applications

TAC classes with a higher priority level (with priority control) or (in the case of
process restriction) if the maximum number of processes that the TAC class is
allowed to process has already been reached (see tasks, tasks_free).

The time between accepting a job and starting to process it is the wait time
displayed here.

The value for avg_wait_time_msec is in milliseconds.

The value of avg_wait_time_msec can be reset to 0. If this value is reset then the
values of nr_calls and nr_waits is also implicitly reset.

prio Contains the type of priority control generated for this TAC class.
The following values are possible:

´ABS´ Absolute priorities:
A free process is always assigned to the TAC class with the highest priority,
i.e. priority 1 to 9, if jobs are waiting.The TAC class with the next lowest
priority is not served until there are no more jobs with the higher priority level
waiting in the TAC class.

´REL´ Relative priorities:
Free processes are more frequently allocated to higher TAC classes than to
lower TAC classes if jobs are waiting to be processed.

´EQ´ Equal priorities:
If there are any jobs waiting, all TAC classes are served at an equal rate.

´NO´ No priority control was generated.

nr_calls
Number of program unit runs for this TAC class.

You can reset the value to 0 using KC_MODIFY_OBJECT. If this value is reset then
the values avg_wait_time_msec and nr_waits are also implicitly reset.

nr_waits
Number of wait situations taken into account to calculate the value avg_wait_-
time_msec.

You can reset the value to 0 using KC_MODIFY_OBJECT. If this value is reset then
the values avg_wait_time_msec and nr_calls are also implicitly reset.

KDCADMI program interface kc_tpool_str

Administering Applications 571

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_tpool_str - LTERM pools for the application

The data structure kc_tpool_str is defined for the object type KC_TPOOL. In the case of
KC_GET_OBJECT, UTM returns the following information on an LTERM pool in
kc_tpool_str:

● the number of LTERM partners currently permitted for the LTERM pool

● the properties of the LTERM partners of the LTERM pool

● the type of clients that may connect to the application via this LTERM pool

● statistical data on the workload of the LTERM pool.

mod1 Data structure kc_tpool_str

– char lterm[8];

– char pronam[8];

– char ptype[8];

– char bcamappl[8];

– char connect_mode;

– char max_number[10];

– char kset[8];

– char locale_lang_id[2];

– char locale_terr_id[2];

– char locale_ccsname[8];

– char lock_code[4];

x(GP)2 char state;

x(GP)2 char state_number[10];

– char format_attr;

– char format_name[7];

– char qlev[5];

– char termn[2];

– char annoamsg;

– char netprio;

– char protocol;

– char actcon[10];

– char maxcon[10];

– char map;

x(GP) char idletime[5];

B

B

B

B

B

B

B

B

kc_tpool_str KDCADMI program interface

572 Administering Applications

The fields in the data structure have the following meanings:

lterm Contains the prefix for the names of the LTERM partners of the LTERM pools. The
names of the LTERM partners consists of this prefix and a sequential number. The
sequence goes from 1 up to the value returned in max_number.

Example

If max_number=´1000´ and lterm=´LTRM´, then the LTERM partners of the LTERM
pool are named LTRM0001, LTRM0002, ..., LTRM1000.

pronam
Specifies the computer on which the clients must be located in order to connect to
the application via this LTERM pool.

If a computer name with more than 8 characters has been generated for the
LTERM-Pool, the complete name, up to 64 characters long, can be taken from the
pronam_long field. In this case, the pronam field contains the first 8 characters of that
name.

UTM returns either the symbolic name under which the computer is known to the
local transport system or the value ´*ANY´ for an open LTERM pool.

´*ANY´ means:
Every client can sign on to the application via the LTERM pool if the client fulfills the
following conditions:

– Its terminal type matches the type specified in ptype.

– It was not explicitly added to the configuration (with the KDCDEF statement
PTERM or dynamically with object type KC_PTERM).

– No other LTERM pool exists for the computer on which the client resides nor for
its terminal type (ptype).

– char encryption_level;

– char user_kset[8];

– char usp_hdr;

– char kerberos_dialog;

– char pronam_long[64];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 364.
2 Wth KC_MODIFY_OBJECT both fields must be specified together.

mod1 Data structure kc_tpool_str

B

KDCADMI program interface kc_tpool_str

Administering Applications 573

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

ptype The type of clients that are allowed to connect to the application via this LTERM
pool. You can determine the meaning of the value returned by UTM in ptype from
the table on page 541 (BS2000 systems) or from the table on page 543 (Unix,
Linux and Windows systems).

If ptype=´*ANY´, then it is an open LTERM pool. All clients resident on or connected
to the computer specified in pronam and for which the following statements are true
can connect via this LTERM pool:

– The client is not entered explicitly in the configuration.

– No LTERM pool exists for which the client type is set in ptype for the computer
in pronam.

bcamappl
The name of the local UTM application (BCAMAPPL name) via which the
connection between the client and the UTM application will be established.

This name must be specified by the client when it wants to establish a connection
to the local application.

connect_mode
Specifies if a client can connect to the UTM application via the LTERM pool more
than once under the same name.

´S´ Each client can only connect once under the same name via the LTERM
pool.

´M´ An UPIC client (ptype=´UPIC-R´ or ´UPIC-L´) or a TS application (=’APPLI’
or ́ SOCKET´) that runs more than once on the same computer can connect
to the UTM application via the LTERM pool more than once under the same
name. A new name does not have to be created for every connection.

The UPIC client or the TS application can connect to the LTERM pool as
many times as there are LTERM partners allowed for the LTERM pool. The
name of the corresponding pool LTERM partner will be set in this case to
the name of the client or TS application, i.e. the partner will then be
identified in the application by the name triplet (name of the LTERM partner,
pronam and bcamappl). The UPIC client or the TS application is not known
in the UTM application under its local name or its application name.

max_number
Specifies the maximum number of clients that may be simultaneously connected via
this LTERM pool, i.e. max_number specifies how many LTERM partners comprise
this LTERM pool.

B

B

B

B

B

B

kc_tpool_str KDCADMI program interface

574 Administering Applications

kset Contains the name of the key set assigned to the LTERM pool. The key set deter-
mines which transaction codes the clients that connect to the application via this
LTERM pool may call. The clients may only start a transaction code if the key set
contains a key code that numerically matches the lock code of the transaction code,
or if the transaction code does not have access security, i.e. it does not possess a
lock code.

If the LTERM pool is not assigned a key set, then kset contains blanks.

The following applies for ptype=´UPIC-...´, ´APPLI´ or ´SOCKET´:

kset specifies the maximum number of access of a client which connects through
this LTERM pool.

kset always comes into effect when the client passes a true user ID to UTM during
session/conversation establishment. The access privileges result from the set of
key codes contained both in the key set of the user ID an in kset.

If the client does not pass a true user ID to openUTM for the session/conversation,
the access privileges result from the subset of key codes in kset an user_kset
(minimum access rights).

locale_lang_id, locale_terr_id, locale_ccsname
These contain the three components of the locale assigned to the LTERM pool. The
locale defines the language environment of the clients that connect to the appli-
cation via this LTERM pool (see also the openUTM manual “Generating Applica-
tions”).

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territory code.

locale_ccsname
(coded character set name)
Contains the name (up to 8 characters) of an expanded character set (CCS name;
see also the XHCS User Guide).

lock_code
Contains the lock code assigned to the LTERM partners of the LTERM pool (access
protection). Only users/clients who possess the corresponding key code may
connect via this LTERM pool.
The lock_code can contain a number between ´0´ and ´4000´. ´0´ means that the
LTERM pool is not protected by a lock code.

BB

B

B

B

B

B

B

B

B

B

B

B

B

KDCADMI program interface kc_tpool_str

Administering Applications 575

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

state, state_number
The number of LTERM partners comprising this LTERM pool is set in the KDCDEF
generation of the LTERM pool (see max_number). The number of LTERM partners
via which clients can connect to the application can, however, be reset to a smaller
value during operation by the administration. The rest of the LTERM partners are
disabled by this action. In the state and state_number fields UTM specifies how many
LTERM partners of the LTERM pool are currently permitted, i.e. not disabled. The
number of LTERM partners allowed determines how many clients can connect to
the application via this LTERM pool at the same time.

If state contains the value 'Y', the pool is permitted for the number of communication
partners specified in state_number (ON). If state contains the value 'N', the pool is
locked for the number of communication partners specified in state_number (OFF).

If all LTERM partners of the LTERM pool are disabled, then state contains the value
´Y´ and state_number the value ´0´.

format_attr, format_name
These define the start format for users on terminals connected via this LTERM pool.
After the connection between the terminal and the application is established, the
formats described in format_attr and format_name will be output on the terminal as
long as no terminal-specific restart is being executed.

format_attr
Contains the format code:

´A´ (format attribute ATTR)
The start format is a format with user attributes. The properties of the format
fields can be changed by the KDCS program unit. The format name at the
KDCS program interface is +format_name.

´N´ (format attribute NOATTR)
The start format is a format without user attributes. Neither the field nor the
format properties can be changed by the KDCS program units. The format
name at the KDCS program interface is *format_name.

´E´ (format attribute EXTEND)
The start format is a format with expanded user attributes. The properties of
the format fields as well as global format properties can be changed by the
KDCS program unit. The format name at the KDCS program interface is
#format_name.

format_name
Contains the name of the start format. The name can be up to 7 characters long and
contains only alphanumeric characters.

BB

B

B

B

B

B

B

BB

B

B

B

BB

B

B

B

BB

B

B

B

B

B

B

B

kc_tpool_str KDCADMI program interface

576 Administering Applications

qlev (queue level)
Specifies the maximum number of asynchronous messages that may be tempo-
rarily stored in the message queue of the LTERM partner belonging to this LTERM
pool for processing at one time by UTM. If the control value for an LTERM partner
of the LTERM pool is exceeded, then UTM will reject any additional asynchronous
jobs sent to this LTERM partner. The control value is specified in the KDCDEF
generation.

termn (terminal mnemonic)
Contains the code for the type of client that can connect via this LTERM pool. When
running, UTM KDCS program units that were started via the LTERM pool provide
the code in the KCTERMN field of the communication area header. The code is a
maximum of 2 characters long. The values that termn may contain can be obtained
from the table for ptype on page 541 (BS2000 systems) or on page 543 (Unix, Linux
and Windows systems).

annoamsg (announce asynchronous message)
Specifies if UTM will announce asynchronous messages on the terminal with a UTM
message in the system line before output.

´Y´ UTM announces every asynchronous message to this terminal with the
UTM message K012 in the system line. The user must then explicitly
request the asynchronous message with the KDCOUT command.

´N´ Asynchronous messages are output on the terminal immediately, i.e.
without announcement. For annoamsg = ´N´, the establishing of the
connection to this LTERM pool via a multiplex connection will only be
possible starting with OMNIS V7.0.

netprio Specifies the transport priority used on the transport connection between the appli-
cation and the clients connected via this LTERM pool.

´M´ Medium transport priority

´L´ Low transport priority

BB

B

B

BB

B

B

BB

B

B

B

BB

B

BB

BB

KDCADMI program interface kc_tpool_str

Administering Applications 577

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

protocol
Specifies whether the NEABT user service protocol will be used on connections
between the UTM application and a client that connects via this LTERM pool.

´N´ The user protocol service will not be used between the UTM application and
the client/printer.

For UPIC clients (ptype=´UPIC-R´) and TS applications (ptype=´APPLI´ or
´SOCKET´), protocol=´N´ will always be output.

No connections can be established via a multiplex connection to an LTERM
pool for which protocol=´N´ is set.

´S´ (STATION)
The user protocol service (NEABT) is used between the UTM application
and the client/printer. UTM uses the NEABT user protocol service for
LTERM pools with ptype=´*ANY´, for example to determine the type (ptype)
of a client. In this case, NEABT is always used.

actcon
Specifies how many clients are currently connected to the application via this
LTERM pool.

maxcon
Contains the maximum number of clients that were simultaneously connected to the
application via this LTERM pool in the current application run.
The counter is reset to 0 at the start of the application.

map Specifies whether UTM performs a code conversion (ASCII <-> EBCDIC) for user
messages without any formatting flags which are exchanged between the partner
applications.

User messages are passed in the message area on the KDCS interface in the
message handling calls (MPUT/FPUT/DPUT).

´U´ (USER)
UTM does not convert user messages, i.e. the data in the message is trans-
mitted unchanged to the partner application.

´1´, ´2´, ´3´, ´4´ (SYS1 | SYS2 | SYS3 | SYS4)

is only permitted for the following TS applications:
– BS2000 systems: ptype=´SOCKET´
– Unix, Linux and Windows systems: ptype=´APPLI´ or ´SOCKET´

BB
B

B

BB

B

B

B

B

B

BB

B

B

B

B

B

X/W

kc_tpool_str KDCADMI program interface

578 Administering Applications

If you specify one of these values, UTM converts the user messages
according to the code tables provided for the code conversion, see the
"Code conversion" section in the openUTM manual "Generating Applica-
tions", i.e.:

– Prior to sending, the code is converted from ASCII to EBCDIC on Unix,
Linux and Windows systems and from EBCDIC to ASCII on BS2000
systems.

– After receival, the code is converted from EBCDIC to ASCII on Unix,
Linux and Windows systems and from ASCII to EBCDIC on BS2000
systems.

openUTM assumes that the messages contain only printable characters.

For more information on code conversion, please refer to the openUTM
manual „Programming Applications with KDCS”; keyword „code
conversion".

idletime
idletime contains the time in seconds which UTM waits for a response from a client
after a single-step transaction is terminated or after sign-off (KDCSIGN). If the time
is exceeded, the connection to the client is closed down. If the client is a terminal,
message K021 was issued before connection shutdown.

The value 0 means wait without time limit.

encryption_level
Only relevant for UPIC clients and, on BS2000 systems, for some terminal emula-
tions.
encryption_level specifies whether, on the connection to the client that wants to
connect to the application via the LTERM pool, the UTM application
– wants to demand encryption of messages by default,
– if it does, which encryption level must be used,
– wants to know whether the clients are „trusted“ clients.

The following values are possible:

´N´ (NONE)
UTM does not want the messages to be encrypted by default.
Services for which encryption was generated (see kc_tac_str.encryption_level
on page 565) can only be started by a client connected through this pool if
the client agrees encryption when setting up the connection.

´1´ (LEVEL 1)
UTM demands by default the encryption of messages with encryption level
1. In other words, the messages are encrypted with the DES algorithm and
an RSA key with a key length of 200 bits is used for exchange of the DES
key.

KDCADMI program interface kc_tpool_str

Administering Applications 579

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

Connection establishment to the client is rejected by UTM if the client does
not support at least this encryption level.

´2´ (LEVEL 2)
UTM demands by default the encryption of messages with encryption level
2. In other words, the messages are encrypted with the AES algorithm and
an RSA key with a key length of512 bits is used for exchange of the AES
key.
Connection establishment to the client is rejected by UTM if the client does
not support at least this encryption level.

´3´ (LEVEL 3)
UTM demands by default the encryption of messages with encryption level
3. In other words, the messages are encrypted with the AES algorithm and
an RSA key with a key length of 1024 bits is used for exchange of the AES
key.
Connection establishment to the client is rejected by UTM if the client does
not support at least this encryption level.

´4´ (LEVEL 4)
UTM demands by default the encryption of messages with encryption level
4. In other words, the messages are encrypted with the AES algorithm and
an RSA key with a key length of 2048 bits is used for exchange of the AES
key.
Connection establishment to the client is rejected by UTM if the client does
not support at least this encryption level.

´T´ (TRUSTED)
The client is a “trusted” client. Messages exchanged between the client and
the application are not encrypted. A “trusted” client can also start services
for which the service TAC requires encryption (generated with
kc_tac_str.encryption_level =´1´ or ´2´; see page 565).

user_kset
Only relevant with ptype=´UPIC-...´, ´APPLI´ or ´SOCKET´.

user_kset contains the name of the key set defining the minimum access privileges
of the client in the local application.

The key set specified in user_kset only comes into effect if the client has signed on
under the connection user ID (see also kset).

The access rights in kset always apply.

kc_tpool_str KDCADMI program interface

580 Administering Applications

usp_hdr
Indicates the output messages for which UTM creates a UTM socket protocol
header on this connection. Possible values are:

´A´ (ALL)
UTM creates a socket protocol header for all output messages (dialog,
asynchronous, K messages) and precedes the message with it (ALL).

´M´ (MSG)
UTM creates a UTM socket protocol header for the output of K messages
and precedes the message with it (MSG).

´N´ (NO)
UTM does not create a UTM socket protocol header for any output
message (NO).

The values ´A´ and ´M´ can only occur for LTERM pools that are configured for
communication via socket connections (ptype=´SOCKET´).

kerberos_dialog

´Y´ When the connection is established ,a Kerberos dialog is conducted for
clients that support Kerberos and are connected directly to the application
via this terminal pool (not via OMNIS).

´N´ No Kerberos dialog is performed.

For more detailed information, refer to the openUTM manual “Generating Applica-
tions”.

pronam_long
Specifies the computer on which the clients have to be located in order to be able
to connect to the application using this LTERM-Pool.

UTM returns either the symbolic name under which the computer is known to the
local transport system or the value ´*ANY´ for an open LTERM-Pool.

´*ANY´ means that any client satisfying the following conditions can sign on to the
application using the LTERM-Pool:

– Its type corresponds to the specification in ptype.

– It has not been explicitly entered in the configuration (with the KDCDEF
statement PTERM or dynamically with the object type KC_PTERM).

– No other LTERM-Pool exists for the computer on which the client is located and
its terminal type (ptype).

B

BB

B

B

BB

B

B

KDCADMI program interface kc_transfer_syntax_str

Administering Applications 581

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_transfer_syntax_str - Transfer syntax for communication via
OSI TP

The data structure kc_transfer_syntax_str is defined for object type KC_TRANS-
FER_SYNTAX. In the case of KC_GET_OBJECT, UTM returns the local name and the
object identifier of a transfer syntax in kc_transfer_syntax_str.
During communication via OSI TP the transfer syntax specifies in which form the user data
is transferred to the communication partner. Both communication partners must use the
same transfer syntax on a connection.

The fields of the data structure have the following meanings:

transfer_syntax_name
Contains the name generated locally for the transfer syntax. It is at most 8
characters long.

object_id
Contains the object identifier of the transfer syntax.

The object identifier consists of at least 2 and at most 10 components. The
individual components are positive integers between 0 and 67108863.

For each component of the object identifier, UTM returns a field element, i.e. the
number of occupied field elements in object_id corresponds to the number of
components. The remaining field elements contain binary zeros.

For further information on the object identifier see the openUTM manual “Gener-
ating Applications”.

Data structure kc_transfer_syntax_str

char transfer_syntax_name[8];

char object_id[10][8];

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

582 Administering Applications

kc_user_str, kc_user_fix_str, kc_user_dyn1_str and
kc_user_dyn2_str user IDs

The data structures kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str are
defined for the object types KC_USER, KC_USER_FIX, KC_USER_DYN1 and KC_US-
ER_DYN2. The data structure kc_user_str is subdivided into three substructures in order to
improve performance when accessing user data in UTM cluster applications. All the data in
UTM cluster applications stored in the cluster user file is located in the data structure kc_us-
er_dyn2_str.

User IDs can be dynamically created with KC_CREATE_OBJECT, deleted with
KC_DELETE_OBJECT or modified with KC_MODIFY_OBJECT.

If you want to create user IDs or make modifications, you must use the structure kc_user_str.
The other structures are only intended for read operations with KC_GET_OBJECT.

In the case of KC_GET_OBJECT, UTM returns the following information concerning the
user ID in kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str, :

● The attributes assigned to this user ID, such as the type and method of authentication
(password, magnetic stripe card), start format, access privileges, administration privi-
leges.

● The number of jobs entered by this user ID and statistical data on the resources
demanded while processing the jobs.

● The number of asynchronous jobs running under this user ID.

● The number of users currently signed on with the application under this user ID and the
time of the last sign-on under this user ID.

● The number of security violations by users/clients that have signed on using this user
ID.

● The properties of the associated USER queue

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 583

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

mod1 Data structure kc_user_str Page2

– char us_name[8]; 587

x(GPD) char kset[8]; 587

x(GPD) char state; 587

– char card_position[3]; 587

– char card_string_lth[3]; 587

– char card_string_type; 587

– union kc_string card_string; 587

x(GPD) union kc_pw password; 588

x(GPD) char password_type; 588

– char password_dark; 589

– char card_id[32];3 589

x(GPD)4 char format_attr; 589

x(GPD)3 char format_name[7]; 589

– char locale_lang_id[2]; 590

– char locale_terr_id[2]; 590

– char locale_ccsname[8]; 590

– char protect_pw_lth; 590

– char protect_pw_compl; 590

– char protect_pw_time[3]; 591

– char restart; 591

– char permit; 591

– char satsel; 592

– char user_type; 592

– char lterm_curr[8]; 592

– char connect_mode; 593

– char in_service; 593

– char number_tacs[10]; 593

– char cputime_sec[10]; 593

– char seccounter[5]; 593

– char deleted; 593

x char protect_pw_time_left[3]; 594

– union kc_sign_date sign_time_date; 594

B

B

B

B

B

B

B

B

B

B

B

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

584 Administering Applications

– char asyn_services[10]; 595

– char clients_signed[10]; 595

– char protect_pw_min_time[3]; 595

– char qlev[5]; 595

– char out_queue[5]; 596

x(GPD) char q_read_acl[8]; 596

x(GPD) char q_write_acl[8]; 596

– char q_mode; 596

– char certificate[10]; 596

– char cert_auth[10]; 596

x char pw_encrypted; 597

x(GIR) char bcam_trace; 597

– char principal[100]; 597

– char node_last_excl_signon[4] 598

– char exclusively_signed; 598

– union kc_sign_date excl_sign_time_date; 598

– char out_queue_ex[10]; 598

– char ptc; 598

– char bound_ptc; 598

– char bound_service; 598

-- char cputime_msec[10]; 599

x(GPD) union kc_pw16 password16; 599

x(GPD) char protect_pw16_lth[2]; 599

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 366.
2 The meaning of the fields is described on the pages indicated in this column..
3 By default, this is filled with blanks.
4 When you change the start format with KC_MODIFY_OBJECT you must enter values for format_name and

format_attr.

mod1 Data structure kc_user_str Page2

B

B

B

B

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 585

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

Data structure kc_user_fix_str Page1

1 The meaning of the fields is described on the pages indicated in this column..

char us_name[8]; 587

char card_position[3]; 587

char card_string_lth[3]; 587

char card_string_type; 587

union kc_string card_string; 587

char card_id[32];2

2 By default, this is filled with blanks.

589

char restart; 591

char permit; 591

char satsel; 592

char user_type; 592

char qlev[5]; 595

char certificate[10]; 596

char cert_auth[10]; 596

char principal[100]; 597

Data structure kc_user_dyn1_str Page1

char us_name[8]; 587

char kset[8]; 587

char state; 587

char format_attr; 589

char format_name[7]; 589

char lterm_curr[8]; 592

char connect_mode; 593

char in_service; 593

char number_tacs[10]; 593

char cputime_sec[10]; 593

char asyn_services[10]; 595

char deleted; 593

char out_queue[10]; 596

B

B

B

B

B

B

B

B

B

B

B

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

586 Administering Applications

char q_read_acl[8]; 596

char q_write_acl[8]; 596

char q_mode; 596

char bcam_trace; 597

char clients_signed[10]; 595

union kc_sign_date sign_time_date 594

char cputime_msec[10]; 599

1 The meaning of the fields is described on the pages indicated in this column..

Data structure kc_user_dyn2_str Page1

char us_name[8]; 587

union kc_pw password; 588

char password_type; 588

char password_dark; 589

char locale_lang_id[2]; 590

char locale_terr_id[2]; 590

char locale_ccsname[8]; 590

char protect_pw_lth; 590

char protect_pw_compl; 590

char protect_pw_time[3]; 591

char protect_pw_time_left[3]; 594

char protect_pw_min_time[3]; 595

char pw_encrypted; 597

char seccounter[5]; 593

char exclusively_signed; 598

union kc_sign_date excl_sign_time_date; 598

char node_last_excl_signon[4] 598

char ptc; 598

char bound_ptc; 598

char bound_service; 598

union kc_pw16 password16; 599

char protect_pw16_lth[2]; 599

Data structure kc_user_dyn1_str Page1

B

B

B

B

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 587

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The fields in the data structures have the following meanings:

us_name
Contains the name of the UTM user ID. The user specifies the user ID when signing
on, and a UPIC client specifies the user ID when establishing a conversation with
the application. us_name can be up to 8 characters long.

kset Contains the name of the key set assigned to the user ID. The key set determines
the access privileges of the user within the application. The user can only call a
service if both the key set of the user ID and the key set of the LTERM partner (by
means of which the user connects to the application) contain a key or access code
that corresponds to the lock code or access list of the requested service.

The name of a key set can be up to 8 characters long.

You can define a different key set in kset or remove the current key set by filling kset
with blanks.

state Specifies if the user ID is currently permitted to sign on or connect, or if it is disabled.

´Y´ The user ID is allowed.

´N´ The user ID is currently disabled; no user or client may sign on to or
establish a connection to the application with this user ID.

The user ID can be disabled or permitted to sign on or connect again while the
program is running. Disabling takes effect at the next sign-on attempt.

card_position, card_string_lth, card_string_type, card_string
You can determine if access to the application requires a magnetic strip card for this
user ID using these fields. The fields specify which subfield of the identification
information on the magnetic stripe will be checked and what information must be
stored in this subfield.

Specifying card_xx excludes the possibility of specifying principal.

card_position
Specifies the number of the byte at which the identification information to be
checked begins; for example card_position = ´4´ means that the 4th byte of identifi-
cation information corresponds to the 1st character of the section to be checked.

card_string_lth
Specifies how long the section of identification information to be checked is. The
length is specified in bytes.

1 The meaning of the fields is described on the pages indicated in this column..

BB

B

B

B

B

B

B

B

B

B

B

B

B

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

588 Administering Applications

card_string_type
Specifies if the identification information to be checked is to be interpreted as a
hexadecimal string or as a character string.

´X´ The identification information is a hexadecimal string.

´C´ The identification information is a string of printable, alphanumeric
characters.

´N´ The user ID was configured without a magnetic strip card. In this case,
card_string_lth and card_position contain ´0´ and blanks are returned in
card_string.

card_string
The string that must be contained in the section to be checked on the magnetic
stripe card in order for the user with this user ID to successfully sign on to the appli-
cation.
UTM returns the string in a union of type kc_string.

If the identification information is a hexadecimal string (card_string_type=´X´), then
each half byte is represented by one character.
If card_string_type=´C´, then the contents of card_string are irrelevant after the length
specified in card_string_lth.
If card_string_type=´X´, then the contents of card_string are irrelevant after the length
specified by 2 * card_string_lth.

password
This parameter is no longer supported.

password_type
Specifies in a KC_GET_OBJECT call if a password was generated for the user ID.

´Y´ A password was generated for the user ID.

´N´ No password was generated for the user ID.

When changing a password with KC_MODIFY_OBJECT or when adding a new
user ID, you specify the code used for the password in password_type.

´C´ The password is specified as a character string.

´X´ The password is specified as a hexadecimal string.

On Unix, Linux and Windows systems, this specification is only permitted if
the password is already encrypted.

union kc_string

char x[200];

char c[100];

B
B

B

BB

BB

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

X/W

X/W

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 589

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

´N´ No password is specified.

password_dark
Specifies if the password must be hidden when entered at the terminal:

´Y UTM places the user in an intermediate dialog after signing on (KDCSIGN)
in which the password is entered in a darkened field.

´N´ The user has to pass the password to UTM with the user ID when signing
on (KDCSIGN). The password is not hidden when the user enters it.

For Unix and Linux systems only:
The entry specified in password_dark is ignored. The password is always
non-displaying (“dark”). Whether or not the password has to be entered in
a non-displaying field at sign-on via dialog terminal processes depends on
the generation of the application. If the application is generated with
formatting, the password must be entered in a non-displaying field.

card_id
Card identifier of the chip card.

The user must identify with a chipcard on sign-on.

In the case of operation code KC_GET_OBJECT, blanks are returned if the user
has been generated without a chip card.

format_attr, format_name
These describe the user-specific start format. This start format is automatically
output to the terminal after every successful sign-on if there are no open services
for this user ID. If the user is still in a service after the access privileges have been
successfully checked, then the start format does not appear, and the last dialog
screen will be output instead (automatic restart).

format_attr
Contains the format code:

´A´ (format attribute ATTR)
The start format is a format with user attributes. The properties of the format
fields can be changed by the KDCS program unit. The format name at the
KDCS program interface is +format_name.

´N´ (format attribute NOATTR)
The start format is a format without user attributes. Neither the field nor the
format properties can be changed by the KDCS program units. The format
name at the KDCS program interface is *format_name.

XX

X

X

X

X

X

BB

B

B

B

B

BB

B

B

B

B

B

B

B

BB

B

B

B

BB

B

B

B

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

590 Administering Applications

´E´ (format attribute EXTEND)
The start format is a format with expanded user attributes. The properties of
the format fields as well as global format properties can be changed by the
KDCS program unit. The format name at the KDCS program interface is
#format_name.

format_name
Contains the name of the start format. The name can be up to 7 characters long and
contains only alphanumeric characters.

locale_lang_id, locale_terr_id, locale_ccsname
These contain the three components of the locale assigned to the user ID. The
locale defines the language environment of the users/clients that connect to the
application via this user ID (see also the openUTM manual “Generating Applica-
tions”).

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territory code.

locale_ccsname
(coded character set name)
Contains the up to 8 characters long name of an extended character set (CCS
name; see also the XHCS User Guide).

protect_pw_lth
This parameter is no longer supported.

protect_pw_compl
Specifies the complexity level the password for the user ID must have.

´0´ (NONE)
Any string can be specified as the password.

´1´ (MIN)
A maximum of two characters in a row may be exactly the same in the
password.

´2´ (MEDIUM)
A maximum of two characters in a row may be exactly the same in the
password. The password must contain at least one letter and one number.

´3´ (MAX)
A maximum of two characters in a row may be exactly the same in the
password. The password must contain at least one letter, one number and
one special character. Special characters are all characters not in a-z, A-Z,
and 0-9. The space character is also a special character.

BB
B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 591

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

protect_pw_time
Specifies the maximum number of days the password is valid (duration of validity).

The validity of the password runs out at the end of the last day of the duration of
validity. If, for example, a password is generated with a validity of one day, then the
validity will run out at 24:00 hrs. on the following day.

Shortly before the validity runs out, UTM requests the user to change the password
with the K121 UTM message.

If the validity runs out, the following applies:
If the grace sign-on is generated (kc_signon_str.grace=´Y´) the user can change the
password when next signing on.
If the grace sign-on is not generated, UTM will reject an attempt to sign on and
issues message K120. The administrator must then change the password.

protect_pw_time = ´0´ means that the password is valid indefinitely.

restart Specifies whether UTM executes an automatic restart for this user ID.

´Y´ UTM executes an automatic restart for users who sign on using this user ID.

UPIC client that are signed on to UTM under this user ID can initiate the
restart of an open service when a new connection is established by sending
the KDCDISP command.

´N´ UTM does not execute an automatic restart for users who sign on using this
user ID.

If the application is generated with SIGNON MULTI-SIGNON=YES, several
users/clients can be signed on under this user ID at the same time. Only one
of these users may be signed on at the terminal. Any number of UPIC
clients, TS applications and OSI-TP partners can be signed on at the same
time under this user ID, however.

permit Specifies which privileges the user ID has within the local application.

´A´ (ADMIN)
The user ID has administration privileges, i.e. all administration functions in
the local application may be executed by this user ID.

´N´ (NONE)
The user ID does not have administration privileges.

If the local application is a UTM application on a BS2000 system, UTM SAT
administration functions are also not permitted to be executed under this
user ID.

´B´ (BOTH)
Administration functions and UTM SAT administration functions may be
executed in the local application under this user ID.

B

B

B

BB

B

B

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

592 Administering Applications

´S´ (SAT)
The user ID has UTM SAT administration privileges. Preselection functions
may be executed under this user ID, i.e. the SAT logging can be enabled or
disabled for certain events.

satsel Specifies which events SAT will log for this user ID. One requirement for logging is
that SAT logging is enabled for the application (kc_max_par_str.sat=´Y´). See also
the openUTM manual “Generating Applications” and openUTM manual “Using
UTM Applications on BS2000 Systems” for more information on SAT logging.

´B´ (BOTH)
Both successful and unsuccessful events are logged.

´S´ (SUCCESS)
Only successful events are logged.

´F´ (FAIL)
Only unsuccessful events are logged.

´N´ (NONE)
No user-defined type of SAT logging is defined.

user_type
Specifies the type of client for which the LTERM partner is created for user IDs that
are assigned to an LTERM partner.

´A´ (APPLI)
The user ID is assigned to the LTERM partner of a TS application of the type
APPLI (PTERM with PTYPE=APPLI).

´S´ The user ID is assigned to the LTERM partner of a socket application
(PTERM with PTYPE= SOCKET).

´U´ (UPIC)
The user ID is assigned to the LTERM partner of a UPIC clients (PTERM
with PTYPE=UPIC-R or UPIC-L).

For all other user IDs a blank will be returned in user_type.

lterm_curr
The following cases must be distinguished:

The application is generated with SIGNON MULTI-SIGNON=NO
(i.e. multiple sign-ons are not allowed):
lterm_curr contains the LTERM partner or the OSI-LPAP partner through which a
user with this user ID is signed on.
Exception: lterm_curr contains blanks if the sign-on is to start an asynchronous
service via OSI TP.

BB
B

B

B

BB

B

B

B

BB

B

BB

B

BB

B

BB

B

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 593

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The application is generated with SIGNON MULTI-SIGNON=YES
(multiple sign-ons are possible):

– If a user with this user ID is connected to the application via a terminal, then
lterm_curr contains the name of the LTERM partner assigned to the terminal.

– If the user ID is generated with restart=´Y´, then lterm_curr contains the name of
the LTERM or OSI-LPAP partner through which a client with this user ID is
connected.
Exception: signing on is handled via OSI TP and the functional unit “commit”
was selected, or signing on is handled via OSI TP to start an asynchronous
service. In this case lterm_curr contains blanks.

In all other cases lterm_curr contains blanks.

connect_mode
Specifies whether a user or a client with this user ID is currently connected through
the LTERM or OSI-LPAP partner in lterm_curr (´Y´) or not (´N´).

in_service
Specifies whether a service is currently running under this user ID through the
LTERM or OSI-LPAP partner in lterm_curr.

´Y´ A service is open which has reached at least one consistency point.

´N´ Currently no service is running which has reached at least one consistency
point.

number_tacs
Contains the number of program units executed under this user ID. In UTM-S appli-
cations, the value of number_tacs is reset to 0 in each regeneration with KDCDEF or
in each update generation with KDCDEF/KDCUPD. In UTM-F applications,
number_tacs is reset to 0 each time the application is started.

cputime_sec
Contains the number of CPU used for processing jobs for this user ID since the last
connection establishment. However, the value returned in cputime_sec does not
contain the CPU time used for database calls.

seccounter
Contains the number of security breaches for this user ID (e.g. incorrect password,
illegal transaction code) since the application was last started.

deleted
Specifies whether the user ID was deleted from the configuration or not.

´Y´ The user ID was deleted with a delay (KC_DELAY). However, the name is
still disabled, i.e. you cannot create a new user ID with this name.

´N´ The user ID was not deleted.

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

594 Administering Applications

protect_pw_time_left
For opcode KC_GET_OBJECT:
Specifies for how much longer the current password is valid. protect_pw_time_left
specifies the period in days.

The following values are also possible:

´ ´ (Blanks)
No password was generated for this user ID or the password was deleted.

´000´ The password expires on the current day.

´-1´ A password with an indefinite term of validity was assigned to this user ID
(protect_pw_time=´0´).

´-2´ The term of validity of the password has aready expired.

For opcode KC_MODIFY_OBJECT:
Only relevant in applications generated with SIGNON GRACE=YES and for user
IDs for which a restricted password validity period has been generated.
In protect_pw_time_left, you specify whether the generated period of validity is to
apply to the new password. Any specification in this field is ignored unless there is
also a specification for password and password_type.
If you specify protect_pw_time=-1'(left or right-aligned) then the generated period of
validity (starting from the time of the modification) applies for the new password.
If you do not specify anything then the new password is immediately invalid due to
the expiry of the period of validity. The user must change the password the next time
he or she signs on.
Any value other than ‘-1’ is rejected.

sign_time_date
Specifies when a user or client last signed on with UTM using this user ID.

UTM returns the date and time at which a user last signed on in the field cstring of
a union to the type kc_sign _date.

union kc_sign_date

char cstring[14];

struct cstr_str cstring_struct;

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 595

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

where

The data is output in the format ´YYYYMMDDhhmmss´, YYYY being the year, MM
the month, DD the day, hh the hour, mm the minute and ss the second.

If no user or client has as yet signed on with the application using this user ID, UTM
returns ´00000000000000´.

asyn_services
Contains the number of asynchronous jobs currently running for this user ID.

clients_signed
Contains the number of communication partners currently signed on at the appli-
cation under this user ID.

The value may be temporarily greater than 1 even in applications generated with
SIGNON MULTI-SIGNON=NO if an OSI TP communication partner is currently
signed on under this user ID for the generation of an asynchronous job.

protect_pw_min_time
Specifies the minimum term of validity of the password in days.
After the password has been changed, the user cannot change it again before this
minimum period has expired.

The user can always change the password after it has been previously changed by
the administrator or after a regeneration, regardless of whether or not the minimum
term of validity has expired.

qlev (queue level)
Indicates the maximum number of messages that can be stored in the queue of the
user. If the threshold value is exceeded, the response of openUTM depends on the
value in the q_mode field.

UTM ignores the messages created for the queue until the end of the transaction.
The number of messages for a message queue specified in qlev can therefore be
exceeded if several messages are created for the same queue in a single trans-
action.

struct cstr_str

char year[4];

char month [2];

char day[2];

char hour[2];

char minute[2];

char sec[2];

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

596 Administering Applications

If qlev=0 is specified, no messages can be stored in the queue. If qlev=32767 is
specified, there is no limit on the queue length.

out_queue
Indicates the number of messages in the user’s message queue.

For more detailed information, refer to the openUTM manual “Generating Applica-
tions”.

If the number of messages is greater than 99999, then the number is not displayed
in full. You should therefore use the field out_queue_ex or the field out_queue from the
data structure kc_user_dyn1 since larger numbers can be entered in full here.

q_read_acl
Indicates the rights (name of a key set) required by another user in order to read
and delete messages from the user queue.
Another user can only have read access to this queue if the key set of the user’s
user ID and the key set of the LTERM partner by means of which the user is signed
on each have at least one key code that is also contained in the displayed key set.

If q_read_acl does not contain a value, all users can read and delete messages from
this queue.

q_write_acl
Indicates the rights (name of a key set) that another user requires in order to write
messages to this user queue.
Another user can only have write access to this queue if the key set of the user’s
user ID and the key set of the LTERM partner by means of which the user is signed
on each have at least one key code that is also contained in the displayed key set.

If q_write_acl does not contain a value, all users can write messages to this queue.

q_mode (queue mode)
Indicates how UTM responds if the maximum number of as yet unexecuted jobs is
reached in the queue of the user (see qlev). Possible value are:

´S´ UTM rejects any further messages.

´W´ UTM accepts any further messages. However, when a new message is
written to the queue, the oldest message in the queue is deleted.

certificate
This parameter is no longer supported.

cert_auth
This parameter is no longer supported.

B

B

B

B

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 597

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

pw_encrypted
The field pw_encrypted is only relevant for KC_MODIFY_OBJECT. pw_encrypted
contains always blanks in the case of querying information with KC_GET_OBJECT.

When changing the password you specify in pw_encrypted whether the password
specified in password16 is already encrypted.

'N' The password is not encrypted (default).

'Y' / 'A' The password is already encrypted. This may occur, for example, if the
encrypted password results from a K159 message of a standby application.

bcam_trace
Specifies whether the BCAM trace is explicitly enabled for this USER.

'Y' The BCAM trace is explicitly enabled for this USER.

'N' The BCAM trace is not explicitly enabled for this USER.

It only makes sense to evaluate the field using KC_GET_OBJECT if the BCAM
trace is enabled for individual USERs. If the BCAM trace is generally enabled (see
kc_diag_and_account_par_str) bcam_trace='N' is returned here for this user.

The BCAM trace can be explicitly enabled or disabled by calling KC_MODIFY_-
OBJECT. The BCAM trace can then only be enabled for individual USERs
– if it is disabled for all USERs (see kc_diag_and_account_par_str) or
– if it has only been enabled for individual USERs up to now.

principal
The user is authenticated using Kerberos. It is only possible to authenticate users
using Kerberos if the user signs in directly (not via OMNIS) at a terminal that
supports Kerberos.

Specifying principal excludes the possibility of specifying card_xx and password.

If a query is issued with KC_GET_OBJECT, the principal is displayed here if the
user has been generated with Kerberos authentication.

When calling KC_CREATE_OBJECT, you enter an alphanumeric string of the
following form here:

windowsaccount@NT-DNS-REALM-NAME'

windowsaccount
Domain account of the user

NT-DNS-REALM-NAME
DNS name of the Active Directory domain. This name is a fixed value for
every Active Directory domain and was assigned when the Kerberos key
was set up.

BB

B

B

B

B

B

B

B

B

B

BB

B

BB

B

B

B

kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str KDCADMI program interface

598 Administering Applications

node_last_excl_signon
This field is only relevant for UTM cluster applications.
Number (index) of the node application that a user/client with this user ID was most
recently exclusively signed on to.

exclusively_signed
This field is only relevant for UTM cluster applications.
exclusively_signed specifies whether a user/client is currently signed on exclusively
with this user ID.

´Y´ The user/client is currently signed on exclusively.

´N No user/client is signed on exclusively with the user ID.

excl_sign_time_date
This field is only relevant for UTM cluster applications.
Date and time that this user most recently signed on exclusively.

UTM returns the date and time of the last sign-on in a union of type kc_sign_date.

where

The output has the form ´YYYYMMDDhhmmss´. Where YYYY is the year, MM the
month, DD the day, hh the hour, mm the minute and ss the second.

If no user or client has yet signed on exclusively with the user ID, openUTM returns
´00000000000000´.

out_queue_ex
see out_queue on page 596.

ptc The user has an open service with a transaction in the PTC state

union kc_sign_date

char cstring[14];

struct cstr_str cstring_struct;

struct cstr_str

char year[4];

char month [2];

char day[2];

char hour[2];

char minute[2];

char sec[2];

KDCADMI program interface kc_user_str, kc_user_fix_str, kc_user_dyn1_str, kc_user_dyn2_str

Administering Applications 599

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

bound_ptc
The user has a node-bound service with a transaction in the PTC state (relevant
only for UTM cluster applications).

bound_service
The user had a node-bound service on the last sign-off (relevant only for UTM
cluster applications).

cputime_msec
Indicates the number of CPU milliseconds used since the last establishment of a
connection for the processing of jobs for this user ID. However, the value returned
in cputime_msec does not include the CPU time used for database calls.

password16
password16 always contains blanks, even if a password is defined for the user ID,
when information is queried with KC_GET_OBJECT.

The password16 field is only relevant for KC_MODIFY_OBJECT and
KC_CREATE_OBJECT. You can then pass the new password for the user ID in
password to UTM (see page 229 and 367).

Specifying password16 excludes the possibility of specifying principal.

protect_pw16_lth
Specifies the minimum number of characters a password for the user ID must have
in order for it to be accepted by UTM (minimum length of the password). The admin-
istrator can only delete the user’s password if ´00´ is returned in protect_pw16_lth.

B

Data structures KDCADMI program interface

600 Administering Applications

11.3.2 Data structures used to describe the application parameters

All data structures that are provided for passing application parameters are described in the
following section. Every single parameter type is provided its own data structure in the
kcadminc.h header file. The name of the corresponding data structure is created from the
name of the parameter type and the suffix "_str". The descriptions are listed in alphabetically
ascending order according to the names of the data structures.

KDCADMI program interface kc_cluster_curr_par_str

Administering Applications 601

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_cluster_curr_par_str - Statistics values of a UTM cluster
application

The data structure kc_cluster_curr_par_str is defined for the object type KC_CLUS-
TER_CURR_PAR. In the case of KC_GET_OBJECT, UTM returns information on the utili-
zation of the cluster page pool in kc_cluster_curr_par_str.

KC_MODIFY_OBJECT can be used to reset the counters to 0.

The fields in the data structure have the following meanings:

max_cpgpool_size
Specifies the maximum cluster page pool utilization in %.

The value continues to apply after the entire UTM application run. It is reset when
the size of the cluster page pool is increased and when the UTM cluster files are
generated using KDCDEF.

KC_MODIFY_OBJECT:
Resets the value to 0. This also implicitly resets the value of avg_cpgpool_size to 0.

curr_cpgpool_size
Specifies the current cluster page pool utilization in %.

avg_cpgpool_size
Specifies the average cluster page pool utilization in %.

The value continues to apply after the entire UTM application run. It is reset when
the size of the cluster page pool is increased and when the UTM cluster files are
generated using KDCDEF.

KC_MODIFY_OBJECT:
Resets the value to 0. This also implicitly resets the value of max_cpgpool_size to 0.

node_reserved_cpgpool_pages
Specifies the number of reserved pages for the current local node.

mod1

1 The content of the field can be modified using KC_MODIFY_OBJECT; see page 371f

Data structure kc_cluster_curr_par_str

x(GID) char max_cpgpool_size[3];

– char curr_cpgpool_size[3];

x(GID) char avg_cpgpool_size[3];

– char node_reserved_cpgpool_pages[10];

kc_cluster_par_str KDCADMI program interface

602 Administering Applications

kc_cluster_par_str -
Global properties of a UTM cluster application

The data structure kc_cluster_par_str is defined for the parameter type KC_CLUSTER_PAR.
In the case of KC_GET_OBJECT, UTM uses kc_cluster_par_str to return the current settings
for the properties of a UTM cluster application together with current data (e.g. generation
time, start time, number of active and generated node applications).
You can use KC_MODIFY_OBJECT to modify the following:

● Parameters which control the verification of the individual node applications

● Parameters which control node application access to the cluster configuration file and
the cluster administration journal.

mod1 data structure kc_cluster_par_str

– struct kc_cluster_filebase cluster_filebase;

– struct kc_admi_date_time_model gen_time;

– char os_type[24];

– char bit_mode[8];

– char bcamappl[8];

– char port_nbr[8];

x(GID) char check_alive_timer_sec[8];

x(GID) char communication_retry[8];

x(GID) char communication_reply_timer_sec[8];

x(GID) char restart_timer_sec[8]:

x(GID) char file_lock_timer_sec[8];

x(GID) char file_lock_retry[8];

– char max_nbr_nodes[4];

– char curr_nbr_nodes[4];

– char nbr_active_nodes[4];

– char emergency_cmd [200];

– char failure_cmd [200];

– struct kc_admi_date_time_model last_kdcdef_time;

– char xcs_name[8];

– struct kc_admi_date_time_model cluster_start_time;

– char abort_bound_service;

x(GID) char deadlock_prevention;

– char listener_id[5];

B

X/W

KDCADMI program interface kc_cluster_par_str

Administering Applications 603

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The fields in the data structure kc_cluster_par_str correspond to the configuration infor-
mation in the KDCDEF control statement CLUSTER, see openUTM manual “Generating
Applications”.

The fields in the data structure have the following meanings:

cluster_filebase
Name prefix or directory (base name) of the cluster configuration file and other
global administration files of the UTM cluster application, e.g. the administration
journal.

The name is passed in the element cluster_filebase of type kc_cluster_filebase:

fb_name contains the base name and length the length of the base name.

gen_time
Time at which the cluster configuration file was generated. The date and time are
returned in the element gen_time of type kc_admi_date_time_model.

where

– char cpgpool[10];

– char cpgpool_warnlevel[2];

– char cpgpool_fs[2];

1 Field content can be modified with KC_MODIFY_OBJECT , see page 315f

struct kc_cluster_filebase

char length[2];

char fb_name[54];

struct kc_admi_date_time_model

struct kc_admi_date_model admi_date;

struct kc_admi_time_model admi_time

struct kc_admi_date_model

char admi_day [2];

char admi_month [2];

char admi_year_4 [4];

char admi_julian_day [3];

char admi_daylight_saving_time

mod1 data structure kc_cluster_par_str

kc_cluster_par_str KDCADMI program interface

604 Administering Applications

and

os_type
System platform of the computer, e.g. SolarisSparc''

bit_mode
Mode in which the operating system is running. The following values are returned:

’32 Bit’ for 32-bit mode.
’64 Bit’ for 64-bit mode.

bcamappl
Name of the transport system endpoint (BCAMAPPL name) that is used for commu-
nication within the cluster.

port_nbr
Number of the listener port used for communication within the cluster.

check_alive_timer_sec
In a UTM cluster application, every node application is monitored by another node
application (circular monitoring), i.e. each node application monitors the availability
of another node application and is itself monitored by a node application. To do this,
the monitoring node application sends messages to the monitored node application
at defined intervals (check_alive_timer_sec). If the monitored application is available,
it acknowledges the message.
check_alive_timer_sec specifies the interval in seconds at which monitoring
messages are sent to the monitored node application.
This timer is also used for periodic access to the cluster configuration file and the
cluster administration journal.

KC_MODIFY_OBJECT:
You can modify the monitoring interval.

Minimum value: ‘30'
Maximum value: ‘3600'

struct kc_admi_time_model

char admi_hours [2];

char admi_minutes [2];

char admi_seconds [2]

KDCADMI program interface kc_cluster_par_str

Administering Applications 605

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

communication_retry
Specifies how often a node application repeats an attempt to send a monitoring
message if the monitored node application does not respond within the time defined
in communication_reply_timer_sec.
If the monitored node application does not respond to any of the retries in the
defined time, then it is assumed to have failed and the command sequence defined
in failure_cmd is executed (e.g. a restart).

KC_MODIFY_OBJECT:
You can modify the value of communication_retry.

Minimum value: ‘0'
Maximum value: ‘10'

communication_reply_timer_sec
Maximum time in seconds that a node application waits for a response after sending
a monitoring message.
If no response is received within this period then the monitored node application is
assumed to have failed (abnormal end of application) and the command sequence
defined in failure_cmd is executed (e.g. a restart).

If a value greater than zero is set for communication_retry, then the target node appli-
cation is only assumed to have failed if, additionally, no response to the monitoring
message is received after the final retry.

KC_MODIFY_OBJECT:
You can modify the settings for communication_reply_timer_sec.

Minimum value: ’1’
Maximum value: ’60’

restart_timer_sec
Maximum time in seconds that a node application requires for a warm start after a
failure (abnormal program termination).

The monitoring node application waits for the time specified here after calling the
command sequence specified under failure_cmd before sending another monitoring
message to this node application. If the monitoring node application does not
receive a response to this message, it is assumed that the failed node application
can no longer be restarted as a result of a persistent problem. The command
sequence specified in emergency_cmd is called for the failed node application.

KC_MODIFY_OBJECT:
You can modify the value of restart_timer_sec.

Minimum value: ‘0’, i.e. no time monitoring of restart.
Maximum value: ’3600’

kc_cluster_par_str KDCADMI program interface

606 Administering Applications

file_lock_timer_sec
Maximum time in seconds that a node application waits for a lock to be assigned for
accessing the cluster configuration file of the cluster administration journal.
file_lock_retry specifies how often a node application repeats the request for a lock
on the cluster configuration file or the cluster administration journal if the lock was
not assigned in the time specified in file_lock_timer_sec.

KC_MODIFY_OBJECT:
Sets a new value for file_lock_timer_sec.

Minimum value: ‘10'
Maximum value: ‘60'

file_lock_retry
Specifies how often a node application repeats the request for a lock on the cluster
configuration file or the cluster administration journal if the lock was not assigned in
the time specified in file_lock_timer_sec.

KC_MODIFY_OBJECT:
You can modify the value of file_lock_retry:

Minimum value: ‘1'
Maximum value: ‘10'

max_nbr_nodes
Maximum possible number of node applications that can be generated in a UTM
cluster application.

In an XCS cluster of BS2000 systems, a maximum of 16 of the 32 node applications
that can be generated can run at any one time.

curr_nbr_nodes
Number of node applications actually generated for this UTM cluster application
(corresponds to the number of CLUSTER-NODE statements in the KDCDEF gener-
ation of the UTM cluster application).

nbr_active_nodes
Number of node applications currently active (started) in the UTM cluster appli-
cation.

emergency_cmd
Contains a command to be executed together with its arguments.
This command is called by UTM if a failed node application cannot be restarted and
a value greater than zero has been set for restart_timer_sec. I.e., the actions
specified in failure_cmd have not resulted in the failed node application being
restarted (in time).

B

B

KDCADMI program interface kc_cluster_par_str

Administering Applications 607

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

failure_cmd
Contains a command to be executed together with its arguments. This command is
called by UTM if a node application terminates abnormally or if failure of a node
application is detected. The command in failure_cmd can, for example, be used to
initiate the restart of a failed node application or to send an e-mail to the system
administrator.

last_kdcdef_time
Time of the last generation of a KDCFILE which has been used to start at least one
node application.

The date and time are returned in the element last_kdcdef_time of type kc_admi_-
date_time_model (see gen_time page 603).

xcs_name
Name of the XCS computer cluster on which the UTM cluster application is running.

cluster_start_time
Time at which the first node application in the UTM cluster application was started.

The date and time of the start are returned in the element cluster_start_time of type
kc_admi_date_time_model (see gen_time page 603).

abort_bound_service
´N´ If when a user signs on, there is an open service for this user that is bound

to another node application, then the user can only sign on at the node
application to which the open service is bound. Sign-on attempts at any
other node application are rejected.

´Y´ If when a user signs on at a node application, there is an open service for
this user that is bound to another node application that has been termi-
nated, then the user is able to sign on provided that no transaction of the
open service has the state PTC. No service restart is performed

The open service is terminated abnormally the next time the node appli-
cation to which it is bound is started.

deadlock_prevention
Specifies whether or not UTM is to perform additional checks of the GSSB, TLS and
ULS data areas in order to prevent deadlocks.

´N´ UTM does not perform any additional checks of the GSSB, TLS and ULS
data areas in order to prevent deadlocks If a deadlock occurs in one of
these data areas then this is resolved by means of a timeout.

´Y´ UTM performs additional checks of the GSSB, TLS and ULS data areas in
order to prevent deadlocks.

In productive operation, it is advisable to set this parameter to ´Y´ only if
timeouts occur frequently when accessing these data areas.

B

B

kc_cluster_par_str KDCADMI program interface

608 Administering Applications

listener_id
This parameter is used to select a network process for internal cluster communi-
cation.

cpgpool
Size of the cluster page pool in 4K pages.

cpgpool_warnlevel
Percentage value specifying the cluster page pool utilization level at which a
warning (message K041) is output.

cpgpool_fs
Number of files over which the user data is distributed in the cluster page pool.

X/WX/W
X/W

X/W

KDCADMI program interface kc_curr_par_str

Administering Applications 609

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_curr_par_str - Current values of the application parameters

The data structure kc_curr_par_str is defined for the parameter type KC_CURR_PAR. In the
case of KC_GET_OBJECT, UTM returns the current values of the parameter settings, data
pertaining to the application run and statistical information on the load of the application in
kc_curr_par_str (see also KDCINF, “type=STATISTICS” on page 738).

You can reset some of the counters used by UTM to generate statistical information with
the aid of KC_MODIFY_OBJECT if you need to (see also max_statistics_msg page 649).

If MAX STATISTICS-MSG=NONE the counters in a UTM-S application are only reset the
first time the application is started and in UTM-F applications they are reset each time the
application is started.

If MAX STATISTICS-MSG=FULL-HOUR then the counters are reset every full hour. As a
result, the values displayed in the initial period following a full hour may be too low.

mod1 Data structure kc_curr_par_str

– char appliname[8];

– char utm_version[8];

– char applimode;

– char start_date_year[4];

– char start_date_month[2];

– char start_date_day[2];

– char start_time_hour[2];

– char start_time_min[2];

– char start_time_sec[2];

– char curr_date_year[4];

– char curr_date_month[2];

– char curr_date_day[2];

– char curr_time_hour[2];

– char curr_time_min[2];

– char curr_time_sec[2];

x(GIR) char term_input_msgs[10];

x(GIR) char term_output_msgs[10];

– char curr_max_asyntasks[3];

– char curr_max_tasks_in_pgwt[3];

– char curr_tasks[3];

– char curr_asyntasks[3];

kc_curr_par_str KDCADMI program interface

610 Administering Applications

– char curr_tasks_in_pgwt[3];

– char tasks_waiting_in_pgwt[3];

– char connected_users[10];

– char *rvices[10];

– char open_asyn_services[10];

– char dial_ta_per_100sec[10];

– char asyn_ta_per_100sec[10];

– char dial_step_per_100sec[10];

x(GIR) char max_dial_ta_per_100sec[10];

x(GIR) char max_asyn_ta_per_100sec[10];

x(GIR) char max_dial_step_per_100sec[10];

x(GIR) char max_pool_size[3];

– char curr_pool_size[3];

x(GIR) char avg_pool_size[3];

x(GIR) char cache_hit_rate[3];

x(GIR) char cache_wait_buffer[3];

– char unproc_atacs[10];

– char unproc_prints[10];

– char wait_dputs[10];

x(GIR) char abterm_services[10];

– char wait_resources[4];

x(GIR) char deadlocks[10];

x(GIR) char periodic_writes[10];

x(GIR) char pages_pwrite[10];

x(GIR) char logfile_writes[10];

– char curr_jr[3];

x(GIR) char maximum_jr[3];

– char program_fgg[4];

– char uslog_fgg[4];

x(GIR) char max_mpgpool_size[3]; 2

– char curr_mpgpool_size[3]; 2

x(GIR) char avg_mpgpool_size[3]; 2

mod1 Data structure kc_curr_par_str

KDCADMI program interface kc_curr_par_str

Administering Applications 611

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The fields in the data structure have the following meanings:

appliname
Name of the UTM application set in the KDCDEF generation in MAX APPLINAME.

appliname is the name of the application that must be specified when establishing a
connection from the terminal.

utm_version
The openUTM version used including the update information, for example
V06.5A00.

x(GIR) char max_load[3];

– char curr_load[3];

x(GIR) char max_wait_resources[4];

– char wait_system_resources[4];

x(GIR) char max_wait_system_resources[4];

x(GIR) char nr_cache_rqs[10];

x(GIR) char nr_cache_searches[10];

– char nr_res_rqs[10];

x(GIR) char nr_res_rqs_for_max[10];

– char nr_sys_res_rqs[10];

x(GIR) char nr_sys_res_rqs_for_max[10];

– char curr_system_tasks[3];

x(GID) char data_compression;

x(GIR) char avg_saved_pgs_by_compr[3];

– char gen_date_year[4];

– char gen_date_month[2];

– char gen_date_day[2];

– char gen_time_hour[2];

– char gen_time_min[2];

– char gen_time_sec[2];

1 The field contents can be modified with KC_MODIFY_OBJECT; see page 374f
2 Internal UTM field; the contents of the field are irrelevant and will not be described in the following.

mod1 Data structure kc_curr_par_str

kc_curr_par_str KDCADMI program interface

612 Administering Applications

applimode
Specifies if the UTM application is a UTM-S or UTM-F application.

´S´ The application is generated as a UTM-S application (secure).

´F´ The application is generated as a UTM-F application (fast).

start_date_year, start_date_month, start_date_day
UTM-S application: date of the last cold start of the application
UTM-F application: date of the last start of the application

start_time_hour, start_time_min, start_time_sec
UTM-S application: time of the last cold start of the application
UTM-F application: time of the last start of the application

curr_date_year, curr_date_month, curr_date_day
The current date.

curr_time_hour, curr_time_min, curr_time_sec
The current time.

term_input_msgs
Total number of messages that the application has received from clients or partner
applications since the last time the term_input_msgs counter was reset.
UTM automatically resets the counter to 0 each time the application is started and
on each full hour, if MAX STATISTICS-MSG=FULL-HOUR (default value) was set
during KDCDEF generation.
You can set term_input_msgs to 0.

term_output_msgs
Total number of messages that the application sent to clients, printers or partner
applications since the last time the term_output_msgs counter was reset.

UTM automatically resets the counter to 0 each time the application is started and
on each full hour, if MAX STATISTICS-MSG=FULL-HOUR (default value) was set
during KDCDEF generation.

You can set term_output_msgs to 0.

curr_max_asyntasks
Current setting for the maximum number of processes that may be used for
asynchronous processing. curr_max_asyntasks is dynamically adjusted by UTM if the
total number of processes of the application or the maximum number of processes
for asynchronous processing (kc_tasks_par_str.mod_max_asyntasks on page 665) is
changed by the administration.

KDCADMI program interface kc_curr_par_str

Administering Applications 613

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

curr_max_tasks_in_pgwt
Current setting for the maximum number of processes that may simultaneously
process jobs from TAC classes whose transaction codes are allowed to use
blocking calls such as, for example, the KDCS call PGWT (Program Wait).
curr_max_tasks_in_pgwt is dynamically adjusted by UTM if the total number of
processes of the application or the number of processes kc_tasks_par.mod_max-
_tasks_in_pgwt (see page 665) is changed.

curr_tasks
Contains the number of processes of the application currently running.

curr_asyntasks
Contains the number of processes currently processing asynchronous jobs.

curr_tasks_in_pgwt
Contains the number of processes currently processing jobs whose transaction
codes are allowed to use blocking function calls (for example PGWT).

tasks_waiting_in_pgwt
The current number of processes in the wait state due to blocking function calls (for
example the KDCS call PGWT).

connected_users
The number of users currently connected to the application.

open_dial_services
The number of dialog services currently open.
In a UTM cluster application, an open dialog service that is valid globally in the
cluster is only counted if the user is signed on.

open_asyn_services
The number of asynchronous services currently open.

dial_ta_per_100sec
The current number of dialog transactions executed in the last closed 100 second
interval.

asyn_ta_per_100sec
The current number of asynchronous transactions executed in the last closed 100
second interval.

dial_step_per_100sec
The current number of dialog steps executed in the last closed 100 second interval.

max_dial_ta_per_100sec
The maximum number of dialog transactions that were executed within a
100 second interval. The value is specified for the current application run.
It can be reset with KC_MODIFY_OBJECT (see page 374).

kc_curr_par_str KDCADMI program interface

614 Administering Applications

max_asyn_ta_per_100sec
The maximum number of asynchronous transactions that were executed within a
100 second interval. The value is specified for the current application run. It can be
reset with KC_MODIFY_OBJECT (see page 374).

max_dial_step_per_100sec
The maximum number of dialog steps that were executed within a 100 second
interval. The value is specified for the current application run. It can be reset with
KC_MODIFY_OBJECT (see page 374).

max_pool_size
The maximum amount of the page pool in use in percent. For UTM-S applications
the maximum page pool size since the most recent KDCDEF generation is
returned, for UTM-F applications the size since the last application start is returned.
The value can be reset with KC_MODIFY_OBJECT (see page 374).

curr_pool_size
The current amount of the page pool in use in percent.

avg_pool_size
For UTM-S applications the maximum page pool size since the most recent
KDCDEF generation is returned, for UTM-F applications the size since the last
application start is returned. The value can be reset with KC_MODIFY_OBJECT
(see page 374).

cache_hit_rate
The hit rate when searching for a page in the cache. Specified in percent.The value
refers to the current application run. It can be reset with KC_MODIFY_OBJECT
(see page 374). If this value is reset then the values cache_wait_buffer, nr_cache_rqs
and nr_cache_searches are also implicitly reset to 0.

cache_wait_buffer
The percentage of queries from buffers in the cache that have resulted in a wait
state. cache_wait_buffer gives you the amount of buffer queries since the counter
was last reset.
UTM automatically resets the counter to 0 each time application is started and on
each hour, if MAX STATISTICS-MSG=FULL-HOUR (default value) was generated
in the KDCDEF generation.
You can reset the counter using KC_MODIFY_OBJECT (see page 374). If this
value is reset then the values cache_hit_rate, nr_cache_rqs and nr_cache_searches are
also implicitly reset to 0.

unproc_atacs
The number of background jobs currently stored in UTM but not yet completely
processed. This corresponds to the number of messages temporarily stored at the
present time in all of the message queues of asynchronous services.

KDCADMI program interface kc_curr_par_str

Administering Applications 615

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

unproc_prints
The number of messages temporarily stored at the present time in the message
queues of all of the printers.

wait_dputs
The number of time-driven jobs currently waiting (DPUTs).

abterm_services
The number of abnormally terminated services since the value was last reset.You
can reset abterm_services with KC_MODIFY_OBJECT.

wait_resources
This value indicates the mean lock conflict rate for the GSSB, ULS and TLS
memory areas during the last closed 100 second interval as an amount per
thousand, i.e. the total number of wait situations on lock requests as a ratio of
GSSB, ULS and TLS lock requests in the last closed 100 second interval multiplied
by 1000.

A higher value in wait_resources can be caused by the following:

– processes with run times or wait times that are too long
– resources that have been locked for too long, for example, due to many PEND

KP or PGWT calls in KDCS program units.

i If a lock holder enters the status PEND KP then all "waiters" are informed
and all further locks are rejected immediately. I.e. the value of wait_resources
does not increase as a result.

deadlocks
The number of deadlocks of UTM resources that have been recognized and
resolved since the value was last reset.

You can reset deadlocks using KC_MODIFY_OBJECT.

periodic_writes
The number of periodic writes since the last start of the application or since the
value was last reset with KC_MODIFY_OBJECT. (periodic write = the saving of all
relevant administration data of the UTM application.)

pages_pwrite
The number of UTM pages that are saved during a periodic write on the average.
All periodic writes since the value was last reset are registered. You can reset the
value using KC_MODIFY_OBJECT. UTM automatically resets pages_pwrite to zero
each time the application is started.

kc_curr_par_str KDCADMI program interface

616 Administering Applications

logfile_writes
The number of request to write log entries to the user log file (USLOG) since the
value was last reset
UTM automatically resets the counter to 0 each time application is started and on
each hour, if MAX STATISTICS-MSG=FULL-HOUR (default value) was generated
in the KDCDEF generation.

You can reset the counter using KC_MODIFY_OBJECT (see page 374).

curr_jr Only for distributed processing:
The current number of simultaneously addressed job-receiving services relative to
the generated value MAXJR in percent.

(MAXJR = maximum number of remote job-receiving services that may be
addressed simultaneously in the local application; see kc_utmd_par_str on
page 672).

maximum_jr
Only in the case of distributed processing:

The current number of simultaneously addressed job-receiving services in the local
application relative to the generated value MAXJR (see kc_utmd_par_str on
page 672). Specified in percent.

maximum_jr returns all requests to the remote job-receiving service since the value
was last reset. You can reset maximum_jr to zero with KC_MODIFY_OBJECT.

program_fgg
On Unix, Linux and Windows systems: The number of file generations of the appli-
cation program currently loaded.

On BS2000 systems: 0

uslog_fgg
The number of file generations of the user log file (USLOG) currently being written
to.

max_load
Indicates as a percentage the maximum load on the UTM application since the start
of the application or the last reset was registered.

The value in max_load can be reset to the value in curr_load.

curr_load
Indicates as a percentage the current load on the UTM application registered during
the last closed 100 second intervall.

X/W

X/W

B

KDCADMI program interface kc_curr_par_str

Administering Applications 617

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

max_wait_resources
Maximum conflict rate for user data locks across the application run. The value is
specified as an amount per thousand.

You can reset this value with KC_MODIFY_OBJECT. If this value is reset then the
values max_wait_system_resources, nr_res_rqs_for_max and nr_sys_res_rqs_for_max
are also implicitly reset to 0.

wait_system_resources
Average conflict rate in the last closed 100 second interval for the most heavily
loaded system resource during this interval. The output can refer to different system
resources in different intervals. The value is specified as an amount per thousand.

max_wait_system_resources
Maximum conflict rate for system resource requests (system locks) across the
application run. The value is specified as an amount per thousand.

You can reset this value with KC_MODIFY_OBJECT. If this value is reset then the
values max_wait_resources nr_res_rqs_for_max and nr_sys_res_rqs_for_max are also
implicitly reset to 0.

nr_cache_rqs
Number of buffer requests taken into account to calculate the value
cache_wait_buffer.

You can reset the value using KC_MODIFY_OBJECT. If this value is reset then the
values cache_hit_rate, cache_wait_buffer and nr_cache_searches are also implicitly
reset to 0.

nr_cache_searches
Number of search operations for UTM pages in the cache taken into account to
calculate the value cache_hit_rate.

You can reset the value using KC_MODIFY_OBJECT. If this value is reset then the
values cache_hit_rate, cache_wait_buffer and nr_cache_rqs are also implicitly reset to
0.

nr_res_rqs
Number of requests for transaction resources in the last closed 100 second interval
taken into account to calculate the value wait_resources.

nr_res_rqs_for_max
Number of requests for transaction resources in the 100 second interval during
which the maximum conflict rate max_wait_resources was reached.

You can reset the value using KC_MODIFY_OBJECT. If this value is reset then the
values max_wait_resources, max_wait_system_resources and nr_sys_res_rqs_for_max
are also implicitly reset to 0.

kc_curr_par_str KDCADMI program interface

618 Administering Applications

i The values nr_res_rqs and nr_res_rqs_for_max are useful when assessing
the relevance of a high lock conflict rate, in particular with regard to losses
due to lock conflicts.

Example:

nr_res_rqs=100, wait_resources=5
nr_res_rqs_for_max=10, max_wait_resources=50.

I.e. the maximum lock conflict rate of 50 was reached with 10 locks
being requested in 100 seconds, 5 of which led to wait times due to
conflicts. In addition, the current lock conflict rate of 5 percent at 100
requested locks was also reached in100 seconds, with it again being
necessary to wait for 5 locks.

nr_sys_res_rqs
Number of requests for system resources in the last closed 100 second interval
taken into account to calculate the value wait_system_resources

nr_sys_res_rqs_for_max
Number of requests for system resources in the 100 second interval during which
the maximum conflict rate max_wait_system_resources was reached.

You can reset the value using KC_MODIFY_OBJECT. If this value is reset then the
values max_wait_resources, max_wait_system_resources and nr_res_rqs_for_max are
also implicitly reset to 0.

curr_system_tasks
Number of UTM system processes that are currently running.

data_compression
Specifies whether data compresion is currently enabled:

´Y´ Data compresion is enabled.

´N´ Data compresion is not enabled.

You can modify the value with KC_MODIFY_OBJECT if data compression is
permitted by means of generation (see section “kc_max_par_str - Maximum values
for the application (MAX parameters)” on page 634 and openUTM manual “Gener-
ating Applications”, MAX DATA-COMPRESSION=).

A modification applies beyond the application run; in UTM cluster applications it
applies for all node applications.

KDCADMI program interface kc_curr_par_str

Administering Applications 619

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

avg_saved_pgs_by_compr
Average value for the UTM pages saved per data compression. The writing of areas
in which UTM performs no compression because, for example, the data length is
less than one UTM page is not included in this statistics value. Two digits to the left
of the decimal point and one decimal digit of the statistics value are displayed, i.e.
a content of 010 corresponds to an average saving of 1.0 UTM pages.

The value can be reset with KC_MODIFY_OBJECT.

If no statistics values for data compression are available for the application, binary
zero is output. This is possible in the following situations.

– Data compression is disabled.

– The value was reset with KC_MODIFY_OBJECT.

– No data compression was performed because the application uses "small" data
areas in which it does not make sense to use compression.

i If the value output for avg_saved_pgs_by_compr is less than 5 - which corre-
sponds to 0.5 saved UTM pages per compression attempt -, for perfor-
mance reasons data compression should be disabled for this application.

gen_date_year
gen_date_month
gen_date_day

Date of the generation run of the application.

gen_time_hour
gen_time_min
gen_time_sec

Time of the generation run of the application.

kc_diag_and_account_par_str KDCADMI program interface

620 Administering Applications

kc_diag_and_account_par_str - Diagnostic and accounting
parameters

The data structure kc_diag_and_account_par_str is defined for the parameter type KC_DI-
AG_AND_ACCOUNT_PAR. kc_diag_and_account_par_str contains the kc_dump_event_str
data structure, which in turn contains kc_insert_str .

In the case of KC_GET_OBJECT, UTM returns following information in kc_diag_and_ac-
count_par_str:

● which diagnostic functions are currently enabled

● if the UTM accounting is currently enabled.

You can enable and disable different diagnostic functions, the UTM event monitor
KDCMON and UTM Accounting with KC_MODIFY_OBJECT and the KC_DIAG_AND_AC-
COUNT_PAR parameter type.

mod1 Data structure kc_diag_and_account_par_str

x(GIR) char account;

x(GIR) char calc;

x(IR) char kdcmon;

– char dump_msg_id[4];

x(GIR) char testmode;

x(GIR) char bcam_trace;

x(GIR) char osi_trace;

x(GIR) char osi_trace_records[5];

x(GA) char sysprot_switch;

x(GIR) struct kc_dump_event_str dump_event[3];

x(IR) char stxit_log;

x(IR) char xa_debug;

x(IR) char xa_debug_out;

– curr_max_btrace_lth[5];

x(IR) char admi_trace;

x(IR) char cpic_trace;

x(IR) char tx_trace;

x(IR) char xatmi_trace;

B

KDCADMI program interface kc_diag_and_account_par_str

Administering Applications 621

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The fields in the data structure kc_diag_and_account_par_str have the following meanings:

account
Specifies if the accounting phase of the UTM accounting is enabled.

´Y´ The accounting phase is enabled (ON).

´N´ The accounting phase is disabled (OFF).

The accounting phase can be enabled or disabled during the application run.

For more information on UTM accounting see also the openUTM manual “Gener-
ating Applications” and the openUTM manual “Using UTM Applications”.

calc Specifies if the calculation phase for the UTM accounting is enabled or disabled.

´Y´ The calculation phase is enabled (ON).

´N´ The calculation phase is disabled (OFF).

The calculation phase can be enabled or disabled during the application run.

kdcmon
Specifies if the UTM measurement monitor KDCMON is enabled.

´Y´ KDCMON is enabled (ON).

You can evaluate the values measured by KDCMON with the UTM tool
KDCEVAL. For details on operating KDCMON please refer to the relevant
openUTM manual “Using UTM Applications”.

´N´ KDCMON is disabled (OFF).

KDCMON can be enabled or disabled during the application run.

mod1 Data structure kc_dump_event_str

x(GIR) char event_type[4];

x(GIR) char event[4];

x(GIR) struct kc_insert_str insert[3];

mod1 Data structure kc_insert_str

x(GIR) char insert_index[2];

x(GIR) union kc_value value;

x(GIR) char value_type;

x(GIR) char comp[2];

1 Field contents can be modified with KC_MODIFY_OBJECT, see page 378f.

kc_diag_and_account_par_str KDCADMI program interface

622 Administering Applications

dump_msg_id
This parameter is no longer supported, but is retained in the structure as a place-
holder. Use the data structure kc_dump_event_str (see page 626).

testmode
Specifies if the test mode is enabled.
Test mode means that additional internal UTM routines are executed to conduct
plausibility tests and to record internal TRACE information.

´Y´ The test mode is enabled (ON).

´N´ The test mode is disabled (OFF).

The test mode can be enabled or disabled during the application run. For perfor-
mance reasons test mode should only be enabled when requested by Systems
Support in order to create diagnostic documentation.

bcam_trace
Specifies if the BCAM trace is enabled. BCAM trace is the trace function which
monitors all connection-specific activities within a UTM application (for example, the
BCAM trace function on BS2000 systems).

´Y´ The BCAM trace function is enabled (ON).

´S´ The BCAM trace function was explicitly enabled (SELECT) for several
LTERM, LPAP, MUX partners (BS2000 systems) or USERs.
Only those activities on connections to the explicitly specified LTERM, LPAP
or MUX partners or user ids are logged.

´N´ The BCAM trace function is disabled (OFF).

You can enable or disable the BCAM trace function during an application run.

osi_trace
Specifies if the OSI trace function is enabled.
The OSI trace is needed for diagnosing problems with OSI TP connections of the
application.

´Y´ The OSI trace function is enabled (ON). All record types are traced.

´N´ The OSI trace function is disable (OFF).

´S´ The OSI trace function is enabled for certain record types. Which record
types will be traced and which will not is specified in the osi_trace_records
field.

osi_trace is only relevant if objects for distributed processing via OSI TP have been
generated in the application.
You can enable and disable the OSI trace function during the application run. For
performance reasons the OSI trace should only be enabled when requested by
Systems Support in order to create diagnostic documentation.

KDCADMI program interface kc_diag_and_account_par_str

Administering Applications 623

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

osi_trace_records
Specifies which record types will be traced in the OSI trace.
Each field element in osi_trace_records represents a record type:

The 1st field represents the record type "SPI",
The 2nd field represents the record type "INT"
The 3rd field represents the record type "OSS"
The 4th field represents the record type "SERV"
The 5th field represents the record type "PROT"

The entries in the individual field elements have the following meanings:

´Y´ The trace records will be recorded for the record type corresponding to the
field element.

´N´ The trace records will not be recorded for the record type corresponding to
the field element.

The record types have the following meanings:

SPI Events on the XAP-TP system programming interface

INT Internal program flow in an XAP-TP routine

OSS Events occurring during the processing of OSS calls (OSI session service)

SERV Internal OSS trace records of type O_TR_SERV

PROT Internal OSS trace records of type O_TR_PROT

You can enable the OSI trace during the application run for certain record types.

It is not possible to disable the trace for individual record types.

However, you can use the parameter osi_trace='N' disable all record types and then
reactivate individual record types as required.

The contents of osi_trace_records is relevant if objects for distributed processing via
OSI TP were generated in the application.

sysprot_switch
Specifies whether the log files in the UTM application are to be switched over.

'Y' The log files are to be switched over.

'N' The log files are not to be switched over.

kc_diag_and_account_par_str KDCADMI program interface

624 Administering Applications

stxit_log
Specifies whether STXIT logging is to be enabled or disabled.

'Y' STXIT logging is enabled.

'N' STXIT logging is disabled.

You can enable or disable STXIT logging while the application is running.

xa_debug
Specifies whether debug information for the XA connection is to be output to the
database.

'Y' XA-DEBUG is enabled.
Calls of the XA interface are logged.

'A' Extended XA-DEBUG is enabled (ALL).
Specific data areas are logged in addition to the calls of the XA interface.

'N' XA-DEBUG is disabled.

You can enable or disable XA-DEBUG while the application is running.

xa_debug_out
Controls the output destinations for XA-DEBUG.

'S' Output to SYSOUT/stderr, default value.

'F' Output to a file.

If you use only the field xa_debug without providing a value for xa_debug_out, any
value you specified in the start parameter .RMXA DEBUG= when starting the UTM
application will be used (see openUTM manual “Using UTM Applications”).
Otherwise, the log is written to SYSOUT/stderr.

curr_max_btrace_lth
Specifies the maximum length of data that is recorded when the BCAM trace
function is enabled. See also the start parameter BTRACE.

admi_trace
Specifies whether the ADMI trace function (trace function for the KDCADMI
administration program interface) is enabled.
See also the start parameter ADMI-TRACE.

´Y´ The ADMI trace function is enabled.

´N´ The ADMI trace function is disabled.

You can enable or disable the ADMI trace function while the application is running.

BB
B

BB

BB

B

KDCADMI program interface kc_diag_and_account_par_str

Administering Applications 625

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

cpic_trace
Specifies whether the CPI-C trace function (trace function for the X/Open interface
CPI-C) is enabled. See also the start parameter CPIC-TRACE.

´T´ The CPI-C trace function is enabled with the level TRACE. For each
function call, the content of the input and output parameters is output. Only
the first 16 bytes are output from the data buffers. The return codes of the
KDCS calls to which the CPI-C calls are mapped are output.

´B´ The CPI-C trace function is enabled with the level BUFFER. This trace level
includes the TRACE level. However, the data buffers are logged in their full
length.

´D´ The CPI-C trace function is enabled with the level DUMP. This trace level
includes the TRACE level and also writes diagnostic information to the trace
file.

´A´ The CPI-C trace function is enabled with the level ALL. This trace level
includes the levels BUFFER, DUMP and TRACE.

´N´ The CPI-C trace function is disabled.

You can enable or disable the CPI-C trace function while the application is running.

tx_trace
Specifies whether the TX trace function (trace function for the X/Open interface TX)
is enabled. See also the start parameter TX-TRACE.

´E´ The TX trace function is enabled with the level ERROR. Only errors are
logged.

´I´ The TX trace function is enabled with the level INTERFACE. This trace level
includes the ERROR level. TX calls are also logged.

´F´ The TX trace function is enabled with the level FULL. This trace level
includes the INTERFACE level. All KDCS calls to which the TX calls are
mapped are also logged.

´D´ The TX trace function is enabled with the level DEBUG. This trace level
includes the FULL level and diagnostic information is also logged.

´N´ The TX trace function is disabled.

You can enable or disable the TX trace function while the application is running.

kc_diag_and_account_par_str KDCADMI program interface

626 Administering Applications

xatmi_trace
Specifies whether the XATMI trace function (trace function for the X/Open interface
XATMI) is enabled. See also the start parameter XATMI-TRACE.

´E´ The XATMI trace function is enabled with the level ERROR. Only errors are
logged.

´I´ The XATMI trace function is enabled with the level INTERFACE. This trace
level includes the ERROR level. XATMI calls are also logged.

´F´ The XATMI trace function is enabled with the level FULL. This trace level
includes the INTERFACE level. All KDCS calls to which the XATMI calls are
mapped are also logged.

´D´ The XATMI trace function is enabled with the level DEBUG. This trace level
includes the FULL level and diagnostic information is also logged.

´N´ The XATMI trace function is disabled.

You can enable or disable the XATMI trace function while the application is running.

dump_event
In the data structure kc_dump_event_str, an event is specified for which a UTM dump
with an event-dependent designator is generated when the event occurs. The dump
is created by the process in which the event occurred. The application is not termi-
nated. Test mode must be enabled in order to create a UTM dump (testmode=´Y´). :

For detailed information, refer to section “KDCDIAG - Switch diagnostic aids on and
off” on page 693.

The data structure contains a message number, a KDCS return code (KDCRCCC
or KDCRCDC) or a SIGNON status code. If a message with this message number
is generated or if this return code or status code is returned, a corresponding UTM
dump is generated.

Description of the fields in the structure dump_event:

event_type
Type of event for which a UTM dump is to be generated:

'MSG' UTM message

'RCDC'
Incompatible KDCS return code

'RCCC'
Compatible KDCS return code

'SIGN'
SIGNON status code

KDCADMI program interface kc_diag_and_account_par_str

Administering Applications 627

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

'NONE'
Explicit deactivation of an individual event for a message dump. This allows
the commands KDCDIAG DUMP-MESSAGE [1, 2 or 3] to be cancelled (see
section “KDCDIAG - Switch diagnostic aids on and off” on page 693).

event Message number, KDCS return code (KDCRCCC or KDCRCDC) or SIGNON
status code, depending on the event_type

event_type MSG
Four-digit internal message number, with leading "K" or "P", e.g. K009 or
P001.

event_type RCDC
Incompatible KDCS return code: KCRCDC (4 bytes), e.g. "K301"

event_type RCCC
Three-digit compatible KDCS return code, e.g. "14Z"

event_type SIGN
SIGNON status code: KCRSIGN1 or KCRSIGN2 (3 bytes), e.g. "U01"

insert
The specifications in the data structure kc_insert_str only make sense for the
event_type MSG. For detailed information, refer to section “KDCDIAG - Switch
diagnostic aids on and off” on page 693.

Description of the fields in the structure insert:

insert_index
Number of the insert to be checked, e.g. "2" for the second insert in a message. You
can specify a maximum of three inserts per message (with the structures insert[0]
through insert[2]).

You can find the sequence of the inserts in a UTM message in openUTM manual
”Messages, Debugging and Diagnostics”

Possible values: 1 ... 20

To generate a message dump independently of the inserts, set all three insert_index
values to "0".

value Value against which the insert is to be checked.

UTM represents the string in a union of the type kc_value.

For permitted values, see value_type.

union kc_value

char x[64];

char c[32];

kc_diag_and_account_par_str KDCADMI program interface

628 Administering Applications

value_type
value_type specifies how the contents of the value field are to be interpreted:
– N: numeric
– C: alphanumeric
– X: hexadecimal

comp Specifies whether the system is to test for equality or inequality. The following
values are possible:

EQ Checks for equality, default.

NE Checks for inequality.

KDCADMI program interface kc_dyn_par_str

Administering Applications 629

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_dyn_par_str - Dynamic objects

The data structure kc_dyn_par_str is defined for the parameter type KC_DYN_PAR. In the
case of KC_GET_OBJECT, UTM returns information on objects that can be created dynam-
ically in kc_dyn_par_str. UTM specifies the following for the individual object types:

● The total number of objects of the object type that can be contained in the configuration.

● The number of objects of the object type that could still be added dynamically to the
configuration with KC_CREATE_OBJECT.

Data structure kc_dyn_par_str

char lterm_total[10];

char lterm_free[10];

char pterm_total[10];

char pterm_free[10];

char program_total[10];

char program_free[10];

char tac_total[10];

char tac_free[10];

char user_total[10];

char user_free[10];

char card_total[10];

char card_free[10];

char kset_total[10];

char kset_free[10];

char ltac_total[10];

char ltac_free[10];

char queue_total[10];

char queue_free[10];

char con_total[10];

char con_free[10];

char lses_total[10];

char lses_free[10];

char princ_total[10];

char princ_free[10];

B

B

B

B

kc_dyn_par_str KDCADMI program interface

630 Administering Applications

The fields in the data structure have the following meanings:

lterm_total
Specifies the total number of LTERM partners that can be added to the table in the
KDCFILE. lterm_total is also the number of table spaces generated for LTERM
partners.

The number consists of:

– The number of statically added LTERM partners.

– The number of dynamically added of LTERM partners (obj_type=KC_LTERM).

– The number of LTERM partners of LTERM pools. The number corresponds to
the sum of all NUMBER operands of TPOOL commands specified for the
KDCDEF generation.

– The number of reserved table spaces still free, i.e. in which LTERM partners can
still be added.

Deleted LTERM partners are also included in this number.

lterm_free
Contains the number of LTERM partners that you can still add dynamically to the
configuration.

pterm_total
Specifies the total number of clients and printer that can be added to the table in the
KDCFILE. pterm_total is also the number of table spaces generated for objects of
type KC_PTERM.

The number consists of:

– The number of statically added clients and printers, i.e. the number of PTERM
commands in the KDCDEF generation.

– The number of dynamically added clients/printer (obj_type=KC_PTERM).

– The number of connections collected in LTERM pools for clients. The number
corresponds to the sum of all NUMBER operands of TPOOL commands
specified for the KDCDEF generation.

– The number of reserved table spaces still free, i.e. in which clients and printers
can still be added.

Deleted clients and printers are also contained in this number.

pterm_free
Contains the number of clients and printers that you can still add with KC_CRE-
ATE_OBJECT.

KDCADMI program interface kc_dyn_par_str

Administering Applications 631

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

program_total
Specifies the total number of program units that can be added to the table in the
KDCFILE. program_total is also the number of table spaces generated for objects of
type KC_PROGRAM.

The number consists of:

– The number of statically added program units and VORGANG exits, i.e. the
number of PROGRAM commands in the KDCDEF generation.

– The number of dynamically added program units and VORGANG-Exits
(obj_type=KC_PROGRAM).

– The number of reserved table spaces that are still free.

Deleted program units are also contained in this number.

program_free
Contains the number of program units and VORGANG exits that you can still add
with KC_CREATE_OBJECT.

tac_total
Specifies the total number of transaction codes and TAC queues that can be added
to the table in the KDCFILE. tac_total is also the number of table spaces generated
for objects of type KC_TAC.

The number consists of:

– The number of statically added transaction codes and TAC queues, i.e. the
number of TAC commands in the KDCDEF generation.

– The number of dynamically added transaction codes and TAC queues
(obj_type=KC_TAC).

– The number of reserved table spaces that are still free.

Deleted transaction codes and TAC queues are also contained in this number.

tac_free
Contains the number of transaction codes and TAC queues that you can still add
with KC_CREATE_OBJECT.

kc_dyn_par_str KDCADMI program interface

632 Administering Applications

user_total
Specifies the total number of user IDs that can be added to the table in the
KDCFILE. user_total is also the number of table spaces generated for objects of type
KC_USER.

The number consists of:

– The number of statically and dynamically added user IDs (in an application
generated with user IDs) or
the number of statically or dynamically added LTERM partners (in an application
generated without user IDs).

– The number of clients existing with ptype=´APPLI´ (TS applications that are not
socket applications), ptype=´UPIC-...´ (UPIC clients) or ptype=´SOCKET´
(socket applications). For these clients UTM creates internal user IDs with the
name of the corresponding LTERM partner.

– The number of reserved table spaces for user IDs that are still free (in an appli-
cation generated with user IDs)
or
Number of reserved table spaces for LTERM partners that are still free (in an
application generated without user IDs).

Deleted user IDs are also contained in this number.

user_free
Contains the number of user IDs that you can still add dynamically with KC_CRE-
ATE_OBJECT.

card_total
Indicates how many user IDs with ID cards can be entered in the table in the
KDCFILE in total. card_total consists of:

– the number of statically or dynamically entered user IDs that have ID cards

– the number of table spaces that are reserved for user IDs with ID cards and are
still free.

card_free
Contains the number of user IDs with identification cards that you can still add with
KC_CREATE_OBJECT.

kset_total
Contains the total number of key sets that can be entered in the KSET table.

kset_free
Contains the current number of key sets that you can still enter in the KSET table
by means of KC_CREATE_OBJECT.

BB

B

B

B

B

B

BB

B

B

KDCADMI program interface kc_dyn_par_str

Administering Applications 633

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

ltac_total
Contains the total number of LTACs that can be entered in the LTAC table.

ltac_free
Contains the current number of LTACs that you can still enter in the LTAC table by
means of KC_CREATE_OBJECT.

queue_total
Contains the total number of temporary queues that can be entered in the QUEUE
table. This value was specified at generation by means of the QUEUE statement.

queue_free
Contains the current number of temporary queues that you can still enter by means
of the KDCS call QCRE.

con_total
Contains the total number of LU6.1 transport connections that can be entered in the
PTERM table.

con_free
Contains the current number of LU6.1 transport connections that you can still enter
in the PTERM table by means of KC_CREATE_OBJECT.

lses_total
Contains the total number of LU6.1 session that can be entered in the USER table.

lses_free
Contains the current number of LU6.1 sessions that you can still enter in the USER
table by means of KC_CREATE_OBJECT.

princ_total
Contains the total number of USERs created with principal.

princ_free
Contains the number of USERs with principal that can still be generated.

BB

B

BB

B

kc_max_par_str KDCADMI program interface

634 Administering Applications

kc_max_par_str - Maximum values for the application
(MAX parameters)

The data structure kc_max_par_str is defined for the parameter type KC_MAX_PAR. In the
case of KC_GET_OBJECT, UTM returns following information in kc_max_par_str:

● The basic properties of the application, for example the application name, function
versions, the name of the KDCFILE.

● The maximum values for the parameters of the application, such as the size of the page
pool, of the restart area and of the KDCS storage areas, the maximum number of users,
the maximum number of lock codes and key codes of the application, the maximum
time slice for time controlled asynchronous jobs, and the maximum number of
processes that can be utilized for the application.

● The resources that will be used by the application, for example access keys for shared
memory segments and semaphores.

mod1 Data structure kc_max_par_str Page2

– char adf_name[16];3

– char applimode; 637

– char appliname[8]; 637

– char asyntasks[3]; 637

– char blksize[2]; 638

x(GIR) char bretrynr[5]; 638

– char cacheshmkey[10]; 638

– char cachesize_pages[10]; 638

x(GIR) char cachesize_paging[3]; 638

– char cachesize_res; 639

– char cardlth[3]; 639

– char catid_a[4]; 639

– char catid_b[4]; 639

– union kc_clear_char clrch; 639

– char clrch_type; 640

x(IR) char conn_users[10]; 640

x(GPD) char destadm[8]; 640

– char dputlimit1_day[3]; 641

– char dputlimit1_hour[2]; 641

– char dputlimit1_min[2]; 641

– char dputlimit1_sec[2]; 641

X/W

X/W

B

X/W

B

B

B

B

KDCADMI program interface kc_max_par_str

Administering Applications 635

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

– char dputlimit2_day[3]; 641

– char dputlimit2_hour[2]; 641

– char dputlimit2_min[2]; 641

– char dputlimit2_sec[2]; 641

– char gssbs[10]; 641

– char hostname[8]; 641

– char ipcshmkey[10]; 642

– char ipctrace[10]; 642

– char kaashmkey[10]; 642

– char kb[10]; 642

– char kdcfile_name[42]; 642

– char kdcfile_operation; 642

– char keyvalue[4]; 642

– char locale_lang_id[2]; 643

– char locale_terr_id[2]; 643

– char locale_ccsname[8]; 643

– char lputbuf[4]; 643

– char lputlth[10]; 643

– char lssbs[4]; 643

– char mp_wait_sec[5] 643

– char nb[10]; 643

– char net_access; 644

– char nrconv[2]; 644

– char osi_scratch_area[5]; 644

– char osishmkey[10]; 644

– char pgpool_pages[10]; 644

– char pgpool_warnlevel1[2]; 644

– char pgpool_warnlevel2[3]; 644

– char pgpoolfs[5]; 644

– char pisizelth[5]; 645

– char recbuf_pages[10]; 645

– char recbuf_lth[10]; 645

– char recbuffs[3]; 645

mod1 Data structure kc_max_par_str Page2

X/W

X/W

X/W

B

B

B

X/W

X/W

X

kc_max_par_str KDCADMI program interface

636 Administering Applications

– char reqnr[3]; 645

– char seclev4;

– char sat; 645

– char semarray_startkey[10]; 645

– char semarray_number[4]; 645

– char semkey[10][10]; 646

– char signon_value[3]; 646

– char signon_restr; 646

x (GIR) char signon_fail[3]; 647

x (GIR) char sm2; 647

– char spab[10]; 647

– char syslog_size[10]; 647

– char tasks[3]; 648

– char tasks_in_pgwt[3]; 648

– char tracerec[5]; 648

– char trmsglth[10]; 648

– char uslog; 648

– char vgmsize[3]; 649

– char xaptpshmkey[10]; 649

– char mpgpool_pages[10]; 4

– char mpgpool_res; 4

– char rtimer; 4

– char spin_lock_asyn[10]; 4

– char spin_lock_cache[10]; 4

– char spin_lock_kaa[10]; 4

– char spin_lock_ipc[10]; 4

– char spin_lock_pcmm[10]; 4

– char xopen_cpic_dspl[5]; 4

– char xopen_cpic_lth[5]; 4

– char xopen_xatmi_dspl[5]; 4

– char xopen_xatmi_lth[5]; 4

– char xopen_tx_dspl[5]; 4

– char xopen_tx_lth[5]; 4

mod1 Data structure kc_max_par_str Page2

B

B

X/W

X/W

X/W

B

X/W

KDCADMI program interface kc_max_par_str

Administering Applications 637

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

The fields in the data structure have the following meanings:

applimode
Specifies if the UTM application is a UTM-S or UTM-F application.

´S´ The application was generated as a UTM-S application (Secure).

´F´ The application was generated as a UTM-F application (Fast).

appliname
The name of the UTM application. This name is defined in MAX APPLINAME during
the static generation with the KDCDEF generation tool.

appliname is the name of the application that must be specified by terminals when
establishing a connection.

asyntasks
Contains the maximum number of processes of the application that may process
jobs to asynchronous transaction codes. asyntasks is the upper limit for the current
number of processes used for processing asynchronous jobs. The value can be set
at the start of the application or it can be set dynamically by the administration.

– char max_statistics_msg; 649

– char max_open_asyn_conv[10]; 649

– char dead_letter_q_alarm[10]; 649

– char max_suspended_ta[3]; 4

– char atac_redelivery[3]; 649

– char dget_redelivery[3]; 649

– char principal_lth[3]; 649

– char privileged_lterm[8]; 650

char cache_location; 650

char data_compression; 650

char hostname_long[64]; 650

char move_bundle_msgs; 650

1 Field contents of the field can be modified with KC_MODIFY_OBJECT; see page 386
2 The meaning of the field is described on the page specified in this column.
3 Filled with blanks by default.
4 Internal UTM field; the contents of this field are irrelevant and will not be described in the following.

mod1 Data structure kc_max_par_str Page2

B

kc_max_par_str KDCADMI program interface

638 Administering Applications

blksize
Specifies the size of a UTM page. The size is set during the KDCDEF generation to
either 2K, 4K or 8K. Possible values:

´2´ The size of a UTM page is 2K.
´4´ The size of a UTM page is 4K.
´8´ The size of a UTM page is 8K.

bretrynr
Contains the number of times UTM will attempt to pass a message to the transport
system (BCAM) when BCAM cannot immediately accept the message at the
present time. If the value of bretrynr is exceeded the connection to the dialog partner
is closed down. The value of bretrynr influences the performance of the application.

For asynchronous messages sent to a dialog partner with ptype= ´APPLI´ (TS appli-
cations that are not socket applications), bretrynr ≥ 3 means that UTM will try to pass
the message on to BCAM up to three times. If BCAM does not accept the message
on the third try, then UTM will release the process for now, but will not close the
connection. After a 3 second wait UTM will try again up to three times to pass the
message to BCAM. If the attempts fail again, then UTM waits another 3 seconds
before trying another three times, etc.

Minimum value: ´1´
Maximum value: ´32767´ (theoretical value)

cacheshmkey
Contains the access key for the shared memory segment that contains the global
application buffer for file accesses. cacheshmkey is a global parameter for Unix, Linux
and Windows systems. cacheshmkey is a decimal number.

cachesize_pages
Specifies the size of the cache in UTM pages. The size of a UTM page is returned
in blksize. All access to the page pool is carried out via the cache, i.e. all input and
output to local secondary storage areas, global secondary storage areas, terminal-
specific long-term storage area, LPUT and FPUT messages, MPUT messages, as
well as some UTM administration data. A write to a KDCFILE is only executed if
there is no more space in the cache or if the transaction is terminated.

cachesize_paging
Specifies the percentage of the cache that will be written at one time to the
KDCFILE when a bottleneck occurs so that the storage space in the cache can be
used for other data. The value of cachesize_paging influences the performance of
your UTM application.

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

X/WX/W

X/W

X/W

X/W

KDCADMI program interface kc_max_par_str

Administering Applications 639

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

UTM removes at least 8 UTM pages from the cache when paging even if the value
of cachesize_paging is less than this number of UTM pages.

Minimum value: ´0´, i.e. 8 UTM pages will be removed for storage elsewhere
Maximum value: ´100´ (%)

cachesize_res
Specifies whether or not the cache is resident. The contents of the field are to be
interpreted as follows:

´R´ The cache is resident.

´N´ The cache is pageable, i.e. not resident.

cardlth
The length in bytes of the identification information that UTM stores when an ID
reader is used in addition to the access privilege check done when signing on
(KDCSIGN). The identification information can be read in a program unit using the
KDCS call INFO.

catid_a
Contains the catalog ID (CAT-ID) assigned to your KDCFILE with the suffix A for the
B2000 system.

catid_b
The catid_b is only relevant if you maintain a redundant copy of the KDCFILE.
catid_b then contains the catalog ID (CAT-ID) assigned to your KDCFILE with the
suffix B. If only one KDCFILE is used, then catid_b = catid_a.

clrch (clear character)
Contains the character with which the communication area (KB) and the standard
primary working area (SPAB) of the program units are overwritten at the end of a
dialog step.

If no character was defined during generation, then clrch contains blanks and
clrch_type=´N´. The storage areas are not overwritten then at the end of a dialog
step.

If a character was defined in the KDCDEF generation, then clrch contains one
character. If the character is hexadecimal, then each half byte is represented as one
character.

clrch is returned in the form of the following union:

union kc_clear_char

char x[2];

char c;

BB

B

B

BB

BB

BB

B

B

BB

B

B

B

kc_max_par_str KDCADMI program interface

640 Administering Applications

The x field contains data if clrch is returned as a hexadecimal character.
The c field contains data if clrch is returned as an alphanumeric character.

You can determine how to interpret the data contained in clrch using the clrch_type
field.

clrch_type
Specifies how the contents of the clrch field are to be interpreted. The contents
mean:

´X´ clrch contains a hexadecimal character.

´C´ clrch contains a printable, alphanumeric character.

´N´ No clrch character is defined.

conn_users
The maximum number of users that may be signed on to the UTM application at the
same time. Users are understood as being the number of user IDs that may be
signed on at the same time. If the application is generated without user IDs, then
the number of clients that can connect to the application via LTERM partners is
limited by conn_users.

User IDs generated with administration privileges can still sign on to the UTM appli-
cation if the maximum number of simultaneously active user IDs has already been
reached.

conn_users=´0´ means that the number of simultaneously active users is unlimited.

Minimum value: ´0´
Maximum value: ´500000´
When performing modifications on Unix, Linux and Windows systems, no value
greater than the value defined during the generation may be specified
(MAX CONN-USERS) .

destadm
Contains the receiver to which UTM sends the results of KDCADM administration
calls that were asynchronously processed (asynchronous transaction codes from
KDCADM). The receiver can be an LTERM partner or an asynchronous TAC or a
TAC queue.

If destadm contains blanks, then no receiver is defined. The results of the
asynchronous transaction codes from KDCADM are lost. In this case you are to
define a receiver using, for example, KC_MODIFY_OBJECT.

X/W

X/W

X/W

KDCADMI program interface kc_max_par_str

Administering Applications 641

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

dputlimit1_day, dputlimit1_hour, dputlimit1_min, dputlimit1_sec
These parameters determine the upper limit of the time interval in which a time
controlled job must be executed. Time controlled jobs are created with the KDCS
call DPUT. A program unit call and hence also a DPUT call with an absolute time
specification can be delayed to such an extent that the required execution time of
the DPUT has already elapsed. This time at which a time controlled job is to be
executed (specified in the DPUT call) must occur within the time span specified in
dputlimit1 after the time of the DPUT call. dputlimit1 is specified as follows:

The number of days (dputlimit1_day) + the number of hours (dputlimit1_hour) + the
number of minutes (dputlimit1_min) + the number of seconds (dputlimit1_sec).
Therefore, the following is true:

Execution time < time of the DPUT call + dputlimit1

dputlimit2_day, dputlimit2_hour, dputlimit2_min, dputlimit2_sec
These parameters determine the lower limit of the time interval in which a time
controlled job (DPUT call) must be executed. The time controlled job is to be
executed (specified in the DPUT call) no earlier than within the time span specified
in dputlimit1 before the time of the DPUT call. dputlimit2 is specified as follows:

The number of days (dputlimit2_day) + the number of hours (dputlimit2_hour) + the
number of minutes (dputlimit2_min) + the number of seconds (dputlimit2_sec).

Therefore, the following is true:
Execution time > time of the DPUT call - dputlimit2

If the execution time specified lies between the limit specified in dputlimit2 and the
time of the call, then the DPUT is immediately converted to an FPUT.

gssbs The maximum number of global secondary storage areas that may exist in the
application at one time.

hostname
BS2000 systems:
Contains the name of the virtual host on which (from BCAMs point of view) the appli-
cation is running.

Unix, Linux and Windows systems:
hostname contains the name of the host that is specified as the sender address when
a connection is established from the UTM application.
If this name is longer than 8 characters, the computer name, up to 64 characters
long, can be taken from the hostname_long field. In this case, the hostname field
contains the first 8 characters of the long name.

B

B

X/W

X/W

X/W

X/W

X/W

X/W

kc_max_par_str KDCADMI program interface

642 Administering Applications

ipcshmkey
Contains the access key for the shared memory segment used for interprocess
communication between the work processes on the one hand, and the external
processes of the application on the other hand. On Unix, Linux and Windows
systems ipcshmkey is a global parameter. ipcshmkey is a decimal number.

ipctrace
Contains the number of entries in the trace area of the IPC.
UTM writes the entries into the trace area of the IPC (shared memory segment for
the interprocess communication) if the UTM application is running in test mode
(TESTMODE=ON). These entries contain internal information for diagnostic
purposes. One entry takes up 32 bytes. If the number of entries contained in ipctrace
is exceeded, then UTM overwrites already existing entries, starting with the oldest
entry.

kaashmkey
Contains the access key for the shared memory segment in which the global appli-
cation data is stored. kaashmkey is a global parameter on Unix, Linux and Windows
systems. kaashmkey contains a decimal number.

kb Contains the length of the communication area in bytes. The communication area
header and the communication area return area are not taken into consideration
when determining this length.

kdcfile_name
Base name of the KDCFILE, USLOG user log file and the SYSLOG system log file
(see also the openUTM manual “Generating Applications”). kdcfile_name must also
be specified for the start of the application in the FILEBASE start parameter.

kdcfile_operation
Specifies if a redundant copy of the KDCFILE is maintained or not. The contents of
kdcfile_operation are interpreted as follows:

´D´ A redundant copy of the KDCFILE is maintained. If the KDCFILE is split
(see also the openUTM manual “Generating Applications”, KDCFILE), then
all KDCFILE files will be maintained together with a redundant copy.

´S´ Only one copy of the KDCFILE is maintained. If the KDCFILE was split, then
only one copy of each KDCFILE file is maintained.

keyvalue
Contains the number of the highest key code in the application and therefore the
number of the highest lock code that may be used for access protection for a trans-
action code or an LTERM partner.

keyvalue also specifies the maximum number of key codes per key set.

X/WX/W
X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

KDCADMI program interface kc_max_par_str

Administering Applications 643

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

locale_lang_id, locale_terr_id, locale_ccsname
These contain the three components of the locale assigned to the UTM application.
The locale defines the standard language environment of the application. The
standard language environment is assigned to every user ID (KC_USER), every
LTERM partner and every LTERM pool of the application as the standard setting for
the language environment. The standard setting is in effect as long as a locale is
not defined for these objects (see also the openUTM manual “Generating Applica-
tions”).

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territorial code.

locale_ccsname
(coded character set name)
Contains the up to 8 characters long name of an expanded character set (CCS
name; see also the XHCS User Guide).

lputbuf Contains the size of the buffer in which UTM temporarily stores the records created
with the KDCS call LPUT before it writes them to the user log file (USLOG). The
buffer is stored in the page pool.

The LPUT statements created in the program units are temporarily stored in this
buffer until it is full. Only then will UTM copy the statements into the user log file.
The user log file (USLOG) is only open during this copy procedure.

lputlth Contains the maximum length of the user data in an LPUT record.
The length of an LPUT record consists of:
lputlth + 84 bytes for the communication area header + 12 bytes for the length fields.

lssbs Contains the maximum number of LSSBs (local secondary storage areas) that can
be created within a service.

mp_wait_sec (memory pool wait)
Specifies the maximum number of seconds a UTM application program will wait to
connect a process to a common memory pool.

nb (KDCS message area)
Contains the maximum length of the message area for KDCS program units.

BB
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

kc_max_par_str KDCADMI program interface

644 Administering Applications

net_access
This parameter is no longer supported.

nrconv (number of conversations)
The maximum number of services that a user may have on the stack at the same
time. The value ´0´ means that no services may be placed on the stack.

osi_scratch_area
The size of an internal UTM working area that UTM needs for dynamically storing
data when the OSI TP protocol is used. The number is specified in kilobytes.

In UTM applications on BS2000 systems this working area is automatically
increased in size, if necessary, during the application run.

In UTM applications on Unix, Linux or Windows systems the size of the internal
working area is constant during the entire application run. If the size of the internal
working area is determined to be insufficient during operations, then the KDCDEF
generation must be repeated using a higher value.

osishmkey
Contains the access key for the shared memory segment used by OSS for the
communication via OSI TP. osishmkey is a global parameter on Unix, Linux and
Windows systems. osishmkey is a decimal number.

pgpool_pages
Specifies the size of the page pool as a number of UTM pages. The size of a UTM
page is output in the blksize field.

pgpool_warnlevel1, pgpool_warnlevel2
Contains the number of warning levels used by UTM to warn of an impending
overrun of the page pool.

pgpool_warnlevel1
Specifies how full the page pool must be before UTM outputs the first warning (UTM
message K041). pgpool_warnlevel1 is a decimal number in percent.

pgpool_warnlevel2
Specifies how full the page pool must be before UTM outputs the second warning.
Asynchronous jobs are rejected after the value for warning level 2 is exceeded. In
this case, the user receives the UTM message K041, and a program unit receives
the corresponding return code. pgpool_warnlevel2 is a decimal number in percent.

pgpoolfs
Contains the number of files over which the page pool is divided. If pgpoolfs = ´0´,
then the page pool is stored in the main file of the KDCFILE, i.e. the page pool was
not swapped out.

In the case of dual opeation of the KDCFILE the page pool in the second KDCFILE
also consists of pgpoolfs files.

X/WX/W
X/W

B

B

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

KDCADMI program interface kc_max_par_str

Administering Applications 645

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

pisizelth
This parameter is no longer supported.

recbuf_pages
Contains the size of the restart area per process. The size is specified as a number
of UTM pages. The size of a UTM page is output in the blksize field.

The data needed for the restart after a system error is written to the restart area.
recbuf_pages influences the performance of the application: if this area is large, then
the load placed on the running application is lower; a restart after a system error
takes longer, however. If the area is small, then the load placed on the running appli-
cation is higher, but a restart is faster.

recbuf_lth
Contains the size of the buffer in bytes available per process of the application for
temporarily storing restart data. The data is needed to execute a restart after a
transaction or system error.

recbuffs
Contains the number of files over which the restart area is divided.

If recbuffs = ´0´, then the restart area is stored in the main file of the KDCFILE, i.e.
the restart area was not swapped out.

In the case of dual opeation of the KDCFILE the restart area in the second KDCFILE
also consists of recbuffs files.

reqnr Contains the maximum number of PAM read/write jobs that may be accepted at one
time in a UTM process for a file. reqnr contains the value set in the KDCDEF gener-
ation as long as this value is smaller than the value of cachesize_pages. If the value
generated is larger, then the value of cachesize_pages is output for reqnr.

sat (security audit trail)
Specifies if SAT logging is enabled for the application.

The SAT logging can be enabled and disabled using the KDCMSAT transaction
code (see the openUTM manual “Using UTM Applications on BS2000 Systems”,
UTM-SAT administration).

´Y´ The SAT logging is enabled (ON).

´N´ The SAT logging is disabled (OFF).
The only events logged are KDCMSAT transaction code accesses (except
for KDCMSAT HELP). All other events are not logged.

XX
X

BB

B

B

B

BB

B

B

B

B

BB

BB

B

B

kc_max_par_str KDCADMI program interface

646 Administering Applications

semarray_startkey, semarray_number
Specifies the area for keys for the global application semaphores. Semaphores are
used for process synchronization. The keys are global parameters on Unix, Linux
and Windows systems.

semarray_startkey
Contains the number of the first semaphore key.

semarray_number
Contains the number of keys currently being used by the application.

UTM uses a key by adding 1 to the semarray_startkey key each time, starting with
the first key number.

If there was no key area defined in the KDCDEF generation, then UTM returns the
value ´0´ in semarray_startkey and semarray_number. In this case, UTM returns the
semaphore key in the semkey field.

semkey (semaphore key)
If UTM returns values in the semarray_startkey and semarray_number fields that are
not equal to ´0´, then semkey contains ´0´. If the semarray_startkey and semar-
ray_number fields contain ´0´, then semkey contains the key of the application for all
semaphores that are global to the application (process synchronization). The keys
are global parameters on Unix, Linux and Windows systems. The keys are specified
as decimal numbers. A maximum of 10 keys are returned. If less than 10 keys were
generated, then the rest of the field contains ´0´.

signon_value
Specifies the percentage of user IDs that may have a sign on service active at one
time. UTM attempts to obtain the necessary resources according to this number
(see the section “kc_signon_str - Properties of the sign-on process” on page 655).

signon_restr
Specifies if restrictions were generated for the sign-on procedure (see also the
section “kc_signon_str - Properties of the sign-on process” on page 655):

´R´ Database calls and access to the global UTM storage area are not
permitted during the first part of the sign-on procedure (RESTRICTED).

´N´ Database calls and access to global UTM storage are permitted during the
first part of the sign-on procedure.

X/WX/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCADMI program interface kc_max_par_str

Administering Applications 647

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

signon_fail
Specifies the number of unsuccessful sign-on attempts repeated by a terminal user
without interruption after which UTM should trigger a "silent alarm". In the case of a
silent alarm, UTM generates the message K094, writes this to SYSLOG and
possibly also outputs it at other message destinations configured for this message.
See also the section “kc_signon_str - Properties of the sign-on process” on
page 655.

Minimum value: ´1´
Maximum value: ´100´

sm2 Specifies if the UTM application sends performance data to openSM2 for
monitoring.

´0´ Performance monitoring using openSM2 is generally not permitted for the
UTM application. This means that the UTM application may not send any
data to openSM2. The sending of data to openSM2 cannot be enabled by
the administration, either.

´N´ The UTM application may send data to openSM2. The sending of data to
openSM2 is currently disabled, however. It can be enabled by the adminis-
tration.

´Y´ The UTM application may send data to openSM2. The sending of data to
openSM2 is enabled. It can be disabled by the administration.

spab Contains the maximum length of the standard primary working area (SPAB).

syslog_size
Contains the generated control value setting used by UTM for the automatic
monitoring of the size of the SYSLOG file. The automatic monitoring of the size of
the SYSLOG is only possible if the SYSLOG was created as a file generation group
(FGG) or a file generation directory (see the openUTM manual “Using UTM Appli-
cations”). UTM switches to the next file generation of the SYSLOG FGG when the
size of the file generation currently being written to reaches the syslog_size control
value.

syslog_size = ´0´ means that UTM does not monitor the size of the SYSLOG file.
UTM writes all UTM messages with a SYSLOG message line into this file gener-
ation.

syslog_size = ´0´ is always output when a redundant copy of the SYSLOG file is not
maintained.

You can switch the logging to another file generation, change the control value or
enable/disable the monitoring of the size (see KC_SYSLOG page 431 or
KDCSLOG page 794)

kc_max_par_str KDCADMI program interface

648 Administering Applications

tasks The maximum number of processes that may be used for the application at one
time. tasks contains the maximum value set using KDCDEF (in MAX TASKS).

The number of processes that may process jobs of the application is reset at every
start of the application and can be adjusted according to the current demands
during the application run (see KDCAPPL page 678 and KC_MODIFY_OBJECT
page 389). However, neither the number of processes specified at the start nor the
number set by the administration may exceed the value returned in tasks.

tasks_in_pgwt
Specifies the maximum number of processes that may simultaneously process jobs
with blocking calls such as the KDCS call PGWT (Program Wait).

The current setting for the number of processes is returned in kc_tasks_par_str when
an information query with the KC_TASKS_PAR parameter type is sent.

The current number of processes is set at the start of the application and can be
altered by the administration when bottlenecks arise (see KDCAPPL page 678 and
KC_MODIFY_OBJECT page 389). Neither the number of processes specified at
the start nor the number set by the administration may exceed the value returned
here.

If tasks_in_pgwt=´0´, no blocking calls are allowed.

tracerec (trace records)
Contains the maximum number of entries in the TRACE area. UTM writes
diagnostic information to this area if TESTMODE=ON has been set.
Each entry is 64 bytes long on 32-bit platforms and 128 bytes on 64-bit pattforms.

trmsglth (transfer message length)
Contains the maximum length of the physical messages exchanged between
clients, partner applications or printers and the UTM application. Control characters,
position data, etc., is included in this length specification. The number is specified
in bytes.

uslog Specifies if a redundant copy of the user log file is maintained for data security
reasons.

´S´ (SINGLE)
Only one copy of the user log file is maintained.

´D´ (DOUBLE)
A redundant copy of the user log file is maintained as well.

For more information on the user log file consult the openUTM manual “Using UTM
Applications”.

KDCADMI program interface kc_max_par_str

Administering Applications 649

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

vgmsize
Contains the size of the buffer used for storing transaction and procedure infor-
mation of an SQL database system. This will also limit the size of a user’s portion
of the page pool. vgmsize is specified in KB.

xaptpshmkey
Contains the access key for the shared memory segment used by XAPTP for the
communication via OSI TP.

xaptpshmkey is a global parameter on Unix, Linux and Windows systems.
xaptpshmkey is a decimal number.

max_statistics_msg
Indicates whether or not the application generates statistics message K081 every
hour (see the openUTM manual ”Messages, Debugging and Diagnostics” for K081,
and the openUTM manual “Generating Applications” for MAX STATISTICS-MSG).

´Y´ Statistics message K081 is generated every hour and written into the
SYSLOG file.
When the message is issued, various application-specific statistics values
are reset to zero.

´N´ Statistics message K081 is not generated.
The application-specific statistics values can be reset with the adminis-
tration functions, if necessary (see KC_MODIFY_OBJECT, KC_CUR-
R_PAR on page 374).

max_open_asyn_conv
Contains the maximum number of asynchronous processes that can be active
simultaneously.

dead_letter_q_alarm
Controls monitoring of the number of messages in the dead letter queue. Message
K134 is output each time the threshold is reached.
Monitoring is disabled if a threshold value of 0 is specified.

atac_redelivery
Contains the maximum number of repeated deliveries of a message to an
asynchronous service when the service is terminated abnormally.

dget_redelivery
Contains the maximum number of repeated deliveries of a message to a service-
controlled queue when rolling back the transaction.

principal_lth
Contains the maximum length of a Kerberos principal in bytes (see openUTM
manual “Generating Applications”, MAX PRINCIPAL-LTH=).

BB
B

B

B

X/WX/W

X/W

X/W

X/W

X/W

BB

B

B

kc_max_par_str KDCADMI program interface

650 Administering Applications

privileged_lterm
Contains the name of the privileged LTERM (see openUTM manual “Generating
Applications”, MAX PRIVILEGED-LTERM=).

cache_location
Returns the storage location of the UTM cache.

´P´ The UTM cache is created in the program space.

For Unix, Linux, and Windows systems. the value ´P´ is always returned
here.

´D´ The UTM cache is created in one or more data spaces (see openUTM
manual “Generating Applications”, MAX CACHESIZE=).

data_compression
Specifies whether data compresion is permitted via generation:

´Y´ Data compresion is permitted.

´N´ Data compresion is not permitted

See openUTM manual “Generating Applications”, KDCDEF statement DATA-
COMPRESSION=.

hostname_long

BS2000 systems:
hostame_long contains the name of the virtual host on which (from BCAMs point of
view) the application is running.

Unix, Linux and Windows systems:
hostname_long contains the name of the host that is specified as the sender address
when a connection is established from the UTM application.

move_bundle_msgs
Contains the value generated in parameter MOVE-BUNDLE-MSGS of the MAX
statement:

´Y´ If no connection to the partner application can be established, UTM moves
waiting asynchronous messages of a slave LTERM, slave LPAP or Slave
OSI-LPAP to a different slave of the same bundle.

´N´ Waiting asynchronous messages on a slave are not moved.

X/W

X/W

BB

B

B

B

B

X/W

X/W

X/W

KDCADMI program interface kc_msg_dest_par_str

Administering Applications 651

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_msg_dest_par_str - Properties of the user-specific message
destinations

The kc_msg_dest_all_par_str data structure is defined for the KC_MSG_DEST_PAR object
type. This data structure contains the four structures user_dest_1, user_dest_2, user_dest_3
and user_dest_4 in which, in the case of KC_GET_OBJECT, UTM provides the information
on the four user-specific message destinations.

If a message destination is not generated, blanks are returned.

where

The fields of the data structure have the following meanings:

md_name
Contains the name of the user-specific message destination.

md_type
Specifies the type of the message destination in name. Possible values are:

´L´ for an LTERM partner

´T´ for a TAC or a TAC queue

´U´ for a user ID or a USER queue

md_format
Indicates the format in which messages are passed to the message destination.
Possible values are:

´F´ (FILE)
The format corresponds to the data structures for the MSGTAC program (see
the section “Control using the MSGTAC program” on page 152).

´P´ (PRINT)
The format corresponds to the output format of the UTM tool KDCPSYSL (see
the openUTM manual “Using UTM Applications”).

Data structure kc_msg_dest_all_par_str

struct kc_msg_dest_par_str user_dest_1;

struct kc_msg_dest_par_str user_dest_2;

struct kc_msg_dest_par_str user_dest_3;

struct kc_msg_dest_par_str user_dest_4;

Data structure kc_msg_dest_par_str

char md_name[8];

char md_type;

char md_format;

kc_pagepool_str KDCADMI program interface

652 Administering Applications

kc_pagepool_str - Current utilization of the page pool

The data structure kc_pagepool_str is defined for the parameter type KC_PAGEPOOL. In the
case of KC_GET_OBJECT, UTM returns information on the current utilization of the page
pool in kc_pagepool_str.

The fields in the data structure have the following meanings:

total_pages
Total number of pages in the page pool.

free_pages
Number of free pages.

gssb_pages
Number of pages which are utilized for GSSBs.

lssb_pages
Number of pages which are utilized for LSSBs.

tls_pages
Number of pages which are utilized for TLS areas.

Data structure kc_pagepool_str

char total_pages[10];

char free_pages[10];

char gssb_pages[10];

char lssb_pages[10];

char tls_pages[10];

char uls_pages[10];

char dial_conv_pages[10];

char tacclass_pages[10];

char fpmm_pages[10];

char fput_pages[10];

char msgtac_pages[10];

char lput_pages[10];

char phys_msg_pages[10];

char reset_msg_pages[10];

char log_rec_pages[10];

char other_pages[10];

KDCADMI program interface kc_pagepool_str

Administering Applications 653

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

uls_pages
Number of pages which are utilized for ULS areas.

dial_conv_pages
Number of pages which are utilized for service contexts by users.

tacclass_pages
Number of pages which are utilized for dialog input messages, and which are
temporarily stored in TAC Class Queues.

fpmm_pages
Number of pages which are required for managing asynchronous messages.

fput_pages
Number of pages which are utilized for asynchronous messages.

msgtac_pages
Number of pages which are utilized for MSGTAC messages.

lput_pages
Number of pages which are utilized for temporarily stored LPUT records.

phys_msg_pages
Number of pages which are utilized for output messages and which need to be
temporarily stored because they can only be transferred to the transport system in
sections owing to their length.

reset_msg_pages
Number of pages which are utilized for reset messages.

log_rec_pages
Number of pages which are utilized for OSI TP log records.

other_pages
Number of other utilized pages.

i In the case of UTM cluster applications, GSSB and ULS areas are stored in the
global page pool of the UTM cluster application. As KC_PAGEPOOL only displays
the utilization of the local page pool, the values for gssb_pages and uls_pages are
always zero in UTM cluster applications.

kc_queue_par_str KDCADMI program interface

654 Administering Applications

kc_queue_par_str - Properties of queue objects

The kc_queue_par_str data structure is defined for the KC_QUEUE_PAR parameter type. In
the case of KC_GET_OBJECT, UTM returns general information on temporary queues in
kc_queue_par_str.

The fields of the data structure have the following meanings:

qp_number
Generated maximum number of queue objects that can exist at any one time during
an application run

qlev Default value when a temporary queue is created:
The maximum number of messages that can be in a temporary queue at any one
time

qmode
Default value when a temporary queue is created:
Response of UTM when the maximum permitted number of messages in the queue
is exceeded. Possible values are:

´S´ (STD)
UTM rejects any further messages for this queue.

´W´ (WRAPAROUND)
UTM accepts further messages. When a new message is entered, the
oldest message in the queue is deleted.

Data structure kc_queue_par_str

char qp_number[10];

char qlev[5];

char qmode;

KDCADMI program interface kc_signon_str

Administering Applications 655

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_signon_str - Properties of the sign-on process

The data structure kc_signon_str is defined for the object type KC_SIGNON. In the case of
KC_GET_OBJECT, UTM returns the values of the parameters through which the commu-
nication partner is signed on to the application in kc_signon_str.

The fields of the data structure have the following meanings:

concurrent_terminal_signon
Only relevant if a sign-on process is generated in your application.

concurrent_terminal_signon specifies in percent for how many of the generated users
the sign-on process which has been started for a sign-on via a terminal or a TS
application (APPLI or SOCKET) can be active at one time.

UTM tries to make available the required resources according to this value.

grace (Grace-Sign-On)
Specifies whether a user may still change the password when first signing on after
the password has expired (see kc_user_str.protect_pw_time).

´N´ The user cannot change the password after it has expired. Only the admin-
istrator can do this.

´Y´ The user can still change the password after it has expired.
The modification must be made within the sing-on before the user is entirely
signed on.

If a sign-on service is activated, the password can be changed there using
the KDCS call SIGN CP, regardless of the client type. A sign-on service is
always activated when a user signs on via a connection for whose transport
access point a sign-on service has been generated.

Data structure kc_signon_str

char concurrent_terminal_signon[3];

char grace;

char pw_history[2];

char restricted;

char silent_alarm[3];

char upic;

char multi_signon;

char omit_upic_signoff;

kc_signon_str KDCADMI program interface

656 Administering Applications

The table below shows how the individual client types behave when a
password has expired and how this behavior depends on whether a sign-on
service is activated.

pw_history
Specifies for how many password changes per user UTM records a password
history. pw_history contains the number of passwords of each user ID which UTM
records.

If a user changes the password and if a limited validity period is generated for the
password in the USER statement, the new password must differ from the current
password and from the last n passwords set for that user ID. n is the number in
pw_history.

pw_history=0 means that UTM does not keep a password history.

The password history is only relevant when a password is changed by the user; the
administrator can change the password irrespective of the passwords contained in
the history.

Client type Behavior if the password has expired1)

UPIC Regardless of whether a sign-on service is activated, the
password can be changed using the function
Set_Conversation_Security_New_Password.

BS2000 terminal If the password is blanked out, openUTM prompts the user
to change the password, regardless of whether a sign-on
service is activated.

If the password is not blanked out, openUTM prompts the
user to change the password only if no sign-on service is
activated.

Terminal on
Unix, Linux and
Windows systems

openUTM prompts the user to change the password,
regardless of whether a sign-on service is activated.

TS application The user can no longer change the password without
activation of a sign-on service.

1) The password can always be changed via the administration interface (e.g. KC_MO-
DIFY_OBJECT, obj_type=KC_USER). By default, passwords with limited periods of
validity are immediately set to "expired" when changes are made via the administration
interface. If you want to prevent this, then you must explicitly request this in the adminis-
tration interface.

BB
B
B

B
B
B

X/W
X/W
X/W

X/W
X/W

KDCADMI program interface kc_signon_str

Administering Applications 657

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

restricted
Specifies whether database calls and accessing global UTM Sorage areas are not
allowed in the first part of the sign-on.

´Y´ Database calls and accessing global UTM storage areas are not allowed in
the first part of the sign-on.

´N´ Database calls and accessing global UTM storage areas are allowed in the
first part of the sign-on.

silent_alarm
Specifies after how many unsuccessful attempts of a terminal user to sign on UTM
issues a silent alarm. Silent alarm means that UTM issues message K094.
This value can be modified in the signon_fail field in the data structure kc_max-
_par_str, see page 647.

upic Only relevant if an sign-on process was generated in your application.
upic specifies whether the sign-on process is activated when an UPIC client wishes
to start a conversation.

´Y´ If a sign-on process is generated for the transport system access point by
means of which the UPIC client has set up the connection, this is started
before every conversation initiated by the UPIC client.

´N´ No sign-on process is started for UPIC clients.

multi_signon
Specifies whether several users can be signed on with the application under the
same user ID at the same time.

´Y´ The following cases must be distinguished:

– The user ID is generated with RESTART=NO:

Several users can be signed on with the application under the same
user ID at the same time. However, only one of the users may be signed
on at the terminal.

– The user ID is generated with RESTART=YES:

Several job-receiving services can only be active under the same user
ID at the same time if the job-receiving services are started via OSI TP
connection and the “commit” function is selected.

´N´ No more than one user can be signed on with each user ID in the appli-
cation, i.e. no more than one dialog service may be active per user ID and,
if a user is signed on with the application, then no job-receiving service can
be started for this specific user ID.

i multi_signon has no effect on issuing asynchronous serviced through an
OSI TP connection.

kc_signon_str KDCADMI program interface

658 Administering Applications

omit_upic_signoff
Specifies whether or not the user ID under which a UPIC client program has signed
on continues to be signed on after a UPIC conversation has finished.

´Y´ The user ID continues to be signed on after the end of a UPIC conversation.
This user is only signed off again
– if the connection is cleared or
– if a UPIC client with another user ID wants to sign on via this connection.

If the UPIC client does not send another user ID then the original user ID
continues to be signed on, i.e. no sign-on service is started before the start
of the new UPIC conversation.

In the case of applications without a user ID, a sign-on service may, if
necessary, be started once after the establishment of the connection and
before the start of the first UPIC conversation.

Default in UTM cluster applications.

´N The user ID with which a UPIC client has signed on is signed off after the
end of each UPIC conversation.

Default in standalone UTM applications.

KDCADMI program interface kc_system_par_str

Administering Applications 659

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_system_par_str - System parameters

The data structure kc_system_par_str is defined for the parameter type KC_SYSTEM_PAR.
In the case of KC_GET_OBJECT, UTM returns following information in kc_system_par_str:

● The basic settings of the application, for example if the application is generated for
server-server communication.

● The openUTM version together with its update information.

● The application name and functionality.

● The operating system and the name, platform and operating mode of the computer on
which the application runs.

Data structure kc_system_par_str

char appliname[8];

char utm_version[8];

char applimode;

char system_type;

char hostname[8];

char destadm[8];

char tacclasses;

char pgwt;

char kdcload;

char load_module_gen;

char prog_change_running;

char inverse_kdcdef_state;

char utmd;

char osi_tp;

char certificate_gen;

char os[24];

char bit_mode[8];

char cluster_appl;

char hostname_long[64];

B

B

kc_system_par_str KDCADMI program interface

660 Administering Applications

The fields in the data structure have the following meanings:

appliname
The name of the application specified in the KDCDEF generation in
MAX APPLINAME.

utm_version
The openUTM version used, including the update information, for example
V06.5A00.

applimode
Specifies if the UTM application is a UTM-S or UTM-F application.

´S´ The application is generated as a UTM-S application (Secure).

´F´ The application is generated as a UTM-F application (Fast).

system_type
The operating system of the computer on which the application runs.

´B´ BS2000 systems

´X´ Unix and Linux systems

´N´ Windows systems

hostname
The name of the computer on which the application runs.

If this name is longer than 8 characters, the computer name, up to 64 characters
long, can be taken from the hostname_long field. In this case, the hostname field
contains the first 8 characters of the long name.

destadm
Contains the receiver to which UTM sends the results of KDCADM administration
calls that were processed asynchronously (KDCADM asynchronous transaction
codes). destadm may contain the following:

– the name of an LTERM partner or
– the transaction code of an asynchronous program unit.

If destadm contains blanks, then no receiver is defined. The results of the KDCADM
asynchronous transaction code are lost.

tacclasses
Specifies if the application was generated with TAC classes, i.e. if TAC classes were
created during the KDCDEF generation.

´Y´ The application was generated with TAC classes.

´N´ The application was generated without TAC classes.

X/W

X/W

X/W

KDCADMI program interface kc_system_par_str

Administering Applications 661

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

pgwt Specifies whether program units containing blocking calls are allowed in the appli-
cation (for example the KDCS call PGWT).

´Y´ Blocking calls are allowed, i.e. there is at least one transaction code or one
TAC class with the property pgwt=´Y´ (see kc_tac_str.pgwt on page 564 and
kc_tacclass_str.pgwt on page 569).

´N´ Blocking calls are not allowed, i.e. the application contains neither trans-
action codes nor TAC classes for which pgwt=´Y´.

kdcload
This field always contains ´N´.
This field refers to functionality of UTM which is no longer supported.

load_module_gen
Specifies if the application was generated with load modules (BS2000 systems) or
shared objects/DLLs (Unix, Linux and Windows systems), i.e. if at least one LOAD-
MODULE statement or SHARED-OBJECT statement was specified for the
KDCDEF generation.

´Y´ The application was generated with LOAD-MODULE or SHARED-OBJECT
statements.

´N´ The application was not generated with LOAD-MODULE or SHARED-
OBJECT statements.

prog_change_running
Specifies if UTM is currently executing a program change for the application.

´Y´ A program change is currently being executed.

´N´ No program change is currently being executed.

inverse_kdcdef_state
Specifies whether an inverse KDCDEF is currently running, i.e. if a KC_CREATE_-
STATEMENTS call is being processed.

´N´ No inverse KDCDEF is currently running.

´A´ An inverse KDCDEF run is being prepared. It will be started asynchronously
as soon as all transactions that change configuration data have terminated.
Administration calls that change configuration data will be rejected.

´Y´ An inverse KDCDEF is currently running.

utmd Specifies if the application is generated for distributed processing using a higher
level communication protocol (LU6.1 or OSI TP).

´Y´ The application was generated for distributed processing.

´N´ The application was not generated for distributed processing.

BB

B

B

kc_system_par_str KDCADMI program interface

662 Administering Applications

osi_tp Specifies if the application is generated for distributed processing using OSI TP.

´Y´ The application was generated with statements for OSI TP.

´N´ The application was not generated with statements for OSI TP.

certificate_gen
This parameter is no longer supported.

os Indicates the system platform of the computer, e.g. 'Windows Intel' or 'Solaris
Sparc'.

bit_mode
Mode in which the operating system runs:

´32 bit´ 32-bit mode

´64 bit´ 64-bit mode

cluster_appl
Specifies whether the application belongs to a UTM cluster application.

´Y´ The application is a node application in a UTM cluster application.

´N The application is a standalone UTM application.

hostname_long
The name of the computer on which the application runs.

BB

B

KDCADMI program interface kc_tasks_par_str

Administering Applications 663

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_tasks_par_str - Number of processes

The data structure kc_tasks_par_str is defined for the parameter type KC_TASKS_PAR. In
the case of KC_GET_OBJECT, UTM returns all information on the processes of the appli-
cation in kc_tasks_par_str:

● The maximum and current settings for the number of processes of the application.

● The maximum number of processes that may process asynchronous jobs at one time.

● The number of processes that may run at one time that contain program units with
blocking calls (for example PGWT).

● The number of processed reserved for processing internal UTM jobs and dialog jobs,
that do not belong to a dialog TAC class. This number is only returned if job processing
is priority controlled in the application, i.e. if the TAC-PROPERTIES statement was set
during KDCDEF generation.

mod1

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 389f

Data structure kc_tasks_par_str

– char tasks[3];

– char asyntasks[3];

– char tasks_in_pgwt[3];

x(A) char mod_max_tasks[3];

x(A) char mod_max_asyntasks[3];

x(A) char mod_max_tasks_in_pgwt[3];

– char curr_max_asyntasks[3];

– char curr_max_tasks_in_pgwt[3];

– char curr_tasks[3];

– char curr_asyntasks[3];

– char curr_tasks_in_pgwt[3];

x(A) char mod_free_dial_tasks[3];

– char gen_system_tasks[3];

– char curr_system_tasks[3];

kc_tasks_par_str KDCADMI program interface

664 Administering Applications

The fields in the data structure have the following meanings:

tasks The control value generated for the maximum number of processes that may be
used for the application.

The actual maximum number of processes that may process jobs of the application
is determined at the start of the application and can be adjusted according to the
actual demand during the application run (see mod_max_tasks). Neither the number
of processes specified at the start nor the number set by the administration may
exceed the value in tasks.

asyntasks
The control value generated for the maximum number of processes of the appli-
cation that may be used for asynchronous processing at one time. The desired
maximum number of processes for processing asynchronous jobs in the current
application run can be set at the start of the application or by the administration (see
the mod_max_asyntasks field). This number may not exceed the value of asyntasks.

tasks_in_pgwt
The control value generated for the maximum number of processes in which
program units with blocking calls may run simultaneously (e.g. the KDCS call
PGWT; Program Wait). The desired maximum number of processes for the current
application run can be set at the start of the application or by the administration (see
the mod_max_tasks_in_pgwt field). This number must not exceed the value of
tasks_in_pgwt.

mod_max_tasks
Contains the current setting for the maximum total number of processes that may
be used for the application at one time. mod_max_tasks contains the last setting of
this number, which is either the number set at the start of the application or the
number set by the administration (e.g. KC_MODIFY_OBJECT with
KC_TASKS_PAR).

mod_max_tasks contains the set point for the current number of processes. The
number of processes that are actually active currently and that can process the
current jobs of the application is stored in the curr_tasks field. This may differ tempo-
rarily from the value in mod_max_tasks when a process is started or terminated, but
only then.

Maximum value: tasks
Minimum value: ´1´

KDCADMI program interface kc_tasks_par_str

Administering Applications 665

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

mod_max_asyntasks
Currently set limit value for the maximum number of processes that may be used
for asynchronous processing. mod_max_asyntasks contains the last setting for the
number of processes for asynchronous processing that was set either at start of the
application or by the administration (e.g. KC_MODIFY_OBJECT with
KC_TASKS_PAR).

The actual maximum number of processes that can be used at any one time for
asynchronous processing (curr_max_asyntasks) can be lower than the value
specified in mod_max_asyntasks because the actual number is limited by the number
of currently running processes of the application (curr_tasks).

mod_max_asyntasks corresponds to a current upper limit.

Minimum value: ´0´
Maximum value: the number in asyntasks

mod_max_tasks_in_pgwt
Currently set limit value for the maximum number of processes in which program
units with blocking calls may run simultaneously (Program Wait; e.g. the KDCS call
PGWT). mod_max_tasks_in_pgwt contains the setting for number of processes that
was set either at start of the application or by the administration (e.g. KC_MODI-
FY_OBJECT with KC_TASKS_PAR).

The actual maximum number of processes that process program units with blocking
calls (curr_max_tasks_in_pgwt) at any one time can be lower than the value specified
in mod_max_tasks_in_pgwt because the actual number must at least 1 less than the
number of currently running processes of the application (curr_tasks).

mod_max_tasks_in_pgwt corresponds to a current upper limit.

Minimum value: ´0´
Maximum value: the number in tasks_in_pgwt

curr_max_asyntasks
The current maximum number of processes that may be used for asynchronous
processing at one time. This number of processes is equal to whichever is lower of
either the currently set maximum number of processes that can be used concur-
rently for asynchronous processing (mod_max_asyntasks) or the number of currently
running processes of the application (curr_tasks). curr_max_asyntasks is changed
dynamically by UTM when one of the two values curr_tasks or mod_max_asyntasks is
changed. See also page 55.

curr_max_tasks_in_pgwt
Current setting for the maximum number of processes in which program units with
blocking calls may run simultaneously (KDCS call PGWT). This number of
processes is equal to whichever is lower of either the currently set maximum
number of processes in which program units with blocking calls can run

kc_tasks_par_str KDCADMI program interface

666 Administering Applications

concurrently (mod_max_tasksk_in_pgwt) or the number of currently running
processes of the application (curr_tasks) minus one. curr_max_asyntasks is changed
by UTM dynamically when one of the two values curr_tasks or mod_max-
_tasks_in_pgwt is changed. See also page 55.

curr_tasks
Contains the number of processes of the application currently running. The value of
curr_tasks usually corresponds to the value of mod_max_tasks. The value of
curr_tasks can, however, be temporarily larger or smaller than mod_max_tasks. It is
smaller if a process has terminated abnormally and has not been automatically
restarted yet. It can be larger if the set point for the number of processes in
mod_max_tasks was just recently lowered. curr_tasks contains the current value of
the number of processes, mod_max_tasks contains the set point.

curr_asyntasks
Contains the number of processes currently processing asynchronous jobs.

curr_tasks_in_pgwt
Contains the number of processes currently processing program units with blocking
calls (e.g. PGWT), i.e. the number of processes currently waiting in Program Wait.

mod_free_dial_tasks
Only applies if the TAC-PRIORITIES statement was issued during the KDCDEF
generation.

UTM returns the current setting for the number of processes reserved for
processing internal UTM tasks and jobs that are not assigned to a dialog TAC class
in mod_free_dial_tasks. This portion of the total number of processes is consequently
not available for processing jobs to dialog TAC classes.

If the maximum number of application processes is reduced and this number is then
smaller or equal to mod_free_dial_tasks, one process nevertheless processes jobs to
dialog TAC classes.

Minimum value: ´0´
Maximum value: value in tasks -1

If the application is generated without TAC-PRIORITIES, then UTM returns blanks
in mod_free_dial_tasks.

gen_system_tasks
Contains the maximum number of UTM system processes that can be started
based on the current configuration.

curr_system_tasks
Contains the number of currently running UTM system processes.

KDCADMI program interface kc_timer_par_str

Administering Applications 667

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

kc_timer_par_str - Timer settings

The data structure kc_timer_par_str is defined for the parameter type KC_TIMER_PAR. In
the case of KC_GET_OBJECT, UTM returns the current settings for all timers of the UTM
application in kc_timer_par_str.

The timers are set during the generation of the application and can be changed to adapt to
the current situation during the application run using the operation code KC_MODIFY_-
OBJECT or with the help of the administration command KDCAPPL.

A change made to a timer only takes effect when the timer is reset for the first time after the
change was made. The change does not affect timers already running. The changes are
only in effect during the current application run.

mod1

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see page 391f

Data structure kc_timer_par_str

x(GIR) char conrtime_min[5];

x(GIR) char pgwttime_sec[5];

x(GIR) char reswait_ta_sec[5];

x(GIR) char reswait_pr_sec[5];

x(GIR) char termwait_in_ta_sec[5];

– char termwait_end_ta_sec[5];

x(GIR) char logackwait_sec[5];

x(GIR) char conctime1_sec[5];

x(GIR) char conctime2_sec[5];

x(GIR) char ptctime_sec[5];

– char qtime1[5];

– char qtime2[5];

B

kc_timer_par_str KDCADMI program interface

668 Administering Applications

The fields in the data structure have the following meanings:

conrtime_min
(connection request time)
The time in minutes after which UTM is to attempt to re-establish a connection to a
partner application, a client or a printer if the connection has been lost. conrtime is
used for connections to:

– printers to which UTM automatically establishes a connection at the start of the
application (auto_connect=´Y´ in kc_pterm_str, page 544) if this connection has
not previously been shut down by administration functions.

– printers to which UTM establishes a connection as soon as the number of print
jobs for this printer exceeds the generated control value (LTERM partner with
plev > 0). UTM will only attempt to re-establish the connection if the number of
print jobs that are still pending after the connection loss is greater than or equal
to the control value.
If conrtime_min ≠ 0, UTM will also attempt to establish the connection to the
printer even if administration functions have previously been used to shut it
down explicitly.

– TS applications (ptype=´APPLI´ or ´SOCKET´ in kc_pterm_str) to which UTM
automatically establishes a connection at the start of the application (auto_-
connect=´Y´ in kc_pterm_str, page 544) if this connection has not previously
been shut down by administration functions.

– OSI TP or LU6.1 partner applications to which UTM automatically establishes a
connection when an application is started, if this connection has not previously
been shut down by administration functions, or by UTM because a timer expired
(idletime).

– message routers (MUX) to which UTM automatically establishes a connection
at the start of the application if it has not previously been shut down by admin-
istration functions.

If it is not possible to establish a connection to partners configured for automatic
connection setup (at the start of an application or pursuant to a connection request
issued using administration functions), or if such a connection is lost, then UTM will
attempt to re-establish the connection, depending on the reason the connection
was lost, in intervals of conrtime_min.

If conrtime_min=´0´, then UTM will not attempt to re-establish a logical connection.

Maximum value: ´32767´
Minimum value: ´0´

B

B

B

KDCADMI program interface kc_timer_par_str

Administering Applications 669

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

pgwttime_sec
The maximum amount of time in seconds that a program unit may wait for
messages after a blocking function call. Blocking function calls are calls in which
control is only returned to the program unit after the answer has been received (for
example the KDCS call PGWT).

A process of the UTM application remains exclusively reserved for this program unit
during this wait time.

Maximum value: ´32767´
Minimum value: ´60´

reswait_ta_sec
The maximum amount of time in seconds that a program unit may wait for a
resource locked by another transaction: for example global secondary storage
areas, user-specific long-term storage areas, terminal-specific long-term storage
areas.

If the resource is not available after this time, then the application program will
receive the appropriate return code KCRCCC.

The wait time specified in reswait_ta_sec is not significant if the lock is held by a
multi-step transaction that is waiting for an input message (after a PEND KP or
PGWT KP). In this case, all program units accessing the locked resource will
immediately (without waiting for the time specified in reswait_ta_sec) receive the
return code KCRCCC.

reswait_ta_sec=´0´ means that the program unit will not wait. A program unit run that
attempts to access a locked resource will immediately receive the appropriate
return code.

Maximum value: ´32767´
Minimum value: ´0´

reswait_pr_sec
The maximum amount of time in seconds that may be waited for a resource locked
by another process. If this time is exceeded, then the application is terminated with
an error message (see KC_MODIFY_OBJECT, obj_type=KC_TIMER_PAR as of
page 391).

Maximum value: ´32767´
Minimum value: ´300´

kc_timer_par_str KDCADMI program interface

670 Administering Applications

term wait_in_ta_sec
The maximum amount of time in seconds that may pass between an output to a
dialog partner and the reception of the dialog answer for multi-step transactions (i.e.
in the PEND KP program). If the time termwait_in_ta_sec is exceeded, then the trans-
action is rolled back. The resources reserved by the transaction are released. The
connection to the partner is closed.

Maximum value: ´32767´
Minimum value: ´60´

termwait_end_ta_sec
Does not contain a valid value. The time in seconds that UTM will wait for an input
from the dialog partner after a transaction terminates or after signing on
(KDCSIGN). This value is defined on a partner-specific basis as of openUTP V5.0.
You will receive further information on this timer when you call KC_GET_OBJECT
with obj_type KC_PTERM or KC_TPOOL (field idletime on page 548 and page 578).

logackwait_sec
The maximum amount of time in seconds that UTM is to wait for a logical print
confirmation from the printer or for a transport confirmation for an asynchronous
message sent to another application (created with the KDCS call FPUT).
If the confirmation is not received after this time, for example because the printer is
out of paper, then UTM closes the logical connection to the device.

Minimum value: ´10´
Maximum value: ´32767´

The following timers are only used for UTM applications with distributed processing via
LU6.1 or OSI TP.

conctime1_sec
(connection control time)
The time in seconds that the establishing of a connection to a session (LU6.1) or
association (OSI TP) is to be monitored. If the session or association is not estab-
lished within the specified time, then UTM closes the transport connection to the
partner application. This prevents a transport connection from being disabled due
to an unsuccessful attempt to establish a connection to a session or association.
This can occur when a message needed to establish the connection becomes lost.

conctime1_sec=´0´ means that session setup is not monitored in the case of LU6.1
connections (UTM waits indefinitely). In the case of OSI TP connections, UTM waits
for up to 60 seconds for an association to be set up.

Minimum value: ´0´
Maximum value: ´32767´

BB

B

B

B

B

B

B

B

KDCADMI program interface kc_timer_par_str

Administering Applications 671

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

conctime2_sec
The maximum wait time in seconds that will be waited for the confirmation from the
receiver when sending an asynchronous message. After the time in conctime2_sec
runs out, UTM closes the transport connection. The asynchronous job is not lost,
and it remains in the local message queue. Monitoring this time prevents a
connection from not being used because a confirmation was lost and also prevents
UTM from not being informed by the transport system of the loss of a connection.

conctime2_sec = ´0´ means that the connection will not be monitored.

Minimum value: 0
Maximum value: 32767

ptctime_sec
This parameter is only significant for distributed processing via LU6.1 connections.
ptctime_sec specifies the maximum time in seconds that a job-receiving service in
the PTC (prepare to commit, transaction status P) state will wait for confirmation
from the job-submitting service. After this time is up, the connection to the job-
submitter is closed, the transaction in the job-receiving service is rolled back and
the service is terminated. This can eventually lead to a mismatch.

If KDCSHUT WARN or GRACE has already been issued for the application and the
value of ptc_time_sec is not 0, then the waiting time is chosen independently of
ptc_time_sec in such a way that the transaction is rolled back before the application
is terminated in order to avoid abnormal termination of the application with with
ENDPET if possible.

ptctime_sec = ´0´ means that there is no limit to the time that will be waited for confir-
mation.

Minimum value: 0
Maximum value: 32767

qtime1
Indicates the maximum time in seconds that a dialog service may wait for the
receipt of messages for USER, TAC or temporary queues.

qtime2
Indicates the maximum time in seconds that an asynchronous service may wait for
the receipt of messages for USER, TAC or temporary queues.

kc_utmd_par_str KDCADMI program interface

672 Administering Applications

kc_utmd_par_str - Parameters for distributed processing

The data structure kc_utmd_par_str is defined for the parameter type KC_UTMD_PAR. In
the case of KC_GET_OBJECT, UTM returns the basic settings for distributed processing
via LU6.1 and OSI TP in kc_utmd_par_str.

The fields in the data structure have the following meanings:

application_process_title
Only of relevance for distributed processing via OSI TP.
application_process_title contains the application process title of the local application
(see the openUTM manual “Generating Applications”).

An application process title consists of at least two, but at most 10 components.
Each individual component is a positive integer and is a maximum of 8 characters
long.

UTM returns one field element per component of the application process title, i.e.
the number of field elements in application_process_title that contain data corre-
sponds to the number of components generated. The rest of the field elements are
set to binary zero.

If no application process title was generated, then all field elements of applica-
tion_process_title are set to binary zero.

maxjr (maximum number of job receivers)
Specifies the maximum number of remote job-receiving services that may be
addressed at one time within the local application.

This value, in percent, corresponds to the total number of sessions and associa-
tions generated (=100%). The value must be between 0 and 200.

A value greater than 100 means that openUTM APRO calls for addressing remote
services are accepted, even if no session or association is (yet) free for this job at
this time.

Data structure kc_utmd_par_str

char application_process_title[10][8];

char maxjr[3];

char rset;

KDCADMI program interface kc_utmd_par_str

Administering Applications 673

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 D

e
ce

m
be

r
2

01
7

 S
ta

n
d

08
:3

7.
35

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

5
_1

7
00

9
00

\0
4_

A
d

m
in

\e
n

\u
tm

_a
d

m
_e

.v
11

\p
ar

am
_

e.
do

c

rset Specifies how rolling back a local transaction will affect the distributed transaction
when distributed processing is utilized.

A local transaction can be rolled back by a RSET call from a program unit or by
rolling back a database transaction that is involved in the local transaction.
rset can contain one of the following values:

´G´ (GLOBAL)
After rolling back the local transaction the program unit must be terminated
in such a manner that UTM rolls back the distributed transaction.

´L´ (LOCAL)
Rolling back a local transaction has no influence on the distributed trans-
action.

The distributed data can become inconsistent when some of the local trans-
actions involved in a distributed transaction are rolled back and others
continue as before. If rset=´L´, then global data consistency is not
guaranteed by the system components involved. This task then becomes
the responsibility of the application program units. They must decide in
which situations the distributed transaction can be sensibly terminated and
in which situations they must be rolled back.

kc_utmd_par_str KDCADMI program interface

674 Administering Applications

Administering Applications 675

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

12 Administration commands - KDCADM

This chapter describes the openUTM administration commands which call up the basic
administration functions. These administration commands are transaction codes in the
administration program KDCADM which are supplied together with openUTM. Before you
can make use of these administration commands you must add entries for both KDCADM
and the administration commands to the configuration file during the KDCDEF generation
phase. The table below lists all the administration commands.

There are two versions of each administration command:

● a command to initiate processing interactively.

● a command for administration by means of message queuing (asynchronous
processing).

There follows a description of the dialog-based administration commands. This description
is arranged in ascending alphabetical order of command names. The associated
commands for administration via message queuing have the same operands and the same
input format. Command input differs only in terms of the actual command name entered.

With dialog-based administration procedures, openUTM returns the result of command
processing to the job submitter (a user at a terminal, UPIC client, TS application or a partner
application).

In the case of asynchronous commands, all results are sent to a fixed receiver (DESTADM)
in the form of asynchronous messages. The receiver can either be:

● an LTERM partner (Exception: UPIC LTERM partner are not permitted)

● an asynchronous TAC

● a TAC queue (TYPE=Q)

The receiver is defined during KDCDEF generation in MAX DESTADM= and can be
modified via the administration program interface, see page 388. If no receiver is defined,
the result is lost. If a TAC is defined but unable to receive the result, e.g. in the case of a
disabled asynchronous TAC, UTM does not execute the administration command and
writes message K076 to the system log file SYSLOG and to SYSOUT (on BS2000 systems)
or stderr (on Unix, Linux and Windows systems).

Overview KDCADM administration commands

676 Administering Applications

List of administration commands

Dialog
commands

Asynchronous
commands

Administration functions Page

KDCAPPL KDCAPPLA Change application parameter, timer and limit values 678

KDCBNDL KDCBNDLA Replace Master LTERMs 692

KDCDIAG KDCDIAGA Call diagnostic aids 693

KDCHELP KDCHELPA Query syntax of administration commands 702

KDCINF KDCINFA Query object properties, parameter values, statistics 703

KDCLOG KDCLOGA Change user log file 754

KDCLPAP KDCLPAPA Administer connections to partner applications 755

KDCLSES KDCLSESA Establish and shut down logical connections for LU6.1
sessions

763

KDCLTAC KDCLTACA Administer accesses to remote services (LTAC) 766

KDCLTERM KDCLTRMA Change properties of LTERM partners 768

KDCMUX KDCMUXA Administer multiplex connections 771

KDCPOOL KDCPOOLA Administer LTERM pools 775

KDCPROG KDCPROGA exchange load modules or shared objects/DLLs 777

KDCPTERM KDCPTRMA Change properties of clients/printers 783

KDCSEND KDCSENDA Send a message to one or more dialog terminals 789

KDCSHUT KDCSHUTA Terminate an application program 790

KDCSLOG KDCSLOGA Administer the system log file (SYSLOG) 794

KDCSWTCH KDCSWCHA Change assignment of clients/printers to LTERM partners 800

KDCTAC KDCTACA Disable/release transaction codes 805

KDCTCL KDCTCLA Change number of processes for a TAC class 808

KDCUSER KDCUSERA Change user properties 813

KDCADM commands

BBBB

BBBB

KDCADM administration commands Overview

Administering Applications 677

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Command format

command-nameËoperand1,operand2,...

There are position operands and keyword operands.

Position operands are entries without a keyword and an “=” sign and must appear in the
specified sequence.
You can write keyword operands, e.g. PTERM=ptermname in any sequence. The operands
must be separated by commas.

If an optional operand is not set, the default value of this operand applies.

If an optional operand is not set for a command used for modifying the configuration then
the value defined during generation or the value previously set by the administrator
continues to apply.

After processing a command, openUTM returns an output which indicates the result.
However, this does not mean in any case that the action was performed successfully.

You can use the information functions to establish whether or not openUTM was able to
perform an action successfully, e.g. in the case of the command KDCINF.

KDCAPPL KDCADM administration commands

678 Administering Applications

KDCAPPL - Change properties and limit values for an operation

KDCAPPL allows you to perform the following actions:

● Change the timer settings and maximum values that you have generated in the
KDCDEF control statement MAX.

● Define the number of processes (TASKS) that can be involved in an application simul-
taneously. If you wish to reduce the current number of processes, you should refer to
the information provided on page 55.

● Define the maximum number of processes that are permitted to process asynchronous
services or services with blocking function calls (e.g. the KDCS call PGWT) simultane-
ously. The maximum possible number of these processes depends on the total number
of processes in the application and on the maximum number of processes defined in
the KDCDEF statement MAX that are entitled to process services of this kind.

● Control cache memory paging.

● Switch the accounting and calculation phase of the UTM accounting procedure on and
off

● Enable and disable data compression

● Establish a connection to all printers for which messages are present.

● Exchange the entire application program during live operation. This enables you,
without terminating the application, to change program units and to take new program
units that you have included dynamically in the configuration and add them to the appli-
cation program.

In standalone UTM applications on BS2000 systems, load modules whose versions
have previously been modified with KDCPROG are therefore also swapped in the
Common Memory Pool.

● Switch over the system log files for the application (SYSOUT and SYSLST or stderr and
stdout) during live operation. This avoids a hard disc bottleneck, since it allows log files
to be evaluated and files which are no longer required to be deleted or archived.

● In addition, you can also enable or disable provision of data to the openSM2 software
monitor for the application.

Period of validity of the changes

The changes made with KDCAPPL last for no longer than the duration of the current appli-
cation run.

Exception:

B

B

B

KDCADM administration commands KDCAPPL

Administering Applications 679

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

A program exchange (PROGRAM operand) remains effective beyond the end of the current
application run, i.e. when the application is next started, the most recently loaded version
of the application program is reloaded. In the case of a restart, UTM attempts to load the
new application program even if a previous attempt to initiate a program exchange (in the
previous application run) was unsuccessful.

Effect in cluster operation

The effect on cluster applications is described in the sections devoted to the individual
operands since some of the changes made with KDCAPPL apply locally to the node
whereas others take effect globally in the cluster. Changes made locally in a node apply at
the most for the duration of the current node application run.

Changes made globally in the cluster apply at the most for the duration of the current UTM
cluster application run.

For administration using message queuing you must specify KDCAPPLA.

KDCAPPLË [,ACCOUNT={ ON | OFF }]

[CACHE=%_utm_pages]

[,CALC={ ON | OFF }]

[,CONCTIME=con_control_time_sec]

[,CONRTIME=con_request_time_min]

[,DATA-COMPRESSION={ ON | OFF }]

[,MAXASYN=number_tasks]

[,MAX-CONN-USERS=number_users]

[,PGWTTIME=wait_time_sec]

[,PROGRAM={NEW | OLD | SAME}]

[,PTCTIME=wait_time_sec]

[,RESWAIT-PR=wait_time_sec]

[,RESWAIT-TA=wait_time_sec]

[,SPOOLOUT=ON]

[,SYSPROT=NEW]

[,TASKS=number_tasks]

[,TASKS-IN-PGWT=number_tasks]

[,TERMWAIT=wait_time_sec]

[,SM2={ ON | OFF }]

KDCAPPL KDCADM administration commands

680 Administering Applications

ACCOUNT= enables and disables the UTM accounting phase.

In UTM cluster applications, the operand applies globally in the cluster.

On BS2000 systems enabling the accounting phase only becomes effective
if record type UTMA is enabled on BS2000 Accounting. The command
KDCAPPL ACC=ON is not rejected if record type UTMA is not enabled,
since openUTM only detects this when writing an accounting record.

The value set in the KDCDEF control statement in ACCOUNT ACC=
applies when the application is started.

For further details on UTM Accounting see also the openUTM manual
“Using UTM Applications”.

With KDCAPPL ACC=ON it is also possible to reenable the accounting
phase in openUTM after BS2000 Accounting has failed, if BS2000
Accounting is available again.
In RAV (accounting procedure for computer centers) you can specify which
tariffs are to be charged for specific periods of time when evaluating the
accounting records.

CACHE=%_utm_pages
Defines the maximum percentage of pages in cache memory that can be
stored on KDCFILE when bottlenecks develop.

In UTM cluster applications, the operand applies globally in the cluster.

CACHE allows you to adjust the percentage defined during KDCDEF
generation in the MAX statement for the duration of the current application
run. UTM swaps out at least 8 UTM pages in a paging operation, even a
smaller value is calculated.

Minimum value: 0 (in this case, 8 pages are swapped out)
Maximum value: 100

i If a value < 100 was specified at generation for number in the
CACHESIZE operand of the MAX statement, rounding errors can
occur at that output of %_utm_pages of a subsequent KDCAPPL
command.

CALC= Enables the calculation phase of UTM Accounting.

In UTM cluster applications, the operand applies globally in the cluster.

ON Enables the calculation phase.

On BS2000 systems the calculation phase is enabled when the accounting
record type UTMK is enabled on BS2000 Accounting.

B

B

B

B

B

B

B

B

B

B

B

B

KDCADM administration commands KDCAPPL

Administering Applications 681

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

OFF Disables the calculation phase again.

When the application is started, the value set in ACCOUNT ACC= in the
KDCDEF control statement applies.

For further details on UTM Accounting see also the openUTM manual
“Using UTM Applications”.

CONCTIME=con_control_time_sec
(Connection Control Time)
Time taken in seconds to monitor the setup of a session (LU6.1) or an
association (OSI TP). If the session or association is not established within
the specified period of time, UTM shuts down the connection. This prevents
a transport connection from remaining disabled due to a failure to establish
a session or association.

In UTM cluster applications, the operand applies globally in the cluster.

CONCTIME=0 means

– session setup is not monitored in the case of LU6.1 session
– in the case of OSI TP connections, UTM waits up to 60 seconds for an

association to be set up.

Maximum value: 32767
Minimum value: 0

CONRTIME=con_request_time_min
(connection request time)
Time in minutes for which UTM should continue attempting to re-establish
a connection to a partner server or to a client or printer after a connection
has been lost.

In UTM cluster applications, the operand applies globally in the cluster.

CONRTIME relates to connections to the following partners:

– Printers to which UTM automatically establish a connection when the
application starts up. This assumes that the connection had not already
been established by means of system administration functions.

– Printers to which UTM establishes a connection as soon as the number
of print jobs for the current printer exceeds the generated control value
(LTERM partner with plev > 0). UTM only attempts to re-establish a
connection if the number of print jobs left after the lost connection is
greater than or equal to the control value.
If in such a case CONRTIME ≠ 0, UTM attempts to establish a
connection to the printer if the connection was previously shut down
explicitly by means of system administration functions.

KDCAPPL KDCADM administration commands

682 Administering Applications

– TS applications which connect to the UTM application via LTERM
partners (entered with ptype=´APPLI´ or ´SOCKET´) and to which UTM
automatically establishes a connection when the application is started,
unless this connection has already been cleared by the administrator.

– Partner applications to which UTM automatically establishes a
connection at the start, unless such a connection has already been
established by the administrator or shut down by UTM due to a timeout
(idletime).

– Message routers (MUX), to which UTM should automatically establish
a connection when the application is started if this connection has not
already been cleared down previously by administration.

If no connection is established between partners configured with automatic
connection setup (when an application is started or when an administration
function requests a connection), UTM attempts to establish a new
connection, or to re-establish the connection at the intervals specified in
CONRTIME.

If CONRTIME=0, UTM makes no attempt to re-establish a connection.

Maximum value: 32767
Minimum value: 0

DATA-COMPRESSION
Enables or disables data compression. Any modification applies beyond the
end of an application.

The UTM pages saved per compression can be queried by means of
KDCINF STAT command (see page 742), the program interface (see
page 619), or WinAdmin/WebAdmin.

In UTM cluster applications, the operand applies globally in the cluster.

ON Switches data compression on.
Data compression can be enabled using administration facilities only if it is
permitted by means of generation (see openUTM manual “Generating
Applications”, KDCDEF statement MAX DATA-COMPRESSION=).

OFF Switches data compression off.

MAXASYN=number_tasks
Specifies the maximum number of processes in the application that are
allowed to accept jobs for asynchronous transaction codes at the same time
(see KC_MODIFY_OBJECT, obj_type=KC_TASKS_PAR as of page 389,
mod_max_asyntasks parameter).

In UTM cluster applications, the operand applies locally in the node.

B

B

B

KDCADM administration commands KDCAPPL

Administering Applications 683

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

MAX-CONN-USERS=number_users
Defines the maximum number of users who can have connections to a UTM
application at the same time. This restriction enables you to prevent your
application from becoming overloaded.

In UTM cluster applications, the operand applies locally in the node.

openUTM checks the number of active users when another user signs on,
and rejects the connection attempt if the number of users defined in
number_users are already signed on. This restriction does not apply to user
IDs with administration privileges.

If, at the time of your KDCAPPL call, more than number_users users are
working on the system, none of these users are forced to quit their appli-
cation. However, no further connections will be permitted until the number
of connected users falls to less than number_users.

If an application has been generated without user IDs, number_users
restricts the number of dialog partners who can be connected to the appli-
cation simultaneously. If a number is specified for number_users which is
greater than the number of generated dialog LTERM partners, number_users
has no effect. Dialog LTERM partners are all the LTERM partners generated
with USAGE=D, LTERM partners of the LTERM pools and - with BS2000 -
the LTERM partners UTM generates internally for multiplex connections.

number_users = 0 means that there is no restriction on the number of users
or dialog partners working on the system.

Maximum value:
– BS2000 systems: 500000
– Unix, Linux and Windows systems: The value that was specified in the

KDCDEF statement MAX CONN-USERS
Minimum value: 0 (no restriction).

PGWTTIME=wait_time_sec
Changes the maximum time in seconds defined during generation for which
a program unit can wait for messages to arrive after a blocking function call;
it also displays the currently set value for this wait time. The wait time is
generated in the KDCDEF statement MAX with the operand PGWTTIME.
Blocking function calls are calls where control is not returned until a
response has been received by the program unit (e.g. the KDCS call
PGWT).

In UTM cluster applications, the operand applies globally in the cluster.

B

X/W

X/W

KDCAPPL KDCADM administration commands

684 Administering Applications

During this wait time, a process in the UTM application is reserved exclu-
sively for this program unit.

Maximum value: 32767
Minimum value: 60

PROGRAM= Exchanges the entire application program during live operation (see the
corresponding openUTM manual “Using UTM Applications”).

Requirements for exchanging a program using KDCAPPL PROGRAM=

– In the new application program, none of the earlier program units must
be missing. UTM will terminate with errors (PEND ER) any jobs
accepted for a transaction code for which no program unit exists after
the program has been exchanged.

– You should not initiate a program exchange until all previously entered
UTM administration calls have been duly processed.
In particular, a program exchange should not be initiated until any
program exchange already initiated has been fully processed, i.e. until
the program exchange is complete for all processes in the application.

– On BS2000 systems, a prerequisite for program exchange is that the
application must have been generated with at least one LOAD-
MODULE statement.

– In order to be able to exchange a UTM application program on Unix,
Linux or Windows systems while the system is running, the various
versions of the application program (including the currently loaded
program) should be administered in the file generation directory PROG
using the UTM tool KDCPROG. The file generation directory must have
been created with KDCPROG and it must be in the filebase directory of
your application. You can use PROG=OLD or NEW to switch to the
previous or next file generation.
Program exchange is described in the openUTM manual “Using UTM
Applications on Unix, Linux and Windows Systems”

In UTM cluster applications, the operand applies globally in the cluster for
all the node applications that are currently running.

Other KDCAPPL operands have no effect in conjunction with PROGRAM.
KDCAPPL PROGRAM= is rejected if a program is being exchanged at the
time this call is submitted.

Only the values NEW and SAME are allowed on BS2000 systems. Both
values have the same effect.

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

KDCADM administration commands KDCAPPL

Administering Applications 685

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

NEW The entire application program is to be exchanged.

BS2000 systems

KDCAPPL PROGRAM=NEW is not permitted if the application has been
started in interactive mode.

In a UTM application on a BS2000 system the application program is
unloaded in all processes and then re-loaded. When this is done, the
current versions of the load modules are loaded. If a load module is
generated with *HIGHEST-EXISTING, then the highest version of the load
module existing in the library is loaded.

Program units in common memory pools are also exchanged at the same
time. The version of load modules to be loaded during a program exchange
must be declared in advance with KDCPROG. Before the program is
exchanged, several such load modules in the common memory pool can be
earmarked for exchange by several KDCPROG calls.

In a standalone UTM application, it is possible to mark multiple load
modules in the Common Memory Pool for exchange by means of multiple
KDCPROG calls prior to exchange.

Termination of the application program followed by a reboot also causes all
load modules generated with load mode ONCALL to be unloaded from the
application.

This means that static parts of the application can also be exchanged when
the application is linked before.

In a UTM cluster application, application program exchange is initiated
automatically as soon as the version of a load module in a Common
Memory Pool is modified (via KDCPROG).

Unix, Linux and Windows systems

In a UTM application on Unix, Linux and Windows systems, openUTM loads
the application program from the next highest file generation present in the
file generation directory filebase/PROG (Unix and Linux systems) or
filebasePROG (Windows systems) if the UTM tool KDCPROG is used to
administer the different versions of the application program (including the
one that is currently loaded) in the PROG file generation directory.
If you have not created a file generation directory, then KDCAPPL
PROG=NEW reloads the application program (utmwork) that is located in
the base directory filebase.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCAPPL KDCADM administration commands

686 Administering Applications

SAME On Unix, Linux and Windows systems, openUTM loads the application
program from the same file generation as is located in the file generation
directory filebase/PROG (Unix and Linux systems) or filebase\PROG
(Windows systems) if the different versions of the application program
(including the currently loaded program) are administered using the UTM
tool KDCPROG in the PROG file generation directory.

If you have not created a file generation directory, then KDCAPPL
PROG=SAME reloads the application program (utmwork) that is located in
the base directory filebase.

On BS2000 systems, SAME has the same effect as NEW.

OLD openUTM loads the application program from the next lowest file generation
present in the file generation directory filebase/PROG (Unix and Linux
systems) or filebasePROG (Windows systems) if the UTM tool KDCPROG
is used to administer the different versions of the application program
(including the one that is currently loaded) in the PROG file generation
directory.
This means, for example, that you can switch back to the original appli-
cation program if errors are detected during operation with the new appli-
cation program.
If you have not created a file generation directory, then KDCAPPL
PROG=OLD reloads the application program (utmwork) that is located in the
base directory filebase.

openUTM will not accept a new program exchange until the exchange has
been completed for all the processes.

If errors occur in the first process when the new application program is
started then openUTM issues the message K075 and loads the original
application program again.

When the exchange of the application program has been terminated for all
the processes, openUTM issues message K074.

You can query the generation of the currently loaded application program,
for example with KDCINF SYSP.

PTCTIME=wait_time_sec
Only for applications with distributed processing:
wait_time_sec is the maximum time in seconds which a local job-receiving
service can wait for confirmation from the job-submitting service in PTC
mode (prepare to commit, transaction status P). After this period has
elapsed, the connection to the job submitter is shut down, the transaction is
rolled back in the local job-receiving service and the service is terminated.
This occasionally gives rise to a mismatch.

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCADM administration commands KDCAPPL

Administering Applications 687

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

If KDCSHUT WARN or GRACE has already been issued for the application
and the value of PTCTIME is not 0, then the waiting time is chosen
independently of PTCTIME in such a way that the transaction is rolled back
before the application is terminated in order to avoid abnormal termination
of the application with ENDPET, if possible.

In UTM cluster applications, the operand applies globally in the cluster.

The value 0 indicates that the system can wait for an unrestricted length of
time for a confirmation.

Maximum value: 32767
Minimum value: 0

RESWAIT-PR=wait_time_sec
The maximum time in seconds that one process can wait for resources that
are being used by another process. If this period of time is exceeded, the
application terminates with an error message.

In UTM cluster applications, the operand applies globally in the cluster .

If you specify RESWAIT-PR, please note that the value for wait_time_sec
must be at least as long as the longest processing time (real time) required
for the following cases:

– In the case of transport system applications that are not SOCKET appli-
cations (clients with PTYPE=APPLI), the resources can remain locked
for the duration of one processing step, including the VORGANG exit at
the start and/or end of the process.

– At the end of the process, the resources are locked until the VORGANG
exit program stops running.

Maximum value: 32767
Minimum value: 300

RESWAIT-TA=wait_time_sec
Maximum time in seconds for which a program unit is to wait for a resource
that is being used by another transaction: GSSBs, ULSs, TLSs.
If the resource does not become available after this time has elapsed, the
an appropriate KCRCCC return code is sent to the application program.

In UTM cluster applications, the operand applies globally in the cluster.

The wait time specified in wait_time_sec is meaningless if the lock is effected
by a multi-step transaction which is waiting for an input message after a
PEND KP or a PGWT KP call. In this event, all program units with access
to the locked resource immediately receive a KCRCCC return code (without
wait time wait_time_sec).

KDCAPPL KDCADM administration commands

688 Administering Applications

RESWAIT-TA= 0 indicates that the process is not to wait. Any program unit
run which attempts to access the locked resource immediately receives a
KCRCCC return code. The real wait time depends on the precision with
which the information exchange wait times are set in the operating system.

Maximum value: 32767
Minimum value: 0

SPOOLOUT=ON
Causes UTM to establish a connection to all printers for which messages
exist at the time of the call and which are not yet connected to the appli-
cation. This enables you to output all messages to those printers to which it
is possible to establish a connection (e.g. before terminating the appli-
cation).

In UTM cluster applications, the operand applies locally in the node.

SYSPROT=NEW
The log files of the application are switched over.

In UTM cluster applications, the operand applies globally in the cluster for
all the node applications that are currently running. The names of the new
log files are formed as follows:

BS2000 systems:

SYSOUT: prefix.O.YYMMDD.HHMMSS.TSN
SYSLST: prefix.L.YYMMDD.HHMMSS.TSN

Only SYSLST is switched over if the application is started interactively.

prefix Prefix which you entered for the start parameter SYSPROT when
the UTM application was started (see openUTM manual “Using
UTM Applications on BS2000 Systems”).

Default value in standalone UTM applications:
Name of the application as defined in MAX APPLINAME during
KDCDEF generation.

Default value in UTM cluster applications:
Name of the application defined in MAX APPLINAME during the
KDCDEF generation, followed by a dot and the computer name
from the CLUSTER-NODE statement for the relevant node.

YYMMDD
Date at which the file was switched over.

HHMMSS
Time at which the file was switched over.

TSN TSN of the task

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

BB

B

BB

B

BB

KDCADM administration commands KDCAPPL

Administering Applications 689

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Unix, Linux and Windows systems:

stdout: prefix.out.YY-MM-DD.HHMMSS
stderr: prefix.err.YY-MM-DD.HHMMSS

prefix The prefix you specified for the start parameter SYSPROT when
starting the UTM application (see openUTM manual “Using UTM
Applications on Unix, Linux and Windows Systems”).

Default: utmp

YY-MM-DD
Date at which the file was switched over.

HHMMSS
Time at which the file was switched over.

TASKS=number_tasks
Specifies the current number of processes in the application. UTM switches
processes on or off accordingly (see KC_MODIFY_OBJECT,
obj_type=KC_TASKS_PAR as of page 389, mod_max_tasks parameter).

In UTM cluster applications, the operand applies locally in the node.

Maximum value:
The maximum value for TASKS defined during generation
(KDCDEF control statement MAX...,TASKS=...)

Minimum value:
– If MAX TASKS-IN-PGWT=0: 1
– If MAX TASKS-IN-PGWT>0:

TASKS WAITING IN PGWT +1, but at least 2
(TASKS WAITING IN PGWT can be queried with KDCINF SYSP).

A certain amount of time is required for starting and terminating the UTM
processes. After entering KDCAPPL TASKS= you should therefore first wait
for the result of the call, then use KDCINF SYSPARM to check it before
issuing any more KDCAPPL TASKS= calls. Failure to do so can lead to start
errors.

TASKS-IN-PGWT=number_tasks
Defines the number of processes in the UTM application that are allowed to
process program units in which blocking calls (e.g. the KDCS call PGWT)
are permitted (see KC_MODIFY_OBJECT, obj_type=KC_TASKS_PAR as
of page 389, mod_max_tasks_in_pgwt parameter).

In UTM cluster applications, the operand applies locally in the node.

The command is rejected if you enter TASKS-IN-PGWT=0, although MAX
TASKS-IN-PGWT >0 was generated.

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

KDCAPPL KDCADM administration commands

690 Administering Applications

TERMWAIT=wait_time_sec
Maximum time in seconds allowed to elapse in a multi-step transaction (i.e.
in the PEND KP program) between output to a dialog partner (terminal,
UPIC client, TS application or job-submitting service in a partner appli-
cation) and the ensuing dialog response. If this time exceeds wait_time_sec
the transaction is rolled back. The connection to the dialog partner is shut
down.

In UTM cluster applications, the operand applies globally in the cluster.

Maximum value: 32767
Minimum value: 60

SM2= Switches the data supply to openSM2 on and off. It is only possible to
supply data to openSM2 if the generation parameters permit openSM2
event logging to be switched on (KDCDEF statement MAX, operand
SM2=ON or OFF). If SM2=NO is generated, the administrator will not be
able to switch on the data supply to openSM2.

The following applies in UTM cluster applications:
The operand applies globally to the cluster. If a node application is started
with a new generation then the value from the new generation applies for
this node application as well as for all other newly starting node applica-
tions.

ON openUTM supplies data to openSM2.

OFF openUTM does not supply data to openSM2.

KDCADM administration commands KDCAPPL

Administering Applications 691

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Output from KDCAPPL

The new and old values of the parameter are always displayed (with the exception of
KDCAPPL PROG=).

1. The lines for PTCTIME and CONCTIME are only output via LU6.1 or OSI TP for an
application with distributed processing.

2. The line for PROGRAM FGG is only output if in a UTM application on a Unix, Linux or
Windows system the entire application program is to be exchanged by means of
KDCPROG. In such cases, the new generation number of the application program is
output under NEW and the old generation number is output under OLD. Once all the
processes in the program have been exchanged, UTM issues message K074.

NEW OLD

TERMWAIT
RESWAIT-PR
RESWAIT-TA
CONRTIME
CURR TASKS
MAXASYN
TASKS-IN-PGWT
CACHE
ACCOUNT
CALC
SM2
MAX-CONN-USERS
PGWTTIME
CONCTIME
PTCTIME
PROGRAM FGG

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1.

1.

2.X/W

X/W

X/W

X/W

X/W

X/W

KDCBNDL KDCADM administration commands

692 Administering Applications

KDCBNDL - Replace Master LTERM

KDCBNDL allows you to exchange the Master LTERMs of two LTERM bundles (see
openUTM manual “Generating Applications”). All the slave LTERMs and the associated
PTERMs of the first LTERM bundle are assigned to the second master LTERM and vice
versa.

This command is only permitted in standalone UTM applications.

Period of applicability of the change

The change remains effective after the application has terminated.

You must specify KDCBNDLA for administration via message queuing.

master-lterm1 Name of the first master LTERM.

master-lterm2 Name of the second master LTERM.

Output from KDCBNDL

The following messages are displayed at the administrator terminal:

● If the command was executed successfully:

COMMAND ACCEPTED - 'master-lterm1' AND 'master-lterm2' SWITCHED

● If the command could not be executed:

COMMAND REJECTED

● If an LTERM was specified for master-lterm1 or master-lterm2 that is not a master LTERM:

COMMAND REJECTED - 'lterm' NO MASTER-LTERM

KDCBNDL master-lterm1, master-lterm2

KDCADM administration commands KDCDIAG

Administering Applications 693

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCDIAG - Switch diagnostic aids on and off

KDCDIAG allows you to switch UTM functions on and off which will support you during error
diagnosis. The following functions can be called:

● Switch test mode on or off.

● Create a UTM dump during live operation for diagnostic purposes.

● Cause openUTM to generate a dump when a specific event occurs.

● Switch UTM event monitor KDCMON on or off.

● Switch the BCAM trace function on or off. This function traces all connection-related
activities in the application. The BCAM trace function can only be switched on for
individual, explicitly specified communication partners.

● Switch the OSS trace function on or off. The OSS trace helps with the diagnosis of
problems affecting OSI TP connections.

● Output debug information for the database connection.

● Switch over log files for the UTM application.

Effect in cluster operation

The effect on UTM cluster applications is described in the sections devoted to the individual
operands since some of the changes made with KDCDIAG apply locally to the node
whereas others take effect globally in the cluster. Changes made locally in a node apply at
the most for the duration of the current application run. Changes made globally in the cluster
apply at the most for the duration of the current cluster application run.

Period of validity of the changes

Every change remains effective for the duration of the application run or until it is reset.

KDCDIAG KDCADM administration commands

694 Administering Applications

For administration using message queuing you must specify KDCDIAGA.

DUMP=YES Requests a UTM dump during live operation. The UTM dump (taken from
only one process in the application) is created with the reason
"REASON=DIAGDP".

In UTM cluster applications, the operand applies locally in the node.

DUMP-MESSAGE=[1...3]
Here, you specify an event that forces openUTM to create a UTM dump if it
occurs. The command KDCDIAG DUMP-MESSAGE= is only evaluated
when test mode is enabled (TESTMODE=ON).

In UTM cluster applications, the operand applies globally in the cluster .

The dump is created by the process in which the error occurs. The appli-
cation is not terminated.

KDCDIAGË [DUMP=YES]

[,{ DUMP-MESSAGE | DUMP-MESSAGE{1|2|3} }=
{ (MSG, msg-nr) | (SIGN, sign) | (RCCC, rccc) |
(RCDC, rcdc) | *NONE }]

[,INSERT1= (insert-nr, value, { EQ | NE })]

[,INSERT2= (insert-nr, value, { EQ | NE })]

[,INSERT3= (insert-nr, value, { EQ | NE })]

[,KDCMON={ ON | OFF }]

[,TESTMODE={ ON | OFF }]

[,BTRACE= { ON | OFF } [,
{ LTERM ={ ltermname | (ltermname_1,...,ltermname_10) } |
LPAP ={ lpapname | (lpapname_1,...,lpapname_10) } |
USER ={ username | (username_1,...,username_10) } |
MUX =(mux-name, proname, bcamappl)
}]

[,OTRACE= { ON | (SPI,INT,OSS,SERV,PROT) | OFF }]

[,STXIT-LOG={ ON | OFF }]

[,XA-DEBUG={ YES | ALL | OFF}]

[,XA-DEBUG-OUT={ SYSOUT | FILE}]

B

B

B

B

B

B

KDCADM administration commands KDCDIAG

Administering Applications 695

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

The parameters DUMP-MESSAGE1, DUMP-MESSAGE2 and
DUMP-MESSAGE3 allow you to define up to three different events for
which a message dump is to be generated if they occur. The specification
DUMP-MESSAGE is synonymous with DUMP-MESSAGE1.

For each KDCDIAG demand, you can specify a maximum of one
DUMP-MESSAGE[i] parameter.

You can specify the following events:

– the output of a message number with the format Knnn or Pnnn
– the occurrence of a specific KDCS return code (CC or DC)
– the occurrence of a specific SIGNON status code

The dump ID is dependent on the event:

– In the case of K or P messages, it has the prefix "ME" followed by the
message number, e.g. MEP012.

– In a primary KDCS return code, it has the prefix "CC-", followed by the
return code, e.g. CC-71Z.

– In a secondary KDCS return code, it has the prefix "DC", followed by the
return code, e.g. DCK303.

– In a SIGNON status code, it has the prefix "SG-", followed by the status,
e.g. SG-U01.

MSG, msg-no
Specify UTM message number in the form Knnn or Pnnn for msg-no. A dump
is generated each time the specified message number occurs until such
time as the message number is reset.

The message numbers K023, K043, K061 and K062 are exceptions in this
regard, as only one dump is generated for each of them, after which the
message dump is automatically disabled.

SIGN, sign
Specify a SIGNON status code (3 characters) for sign, e.g. U04, where
KCRSIGN1 must have the value U, I, A or R. If this code occurs when a user
signs on then the process in which the SIGNON status occurred generates
a UTM dump with the ID SG-U04. This happens irrespective of whether a
signon service has been generated in the application or not. The message
dump for this event is then automatically deactivated.

KDCDIAG KDCADM administration commands

696 Administering Applications

RCCC, rccc
RCDC, rcdc

Specify a KDCS return code (KCRCCC, e.g. "40Z") for rccc and an incom-
patible KDCS return code (KCRCDC, e.g. "KD10") for rcdc. If this return
code occurs on a KDCS call then the process in which the return code
occurred generates a UTM dump with the ID CC-40Z or DCKD10. The
message dump for this event is then automatically deactivated.

For all KDCS return codes >= 70Z and the associated incompatible KDCS
return codes for which a PENDER dump is never generated (e.g.
70Z/K316), no dump is generated either.

*NONE Explicit deactivation of an event for a message dump.

INSERT1...INSERT3=(insert-no, value, {EQ | NE})
Here you can specify up to three inserts as additional conditions for the
message msg-no in order to further restrict the generation of a dump.
INSERTx is only evaluated if DUMP-MESSAGE[i] is also specified.

A message dump is only generated if all the criteria specified in INSERT1
... INSERT3 are met.

You will find the sequence of the inserts of a message in the relevant,
system-specific openUTM manual ”Messages, Debugging and
Diagnostics”.

insert-no
Number of the insert to be checked, e.g. "2" for the second insert in a
message.

value
Value against which the insert is to be checked. The following specifications
are possible:
– nnn: numeric, value range 0...231-1
– [C]’aaa’: alphanumeric, maximum length 32 bytes
– X’xxx’: hexadecimal, maximum length 32 bytes

EQ | NE
Specifies whether the system is to test for equality or inequality.
Default: EQ

KDCMON= Switches the UTM event monitor on or off.

In UTM cluster applications, the operand applies locally in the node.

ON Switches on the UTM event monitor.
The KCDMON event monitor is described in the corresponding openUTM
manual “Using UTM Applications”.

OFF Switches the UTM event monitor back off.

KDCADM administration commands KDCDIAG

Administering Applications 697

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

TESTMODE= Switches the test mode on and off.

In UTM cluster applications, the operand applies globally in the cluster.

ON Test mode is switched on. This means that additional internal UTM routines
conduct plausibility checks and that internal TRACE information is
recorded. Trace information is written in the KTA module and - with OSI TP
applications - also in the XAPTP module. Trace mode should only be
switched on in order to generate diagnostic documents.

OFF Switch test mode off.

Default: displays the current setting.

BTRACE= Switches the BCAM trace function of UTM on and off. The BCAM trace
function of UTM traces all connection-specific activities occurring in a UTM
application.
When the trace function (hereafter referred to as the BTRACE function) is
switched on, every process in the application creates its own trace file in
which it records all connection-specific events.
If the BTRACE function is switched off, the trace files are closed and can
then be evaluated. For information about the contents and evaluation of
trace files, please refer to the description in the openUTM manual
”Messages, Debugging and Diagnostics”.

The BTRACE function can be switched on using the start parameter
BTRACE when the application is started.

You can switch on the BTRACE function for all connections in an application
or on a partner-specific basis for connections to specified LTERM and LPAP
partners.

ON The BTRACE function is usually switched on; it logs events relating to all
connections to any given communication partner in the application (clients
and partner applications in a distributed processing environment based on
LU6.1).

In UTM cluster applications, the specification of BTRACE=ON without any
other parameters applies globally in the cluster.

ON, LPAP=lpapname|(lpapname_1,...,lpapname_10)
In UTM cluster applications, the operand applies locally in the node.

or

ON, LTERM=ltermname|(ltermname_1,...,ltermname_10)
In UTM cluster applications, the operand applies locally in the node.

or

ON, USER=username|(username_1,...,username_10)
In UTM cluster applications, the operand applies globally in the cluster.

KDCDIAG KDCADM administration commands

698 Administering Applications

or

ON, MUX=(mux_name,proname,bcamappl)
In UTM cluster applications, the operand applies locally in the node.

The BTRACE function is switched on a partner-specific basis and all events
relating to connections with specified partners or users or the MUX partners
are logged.

The following specifications must be made:
– For lpapname_... the names of LPAP partners
– For ltermname_... the names of LTERM partners that are assigned to

clients
– For username_... the names of users whose events are to be recorded or

not recorded irrespective of the connection used. This is particularly
useful when using TPOOLs.

– For MUX the name and processor of the MUX partner and the transport
system access point via which the MUX partner connects to the appli-
cation.

The BTRACE function can only be switched on explicitly for connections
with certain partner applications, clients or users if it is not already switched
on for all connections in that application.

If you wish to switch on the BTRACE functions for a few partner applications
and a few clients, call the KDCDIAG command repeatedly:

KDCDIAG BTRACE=ON,LPAP=...
KDCDIAG BTRACE=ON,LTERM=...
KDCDIAG BTRACE=ON, USER=...
KDCDIAG BTRACE=ON,MUX=...

OFF The BTRACE function is switched off on all of the application’s connections,
even if it was originally switched on a partner-specific basis.

In UTM cluster applications, the specification of BTRACE=OFF without any
other parameters applies globally in the cluster.

OFF, LPAP=lpapname|(lpapname_1,...,lpapname_10)
In UTM cluster applications, the operand applies locally in the node.

or

OFF, LTERM=ltermname|(ltermname_1,...,ltermname_10)
In UTM cluster applications, the operand applies locally in the node.

or

OFF, USER=username|(username_1,...,username_10)
In UTM cluster applications, the operand applies globally in the cluster.

or

B

B

B

B

B

B

KDCADM administration commands KDCDIAG

Administering Applications 699

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

OFF, MUX=(mux_name,proname,bcamappl)
In UTM cluster applications, the operand applies locally in the node.

This switches off the BTRACE function for connections to the partner appli-
cations specified in lpapname_1,...,lpapname_10 or to the clients specified in
ltermname_1,...,ltermname_10 or to the users specified in
username_1,...,username_10 or the MUX partner.
The BTRACE function can only be switched off on a partner-specific basis
if it had been switched on explicitly for connections to those partners (with
BTRACE=ON, LPAP=... or LTERM=... or MUX=...).bzw. MUX=...

OTRACE= Switching the OSS trace function on and off.
The OSS trace is only required for the diagnosis of problems with OSI TP
connections to the application. The OSS trace function can also be
switched on or off when the application is started by appropriate entries in
the start parameters [.UTM] START ... OTRACE=.

In UTM cluster applications, the operand applies globally in the cluster .

Trace records of the types SPI, INT, OSS, SERV and PROT are logged.

ON Switches on the OSS trace function for all types of record.
When the OSS trace function is switched on, every process in the appli-
cation creates its own trace file.

(SPI, INT, OSS, SERV, PROT)
Switches the OSS trace function on. The trace records for the specified type
are logged. The types can be entered in any sequence.

SPI
Logs the XAP-TP System Programming Interface.

INT
Logs the internal process in the XAP-TP module.

OSS
Logs the OSS calls.

SERV
Logs the internal OSS trace records of type =O_TR_SERV.

PROT
Logs the internal OSS trace records of type =O_TR_PROT.

OFF Switches off the OSS trace function; the trace files are closed and can be
evaluated. For further details, please refer to the openUTM manual
”Messages, Debugging and Diagnostics” and the OSS manual.

B
B

KDCDIAG KDCADM administration commands

700 Administering Applications

STXIT-LOG= Enable/disable extended STXIT logging in the event of STXIT handling
problems. Several K099 messages are issued to SYSOUT when a STXIT
event occurs.

In UTM cluster applications, the operand applies locally in the node.

ON Enables STXIT logging.

OFF Disables STXIT logging.

XA-DEBUG= Specifies whether debug information for the XA database connection is to
be output.

In UTM cluster applications, the operand applies locally in the node

YES XA-DEBUG is enabled, and calls to the XA interface are logged.

ALL Extended XA-DEBUG: specific data areas are output in addition to the calls
to the XA interface.

OFF Disables XA-DEBUG.

XA-DEBUG-OUT=
Controls the output destinations for XA-DEBUG.

In UTM cluster applications, the operand applies locally in the node.

SYSOUT The log is written to SYSOUT/stderr, default.

FILE The log is written to a file.

If you specify only XA-DEBUG in the KDCDIAG command, without
entering a value for XA-DEBUG-OUT then this may lead to a modification
of the value which you specified in the start parameter when starting the
UTM application (see openUTM manual “Using UTM Applications”).
Otherwise log entries are written to SYSOUT/stderr.

i It only makes sense to change the two operands XA-DEBUG and XA-
DEBUG-OUT in a UTM application in which a database connection has
been generated over the XA interface.

BB
B

B

B

BB

BB

KDCADM administration commands KDCDIAG

Administering Applications 701

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Output from KDCDIAG

If KDCDIAG DUMP=YES then the message “DIAGNOSTIC DUMP CREATED” is issued.
With the other operands, UTM displays the new and old settings for diagnostic aids on the
administrator terminal:

Explanation of the output

TESTMODE The line for TESTMODE is always displayed, regardless of whether or not
the KDCDIAG call contains the TESTMODE operand.

KDCMON The line for KDCMON is always displayed, regardless of whether the
KDCDIAG call contains the KDCMON operand or not.

BTRACE The line for BTRACE is always displayed. With BTRACE (ON) (switched
on), the display also shows whether the trace function is switched on for all
connections in the application (ON A, A=all) or just for connections to a few
communication partners (ON S, S=select).

OSS-TRACE The line for OSS-TRACE is always displayed if the OTRACE operand was
specified in the KDCDIAG call.

LTERM/LPAP/USER
 Is only displayed if the BCAM trace function is/was explicitly switched on for

connections to particular communication partners (LPAP, LTERM or MUX
partners) or for users. The current and old BTRACE status is displayed for
individual communication partners or users for whom the BTRACE function
was switched on.

STATUS NEW OLD

TESTMODE
KDCMON
OSS-TRACE

BTRACE

ON|OFF
ON|OFF
ON|OFF
SPI INT OSS SERV PROT
ON S|ON A|OFF

ON|OFF
ON|OFF
ON|OFF
SPI INT OSS SERV PROT
ON S|ON A|OFF

LTERM/LPAP/USER BTRACE
NEW OLD

ltermname ON|OFF ON|OFF

lpapname ON|OFF ON|OFF

username ON|OFF ON|OFF

STXIT-LOG ON|OFF ON|OFF

XA-DEBUG YES|ALL|OFF YES|ALL|OFF

XA-DEBUG-OUT SYSOUT|FILE SYSOUT|FILE

KDCHELP KDCADM administration commands

702 Administering Applications

KDCHELP - Query the syntax of administration commands

KDCHELP provides you with information about the syntax of the administration commands.

For administration using message queuing, you must enter KDCHELPA.

command For command, enter the name of the administration command for which
openUTM is to specify the syntax.

openUTM supplies the names of all KDCADM dialog commands together
with a brief description of the functions of the individual commands if you
enter:

KDCHELP (i.e. no entry made for command)
or
KDCHELP KDCHELP (i.e. KDCHELP is entered for command)
or
KDCHELP XXX (XXX = invalid name)

Valid entries for command are:

For UTM applications on BS2000 systems you can also enter the following
names for command:

KDCMUX
KDCSEND

KDCHELPË [command]

KDCAPPL
KDCBNDL
KDCDIAG
KDCHELP
KDCINF
KDCLOG
KDCLPAP

KDCLSES
KDCLTAC
KDCLTERM
KDCPOOL
KDCPROG
KDCPTERM
KDCSHUT

KDCSLOG
KDCSWTCH
KDCTAC
KDCTCL
KDCUSER

B

B

B

B

KDCADM administration commands KDCINF

Administering Applications 703

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCINF - Request information on objects and application parameters

KDCINF allows you to query the names and properties of objects in an application as well
as the application parameters generated and statistical information about the utilization
level of the application. The parameter type allows you to define which information you
require.

Effect in UTM cluster applications:

The information that is output always refers only to the local node application at which the
job was executed.

Restricting the scope of information output

You can use a KDCINF call to query the properties of objects of a given type. The operands
CONT, LIST and PRONAM define the scope of information that UTM is to output. You
should define explicitly those objects about which you want UTM to provide information and
define the scope of information for each object:

● In LIST you can explicitly define the names of the objects about which UTM is to provide
information.

● By entering LIST=KDCNAMES you can restrict the output to a list of names of all
objects of a given type. No other properties will then be displayed.

● LIST=KDCCON causes UTM to display only the properties of objects in a given type
which are active at the current time, i.e. properties of clients, printers or partner systems
to which there is a connection, or of users who are working on the system at the current
time.

● CONT determines the object with which the list is to start. These lists are arranged
alphabetically in order of object name. In CONT you enter a name. This can be any
name - it does not have to be the name of an existing object. If the name you specify is
the name of an object, the output list will start with that object. If there is no object with
the name specified in CONT, the list will start with the object name that immediately
follows the specified name in alphabetical order. No information is then provided about
objects whose names come before the name specified in CONT when viewed in alpha-
betical order.

● With PRONAM you can restrict the output of object properties and names to objects
located on a specific computer.

It is advisable in many cases to restrict KDCINF output, for example in large applications
and for the output of information to a terminal. Full output of all information relating to one
type of object is often so extensive that it can extend over many screen pages when output
to the administrator’s terminal. It is then not possible to retain a clear overview. With large
applications, generation of complete lists takes UTM a great deal of time. For this reason,

KDCINF KDCADM administration commands

704 Administering Applications

when dealing with larger applications, you should avoid requesting complete lists about
objects of a given type, or lists of all objects and application parameters. In other words,
avoid queries which take the following forms:

KDCINF ..,LIST=KDCALL,OUT=KDCPRINT or
KDCINF ..,LIST=KDCALL,OUT=KDCBOTH

Information output

The OUT operand allows you to define the location to which UTM is to output the requested
information. You can also display information directly on the administrator terminal, send
the information to a printer or transfer it directly to a program unit (asynchronous TAC)
which will further process it.

For some objects, such as TAC, the output line of KDCINF does not provide sufficient space
to display all the numeric values in their full length, for instance the value of the IN-Q field.
When these values are too large to be displayed with KDCINF, they are truncated meaning-
fully and displayed in floating point presentation. In other words the leftmost digits are
displayed, followed by an exponent e. The approximate actual value of the field is then
obtained from the leading digits multiplied by 10 "to the power of" e.

Example:

When KDCINF TAC is output, four digits are available for the IN-Q field. If the number
of messages which still needs to be processed by the TAC is greater than 9,999, the
truncated presentation is used.

A value of 11,235 is displayed as 11e3, i.e. the actual value lies in the range between
11,000 and 11,999.

You will find examples of output and an explanation of the information that is output in the
following description of operands (see page 715ff).

Special features of terminal output:
If the requested output does not fit on one screen, UTM displays a continuation command
at the bottom of the screen (on the last line) which can be used to continue output from that
position.

If you wish to page through the list using continuation commands, proceed as follows:

● on BS2000 systems:
only overwrite one character in the specified command and press the <DUE> key.

● on Unix, Linux and Windows systems:
enter the continuation command as displayed.

B

B

X/W

X/W

KDCADM administration commands KDCINF

Administering Applications 705

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

For administration using message queuing, you must enter KDCINFA.

KDCINFË type

[,LIST={ KDCNAMES | (name_1,...,name_10) | KDCALL | KDCCON }]

[,OUT={ KDCDISP | KDCPRINT | KDCBOTH | ltermname | tacname }]

[,CONT={ name | (name,proname) | (name,proname,bcamname) }]

[,PRONAM=proname]

[,LPAP=lpapname] (only for type = LSES)

[,OSI-LPAP=osilpapname] (only for type = OSI-ASSOCIATIONS)

[,OPTION=MONITORING] (only for type = MUX)B

KDCINF KDCADM administration commands

706 Administering Applications

type Type of objects or application parameters about which UTM is to provide
information. For type you can enter the following values:

These entries for type have the following meanings:

ALL Calls for all information about all objects, statistics and application param-
eters.

The result of KDCINF ALL is always output to the standard system printer
(the default printer in the operating system). Control of output using the
OUT operand is not possible: entries for OUT are ignored.
For the LIST operand, only the operand values KDCNAMES (default) and
KDCALL are considered.

In the combination ALL and LIST=KDCNAMES, the names of all objects are
output but no application parameters and no statistical information are
displayed.

In the combination ALL and LIST=KDCALL, all application parameters,
statistical information and the properties of all objects are displayed.

In UTM applications on BS2000 systems , no information is displayed about
load modules in response to KDCINF ALL, LIST=KDCALL.

In KDCINF ALL, data relating to the CONT, OUT and PRONAM operands
has no effect.

ALL
KSET
LTERM
POOL
PAGEPOOL

PROG
PTERM
STATISTICS
SYSLOG
SYSPARM

TAC
TACCLASS
TAC-PROG
USER

To query information about objects in a distributed processing environment
you can enter the following values for type:

CON
LPAP
LSES
LTAC

OSI-ASSOCIATIONS
OSI-CON
OSI-LPAP

In UTM applications on BS2000 systems you can also enter the following
for type:

LOAD-MODULE MUX

In UTM applications on Unix, Linux or Windows systems you can also enter
the following for type:

SHARED-OBJECT

B

B

BB

X/W

X/W

X/W

B

B

KDCADM administration commands KDCINF

Administering Applications 707

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KSET Informs you about the key sets in the application. You can output infor-
mation about a specific key set (use of LIST=kset_name) at an adminis-
trator terminal. If you wish to obtain information about several or all key sets,
this information is always output to the standard system printer. Data
relating to the OUT operand has no effect.

Exception

If a value greater than 255 was entered for the KEYVALUE operand in the
MAX statement during KDCDEF generation, you cannot query any infor-
mation about key sets with the KDCINF call (type = KSET). In this case, the
KDCINF command is rejected and the message ”KEYVALUE > 255 NOT
SUPPORTED“ is displayed.
However, you can create your own administration program for querying this
information with the help of the administration program interface
(KC_GET_OBJECT call with object type KC_KSET).

LOAD-MODULE
Informs you about load modules. The scope of output can be controlled
using the CONT and LIST operands. For LIST, you are only allowed to enter
KDCNAMES or an individual load module name. With LIST=KDCNAMES a
list of all load module names is issued.
You are provided with information about a specific load module if you enter
the name of that load module in LIST.

When you enter the name of a load module in LIST, the entry is interpreted
as a program name in CONT. This entry in CONT determines the program
unit name with which the list of program units in the load module should
begin.

LTERM Informs you about LTERM partners, i.e. about the logical names and
properties of clients and printers. The scope of this output can be controlled
using operands CONT and LIST.

If an LTERM partner is assigned to a printer pool (several printers, i.e.
PTERMs), then you can display the list of printers assigned to the LTERM
(PTERMs) with the following command:

KDCINF LTERM, LIST=ltermname

If the specified LTERM is the primary LTERM of an LTERM group, the
primary and group LTERMs of the LTERM group are output (see openUTM
manual “Generating Applications”). The sequence is as follows:
– The first line contains the primary LTERM.
– The subsequent lines contain the group LTERMs.

BB

B

B

B

B

B

B

B

B

B

B

KDCINF KDCADM administration commands

708 Administering Applications

If the specified LTERM is both the master LTERM of an LTERM bundle and
the primary LTERM of an LTERM group, all master, primary, slave and
group LTERMs are output. The sequence is as follows:
– The first line contains the master/primary LTERM.
– This is followed by all the group LTERMs.
– The subsequent lines contain the all the slave LTERMs. The first slave

LTERM listed is the one to which the messages are delivered.

The call KDCINF LTERM, LIST=master-lterm outputs the master and slave
LTERMs of an LTERM bundle. Output is the same as with the KDCINF
LTERM, LIST=KDCALL call:
– The first line contains the master LTERM.
– The subsequent lines contain the slave LTERMs.

MUX Informs you about the properties and current status of multiplex connec-
tions.
If MUX is entered together with the operand OPTION=MONITORING, UTM
also supplies event values for the multiplex connections.
However, OPTION=MONITORING has no effect if you enter LIST=
KDCNAMES.

PAGEPOOL
Informs you about the current utilization of the page pool.

Only the OUT operand is valid in conjunction with PAGEPOOL. Specifica-
tions for the LIST, CONT, and PRONAM operands are ignored by
openUTM.

POOL Informs you about LTERM pools. The scope of output can be controlled with
the operands CONT and LIST.

PROG This is only permitted if the application was generated using load
modules/shared objects (the LOAD-MODULE statement (BS2000 systems)
and the SHARED-OBJECT statement (Unix, Linux and Windows systems).
openUTM informs you about the program units in the application.
In each program unit, the name of the relevant load module/shared
object/DLL is displayed together with its load mode and a statement about
how readily it can be replaced.
The scope of output can be controlled using the operands CONT and LIST.

PTERM Informs you about the physical properties of clients and printers. The scope
of output can be controlled using the operands CONT, LIST and PRONAM.

SHARED-OBJECT
This is only permitted if the application is generated using SHARED-
OBJECT statements.
openUTM informs you about shared objects/DLLs.
The scope of output can be controlled using the operands CONT and LIST.

BB

B

B

B

B

B

X/WX/W

X/W

X/W

X/W

X/W

KDCADM administration commands KDCINF

Administering Applications 709

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

With LIST, the only entries permitted are KDCNAMES or an individual
shared object name/DLL name. When LIST=KDCNAMES is entered, a list
of all share object names or DLL names is issued.

STATISTICS
Displays general statistical information.
Together with STATISTICS, only the operand OUT has any effect. Entries
for the operands LIST, CONT and PRONAM are ignored by openUTM.

Some statistical data is written to the system log file SYSLOG once an hour
via the K081 message and subsequently reset to 0. For this to be possible,
the application must have been generated with MAX STATISTICS-
MSG=FULL-HOUR .The statistical values supplied by openUTM and their
period of validity are described as of page 738.

SYSLOG Informs you about the SYSLOG file for the UTM application. Together with
SYSLOG only the OUT operand has any effect. Entries for the operands
LIST, CONT and PRONAM are ignored by openUTM.
KDCINF SYSLOG acts like KDCSLOG INFO (see page 794).

SYSPARM
Informs you about application parameters (system parameters) and timer
settings which were defined during generation in the MAX statement and
which can be changed using the administration functions. Using SYSPARM
you can, for example, check parameter values which were changed using
KDCAPPL.
Together with SYSPARM, only the operand OUT has any effect. Entries for
the operands LIST, CONT and PRONAM are ignored by openUTM.

TAC Informs you about transaction codes or TAC queues in the application.
The scope of output can be controlled with the help of operands CONT and
LIST.

TAC-PROG
This is only permitted if the application was generated using load
modules/shared objects (the LOAD-MODULE statement (BS2000 systems)
or the SHARED-OBJECT statement (Unix, Linux and Windows systems)
respectively.
openUTM informs you about which program units are assigned to the trans-
action codes and the load modules/shared objects/DLLs to which the
program units are assigned. The transaction codes are specified in the LIST
operand.

TACCLASS
Informs you about TAC classes in the application.
openUTM displays how many messages in each TAC class are waiting to
be processed, how long the average wait time is for each TAC class and

X/W
X/W

X/W

KDCINF KDCADM administration commands

710 Administering Applications

whether priority control is generated for a TAC class. If priority control is not
generated for a TAC class, i.e. the TAC-PROPERTIES statement was not
issued during KDCDEF generation, openUTM displays how many
processes are assigned to each TAC class.

USER Informs you about the user IDs in the application.
openUTM informs you about security violations for the user ID, CPU time
used since the user signed on, and the LTERM partner used to sign on the
user ID.

The scope of output can be controlled using the operands CONT and LIST.

The following values are only useful for applications that use distributed processing:

CON Only for distributed processing using the LU6.1 log.
openUTM informs you about connections that were created with KC_CRE-
ATE_OBJECT for the object type KC_CON or generated using the
KDCDEF control statement CON. openUTM displays names, generated
properties, current status and statistical values relating to the level of
capacity utilization for the connection. The scope of output can be controlled
using the operands CONT, LIST and PRONAM.

LPAP Only for distributed processing using the LU6.1 log.
openUTM informs you about the names and properties of the LPAP
partners. Depending on the entries in LIST, open UTM will either display the
names only, or these names together with the properties of the LPAP
partners. The scope of output can be controlled using the operands CONT
and LIST.

You can issue the call KDCINF LPAP, LIST=master-lpap to output the master
and slave LPAPs of an LU6.1-LPAP bundle (see openUTM manual “Gener-
ating Applications”). The output has exactly the same form as for the call
KDCINF LPAP, LIST=KDCALL:
– The first line contains the master LPAP.
– The following lines contain the slave LPAPs.

LSES Only for distributed processing using the LU6.1 log.
openUTM informs you about local sessions that were created with
KC_CREATE_OBJECT for the object type KC_LSES or generated using
the KDCDEF control statement LSES. If you specify LSES together with the
operand LPAP=lpapname (KDCINF LSES,LPAP=lpapname), openUTM
restricts output to information about sessions generated for the LPAP
partner specified in lpapname. The scope of output can also be controlled
with the aid of the operands CONT and LIST.

KDCADM administration commands KDCINF

Administering Applications 711

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

LTAC Informs you about the names and properties assigned to remote service
programs within local applications (LTAC properties)
The scope of output can be controlled with the aid of the operands CONT
and LIST.

OSI-CON Only for distributed processing using the OSI TP log.
openUTM informs you about names generated with the KDCDEF control
statement OSI-CON for logical connections to partner applications.
Depending on the entries in LIST, the properties generated in OSI-CON for
related connections are displayed.
The scope of output can be restricted with the help of the operands CONT
and LIST.

OSI-LPAP Only for distributed processing using the OSI TP log.
openUTM informs you about OSI-LPAP partners that were generated for
the OSI TP partner applications in the local application. Depending on the
specifications made for the LIST operand, openUTM will either display the
names only, or these names together with the logical properties of their
partner applications.
The scope of output can be controlled with the aid of the operands CONT
and LIST.

The KDCINF OSI-LPAP, LIST=master-lpap-name call outputs the master and
slave LPAPs of an OSI-LPAP bundle (see openUTM manual “Generating
Applications”). The output is the same as for the call
KDCINF OSI-LPAP, LIST=KDCALL:
– The first line contains the master LPAP.
– The subsequent lines contain the slave LPAPs.

OSI-ASSOCIATIONS
Only with distributed processing using the OSI TP log.
openUTM informs you about OSI TP associations. Information about the job
submitter assigning an association together with statistical information.

KDCINF...,L=KDCNAMES
outputs the name of generated OSI associations.

KDCINF...,L=KDCALL,OSI-LPAP=osilpapname
only outputs the currently associated OSI associations, sorted by the
association ID assigned by XAPTP.
The operand OSI-LPAP=osilpapname is mandatory!

KDCINF...,L=(name_1...name_10),OSI-LPAP=osilpapname
In this case, the association ID assigned by XAPTP must be entered for
name_n rather than the OSI association name generated.
The operand OSI-LPAP=osilpapname is mandatory!

KDCINF KDCADM administration commands

712 Administering Applications

The scope of output can be controlled with the help of operands CONT and
LIST.

openUTM restricts itself to information about OSI associations that have
been set up in connection with the specified OSI-LPAP partners.

The following operands control output

LPAP=lpapname
is only permitted for type = LSES:
This operand restricts output of session properties to sessions that were
generated for a partner application specified in lpapname.

OPTION=MONITORING
is only permitted for type = MUX and only works where LIST ≠ KDCNAMES.
openUTM informs you about event values in multiplex connections.

With KDCINF ALL, these event values are not issued at the same time as
the other values.

CONT= Continue/start the output list at a specific point. List output occurs in alpha-
betical order of object names. CONT=name causes the output list to start
with the object name and to contain only objects whose name occurs
following the one specified in name in alphabetical order.

With UTM applications on BS2000 systems, the operand CONT, when
specified in conjunction with LIST=name, only takes effect if the name of a
program unit is entered for type LOAD-MODULE and for name.

In UTM applications running on Unix, Linux or Windows systems the
operand CONT has no effect if specified together with LIST=(name_1,...,
name_10).

name The list starts with the object name. For name, specify the name of an object
in the application. You can enter any one of the following names:

– for type = KSET: KSET name of a key set.
– for type = LTERM: logical name of a client/printer (name of an LTERM

partner)
– for type =PTERM: (PTERM-)name of a client or printer
– for type =POOL: the LTERM prefix defined for an LTERM pool
– for type = PROG: name of a program unit
– for type =TAC: TAC name of a local transaction code/queue
– for type = USER: user ID (USER name)
– for type = CON/OSI-CON: a logical connection name generated in a

CON or OSI-CON statement
– for type = LPAP/OSI-LPAP: name of an LPAP or OSI-LPAP partner
– for type = LTAC: local TAC name of a remote service program

BB

B

B

B

B

B

B

B

X/W

X/W

X/W

KDCADM administration commands KDCINF

Administering Applications 713

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

– for type=OSI-ASSOCIATION: association ID, assigned to the associ-
ation when establishing an OSI TP connection

In UTM applications on BS2000 systems you can also enter the following
names:

– for type = LOAD-MODULE: name of a load module or a program unit
– for type = MUX: name of a multiplex connection

(name,proname)
The list should begin with the object (name,proname). proname is the name of
the processor on which the object name is located. There is no point entering
proname unless type = PTERM / CON / MUX objects of the same name exist,
as a result of which unique identification is only possible using the different
processor names.

(name,proname,bcamappl)
The list should start with the object (name,proname,bcamappl). bcamappl is
the name of the transport access point that is used by the object
(name,proname) to connect to the application. It is only of use to specify
bcamappl if objects with type=PTERM / CON / MUX exist with the same
name and processor and unique identification is therefore only possible if
the name of the transport access point is different.

Output starts with the object (name,proname) to which the local transport
access point name indicated in bcamappl is assigned.

LIST= Controls the type and scope of information.

KDCNAMES
Outputs a list of names of all objects of the type specified in type.
LIST=KDCNAMES has no effect on type=PAGEPOOL, STATISTICS,
SYSLOG, SYSPARM, TACCLASS.

(name_1,..., name_10)
The properties of objects with the names name_1,..., name_10 are displayed.
You can specify a maximum of 10 names. Parentheses are not required if
only one name is specified.

KDCCON Only appropriate for type = PTERM, USER, LSES and CON.

Also for UTM applications on BS2000 systems and for type=MUX.

Only the properties of objects currently connected to the application are
displayed in response to this command.

Exceptions with type=USER:
If the application is generated with SIGNON MULTI-SIGNON=NO, then the
user IDs through which only OSI TP partners are signed on to start
asynchronous services are not displayed.

B

B

B

B

B

KDCINF KDCADM administration commands

714 Administering Applications

If the application is generated with SIGNON MULTI-SIGNON=YES, then
the following user IDs are not displayed:
– user IDs with RESTART=NO that are not signed on through a terminal
– user IDs through which only OSI TP partners are signed on that have

selected the functional unit “COMMIT” or that intend to start an
asynchronous service.

KDCALL The properties of all objects of the type specified in type are displayed.

Default: KDCNAMES

OSI-LPAP=osilpapname
Only permitted for type = OSI-ASSOCIATIONS. The operand restricts the
output of information to the OSI associations that have been established for
the specified OSI-LPAP partner.

The operand must be specified for:
KDCINF OSI-ASSOCIATION...,L=(name_1...name_10)
KDCINF OSI-ASSOCIATION...,L=KDCALL

OUT= Indicates where UTM is to output the information requested.

KDCDISP Output to the administrator terminal, i.e. the terminal at which KDCINF was
entered.

KDCPRINT
Output to the standard system printer (default printer setting in the system).

On BS2000 systems, output takes the form of an EAM file rather than a
SYSLST.

On Unix and Linux systems, the shell script admlp is used for output. admlp
is located in $UTMPATH/shsc and calls the lp command. Users can modify
admlp or create their own script with the name admlp and store it under a
separate directory. This directory must then be included in the path variable
$PATH (prior to $UTMPATH/shsc).

Windows systems do not as yet support output to a printer from the UTM
application, i.e. no file is generated or printed out.

KDCBOTH
Output to the administrator terminal and (on BS2000, Unix and Linux
systems) to the standard system printer.

On BS2000 systems, output takes the form of an EAM file rather than a
SYSLST.

On Unix and Linux systems, the shell script admlp is used for output (see
above).

B/X

B

B

X

X

X

X

X

W

W

B

B

X

X

KDCADM administration commands KDCINF

Administering Applications 715

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

ltermname Output to the printer with the logical name ltermname.

tacname Name of the transaction code to which UTM is to transfer the result of the
information query. The transaction code must be assigned to a program unit
which runs in an asynchronous service.

Default: KDCDISP

PRONAM=proname
Only effective for type = PTERM, CON and MUX.
openUTM only supplies information about the clients and partner applica-
tions running on or connected to the computer proname.

Default value for openUTM for systems: Blanks for local devices

Output from KDCINF (examples)

Output is listed by type. The display shows all properties (LIST≠ KDCNAMES).
When you enter KDCINF ALL,LIST=KDCALL, with the exception of information about load
modules and shared objects, all the items listed in the following section are output in
succession.

Calculation of mean values

The mean values displayed with KDCINF are calculated as an arithmetic mean for the first
32767 values. After this, the new value is weighted with 1/32767. The previous mean value
is weighted with 32767/32768.

Slight inaccuracies caused by rounding may occur in the calculation of the mean values.
This is particularly the case, if the new value differs considerably from the mean value.

KDCINF KDCADM administration commands

716 Administering Applications

type=CON

The output depends on whether a short or a long host name is assigned to a CON object.
In the case of a long host name, the information on a CON object is output in two screen
lines.
CON PRONAM LPAP BCAMAPPL STA CONNECT CTIME LETTERS CONB
con proname lpap applname ON| OFF Y|N|W A minutes number number

CON PRONAM LPAP BCAMAPPL STA CONNECT CTIME LETTERS CONB
con long.processor.name

lpap applname ON| OFF Y|N|W A minutes number number

Explanation of the output

CON The name for the logical connections to the partner application lpap created
with KC_CREATE_OBJECT for the object type KC_CON or generated with
the KDCDEF control statement CON.

PRONAM Name of the computer on which the partner application runs.

LPAP Logical name of the partner application for which the logical connection was
generated.

BCAMAPPL Name of the local UTM application (BCAMAPPL name) via which the
connection to the partner application is established.

STA Status of the partner application:

ON:
The partner application is not disabled. A connection can be established
with it, or a connection already exists.
OFF:
The partner application is disabled. A connection cannot be established.

CONNECT Several items of information are supplied here.

1st column:
The partner application is connected to the application at this time (Y) or not
(N), or UTM is attempting to establish a connection (W = waiting for a
connection).

2nd column:
openUTM will establish the connection to the partner application automati-
cally (A) when the application starts, or UTM will not attempt to establish an
automatic connection when the application starts (no output).

CTIME Duration of connection time in minutes.

KDCADM administration commands KDCINF

Administering Applications 717

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

LETTERS Number of messages that have been exchanged via the connection since
the application started, i.e. the number sent or received by the local appli-
cation.
Every time the application starts, the counter is reset to 0.

CONB Indicates how often the connection has failed since the application started.
The CONB counter is reset to 0 every time the application starts.

type=KSET

The output illustrated below is only produced if a value ≤ 255 is specified in the MAX
statement for the KEYVALUE operand during KDCDEF generation, i.e. if the application
does not permit key codes with a number > 255.

KSET:kset

Explanation of the output

KSET Name of the key set

In the first line of the output, all key codes between 1 and 19 in the key set are displayed.
Line two contains all key codes with numbers between 20 and 39 etc.

The last line displays key codes with numbers between 240 and 259.

The output illustrated here signifies that key set kset contains key codes 1, 4, 23, 25, 26, 42,
58 and 80.

0 1 2 3 4 5 6 . . . 18 19

0 x x

20 x x x

40 x x

60

80 x

100

120
.
.
.

240

KDCINF KDCADM administration commands

718 Administering Applications

type=LOAD-MODULE

LOAD-MODULE lmodname
VERSION (GENERATED) generated element version
VERSION (PREVIOUS) previous element version
VERSION (CURRENT) current element version
LIBRARY name of program library
LOAD MODE STATIC| STARTUP|? ONCALL| POOL| POOL/STARTUP| POOL/ONCALL
CHANGEABLE YES| NO
AUTOLINK YES| NO

PROGRAM LIST
program1 program2
program3 program4

Explanation of the output

LOAD-MODULE
Name of the load module up to 32 characters in length.

VERSION (GENERATED)
Generated version of the load module

VERSION (PREVIOUS)
Preceding version of the load module

VERSION (CURRENT)
Currently loaded version of the load module

LIBRARY Name for the program library of up to 54 characters loaded from the load
module

LOAD MODE Load mode for the load module; the following modes are possible:

STATIC The load module is incorporated as a static element of the application
program.

STARTUP The load module is loaded dynamically as an independent unit whenever
the application starts.

ONCALL The load module is loaded dynamically as an independent unit when a
program unit or VORGANG exit assigned to the load module(s) is called for
the first time.

POOL The load module is loaded into the common memory pool whenever the
application starts. The load module does not contain a private slice.

B

B
B
B
B
B
B
B
B
B
B
B
B

B

BB

B

BB

B

BB

B

BB

B

BB

B

BB

BB

B

BB

B

BB

B

B

BB

B

KDCADM administration commands KDCINF

Administering Applications 719

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

POOL/STARTUP
The public slice of the load module is loaded into the common memory pool
when the application starts. The private slice belonging to the load module
is then loaded into the local process memory.

POOL/ONCALL
The public slice of the load module is loaded into the common memory pool
when the application starts. The private slice belonging to the load module
is loaded into the local process memory when the first program unit
assigned to this load module is called.

CHANGEABLE
Display showing whether or not the load module can be replaced during live
operation.

AUTOLINK Indicates whether the load module was loaded with the BLS autolink
function.

PROGRAM LIST
List of names of all program units and data areas (AREAs) assigned to the
load module. The list also contains the names of all deleted objects.

BB
B

B

B

BB

B

B

B

B

BB

B

B

BB

B

BB

B

B

KDCINF KDCADM administration commands

720 Administering Applications

type=LPAP

LPAP KSET STATUS OUT-Q IDLETIME MASTER BUNDLE

lpap kset ON| OFF Q number seconds master M |Y | N

Explanation of the output

LPAP Logical name of the partner application in the local application
(name of the LPAP partner)

KSET Key set assigned to the partner application. The key set defines access
rights to the partner application for the local application.

STA Status of the partner application:

1st column:
ON
The partner application is not disabled. A connection can be established or
a connection already exists.
OFF
The partner application is disabled. No connection can be established.

2nd column:
Q (QUIET)
No more dialog jobs will be accepted for the partner application.

OUT-Q Number of messages in the message queue that still have to be sent to the
partner application.

IDLETIME Time until the disconnection of an unused connection (session) between the
partner application and the local application.

MASTER If the LPAP partner forms part of an LU6.1-LPAP bundle then the name of
the master LU6.1-LPAP of the bundle is displayed

BUNDLE Specifies whether the LPAP partner belongs to an LU6.1-LPAP bundle.

M
The LPAP partner is the master LU6.1 LPAP of an LPAP bundle.

Y
The LPAP partner is a slave LU6.1 LPAP of an LPAP bundle.

N
The LPAP partner does not belong to an LU6.1-LPAP bundle.

KDCADM administration commands KDCINF

Administering Applications 721

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=LSES

The output depends on whether a short or a long host name is assigned to a LSES object.
In the case of a long host name, the information on a LSES object is output in two screen
lines.

LSES RSES LPAP CON PRONAM BCAMAPPL AG/USER
lses rses lpap con proname applname user

LSES PRONAM CON BCAMAPPL RSES LPAP AG/USER
lses long.processor.name

con applname rses lpap user

Explanation of the output

LSES Name of the LU6.1 session in the local application

RSES Name of the session in the partner application

LPAP Logical name of the partner application for which the session is generated.

CON, PRONAM, BCAMAPPL
Uniquely identifies the logical connection which was established for the
session.

con is the name created with KC_CREATE_OBJECT for the object type
KC_CON or generated with the KDCDEF control statement CON for the
logical connections to partner application lpap.

proname is the name of the computer on which the partner application lpap
is running.

applname is the name of the local UTM application (BCAMAPPL name), via
which the connection to the partner application was established.

AG/USER Name of the job submitter for whom the session is reserved. user indicates
who started the job-submitting service.

If the job-submitting service is running in the local application then the user
ID or LTERM partner which started the service is entered against user.

If the job-submitting service is running in the partner application (the local
application is processing the job) or if asynchronous messages are trans-
ferred to the session, the local session name (LSES name) is issued for
user, i.e. the outputs for LSES and AG/USER are identical.

KDCINF KDCADM administration commands

722 Administering Applications

type=LTAC

LTAC LOCK STATUS RTAC CODE LPAP ACCESSWAIT REPLYWAIT USED D

ltac number ON| OFF rtac I| P| T lpap seconds seconds number D

Explanation of the output

LTAC Local TAC name for the service program in the partner application

LOCK Lock code assigned to the remote service in the local application (access
protection); a number between 1 and 4000.

STATUS The transaction code LTAC is disabled (OFF) or not disabled (ON).

RTAC Name of the transaction code/service program in the partner application

CODE Indicates which code type is used internally by UTM for the RTAC name.

I Integer code type

P PRINTABLE-STRING code type

T T61 string code type

LPAP Logical name of the partner application in the local application (name of the
LPAP partner).

ACCESSWAIT
Length of time openUTM waits for a session to be occupied (can include the
time to establish a connection) when the remote service program starts;
time shown in seconds.
If the LTAC is an asynchronous TAC then a wait time ≠ 0 signifies that the
job is always entered in the message queue for the partner application.
The time is defined for KDCDEF generation and can be adjusted by admin-
istration (e.g. with the KDCAPPL TAC).

REPLYWAIT Maximum length of time which UTM waits for a response from the remote
service. The time is defined for KDCDEF generation and can be adjusted
by administration (e.g. KDCAPPL TAC).

USED Number of jobs issued to this LTAC since the application started.
The counter is reset to 0 every time the application starts.

D Specifies whether the LTAC has been deletetd via dynamic administration
or not (no entry).

KDCADM administration commands KDCINF

Administering Applications 723

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=LTERM

Explanation of the output

LTERM Name of the LTERM partner; logical name of the assigned client/printer.

PTERM Name of the client or printer (PTERM name) to which this LTERM partner is
assigned.

USER User ID of the user currently connected to the application through this
LTERM partner. If there is currently no connection, then user_curr contains
blanks.

– If a connection exists:
If no user has as yet been signed on at a terminal, user_curr also
contains blanks.

– In applications with MULTI-SIGNON=YES:
If a genuine user ID with RESTART=YES is signed on to an LTERM
partner of a client of the type UPIC/APPLI/SOCKET, user_curr contains
that user ID, otherwise it contains the connection user (user_gen).

– In applications with MULTI-SIGNON=NO:
If a genuine user ID is signed on to an LTERM partner of a client of the
type UPIC/APPLI/SOCKET, user_curr contains that user ID, otherwise it
contains the connection user (user_gen).

KSET Key set assigned to the LTERM partner (access rights).

LOCK Lock code assigned to the LTERM partner (access protection).

USAGE Type of LTERM partner

1st value:
D: A client is assigned to the LTERM partner or
O: A printer is assigned to the LTERM partner

2nd value:
B: A printer bundle is assigned to the LTERM partner.
M: The LTERM is a master LTERM of an LTERM bundle.
S: The LTERM is a slave LTERM of an LTERM bundle.

LTERM PTERM USER KSET LOCK USAGE STATUS OUT-Q INCNT SECCNT D

lterm pterm user kset lock D|O
B|M|S|
P|G|A

ON| OFF number number number D

KDCINF KDCADM administration commands

724 Administering Applications

3rd value:
P: The LTERM partner belongs to an LTERM pool
G: The LTERM is the primary LTERM of an LTERM group.
A: The LTERM is an alias LTERM of an LTERM group.

STATUS The LTERM partner is disabled (OFF) or not disabled (ON).

OUT-Q Number of messages that still have to be output for the LTERM partner.

INCNT Number of messages entered via this LTERM partner; if a printer is
connected to the LTERM partner, the number of print job confirmations is
entered here.
The INCNT counter is reset to 0 every time the application starts.

SECCNT Number of security violations on this LTERM partner since the start of the
application (e.g. unauthorized codes entered).
The SECCNT counter is reset to 0 every time the application starts.

D Indicates whether the LTERM partner was deleted by dynamic adminis-
tration (D) or not (no entry).

KDCADM administration commands KDCINF

Administering Applications 725

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=MUX

MUX PRONAM BCAMAPPL STATUS CONNECT MAXSES ACTCON MAXCON

mux1 proname applname ON Y A number number number
OFF N

W

Explanation of the output

MUX Name of the multiplex connection

PRONAM Name of the processor on which the message router runs.

BCAMAPPL Name of the local application (BCAMAPPL name) through which the
multiplex connection is established.

STATUS The multiplex connection is disabled (OFF) or not disabled (ON).

CONNECT Here, several items of information are provided.

1st value:
The multiplex connection is connected to the application (Y) or
the multiplex connection is not connected to the application (N) or
openUTM is attempting to establish a connection to the multiplex
connection (W = waiting for connection)

2nd value:
When the application starts, openUTM automatically tries to establish a
connection to the multiplex connection (A) or not (no entry)

MAXSES Number of terminals that can be connected to the application at the same
time using this multiplex connection.

ACTCON Number of terminals that are at present connected to the application using
this multiplex connection.

MAXCON Maximum number of terminals that were connected to the application at the
same time using this MUX connection.
The MAXCON counter is reset to 0 every time the application starts.

B

B

B
B
B

B

BB

BB

BB

B

BB

BB

B

B

B

B

B

B

B

B

BB

B

BB

B

BB

B

B

KDCINF KDCADM administration commands

726 Administering Applications

MUX,OPTION=MONITORING

Explanation of the output

MUX Name of the multiplex connection.

PRONAM Name of the processor on which the message router is running.

BCAMAPPL Name of the local application (BCAMAPPL name) via which connection to
the multiplex connection is established.

LETTERS Number of the input and output messages for this multiplex connection
since the application started.
The counter is reset to 0 every time the application starts.

INCNT Number of input messages received through this multiplex connection.
The INCNT counter is reset to 0 every time the application starts.

WAIT Number of requests since the application started that were passed from
BCAM to the multiplex connection requiring the resending of a message
which it was previously not possible to accept because of a BCAM shortage
(WAIT FOR GO) from BCAM.

SHORT Number of BCAM shortages for this multiplex connection since the start of
the application.

RTRYO Number of tries to send an output message again since the start of the
application (retry out).

RTRYI Number of tries to read an input message again since the start of the appli-
cation (retry in).

MUX PRONAM BCAMAPPL LETTERS INCNT WAIT SHORT RTRYO RTRYI

mux1 proname applname number number number number number number

B

BBBBBBBBB

BBBBBBBBB

B

BB

BB

BB

B

BB

B

B

BB

B

BB

B

B

B

BB

B

BB

B

BB

B

KDCADM administration commands KDCINF

Administering Applications 727

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=OSI-ASSOCIATIONS

Explanation of the output

ASSOC-ID ID assigned to the association when it was established. This is only unique
while the association remains established. If the association is terminated,
the ID is released and can be assigned to another established association.

OSI-LPAP Logical name of the partner application (name of the OSI-LPAP partner) for
which the association was generated.

OSI-CON The OSI-CON name generated with the KDCDEF control statement for the
logical connection to the partner application osi-lpap. If no connection is
established, blanks are output at this point.

CONTWIN Indicates whether the local application for this association is the contention
winner or the contention loser.

CON-STATE Indicates the status of the association.

CONNECTED
The association is established.

WAIT-GO The association is being established. It is waiting for a “GO” from OSS.

STOP The association is being established. The OSS call a_assrs has run up to
“STOP”.

CONTIME Indicates the length of time in minutes for which the connection has existed.

REQ-CALLS Number of request/response presentation calls to OSS since the associ-
ation was established.

IND-CALLS Number of indication/confirmation presentation calls to OSS since the
association was established.

ASSOC-ID OSI-LPAP OSI-CON CONTWIN CON-STATE CONTIME REQ-CALLS IND-CALLS

assoc-id osi-lpap osi-con Y| N CONNECTED|
WAIT-GO|
STOP

minutes number number

KDCINF KDCADM administration commands

728 Administering Applications

type=OSI-CON

The output depends on whether a short or a long host name is assigned to an OSI-CON
object. In the case of a long host name, the information on an OSI-CON object is output in
two screen lines.

OSI-CON N-SEL T-SEL ACC-PNT OSI-LPAP ACTIVE
osi-con proname applname access-point osi-lpap Y | N

OSI-CON N-SEL T-SEL ACC-PNT OSI-LPAP ACTIVE
osi-con long.processor.name

applname access-point osi-lpap Y | N

Explanation of the output

OSI-CON Name of the logical connection to the partner application osi-lpap.

OSI-LPAP Logical name of the partner application in the local application (name of the
OSI-LPAP partner) for which the connection was generated.

T-SEL Application name of the partner application in the local system (transport
selector).

N-SEL Logical name of the computer on which the partner application is running
(network selector).

ACC-PNT Name of the local access point via which the connection osi-con is estab-
lished.

ACTIVE
Y Connection osi-con can be used, i.e. messages for the specified OSI-LPAP

partner are sent through and received by this connection.

N The osi-con connection cannot be used. It is reserved as a replacement
connection.

KDCADM administration commands KDCINF

Administering Applications 729

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=OSI-LPAP

Explanation of the output

OSI-LPAP Logical name of the partner application in the local application (name of the
OSI-LPAP partner).

KSET Key set assigned to the OSI-PAP partner. The key set defines access rights
to the partner application for the local application.

STATUS Status of the partner application:

ON
The OSI-LPAP partner is not disabled. A connection to the partner appli-
cation can be established or a connection already exists.
OFF
The OSI-LPAP partner is disabled. A connection cannot be established to
the partner application.

Q (Quiet): No more dialog jobs will be accepted for the OSI-LPAP partner.

OUT-Q Number of messages in the message queue which still have to be sent to
the partner application.

IDLETIME Time to monitor the idle state of sessions between the partner application
and the local application.

OSI-CON The OSI-CON name generated with the KDCDEF control statement for the
logical connection to the partner application.

ASSOC Maximum number of parallel connections (associations) to the OSI-LPAP
partner that can exist at the same time. The number is defined during
KDCDEF generation in the OSI-LPAP statement.

CONNECT Number of connections to the OSI-LPAP partner existing at the present time
or currently being set up.

AUTOCON Number of connections to the OSI-LPAP partner which UTM should
establish automatically when the application starts.

BU (bundle) Specifies whether the OSI-LPAP partner belongs to an OSI-LPAP bundle.

M
The OSI-LPAP partner is the master LPAP of the OSI-LPAP bundle.

S
The OSI-LPAP partner is a slave LPAP of the OSI-LPAP bundle.

OSI-LPAP KSET STA Q OUT-Q IDLET OSI-CON ASSOC CONN AUTOC BU

osi-lpap kset ON|OFF Q number seconds osi-con number number number M|S

KDCINF KDCADM administration commands

730 Administering Applications

type=PAGEPOOL

PAGEPOOL INFORMATION
percent % PAGES FOR GSSB percent % PAGES FOR LSSB
percent % PAGES FOR TLS percent % PAGES FOR ULS
percent % PAGES FOR DIALOG SERVICES percent % PAGES FOR TAC-CLASSES
percent % PAGES FOR FPUT-MANAGEMENT percent % PAGES FOR ASYN MESSAGES
percent % PAGES FOR MSGTAC MESSAGES percent % PAGES FOR LPUT
percent % PAGES FOR PHYS. MESSAGES percent % PAGES FOR RESET MESSAGES
percent % PAGES FOR OSI TP LOG RECORDS percent % OTHER PAGES
percent % FREE PAGES

Explanation of the output

PAGES FOR GSSB
Number of pages, in percent, which are utilized for GSSBs.

PAGES FOR LSSB
Number of pages, in percent, which are utilized for LSSBs.

PAGES FOR TLS
Number of pages, in percent, which are utilized for TLS areas.

PAGES FOR ULS
Number of pages, in percent, which are utilized for ULS areas.

PAGES FOR DIALOG SERVICES
Number of pages, in percent, which are utilized for service contexts by
users.

PAGES FOR TAC-CLASSES
Number of pages, in percent, which are utilized for dialog input messages,
and which are temporarily stored in TAC Class Queues.

PAGES FOR FPUT-MANAGEMENT
Number of pages, in percent, which are utilized for managing asynchronous
messages.

PAGES FOR ASYN MESSAGES
Number of pages, in percent, which are utilized for asynchronous
messages.

PAGES FOR MSGTAC MESSAGES
Number of pages, in percent, which are utilized for MSGTAC messages.

PAGES FOR LPUT
Number of pages, in percent, which are utilized for temporarily stored LPUT
records.

KDCADM administration commands KDCINF

Administering Applications 731

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

PAGES FOR PHYS. MESSAGES
Number of pages, in percent, which are utilized for output messages and
which need to be temporarily stored because they can only be transferred
to the transport system in sections owing to their length.

PAGES FOR RESET MESSAGES
Number of pages, in percent, which are utilized for reset messages.

PAGES FOR OSI TP LOG RECORDS
Number of pages, in percent, which are utilized for OSI TP log records.

OTHER PAGES
Number of other utilized pages, in percent.

FREE PAGES
Number of free pages, in percent.

i In the case of UTM cluster applications, GSSB and ULS areas are stored in the
global page pool of the UTM cluster application. As KDCINF PAGEPOOL only
displays the utilization of the local page pool, the values for GSSB and ULS are
always zero in UTM cluster applications.

KDCINF KDCADM administration commands

732 Administering Applications

type=POOL

The output depends on whether a short or a long host name is assigned to a LTERM pool
object. In the case of a long host name, the information on a LTERM pool object is output
in two screen lines.

POOL PRONAM BCAMAPPL PTYPE STATIONS STA=ON ACTCON MAXCON KSET LOCK
ltprefix proname applname ptype number number number number kset lock

POOL PRONAM BCAMAPPL PTYPE STATIONS STA=ON ACTCON MAXCON KSET LOCK
ltprefix long.processor.name

applname ptype number number number number kset lock

Explanation of the output

POOL LTERM prefix of the LTERM pool. The names of the LTERM partners
assigned to the pool comprise ltprefix and a serial number between 1 and
the maximum number of clients allowed to connect to the LTERM pool at
the same time.

PRONAM Only clients located on computer proname can establish connections to the
application using the LTERM pool.

In the case of applications on Unix, Linux or Windows systems, blanks are
entered for proname if the LTERM pool is defined for locally connected
clients.

BCAMAPPL Name of the local application (BCAMAPPL name) through which the
connections to this LTERM pool were established (see KDCDEF statement
TPOOL operand BCAMAPPL).

PTYPE Physical type of client allowed to connect to the application through this
LTERM pool.

STATIONS Maximum number of clients allowed to connect to the application at the
same time using this LTERM pool.

STA=ON Number of clients currently allowed in the LTERM pool.

ACTCON Number of clients connected to the application at the present time through
this pool.

MAXCON Maximum number of clients connected to the application during the current
application run using this LTERM pool.
The counter is reset to 0 every time the application starts.

KSET Key set assigned to the LTERM pool, and therefore to all clients connected
to the application by this LTERM pool (access rights).

LOCK Lock code assigned to the LTERM pool (access protection).

X/W

X/W

X/W

KDCADM administration commands KDCINF

Administering Applications 733

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=PROG

For KDCINF PROG,L=KDCALL,CONT=programname

Output for UTM applications on BS2000 systems

Output for UTM applications on Unix, Linux and Windows systems

Explanation of the output

PROGRAM Name of the program unit as specified during generation in the PROGRAM
statement; up to 32 characters in length.

LOAD-MODULE
Name of the load module to which this program unit is assigned; up to
32 characters in length.

SHARED-OBJECT
Name of the shared object/DLL to which this program unit is assigned; up to
32 characters in length.

L-MODE Load mode of the load module/shared object/DLL to which this program unit
is assigned. Key to terms:

STATIC
The load module/shared object/DLL is incorporated as a static element in
the application program.

STARTUP
The load module/shared object/DLL is loaded dynamically as an
independent unit whenever the application is started.

ONCALL
The load module/shared object/DLL is loaded as an independent unit
whenever a program unit or VORGANG exit assigned to the load
module/shared/DLL is called for the first time.

POOL
The load module is loaded into the common memory pool whenever the
application starts. The load module does not contain a private slice.

PROGRAM LOAD-MODULE L-MODE CHN D

program1
program2

load module1
load module2

load mode
load mode

YES | NO
YES | NO

D

PROGRAM SHARED-OBJECT L-MODE CHN D

program1
program2

shared object1
shared object2

load mode
load mode

YES | NO
YES | NO

D

B

BBBBB

B
B
B
B
B
B
B
B
B

X/W

X/WX/WX/WX/WX/W

X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W

BB

B

B

X/WX/W

X/W

X/W

B

B

B

KDCINF KDCADM administration commands

734 Administering Applications

POOL/STARTUP
The public slice of the load module is loaded into the common memory pool
whenever the application starts. The private slice belonging to the load
module is then loaded into the local process memory.

POOL/ONCALL
The public slice of the load module is loaded into the common memory pool
whenever the application starts. The private slice belonging to the load
module is loaded into the local process memory when the first program unit
assigned to this load module is called.

CHANGEABLE
Displays whether or not the load module/shared object/DLL to which this
program unit is assigned can be exchanged.

D Indicates whether the program was deleted from the configuration by
means of system administration functions (D) or not (no entry).

B
B

B

B

B

B

B

B

B

KDCADM administration commands KDCINF

Administering Applications 735

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=PTERM

The output depends on whether a short or a long host name is assigned to a PTERM object.
In the case of a long host name, the information on a PTERM object is output in two screen
lines.

PTERM PRONAM LTERM BCAMAPPL PTYP STA CONNECT CTIME LETTERS CONB D
pterm proname lterm applname ptype ON|OFF Y|N|W A|P M minutes number number D

T|E

PTERM PRONAM LTERM BCAMAPPL PTYP STA CONNECT CTIME LETTERS CONB D
pterm long.processor.name

lterm applname ptype ON|OFF Y|N|W A|P M minutes number number D
T|E

Explanation of the output

PTERM Name of the client or printer (PTERM name).

PRONAM Name of the computer on which the client/printer is located.

In UTM applications on Unix, Linux or Windows systems blanks are output
for local clients/printers.

LTERM Name of the LTERM partner (logical name) to which this client/printer is
assigned.

BCAMAPPL Name of the local UTM application (BCAMAPPL name) via which the
connection to the client/printer is established.

PTYP Type of client/printer (for the meaning of the output, see table on page 541
(BS2000 systems) or on page 543 (Unix, Linux and Windows systems)

STA The client/printer is disabled (OFF) or not disabled (ON).

X/W

X/W

KDCINF KDCADM administration commands

736 Administering Applications

CONNECT Several items of information are provided here.

1st column

2nd column:
A automatic connection is established when the application starts or

P the client is connected to the application by an LTERM pool.
If neither of these properties applies, there is no output at this point.

3rd column (only for UTM applications on BS2000 systems):
The client is connected to the application by a multiplex connection (M) or
not (no entry).

CTIME Duration of the existing connection in minutes.

LETTERS Number of input and output messages for the client or output messages to
the printer since the application started.
The counter is reset to 0 every time the application starts.

CONB Number of connection failures between client/printer and application since
the application started. The CONB counter is reset to 0 every time the appli-
cation starts.

In UTM applications on BS2000 systems, the CONB counter also counts
incrementally if a UPIC client first shuts down its connection to the UTM
application and then establishes a new connection using the same PTERM
name.

D Indicates whether the client/printer was deleted (D) or not (no entry) from
the configuration by means of system administration functions.

Y/N/W The client/printer is at present connected to the application (Y) or
not (N), or UTM is now attempting to establish a connection
(W = waiting for connection)

T/E Only output for terminals connected to a UTM application on a
BS2000 system by a multiplex connection.
T: (timer) The session is in DISCONNECT-PENDING mode; the
timer is running, waiting for confirmation that a connection is being
established.
E: (expired) The session is in DISCONNECT-PENDING mode and
the timer waiting for confirmation has run out before confirmation
was received.

In both cases, the session can be released with KDCPTERM.

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCADM administration commands KDCINF

Administering Applications 737

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=SHARED-OBJECT

For KDCINF SHARED-OBJECT, L=shared-object-name, CONT=programname

SHARED-OBJECT shared object name
VERSION (PREVIOUS) old version
VERSION (CURRENT) new version
LIBRARY name of program directory
LOAD MODE STATIC | STARTUP |? ONCALL ?
CHANGEABLE YES | NO

PROGRAM LIST
program1 program2
program3 program4

Explanation of the output

SHARED-OBJECT
Name of the shared object/DLL; up to 32 characters in length.

VERSION (PREVIOUS)
Previous version of the shared object/DLL.

VERSION (CURRENT)
Currently loaded version of the shared object/DLL.

LIBRARY Name for the program library of up to 54 characters loaded from the shared
object/DLL.

LOAD MODE
Load mode for the shared object/DLL. Key to the terms used:

STATIC The shared object/DLL is incorporated as a static element in the application
program.

STARTUP The shared object/DLL is loaded dynamically as an independent unit
whenever the application starts.

ONCALL The shared object/DLL is loaded as an independent unit whenever a
program unit or VORGANG exit assigned to the same shared object/DLL(s)
is called for the first time.

CHANGEABLE
Displays whether or not the shared object/DLL can be replaced during run
time.

PROGRAM LIST
List of the names of all program units and data areas (AREAs) assigned to
the shared object/DLL.

X/W

X/W

X/W
X/W
X/W
X/W
X/W
X/W

X/W
X/W
X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

KDCINF KDCADM administration commands

738 Administering Applications

type=STATISTICS

 name APPLINAME version VERSION OF UTM
yy-mm-dd GEN APPLICATION DATE hh:mm:ss GEN APPLICATION TIME
yy-mm-dd START APPLICATION DATE hh:mm:ss START APPLICATION TIME
yy-mm-dd CURRENT DATE hh:mm:ss CURRENT TIME
number TERMINAL INPUT MESSAGES number TERMINAL OUTPUT MESSAGES
number CURRENT TASKS number CONNECTED USERS
number OPEN DIALOG SERVICES number OPEN ASYN SERVICES
percent % CURRENT LOAD percent % MAXIMUM LOAD

 number DIALOG TAS PER SECOND number ASYN TAS PER SECOND
 number DIALOG STEPS PER SECOND percent % MAXIMUM POOL SIZE
percent % ACTUAL POOL SIZE percent % AVERAGE POOL SIZE
percent % CACHE HIT RATE number NR CACHE SEARCHES
percent % CACHE WAITS FOR BUFFER number NR CACHE REQUESTS

 number UNPROCESSED ATACS number UNPROCESSED PRINTS
 number WAITING DPUTS number ABNORMAL TERMINATED SERVS
 number LOGFILE WRITES number UTM-DEADLOCKS
 number PERIODIC WRITES number PAGES PER PERIODIC WRITE
percent % WAITS FOR RESOURCES number NR RESOURCE REQUESTS
percent % MAX WAITS FOR RESOURCES number NR RES REQUESTS FOR MAX
percent % WAITS FOR SYSTEM RES number NR SYSTEM RES REQUESTS
percent % MAX WAITS FOR SYSTEM RES number NR SYSTEM RES REQ FOR MAX
percent % ACTUAL JR percent % MAXIMUM JR

 number AVG COMPRESS PAGES SAVED

Explanation of the output

APPLINAME Name of the application that was defined during KDCDEF generation for
MAX APPLINAME.

VERSION OF UTM
openUTM version used with correction status

GEN APPLICATION DATE
Date of the generation run of the application

GEN APPLICATION TIME
Time of the generation run of the application

START APPLICATION DATE
Day of the last cold start of the application (UTM-S application);
day of the last start of the application (UTM-F application)

START APPLICATION TIME
Time of the last cold start of the application (UTM-S application);
Time of the last start of the application (UTM-F application)

KDCADM administration commands KDCINF

Administering Applications 739

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

CURRENT DATE
Current date

CURRENTN TIME
Current time

TERMINAL INPUT MESSAGES
Total number of messages received by the application from clients or
partner applications during the last full hour.

TERMINAL OUTPUT MESSAGES
Total number of messages sent by the application to clients, printers or
partners during the last full hour.

CURRENT TASKS
Current number of processes in the application.

CONNECTED USERS
Number of users connected to the application at the present time.

OPEN DIALOG SERVICES
Number of dialog services open at the present time.

OPEN ASYN SERVICES
Number of asynchronous services open at the present time.

CURRENT LOAD
Current load of the application during the last completed period of
100 seconds as a percentage.

The value in this field indicates the current load of the processes of the
application in processing jobs. If the value is very high, additional processes
should be started for the application.

MAXIMUM LOAD
Maximum load of the UTM application since startup or since the last time
the value was reset as a percentage.

DIALOG TAS PER SECOND
Number of dialog transactions per second being executed at the present
time.

ASYN TAS PER SECOND
Number of asynchronous transactions per second being executed at the
present time.

DIALOG STEPS PER SECOND
Number of dialog steps per second being executed at the present time.

KDCINF KDCADM administration commands

740 Administering Applications

MAXIMUM POOL SIZE
Maximum allocation of page pool space in percent. In UTM-S applications,
the value is set to 0 when the application is generated for the first time with
KDCDEF or updated with KDCDEF/KDCUPD. With UTM-F applications,
the value is set to 0 each time the application is started.

ACTUAL POOL SIZE
Allocation of page pool space in percent at the present time.

AVERAGE POOL SIZE
Average allocation of page pool space in percent. In UTM-S applications,
the value is set to 0 when the application is generated for the first time with
KDCDEF or updated with KDCDEF/KDCUPD. With UTM-F applications,
the value is set to 0 each time the application is started.
For this value to be meaningful, many dialog steps must already have been
processed.

CACHE HIT RATE
Hit rate for a page search in cache memory. Figure quoted in percent.
CACHE HIT RATE is reset to 0 before every application start.

NR CACHE SEARCHES
Number of search operations for UTM pages in the cache taken into
account to calculate the value of CACHE HIT RATE.

CACHE WAITS FOR BUFFER
Buffer calls in cache that have resulted in a wait time. Figure quoted in
percent.
CACHE WAITS FOR BUFFER is reset to 0 after every full hour.

NR CACHE REQUESTS
Number of buffer requests taken into account to calculate the value of
CACHE WAITS FOR BUFFER.

UNPROCESSED ATACS
Number of messages for asynchronous services currently stored in
openUTM that have not been completely processed.

UNPROCESSED PRINTS
Number of messages currently queued for the printers.

WAITING DPUTS
Number of time-driven jobs currently waiting (DPUTs)

ABNORMAL TERMINATED SERVS
Number of abnormally terminated services. In UTM-S applications, the
value is set to 0 when the application is generated for the first time with
KDCDEF or updated with KDCDEF/KDCUPD. With UTM-F applications,
the value is set to 0 each time the application is started.

KDCADM administration commands KDCINF

Administering Applications 741

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

LOGFILE WRITES
Number of calls written to the user log file (USLOG). The LOGFILE WRITES
counter is reset to 0 after every full hour.

UTM-DEADLOCKS
Number of recognized and resolved deadlocks affecting UTM resources. In
UTM-S applications, the value is set to 0 when the application is generated
for the first time with KDCDEF or updated with KDCDEF/KDCUPD. With
UTM-F applications, the value is set to 0 each time the application is started.

PERIODIC WRITES
Number of periodic writes since the last application start.
(Periodic write = backup of all log-related administration data on the UTM
application).

PAGES PER PERIODIC WRITE
Average number of UTM pages backed up during a periodic write.
The counter is reset to 0 every time the application starts.

WAITS FOR RESOURCES
This value indicates the average lock conflict rate for the GSSB, ULS and
TLS memory areas during the last 100 second interval as an amount per
thousand, i.e. the total number of wait situations on lock requests as a ratio
of GSSB, ULS and TLS lock requests in the last 100 second interval multi-
plied by 1000.

A high value for WAITS FOR RESOURCES can have the following causes:

– Processes with excessively long run times or wait times,
– Resource disabled for too long, e.g. frequent PEND KP or PGWT calls

to KDCS program units.

i If a lock holder enters the status PEND KP then all "Waiters" are informed
and all further locks are rejected immediately. I.e. the value of WAITS FOR
RESOURCES does not increase as a result.

NR RESOURCE REQUESTS
Number of requests for transaction resources during the last 100 second
interval taken into account to calculate the value of WAITS FOR
RESOURCES.

MAX WAITS FOR RESOURCES
Maximum conflict rate for user data locks across the application run. The
value is specified as a percentage

NR RES REQUESTS FOR MAX
Number of requests for transaction resources in the 100 second interval in
which the maximum conflict rate MAX WAITS FOR RESOURCES was
reached.

KDCINF KDCADM administration commands

742 Administering Applications

WAITS FOR SYSTEM RES
Average conflict rate in the last 100 second interval for the most heavily
loaded system resource. The output in different intervals can refer to
different system resources. The value is specified as a percentage.

NR SYSTEM RES REQUESTS
Number of requests for system resources during the last 100 second
interval taken into account to calculate the value of WAITS FOR SYSTEM
RES.

MAX WAITS FOR SYSTEM RES
Maximum conflict rate for requests for system resources (system locks)
across the application run. The value is specified as a percentage.

NR SYSTEM RES REQ FOR MAX
Number of requests for system resources in the 100 second interval in
which the maximum conflict rate MAX WAITS FOR SYSTEM RES was
reached.

ACTUAL JR Only for distributed processing:
Current number of simultaneously addressed job-receiving services relative
to generation value MAXJR, figure quoted in percent.
(MAXJR = maximum number of job-receiving services that can be
addressed simultaneously in the local application; this corresponds to the
number of simultaneously active APRO calls.)

MAXIMUM JR Only for distributed processing:
Maximum number of simultaneously addressed remote job-receiving
services relative to generation value MAXJR (KDCDEF control statement
UTMD). In UTM-S applications, the value is set to 0 when the application is
generated for the first time with KDCDEF or updated with
KDCDEF/KDCUPD. With UTM-F applications, the value is set to 0 each
time the application is started.

The figure is quoted in percent.

AVG COMPRESS PAGES SAVED
Average value for the UTM pages saved per data compression. The writing
of data areas in which UTM performs no compression because, for
example, the data length is less than one UTM page is not included in this
statistics value.

If no statistics value for data compression is available, the string "- - -" is
output instead of a numeric value. This is possible in the following situa-
tions.

– Data compression is disabled.

KDCADM administration commands KDCINF

Administering Applications 743

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

– The value was reset, e.g. with KC_MODIFY_OBJECT or by means of
WinAdmin or WebAdmin.

– No data compression was performed because the application uses
"small" data areas in which it does not make sense to use compression.

i If the value output for AVG COMPRESS PAGES SAVED is less than
0.5, for performance reasons data compression should be disabled
for this application.

Lifetime of statistical data output for STATISTICS

The following statistical data is updated when the application is started or on each full hour
(applies to UTM-F applications as well if MAX STATISTIC-MSG=FULL-HOUR was
generated). The following table shows when UTM resets the counter to 0 for a UTM-S appli-
cation. In UTM-F applications, all counters are reset to 0 at every application start.

You can reset some of the statistical values to 0 through the program interface to adminis-
tration (see page 374).

The following statistical values are written to the system log file SYSLOG at hourly intervals
and at every normal termination of the application (message K081) provided that the appli-
cation has been generated with MAX STATISTICS-MSG=FULL-HOUR:

Reset time Counter(s) reset

At every application start CACHE HIT RATE
PAGES PER PERIODIC WRITE
PERIODIC WRITES

For regeneration with KDCDEF and change
generation with KDCDEF/KDCUPD

AVERAGE POOL SIZE
MAXIMUM JR
MAXIMUM POOL SIZE
WAITS FOR RESOURCES

When the application starts and after every full
hour (also in UTM-F applications if MAX
STATISTIC-MSG= FULL-HOUR was generated)

CACHE WAITS FOR BUFFER
LOGFILE WRITES
UTM_DEADLOCKS
ABNORMAL TERMINATED CONVS
TERMINAL INPUT MESSAGES
TERMINAL OUTPUT MESSAGES

CACHE HIT RATE
CACHE WAITS FOR BUFFER
CONNECTED USERS
LOGFILE WRITES
TERMINAL INPUT MESSAGES
TERMINAL OUTPUT MESSAGES
UNPROCESSED ATACS

KDCINF KDCADM administration commands

744 Administering Applications

type=SYSLOG

The information in the output is identical to the output from KDCSLOG INFO
(see page 794).

KDCADM administration commands KDCINF

Administering Applications 745

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=SYSPARM

appliname APPLINAME version VERSION OF UTM
 ON|OFF ACCOUNT ON|OFF CALC FOR ACCOUNTING
 ON|OFF SM2 ON|OFF KDCMON
 ON|OFF TESTMODE percent % MAX CACHE PAGING RATE
 number PROGRAM FGG seconds TERMWAIT
 number USLOG FGG seconds RESWAIT-TA
 number MAX TASKS seconds RESWAIT-PR
 number CURRENT TASKS seconds CONRTIME
 number MAXASYN TASKS seconds LOGACKWAIT
 number CURRENT MAXASYN TASKS number CURRENT MAX TASKS IN PGWT
 seconds PTCTIME seconds CONCTIME
 seconds PGWTTIME number TASKS WAITING IN PGWT
 YES|NO PROGRAM EXCHANGE IS RUNNING number MAX TASKS IN PGWT
 YES|NO CLUSTER-APPLICATION PS|DS CACHE LOCATION
 ON|OFF DATA COMPRESSION (GEN)

Explanation of the output

APPLINAME Name of the application defined in MAX APPLINAME during KDCDEF
generation.

VERSION OF UTM
openUTM version used, including the correction status and generation
variant of the application (UTM-S or UTM-F).

ACCOUNT The accounting phase for the accounting function is switched on (ON) or
switched off (OFF).
Can be switched on and off during runtime (e.g. with KDCAPPL).

CALC FOR ACCOUNTING
The calculation phase of the accounting function is switched on (ON) or
switched off (OFF).
Can be switched on during runtime (e.g. with KDCAPPL).

SM2 Data supply to openSM2 is switched on (ON) or switched off (OFF) for the
application.
Can be switched on and off during runtime (e.g. with KDCAPPL).

KDCMON The event monitor KDCMON is switched on (ON) or switched off (OFF).
Can be switched on and off during runtime (e.g. with KDCDIAG).

TESTMODE Test mode is switched on (ON) or switched off (OFF).
This can be switched on and off during runtime (e.g. with KDCDIAG).

KDCINF KDCADM administration commands

746 Administering Applications

MAX CACHE PAGING RATE
Current value for CACHE. The pageing rate indicates the maximum number
of pages in cache memory (in percent) to be written to KDCFILE when
shortages occur.
This value can be changed, e.g. with KDCAPPL CACHE.

PROGRAM FGG
Generation number of the currently loaded application program.

For UTM applications on BS2000 systems, the value 0 is always output for
PROGRAM FGG.

For UTM applications running on Unix, Linux or Windows systems that were
not started from the file generation directory PROG, the value 0 is output for
PROGRAM FGG.

TERMWAIT Current value representing the maximum length of time in seconds that can
elapse in a multi-step transaction (PEND KP is called in the KDCS program
unit) between an output to the terminal and the next entry made by the user
(the time the terminal user takes to think).

USLOG FGG Number of the file generation for the user log file to which the user is writing
at the present time.

RESWAIT-TA Current value representing the maximum time in seconds that the system
can wait for another locked resource (GSSB, ULS,TLS).

MAX TASKS Maximum number of processes allowed in this application (see the
kc_tasks_par_str data structure as of page 663, tasks parameter).

RESWAIT-PR Current value representing the maximum time in seconds that the system
can wait for a resource locked by another process (GSSB, ULS, TLS).

CURRENT TASKS
Number of processes in the application at the present time (see the
kc_tasks_par_str data structure as of page 663, curr_tasks parameter).

CONRTIME Current value representing the time in minutes after a connection failure
after which UTM should attempt (cyclically) to re-establish the connection.

MAXASYN TASKS
Maximum number of processes in the application that can be used at the
same time for asynchronous processing (see the kc_tasks_par_str data
structure as of page 663, asyntasks parameter).

LOGACKWAIT
Maximum time in seconds for which openUTM can wait for a printout or
transport confirmation message.
For UTM applications running on Unix, Linux or Windows systems, this
output is irrelevant.

B

B

X/W

X/W

X/W

BB

B

B

X/W

X/W

KDCADM administration commands KDCINF

Administering Applications 747

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

CURRENT MAXASYN TASKS
Maximum number of processes that can be used at the same time for
asynchronous processing (see the kc_tasks_par_str data structure as of
page 663, curr_max_asyntasks parameter).

This value is adjusted automatically whenever:

– the value is explicitly changed by means of system administration
functions (e.g. by KDCAPPL ASYNTASKS=).

– the number of processes in the application (CURRENT TASKS) is
changed (e.g. by KDCAPPL TASKS=). When the number of CURRENT
TASKS is reduced, the number of CURRENT MAXASYN TASKS is also
reduced as soon as CURRENT TASKS is < CURRENT MAXASYN
TASKS.
If the number of CURRENT TASKS is increased at a later point, the
value for CURRENT MAXASYN TASKS is increased again automati-
cally by UTM.

CURRENT MAX TASKS IN PGWT
Maximum number of processes currently in the application that are
permitted to accept program units with blocking calls (see the
kc_tasks_par_str data structure as of page 663, curr_max_tasks_in_pgwt
parameter).

This value is changed automatically whenever:

– the value is explicitly changed by means of system administration
functions (e.g. by KDCAPPL TASKS-IN-PGWT=).

– the number of processes in the application (CURRENT TASKS) is
changed by administration (e.g. by KDCAPPL TASKS=). When the
number of CURRENT TASKS is reduced, the number of CURRENT
MAX TASKS IN PGWT is also reduced as soon as CURRENT TASKS
is <= CURRENT MAX TASKS IN PGWT.
If the number of CURRENT TASKS is increased at a later point, the
value for CURRENT MAX TASKS IN PGWT is increased again
automatically by openUTM.

PTCTIME Only for distributed processing:
Maximum time in seconds for which a local job-receiving service can wait in
PTC mode (prepare to commit, transaction status P) for confirmation from
the job-submitting service.
The value 0 signifies that the system can wait for confirmation for an
unlimited period of time.

KDCINF KDCADM administration commands

748 Administering Applications

CONCTIME Only for distributed processing:
Time in seconds for monitoring the establishment of a session (LU6.1) or an
association (OSI TP). If the session or association is not established within
the specified time limit, openUTM terminates the transport connection. This
prevents a transport connection from remaining disabled due to failure to
establish a session or an association. CONCTIME=0 means that session
setup is not monitored in the case of LU6.1 connections (UTM waits indefi-
nitely). In the case of OSI TP connections, UTM waits up to 60 seconds for
an association to be set up.

PGWTTIME Maximum time in seconds that a blocking function call can wait, e.g. the
KDCS call PGWT.

TASKS WAITING IN PGWT
Number of current processes that can be in wait state at the same time due
to blocking function calls (e.g. KDCS call PGWT).

PROGRAM EXCHANGE IS RUNNING
Specifies whether openUTM is currently exchanging a program for the
application.

MAX TASKS IN PGWT
Maximum number of processes in the application that can simultaneously
process program units with blocking function calls (e.g. KDCS call PGWT)
(see the kc_tasks_par_str data structure as of page 663, tasks_in_pgwt
parameter).

CLUSTER-APPLICATION
Specifies whether the application is a UTM cluster application or a
standalone UTM application.

CACHE LOCATION
Specifies whether the UTM cache lies in the program space (PS) or in one
or more data spaces (DS).

PS is always displayed for Unix, Linux, and Windows systems.

DATA-COMPRESSION (GEN)
Specifies whether data compression is permitted (ON) or not (OFF) for the
application. The value displayed here matches the generation value for the
application (see openUTM manual “Generating Applications”, MAX DATA-
COMPRESSION=). If ON is displayed here, data compression can be
enabled or disabled using administration facilities, e.g. with KDCAPPL.

X/W

KDCADM administration commands KDCINF

Administering Applications 749

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=TAC

TAC LOCK STAT TCL IN-Q USED ERROR DBCNT TACELAP DBELAP TACCPU D

tac number ON number number number number number msec msec mcsec D
OFF type
HLT
KP

Explanation of the output

TAC TAC name

LOCK Lock code which provides access protection for the transaction code; a
number between 1 and 4000.

STAT Status of the transaction code:
The TAC is enabled (ON), disabled (OFF), completely disabled (HLT) or
blocked (KP). Blocked means that the TAC is disabled, but jobs are
accepted for the TAC and placed in the job queue.

TCL TAC class and type (D | A | Q) of the transaction code or TAC queue.

IN-Q Number of messages that still have to be processed by the program unit
started by the TAC name.

USED Total number of program unit runs processed with this transaction code
(only for asynchronous TACs). In UTM-S applications, the value is set to 0
when the application is generated for the first time with KDCDEF or updated
with KDCDEF/KDCUPD. With UTM-F applications, the value is set to 0
each time the application is started.

ERROR Number of program unit runs which were started by this transaction code
and abnormally terminated. In UTM-S applications, the value is set to 0
when the application is generated for the first time with KDCDEF or updated
with KDCDEF/KDCUPD. With UTM-F applications, the value is set to 0
each time the application is started.

DBCNT Average number of database calls from program units which were started
with this TAC name.

With database connections via the XA interface DBNCT is always 0.

TACELAP Average run time of the program unit which was started with this TAC
(elapsed time); figure quoted in milliseconds.

KDCINF KDCADM administration commands

750 Administering Applications

DBELAP Average time for processing the database calls in the program unit runs.
With this TAC; figure quoted in milliseconds.

With database connections via the XA interface DBNCT is always 0.

TACCPU Average CPU time in microseconds used for processing this transaction
code in the program unit. This corresponds to the CPU time used by
openUTM plus the CPU time used by the database system.

D Indicates whether the transaction code was deleted (D) or not (no entry)
from the configuration by means of system administration functions.

The statistical values output for type = USED, ERROR, DBCNT, TACELAP, DBELAP and
TACCPU are reset to 0 every time KDCDEF performs a new generation and every time
KDCDEF/KDCUPD generates a change in UTM-S applications. With UTM-F applications,
the values are set to 0 each time the application is started.

type=TAC-PROG

Output for UTM applications on BS2000 systems

TAC PROGRAM LOAD-MODULE
tac1 program1 load-module1
tac2 program2 load-module2
tac3 program3 load-module3

Output for UTM applications on Unix, Linux and Windows systems

TAC PROGRAM SHARED-OBJECT
tac1 program1 shared-object1
tac2 program2 shared-object2
tac3 program3 shared-object3

Explanation of the output

TAC Name of the transaction code

PROGRAM Name of the program unit to which this transaction code is assigned

LOAD-MODULE
Name of the load module containing the program unit (PROGRAM)

SHARED-OBJECT
Name of the shared object/DLL containing the program unit (PROGRAM)

B

B
B
B
B

X/W

X/W
X/W
X/W
X/W

BB

B

X/WX/W

X/W

KDCADM administration commands KDCINF

Administering Applications 751

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

type=TACCLASS

TACCLASS TASKS WT MSGS AVG-WAIT-TIME PGWT PRIO* NR WAITS

 1 number number msec YES|NO prio number number
 :
 8 number number msec YES|NO prio number number
 9 number number msec YES|NO prio number number
 :
16 number number msec YES|NO prio number number

*prio = ABS | REL | EQ | NO

Explanation of the output

TASKS Maximum number of processes currently allowed to process jobs for trans-
action codes in this TAC class.

WT MSGS Number of messages currently stored in openUTM for transaction codes in
this TAC class that have not yet been processed.

AVG-WAIT-TIME
Average wait time for jobs in this TAC class in milliseconds. The wait time
is calculated from the time openUTM accepts the job to the start of actual
processing. AVG-WAIT-TIME=0 signifies that all jobs are being processed
immediately.

Wait times can, for instance, arise if not all processes in the application may
process jobs for the TAC class and if openUTM consequently has to store
jobs temporarily in the job queue.

PGWT Specifies whether program units with blocking calls, e.g. the KDCS call
PGWT, are allowed to run in this TAC class.

If the application was generated with priority control (TAC-PRIORITIES
statement), then the column PGWT contains NO for all TAC classes.

PRIO If the application was generated with priority control, then the column PRIO
contains the type of priority defined for the TAC classes (ABS, REL, EQ). If
the application was generated without the TAC-PRIORITIES statement, the
PRIO column contains NO for all TAC classes.

NR Number of program unit runs for this TAC class.

WAITS Number of wait situations taken into account to calculate the value
AVG-WAIT-TIME.

KDCINF KDCADM administration commands

752 Administering Applications

type=USER

USER KSET STATUS OSERV NR.TACS CPUTIME SECCNT LTERM D

user1 kset1 ON| OFF Y| N number msec number lterm1 D

Explanation of the output

USER Name of the user ID

KSET Key set assigned to this user ID (access rights)

STATUS User ID is disabled (OFF) or not disabled (ON).

OSERV Y signifies that the user is currently processing a service and that this
service has reached at least one synchronization point.
N signifies that the user is not currently processing a service which has not
already reached one synchronization point.

NR.TACS Number of program unit runs entered under this user ID. In UTM-S applica-
tions, the value is set to 0 when the application is generated for the first time
with KDCDEF or updated with KDCDEF/KDCUPD. With UTM-F applica-
tions, the value is set to 0 each time the application is started.

CPUTIME Number of CPU milliseconds used up by the user for processing these jobs
(does not include the CPU time for the database calls). The value is reset
to 0 after the user has signed off (KDCOFF) or after the connection has
been cleared.

SECCNT Number of security violations for this user ID (e.g. incorrect password
entered) since the start of the application. This number is reset to 0 each
time the application is started.

LTERM The following cases must be distinguished:

– Applications with MULTI-SIGNON=NO (i.e. multiple sign-ons are not
permitted):
LTERM or OSI-LPAP partner by means of which a user is signed on with
this user ID.
Exception: LTERM contains blanks when signing on to start an
asynchronous service was via OSI TP.

– Applications with MULTI-SIGNON=YES (multiple sign-ons permitted):
If a user with the user ID is connected to the application via a terminal,
LTERM contains the name of the LTERM partner assigned to the
terminal.

If the user ID is generated with RESTART=YES, LTERM contains the
name of the LTERM or OSI-LPAP partner via which a client with this
user ID is signed on.

KDCADM administration commands KDCINF

Administering Applications 753

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Exceptions: Signing on took place by means of OSI TP, and the
functional unit “Commit” was selected, or signing on was via OSI TP to
start an asynchronous service. In this case, LTERM contains blanks.

In all other cases, LTERM contains blanks.

D Indicates whether the user ID was deleted (D) or not (no entry) from the
configuration by means of system administration functions.

The password for this user ID is not output.

KDCLOG KDCADM administration commands

754 Administering Applications

KDCLOG - Change the user log file

The user log file USLOG is maintained as the file generation directory USLOG. KDCLOG
allows you to close the current user log file (file generation) during live operation and open
a new user log file at the same time. This is the file generation with the next generation
number in the sequence. The closed log file can then be used in any way you choose.
KDCLOG acts on both files if a dual user log file is being used. For further information about
the user log file USLOG, please refer to the openUTM manual “Using UTM Applications”.

Effect in UTM cluster applications

KDCLOG has a global effect in UTM cluster applications, i.e. it applies to all running node
applications.

Period of validity of the change

The application writes to the new USLOG file generation(s) until KDCLOG is used to switch
to the next file generation.

After the application ends, you can also change to the next file generation using operating
system commands (see the openUTM manual “Using UTM Applications”).

For administration using message queuing you must enter KDCLOGA.

KDCLOG has no operands

Output from KDCLOG

The message

"COMMAND ACCEPTED"

is displayed on the administrator terminal.

KDCLOG

KDCADM administration commands KDCLPAP

Administering Applications 755

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCLPAP - Administer connections to (OSI-)LPAP partners

KDCLPAP allows you to perform the following actions:

– arrange for connections to be established
– shut down connections
– disable connections or release disabled connections
– define partner applications for which UTM is automatically to establish connections at

every application start
– define the number of parallel connections to OSI TP partner applications
– activate replacement connections to OSI TP partner applications - these replacement

connections must have been generated with KDCDEF
– change the time for monitoring the idle time modes of sessions and associations

Connections are specified using the name of the LPAP or OSI-LPAP partner to which they
are assigned. Replacement connections are identified by the replacement connection
name defined in the KDCDEF control statement OSI-CON.

Special issues relating to the establishment and termination of connections

KDCLPAP...,ACT=CON or (CON,number) merely initiates the establishment of a
connection. Successful execution of this command does not therefore mean that the
connections have in fact been established or that it is possible to establish them (there may
be errors in the transport system). You should therefore use KDCINF to check whether a
UTM connection can genuinely be established, with the following entry, for example:

If you wish to establish a connection to a disabled LPAP or OSI-LPAP partner
(STATUS=OFF) you must make two KDCLPAP calls:

1. One KDCLPAP call to re-enable the (OSI-)LPAP partner, e.g.:
KDCLPAP [OSI-]LPAP=lpapname,STATUS=ON

2. One KDCLPAP call to ensure that the connection is established, e.g.:
KDCLPAP [OSI-]LPAP=lpapname,ACTION=CON

In conjunction with ACTION=CON and STATUS=ON, KDCLPAP will not be processed.

If you wish to reduce the number of parallel connections to an OSI-LPAP partner, call
KDCLPAP with ACTION=(CON,number). To do this, you should enter the number of
connections you wish to retain in the number field.

KDCINF OSI-LPAP, LIST=(osi-lpapname_1,...osi-lpapname_10)
KDCINF CON, LIST=KDCCON

for OSI-LPAP partners
for LPAP partners

KDCLPAP KDCADM administration commands

756 Administering Applications

Effect in UTM cluster applications

The effect in UTM cluster applications is described in the sections devoted to the individual
operands since some of the changes made with KDCLPAP apply locally to the node
whereas others take effect globally in the cluster.

Period of validity of the change

The period of validity of these changes depends on the type of change and is therefore
specified in the description of these operands.

For administration using message queuing you must enter KDCLPAPA.

LPAP = (lpapname_1,...,lpapname_10)
Connections to the partner applications to which the LPAP partners
lpapname_1,...,lpapname_10 are assigned are to be administered. For
lpapname_1,...,lpapname_10, enter the logical names of partner applications
generated by the KDCDEF control statement LPAP for distributed
processing by LU6.1.

You can enter a maximum of 10 LPAP names for each KDCLPAP call, i.e.
you can administer the connections to a maximum of 10 LPAP partners. If
you only enter one LPAP name, you do not need to key in the parentheses.

OSI-LPAP = (osi-lpapname_1,...,osi-lpapname_10)
The connections to the partner applications to which the OSI-LPAP partners
osi-lpapname_1,...,osi-lpapname_10 are assigned are to be administered. For
osi-lpapname_1,...,osi-lpapname_10 enter the logical names of partner appli-
cations generated by the KDCDEF control statement OSI-LPAP for
distributed processing via OSI TP.

You can enter a maximum of 10 OSI-LPAP names for each KDCLPAP call,
i.e. you can administer the connections to a maximum of 10 OSI-LPAP
partners. If you only enter one OSI-LPAP name, you do not need to key in
the parentheses.
If the specified OSI-LPAP is the master LPAP of an OSI-LPAP bundle, it only
makes sense to specify STATUS=ON/OFF.

KDCLPAPË { LPAP ={ lpapname | (lpapname_1,...,lpapname_10) } |
OSI-LPAP={ osi-lpapname | (osi-lpapname_1,..,osi-lpapname_10) }|
OSI-CON = osi-conname

}

[,ACTION={ CON| (CON,number) | DIS | ACON | (ACON,number) |
NACON | QUIET }]

[,IDLETIME=time_sec]

[,STATUS={ ON| OFF }]

KDCADM administration commands KDCLPAP

Administering Applications 757

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

OSI-CON=osi-conname
KDCLPAP OSI-CON=osi-conname activates a log connection to an OSI TP
partner (OSI-LPAP). The log connection osi-con must have been generated
statically with the KDCDEF control statement OSI-CON. For osi-conname is,
enter the name generated in OSI-CON.
You can query the names of all log connections generated for an OSI-LPAP
partner with KDCINF OSI-LPAP.

When you enter the command, no connections are permitted to the OSI-
LPAP partner to which the log connection was assigned for generation.
Before UTM activates the log connection, UTM first deactivates the most
recent active connection to the OSI-LPAP partner.

The log connection remains active until the end of the application run or until
the next time a log connection is selected for the same OSI-LPAP, or until
the connection is deactivated.

Entering other operands has no effect. Assignment to the OSI-LPAP partner
takes place implicitly using osi-conname.

ACTION= ACTION allows you to arrange for connections which were specified in
LPAP or OSI-LPAP to be established and shut down. You can define
whether or not UTM should automatically establish connections to specified
partner applications when the application starts.

CON openUTM arranges for connections to be established to the specified
partner applications. All parallel connections generated in the KDCDEF
control statement OSI-LPAP for OSI TP partners specified in OSI-LPAP are
to be established.

In UTM cluster applications, the operand applies locally in the node.

Successful execution of this command does not mean that the required
connections have in fact been established. You can use a KDCINF query to
find out whether or not a connection has been established successfully.

If a connection is to be established for a disabled LPAP or OSI-LPAP
partner, the partner must be re-enabled with its own KDCLPAP call before
the connection is established.

KDCLPAP KDCADM administration commands

758 Administering Applications

(CON,number)
An entry for number is only useful for connections to OSI-LPAP partners. For
an LU6.1 partner specified in LPAP, (CON,number) acts like CON and the
entry for number is ignored.

In UTM cluster applications, the operand applies locally in the node.

For OSI-LPAP partners, number represents the number of parallel connec-
tions to the partner application that are to be established to each of the
specified OSI TP partners after the KDCLPAP call. This makes the effect of
the call dependent on the entry for number. A distinction must be drawn
between the following cases:

– If number for one of the OSI-LPAP partners specified in OSI-LPAP is
greater than the number of parallel connections currently established,
openUTM tries to establish the correct number of connections, i.e. the
same number of connections to OSI-LPAP partners as specified in
number.
The maximum number of parallel connections to one OSI-LPAP partner
is defined for KDCDEF generation in the OSI-LPAP statement.
If the value for number exceeds the generated maximum number of
specified OSI-LPAP partners, openUTM only establishes the generated
maximum number of connections for this partner.
Successful execution of this command does not mean that the required
connections have been established. You can use a KDCINF query to
find out whether or not a connection has been established successfully.
If a connection is to be established for a disabled OSI-LPAP partner, the
partner must be re-enabled first.

– If number is less than the number of parallel connections currently estab-
lished to a OSI-LPAP partner, UTM shuts down connections to the
OSI-LPAP partner until only the number of connections specified in
number are still in existence.
(CON,0) has the same effect as ACTION=DIS. UTM immediately shuts
down all connections for the specified OSI-LPAP partner.

Minimum value of number: 0
Maximum value of number: Number of parallel connections generated.

DIS Connections to the partners specified in LPAP are shut down immediately.
All existing parallel connections to the partners specified in OSI-LPAP are
shut down.

In UTM cluster applications, the operand applies locally in the node.

i Termination of a connection with DIS has the effect of shutting down
all connections immediately. This may cause services to be termi-
nated abnormally. It would be better to use ACTION=QUIET.

KDCADM administration commands KDCLPAP

Administering Applications 759

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

ACON (automatic connection)
For the next start and for subsequent starts of this application, UTM is
automatically to establish connections to the partner applications specified
in LPAP or OSI-LPAP. In the case of OSI TP partners, parallel connections
should be established up to the number specified in the appropriate OSI-
LPAP statement during KDCDEF generation.

In UTM cluster applications, the operand applies globally in the cluster.

(ACON,number)
Entering number is only meaningful for connections to OSI-LPAP partners.
In all subsequent starts of the application, UTM should establish connec-
tions to the partners specified in OSI-LPAP automatically (automatic
connection). The value for number defines the number of parallel connec-
tions that are to be established to the specified OSI TP partners.

In UTM cluster applications, the operand applies globally in the cluster.

The maximum number of parallel connections to a partner is defined in the
OSI-LPAP statement for KDCDEF generation.
If the value in number exceeds the generated maximum number for one of
the specified OSI-LPAP partners, UTM only establishes the statically
generated number of connections for this partner.

For an LU6.1 partner specified in LPAP, (ACON,number) has the same
effect as ACON; the entry for number is ignored.

Minimum value of number: 0
Maximum value of number: Number of generated parallel connections.

NACON (no automatic connection)
If the ACON property is entered for these connections during generation or
by means of system administration functions, it is to be deleted, i.e.
openUTM should no longer establish automatic connections to the partner
applications specified in LPAP or OSI-LPAP with effect from the next appli-
cation start.
The entry ACTION=NACON extends beyond the duration of the current
application run.

In UTM cluster applications, the operand applies globally in the cluster.

KDCLPAP KDCADM administration commands

760 Administering Applications

QUIET The connections specified in LPAP or OSI-LPAP are shut down. For
OSI-LPAP partners, all parallel connections are shut down.

In UTM cluster applications, the operand applies locally in the node.

With QUIET, connections are not shut down until the sessions or associa-
tions generated for the specified LPAP- or OSI-LPAP partners are no longer
assigned by dialog or asynchronous jobs. However, no further dialog jobs
are accepted for the specified (OSI-)LPAP partners.
The QUIET property can be reset with ACTION=CON.

IDLETIME=time_sec
Time for monitoring the idle state of the sessions or associations generated
for the specified LPAP or OSI-LPAP partners.

In UTM cluster applications, the operand applies globally in the cluster.

A change made to IDLETIME remains effective for a defined session or
association if it reaches the idle mode next time this command is entered
(during establishment of the connection or after completion of the job).
If the session or association is not assigned by a job during the period of
time specified in time_sec, openUTM shuts down the connection. time_sec is
defined in seconds.

IDLETIME=0 prevents monitoring of the idle state.

Maximum value: 32767
Minimum value: 60
In the case of values that arre smaller than 60 but not equal to 0, the value
60 is used.

STATUS= Disables or re-enables LPAP or OSI-LPAP partners.

In UTM cluster applications, the operand applies globally in the cluster.

OFF Disables LPAP or OSI-LPAP partners; openUTM does not establish any
further connections to this partner application until the LPAP or OSI-LPAP
partner is released once again.

No logical connections to the related partner application can be established
when an LPAP or OSI-LPAP partner is disabled.

ON Approve LPAP or OSI-LPAP partner again.
This change applies throughout the entire application run.

KDCADM administration commands KDCLPAP

Administering Applications 761

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Output from KDCLPAP

New and old properties are output at the administrator terminal (NEW, OLD).

The following output is produced when KDCLPAP LPAP=... is entered:

LPAP STATUS CONNECTION IDLETIME

 NEW OLD NEW OLD NEW OLD

lpapname ON ON CON A Q CON A Q sec sec
OFF OFF DIS DIS

W W

The following output is produced when KDCLPAP OSI-LPAP=... is entered:

OSI-LPAP STATUS CONNECTED IDLETIME AUTOCON

 NEW OLD NEW OLD NEW OLD NEW OLD

osi-lpap ON Q ON Q number number sec sec number number
 OFF OFF

The following output is produced when KDCLPAP OSI-CON=... is entered:

OSI-LPAP OSI-CON

 NEW OLD

osi-lpap1 osi-con1 osi-con2

KDCLPAP KDCADM administration commands

762 Administering Applications

Explanation of the output

AUTOCON Number of connections to the OSI-LPAP partner that UTM should establish
automatically when an application starts.

CONNECTED
Number of parallel connections currently established to the OSI-LPAP
partner.

CONNECTION
1st column:
Connection to the LPAP partner is established (CON), shut down (DIS), or
UTM is currently trying to establish a connection (W = waiting for
connection).

2nd column:
A (automatic) indicates that openUTM will try to establish the connection
automatically when the application starts.
Q (quiet) indicates that the connection will be shut down and that no further
dialog jobs will be accepted for this partner application.

IDLETIME Monitoring time for the idle state of a session or association on the
connection

OSI-CON The name generated with the KDCDEF control statement OSI-CON for the
logical connection to the partner application.
osi-con1 is the name of the connection that was active before the
changeover; osi-con2 is the name of the existing replacement connection.

STATUS A connection to the partner application exists or can be established (ON),
or cannot be established (OFF).
Q (QUIET) indicates that no further dialog jobs will be accepted for the
OSI-LPAP partner and that the connection will be shut down.

KDCADM administration commands KDCLSES

Administering Applications 763

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCLSES - Establish/shut down connections for LU6.1 sessions

With KDCLSES you can arrange for a transport connection to a session to be established
or shut down.

Effect in UTM cluster application

In UTM cluster applications, KDCLSES applies locally in the node.

For administration using message queuing you must enter KDCLSESA.

LSES=lsesname
Indicates the name of the session requiring administration (local half-
session name). For lsesname, enter a name which was assigned by means
of KC_CREATE_OBJECT for the object type KC_LSES during KDCDEF
generation of an LSES statement.

ACTION= Controls the establishment and termination of a session.

CON A transport connection is to be established for the session lsesname. With
the operands CON, PRONAM and BCAMAPPL you can specify precisely
which transport connection is to be established for the session. If you do not
enter a transport connection for CON, PRONAM and BCAMAPPL, UTM
tries to establish one of the transport connections generated for the relevant
LPAP partner (KC_CREATE_OBJECT for the object type KC_CON or
KDCDEF control statement CON).
If openUTM is not able to establish the connection specified in CON,
PRONAM and BCAMAPPL, it tries to establish another of the connections
generated for the relevant LPAP partner.

DIS The connection currently established for the session is shut down immedi-
ately.

QUIET Connection to the partner application is shut down if the session is no longer
assigned by a job.

KDCLSESË LSES=lsesname

,ACTION={ CON| DIS | QUIET }

[,CON=remote_applname,PRONAM=proname,BCAMAPPL=applname]

[,CON=remote_applname [,PRONAM=proname],BCAMAPPL=applname]

B

X/W

KDCLSES KDCADM administration commands

764 Administering Applications

CON=remote_applname, PRONAM=proname, BCAMAPPL=applname
Entry of this operand is only meaningful for ACTION=CON.

With these operands you can specify the precise transport connection to be
established. Your entries must uniquely identify the transport connection. To
do so, you must if necessary enter all three operands and make the
following entries:

remote_applname
Name of the connection generated for the partner application (remote half-
session name assigned dynamically to the partner application by means of
KC_CREATE_OBJECT for the object type KC_CON or with the KDCDEF
statement CON).

proname
Name of the computer on which the partner application is running.
This parameter is mandatory on BS2000 systems.

applname
Name of the local application (BCAMAPPL name) via which the connection
is established. For applname, enter the name that was defined for this appli-
cation dynamically or in the CON statement during KDCDEF generation.

Output from KDCLSES

The new and old properties (NEW, OLD) of the specified session are output to the admin-
istrator terminal.

The output depends on whether a short or a long host name is assigned to a LSES object.
In the case of a long host name, the information on a LSES object is output in two screen
lines.

LSES PRONAM CON BCAMAPPL CONNECTION
NEW OLD

lsesname proname remote_applname applname CON|DIS A|Q CON|DIS A|Q

LSES PRONAM CON BCAMAPPL CONNECTION
NEW OLD

lsesname long.processor.name
remote_applname applname CON|DIS A|Q CON|DIS A|Q

B

KDCADM administration commands KDCLSES

Administering Applications 765

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Explanation of the output

CONNECTION
1st column:
The connection has been established (CON) or shut down (DIS).

2nd column:
A (automatic) indicates that openUTM will try to establish a connection
automatically when the application starts.
Q (quiet) indicates that the connection will be shut down and that no further
dialog jobs will be accepted for this session.

KDCLTAC KDCADM administration commands

766 Administering Applications

KDCLTAC - Change the properties of LTACs

The properties of LTACs can be changed with the aid of KDCLTAC. LTACs are the local TAC
names for services in partner applications for distributed processing.

Effect in UTM cluster application

In UTM cluster applications, KDCLTAC applies globally to the cluster.

Period of validity of the changes

The changes only apply for the duration of the current application run.

For administration using message queuing you must enter KDCLTACA.

LTAC=(ltacname_1,...,ltacname_10)
Names of the LTACs to be administered. For ltacname_1,...,ltacname_10,
enter the names of LTACs created dynamically by means of KC_CREATE_-
OBJECT for the object type KC_LTAC or using the KDCDEF control
statement LTAC.

For each call from KDCLTAC you can enter a maximum of 10 LTAC names.
If you only enter one LTAC name you do not need to key in the parentheses.

STATUS = Disable LTACs or lift the blocks

OFF The specified LTACs are disabled and no more jobs are accepted for this
LTAC.

ON The lock is lifted: jobs for the specified LTACs are accepted once again.

WAITTIME= Replaces the wait times specified by the generation or administration and
replaces them by values specified in accesswait_sec and replywait_sec.

accesswait_sec
Maximum time in seconds that the system should wait for a session to be
reserved (possibly including the establishment of a connection) or for the
establishment of an association.

A wait time of accesswait_sec ≠ 0 for asynchronous TACs indicates that the
job is always entered in the message queue for the partner application.

KDCLTACË LTAC={ ltacname | (ltacname_1,...,ltacname_10) }

[,STATUS={ ON| OFF }]

[,WAITTIME=(accesswait_sec[,replywait_sec])]

KDCADM administration commands KDCLTAC

Administering Applications 767

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

A wait time of accesswait_sec=0 indicates the following:
In dialog TACs, the service continues in the local application immediately
with an appropriate return code if no session or association is available or
because the local application is a contention loser (see the KDCDEF control
statement SESCHA, LPAP or OSI-LPAP, operand CONTWIN).

With asynchronous TACs, the asynchronous job is rejected with a return
code at the FPUT call stage if no logical connection to the partner appli-
cation exists. If there is a logical connection to the partner application, the
message is entered in the output queue.

replywait_sec
Maximum time in seconds that UTM can wait for an answer from the remote
service of the partner application.
Restricting the wait time helps to ensure that the wait time for users on the
terminal cannot go on indefinitely.

replywait_sec=0 indicates that the system will wait for unrestricted periods of
time.

Minimum value: WAITTIME = (0.0) (see above for meaning)
Maximum value: WAITTIME = (32767.32767)

Output from KDCLTAC

The new and old properties of the specified LTACs are output to the administrator terminal.

LTAC STATUS ACCESSWAIT REPLYWAIT

 NEW OLD NEW OLD NEW OLD

ltacname ON|OFF ON|OFF seconds seconds seconds seconds

Explanation of the output

LTAC TAC name of the remote services

STATUS LTAC disabled (OFF) or not (ON)

ACCESSWAIT
Wait time until a session or association is reserved.

REPLYWAIT Wait time for a response to the service program in the partner application

KDCLTERM KDCADM administration commands

768 Administering Applications

KDCLTERM - Change the properties of LTERM partners

KDCLTERM allows you to change the properties of LTERM partners for clients, printers and
LTERM pools. You can disable and enable the LTERM partners and shut down or establish
connections to clients and printers.

Effect in UTM cluster applications

The effect in UTM cluster applications is described in the sections devoted to the individual
operands since some of the changes made with KDCLTERM apply locally to the node
whereas others take effect globally in the cluster.

Period of validity of the change

All changes remain in force after the application has terminated.

For administration using message queuing you must enter KDCLTRMA.

LTERM=(ltermname_1,...,ltermname_10)
Name of the LTERM partner to be administered.
For each call from KDCLTERM you can enter a maximum of 10 LTERM
names. If you only enter one LTERM partner ltermname LTAC name you do
not need to key in the parentheses.

For ltermname_1,...,ltermname_10 you can also enter the names of LTERM
partners assigned to an LTERM pool. To do this, enter the full name of this
LTERM partner, i.e. the LTERM prefix of the LTERM pool and the serial
number.
However, you cannot disable the LTERM partners assigned to LTERM
pools, nor can you establish any connections to them. In other words, the
only entry you can make for them is ACTION=DIS (connection shutdown).

ACTION= Establishes or shuts down connections to the LTERM partners

In UTM cluster applications, the operand applies locally in the node.

CON This causes connections to be established to the specified LTERM partners.
For LTERM partners in an LTERM pool, ACTION=CON is not permitted.

In UTM applications running on Unix, Linux or Windows systems this
function is only available for printers, andTS applications.

KDCLTERMË LTERM={ ltermname | (ltermname_1,ltermname_2,...,ltermname_10) }

[,ACTION={ CON| DIS }]

[,STATUS={ ON| OFF }]

[,PRIMARY=primary-lterm]

X/W

X/W

KDCADM administration commands KDCLTERM

Administering Applications 769

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

DIS Connections to the specified LTERM partners are shut down (DISabled).
Connections are shut down immediately, which means that processes
cannot be terminated.

STATUS= Disable or enable the LTERM partner.

In UTM cluster applications, the operand applies globally in the cluster.

ON Enable the LTERM partner

OFF Disable the specified LTERM partner.

The block operates as follows:

– A connection request is executed. The connection is established and
the following message is issued:
K027 LTERM partner ltermname disabled - inform administrator
or enter KDCOFF

– An existing connection remains established. Every input with the
exception of KDCOFF is acknowledged with the following message:
K027 LTERM partner ltermname disabled - inform administrator
or enter KDCOFF
The block does not take effect until this connection has reached a
synchronization point (end of transaction).

KDCOFF BUT operates for disabled LTERM partners like KDCOFF.

LTERM partner in an LTERM pool cannot be disabled.

PRIMARY=primary-lterm
Name of a normal LTERM or a primary LTERM of an LTERM group
(seeopenUTM manual “Generating Applications”).

The PRIMARY operand is only permitted in standalone UTM applications.

The LTERM must be an alias LTERM of an LTERM group. Specifying
PRIMARY= causes it to become an alias LTERM of the LTERM group with
the primary LTERM primary-lterm.

If primary-lterm is already the primary LTERM of an LTERM group, the
LTERM is assigned to this group. If no alias LTERMs have previously been
assigned to primary-lterm, and new LTERM group is now created with the
primary-lterm as the primary LTERM and ltermname (LTERM=) as the alias
LTERM.

If primary-lterm is a normal LTERM, it must meet the following conditions:

– A PTERM with the PTYPE APPLI or SOCKET must be assigned to it.
– It must not be a slave LTERM of an LTERM bundle.
– It must have been generated with USAGE=D.

KDCLTERM KDCADM administration commands

770 Administering Applications

Output from KDCLTERM

The new and old properties of the LTERM partner (NEW, OLD) are displayed on the admin-
istrator terminal. The output ́ POOL LTERM´ indicates that the client is connected by means
of an LTERM pool.

Explanation of the output

LTERM Name of the LTERM partner

STATUS The LTERM partner is disabled (OFF) or not disabled (ON).

CONNECTION
Connection to the LTERM partner is established (CON) or shut down (DIS),
or openUTM is currently trying to establish a connection (W = waiting for a
connection).

LTERM STATUS CONNECTION

NEW OLD NEW OLD

ltermname
:

ON | OFF
:

ON | OFF
:

CON| DIS| W
:

CON| DIS| W
:

[POOL LTERM]
:

KDCADM administration commands KDCMUX

Administering Applications 771

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCMUX - Change properties of multiplex connections (BS2000
systems)

KDCMUX allows you to change the properties of multiplex connections. You can:

– disable or re-enable multiplex connections
– activate or deactivate multiplex connections
– make specifications regarding the establishment of a connection when the application

starts.

Things to note when establishing a connection

KDCMUX...,ACTION=CON merely initiates the establishment of a connection. Successful
execution of this command does not therefore mean that the connections are actually
established or even that they can, in fact, be established successfully (e.g. a connection
attempt may fail due to a fault in the transport system). You should therefore use KDCINF
to check whether openUTM has actually been able to establish a connection. For example:

KDCINF MUX,LIST=(muxname_1,muxname_2,...,muxname_10)

If a connection is to be established for a disabled multiplex connection (STATUS=OFF), you
must make two calls with KDCMUX.

1. KDCMUX to re-enable the multiplex connection, e.g.:
KDCMUX MUX=muxname,STATUS=ON

2. KDCMUX call to arrange for a connection to be established, e.g.:
KDCMUX MUX=muxname,ACTION=CON

Effect in UTM cluster applications

The effect in UTM cluster applications is described in the sections devoted to the individual
operands since some of the changes made with KDCMUX apply locally to the node
whereas others take effect globally in the cluster.

Period of validity of the change

The period for which these changes remain valid depends on the type of change and is
therefore specified in the description of each operand.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B
B

B

B

B

B

B

B

B

KDCMUX KDCADM administration commands

772 Administering Applications

For administration using message queuing you must enter KDCMUXA.

MUX=(muxname_1,muxname_2,...,muxname_10)
Name of the multiplex connection to be administered.
For muxname_1,...,muxname_10, names must be entered that have been
defined with MUX statements during KDCDEF generation.
For each KDCMUX call you can enter a maximum of 10 names. If you only
enter one name you do not need to key in the parentheses.

ACTION= ACTION allows you to initiate the establishment and shutdown of connec-
tions to the specified multiplex connections. You can specify whether or not
openUTM is to establish connections to the specified multiplex connections
automatically in subsequent application starts.

CON (connection)
openUTM initiates the establishment of connections to the specified
multiplex connections.

In UTM cluster applications, the operand applies locally in the node.

KDCINF allows you to check whether or not the connection was established
successfully.

DIS (disconnection)
Connections to the specified multiplex connections are shut down. The
connection is shut down with immediate effect: this means that not even
open services can be completed.

In UTM cluster applications, the operand applies locally in the node.

ACON (automatic connection)
At subsequent application starts, openUTM is to activate the multiplex
connections automatically, i.e. it is to establish the connections automati-
cally.

In UTM cluster applications, the operand applies globally in the cluster.

KDCMUXË MUX={ muxname | (muxname_1,muxname_2,...,muxname_10) }

[,ACTION={ CON| DIS | ACON | NACON }]

[,BCAMAPPL=applname]

[,MAXSES=number_sessions]

,PRONAM=proname

[,STATUS={ ON| OFF }]

BB

B

B

B

B

B

B

BB

B

B

B

B

B

BB

B

B

B

BB

B

B

B

B

B

BB

B

B

B

BB

B

B

B

B

KDCADM administration commands KDCMUX

Administering Applications 773

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

ACTION=ACON takes effect until automatic connection establishment is
explicitly reset by means of system administration functions (NACON
action).

NACON (no automatic connection)
If the ACON property is entered for the specified multiplex connections
during generation by the administration function, it is to be deleted. In other
words connections to the specified multiplex connections should no longer
be established automatically during subsequent application starts.

In UTM cluster applications, the operand applies globally in the cluster.

BCAMAPPL=applname
Name of the local application through which connections are established to
the multiplex connections. For applname, the application name assigned to
the multiplex connections in the MUX statements during KDCDEF gener-
ation should be specified, i.e. the name which the message router must
pass to UTM in order for a connection to be established.
Default value:
If you do not enter BCAMAPPL, the name generated in the APPLINAME
operand in the KDCDEF control statement MAX is assumed.

MAXSES=number_sessions
number_sessions defines the maximum number of terminals through which
each of these multiplex connections can be connected at the same time.

In UTM cluster applications, the operand applies globally in the cluster.

This change only applies to the current application run.

Minimum value: 1
Maximum value: 65000

PRONAM=proname
Name of the processor running the message router to which the multiplex
connection is assigned.

STATUS= The specified multiplex connections are disabled or released again.

In UTM cluster applications, the operand applies globally in the cluster.

ON Releases (enables) the multiplex connections (with immediate effect).

OFF Disables multiplex connections. No connection to any of the specified
multiplex connections should exist at the point in time when they are
disabled.
If such a connection does exist, openUTM will not disable it. The value ON
is issued in the output from KDCMUX (see page 774) for STATUS NEW and
STATUS OLD.

B
B

B

BB

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

BB

B

B

BB

B

BB

BB

B

B

B

B

B

KDCMUX KDCADM administration commands

774 Administering Applications

Output from KDCMUX

The new and old properties of the multiplex connections (NEW, OLD) currently being
administered are displayed on the administrator terminal.

Explanation of the output

MUX Name of the multiplex connection

PRONAM Name of the processor on which the message router is running

BCAMAPPL Name of the UTM application which was assigned to the multiplex
connection for KDCDEF generation.

STATUS The multiplex connection is disabled (OFF) or not disabled (ON).

CONNECTION
1st column:
The multiplex connection is connected to the application (C) or not (D), or
openUTM is currently trying to establish a connection to the multiplex
connection (W = waiting for a connection).

2nd column:
Every time the application starts, openUTM will try to establish a connection
automatically (A) or not (no entry).

MAXSES Maximum number of terminals that can be connected to the application via
this multiplex connection at the same time.

MUX PRONAM BCAMAPPL STATUS CONNECTION MAXSES

NEW OLD NEW OLD NEW OLD

muxname
:

proname
:

applname
:

ON| OFF
:

ON| OFF
:

C| D| W A
:

C| D| W A
:

number
:

number
:

B

B

B

BBBBBB

BBBBBB

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B

BB

BB

BB

B

BB

BB

B

B

B

B

B

B

B

BB

B

KDCADM administration commands KDCPOOL

Administering Applications 775

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCPOOL - Administer LTERM pools

KDCPOOL allows you to redefine the number of enabled and/or disabled clients for an
LTERM pool.

Effect in UTM cluster applications

In UTM cluster applications, KDCPOOL applies globally to the cluster.

Period of validity of the change

The change remains in force after the application has terminated.

For administration using message queuing you must enter KDCPOOLA.

LTERM=ltermprefix
LTERM prefix of the LTERM pool, as generated in the KDCDEF control
statement TPOOL. If you enter ltermprefix, the LTERM pool to be adminis-
tered is identified uniquely.

STATUS= Defines the number of clients able to connect via the LTERM pool at the
same time. The maximum number of clients able to connect via the LTERM
pool at the same time is defined during KDCDEF generation (NUMBER in
the control statement TPOOL). Using the administration function you can
reduce this number or increase a number that has previously been reduced
back to the maximum number.

(ON,number_clients)
number_clients defines the number of approved LTERM partners for the
LTERM pool.

(OFF,number_clients)
number_clients defines the number of disabled LTERM partners in the
LTERM pool, i.e. the maximum number of LTERM partners defined during
KDCDEF generation is reduced by number_clients.

Locks assigned to LTERM partners in an LTERM pool operate as follows:

– UTM rejects a connection request from a client if the permissible
number of LTERM partners for that LTERM pool has already been
reserved by other clients.

KDCPOOLË LTERM=ltermprefix

[,STATUS=({ ON| OFF }, number_clients)]

KDCPOOL KDCADM administration commands

776 Administering Applications

– If, at the time the command is processed, more connections to the
LTERM pool exist than the permissible number of LTERM partners, then
all existing connections are initially retained.
The lock only takes effect after the connection has been shut down if a
client has placed a new communication request.
If terminal users sign off with KDCOFF BUI they can sign back on with
KDCSIGN even if, at this time, more than the permissible number of
LTERM partners in the LTERM pool are still reserved.

Minimum value of number_clients: 0

Maximum value of number_clients:
The maximum number of clients specified for KDCDEF generation which
can connect at the same time through this LTERM pool. If, when clients are
approved (ON,number_clients) number_clients is greater than the maximum
value, UTM automatically reduces the value for number_clients to the
maximum value.

Output from KDCPOOL

The new and old number of clients enabled for the LTERM pool is output to the adminis-
trator terminal in the following form.
The output depends on whether a short or a long host name is assigned to a LTERM pool
object. In the case of a long host name, the information on a LTERM pool object is output
in two screen lines.

POOL PRONAM BCAMAPPL PTYPE STA=ON
NEW OLD

ltermprefix proname applname ptype number number

POOL PRONAM BCAMAPPL PTYPE STA=ON
NEW OLD

ltermprefix long.processor.name
applname ptype number number

Explanation of output

POOL LTERM prefix generated for the LTERM pool

PRONAM Name of the computer to which the LTERM pool was assigned

BCAMAPPL Name of the UTM application assigned to the LTERM pool during KDCDEF
generation

PTYPE Type of clients entitled to connect via the LTERM pool

STA=ON Number of LTERM partners approved for the LTERM pool before the
command was processed (OLD) and the number of LTERM partners
currently approved for the LTERM pool (NEW).

KDCADM administration commands KDCPROG

Administering Applications 777

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCPROG - Replace load modules/shared objects/DLLs

KDCPROG allows you to use the BLS interface to replace load modules in a UTM appli-
cation on a BS2000 system, or to replace shared objects in a UTM application on Unix,
Linux and Windows systems if you are working with the function “Program exchange with
shared objects”. See also the openUTM manual “Generating Applications” and the corre-
sponding openUTM manual “Using UTM Applications”.

On Windows systems, shared objects are realized using DLLs. Details pertaining to
handling the DLLs are also described in the openUTM manual “Using UTM Applications on
Unix, Linux and Windows Systems”.

Requirements for program exchange using KDCPROG

You can replace or reload sections of an application program if they satisfy the following
parameters:

● The program sections to be replaced must have been generated as separate load
modules/shared objects/DLLs.

● Every load module or shared object/DLL to be replaced must have been generated
statically using a LOAD-MODULE statement (BS2000 systems) or a SHARED
OBJECTS statement (Unix, Linux and Windows systems).

● The load modules/shared objects/DLLs must not have been statically linked to the
application program.

● The load modules to be replaced must not have been loaded in system memory (class
4 memory), nor in a global common memory pool (generated with SCOPE=GLOBAL).

To enable openUTM to process the command, a load module/shared object/DLL must exist
with the specified name and version defined in version in the program library or directory
that was assigned to it during KDCDEF generation:

● LOAD-MODULE statement, operand LIB (BS2000) or

● SHARED-OBJECT statement, operand DIRECTORY (Unix, Linux and Windows
systems).

BS2000 systems

If no load module with the specified name and version exists in this program library, the
administration command is rejected and the previously loaded load module remains
loaded. In addition, the message K234 is output.

Unix, Linux and Windows systems

If shared object/DLL with the version an defined in version exists in the specified directory,
the previously loaded shared object/DLL will be unloaded and a message issued.

W

W

W

B

B

B

X/W

X/W

B

B

B

B

X/W

X/W

X/W

KDCPROG KDCADM administration commands

778 Administering Applications

If you then call KDCPROG again, you can load the load module/shared/DLL object by
specifying a version of the load module/shared object that already exists in the library in
version, or by placing the missing load module/shared object/DLL with the specified version
in the program library/program directory.

How to implement a program exchange

The way a program exchange is implemented depends on the generated load mode of the
load module/shared object/DLL.

You generate the load mode in the LOAD-MODULE statement (BS2000 systems) or in the
SHARED-OBJECT statement (Unix, Linux and Windows systems), in both cases in the
LOAD-MODE operand.

● LOAD-MODE=STARTUP
(The load module/shared object/DLL is loaded as a separate unit when the application
starts.)
This exchange operation is performed for each process not later than after the next job
is processed, without first terminating the current application program. Several
processes in the application can be terminated simultaneously. Until the program
exchange has been completed for all processes in the application, you are not allowed
to initiate any further exchanges with KDCPROG.

The KDCPROG call merely initiates a program exchange. The actual process of
program exchange can take some considerable time. openUTM informs you of the
success or failure of the program exchange operation with messages to SYSOUT and
SYSLOG (BS2000 systems) or stdout and stderr (Unix, Linux and Windows systems).

● LOAD-MODE=ONCALL
(Loaded whenever a program unit is called up out of the load module/shared object/DLL
for the first time.)
Exchange is performed for every process even if a program unit from this load
module/shared object is called next time in the same process. At any given time,
several processes in the application can be replaced simultaneously.

● LOAD-MODE=(POOL, POOL/STARTUP, POOL/ONCALL)
(The public slice of the load module is loaded into a common memory pool.)
In standalone UTM applications, program exchange operation is not initiated by the
KDCPROG call. KDCPROG only causes the new version to be flagged. The new
version of the load module is not loaded into the common memory pool until the
following exchange of the entire application program with KDCAPPL PROG=NEW.
In this event, another KDCPROG call can follow immediately after the call from
KDCPROG.
You can flag several load modules using several KDCPROG calls which are then
replaced in response to the next KDCAPPL PROG=NEW. If no KDCAPPL
PROG=NEW follows in the same application run, the flagged versions are replaced
after the next application start.

B

B

B

B

B

B

B

B

B

B

B

B

KDCADM administration commands KDCPROG

Administering Applications 779

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

In UTM cluster applications, openUTM automatically initiates program exchange when
you modify the version of a load module in the Common Memory Pool.

Effect in UTM cluster applications

In UTM cluster applications, KDCPROG applies globally to the cluster. Program exchange
is performed in all running node applications.

Period of validity for a program exchange

The change remains in force after the end of the application.

For administration using message queuing you must enter KDCPROGA.

VERSION=version
Version of the load module/shared object/DLL which has to be loaded. The
value for version must not exceed 24 characters in length.

In UTM applications on BS2000 systems you must always specify the next
version of the load module to be loaded.

For load modules which are generated with LOAD-MODE=STARTUP the
version number of the old and the new load module may match.
For load modules which are generated with LOAD-MODE=ONCALL or
which are located completely or partially in a common memory pool the new
version number must differ from the old version number.

When the exchange is initiated, the library to which the load module was
assigned for KDCDEF generation (see also KDCDEF statement LOAD-
MODULE...,LIB=) must contain an element with the name lmodname and the
version specified in version.

If VERSION=*HIGHEST-EXISTING is specified, then the highest version of
the load module existing in the library is detected and loaded.

If VERSION=@ or *UPPER-LIMIT is specified, then the load module is
loaded which was last entered in this PLAM library without an explicit
version specification. If you work with explicit versions in LMS, you cannot
use @ or *UPPER-LIMIT as the load module version.

If a load module is generated with LOAD-MODE=POOL,
(POOL,STARTUP) or (POOL,ONCALL) and with the version *HIGHEST-
EXISTING, only *HIGHEST-EXISTING can be specified as the version.

KDCPROGË VERSION={ version | *HIGHEST-EXISTING | *UPPER-LIMIT }

, LOAD-MODULE=lmodname

, SHARED-OBJECT=shared-object-name

B
B

B

X/W

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCPROG KDCADM administration commands

780 Administering Applications

This kind of module can only be reloaded by an application exchange; the
highest available version is always loaded for a module generated in this
way.

You cannot replace load modules that have been linked statically to the
application program (load mode STATIC).
Similarly, load modules which have the STARTUP load mode and contain
TCB entries can also not be replaced.

In UTM applications running on Unix, Linux or Windows systems you must
enter the version name if the shared object was generated with the
ONCALL load mode.
Entering the version name is optional for shared objects/DLLs with the
STARTUP load mode if you are not using the version concept.

LOAD-MODULE=lmodname
Name of the load module to be replaced. This can be the name of an OM
or an LLM. The load module (with this name) must have been configured
for KDCDEF generation with a LOAD-MODULE statement. You can only
enter one name for each KDCPROG call.
The name must not be more than 32 characters long.

SHARED-OBJECT=shared-object-name
Name of the shared object/DLL to be replaced. The name must have been
generated with a SHARED-OBJECT statement. For each KDCPROG call
you can only specify one name.
The name must not be more than 32 characters long.

Output from KDCPROG

After a KDCPROG call is placed, the following information is output to the administrator
terminal:

Output for UTM applications on BS2000 systems

LOAD-MODULE lmodname
VERSION (GENERATED) generated element version
VERSION (PREVIOUS) old element version
VERSION (CURRENT) new element version
LIBRARY name of program library
LOAD MODE STARTUP | ONCALL | POOL | POOL/STARTUP | POOL/ONCALL

B
B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

BB

B

B

B

B

B

X/WX/W

X/W

X/W

X/W

X/W

B

B
B
B
B
B
B

KDCADM administration commands KDCPROG

Administering Applications 781

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Output for UTM applications running on Unix, Linux or Windows systems

SHARED-OBJECT shared object name
VERSION (PREVIOUS) old version
VERSION (CURRENT) new version
DIRECTORY name of program directory
LOAD MODE STARTUP | ONCALL

Explanation of the output

LOAD-MODULE
Name of the load module

SHARED-OBJECT
Name of the shared objects/DLL

VERSION (GENERATED)
Generated version of the load module

VERSION (PREVIOUS)
Previously loaded version of the load module/shared object/DLL

VERSION (CURRENT)
Version of the load module/shared object which is to be loaded

LIBRARY Name of the program library from which the load module (BS2000 systems)
is loaded.

DIRECTORY Name of the directory from which the shared object/DLL is loaded.

LOAD MODE Load mode for the load module/shared object/DLL:

STARTUP
The load module/shared object/DLL is loaded as a separate unit when the
application starts.

ONCALL
The load module/shared object/DLL is loaded whenever a program unit is
called from the load module for the first time.

POOL
The load module is loaded into the common memory pool when the appli-
cation starts. The load module does not contain a private slice.

POOL/STARTUP
The public slice of the load module is loaded into the common memory pool
when the application starts. The private slice belonging to the load module
is then loaded into the local process memory.

X/W

X/W
X/W
X/W
X/W
X/W

BB

B

X/WX/W

X/W

BB

B

BB

B

X/WX/W

B

B

B

B

B

B

B

KDCPROG KDCADM administration commands

782 Administering Applications

POOL/ONCALL
The public slice of the load module is loaded into the common memory pool
when the application starts. The private slice belonging to the load module
is loaded into the local process memory when the first program unit
assigned to this load module is called.

Program exchange messages with KDCPROG

Once the exchange of application units generated by a STARTUP (and POOL with BS2000
systems) load mode is complete, the following message is output to SYSOUT and
SYSLOG (BS2000 system) or stdout and stderr (Unix, Linux or Windows system):

K074 Program exchange completed ...

If errors occur when application units generated with STARTUP (and POOL with BS2000
systems) load mode are being replaced, the following message is output to SYSLST and
SYSLOG (BS2000 system) or stdout and stderr (Unix, Linux or Windows system):

K075 Program exchange aborted by task/process ..

If errors occur during exchange, message K078 together with the error cause is output to
SYSOUT.

B
B

B

B

B

B

B

KDCADM administration commands KDCPTERM

Administering Applications 783

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCPTERM - Change properties of clients and printers

KDCPTERM allows you to change the properties of clients and printers.

You can perform the following actions:

● Disable or re-enable clients and printers.

● Establish and shut down logical connections to clients and printers. In particular, you
can establish or shut down connections to individual printers in a printer pool.

● Initiate or prevent the automatic establishment of connections to clients and printers
when the application starts.

● If terminals are connected to the application via a multiplex connection, you can release
sessions that are in DISCONNECT-PENDING mode.

Things to note when establishing and shutting down connections

With KDCPTERM you can initiate immediate connections or the automatic establishment
of a connection for each subsequent application start for the following objects
(ACTION=CON or ACON):

● Printers, terminals and transport system applications of the type APPLI or SOCKET.
Calls from connections to UTM clients with the UPIC carrier system (PTYPE=UPIC-R)
are rejected.
The initiative for establishing a connection always lies with the UTM client.

● Printers (PTYPE=PRINTER) and transport system applications of the type
PTYPE=APPLI or SOCKET.
Calls from connections to UPIC clients (PTYPE=UPIC-R/-L) and to terminals
(PTYPE=TTY) are rejected. The establishment of connections to these clients can only
be initiated by the clients themselves.

No connections can be established with KDCPTERM to clients which connect to the appli-
cation by means of an LTERM pool.

If there is a request for connection to be established with a client for which the actions CON
and ACON are not permitted, the KDCPTERM call is rejected.

In response to a successful call from KDCPTERM with the action CON, UTM initiates the
establishment of a connection to the specified clients and printers. Successful execution of
this command does not mean that the connections have actually been established or even,
indeed, that they can be established. To find out whether the connections are actually
possible, you must enter a specific query (e.g. with KDCINF).

Termination of a connection with ACTION=DIS causes the connection to a client or printer
to be shut down immediately. Neither can open services be terminated.

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

KDCPTERM KDCADM administration commands

784 Administering Applications

Things to note when disabling clients or printers

A lock operates as follows:

– Every connection request from a client is rejected.
– Existing connections are retained.

The lock only comes into effect when a client next attempts to establish a logical
connection.

– Calls from a connection to a disabled client or printer are rejected.

Asynchronous messages to disabled clients or printers are stored in the buffer memory or
the KDCFILE and can give rise to a shortage or resources!

Effect in UTM cluster applications

The effect in UTM cluster applications is described in the sections devoted to the individual
operands since some of the changes made with KDCPTERM apply locally to the node
whereas others take effect globally in the cluster.

Period of validity of changes

The period during which the changes remain effective is dependent on the type of change
and is therefore specified in the operand descriptions.

For administration using message queuing you must enter the KDCPTRMA administration command.

PTERM=(ptermname_1,...,ptermname_10)
Name of the clients and printers to be administered. You can enter a
maximum of 10 names for each KDCPTERM call.
If only one name is entered you do not need to key in the parentheses.

All names on the list must belong to clients and printers located on the same
computer.

KDCPTERMË PTERM={ ptermname | (ptermname_1,ptermname_2,...,ptermname_10) }

[,BCAMAPPL=applname]

[,STATUS={ ON| OFF }]

,PRONAM=proname

[,ACTION={ CON| DIS | REL | ACON | NACON }]

[,PRONAM=proname]

[,ACTION={ CON| DIS | ACON | NACON }]

B

B

X/W

X/W

KDCADM administration commands KDCPTERM

Administering Applications 785

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

BCAMAPPL=applname
Only applicable to client applications of the PTYPE=APPLI/SOCKET or
PTYPE=UPIC-R/L type.

For applname, enter the name of the local UTM application with which the
connections between the UTM application and client applications are estab-
lished.

Default: The application name specified in MAX APPLINAME for KDCDEF
generation is accepted.

STATUS= Disables a client or printer or allows disabled clients and printers to be used
again (i.e. to be re-enabled).

In UTM cluster applications, the operand applies globally in the cluster.

ON The clients/printers ptermname_1,...,ptermname_10 are released for use
again.

OFF The clients/printers ptermname_1,...,ptermname_10 are to be disabled.

Enabling and disabling in this manner extend beyond the end of the current
application.

PRONAM=proname
Name of the processor on which the clients/printers (ptermname_1,...,pterm-
name_10) are located. At this point, enter the name of the processor that was
specified when the clients/printers were specified in the configuration.

For clients and printer in a UTM application on BS2000 systems, entering
proname is mandatory.

In a UTM application running on a Unix, Linux or Windows system you do
not enter proname if the specified clients and printers are connected locally.

ACTION= Defines which action openUTM is to perform.

CON openUTM should establish logical connections to the clients and printers
ptermname_1,...,ptermname_10.

In UTM cluster applications, the operand applies locally in the node.

ACTION=CON is not permitted for:

– UPIC clients
– clients connected to the application by an LTERM pool

B

B

X/W

X/W

KDCPTERM KDCADM administration commands

786 Administering Applications

– terminals connected to the openUTM application on BS2000 systems
by a multiplex connection

– terminals in a UTM application on a Unix, Linux or Windows system
(PTYPE=TTY)

DIS openUTM is to shut down logical connections to the clients and printers
ptermname_1,...,ptermname_10.

In UTM cluster applications, the operand applies locally in the node.

In openUTM on BS2000 systems, ACTION=DIS is rejected if a terminal
connection is to be shut down which is connected to the UTM application by
a multiplex connection and which exists for a session in DISCONNECT-
PENDING mode. The KDCPTERM call is rejected. The logical connection
must be shut down with ACTION=REL.
You can check whether or not a session is in DISCONNECT-PENDING
mode with KDCINF PTERM.

REL ACTION=REL is only permitted if the clients specified in pterm-
name_1,...,ptermname_10 are connected to the application by a multiplex
connection.

In UTM cluster applications, the operand applies locally in the node.

A session is released with ACTION=REL. The logical connection to the
client is shut down.
Entry of ACTION=REL is only permitted if the session is in DISCONNECT-
PENDING mode and if its timer has run out (approx. 10 minutes).

ACON (automatic connection)
During subsequent application starts, UTM should automatically establish
logical connections to ptermname_1,...,ptermname_10.

In UTM cluster applications, the operand applies globally in the cluster.

ACTION=ACON is not permitted for:

– UPIC clients
– clients connected to the application via an LTERM pool
– terminals on a UTM application on a Unix, Linux or Windows system

with PTYPE=TTY.

NACON (no automatic connection)
Renders the ACON entry ineffective, i.e. openUTM does not establish any
logical connections to ptermname_1,...,ptermname_10 during subsequent
application starts.

In UTM cluster applications, the operand applies globally in the cluster.

B
B

X/W

X/W

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

X/W

X/W

KDCADM administration commands KDCPTERM

Administering Applications 787

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Output from KDCPTERM

The new and old properties of specified physical clients and printers (NEW, OLD) are
displayed on the administrator terminal.

The output depends on whether a short or a long host name is assigned to a PTERM. In
the case of a long host name, the information on a PTERM is output in two screen lines.

PTERM PRONAM BCAMAPPL STATUS CONNECTION
NEW OLD NEW OLD

pterm1 proname applname ON|OFF ON|OFF C|D|W A M C|D|W A M [POOL PTERM]
T|E T|E

PTERM PRONAM BCAMAPPL STATUS CONNECTION
NEW OLD NEW OLD

pterm1 long.processor.name
applname ON|OFF ON|OFF C|D|W A M C|D|W A M [POOL PTERM]

T|E T|E

Explanation of the output

PTERM Name of the client/printer

PRONAM Name of the processor on which the client/printer is located

BCAMAPPL Name of the local UTM application through which connections are estab-
lished to the client/printer

STATUS The client/printer is disabled (OFF) or not disabled (ON)

CONNECTION
1st column:

2nd column:
A: Connection established automatically when the application starts

C/D/W Client/printer is currently connected to the application (C) or is not
connected (D), or openUTM is trying to establish a connection
(W = waiting for a connection)

T/E Is only output for terminals which use a multiplex connection to
connect with a UTM application on a BS2000 system.
T: (timer)
The session is in DISCONNECT-PENDING mode; the timer is
running, waiting on confirmation that a connection has been estab-
lished
E: (expired)
The session is in DISCONNECT-PENDING mode and has timed
out waiting for confirmation.

BB

B

B

B

B

B

B

B

B

KDCPTERM KDCADM administration commands

788 Administering Applications

3rd column (only for UTM applications on BS2000 systems):
The client is connected (M) or not (no entry) to the application via a multiplex
connection.

POOL PTERM
This is output if the client is connected via LTERM pool.

B
B

B

KDCADM administration commands KDCSEND

Administering Applications 789

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCSEND - Send a message to LTERM partners (BS2000 systems)

KDCSEND allows you to send messages to one, several or all active terminals of a UTM
application on BS2000 systems. openUTM then sends message K023 with the specified
messages as an insert. This is output by default in the system line on the terminal. However,
the message destination of message K023 can be changed. If the message destination
PARTNER is selected for the UTM message K023, you can send the message to one,
several or all connected TS applications. The message goes only go to dialog partners
(LTERM with USAGE=D).

Effect in UTM cluster applications

In UTM cluster applications, KDCSEND applies locally in the node.

For administration using message queuing you must enter KDCSENDA.

MSG=´message´
For message, enter the message to be sent. It should be enclosed in single
quotes and must not be longer than 74 characters. Write double quotes
within the message text (i.e. do not use single inverted commas as part of
your message text).
If a terminal is assigned to the LTERM partner, the message is displayed in
the system line.

LTERM= Specifies the LTERM partner to which the message should be sent.

(ltermname_1,...,ltermname_10)
Name of the LTERM partner to which the message is to be sent. You can
enter a total of up to 10 names. If you only enter one name, you do not need
to key in the parentheses.

KDCALL This message should be sent to all active LTERM partners, i.e. to all clients
connected by a logical connection at the present time.

Default: KDCALL

Output from KDCSEND

The message message is displayed on the administrator terminal.

KDCSENDË MSG=´message´

[,LTERM={ ltermname | (ltermname_1,...,ltermname_10) | KDCALL }]

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

BB

B

B

B

B

B

B

BB

BB

B

B

B

BB

B

B

B

B

KDCSHUT KDCADM administration commands

790 Administering Applications

KDCSHUT - Terminate an application run

KDCSHUT allows you to terminate a UTM application. You have the following options:

In UTM cluster applications, you can specify whether the application run is to be terminated
at all nodes or only at the node at which the call is issued.

You have the following options:

● You can terminate the application run normally. UTM terminates the application run as
soon as all running dialog steps have been completed (NORMAL).

● You can schedule the application to terminate after a specified period (WARN).

● You can terminate the application once all the UTM-D dialogs have been terminated
and all the UTM-D connections have been disconnected and at the latest, however,
after a specified period (GRACE).

● You can kill the application, i.e. perform an immediate abnormal termination (KILL).

You should note the following if you kill an application:

You cannot kill the application by means of an asynchronous service, i.e. the asynchronous
transaction code KDCSHUTA KILL has no effect.

You should note the following when shutting down applications with distributed processing:

● You should preferably terminate applications with distributed processing with
KDCSHUT GRACE or alternatively with a warning (KDCSHUT WARN).
The use of KDCSHUT GRACE or WARN reduces the probability that services will be
killed and distributed transactions will remain in transaction status P (preliminary end of
transaction).

● An application with distributed processing is not terminated normally if, at shutdown
time, there are still services with transaction status P (prepare to commit) or if acknowl-
edgments are still outstanding for asynchronous messages to a partner server. In such
cases, openUTM issues message K060 with ENDPET as the reason for termination.
No dumps are generated.

Consequently, for KDCSHUT WARN or GRACE, you should specify a time that is
greater than the maximum period that a distributed transaction remains in the state PTC
(i.e. transaction status P). This reduces the probability of distributed transactions still
being in this state at the end of the application and of the application being terminated
abnormally with ENDPET.

KDCADM administration commands KDCSHUT

Administering Applications 791

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

For further information about shutting down/terminating a UTM application, please refer to
the openUTM manual “Using UTM Applications”..

For administration using message queuing you must enter KDCSHUTA.

GRACE All the active LPAP and OSI-LPAP connections are set to QUIET. The appli-
cation is terminated as soon as all the UTM-D connections have been
disconnected or, at the latest, when the defined time has expired.

At all active terminals, a note in the system line indicates the impending
shutdown of the application. This is accompanied by an indication of the
time remaining before shutdown (see TIME operand).

i After KDCSHUT GRACE has been entered, only users with admin-
istration authorizations may sign-on. It is then only possible to start
services whose service TAC belongs to an administration program
unit. All UTM user commands with the exception of KDCOUT are
still executed.

The application run is terminated, i.e. it is shut down immediately. Open
services will not be terminated first. A UTM dump with the dump
code=´ASIS99´ is created by all processes.

NORMAL Termination of the application is initiated immediately. No more users can
sign on to the application and users cannot start any new services. No new
dialog entries are processed. If the new dialog entry is a multi-step trans-
action, the multi-step transaction is rolled back to the last synchronization
point. All logical connections to clients and printers are shut down.
Users can continue working on open services after the next application
start.

WARN All active connections from LPAPs and OSI-LPAPs are set to QUIET.

At all active terminals, a note in the system line indicates the impending
shutdown of the application. This is accompanied by an indication of the
time remaining before shutdown (see TIME operand).

i After KDCSHUT WARN has been entered, only users with adminis-
tration authorizations may sign-on. It is then only possible to start
services whose service TAC belongs to an administration program
unit. All UTM user commands with the exception of KDCOUT are
still executed.

KDCSHUTË { GRACE [,TIME=time_min] | KILL | NORMAL |
 WARN [,TIME=time_min] }

[,SCOPE= { LOCAL | GLOBAL }]

B

B

B

B

B

B

KDCSHUT KDCADM administration commands

792 Administering Applications

TIME=time_min
Only works together with WARN and GRACEFUL.

Meaning for GRACE:
time_min is the maximum time in minutes after which the application will be
terminated.

Meaning with WARN:
time_min is the time in minutes after which the application is terminated.

Maximum: 255 minutes
Minimum: 1 minute

openUTM rejects the entry TIME=0.

At all active terminals, a note in the system line indicates the impending
shutdown of the application. This is accompanied by an indication of the
time remaining before shutdown. If a very large number of terminals are
active (configurations with many terminals) then it takes a certain amount of
time to issue the shutdown notification. You should therefore not choose too
short a value for TIME.

During KDCDEF generation, TAC KDCSHUT was assigned the maximum
CPU time required by KDCSHUT to perform a shutdown. Select a suffi-
ciently long period of time for applications involving numerous terminals. If
this period of time is not long enough, openUTM terminates the process and
issues the message K017.

SCOPE= Specifies the scope of application of the command.
This parameter is only relevant for UTM cluster applications.

LOCAL The command only applies to local node applications.
Default value.

GLOBAL The command applies to all the node applications in the UTM cluster appli-
cation. SCOPE=GLOBAL is rejected if the running node applications have
not all been generated in the same way. This may occur, for example, if an
update generation of the KDCFILE is performed without fully shutting down
the UTM cluster application.

B

B

B

B

B

B

B

B

B

B

B

KDCADM administration commands KDCSHUT

Administering Applications 793

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Output from KDCSHUT

The message "COMMAND ACCEPTED" is displayed on the administrator terminal. UTM
displays the actual termination of the application in the following manner:

● The end of the application is only displayed on the console. The display appears as
soon as the last process in the UTM application has finished.

● The end of the application is logged by the utmmain process after stdout and stderr.

● The end of the application is logged in stdout and stderr by the process utmmain. If the
application is started as a service, messages are also entered in the event logfile of the
Windows system.

B

B

X

W

W

W

KDCSLOG KDCADM administration commands

794 Administering Applications

KDCSLOG - Administer the SYSLOG file

With KDCSLOG you can administer the system log file SYSLOG during runtime. You can
perform the following activities:

– Switch automatic size monitoring of the SYSLOG on and off.
– Define or change the control value for size monitoring.
– Switch the SYSLOG file to the next file generation of the SYSLOG-FGG.
– Write the contents of the internal UTM message buffer to the SYSLOG file.
– Call for information about the properties of the SYSLOG file.

Effect in UTM cluster applications

The call applies globally to the cluster, i.e. the system log file SYSLOG is administered for
each node application. Size monitoring extends beyond the current UTM cluster application
run. Switching or writing of the buffer apply only to the current UTM cluster application run,
i.e. to all the node applications that are currently running.

Period of validity of the change

The most recent control value set for size monitoring is also set after the next application
start.

If the SYSLOG-FGG basis falls within the valid range of the SYSLOG-FGG (between the
first and last file generations), openUTM first logs the basic file generation in the next appli-
cation run. If the basis falls outside the valid range, openUTM opens a new file generation
for the log.

For administration using message queuing you must enter KDCSLOGA.

INFO Information about the SYSLOG file or SYSLOG-FGG is displayed. For a
description of the output, see the section following the operand description.

WRITE All messages issued to message destination SYSLOG and still stored in
buffer memory are written to the current SYSLOG file immediately.

This function is useful if the SYSLOG file, opened as a simple file, is to be
evaluated in run mode. All messages generated by openUTM up to this time
which have SYSLOG as their destination are covered by this evaluation.

However, to evaluate SYSLOG in run mode, it is better to open SYSLOG as
an FGG. This enables you, before starting an evaluation, to switch over file
generation with KDCSLOG SWITCH and to log all messages generated by
openUTM up to this time. In other words, openUTM writes the message

KDCSLOGË { INFO | WRITE | SIZE=fg_size | SWITCH [, SIZE=fg_size] }

KDCADM administration commands KDCSLOG

Administering Applications 795

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

buffer to the “old” SYSLOG file automatically before it switches over.
However, the evaluation does not cover any of the messages generated
after the switch time.

SIZE=fg_size The KDCSLOG SIZE=fg_size command is only executed if SYSLOG was
opened as an FGG.

fg_size redefines the control value for automatic size monitoring of the
SYSLOG file. For fg_size, enter the desired control value representing a
number of UTM pages (e.g. SIZE=100 defines a control value of 100 times
the size of a UTM page).

fg_size ≥ 0 must be entered. If fg_size < 0 is entered, openUTM refuses to
execute the command.
With fg_size=0 you can switch off automatic size monitoring. With
fg_size > 0, automatic size monitoring is switched back on. Entries for fg_size
between 1 and 99 are automatically replaced by 100. Values greater than
100 are accepted without changes as control values.

Minimum value: 100
Maximum value: (231 -1)

SWITCH Is only executed if SYSLOG was opened as an FGG.
KDCSLOG SWITCH prompts openUTM to switch the SYSLOG file to the
next file generation.

openUTM guarantees that no more messages are written to the old
SYSLOG file generation once this command has been executed success-
fully.

Before switching to a new file generation, openUTM continues writing
messages stored in the internal message buffer to the old file generation.

Please note the following points in UTM applications on BS2000 systems:
Successful execution of a KDCSLOG SWITCH command by openUTM
does not mean that you have immediate access to the new file generation.
The old file generation can be kept open for an extended period of time by
UTM processes, for example because the processing of a program unit
started before the switch has not been completed and because no message
with SYSLOG as its destination has yet been written by the relevant
process.

You can use KDCSLOG INFO as a query to find out which SYSLOG file
generations have already been closed by all UTM processes, i.e. all file
generations less than LOWEST-OPEN-GEN (see description of output from
page 796).

B

B

B

B

B

B

B

B

B

B

B

B

KDCSLOG KDCADM administration commands

796 Administering Applications

SWITCH,SIZE=fg_size
Is only executed if the SYSLOG was opened as an FGG.

With KDCSLOG SWITCH,SIZE=fg_size you can switch the SYSLOG to a
new file generation and, at the same time, redefine the control value for
automatic size monitoring of the subsequent file generations. To this end,
openUTM guarantees either that both actions are performed successfully,
or that neither is. In other words, openUTM only sets the new control value
if the SYSLOG switch operation was successful.

If openUTM is not able to switch to the next file generation, the control value
does not change. Size monitoring is suspended and openUTM ignores the
value specified for fg_size. Size monitoring cannot be reset until after a
subsequent successful switch attempt (KDCSLOG SWITCH). If fg_size is
not specified at this time, openUTM adopts the “old” value of fg_size as its
control value.

For further information about the function, restrictions and possible values
of fg_size, see the description of the operands SWITCH and SIZE=fg_size.

Output from KDCSLOG INFO

SYSLOG FILE NAME filename
FILE GENERATION GROUP fgg
LAST SWITCH last-switch
SIZE CONTROL control

CURRENT SYSLOG SIZE csp UTM PAGE(S) = csk KB
SIZE CONTROL VALUE scp UTM PAGE(S) = sck KB
SYSLOG FILE rel% FILLED

FILE GENERATIONS OF APPL START-GEN start-gen
 LOWEST-OPEN-GEN low-gen
 CURRENT-GEN curr-gen

FILE GENERATIONS BASE-GEN basis-gen
 FIRST-GEN first-gen
 LAST-GEN last-gen

KDCADM administration commands KDCSLOG

Administering Applications 797

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Explanation of the output

SYSLOG FILE NAME
Name of the current SYSLOG file. If the SYSLOG was opened as an FGG,
the generation number of the current file generation is displayed with it.

FILE GENERATION GROUP
Shows whether the SYSLOG was opened as an FGG or as a simple file.

YES
The SYSLOG was opened as an FGG.

NO
The SYSLOG was opened as a simple file.

LAST SWITCH
Only output if the SYSLOG was opened as an FGG.
LAST SWITCH indicates whether the last attempt by openUTM to switch to
the next file generation executed without errors. The following values are
possible:

SUCCESSFUL
The last switch attempt executed without errors.

FAILED
When openUTM last attempted to switch, an error occurred.
openUTM was unable to switch to the next file generation.

NONE
No switch attempt was made in the current application.

SIZE CONTROL
Only issued if the SYSLOG was opened as an FGG.
SIZE CONTROL indicates whether the automatic size monitoring function
is switched on. The following values are possible:

ON
Size monitoring is switched on

OFF
Size monitoring is switched off

SUSPENDED
The last attempt to switch to another file generation failed (for LAST
SWITCH, the word FAILED is displayed). For this reason, size monitoring
is suspended.
Measure: you can try to switch SYSLOG again using KDCSLOG SWITCH.
If the switch operation executes without errors, size monitoring is activated
again automatically by openUTM.

KDCSLOG KDCADM administration commands

798 Administering Applications

CURRENT SYSLOG SIZE
Present size of the SYSLOG file/current file generation; issued in number
of UTM pages (csp) and in kilobytes (csk).

All the following information is only issued if the SYSLOG was opened as an FGG.

SIZE CONTROL VALUE
Set size control value of the automatic size monitoring operation. The
control value is issued in numbers of UTM pages (scp) and in kilobytes (sck).
The kilobyte value is not displayed for very large control values (e.g. for 231
KB).
If 0 is output as the SIZE CONTROL VALUE, size monitoring is switched off.

SYSLOG FILE % FILLED
Is output if the automatic size monitoring function is switched on. The value
indicates the percentage of the SYSLOG file already used up relative to the
defined size control value (SIZE CONTROL VALUE). If size monitoring has
been suspended by openUTM, the SYSLOG file can actually be filled by
more than 100%. When this occurs, the message SYSLOG FILE “>100%
FILLED” is output.

START-GEN Generation number of the first SYSLOG file generation written by openUTM
in the current application run.

LOWEST-OPEN-GEN
Generation number of the oldest SYSLOG file generation still kept open by
a process in the application.

CURRENT-GEN
Generation number of the file generation in which openUTM is currently
keeping a log.

BASE-GEN Generation number of the defined basis of the SYSLOG FGG.

FIRST-GEN Generation number of the first valid file generation of the SYSLOG FGG.

On BS2000 systems, this is the same as the FIRST-GEN from the SHOW-
FILE-ATTRIBUTES command.

LAST-GEN Generation number of the last valid file generation of SYSLOG-FGG.

On BS2000 systems, this is the same as the LAST-GEN from the SHOW-
FILE-ATTRIBUTES command.

B

B

B

B

KDCADM administration commands KDCSLOG

Administering Applications 799

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Output from KDCSLOG WRITE

1. If openUTM is able to write the message buffer properly to the SYSLOG,
openUTM issues the following message:

**** SYSLOG BUFFER WRITTEN ****

2. If the message buffer for command processing is empty, the following message is
issued:

**** SYSLOG BUFFER IS EMPTY ****

3. If openUTM is not able to write the message buffer properly to the SYSLOG, the
following message is issued:

**** SYSLOG BUFFER NOT WRITTEN ****

Output from KDCSLOG SIZE=fg_size

1. When fg_size ≥ 0 is displayed, if the SYSLOG for the application was opened as an
FGG, then the following form of text is issued:

 NEW OLD

 SIZE 100 0 COMMAND ACCEPTED - MINIMUM SIZE TAKEN

The additional text COMMAND ACCEPTED- MINIMUM SIZE TAKEN is only issued if
a value of between 1 and 99 is entered for fg_size.

2. If the SYSLOG is not opened as an FGG, the following message is issued:

COMMAND REJECTED - SYSLOG FILE IS NO FGG

Output from KDCSLOG SWITCH

1. If openUTM was able to switch the SYSLOG successfully, the following message is
issued:

*** SYSLOG SWITCH ACCEPTED ***

2. If the SYSLOG was not opened as an FGG, the following message is issued:

*** SYSLOG SWITCH REJECTED - SYSLOG FILE IS NO FGG ***

3. If an error occurs during the switch operation, openUTM issues the following message:

*** SYSLOG SWITCH REJECTED ***

KDCSWTCH KDCADM administration commands

800 Administering Applications

KDCSWTCH - Change the assignment of clients and printers to LTERM
partners

KDCSWTCH allows you to redefine the assignment of clients and printers (PTERM) to
LTERM partners.

KDCSWTCH is only permitted in standalone UTM applications.

KDCSWTCH has the following effect:

– the existing assignment of a client/printer to an LTERM partner is cancelled and
– the client/printer is assigned to the specified LTERM partner.

This function can only be performed when no logical connection exists between the
client/printer and the UTM application.

With KDCSWTCH you can, for example, assign another printer to a printer pool. In a printer
pool, several physical printers are assigned to one LTERM partner.

If on the other hand you wish to assign an LTERM partner to a printer to which, in turn, a
printer control LTERM is assigned (CTERM), then the control identification (CID) of that
printer must be unique within the printer control LTERM range.

i openUTM on Windows systems does not support any printers. Refer to the manual
supplement file supplied with openUTM for any changes.

Restriction

Reassignment of the LTERM partner is possible only for terminals and printers. The
assignment to an LTERM partner specified on configuration cannot be changed

● for UPIC clients

● for TS applications (APPLI/SOCKET) generated as interactive partners

● for clients that connect to the application via an LTERM pool

● for LTERMs that belong to an LTERM bundle or an LTERM group

If you assign a new LTERM partner to a terminal or printer, the LTERM partner may not be
assigned to a terminal/printer of another protocol type (either currently or in the past).
Distinctions are drawn here between the following 4 protocol types: terminals, TS applica-
tions, printers and RSO printers.

W

W

KDCADM administration commands KDCSWTCH

Administering Applications 801

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCSWTCH is therefore rejected if:

● the client specified in ptermname is a UPIC client or a TS dialog application
(PTYPE=UPIC-R/L or PTYPE=APPLI/SOCKET) or

● the LTERM partner specified in ltermname was previously assigned to a UPIC client or
a TS dialog application or if

● the LTERM partner specified in ltermname is assigned to an LTERM pool or if.

● the printer specified in ptermname is an RSO printer (PTYPE=RSO) and the LTERM
partner specified in ltermname was previously assigned to a normal printer.

● the LTERM partner specified in ltermname belongs to an LTERM group or an LTERM
bundle.

Period of validity of the change

These changes remain in force after the end of the application.

For administration using message queuing you must enter KDCSWCHA.

ltermname Name of the LTERM partner to which the client or printer should be
assigned. The LTERM partner must exist in the configuration of the UTM
application.

ptermname, proname, applname
Uniquely identifies the client/printer.

ptermname
Name of the client or printer (PTERM name)

proname Name of the processor on which the client is running or to which the client
or printer is connected.

The proname entry is mandatory in UTM applications on BS2000 systems.

In UTM applications on Unix, Linux or Windows systems, proname only has
to be entered if the client or printer is not connected locally.

Default value in openUTM on Unix, Linux or Windows systems:
Blanks for local clients/printer.

KDCSWTCHË ltermname,ptermname,proname [,applname]

KDCSWTCHË ltermname,ptermname [,proname [,applname]]

B

B

B

X/W

B

X/W

X/W

X/W

X/W

KDCSWTCH KDCADM administration commands

802 Administering Applications

applname This entry is only meaningful for UPIC clients and TS applications.
For applname, please enter the name of the UTM application which was
assigned to the client when it was entered in the configuration.

The applname entry is mandatory if the BCAMAPPL name assigned to the
client does not match the name of the UTM application defined for KDCDEF
generation in MAX APPLINAME. If applname is not entered, the command
is rejected with this message:

BCAMAPPL-NAME ´applname´ INVALID OR NOT DEFINED

Default:
Name of the application defined in the KDCDEF control statement MAX in
the APPLINAME operand.

Output from KDCSWTCH

The new and old assignments between client/printer and LTERM are displayed on the
administrator terminal.

The output depends on whether a short or a long host name is assigned to a PTERM. In
the case of a long host name, the information on a PTERM is output in two screen lines.

The following section shows you the outputs for the calls with a short and with a long host
name.

KDCSWTCH ltermname1,ptermname1,proname1,applname1

Here the LTERM partner lterm1 is assigned to the client pterm1.

KDCSWTCH lterm2,pterm1,proname1,app11

PTERM | PRONAM | BCAMAPPL | NEW LTERM || OLD LTERM
---------+----------+----------+-----------++----------
pterm1 | proname1 | appl1 | lterm2 || lterm1
---------+----------+----------+-----------++----------
pterm2 | proname2 | appl2 | || lterm2

KDCSWTCH lterm2,pterm1,long.processor.name1,appl1

PTERM | PRONAM | BCAMAPPL | NEW LTERM || OLD LTERM
---------+----------+----------+-----------++----------
pterm1 | long.processor.name1

| appl1 | lterm2 || lterm1
---------+----------+----------+-----------++----------
pterm2 | proname2 | appl2 | || lterm2

KDCADM administration commands KDCSWTCH

Administering Applications 803

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Explanation of the output

openUTM outputs the old and new assignment for the client ptermname entered in the
KDCSWTCH call (here pterm1), and for the client assigned to the LTERM partner lterm2
before the KDCSWTCH call (here pterm2).

Before the KDCSWTCH call, LTERM partner lterm1 was assigned to client pterm1 and client
pterm2 was assigned to LTERM partner lterm2 (see column headed OLD LTERM). Both
assignments are cancelled by the KDCSWTCH call.

i If pterm1 and pterm2 are clients (i.e. not printers), then the old assignments linking
LTERM partners to PTERMs are cancelled.

If pterm1 and pterm2 are printers, the old assignment of lterm2 to pterm2 is not
cancelled. A printer pool is then always created at this point, i.e. both printers are
assigned to the LTERM partner lterm2.

PTERM Name of the client or printer

PRONAM Name of the processor on which the client/printer is located

BCAMAPPL Name of the local UTM application through which connection to the
client/printer is established

NEW LTERM Name of the LTERM partner to which the client/printer was assigned by the
KDCSWTCH call

ltermname1
Name of the LTERM partner which was assigned to the client/printer with
the KDCSWTCH call

ltermname2
Name of the LTERM partner which was assigned to the client/printer before
the KDCSWTCH call.

OLD LTERM Name of the LTERM partner to which the client/printer was previously
assigned.

Example: Combining printers to form printer pools

Printers pterm1 and pterm2 are to be combined to form a printer pool. The LTERM partner
of the printer pools is to be lt-bundle.

Assignment before the KDCSWTCH call:
Printer pterm2 is already assigned to the LTERM partner lt-bundle. The printer pterm1 is
assigned to the LTERM partner lt-print.

KDCSWTCH KDCADM administration commands

804 Administering Applications

Call:

KDCSWTCH lt-bundle,pterm1,proname1,appl1

Output:

PTERM | PRONAM | BCAMAPPL | NEW LTERM || OLD LTERM
---------+----------+----------+-----------++----------
pterm1 | proname1 | appl1 | lt-bundle || lt-print
---------+----------+----------+-----------++----------
pterm2 | proname2 | appl2 | lt-bundle || lt-bundle

KDCADM administration commands KDCTAC

Administering Applications 805

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCTAC - Lock/release transaction codes and TAC queues

KDCTAC allows you to lock transaction codes and TAC queues and remove locks that were
set during generation or by means of administration functions.
With the exception of the KDCTAC transaction code, this function can be applied to all
transaction codes and TAC queues in the application.

Effect in UTM cluster applications

In UTM cluster applications, KDCTAC applies globally to the cluster.

Period of validity of the change

The event-driven service KDCMSGTC is locked only for the duration of the current appli-
cation run.
For all other TACs the change remains in force beyond the end of the application.

For administration using message queuing you must enter KDCTACA.

TAC=(tacname_1,...,tacname_10)
Name of the transaction code or TAC queue to be administered. You can
enter a maximum of 10 transaction codes or TAC queues per call. If you
only enter one TAC name you do not need to enter the parentheses.

The list must not contain the transaction code KDCTAC.

STATUS=

OFF Transaction codes or TAC queues tacname_1,...,tacname_10 are to be
locked.

Transaction codes:
With STATUS=OFF you can only lock service TACs, i.e. TACs configured
with CALL=FIRST or CALL=BOTH. Locking with OFF causes UTM to stop
accepting jobs for this TAC with immediate effect. If a TAC configured with
CALL=BOTH is disabled, it can still be called as a follow-up TAC in a
service.

TAC queues:
The TAC queues are locked for write access; read access is possible.

HALT Transaction codes or TAC queues tacname_1,...,tacname_10 are to be locked
completely.

KDCTACË TAC={ tacname | (tacname_1,tacname_2,...,tacname_10) }

,STATUS={ OFF | HALT | KEEP | ON }

KDCTAC KDCADM administration commands

806 Administering Applications

Transaction codes:
A complete lock on a TAC means that, with immediate effect, no more
program unit runs can be started for this TAC. This in turn means that no
further jobs are accepted for the TAC and, over and above this, it is disabled
as a follow-up TAC in an asynchronous or dialog service.

If a completely disabled TAC is called as a follow-up TAC, the service is
terminated with PEND ER (74Z). Asynchronous jobs already queued in the
TAC message queues are not started. They remain in the message queue
until the TAC is released again (STATUS=ON) or set to STATUS=OFF.

TAC queues:
The TAC queues are locked for read and write access.

KEEP May only be specified for TAC queues and asynchronous transaction codes
that are also service TACs (CALL=FIRST/BOTH).

Transaction codes:
The transaction code is disabled. Jobs for this transaction code are
accepted, but they are not processed. The jobs are simply placed in the job
queue for the transaction code. They are not processed until you change
the transaction code status to ON.

You can use the status KEEP to collect jobs that are to be processed at a
later time at which the degree of utilization of the application is lower (e.g.
at night).

In order to avoid an overload of the page pool due to too many jobs being
temporarily stored, you should limit the size of the job queue of the trans-
action code. For this you must set the parameter QLEV appropriately when
you generate the transaction code.

TAC queues:
The TAC queues are locked for read access; write access is possible.

ON The transaction codes or TAC queues tacname_1,...,tacname_10 are
released. Any locks set during generation or by means of administration
functions are cancelled.

KDCADM administration commands KDCTAC

Administering Applications 807

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Output from KDCTAC

The new and old properties of the transaction codes are output to the administrator
terminal.

TAC STATUS

NEW OLD

tacname_1
tacname_2
 .
 .
 .

ON| OFF| HLT
.
.
.
.

ON| OFF| HLT
.
.
.
.

KDCTCL KDCADM administration commands

808 Administering Applications

KDCTCL - Change number of processes of a TAC class

i It only makes sense to call the command KDCTCL, if jobs are processed in your
application using a “limited number of processes for TAC classes”, i.e. no TAC-
PRIORITIES statement is generated (see the openUTM manual “Generating Appli-
cations”).

With KDCTCL you can:

● get information on the current settings for the TAC classes. To do this, enter KDCTCL
without the operands TASKS and TASKSFREE.

● change the maximum number of processes that can process TACs of a TAC class at
the same time. You can only change this value if the KDCDEF generation of your appli-
cation does not contain the TAC-PRIORTIES statement.

The number of processes that you can allow for individual TAC classes is limited by the
maximum number of processes defined in the MAX statement during the KDCDEF
generation (operands TASKS, ASYNTASKS and TASKS-IN-PGWT).
If you enter a higher number of processes, KDCTCL is rejected.

After the KDCTCL, the actual number of processes set for processing TACs of a TAC
class may be smaller than the value set with KDCTCL. The actual number of processes
depends on the current number of processes for the entire application (set with the start
parameter TASKS or by administration, e.g. using KDCAPPL).

You can define the maximum number of processes for a TAC class in one of two ways:
either by entering the number of processes allowed to process TACs in one TAC class at
the same time (TASKS operand); or by entering the minimum number of processes in the
application that are to be kept available for processing the TACs in other TAC classes
(TASKSFREE operand). The following section explains the difference between TASKS and
TASKSFREE:

● When you use TASKS, the maximum number of processes available to the specified
TAC class is independent of the number of processes currently available for the entire
application program. This means that the number of processes in the TAC class
remains constant even if the number of processes in the entire application is reduced.
This applies until such time as the number of processes in the TAC class and the
number in the entire application are identical.

The use of the TASKS operand can (in extreme cases) cause processes in one TAC
class to hinder those in all other TAC classes.

● When you use TASKSFREE, the maximum number of processes available to the
specified TAC class depends, in the dynamic context, on the number of processes
currently available for the entire application program. The reserve number specified in
TASKSFREE is always kept free for processes in other TAC classes.

KDCADM administration commands KDCTCL

Administering Applications 809

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

The maximum number of processes for one TAC class is then obtained in the following
manner:
– Dialog TAC classes (1 - 8): current number of all processes available for dialog

TACs in the entire application program (TASKS), less the number in TASKSFREE,
but at least one process

– Asynchronous TAC classes (9 -16): current number of all processes available for
asynchronous TACs in the entire application program (TASKS), less the number in
TASKSFREE.

Effect in UTM cluster applications

In UTM cluster applications, KDCTCL applies locally in the node.

Period of validity of the change

This change does not remain in force beyond the end of the application. The available
number of processes is determined by the most recent KDCTCL call entered.

For administration using message queuing you must enter KDCTCLA.

CLASS=tacclass
Number of the TAC class for which the number of processes should be
changed. For tacclass you can enter a number between 1 and 16
(1 ≤ tacclass ≤ 16).

TASKS=number_tasks
May only be specified if no priority control is generated for the application,
i.e. if the application is generated without TAC-PRIORITIES.

Specifies how many processes in the application are allowed to process
TACs in TAC class tacclass at the same time.
With TASKS you define the absolute number of processes for a TAC class.

Minimum value of number_tasks:
For dialog TACs (class 1-8) number_tasks must be ≥ 1. Otherwise dialog
services would be locked and the users on the terminal would have to wait
until services were released again.

For asynchronous TACs (class 9-16), number_tasks must be =0.

KDCTCLË CLASS=tacclass

[,{ TASKS=number_tasks | TASKSFREE=number_tasks }]

KDCTCL KDCADM administration commands

810 Administering Applications

Maximum value of number_tasks:
The permitted maximum value for number_tasks depends on the following
factors:

– On whether the TAC class was generated with PGWT=YES or with
PGWT=NO.
PGWT=YES means that the program units in the TAC class can run with
lock calls (e.g. KDCS call PGWT).

– On the values for TASKS, TASKS-IN-PGWT and ASYNTASKS
generated statically in the KDCDEF control statement MAX.

See the following table for the permitted value ranges for TASKS.

TASKSFREE=number_tasks
May only be specified if no priority control is generated for the application,
i.e. if the application is generated without TAC-PRIORITIES.

In TASKSFREE you specify how many processes of the application are to
be reserved for processing other TAC classes than the one specified.

If number_tasks is greater than the number of processes available to the
entire application program, the following occurs:

– if tacclass is a dialog TAC class, one process remains available for
processing its TACs;

– if tacclass is an asynchronous TAC class, the number of processes
available to it = 0.

Minimum value of number_tasks: 0

TAC class PGWT= Permitted maximum value

1 - 8 (dialog TACs) NO TASKS *)

YES TASKS-IN-PGWT *)

9 - 16 (asynchronous
TACs)

NO ASYNTASKS *)

YES The smaller of the values:
ASYNTASKS and *)
TASKS-IN-PGWT *)

*) As generated statically in the KDCDEF control statement MAX

KDCADM administration commands KDCTCL

Administering Applications 811

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

Maximum value of number_tasks:
The permitted maximum value for number_tasks depends on the statically
generated values for TASKS and ASYNTASKS in the KDCDEF control
statement MAX.

See the following table for the permitted value ranges for TASKSFREE.

Output from KDCTCL

If you enter KDCTCL without TASKS or TASKSFREE, you are only shown the currently set
values. Otherwise, the output for the specified TAC class shows you the new and old
process numbers. Output is displayed on the administrator terminal.

TACCLASS TASKS TASKS-FREE

 NEW OLD NEW OLD

tac-class number number number number

Explanation of the output

TACCLASS Number of the TAC class

TASKS Absolute number of processes available for processing the TACs in this
TAC class. If you called KDCTCL ... TASKSFREE=, the following value is
displayed:

Process number currently set for the application - TASKFREE

TASKS-FREE Number of processes kept free for other TAC classes. If you entered
KDCTCL ... TASKS=, the output of TASKS-FREE is always 0 to show that
you made an absolute entry for this TAC class.

TAC class PGWT= Permitted maximum value

1 - 8 (dialog TACs) NO TASKS - 1 *)

YES TASKS - 1 *)

9 - 16 (asynchronous
TACs)

NO ASYNTASKS *)

YES ASYNTASKS *)

*) As statically generated in the KDCDEF control statement MAX

KDCTCL KDCADM administration commands

812 Administering Applications

Example

The following table illustrates the impact of various changes to the number of
processes:

CURRENT-TASKS
This represents the maximum number of processes that can currently be used at the
same time for the application (dialog TACs) or
the maximum number of processes that can currently process asynchronous jobs at the
same time (asynchronous TACs).

TASKS
Designates the appropriate maximum number of processes for the specified TAC class.

TASKS-FREE
Designates the number of processes reserved for the other TAC class.

 Dialog TACs Asynchronous TACs

Action CURRENT
TASKS

TASKS
FREE

TASKS CURRENT
TASKS

TASKS
FREE

TASKS

Initial status 4 0 3 3 0 3

Change
TASKS-FREE 0 → 2 4 2 2 3 2 1

Change
CURRENT TASKS
reduced by 2

2 2 1 1 2 0

KDCADM administration commands KDCUSER

Administering Applications 813

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

50
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

2

KDCUSER - Change user properties

With KDCUSER you can:

● disable or release user IDs for the application

● define, change or delete passwords for user IDs.

Effect in UTM cluster applications

In UTM cluster applications, KDCUSER applies globally to the cluster.

Period of validity of the change

Changes remain valid beyond the end of the application.

For administration using message queuing you must enter KDCUSERA.

USER=(user1,user2,...)
Names of the user IDs to be administered. You can enter a maximum of 10
names per call. If you only enter one name you do not need to key in the
parentheses.

PASS=password
Issue, change or delete password for the user ID.

The password can be up to 16 characters in length. If the specified
password is shorter than 16 characters openUTM fills the balance with
blanks.

You can enter the password as a hexadecimal string
(32 half bytes) in the form X´.....´ or as a character string C´....´.

Example:
Hexadecimal string: X´F1F2F3F4F5F6F7F8F9F0´
Character string: ´ABCDEFGHIJKLMNOP´

You delete a password by entering PASS=C´Ë´ (blank). If you enter 16
binary zero characters (X´00000000000000000000000000000000´) you
will not change the password.

You can only delete the password if

– the minimum length defined for the password when the user ID is
entered is 0

KDCUSERË USER={ username | (username_1,username_2,...,username_10) }

[,PASS=password]

[,STATUS={ ON| OFF }]

KDCUSER KDCADM administration commands

814 Administering Applications

– no complexity level is defined for the user ID (NONE).

If a password with a restricted period of validity is generated for a user ID,
you cannot enter the old password as the new password when changing the
password.
If the application has been generated with SIGNON GRACE=NO, the
generated period of validity from the time of the change also applies to the
new password.
If a password with a restricted period of validity is deleted, no period of
validity applies. If a new password is issued after this, the period of validity
is restored.

STATUS=
ON Releases the user ID

OFF Disables the user ID. This lock takes effect when the user next attempts to
sign on. This function does not work for the administrator.

Output from KDCUSER

The old and the new status of the administered user IDs are displayed at the administrator
terminal along with an indication of the password having been changed, where applicable.

USER STATUS

NEW OLD

user1
.
.
.

ON | OFF ON | OFF PASSWORD CHANGED

Administering Applications 815

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

13 Administering message queues and
controlling printers

There are two ways to administer message queues and control printer outputs:

1. using the KDCS program interface with the DADM (delayed free message adminis-
tration) and PADM (printer administration) functions

2. using WinAdmin or WebAdmin, which provides you with DADM and PADM functionality
in a graphical user interface

The following sections describe how to use the DADM and PADM functions. The require-
ments and conditions specified here also apply to administration with WinAdmin or
WebAdmin.

DADM enables you to administer jobs and messages buffered in local message queues
and waiting for processing. With the exception of the dead letter queue, the message
queues in openUTM are recipient-specific, i.e. all asynchronous jobs in any one queue are
intended for the same recipient. Recipients can, for example, be: asynchronous TACs in
your own or in a remote application (background jobs are located in these queues), LTERM
partners for terminals, TS applications or printers (output jobs are buffered in these
queues), user IDs and temporary queues. The dead letter queue is a TAC queue containing
messages to various recipients that have not been processed correctly. For further infor-
mation on message queues, see the section “Administering message queues (DADM)” on
page 821 and the detailed information in the openUTM manual “Concepts und Functions”.

With PADM you can control the output of asynchronous messages to printers, i.e. you can
influence print output and administer the printers yourself. In order to administer a printer
and control print output using PADM functions, the printer must be assigned to a printer
control LTERM (see page 818).

You can use DADM to execute the following functions:

● to output information about jobs and messages in buffer storage in a message queue

● to prioritize a job or message in a queue to ensure that it is processed before all other
asynchronous jobs in the queue

● to cancel a job or message, i.e. to delete it from the queue.

● Move messages from the dead letter queue in order to process them.

Administering message queues/printers

816 Administering Applications

PADM allows a program unit to execute the following functions to control printer output:

● switch a special confirmation mode on and off which entails confirming every print job
before the next output job can be processed.
In UTM cluster applications, this action applies globally to the cluster.

● repeat print jobs, e.g. after a successful sample printout. For this, the confirmation mode
has to be switched on.
In UTM cluster applications, this action applies locally in the node.

● output a list of print jobs which still have to be confirmed.
In UTM cluster applications, this action applies locally in the node.

With PADM, a program unit can also execute the following print administration functions:

● disable and re-enable a printer.
In UTM cluster applications, this action applies globally to the cluster.

● establish or shut down a connection to a printer.
In UTM cluster applications, this action applies locally in the node.

● change the assignment of printers to LTERM partners, e.g. if one printer fails, the
LTERM partner of this printer and the attached message queue can be assigned to
another printer which then processes the print jobs waiting in this queue.
This function is only permitted in standalone UTM applications.

● group printers into pools. To do this, you assign several printers to one LTERM partner.
The message queue of the LTERM partner is then processed jointly by all the printers
in the pool. For further information about printer pools, also see openUTM manual
“Generating Applications”.
This function is only permitted in standalone UTM applications; in UTM cluster applica-
tions, printer pools can only be generated statically.

● output information to a printer.

UTM administration privileges are not always mandatory for administering printers with
PADM calls. Refer to “Authorizations concept (BS2000, Unix and Linux systems)” on
page 818 for an explanation of the authorization level you require to start program units with
DADM and PADM calls.

The sample program units KDCDADM and KDCPADM are supplied with openUTM: these
units use the functions of DADM and PADM. You can use these program units to administer
asynchronous jobs and to control print jobs and printers without having to write program
units yourself. The following description uses to refer to the corresponding functions
of KDCDADM and KDCPADM.

If you create your own program units using PADM and DADM, you have the option of
designing your own user interface in the program unit, e.g. data input using formats on
BS2000 systems.

Administering message queues/printers

Administering Applications 817

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

The DADM and PADM calls are described in the openUTM manual „Programming Applica-
tions with KDCS”. The KDCDADM and KDCPADM program units are described in the
section “UTM program units for DADM and PADM functions” on page 836.

Before you can use sample programs KDCDADM and KDCPADM or your own program
units with PADM or DADM calls, you must first record the program units in the configuration
of the application, either statically or dynamically, and assign transaction codes to them.

i openUTM on Windows systems does not support printers. The KDCS call PADM
and the program unit KDCPADM are available, however, they are irrelevant for UTM
applications running on Windows systems. Administration privileges are required
for actions taken using DADM or KDCDACDM.

W

W

W

W

Authorizations concept Administering message queues/printers

818 Administering Applications

13.1 Authorizations concept (BS2000, Unix and Linux systems)

PADM and DADM are not functions of the program interface for administration. For this
reason, services which use PADM and DADM have a different authorizations concept. This
authorizations concept enables them to administer their own output jobs to the “local”
printers without administration privileges. Users can also perform administration of the
“local” printers without any special privileges.

To do this, you must create printer control LTERMs for the printers and assign them to the
printers that are to be administered “locally”, i.e. by a user/client without administration privi-
leges. The related printers and their queues can then be administered by every user or
client who signs on using the printer control LTERM.

Administration privileges are required for the following administration tasks:

● Administration of background jobs and output jobs for terminals or remote TS applica-
tions.

● Administration of output jobs and printers using any LTERM partner.
A user who has UTM administration privileges can administer all printers on all printer
control LTERMs and all asynchronous jobs irrespective of which LTERM partner was
used to initiate the services.

● Administration of service-controlled queues (USER, TAC and temporary queues).

Printer control LTERM - administration of “local printers”

A printer control LTERM is an LTERM partner that is entered as a dialog partner (usage=D).
A client or a terminal user can log into an application via this LTERM partner. From the
terminal or client, the printers and queues assigned to the printer control LTERM can be
administered.

Printers are assigned to the printer control LTERM as follows:
An LTERM partner configured as an output medium is assigned to each printer (usage=’O’).
openUTM “sends” all output jobs for this printer to the LTERM partner of that printer, i.e.
openUTM writes the output job to the message queue of the LTERM partner - the queue for
the printer concerned. You can also assign several printers (a printer pool) to an LTERM
partner. All these printers then work with the same queue.

You assign the LTERM printer partners to the printer control LTERM.

To do this, when creating the LTERM partners in CTERM/kc_lterm_str.cterm
(CTERM=Control TERMinal) you must specify the printer control LTERM to which the
relevant printer is assigned. In CTERM/kc_lterm_str.cterm you enter the name of the printer
control LTERM (name of the LTERM partners).

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

Administering message queues/printers Authorizations concept

Administering Applications 819

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

You can assign individual printers and even printer pools to one printer control LTERM. You
must define a printer r ID for each printer to which a printer control LTERM is assigned. This
printer ID must be unique in the printer control LTERM range because the printer control
LTERM uses this printer ID to address the printers directly. You must pay particular attention
to the unique nature of each printer ID in printer pools. You must also define a separate
printer ID for each of the printers in the pool. These printer IDs must be assigned to the
correct printers when they are entered in the configuration.

The figure on page 820 provides an example of a configuration with KDCDEF.

In order to restrict access to the printer control LTERM to a defined number of people, you
can assign a lock code to the printer control LTERM. Similarly, you can also protect the
PADM and DADM program units by means of lock codes or access lists. This enables you
to define which administration functions can be performed by users/clients. In any event,
you should assign all keycodes for the print administration and printer control program units
to the printer control LTERM (for details of the lock code/keycode concept, see the
openUTM manual “Concepts und Functions”).

A user/client can start services via a printer control LTERM which:

● administer associated printers by means of PADM calls

● administer output jobs sent to the printer (DADM calls)

● control print jobs on these printers.

You will need to write program units which use the DADM and PADM functions and which
should be started from a printer control LTERM as dialog programs and you must assign
dialog TACs to them.

B/X
B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

Authorizations concept Administering message queues/printers

820 Administering Applications

Entering a printer control LTERM and the associated printers

POOLPRINTER1
PTERM BD-PRI1,

CID=XY3, 1)
LTERM=LT-PRIB,...

POOL PRINTER2
PTERM BD-PRI2,

CID=XY4, 1)
LTERM=LT-PRIB,...

POOL PRINTER3
PTERM BD-PRI3,

CID=XY5, 1)
LTERM=LT-PRIUB,..

PTERM CL-NAME,
LTERM=CTERM1
:

 LTERM LT-PRI1,
USAGE=O,
CTERM=CTERM1
:

 LTERM LT-PRI2,
USAGE=O,
CTERM=CTERM1.
:

LTERM CTERM1,
USAGE=D,
LOCK=123
:

 LTERM LT-PRIB,
USAGE=O,
CTERM=CTERM1.
:

1)The printer IDs (CID) XY1 to XY5 must all be different

Client
program
or
terminal

Printer
control
LTERM

LTERM
partner of
the printer
pools

LTERM
partner of
printer2

LTERM
partner of
printer1

PRINTER1
PTERM PRINTER1,

CID=XY1, 1)
LTERM=LT-PRI1
:

PRINTER2
PTERM PRINTER2

CID=XY2, 1)
LTERM=LT-PRI2
:

Administering message queues/printers Administering message queues

Administering Applications 821

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

13.2 Administering message queues (DADM)

You can use DADM to administer two different types of message queues. These are:

● UTM-controlled queues

The asynchronous jobs created by a program unit are delivered to the recipient at the
specified time. For messages to TACs, the associated program unit is started by
openUTM.

● Service-controlled queues

In these queues, processing is controlled not by UTM but by the program unit itself.

There are three types of service-controlled queues available:

1. USER queues

A permanent queue is available to every user of an openUTM application under the
user’s user ID. The queue is accessible via the user ID. USER queues offer you the
opportunity to send asynchronous messages to a UPIC user, for example.

2. TAC queues

Permanent queues with fixed names are created by generating TACs of the type
´Q´. In this way, queues can be implemented in remote UTM applications, for
example, that are addressed by the local UTM application by means of an LTAC
name.

The dead letter queue KDCDLETQ is a TAC queue that is always available for
backing up messages which could not be processed.

3. Temporary queues

Temporary queues can be created and deleted dynamically. The name of one of
these queues can be created by the program unit or implicitly by openUTM.
Temporary queues permit communication between two services, for example: A
service sets up the queue and sends a message to the queue; another service
reads the message and then deletes the queue.

The maximum possible number of temporary queues is specified with the gener-
ation statement QUEUE.

The KDCS calls QCRE and QREL are available to you to create and delete
temporary queues. These calls are described in the openUTM manual
„Programming Applications with KDCS”.

Administering message queues Administering message queues/printers

822 Administering Applications

You can administer messages in a queue using DADM at the KDCS program interface.
FPUT and DPUT allow you to create background jobs, output jobs and messages for
service-controlled queues. The actual function performed in each case by DADM depends
on the operation modifier which you pass to UTM in the kcom field of the parameter area.
The following operation modifiers are available:

● DADM RQ (read queue) for reading information about the messages in a message
queue

● DADM UI (user information) for reading user information about a message. User infor-
mation is written by the job submitter and passed to the specified reception area when
the message is created.

● DADM CS (change sequence) changes the sequence of messages in a queue. This
function enables you to move a message from any position in the queue to the front of
the queue. This message is then processed before any of the other messages in the
queue.

● DADM DL (delete) and DADM DA (delete all) for deleting an individual message or all
messages in a queue.

When deleting job complexes with DADM DL, you can activate negative confirmation
jobs. A job complex is an asynchronous job with a positive and/or negative confirmation
job (see openUTM manual „Programming Applications with KDCS”, the MCOM call).

When you delete messages using DADM DA, the messages are deleted with the
following messages. A delete call like this is only executed:

– in the case of UTM-controlled queues, when there is no job being processed for the
specified destination

– in the case of service-controlled queues, when no messages are currently being
read

● DADM MV (Move) and DADM MA (Move all) for moving one or all of the messages
stored in the dead letter queue. The messages can be assigned to their original
message queues or to any destination of the same type (asynchronous TAC / TAC
queue, LPAP partner, OSI-LPAP partner).

To enable openUTM to process a DADM message, you must uniquely identify the message
queue and the message in the queue.

Administering message queues/printers Administering message queues

Administering Applications 823

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

Identifying the message queue

The message queues in openUTM are recipient-specific, i.e. either openUTM or the
program unit itself administers a separate message queue for each recipient of jobs or
messages. A UTM-controlled message queue to be administered is uniquely identified
when you specify the name of the recipient when making a DADM call. In the case of UTM-
controlled queues, you specify, for example:

● in the case of output jobs, the name of the LTERM partner to which the terminal, the
printer or the TS application is assigned

● in the case of background jobs, the name of the asynchronous TAC to which the job is
directed

In the case of service-controlled queues, the name and the type of the queue are required
for the purpose of identification.

You pass the name of the recipient for DADM RQ/DL/DA in the kclt field of the KB parameter
area and the type in the kcqtyp field.

Identifying messages in a message queue

For every message, openUTM establishes a separate identification, also known as a job ID
or DPUT-ID. This enables you to administer each message individually.

After a message has been processed by the recipient, or after a message has been deleted
by the administration function, the job ID is released and can immediately be reassigned to
another message by UTM. For this reason, in the case of DADM UI/CS/DL calls requesting
unique identification of the message to be administered, it is also necessary to enter the
time the message was created. This is the only way of preventing the wrong message from
being cancelled by DADM DL.

In the case of DADM calls, you must pass a job ID and the time the message was created
in the KB parameter area. You can determine both items of data using DADM RQ and use
them in subsequent DADM calls.

i If the messages (FPUT and DPUT messages) buffered in the KDCFILE are trans-
ferred to a new KDCFILE with the UTM tool KDCUPD, they are then assigned new
job IDs.

Administering message queues Administering message queues/printers

824 Administering Applications

13.2.1 Displaying information on messages in a queue - DADM RQ

With the DADM RQ call, openUTM supplies information about the messages in a queue.
For every message, openUTM provides the job ID, the user ID of the job submitter, the origi-
nation time of the message and, in the case of time-controlled messages (DPUT
messages), the earliest execution time. It also informs you whether a positive or negative
confirmation job exists.

For a DADM RQ call, you enter the name of the recipient in the kclt field of the KB parameter
area whose message queue is to be read. In the case of service-controlled queues, the type
is also required in the kcqtyp field.

You can also output information about all the messages in a message queue or restrict the
information output to just one message in the queue.

In the kcrn field of the parameter area, you enter the job ID of the message for which
openUTM is to provide information. If you write any blanks in kcrn, openUTM informs you
about the first message in the message queue for the recipient kclt.

The procedure for reading information about all messages in a message queue is as
follows:

● In the first DADM RQ for a recipient, instead of a job ID you enter blanks in the kcrn field
of the parameter area.

● UTM returns information about the first message in the message queue of the recipient.
If at least one other message exists for the same recipient, openUTM writes the job ID
of the next message in the queue to the kcrmf field of the KB return area.

● You call DADM RQ once again and write the job ID which openUTM returned in the
kcrmf field to the kcrn field of the KB parameter area.

● UTM provides information about the second message and returns the job ID of the next
message in the queue if another message exists.

This means that the message queue can be processed sequentially. When the information
about the last message in the queue is read, UTM returns blanks to the kcrmf field.

A data structure exists for information returned from DADM RQ which you can place over
the message area. The C data structure is called kc_dadm and is part of the header file
kcdad.h. The corresponding COBOL data structure is called KCDADC.

 See KDCDADM INFORM on page 840.

Administering message queues/printers Administering message queues

Administering Applications 825

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

13.2.2 Reading user information about a message - DADM UI

In many cases, the information about messages provided by openUTM (see DADM RQ on
page 824) is not sufficient to enable the administrator to uniquely identify a message. For
this reason, the job submitter can store additional information when creating a message
using the DPUT call: this information is known as user information. User information is
written with the DPUT NI call or, in the case of confirmation jobs in job complexes, with
DPUT +I or DPUT -I (see the openUTM manual „Programming Applications with KDCS”).

This user information is not passed to the recipient of the message. However, it is linked to
the job ID of the message and can only be read with DADM UI.

When a call is received from DADM UI, you must pass the job ID and the time the message
was created in the KB parameter area. Both items of data can be determined in advance
with DADM RQ.

You cannot read the user information relating to confirmation jobs in job complexes until the
confirmation job has been activated.

 See KDCDADM INFORM, LIST=LONG on page 840.

13.2.3 Prioritizing messages in the queue - DADM CS

The DADM CS call is advisable if, at a given point in time, several messages are in the
processing queue for the same recipient. Using DADM CS, the specified message,
identified by its job ID and the time it was created, is moved to first position in the message
queue. You can determine the job ID and the time of the message’s creation using
DADM RQ.

Please note that you can only prioritize time-driven messages if the “earliest execution time”
specified by DPUT at the time of the message’s creation has already elapsed. Otherwise,
UTM rejects the DADM-CS call (return code 40Z).

 See KDCDADM NEXT on page 845.

Administering message queues Administering message queues/printers

826 Administering Applications

13.2.4 Deleting messages from a queue - DADM DA/DL

DADM DA allows you to delete all messages to a given recipient which have not been
processed at the time of the DADM DA call. In the case of service-controlled queues,
messages that are currently being read cannot be deleted. If a service-controlled queue is
deleted dynamically (KC_DELETE_OBJECT or QREL RL), the messages in this queue are
lost. Messages already processed by the recipient are not deleted. With DADM DA calls
you have to specify the name of the recipient in the kclt field of the KB parameter area.

With DADM DL you delete one specific message. To identify this message you have to
enter the job ID and the time when the message was created. Both these items of data can
be determined using DADM RQ.

If the specified message has already been processed by the recipient, the DADM DL call is
rejected by openUTM (return code 40Z).

In particular, you cannot use DADM DA/DL to delete any print output which has already
been started. To do this, you must follow the procedure described below:

1. Terminate the connection to the printer on which the job is being processed (PADM CS).
openUTM also terminates the link to the printer if you disable the printer using
PADM CS.

2. Delete the print job (DADM DL).

3. Restore the connection to the printer (PADM CS; see page 830).

If confirmation jobs are assigned to the message being deleted (DPUT jobs in job
complexes) you can specify with DADM DL whether the negative confirmation job is to be
activated when the message is deleted or whether the confirmation jobs are to be deleted
together with the main job (kcmod field in the KB parameter area).

For information about job complexes and confirmation jobs, see the openUTM manual
„Programming Applications with KDCS”.

 See KDCDADM DELETE on page 838.

Administering message queues/printers Administering message queues

Administering Applications 827

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

13.2.5 Move messages from the dead letter queue - DADM MA/MV

The dead letter queue is made up of messages which could not be processed and which
have not been redelivered. In order to process these messages after any errors have been
corrected, they must be assigned either to their original destination or to a new destination.

DADM MA allows you to move multiple messages stored in the dead letter queue. The
messages can be assigned to their original message queues or to a new destination of the
same type (asynchronous TAC / TAC queue, LPAP partner, OSI-LPAP partner). If you
specify a new destination, only the messages with the appropriate original destination (i.e.
same type) are moved.

DADM MV allows you to move a single message from the dead letter queue. You must
specify the job ID and the time at which the message was generated in order to identify the
message.

To identify the destination, specify:

● the TAC if the recipient of the messages with original destination TAC or TAC queue is
to be an asynchronous program,

● the name of a TAC queue if the recipient of the messages with original destination TAC
or TAC queue is to be a service-controlled queue,

● the name of an LPAP partner (but not a master LU61-LPAP) if the recipient of the
messages with original destination LPAP is to be an LPAP partner,

● the name of an OSI-LPAP partner (but not a master OSI-LPAP) if the recipient of the
messages with original destination OSI-LPAP is to be an OSI-LPAP partner,

● blanks if the messages are to be assigned to their original destination again.

If DADM MA is specified with KCLT=blank, messages whose destination no longer exists
remain in the dead letter queue. You can assign these messages to asynchronous trans-
action codes or TAC queues as new destinations.

When moving messages from the dead letter queue, any QLEV that is defined and the
STATUS of the recipient queue are ignored. This means that when moving messages, it is
possible for the queue level to be exceeded and for messages to be sent to locked TACs.

i The original destination of a message in the dead letter queue is available from the
return information of the DADM RQ call.

 KDCDADM MOVE on page 843

Administering printers Administering message queues/printers

828 Administering Applications

13.3 Administering printers and control print output (PADM)

You can use the KDCS call PADM to create program units which control the output of
asynchronous messages on the printer and which administer printers. PADM functions are
only able to administer printers which are assigned to a printer control LTERM.

Identifying printers during administration with PADM calls

Program units which are to control print output and administer printers must identify the
printers uniquely. In order to be independent of the printer name, you must define a printer
ID for every printer assigned to a printer control LTERM. The printer IDs are defined when
the printers are entered in the configuration. The printer IDs must be unique in the printer
control LTERM range.

A printer is rendered uniquely identifiable throughout an application by the name of the
printer control LTERM to which it belongs and by virtue of its printer ID. Viewed in terms of
the administration performed by the printer control LTERM, the printer ID provides
adequate identification of the printer, e.g. when confirming printer output.

If you wish to control the print output of a printer, you do not need to send the printer ID of
that printer to the program unit. It can be determined within a program unit with the help of
PADM AI/PI calls.

13.3.1 Administering printers with PADM

openUTM provides the PADM call for printer administration functions. The actual function
executed by PADM depends on the operation modifier which you pass to openUTM in the
kcom field of the parameter area. The following operation modifiers are available:

● PADM PI (printer information) to read information about the printers assigned to a
printer control LTERM

● PADM CA (change address) to assign a printer to a different LTERM partner

● PADM CS (change state) to change the printer status, i.e. disabling and re-enabling a
printer, terminating or re-establishing a connection to a printer.

Administering message queues/printers Administering printers

Administering Applications 829

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

13.3.1.1 Querying information about a printer PADM PI

The call PADM PI returns the following information about every printer in a printer control
LTERM (list not exhaustive):

– printer ID of the printer
– name of the related LTERM partner
– status of the printer, i.e. openUTM informs you whether or not the printer is currently

disabled and if it is connected to the application or not
– number of print jobs in the printer queue
– number of time-driven print jobs in the printer queue and their earliest output time

You can output this information, e.g. to the printer control LTERM.

You can output information about a specific printer. To do this, you must enter its printer ID
in the kcrn field of the parameter area. If you enter blanks in kcrn, openUTM informs you
about the first printer.

You can also output information about all printers belonging to a printer control LTERM
using the following procedure:

● At the first PADM PI, enter blanks in the kcrn field of the parameter area in order to read
the information about the first printer.

● openUTM returns various items of information including the printer ID of the first printer.
If at least one more printer is associated with this printer control LTERM, UTM writes
the printer ID of the next printer in the kcrmf field of the KB return area.

● Call PADM PI again and write the printer ID which openUTM previously returned to
kcrmf in kcrn of the KB parameter area.

● openUTM supplies information to the second printer and returns the printer ID of the
next printer, provided that another printer exists etc.

When reading the information for the last printer, openUTM returns blanks to the kcrmf field.

A data structure exists for the information returned by PADM PI which you can place over
the message area. The C data structure is called kc_padm and is part of the header file
kcpad.h: the COBOL data structure is called KCPADC.

 See KDCPADM INFORM, LIST=PRINTERS on page 847.

Administering printers Administering message queues/printers

830 Administering Applications

13.3.1.2 Changing the printer status - PADM CS

Using the PADM CS call you can perform the actions described in the following list. You
define which action is to be performed in the kcact field of the parameter area.

● Disable a printer (kcact=OFF) or re-enable a printer which was previously disabled
(kcact=ON).

In UTM cluster applications, both actions apply globally to the cluster.

● Establish (kcact=CON) or terminate (kcact=DIS) a connection to a printer.

Output jobs to printers are always written to the message queue of the associated LTERM
partner. If the printer is disabled or not connected, the data is buffered until the printer is
re-enabled or the connection is re-established, or until you assign the LTERM partner to
another printer, one which is not disabled, and connect this one to the system.

When a printer is disabled, the connection to it is established automatically and must be
re-established explicitly after it has been released.

You cannot establish a connection to a disabled printer. To reconnect a disabled printer,
proceed as follows:

1. Re-enable the printer. To do this, call PADM CS with kcact=ON.

2. Use PADM PI to confirm that openUTM has re-enabled the printer.

3. Call PADM CS with kcact=CON to re-establish the connection.

The first PADM call must not be performed in the same transaction as the other two.

 See KDCPADM STATE on page 853.

13.3.1.3 Assigning a printer to another LTERM partner - PADM CA

You can use PADM CA to change the assignment of printers to LTERM partners. Enter the
name of the new LTERM partner in the kcadrlt field of the parameter area. The new LTERM
partner to which the printer is to be assigned must already feature in the configuration of
the application, and the printer connection must be defined in it (usage=O). A printer can
already be assigned to the LTERM partner. This old assignment is not cancelled.

This function is only permitted in standalone UTM applications

With this function you can generate printer pools during the application run by assigning
several printers to one LTERM partner. All printers in the printer pool then process the
queue for the LTERM partner.

However, if one printer fails, you can assign the LTERM partner for that printer to another
printer together with the failed printer’s message queue. The new printer then processes
the output jobs.

Administering message queues/printers Administering printers

Administering Applications 831

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

If a procedure which changes the assignment is started by a user or client on an LTERM
printer control unit not authorized by administration then not only the LTERM partner but
also the printer must lie in the responsibility area of the printer control LTERM. In other
words, this printer control LTERM must be assigned to the LTERM partner, and the printer
must previously have had an LTERM partner assigned to this printer control LTERM.

PADM CA is only permitted if the printer is not connected to the application. You can check
this in advance using the PADM PI call. Owing to the fact that PADM CA is subject to trans-
action management, i.e. the fact that it is not executed until the end of a transaction, a
connection to a printer may have been established from another service in the intervening
period. For this reason, in a follow-up transaction, you should use PADM PI to check
whether the action has indeed been executed.

 See KDCPADM SWITCH on page 854.

13.3.2 Print control with PADM

Usually, print jobs are issued “without” print control, i.e. it is UTM that controls the output of
messages to printers. Print output takes place in automatic mode in such cases. Automatic
mode is set after the first time the application is started.

Print output “with” print control means that it is the user who has to control the output of
messages. Print control can be performed in the following ways:

● procedures with PADM calls which are started by a printer control LTERM

● procedures with PADM calls which run under UTM administration privileges, e.g. the
event service MSGTAC.

In UTM cluster applications, the change of mode (with/without print control) applies globally
to the cluster.

openUTM provides a special confirmation procedure for print control. In order to use this
procedure you must switch from automatic mode to confirmation mode. The following
section describes the difference between automatic mode and confirmation mode.

Administering printers Administering message queues/printers

832 Administering Applications

Automatic mode - print output without print control

In automatic mode, openUTM controls the output from the printer. Output then proceeds as
follows:

openUTM sends the first message in the queue to the printer and receives a positive or
negative print confirmation from the printer.

If openUTM receives a positive print confirmation message, it deletes the message from the
queue and sends the next message to the printer etc.

If openUTM receives a negative print confirmation message from the printer, it issues
message K046. This message is not normally assigned to any specific UTM message desti-
nation. You can define a message destination for the message: the openUTM manual
”Messages, Debugging and Diagnostics” describes how to do this and indicates the desti-
nation to which you should assign the message.

The message destination for K046 can, for example, be the event service MSGTAC. Using
the MSGTAC routine, which you have to create yourself (see the openUTM manual
„Programming Applications with KDCS”), you can then respond to the error situation. The
MSGTAC can, for example, switch on the confirmation mode. See also page 835.

Confirmation mode - output with print control

In confirmation mode, print output must be controlled by program units using PADM calls.
Print outputs in confirmation mode proceed as follows:

openUTM sends a message to the printer. Once the message has been completed with a
positive print confirmation, openUTM waits for confirmation, after which it performs a
message termination procedure. The user/client can enter confirmation on the printer
control LTERM or, for example, using the MSGTAC routine. For the MSGTAC routine,
openUTM generates message K045 in response to a positive print confirmation message.

To confirm printer output, a procedure must be initiated using a PADM call which informs
openUTM whether the print job should be repeated or whether it can now move on to print
the next message.

With PADM AI, you can call up information about print jobs which you have to confirm.
Users/clients on the printer control LTERM can therefore inform themselves about these
messages and can also obtain information using the MSGTAC routine.

In confirmation mode, openUTM issues message K045 in response to a positive print
confirmation message. You can assign message destination MSGTAC to this message: in
this case, openUTM passes the message to the MSGTAC routine. The MSGTAC routine
can then inform the printer control LTERM about the requested confirmation message.

Errors during print output (negative print confirmation messages) are handled in automatic
mode.

Administering message queues/printers Administering printers

Administering Applications 833

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

Print control functions

openUTM provides print control functions with the PADM call. The actual function
performed by PADM depends on the operation modifier which you send to openUTM in the
kcom field of the parameter area. The following operation modifiers are available:

● PADM AC for switching on the confirmation mode

● PADM AT for switching off the confirmation mode. Automatic mode is reset.

● PADM PR for repeating a print output. The printer message is repeated on the same
printer

● PADM OK for confirming print outputs

● PADM AI for calling up a list of print outputs to be confirmed with information

13.3.2.1 Activating/deactivating confirmation mode - PADM AC/AT

With PADM AC you can activate confirmation mode for one printer in the printer control
LTERM or for all printers in a printer control LTERM. The print control function no longer
runs automatically when in confirmation mode. openUTM does not delete the associated
print job from the queue until a PADM OK call is stored for this printer.

PADM AT switches off the confirmation mode. Print output once again runs in automatic
mode.

In UTM cluster applications, the change of confirmation mode applies globally to the cluster.

If PADM AT/AC is to operate on a specific printer, then you must specify the printer ID of
that printer in the kcrn field. If the call is to apply for all printers in the printer control LTERM,
you must enter blanks in kcrn.

Confirmation mode remains activated or deactivated beyond the termination of the current
application.

When deactivating the confirmation mode, please note that any print output started while
still in confirmation mode but not actually confirmed before the function was deactivated will
still have to be confirmed in automatic mode. In other words, openUTM does not deal with
subsequent print jobs for a given printer until a PADM OK has been issued.

 KDCPADM MODE on page 851.

Administering printers Administering message queues/printers

834 Administering Applications

13.3.2.2 Confirming or repeating print output - PADM OK/PR

This function can only be used if confirmation mode is activated.
A print output job is confirmed with the call PADM OK. openUTM deletes the corresponding
asynchronous job from the printer queue and can then deal with the next print job.

PADM PR repeats print output, for instance after a sample print run. The print job is not
deleted from the queue. It remains at the front of the queue and is processed again.

 See KDCPADM PRINT on page 852.

13.3.2.3 Querying information about print jobs to be confirmed - PADM AI

PADM AI provides information about print jobs to be confirmed. If there are no print jobs
requiring confirmation, PADM AI simply returns blanks.

openUTM returns the following information about every print job:

– printer ID
– job ID of the asynchronous job
– user ID of the job submitter
– time the job was placed
– the target time for time-driven jobs
– positive and/or negative confirmation job

If you wish to query the print jobs requiring confirmation for all printers in the printer control
LTERM, you must proceed as follows: when the first PADM/AI/PI call reaches the program
unit, instead of a printer ID, send blanks in the kcrn field of the parameter area. openUTM
then returns the printer ID of the first printer in the message area (together with other infor-
mation). The printer ID of the next printer then appears in the kcrmf field. You then pass the
contents of field kcrmf to field kcrn in the next PADM AI call etc. For the last printer,
openUTM passes blanks in the kcrmf field

 See KDCPADM INFORM, LIST =ACK on page 851.

Administering message queues/printers Administering printers

Administering Applications 835

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

13.3.3 Handling of errors during print output

Errors during print output are handled in the same way whether or not they have print
control. This section describes which UTM features you can use to respond to printer
malfunctions.

Hardware errors
The following action can be taken in response to hardware errors:

● The terminal assigned to the printer control LTERM is defective. When this happens, a
different terminal can be assigned to the printer control LTERM by means of adminis-
tration functions - such as with the administration command KDCSWTCH.

● A printer is defective. When this happens, a different printer can be assigned to the
LTERM partner of the printer, and therefore to its message queue, for example using
the KDCSWTCH command or by a procedure using the PADM CA call. If the LTERM
partner is assigned to a printer control LTERM, then always ensure that the printer ID
of the “new” printer is unique in the printer control LTERM area.

Formatting error
If errors occur when a logical message is being converted to a physical message (by
VSTU), or to a formatted message (by FHS), UTM deletes the message and generates a
dump. If the message is the main job in a complex of jobs, the negative confirmation job is
started.

Error handling using MSGTAC routines

Targeted error handling is possible using the event service MSGTAC. Since the UTM
program unit is authorized to perform administration work, it is capable of administering all
printers in the application and of performing the print control function for all printers.

When errors occur, openUTM issues message K046. You can assign message destination
MSGTAC to this message (see the openUTM manual ”Messages, Debugging and
Diagnostics”). When this message appears, the MSGTAC routine is run. The MSGTAC
routine can contain PADM calls. For example, it can:

– activate confirmation mode and then confirm or arrange for repetition of the print
outputs from the printer control LTERM

– assign the LTERM partner of the printer, i.e. the queue for that printer, to a different
printer

– inform a specific user/client about the error.

openUTM issues message K046 in response to the following errors:

– negative print confirmation message received from printer
– repetition of printer output
– not possible to establish a connection to the printer.

B

B

B

B

B

DADM/PADM: sample programs Administering message queues/printers

836 Administering Applications

13.4 UTM program units for DADM and PADM functions

openUTM is supplied with the KDCS program units KDCDADM and KDCPADM. These
provide you with all the services you will need for DADM and PADM calls without requiring
you to generate your own program units for the administration of message queues and
printers and for print control functions.

● KDCDADM provides the functions of DADM for the administration of messages.

● KDCPADM provides the functions of PADM for the administration of printers and for the
control of message output to printers.

The ISP syntax tables required for KDCDADM and KDCPADM are present in KDCDAISP.

Procedures in which the program units KDCDADM and KDCPADM run function as inter-
active transactions in a dialog step. KDCDADM and KDCPADM expect to receive input in
line mode: formatted input is rejected. The output generated by KDCDADM and KDCPADM
are also issued in line mode.
KDCDADM and KDCPADM issue messages in English.

KDCDADM, KDCPADM and KDCDAISP are supplied as compiled objects or object
modules. To enable you to use the program units together with the ISP syntax description,
you must link them to your application program and record the program units and trans-
action codes used to boot the program units in the configuration of your application.

In openUTM on BS2000 systems the object modules are stored in the LMS library
SYSLIB.UTM.065.EXAMPLE.

In openUTM on Unix and Linux systems you will find these objects in the library
libsample under the path utmpath/sample/sys.

In openUTM on Windows systems you will find these objects in the library
utmpath\sys\libwork.lib.

13.4.1 Generating KDCDADM and KDCPADM

The program units KDCDADM and KDCPADM must either be configured statically with
KDCDEF or entered dynamically in the configuration. To enable you to use the functions of
KDCDADM and KDCPADM you must assign dialog transaction codes to these program
units. You can select any TAC name of your choice. In the following example, KDCDADM
is assigned the transaction code tacdadm and KDCPADM is assigned the transaction code
tacpadm.

B

B

X

X

W

W

Administering message queues/printers KDCDADM

Administering Applications 837

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

Example of KDCDEF generation:

– on BS2000 systems:

:
:

PROGRAM KDCDADM,COMP=ILCS
PROGRAM KDCPADM,COMP=ILCS
TAC TACDADM,PROGRAM=KDCDADM,CALL=FIRST,TYPE=D
TAC TACPADM,PROGRAM=KDCPADM,CALL=FIRST,TYPE=D

:

– on Unix, Linux and Windows systems:

:
:

PROGRAM KDCDADM,COMP=C
PROGRAM KDCPADM,COMP=C
TAC tacdadm,PROGRAM=KDCDADM,CALL=FIRST,TYPE=D
TAC tacpadm,PROGRAM=KDCPADM,CALL=FIRST,TYPE=D

:

For KDCDEF generation in this application, you must also note the following:
The length of the standard primary working area specified in MAX SPAB= must be sufficient
to accept the KDCS parameter area.

13.4.2 KDCDADM - Administer messages

The program unit KDCDADM makes it possible to administer messages in message
queues. KDCDADM comprises three functions. You call up each of these functions by
entering the transaction code which you assigned to program unit KDCDADM (called
tacdadm from now on), together with a few operands. This next section describes which
operands these should be.

KDCDADM covers the following functions:

● cancelling messages, i.e. deleting them from the message queue (DELETE)

● displaying information about messages in a message queue (INFORM)

● prioritizing a message, i.e. moving it to the front of the message queue (NEXT)

● moving messages from the dead letter queue (MOVE)

If you enter tacdadmËHELP, openUTM informs you about the syntax of KDCDADM calls
together with a brief description of the functions.

B

B
B
B
B
B
B
B

X/W

X/W
X/W
X/W
X/W
X/W
X/W
X/W

KDCDADM DELETE Administering message queues/printers

838 Administering Applications

DELETE - Delete messages from the message queue

If you enter tacdadm together with the operand DELETE, you can delete messages from a
message queue.

You can:

● Delete a specific message.
To do this, you must provide unique identification for the message queue and the
message. You identify the message queue, depending on the type, by means of the
TAC name, the name of the LTERM partner, the user ID or the name of the temporary
queue. You identify the message by means of its job ID and the time when the message
was created. You can determine both of these items of data using the tacdadm INFORM.

● Delete all messages currently buffered in a message queue. This would delete all
messages which are not yet being processed by the recipient (TAC, LTERM partner,
user ID, temporary queue).

DELETE Delete one message or all messages waiting in a message queue.

DESTINATION=destination
Specifies the message queue of the recipient containing the message to be
canceled. For destination you must specify the name of a TAC, an LTERM
partner, a user ID or the name of a temporary queue.

DEST-TYPE= Specifies the type of the recipient (destination). Possible entries are:

LTERM The recipient is an LTERM partner.

TAC The recipient is a TAC or a TAC queue.

USER The recipient is the queue of a user ID.

QUEUE The recipient is a temporary queue.

tacdadmË DELETE

,DESTINATION=destination

[,DEST-TYPE = { LTERM | TAC | USER | QUEUE }]

,DPUTID={ ALL | dput-id,GENTIME=time [,CHAINMSG= {ACT | DEL}] }

Administering message queues/printers KDCDADM DELETE

Administering Applications 839

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

DPUTID= In DPUTID you specify which message is to be deleted.

ALL All messages to the recipient named in destination are to be deleted.

dputid One message in the queue is to be deleted. For dputid you must then
specify the job ID for the message which is to be deleted.

GENTIME=time
You only have to enter this if you wish to delete one specific message from
a queue (for DPUTID=dputid)
In this case, for time you must indicate the time at which the message was
generated. Enter time in the form (ddd,hh,mm,ss) where ddd is the number
of the day of the year, hh is the time in hours, mm the time in minutes and ss
the time in seconds. openUTM requires time for unique identification of
which message is to be deleted.

CHAINMSG= Indicates whether the negative confirmation job should be activated or not
when deleting a job complex (DPUT job with confirmation jobs).

ACT The negative confirmation job is activated if it exists.

DEL The negative confirmation job is also deleted.

Default: ACT

Result

openUTM sends a message to the LTERM partner/LPAP partner through which the
command was called. From the message you can identify whether the job was accepted or
rejected. To find out whether openUTM was able to successfully execute the job, you must
follow up with a KDCDADM INFORM query.

KDCDADM INFORM Administering message queues/printers

840 Administering Applications

INFORM - Display information about message queues and messages

With tacdadm INFORM you can display information about message queues. UTM always
provides the following items of information about individual messages in the queue:

– the job ID which you require, for example, when deleting a message
– the user ID with which the message was generated
– the time at which the message was generated
– with time-driven messages, the start time as of which the message should be

processed
– information as to whether a positive or negative confirmation job belongs to the

message.

In detailed information mode (LIST=LONG), openUTM also provides user information
written with DPUT NI.

The lists containing the information returned by openUTM can be very extensive in some
instances. For this reason, you have the options of:

– rerouting the output to a printer (OUT)
– restricting the output by specifying the job ID of the message at which the output list

should start. The lists should be in ascending order of job ID. When you enter a job ID
in CONT, the list starts with this message. No information is then provided about
messages whose job ID occurs earlier in the alphabetic list.

INFORM Summary list of which messages in a message queue are to be output.

DESTINATION=destination
Name of the recipient of a message about which openUTM is to provide
information. destination specifies the message queue. For destination you
must specify the name of a TAC, an LTERM partner, a user ID or the name
of a temporary queue.

tacdadmË INFORM

,DESTINATION=destination

[,CONT=dputid]

[,DEST-TYPE = { LTERM | TAC | USER | QUEUE }]

[,LIST={ SHORT| LONG }]

[,OUT={ KDCDISP | ltermname }]

Administering message queues/printers KDCDADM INFORM

Administering Applications 841

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

DEST-TYPE= Specifies the type of the recipient (destination).Possible entries are:

LTERM or TAC
The recipient is a TAC, a TAC queue or an LTERM partner.

USER The recipient is the queue of a user ID.

QUEUE The recipient is a temporary queue.

CONT=dputid Controls the scope of output. For dputid you can enter the job ID of the
message with which the list of information is to start. The list only contains
information about messages whose job ID occurs later in the alphabet than
dputid and about the message with the job ID specified in dputid.

LIST= Specifies the scope of information which openUTM is to output.

SHORT
The user information generated with DPUT NI is not output at the same
time.

LONG The user information written with DPUT NI is not output at the same time.

Default: SHORT

OUT= Indicates where openUTM is to output the information.

KDCDISP openUTM outputs the information to the terminal at which the information
was requested or openUTM passes the information to the client which
requested the information.

ltermname openUTM outputs the information to a printer. For ltermname, enter the
name of the LTERM partner assigned to the printer.

Result

For LIST=SHORT

User-id DPUT-id Gen-time Start-time Pos/Neg Dest.
user1 dput-id time1 time2 p/n/p n dest1

Key to terms:

User-id
User ID or “*NONE“, if the user who generated the message has been deleted.

DPUT-id
Job ID of the message

KDCDADM INFORM Administering message queues/printers

842 Administering Applications

Gen-time
Time when the message was generated. Enter time in the following manner:
(ddd,hh,mm,ss) where ddd is the number of the day in the year, hh is the time in
hours, mm the time in minutes and ss the time in seconds.

Start-time
This is output only for time-driven messages (DPUT messages).
Start-time is the earliest time as of which the job can be processed. The output
format for time is the same as for Gen-time.

Pos/Neg
Specifies whether a positive or negative confirmation job exists. The display field
contains a “p” if a positive confirmation job exists and an “n” if a negative confir-
mation job exists. “p n” indicates that both a positive and a negative confirmation
job exist.

Dest. Recipient of the message. For the dead letter queue, the original destination of the
message is specified here, i.e. the name of an asynchronous TAC, a TAC queue, a
LPAP partner or an OSI-LPAP partner. Otherwise, the field is empty.

For LIST=LONG

In addition to the information output for LIST=SHORT, the first 79 bytes of user information
are output (in the next line - DPUT NI message). The following information appears on the
output:

User-id DPUT-id Gen-time Start-time Pos/Neg Dest.
user dput-id time1 time2 p/n/p n dest1

User info:
 xx

Administering message queues/printers KDCDADM MOVE

Administering Applications 843

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

MOVE - Move messages from the dead letter queue

The dead letter queue is made up of messages which could not be processed.
In order to process these messages after any errors have been corrected, they must be
assigned either to their original destination or to a new destination.

tacdadm MOVE allows you to move individual messages or all messages stored in the dead
letter queue. The messages can be assigned to their original message queues or to any
new destination of the same type (asynchronous TAC / TAC queue, LPAP partner, OSI-
LPAP partner).

MOVE Move messages from the dead letter queue.

DESTINATION=
Specifies the new destination for the message.

*ORIG The message is to be assigned to its original destination.
If you specify DESTINATION=*ORIG together with DPUTID=ALL, all
messages are assigned to their original destinations.

destination
Name of the new destination for the message or for all messages with
appropriate original destination (asynchronous TAC / TAC queue, LPAP
partner, OSI-LPAP partner).

i If you move multiple messages (DPUTID=ALL), then those
messages remain in the dead letter queue whose original desti-
nation does not match the new destination.

DPUTID= ID of the message to be moved.

ALL All messages in the dead letter queue.

dputid Job ID of the message.

GENTIME=(ddd,hh,mm,ss)
Time the message was generated. Where:

ddd working day, hh hours, mm minutes, ss seconds.

tacdadmË MOVE

,DESTINATION = { *ORIG | destination }

,DPUTID = { ALL | dputid, GENTIME = (ddd,hh,mm,ss) }

KDCDADM MOVE Administering message queues/printers

844 Administering Applications

Result

The job to move all messages to their original destinations is accepted without an error
message being issued if individual original destinations or all the original destinations no
longer exist.

openUTM generates a message indicating whether the job was accepted or not. The
message is output at the terminal of the user issuing the job.

You must use separate KDCDADM demands in order to determine whether the messages
have actually been moved.

i The sample program DADMMVS or dadmmvsc for selectively moving messages
from the dead letter queue is supplied with openUTM. The interactive program
moves all messages from the dead letter queue using a specified original desti-
nation and a specified new destination. You can find the description of the sample
program in the relevant system-specific openUTM manual “Using UTM Applica-
tions”.

Administering message queues/printers KDCDADM NEXT

Administering Applications 845

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

NEXT - Prioritize messages in the message queue

By entering tacdadm NEXT you can prioritize a message located anywhere in the message
queue, moving it to the front of the queue. This makes the message you select the next
message to be processed by the recipient.

You can only prioritize time-driven messages (DPUT jobs) if the specified start time (the
earliest execution point) has already been reached.

NEXT The message specified in dputid is placed in first position in the message
queue.

DPUTID=dputid
Job ID of the message to be prioritized.

GENTIME=(ddd,hh,mm,ss)
Time when the message was generated;
ddd is the number of that day in the year, hh is the time in hours, mm the time
in minutes and ss the time in seconds.

Result

openUTM generates a message which lets you know whether the job was accepted or not.
The message is output to the terminal operated by the job submitter or is passed to the
client which started the job.

tacdadmË NEXT

,DPUTID=dputid, GENTIME=(ddd,hh,mm,ss)

KDCPADM Administering message queues/printers

846 Administering Applications

13.4.3 KDCPADM - Print control and printer administration

The KDCPADM program unit enables you to administer printers and the control of print
outputs. KDCPADM covers five functions. You can call each of these functions by entering
the transaction code which you assigned to program unit KDCPADM (called tacpadm from
now on) together with a few operands. This section describes which operands these are.

KDCPADM covers the following print control functions:

● Confirming print output or repeating an output item (PRINT)

● Switching between confirmation mode and automatic mode (MODE)

KDCPADM covers the following printer administration functions:

● Changing the status of a printer (STATE).
You can disable a printer, re-enable a disabled printer, or establish/terminate a
connection to a printer.

In UTM cluster applications, the disabling and enabling of printers applies globally to
the cluster.

● Assign a different or an additional printer to an LTERM partner, i.e. to a specific printer
queue (SWITCH).
This means that you can arrange for print jobs to be handled by another printer (e.g. in
the event of a malfunction) or for a printer pool to be generated.

This function is only permitted in standalone UTM applications.

● Inform about the printers assigned to a printer control LTERM (INFORM).

If you enter tacpadmËHELP, openUTM informs you about the syntax of the KDCPADM
call. openUTM provides a brief description of the functions.

Administering message queues/printers KDCPADM INFORM

Administering Applications 847

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

INFORM - Display information about printers for a printer control
LTERM

The tacpadm INFORM allows you to display information about printers and about the
message queues assigned to any particular printer.

openUTM provides the following information about the printers assigned to the printer
control LTERM:

– Name of the LTERM partner to which the printer is assigned
– Status of the printer, i.e. openUTM indicates whether the printer is currently connected

to the application and whether or not the printer is disabled
– Confirmation mode, i.e. openUTM indicates whether the printer is set for automatic

mode or confirmation mode
– Number of output jobs currently buffered in the queue of your selected printer, or the

queue of the printer pool
– Number of time-driven output jobs currently buffered in the queue.

openUTM supplies the following information about the output jobs in the queue of a printer
or a printer pool:

– Time at which the job was generated
– For time-driven jobs, the time as of which the job is to be processed
– Information about whether a positive or negative confirmation job is linked to the job.

The lists containing the information which openUTM returns can in some cases be very
extensive. For this reason, the following options are provided:

– rerouting the output to a printer (OUT).
– restricting the output by specifying the job ID of the job with which the output list should

start. The lists should be in ascending order of job ID. When you enter a job ID in CONT,
the list starts with this job. No information is then provided about jobs whose job ID
occurs earlier in the listing.

tacpadmË INFORM

,LIST= { PRINTERS | ACK }

[,CID=cid1]

[,CONT=cid2]

[,OUT={ KDCDISP | ltermname1 }]

[,CTERM=ltermname]

KDCPADM INFORM Administering message queues/printers

848 Administering Applications

INFORM Outputs a summary list of printers or output jobs.

CID=cid1 (control-ID)
Printer ID of the printer. If you do not enter cid then openUTM returns infor-
mation about all printers and message queues assigned to the printer
control LTERM.

LIST= Indicates which information has been requested.

PRINTERS
Information about printers

ACK Information about the output jobs in the printer queues which still have to be
confirmed.

CONT=cid2 Controls the scope of the output. For cid2 you can enter the job ID of the
printer as of which the list of information is to start.

There is no point entering CONT= unless the output produced in response
to an earlier INFORM call does not fit on one screen page. To continue
output, you enter the printer ID of the last printer that handled the previous
output when you enter the next call in cid2.

OUT= Specifies where openUTM is to output the information.

KDCDISP openUTM outputs the information to the terminal on which the information
was requested or passes the information to the client which requested the
information.

ltermname1
openUTM outputs the information to the printer. For ltermname1, enter the
name of the LTERM partner to which the printer is assigned.

Default: KDCDISP

CTERM=ltermname
Printer control LTERM to which the printer cid1 belongs. For ltermname,
enter the name of the printer control LTERM. If the command is not entered
at the printer control LTERM of printer cid1, the user who enters the
command must have administration privileges.

Default:
Name of the LTERM partner at which the command is entered.

Administering message queues/printers KDCPADM INFORM

Administering Applications 849

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

Result

For LIST=PRINTERS

Control-id State Connected Mode LTERM-name # of msg.: output delayed
cid1 Y/N Y/N auto/ack lterm1 num1 num2

Key to terms:

Control-id
Printer ID of the printer

State Indicates whether the printer is disabled (N) or not (Y)

Connected
Indicates whether the connection to the printer is established (Y) or not (N)

Mode
Indicates whether confirmation mode (ack) or automatic mode (auto) is selected

LTERM name
Name of the LTERM partner to which the printer is assigned

output
Number of output jobs currently buffered in the printer queue

delayed
Number of time-driven output jobs (DPUT job) currently buffered and waiting to be
processed in the printer queue and whose start time has not yet been reached.

KDCPADM INFORM Administering message queues/printers

850 Administering Applications

For for LIST=ACK:

Control-id User-id DPUT-id Gen-time Start-time Pos/Neg chain msg
cid1 user1 dput-id time1 time2 p / n / p n

Key to terms:

Control-id Printer ID of the printer

User-id
User ID or “*NONE“, if the user who generated the job has been deleted.

DPUT-id
Job ID of the asynchronous job

Gen-time
Time at which the asynchronous job was generated. Enter time in the form
(ddd,hh,mm,ss), where ddd is the number of the day in the year, hh is the time in
hours, mm the time in minutes and ss the time in seconds.

Start-time
This is output only for time-driven jobs (DPUT jobs).
Start-time is the earliest time as of which the job can be processed. The output
format for time is the same as for Gen-time.

Pos/Neg chain msg.
Specifies whether a positive or negative confirmation job exists. The display field
contains a “p” if a positive confirmation job exists and an “n” if a negative confir-
mation job exists. “p n” indicates that both a positive and a negative confirmation
job exist.

Administering message queues/printers KDCPADM MODE

Administering Applications 851

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

MODE - Change the confirmation mode for a printer

With tacpadm MODE you can change the confirmation mode. You can switch from automatic
mode to confirmation mode and vice versa.

In UTM cluster applications, the change of confirmation mode applies globally to the cluster.

MODE Switches between automatic mode and confirmation mode for a printer.

CID=cid (control-ID)
Printer ID of the printer to be administered. If you do not enter cid, then the
call addresses all printers assigned to the printer control LTERM ltermname.
If the call is not placed at the printer control LTERM, then the user must have
administration privileges.

ACT= Action to be performed, mandatory operand.

ACK Changes to confirmation mode, i.e. every print output has to be confirmed
(e.g. with PRINT,...,ACT=NEXT).

AUTO Activates automatic mode, i.e. print output does not have to be confirmed.
If cid is entered as a printer ID, the last print job for this printer is confirmed
automatically.

CTERM=ltermname
Printer control LTERM, to which the printer cid belongs. For ltermname,
please enter the name of the printer control LTERM. If the command is not
entered at this printer control LTERM, then the user who started the
procedure must have administration privileges.

Default:
Name of the LTERM partner at which the command is entered.

Result

openUTM returns a message informing you whether the job was accepted or rejected.

tacpadmË MODE

[,CID=cid]

 ,ACT={ ACK | AUTO}

[,CTERM=ltermname]

KDCPADM PRINT Administering message queues/printers

852 Administering Applications

PRINT - Confirm / repeat print job

With tacpadm PRINT you can confirm a print job and arrange for the next job to be
processed or for a print job to be repeated. In order to use the call tacpadm PRINT, confir-
mation mode must already be activated.

PRINT Confirms or repeats print output

CID=cid (control-ID)
printer ID of the printer to which the call refers

ACT= Action to be performed:

NEXT Print output is confirmed and the following output job is cleared for
processing

REPEAT Print output is to be repeated

Default: NEXT

CTERM=ltermname
Name of the printer control LTERM to which the printer is assigned. If the
command is not entered at this printer control LTERM, then the user who
starts the procedure must have administration privileges.

Default:
Name of the LTERM partner at which the command was entered.

Result

openUTM returns a message informing you whether the job has been accepted or rejected.

tacpadmË PRINT

,CID=cid

[,ACT={ NEXT| REPEAT}]

[,CTERM=ltermname]

Administering message queues/printers KDCPADM STATE

Administering Applications 853

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
be

r
20

17
 S

ta
nd

 0
8:

47
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

1
70

09
0

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_

e.
k1

3

STATE - Change the status of a printer

The tacpadm STATE allows you to change the status of a printer. You can:

● disable a printer or re-enable a disabled printer

● establish or terminate the connection to a printer.

STATE Changes the status of a printer

CID=cid (control-ID)
Printer ID of the printer whose status is to be changed

ACT= Action to be performed, mandatory operand.

ON Re-enable a disabled printer

OFF Disable a printer, i.e. it is no longer possible to establish a connection to this
printer. If the printer is still connected at the time, the connection will be
terminated.

In UTM cluster applications, ON and OFF apply globally to the cluster.

CON Establish a connection to a printer

DIS Terminate the connection to a printer

DISOFF Terminate the connection to a printer and disable the printer.

CTERM=ltermname
Name of the printer control LTERM to which the printer is assigned. If the
command is not entered at this printer control LTERM, the user who started
the procedure must have administration privileges.

Default:
Name of the LTERM partner at which the command was entered.

Result

openUTM returns a message informing you whether the job has been accepted or rejected.

tacpadmË STATE

,CID=cid

,ACT={ ON| OFF | CON | DIS | DISOFF }

[,CTERM=ltermname]

KDCPADM SWITCH Administering message queues/printers

854 Administering Applications

SWITCH - Change the assignment of printers to LTERM partners

The tacpadm SWITCH allows you to change the assignment of LTERM partners and
printers. This function is only permitted in standalone UTM applications.

You can:

● assign the LTERM partner for this printer to a different printer, together with the
message queue. This new printer then processes the print jobs in the queue sequen-
tially. This enables you, for example, to print output jobs at a different printer if there is
a malfunction on the original printer.

● to group printers together to form printer pools. This involves assigning several printers
to one LTERM partner. All the printers in the pool will then work together to process the
message queue for this LTERM partner. For more information about printer pools, see
the openUTM manual “Generating Applications”.

SWITCH Changes the assignment of printers to LTERM partners

CID=cid (control-ID)
Printer ID of the printer to which a different LTERM partner is to be assigned.

LTERM=ltermname1
Name of the LTERM partner to which the printer is to be assigned. For lterm-
name1 you can only enter an LTERM partner which has been specifically
generated for printers and other output media. If a printer has already been
assigned to the LTERM partner, this assignment is not terminated. The
printers are simply grouped together to form a printer pool.

CTERM=ltermname
Name of the printer control LTERM to which the printer cid is assigned. If the
command is not entered at this printer control LTERM, the user who starts
the procedure must have administration privileges.

Default:
Name of the LTERM partner at which the command was entered.

Result

openUTM returns a message informing you whether the job has been accepted or rejected.

tacpadmË SWITCH

,CID=cid

,LTERM=ltermname1

[,CTERM=ltermname]

Administering Applications 855

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

14 Appendix

14.1 Program interface for administration in COBOL

The COBOL program interface for administration purposes is very similar to the
C/C++ program interface described in chapter 11. This means that you will also find it useful
to refer to the description of the program interface in chapter 11 and to the descriptions
dealing with the functional scope, the structure of user-defined administration programs,
and central and automatic administration functions (chapters 3, 4, 5, 7, 8, 9 and 10) when
writing your own administration programs in COBOL. This section lists the differences that
you will need to be aware of when programming administration applications in COBOL:

The COBOL program interface differs from the C/C++ program interface in the following
ways:

● In place of a header file (kcadminc.h) which includes all the data structures, COBOL is
supplied with individual COPY members. Each of these COPY members usually
contains only a single data structure (see table “COPY members for the program
interface in COBOL” on page 856). This gives you the option of including individual data
structures in programs which, under certain circumstances, can make programming
considerably easier (e.g. when creating input/output tables).

● In accordance with COBOL conventions, field names use uppercase letters in place of
lowercase letters and hyphens (-) in place of underscores (_).

Example: The COBOL field name OBJ-TYPE corresponds to the C data field obj_type.

COBOL administration programming interface Appendix

856 Administering Applications

14.1.1 COPY members for the program interface in COBOL

The names of the COPY members for the program interface for administration are all
prefixed with the letters KCA. The table below contains the names of the C data structures
in alphabetical order and specifies which COPY member corresponds to which C data
structure, or which COPY member contains particular definitions:

C data structure / definitions COBOL COPY member

Operation codes and sub-operation codes for KDCADMI (values from
opcode and subopcode1/2), the object types (values from obj_type) and the
main and subcodes of the return codes (values from retcode)

KCAOPRTC

Printable strings for the main and subcodes of the return codes KCAPRINC

kc_abstract_syntax_str KCAABSTC

kc_access_point_str KCAACCPC

kc_adm_parameter (parameter area) and
kc_id_area (identification area)

KCAPAIDC

kc_application_context_str KCAAPLCC

kc_bcamappl_str KCABCAMC

kc_change_application_str KCAAPPLC

kc_cluster_curr_par_str KCACCURC

kc_cluster_node_str KCACLNOC

kc_cluster_par_str KCACLPAC

kc_con_str KCACONC

kc_create_statements_str KCACREAC

kc_curr_par_str KCACURRC

kc_db_info_str KCADBIC

kc_diag_and_account_par_str KCADACCC

kc_dyn_par_str KCADYNC

kc_edit_str KCAEDITC

kc_encrypt_str KCAENCRC

kc_encrypt_advanced_str KCAENCAC

kc_gssb_str 1

kc_kset_str KCAKSETC

kc_load_module_str KCALMODC

kc_lock_mgtm_str KCACLLKC

kc_lpap_str KCALPAPC

kc_lses_str KCALSESC

B

Appendix COBOL administration programming interface

Administering Applications 857

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

kc_lterm_str KCALTRMC

kc_ltac_str KCALTACC

kc_max_par_str KCAMAXC

kc_msg_dest_par_str KCAMSGDC

kc_message_module_str KCAMSGMC

kc_mux_str KCAMUXC

kc_online_import_str KCACLIMC

kc_osi_association_str KCAOASSC

kc_osi_con_str KCAOCONC

kc_osi_lpap_str KCAOLPAC

kc_pagepool_str KCAPGPLC

kc_ptc_str KCAPTCC

kc_program_str KCAPROGC

kc_pterm_str KCAPTRMC

kc_queue_par_str KCAQUPAC

kc_queue_str KCAQUEUC

kc_sfunc_str KCASFUNC

kc_shutdown_str KCASHUTC

kc_signon_str KCASIGNC

kc_subnet_str KCASBNTC

kc_syslog_str KCASLOGC

kc_system_par_str KCASYSTC

kc_tac_str KCATACC

kc_tacclass_str KCATCLC

kc_tasks_par_str KCATASKC

kc_timer_par_str KCATIMEC

kc_tpool_str KCATPLC

kc_transfer_syntax_str KCATRANC

kc_user_dyn1_str KCAUSD1C

kc_user_dyn2_str KCAUSD2C

kc_user_fix_str KCAUSFXC

C data structure / definitions COBOL COPY member

B

X/W

COBOL administration programming interface Appendix

858 Administering Applications

The COPY members for the COBOL program interface are stored in the following libraries:

● for openUTM on BS2000 systems: in the library SYSLIB.UTM.065.COB

● for openUTM on Unix and Linux systems: in the directory
utmpath/copy-cobol85 (Micro Focus Cobol compiler) or
utmpath/netcobol (NETCOBOL compiler from Fujitsu)

● for openUTM on Windows systems: in the directory
utmpath\copy-cobol85 (Micro Focus Cobol compiler) or
utmpath\netcobol (NETCOBOL compiler from Fujitsu)

14.1.2 KDCADMI function call

When calling KDCADMI you can - as with the C/C++ interface - pass four sets of param-
eters to openUTM: the parameter area KC-ADM-PARAMETER: the identification area ID-
AREA; the selection area SELECT-AREA; and the data area DATA-AREA. To find out what
data to supply to each of these areas, please refer to the description of the C/C++ interface
in chapter 11. The KDCADMI must have the following syntax:

CALL "KDCADMI" USING KC-ADM-PARAMETER,
 ID-AREA,
 SELECT-AREA,
 DATA-AREA.

kc_user_str KCAUSERC

kc_utmd_par_str KCAUTMDC

1 In this case there is no corresponding COPY member as kc_gssb_str only consists of the 8 character-long field
in which the GSSB name (GS-NAME) is passed.

C data structure / definitions COBOL COPY member

B

X

X

X

W

W

W

Appendix COBOL administration programming interface

Administering Applications 859

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

14.1.3 Notes on programming

When writing administration programs in COBOL, please observe the following points:

● If you are working with the printable string tables for the return codes (the COPY
member KCAPRINC), you will need to remember that, in COBOL, a table always begins
with the index “1”, whereas return code values always begin with “0”. You can program
accesses to a printable return code in the table as follows:

MOVE MC-TEXT (KC-MAINCODE + 1) TO MC.
MOVE SC-TEXT (KC-SUBCODE + 1) TO SC.

● The data structure KC-ADM-PARAMETER with the call parameters for the
administration interface begins on level 1. KC-ADM-PARAMETER therefore has to be
stored in the WORKING-STORAGE-SECTION or the LOCAL-STORAGE-SECTION
section.

● If a data structure contains substructures, then these should generally be addressed in
fully qualified form.

Example
MOVE SIGN-YEAR IN SIGN-TIME-DATE IN KC-USER-STR TO ...

Sample programs Appendix

860 Administering Applications

14.2 Sample programs

Sample programs are shipped with the product openUTM in the form of source code and
object modules. You can use these as programming templates for your own administration
programs, modify them to suit your requirements, compile them and integrate them in your
application. The sample programs are the programs HNDLUSR (only BS2000 systems),
DADMMVS, PUBSUBA/PUBSUBD, SUSRMAX, COBUSER and ENCRADM (for a
description of DADMMVS and PUBSUBA/PUBSUBD, see the relevant openUTM manual
“Using UTM Applications”).

On BS2000 systems you will find the source code and the object modules of the sample
programs, the ERRCHCK subroutine and the D0USER mask (IFG format) in the library
SYSLIB.UTM.065.EXAMPLE.

On Unix and Linux systems you will find the COBOL module COBUSER.cbl in the directory
utmpath/sample/src/mfcobol or .../netcobol. The C sample program and the subprogram
ERRCHCK form part of the sample application. Following installation of the sample appli-
cation, they can be found in the corresponding subdirectory utmsample/utm-c..

On Windows systems you will find the COBOL module COBUSER.cbl in the directory
utmpath\sample\src\mfcobol or ...\netcobol. The C sample program and the subprogram
ERRCHCK for part of the Quick Start Kit. Following installation of the Quick Start Kit, they
can be found in the corresponding subdirectory \utmsample\utm-c.

i The generation statements for the C sample programs are already entered in the
KDCDEF input files of the sample application (Unix and Linux systems or of the
Quick Start Kit (Windows systems).

14.2.1 The C program unit HNDLUSR

HNDLUSR allows you to carry out the following actions with format control:

– query and modify the properties of user IDs
– enter new user IDs in the configuration
– delete user IDs from the configuration

Notes on generation

The program unit must be defined as follows in the KDCDEF run:

PROGRAM HNDLUSR,COMP=ILCS

TAC HNDLUSR,PROGRAM=HNDLUSR,ADMIN=YES

FORMSYS ENTRY=KDCFHS,TYPE=FHS,LIB=library with connection module to the formatting system

The program unit uses the C routine ERRCHCK and the FHS format D0USER internally.

B

B

B

X

X

X

X

W

W

W

W

X/W

X/W

X/W

B

B

B

B

B

B

B

B

B

B

Appendix Sample programs

Administering Applications 861

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

Note on linking

The HNDLUSR program unit can be linked to the application program by means of a
RESOLVE-BY-AUTO statement. The ERRCHCK routine is implicitly included as well.

Note on starting

The parameters for the FHS formatting system must be added to the start procedure for the
application:

.FHS MAPLIB=format library

.FHS ISTD=RUNP

You must copy the FHS format D0USER from the EXAMPLE library to the format library you
are using before the application is started.

14.2.2 The C program unit SUSRMAX

You can use SUSRMAX to carry out the following actions:

● display all currently connected user IDs

● display all user IDs that are currently in a service

● display the currently set values for application parameters that can be defined in MAX
at KDCDEF generation and modified by administration

● modify these application parameters

Notes on generation

The program unit must be defined as follows in the KDCDEF run:

PROGRAM SUSRMAX,COMP=ILCS
or
PROGRAM SUSRMAX,COMP=C

TAC SUSRMAX,PROGRAM=SUSRMAX,ADMIN=YES

The program unit requires the following minimum sizes for KB and SPAB:

– 168 bytes for the KB program area
– 6296 bytes for the SPAB area

The program unit uses the C routine ERRCHCK internally.

B

B

B

B

B

B

B
B

B

B

B

X/W

Sample programs Appendix

862 Administering Applications

Note on linking

The SUSRMAX program unit can be linked to the application program by means of a
RESOLVE-BY-AUTO statement. The ERRCHCK routine is also included implicitly.

The SUSRMAX program unit is automatically linked into the example application.

14.2.3 The COBOL program unit COBUSER

The program reads information on signed-on users and LTERM partners.

Notes on generation

The program unit must be defined in the KDCDEF run as follows:

PROGRAM COBUSER, COMP=ILCS
or
PROGRAM COBUSER, COMP=COB2 (Micro Focus compiler)
PROGRAM COBUSER, COMP=NETCOBOL (NETCOBOL compiler from Fujitsu)

TAC COBUSER, PROGRAM=COBUSER, ADMIN=YES

Note on linking

The COBUSER program unit can be linked to the application program by means of a
RESOLVE-BY-AUTO statement.

On Unix and Linux systems you must link the library libsample which is located below the
path utmpath/sample/sys.

On Windows systems, the COBUSER.obj object must be linked explicitly.

14.2.4 The C program unit ENCRADM

The ENCRADM program unit lets you perform the following administration functions for the
encryption software.

– generate new RSA key pairs
– activate newly generated key pairs
– delete active and newly generated key pairs
– read out public keys in a file (both active and newly generated key pairs)

On Unix, Linux and Windows systems, ENCRADM is part of the sample application.

B

B

X/W

B

X/W

X/W

B

B

X

X

W

Appendix Sample programs

Administering Applications 863

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

Notes on generation

The program unit must be defined using the following KDCDEF statements.

PROGRAM ENCRADM,COMP=ILCS
or
PROGRAM ENCRADM,COMP=C

TAC ENCRADM,PROGRAM=ENCRADM,ADMIN=YES

The program unit requires the following minimum space for KB and SPAB:
200 bytes for the KB program area and 4 KB for the SPAB area.

The program unit uses the C routine ERRCHCK internally.

Notes on linking

The ENCRADM program unit is linked to the EXAMPLE library in the application program
by means of a RESOLVE-BY-AUTO statement. The ERRCHCK routine is also linked
implicitly.

The ENCRADM program unit is automatically linked into the example application.

14.2.5 The C program units ADJTCLT

Using the C program unit ADJTCLT (adjust tac class), users can control how the processes
(tasks) are distributed to the TAC classes in the light of the current total number of
processes and the current number of asynchronous processes. To do this, the user creates
a table containing the desired settings, see section "Creating a TAC class table".

The program is supplied as a full dialog and asynchronous program unit.

On Unix, Linux and Windows systems, ADJTCLT forms part of the sample application or of
the Quick Start Kit.

The program makes it possible to:

– Automatically adapt the number of TAC class processes in accordance with the table.
This function is always executed.

– Read in a new table with a default name, see page 864. This function is executed if no
table has as yet been read or if the operation code RF or READFILE is specified.

– Read in a new table with any name. This function is executed if the operation code RF
or READFILE is specified.

– Modify the currently permitted number of asynchronous tasks. This function is executed
if the operation code MA=ttt or MAXASYN=ttt is specified, where ttt is the desired
maximum number of ASYNTASKS.

B

X/W

B

B

B

X/W

X/W

X/W

Sample programs Appendix

864 Administering Applications

Because modifying the number of permitted tasks for asynchronous processing does
not generate any messages, the change must not be made directly using the KDCAPPL
command but must instead be performed via the interface provided by this program in
order to adapt the TAC class settings.

i If only one dialog TAC is generated for the program unit then all the functions must
be started manually, i.e. the program must be called manually whenever the
number of tasks or asynchronous tasks or the table has been changed.

For information on how to call the program automatically by means of the
asynchronous TAC, see section “ADJTCLT as MSGTAC or MSG-DEST program
unit” on page 867.

Creating a TAC class table

In this table, you specify the number of tasks per TAC class as a function of:

● the number of running processes

● and the current setting for the maximum number of processes that may be used for
asynchronous processing.

The table must be saved as a text file. It can, for example, be created in Microsoft Excel and
then be saved as a tab-separated text file. Spaces are also permitted as separators.

Sample table

A sample table with the following default name is supplied for all platforms:

● BS2000 systems: ADJTABLE.TXT

You will find this sample table in the library SYSLIB.UTM.065.EXAMPLE. Before the
program unit can use this table, you must copy it to the user ID under which the UTM
application is running. In UTM cluster applications, all the node applications can use the
same table if the file is located in the shared pubset.

● Unix, Linux and Windows systems: AdjTable.txt

On Unix, Linux and Windows systems, the table forms part of the sample application or
of the Quick Start Kit. Following the installation of the sample application or the Quick
Start Kit, the table can be found in the following subdirectory of the sample application
or Quick Start Kit:

utmsample/utm-c (Unix and Linux systems)
utmsample\utm-c (Windows systems)

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X

W

Appendix Sample programs

Administering Applications 865

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

Structure of the table

The following rules apply to the structure of the table:

● The values must be entered as printable numbers.

● The first row in the table can be a title line.

● All subsequent rows must have the following identical structure:

– Column 1: Number of running processes. The maximum number of processes is
240.

– Column 2: Current setting for the maximum number of processes that may be used
for asynchronous processing.

– Column 3 onwards: Number of processes for each TAC class in ascending order,
e.g.

17 2 4 3 3 ... 0 0 0 1 1 1

Row 3 corresponds to TAC class 1, row 4 to TAC class 2 etc.

The following applies to each of these rows:

– The number of processes in row 1 must be greater than the total number of
processes for all dialog TAC classes (1 - 8) plus the number of asynchronous
processes. The greater this difference is, the more free processes there are for
performing other tasks.

– In the case of unused dialog TAC classes, it is also possible to specify 0 as the
number of processes even though the minimum value for the number of processes
for dialog TAC classes is 1. Reason: If this were not the case, the minimum number
of processes for the application would be 9 (8 dialog TAC classes + 1).

You should note that the program is not able to check whether these dialog TAC
classes are genuinely unused.

– The values for the TAC classes can also be omitted. In this case, the default value
0 is used for dialog TAC classes and the default value '-' for asynchronous TAC
classes. '-' for asynchronous TAC classes means that the number of tasks for this
TAC class is unchanged.

● The number of processes (column 1) must be sorted in ascending order in the table,
while the numbers of asynchronous processes for which there are the same numbers
of processes (column 2) must be sorted in descending order.

● Only the maximum permitted number of asynchronous processes, but not the number
of processes permitted for the individual TAC classes, has an influence on the number
of required processes. This is ignored if the number of permitted tasks for the individual
asynchronous TAC classes is smaller than the maximum permitted number of
asynchronous tasks.

Sample programs Appendix

866 Administering Applications

Example

Extract from a table specifying that if there are 10 or fewer processes then one process, and
if there are 12 or more processes then two processes must always be reserved, and in
which only dialog TAC classes 1, 2 and 3 are used.

The program starts the search at the last entry in the table and selects the table entry for
which the following two conditions are satisfied:

– The number of running processes must be greater than or equal to the number in
column 1.

– The difference between the number of currently running processes and the currently set
maximum number of asynchronous tasks must be greater than or equal to column 1 -
column 2.

This condition ensures that the minimum number of processes that are free for dialog
processing is actually greater than the sum of the numbers of processes in the dialog
TAC classes.

If an entry is found then the program performs the following calculation:

Number of available dialog processes = Column 1(All) - Column 2 (Asyn)

Alle Asyn Tcl01 Tcl02 Tcl03 … Tcl11 Tcl12 Tcl13 Tcl14 Tcl15 Tcl16

4 0 1 1 1 … 0 0 0 0 2 2
5 1 1 1 1 … 0 0 0 0 1 2
5 0 2 1 1 … 0 0 0 0 1 1
6 2 1 1 1
6 1 2 1 1 … 0 0 0 0 0 1
6 0 2 2 1 … 0 0 0 0 0 0
…
10 5 2 1 1 … 0 0 0 0 3 3
10 3 3 2 1 … 0 0 0 0 1 2
10 1 3 3 2 … - - - - - -
10 0 4 3 2
12 7 1 1 1 … 0 0 0 0 3 4
12 3 3 2 2 … 0 0 0 0 1 2
12 1 4 3 2

Appendix Sample programs

Administering Applications 867

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

Example

– If there are 12 processes and 7, 6, 5 or 4 asynchronous processes then the following
row is selected:

12 7 1 1 1 … 0 0 0 0 3 4

– If there are 12 processes and 8 asynchronous processes then the following row is
selected:

6 2 1 1 1

Of the 12 running processes, 4 are always free for dialog processing since a maximum
of 8 processes are occupied by asynchronous processing. Of these 4 processes, a
maximum of 3 are occupied by dialog processing (sum of the processes for the dialog
TAC classes 1+1+1). There is therefore always one process free.

– If there are 12 processes and 9 asynchronous processes then no suitable entry is
found.

If a suitable table entry is found then the number of processes for the individual TAC classes
is adapted in accordance with the table.

In the case of TAC classes generated with PGWT=YES, the number of processes must not
exceed the generated maximum number TASKS-IN-PGWT.

If the number of processes in TAC classes generated with PGWT=YES exceeds the
maximum permitted number TASKS-IN-PGWT then the smaller value is used.

ADJTCLT as MSGTAC or MSG-DEST program unit

The asynchronous program variant of ADJTCLT can also be used as a MSGTAC or MSG-
DEST program. An existing MSGTAC program can (after being adapted, if necessary) be
integrated in the program unit. However, ADJTCLT cannot be used as a subprogram of an
existing MSGTAC program.

ADJTCLT as MSGTAC program

If ADJTCLT is only generated as a MSGTAC program then only those functions that do not
require an operation code are available since the MSGTAC program run is exclusively
event-driven and the program cannot be called via a TAC.

In this case, there must be a separate application message module and the messages
K052, K056 and K058 must have the message destination MSGTAC.

ADJTCLT as MSGDEST program

In the case of message-driven processing, the asynchronous TAC can also be generated
as a MSG-DEST (MSG-DEST USER-DEST-1/2/3/4, NAME=, DEST-TYPE=TAC, …) and
be used in the user message module as USER-DEST for messages K052, K056 and K058.

Sample programs Appendix

868 Administering Applications

However, a message-driven program unit only runs independently of the number of
asynchronous processes and TAC class control if it has been generated as a MSGTAC
program. Otherwise the following applies:
– There must always be at least one process that is permitted to perform asynchronous

processing.
– At least one process must be permitted in the program unit's TAC class.

Notes on generation

The program unit must be defined as follows in the KDCDEF run:

PROGRAM ADJTCLT, COMP=ILCS
PROGRAM ADJTCLT, COMP=C

Generation as dialog and asynchronous TAC:

TAC ADJTCLT, PROGRAM=ADJTCLT, ADMIN=YES, TYPE=D
TAC ADJTCLTA, PROGRAM=ADJTCLT, ADMIN=YES, TYPE=A

Generation as MSGTAC:

TAC KDCMSGTC, PROGRAM=ADJTCLT, ADMIN=YES, TYPE=A

The asynchronous TAC ADJTCLTA can be generated as follows as MSG-DEST for, e.g.,
USER-DEST-1.

MSG-DEST USER-DEST-1, NAME=ADJTCLTA, DEST-TYPE=TAC , MSG-FORMAT=PRINT

On Unix, Linux and Windows systems, you can also take over the KDCDEF statements
from the sample application or the Quick Start Kit into the generation of the UTM appli-
cation.

Notes on linking

On BS2000 systems, the program unit ADJTCLT can be linked to the application program
by means of a RESOLVE-BY-AUTO statement. This also implicitly links the routine
ERRCHCK.

On Unix, Linux and Windows systems, the program unit ADJTCLT is automatically linked
to the sample application or the Quick Start Kit.

B
X/W

X/W

X/W

X/W

B

B

B

X/W

X/W

Appendix CALLUTM

Administering Applications 869

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

14.3 CALLUTM -
Tool for administration and client/server communication

CALLUTM is a UPIC client on a BS2000 system which communicates with UTM applica-
tions that can be running either on the same BS2000 system or on a different system.
CALLUTM can communicate with UTM applications irrespective of the operating system
under which they happen to be running.

CALLUTM allows you, from within a BS2000 task, to start services in a UTM application,
pass data to and receive data from those services. Messages are output in line mode.
CALLUTM can run both in dialog mode and in batch mode, i.e. it can be implemented in
procedural environments within a BS2000 task.

This makes CALLUTM particularly suitable for the central administration of local and
remote UTM applications. With CALLUTM you can issue UTM administration commands
and start administration programs in the UTM applications.

To do this, you must adapt the generations of the administered UTM applications, see
section “Generation” on page 870.

To understand the following description of CALLUTM you will need to be familiar with UPIC
on BS2000 systems, see the manual „openUTM-Client for the UPIC Carrier System”.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

CALLUTM Appendix

870 Administering Applications

14.3.1 Instructions for use

14.3.1.1 Generation

To use CALLUTM to administer UTM applications, proceed as follows:

● In the local BS2000 system: In the “side information file” (also known as the UPICFILE)
for the UPIC carrier system, you must create the corresponding entries for the UTM
applications (see the manual “openUTM-Client V4.0 for the UPIC Carrier System“).

● In each UTM application to be administered you must make PTERM entries and
LTERM partner entries in the relevant configurations or generate an LTERM pool via
which CALLUTM can connect.

● You need to create at least one user ID with administration privileges in each UTM appli-
cation that you want to administer for this (see example below). CALLUTM must pass
this user ID (along with the relevant password) to the UTM application when estab-
lishing the conversation. The CALLUTM statement CREATE-CONFIGURATION
contains the operands USER-ID and PASSWORD for this (see page 882f).

i You can also assign the LTERM partner through which CALLUTM links up with
the UTM application an user ID with administration privileges (LTERM
...,USER=). CALLUTM then does not need to pass a user ID to the UTM appli-
cation and has administration privileges when establishing the connection. Bear
in mind, however, that this approach will reduce access control for the UTM
application.

Example

The CALLUTM program on the BS2000 computer D017ZE00 is to communicate with the
application DB400 on the BS2000 computer D018ZE08.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Appendix CALLUTM

Administering Applications 871

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

Sample configuration for using the program CALLUTM

B

D017ZE00

UPIC carrier system

client program
CALLUTM

UTM application
on BS2000 system

IBCAM

D018ZE08

Network

DB400

B

CALLUTM Appendix

872 Administering Applications

KDCDEF generation for the UTM application on the DB400 computer BS2HOSTA:

There are to be two ways in which CALLUTM can connect to the UTM application:

● via an LTERM pool. If CALLUTM connects via the LTERM pool, CALLUTM will be
unable to start any administration commands and TACs for which administration privi-
leges are required.

● via an LTERM partner generated explicitly for the purpose of working together with
CALLUTM. To this end, a PTERM statement, an LTERM statement and a USER
statement must be issued for CALLUTM in the UTM application.

● The user ID (USER ADMUPCT0) must have administrator privileges and be assigned
to the LTERM partner.

*- BCAMAPPL FOR CONNECTING CALLUTM VIA AN LTERM POOL

BCAMAPPL DB4UPAP0,T-PROT=ISO

*- BCAMAPPL FOR CONNECTING CALLUTM VIA A DEDICATED LTERM PARTNER

BCAMAPPL DB4UPAT0,T-PROT=ISO

- LTERM POOL FOR CONNECTING CALLUTM -----------------------------

TPOOL BCAMAPPL=DB4UPAP0,KSET=ALLKEYS,LTERM=UPCP0#0,NUMBER=9, -
 PRONAM=D017ZE00,PROTOCOL=N,PTYPE=UPIC-R

- DEFINE PTERM STATEMENT, LTERM PARTNER AND USER ID WITH --------
- ADMINISTRATION PRIVILEGES FOR CALLUTM -------------------------

PTERM UPCPT#T0, PRONAM=BS2HOSTC, PTYPE=UPIC-R, -

BCAMAPPL=DB4UPAT0, PROTOCOL=N, LTERM=UPCLT#T0
LTERM UPCLT#T0, KSET=ALLKEYS, USER=ADMUPCT0, RESTART=N
* USER ID WITH ADMINSTRATOR PRIVILEGES ----------------------------
USER ADMUPCT0, PERMIT=ADMIN, PASS=(ADMT0 ,D)

B

B

B

B

B

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Appendix CALLUTM

Administering Applications 873

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

Entries in the UPICFILE

Connecting CALLUTM to a UTM application

● CALLUTM links up to the UTM application DB400 on the BS2HOSTA computer via the
LTERM partner UPCLT#T0, if you make the following entries in CALLUTM when estab-
lishing the connection:

local name = UPCPT#T0
symbolic destination name = DBSADMT0

„UPCPT#T0“ is passed to openUTM as the client name (PTERM name).

The symbolic partner name DBSADMT0 is linked to the partner name DB4UPAT0 from
the UPICFILE. That is the name of the UTM application DB400, as specified in
BCAMAPPL during the KDCDEF generation.

● CALLUTM links up to the UTM application via the LTERM pool, if you make the
following entries when establishing the connection:

local name = locname
symbolic destination name = DBS0POOL or DBS1POOL

Enter an alphanumeric name (up to 8 bytes long) for locname with which CALLUTM
signs on with the transport system. This name is passed on to openUTM as the client
name when the connection is established and it will be assigned to an LTERM partner
of the LTERM pool for the duration of the connection.

The symbolic partner name DBS0POOL or DBS1POOL is linked to the partner name
DB4UPAP0 from the UPICFILE. That is the name of the UTM application DB400 as
entered in BCAMAPPL during the KDCDEF generation.

B

HDDBS0POOL DBSUPAP0.BS2HOSTA;
HDDBS1POOL DBSUPAP0.BS2HOSTA;
HDDBSADMT0 DBSUPAT0.BS2HOSTA;

symbolic destination name

partner_lu_name

HD: Conversion character

B

B

B

B

B
B

B

B

B

B

B

B

B
B

B

B

B

B

B

B

B

CALLUTM Appendix

874 Administering Applications

Calling CALLUTM as an administrator program in a BS2000 task

Before you use START-EXECUTABLE-PROGRAM to start the CALLUTM program, you
must first use MODIFY-SDF-OPTION to assign the syntax file
SYSSDF.UTM.065.CALLUTM (see also section “Execution” on page 892). Once the
CALLUTM program run has terminated, you will need to deactivate the syntax file again.

Alternatively, you can call CALLUTM via the SDF command START-CALLUTM. This
command can be found in the SDF UTM application area. For further information, see the
openUTM manual “Using UTM Applications on BS2000 Systems”, section “Calling UTM
tools”.

Example (call via START-EXEC-PROG)

In the following example CALLUTM is to terminate the UTM application DB400 on the
BS2HOSTA computer. For this you must first start CALLUTM and sign on to the UTM appli-
cation DB400 using the user ID ADMUPCT0, which has administrator privileges. To
terminate the application, you issue the UTM administration command KDCSHUT
NORMAL.

To do that you must you must enter the following sequence of program statements. The
program statements will be described in detail below.

/MODIFY-SDF-OPTION SYNTAX-FILE=*ADD(-
/ ADD-NAME=$user-id.SYSSDF.UTM.065.CALLUTM)
/ SET-FILE-LINK LINK-NAME = BLSLIB01 -
/ ,FILE-NAME = $TSOS.SYSLIB.SDF.047
/ SET-FILE-LINK LINK-NAME = BLSLIB02 -
/ ,FILE-NAME = $user-id.SYSLIB.UTM-CLIENT.065
/ SET-FILE-LINK LINK-NAME = BLSLIB03 -
/ ,FILE-NAME = $TSOS.SYSLNK.CRTE
/ START-PROGRAM *MOD($user-id.SYSLNK.UTM.065.CALLUTM, -
/ CALLUTM, -
/ *ANY, -
/ *ADV(ALTERNATE-LIBRARIES = *YES))
//CREATE-CONFIGURATION LOCAL-NAME=UPCPT#T0, -
/ SYMB-DEST-NAME=DBSADMT0
//SELECT-SERVICE SERVICE-NAME=KDCSHUT, SERVICE-DATA='NORMAL'
//END
/MODIFY-SDF-OPTION SYNTAX-FILE=*REMOVE(-
/ REMOVE-NAME=$user-id.SYSSDF.UTM.065.CALLUTM)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Appendix CALLUTM

Administering Applications 875

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

By default, communication with the server is handled over a Socket connection. If CMX is
to be used, you must issue the following sequence of statements before calling the
program. The program statements used are described in detail in the next section.

/ SET-FILE-LINK LINK-NAME = BLSLIB01 -
/ ,FILE-NAME = $TSOS.SYSLIB.SDF.047
/ SET-FILE-LINK LINK-NAME = BLSLIB02 -
/ ,FILE-NAME = $user-id.SYSLIB.UTM-CLIENT.065.WCMX
/ SET-FILE-LINK LINK-NAME = BLSLIB03 -
/ ,FILE-NAME = $user-id.SYSLIB.UTM-CLIENT.065
/ SET-FILE-LINK LINK-NAME = BLSLIB04 -
/ ,FILE-NAME = $TSOS.SYSLNK.CRTE
/ SET-FILE-LINK LINK-NAME = BLSLIB05 -
/ ,FILE-NAME = $TSOS.SYSLIB.CMX.014

An additional FILE-LINK is required before the program is called:

/ SET-FILE-LINK LINK-NAME = BLSLIB06 -
/ ,FILE-NAME = $user-id.SYSLNK.UTM.065.SPLRTS

If communication to the server is to be encrypted, insert a SET-FILE-LINK command:

/ SET-FILE-LINK LINK-NAME = BLSLIB01 -
/ ,FILE-NAME = $TSOS.SYSLIB.SDF.047
/ SET-FILE-LINK LINK-NAME = BLSLIB02 -
/ ,FILE-NAME = $user-id.SYSLIB.UTM-CLIENT.065.WCMX
/ SET-FILE-LINK LINK-NAME=BLSLIB03,
 FILE-NAME=$user-id.SYSLNK.UTM-CL-CRYPT.065
/ SET-FILE-LINK LINK-NAME = BLSLIB04 -
/ ,FILE-NAME = $user-id.SYSLIB.UTM-CLIENT.065
/ SET-FILE-LINK LINK-NAME = BLSLIB05 -
/ ,FILE-NAME = $TSOS.SYSLNK.CRTE
/ SET-FILE-LINK LINK-NAME = BLSLIB06 -
/ ,FILE-NAME = $TSOS.SYSLIB.CMX.014

B
B

B

B
B
B
B
B
B
B
B
B
B

B

B
B

B

B
B
B
B
B
B
B
B
B
B
B
B

CALLUTM Appendix

876 Administering Applications

14.3.2 Description of program statements

The program statements in CALLUTM are read by the SDF user interface and processed
by the SDF command processor. Alongside the standard SDF statements, CALLUTM can
also use any of the program statements listed in the table below:

CREATE-CONFIGURATION must always be the first statement to follow the program start.
It is particularly important to ensure that CREATE-CONFIGURATION is issued before the
SELECT-SERVICE statement.
Statements 5 and 6 can be issued anywhere between CREATE-CONFIGURATION and the
end of the program run.

The statements are listed below in alphabetical order and described in detail.

No. Program statement Function

1. CREATE-CONFIGURATION Defines the environment for the program run and selects
the connection to the UTM application. This statement
must be issued as the first statement.

2. SELECT-SERVICE Starts a service (transaction code) in the UTM application.
A message (operands or parameter values) can also be
issued with this statement.

3. CONTINUE-SERVICE Continues a service that is not yet completed. For services
which consist of a number of processing steps, this
statement starts the next processing step once the
previous one is completed. A message can also be issued
with this statement.

4. DEALLOCATE-CONVERSATION Terminates the conversation with the UTM application.
Any service that is still open in the UTM application and
that belongs to this conversation will be terminated abnor-
mally.

5. SHOW-CONFIGURATION Displays the program runtime environment that was set
with CREATE-CONFIGURATION or MODIFY-
CONFIGURATION.

6. MODIFY-CONFIGURATION Modifies the program runtime environment that was set
with CREATE-CONFIGURATION.

7. CALLUTM-ERROR-STEP Controls statement processing of CALLUTM in procedure
or batch mode.

B

B

B

BBB

BBB
B
B

BBB
B
B

BBB
B
B
B
B

BBB
B
B
B

BBB
B
B

BBB
B

BB
B

B

B

B

B

B

B

Appendix CALLUTM

Administering Applications 877

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

Notational conventions

The following description of the statements uses SDF syntax notation. The table below
outlines the elements that make up this form of notation, which are also described in the
general section on “Notational conventions” on page 32.

CALLUTM-ERROR-STEP

The program statement CALLUTM-ERROR-STEP controls statement processing of
CALLUTM in procedure or batch mode:

If an error (other than SDF syntax error) occurred during CALLUTM program run, e.g. if the
addressed UTM application is offline, CALLUTM reads the following program statements
from SYSDATA, until CALLUTM-ERROR-STEP is recognized. If no CALLUTM-ERROR-
STEP is found, CALLUTM will terminate.

The CALLUTM-ERROR-STEP statement has no operands.

Symbol Meaning Examples

< > Angle brackets indicate variables whose
values are described in terms of data
types and the associated information.

POSITION = <integer 1..256>

/ The slash character separates operand
values that can be used as alternatives.

SET-TEST-MODE = *NO / *YES

(…) Parentheses indicate operand values
which begin a structure.

,SET-SERVICE-JV = *YES (...) / *NO

Indentation Indentation indicates dependency on
the next highest operand.

,SET-SERVICE-JV = *NO / *YES(...)

*YES(...)

⏐ JV-IDENTIFICATION = ...

⏐

⏐
⏐

A vertical line indicates operands that
belong together in a structure. It runs
from the start to the end of a structure.
Further substructures can occur within a
structure. The number of vertical lines to
the left of an operand indicates the struc-
tural nesting depth.

,SET-SERVICE-JV = *NO / *YES(...)

*YES(...)

⏐ JV-ID = *JV-NAME(...) /...

⏐ *JV-NAME(...)

⏐ ⏐ JV-NAME =...

⏐ ⏐
Short name: The following name is a guaranteed

alias name for the statement name.
Short name: CONFATTR

B

B

B

B

BBB

BB
B
B

BB
B

BB
B

BB
B

B

B

B

B
B
B
B
B
B
B

BB
B

B

B

B

B

B

B

B

B

CALLUTM Appendix

878 Administering Applications

Example

//CREATE-CONFIGURATION ...
// ...
// ...
//SELECT-SERVICE SERVICE-NAME = KDCINF, SERVICE-DATA = C'STAT' (1)
//SELECT-SERVICE SERVICE-NAME = KDXINF, SERVICE-DATA = C'USER' (2)
//SELECT-SERVICE SERVICE-NAME = KDCINF, - (3)
// SERVICE-DATA = C'USER,L=KDCCON'
//CALLUTM-ERROR-STEP (4)
//SELECT-SERVICE SERVICE-NAME = KDCINF, SERVICE-DATA = C'TAC' (5)

Explanation:

Statement (1) is executed.
Statement (2) causes an error, because TAC KDXINF is not defined.
Statement (3) is not executed.
The processing is continued with statement (5).

B

B
B
B
B
B
B
B
B
B

B

B

B

B

B

Appendix CALLUTM

Administering Applications 879

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

CONTINUE-SERVICE

CONTINUE-SERVICE allows you to continue a service that was started in the UTM appli-
cation with SELECT-SERVICE and is made up of several steps. CONTINUE-SERVICE
needs to be specified when the service sends a message to CALLUTM after one dialog step
is completed but when the service as a whole is not yet completed because other
processing steps remain to be executed. Data can be passed to the service for the next
processing step.

For a description of the operands, see the SELECT-SERVICE statement (page 887f).

B

B

B

B

B

B

B

CONTINUE-SERVICE

SERVICE-DATA = *NO / list-poss(42):<c-string -with-lower-case 1..1800>

,SET-SERVICE-JV = *NO / *YES(...)

*YES(...)

⏐ JV-IDENTIFICATION = *JV-NAME(...) / *LINK-NAME(...)

⏐ *JV-NAME(...)

⏐ ⏐ JV-NAME=<full-filename-without-generation-version 1..54>

⏐ ⏐ ,POSITION = 1 / <integer 1..256>

⏐ ⏐ ,LENGTH = *REST / <integer 1..256>

⏐ *LINK-NAME

⏐ ⏐ LINK-NAME =< alphanum-name 1..7>

⏐ ⏐ ,POSITION = 1 / <integer 1..256>

⏐ ⏐ ,LENGTH = *REST / <integer 1..256>

⏐ ,PASSWORD = *NONE /< c-string 1..4> / <x-string 1..8>

⏐ ,VALUE = *RECEIVE-MSG(...) / <c-string-with-lower-case 1..256> / <x-string 1..512>

⏐ *RECEIVE-MSG(...)

⏐ ⏐ POSITION = 1 / <integer 1..4000>

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

CALLUTM Appendix

880 Administering Applications

Example

This example refers to the sample administration program SUSRMAX which is supplied
with openUTM (see “Sample programs” on page 45). The dialog with SUSRMAX consists
of the following steps:

1. SUSRMAX is started and returns a message prompting you to select a function:

-> //SELECT-SERVICE SERVICE-NAME=SUSRMAX
 <-
 date: 04-19-2016 time: 11:21:03

 application: DB400 host: BS2HOSTA tac: SUSRMAX

 available commands:

 0 = end | 1 = show-connected-users
 2 = show-users-in-conversation | 3 = show-changeable-max-values
 4 = change-max-values |

 please make a selection

2. The service is continued with CONTINUE-SERVICE; the function “1 = show-connected-
users” is selected (SERVICE-DATA=´1´). openUTM returns the requested information.

-> //CONTINUE-SERVICE SERVICE-DATA='1'
 <- ...
 ... Output
 ...

3. The UTM message prompting you to select another function is output again.

-> //CONTINUE-SERVICE
 <- ...
 ... The function selection message is output as in 1.
 ...

4. The service is continued with CONTINUE-SERVICE; the function ”2 = show-users-in-
conversation” is selected (SERVICE-DATA=´2´). openUTM returns the requested infor-
mation.

-> //CONTINUE-SERVICE SERVICE-DATA='2'
 <- ...
 ... Output
 ...

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B

B

B

B
B
B
B

B

B
B
B
B

B

B

B

B
B
B
B

Appendix CALLUTM

Administering Applications 881

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

5. SUSRMAX is terminated (function “0 = end”).

-> //CONTINUE-SERVICE SERVICE-DATA='0'
 <-
 date: 04-19-2016 time: 11:22:34

 application: DB400 host: D018ZE08 tac: SUSRMAX
 --

 conversation terminated

 --

 -> //

B

B
B
B
B
B
B
B
B
B
B
B
B

CALLUTM Appendix

882 Administering Applications

CREATE-CONFIGURATION

The statement CREATE-CONFIGURATION defines the environment for the program run
and selects the connection to the UTM application. In other words, it allows you to
determine:

● how the program is to sign on to the UPIC carrier system

● the UTM application to which a connection is to be established

● the UTM user ID to be passed when the conversation is established

● whether and to what extent a log file is to be written

● whether UPICTRACE is also to run.

CREATE-CONFIGURATION must be the first statement issued when the program has
started. If CREATE-CONFIGURATION is issued repeatedly during the course of the
program run, any open log files will be closed and open services will be rolled back. An
internal DEALLOCATE is also executed.

You can use MODIFY-CONFIGURATION during a program run to modify the values set
with CREATE-CONFIGURATION.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

CREATE-CONFIGURATION Alias: CONFATTR

LOCAL-NAME = <alphanum-name 1..8>

,SYMB-DEST-NAME = <alphanum-name 8..8>

USER-ID = *NONE / <alphanum-name 1..8>(...) / <c-string_1..8_with-low> / < x-string 1..16>

<alphanum-name 1..8>(...) / <c-string_1..8_with-low> / < x-string 1..16>
 ⏐ PASSWORD = *NONE /< c-string 1..16 >/< x-string 1..32>

,WRITE-LOGGING-FILE = *NO / *YES (...)

*YES(...)

⏐ LOGGING-FILENAME = <full-filename-without-generation-version 1..54>

⏐ ,OPEN-MODE = *REPLACE / *EXTEND

⏐ ,LOGGING-INFO = *ALL / *SEND / *RECEIVE

⏐ ,RECORD-LENGTH =*STD / <integer 1..252>

,WRITE-UPIC-TRACE = *NO / *YES

,CONFIGURATION-ID = 1 / <integer 1..1>

,SET-TEST-MODE = *NO / *YES

,SET-ENCRYPTION-LEVEL = *NO / <integer 1..4>

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Appendix CALLUTM

Administering Applications 883

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

LOCAL-NAME = <alphanum-name 1..8>
Local name under which CALLUTM signs on to the UPIC carrier system.
This name must be defined in the UPICFILE.

SYMB-DEST-NAME = <alphanum-name 8..8>
Symbolic partner name of the UTM application to which a connection is to
be established. This name must be defined in the UPICFILE.

USER-ID = UTM user ID used to establish the conversation.

*NONE No security functions are used.

<alphanum-name 1..8>() / <c-string_1..8_with-low> / < x-string 1..16>
UTM user ID. This user ID must exist in the UTM application.

PASSWORD = *NONE
No password is assigned to the user ID set for USER-ID.

PASSWORD = <c-string 1..16> or <x-string 1..32>
If a password is assigned to the user ID set for USER-ID, this password
must be entered here as a character string (c-string) or as a hexadecimal
string (x-string).

WRITE-LOGGING-FILE =
Determines whether and to what extent the flow of data from the client to
the server and back (i.e. service data) is to be logged.

*NO No data is logged.

*YES () Data is logged.

LOGGING-FILENAME = <full-filename-without-gen-vers 1..54>
Name of the log file.

OPEN-MODE = *EXTEND
Any existing log file is extended (appended). If no log file exists, a new one
is created.

OPEN-MODE = *REPLACE
Any existing log file is overwritten. If no log file exists, a new one is created.

LOGGING-INFO = *SEND
Only data that is sent to a service in the UTM application is logged.

LOGGING-INFO = *RECEIVE
Only the data that CALLUTM receives from a service in the UTM application
is logged.

LOGGING-INFO = *ALL
All data that CALLUTM exchanges with a service in the UTM application is
logged, i.e. both data that is sent and data that is received.

BB
B

B

BB

B

B

BB

BB

BB

B

B

B

B

B

B

B

BB

B

B

BB

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

CALLUTM Appendix

884 Administering Applications

RECORD-LENGTH = *STD / <integer 1..252>
Length of the records to be written to the log file. A new record is started
whenever “newline” is detected in the send or receive area. “newline” itself
is not logged.
*STD stands for a record length of 79 bytes.

WRITE-UPIC-TRACE =
Indicates whether UPIC tracing is to be activated.

*NO The UPIC trace is not activated.

*YES The UPIC trace is activated.
If no *UPICTRA link name to a job variable exists, a new job variable
JV.UPICTRACE.CALLUTM is created with the value “-SX” and the link
name *UPICTRA is assigned to it.

CONFIGURATION-ID = 1
Serves to identify the configuration. The only permissible value is 1.

SET-TEST-MODE=
Activate/deactivate test mode.

*NO Test mode is not activated. No UPIC calls are output to SYSOUT.

*YES Test mode is activated. All UPIC calls from CALLUTM are output to
SYSOUT.

SET-ENCRYPTION-LEVEL=
Specifies whether and how data is to be encrypted over the connection.

If encryption has been generated on the server side for the client
connection, the relevant encryption level from the generation must be
specified here.

If encryption has been generated on the server side for a TAC that is to be
called here, the encryption level must also be specified on the client side.

*NO No encryption.

<integer 1..4>
Encryption level from the generation.

Example

//CREATE-CONFIGURATION LOCAL-NAME=UPCPT#T0,SYMB-DEST-NAME=DBSADMT0, -
// WRITE-LOGGING-FILE=*YES(L-F=LOG.CALLUTM)

B
B

B

B

B

BB

B

BB

BB

B

B

B

BB

B

BB

B

BB

BB

B

BB

B

B

B

B

B

B

BB

BB

B

B

B
B

Appendix CALLUTM

Administering Applications 885

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

DEALLOCATE-CONVERSATION

This statement terminates the conversation with the partner application. Any service that is
still open in the UTM application is terminated abnormally.

CONFIGURATION-ID does not need to be specified (default setting).
Only CONFIGURATION-ID=1 may be specified.

Example

//DEALLOCATE-CONVERSATION

B

B

B

DEALLOCATE-CONVERSATION

 CONFIGURATION-ID = 1 / <integer 1..1>

B

B

B

B

B

B

CALLUTM Appendix

886 Administering Applications

MODIFY-CONFIGURATION

MODIFY-CONFIGURATION allows you to modify the existing values set with CREATE-
CONFIGURATION or a previous MODIFY-CONFIGURATION statement in the program
runtime environment.

For a description of the operands, see statement CREATE-CONFIGURATION on
page 882.

Example

Logging is deactivated.

-> //MOD-CONF WRITE-LOGGING-FILE=*NO
<- CUA0050: configuration modified
-> //

B

B

B

B

MODIFY-CONFIGURATION Alias: MODATTR

LOCAL-NAME = *UNCHANGED / <alphanum-name 1..8>

,SYMB-DEST-NAME = *UNCHANGED / <alphanum-name 8..8>

,USER-ID = *UNCHANGED / <alphanum-name 1..8>

<alphanum-name 1..8>(...)

⏐ PASSWORD = *UNCHANGED / *NONE /< c-string 1..8> / <x-string 1..16>

,WRITE-LOGGING-FILE = *UNCHANGED / *YES (...)

*YES(...)

⏐ LOGGING-FILENAME = *UNCHANGED / <full-filename-without-generation-version 1..54>

⏐ ,OPEN-MODE = *UNCHANGED / *REPLACE / *EXTEND

⏐ ,LOGGING-INFO = *UNCHANGED / *ALL / *SEND / *RECEIVE

⏐ ,RECORD-LENGTH = *UNCHANGED / *STD /< integer 1..252>

,WRITE-UPIC-TRACE = *UNCHANGED / *NO / *YES

,CONFIGURATION-ID = 1 / <integer 1..1>

,SET-TEST-MODE = *UNCHANGED / *NO / *YES

,SET-ENCRYPTION-LEVEL = *UNCHANGED / *NO / <integer 1..4>

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B

Appendix CALLUTM

Administering Applications 887

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

SELECT-SERVICE

SELECT-SERVICE starts a service in the UTM application. Data (i.e. operands and
parameter values) required by the service for processing can also be supplied. In addition,
a job variable can be defined to accept the receive message, part of the receive message
or any specified string once the statement has been executed. If the job variable defined
has not yet been cataloged a new one is created.

If you use SELECT-SERVICE to call a service which consists of several processing steps
and which passes dialog messages to CALLUTM between the individual processing steps,
then, between the time the service is called and the time when it is terminated, you can (with
the exception of the standard SDF statements) only issue the following statements:

● CONTINUE-SERVICE
Continues the service once a dialog message has been received.

● DEALLOCATE-CONVERSATION
Aborts the connection and (abnormally) terminates the service in the UTM application.

● SHOW-CONFIGURATION
Reads the current configuration data.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

SELECT-SERVICE

SERVICE-NAME = <alphanum-name 1..8>/<c-string-with-lower-case>

,SERVICE-DATA = *NO / list-poss(42): <c-string -with-lower-case 1..1800>

,SET-SERVICE-JV = *NO / *YES(...)

*YES(...)

⏐ JV-IDENTIFICATION = *JV-NAME(...) / *LINK-NAME(...)

⏐ *JV-NAME(...)

⏐ ⏐ JV-NAME = <full-filename-without-generation-version 1..54>

⏐ ⏐ ,POSITION = 1 /< integer 1..256>

⏐ ⏐ ,LENGTH = *REST /< integer1..256>

⏐ *LINK-NAME(...)

⏐ ⏐ LINK-NAME = <alphanum-name 1..7>

⏐ ⏐ ,POSITION = 1 /< integer 1..256>

⏐ ⏐ ,LENGTH = *REST / < integer 1..256>

⏐ ,PASSWORD = *NONE /< c-string 1..4> / <x-string 1..8>

⏐ ,VALUE = *RECEIVE-MSG(...) /< c-string-with-lower-case 1..256> /< x-string 1..512>

⏐ *RECEIVE-MSG(...)

⏐ ⏐ POSITION = 1 /< integer 1..4000>

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

CALLUTM Appendix

888 Administering Applications

SERVICE-NAME = <alphanum-name 1..8>/<c-string-with-lower-case>
The transaction code with which the service is to be started in the UTM
application; can also be an administration command or a different adminis-
tration TAC.

SERVICE-DATA =
Message to be passed to the service in the UTM application.

*NO No message data is passed.

list-poss(42): <c-string-with-lower-case 1..1800>
Message to be passed from the remote service. The message must be
passed as a C string, i.e. enclosed in quotes.
You can also pass a list of C strings here. The individual elements of the list
are sent as partial messages and also received as partial messages by the
server.
Number of C strings: up to 42.
Total length of the list: up to 1800 characters

SET-SERVICE-JV =
Supplies data to a job variable.

*NO Data is not supplied to a job variable.

*YES () Data is supplied to a job variable.

JV-IDENTIFICATION = *JV-NAME ()
The job variable is addressed by name.

JV-NAME = <full-filename-without-generation-version 1..54>
Name of the job variable. If the job variable has not yet been cataloged a
new one is created.

POSITION = 1
The job variable is set as of column 1.

POSITION = <integer 1..256>
The job variable is set as of the specified column.

LENGTH = *REST
As of POSITION, the full-length job variable can be set.

LENGTH = <integer 1..256>
The job variable is set to the specified length
(depending on the input value and starting position).

JV-IDENTIFICATION = *LINK-NAME ()
The job variable is addressed via a link name which must have been set
before the statement was executed (e.g. at the start of the program run).

BB
B

B

B

BB

B

BB

BB

B

B

B

B

B

B

B

BB

B

BB

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Appendix CALLUTM

Administering Applications 889

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

LINK-NAME = <alphanum-name 1..7>
Link name set for the job variable.

POSITION = as for *JV-NAME (); see above

LENGTH = as for *JV-NAME (); see above

PASSWORD = *NONE
Access to the job variable is not password-protected.

PASSWORD = <c-string 1..4> / <x-string 1..8>
Password used for (read and write) access to the job variable.

VALUE = *RECEIVE-MSG (POSITION = 1/<integer 1..4000>)
The job variable is reserved with the data received from the UTM application
(in accordance with the position and length defined above).
For POSITION you specify the position (column) within the receiving area
as of which the data received is to be written to the job variable. If
POSITION ≠1, the job variable is positioned at the corresponding distance
within the receiving area.

VALUE = <c-string 1..256> / <x-string 1..512>
The job variable is reserved with the string passed for this value in accor-
dance with the position and length defined above.

Note on the use of job variables

Before the statement is executed, the job variable is initialized with blanks as of the
specified position and to the specified length. If an error occurs during this access to the job
variable, the statement as a whole is not executed.

Example

1. The administration command KDCSHUT WARN, TIME=01 is called.

//SELECT-SERVICE SERVICE-NAME=KDCSHUT, SERVICE-DATA='WARN,TIME=01'

2. The command KDCINF reads the properties of the user ID UPCUSER (KDCINF
USER,LIST=UPCUSER). The output is to be written to the job variable JV.USER (as of
column 81).

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

CALLUTM Appendix

890 Administering Applications

//SELECT-SERVICE SERVICE-NAME=KDCINF, -
 // SERVICE-DATA='USER,LIST=(UPCUSER)', -
 // SET-SERVICE-JV=*YES (-
 // JV-ID=*JV-NAME (-
 // JV-NAME=JV.USER, -
 // POSITION=81) -
 //) -
 // VALUE=*RECEIVE-MSG(POSITION=161)

Result

Once the statement has executed, the job variable JV.USER will be reserved as follows
as of column 81:

For an explanation of the meaning of the contents, see also page 752:

UPCUSER (value of USER):
Name of the user ID.

OFF (value of STATUS):
The user ID is disabled.

N (value of OSERV):
The user ID is not processing any service at present.

8 (value of NR.TACS):
Eight transaction jobs have so far been entered under this user ID.

0 (value of SECCNT):
Number of security violations under this user ID.

UPCLT#T0 (value of LTERM):
Name of the LTERM partner via which the user ID signs on.

B
B
B
B
B
B
B
B

B

B

B

B

ADMUPCT0_____________OFF_____N______________

8________0_______0__UPCLT#T0_______.

Column 81 Column 123

Column 124 Column 160
is next line X‚Äö?

B

B

B

B

B

B

B

B

B

B

B

B

B

Appendix CALLUTM

Administering Applications 891

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

SHOW-CONFIGURATION

SHOW-CONFIGURATION allows you to display the values defined by the last CREATE-
CONFIGURATION or MODIFY-CONFIGURATION statement.

CONFIGURATION-ID = 1
Identifies the configuration. The only permissible value is 1.

OUTPUT= Specifies the destination to which the requested data is to be output.

*SYSOUT
The requested data is to be output to SYSOUT.

*LOGGING-FILE
The requested data is to be written to the log file (see CREATE-
CONFIGURATION; operand WRITE-LOGGING-FILE). If no log file was
defined with CREATE-CONFIGURATION or MODIFY-CONFIGURATION,
the data output will be rerouted to SYSOUT.

Example

-> //SHOW-CONF OUTPUT=*SYSOUT
<- -- current configuration data: ---------------------------------

local name = UPCPT#T0
symbolic destination name = DBSADMT0
partner name (from upicfile) = DBSUPAT0
program name is enabled to UPIC
no user identification given
logging file name = LOG.CALLUTM

open mode = replace
record length = 79
logging info = transmitted and received messages
file is open

upic trace is switched off
program monitoring job variable is not specified

encryption is not available
-- end configuration data --------------------------------------
->

B

B

B

SHOW-CONFIGURATION Alias: SHOWATTR

 CONFIGURATION-ID = 1 / <integer_1..1>

,OUTPUT = *SYSOUT/*LOGGING-FILE

B

B

B

BB

B

BB

BB

B

BB

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

CALLUTM Appendix

892 Administering Applications

14.3.3 Components, system environment, software configuration

The following components are supplied for CALLUTM:

– the program SYSPRG.UTM.065.CALLUTM
– the SDF syntax file SYSSDF.UTM.065.CALLUTM

The program CALLUTM is contained in the LMS library SYSLNK.UTM.065.CALLUTM. It
requires the following software configuration:

– BS2000 systems with OSD/BC as of V8.0
– CMX(BS2000) as of V1.4 if CMX is to be used to communication
– SDF as of V4.7C
– JV as of V15.0A (job variables)

The job variables are used with the link names UPICFIL, UPICPAT and UPICTRA as
described in the openUTM manual „openUTM-Client for the UPIC Carrier System”.

14.3.4 Integration in a UTM application

To enable the program CALLUTM to communicate with a UTM application, entries and
definitions along the lines of those shown in the example in section “Instructions for use” on
page 870 should be applied - with suitable modifications - to the current application.

14.3.5 Execution

The following section is applicable if you have used START-EXEC-PROG to call CALLUTM.
If you perform the call using the SDF command START-CALLUTM then the correct syntax
file is assigned automatically.

If the syntax file SYSSDF.UTM.065.CALLUTM has not yet been assigned when the
program starts, the program will automatically look for it within the user ID under which it is
currently running or under the user ID specified in the job variable linked by means of
*UPICPAT. If the program is unable to assign the syntax file, the program is aborted with an
error message to this effect.

The syntax file can be assigned with the following command:

/MODIFY-SDF-OPTION SYNTAX-FILE=*ADD(-
/ ADD-NAME=[$userid.]SYSSDF.UTM.065.CALLUTM)

i The name of the syntax file, i.e. SYSSDF.UTM.065.CALLUTM, must not be
changed.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

Appendix CALLUTM

Administering Applications 893

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

14.3.6 Program-monitoring job variables

If the program is started with a program-monitoring job variable (i.e. with the MONJV
operand in the call), then CALLUTM supplies the following values to the job variable in
addition to the values set by the operating system:

Column Length Contents Meaning

129 1 D / P / B Mode in which CALLUTM is running.
D: CALLUTM is running in dialog mode
P: CALLUTM is running in a procedure
B: CALLUTM is running in a batch job

131 - 134 4 <tsn> Task sequence number of the job

136 - 139 4 <nnnn> Serial number of the statement within the current program run
(standard SDF statements are not counted); leading zeroes are
suppressed.

141 - 148 8 CUA<name> Internal name of the most recently executed statement or the
current statement. The following values can occur for <name>:

CREA
MODC
SHOWC
SELS
CONTS
DEALL

for CREATE-CONFIGURATION
for MODIFY-CONFIGURATION
for SHOW-CONFIGURATION
for SELECT-SERVICE
for CONTINUE-SERVICE
for DEALLOCATE-CONVERSATION

150 1 C / N / O Status of service processing:
C:
A service is still open in the server application and must be
continued with CONTINUE-SERVICE.
N:
No more services are open.
O:
A service was called but no message has yet been received
from it.

152 - 159 8 <servname> Name of the service in the UTM application (transaction code)

161 - 168 8 <localnam> “Local name”: the name under which CALLUTM is currently
signed on to the UPIC carrier system.

170 - 177 8 <symbdest> “Symbolic destination name” of the UTM application to which
CALLUTM is currently connected or is currently establishing a
connection (name as defined in the UPICFILE).

179 - 210 32 <partner> Name of the UTM application linked in the UPICFILE to the
“symbolic destination name”.

251 - 256 6 <nnnnnn> Number of the error that caused the program to terminate;
leading zeroes are suppressed. 0 indicates normal termination.

B

B

B

BBBB

BB
B
B
B

BB

BB
B
B

BB
B

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B
B
B
B

BB

BB
B

BB
B
B

BB
B

BB
B

CALLUTM Appendix

894 Administering Applications

14.3.7 Messages issued by CALLUTM

CALLUTM generates the following messages:

CUA0010: give attributes

This message is output after CALLUTM has been started and prompts you to enter the
statement CREATE-CONFIGURATION.

CUA0015: symb-dest-name not found in UPICFILE

This message can occur after either of the statements CREATE-CONFIGURATION or
MODIFY-CONFIGURATION has been issued. It is output if the name specified in the
operand SYMB-DEST-NAME does not exist in the UPICFILE. The statement is
aborted.
In procedures, this also causes the program to abort.

CUA0020: conversation started by service <name> has to be continued

This message indicates that a service started previously with SELECT-SERVICE needs
to be continued. You can now issue the CONTINUE-SERVICE statement to continue
the service, or abort it with DEALLOCATE-CONVERSATION.
<name> outputs the transaction code with which the service was started.

CUA0025: error analysing SDF statement = nnnn

An error occurred during analysis of an SDF statement. nnnn indicates the place within
the program at which the error occurred.
In procedures, this causes the program to abort.

CUA0030: JV = <name> not accessible (error = nnnnnnn)

The error nnnnnnn occurred during initialization of the job variable <name>. The
program attempts to rectify the error. If it cannot do so this will, in procedures, cause the
program to abort.

callutm:error in <upic-call>:n
CUA0035: error in send-receive routine = nnnn

An error occurred during a call to the UPIC carrier system. Before the message
CUA0035 is output, CALLUTM first issues „callutm:...“ regarding the UPIC call
(<upic-call>) during which the error occurred and the UPIC return code that was
generated n (for an explanation of the meaning, see the manual „openUTM-Client for
the UPIC Carrier System”).

callutm:error in <upic-call>:n

In CUA0035, nnnn indicates the place within the program at which the error occurred.
In procedures, this error causes the program to abort.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

B

B

B

B

B

Appendix CALLUTM

Administering Applications 895

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
36

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.a

n
h

Example

//**- callutm: error in allocate: 1 -**//
CUA0035: error in send-receive routine = 2007

This means that it was not possible to establish a connection to the UTM application.
This message is output if the UTM application is not available, if the BCMAP commands
issued for the UTM application contained errors, or if no BCMAP commands have yet
been issued for the UTM application.

CUA0040: not processed statement = <name>
CUA0045: program run is continued with next statement

The statement <name> could not be executed. The program run is not aborted: you can
continue it by issuing further statements. In procedures, the program run is continued
with the following statement:

CUA0050: configuration modified

This message can occur after a MODIFY-CONFIGURATION statement. It indicates that
the statement was executed successfully and that the configuration has been modified
as specified. You can now resume your work under the new configuration.

CUA0051: no value given to modify configuration

This message can occur after a MODIFY-CONFIGURATION statement. It indicates that
the statement was analyzed successfully, but that the values specified did not result in
a modification of the configuration.

CUA0055: conversation deallocated and abnormal end

The conversation with the UTM application has been shut down. The service in the
UTM application has been aborted.
In procedures, this causes the program to abort.

Possible causes:

– The service in the UTM application encountered an error (PEND ER).

– An administration service was started for which the client did not possess the
necessary privileges.

CUA0060: no logging file assigned, output re-assigned to sysout (stdout)

This message can occur after a SHOW-CONFIGURATION statement for which
OUTPUT=*LOGGING-FILE was specified to request output to a log file.
The message indicates that no log file has yet been assigned; instead, output is
redirected to SYSOUT.

B

B
B

B

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

CALLUTM Appendix

896 Administering Applications

CUA0065: deallocate not executed (program not in conversation),
 program run can be continued with next statement"

The DEALLOCATE-CONVERSATION statement has been entered but no service was
open.

The output is sent to SYSOUT.

CUA0070: restart not possible, continue with new service

It was not possible to restart with KDCDISP.

CUA0080: for a list of c-strings the total c-string-length (1800) is exceeded

A list of C strings was entered in the SERVICE-DATA operand in the SELECT-
SERVICE or CONTINUE-SERVICE statement. The length of the data exceeds the
maximum permitted length.

CUA0085: current conversation will be terminated

CALLUTM is running in a procedure or in batch mode and the UPIC transport protocol
has reported an error. CALLUTM terminates the open service and may then branch to
the statement CALLUTM-ERROR-STEP or reaches the end of the statements.

CUA0090: encryption is not available in this environment

Encryption not available.

Action: Integrate encryption in the current UPIC client library.

CUA0100: CALLUTM-ERROR-STEP reached

After the occurrence of an error in a procedure or in batch mode, all statements were
skipped until CALLUTM-ERROR-STEP was recognized.

CUA0105: all statements will be ignored until CALLUTM-ERROR-STEP is
recognized

After the occurrence of an error in a procedure or in batch mode, all statements are
skipped until CALLUTM-ERROR-STEP is detected. If no such statement is found, END
terminates the program run.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

Administering Applications 897

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

abnormal termination of a UTM application
Termination of a UTM application, where the KDCFILE is not updated. Abnormal
termination is caused by a serious error, such as a crashed computer or an error
in the system software. If you then restart the application, openUTM carries out
a warm start.

abstract syntax (OSI)
Abstract syntax is defined as the set of formally described data types which can
be exchanged between applications via OSI TP. Abstract syntax is independent
of the hardware and programming language used.

acceptor (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The acceptor accepts the conversation initiated by the initiator
with Accept_Conversation.

access list
An access list defines the authorization for access to a particular service, TAC
queue or USER queue. An access list is defined as a key set and contains one or
more key codes, each of which represent a role in the application. Users or
LTERMs or (OSI) LPAPs can only access the service or TAC queue/USER queue
when the corresponding roles have been assigned to them (i.e. when their key
set and the access list contain at least one common key code).

access point (OSI)
See service access point.

ACID properties
Acronym for the fundamental properties of transactions: atomicity, consistency,
isolation and durability.

administration
Administration and control of a UTM application by an administrator or an
administration program.

Glossary

898 Administering Applications

administration command
Commands used by the administrator of a UTM application to carry out adminis-
tration functions for this application. The administration commands are imple-
mented in the form of transaction codes.

administration journal
See cluster administration journal.

administration program
Program unit containing calls to the program interface for administration. This can
be either the standard administration program KDCADM that is supplied with
openUTM or a program written by the user.

administrator
User who possesses administration authorization.

AES
AES (Advanced Encryption Standard) is the current symmetric encryption stan-
dard defined by the National Institute of Standards and Technology (NIST) and
based on the Rijndael algorithm developed at the University of Leuven (Bel-
gium). If the AES method is used, the UPIC client generates an AES key for
each session.

Apache Axis
Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the
design of Web services and client applications. There are implementations in
C++ and Java.

Apache Tomcat
Apache Tomcat provides an environment for the execution of Java code on Web
servers. It was developed as part of the Apache Software Foundation's Jakarta
project. It consists of a servlet container written in Java which can use the JSP
Jasper compiler to convert JavaServer pages into servlets and run them. It also
provides a fully featured HTTP server.

application cold start
See cold start.

application context (OSI)
The application context is the set of rules designed to govern communication
between two applications. This includes, for instance, abstract syntaxes and
any assigned transfer syntaxes.

Glossary

Administering Applications 899

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

application entity (OSI)
An application entity (AE) represents all the aspects of a real application which
are relevant to communications. An application entity is identified by a globally
unique name (“globally” is used here in its literal sense, i.e. worldwide), the
application entity title (AET). Every application entity represents precisely one
application process. One application process can encompass several application
entities.

application entity qualifier (OSI)
Component of the application entity title. The application entity qualifier identifies
a service access point within an application. The structure of an application entity
qualifier can vary. openUTM supports the type “number”.

application entity title (OSI)
An application entity title is a globally unique name for an application entity
(“globally” is used here in its literal sense, i.e. worldwide). It is made up of the
application process title of the relevant application process and the application entity
qualifier.

application information
This is the entire set of data used by the UTM application. The information com-
prises memory areas and messages of the UTM application including the data
currently shown on the screen. If operation of the UTM application is coordi-
nated with a database system, the data stored in the database also forms part
of the application information.

application process (OSI)
The application process represents an application in the OSI reference model. It
is uniquely identified globally by the application process title.

application process title (OSI)
According to the OSI standard, the application process title (APT) is used for
the unique identification of applications on a global (i.e. worldwide) basis. The
structure of an application process title can vary. openUTM supports the type
Object Identifier.

application program
An application program is the core component of a UTM application. It com-
prises the main routine KDCROOT and any program units and processes all jobs
sent to a UTM application.

application restart
see warm start

Glossary

900 Administering Applications

application service element (OSI)
An application service element (ASE) represents a functional group of the appli-
cation layer (layer 7) of the OSI reference model.

application warm start
see warm start.

association (OSI)
An association is a communication relationship between two application enti-
ties. The term “association” corresponds to the term session in LU6.1.

asynchronous conversation
CPI-C conversation where only the initiator is permitted to send. An asynchro-
nous transaction code for the acceptor must have been generated in the UTM
application.

asynchronous job
Job carried out by the job submitter at a later time. openUTM includes message
queuing functions for processing asynchronous jobs (see UTM-controlled queue
and service-controlled queue). An asynchronous job is described by the asynchro-
nous message, the recipient and, where applicable, the required execution time.
If the recipient is a terminal, a printer or a transport system application, the asyn-
chronous job is a queued output job. If the recipient is an asynchronous service of
the same application or a remote application, the job is a background job.
Asynchronous jobs can be time-driven jobs or can be integrated in a job complex.

asynchronous message
Asynchronous messages are messages directed to a message queue. They are
stored temporarily by the local UTM application and then further processed
regardless of the job submitter. Distinctions are drawn between the following
types of asynchronous messages, depending on the recipient:
– In the case of asynchronous messages to a UTM-controlled queue, all further

processing is controlled by openUTM. This type includes messages that
start a local or remote asynchronous service (see also background job) and
messages sent for output on a terminal, a printer or a transport system
application (see also queued output job).

– In the case of asynchronous messages to a service-controlled queue, further
processing is controlled by a service of the application. This type includes
messages to a TAC queue, messages to a USER queue and messages to a
temporary queue. The USER queue and the temporary queue must belong
to the local application, whereas the TAC queue can be in both the local
application and the remote application.

Glossary

Administering Applications 901

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

asynchronous program
Program unit started by a background job.

asynchronous service (KDCS)
Service which processes a background job. Processing is carried out inde-
pendently of the job submitter. An asynchronous service can comprise one or
more program units/transactions. It is started via an asynchronous transaction
code.

audit (BS2000 systems)
During execution of a UTM application, UTM events which are of relevance in
terms of security can be logged by SAT for auditing purposes.

authentication
See system access control.

authorization
See data access control.

Axis
See Apache Axis.

background job
Background jobs are asynchronous jobs destined for an asynchronous service of
the current application or of a remote application. Background jobs are particu-
larly suitable for time-intensive processing or processing which is not time-crit-
ical and where the results do not directly influence the current dialog.

basic format
Format in which terminal users can make all entries required to start a service.

basic job
Asynchronous job in a job complex.

browsing asynchronous messages
A service sequentially reads the asynchronous messages in a service-controlled
queue. The messages are not locked while they are being read and they remain
in the queue after they have been read. This means that they can be read simul-
taneously by different services.

bypass mode (BS2000 systems)
Operating mode of a printer connected locally to a terminal. In bypass mode,
any asynchronous message sent to the printer is sent to the terminal and then redi-
rected to the printer by the terminal without being displayed on screen.

Glossary

902 Administering Applications

cache
Used for buffering application data for all the processes of a UTM application.
The cache is used to optimize access to the page pool and, in the case of UTM
cluster applications, the cluster page pool.

CCS name (BS2000 systems)
See coded character set name.

client
Clients of a UTM application can be:
– terminals
– UPIC client programs
– transport system applications (e.g. DCAM, PDN, CMX, socket applications

or UTM applications which have been generated as transport system applica-
tions).

Clients are connected to the UTM application via LTERM partners.
Note: UTM clients which use the OpenCPIC carrier system are treated just like
OSI TP partners.

client side of a conversation
This term has been superseded by initiator.

cluster
A number of computers connected over a fast network and which in many cases
can be seen as a single computer externally. The objective of clustering is gen-
erally to increase the computing capacity or availability in comparison with a sin-
gle computer.

cluster administration journal
The cluster administration journal consists of:
– two log files with the extensions JRN1 and JRN2 for global administration

actions,
– the JKAA file which contains a copy of the KDCS Application Area (KAA).

Administrative changes that are no longer present in the two log files are
taken over from this copy.

The administration journal files serve to pass on to the other node applications
those administrative actions that are to apply throughout the cluster to all node
applications in a UTM cluster application.

cluster configuration file
File containing the central configuration data of a UTM cluster application. The
cluster configuration file is created using the UTM generation tool KDCDEF.

Glossary

Administering Applications 903

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

cluster filebase
Filename prefix or directory name for the UTM cluster files.

cluster GSSB file
File used to administer GSSBs in a UTM cluster application. The cluster GSSB
file is created using the UTM generation tool KDCDEF.

cluster lock file
File in a UTM cluster application used to manage cross-node locks of user data
areas.

cluster page pool
The cluster page pool consists of an administration file and up to 10 files con-
taining a UTM cluster application’s user data that is available globally in the clus-
ter (service data including LSSB, GSSB and ULS). The cluster page pool is cre-
ated using the UTM generation tool KDCDEF.

cluster start serialization file
Lock file used to serialize the start-up of individual node applications (only on
Unix systems and Windows systems).

cluster ULS file
File used to administer the ULS areas of a UTM cluster application. The cluster
ULS file is created using the UTM generation tool KDCDEF.

cluster user file
File containing the user management data of a UTM cluster application. The
cluster user file is created using the UTM generation tool KDCDEF.

coded character set name (BS2000 systems)
If the product XHCS (eXtended Host Code Support) is used, each character set
used is uniquely identified by a coded character set name (abbreviation: “CCS
name” or “CCSN”).

cold start
Start of a UTM application after the application terminates normally (normal ter-
mination) or after a new generation (see also warm start).

Glossary

904 Administering Applications

communication area (KDCS)
KDCS primary storage area, secured by transaction logging and which contains
service-specific data. The communication area comprises 3 parts:
– the KB header with general service data
– the KB return area for returning values to KDCS calls
– the KB program area for exchanging data between UTM program units

within a single service.

communication resource manager
In distributed systems, communication resource managers (CRMs) control
communication between the application programs. openUTM provides CRMs
for the international OSI TP standard, for the LU6.1 industry standard and for
the proprietary openUTM protocol UPIC.

configuration
Sum of all the properties of a UTM application. The configuration describes:
– application parameters and operating parameters
– the objects of an application and the properties of these objects. Objects

can be program units and transaction codes, communication partners,
printers, user IDs, etc.

– defined measures for controlling data and system access.
The configuration of a UTM application is defined at generation time (static con-
figuration) and can be changed dynamically by the administrator (while the
application is running, dynamic configuration). The configuration is stored in the
KDCFILE.

confirmation job
Component of a job complex where the confirmation job is assigned to the basic
job. There are positive and negative confirmation jobs. If the basic job returns a
positive result, the positive confirmation job is activated, otherwise, the negative
confirmation job is activated.

connection bundle
see LTERM bundle.

Glossary

Administering Applications 905

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

connection user ID
User ID under which a TS application or a UPIC client is signed on at the UTM
application directly after the connection has been established. The following
applies, depending on the client (= LTERM partner) generation:
– The connection user ID is the same as the USER in the LTERM statement

(explicit connection user ID). An explicit connection user ID must be
generated with a USER statement and cannot be used as a “genuine” user
ID.

– The connection user ID is the same as the LTERM partner (implicit
connection user ID) if no USER was specified in the LTERM statement or if
an LTERM pool has been generated.

In a UTM cluster application, the service belonging to a connection user ID
(RESTART=YES in LTERM or USER) is bound to the connection and is there-
fore local to the node.
A connection user ID generated with RESTART=YES can have a separate ser-
vice in each node application.

contention loser
Every connection between two partners is managed by one of the partners. The
partner that manages the connection is known as the contention winner. The
other partner is the contention loser.

contention winner
A connection's contention winner is responsible for managing the connection.
Jobs can be started by the contention winner or by the
contention loser. If a conflict occurs, i.e. if both partners in the communication
want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation
In CPI-C, communication between two CPI-C application programs is referred
to as a conversation. The communication partners in a conversation are
referred to as the initiator and the acceptor.

conversation ID
CPI-C assigns a local conversation ID to each conversation, i.e. the initiator and
acceptor each have their own conversation ID. The conversation ID uniquely
assigns each CPI-C call in a program to a conversation.

Glossary

906 Administering Applications

CPI-C
CPI-C (Common Programming Interface for Communication) is a program
interface for program-to-program communication in open networks standard-
ized by X/Open and CIW (CPI-C Implementor's Workshop).
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE
Specification. The interface is available in COBOL and C. In openUTM, CPI-C
can communicate via the OSI TP, LU6.1 and UPIC protocols and with ope-
nUTM-LU62.

Cross Coupled System / XCS
Cluster of BS2000 computers with the Highly Integrated System Complex Multiple
System Control Facility (HIPLEX® MSCF).

data access control
In data access control openUTM checks whether the communication partner is
authorized to access a particular object belonging to the application. The
access rights are defined as part of the configuration.

data space (BS2000 systems)
Virtual address space of BS2000 which can be employed in its entirety by the
user. Only data and programs stored as data can be addressed in a data space;
no program code can be executed.

dead letter queue
The dead letter queue is a TAC queue which has the fixed name KDCDLETQ.
It is always available to save queued messages sent to transaction codes, TAC
queues, LPAP or OSI-LPAP partners but which could not be processed. The
saving of queued messages in the dead letter queue can be activated or deac-
tivated for each message destination individually using the TAC, LPAP or OSI-
LPAP statement's DEAD-LETTER-Q parameter.

DES
DES (Data Encryption Standard) is an international standard for encrypting
data. One key is used in this method for encoding and decoding. If the DES
method is used, the UPIC client generates a DES key for each session.

dialog conversation
CPI-C conversation in which both the initiator and the acceptor are permitted to
send. A dialog transaction code for the acceptor must have been generated in
the UTM application.

Glossary

Administering Applications 907

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

dialog job, interactive job
Job which starts a dialog service. The job can be issued by a client or, when two
servers communicate with each other (server-server communication), by a differ-
ent application.

dialog message
A message which requires a response or which is itself a response to a request.
The request and the response both take place within a single service. The
request and reply together form a dialog step.

dialog program
Program unit which partially or completely processes a dialog step.

dialog service
Service which processes a job interactively (synchronously) in conjunction with
the job submitter (client or another server application) . A dialog service pro-
cesses dialog messages received from the job submitter and generates dialog
messages to be sent to the job submitter. A dialog service comprises at least
one transaction. In general, a dialog service encompasses at least one dialog
step. Exception: in the event of service chaining, it is possible for more than one
service to comprise a dialog step.

dialog step
A dialog step starts when a dialog message is received by the UTM application. It
ends when the UTM application responds.

dialog terminal process (Unix , Linux and Windows systems)
A dialog terminal process connects a terminal of a Unix, Linux or Windows sys-
tem with the work processes of the UTM application. Dialog terminal processes
are started either when the user enters utmdtp or via the LOGIN shell. A sepa-
rate dialog terminal process is required for each terminal to be connected to a
UTM application.

Distributed Lock Manager / DLM (BS2000 systems)
Concurrent, cross-computer file accesses can be synchronized using the
Distributed Lock Manager.
DLM is a basic function of HIPLEX® MSCF.

Glossary

908 Administering Applications

distributed processing
Processing of dialog jobs by several different applications or the transfer of back-
ground jobs to another application. The higher-level protocols LU6.1 and OSI TP
are used for distributed processing. openUTM-LU62 also permits distributed
processing with LU6.2 partners. A distinction is made between distributed pro-
cessing with distributed transactions (transaction logging across different applica-
tions) and distributed processing without distributed transactions (local transac-
tion logging only). Distributed processing is also known as server-server
communication.

distributed transaction
Transaction which encompasses more than one application and is executed in
several different (sub)-transactions in distributed systems.

distributed transaction processing
Distributed processing with distributed transactions.

dynamic configuration
Changes to the configuration made by the administrator. UTM objects such as
program units, transaction codes, clients, LU6.1 connections, printers or user IDs can
be added, modified or in some cases deleted from the configuration while the
application is running. To do this, it is necessary to create separate administra-
tion programs which use the functions of the program interface for administration.
The WinAdmin administration program or the WebAdmin administration pro-
gram can be used to do this, or separate administration programs must be cre-
ated that utilize the functions of the administration program interface.

encryption level
The encryption level specifies if and to what extent a client message and pass-
word are to be encrypted.

event-driven service
This term has been superseded by event service.

event exit
Routine in an application program which is started automatically whenever cer-
tain events occur (e.g. when a process is started, when a service is terminated).
Unlike event services, an event exit must not contain any KDCS, CPI-C or XATMI
calls.

event function
Collective term for event exits and event services.

Glossary

Administering Applications 909

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

event service
Service started when certain events occur, e.g. when certain UTM messages are
issued. The program units for event-driven services must contain KDCS calls.

filebase
UTM application filebase
On BS2000 systems, filebase is the prefix for the KDCFILE, the user log file
USLOG and the system log file SYSLOG.
On Unix, Linux and Windows systems, filebase is the name of the directory
under which the KDCFILE, the user log file USLOG, the system log file SYS-
LOG and other files relating to to the UTM application are stored.

generation
See UTM generation.

global secondary storage area
See secondary storage area.

hardcopy mode
Operating mode of a printer connected locally to a terminal. Any message which
is displayed on screen will also be sent to the printer.

heterogeneous link
In the case of server-server communication: a link between a UTM application and
a non-UTM application, e.g. a CICS or TUXEDO application.

Highly Integrated System Complex / HIPLEX®
Product family for implementing an operating, load sharing and availability clus-
ter made up of a number of BS2000 servers.

HIPLEX® MSCF
(MSCF = Multiple System Control Facility)
Provides the infrastructure and basic functions for distributed applications with
HIPLEX®.

homogeneous link
In the case of server-server communication: a link between two UTM applications.
It is of no significance whether the applications are running on the same oper-
ating system platforms or on different platforms.

inbound conversation (CPI-C)
See incoming conversation.

Glossary

910 Administering Applications

incoming conversation (CPI-C)
A conversation in which the local CPI-C program is the acceptor is referred to as
an incoming conversation. In the X/Open specification, the term “inbound con-
versation” is used synonymously with “incoming conversation”.

initial KDCFILE
In a UTM cluster application, this is the KDCFILE generated by KDCDEF and
which must be copied for each node application before the node applications
are started.

initiator (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The initiator sets up the conversation with the CPI-C calls Initial-
ize_Conversation and Allocate.

insert
Field in a message text in which openUTM enters current values.

inverse KDCDEF
A function which uses the dynamically adapted configuration data in the KDC-
FILE to generate control statements for a KDCDEF run. An inverse KDCDEF
can be started “offline” under KDCDEF or “online” via the program interface for
administration.

IUTMDB
Interface used for the coordinated interaction with resource managers on
BS2000 systems. This includes data repositories (LEASY) and data base sys-
tems (SESAM/SQL, UDS/SQL).

JConnect client
Designation for clients based on the product openUTM-JConnect. The commu-
nication with the UTM application is carried out via the UPIC protocol.

JDK
Java Development Kit
Standard development environment from Oracle Corporation for the develop-
ment of Java applications.

job
Request for a service provided by a UTM application. The request is issued by
specifying a transaction code. See also: queued output job, dialog job, background
job, job complex.

Glossary

Administering Applications 911

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

job complex
Job complexes are used to assign confirmation jobs to asynchronous jobs. An
asynchronous job within a job complex is referred to as a basic job.

job-receiving service (KDCS)
A job-receiving service is a service started by a job-submitting service of another
server application.

job-submitting service (KDCS)
A job-submitting service is a service which requests another service from a dif-
ferent server application (job-receiving service) in order to process a job.

KDCADM
Standard administration program supplied with openUTM. KDCADM provides
administration functions which are called with transaction codes (administration
commands).

KDCDEF
UTM tool for the generation of UTM applications. KDCDEF uses the configuration
information in the KDCDEF control statements to create the UTM objects KDC-
FILE and the ROOT table sources for the main routine KDCROOT.
In UTM cluster applications, KDCDEF also creates the cluster configuration file,
the cluster user file, the cluster page pool, the cluster GSSB file and the cluster ULS
file.

KDCFILE
One or more files containing data required for a UTM application to run. The
KDCFILE is created with the UTM generation tool KDCDEF. Among other
things, it contains the configuration of the application.

KDCROOT
Main routine of an application program which forms the link between the program
units and the UTM system code. KDCROOT is linked with the program units to
form the application program.

KDCS message area
For KDCS calls: buffer area in which messages or data for openUTM or for the
program unit are made available.

KDCS parameter area
See parameter area.

Glossary

912 Administering Applications

KDCS program interface
Universal UTM program interface compliant with the national DIN 66 265 stan-
dard and which includes some extensions. KDCS (compatible data communi-
cations interface) allows dialog services to be created, for instance, and permits
the use of message queuing functions. In addition, KDCS provides calls for distrib-
uted processing.

Kerberos
Kerberos is a standardized network authentication protocol (RFC1510) based
on encryption procedures in which no passwords are sent to the network in
clear text.

Kerberos principal
Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two loca-
tions, namely with the key owner (principal) and the KDC (Key Distribution Cen-
ter).

key code
Code that represents specific access authorization or a specific role. Several
key codes are grouped into a key set.

key set
Group of one or more key codes under a particular a name. A key set defines
authorization within the framework of the authorization concept used (lock/key
code concept or access list concept). A key set can be assigned to a user ID, an
LTERM partner an (OSI) LPAP partner, a service or a TAC queue.

linkage program
See KDCROOT.

local secondary storage area
See secondary storage area.

Log4j
Log4j is part of the Apache Jakarta project. Log4j provides information for log-
ging information (runtime information, trace records, etc.) and configuring the
log output. WS4UTM uses the software product Log4j for trace and logging func-
tionality.

lock code
Code protecting an LTERM partner or transaction code against unauthorized
access. Access is only possible if the key set of the accesser contains the appro-
priate key code (lock/key code concept).

Glossary

Administering Applications 913

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

logging process
Process in Unix, Linux and Windows systems that controls the logging of
account records or monitoring data.

LPAP bundle
LPAP bundles allow messages to be distributed to LPAP partners across sev-
eral partner applications. If a UTM application has to exchange a very large
number of messages with a partner application then load distribution may be
improved by starting multiple instances of the partner application and distribut-
ing the messages across the individual instances. In an LPAP bundle, openUTM
is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The
slave LPAPs are assigned to the master LPAP on UTM generation. LPAP bun-
dles exist for both the OSI TP protocol and the LU6.1 protocol.

LPAP partner
In the case of distributed processing via the LU6.1 protocol, an LPAP partner for
each partner application must be configured in the local application. The LPAP
partner represents the partner application in the local application. During com-
munication, the partner application is addressed by the name of the assigned
LPAP partner and not by the application name or address.

LTERM bundle
An LTERM bundle (connection bundle) consists of a master LTERM and multi-
ple slave LTERMs. An LTERM bundle (connection bundle) allows you to distrib-
ute queued messages to a logical partner application evenly across multiple
parallel connections.

LTERM group
An LTERM group consists of one or more alias LTERMs, the group LTERMs
and a primary LTERM. In an LTERM group, you assign multiple LTERMs to a
connection.

LTERM partner
LTERM partners must be configured in the application if you want to connect cli-
ents or printers to a UTM application. A client or printer can only be connected if
an LTERM partner with the appropriate properties is assigned to it. This assign-
ment is generally made in the configuration, but can also be made dynamically
using terminal pools.

Glossary

914 Administering Applications

LTERM pool
The TPOOL statement allows you to define a pool of LTERM partners instead
of issuing one LTERM and one PTERM statement for each client. If a client
establishes a connection via an LTERM pool, an LTERM partner is assigned to
it dynamically from the pool.

LU6.1
Device-independent data exchange protocol (industrial standard) for transac-
tion-oriented server-server communication.

LU6.1-LPAP bundle
LPAP bundle for LU6.1 partner applications.

LU6.1 partner
Partner of the UTM application that communicates with the UTM application via
the LU6.1 protocol.
Examples of this type of partner are:
– a UTM application that communicates via LU6.1
– an application in the IBM environment (e.g. CICS, IMS or TXSeries) that

communicates via LU6.1

main process (Unix systems / Windows systems)
Process which starts the UTM application. It starts the work processes, the UTM
system processes, printer processes, network processes, logging process and the timer
process and monitors the UTM application.

main routine KDCROOT
See KDCROOT.

management unit
SE Servers component; in combination with the SE Manager, permits centralized,
web-based management of all the units of an SE server.

message definition file
The message definition file is supplied with openUTM and, by default, contains
the UTM message texts in German and English together with the definitions of
the message properties. Users can take this file as a basis for their own mes-
sage modules.

Glossary

Administering Applications 915

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

message destination
Output medium for a message. Possible message destinations for a message
from the openUTM transaction monitor include, for instance, terminals, TS appli-
cations, the event service MSGTAC, the system log file SYSLOG or TAC queues,
asynchronous TACs, USER queues, SYSOUT/SYSLST or stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/
SYSLST and stderr/stdout.

message queue
Queue in which specific messages are kept with transaction management until
further processed. A distinction is drawn between service-controlled queues and
UTM-controlled queues, depending on who monitors further processing.

message queuing
Message queuing (MQ) is a form of communication in which the messages are
exchanged via intermediate queues rather than directly. The sender and recip-
ient can be separated in space or time. The transfer of the message is indepen-
dent of whether a network connection is available at the time or not. In ope-
nUTM there are UTM-controlled queues and service-controlled queues.

MSGTAC
Special event service that processes messages with the message destination
MSGTAC by means of a program. MSGTAC is an asynchronous service and is
created by the operator of the application.

multiplex connection (BS2000 systems)
Special method offered by OMNIS to connect terminals to a UTM application. A
multiplex connection enables several terminals to share a single transport con-
nection.

multi-step service (KDCS)
Service carried out in a number of dialog steps.

multi-step transaction
Transaction which comprises more than one processing step.

Network File System/Service / NFS
Allows Unix systems to access file systems across the network.

network process (Unix systems / Windows systems)
A process in a UTM application for connection to the network.

Glossary

916 Administering Applications

network selector
The network selector identifies a service access point to the network layer of the
OSI reference model in the local system.

node
Individual computer of a cluster.

node application
UTM application that is executed on an individual node as part of a UTM cluster
application.

node bound service
A node bound service belonging to a user can only be continued at the node
application at which the user was last signed on. The following services are
always node bound:
– Services that have started communications with a job receiver via LU6.1 or

OSI TP and for which the job-receiving service has not yet been terminated
– Inserted services in a service stack
– Services that have completed a SESAM transaction
In addition, a user’s service is node bound as long as the user is signed-on at
a node application.

node filebase
Filename prefix or directory name for the node application's KDCFILE, user log
file and system log file.

node recovery
If a node application terminates abnormally and no rapid warm start of the appli-
cation is possible on its associated node computer then it is possible to perform
a node recovery for this node on another node in the UTM cluster. In this way,
it is possible to release locks resulting from the failed node application in order
to prevent unnecessary impairments to the running UTM cluster application.

normal termination of a UTM application
Controlled termination of a UTM application. Among other things, this means
that the administration data in the KDCFILE are updated. The administrator ini-
tiates normal termination (e.g. with KDCSHUT N). After a normal termination,
openUTM carries out any subsequent start as a cold start.

object identifier
An object identifier is an identifier for objects in an OSI environment which is
unique throughout the world. An object identifier comprises a sequence of inte-
gers which represent a path in a tree structure.

Glossary

Administering Applications 917

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

OMNIS (BS2000 systems)
OMNIS is a “session manager” which lets you set up connections from one ter-
minal to a number of partners in a network concurrently OMNIS also allows you
to work with multiplex connections.

online import
In a UTM cluster application, online import refers to the import of application data
from a normally terminated node application into a running node application.

online update
In a UTM cluster application, online update refers to a change to the application
configuration or the application program or the use of a new UTM revision level
while a UTM cluster application is running.

open terminal pool
Terminal pool which is not restricted to clients of a single computer or particular
type. Any client for which no computer- or type-specific terminal pool has been
generated can connect to this terminal pool.

OpenCPIC
Carrier system for UTM clients that use the OSI TP protocol.

OpenCPIC client
OSI TP partner application with the OpenCPIC carrier system.

openSM2
The openSM2 product line offers a consistent solution for the enterprise-wide
performance management of server and storage systems. openSM2 offers the
acquisition of monitoring data, online monitoring and offline evaluation.

openUTM cluster
From the perspective of UPIC clients, not from the perspective of the server:
Combination of several node applications of a UTM cluster application to form
one logical application that is addressed via a common symbolic destination
name.

openUTM-D
openUTM-D (openUTM distributed) is a component of openUTM which allows
distributed processing. openUTM-D is an integral component of openUTM.

OSI-LPAP bundle
LPAP bundle for OSI TP partner applications.

Glossary

918 Administering Applications

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI TP partners generated in ope-
nUTM. In the case of distributed processing via the OSI TP protocol, an OSI-LPAP
partner for each partner application must be configured in the local application.
The OSI-LPAP partner represents the partner application in the local applica-
tion. During communication, the partner application is addressed by the name
of the assigned OSI-LPAP partner and not by the application name or address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization,
described this model in the ISO IS7498 standard. The OSI reference model
divides the necessary functions for system communication into seven logical
layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP
Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner
Partner of the UTM application that communicates with the UTM application via
the OSI TP protocol.
Examples of such partners are:
– a UTM application that communicates via OSI TP
– an application in the IBM environment (e.g. CICS) that is connected via

openUTM-LU62
– an OpenCPIC client
– applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)
See outgoing conversation.

outgoing conversation (CPI-C)
A conversation in which the local CPI-C program is the initiator is referred to as
an outgoing conversation. In the X/Open specification, the term “outbound con-
versation” is used synonymously with “outgoing conversation”.

page pool
Part of the KDCFILE in which user data is stored.
In a standalone application this data consists, for example, of dialog messages,
messages sent to message queues, secondary memory areas.
In a UTM cluster application, it consists, for example, of messages to message
queues, TLS.

Glossary

Administering Applications 919

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

parameter area
Data structure in which a program unit passes the operands required for a UTM
call to openUTM.

partner application
Partner of a UTM application during distributed processing. Higher communica-
tion protocols are used for distributed processing (LU6.1, OSI TP or LU6.2 via
the openUTM-LU62 gateway).

postselection (BS2000 systems)
Selection of logged UTM events from the SAT logging file which are to be eval-
uated. Selection is carried out using the SATUT tool.

prepare to commit (PTC)
Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system
waits for the partner to confirm the end of the transaction.

preselection (BS2000 systems)
Definition of the UTM events which are to be logged for the SAT audit. Preselec-
tion is carried out with the UTM-SAT administration functions. A distinction is
made between event-specific, user-specific and job-specific (TAC-specific) pre-
selection.

presentation selector
The presentation selector identifies a service access point to the presentation
layer of the OSI reference model in the local system.

primary storage area
Area in main memory to which the KDCS program unit has direct access, e.g.
standard primary working area, communication area.

print administration
Functions for print control and the administration of queued output jobs, sent to a
printer.

print control
openUTM functions for controlling print output.

printer control LTERM
A printer control LTERM allows a client or terminal user to connect to a UTM
application. The printers assigned to the printer control LTERM can then be
administered from the client program or the terminal. No administration rights
are required for these functions.

Glossary

920 Administering Applications

printer control terminal
This term has been superseded by printer control LTERM.

printer group (Unix systems)
For each printer, a Unix system sets up one printer group by default that con-
tains this one printer only. It is also possible to assign several printers to one
printer group or to assign one printer to several different printer groups.

printer pool
Several printers assigned to the same LTERM partner.

printer process (Unix systems)
Process set up by the main process for outputting asynchronous messages to a
printer group. The process exists as long as the printer group is connected to the
UTM application. One printer process exists for each connected printer group.

process
The openUTM manuals use the term “process” as a collective term for pro-
cesses (Unix systems / Windows systems) and tasks (BS2000 systems).

processing step
A processing step starts with the receipt of a dialog message sent to the UTM
application by a client or another server application. The processing step ends
either when a response is sent, thus also terminating the dialog step, or when a
dialog message is sent to a third party.

program interface for administration
UTM program interface which helps users to create their own administration pro-
grams. Among other things, the program interface for administration provides
functions for dynamic configuration, for modifying properties and application
parameters and for querying information on the configuration and the current
workload of the application.

program space (BS2000 systems)
Virtual address space of BS2000 which is divided into memory classes and in
which both executable programs and pure data are addressed.

program unit
UTM services are implemented in the form of one or more program units. The
program units are components of the application program. Depending on the
employed API, they may have to contain KDCS, XATMI or CPIC calls. They can
be addressed using transaction codes. Several different transaction codes can
be assigned to a single program unit.

Glossary

Administering Applications 921

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

queue
See message queue.

queued output job
Queued output jobs are asynchronous jobs which output a message, such as a
document, to a printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it
is not necessary to create program units to process them.

Quick Start Kit
A sample application supplied with openUTM (Windows systems).

redelivery
Repeated delivery of an asynchronous message that could not be processed cor-
rectly because, for example, the transaction was rolled back or the asynchronous
service was terminated abnormally. The message is returned to the message
queue and can then be read and/or processed again.

reentrant program
Program whose code is not altered when it runs. On BS2000 systems this con-
stitutes a prerequisite for using shared code.

request
Request from a client or another server for a service function.

requestor
In XATMI, the term requestor refers to an application which calls a service.

Glossary

922 Administering Applications

resource manager
Resource managers (RMs) manage data resources. Database systems are
examples of resource managers. openUTM, however, also provides its own
resource managers for accessing message queues, local memory areas and
logging files, for instance. Applications access RMs via special resource man-
ager interfaces. In the case of database systems, this will generally be SQL and
in the case of openUTM RMs, it is the KDCS interface.

restart
See screen restart,
see service restart.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to
the TCP/IP family that implements the ISO transport services (transport
class 0) based on TCP/IP.

RSA
Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir
and Adleman). This method uses a pair of keys that consists of a public key and
a private key. A message is encrypted using the public key, and this message
can only be decrypted using the private key. The pair of RSA keys is created by
the UTM application.

SAT audit (BS2000 systems)
Audit carried out by the SAT (Security Audit Trail) component of the BS2000
software product SECOS.

screen restart
If a dialog service is interrupted, openUTM again displays the dialog message of
the last completed transaction on screen when the service restarts provided that
the last transaction output a message on the screen.

SE manager
Web-based graphical user interface (GUI) for the SE series of Business
Servers. SE Manager runs on the management unit and permits the central
operation and administration of server units (with /390 architecture and/or x86
architecture), application units (x86 architecture), net unit and peripherals.

SE server
A Business Server from Fujitsu's SE series.

Glossary

Administering Applications 923

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

secondary storage area
Memory area secured by transaction logging and which can be accessed by the
KDCS program unit with special calls. Local secondary storage areas (LSSBs)
are assigned to one service. Global secondary storage areas (GSSBs) can be
accessed by all services in a UTM application. Other secondary storage areas
include the terminal-specific long-term storage (TLS) and the user-specific long-term
storage (ULS).

selector
A selector identifies a service access point to services of one of the layers of the
OSI reference model in the local system. Each selector is part of the address of
the access point.

semaphore (Unix systems / Windows systems)
Unix systems and Windows systems resource used to control and synchronize
processes.

server
A server is an application which provides services. The computer on which the
applications are running is often also referred to as the server.

server-server communication
See distributed processing.

server side of a conversation (CPI-C)
This term has been superseded by acceptor.

service
Services process the jobs that are sent to a server application. A service of a
UTM application comprises one or more transactions. The service is called with
the service TAC. Services can be requested by clients or by other servers.

service access point
In the OSI reference model, a layer has access to the services of the layer
below at the service access point. In the local system, the service access point
is identified by a selector. During communication, the UTM application links up to
a service access point. A connection is established between two service access
points.

service chaining (KDCS)
When service chaining is used, a follow-up service is started without a dialog
message specification after a dialog service has completed .

Glossary

924 Administering Applications

service-controlled queue
Message queue in which the calling and further processing of messages is con-
trolled by services. A service must explicitly issue a KDCS call (DGET) to read
the message. There are service-controlled queues in openUTM in the variants
USER queue, TAC queue and temporary queue.

service restart (KDCS)
If a service is interrupted, e.g. as a result of a terminal user signing off or a UTM
application being terminated, openUTM carries out a service restart. An asynchro-
nous service is restarted or execution is continued at the most recent synchroni-
zation point, and a dialog service continues execution at the most recent synchro-
nization point. As far as the terminal user is concerned, the service restart for a
dialog service appears as a screen restart provided that a dialog message was
sent to the terminal user at the last synchronization point.

service routine
See program unit.

service stacking (KDCS)
A terminal user can interrupt a running dialog service and insert a new dialog ser-
vice. When the inserted service has completed, the interrupted service contin-
ues.

service TAC (KDCS)
Transaction code used to start a service.

session
Communication relationship between two addressable units in the network via
the SNA protocol LU6.1.

session selector
The session selector identifies an access point in the local system to the services
of the session layer of the OSI reference model.

shared code (BS2000 systems)
Code which can be shared by several different processes.

shared memory
Virtual memory area which can be accessed by several different processes
simultaneously.

Glossary

Administering Applications 925

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

shared objects (Unix systems / Windows systems)
Parts of the application program can be created as shared objects. These objects
are linked to the application dynamically and can be replaced during live oper-
ation. Shared objects are defined with the KDCDEF statement SHARED-
OBJECT.

sign-on check
See system access control.

sign-on service (KDCS)
Special dialog service for a user in which program units control how a user signs
on to a UTM application.

single-step service
Dialog service which encompasses precisely one dialog step.

single-step transaction
Transaction which encompasses precisely one dialog step.

SOA
(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the
form of re-usable, technically independent, loosely coupled services. Services
can be called independently of the underlying implementations via interfaces
which may possess public and, consequently, trusted specifications. Service
interaction is performed via a communication infrastructure made available for
this purpose.

SOAP
SOAP (Simple Object Access Protocol) is a protocol used to exchange data
between systems and run remote procedure calls. SOAP also makes use of the
services provided by other standards, XML for the representation of the data
and Internet transport and application layer protocols for message transfer.

socket connection
Transport system connection that uses the socket interface. The socket inter-
face is a standard program interface for communication via TCP/IP.

standalone application
See standalone UTM application.

standalone UTM application
Traditional UTM application that is not part of a UTM cluster application.

Glossary

926 Administering Applications

standard primary working area (KDCS)
Area in main memory available to all KDCS program units. The contents of the
area are either undefined or occupied with a fill character when the program unit
starts execution.

start format
Format output to a terminal by openUTM when a user has successfully signed
on to a UTM application (except after a service restart and during sign-on via the
sign-on service).

static configuration
Definition of the configuration during generation using the UTM tool KDCDEF.

SYSLOG file
See system log file.

synchronization point, consistency point
The end of a transaction. At this time, all the changes made to the application
information during the transaction are saved to prevent loss in the event of a
crash and are made visible to others. Any locks set during the transaction are
released.

system access control
A check carried out by openUTM to determine whether a certain user ID is
authorized to work with the UTM application. The authorization check is not car-
ried out if the UTM application was generated without user IDs.

system log file
File or file generation to which openUTM logs all UTM messages for which
SYSLOG has been defined as the message destination during execution of a UTM
application.

TAC
See transaction code.

TAC queue
Message queue generated explicitly by means of a KDCDEF statement. A TAC
queue is a service-controlled queue that can be addressed from any service using
the generated name.

temporary queue
Message queue created dynamically by means of a program that can be deleted
again by means of a program (see service-controlled queue).

Glossary

Administering Applications 927

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

terminal-specific long-term storage (KDCS)
Secondary storage area assigned to an LTERM, LPAP or OSI-PAP partner and
which is retained after the application has terminated.

time-driven job
Job which is buffered by openUTM in a message queue up to a specific time until
it is sent to the recipient. The recipient can be an asynchronous service of the
same application, a TAC queue, a partner application, a terminal or a printer.
Time-driven jobs can only be issued by KDCS program units.

timer process (Unix systems / Windows systems)
Process which accepts jobs for controlling the time at which work processes are
executed. It does this by entering them in a job list and releasing them for pro-
cessing after a time period defined in the job list has elapsed.

TNS (Unix systems / Windows systems)
Abbreviation for the Transport Name Service. TNS assigns a transport selector
and a transport system to an application name. The application can be reached
through the transport system.

Tomcat
see Apache Tomcat

transaction
Processing section within a service for which adherence to the ACID properties
is guaranteed. If, during the course of a transaction, changes are made to the
application information, they are either made consistently and in their entirety or
not at all (all-or-nothing rule). The end of the transaction forms a synchronization
point.

transaction code/TAC
Name which can be used to identify a program unit. The transaction code is
assigned to the program unit during static or dynamic configuration. It is also pos-
sible to assign more than one transaction code to a program unit.

transaction rate
Number of transactions successfully executed per unit of time.

transfer syntax
With OSI TP, the data to be transferred between two computer systems is con-
verted from the local format into transfer syntax. Transfer syntax describes the
data in a neutral format which can be interpreted by all the partners involved.
An Object Identifier must be assigned to each transfer syntax.

Glossary

928 Administering Applications

transport selector
The transport selector identifies a service access point to the transport layer of
the OSI reference model in the local system.

transport system application
Application which is based directly on a transport system interface (e.g. CMX,
DCAM or socket). When transport system applications are connected, the part-
ner type APPLI or SOCKET must be specified during configuration. A transport
system application cannot be integrated in a distributed transaction.

TS application
See transport system application.

typed buffer (XATMI)
Buffer for exchanging typed and structured data between communication part-
ners. Typed buffers ensure that the structure of the exchanged data is known to
both partners implicitly.

UPIC
Carrier system for openUTM clients. UPIC stands for Universal Programming
Interface for Communication. The communication with the UTM application is
carried out via the UPIC protocol.

UPIC Analyzer
Component used to analyze the UPIC communication recorded with UPIC
Capture. This step is used to prepare the recording for playback using UPIC
Replay.

UPIC Capture
Used to record communication between UPIC clients and UTM applications so
that this can be replayed subsequently (UPIC Replay).

UPIC client
The designation for openUTM clients with the UPIC carrier system and for JCon-
nect clients.

UPIC protocol
Protocol for the client server communication with UTM applications. The UPIC
protocol is used by UPIC clients and JConnect clients.

UPIC Replay
Component used to replay the UPIC communication recorded with UPIC
Capture and prepared with UPIC Analyzer.

Glossary

Administering Applications 929

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

user exit
This term has been superseded by event exit.

user ID
Identifier for a user defined in the configuration for the UTM application (with an
optional password for system access control) and to whom special data access
rights (system access control) have been assigned. A terminal user must specify
this ID (and any password which has been assigned) when signing on to the
UTM application. On BS2000 systems, system access control is also possible
via Kerberos.
For other clients, the specification of a user ID is optional, see also connection
user ID.
UTM applications can also be generated without user IDs.

user log file
File or file generation to which users write variable-length records with the
KDCS LPUT call. The data from the KB header of the KDCS communication area
is prefixed to every record. The user log file is subject to transaction manage-
ment by openUTM.

USER queue
Message queue made available to every user ID by openUTM. A USER queue is
a service-controlled queue and is always assigned to the relevant user ID. You
can restrict the access of other UTM users to your own USER queue.

user-specific long-term storage
Secondary storage area assigned to a user ID, a session or an association and which
is retained after the application has terminated.

USLOG file
See user log file.

UTM application
A UTM application provides services which process jobs from clients or other
applications. openUTM is responsible for transaction logging and for managing
the communication and system resources. From a technical point of view, a
UTM application is a process group which forms a logical server unit at runtime.

UTM client
See client.

Glossary

930 Administering Applications

UTM cluster application
UTM application that has been generated for use on a cluster and that can be
viewed logically as a single application.
In physical terms, a UTM cluster application is made up of several identically
generated UTM applications running on the individual cluster nodes.

UTM cluster files
Blanket term for all the files that are required for the execution of a UTM cluster
application. This includes the following files:
– Cluster configuration file
– Cluster user file
– Files belonging to the cluster page pool
– Cluster GSSB file
– Cluster ULS file
– Files belonging to the cluster administration journal*
– Cluster lock file*
– Lock file for start serialization* (only in Unix systems and Windows systems)
The files indicated by * are created when the first node application is started. All
the other files are created on generation using KDCDEF.

UTM-controlled queue
Message queues in which the calling and further processing of messages is
entirely under the control of openUTM. See also asynchronous job, background job
and asynchronous message.

UTM-D
See openUTM-D.

UTM-F
UTM applications can be generated as UTM-F applications (UTM fast). In the
case of UTM-F applications, input from and output to hard disk is avoided in
order to increase performance. This affects input and output which UTM-S uses
to save user data and transaction data. Only changes to the administration data
are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-
MODE=FAST), application data that is valid throughout the cluster is also
saved. In this case, GSSB and ULS data is treated in exactly the same way as
in UTM cluster applications generated with UTM-S. However, service data relat-
ing to users with RESTART=YES is written only when the relevant user signs
off and not at the end of each transaction.

UTM generation
Static configuration of a UTM application using the UTM tool KDCDEF and cre-
ation of an application program.

Glossary

Administering Applications 931

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

UTM message
Messages are issued to UTM message destinations by the openUTM transaction
monitor or by UTM tools (such as KDCDEF). A message comprises a message
number and a message text, which can contain inserts with current values.
Depending on the message destination, either the entire message is output or
only certain parts of the message, such as the inserts).

UTM page
A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone
UTM applications, the size of a UTM page on generation of the UTM application
can be set to 2K, 4K or 8 K. The size of a UTM page in a UTM cluster application
is always 4K or 8 K. The page pool and the restart area for the KDCFILE and
UTM cluster files are divided into units of the size of a UTM page.

utmpath (Unix systems / Windows systems)
The directory under which the openUTM components are installed is referred to
as utmpath in this manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH
must be set to the value of utmpath. On Unix and Linux systems, you must set
UTMPATH before a UTM application is started. On Windows systems UTM-
PATH is set in accordance with the UTM version installed most recently.

UTM-S
In the case of UTM-S applications, openUTM saves all user data as well as the
administration data beyond the end of an application and any system crash
which may occur. In addition, UTM-S guarantees the security and consistency
of the application data in the event of any malfunction. UTM applications are
usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)
UTM-SAT administration functions control which UTM events relevant to secu-
rity which occur during operation of a UTM application are to be logged by SAT.
Special authorization is required for UTM-SAT administration.

UTM system process
UTM process that is started in addition to the processes specified via the start
parameters and which only handles selected jobs. UTM system processes
ensure that UTM applications continue to be reactive even under very high
loads.

UTM terminal
This term has been superseded by LTERM partner.

Glossary

932 Administering Applications

UTM tool
Program which is provided together with openUTM and which is needed for
UTM specific tasks (e.g for configuring).

virtual connection
Assignment of two communication partners.

warm start
Start of a UTM-S application after it has terminated abnormally. The application
information is reset to the most recent consistent state. Interrupted dialog ser-
vices are rolled back to the most recent synchronization point, allowing processing
to be resumed in a consistent state from this point (service restart). Interrupted
asynchronous services are rolled back and restarted or restarted at the most
recent synchronization point.
For UTM-F applications, only configuration data which has been dynamically
changed is rolled back to the most recent consistent state after a restart due to
a preceding abnormal termination.
In UTM cluster applications, th e global locks applied to GSSB and ULS on
abnormal termination of this node application are released. In addition, users
who were signed on at this node application when the abnormal termination
occurred are signed off.

WebAdmin
Web-based tool for the administration of openUTM applications via a Web
browser. WebAdmin includes not only the full function scope of the adminis-
tration program interface but also additional functions.

Web service
Application which runs on a Web server and is (publicly) available via a stan-
dardized, programmable interface. Web services technology makes it possible
to make UTM program units available for modern Web client applications inde-
pendently of the programming language in which they were developed.

WinAdmin
Java-based tool for the administration of openUTM applications via a graphical
user interface. WinAdmin includes not only the full function scope of the admin-
istration program interface but also additional functions.

work process (Unix systems / Windows systems)
A process within which the services of a UTM application run.

Glossary

Administering Applications 933

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

4u
s

fÐ
ê

Ð
™

¬
¨¬

¾
r

Fr
a

m
eM

a
ke

r
V

7.
x

vo
m

 0
9.

02
.2

01
0

¬¨
¬

®
¬¨

¬
©

 c
og

ni
ta

s
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:3

7.
29

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
17

0
09

00
\0

4_
A

d
m

in
\e

n\
u

tm
_

ad
m

_e
.m

ix

workload capture & replay
Family of programs used to simulate load situations; consisting of the main
components UPIC Capture, UPIC Analyzer and Upic Replay and - on Unix, Linux
and Windows systems - the utility program kdcsort. Workload Capture & Replay
can be used to record UPIC sessions with UTM applications, analyze these and
then play them back with modified load parameters.

WS4UTM
WS4UTM (WebServices for openUTM) provides you with a convenient way of
making a service of a UTM application available as a Web service.

XATMI
XATMI (X/Open Application Transaction Manager Interface) is a program inter-
face standardized by X/Open for program-program communication in open net-
works.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI
CAE Specification. The interface is available in COBOL and C. In openUTM,
XATMI can communicate via the OSI TP, LU6.1 and UPIC protocols.

XHCS (BS2000 systems)
XHCS (Extended Host Code Support) is a BS2000 software product providing
support for international character sets.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by the
W3C (WWW Consortium) in which the interchange formats for data and the
associated information can be defined.

Glossary

934 Administering Applications

Administering Applications 935

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

13
. D

ez
em

be
r

20
17

 S
ta

nd
 0

8:
37

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
1

70
09

0
0\

04
_A

dm
in

\e
n\

ut
m

_a
dm

_
e.

ab
k

Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used
in the original German product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000 systems)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix, Linux and Windows Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000 systems)

DB Database

DC Data Communication

DCAM Data Communication Access Method

Abbreviations

936 Administering Applications

DES Data Encryption Standard

DLM Distributed Lock Manager (BS2000 systems)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000 systems)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000 systems)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

Abbreviations

Administering Applications 937

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

13
. D

ez
em

be
r

20
17

 S
ta

nd
 0

8:
37

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
1

70
09

0
0\

04
_A

dm
in

\e
n\

ut
m

_a
dm

_
e.

ab
k

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000 systems)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000 systems)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000 systems)

RTS Runtime System

SAT Security Audit Trail (BS2000 systems)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

Abbreviations

938 Administering Applications

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 systems (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 systems (Task User)

TX Transaction Demarcation (X/Open)

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000 systems

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

Abbreviations

Administering Applications 939

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

13
. D

ez
em

be
r

20
17

 S
ta

nd
 0

8:
37

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

5_
1

70
09

0
0\

04
_A

dm
in

\e
n\

ut
m

_a
dm

_
e.

ab
k

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction
Processing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

Abbreviations

940 Administering Applications

Administering Applications 941

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

13
.

D
e

ze
m

be
r

20
17

S

ta
nd

 0
8:

37
.2

9
P

fa
d

: P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.5

_1
70

0
90

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_e

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com.

openUTM documentation

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Using UTM Applications on BS2000 Systems
User Guide

openUTM
Using UTM Applications on Unix, Linux and Windows Systems
User Guide

openUTM
Administering Applications
User Guide

openUTM
Messages, Debugging and Diagnostics on BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com

Related publications

942 Administering Applications

openUTM
Messages, Debugging and Diagnostics on Unix, Linux and Windows Systems
User Guide

openUTM
Creating Applications with X/Open Interfaces
User Guide

openUTM
XML for openUTM

openUTM Client (Unix systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

Related publications

Administering Applications 943

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

13
.

D
e

ze
m

be
r

20
17

S

ta
nd

 0
8:

37
.2

9
P

fa
d

: P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.5

_1
70

0
90

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_e

.li
t

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

Documentation for the openSEAS product environment

BeanConnect
User Guide

openUTM-JConnect
Connecting Java Clients to openUTM
User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Related publications

944 Administering Applications

Documentation for the BS2000 environment

AID
Advanced Interactive Debugger
Core Manual
User Guide

AID
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

AID
Advanced Interactive Debugger
Debugging of C/C++ Programs
User Guide

BCAM
BCAM Volume 1/2
User Guide

BINDER
User Guide

BS2000 OSD/BC
Commands Volume 1 - 7
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BS2IDE
Eclipse-based Integrated Development Environment for BS2000
User Guide and Installation Guide
Web page: https://bs2000.ts.fujitsu.com/bs2ide/

BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD
User Guide

https://bs2000.ts.fujitsu.com/bs2ide/

Related publications

Administering Applications 945

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

13
.

D
e

ze
m

be
r

20
17

S

ta
nd

 0
8:

37
.2

9
P

fa
d

: P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.5

_1
70

0
90

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_e

.li
t

DCAM
COBOL Calls
User Guide

DCAM
Macros
User Guide

DCAM
Program Interfaces
Description

FHS
Format Handling System for openUTM, TIAM, DCAM
User Guide

IFG for FHS
User Guide

HIPLEX AF
High-Availability of Applications in BS2000/OSD
Product Manual

HIPLEX MSCF
BS2000 Processor Networks
User Guide

IMON
Installation Monitor
User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU
Functions and Commands
User Guide

OMNIS/OMNIS-MENU
Administration and Programming
User Guide

Related publications

946 Administering Applications

OSS (BS2000)
OSI Session Service
User Guide

openSM2
Software Monitor
User Guide

RSO
Remote SPOOL Output
User Guide

SECOS
Security Control System
User Guide

SECOS
Security Control System
Ready Reference

SESAM/SQL
Database Operation
User Guide

TIAM
User Guide

UDS/SQL
Database Operation
User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support
User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD
User Guide

Related publications

Administering Applications 947

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

13
.

D
e

ze
m

be
r

20
17

S

ta
nd

 0
8:

37
.2

9
P

fa
d

: P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.5

_1
70

0
90

0\
04

_A
dm

in
\e

n\
ut

m
_a

dm
_e

.li
t

Documentation for the Unix, Linux and Windows system environment

CMX V6.0 (Unix systems)
Betrieb und Administration (only available in German)
User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2
The documentation of openSM2 is provided in the form of detailed online help systems,
which are delivered with the product.

Related publications

948 Administering Applications

Other publications

CPI-C
X/Open CAE Specification
Distributed Transaction Processing:
The CPI-C Specification, Version 2
ISBN 1 85912 135 7

Reference Model
X/Open Guide
Distributed Transaction Processing:
Reference Model, Version 2
ISBN 1 85912 019 9

TX
X/Open CAE Specification
Distributed Transaction Processing:
The TX (Transaction Demarcation) Specification
ISBN 1 85912 094 6

XATMI
X/Open CAE Secification
Distributed Transaction Processing
The XATMI Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)
Web page: http://www.w3.org/XML

http://www.w3.org/XML

Administering Applications 949

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

Index

A
abstract syntax 455
abterm_services 615

kc_curr_par_str
(KC_MODIFY_OBJECT) 375

access key
shared memory segment 638, 642, 644, 649

access list
LTAC 203
TAC, TAC queue 225

access point
for OSI TP connection 522
local address 456

access privileges
LU6.1 partner application 490
OSI TP partner application 530
user 587
via LTERM partner 504
via LTERM pool 574

access protection
LTAC 501
LTERM pool 505, 574
transaction code 557, 559

access via ID card 587
access_list

kc_ltac_str 502
kc_tac_str 566

accesswait_sec 500
kc_ltac_str (KC_MODIFY_OBJECT) 338

ACCOUNT 680
account 384, 621
accounting 621

activating (KDCAPPL) 680
activating (program) 384
enable (program) 384

parameters (data structure) 620
weighting for LTAC 203, 501, 562

accounting phase
administering 384
administering (KDCAPPL) 680
administering (program) 384
UTM accounting 621

ACON 786
actcon

kc_mux_str 517
kc_tpool_str 577

active 525
KC_MODIFY_OBJECT 346

adding to the configuration 77
client 78, 211
LTERM partner 78, 204
printer 78, 211
program unit 74, 82, 209
terminal 78, 211
transaction code 75, 82, 219
TS application 80, 211
UPIC client 80
UPIC client program 211
user ID 76, 83, 227
VORGANG exit 74, 82, 209

address
format/uniqueness 87
local OSI TP access point 456
LU6.1 partner application 471
OSI TP partner application 521

address format
BCAMAPPL name 463
client address 546
LU6.1 partner address 198, 473
OSI TP access point 460

Index

950 Administering Applications

ADJTABLE.TXT 864
AdjTable.txt 864
ADM-CMD

SAT in BS2000 123
ADMI trace 624

enabling/disabling 378
admi_trace

KC_MODIFY_OBJECT 378
admin 559

KC_CREATE_OBJECT 221
administer

LTERM pool (KDCPOOL) 775
LTERM pool (program) 364
session (KDCLSES) 763
session (program) 336
several applications simultaneously 137

administration
automatic 151
central 125
central, using commands 144
in dialog (commands) 114
local printers 818
message queues (DADM) 821
printers (KDCPADM) 846
printers (PADM) 816, 828
using message queuing (command) 116
UTM cluster application 126
via commands 113
via distributed processing 137
via TS application 142
via UTM client 132
with WinAdmin 127

administration authorization 157
administration call

modifying output destination (program) 388
several 120

administration command
asynchronous, receiver 640, 660
entering 114
format 677
generating 38, 161
KDCAPPL 678
KDCBNDL 692
KDCDIAG 693

KDCHELP 702
KDCINF 703
KDCLOG 754
KDCLPAP 755
KDCLSES 763
KDCLTAC 766
KDCLTERM 768
KDCMUX 771
KDCPOOL 775
KDCPROG 777
KDCPTERM 783
KDCSEND 789
KDCSHUT 790
KDCSLOG 794
KDCSWTCH 800
KDCTAC 805
KDCTCL 808
KDCUSER 813
output of results 114
sending to UTM 144

Administration DIAGA 123
administration functions

KDCADM, overview 39
KDCADMI, overview 42

administration interface 35
diagnosis 123

administration journal 902
administration privileges

applications with user ID 160
applications without user IDs 160
for transaction code 559
granting 160
LU6.1 partner application 232, 490
OSI TP partner application 531
printers 818
user ID 591

administration program
as a message interface 148
central 148
decentralized 145
generating 158
KDCADM 113
multi-step service 121
portable 146

Index

Administering Applications 951

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

administration program (cont.)
structure 119
writing 119

administration tool 35
administration tool CALLUTM 46, 869
Administration USERA 123
administrator message

KC_SEND_MESSAGE 413
KDCSEND 789

AEQ
OSI TP access point 457
OSI TP partner application 529

AES encryption 272
alias name 877
all information,KDCINF 706
altlib 488
annoamsg 508

kc_lterm_str 508
kc_lterm_str (KC_CREATE_OBJECT) 207
kc_tpool_str 576

ap_name 456
api 562

KC_CREATE_OBJECT 223
APPLI client

creating, example 81
dynamic creation 80
dynamic deletion 91
entering dynamically 80

APPLI name
local application 611, 637, 660

application
terminating (KDCSHUT) 790
terminating (program) 422
with distributed processing 661
with TAC classes 660

application context 461
OSI TP partner application 529

application data
importing online 408

application entity qualifier
OSI TP access point 457
OSI TP partner application 529

application name
for heterogeneous link 490

application parameters
current values (data structure) 609
data structures 600
information about (KDCINF) 709
information about (program) 282, 292
modifying (KDCAPPL) 678
modifying (program) 315, 322

application process title
local application 672
OSI TP partner application 529

application program
exchanging 65
exchanging (KDCAPPL) 684
exchanging (program) 183
file generations currently loaded 616

application start
date, time 612

application_context 529
application_entity_qualifier

kc_access_point_str 457
kc_osi_lpap_str 529

application_process_title
kc_osi_lpap_str 529
kc_utmd_par_str 672

applimode
kc_curr_par_str 612
kc_max_par_str 637
kc_system_par_str 660

appliname
kc_curr_par_str 611
kc_max_par_str 637
kc_system_par_str 660

APT
local application 672
OSI TP partner application 529

ASCII/EBCDIC conversion
kc_lpap_str 492, 525
kc_pterm_str 544, 577

ass_kset 533
assignment of TAC to program unit

information about (KDCINF) 709
association 530

information about (KDCINF) 711
information about (program) 291, 299

Index

952 Administering Applications

association (cont.)
properties (data structure) 519
statistical information 520
status 520
timer for assignment 500
timer for idle state (KDCLPAP) 760
timer for idle state (program) 350
timer for occupation 202

association ID
outputting (KDCINF) 727
outputting (program) 293

association_id 519
association_names 529
asyn_services 595
asyn_ta_per_100sec 613
asynchronous commands

calling 116
for administration 144
output destination 144, 640, 660
summary 39

asynchronous jobs
administering (KDCDADM) 837
buffering (LTERM partner) 507
deleting (DADM) 826
deleting (KDCDADM) 838
identifying 823
information about (KDCDADM) 840
number currently stored 614
number of active 649
prioritizing (DADM) 825
prioritizing (KDCDADM) 845

asynchronous messages
administering (KDCDADM) 836
announcing (LTERM partner) 508
announcing (LTERM pool) 576
current number (LPAP partner) 493
current number (LTERM partner) 511
current number (TAC) 563
maximum number (LTERM pool) 576
maximum number (OSI-LPAP partner) 532
maximum number (TAC) 560

asynchronous processing
determining number of processes

(KDCAPPL) 682

determining number of processes
(program) 389

maximum number of processes 664
number of processes 612
number of processes set 665

asynchronous service
importing online 408

asynchronous TAC
online import 408

asynchronous transaction code 560
asyntasks

kc_max_par_str 637
kc_tasks_par_str 664

atac_redelivery 649
authorization concept 157
authorization levels

administration privileges 157
authorization, administration 157
authorizations concept

printer administration 818
auto_connect

kc_con_str 473
kc_lpap_str 491
kc_lpap_str (KC_MODIFY_OBJECT) 332
kc_mux_str 516
kc_pterm_str 544
kc_pterm_str (KC_CREATE_OBJECT) 213
kc_pterm_str (KC_MODIFY_OBJECT) 353

auto_connect_number 530
KC_MODIFY_OBJECT 348

autolink function (BLS) 488, 719
automatic

administration 151
diagnostics 154

automatic connection setup
at start ,OSI TP partner 530
at start (KDCPTERM) 786
at start (program) 213, 332, 353
at start, client/printer 544
at start, LU6.1 partner 473, 491
at start, multiplex connection 516
LPAP/OSI-LPAP (KDCLPAP) 759
multiplex connection (KDCMUX) 772
multiplex connection (program) 344

Index

Administering Applications 953

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

automatic connection setup (cont.)
OSI-LPAP partner (KDCINF) 729
OSI-LPAP partner (program) 347
to printer 507

automatic KDCSIGN 79
automatic mode, print output 832
automatic restart

terminal/client 507
user ID 591

automatic service restart 207
automatic size monitoring

SYSLOG 647, 795
availability

dynamically created objects 78
avg_cpgpool_size 371
avg_pool_size 614

kc_curr_par_str
(KC_MODIFY_OBJECT) 374

avg_saved_pgs_by_compr 619
avg_wait_time_msec 569

B
base name

KDCFILE 642
base_gen 441
bc_name 462
BCAM

passing messages 638
BCAM trace

activate/deactivate (KDCDIAG) 697
activate/deactivate (program) 334, 342, 378
enabling/disabling (program) 378, 379, 380,

381
general 622
LPAP-specific 493
LTERM-specific 510

bcam_trace
kc_diag_and_account_par_str 334, 378, 622
kc_lpap_str 493
kc_lterm_str 510
kc_lterm_str (KC_MODIFY_OBJECT) 342
kc_mux_str 518
kc_user_str 597
kc_user_str (KC_MODIFY_OBJECT) 370

bcamappl
kc_con_str 472
kc_lses_str 496
kc_lses_str (KC_MODIFY_OBJECT) 336
kc_lterm_str 509
kc_mux_str 516
kc_pterm_str 541
kc_pterm_str (KC_CREATE_OBJECT) 212
kc_subnet_str 555
kc_tpool_str 573

blksize 638
bound_ptc 599
bound_service 599
bretrynr 638

kc_max_par_str 386
BTRACE 378, 697
bundle 494, 511, 533

C
cache

controlling paging (KDCAPPL) 680
controlling paging (program) 386
current data about 374, 614
paging 638
resident 639
size 638

cache_hit_rate 614
kc_curr_par_str

(KC_MODIFY_OBJECT) 374
cache_location

kc_max_par_str 650
cache_wait_buffer 614

kc_curr_par_str
(KC_MODIFY_OBJECT) 375

cacheshmkey 638
cachesize_pages 638
cachesize_paging 638

KC_MODIFY_OBJECT 386
cachesize_res 639
CALC 680
calc 621

KC_MODIFY_OBJECT 384

Index

954 Administering Applications

calculation phase
activating/deactivating (program) 384
enable/disable (KDCAPPL) 680
UTM accounting 621

call_type 560
KC_CREATE_OBJECT 222

CALLUTM 46, 869
assign syntax file 892
components 892
integration in a UTM application 892
KDCDEF generation 872
messages 894
program statements 876
program-monitoring job variable 893
starting 874
system environment 892

CALLUTM statement
CONTINUE-SERVICE 879
CREATE-CONFIGURATION 882
DEALLOCATE-CONVERSATION 885
MODIFY-CONFIGURATION 886
notational conventions 877
SELECT-SERVICE 887
SHOW-CONFIGURATION 891

cancel
asynchronous jobs (KDCDADM) 838
messages (KDCDADM) 838

card information
length 639
magnetic stripe card 587

card_free 632
card_id 589
card_position 587

KC_CREATE_OBJECT 228
card_string 588

KC_CREATE_OBJECT 228
card_string_lth 587

KC_CREATE_OBJECT 228
card_string_type 588

KC_CREATE_OBJECT 228
card_total 632
cardlth 639
catalog ID

node application 467

catalog ID KDCFILE 639
catid_a 639

node application 467
catid_b 639

node application 467
CCS name

application 643
edit profile 481
LTERM partner 504
LTERM pool 574
user ID 590

ccsname 481
central administration 125

SDF command interface 132
transaction management 137
via distributed processing 137
via TS application 142
via UTM client 132

central administration programs 148
cert_auth

kc_user_str 596
certificate

kc_user_str 596
certificate_gen

kc_system_par_str 662
change_necessary 487
changeable 487
character set, extended

application 643
edit profile 481
locale, LTERM partner 504
locale, LTERM pool 574
user ID 590

cid 544
KC_CREATE_OBJECT 213

clear character, KB/SPAB 639, 640
clear session

KC_MODIFY_OBJECT 337
KDCLSES 763

client
active (LTERM pool) 577
adding dynamically 78, 192, 211
availability 70
changing assignment (KDCSWTCH) 800

Index

Administering Applications 955

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

client (cont.)
changing assignment (program) 352
computer name 509
defining the maximum number 59
deleting dynamically 91, 264
disabling 69
information about (program) 300
maximum number in configuration 630
modifying dynamically 100
number of messages exchanged 547
number that can be added dynamically 630
properties (data structure) 539
statistical information 547
TS application 543

client connection
duration 547
status 547

client, APPLI type
dynamic creation 80
dynamic deletion 91

client, UPIC type
dynamic deletion 91

clients_signed 595
clients, number of

changing for LTERM pool (KDCPOOL) 775
changing for LTERM pool (program) 364

clrch 639
clrch_type 640
cluster

administration 126
properties of the node applications (data

structure) 465
cluster administration journal 902
cluster configuration file

file/directory name 603
cluster page pool 66

number of files 608
utilization 601

cluster user file
releasing lock 310

cluster_appl 662
CMX application

for administration 142
co_deleted

kc_con_str 474
co_name 472
COBUSER 45, 860
code type for RTAC name 201, 499
code_type 499
command format 677
command interface

overview 38
commands

central administration using 144
entering, in dialog 114

common memory pool
wait time 643

communication area
clear character 639
length 642

comp 534
kc_insert_str 628

compatibility guarantee 45
compiler

KC_CREATE_OBJECT 209
program unit/VORGANG exit 534

complexity level
password 590

components of CALLUTM 892
computer name

client/printer 509, 540
local computer 660
local computer (long name) 662
LTERM pool 572
LU6.1 partner 472
message router 516

CON
information about (KDCINF) 710
information about (program) 291

con 496
KC_MODIFY_OBJECT 336

con_freel
kc_dyn_par_str 633

con_total
kc_dyn_par_str 633

conbad
kc_con_str 474
kc_pterm_str 547

Index

956 Administering Applications

CONCTIME 681
conctime1_sec 670

KC_MODIFY_OBJECT 393
conctime2_sec 671

KC_MODIFY_OBJECT 393
concurrent_terminal_signon 655
configuration

dynamic changing 71
expanding dynamically 192
modifying dynamically 99

configuration entries
administration commands 161

configuration models, central administration 131
confirmation mode, print output 832

changing (KDCPADM) 851, 853
changing (PADM) 833

conn_users 640
KC_MODIFY_OBJECT 387

connect_mode
kc_con_str 473
kc_lpap_str 493
kc_lpap_str (KC_MODIFY_OBJECT) 333
kc_lses_str 496
kc_lses_str (KC_MODIFY_OBJECT) 336,

337
kc_lterm_str 510
kc_lterm_str (KC_MODIFY_OBJECT) 340
kc_mux_str 517
kc_pterm_str 547
kc_pterm_str (KC_MODIFY_OBJECT) 354
kc_tpool_str 573
kc_user_str 593

connect_number 532
KC_MODIFY_OBJECT 349

connect_state 520
connected_users 613
connection

avoiding bottlenecks 60
current status (LU6.1) 473
duration (client/printer) 547
duration (LU6.1) 473
duration (OSI TP) 520
establishing (KDCPTERM) 785
establishing (program) 340

establishing/shutting down (KDCLPAP) 757
for OSI-LPAP partner 532
information about (KDCINF) 711
information about (program) 291, 297
loss of (client/printer) 547
loss of (LU6.1) 474
number of messages (LU6.1) 474
number of parallel associations (OSI TP) 530
re-establishing (KDCAPPL) 681
re-establishing (program) 391
status (client) 547
status QUIET (LU6.1) 493
to client/printer, status 510
to LU6.1 partner, properties 471
to message router, status 517
to printer, terminating (KDCPADM) 853
to printer, terminating (PADM) 830
trace for (KDCDIAG) 697
trace for (program) 378

connection bundle
exchange master LTERM 692

connection request time 391, 668, 681
connection setup

automatic, at start (KDCPTERM) 786
automatic, at start (program) 353
automatic, to client/printer 544
automatic, to LU6.1 partner 473, 491
automatic, to multiplex connection 516
automatic, to OSI TP partner 530
automatic, to printer 507
global monitoring time 393, 670, 671
to printers (KDCPTERM) 785
to printers (program) 427

connection shutdown
property QUIET (LU6.1) 493
status QUIET (OSI TP) 532

connection user ID 80
CONRTIME 681
conrtime_min 668

KC_MODIFY_OBJECT 391
contention loser

LU6.1 session 500
OSI TP association 519
OSI TP connection 530

Index

Administering Applications 957

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

contention winner
LU6.1 session 491
OSI TP association 519
OSI TP connection 530

contime_min
kc_con_str 473
kc_osi_association_str 520
kc_pterm_str 547

CONTINUE-SERVICE 879
control

KC_GET_OBJECT output 283
KDCINF output 713

control statements
generating 105

control value
message queue (LTERM partner) 206, 507
message queue (LTERM pool) 576
message queue (OSI-LPAP) 532
message queue (TAC) 560
printer queue 507

contwin
kc_lpap_str 491
kc_osi_association_str 519
kc_osi_lpap_str 530

conversion
ASCII/EBCDIC 544, 577
parameter area 150

converting ASCII/EBCDIC 492, 525
COPY members

COBOL programming interface 856
cpgpool 608
cpgpool_fs 608
cpgpool_warnlevel 608
CPI-C

trace 379
CPI-C trace 625

enabling/disabling 379
cpic_trace

KC_MODIFY_OBJECT 379
CPU time

average (TAC) 358, 564
maximum, for program run 561

cpu_time_msec 561
KC_CREATE_OBJECT 223

cputime_sec 593
create

client 78, 211
KDCDEF control statements 251
KDCDEF input 257
KDCFILE (inverse KDCDEF) 257
key set 83
LTAC 85
LTERM partner 78, 199, 200
LU6.1 connection 84
LU6.1 session 84
new objects 77
printer 78, 211
program unit 74, 82, 209
terminal 211
transaction code 75, 82, 219
TS application 80, 211
user ID 76, 83
user ID for TS application 80
VORGANG exit 74, 82, 209

CREATE-CONFIGURATION 882
CSECT name

program unit 534
cterm 506

KC_CREATE_OBJECT 205
curr_asyntasks

kc_curr_par_str 613
kc_tasks_par_str 666

curr_date_... 612
curr_encryption 550
curr_gen 441
curr_jr 616
curr_max_asyntasks

kc_curr_par_str 612
kc_tasks_par_str 665

curr_max_tasks_in_pgwt
kc_curr_par_str 613
kc_tasks_par_str 665

curr_pool_size 614
curr_size_kbyte 439
curr_size_percent 439
curr_size_utmpages 439
curr_system_tasks 618

kc_tasks_par_str 666

Index

958 Administering Applications

curr_tasks
kc_curr_par_str 613
kc_tasks_par_str 666

curr_tasks_in_pgwt
kc_curr_par_str 613
kc_tasks_par_str 666

curr_time_... 612
current data

cache 374, 614
user ID 593

current date 612
current time 612
current values

application parameters 609

D
DADM

functions 815
program unit 836
reading user information 825
sample programs 836

DADM CS
prioritizing asynchronous jobs 825
prioritizing messages 825

DADM DA/DL
deleting asynchronous jobs 826
deleting messages 826

DADM RQ
information about message queues 824

data access control
LTAC 203
USER queue 233
via access list 162

data area 177
length 174
maximum size 177

data compression
enabling/disabling 61, 65

data global to the cluster
cluster page pool 66

data local to the node
UTM cluster application 66

data structure
application parameters 600
format of data 453
general structure 453
kc_abstract_syntax_str 455
kc_access_point_str 456
KC_ADM_RETCODE 178
kc_application_context_str 461
kc_bcamappl_str 462
kc_cluster_curr_par_str 126, 601
kc_cluster_node_str 126, 465
kc_cluster_par_str 126, 602
kc_con_str 471
kc_curr_par_str 609
kc_db_info_str 476
kc_diag_and_account_par_str 620
kc_dump_event_str 382, 383, 620
kc_dyn_par_str 629
kc_edit_str 478
kc_encrypt_advanced_str 280
kc_encrypt_str 281
kc_gssb_str 482
kc_insert_str 382, 383, 620, 627
kc_kset_str 483
kc_load_module_str 485
kc_lock_mgmt_str 313
kc_lpap_str 489
kc_lses_str 495
kc_ltac_str 498
kc_lterm_str 503
kc_max_par_str 634
kc_message_module_str 513
kc_msg_des_all_par_str 651
kc_mux_str 515
kc_online_import_str 410
kc_osi_association_str 519
kc_osi_con_str 521
kc_osi_lpap_str 528
kc_program_str 534
kc_pterm_str 539
kc_queue_par_str 654
kc_queue_str 552
kc_sfunc_str 553
kc_shutdown_str 424

Index

Administering Applications 959

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

data structure (cont.)
kc_syslog_str 439
kc_system_par_str 659
kc_tac_str 556
kc_tacclass_str 568
kc_tasks_par_str 663
kc_timer_par_str 667
kc_tpool_str 571
kc_transfer_syntax_str 581
kc_triple_str 176
kc_user_dyn1_str 292, 582
kc_user_dyn2_str 292, 582
kc_user_fix_str 292, 582
kc_user_str 582
kc_utmd_par_str 672
KDCADMI 452
object properties 454
return code 178

data_compression
kc_curr_par_str 618
kc_max_par_str 650

data_lth 174
data_lth_ret 174
DATA-COMPRESSION 682
database calls

average number of (TAC) 357, 563
average processing time (TAC) 358, 564

database key 223, 561
databases

information 476
Datenstruktur

kc_triple_str 175
db_counter 563
db_elap_msec 564
db_entry_name 477
db_id 476
db_lib_info 477
db_password 477
db_type 476
db_userid 477
db_xaswitch 477
dbkey 561

KC_CREATE_OBJECT 223
DCAM application 543

dead letter queue
move messages (DADM) 827
move messages (KDCDADM) 843
number of messages 649

dead_letter_q
kc_lpap_str 335, 494
kc_osi_lpap_str 351, 533
kc_tac_str 567

dead_letter_q_alarm 649
deadlocks 615

kc_curr_par_str
(KC_MODIFY_OBJECT) 375

DEALLOCATE-CONVERSATION 885
decentralized administration programs 145
delayed delete 89
delete

key set 97
LTAC 98
LU6.1 connection 97
LU6.1 session 97

deleted
kc_ltac_str 502
kc_lterm_str 512
kc_program_str 536
kc_pterm_str 548
kc_tac_str 564
kc_user_str 593

deleted program units
information about (program) 297, 298, 300

deleting
asynchronous jobs (KDCDADM) 838
messages (KDCDADM) 838

deleting from the configuration 89
client/printer 91, 264
effects 92, 94, 96
LTERM partner 91, 264
program unit 93, 264
transaction code 93, 264
user ID 95, 264
VORGANG exit 93

DES encryption 272

Index

960 Administering Applications

DESTADM 118, 144
for distributed processing 144
for TS application 144
modifying (program) 388

destadm
kc_max_par_str 388, 640
kc_system_par_str 660

dget_redelivery 649
diagnosis

administration interface 123
automatic 154

diagnostic aids
activating/deactivating (KDCDIAG) 693
activating/deactivating (program) 322

diagnostic dump
creating (program) 382

diagnostic information 648
diagnostic parameters

data structure 620
dial_conv_pages 653
dial_step_per_100sec 613
dial_ta_per_100sec 613
dialog commands

entering 114
output of results 114
overview 39

dialog TAC 560
disable

client/printer 544
LPAP partner 473, 491
LPAP partner (KDCLPAP) 760
LPAP partner (program) 332
LTAC 500
LTAC (KDCLTAC) 766
LTAC (program) 339
LTERM partner 505
LTERM partner (KDCLTERM) 769
LTERM partner (program) 340
LTERM partners in a pool 575
multiplex connection 517
OSI-LPAP (KDCLPAP) 760
OSI-LPAP partner 531
OSI-LPAP partner (program) 347
transaction code 558

transaction code (KDCTAC) 805
transaction code (program) 356
user ID 587
user ID (KDCUSER) 814
user ID (program) 366

distributed processing
administration via 137
application with 661
parameters (data structure) 672
statistical information 616

documentation
summary 16

dpn 492
DPUT ID, see job ID
DPUT jobs

execution time 641
number currently waiting 615

dputlimit1_... 641
dputlimit2_... 641
dump

creating 694
creating (program) 382
creating during operation (KDCDIAG) 694
creating during operation (program) 190

dump_event
kc_dump_event_str 626

dump_msg_id 622
duration of password validity 591
dynamic objects

information (data structure) 629
dynamically created objects

access to 77
availability 78

dynamically deleted objects
access to 89

E
EBCDIC 146
EBCDIC/ASCII conversion

kc_lpap_str 492, 525
kc_pterm_str 544, 577

ed_name 479
edit profile options, data structure 478
edit_bell 479

Index

Administering Applications 961

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

edit_mode 479
enable

LPAP partner (KDCLPAP) 760
LPAP partner (program) 332
LTAC (KDCLTAC) 766
LTAC (program) 339
LTERM partner (KDCLTERM) 769
LTERM partner (program) 340
OSI-LPAP (program) 347
OSI-LPAP partner (KDCLPAP) 760

enable Stxit logging (program) 385
enable/disable trace

BCAM (program) 378, 379, 380, 381
ENCRADM 862
encryption,generate key 275
encryption_level 565

kc_perm_str (KC_CREATE_OBJECT) 216
kc_pterm_str 548, 578

entering in the configuration
administration commands 38
administration program 158
LTERM partner 199, 200
TS application 80

ENTRY name
program unit 534

error, formatting 835
establishing a connection

global monitoring time 670
establishing a session

global monitoring time 670
KDCLSES 763
program 336

event
kc_dump_event_str 627

event_type
kc_dump_event_str 626

example,KDCTCL 812
exchange

application (program) 185
load module/shared object/DLL 329

exchangeable programs
information about (program) 300

execution time
time-controlled job 641

exit_name
KC_CREATE_OBJECT 222

extend KDCFILE (inverse KDCDEF) 257
extended character set 590

F
fault handling

print output 835
fgg 440
file generation

switching, SYSLOG file (KDCSLOG) 795
switching, SYSLOG file (program) 435

file_name 439
first_valid_gen 441
floating point presentation

KDCINF 704
follow-up TAC 560
format

administration command 677
data structure description 454
in the administration program 121
object names 88

format indicator
T-selector BCAMAPPL name 464
T-selector of partner address 198
T-selector OSI TP access point 460
T-selector partner address 473, 526, 546

format_attr
kc_lterm_str 506
kc_lterm_str (KC_CREATE_OBJECT) 206
kc_lterm_str (KC_MODIFY_OBJECT) 341
kc_tpool_str 575
kc_user_str 589
kc_user_str (KC_CREATE_OBJECT) 230
kc_user_str (KC_MODIFY_OBJECT) 370

format_name
kc_lterm_str 506
kc_lterm_str (KC_CREATE_OBJECT) 206
kc_lterm_str (KC_MODIFY_OBJECT) 341
kc_tpool_str 575
kc_user_str 590
kc_user_str (KC_CREATE_OBJECT) 230
kc_user_str (KC_MODIFY_OBJECT) 370

formatting error, print output 835

Index

962 Administering Applications

fpmm_pages 653
fput_pages 653
free_pages 652
function call KDCADMI 165
function key

properties (data structure) 553

G
gen_date_day 619
gen_date_month 619
gen_date_year 619
gen_system_tasks

kc_tasks_par_str 666
gen_time_hour 619
gen_time_min 619
gen_time_sec 619
generate

UTM client for administration (cluster) 135
generated processes

maximum number 664
generation

administration commands 38, 161
administration program 158
CALLUTM 870
distributed processing via LU6.1 140
TS application 142
UTM client for administration 134

generation variant 612, 660
global secondary storage area

maximum number 641
name 482

global semaphore
privileges key 646

grace 655
Grace-Sign-On 655
gs_name 482
GSSB

maximum number 641
name 482

gssb_pages 652
gssbs 641

H
hardware fault during print output 835
hcopy 479
header file kcadminc.h 452
heterogeneous link

application name 490
HNDLUSR 860
hom 479
hostname

kc_cluster_node_str 466, 470
kc_max_par_str 641
kc_system_par_str 660

hostname_long
kc_max_par_str 650
kc_system_par_str 662

HP-UX 15

I
ID of association 727
id_lth 174
identification

message queues 823
identification area 175

length 174
identification card 587
identify

asynchronous jobs 823
messages 823

idle state
association (KDCLPAP) 760
association (program) 350
OSI TP association, timer 531
session (KDCLPAP) 760
session (program) 333
timer, LU6.1 session 492

idle time
LU6.1 session 492
timer, OSI TP association 531

IDLETIME 760
idletime 548

kc_perm_str (KC_CREATE_OBJECT) 216
kc_tpool_str 578

Index

Administering Applications 963

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

idletime_sec
kc_lpap_str 492
kc_lpap_str (KC_MODIFY_OBJECT) 333
kc_osi_lpap_str 350, 531
kc_pterm_str (KC_MODIFY_OBJECT) 355,

365
ihdr 480
immediate delete 89
import_node 410
in_queue 563
in_queue_ex 567
in_service 593
incnt 517
incounter 511
indication_calls 520
information

on administration commands 702
select (KDCADMI) 177

information functions 50
insert_index

kc_insert_str 627
INTEGER 201, 499
inverse KDCDEF 105, 251

result 109
starting 107
version migrations 110

inverse_kdcdef_state 661
IP address

client 549
client (IPv6) 550
LU6.1 partner 474
LU6.1 partner (IPv6) 474, 526
OSI TP partner 526
relocatable 470

ip_addr
kc_con_str 474
kc_osi_con_str 526
kc_pterm_str 549

ip_addr_format 555
ip_addr_v6

kc_con_str 474
kc_osi_con_str 526
kc_pterm_str 550

ip_v
kc_con_str 474, 527
kc_pterm_str 551

ipc 642
IPC trace area 642
ipcshmkey 642
ipctrace 642
IPv4 subnet address

kc_subnet_str 555
ipv4_address 555
IPv6 subnet address

kc_subnet_str 555
ipv6_address 555
ISO code 146

J
job ID 823
job receiver

central administration 137
job receiver confirmation

wait time 671
job submitter

using LU6.1 session 496
job-receiving services

maximum number, remote 672

K
K009 554
K041 152
K091 152
K119 154
kaashmkey 642
KB

clear character 639
length 642

kb 642
KC_ABORT_PTC_SERVICE 310
kc_abstract_syntax_str 455
kc_access_point_str 456
kc_adm_parameter 166
KC_ADM_RETCODE 178
kc_application_context_str 461
KC_APPLICATION_PAR 289
KC_ASCENDING 289

Index

964 Administering Applications

KC_ATTRIBUTES 283, 289
KC_ATTRIBUTES_NEXT 283, 289
kc_bcamappl_str 462
KC_CHANGE_APPLICATION 183

data returned 189
return code 188

kc_change_application_str 189
KC_CLUSTER_CURR_PAR 292
kc_cluster_curr_par_str 126, 601
kc_cluster_node_str 126, 465
KC_CLUSTER_PAR 292
kc_cluster_par_str 126, 602
KC_CON 196

return codes 236, 268
KC_CON_STMT 256
kc_con_str 197, 471
KC_CREATE_DUMP 190
KC_CREATE_OBJECT 192

KC_CON 197
KC_KSET 199
KC_LSES 200
KC_LTAC 201
return codes 235

KC_CREATE_STATEMENTS 251
return codes 196, 259

kc_create_statements_str 255
kc_curr_par_str 609
KC_DB_INFO 291
kc_db_info_str 476
KC_DELETE_OBJECT 261

return codes 267
KC_DESCENDING 283, 289
KC_DEVICE_STMT 256
kc_diag_and_account_par_str 620
kc_dump_event_str 382, 383, 620
kc_dyn_par_str 629
kc_edit_str 478
KC_ENCRYPT

return codes 279
kc_encrypt_advanced_str 280
kc_encrypt_str 280, 281
KC_GET_OBJECT 282

return codes 302
kc_gssb_str 482

kc_insert_str 382, 383, 620, 627
KC_KSET 196, 291

return codes 237, 268
KC_KSET_STMT 256
kc_kset_str 483
kc_load_module_str 485
kc_lock_mgmt_str 313
KC_LOCL_MGMT 310
kc_long_triple_str 305
kc_lpap_str 489
KC_LSES 196

return codes 237, 268
kc_lses_str 200, 495
KC_LTAC 196

return codes 237
kc_ltac_str 201, 498
KC_LTERM 196

return codes 238, 269
kc_lterm_str 199, 475, 503, 512
kc_max_par_str 634
kc_message_module_str 513
KC_MODIFY_OBJECT 315, 620, 667

KC_CLUSTER_NODE 325
KC_KSET 328, 372
return codes 324

kc_msg_dest_all_par 651
kc_mux_str 515
KC_NAME 283, 288
KC_NAME_NEXT 283, 288
kc_online_import_str 410
kc_osi_association_str 519
kc_osi_con_str 521
kc_osi_lpap_str 528
kc_pagepool_str 652
KC_PROGRAM 196

return codes 240, 269
KC_PROGRAM_STMT 256
kc_program_str 209, 534
KC_PTC 291
KC_PTC_TA 169, 411
KC_PTERM 196

return codes 241, 270
kc_pterm_str 211, 539, 551
kc_queue_par_str 654

Index

Administering Applications 965

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

kc_queue_str 552
KC_RC_NIL 167
KC_READ_NO_GSSBFILE 289
KC_READ_NO_USERFILE 290
KC_SEND_MESSAGE 413

return codes 417
KC_SFUNC 291
kc_sfunct_str 553
KC_SHUTDOWN 418

return codes 425
kc_shutdown_str 424
KC_SPOOLOUT 427

return codes 430
KC_SUBNET 291
kc_subnet_str 555
KC_SYSLOG 431

return codes 437
kc_syslog_str 439
kc_system_par_str 659
KC_TAC 196

return codes 246
kc_tac_str 219, 556
kc_tacclass_str 568
kc_tasks_par_str 663
kc_timer_par_str 667
kc_tpool_str 571, 580
kc_transfer_syntax_str 581
kc_triple_str 175, 176, 305
KC_UPDATE_IPADDR 442

return codes 447
KC_USER 196, 632

return codes 248, 270
KC_USER_DYN1 291
kc_user_dyn1_str 292, 582
KC_USER_DYN2 291
kc_user_dyn2_str 292, 582
KC_USER_FIX 291
kc_user_fix_str 292, 582
KC_USER_STMT 256
kc_user_str 227, 292, 582
KC_USLOG 449

return codes 451
kc_utmd_par_str 672
KC_VERSION_DATA 168

kcadminc.h 452
KDCADMI

calling repeatedly 120
operation codes 168
return codes 178
trace 378, 624

KDCADMI function call
C/C++ 165
COBOL 858

KDCAPLKS 483
KDCAPPL 678

output 691
performance monitoring enable/disable 690

KDCBNDL 692
KDCDADM 837

deleting asynchronous jobs 838
deleting messages 838
entering in the configuration 836

KDCDEF generation
CALLUTM 872
for dynamic configuration 73
recommendations for 111

KDCDEF statements
generating 105, 251

KDCDIAG 693
output 701

KDCFILE
base name 642
catalog ID 639
inverse KDCDEF 257
redundant 642
reserving table spaces 73

kdcfile_name 642
kdcfile_operation 642
KDCHELP 702
KDCINF 703

controlling output 713
large values in floating point

presentation 704
output 715

kdcload 661
KDCLOG 754
KDCLPAP 755

output 761

Index

966 Administering Applications

KDCLSES 763
output 764

KDCLTAC 766
output 767

KDCLTERM 768
output 770

KDCMON
activating/deactivating (KDCDIAG) 696
activating/deactivating (program) 384

KDCMUX 702, 771
output 774

KDCPADM
entering in the configuration 836

KDCPOOL 775
output 776

KDCPROG 777
output 780

KDCPTERM 783
output 787

KDCS message area
length 643

KDCSEND 413, 789
output 789

KDCSHUT 790
KDCSIGN 639
KDCSLOG 794

output 796
KDCSWTCH 800

output 802
KDCTAC 805

output 807
KDCTCL 808

example 812
output 811

KDCUSER 813
output 814

Kerberos principal
maximum length 649

kerberos_dialog 512
kc_lterm_str (KC_CREATE_OBJECT) 208
kc_tpool_str 580

key code
for a key set 484
largest 642
of a key set 199

key set
data structure (properties) 483
defining properties (program) 199
deleting dynamically 97
dynamic modification 372
entering dynamically 199
information about (KDCINF) 707
information about (program) 291
KDCAPLKS 483
key codes contained 199
key codes included in 484
LTERM partner 504
LTERM pool 574
LU6.1 partner application 490
master 199, 483
modifying dynamically 102, 328
OSI TP partner application 530
user ID 587

key sets
entering dynamically 83

keys 484
KC_MODIFY_OBJECT 327, 328

keyvalue 642
keyword operands

administration commands 677
keywords

passing (KDCADMI) 181
ks_deleted

kc_kset_str 484
ks_name 483
kset

kc_lpap_str 490
kc_lterm_str 504
kc_lterm_str (KC_CREATE_OBJECT) 204
kc_osi_lpap_str 530
kc_tpool_str 574
kc_user_str 587
kc_user_str (KC_CREATE_OBJECT) 227
kc_user_str (KC_MODIFY_OBJECT) 366

KSET with inverse KDCDEF 106

Index

Administering Applications 967

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

kset_free
kc_dyn_par_str 632

kset_total
kc_dyn_par_str 632

KTA trace in test mode 697

L
language code

application 643
LTERM partner 504
LTERM pool 574
message module 514
user ID 590

language environment
defining, LTERM partner 204
LTERM partner 504
LTERM pool 574
message module 514
standard for the application 643

last_switch_ok 440
lc_name 498
letters

kc_con_str 474
kc_mux_str 517
kc_pterm_str 547

lib
kc_load_module_str 486
kc_message_module_str 514
kc_program_str 536

library
load module 536
user message module 514

lifetime
statistical data 743

Linux distribution 15
LIST 713
listener ID

BCAMAPPL name 463
OSI TP access point 460

listener port number
BCAMAPPL name 463
LU6.1 partner application 472
OSI TP access point 460

listener_id
kc_access_point_str 460
kc_bcamappl_str 463

listener_port
kc_bcamappl_str 463
kc_con_str 472
kc_osi_con_str 526
kc_pterm_str 546
kc_pterm_str (KC_CREATE_OBJECT) 215
kc-access_point_str 460

lm_name 485
lnetname 490
load

current 739
maximum 739

load control
via programming interface 153

load mode
load module/shared object 486, 535

load module
data structure (properties) 485
exchanging with KDCPROG 777
exchanging with program 183, 329
information about (KDCINF) 707
information about (program) 291
load mode 486, 535
marked for exchange 487
name 485
program unit/VORGANG exit 535
properties (data structure) 485
public slice 536
replaceable 487
version 485

load_mode 486, 535
load_module 535

KC_CREATE_OBJECT 210
load_module_gen 661
load-dependent control 152
local access point

for OSI TP connection 522
properties (data structure) 456

local secondary storage area
maximum number 643

local session name 495

Index

968 Administering Applications

local_access_point 522
locale

application 643
LTERM partner 504
LTERM pool 574
message module 514
user ID 231, 590

locale_ccsname
kc_lterm_str 504
kc_max_par_str 643
kc_tpool_str 574
kc_user_str 590
kc_user_str (KC_CREATE_OBJECT) 231

locale_lang_id
kc_lterm_str 504
kc_max_par_str 643
kc_message_module_str 514
kc_tpool_str 574
kc_user_str 590
kc_user_str (KC_CREATE_OBJECT) 231

locale_terr_id
kc_lterm_str 504
kc_max_par_str 643
kc_message-module_str 514
kc_tpool_str 574
kc_user_str 590
kc_user_str (KC_CREATE_OBJECT) 231

locin 480
lock

releasing (cluster user file) 310
lock code

largest 642
LTAC 203, 501
LTERM partner, defining 204
LTERM pool 505, 574
transaction code 557

lock_code
kc_ltac_str 501
kc_lterm_str 505
kc_lterm_str (KC_CREATE_OBJECT) 204
kc_tac_str 557
kc_tac_str (KC_CREATE_OBJECT) 219
kc_tpool_str 574

lock/key code concept 204, 504

log_rec_pages 653
logackwait_sec 670

KC_MODIFY_OBJECT 392
logfile_writes 616

kc_curr_par_str
(KC_MODIFY_OBJECT) 375

logical connection 529
re-establishing 391, 668

low 480
lowest_open_gen 441
lp_name 490
lpap

kc_con_str 472
kc_lses_str 495
kc_ltac_str 498

LPAP partner
administering (KDCLPAP) 756
administering (program) 332
information about (KDCINF) 710
information about (program) 291
information on (program) 297
LU6.1 partner application 472
LU6.1 session 495
partner application 197
properties (data structure) 489
remote service (LTAC) 201, 498

LPUT records
buffer size 643
length of user data 643

lput_pages 653
lputbuf 643
lputlth 643
ls_deleted

kc_lses_str 497
ls_name 495
lses_total

kc_dyn_par_str 633
LSSB

maximum number 643
lssb_pages 652
lssbs 643
lt_group 512
lt_name 504

KC_CREATE_OBJECT 204

Index

Administering Applications 969

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

LTAC
deleting dynamically 98
disabling/enabling (KDCLTAC) 766
disabling/enabling (program) 339
entering dynamically 85, 201
information about (KDCINF) 711
information about (program) 291
modifying properties (KDCLTAC) 766
modifying properties (program) 338
name 498
number of jobs 501
wait time for response 202, 501
with inverse KDCDEF 106

ltac_freel
kc_dyn_par_str 633

ltac_total
kc_dyn_par_str 633

ltac_type 501
ltacunit 501
LTERM

privileged for WinAdmin/Webadmin 128
lterm 544, 572

KC_CREATE_OBJECT 213
KC_MODIFY_OBJECT 353

LTERM bundle
exchange master LTERM 342, 692

LTERM group
assign primary LTERM 342

LTERM partner
adding dynamically 78, 192, 204
assignment to client/printer

(KDCSWTCH) 801
assignment to client/printer (program) 352
define properties 204
deleting dynamically 91, 261
disable/enable (KDCLTERM) 769
disable/enable (program) 340
disabling 69
establishing/shutting down a connection

(KDCLTERM) 768
establishing/shutting down a connection

(program) 340
information about (KDCINF) 707
information about (program) 291, 298

LTERM pool 511
maximum number 630
modifying dynamically 100
modifying properties (KDCLTERM) 768
modifying properties (program) 340
number that can be added dynamically 630
printer pool 511
properties (data structure) 503
statistical information 511

LTERM pool
access privileges 574
active clients 577
administering (KDCPOOL) 775
administering (program) 364
changing number of clients (KDCPOOL) 775
changing number of clients (program) 364
information about (KDCINF) 708
information about (program) 291
key set 574
maximum number of clients 573
multiple connections, client 573
prefix 572
properties (data structure) 571
start format 575

LTERM prefix
LTERM pool 572

LTERM statements
generating 105

lterm_curr 592
lterm_free 630
lterm_total 630
LU6.1 connection

adding dynamically 197
current status 473
deleting dynamically 97
duration of 473
entering dynamically 84
loss of 474
number of messages 474
pacing value 492
properties (data structure) 471
QUIET status 493, 496

LU6.1 partner application
logical properties (data structures) 489

Index

970 Administering Applications

LU6.1 session
defining properties (program) 200
deleting dynamically 97
entering dynamically 84, 200
idle time, timer 492
modifying dynamically 103
properties (data structure) 495

M
magnetic stripe card

user ID 587
main code of return code 178
map

kc_lpap_str 492, 525
kc_pterm_str 544, 577
kc_pterm_str (KC_CREATE_OBJECT) 214

mapped_name 555
master 483, 494, 508, 533
master key set 199, 483
master LTERM

exchange 342, 692
MAX DESTADM 144
MAX parameters (data structure) 634
max_asyn_ta_per_100sec 614

kc_curr_par_str
(KC_MODIFY_OBJECT) 374

max_cpgpool_size 371, 601
max_dial_step_per_100sec 614

kc_curr_par_str
(KC_MODIFY_OBJECT) 374

max_dial_ta_per_100sec 613
kc_curr_par_str

(KC_MODIFY_OBJECT) 374
max_load

kc_curr_par_str 616
kc_curr_par_str

(KC_MODIFY_OBJECT) 375
max_number 573
max_open_asyn_conv 649
max_pool_size 614

kc_curr_par_str
(KC_MODIFY_OBJECT) 374

max_wait_resources 375, 617
max_wait_system_resources 376, 617

MAX-CONN-USERS 683
MAXASYN 682
maxcon 517, 577
maximum values for application

change (KDCAPPL) 678
data structure 634
modifying (KDCAPPL) 678
modifying (program) 386

maximum_jr 616
kc_curr_par_str

(KC_MODIFY_OBJECT) 375
maxjr 672
maxses 516
md_name

kc_msg_dest_par_str 651
md_type

kc_msg_dest_par_str 651
message

CALLUTM 894
maximum length 648
number in message queue (OSI-LPAP) 532
passing to BCAM 638
send to user (KDCSEND) 789
send to user (program) 413

message area, length 643
message destination

MSGTAC 152
properties 651

message dump 622
creating (KDCDIAG) 694

message interface
for central administration 148

message module
properties (data structure) 513

message queue
administering (DADM) 821
control value (LTERM partner) 206, 507
control value (LTERM pool) 576
control value (LU6.1 partner) 491
control value (OSI-LPAP partner) 532
control value (TAC) 560
deleting asynchronous jobs (DADM) 826
deleting asynchronous jobs

(KDCDADM) 838

Index

Administering Applications 971

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

message queue (cont.)
deleting messages (DADM) 826
deleting messages (KDCDADM) 838
displaying information (KDCDADM) 840
identification 823
information about (DADM) 824
information about (KDCDADM) 840
number of messages (LTERM partner) 511
number of messages (LU6.1 partner) 493
number of messages (OSI-LPAP) 532
number of messages (TAC) 563
reducing the size of 63
threshold value 507

messages
administering (KDCDADM) 837
dead letter queue (DADM) 827
deleting (DADM) 826
deleting (KDCDADM) 838
identifying 823
information about (KDCDADM) 840
prioritizing (DADM) 825
prioritizing (KDCDADM) 845

metasyntax 32
mg_name 313
mg_node 313
Micro Focus COBOL 241
Microfocus COBOL 241
mm_name 514
mod_free_dial_tasks 390, 666
mod_max_asyntasks 665

KC_MODIFY_OBJECT 389
mod_max_tasks 664

KC_MODIFY_OBJECT 389
mod_max_tasks_in_pgwt 665

KC_MODIFY_OBJECT 390
modify

application parameters (KDCAPPL) 678
application parameters (program) 316, 322
cache paging (KDCAPPL) 680
cache paging (program) 386
client 100
configuration 71
key set 102, 328, 372
LU6.1 session 103

maximum number of sign-on attempts 388
number of clients in LTERM pool 364, 775
object properties (program) 315
objects 99
output destination, asynchronous

command 144
password for user (KDCUSER) 813
printer 100
printer assignment (KDCSWTCH) 800
printer assignment (program) 352
TAC queue 101, 356
transaction code 101
user ID 102

MODIFY-CONFIGURATION 886
monitoring time

establishing a connection (OSI TP) 393, 670,
671

establishing a session (LU6.1) 393, 670, 671
move_bundle_msgs 650
mp_wait_sec 643
MSCF 906
MSGTAC message destination 152
msgtac_pages 653
multi-step service

administration program 121
multi-step transaction

setting timer (KDCAPPL) 690
setting timer (program) 392
timer 670

multiplex connection
connection status 517
disabling/enabling (KDCMUX) 773
disabling/enabling (program) 344
establishing/shutting down connection

(KDCMUX) 772
establishing/shutting down connection

(program) 345
information about (KDCINF) 706, 708
information about (program) 291, 299
maximum number of clients 516
maximum number of terminals

(KDCMUX) 773
maximum number of terminals

(program) 344

Index

972 Administering Applications

multiplex connection (cont.)
modifying properties (KDCMUX) 771
modifying properties (program) 344
number of active clients 517
number of exchanged messages 517
properties (data structure) 515
statistical information 517

mux 547
MUX, see multiplex connection
mx_name 516

N
name

client/printer 540
common memory pool 536
format 88
format of data passed in data structures 453
key set 483
load module/shared object 485
local application 462, 611, 637, 660
LPAP partner 490
LTAC 498
LTERM partner 504
LU6.1 session 200
message module 514
multiplex connection 516
OSI TP access point 456
OSI TP connection 522
partner application 197
program unit/VORGANG exit 534
transaction code 557
UTM user ID 587

name class 87
name list

output (KDCINF) 713
nb 643

length 643
nbr_ack_jobs

kc_tac_str 567
nbr_dputs 533

kc_lpap_str 494
kc_lterm_str 512
kc_tac_str 566

nbr_ta_commits 567

net_access 644
NETCOBOL 241
netprio

kc_lpap_str 490
kc_lterm_str 508
kc_lterm_str (KC_CREATE_OBJECT) 207
kc_mux_str 517
kc_tpool_str 576

network component
OSI TP address 525, 527

network_selector 525
network_selector_long 527
new password

user ID (KDCUSER) 813
user ID (program) 367

node application
information on (program) 291
reference name 469

node_indx 466
node_name

kc_cluster_str 469
kc_lses_str 497

node_reserved_cpgpool_pages 601
nolog 480
notational conventions 32

CALLUTM statements 877
data structure description 454

nr_cache_rqs 376, 617
nr_cache_searches 376, 617
nr_calls 570
nr_res_rqs 617
nr_res_rqs_for_max 376, 617
nr_sys_res_rqs 618
nr_sys_res_rqs_for_max 376, 618
nr_waits 570
nrconv 644
number of processes

asynchronous processing, setting 665
blocking calls, maximum 664

number_errors 563
number_errrors_ex 567
number_ret 174
number_tacs 593
numeric data in data structures 453

Index

Administering Applications 973

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

numeric values
converting 150

numerical data
passing (KDCADMI) 181

O
obj_number 174
obj_type

KC_GET_OBJECT 291
parameter area 170

object name
format/uniqueness 86
passing (KDCADMI) 175, 181

object properties
modifying 315
passing (KDCADMI) 177

object table, reserving spaces 73
object type 170, 320
objects

adding dynamically 77, 192
deleting dynamically 89, 261
dynamic creation/deletion 71
modifying dynamically 99
number of 174

oc_name 522
offline, inverse KDCDEF 108
ohdr 480
ol_name 529
ONCALL 486, 535
online import

application data 408
asynchronous service 408
source node (data structure) 410
start node (data structure) 176, 412

online, inverse KDCDEF 107
open_asyn_services 613
open_dial_services 613
openSM2

KDCAPPL 690
openSM2 data supply 647

activating/deactivating (KDCAPPL) 690
activating/deactivating (program) 388
enable/disable 690

operating system 660

operation codes KDCADMI 168
options

databases 476
edit profiles 478

OSI TP access point
for OSI TP connection 522
properties (data structure) 456

OSI TP association
idle time, timer setting 531
information about (KDCINF) 711
information about (program) 293
prefix 529
properties (data structure) 519

OSI TP connection
diagnosis (KDCDIAG) 699
diagnosis (program) 380
duration 520
information about (KDCINF) 711
information about (program) 291
number of parallel associations 530
properties (data structure) 521
status 525
status QUIET 532

OSI TP partner address 523
OSI TP partner application

properties (data structure) 528
OSI TP replacement connection

activating (KDCLPAP) 757
activating (program) 346

OSI trace 622
activating/deactivating (KDCDIAG) 699
activating/deactivating (program) 379

osi_con 532
osi_lpap

kc_osi_association_str 519
kc_osi_con_str 522

osi_scratch_area 644
osi_tp 662
osi_trace 622

KC_MODIFY_OBJECT 380
osi_trace_records 623

KC_MODIFY_OBJECT 380

Index

974 Administering Applications

OSI-LPAP partner
administering (KDCLPAP) 756
administering (program) 347
disable/release (KDCLPAP) 760
disable/release (program) 347
information about (KDCINF) 711
information about (program) 291
OSI TP association 519
OSI TP connection 522

osishmkey 644
other_pages 653
OTRACE 699
out_queue

kc_lpap_str 493
kc_lterm_str 511
kc_osi_lpap_str 532
kc_user_str 596

out_queue_ex
kc_lpap_str 494
kc_lterm_str 512
kc_osi_lpap_str 533
kc_user_str 598

output
asynchronous command 117
dialog command 114
KDCAPPL 691
KDCDIAG 701
KDCINF 715
KDCINF CON 716
KDCINF KSET 717
KDCINF LOAD-MODULE 718
KDCINF LPAP 720
KDCINF LSES 721
KDCINF LTAC 722
KDCINF LTERM 723
KDCINF MUX 725
KDCINF OSI-ASSOCIATIONS 727
KDCINF OSI-CON 728
KDCINF OSI-LPAP 729
KDCINF PAGEPOOL 730
KDCINF POOL 732
KDCINF PROG 733
KDCINF PTERM 735
KDCINF SHARED-OBJECT 737

KDCINF STATISTICS 738
KDCINF SYSPARM 745
KDCINF TAC 749
KDCINF TAC-PROG 750
KDCINF TACCLASS 751
KDCINF USER 752
KDCLPAP 761
KDCLSES 764
KDCLTAC 767
KDCLTERM 770
KDCMUX 774
KDCPOOL 776
KDCPROG 780
KDCPTERM 787
KDCSEND 789
KDCSLOG 796
KDCSWTCH 802
KDCTAC 807
KDCTCL 811
KDCUSER 814

output debug information (program) 385
output destination

asynchronous command 144

P
paccnt 492
pacing value, LU6.1 connection 492
PADM

functions 816
program unit 836
sample programs 836

page pool 643
avoiding overflows 61
node application 66
number of files 644
properties 644
size of 644
utilization 374, 614
warning levels 644

pages_pwrite 615
kc_curr_par_str

(KC_MODIFY_OBJECT) 375

Index

Administering Applications 975

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

paging
cache 638
controlling cache (KDCAPPL) 680
controlling cache (program) 386

PAM read/write jobs
maximum number 645

parallel connections
clearing (KDCLPAP) 760
clearing (program) 350, 785
number (OSI TP) 530
OSI-LPAP partner (KDCLPAP) 758
OSI-LPAP partner (program) 348

parallel OSI TP associations
number 530

parameter area 166
conversion 150
data_lth 174
data_lth_ret 174
id_lth 174
number_ret 174
obj_number 174
obj_type 170
retcode 167
select_lth 174
subopcode 168
version 167
version_data 167

parameter types 172
parameter values

passing (KDCADMI) 177
parameters for distributed processing

data structure 672
partner application

information about (KDCINF) 711
information about (program) 298, 299
LU6.1, logical properties 489

partner type
client/printer 541
LTERM pool 573

passing application parameters 600
password 588

change with maximum term of validity 369
changing (KDCUSER) 813
changing (program) 367

complexity level 590
darkened entry 589
enter in a darkened field 230
minimum length 599
validity, duration 591

password_dark 589
KC_CREATE_OBJECT 230

password_type 588
kc_user_str (KC_CREATE_OBJECT) 229
kc_user_str (KC_MODIFY_OBJECT) 368

password16 599
kc_user_str (KC_CREATE_OBJECT) 229
kc_user_str (KC_MODIFY_OBJECT) 367

PCMX 19
PDN 543
performance bottleneck, measures 55
performance check 52
performance monitoring

with openSM2 (KDCAPPL) 690
with openSM2 (program) 388

period of validity of modification
UTM cluster application 318

periodic write 375, 615
periodic_writes 615

kc_curr_par_str
(KC_MODIFY_OBJECT) 375

permit
kc_lpap_str 490
kc_osi_lpap_str 531
kc_user_str 591
kc_user_str (KC_CREATE_OBJECT) 232

pgpool_pages 644
pgpool_warnlevel1 644
pgpool_warnlevel2 644
pgpoolfs 644
pgwt 569, 661
PGWT TAC class 569
PGWT wait time 669

setting timer (KDCAPPL) 683
setting timer (program) 391

PGWTTIME 683
pgwttime_sec 669

KC_MODIFY_OBJECT 391
phys_msg_pages 653

Index

976 Administering Applications

pisizelth 645
plev 507

KC_CREATE_OBJECT 206
plu 492
polling function

central administration 137
POOL 486, 535
pool 511, 547
poolname

kc_load_module_str 487
kc_program_str 536

port number
BCAMAPPL name 463
client 546
LU6.1 partner application 472
OSI TP access point 460
OSI TP partner address 526

portable administration program 146
position operand

administration commands 677
pr_name 534

KC_CREATE_OBJECT 209
prefix

LTERM partner for a pool 572
OSI TP associations 529

prepare to commit 411
presentation selector

OSI TP access point 457
presentation_selector

kc_access_point_str 457
kc_osi_con_str 522

presentation_selector_code
kc_access_point_str 458
kc_osi_con_str 524

presentation_selector_lth
kc_access_point_str 458
kc_osi_con_str 523

presentation_selector_type
kc_access_point_str 458
kc_osi_con_str 523

previous version
load module/shared object 487

primary logical unit
LU6.1 session 492

princ_free
kc_dyn_par_str 633

princ_total
kc_dyn_par_str 633

principal
kc_user_str 597

principal_lth 649
print output

automatic mode 832
confirmation mode 832
confirming (KDCPADM) 852
confirming (PADM) 834
fault handling 835
hardware fault, action 835
repeating (KDCPADM) 852
repeating (PADM) 834

PRINTABLE-STRING 201, 499
printer

adding dynamically 78, 211
administering (KDCPADM) 846
administering (PADM) 816, 828
availability 70
changing an LTERM partner (program) 352
changing LTERM partner (KDCPADM) 854
changing LTERM partner (KDCSWTCH) 800
changing LTERM partner (PADM) 830
computer name 509
connection status 547
deleting dynamically 91, 264
disable/re-enable (KDCPADM) 853
disabling 69
disabling (PADM) 830
establishing a connection (KDCAPPL) 688
establishing a connection (program) 427
information about (KDCINF) 723
information about (KDCPADM) 847
information about (PADM) 829
information about (program) 300
maximum number in configuration 630
modifying dynamically 100
number that can be added dynamically 630
properties (data structure) 539
statistical information 547

printer control (KDCPADM) 846

Index

Administering Applications 977

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

printer control (PADM) 828, 831
printer control LTERM 506, 818

assigning (KC_CREATE_OBJECT) 205
printer control, printer ID 544
printer ID 544, 819
printer pool

generating 69
LTERM partner 511

printer queue control value 507
printer status

changing (KDCPADM) 853
changing (PADM) 830

prio 570
priority control 570
privilege keys, semaphores 646
privileged LTERM 128
privileged_lterm 650
processes

define current number (KDCAPPL) 689
maximum number 648, 664
number currently set 389

processes, defining number
for asynchronous processing

(KDCAPPL) 682
for asynchronous processing (program) 389
for blocking calls (KDCAPPL) 689
for blocking calls (program) 390
in application (KDCAPPL) 689
in application (program) 389
TAC classes (KDCTCL) 808
TAC classes (program) 360

processes, number of
asynchronous processing 612
asynchronous processing, maximum 637,

664
changing for the application 55
current, defining 689
current, determining 613, 664, 666
data structure 663
maximum defined 612
maximum, for asynchronous processing 666
modifying for asynchronous processing 56
modifying TASKS-IN-PGWT 56
TAC class 569

processing time
program unit (KDCAPPL) 687
program unit (program) 392

processor of partner application 197
PROG 708
prog_change_running 661
PROGRAM 684
program 557

KC_CREATE_OBJECT 219
program exchange

application (KDCAPPL) 684
application (program) 185
load module/shared object (KDCPROG) 777
load module/shared object/DLL 329
requirements 184, 684
several applications simultaneously 138

program interface
summary 41

program library
load module 486

PROGRAM statements
generating 105

program statements
CALLUTM 876

program unit
adding dynamically 74, 82, 192, 209
average runtime 357, 563
deleting dynamically 93, 264
information about (program) 300
information on (KDCINF) 733
maximum number 631
number that can be added dynamically 631
processing time (KDCAPPL) 687
processing time (program) 392
properties (data structure) 534

program_fgg 616
program_fgg_new 189
program_fgg_old 189
program_free 631
program_total 631
pronam

kc_con_str 472
kc_lses_str 496
kc_lses_str (KC_MODIFY_OBJECT) 336

Index

978 Administering Applications

pronam (cont.)
kc_lterm_str 509
kc_mux_str 516
kc_pterm_str 540
kc_pterm_str (KC_CREATE_OBJECT) 212
kc_tpool_str 572

pronam_long 475, 512, 551, 580
kc_lses_str 497
kc_pterm_str 551

properties
UTM cluster application 602

properties, modifying
client/printer (KDCPTERM) 783
client/printer (program) 352
LTAC (KDCLTAC) 766
LTAC (program) 338
LTERM (KDCLTERM) 768
LTERM (program) 340
multiplex connection (KDCMUX) 771
multiplex connection (program) 344
TAC (KDCTAC) 805
TAC (program) 356

protect_pw_compl 590
KC_CREATE_OBJECT 232

protect_pw_lth 590
protect_pw_min_time 595
protect_pw_time 591

KC_CREATE_OBJECT 232
protect_pw_time_left 369, 594
protect_pw16_lth 599

KC_CREATE_OBJECT 231
protocol

kc_pterm_str 545
kc_pterm_str (KC_CREATE_OBJECT) 215
kc_tpool_str 577

pt_name 540
KC_CREATE_OBJECT 211

PTC
determining transaction 598
rolling back transaction 411

ptc
kc_lses_str 497
kc_user_str 598

PTC wait time
setting timer (KDCAPPL) 686
setting timer (program) 393

PTCTIME
KDCAPPL 686
program 393

ptctime_sec 671
KC_MODIFY_OBJECT 393

PTERM
automatic connection setup 353, 786
change LTERM partner (KDCSWTCH) 800
change LTERM partner (program) 352
disabling with a program 354
disabling with KDCPTERM 785
establishing/shutting down a connection

(program) 354
establishing/shutting down connection

(KDCPTERM) 785
information about (KDCINF) 708
information about (program) 291
releasing session (KDCPTERM) 786

pterm 509
PTERM properties

modifying (KDCPTERM) 783
modifying (program) 352

PTERM statements
generating 105

pterm_free 630
pterm_total 630
ptype

KC_CREATE_OBJECT 212
kc_pterm_str 541
kc_tpool_str 573
supported partner types 541

ptype_class
kc_pterm_str (KC_CREATE_OBJECT) 212

public key
read 275

public slice
load module 486, 536

pw_encrypted 597
pw_history 656

Index

Administering Applications 979

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

Q
q_mode

kc_queue_str 552, 654
kc_tac_str 566
kc_user_str 596

q_read_acl
kc_tac_str 566, 596

q_write_acl
kc_tac_str 566
kc_user_str 596

qamsg 507
KC_CREATE_OBJECT 206

qlev
kc_lpap_str 491
kc_lterm_str 507
kc_lterm_str (KC_CREATE_OBJECT) 206
kc_osi_lpap_str 532
kc_queue_str 552, 654
kc_tac_str 560
kc_tac_str (KC_CREATE_OBJECT) 222
kc_tpool_str 576
kc_user_str 595

qp_number
kc_queue_par_str 654

qtime1
kc_timer_par_str 671

qtime2
kc_timer_par_str 671

qu_name
kc_queue_str 552

queue
properties (data structure) 552
service-controlled 821
temporary 821
UTM-controlled 821

queue_freel
kc_dyn_par_str 633

queue_length
kc_queue_str 552

queue_total
kc_dyn_par_str 633

QUIET status
LU6.1 connection 493, 496
OSI TP connection 532

quiet_connect
kc_lpap_str 493
kc_lpap_str (KC_MODIFY_OBJECT) 334
kc_lses_str 496
kc_lses_str (KC_MODIFY_OBJECT) 337
kc_osi_lpap_str 532

R
re-establish

connection (KDCAPPL) 681
connection (program) 391, 668

Readme files 21
real time

maximum, for program unit run 561
real_time_sec 561

KC_CREATE_OBJECT 222
recbuf_lth 645
recbuf_pages 645
recbuffs 645
recipient

results of asynchronous commands 118
recipient TPSU title 499
record type

OSI trace 623
Red Hat 15
regeneration

recommendations 111
relevant_bits 555
Relocatable IP address 470
remote service

local TAC name 498
remote session name 495
replace

application program (KDCAPPL) 684
load module/shared object (KDCPROG) 777

replaceable
load module/shared object 487

replaceable programs
information about (KDCINF) 708

replacement connection
activating (KDCLPAP) 757
activating (program) 346

replywait_sec 501
reqnr 645

Index

980 Administering Applications

request_calls 520
RESERVE 73
reserve node application

assigning values 320
reserved names 86
reserving table spaces 73
reset_msg_pages 653
resource lock

setting timer (KDCAPPL) 687
setting timer (program) 391
wait time for 669

restart 507, 591
kc_lterm_str (KC_CREATE_OBJECT) 207
kc_user_str (KC_CREATE_OBJECT) 232

restart area
buffer size 645
number of files 645
size per process 645

restartable
central administration with client 132

restricted 657
result output

asynchronous command 117
dialog command 114

reswait_pr_sec 669
KC_MODIFY_OBJECT 392

reswait_ta_sec 669
KC_MODIFY_OBJECT 391

RESWAIT-PR 687
RESWAIT-TA 687
retcode 167
return code

data structure 178
KC_CHANGE_APPLICATION 188, 189
KC_CON (KC_CREATE_OBJECT) 236
KC_CON (KC_DELETE_OBJECT) 268
KC_CREATE_OBJECT 235
KC_CREATE_STATEMENTS 196, 259
KC_DELETE_OBJECT 267
KC_ENCRYPT 279
KC_GET_OBJECT 302
KC_KSET (KC_CREATE_OBJECT) 237
KC_KSET (KC_DELETE_OBJECT) 268
KC_LSES (KC_CREATE_OBJECT) 237

KC_LSES (KC_DELETE_OBJECT) 268
KC_LTAC (KC_CREATE_OBJECT) 237
KC_LTERM (KC_DELETE_OBJECT) 269
KC_MODIFY_OBJECT 324
KC_PROGRAM

(KC_CREATE_OBJECT) 240
KC_PROGRAM

(KC_DELETE_OBJECT) 269
KC_PTERM (KC_CREATE_OBJECT) 241
KC_PTERM (KC_DELETE_OBJECT) 270
KC_SEND_MESSAGE 417
KC_SHUTDOWN 425
KC_SPOOLOUT 430
KC_SYSLOG 437
KC_TAC (KC_CREATE_OBJECT) 246
KC_UPDATE_IPADDR 447
KC_USER (KC_CREATE_OBJECT) 248
KC_USER (KC_DELETE_OBJECT) 270
KC_USLOG 451
KDCADMI 178

rnetname 491
roll back

distributed transaction 673
transaction in PTC state 411

roll back transaction 411
RSA 272
RSA key pair

delete (activated) 275
enable 275
generate 275
read public key 275

rses 495
RSET 673

in the administration program 121
rset 673
RSO printer

adding dynamically 212
rtac 499
RTAC name 499

code type 201, 499
rtac_lth 499
rtryi 518
rtryo 518

Index

Administering Applications 981

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

run priority
transaction code 561

runprio 561
KC_CREATE_OBJECT 223

S
saml 481
sample programs 45
sat 645
SAT administration interface 123
SAT administration privileges

OSI TP application 531
remote application (LU6.1) 232, 490
transaction code 562
user ID 592

SAT logging
administering 35
application 645
TAC-specific 562
user-specific 592

satadm 562
KC_CREATE_OBJECT 223

satsel
kc_tac_str 562
kc_tac_str (KC_CREATE_OBJECT) 224
kc_user_str 592
kc_user_str (KC_CREATE_OBJECT) 233

scope 425
screen output

properties, edit profile 478
SDF command interface

central administration 132
seccounter

kc_lterm_str 511
kc_user_str 593

security violations
number of (LTERM partner) 511

select_lth 174
SELECT-SERVICE 887
selection area 177

length 174
semaphore 646

global, privilege key 646
semkey 646

service exit 560
service restart 207

LTERM partner 507
user ID 591

service stacking
maximum depth 644

service TAC 560
services

disabling 60
number currently open 613
number of abnormally terminated 375
number terminated abnormally 615
remote, local TAC name 498

session
administering (KDCLSES) 763
administering (program) 336
information about (program) 291
local, information about (KDCINF) 710
LU6.1, information about (program) 298
maximum number, multiplex connection 516
properties (data structure) 495
reference name of node application 497
timer for assignment 500
timer for idle state 492
timer for idle state (KDCLPAP) 760
timer for idle state (program) 333
timer for occupation 202

session name 200, 495
session selector

OSI TP access point 457
OSI TP partner address 523

session setup
global monitoring time (program) 393
setting the timer (KDCAPPL) 681

session_selector
kc_access_point_str 457
kc_osi_con_str 523

session_selector_code
kc_access_point_str 459
kc_osi_con_str 524

session_selector_lth
kc_access_point_str 459
kc_osi_con_str 524

Index

982 Administering Applications

session_selector_type
kc_access_point_str 459
kc_osi_con_str 524

several administration calls 120
shared memory segment

access key 642
privilege keys 638

shared object
exchanging with a program 329
exchanging with KDCPROG 777
information about (KDCINF) 708
load mode 535
name 485
properties (data structure) 485
replaceable 487
version 485

shortage (BCAM bottleneck) 518
SHOW-CONFIGURATION 891
shut down

a session (program) 337
sign_time_date 594
sign-on

restrictions 646
sign-on attempts

modifying the maximum number 388
sign-on procedure (SIGNON)

information on (program) 292
SIGNON

information on (program) 292
signon_fail 647

KC_MODIFY_OBJECT 388
signon_restr 646
signon_tac

kc_bcamappl_str 464
signon_value 646
silent_alarm 657
simultaneous administration

several applications 137, 142
size control, activating

SYSLOG file (KDCSLOG) 794
SYSLOG file (program) 440

size_control_engaged
(KC_SYSLOG) 440

size_control_kbyte

(KC_SYSLOG) 441
size_control_suspended

(KC_SYSLOG) 440
size_control_utmpages

(KC_SYSLOG) 441
sm2 647

KC_MODIFY_OBJECT 388
socket application 543
Solaris 15
sort order 146
SPAB

clear character 639
length 647

spab 647
specin 481
SPOOLOUT 688
standalone UTM application 14
standard 514
standard language environment 643
standard primary working area

clear character 639
maximum length 647

standard UTM message module 514
start format 506, 575

LTERM partner
(KC_CREATE_OBJECT) 206

LTERM partner
(KC_MODIFY_OBJECT) 341

LTERM partner/terminal 506
LTERM pool 575
user ID 589
user ID (program) 370

start_date_... 612
start_gen 441
start_time_... 612
start, inverse KDCDEF 107
STARTUP 486, 535
state

kc_con_str 473
kc_lpap_str (KC_MODIFY_OBJECT) 332
kc_ltac_str 500
kc_ltac_str (KC_MODIFY_OBJECT) 339
kc_lterm_str 505
kc_lterm_str (KC_CREATE_OBJECT) 205

Index

Administering Applications 983

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

state (cont.)
kc_lterm_str (KC_MODIFY_OBJECT) 340
kc_mux_str 517
kc_mux_str (KC_MODIFY_OBJECT) 344
kc_osi_lpap_str 347, 531
kc_pterm_str 544
kc_pterm_str (KC_CREATE_OBJECT) 213
kc_pterm_str (KC_MODIFY_OBJECT) 354
kc_tac_str 558
kc_tac_str (KC_CREATE_OBJECT) 220
kc_tac_str (KC_MODIFY_OBJECT) 356
kc_tpool_str 575
kc_tpool_str (KC_MODIFY_OBJECT) 364
kc_user_str 587
kc_user_str (KC_CREATE_OBJECT) 227
kc_user_str (KC_MODIFY_OBJECT) 366

state_number 575
KC_MODIFY_OBJECT 364

STATIC 486, 535
statistical information

client/printer 547
distributed processing 616
KDCINF 709
load on the application 609
LTERM partner 511
multiplex connection 517
OSI TP association 520
transaction code 563

statistics information
user ID 592, 593

status
client connection 547
client/printer 544
connection to client/printer 510
connection to message router 517
LPAP partner 473, 491
LTAC 500
LTERM partner 505
LTERM partner, defining (program) 205
LTERM partners in a pool 575
LU6.1 connection 493
multiplex connection 517
OSI TP association 520
OSI TP connection 525

OSI-LPAP partner 531
user ID 587

STATUS, KDCLPAP 760
structure

administration program 119
stxit_log

kc_diag_and_account_par_str 624
KC_MODIFY_OBJECT 385

STXIT-LOG
enabling (KDCDIAG) 700

subcode of return code 178
subopcode

parameter area 168
SUSE 15
SUSRMAX 861
switch

SYSLOG file (KDCSLOG) 795
SYSLOG file (program) 432
user log file (KDCLOG) 754
user log file (program) 449

switch over log files (KDCAPPL) 688
switch over log files (program) 384
synchronous commands

for administration 144
syntax

querying, administration commands 702
SYSLOG

administering (KDCSLOG) 794
administering (program) 431
information about (KDCINF) 709
information about (program) 431

syslog_size 647
SYSPARM 709
SYSPROT 688
sysprot_switch

kc_diag_and_account_par_str 623
KC_MODIFY_OBJECT 384

system environment
CALLUTM 892

system parameters
data structure 659
information about (KDCINF) 709
information about (program) 292

system_type 660

Index

984 Administering Applications

T
t_prot

kc_access_point_str 460
kc_bcamappl_str 462
kc_con_str 473
kc_osi_con_str 526
kc_pterm_str 546

T61-STRING 201, 500
table spaces

reserving 73
TAC class 808

average wait time 362, 569
for blocking calls 569
information about (KDCINF) 709
information about (program) 291
modifying properties (KDCTCL) 808
modifying properties (program) 360
number of jobs pending 569
number of processes 569
of a transaction code 559
properties (data structure) 568

TAC for services
entering dynamically 201

TAC properties
changing (KDCTAC) 805
changing (program) 356

TAC queue 821
adding dynamically 219
data access control 226
modifying dynamically 101, 356
online import 408

TAC statements, generating 105
tac_elap_msec 563
tac_free 631
tac_total 631
tac_type

kc_tac_str 560
kc_tac_str (KC_CREATE_OBJECT) 222

TAC-PROG 709
TAC-specific SAT logging 562
tacclass 559, 568

KC_CREATE_OBJECT 221
tacclass_pages 653
tacclasses 660

taccpu_micro_sec 567
taccpu_msec 564
tacunit 562

KC_CREATE_OBJECT 224
task, see process
TASKS 689, 809
tasks

kc_max_par_str 648
kc_tacclass_str 361, 569
kc_tasks_par_str 664

tasks_free 569
KC_MODIFY_OBJECT 361

tasks_in_pgwt
kc_max_par_str 648
kc_tasks_par_str 664

tasks_waiting_in_pgwt 613
TASKS-IN-PGWT 689
TASKSFREE 810
tc_name 557

KC_CREATE_OBJECT 219
TCB entries (TAC) 562
tcbentry 562
term_input_msgs 612

kc_curr_par_str
(KC_MODIFY_OBJECT) 374

term_output_msgs 612
kc_curr_par_str

(KC_MODIFY_OBJECT) 374
terminal

adding dynamically 78, 211
terminal mnemonic

client/printer 545
LTERM pool 576
LU6.1 partner application 472
OSI TP partner application 532

terminal type
client/printer 541
LTERM pool 573

terminate
UTM application (KDCSHUT) 791
UTM application (program) 418

termn
kc_con_str 472
kc_osi_lpap_str 532

Index

Administering Applications 985

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

termn (cont.)
kc_pterm_str 545
kc_pterm_str (KC_CREATE_OBJECT) 214
kc_tpool_str 576

TERMWAIT 690
termwait_end_ta_sec 670
termwait_in_ta_sec 670

KC_MODIFY_OBJECT 392
territorial code

application 643
client/printer 504
LTERM partner 504
LTERM pool 574
message module 514
user ID 590

test mode 622, 693
activating/deactivating (KDCDIAG) 697
activating/deactivating (program) 382

TESTMODE 648, 697
testmode 622

KC_MODIFY_OBJECT 382
time 612
time_min 424
time-driven asynchronous jobs

execution time 641
number currently waiting 615

timer 667
assign an LU6.1 session 500
confirmation, asynchronous message

(program) 393
entering dialog partner 365
entry from dialog partner 355
entry from dialog partner (program) 216
idle state, OSI TP association 531
idle state, session 492
input from dialog partner 670
multi-step transaction 670
occupation of LU6.1 session 202
PEND KP call 670
PEND KP calls (KDCAPPL) 690
PEND KP calls (program) 392
PGWT wait time (KDCAPPL) 683
PGWT wait time (program) 391
print confirmation 670

print confirmation (program) 392
re-establishing a connection

(KDCAPPL) 681
re-establishing a connection (program) 391
resources locked 669
resources locked (KDCAPPL) 687
resources locked (program) 392
response from dialog partner 216, 548, 578
session setup 670
session/association assignment 500
session/association occupation 202
shutdown (KDCSHUT) 792
shutdown (program) 423
transport confirmation 670
transport confirmation (program) 392
wait time for blocking calls 669
wait time for response 202, 501
waiting in PTC (KDCAPPL) 686
waiting in PTC (program) 393
waiting in PTC state 671

timer settings 202
data structure 667
defining (KDCAPPL) 678
defining (program) 391
information about (KDCINF) 709
information about (program) 292
modifying 58

tls_pages 652
total_pages 652
TPOOL

administering (KDCPOOL) 775
administering (program) 364
information about (KDCINF) 730, 732
information about (program) 291

TRACE area
number of entries 648

trace, activating/deactivating
BCAM (KDCDIAG) 697
BCAM (program) 334, 378
OSI TP (KDCDIAG) 699
OSI TP (program) 379

tracerec 648
tracing in test mode 382, 697

Index

986 Administering Applications

transaction
determining in PTC state 598
distributed, rolling back 673

transaction code
access protection 557
adding dynamically 75, 82, 192, 219
deleting dynamically 93, 264
disable 558
disabling (KDCTAC) 805
disabling (program) 356
enabling (KDCTAC) 806
enabling (program) 356
in DESTADM 144
information about (KDCINF) 709
information about (program) 291, 301
lock code 557
maximum number 631
modifying dynamically 101
modifying properties (KDCTAC) 805
modifying properties (program) 356
name 557
number that can be added dynamically 631
properties (data structure) 556
remote service 498
statistical information 563

transaction management
central administration 137
during dynamic creation 77
during dynamic deletion 90

transfer syntax 581
transport confirmation 670
transport connection

defining 97
for LU6.1 session 496
OSI-LPAP partner 532
to LU6.1 partner, properties 471

transport priority
connections (LTERM pool) 576
defining (LTERM partner) 207
on client connection 508
on LU6.1 connection 490
on MUX connection 517

transport protocol 462, 577
on connection to client 545

transport selector
OSI TP access point 459
OSI TP partner address 524

transport_selector 459, 524
trmsglth 648
trusted client 217, 549, 579
TS application 543

adding dynamically 80, 211
creating, example 81
deleting dynamically 91
enter dynamically 80
properties (data structure) 539

tsel_format
kc_access_point_str 460
kc_bcamappl_str 464
kc_con_str 473
kc_osi_con_str 526
kc_pterm_str 546

TX
trace 380

TX trace
enabling/disabling 380

TX trace function 625
tx_trace

KC_MODIFY_OBJECT 380
type

client/printer 541
transaction code 560

U
uls_pages 653
unproc_atacs 614
unproc_prints 615
update IP addresses 442
upic 657
UPIC client

add to the configuration dynamically 80
creating, example 81
dynamic deletion 91

UPIC program
adding dynamically 211
central administration 133

upicfile 134, 135
uppercase letters 146

Index

Administering Applications 987

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

us_name 587
kc_user_str (KC_CREATE_OBJECT) 227

usage_type
kc_lterm_str 505
kc_lterm_str (KC_CREATE_OBJECT) 205
kc_pterm_str 546
kc_pterm_str (KC_CREATE_OBJECT) 215

used 501, 563
user ID 813

access privileges 587
active (LTERM partner) 510
adding dynamically 76, 83, 192, 227
automatic KDCSIGN (program) 205
BCAM trace 370
changing password (KDCUSER) 813
changing password (program) 367
create for client programs 80
creating with ID card 76
deleting dynamically 95, 264
deleting password (KDCUSER) 813
deleting password (program) 367
disabling (KDCUSER) 814
disabling (program) 366
for automatic KDCSIGN 79
for automatic KDCSIGN (LTERM) 505
ID card 587
information about (KDCINF) 752
information about (program) 301
issuing password (KDCUSER) 813
modifying dynamically 102
new start format 370
number that can be added dynamically 632
password 599
properties (data structure) 582
statistics information 592, 593
with ID card, maximum number 632
with ID card, number that can be added

dynamically 632
user log file 449, 648

current file generation 616
double 648
name 642
switching (KDCLOG) 754
switching (program) 449

user message module
properties (data structure) 513

user properties
modifying (KDCUSER) 813
modifying (program) 366

USER queue 821
user service protocol

on connection to client/printer 545
on LTERM pool connections 577

USER statements
generating 105

user_curr 510
user_free 632
user_gen 505

KC_CREATE_OBJECT 205
user_kset 579
user_message 425
user_total 632
user_type 592
user-specific SAT logging 592
user-specific start format 589
users 496

active, current number 613
defining maximum number 59
defining maximum number (KDCAPPL) 683
defining maximum number (program) 387
information about (KDCINF) 710
information about (program) 291
maximum number 640

USLOG
base name 642
current file generation 616
double 648

uslog 648
uslog_fgg 616
usp_hdr

kc_pterm_str 550
kc_tpool_str 580

utilization
page pool 614

UTM accounting phase
activating (KDCAPPL) 680
activating (program) 384

UTM accounting, see accounting

Index

988 Administering Applications

UTM administration
in dialog (commands) 114

UTM administration using message queuing 116
UTM application

terminating (KDCSHUT) 791
terminating (program) 422

UTM client
central administration 132
generating for administration 134
generating for administration (cluster) 135

UTM cluster application 14
administration 126
cluster administration journal 902
global properties 602

UTM dump
create with program 190
generating, KDCDIAG 694

UTM event monitor 621
activating/deactivating (KDCDIAG) 696
activating/deactivating (program) 384

UTM generation variant 612, 660
UTM information functions 50
UTM page

size 638
UTM system processes

current number 618, 666
maximum number 666

UTM user ID, see user ID
UTM version 611, 660
utm_version 611, 660
UTM-F application 612, 660
UTM-S application 612, 660
utmd 661

V
value

kc_insert_str 627
value_type

kc_insert_str 628
version 167, 485

KC_MODIFY_OBJECT 330
load module/shared object 485
of data structures 168

version_data 167

version_gen 488
version_prev 487
vgmsize 649
virtual_host_long 326, 470
VORGANG exit

dynamic creation 74, 82, 209
dynamic deletion 93
information about (program) 300
properties (data structure) 534
transaction code 560

VTAM name, LU6.1 partner 491

W
wait time

blocked resources 669
for response 202
for response, timer setting 501
job-receiver confirmation 671
PGWT 669
session occupancy (KDCLTAC) 766
session occupancy (program) 338
session/association assignment 500
session/association occupation 202
to access a session (program) 338, 339

wait_dputs 615
wait_go 517
wait_resources 615
wait_system_resources 617
waiting_msgs 569
warning level

cluster page pool 66
page pool settings 644

WebAdmin description 127
weighting

LTAC for UTM Accounting 501, 562
LTAC for UTM accounting 203

WinAdmin 47, 127
administering with 127

Windows system 15
writing an administration program 119

X
XA interface

log calls (program) 385

Index

Administering Applications 989

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

. D
ec

em
b

er
 2

01
7

 S
ta

n
d

08
:5

3.
36

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
5_

17
0

09
00

\0
4

_A
d

m
in

\e
n\

ut
m

_
ad

m
_

e.
si

x

xa_debug
kc_diag_and_account_par_str 624
KC_MODIFY_OBJECT 385

xa_debug_out
kc_diag_and_account_par_str 624
KC_MODIFY_OBJECT 385

XA-DEBUG
enabling (KDCDIAG) 700

XA-DEBUG-OUT
controlling XA-DEBUG (KDCDIAG) 700

XAPTP trace in test mode 697
XATMI

trace 381
XATMI trace

enabling/disabling 381
XATMI trace function 626
xatmi_trace

KC_MODIFY_OBJECT 381

Index

990 Administering Applications

	Contents
	Preface
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Changes in openUTM V6.5
	New server functions
	Discontinued server functions
	New client functions
	New functions for openUTM WinAdmin
	New functions for openUTM WebAdmin

	Notational conventions

	Overview of openUTM administration
	Command interface
	KDCADMI program interface
	Sample programs
	PADM, DADM for administering message queues and printers
	Administration tool CALLUTM
	openUTM WinAdmin and openUTM WebAdmin

	Administering objects and setting parameters
	Information functions in openUTM
	Performance check
	Information about the utilization level of the application
	Diagnosing errors and bottlenecks
	Possible measures

	Avoiding a page pool bottleneck
	Page pool of a standalone application
	Page pools of a UTM cluster application

	Exchanging the application program
	Clients and printers

	Changing the configuration dynamically
	Requirements for KDCDEF generation
	Adding objects to the configuration dynamically
	Adding clients, printers and LTERM partners
	Adding program units, transaction codes, TAQ queues and VORGANG exits
	Creating user IDs
	Creating key sets
	Entering LU6.1 connections for distributed processing
	Entering LTACs
	Format and uniqueness of object names

	Deleting objects dynamically from the configuration
	Deleting clients/printers and LTERM partners
	Deleting program units, transaction codes and VORGANG exits
	Deleting user IDs
	Deleting key sets
	Deleting LU6.1 connections and sessions
	Deleting LTACs

	Modifying object properties
	Modifying clients/printers and LTERM partners
	Modifying transaction codes and TAC queues
	Modifying user IDs
	Modifying key sets
	Modifying LU6.1 sessions

	Generating KDCDEF statements from the KDCFILE
	Starting the inverse KDCDEF
	Result of the inverse KDCDEF run
	Inverse KDCDEF for version migrations
	Recommendations for regeneration of an application

	Administration using commands
	Administration in dialog
	Administration using message queuing

	Writing your own administration programs
	Dialog administration programs
	Several administration calls
	Multi-step service

	Diagnostic options for the administration interface

	Central administration of several applications
	Administration using WinAdmin and WebAdmin
	Adapting generation of the UTM application
	Configuration of WinAdmin and WebAdmin

	Configuration models for own application of administration
	Administration via UPIC clients
	Administration via distributed processing
	Administration via a TS application

	Central Administration using commands
	Central Administration using programs
	Decentralized administration programs
	Central administration programs

	Automatic administration
	Control using the MSGTAC program
	Control via user-specific message destinations

	Access rights and data access control
	Configuring the administrator connection
	Granting administration privileges
	Generating administration commands

	Program interface for administration - KDCADMI
	Calling the KDCADMI functions
	The KDCADMI function call
	Description of the data areas to be supplied
	Return codes
	Supplying the fields of the data structure with data when passing data

	KDCADMI operation codes
	KC_CHANGE_APPLICATION- Exchange application program
	KC_CREATE_DUMP - Create a UTM dump
	KC_CREATE_OBJECT - Add objects to the configuration
	obj_type=KC_CON
	obj_type=KC_KSET
	obj_type=KC_LSES
	obj_type=KC_LTAC
	obj_type=KC_LTERM
	obj_type=KC_PROGRAM
	obj_type=KC_PTERM
	obj_type=KC_TAC
	obj_type=KC_USER
	Returncodes

	KC_CREATE_STATEMENTS - Create KDCDEF control statements (inverse KDCDEF)
	KC_DELETE_OBJECT - Delete objects
	KC_ENCRYPT - Create, delete, read RSA key pairs
	KC_GET_OBJECT - Query information
	KC_LOCK_MGMT - Release locks in UTM cluster applications
	KC_MODIFY_OBJECT - Modify object properties and application parameters
	obj_type=KC_CLUSTER_NODE
	obj_type=KC_DB_INFO
	obj_type=KC_KSET
	obj_type=KC_LOAD_MODULE
	obj_type=KC_LPAP
	obj_type=KC_LSES
	obj_type=KC_LTAC
	obj_type=KC_LTERM
	obj_type=KC_MUX
	obj_type=KC_OSI_CON
	obj_type=KC_OSI_LPAP
	obj_type=KC_PTERM
	obj_type=KC_TAC
	obj_type=KC_TACCLASS
	obj_type=KC_TPOOL
	obj_type=KC_USER
	obj_type=KC_CLUSTER_CURR_PAR
	obj_type=KC_CLUSTER_PAR
	obj_type=KC_CURR_PAR
	obj_type=KC_DIAG_AND_ACCOUNT_PAR
	obj_type=KC_MAX_PAR
	obj_type=KC_TASKS_PAR
	obj_type=KC_TIMER_PAR
	Return codes

	KC_ONLINE_IMPORT - Import application data online
	KC_PTC_TA - Roll back transaction in PTC state
	KC_SEND_MESSAGE - Send message (BS2000 systems)
	KC_SHUTDOWN - Terminate the application run
	KC_SPOOLOUT - Establish connections to printers
	KC_SYSLOG - Administer the system log file
	KC_UPDATE_IPADDR - Update IP addresses
	KC_USLOG - Administer the user log file

	Data structures used to pass information
	Data structures for describing object properties
	kc_abstract_syntax_str - Abstract syntax for communication via OSI TP
	kc_access_point_str - OSI TP access point
	kc_application_context_str - Application context for communication via OSI TP
	kc_bcamappl_str - Names and addresses of the local application
	kc_cluster_node_str - Node applications of a UTM cluster application
	kc_con_str - LU6.1 connections
	kc_db_info_str - Output database information
	kc_edit_str - EDIT profile options (BS2000 systems)
	kc_gssb_str - Global secondary storage areas of the application
	kc_kset_str - Key sets of the application
	kc_load_module_str - Load modules (BS2000 systems) or shared objects/DLLs (Unix, Linux and Windows systems)
	kc_lpap_str - Properties of LU6.1 partner applications
	kc_lses_str - LU6.1 sessions
	kc_ltac_str - Transaction codes of remote services (LTAC)
	kc_lterm_str - LTERM partners
	kc_message_module_str - User message modules
	kc_mux_str - Multiplex connections (BS2000 systems)
	kc_osi_association_str - Associations to OSI TP partner applications
	kc_osi_con_str - OSI TP connections
	kc_osi_lpap_str - Properties of OSI TP partner applications
	kc_program_str - Program units and VORGANG exits
	kc_ptc_str - Transactions in PTC state
	kc_pterm_str - Clients and printers
	kc_queue_str - Properties of temporary queues
	kc_sfunc_str - Function keys
	kc_subnet_str - Information on subnets
	kc_tac_str - Transaction codes of local services
	kc_tacclass_str - TAC classes for the application
	kc_tpool_str - LTERM pools for the application
	kc_transfer_syntax_str - Transfer syntax for communication via OSI TP
	kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user IDs

	Data structures used to describe the application parameters
	kc_cluster_curr_par_str - Statistics values of a UTM cluster application
	kc_cluster_par_str - Global properties of a UTM cluster application
	kc_curr_par_str - Current values of the application parameters
	kc_diag_and_account_par_str - Diagnostic and accounting parameters
	kc_dyn_par_str - Dynamic objects
	kc_max_par_str - Maximum values for the application (MAX parameters)
	kc_msg_dest_par_str - Properties of the user-specific message destinations
	kc_pagepool_str - Current utilization of the page pool
	kc_queue_par_str - Properties of queue objects
	kc_signon_str - Properties of the sign-on process
	kc_system_par_str - System parameters
	kc_tasks_par_str - Number of processes
	kc_timer_par_str - Timer settings
	kc_utmd_par_str - Parameters for distributed processing

	Administration commands - KDCADM
	KDCAPPL - Change properties and limit values for an operation
	KDCBNDL - Replace Master LTERM
	KDCDIAG - Switch diagnostic aids on and off
	KDCHELP - Query the syntax of administration commands
	KDCINF - Request information on objects and application parameters
	KDCLOG - Change the user log file
	KDCLPAP - Administer connections to (OSI-)LPAP partners
	KDCLSES - Establish/shut down connections for LU6.1 sessions
	KDCLTAC - Change the properties of LTACs
	KDCLTERM - Change the properties of LTERM partners
	KDCMUX - Change properties of multiplex connections (BS2000 systems)
	KDCPOOL - Administer LTERM pools
	KDCPROG - Replace load modules/shared objects/DLLs
	KDCPTERM - Change properties of clients and printers
	KDCSEND - Send a message to LTERM partners (BS2000 systems)
	KDCSHUT - Terminate an application run
	KDCSLOG - Administer the SYSLOG file
	KDCSWTCH - Change the assignment of clients and printers to LTERM partners
	KDCTAC - Lock/release transaction codes and TAC queues
	KDCTCL - Change number of processes of a TAC class
	KDCUSER - Change user properties

	Administering message queues and controlling printers
	Authorizations concept (BS2000, Unix and Linux systems)
	Administering message queues (DADM)
	Displaying information on messages in a queue - DADM RQ
	Reading user information about a message - DADM UI
	Prioritizing messages in the queue - DADM CS
	Deleting messages from a queue - DADM DA/DL
	Move messages from the dead letter queue - DADM MA/MV

	Administering printers and control print output (PADM)
	Administering printers with PADM
	Querying information about a printer PADM PI
	Changing the printer status - PADM CS
	Assigning a printer to another LTERM partner - PADM CA

	Print control with PADM
	Activating/deactivating confirmation mode - PADM AC/AT
	Confirming or repeating print output - PADM OK/PR
	Querying information about print jobs to be confirmed - PADM AI

	Handling of errors during print output

	UTM program units for DADM and PADM functions
	Generating KDCDADM and KDCPADM
	KDCDADM - Administer messages
	DELETE - Delete messages from the message queue
	INFORM - Display information about message queues and messages
	MOVE - Move messages from the dead letter queue
	NEXT - Prioritize messages in the message queue

	KDCPADM - Print control and printer administration
	INFORM - Display information about printers for a printer control LTERM
	MODE - Change the confirmation mode for a printer
	PRINT - Confirm / repeat print job
	STATE - Change the status of a printer
	SWITCH - Change the assignment of printers to LTERM partners

	Appendix
	Program interface for administration in COBOL
	COPY members for the program interface in COBOL
	KDCADMI function call
	Notes on programming

	Sample programs
	The C program unit HNDLUSR
	The C program unit SUSRMAX
	The COBOL program unit COBUSER
	The C program unit ENCRADM
	The C program units ADJTCLT

	CALLUTM - Tool for administration and client/server communication
	Instructions for use
	Generation

	Description of program statements
	Components, system environment, software configuration
	Integration in a UTM application
	Execution
	Program-monitoring job variables
	Messages issued by CALLUTM

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

