
Edition September 2017

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

29
\H

an
db

üc
he

r\
ak

tu
el

l\u
ds

au
f\e

n\
ud

sa
uf

.v
or

English

UDS/SQL V2.9
Creation and Restructuring

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2017 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U931-J-Z125-17-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
38

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.i
vz

Contents

1 Preface . 11

1.1 Structure of the UDS/SQL documentation . 11

1.2 Objectives and target groups of this manual . 16

1.3 Summary of contents . 17

1.4 Changes since the last edition of the manuals 18

1.5 Notational conventions . 20
1.5.1 Warnings and notes . 20
1.5.2 Non-SDF notational conventions . 20
1.5.3 SDF syntax representation . 22

1.6 Sample databases . 27

2 Overview of UDS/SQL . 31

2.1 Basic concepts of the UDS/SQL database system 31

2.2 Files and realms of a UDS/SQL database . 34

2.3 Overview of UDS/SQL programs . 43
2.3.1 START commands for the UDS/SQL programs . 47

2.4 Tools for UDS/SQL . 51

3 Database creation
(BCREATE, BFORMAT, DDL- and SSL-Compiler, BGSIA, BGSSIA, BCALLSI) . . 53

3.1 Preparing database creation . 57
3.1.1 Setting up the compiler database . 57
3.1.2 Setting up the user realms . 61

3.2 Generating the schema . 63
3.2.1 Formatting the compiler database with BCREATE 63

Contents

 U931-J-Z125-17-76

3.2.2 Compiling the Schema DDL . 66
3.2.3 Compiling the SSL . 76
3.2.4 Setting up the Schema Information Area (SIA) with BGSIA 79

SIA report . 84
Description of the ESTIMATE-REPORT . 84

3.3 Formatting user realms with BFORMAT . 88

3.4 Generating the subschema . 91
3.4.1 Compiling the Subschema DDL . 91
3.4.2 Generating the Subschema Information Area (SSIA) with BGSSIA 94

3.5 Additional measures for CALL DML programs with BCALLSI 97

4 Specifying access authorizations
(ONLINE-PRIVACY, BPRIVACY) . 103

4.1 User groups . 104

4.2 Access rights . 105

4.3 Checking access rights . 106

4.4 System environment for ONLINE-PRIVACY . 108

4.5 System environment for BPRIVACY . 110

4.6 Rules for the statements . 111

4.7 Overview of statements . 112
ADD-USER-GROUP (Defining a user group with or without assigning access rights) 113
END (Terminating command input) . 119
GRANT-ACCESS (Assigning access rights to a user group) 120
OPEN-DATABASE (Opening the database) . 125
REMOVE-USER-GROUP (Deleting one or more user group(s)) 126
REVOKE-ACCESS (Withdrawing access rights from a user group) 129
SHOW-USER-GROUP (Outputting information on user groups) 134
UNDO (Undoing a statement) . 137

4.8 Command sequence for starting ONLINE-PRIVACY 138

4.9 Command sequence for starting BPRIVACY 139

Contents

U931-J-Z125-17-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
38

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.i
vz

5 Storing and unloading data
(BINILOAD, BOUTLOAD) . 141

5.1 Storing records in the database with BINILOAD 142
5.1.1 Description of functions . 143
5.1.2 Readying the input file and preparing the BINILOAD run 148
5.1.3 BINILOAD system environment . 149
5.1.4 Statements for BINILOAD . 151

EXECUTION (Checking/not checking input data) 156
SORTCORE (Specifying the size of the sort buffer) 157
SCHEMA (Specifying the name of the schema) . 158
SUBSCHEMA (Specifying the name of the subschema) 159
FILLING (Specifying the occupancy level of table pages) 160
USER RECORD LENGTH (Specifying the length of the input records) 161
USER BUFFER LENGTH (Specifying the block length of the input file) 162
INPUT FILE (Specifying the name of the input file) 163
STORE RECORD (Specifying the record type) . 164
RECORD-DBKEY (Assigning the database key value to a record) 165
RECORD-DISPL (Creating the database record) 167
RECORD-AREA (Specifying the realm) . 169
INSERT (Specifying the set) . 170
SET ORDER (Specifying the sort sequence) . 171
OWNER (Defining the owner) . 172

5.1.5 Command sequence for starting BINILOAD . 179
5.1.6 Creating work files . 180
5.1.7 BINILOAD example . 184

5.2 Copying, deleting and unloading records with BOUTLOAD 188
5.2.1 BOUTLOAD functions . 188
5.2.2 Preparing the output files and the BOUTLOAD run 192
5.2.3 BOUTLOAD log for the output record format . 198
5.2.4 BOUTLOAD system environment . 199
5.2.5 BOUTLOAD statements . 200

COPY-RECORD (Copying records to output files) 201
END (Terminating the BOUTLOAD run) . 202
EXPORT-RECORD (Unloading records to output files) 203
OPEN-DATABASE (Assigning the database) . 205
REMOVE-RECORD (Deleting records) . 206

5.2.6 Command sequence to start BOUTLOAD . 207
5.2.7 Examples . 208

Contents

 U931-J-Z125-17-76

6 Restructuring the database
(BCHANGE, BALTER) . 213

6.1 Modifying the Schema DDL . 220
Schema entry . 222
Realm entry . 223
Record entry . 224
Set entry . 234

6.2 Modifying the SSL . 239
Schema entry . 241
Record entry . 242
Set entry . 245

6.3 Summary of restrictions . 249
6.3.1 Schema DDL modifications . 250
6.3.2 SSL modifications . 251

6.4 Checking the consistency of the database . 252

6.5 Checking free memory space . 253
Calculation formulas . 264

6.6 Recovery measures and response to errors . 270
6.6.1 Saving the database . 270
6.6.2 Restoring the database . 272

6.7 Preparing the compiler database with BCHANGE 274

6.8 Compiling the Schema DDL . 277

6.9 Compiling the SSL . 278

6.10 Generating a new SIA and entering it in the DBDIR with BGSIA 279

6.11 Analyzing schema modifications and adapting stored data with BALTER . . . 280
6.11.1 Analysis phase . 280
6.11.2 Description of the analysis report (REPORT phase) 282
6.11.3 Restructuring phase . 294
6.11.3.1 Effects of the restructuring on the content of the database 294
6.11.3.2 Logging the restructuring phase . 296
6.11.3.3 System environment in the restructuring phase 296
6.11.4 BALTER statements . 299

SORTCORE (Specifying the size of the sort area) 300
EXECUTION (Starting/not starting the restructuring phase) 301
REPORT (Requesting/suppressing logging) . 302
FILLING (Specifying the occupancy level of table pages) 303

Contents

U931-J-Z125-17-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
38

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.i
vz

6.11.5 Command sequence to start BALTER . 305
6.11.6 Description of BALTER messages . 307

6.12 Adapting access rights . 309

6.13 Adapting subschemas . 310
6.13.1 Copying compatible subschemas . 310
6.13.2 Adapting incompatible subschemas . 314

6.14 Adapting DB applications . 316

6.15 Updating the probable position pointers (PPP) 317

6.16 Measures for restarting DB operation . 318

6.17 Example . 319

7 Renaming database objects
(BRENAME, BALTER) . 335

7.1 Modifying the Schema DDL . 339

7.2 Modifying the SSL . 341

7.3 Recovery measures and response to errors . 342
7.3.1 Saving the database . 342
7.3.2 Restoring the database . 342

7.4 Initiating renaming using BRENAME . 344

7.5 Compiling the Schema DDL . 347

7.6 Compiling the SSL . 348

7.7 Generating a new SIA and entering it in the DBDIR with BGSIA 349

7.8 Checking renaming and updating structure information using BALTER 351
7.8.1 Command sequence for starting BALTER . 352
7.8.2 Description of the BALTER check . 352

7.9 Illegal schema modifications in the renaming cycle 353

7.10 Adapting subschemas . 361
7.10.1 Copying compatible subschemas . 361
7.10.2 Adapting incompatible subschemas . 365

7.11 Adapting DB applications . 366

7.12 Updating access rights . 366

Contents

 U931-J-Z125-17-76

7.13 Adapting user data . 367

7.14 Measures for restarting DB operation . 367

7.15 Example . 368

8 Converting databases to larger page formats
(BPGSIZE) . 375

8.1 Criteria for conversion . 376

8.2 Converting databases with BPGSIZE . 378
8.2.1 BPGSIZE functions . 379
8.2.2 Realms and files . 380
8.2.2.1 Realms of the converted database . 380
8.2.2.2 Required work files . 383
8.2.2.3 COBOL subschema directory (COSSD) of the converted database 384
8.2.2.4 Module library for hash routines (HASHLIB) of the converted database 384
8.2.3 Conversion phases . 385
8.2.4 Statements for BPGSIZE . 391

ALLOCATE-BUFFER-POOL (define buffer size) 393
CONVERT-DATABASE (control database conversion) 394
END (terminate input of statements) . 397
OPEN-DATABASE (open database) . 398
UNDO (cancel statement) . 399

8.2.5 Command sequence to start BPGSIZE . 400
8.2.6 Example for BPGSIZE . 401

8.3 Preparing the converted database for DB operation 402

8.4 Restructuring the converted database . 407

8.5 Adapting COBOL and CALL DML statements 409
8.5.1 DDL clauses that indicate the use of extended database key values 410
8.5.2 Adapting DML statements . 411
8.5.2.1 Overview . 412
8.5.2.2 Adapting COBOL DML statements . 413
8.5.2.3 Adapting CALL DML statements . 416
8.5.3 Adapting COBOL definitions . 417
8.5.4 Adapting additional locations in the application program 419

8.6 Adapting SQL, IQS and KDBS applications . 420

8.7 Examples of database conversions . 421
Cross-transactional use of extended database key values 422
Database key extension in a multi-DB configuration 424

Contents

U931-J-Z125-17-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
38

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.i
vz

9 Migrating databases to DB Layout Version 4 (BTRANS24) 429

9.1 Checking the prerequisites for migration . 430

9.2 Performing a database transformation with BTRANS24 431

9.3 BTRANS24 statements . 433
CHECK-DATABASE (start check run) . 433
TRANSFORM-DATABASE (transform the database) 434
END (terminate statement input) . 434

9.4 Calling BTRANS24 . 435

Glossary . 437

Abbreviations . 479

Related publications . 483

Index . 489

Contents

 U931-J-Z125-17-76

U931-J-Z125-17-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

1 Preface

The Universal Database System UDS/SQL is a high-performance database system based
on the structural concept of CODASYL. Its capabilities, however, go far beyond those of
CODASYL as it also offers the features of the relational model. Both models can be used
in coexistence with each other on the same data resources.

COBOL DML, CALL DML and (ISO standard) SQL are available for querying and updating
data. COBOL DML statements are integrated in the COBOL language; SQL statements can
be used in DRIVE programs or via an ODBC interface.

To ensure confidentiality, integrity and availability, UDS/SQL provides effective but flexible
protection mechanisms that control access to the database. These mechanisms are
compatible with the openUTM transaction monitor.

The data security concept provided by UDS/SQL effectively protects data against
corruption and loss. This concept combines UDS/SQL-specific mechanisms such as
logging updated information with BS2000 functions such as DRV (Dual Recording by
Volume).

If the add-on product UDS-D is used, it is also possible to process data resources in
BS2000 computer networks. UDS/SQL ensures that the data remains consistent
throughout the network. Distributed transaction processing in both BS2000 computer
networks and networks of BS2000 and other operating systems can be implemented using
UDS/SQL together with openUTM-D or openUTM (Unix/Linux/Windows). UDS/SQL can
also be used as the database in client-server solutions via ODBC servers.

The architecture of UDS/SQL (e.g. multitasking, multithreading, DB cache) and its struc-
turing flexibility provide a very high level of throughput.

1.1 Structure of the UDS/SQL documentation

The “Guide through the manuals” section explains which manuals and which parts of the
manuals contain the information required by the user. A glossary gives brief definitions of
the technical terms used in the text.
In addition to using the table of contents, users can find answers to their queries either via
the index or by referring to the running headers.

Structure of the UDS/SQL documentation Preface

12 U931-J-Z125-17-76

Guide through the manuals

The UDS/SQL database system is documented in five manuals:

– UDS/SQL Design and Definition
– UDS/SQL Application Programming
– UDS/SQL Creation and Restructuring
– UDS/SQL Database Operation
– UDS/SQL Recovery, Information and Reorganization

Further manuals describing additional UDS/SQL products and functions are listed on
page 15.

For a basic introduction the user should refer to chapters 2 and 3 of the “Design and
Definition” manual; these chapters describe

– reasons for using databases

– the CODASYL database model

– the relational database model with regard to SQL

– the difference between the models

– the coexistence of the two database models in a UDS/SQL database

– the characteristic features of UDS/SQL

How the manuals are used depends on the user’s previous knowledge and tasks. Table 1
serves as a guide to help users find their way through the manuals.

Examples

A user whose task it is to write COBOL DML programs should look up the column
“COBOL/CALL DML Programming” under “User task” in the second line of table 1.
There, the following chapters of the “Design and Definition” manual are recommended:

In the same column the user can also see which chapters of the other manual are of
use.

Database administrators who are in charge of database administration and operation
will find the appropriate information under the column “Administration and Operation”.

General information B = Basic information

Schema DDL D = Detailed information

SSL D = Detailed information

Subschema DDL L = Learning the functions

Preface Structure of the UDS/SQL documentation

U931-J-Z125-17-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Manual UDS/SQL Design and Definition

Preface B – – – – B B –

General information B B B B B B – –

Designing the database B – – – – – – –

Schema DDL L D – L L – – –

SSL L D – L L – – –

Subschema DDL L L – L L – – –

Relational schema L – D – – – – –

Structure of pages D – – D D – – –

Structure of records and tables D – – D D – – –

Reference section S – – S – – – –

Manual UDS/SQL Application Programming

Preface – B – – – B B –

Overview – B – – – – – –

Transaction concept – L – L L D D –

Currency table – L – L L – – –

DML functions D L – L – – – –

Using DML – L – D – – – –

COBOL DML reference section – L – – – – – –

CALL DML reference section – L – – – – – –

Testing DML functions
using DMLTEST

– L – – – – – –

Table 1: Guide through the manuals (part 1 of 3)

Structure of the UDS/SQL documentation Preface

14 U931-J-Z125-17-76

Manual UDS/SQL Creation and Restructuring

Preface – – – B – B B –

Overview – – – B B – – –

Database creation – – – L – – – –

Defining access rights – – – L – – – –

Storing and unloading
data

D – – L – D – –

Restructuring the database D – – L – – – –

Renaming database objects D – – L – – – –

Database conversion D – – L – – – –

Database conversion using
BTRANS24

– – – D – – – –

Manual UDS/SQL Database Operation

Preface – – – – B B B –

The database handler – – – – L – – D

DBH load parameters – – – – L – – D

Administration – – – – L – – D

High availability – – – – B – – –

Resource extension and reorgani-
sation during live operation

D – – – B – – –

Saving and recovering a database
in the event of errors

D – – D L D – D

Optimizing performance – – – – D – – D

Using BS2000 functionality – – – – D – – –

The SQL conversation – – – – L – – –

UDSMON – – – – D – – –

General functions of the
utility routines

– – – – D – – –

Using IQS – – – L D – D –

Using UDS-D D D – D D D – D

Function codes of DML statements – D – – D – – –

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Table 1: Guide through the manuals (part 2 of 3)

Preface Structure of the UDS/SQL documentation

U931-J-Z125-17-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

Manual
UDS/SQL Recovery, Information and Reorganization

Preface – – – – B B B –

Updating and reconstructing a
database

D – – D L D – –

Checking the consistency of a
database

– – – – L – – –

Output of database information D – – D L – – –

Executing online services D – – D L – – –

Database reorganization D – – D L – – –

Controlling the reuse of
deallocated database keys

D – – D L – – –

Additional Manuals

UDS/SQL Messages D D D D D D D D

UDS/SQL System
Reference Guide

S S – S S S S S

IQS – – – D D – L –

ADILOS – – – – D – L –

KDBS – L 1 – D – – – –

SQL for UDS/SQL
Language Reference Manual

– – D – D – – –

1 only for COBOL-DML

B provides basic information for users with no experience of UDS/SQL

L helps the user learn functions

D provides detailed information

S provides a reference to syntax rules for practical work with UDS/SQL

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Table 1: Guide through the manuals (part 3 of 3)

Objectives and target groups of this manual Preface

16 U931-J-Z125-17-76

Additional notes on the manuals

References to other manuals appear in abbreviated form. For example:

(see the “Application Programming” manual, CONNECT)

advises the user to look up CONNECT in the “Application Programming” manual.
The complete titles of the manuals can be found under “Related publications“ at the back
of the manual.

UDS/SQL Messages

This manual contains all messages output by UDS/SQL. The messages are sorted in
ascending numerical order, or in alphabetical order for some utility routines.

UDS/SQL System Reference Guide

The UDS/SQL System Reference Guide gives an overview of the UDS/SQL functions and
formats.

SQL for UDS/SQL
Language Reference Manual

This manual describes the SQL DML language elements of UDS/SQL.
In addition to UDS/SQL-specific extensions, the language elements described include
dynamic SQL as an essential extension of the SQL standard.

1.2 Objectives and target groups of this manual

The manual is intended for the database (DB) administrator, i.e. the user responsible for
creating the database, organizing database operation, and restructuring the database as
needed to adapt it to changing operational requirements.

The database administrator should be familiar with all the steps involved in designing a
database (including schema, subschema and SSL generation) and writing DB application
programs.

In addition, he or she should have a comprehensive knowledge of BS2000.

Preface Summary of contents

U931-J-Z125-17-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

1.3 Summary of contents

What does this manual contain?

This manual begins with an overview of the files required by the UDS/SQL Database
System during database operation and of the UDS/SQL utility routines needed to create a
UDS/SQL database.
It then goes on to describe all the stages involved in

– restructuring a database, and
– converting a database to a larger page format.

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last edition of the manuals Preface

18 U931-J-Z125-17-76

1.4 Changes since the last edition of the manuals

The main changes introduced in UDS/SQL V2.9 in comparison with Version V2.8 are listed
in table 2 below together with the manuals and the sections in which the changes are
described. If a specific topic has been dealt with in more than one manual, the manual in
which a detailed description appears is listed first. The following codes are used in the
“Manual” column for the individual manuals involved:

DES Design and Definition DBO Database Operation

APP Application Programming RIR Recovery, Information and Reorganization

CRE Creation and Restructuring MSG Messages

Topic Manual Chapter

FIND-/FETCH-7 with DESCENDING KEY: Suspension of the restric-
tion

The restriction for DESCENDING KEY is omitted APP 7

Record references in COBOL programs:

The new DDL-statement GENERATE-REC-REF generates a data field
and condition names for the access to record references

CRE 3

Changing settings of ALOG files while the database is in use

New DAL command DISPLAY ALOG shows ALOG settings DBO 4

New DAL commands MODIFY ALOG/MODIFY ALOG-RES and
MODIFY-ALOG-SIZE change ALOG settings

DBO 4

Change of the restrictions for the UDS Online Utility

WAIT-FOR-TRANSACTION offers the possibility to wait until the locked
source page is released by the locking transaction

RIR 8

With SET-RELOCATE-PARAMETERS a behaviour for the case that pa-
ges are locked can be specified also for *INDEX-LEVEL-TABLE-PAGES
(CLASH-HANDLING)

RIR 8

Table 2: Changes in version V2.9 compared to V2.8

Preface Changes since the last edition of the manuals

U931-J-Z125-17-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

BRENAME with after-image logging: The function “Renaming data-
base objects (BRENAME, BALTER)” can also be executed when Af-
ter Image Logging is activated. Thus logging gaps can be avoided

New behaviour in a renaming cycle CRE 7

After a renaming process a data base update can be executed RIR 2

Specifying the size for DBTT extensions

New operand EXT of the DAL command ACT DBTT-INCR DBO 4

The BSTATUS output additionally contains the value of the EXT operand RIR 6

New data type FIXED REAL BINARY 63

Expansion of the syntax representation DES 4, 9

Changes in messages to consider the new data type MSG
APP

2, 4
10

Topic Manual Chapter

Table 2: Changes in version V2.9 compared to V2.8

Non-SDF notational conventions Preface

20 U931-J-Z125-17-76

1.5 Notational conventions

This section provides an explanation of the symbols used for warnings and notes as well
as the notational conventions used to describe syntax rules.

1.5.1 Warnings and notes

1.5.2 Non-SDF notational conventions

 Points out particularly important information

 CAUTION! Warnings

Language element Explanation Example

KEYWORD Keywords are shown in underlined uppercase
letters. You must specify at least the underlined
parts of a keyword.

DATABASE-KEY

MANUAL

OPTIONAL WORD Optional words are shown in uppercase letters
without underlining. Such words may be omitted
without altering the meaning of a statement.

NAME IS

ALLOWED

PAGES

variable Variables are shown in italic lowercase letters. In
a format which contains variables, a current value
must be entered in place of each variable.

item-name

literal-3

integer

lEither⎫
m }
nor ~

Exactly one of the expressions enclosed in braces
must be specified.
Indented lines belong to the preceding
expression.
The braces themselves must not be specified.

lCALC ⎫
m }
nINDEX~

lVALUE IS ⎫
m }
nVALUES ARE ~

[optional] The expression in square brackets can be
omitted. UDS/SQL then uses the default value
The brackets themselves must no be specified.

[IS integer]

[WITHIN realm-name]

Table 3: Notational conventions (part 1 of 2)

i
!

Preface Non-SDF notational conventions

U931-J-Z125-17-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

All other characters such as () , . ; “ = are not metacharacters;
they must be specified exactly as they appear in the formats.

 ...
or
,...

The immediately preceding expression can be
repeated several times if required. The two
language elements distinguish between repeti-
tions which use blanks and those which use
commas.

item-name,...

{SEARCH
KEY.....}...

.....
or
 .
 .

Indicates where entries have been omitted for
reasons of clarity. When the formats are used,
these omissions are not allowed.

SEARCH KEY IS
RECORD NAME
 ..
 .

.
The period must be specified and must be
followed by at least one blank. The underline must
not be specified.

SET SECTION.

03 item-name..... .

Space Means that at least one blank has to be specified. USING CALC

Language element Explanation Example

Table 3: Notational conventions (part 2 of 2)

SDF syntax representation Preface

22 U931-J-Z125-17-76

1.5.3 SDF syntax representation

This syntax description is based on SDF Version 4.7. The syntax of the SDF
command/statement language is explained in the following three tables.

Table 4: Metasyntax

Certain characters and representations are used in the statement formats; their meaning is
explained in table 4.

Table 5: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific value set. The number of data types is limited to those described in table 5.

The description of the data types is valid for all commands and statements. Therefore only
deviations from table 5 are explained in the relevant operand descriptions.

Table 6: Data type suffixes

The description of the “integer” data type in table 6 also contains a number of items in italics.
The italics are not part of the syntax, but are used merely to make the table easier to read.

The description of the data type suffixes is valid for all commands and statements.
Therefore only deviations from table 6 are explained in the relevant operand descriptions.

Representation Meaning Examples

UPPERCASE LETTERS

Uppercase letters denote
keywords. Some keywords
begin with *.

OPEN DATABASE

COPY-NAME = *NONE

=
The equal sign connects an
operand name with the
associated operand values.

CONFIGURATION-NAME = <name 1..8>

< >

Angle brackets denote variables
whose range of values is
described by data types and
their suffixes (Tables 5 and 6).

DATABASE = <dbname>

Underscoring
Underscoring denotes the
default value of an operand.

SCHEMA-NAME = *STD

/
A slash separates alternative
operand values.

CMD = *ALL / <dal-cmd>

(...)
Parentheses denote operand
values that initiate a structure.

*KSET-FORMAT(...)

Table 4: Metasyntax (part 1 of 2)

Preface SDF syntax representation

U931-J-Z125-17-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

Indentation

Indentation indicates that the
operand is dependent on a
higher-ranking operand.

USER-GROUP-NAME = *KSET-FORMAT(...)

*KSET-FORMAT(...)

⏐ HOST = <host>

⏐
⏐

A vertical bar identifies related
operands within structure. Its
length marks the beginning and
end of a structure. A structure
may contain further structures.
The number of vertical
preceding an operand corre-
sponds to the depth of the
structure.

USER-GROUP-NAME = *ALL-EXCEPT(...)

*ALL-EXCEPT(...)

⏐ NAME = *KSET-FORMAT(...)

⏐ *KSET-FORMAT(...)

⏐ ⏐ HOST = <host>

⏐ ⏐ ...

,
A comma precedes further
operands at the same structure
level.

,SPACE = STD

list-poss(n):

list-poss signifies that the
operand values following it may
be entered as a list. If a value is
specified for (n), the list may
contain no more than that
number of elements. A list of two
or more elements must be
enclosed in parentheses.

NAME = list-poss(30): <subschema-name>

Data type Character set Special rules

alog-seq-no 0..9 1..9 characters

appl A..Z
0..9
$,#,@

Structure identifier:
hyphen

1..8 characters
String that can consist of a number of substrings
separated by hyphens; first character A..Z or $, #, @
Strings of less than 8 characters are filled internally with
underscore characters.

catid A..Z
0..9

1..4 characters
must not start with the string PUB

copyname A..Z
0..9

1..7 characters, starting with A..Z

Table 5: Data types (part 1 of 4)

Representation Meaning Examples

Table 4: Metasyntax (part 2 of 2)

SDF syntax representation Preface

24 U931-J-Z125-17-76

c-string EBCDIC characters 1..4 characters
Must be enclosed in single quotes; the letter C may be
used as a prefix.
Single quotes within c-string must be specified twice.

csv-filename A..Z
0..9
Structure identifier:
hyphen

1..30 characters
Must be enclosed in single quotes

dal-cmd A..Z
0..9
hyphen

1..64 characters

date 0..9

Structure identifier:
hyphen

Date specification
Input format: yyyy-mm-dd
yyyy : year; may be 2 or 4 digits long
mm : month
dd : day

dbname A..Z
0..9

1..17 characters, starting with A..Z

device A..Z
0..9
$,#,@

Structure identifier:
hyphen

5..8 characters, starting with A..Z or 0..9
String that can consist of a number of substrings
separated by hyphens and and whicch corresponds to a
device. In the dialog guidance, SDF shows the permis-
sible operand values. Information as the possible
devices can be found in the relevant operand
description.

host A..Z
0..9
$,#,@

Structure identifier:
hyphen

1..8 characters
String that can consist of a number of substrings
separated by hyphens; first character A..Z or $, #, @
Strings of less than 8 characters are filled internally with
underscore characters.

integer 0..9,+,- + or - may only be the first character.

kset A..Z
0..9
$,#,@

Structure identifier:
hyphen

1..8 characters
String that can consist of a number of substrings
separated by hyphens; first character A..Z or $, #, @
Strings of less than 8 characters are filled internally with
underscore characters.

name A..Z
0..9
$,#,@

1..8 characters
Must not consist only of 0..9 and must not start with a
digit

Data type Character set Special rules

Table 5: Data types (part 2 of 4)

Preface SDF syntax representation

U931-J-Z125-17-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

realm-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that may consist of a number of substrings by
hyphens;
first character: A..Z

realmref 0..9 1..3 characters

record-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that can consist of a number of substrings
separated by hyphens;
first character: A..Z
In the case of record types with a search key it is recom-
mendable to use names with no more than 26
characters, otherwise the set name created implicitly
(SYS_...) will be truncated in accordance with the
restriction on the name length for sets.

recordref 0..9 1..3 characters

schema-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that can consist of a number of substrings
separated by hyphens;
first character: A..Z

set-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that can consist of a number of substrings
separated by hyphens;
first character: A..Z

structured-name A…Z
0…9
$, #, @
hyphen

Alphanumeric string which may comprise a number of
substrings separated by a hyphen. First character: A...Z
or $, #, @

subschema-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that can consist of a number of substrings
separated by hyphens;
first character: A..Z

Data type Character set Special rules

Table 5: Data types (part 3 of 4)

SDF syntax representation Preface

26 U931-J-Z125-17-76

time 0..9

Structure identifier:
colon

Time-of-day specification

Input format: lhh:mm:ss⎫
 mhh:mm }
 nhh ~

hh, mm, ss:
Leading zeros may be omitted

userid A..Z

0..9
$,#,@

1..8 characters, beginning with A..Z or $,#,@
BPRIVACY:
Strings of less than 8 characters are filled internally with
underscore characters.

volume A..Z
0..9
$,#,@

1..6 characters starting with A..Z or 0..9

x-string Hexadecimal:
00..FF

1..8 characters
Must be enclosed in single quotes and prefixed with the
letter X.There may be an odd number of characters

Suffix Meaning

x..y unit For the “integer” data type: range specification.
x Minimum value permitted for “integer”. x is an (optionally signed)

integer.
y Maximum value permitted for “integer”. y is an (optionally signed)

integer.
unit for “integer” only: additional units.

The following units may be specified:
Mbyte, Kbyte, seconds

Table 6: Data type suffixes

Data type Character set Special rules

Table 5: Data types (part 4 of 4)

Preface Sample database

U931-J-Z125-17-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

1.6 Sample databases

The examples used in this manual refer to a sample database configuration consisting of
the following four databases:

Figure 1: SHIPPING database with schema name MAIL-ORDERS

� � � � �
� � 	
 � � � �
 � � �
 �
 �

� � � � � � �

� � � � � � � � 	 �
� �
 �

� � � � � � � � �
 � � � � �

� � � � � � � � � � � � �
 � � � �� � � � � � � � � � � � �
 � � � � 	
 � � � � �
� � � � � � �
 �
� � 	
 � � � � �

� � � � � �

	 � �
 � � �
� � � �

� � � � � � � � � � � � � �
 � � � 	 � � � � 	 � �
� � � � � � � � � � � � �
 � � � � � � 	 �
�
 � � � �
 � � � � � � � � �
 � �

� � � � � �
 �

� � � � � � �
 � �
� � � � � �
 � �

� � 	
 �

� � � � � �
 �
	
 � � �

� � � � � �
 �
�
 �
 � � � � �

� � � �
 �

� � � � � �

� � � � � �
 � � � �
 � � � �
 �

� � � � � �
 �

� � � � � � �
 �
� � 	
 �

� � � �

� � � �

� � � �

� � � � � �
 � �

� � � � � �
� � 	 �
�
 �
 � �
 	

� � � � � � � � 	 �
� � � �
 	

� � � � � � � � � �� � �
 �

� � � � � � � � 	 �
� �
 � �

� � � � � � � � � �
�
 �
 �

� � � � � � � � � � � � � � �
 	 � � �

�
 � � 	
 �
 	 �
� � � � � �
 �

� � �
 � � � � � � � �
� � � � � �
 � �
� � 	
 � � �
� � � �
 	

� � � � � �
 � �
� � 	
 � �
� � � �
 � � � � � 	
 �
 	 �

� � � � �
 � �

� � � � � � � � 	 �

� � � �
 � � �

� � � � � �
 � �
� � � � � �
 �
� � � � � � � 	 � � �

Sample database Preface

28 U931-J-Z125-17-76

Figure 2: CUSTOMER database with schema name CUSTOMER-FILE

Figure 3: SHIPPINGDB database

PURCH-ORD-ITEM

CUSTOMER

SYSTEM

CUSTOMER

CALC

OUTSTANDING

Realm: CUSTOMER-RLM

CUSTOMER

PROPERTY-INSURANCE TRANSPORT-INSURANCE

DAMAGE-CLAIM

CONTR-PROPERTY

CLAIMS-PROPERTY

DAMAGES

Realm: PROP-RLM Realm:INSURE-RLM

Preface Sample database

U931-J-Z125-17-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
1

Figure 4: TRAVEL database with schema name TRAVEL-AGENCY

HOTEL

SYSTEM

REGION

PLACE

DESTINATIONS

SYSTEM

ROUTE

ROUTES

TYPE-OF-TRANSPORTATION
SYSTEM

ARRANGEMENT

HOLIDAY-RESORTS

HOTELS

CUSTOMER

DISTANCESPECIAL-
PRICES

TRAVEL-
COSTS

FARES

RESERVATION

ACCOMMODATION AVAILABILITY-
OF-ROOMS

CATEGORIESSPECIAL-OFFERS

SYSTEM CATEGORY

ROOM

Realm: TRAVEL-RLM

MODE-OF-
TRANSPORTATION

Sample database Preface

30 U931-J-Z125-17-76

U931-J-Z125-17-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

2 Overview of UDS/SQL

This chapter explains the basic concepts of UDS/SQL, provides an overview of the realms
and files in a UDS/SQL database and introduces the programs of the UDS/SQL database
system.

2.1 Basic concepts of the UDS/SQL database system

UDS/SQL database

A UDS/SQL database contains large amounts of interrelated data. The data in a database
is stored in such a way that it is independent of programming functions and can be
accessed to optimum effect by a range of different programs, while keeping redundancy to
a minimum. The addition of new data and the retrieval, updating or deletion of existing data
are closely controlled.

With UDS/SQL, multiple databases can be combined to form a multi-DB system that is
processed as a single unit (see also “Database configuration” on page 33).

Database system

The database system is the sum of all the programs needed to create and maintain the data
resources and to retrieve and store data.

Database handler (DBH)

The database handler (DBH), which controls access to the database, is the central
component of UDS/SQL. It allows mono-DB operation or multi-DB operation.
The DBH is available in the following two versions:

– independent DBH
– linked-in DBH.

Basic concepts Overview

32 U931-J-Z125-17-76

With the independent DBH, database operation is controlled by the following modules:

– UDSSQL
– UDSSUB
– UDSCT for UDS-D.

Each module executes as a separate task. Together, they form the task family of the
independent DBH.

The modules have the following functions:

UDSSQL Master task
UDSSQL communicates with the database administrator and initiates,
monitors and terminates the session.

UDSSUB Server task (can be loaded more than once)
UDSSUB receives the processing requests from the application programs
and returns the results to the appropriate application program.

UDSCT UDS-D task
UDSCT handles the communication functions which are needed to process
DML statements from remote application programs.

The linked-in DBH is not an independent program, but is linked into the application
program concerned or loaded dynamically at runtime and runs as part of this program. An
application program running under a linked-in DBH cannot update a database unless it is
accessing it in EXCLUSIVE mode, although any number of linked-in DBHs can have
RETRIEVAL mode access to a database. As the linked-in DBH, unlike the independent
DBH, operates without task communication, it may produce improved runtimes.

Like the independent DBH, the linked-in DBH has multi-DB capability. The linked-in DBH
cannot process SQL statements.

Session

A session is a period in which one or more users can work with the database(s). It begins
with the loading of either DBH and ends with the message “NORMAL SYSTEM TERMINATION”.
The database configuration for the session is defined by operands entered by the database
administrator when loading the DBH or in DAL commands.

Overview Basic concepts

U931-J-Z125-17-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

Database configuration

When starting the session, the database administrator uses the DBH load parameters to
specify which databases are to take part in the session. The databases selected for the
session and the environment in which the session is to take place are known as the
database configuration.

Every configuration is assigned a name by the administrator. The configuration data is
stored in the session log file (SLF) for the duration of the session so that the current
database configuration can be restored in the event of a restart.

Transaction

Every database application program must open a transaction with the DBH in order to
communicate with a UDS/SQL database, regardless of the type of DBH used.

A transaction (TA) is a logically related sequence of DML statements that is either
processed in its entirety or not at all. For example, a transaction in a COBOL-DML program
begins with a READY statement and ends with FINISH.
In mono-DB mode, every READY statement opens a transaction and also the database.
Thereafter, the application program can access the opened database any number of times
using DML statements. In multi-DB mode, by contrast, each database needs to be opened
independently with a READY statement. Consequently, a transaction in multi-DB mode
may include several READY statements, where the first such statement opens the
transaction itself.
Once the COBOL-DML application program has issued the DML statement FINISH to
terminate the transaction, it cannot access the database(s) again until the following applies:

– In mono-DB operation: a new transaction, and thus the database, is opened by the
application program by means of another READY statement.

– In multi-DB operation: a new transaction, and thus a database, is opened by the
application program by means of a new READY statement. Note that additional
databases may have also been opened within the same transaction by means of further
READY
statements.

Even an SQL program also only access UDS/SQL databases from within a transaction In
SQL programs, a transaction begins with the first SQL statement that differs from
COMMIT WORK and ends with the SQL statement COMMIT WORK.

Files and realms of a UDS/SQL database Overview

34 U931-J-Z125-17-76

Conversation

In an SQL application, SQL-specific administrative data is maintained beyond transaction
boundaries.
Each such administrative unit is called a conversation.

 In openUTM such an administrative unit is also called a service.

2.2 Files and realms of a UDS/SQL database

A UDS/SQL database consists of the user database and the compiler database and
comprises a number of areas (known as realms).

The user database contains all the realms and files that are needed by the user to store
data in the database and retrieve data from it. This includes:

– the user realms
– the database directory (DBDIR)
– the module library for hash routines (HASHLIB)

The compiler database, which is required by the DDL compiler and the COBOL compiler,
contains the compiled schema and subschema descriptions. It includes:

– the database directory (DBDIR)
– the database compiler realm (DBCOM)
– the COBOL subschema directory (COSSD)

i

Overview Files and realms of a UDS/SQL database

U931-J-Z125-17-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

Figure 5: The UDS/SQL database

COSSDDBCOM

HASHLIB

DBDIR

User database

Compiler database

User
realms

Files and realms of a UDS/SQL database Overview

36 U931-J-Z125-17-76

In addition to the files belonging to the user and compiler databases, certain other files are
necessary for data security and for setting up the connection to the database. The following
is a comprehensive list of the files of a UDS/SQL database:

Database realms

dbname.realmname original user realm(s)

dbname.DBDIR database directory

dbname.DBCOM database compiler realm

Files for database operation

dbname link file to database for mono-DB operation

dbname.COSSD COBOL subschema directory

dbname.HASHLIB hash routine storage library

configuration-name link file for database configuration

confname.DBSTAT DB status file

confname.DBSTAT.SAVE
duplicate of the DB status file

confname.SLF session log file (SLF)

confname.TEMPO.nnn temporary user file

UDS.ENTER.tsn.ST0nn
ENTER files for starting server tasks

Overview Files and realms of a UDS/SQL database

U931-J-Z125-17-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

Files for ensuring the security of the database

Shadow database
– dbname.DBDIR.copyname
– dbname.DBCOM.copyname
– dbname.COSSD.copyname
– dbname.HASHLIB.copyname
– dbname.realmname.copyname

ALOG file
– dbname.A.seqno

RLOG files
– confname.RLOG.rlogtimestamp.1
– confname.RLOG.rlogtimestamp.2
– confname.RLOG.rlogtimestamp.1.SAVE
– confname.RLOG.rlogtimestamp.2.SAVE

Files of the database converted with BPGSIZE

– dbname.DBDIR.NEW
– dbname.DBCOM.NEW
– dbname.COSSD.NEW (if BPGSIZE is used to convert to a larger page format)
– dbname.realmname.NEW

Syntax rules

dbname
Database name; max. 17 characters in length. Used as a partial qualifier in almost
all file names for database realms and files. It has to conform to the following rules:

– dbname must be the same for all the files in the database.
– dbname must not contain special characters or blanks, and its first character

must be a letter.
– :catid:$userid.dbname.realmname.copyname may be at most 54 characters in

length.

With UDS-D:

– dbname must be unique network-wide.

Files and realms of a UDS/SQL database Overview

38 U931-J-Z125-17-76

configuration-name
Freely selectable name of the database configuration; in mono-DB operation this
name can be identical to dbname. It has to conform to the following rules:

– configuration-name may be at most 41 characters in length.

– The first seven characters of all the configuration-names in a BS2000 session
must be unique network-wide.

– The first eight characters of configuration-name must not contain special
characters.

confname
the first eight characters of the database configuration defined by the database
administrator at the start of the session

With UDS-D:

– confname must be unique in the first seven characters.

nnn number of the transaction to which the file has been allocated

nn number of the server task

pool name of the common memory pool

tsn task sequence number of the master task

realm-name
name of a realm of the database;

for user realms: realm name as defined in the AREA clause of the Schema DDL

for database directory: DBDIR

for database compiler realm: DBCOM

copyname
suffix for the shadow database; copyname consists of up to seven characters.

seqno
nine-digit sequence number allocated to each ALOG file

rlogtimestamp
time at which the corresponding RLOG file was opened

The following is a short description of all the files and realms in a UDS/SQL database:

Overview Files and realms of a UDS/SQL database

U931-J-Z125-17-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

Database realms

– User realms (dbname.realmname)

Before loading the realms with data, they have to be defined in the AREA clause of the
Schema DDL.

– Database directory (dbname.DBDIR)

The database directory (DBDIR) includes the full schema description, all subschema
descriptions, and information on access rights.
It also contains information as to whether AFIM logging is switched on or off and
whether realms are added or dropped or have been deleted during restructuring.
The database handler needs this information in order to handle the user’s database
access requests within the area of the used subschema.

– Database compiler realm (dbname.DBCOM)

The database compiler realm (DBCOM) stores information on the realms, records and
sets that the user has defined in the Schema DDL and the Subschema DDL. The
DBCOM is required only for compiling the Schema DDL and the Subschema DDL and
for creating the DBDIR and the COSSD.

Files required for database operation

– Link file (dbname)

Empty link file for the database in mono-DB operation.

– COBOL subschema directory (dbname.COSSD)

On compiling the subschema, the DDL compiler writes information on it into the COBOL
subschema directory (COSSD). This information is required by the COBOL compiler to
compile DB application programs. The COSSD provides the COBOL compiler with the
data structure of the subschema and with a table for checking the validity of the DML
commands.

– Module library for hash routines (dbname.HASHLIB)

The module library dbname.HASHLIB stores the hash routines for the database.

– Link file (configuration-name)

Empty link file for the DB configuration in multi-DB operation.

Files and realms of a UDS/SQL database Overview

40 U931-J-Z125-17-76

– DB status file
(confname.DBSTAT)
(confname.DBSTAT.SAVE)

The DB status file is required by openUTM for a restart; it contains information on the
transaction that was most recently rolled back in each UDS/SQL/openUTM application.
The DB status file is duplicated for data security reasons.

With UDS-D please note:

In distributed processing with UDS-D, this file may also hold information stored when
the transaction is committed.

– Session log file (confname.SLF)

The session log file (SLF) is required by the DBH for restarts, as it contains information
on the databases attached to the configuration and the current values of the DBH load
parameters.

– Temporary user file (confname.TEMPO.nnn)

If a temporary realm has been declared for (at least) one of the databases in the
configuration, the DBH creates a temporary file for each main reference (parallel open
transaction). This file stores temporary information.

nnn number of main reference

– ENTER files (UDS.ENTER.tsn.ST0nn)

The master task generates one or more ENTER files for server tasks
(UDS.ENTER.tsn.ST0nn).

These ENTER tasks are started by the master task using the ENTER commands. If the
session is terminated normally, the master task deletes all ENTER files.

Files for ensuring data security

– Shadow database

(dbname.DBDIR.copyname)
(dbname.DBCOM.copyname)
(dbname.COSSD.copyname)
(dbname.HASHLIB.copyname)
(dbname.realmname.copyname)

You can use the COPY-FILE command to copy the realms and files of the database.
The MODIFY-FILE-ATTRIBUTES commands allow you to rename the database. You
can also save the database using the BS2000 utility ARCHIVE.

Overview Files and realms of a UDS/SQL database

U931-J-Z125-17-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

– ALOG files (dbname.A.seqno)

The DBH or any updating utility routine logs every update to a page, i.e. the status of
the page after the update (after-image) in ALOG files. These ALOG files can thus be
used to apply updates to the database.
The shadow database has no ALOG files; however, all changes can be incorporated
into the shadow database by using the ALOG files of the original database.

– RLOG files

(confname.RLOG.rlogtimestamp.1)
(confname.RLOG.rlogtimestamp.2)
(confname.RLOG.rlogtimestamp.1.SAVE)
(confname.RLOG.rlogtimestamp.2.SAVE)

The RLOG files are used by the DBH to log information (data) being changed both
before the change (before-image, or BFIM) and after the change (after-image, or
AFIM) as needed for use in any rollbacks or warm starts that may be required.

Maximum size of UDS/SQL files

UDS/SQL can administer a maximum of 16777214 database pages in a realm. This results
in the following limit values for the maximum file sizes:

UDS/SQL supports of utility routines realm files, temporary files, logging files and work files
as LARGE FILEs. Files which, because of their nature, can only be of a limited size are not
processed with the LARGE FILE property by UDS/SQL (DBSTAT, COSSD, HASHLIB,
parameter files). The monitor’s output files also do not have the LARGE FILE property.

Files set up as auxiliary files by the UDS/SQL utility routines are not created with
BLKCNTRL=PAMKEY so that it is not made implicitly impossible to use them as
LARGE FILEs.

Database page size Maximum file size in PAM pages

2 Kbyte 16777214

4 Kbyte 33554428

8 Kbyte 67108856

Table 7: Limit values for file sizes

Files and realms of a UDS/SQL database Overview

42 U931-J-Z125-17-76

The following prerequisites must be fulfilled in the system if the LARGE FILE property is to
be used:

– Large files may only be used in pubsets that have the property
LARGE-FILES-ALLOWED.

– Large files cannot be used in the HOME pubset.

– Large files cannot be used with BLKCTRL=PAMKEY.

Passwords for UDS/SQL files

UDS/SQL protects the automatically generated files with the default password: C’UDSË’.
The RLOG file is an exception. The password for the RLOG file, which is made up of parts
of the RLOG time stamp, is assigned automatically. The password can only be deleted
without password protection in the system ID ($TSOS).

Overview Overview of UDS/SQL programs

U931-J-Z125-17-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

2.3 Overview of UDS/SQL programs

The UDS/SQL (BS2000) system in its entirety incorporates a series of programs required
for creating, maintaining and communicating with the database

The functions of these programs are described in brief below:

Creating the database

BCREATE formats the DBDIR and the DBCOM.

DDL DDL compiler
compiles the Schema DDL and the Subschema DDL, and sets up DBCOM
and COSSD.

SSL SSL compiler
compiles the SSL and modifies data in DBCOM.

Creating the
database

Preparing the
program run

Loading or
unloading the
database

Monitoring
the session

Working with
the database

Testing
DML
functions

BCREATE
DDL
SSL
BGSIA
BFORMAT
BGSSIA
BPRIVACY
OPRIVACY

BCALLSI BINILOAD
BOUTLOAD

UDSMON IQS
(not part of the
UDS/SQL
delivery
package)

DMLTEST

D a t a b a s e m a i n t e n a n c e

Information
output

Reorganizing
the database

Restructuring
the
database/Re-
naming data-
base objects

Recovering
the database

Checking the
database

Database
conversion

BPSIA
BPSQLSIA
BSTATUS
BPRECORD

BREORG
BMODTT
ONLUTIL

BCHANGE
BRENAME
BALTER

BMEND BCHECK BPGSIZE
BTRANS24

D a t a b a s e o p e r a t i o n

Administer UDS/SQL

UDSADM

Table 8: Program overview

Overview of UDS/SQL programs Overview

44 U931-J-Z125-17-76

BGSIA sets up the schema information area (SIA) and stores it in the DBDIR.

BFORMAT formats the user realms of the database and modifies the SIA.

BGSSIA sets up the subschema information area (SSIA) and stores it in the DBDIR

BPRIVACY or OPRIVACY
enters the user access rights in the DBDIR.

Preparing for the program run

BCALLSI only needed in conjunction with CALL DML.
BCALLSI makes subschema information available to CALL DML users.

Loading the database

BINILOAD rapidly loads large volumes of data of the same record type into the
database.

Unloading the database

BOUTLOAD copies, deletes or unloads record types from a database.

Monitoring the session

UDSMON outputs the UDS/SQL operating values during database operation.

Testing DML functions

DMLTEST tests individual DML functions in interactive mode and in procedures.

Outputting information on the database

BPSIA prints a summary of the chief information from the schema or a given
subschema of the database

BPSQLSIA prints the relational schema information of an existing UDS/SQL
subschema defined in accordance with the CODASYL model.
The relational schema information serves as a programming aid for the SQL
user.

BSTATUS generates statistics on storage occupancy in the database realms.

BPRECORD outputs the contents of database realms.

Overview Overview of UDS/SQL programs

U931-J-Z125-17-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

Reorganizing the database

BREORG increases and reduces the size of database realms, increases and reduces
the permissible number of records of a record type and reorganizes tables
and hash areas

BMODTT controls the reuse of database key values that have been released and the
search for free space by the DBH.

ONLUTIL relocates records in a database and modifies settings to a database.

Restructuring/renaming the database

BCHANGE prepares DBDIR, DBCOM and COSSD for restructuring

BRENAME prepares DBDIR, DBCOM and COSSD for renaming.

BALTER executes the restructuring/renaming of the existing database in accordance
with the new schema description.

Recovering the database

BMEND creates ALOG files and offers functions for recovering a destroyed
database and outputting information on the status of realms to be updated
and ALOG files.

Checking the database

BCHECK checks whether the physical structures of a database are correct; can be
used in conjunction with data security so that inconsistencies in the
database can be detected and eliminated at an early stage.

Converting the database

BPGSIZE defines a new page format for the database (database conversion).
During conversion, BPGSIZE can optionally create

– a copy of the database with the larger page length.

– a copy of the database with the unaltered page length. Note that the
realms of the converted database usually require less storage space.

BTRANS24 converts databases of UDS/SQL V2.0 to V2.3 for use in UDS/SQL V2.4 and
higher.

Overview of UDS/SQL programs Overview

46 U931-J-Z125-17-76

UDS/SQL administration

UDSADM The UDSADM program can be used to administer a UDS/SQL
configuration.

Some utility programs that access UDS/SQL databases have to be run in conjunction with
the DBH: such programs load the linked-in DBH using default values for the load
parameters, and they all work with only one database.

The following table shows which programs load the linked-in DBH dynamically and which
require files from the compiler database during the program run:

UDS/SQL
program

Loads linked-in
DBH dynamically

Access to

DBDIR DBCOM COSSD

BALTER - X X -

BCALLSI - - - X

BCHANGE - X X X

BCHECK - X - -

BCREATE - X X -

BFORMAT - X - -

BGSIA X X X -

BGSSIA X X X -

BINILOAD - X - -

BMEND - X X -

BMODTT - X - -

BOUTLOAD - X - -

BPGSIZE - X X X

BPRECORD - X - -

BPRIVACY X X X1 -

BPSIA - X - -

BPSQLSIA - X - X

BRENAME - X X X

BREORG - X - -

BSTATUS - X - -

BTRANS24 - X X -

COBOL compiler - - - X

DDL compiler X X X X

Table 9: Overview of programs in the UDS/SQL database system (part 1 of 2)

Overview START commands for the UDS/SQL programs

U931-J-Z125-17-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

1 The DBCOM is not read, but it must be present

2 Optional

2.3.1 START commands for the UDS/SQL programs

The following table shows the START commands (and their aliases) that you can use to call
the specified UDS/SQL programs

The following prerequisites must be fulfilled:

– UDS/SQL must be installed with IMON and
– the SDF system syntax file must be activated.

DMLTEST X2 X - -

ONLINE-
PRIVACY

- X X1 -

ONLINE-UTILITY X2 X - -

SSL compiler X X X -

UDSADM - - - -

UDSMON - - - -

Program START command Alias

UDSSQL START-UDS-DBH UDS, SYSINT

BALTER START-UDS-BALTER BALTER

BCALLSI START-UDS-BCALLSI BCALLSI

BCHANGE START-UDS-BCHANGE BCHANGE

BRENAME START-UDS-BRENAME BRENAME

BCHECK START-UDS-BCHECK BCHECK

BCREATE START-UDS-BCREATE BCREATE

BFORMAT START-UDS-BFORMAT BFORMAT

BGSIA START-UDS-BGSIA BGSIA

BGSSIA START-UDS-BGSSIA BGSSIA

BINILOAD START-UDS-BINILOAD BINILOAD

BMEND START-UDS-BMEND BMEND, START-UDS-REPAIR

Table 10: Calling UDS/SQL programs using START commands (part 1 of 2)

Table 9: Overview of programs in the UDS/SQL database system (part 2 of 2)

START commands for the UDS/SQL programs Overview

48 U931-J-Z125-17-76

BMODTT START-UDS-BMODTT BMODTT

BOUTLOAD START-UDS-BOUTLOAD BOUTLOAD,
START-UDS-OUTLOAD

BPGSIZE START-UDS-BPGSIZE BPGSIZE
START-UDS-PAGE-RESIZING

BPRECORD START-UDS-BPRECORD BPRECORD

BPRIVACY START-UDS-BPRIVACY BPRIVACY
START-UDS-AUTHORIZATION

BPSIA START-UDS-BPSIA BPSIA

BPSQLSIA START-UDS-BPSQLSIA BPSQLSIA,
START-UDS-PRINT-SQLSIA

BREORG START-UDS-BREORG BREORG,
START-UDS-REORGANIZATION

BSTATUS START-UDS-BSTATUS BSTATUS

DDL START-UDS-DDL DDL

DMLTEST START-UDS-DMLTEST DMLTEST

SSL START-UDS-SSL SSL

ONLINE-PRIVACY START-UDS-ONLINE-PRIVACY OPRIVACY

UDSADM START-UDS-ADM UDSADM,
START-UDS-ADMINISTRATION

UDSMON START-UDS-UDSMON UDSMON

UDS online utility START-UDS-ONLINE-UTILITY ONLUTIL

Program START command Alias

Table 10: Calling UDS/SQL programs using START commands (part 2 of 2)

Overview START commands for the UDS/SQL programs

U931-J-Z125-17-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

Syntax of the START-UDS-... commands

VERSION =
Product version of the program which is to be started.

VERSION = *STD
No explicit specification of the product version. The product version is selected as follows:

1. The version predefined with the /SELECT-PRODUCT-VERSION command.

2. The highest version installed with IMON.

VERSION = <product-version>
Explicit specification of the product version in the form mm.n[a[kk]].

You are recommended always to specify the version in full, e.g. 02.8A00, in order to
facilitate migration in the event of correction packages.

MONJV =
Specifies a monitor job variable to monitor the program run.

MONJV = *NONE
No monitor job variable is used.

MONJV = <filename 1..54 without-gen-vers>
Name of the job variable to be used.

During the program run the system sets the job variable to the following values:

$R Program running

$T Program successfully terminated

$A Program terminated with error

START-UDS-...

VERSION = *STD / <product-version>

,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

,RESIDENT-PAGES = [*PARAMETERS](...) Only for DBH

[*PARAMETERS](...)

⏐ MINIMUM = *STD / <integer 0..32767 4Kbyte>

⏐ ,MAXIMUM = *STD / <integer 0..32767 4Kbyte>

START commands for the UDS/SQL programs Overview

50 U931-J-Z125-17-76

CPU-LIMIT =
Maximum CPU time in seconds which the program may take to execute.

CPU-LIMIT = *JOB-REST
The remaining CPU time for the BS2000 job is to be used for the task.

CPU-LIMIT = <integer 1..32767 seconds>
Only the time specified should be used.

RESIDENT-PAGES = *PARAMETERS(...)
This operand is only permitted for the DBH.

Number of resident memory pages which are required for the DBH run.
This operand must be specified if pages are to be made resident in the program by means
of a CSTAT macro (see the “Executive Macros” manual). The permissible number of
resident memory pages can be influenced by the operator.
If the operand is missing (this corresponds to MIN=*STD, MAX=*STD), the memory
requests are taken from the first record in the program. The file must be open to do this.

MINIMUM = *STD / <integer 0..32767 4Kbyte>
Minimum number of resident memory pages required.

MAXIMUM = *STD / <integer 0..32767 4Kbyte>
Maximum number of resident memory pages required.

Overview Tools for UDS/SQL

U931-J-Z125-17-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
.

S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
9

.5
3

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

2

UDS/SQL programs not installed with IMON

If UDS/SQL has not been installed with IMON, you must enter the following commands to
start the UDS/SQL programs:

[/MODIFY-SDF-OPTIONS SYNTAX-FILE=$userid.SYSSDF.UDS-SQL.028.USER]

 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname

 /ADD-FILE-LINK LINK-NAME=$UDSLIB,FILE-NAME=$userid.SYSLNK.UDS-SQL.028

 /START-EXECUTABLE-PROGRAM FROM-FILE=(LIB=$userid.SYSLNK.UDS-SQL.028
,ELEMENT=uds-utility)

You only need to specify the USER syntax file with the MODIFY-SDF-OPTIONS command
if the system syntax file SYSSDF.UDS-SQL.028 is not active and if UDS/SQL programs are
used with the SDF command interface, i.e. for

– BMEND
– BOUTLOAD
– BPGSIZE
– BPRIVACY and OPRIVACY
– BPSQLSIA
– BREORG
– UDSADM
– BTRANS24

2.4 Tools for UDS/SQL

A number of tools that are not an integral part of the UDS/SQL product scope are supplied
as an additional service. Descriptions of these tools can be found in the information files
included in the delivery package.

The tools are not subject to any maintenance obligation and can be modified or withdrawn
by Fujitsu Technology Solutions without prior announcement.

Tools for UDS/SQL Overview

52 U931-J-Z125-17-76

U931-J-Z125-17-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

3 Database creation
(BCREATE, BFORMAT, DDL- and SSL-
Compiler, BGSIA, BGSSIA, BCALLSI)

The creation of a database requires a number of steps, which are listed in figure 6. The
diagram gives you the exact sequence of the preparations you have to make and the
programs you have to run.

Database creation

54 U931-J-Z125-17-76

Figure 6: Stages in the creation of a database

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Initialize volumes

BCREATE

Compile
schema DDL

Compile SSI

BGSIA

LMS

BFORMAT

Compile Sub-
schema DDL

BGSSIA

BPRIVACY

Preparation

Generate schema

Format user realms

Generate subschema

Allocate access rights

once

any number
of times

 Database creation

U931-J-Z125-17-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Figure 7: Additional database creation measures

Preparatory stage

1) The CREATE-FILE command is used to allocate storage space for the realms and
files of the compiler database: DBDIR, DBCOM, COSSD and DBSTAT.

Generating the schema

2) The BCREATE utility routine formats the realms and files of the compiler database:
DBDIR and DBCOM.

3) The DDL compiler compiles the Schema DDL and stores the compiled result in the
DBCOM. It also stores information in the COSSD file which it has set up previously.

4) SSL compilation is optional, depending on whether the default values for the
storage structure are to apply or whether the physical structure of the database is
to be defined with SSL. If a storage structure definition (SSL) has already been
generated, it has to be compiled at this point.
The SSL compiler redefines the record and set entries in DBCOM accordingly.

5) The BGSIA utility routine sets up the schema information area (SIA) on the basis of
the entries in the DBCOM and stores it in the DBDIR. In addition, BGSIA generates
the UDSHASH module and stores it in the EAM file.

6) The UDSHASH module generated by BGSIA has to be entered in the module
 library dbname.HASHLIB using the BS2000 utility routine LMS (see the "LMS
(BS2000)" manual).

Formatting user realms

7) The BFORMAT utility routine formats the user realms of the database on the basis
of the information stored in the DBDIR. The data is then located in the schema
information area (SIA).

 � � � � � � � � � ! � � � � � � �
 � � " # $ � �

Database creation

56 U931-J-Z125-17-76

Generating the subschema

8) The DDL compiler compiles the Subschema DDL and stores it in the DBCOM and
COSSD.

9) The BGSSIA utility routine sets up the subschema information area (SSIA) and
stores it in the DBDIR.

Defining access rights

10) The ONLINE-PRIVACY or BPRIVACY utility routine is used to assign access rights
(see the chapter “Specifying access authorizations (ONLINE-PRIVACY,
BPRIVACY)” on page 103).

Generating the SSITAB module

The BCALLSI utility routine is required by CALL DML users only. BCALLSI generates the
SSITAB module with the subschema information needed by the CALL DML application
program.

Database creation Preparing database creation

U931-J-Z125-17-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

3.1 Preparing database creation

Preparations for database creation comprise:

– setting up the compiler database
– setting up the user database.

When using MPVS to determine the location of storage on public disks, please refer to the
instructions in the "UDS/SQL Database Operation" manual (cf. Using MPVS in UDS/SQL
in the “Database Operation” manual).

3.1.1 Setting up the compiler database

The compiler database (see section “Files and realms of a UDS/SQL database” on
page 34) consists of the following realms:

DBDIR database directory

DBCOM database compiler realm

the file:

COSSD COBOL subschema directory

These files and realms have to be set up and their size specified using the BS2000
command CREATE-FILE.

Preparing database creation Database creation

58 U931-J-Z125-17-76

Setting up DBDIR and DBCOM

/CREATE-FILE FILE-NAME=dbname.DBDIR
 ,SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY-ALLOCATION=primary
 ,SECONDARY-ALLOCATION=secondary))
 [,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn,DEVICE-TYPE=device,SPACE=...)]

/CREATE-FILE FILE-NAME=dbname.DBCOM
 ,SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY-ALLOCATION=primary
 ,SECONDARY-ALLOCATION=secondary))
 [,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn,DEVICE-TYPE=device,SPACE=...)]

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

dbname
Database name; max. 17 characters in length. dbname is used as a partial qualifier
in almost all file names for database files and has to conform to the following rules:

– dbname must be the same for all files in the database.

– dbname must not contain special characters or blanks, and its first character
must be a letter.

– :catid:$userid.dbname.realmname.copyname may be at most 54 characters in
length.

With UDS-D:

– dbname must be unique network-wide.

SPACE
Specification of storage space (see “Maximum size of UDS/SQL files” on page 41).

PRIMARY-ALLOCATION=primary
Primary allocation;
In order to format the DBCOM and DBDIR with the BCREATE utility routine, the
following minimum values are required for the primary allocation (see section
“Formatting the compiler database with BCREATE” on page 63):

DBDIR DBCOM

2-Kbyte format 52 100

4-Kbyte format 79 424

8-Kbyte format 127 607

Database creation Preparing database creation

U931-J-Z125-17-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

In the case of databases with large schemas, a correspondingly higher allocation is
required, or automatic extensibility must be enable by a secondary allocation > 0.
The BREORG utility routine can be used later to reduce the amount of unused
space (see the "Recovery, Information and Reorganization" manual, BREORG).

SECONDARY-ALLOCATION=secondary
Secondary allocation.

secondary=0
This setting suppresses the option of automatic realm extensibility and of online
realm extensibility.

secondary>0
Prerequisite for automatic realm extensibility and online realm extensibility and
prerequisite for activating online extensibility of the DBDIR using the ACT INCR
command.
In the case of secondary>0, online realm extensibility is already activated for the
realm concerned when the database is created.
When online realm extensibility is activated in this way, the default values
NR-PAGES=64 and MIN-PAGES=0 are entered for NR-PAGES and MIN-PAGES
(see Activating online extensibility when creating databases and DAL command
ACT INCR in the “Database Operation” manual).

VOLUME
DEVICE-TYPE

if DBDIR and DBCOM are stored on private disk (PRIVATE VOLUME), the following
must be specified:

priv-vsn
Volume serial number

device Device type of private disk.

LINK-NAME
The database directory should be linked to the database via the file link name
DATABASE.

Preparing database creation Database creation

60 U931-J-Z125-17-76

Setting up COSSD

/CREATE-FILE FILE-NAME=dbname.COSSD
 ,SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY-ALLOCATION=primary
 ,SECONDARY-ALLOCATION=secondary))
 [,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn,DEVICE-TYPE=device,SPACE=...)]

SPACE
Specification of storage space (see “Maximum size of UDS/SQL files” on page 41).

PRIMARY-ALLOCATION=primary
Primary allocation;
the storage space requirement of the COSSD is directly dependent on the size of
the compiled subschemas.
In order to ensure that additional compiled subschemas can be added too the
COSSD at a later stage if required, it is advisable to create the COSSD with a
primary and secondary allocation (see below) of 100 2K units (BS2000 half pages)
each.

SECONDARY-ALLOCATION=secondary
Secondary allocation;
depending on how the operating system has been generated, there may be limits
on the extent to which COSSD can be dynamically extended.
A value of 100 2K units (BS2000 half pages) is recommended.

VOLUME
DEVICE-TYPE

If you store COSSD on private disk (PRIVATE VOLUME), the following must be
specified:

priv-vsn Volume serial number

device
Device type of private disk.

Database creation Preparing database creation

U931-J-Z125-17-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

3.1.2 Setting up the user realms

Like the realms and files of the compiler database, the user realms have to be set up with
the CREATE-FILE command.

If it is not possible to estimate the size of the user realms before the Schema DDL and SSL
are compiled, setting up the user realms after BGSIA and before BFORMAT will suffice.
BGSIA prints out the ESTIMATE-REPORT listing the sizes of individual user realms as
estimated by UDS/SQL (see “Description of the ESTIMATE-REPORT” on page 84).

/CREATE-FILE FILE-NAME=dbname.realm-name
 ,SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY-ALLOCATION=primary
 ,SECONDARY-ALLOCATION=secondary))
 [,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn,DEVICE-TYPE=device,SPACE=...)]

dbname
Database name

realmname
Name of the user realm defined in the Schema DDL

SPACE
Specification of storage space (see “Maximum size of UDS/SQL files” on page 41).

PRIMARY-ALLOCATION=primary
Primary allocation for user realm

SECONDARY-ALLOCATION=secondary
Secondary allocation;

secondary=0
Suppresses automatic realm extensibility and online realm extensibility.

secondary>0
Prerequisite for automatic realm extensibility and online realm extensibility.
In the case of secondary>0, online realm extensibility is already activated for the
realm concerned when the database is created.
When online realm extensibility is activated in this way, the default values
NR-PAGES=64 and MIN-PAGES=0 are entered for NR-PAGES and MIN-PAGES
(see Activating online extensibility when creating databases and DAL command
ACT INCR in the “Database Operation” manual).

VOLUME
DEVICE-TYPE

If the user realm is stored on private disk (PRIVATE VOLUME), the following must
be specified:

Preparing database creation Database creation

62 U931-J-Z125-17-76

priv-vsn
Volume serial number

device
Device type of private disk

Database creation BCREATE

U931-J-Z125-17-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

3.2 Generating the schema

In order to generate the schema, the following programs must execute one after the other:

BCREATE formats the compiler database

DDL compiler compiles the Schema DDL

SSL compiler compiles the SSL

BGSIA sets up the Schema Information Area (SIA)

3.2.1 Formatting the compiler database with BCREATE

The BCREATE utility routine is used to format the DBDIR and DBCOM realms of the
compiler database.
BCREATE assigns to the DBDIR and DBCOM an Act-key-0 page (security information,
creation date, etc.) and at least one FPA page (free place administration).

When required, BCREATE automatically extends the realms of the database being
processed. For details, please refer to the “Database Operation” manual, Automatic realm
extension by means of utility routines).

At startup BCREATE takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

Figure 8: System environment for BCREATE

BCREATE
SYSDTA

DBDIR DBCOM

BCREATE Database creation

64 U931-J-Z125-17-76

A UDS/SQL database can be optionally created with a 2-Kbyte, 4-Kbyte, or 8-Kbyte page
format. In the 4-Kbyte and 8-Kbyte page formats, every database page is embedded in a
page container (see the “Design and Definition“ manual). This results in the following values
for the database page length:

– 2048 bytes for databases with a 2-Kbyte page format
– 4000 bytes for databases with a 4-Kbyte page format (the page container is 4096 bytes)
– 8096 bytes for databases with a 8-Kbyte page format (the page container is 8192 bytes)

Statements for BCREATE

Command sequence to start BCREATE

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /CREATE-FILE FILE-NAME=dbname.DBDIR ...

02 /CREATE-FILE FILE-NAME=dbname.DBCOM ...

03 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

04 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

05 /START-UDS-BCREATE

06 [DATABASE-PAGE-LENGTH IS {2/4/8}KB]

07 END

Statement Default
value

Meaning

 l2KB⎫
DATABASE-PAGE-LENGTH IS m4KB}
 n8KB~

 4KB Optional;
defines the page length for a new database:
– 2KB

The database is created with a 2-Kbyte
page format

– 4KB
The database is created with a 4-Kbyte
page format

– 8KB
The database is created with an
8-Kbyte page format

END - mandatory; terminates the statement input

Table 11: Statements for BCREATE

Database creation BCREATE

U931-J-Z125-17-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

01/02 See “Setting up DBDIR and DBCOM” on page 58.

04 The specified version of BCREATE is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

05 The UDS/SQL utility routine can also be started using the alias BCREATE.

06 The DATABASE-PAGE-LENGTH statement may be dropped only if the database is
to be created with a 4-Kbyte page format.

07 The END statement is mandatory.

Example

/CREATE-FILE FILE-NAME=TRAVEL.DBDIR,SUPPORT=PUBLIC-DISK(SPACE= -

/ RELATIVE(PRIMARY-ALLOCATION=150,SECONDARY-ALLOCATION=50))

/CREATE-FILE FILE-NAME=TRAVEL.DBCOM,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -

/ (PRIMARY-ALLOCATION=500,SECONDARY-ALLOCATION=50))

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BCREATE

***** START BCREATE (UDS/SQL V2.8 0000) 2015-06-28 11:40:28

 +++++ WARNING: 1917 BLOCKLENGTH SET TO 4KB

 * SCHEMAS AND SUBSCHEMAS WRITTEN TO DBDIR

 * VERSION-RECORDS WRITTEN TO DBDIR

 * DBCOM SUCCESSFULLY FORMATTED

 * DBDIR SUCCESSFULLY FORMATTED

 ***** DIAGNOSTIC SUMMARY OF BCREATE

 +++++ 1 WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NR OF DATABASE ACCESSES : 69

 ***** NORMAL END BCREATE (UDS/SQL V2.8 0000) 2015-06-28 11:40:28

Compiling the Schema DDL Database creation

66 U931-J-Z125-17-76

3.2.2 Compiling the Schema DDL

The Schema DDL is compiled with the aid of the DDL compiler; it has to be assigned to the
compiler as an input file.
On completing the compilation, the DDL compiler stores the schema description in the
DBCOM (database compiler realm).

On the basis of this information, the subsequent BGSIA utility routine creates the SIA and
stores it in the DBDIR (database directory).

Once an SSL description has been created, the compiled schema description in the
DBCOM forms the basis for further processing by the SSL compiler and the BGSIA utility
routine.

If no SSL description has been created, the schema description in the DBCOM is complete.

The DDL compiler also creates the COBOL subschema directory (COSSD), which stores
information for the COBOL compiler. This information is needed for generation of the DB
application programs. The actual contents of the COSSD are not generated until the
Subschema DDL is compiled.

When required, the DDL compiler automatically extends the DBDIR and DBCOM of the
database being processed or the DBTTs of the record types in the DBDIR and DBCOM. For
details,
please refer to the “Database Operation” manual, Automatic realm extension by means of
utility routines).

At startup the DDL compiler takes into account any assigned UDS/SQL pubset declaration
(see the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

During execution the DDL compiler uses the linked-in DBH.

Database creation Compiling the Schema DDL

U931-J-Z125-17-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Figure 9: System environment for Schema DDL compilation

SYSDTA

Schema
DDL

DBCOM

DBDIR

COSSD

DDL

Compiling the Schema DDL Database creation

68 U931-J-Z125-17-76

Compiler statements:

The DDL compiler is used to compile both the Schema DDL and the Subschema DDL; the
SSL, on the other hand, is compiled by the SSL compiler.
The following table is a list of compiler statements for:

– the Schema DDL, marked with DDL
– the Subschema DDL, marked with SDDL
– the SSL, marked with SSL.

Statement Com-
piler

De-
fault
value

Meaning

 lYES⎫
PARLIST IS m }
 nNO ~

DDL
SDDL
SSL

NO optional;
YES
all statements are listed on SYSLST
NO
statements are not listed

 lYES⎫
SORCLIST IS m }
 nNO ~

DDL
SDDL
SSL

YES optional;
YES
a listing is printed out on SYSLST, possibly
containing error messages
NO
no listing is printed

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 1 of 6)

Database creation Compiling the Schema DDL

U931-J-Z125-17-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

SOURCE IS

l'dateiname' ⎫
m }
n'bib(element)'~

DDL
SDDL
SSL

- not required for inputs in interactive mode or if
SYSDTA is assigned as the input file - in this
case, it should be noted that all the statements,
(at least END) must be entered first followed by
the actual source.

assigns the compiler the file containing the
Schema DDL/Subschema DDL/SSL.
Instead of ’file-name’ it is also possible to specify
an element of a program library
(see "Program libraries" in the
"LMS (BS2000)" manual).

lib: name of program library
element: name of element

SYSDTA is switched to the input file. It is reset
to SYSCMD upon completion of the compiler
run.
The statements “SOURCE IS“ and “DELETE
SCHEMA“ or “DELETE SUBSCHEMA“ may not
be used within the same DDL compiler run.

Statement Com-
piler

De-
fault
value

Meaning

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 2 of 6)

Compiling the Schema DDL Database creation

70 U931-J-Z125-17-76

SUBSCHEMA FORM IS OLD SDDL - optional;
this statement is only required for subschemas
which are used by KDBS applications;
it is permissible only in conjunction with the
“SOURCE IS filename” statement and is ignored
when compiling schemas.

The “SUBSCHEMA FORM IS OLD” statement
causes the transformed subschema and the
check table (CHECK-TABLE) to be entered in
the COSSD in an internal format which was the
standard format up to and including UDS/SQL
V1.2 (“old” form; all reference numbers are 1
byte long).

A subschema can be compiled to a format
compatible with UDS/SQL V1.2 only if the
following conditions are satisfied:
– No item of the subschema is of type

DATABASE-KEY-LONG.
– No item of the subschema is of the type

NATIONAL.
– No record type of the subschema is longer

than 2020 bytes.
– All record references and set numbers of

the schema are Î 254.
Otherwise, the DDL compiler aborts with syntax
errors, and the subschema is not entered in the
DBCOM and COSSD.

Statement Com-
piler

De-
fault
value

Meaning

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 3 of 6)

Database creation Compiling the Schema DDL

U931-J-Z125-17-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

 lYES⎫
GENERATE-REC-REF IS m }
 nNO ~

SDDL NO optional;
YES
record references are generated

In the IMPLICITLY-DEFINED-DATA-NAMES
structure a field REC-REF PIC S9(4) BINARY is
defined. For each record reference a condition
name (level number 88) is assigned to this field,
which matches the following pattern:
REF-record_name.
As the maximum length of a name is 30
characters, record_name, is truncated to 26
characters if necessary. In this case record_name
must be unique in the first 26 characters.
The record reference can be used in a COBOL
program as follows:
SET REF-record_name IN REC-REF TO TRUE.
MOVE REC-REF TO dbkey.

NO
record references are not generated

This statement is effective only for the
generating of subschemas. When generating
schemas the statement is ignored.

DELETE SCHEMA 'schema-name' DDL - optional;
deletes the specified schema; useful after
restructuring with BALTER if the DDL executes
correctly and the SSL compilation reports errors
actually attributable to the DDL

schema-name: name of schema

The “SOURCE IS“ and “DELETE SCHEMA“
statements must not be used within the same
DDL compiler run.

Statement Com-
piler

De-
fault
value

Meaning

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 4 of 6)

Compiling the Schema DDL Database creation

72 U931-J-Z125-17-76

DELETE [ONLY]SUBSCHEMA

 lOF⎫
 'subschema-name'm }
 n: ~

 SCHEMA 'schema-name'

SDDL - optional;
deletes the specified subschema. The
subschema being compiled may have the same
name as the subschema named in the DELETE
statement, as it is deleted before the compiler
run.

ONLY
if the parameter is omitted, a SOURCE
statement must follow the DELETE statement.

If the parameter is specified, any SOURCE
statement is ignored.

subschema-name: name of subschema
schema-name: name of schema

Both names have to be given in single quotes

 lYES⎫
DISPLAY IS m }
 nNO ~

DDL
SDDL
SSL

NO optional;

YES
information held in DBCOM relating to record
types, sets, etc. is output in unencoded form.

NO
values in DBCOM are not output

CREATE COSSD 'schema-name' DDL
SDDL

- Retroactive creation of COSSD.
If this was forgotten during schema compilation
or the DDL compiler was terminated abnormally
owing to an error when the COSSD was being
configured, this can be carried out in a separate
run before the first subschema is compiled;
schema-name: has to be given in single quotes.
The COSSD has to be created with a CREATE-
FILE command prior to the compiler run.

N.B.:
If the SOURCE IS ... parameter is specified at
the same time, compilation will be suppressed.

Statement Com-
piler

De-
fault
value

Meaning

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 5 of 6)

Database creation Compiling the Schema DDL

U931-J-Z125-17-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

COMPARE SUBSCHEMAS SDDL - admissible only after restructuring with
BALTER.
The subschemas of the old schema are
checked for compatibility with the new schema;
for this purpose the DDL compiler reads the
subschemas from the old COSSD after the
BALTER run.
 If an old subschema is compatible with the new
schema, it is entered in the new DBCOM and in
the new COSSD.

 lYES⎫
DIAGNOSTIC IS m }
 nNO ~

SDDL NO only meaningful in conjunction with COMPARE
YES
diagnoses incompatibilities between old
subschemas and the new schema and lists
them in the form of error messages
NO
no error messages are output

 lSINGLE⎫
QUOTE IS m }
 nDOUBLE~

DDL
SDDL

DOU-
BLE

either;
SINGLE
literals in the Schema DDL/ Subschema DDL
are given in single quotes
DOUBLE
literals in the Schema DDL/ Subschema DDL
are given in double quotes

END DDL
SDDL
SSL

-
mandatory;
terminates statement input

Statement Com-
piler

De-
fault
value

Meaning

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 6 of 6)

Command sequence Database creation

74 U931-J-Z125-17-76

Command sequence for compiling the Schema DDL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /CREATE-FILE FILE-NAME=dbname.COSSD ...

02 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

03 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

04 /CREATE-FILE FILE-NAME=dbname.DBSTAT,SUPPRESS-ERRORS=*FILE-EXISTING
 /CREATE-FILE FILE-NAME=dbname.DBSTAT.SAVE,SUPPRESS-ERRORS=*FILE-EXISTING

05 /START-UDS-DDL

06 ddl-compiler-statements

07 END

01 See “Setting up COSSD” on page 60.

03 The version-dependent module of the linked-in DBH of the relevant version is
loaded dynamically (see section "Compiling, linking and loading UDS/SQL-TIAM
application programs" in the "Application Programming" manual).

04 The DBH requires the DB status files.

If the database name contains more than 8 characters, only the first 8 characters of
the database name may be specified for dbname.

05 The UDS/SQL utility routine can also be started with the alias DDL.

06 The individual statements can be entered in one line if they are separated by
commas or blanks.

Database creation Example

U931-J-Z125-17-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Example

/CREATE-FILE FILE-NAME=TRAVEL.COSSD,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -
/ (PRIMARY-ALLOCATION=30,SECONDARY-ALLOCATION=10))
/CREATE-FILE FILE-NAME=TRAVEL.DBSTAT,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -
/ (PRIMARY-ALLOCATION=24,SECONDARY-ALLOCATION=48))
/CREATE-FILE FILE-NAME=TRAVEL.DBSTAT.SAVE,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -
/ (PRIMARY-ALLOCATION=24,SECONDARY-ALLOCATION=48))
/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR
***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:40:33
* DDLCOMP: INPUT SYSTEMPARAMETERS
SOURCE IS 'S.TRAVEL.DDL'
END
* DDLCOMP: READ SCHEMA/SUBSCHEMA
% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:33/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:33/0YBG)
0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS
0YBG: PUBSETS: SQL2
0YBG: DEFAULT PUBSET: SQL2
0YBG: --
* DDLCOMP: START SCHEMA-PHASE
* DDLCOMP: CHECK SCHEMA RULES
* DDLCOMP: CHECK DATA ALLOCATION
* DDLCOMP: SEMANTIC TEST
* DDLCOMP: CYCLUS TESTS
* DDLCOMP: ERROR DIAGNOSTIC
* DDLCOMP: NO ERRORS IN SCHEMA-PHASE
* DDLCOMP: CREATE FILE COSSD
* DDLCOMP: NO ERRORS DETECTED
% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:40:33/0YBG)
0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG: --
0YBG: TRAVEL 1394 4046 67 1760 45
% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ************1394 DML-STATEMENTS 2015-06-28 (ILLY033,11:40:33/0YBG)

***** DIAGNOSTIC SUMMARY FOR DDL-SCHEMA TRAVEL-AGENCY

 NO ERRORS
+++++ 8 WARNINGS

***** END OF DIAGNOSTIC SUMMARY
***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:40:33

Compiling the SSL Database creation

76 U931-J-Z125-17-76

3.2.3 Compiling the SSL

Compilation of the storage structure description is optional; if SSL is not used, UDS/SQL
assumes default values. If an SSL description has been written, it can be compiled by the
SSL compiler.

The SSL compiler analyzes the storage structure description and modifies the entries in the
DBCOM to match the SSL.

When required, the SSL compiler automatically extends the DBDIR and DBCOM of the
database being processed or the DBTTs of the record types in the DBDIR and DBCOM. For
details,
please refer to the “Database Operation” manual, Automatic realm extension by means of
utility routines).

At startup the SSL compiler takes into account any assigned UDS/SQL pubset declaration
(see the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

During execution the SSL compiler uses the linked-in DBH.

Figure 10: System environment for SSL compilation

SSL compiler statements

The statements for the SSL compiler are given in the Table of compiler statements
(see table 12 on page 68).

� � � � � 	
� � �

� � � 	
 	 � �

	
 � � �

Database creation Compiling the SSL

U931-J-Z125-17-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Command sequence for compiling the SSL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-SSL

04 ssl-compiler-statements

05 END

02 The version-dependent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM appliction programs" in the "Application Programming" manual).

03 The UDS/SQL utility routine can also be started with the alias SSL.

04 The individual statements can be entered in one line if they are separated by
commas or blanks.

Compiling the SSL Database creation

78 U931-J-Z125-17-76

Example

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-SSL

***** START SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:40:33

* SSLCOMP: INPUT SYSTEMPARAMETERS

SORCLIST IS YES

SOURCE IS 'S.TRAVEL.SSL'

END

* SSLCOMP: READ SSL-SCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:33/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:33/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

0YBG: PUBSETS: SQL2

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* SSLCOMP: START SSL-PHASE

* SSLCOMP: CHECK SSL RULES

* SSLCOMP: SEMANTIC TEST

* SSLCOMP: ERROR DIAGNOSTIC

* SSLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:40:33/0YBG)

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

0YBG: --

0YBG: TRAVEL 354 563 62 57 27

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************354 DML-STATEMENTS 2015-06-28
(ILLY033,11:40:33/0YBG)

***** DIAGNOSTIC SUMMARY FOR SSL - SCHEMA

 NO ERRORS

 NO WARNINGS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:40:33

Database creation BGSIA

U931-J-Z125-17-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

3.2.4 Setting up the Schema Information Area (SIA) with BGSIA

The schema information area (SIA) has to be set up in the DBDIR (database directory)
using the BGSIA utility routine.

For this purpose BGSIA requires the information which has been stored in the DBCOM
during compilation of the Schema DDL and the SSL. The SIA then contains information in
table form on the database schema and its storage structure.

The DBH and other utility routines need the SIA when data has to be stored, retrieved or
updated in the user realms.

BGSIA assigns reference numbers to the names of the realms, record types, sets and keys,
and it will print them out at the end of its run if requested to do so in a DISPLAY statement.
This report is analogous to the one produced by the BPSIA utility routine (see the
“Recovery, Information and Reorganization" manual, SIA PRINT REPORT).

BGSIA also generates the UDSHASH module and stores it in the EAM file. This module
contains a table with the names of all the hash routines defined in the Schema DDL. After
the BGSIA run the UDSHASH module has to be transferred with the attributes
RMODE=ANY and AMODE=ANY to a module library with the name dbname.HASHLIB; this
also applies if no hash routines are used.

If you have programmed your own hash routines (see the "Design and Definition" manual,
Direct access), you must also enter these modules in the HASHLIB.

When required, BGSIA automatically extends the DBDIR of the database being processed.
For details, please refer to the “Database Operation” manual, Automatic realm extension
by means of utility routines).

At startup BGSIA takes into account any assigned UDS/SQL pubset declaration (see the
“Database Operation” manual, Pubset declaration job variable). Faulty assignment leads to
the program aborting.

During execution BGSIA requires the linked-in DBH.

BGSIA Database creation

80 U931-J-Z125-17-76

Figure 11: System environment for BGSIA

SYSCMD
BGSIA

DBCOM

DBDIR

EAM

Database creation BGSIA

U931-J-Z125-17-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Statements for BGSIA

Statement Default
value

Meaning

GENERATE SCHEMA
 schema-name

- Mandatory;
Checks and generates the SIA.

schema-name
name of schema as specified in Schema DDL

RENAME

{’name-old’ TO ’name-
new’}

[, ...] .

May only be specified in the renaming cycle;
changes the names of record types, sets and user
realms

name-old:
name which is to be changed
name-new
new name

The renaming of and changes to items in record
types cannot be specified here.

DISPLAY [SCHEMA
 schema-name]

- Optional;
Prints the SIA generated by BGSIA

schema-name
name of schema as specified in GENERATE
statement

It is sufficient to specify DISPLAY.

END - mandatory;
terminates statement input

Table 13: Statements for BGSIA

AREA
RECORD
SET

BGSIA Database creation

82 U931-J-Z125-17-76

Command sequence for starting BGSIA

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /DELETE-SYSTEM-FILE FILE-NAME=*OMF

02 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

03 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

04 /START-UDS-BGSIA

05 bgsia-statements

06 END

03 The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM appliction programs" in the "Application Programming" manual).

04 The UDS/SQL utility routine can also be started with the alias BGSIA.

Entering the UDSHASH module in the HASHLIB

01 /START-LMS

02 //OPEN-LIB LIB=dbname.HASHLIB,MODE=*UPDATE(STATE=*NEW)

03 //ADD-ELEMENT FROM-FILE=*OMF,TO-ELEMENT=*LIBRARY-ELEMENT(TYPE=R)

04 //END

Example

/DELETE-SYSTEM-FILE FILE-NAME=*OMF

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BGSIA

***** START BGSIA (UDS/SQL V2.8 0000) 2015-06-28 11:40:33

GENERATE TRAVEL-AGENCY

DISPLAY

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:34/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:34/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

0YBG: PUBSETS: SQL2

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

ESTIMATE-REPORT

Database creation BGSIA

U931-J-Z125-17-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

********** FOR USER-REALM 3 NAME IS : TRAVEL-RLM

 A SIZE OF 147 BLOCKS WAS ESTIMATED

END OF ESTIMATE-REPORT

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:40:34/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: TRAVEL 1179 1310 61 276 35

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ************1179 DML-STATEMENTS 2015-06-28
(ILLY033,11:40:34/0YBG)

***** DIAGNOSTIC SUMMARY OF BGSIA

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END BGSIA (UDS/SQL V2.8 0000) 2015-06-28 11:40:34

/ASSIGN-SYSDTA TO-FILE=*SYSCMD

/MODIFY-JOB-SWITCHES ON=(1,4)

/START-LMS

//MODIFY-LOGGING-PARAMETERS LOG=*MAX

//OPEN-LIBRARY LIB=TRAVEL.HASHLIB,MODE=*UPDATE

 LIBRARY IS CLEARED AND PREPARED

//ADD-ELEMENT FROM-FILE=*OMF,TO-ELEM=*LIB-ELEM(TYPE=R),WRITE-MODE=*ANY

INPUT OMF

OUTPUT LIBRARY= :SQL2:$XXXXXXXX.TRAVEL.HASHLIB

 ADD UDSHASH AS (R)UDSHASH/@(0001)/2015-06-28

//SHOW-ELEM-ATTR

INPUT LIBRARY= :SQL2:$XXXXXXXX.TRAVEL.HASHLIB

TYP NAME VER (VAR#) DATE

(R) UDSHASH @ (0001) 2015-06-28

 1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS

//END

SIA report, ESTIMATE-REPORT Database creation

84 U931-J-Z125-17-76

SIA report

The SIA report printed by DISPLAY is almost identical to the report printed by the BPSIA
utility routine. At some points it does not contain its definitive values, since certain values
are entered at a later stage by BFORMAT. The report is described in detail in "SIA PRINT
REPORT" in the "Recovery, Information and Reorganization" manual.

Description of the ESTIMATE-REPORT

In the BGSIA run listing the start message is followed by the ESTIMATE REPORT, which
serves to estimate the size of the user realms.

This is necessary because, for example, when a user realm is not large enough, BFORMAT
does not perform formatting if the realm concerned is not automatically extendable. For
details, please see the “Database Operation” manual, Automatic realm extension by means
of utility routines.

The ESTIMATE-REPORT always outputs the following information:

– realm number

– realm name

– realm size (in database pages)
The value that is output for the realm size by ESTIMATE-REPORT must be interpreted
differently, depending on the database page format (2-Kbyte, 4-Kbyte or 8-Kbyte), and
cannot be directly used in the CREATE-FILE command, for example. In the case of the
CREATE-FILE command, the value for “SPACE=“ is specified in units of 2K (BS2000
half pages), whereas the ESTIMATE-REPORT returns size specifications in units of a
“database page”. Consequently, when converting to 2K units, the sizes given in the
ESTIMATE-REPORT for a 4-Kbyte database must be multiplied by a factor of 2, and
those for an 8-Kbyte database must be multiplied by a factor of 4.

ESTIMATE-REPORT outputs additional information in the following cases:

– The realm contains records for which the COMPRESSION clause was specified in the
SSL.

– There are records with variable items in the realm.

– SEARCH key tables have been created with DUPLICATES ALLOWED and TYPE IS
DATABASE-KEY-LIST.

Reference values needed for correction purposes are output in a correction table. These
values are needed to make corrections if the percentage of space saved for the records is
not as high as the default assumption for the ESTIMATE-REPORT.

Database creation ESTIMATE-REPORT

U931-J-Z125-17-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

The following table lists all options together with an explanation of the variables:

Entries in ESTIMATE-REPORT Explanation of variables

**** FOR USER-REALM realm-ref NAME
IS: realm-name

Realm number;
Realm name

A SIZE OF size BLOCKS WAS ESTIMATED Realm size in data pages; serves as a reference
value for the amount of space needed for the
specified user realm

** THE RECORD rec-ref
NAME IS record-name

Record type number;
name of the record type for which the
COMPRESSION clause applies

WITH * COMPRESSION * WAS CALCULATED
WITH A PROFIT OF 50%

The calculation of the realm size was based on the
assumption that the saving due to COMPRESSION
for the specified record type would be 50%.

CORRECTION-TABLE:
0% 25% 75%

n+ n+ n-

Correction table (only for COMPRESSION);
n indicates the number of data pages that must be
added (+) to or subtracted from (-) the realm size size
for savings of 0% / 25% / 75% .

**** IN SET set-ref
NAME IS: set-name
FOR RECORD rec-ref

Set number;
Set name;
Record reference number;

A SEARCH-KEY-TABLE TYPE *
DATABASE-KEY-LIST *
WAS CALCULATED WITH 50% DUPLICATES

Calculation of the size of the DATABASE-KEY-LIST
was based on the assumption that 5O% of the key
values would be duplicates.

CORRECTION-TABLE:
0% 75% 90%

n+ n- n-

Correction table;
n indicates the number of data pages that must be
added to or subtracted from the realm size size on
the assumption that 0% / 75% / 90% of the key
values are duplicates.

Table 14: Variables in the ESTIMATE-REPORT

ESTIMATE-REPORT Database creation

86 U931-J-Z125-17-76

The suggested realm sizes are intended as an aid to determining orders of magnitude.
They may be imprecise for the following reasons:

– SSL population specifications (DBTT, RECORD POPULATION, SET POPULATION)
are inaccurate.

– The saving cannot be predicted with 100% accuracy (e.g. for record types subject to
the COMPRESSION clause or containing a variable data item).

– The number of key duplicates is not known for SEARCH key tables with DUPLICATES
ALLOWED, TYPE IS DATABASE-KEY-LIST.

– The number of overflow pages cannot be predicted for LOCATION MODE IS CALC or
for CALC SEARCH keys.

– The size of the unused storage space cannot be calculated due to mixed storage.

– In tables, the size may vary according to the order in which the data is stored.

– INCREASE is not taken into account.

The ESTIMATE-REPORT assumes maximum values for records. SINCE these values are
unlikely to be achieved at the beginning, smaller user realms can be set up initially. These
realms can be extended later by using the BREORG utility routine (see the "Recovery,
Information and Reorganization" manual).

You can also configure realms in such a way that they can be extended online when
required (see the “Database Operation” manual, The online realm extension process).

Database creation ESTIMATE-REPORT

U931-J-Z125-17-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Example

ESTIMATE-REPORT

********** FOR USER-REALM 3 NAME IS : CUSTOMER-ORDER-RLM

 A SIZE OF 52 BLOCKS WAS ESTIMATED

********** FOR USER-REALM 4 NAME IS : PURCHASE-ORDER-RLM

 A SIZE OF 77 BLOCKS WAS ESTIMATED

********** FOR USER-REALM 5 NAME IS : CLOTHING

 A SIZE OF 67 BLOCKS WAS ESTIMATED

 *** THE RECORD 8 NAME IS : ART-DESCR

 WITH *COMPRESSION* WAS CALCULATED WITH A PROFIT OF 50%

 CORRECTION-TABLE : 0% 25% 75%

 17+ 8+ 8-

 **** IN SET 28 NAME IS : SYS_INSTALLMENT

 FOR RECORD 5 NAME IS : INSTALLMENT

 A SEARCH-KEY-TABLE TYPE *DATABASE-KEY-LIST*

 WAS CALCULATED WITH 50% DUPLICATES

 CORRECTION-TABLE: 0% 75% 90%

 0+ 0- 0-

********** FOR USER-REALM 6 NAME IS : HOUSEHOLD-GOODS

 A SIZE OF 32 BLOCKS WAS ESTIMATED

 *** THE RECORD 8 NAME IS : ART-DESCR

 WITH *COMPRESSION* WAS CALCULATED WITH A PROFIT OF 50%

 CORRECTION-TABLE : 0% 25% 75%

 8+ 4+ 4-

 .
 .
 .

 **** IN SET 12 NAME IS : ARTICLES-AVAILABLE

 FOR RECORD 9 NAME IS : ARTICLE

 A SEARCH-KEY-TABLE TYPE *DATABASE-KEY-LIST*

 WAS CALCULATED WITH 50% DUPLICATES

 CORRECTION-TABLE: 0% 75% 90%

 4+ 1- 0-

 .
 .
 .

********** FOR USER-REALM 11 NAME IS : ARTICLE-RLM

 A SIZE OF 79 BLOCKS WAS ESTIMATED

END OF ESTIMATE-REPORT

BFORMAT Database creation

88 U931-J-Z125-17-76

3.3 Formatting user realms with BFORMAT

Formatting of the user realms is carried out by the BFORMAT utility routine. BFORMAT

– adds information on the user realms to the SIA,

– stores in every realm an act-key-0 page, an act-key-N page and at least one FPA page
and formats the DBTT and CALC pages,

– stores the note ’BFORMAT EXECUTED’ in the DBDIR.

Figure 12: System environment for BFORMAT

BFORMAT must be called in the user ID under which the database is cataloged.

If the user realms have not yet been set up, they must be set up before the BFORMAT run
(see section “Setting up the user realms” on page 61").

When required, BFORMAT automatically extends the realms of the processed database
(provided the realms are extendable). For details, please see the “Database Operation”
manual, Automatic realm extension by means of utility routines.

At startup BFORMAT takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

SYSDTA
DBDIR

User
realms

BFORMAT

Database creation BFORMAT

U931-J-Z125-17-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Statements for BFORMAT

The BFORMAT statement REALM identifies the realms which are to be formatted. Realms
can be formatted in several BFORMAT runs, but each realm can only be formatted once.

Database creation cannot be continued until all realms have been formatted.

 It is advisable to format realms one at a time. If a BFORMAT run formatting more
than one realm aborts without the normal termination procedures owing to an
operating system failure, realms that have already been successfully formatted will
also be affected. The BFORMAT run will then have to be repeated for them.

The BFORMAT run executes very quickly, since it only formats hash areas and FPA
and DBTT pages.

Statement Default
value

Meaning

REALM NAME IS

lALL [EXCEPT realm-name1,..]⎫
m }
nrealm-name1,.. ~

ALL Optional;
The specified realms are/are not to be
formatted

ALL
all realms defined in the Schema DDL are to
be formatted

ALL EXCEPT realm-name
exclusion list, i.e. all realms other than those
specified are to be formatted

realm-name
specifies a user realm

END - Mandatory;
Terminates statement input

Table 15: Statements for BFORMAT

i

BFORMAT Database creation

90 U931-J-Z125-17-76

Command sequence to start BFORMAT

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /CREATE-FILE FILE-NAME=dbname.realm-name ...
02 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
03 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
04 /START-UDS-BFORMAT
05 [bformat-statement]
06 END

01 See section “Setting up the user realms” on page 61.

03 The specified version of BFORMAT is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

04 The UDS/SQL utility routine can also be started with the alias BFORMAT.

05 If the REALM statement is omitted, all realms are formatted

Example

/CREATE-FILE FILE-NAME=TRAVEL.TRAVEL-RLM,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -
/ (PRIMARY-ALLOCATION=220,SECONDARY-ALLOCATION=60))

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BFORMAT

***** START BFORMAT (UDS/SQL V2.8 0000) 2015-06-28 11:40:34

* VERSION RECORDS EXPANDED

REALM NAME IS ALL

END

* TRAVEL-RLM SUCCESSFULLY FORMATTED

* QUERY-RLM INITIALISED IN DBDIR

* BFORMAT-CONTROL-RECORD WRITTEN TO DBDIR

***** ALL REALMS FORMATTED

***** DIAGNOSTIC SUMMARY OF BFORMAT

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 120

***** NORMAL END BFORMAT (UDS/SQL V2.8 0000) 2015-06-28 11:40:38

Database creation Generating the subschema

U931-J-Z125-17-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

3.4 Generating the subschema

The following programs are used to generate a subschema:

DDL compiler compiles the subschema description.

BGSSIA generates the Subschema Information Area (SSIA).

3.4.1 Compiling the Subschema DDL

The Subschema DDL (SDDL) is compiled by the same DDL compiler as the Schema DDL.
The SDDL compiler statements are described in table 12 on page 68.

The Subschema DDL must be assigned as an input file to the DDL compiler. When
compilation is finished, the compiled subschema description is stored in the DBCOM
(Database Compiler Realm). Later BGSSIA uses this information to set up the SSIA in the
DBDIR (Database Directory). In addition, the DDL compiler stores the transformed
subschema derived from the compiled subschema description in the COSSD and creates
a check table (CHECK-TABLE) for this subschema. This information is required by the
COBOL compiler for the syntax and semantic checks of the DML statements.
When a subschema which is also to be used in KDBS applications is compiled, you must
specify the DDL compiler statement “SUBSCHEMA FORM IS OLD” (see page 70). The
DDL compiler then creates the transformed subschema and the CHECK-TABLE in the
format of UDS/SQL V1.2 (“old” format with 1-byte long reference numbers for record types
and sets; see page 70).

The COSSD is also used as input for the BCALLSI utility routine (see page 97). BCALLSI
generates the SSITAB module, which makes the subschema information available to CALL
DML programs.

After the subschemas are compiled, the DB administrator should save the database (see
section “Saving the database” on page 270). This ensures that a consistent
backup of the database exists.

 The subschema determines the RECORD AREA.
The length of this record area is equal to the total lengths of all record types
contained in the underlying subschema (aligned on a double-word boundary) and
all implicitly defined data items, i.e. ALIAS items and AREA-IDs for distributed
record types.
The DDL compiler aborts the compilation of the subschema with an error as soon
as the associated record area exceeds 65 535 bytes (or 61 328 bytes if
SUBSCHEMA FORM IS OLD was specified).

i

Generating the subschema Database creation

92 U931-J-Z125-17-76

Figure 13: System environment for subschema compilation

Command sequence for compiling the subschema

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS-DDL
04 sddl-compiler-statements
05 END

02 The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM appliction programs" in the "Application Programming" manual).

03 The UDS/SQL utility routine can also be started with the alias DDL.

04 The individual statements can be entered in one line if they are separated by
commas or blanks.

SYSDTA

Sub-
schema

DDL

DBCOM

DBDIR COSSD

DDL

Database creation Generating the subschema

U931-J-Z125-17-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Example

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-DDL

***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:40:38

* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.TRAVEL.SUBDDL'

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:38/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:38/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

0YBG: PUBSETS: SQL2

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* DDLCOMP: START SUBSCHEMA-PHASE

* DDLCOMP: CHECK SUBSCHEMA RULES

* DDLCOMP: CHECK DATA ALLOCATION

* DDLCOMP: SUBCOPY

* DDLCOMP: ERROR DIAGNOSTIC

* DDLCOMP: NO ERRORS IN SUBSCHEMA-PHASE

* DDLCOMP: WRITE SUBSCHEMA ON COSSD

* DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:40:38/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: TRAVEL 3011 5388 77 1249 57

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ************3011 DML-STATEMENTS 2015-06-28
(ILLY033,11:40:38/0YBG)

***** DIAGNOSTIC SUMMARY FOR DDL-SUBSCHEMA

 NO ERRORS

 NO WARNINGS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:40:38

BGSSIA Database creation

94 U931-J-Z125-17-76

3.4.2 Generating the Subschema Information Area (SSIA) with BGSSIA

The compiled subschema description is available in DBCOM as the end product of
compilation by the DDL compiler. The BGSSIA utility routine requires this description in
order to generate the Subschema Information Area (SSIA).

The SSIA is stored in the DBDIR as a record of the internal record type SSIA-RECORD.
The SSIA contains subschema information needed by the DBH so that it can access the
database. The information can be printed out by means of the DISPLAY statement in
BGSSIA or by means of the BPSIA utility routine (see "SSIA PRINT REPORT" in the
"Recovery, Information and Reorganization" manual).

When required, BGSSIA automatically extends the DBDIR and DBCOM of the database
being processed or the DBTTs of the record types in the DBCOM. For details, please refer
to the “Database Operation” manual, Automatic realm extension by means of utility
routines).

At startup BGSSIA takes into account any assigned UDS/SQL pubset declaration (see the
“Database Operation” manual, Pubset declaration job variable). Faulty assignment leads to
the program aborting.

During execution BGSSIA works with the linked-in DBH.

Figure 14: System environment for BGSSIA

SYSDTA

DBCOM

BGSSIA

DBDIR

Database creation BGSSIA

U931-J-Z125-17-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

Statements for BGSSIA

Statement Default
value

Meaning

GENERATE SUBSCHEMA
 subschema-name OF
 SCHEMA schema-name

- Optional;

subschema-name: name of the subschema
schema-name: name of the schema

Checks whether an SSIA is available for a specific
subschema and generates

an SSIA with information on realms, record types and
sets

lists of individual items

lists of all names contained in the subschema.

DELETE SUBSCHEMA
 subschema-name OF
 SCHEMA schema-name

- Optional;
Deletes a previously generated SSIA from the DBDIR.

REGENERATE SUBSCHEMA
 subschema-name OF
 SCHEMA schema-name

- Optional;
Deletes the old SSIA and generates a new SSIA
(combines DELETE and GENERATE functions).
Suitable for correction of a subschema.

DISPLAY[SUBSCHEMA
 subschema-name OF
 SCHEMA schema-name]

- Optional;
Can only be used in conjunction with the GENERATE or
REGENERATE statement. To print out SSIA, DISPLAY
by itself is sufficient.

END - Mandatory;
Terminates entry of statements.

Table 16: Statements for BGSSIA

BGSSIA Database creation

96 U931-J-Z125-17-76

Command sequence to start BGSSIA

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS-BGSSIA
04 bgssia-statements
05 END

02 The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM appliction programs" in the "Application Programming" manual).

03 The UDS/SQL utility routine can also be started with the alias BGSSIA.

Example

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BGSSIA

***** START BGSSIA (UDS/SQL V2.8 0000) 2015-06-28 11:40:38

GENERATE SUBSCHEMA RESERVATION OF SCHEMA TRAVEL-AGENCY

DISPLAY

END

% UDS0215 UDS STARTING UDS/SQL V2.82.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:38/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:38/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

0YBG: PUBSETS: SQL2

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

*** SSIA GENERATION NORMALLY ENDED.

*GENERATION OF ITEM-TABLE AND NAME-TABLE STARTED.

*GENERATION OF ITEM-TABLE AND NAME-TABLE FINISHED.

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:40:38/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: TRAVEL 1800 2529 76 296 27

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ************1800 DML-STATEMENTS 2015-06-28
(ILLY033,11:40:38/0YBG)

***** DIAGNOSTIC SUMMARY OF BGSSIA

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

Database creation BCALLSI

U931-J-Z125-17-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END BGSSIA (UDS/SQL V2.8 0000) 2015-06-28 11:40:38

3.5 Additional measures for CALL DML programs with BCALLSI

The BCALLSI utility routine must be executed if you have CALL-DML programs or work with
DMLTEST.

BCALLSI generates the SSITAB module (SUBSCHEMA INFORMATION TABLE) with the
subschema information needed by a CALL-DML program at program runtime.

At startup BCALLSI takes into account any assigned UDS/SQL pubset declaration (see the
“Database Operation” manual, Pubset declaration job variable). Faulty assignment leads to
the program aborting.

Providing subschema information

In order to execute DML statements, the DBH requires information on the subschema being
used. The following information is available in the COSSD as stored by the DDL compiler:

– the transformed subschema
– the so-called CHECK TABLE

This information is gathered for the DBH in a number of different ways.

– In the case of COBOL DML programs, the COBOL compiler needs the subschema
information when compiling the application program.

– For CALL DML programs, the subschema information is required at program runtime.
Since access to the COSSD would be too time-consuming at runtime, you must
generate the SSITAB module with BCALLSI beforehand. BCALLSI uses the information
of the COSSD for this purpose. At program runtime, the SSITAB module is loaded from
the module library by the CALL DML connection module. Thus, in the case of CALL
DML programs, a BCALLSI run must be added between compilation of the Subschema
DDL and the program run.

BCALLSI Database creation

98 U931-J-Z125-17-76

Editing special subschemas in the “old” format

In addition to the standard format in which the transformed subschema and the associated
check table exist, the "old" format up to and including UDS/SQL V1.2 with 1-byte long
reference numbers for record types and sets (see also page 70) is still accepted by
BCALLSI. The "old" format is required for subschemas which are processed in KDBS
applications. A COSSD can contain transformed subschemas in both the standard format
and in the "old" format. From a transformed subschema in the "old" format BCALLSI
generates an SSITAB module in UDS/SQL V1.2 format, which is still supported by the
current CALL-DML converter.

BCALLSI functions

BCALLSI can access a COSSD of UDS/SQL > V1.2 as well as a COSSD of UDS/SQL V1.2
or UDS/SQL V1.1.

BCALLSI performs the following functions:

– Compilation of the transformed subschema in realm, set, record and item tables

– Printing out the transformed subschema

– Checking the realm, set, record and item names for unique identification by means of
the first eight or thirty characters. If the names are not unique, a warning is appended
to the printout of the transformed subschema.

– Copying the check table from the COSSD in order to complete the SSITAB.

– Outputting the SSITAB module to the EAM file under the name subschema##, where
subschema comprises the first six characters of the full subschema name.

Database creation BCALLSI

U931-J-Z125-17-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

The SSITAB module generated must then be entered in a module library using the BS2000
utility routine LMS. The name of the library is freely selectable. The DBH gives first priority
to loading SSITAB modules from a library assigned with the link name $UDSSSI. If the
SSITAB modules are stored in more than one library, e.g. in a separate library for each
database, other libraries can be assigned with the link names BLSLIB00 to BLSLIB99 (see
the section “DBH start commands” in the “Database Operation” manual and the section
"Compiling, linking and loading UDS/SQL-TIAM appliction programs" in the "Application
Programming" manual).

 The first six characters of the subschema names must ensure unique identification,
since the name of the SSITAB module is formed from the first six characters plus
’##’.

System environment for BCALLSI

Figure 15: System environment of BCALLSI

i

� � � � � 	

 � � � � � �

� � � � 	

 � �

BCALLSI Database creation

100 U931-J-Z125-17-76

Statements for BCALLSI

Command sequence for starting BCALLSI

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /DELETE-SYSTEM-FILE FILE-NAME=*OMF

02 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

03 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

04 /START-UDS-BCALLSI

05 bcallsi-statement

03 The specified version of BCALLSI is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

04 The UDS/SQL utility routine can also be started with the alias BCALLSI.

Statement Default
value

Meaning

lSCHEMA⎫
m }=schema-name,
nS ~

 lSUBSCHEMA⎫
 m }=subschema-name
 nSS ~

- Mandatory;
Assigns the name of the schema and
subschema to BCALLSI:

schema-name
Name of the schema assigned in the Schema
DDL.

subschema-name
Name of the subschema assigned in the
Subschema DDL.

 l,MESSAGE⎫ l*ALL ⎫
[m }=m }]
 n,M ~ nN[O-AMBIGUITY-8]~

*ALL *ALL
All cases of ambiguity, including those in the
first 8 characters, are output individually to
SYSLST.

NO-AMBIGUITY-8
Cases of ambiguity in the first 8 characters of
a name, are not output individually to
SYSLST.

Table 17: Statements for BCALLSI

Database creation BCALLSI

U931-J-Z125-17-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
5.

 S
e

pt
em

be
r

20
17

 S
ta

nd
 1

2:
01

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

3

05 There is no END statement for BCALLSI!

Entering the SSITAB module in the module library

01 /START-LMS

02 //OPEN-LIB LIB=modlib,MODE=*UPDATE

03 //ADD-ELEMENT FROM-FILE=*OMF,TO-ELEMENT=*LIBRARY-ELEMENT(TYPE=R)

04 //END

Example

/DELETE-SYSTEM-FILE FILE-NAME=*OMF

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BCALLSI

***** START BCALLSI (UDS/SQL V2.8 0000) 2015-06-28 11:40:27

SCHEMA=MAIL-ORDERS,SUBSCHEMA=ADMIN,MESSAGE=*ALL

WARNING: THERE ARE NAME AMBIGUITIES IN THE FIRST 8 CHARACTERS OF SOME NAMES

SEE PRINTOUT!

SSITAB MANAGE## WRITTEN TO EAM-OMF

***** DIAGNOSTIC SUMMARY OF BCALLSI

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 0

***** NORMAL END BCALLSI (UDS/SQL V2.8 0000) 2015-06-28 11:40:27

/MODIFY-JOB-SWITCHES ON=(1,4)

/START-LMS

//MOD-LOG-PAR LOG=*MAX

//OPEN-LIB LIB=LMS.SSITAB,MODE=*UPD(STATE=*ANY)

//ADD-ELEMENT FROM-FILE=*OMF,TO-ELEM=*LIB(TYPE=R),WRITE-MODE=*ANY

INPUT OMF

OUTPUT LIBRARY= :SQL2:$XXXXXXXX.LMS.SSITAB

 ADD UDSHASH AS (R)UDSHASH/@(0002)/2015-06-28 , OUTPUT REPLACED

 ADD ADMIN## AS (R)ADMIN##/@(0001)/2015-06-28

//SHOW-ELEM-ATTR ELEM=*LIB-ELEM()

INPUT LIBRARY= :SQL2:$XXXXXXXX.LMS.SSITAB

TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE

(R) ADMIN## @ (0002) 2015-06-28 MANAGE## @ (0002) 2015-06-28

(R) UDSHASH @ (0002) 2015-06-28 VERWAL## @ (0002) 2015-06-28

BCALLSI Database creation

102 U931-J-Z125-17-76

 4 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS

//END

PRINTOUT:

.

.

.

 SCHEMANAME : MAIL-ORDERS

 SUBSCHEMANAME : ADMIN

 MODUL-ENTRY : ADMIN##

 LENGTH OF MODUL : 6408 BYTES

 SSITAB-VERSION : 2

U931-J-Z125-17-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

4 Specifying access authorizations
(ONLINE-PRIVACY, BPRIVACY)

In UDS/SQL the ONLINE-PRIVACY and BPRIVACY utility routines are available for
specifying who (which user groups) are allowed to access a database in what manner
(access rights).

The scope of functions and the syntax and semantics for assigning rights are identical for
ONLINE-PRIVACY and BPRIVACY.

– You use ONLINE-PRIVACY online, i.e. while the database is activated for an
independent DBH session. You can also query or change the access authorizations for
a database while the database is running.

– You use BPRIVACY offline, e.g. when creating a database, to specify the access
authorizations for the database.

ONLINE-PRIVACY and BPRIVACY offer the following functions:

– define user groups with or without access rights

– delete user groups

– grant or revoke user groups access rights

– output information on user groups

If UDS/SQL is used with openUTM, the access protection of UDS/SQL can work in
conjunction with that of openUTM (see the openUTM manual "Generating Applications").

User groups Specifying access authorizations

104 U931-J-Z125-17-76

4.1 User groups

User groups are groups of users with access to the database.

The name of a user group generally has the following structure (for more information see
table 18 on page 106):

host + appl + grp

host Name of the host computer

appl Name of the UDS/SQL/openUTM application or “_“

grp BS2000 identification or, in the case of a UDS/SQL-openUTM application, the
KSET name associated with the openUTM user ID.

UDS/SQL uses underscores “_“ internally to pad each of the three components to eight
characters.

openUTM or UDS/SQL ascertains the information required. Further entries on access rights
are therefore generally not required in the application programs (e.g. PRIVACY-RECORD
in the SUB-SCHEMA SECTION, PERMIT in SQL programs). UDS/SQL ignores
specifications in existing programs.

Before a user group can execute database calls, you must define a name for it and assign
it access rights with ONLINE-PRIVACY or with BPRIVACY.

You will find further information in the "Database Operation" manual, which also contains
an example of how to define UDS/SQL user groups and assign access rights.

Specifying access authorizations Access rights

U931-J-Z125-17-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

4.2 Access rights

Access rights allow user groups read access (RETRIEVAL) or read and write access
(UPDATE) to database objects, for example. Access rights can be granted and revoked.

A user group can be assigned read (RETRIEVAL) or read and write (UPDATE) access
rights to the following database objects.

Access rights in CODASYL applications to:

– realms
– record types (RECORDs)
– sets

Access rights in SQL applications to:

– base tables
– foreign keys

RETRIEVAL, UPDATE and ALL access can be:

– granted using
the ADD-USER-GROUP and GRANT-ACCESS statements

– revoked using
the REVOKE-ACCESS statement

– qualified using
the GRANT-ACCESS and REVOKE-ACCESS statements.

When access rights are assigned using the GRANT-ACCESS statement, any existing
access rights for a database object are retained and the newly defined ones are added. In
the same way, when the REVOKE-ACCESS statement is used, only the access rights
specified with this statement are withdrawn; the user group retains any other access rights
it has.

Checking access rights Specifying access authorizations

106 U931-J-Z125-17-76

4.3 Checking access rights

UDS/SQL checks access rights only by means of the user group names.

The user group name must be defined with ONLINE-PRIVACY or BPRIVACY and the
access rights must have been assigned before the users in the group can execute database
calls.

If the DBH cannot identify the user group, the application program is supplied with a status
code or the IQS session is terminated.

The table below indicates how user group names are structured, which configuration is
checked with which group name and how to define the user groups in the ADD-USER-
GROUP statement. The terms "local" and "remote" are meant in relation to the location of
the database.

Key

host Name of the host computer on which the UDS/SQL-openUTM application or the
UDS/SQL application program runs.
Here you must specify the name of your processor from the standpoint of DCAM. If
no DCAM is available in the TIAM case, you specify HOST=LOCAL.

appl Name of the openUTM application

kset KSET name associated with the corresponding openUTM user ID

id BS2000 user ID

Configuration Value Definition in the ADD-USER-GROUP statement

host appl grp

openUTM
Appl. w/o KSET

host appl - *KSET-
FORMAT(HOST=host,APPLICATION=
appl,KSET=*NONE)

openUTM
Appl. w/o KSET

host appl kset *KSET-
FORMAT(HOST=host,APPLICATION=
appl,KSET=kset)

TIAM host ' _' id *FREE-FORMAT(HOST=host,USER-ID=id)

linked-in host ' _' id *FREE-FORMAT(HOST=host,USER-ID=id)

Table 18: Structure of user group names

Specifying access authorizations Checking access rights

U931-J-Z125-17-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

In application programs (COBOL DML, CALL DML, SQL) and for IQS, "old" PRIVACY user
specifications (< UDS/SQL V1.2) are still made in some instances or may be required (IQS):

– "Old" specifications in the so-called PRIVACY RECORD (< UDS/SQ Version 1.2) in
application programs (COBOL DML, CALL DML, SQL) or for IQS are ignored by
UDS/SQL.

– The PRIVACY specifications for IQS of any version Î 3.1 must not be empty, but are
otherwise arbitrary.

Access rights are checked by means of the user group name, which comprises the name
of the host computer and the runtime identification of the TIAM application or the name of
the openUTM application (with or without the KSET specification).

 The KSET name may be omitted if no KSET name was defined in the
corresponding openUTM application. If no openUTM users are defined, a defined
KSET name of a logical terminal (LTERM) is used for checking access rights.
openUTM uses predefined KSET names, which you can display with KDCINF
KSET. Access rights for the database must also be defined for these predefined
KSET names.
In distributed transaction processing with openUTM-D, the KSET name from the
associated LPAP entry must be used (see the openUTM manual "Generating
Applications").

i

ONLINE-PRIVACY Specifying access authorizations

108 U931-J-Z125-17-76

4.4 System environment for ONLINE-PRIVACY

Figure 16: System environment for ONLINE-PRIVACY

The ONLINE-PRIVACY utility routine runs as a UDS/SQL TIAM application program in an
independent DBH session.

You can start ONLINE-PRIVACY at any time while the database is operating when the
following requirements are fulfilled:

– ONLINE-PRIVACY is called under the user ID under which the database is cataloged.
– The database is activated as an independent DBH session.
– The database is not attached to the session in the SHARED-RETRIEVAL mode.

With ONLINE-PRIVACY you can grant new user groups access to an existing database
application and change the access rights of existing user groups as many times as needed.
You need to update the access rights after making changes to a schema (for example, after
adding new record types or new base tables).

Activating online extensibility of the DBDIR using ACT INCR enables you to ensure that the
DBDIR can, when required, be extended by the DBH. However, no online extension of the
DBTTs of the DBDIR’s record types takes place.

 Access to a database in a remote configuration via UDS-D is not possible with
ONLINE-PRIVACY.

SYSDTA ONLINE-PRIVACY Independent DBH DBDIR

i

Specifying access authorizations ONLINE-PRIVACY

U931-J-Z125-17-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

Access locks

An access lock (ACCESS LOCK) or access restriction (ACCESS RETRIEVAL) set with the
DAL command ACCESS on the database or realm level has no effect on the ONLINE-
PRIVACY utility routine.

ONLINE-PRIVACY therefore provides you with the ability to change the access rights for a
database for which only read transactions are permitted. The database must be in the
EXCLUSIVE-UPDATE attach mode and be locked for other transactions with the DAL
command ACCESS RETRIEVAL,DB=dbname.

Effect of changing rights

Changes to the access rights of a database that you have made using ONLINE-PRIVACY
affect all processing chains started after terminating the ONLINE-PRIVACY run (FINISH
statement of the ONLINE-PRIVACY transaction).

Processing chains started before the end of the ONLINE-PRIVACY run continue to work
with the old privacy information.

Effect on the communication pool (CUP)

The ONLINE-PRIVACY utility routine connects to the communication pool (CUP) just like
other UDS/SQL TIAM application programs. The space required by ONLINE-PRIVACY
within the communication pool is about the same as the size of the SIA of the database to
be processed.

Proceed as follows to ensure that the size of the communication pool is large enough to use
ONLINE-PRIVACY:

– Determine the size of the SIA with the BPSIA utility routine.

– Take the size of the SIA into account as an additional space requirement for
ONLINE-PRIVACY when calculating the minimum size of the communication pool.

– Set the value of the DBH load parameter PP CUP-SIZE accordingly.

BPRIVACY Specifying access authorizations

110 U931-J-Z125-17-76

4.5 System environment for BPRIVACY

Figure 17: System environment for BPRIVACY

The BPRIVACY utility routine must be called in the identification under which the database
is cataloged.
You can start BPRIVACY at any point after the BFORMAT routine has executed. It is thus
possible to grant new groups access to an existing database application and to change the
access rights of existing user groups any number of times.
After changes have been made to a schema (e.g. after new record types or new base tables
have been introduced), you must update the access rights with BPRIVACY.

In the case of CODASYL access, BPRIVACY can run in the creation phase of a UDS/SQL
database before the subschemas are compiled.

In the case of SQL access, you can start BPRIVACY after compilation and entry of the
relational schema (UDS/SQL subschema) in the database.

When required, BPRIVACY automatically extends the DBDIR of the database being
processed or the DBTTs of the record types in the DBDIR. For details, please refer to the
“Database Operation” manual, Automatic realm extension by means of utility routines).

At startup BPRIVACY takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

The BPRIVACY utility routine uses the linked-in DBH during execution.

SYSDTA
BPRIVACY DBDIR

Specifying access authorizations Rules for the statements

U931-J-Z125-17-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

4.6 Rules for the statements

The statement formats of the ONLINE-PRIVACY and BPRIVACY utility routines comply
with the rules of SDF (System Dialog Facility, see the "SDF Dialog Interface" and
"Commands" manuals).

Incorrectly entered statements can be corrected. You can undo any correctly entered
statement with the UNDO statement or the inverse function (if available).

If entries are contradictory, the last one always applies.

Valid statements are not executed until after the END statement.

The OPEN-DATABASE statement is an exception to this.

The ONLINE-PRIVACY and BPRIVACY utility routines always apply to all objects (realms,
records and sets) of the PRIVACY schema (PRIVACY-AND-IQF-SCHEMA).

Overview of statements Specifying access authorizations

112 U931-J-Z125-17-76

4.7 Overview of statements

Statement Meaning

ADD-USER-GROUP
 USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) /
 *FREE-FORMAT(...)

 ,OBJECT = NONE / list-poss(6): *REALM(...) /
 *RECORD(...) / *SET(...)

Defines a user group,
possibly with access
rights

END Terminates command
input

GRANT-ACCESS
 USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) /
 *FREE-FORMAT(...)

 ,OBJECT = list-poss(6): *REALM(...) / *RECORD(...) /
 *SET(...)

Assigns access rights
to a user group

OPEN-DATABASE
 DATABASE-NAME = <dbname>

Opens a database

REMOVE-USER-GROUP
 USER-GROUP-NAME = ALL / *ALL-EXCEPT(...) /
 list-poss(6): *KSET-FORMAT(...) /
 *FREE-FORMAT(...)

Deletes one or more
user group(s)

REVOKE-ACCESS
 USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) /
 *FREE-FORMAT(...)
 ,OBJECT = list-poss(6): *REALM(...) / *RECORD(...) /
 *SET(...)

Withdraws access
rights from a user
group

SHOW-USER-GROUP
 USER-GROUP-NAME = ALL / *ALL-EXCEPT(...) /
 list-poss(6): *KSET-FORMAT(...) /
 *FREE-FORMAT(...)

 ,OUTPUT = list-poss: SYSLST / SYSOUT

Outputs information
on one or more user
group(s)

UNDO Undoes a statement

Table 19: Overview of statements

Defining access rights ADD-USER-GROUP

U931-J-Z125-17-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

ADD-USER-GROUP
(Defining a user group with or without assigning access rights)

The ADD-USER-GROUP statement allows you to define new user groups. You can define
the associated access rights at the same time.

The structure of the user group name depends on the environment in which you are working
(see table 18 on page 106).

You can specify the name of the user group in two different formats:

*KSET-FORMAT and *FREE-FORMAT

*KSET-FORMAT is available for openUTM operation, for example. In this case, the user
group name comprises the three parts openUTM host name, openUTM application name
and KSET name.

If you do not define access rights for the specified user group, the user group is created,
but users in the group cannot access database objects. Access rights must be assigned by
means of subsequent GRANT-ACCESS statements (see page 120).

ADD-USER-GROUP Defining access rights

114 U931-J-Z125-17-76

USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)
Name of the user group.

*KSET-FORMAT(...)
Specification of the user group.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

ADD-USER-GROUP

 USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)

*KSET-FORMAT(...)

⏐ HOST = <host>

⏐ ,APPLICATION = <appl>

⏐ ,KSET = *NONE / list-poss(30): <kset>

*FREE-FORMAT(...)

⏐ HOST = <host>

⏐ ,USER-ID = list-poss(30): <userid> / *NONE

,OBJECT = NONE / list-poss(6): *REALM(...) / *RECORD(...) / *SET(...)

*REALM(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <realm-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <realm-name>

⏐ ,RIGHT = ALL / RETRIEVAL

*RECORD(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <record-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <record-name>

⏐ ,RIGHT = ALL / RETRIEVAL

*SET(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <set-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <set-name>

⏐ ,RIGHT = ALL / RETRIEVAL

Defining access rights ADD-USER-GROUP

U931-J-Z125-17-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

*FREE-FORMAT(...)
Specification of the user group.

HOST = <host>
Host computer of the application.

USER-ID = list-poss(30): <userid>
Identification of the application.

USER-ID = *NONE
No identification is specified. The specification *NONE is now only permitted for
reasons of compatibility. The corresponding user group name can no longer be
used as of UDS/SQL V2.0.

OBJECT = NONE / list-poss(6): *REALM(...) / *RECORD(...) / *SET(...)
The access rights are specified.

NONE
No access rights are assigned.

*REALM(...)
The realm rights are assigned.

NAME = *ALL
The specified access applies to all realms of the database.
This operand must be defined for SQL applications.

NAME = *ALL-EXCEPT(...)
The specified access applies to all realms except those entered here.

NAME = list-poss(30): <realm-name>
The specified access does not apply to these realms.

NAME = list-poss(30): <realm-name>
The specified access applies only to these realms.

RIGHT = ALL
Both read and write access is granted for the realms.

RIGHT = RETRIEVAL
Only read access is granted for the realms.

ADD-USER-GROUP Defining access rights

116 U931-J-Z125-17-76

*RECORD (...)
The rights for record types (in SQL applications: base tables) are assigned.

NAME = *ALL
The specified access applies to all record types (in SQL applications: base tables)
in the database.

NAME = *ALL-EXCEPT(...)
The specified access applies to all record types except those entered here.

NAME = list-poss(30): <record name>
The specified access does not apply to these record types.

NAME = list-poss(30): <record-name>
The specified access does not apply to these record types.

RIGHT = ALL
Both read and write access is granted for the record types.

RIGHT = RETRIEVAL
Only read access is granted for the record types.

*SET(...)
The rights for sets (in SQL applications: foreign keys) are assigned.

NAME = *ALL
The specified access applies to all sets (in SQL applications: foreign keys) in the
database.

NAME = *ALL-EXCEPT(...)
The specified access applies to all sets except those entered here.

NAME = list-poss(30): <set-name>
The specified access does not apply to these sets.

NAME = list-poss(30): <set-name>
The specified access applies only to these sets.

RIGHT = ALL
Both read and write access is granted for the sets.

RIGHT = RETRIEVAL
Only read access is granted for the sets.

Defining access rights ADD-USER-GROUP

U931-J-Z125-17-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

 In the case of applications that work with BPRIVACY group names of a version
 < UDS/SQL V1.2 or < UDS-D V1.4, the access rights can be defined by specifying
the old group name for <host> in the *FREE-FORMAT operand (see table 18 on
page 106).

BPRIVACY group names of a version < UDS/SQL V1.2 containing one or more
blanks can no longer be defined via the new interface. In these cases, you must
define a new group name in compliance with SDF rules of syntax.

Example

The following user groups are defined for the SHIPPING database:

– "D017ZE07________XXXXX___" : all rights

– "D017ZE07________YYYYYY__" : retrieval right

– "D017ZE07________ZZZZZZ__" : no rights
/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BPRIVACY

***** START BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:41:05

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:41:05/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:41:05/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XDL1U27M.PUBSDECL.ALL

0YBG: PUBSETS: *

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

% UDS0722 UDS ORDER ADD RLOG 150628094104 IN EXECUTION (ILL1283,11:41:05/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED (ILL1309,11:41:05/0YBG)

//ADD-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07,USER-ID=XXXXX), -

// OBJECT=(*REALM(NAME=*ALL,RIGHT=ALL),*RECORD(NAME=*ALL,RIGHT=ALL),*SET(NAME=*ALL,RIGHT=ALL))

//ADD-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07,USER-ID=YYYYYY), -

// OBJECT=(*REALM(NAME=*ALL,RIGHT=RETRIEVAL),*RECORD(NAME=*ALL,RIGHT=ALL), -

// *SET(NAME=*ALL,RIGHT=ALL))

//ADD-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07,USER-ID=ZZZZZZ)

//END

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:41:05/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: SHIPPING 13 111 59 42 20

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH **************13 DML-STATEMENTS 2015-06-28
(ILLY033,11:41:05/0YBG)

i

ADD-USER-GROUP Defining access rights

118 U931-J-Z125-17-76

***** DIAGNOSTIC SUMMARY OF BPRIVACY

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:41:05

Defining access rights END

U931-J-Z125-17-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

END (Terminating command input)

Command input is terminated. Execution begins.

This statement has no operands.

END

GRANT-ACCESS Defining access rights

120 U931-J-Z125-17-76

GRANT-ACCESS (Assigning access rights to a user group)

The GRANT-ACCESS statement allows you to assign a user group access rights for
realms, record types (RECORDs) and sets.

If a user group already has access rights for an object, the rights specified with this
statement are added to them.

GRANT-ACCESS

 USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)

*KSET-FORMAT(...)

⏐ HOST = <host>

⏐ ,APPLICATION = <appl>

⏐ ,KSET = *NONE / list-poss(30): <kset>

*FREE-FORMAT(...)

⏐ HOST = <host>

⏐ ,USER-ID = *NONE / list-poss(30): <userid>

,OBJECT = list-poss(6): *REALM(...) / *RECORD(...) / *SET(...)

*REALM(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <realm-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <realm-name>

⏐ ,RIGHT = ALL / RETRIEVAL

*RECORD(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <record-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <record-name>

⏐ ,RIGHT = ALL /RETRIEVAL

*SET(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <set-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <set-name>

⏐ ,RIGHT = ALL / RETRIEVAL

Defining access rights GRANT-ACCESS

U931-J-Z125-17-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)
Name of the user group.

*KSET-FORMAT(...)
Name of the user group.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(6): <kset>
KSET name of the openUTM application.

*FREE-FORMAT(...)
Name of the user group.

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is specified.

USER-ID = list-poss(30): <userid>
Identification of the application.

OBJECT = list-poss(6): *REALM(...) / *RECORD(...) / *SET(...)
The access rights are specified.

*REALM (...)
The existing realm rights are changed.

NAME = *ALL
The specified access applies to all realms in the database. This operand must be
defined for all SQL applications.

NAME = ALL-EXCEPT (...)
The specified access applies to all realms except those entered here.

NAME = list-poss(30): <realm-name>
The specified access does not apply to these realms.

NAME = list-poss(30): <realm-name>
The specified access applies only to these realms.

RIGHT = ALL
Both read and write access is granted for the realms.

GRANT-ACCESS Defining access rights

122 U931-J-Z125-17-76

RIGHT = RETRIEVAL
Only read access is granted for the realms.

*RECORD(...)
The existing rights for record types (in SQL applications: base tables) are changed.

NAME = *ALL
The specified access applies to all record types (in SQL applications: base tables
in the database.

NAME = ALL-EXCEPT (...)
The specified access applies to all record types except those entered here.

NAME = list-poss(30): <record-name>
The specified access does not apply to these record types.

NAME = list-poss(30): <record-name>
The specified access applies only to these record types.

RIGHT = ALL
Both read and write access is granted for the record types.

RIGHT = RETRIEVAL
Only read access is granted for the record types.

*SET(...)
The existing rights to sets (in SQL applications: foreign keys) are changed.

NAME = *ALL
The specified access applies to all sets (in SQL applications: foreign keys) in the
database.

NAME = ALL-EXCEPT
The specified access applies to all sets except those entered here.

NAME = list-poss(30): <set-name>
The specified access does not apply to these sets.

NAME = list-poss(30): <set-name>
The specified access applies only to these sets.

RIGHT = ALL
Both read and write access is granted for these sets.

RIGHT = RETRIEVAL
Only read access is granted for these sets.

Defining access rights GRANT-ACCESS

U931-J-Z125-17-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

Example

The user group "D017ZE07________ZZZZZZ__" (no rights) is assigned all rights for the
realm CUSTOMER-ORDER-RLM.

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BPRIVACY

***** START BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:41:05

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:41:05/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:41:05/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XDL1U27M.PUBSDECL.ALL

0YBG: PUBSETS: *

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

% UDS0722 UDS ORDER ADD RLOG 150628094106 IN EXECUTION (ILL1283,11:41:06/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED (ILL1309,11:41:06/0YBG)

//GRANT-ACCESS USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07,USER-ID=ZZZZZZ), -

// OBJECT=(*REALM(NAME=CUSTOMER-ORDER-RLM,RIGHT=ALL),*RECORD(NAME=*ALL,RIGHT=ALL), -

// *SET(NAME=*ALL,RIGHT=ALL))

//SHOW-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07,USER-ID=ZZZZZZ),OUTPUT=SYSOUT

//END

DATABASE NAME : $XDL1U27M.SHIPPING

SCHEMA NAME : MAIL-ORDERS

**

ACCESS RIGHTS FOR USERGROUP : D017ZE07________ZZZZZZ__

RIGHTS ON REALMS

+--------------------------------+-----------------------+

! ! R I G H T !

! +-----------+-----------+

! REALM NAME ! RETRIEVAL ! UPDATE !

+--------------------------------+-----------+-----------+

! CUSTOMER-ORDER-RLM ! Y ! Y !

! PURCHASE-ORDER-RLM ! N ! N !

! CLOTHING ! N ! N !

.

.

.

GRANT-ACCESS Defining access rights

124 U931-J-Z125-17-76

RIGHTS ON RECORDS

+--------------------------------+-----------------------+

! ! R I G H T !

! +-----------+-----------+

! RECORD NAME ! RETRIEVAL ! UPDATE !

+--------------------------------+-----------+-----------+

! CUSTOMER ! Y ! Y !

! CST-ORDERS ! Y ! Y !

! ORD-ITEM ! Y ! Y !

.

.

.

RIGHTS ON SETS

+--------------------------------+-----------------------+

! ! R I G H T !

! +-----------+-----------+

! SET NAME ! RETRIEVAL ! UPDATE !

+--------------------------------+-----------+-----------+

! CST-ORD-PLACED ! Y ! Y !

! CST-O-CONTENTS ! Y ! Y !

! OUTSTANDING ! Y ! Y !

.

.

.
% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:41:06/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: SHIPPING 16 82 57 16 16

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH **************16 DML-STATEMENTS 2015-06-28
(ILLY033,11:41:06/0YBG)

 ***** DIAGNOSTIC SUMMARY OF BPRIVACY

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NORMAL END BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:41:06

Defining access rights OPEN-DATABASE

U931-J-Z125-17-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

OPEN-DATABASE (Opening the database)

The OPEN-DATABASE statement must be the first one entered.

The OPEN-DATABASE statement allows you to specify the database to be processed by
the subsequent ONLINE-PRIVACY or BPRIVACY statements.

DATABASE-NAME = <dbname>
Specifies the database for which access authorizations are to be changed. A user of
ONLINE-PRIVACY or BPRIVACY can process a database only if it is in his or her identifi-
cation. A database in a different identification can only be processed using the TSOS iden-
tification of the system administrator.

 The OPEN-DATABASE statement cannot be used if the database is assigned by
means of LINK-NAME=DATABASE for BPRIVACY.
The OPEN-DATABASE statement is always required for ONLINE-PRIVACY.
In this case the configuration name of the independent DBH session is specified via
LINK-NAME=DATABASE.

OPEN-DATABASE

 DATABASE-NAME = <dbname>

i

REMOVE-USER-GROUP Defining access rights

126 U931-J-Z125-17-76

REMOVE-USER-GROUP (Deleting one or more user group(s))

The REMOVE-USER-GROUP statement allows you to delete one or more user groups
together with their access rights.

REMOVE-USER-GROUP

 USER-GROUP-NAME = ALL / *ALL/ *ALL-EXCEPT(...) / list-poss(6): *KSET-FORMAT(...) / *FREE-FOR-

MAT(...)

*ALL-EXCEPT(...)

⏐ NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)

⏐ *KSET-FORMAT(...)

⏐ ⏐ HOST = <host>

⏐ ⏐ ,APPLICATION = <appl>

⏐ ⏐ ,KSET = *NONE / list-poss(30): <kset>

⏐ *FREE-FORMAT(...)

⏐ ⏐ HOST = <host>

⏐ ⏐ ,USER-ID = *NONE / list-poss(30): <user-id>

*KSET-FORMAT(...)

⏐ HOST = <host>

⏐ ,APPLICATION = <appl>

⏐ ,KSET = *NONE / list-poss(30): <kset>

*FREE-FORMAT(...)

⏐ HOST = <host>

⏐ ,USER-ID = *NONE / list-poss(30): <userid>

Defining access rights REMOVE-USER-GROUP

U931-J-Z125-17-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

USER-GROUP-NAME = ALL / *ALL / *ALL-EXCEPT(...) /
 list-poss(6): *KSET-FORMAT(...) /*FREE-FORMAT(...)
It is specified which user group(s) is (are) to be deleted.

ALLALL / *ALL
All existing user groups are deleted.

*ALL-EXCEPT (...)
All user groups except those entered here are deleted.

NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)
The user groups specified here are not deleted.

*KSET-FORMAT(...)

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

*FREE-FORMAT(...)

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is specified.

USER-ID = list-poss(30): <userid>
Identification of the application

*KSET-FORMAT(...)
All user groups specified here are deleted.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

REMOVE-USER-GROUP Defining access rights

128 U931-J-Z125-17-76

*FREE-FORMAT(...)
All user groups specified here are deleted.

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is specified.

USER-ID = list-poss(30): <userid>
Identification of the application.

Example

The user group "D017ZE07________YYYYYY__" is deleted.

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BPRIVACY

***** START BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:41:06

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:41:06/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:41:06/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XDL1U27M.PUBSDECL.ALL

0YBG: PUBSETS: *

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

% UDS0722 UDS ORDER ADD RLOG 150628094106 IN EXECUTION (ILL1283,11:41:06/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED (ILL1309,11:41:06/0YBG)

//REMOVE-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07,USER-ID=YYYYYY)

//END

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:41:06/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: SHIPPING 7 91 60 23 20

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ***************7 DML-STATEMENTS 2015-06-28
(ILLY033,11:41:06/0YBG)

***** DIAGNOSTIC SUMMARY OF BPRIVACY

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:41:06

Defining access rights REVOKE-ACCESS

U931-J-Z125-17-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

REVOKE-ACCESS (Withdrawing access rights from a user group)

The REVOKE-ACCESS statement allows you to withdraw from a user group access rights
for realms, record types (RECORDs) and sets.

Only the access rights specified here are withdrawn. All other access rights are retained.

REVOKE-ACCESS

 USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)

*KSET-FORMAT(...)

⏐ HOST = <host>

⏐ ,APPLICATION = <appl>

⏐ ,KSET = *NONE / list-poss(30): <kset>

*FREE-FORMAT(...)

⏐ HOST = <host>

⏐ ,USER-ID = *NONE / list-poss(30): <userid>

,OBJECT = list-poss(6): *REALM(...) / *RECORD(...) / *SET(...)

*REALM(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <realm-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <realm-name>

⏐ ,RIGHT = ALL / UPDATE / RETRIEVAL

*RECORD(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <record-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <record-name>

⏐ ,RIGHT = ALL / UPDATE / RETRIEVAL

*SET(...)

⏐ NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <set-name>

⏐ ⏐ *ALL-EXCEPT(...)

⏐ ⏐ NAME = list-poss(30): <set-name>

⏐ ,RIGHT = ALL / UPDATE / RETRIEVAL

REVOKE-ACCESS Defining access rights

130 U931-J-Z125-17-76

USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)
Name of the user group.

*KSET-FORMAT(...)
Name of the user group.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

*FREE-FORMAT(...)
Name of the user group.

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is specified.

USER-ID = list-poss(30): <userid>
Identification of the application.

OBJECT = list-poss(6): *REALM(...) / *RECORD(...) / *SET(...)
The access rights are specified.

*REALM(...)
The existing realm rights are changed.

NAME = *ALL
The specified access is withdrawn for all realms in the database.

NAME = *ALL-EXCEPT (...)
The specified access is withdrawn for all realms except those entered here.

NAME = list-poss(30): <realm-name>
The specified access is not withdrawn for these realms.

NAME = list-poss(30): <realm-name>
The specified access is withdrawn for these realms only.

Defining access rights REVOKE-ACCESS

U931-J-Z125-17-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

RIGHT = ALL
The realms can no longer be accessed.

RIGHT = UPDATE
The realms can no longer be write-accessed.

RIGHT = RETRIEVAL
This is only possible if the specified user group does not have write (UPDATE)
access.
The realms can no longer be accessed.

*RECORD(...)
The existing rights for record types (in SQL applications: base tables) are changed.

NAME = *ALL
The specified access is withdrawn for all record types (in SQL applications: base
tables) in the database.

NAME = *ALL-EXCEPT (...)
The specified access is withdrawn for all record types except those entered here.

NAME = list-poss(30): <record-name>
The specified access is not withdrawn for these record types.

NAME = list-poss(30): <record-name>
The specified access is withdrawn only for these record types.

RIGHT = ALL
The record types can no longer be accessed.

RIGHT = UPDATE
The record types can no longer be write-accessed.

RIGHT = RETRIEVAL
This is only possible if the specified user group does not have write (UPDATE)
access.
The record types can no longer be accessed.

*SET(...)
The existing rights for sets (in SQL applications: foreign keys) are changed.

NAME = *ALL
The specified access is withdrawn for all sets (in SQL applications: foreign keys) in
the database.

REVOKE-ACCESS Defining access rights

132 U931-J-Z125-17-76

NAME = *ALL-EXCEPT (...)
The specified access is withdrawn for all sets except those entered here.

NAME = list-poss(30): <set-name>
The specified access is not withdrawn for these sets.

NAME = list-poss(30): <set-name>
The specified access is withdrawn for these sets only.

RIGHT = ALL
The sets can no longer be accessed.

RIGHT = UPDATE
The sets can no longer be write-accessed.

RIGHT = RETRIEVAL
This is only possible if the specified user group does not have write (UPDATE)
access.
The sets can no longer be accessed.

Example

The update right for the realm CUSTOMER-ORDER-RLM is withdrawn from user group
"D017ZE07_________ZZZZZZ__".

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BPRIVACY

***** START BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:41:06

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:41:06/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:41:06/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.ALL

0YBG: PUBSETS: *

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

% UDS0722 UDS ORDER ADD RLOG 150628094106 IN EXECUTION (ILL1283,11:41:06/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED (ILL1309,11:41:06/0YBG)

//REVOKE-ACCESS USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07,USER-ID=ZZZZZZ), -

// OBJECT=(*REALM(NAME=CUSTOMER-ORDER-RLM,RIGHT=UPDATE))

//SHOW-USER-GROUP USER-GROUP-NAME=ALL,OUTPUT=SYSOUT

//END

Defining access rights REVOKE-ACCESS

U931-J-Z125-17-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

DATABASE NAME : $XDL1U27M.SHIPPING

SCHEMA NAME : MAIL-ORDERS

**

ACCESS RIGHTS FOR USERGROUP : D017ZE07________ZZZZZZ__

RIGHTS ON REALMS

+--------------------------------+-----------------------+

! ! R I G H T !

! +-----------+-----------+

! REALM NAME ! RETRIEVAL ! UPDATE !

+--------------------------------+-----------+-----------+

! CUSTOMER-ORDER-RLM ! Y ! N !

! PURCHASE-ORDER-RLM ! Y ! Y !

! CLOTHING ! Y ! Y !

.

.
% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:41:06/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: SHIPPING 17 84 58 16 16

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH **************17 DML-STATEMENTS 2015-06-28
(ILLY033,11:41:06/0YBG)

***** DIAGNOSTIC SUMMARY OF BPRIVACY

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:41:06

SHOW-USER-GROUP Defining access rights

134 U931-J-Z125-17-76

SHOW-USER-GROUP (Outputting information on user groups)

Information is output on user groups, i.e. on the access rights the groups have for database
objects. The realms, record types and sets are output in ascending order by reference
number.

SHOW-USER-GROUP

 USER-GROUP-NAME = ALL / *ALL / *ALL-EXCEPT(...) / list-poss(6): *KSET-FORMAT(...) / *FREE-FOR-

MAT(...)

*ALL-EXCEPT(...)

⏐ NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)

⏐ *KSET-FORMAT(...)

⏐ ⏐ HOST = <host>

⏐ ⏐ ,APPLICATION = <appl>

⏐ ⏐ ,KSET = *NONE / list-poss(30): <kset>

⏐ *FREE-FORMAT(...)

⏐ ⏐ HOST = <host>

⏐ ⏐ ,USER-ID = *NONE / list-poss(30): <userid>

*KSET-FORMAT(...)

⏐ HOST = <host>

⏐ ,APPLICATION = <appl>

⏐ ,KSET = *NONE / list-poss(30): <kset>

*FREE-FORMAT(...)

⏐ HOST = <host>

⏐ ,USER-ID = *NONE / list-poss(30): <userid>

,OUTPUT = list-poss: SYSLST / SYSOUT

Defining access rights SHOW-USER-GROUP

U931-J-Z125-17-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

USER-GROUP-NAME = ALL / *ALL / *ALL-EXCEPT(...) / list-poss(6):
*KSET-FORMAT(...)/*FREE-FORMAT(...)
The rights are output.

ALL / *ALL
The rights of all user groups are output.

*ALL-EXCEPT (...)
The rights of all user groups except those entered here are output.

NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)
The rights of the specified user groups are not output.

*KSET-FORMAT(...)

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss (30): <kset>
KSET name of the openUTM application.

*FREE-FORMAT(...)

HOST = <host>
Host computer of the application.

USER-ID = *NONE

USER-ID = list-poss(30): <userid>
Identification of the application.

*KSET-FORMAT(...)
The rights of the specified user groups are output.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

SHOW-USER-GROUP Defining access rights

136 U931-J-Z125-17-76

*FREE-FORMAT(...)

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is output.

USER-ID = list-poss(30): <userid>
Identification of the application.

OUTPUT = list-poss: SYSLST / SYSOUT
The information is output.

SYSLST
Output is to SYSLST.

SYSOUT
Output is to SYSOUT.

Beispiel

See example of GRANT-ACCESS.

Defining access rights UNDO

U931-J-Z125-17-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

UNDO (Undoing a statement)

The last correctly entered statement (except UNDO itself) is not executed. A subsequent
UNDO statement undoes the penultimate statement (apart from UNDO), and so on.

This statement has no operands.

UNDO

Command sequence for starting ONLINE-PRIVACY Defining access rights

138 U931-J-Z125-17-76

4.8 Command sequence for starting ONLINE-PRIVACY

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version

02 /SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=configurationname

03 /START-UDS-ONLINE-PRIVACY

04 OPEN-DATABASE DATABASE-NAME=dbname

05 other online-privacy statements

06 END

Explanation

01 Use the SELECT-PRODUCT-VERSION command to specify which UDS/SQL
version is to be used since more than one UDS/SQL version may be installed in
parallel with IMON in the Software Configuration Inventory (SCI) and more than one
version of the UDS/SQL subsystem may be loaded.

02 You assign the configuration name FILE-NAME=configurationname via the link name
DATABASE with the SET-FILE-LINK command.
The UDS/SQL configuration that is to work with ONLINE-PRIVACY and that the
database to be processed is attached to must be made known to the system using
this command.

03 ONLINE-PRIVACY must run under the user ID under which the database to be
processed was created. If this is not the case, then access to the database is
rejected by the DBH with status code 901.

04 You specify the database to be processed with the OPEN-DATABASE DATABASE-
NAME=... statement. In contrast to the BPRIVACY utility routine, this statement
must be specified when ONLINE-PRIVACY is used.
You can only process a single database in each ONLINE-PRIVACY run.
You cannot access a database in a remote configuration via UDS-D with ONLINE-
PRIVACY.

Defining access rights Command sequence for starting BPRIVACY

U931-J-Z125-17-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
4

4.9 Command sequence for starting BPRIVACY

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

02 [/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR]

03 /START-UDS-BPRIVACY

04 bprivacy-statements

05 END

Explanation

01 The version-dependent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM application programs" in the "Application Programming" manual).

02 If you assign the database using LINK-NAME=DATABASE, you must not specify
the BPRIVACY statement OPEN-DATABASE.
If you do not assign the database using LINK-NAME=DATABASE, the BPRIVACY
statement OPEN-DATABASE is mandatory, i.e. must be specified.

03 BPRIVACY must run in the ID in which the database to be processed is located. The
UDS/SQL utility routine can also be started with the aliases BPRIVACY and START-
UDS-AUTHORIZATION.

Command sequence for starting BPRIVACY Defining access rights

140 U931-J-Z125-17-76

U931-J-Z125-17-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

5 Storing and unloading data
(BINILOAD, BOUTLOAD)

This chapter describes the utility routines BINILOAD and BOUTLOAD, which allow you to
store and unload data.

The BINILOAD utility routine can be run at any time in order to store data in an empty or
partially loaded database.

The BOUTLOAD utility routine is used to copy, delete or unload entire record types from the
database, e.g. for the purpose of restructuring.

At startup both utility routines take into account any assigned UDS/SQL pubset declaration
(see the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

Storing data BINILOAD

142 U931-J-Z125-17-76

5.1 Storing records in the database with BINILOAD

The following table is intended to help the administrator decide whether to use BINILOAD
or an application program for this purpose.

BINILOAD is designed for loading a database and can efficiently load a large number of
records of one record type.
Whether BINILOAD represents a saving in time compared to an application program, and
how much time it saves, depends on the number of records to be loaded, and the structure
of the database.

 Since BINILOAD does not use before-images, DBDIR and at least the realms
required on loading should be saved before a run, especially if a check run is not
going to be carried out.

BINILOAD enables records of the same record type to be stored in an empty or partially
empty database. It is important to make all the records to be loaded available in an input
file for BINILOAD. All records loaded during a run are stored in the same realm by
BINILOAD. It does not matter if records of the same record type are already contained in
the database. In each run, BINILOAD only processes records of a single record type.

Keyword Application program BINILOAD

Generally used to update the database. to load a database.

Stores every record of a record
type individually in the
database.

large numbers of records of a record type in
the database in one or more runs.

Suitable for loading a database containing
many set occurrences with
few member records.

a database with set occurrences which have
large numbers of member records.

When inserting into
sets

the correct set occurrence
and the position within this
set occurrence must be
determined separately for
each member record.

all member records which are to belong to a
specific set occurrence are made available as
a sequence of records of an input file and
processed jointly.

Efficiency in loading
the database

bears no relation to the
number of records stored.

increases in proportion to the number of
records to be stored.

Table 20: Comparison of application program and BINILOAD

i

BINILOAD Storing data

U931-J-Z125-17-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

BINILOAD can

– presort the records of the input file;

– store records with items of fixed length only;

– generate empty set occurrences for owner records which it has stored;

– when storing member records, insert all records of the input file into a set occurrence
nominated by the DB administrator, or select, using the key value of the owner record
concerned, the individual set occurrences into which the records are to be inserted.

BINILOAD determines the sequence of member records in compliance with the sort criteria
specified in each case and sets up the set occurrence tables so that relatively few accesses
to the pages of the database are necessary.

It is also possible however to stipulate the member record sequence desired by specifying
a character string in the records of the input file (only for sets where ORDER is not SORTED
or SORTED INDEXED, e.g. ORDER IS LAST).

BINILOAD accesses the database directly and not via the DBH. DB records (including set
connection data) and tables (pointer arrays, lists, SEARCH key tables etc.) are generated
by BINILOAD in work files or in main memory. BINILOAD then assembles the complete
pages before transferring them to the database.

5.1.1 Description of functions

Inserting in sets

BINILOAD can insert records it stores in the database in sets; in this case it is very important
to distinguish between owner and member record types:

– Owner record type:
In a CHAIN set, for example, BINILOAD automatically creates an empty set occurrence
for each owner record stored.

– Member record type of one or more sets:
You must specify with the INSERT statement (see section “Statements for BINILOAD”
on page 151) into which sets BINILOAD is to insert the records.

This also applies to sets in which the record type has been defined as AUTOMATIC
member.

Storing data BINILOAD

144 U931-J-Z125-17-76

Selecting the set occurrence

Before BINILOAD inserts member records into a set, it needs to select the set occurrence
into which the member records are to be inserted. It does this by selecting the owner record
using the following key values:

– the value of the CALC key (see "LOCATION MODE clause" in the "Design and
Definition" manual)

– the value of the SEARCH key. Defined at record type level either as INDEX-SEARCH
key or as CALC-SEARCH key (see "SEARCH KEY clause in the "Design and
Definition" manual).

– the value of the database key. This method is always possible, since the database key
value is a unique identifier within the database.

If the owner record is a member in a SYSTEM set, BINILOAD can select it using the
following key values:

– the value of the ASC/DESC key (for a sorted SYSTEM set)

– the value of the SEARCH key. Defined at set level as INDEX-SEARCH key or as CALC-
SEARCH key (see "Direct access" in the "Design and Definition" manual).

BINILOAD can be informed in two ways of the key of the owner record by means of which
the set occurrence is to be selected:

– Firstly by specifying the position of the key in the records of the input file. The value of
the key may then vary from record to record. Consequently BINILOAD inserts records
with different key values in different set occurrences.

– Secondly by specifying the key as a literal in the OWNER statement of BINILOAD. In
this case the key value is the same for all records to be stored. BINILOAD therefore
inserts all records of the input file in a single set occurrence.

The following points must be taken into consideration when selecting a set occurrence:

● Duplicates
If the set occurrence is selected by specifying the key value (CALC key, ASC/DESC
key, SEARCH key) of the owner record type, and if there are several records with the
same key value (DUPLICATES ARE ALLOWED), BINILOAD selects one owner record
from the owner records having the same key value, without the user knowing which one
will be chosen.

● MANUAL member
If the records of the input file are to be inserted into a set in which the record type is
defined as a MANUAL member, the DB administrator must specify whether or not the
record is to be inserted by using the INSERT statement and identifying the input records
for optional insertion in a BINILOAD run.

BINILOAD Storing data

U931-J-Z125-17-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

● Member record sequence
If the set into which BINILOAD is to insert the records to be stored as member records
is defined with ORDER IS FIRST/LAST/NEXT/PRIOR or IMMATERIAL, the DB
administrator can specify with the SET-ORDER statement of BINILOAD whether
BINILOAD should insert the records in the set occurrences

– in ascending order, by the contents of one item of the input records, or
– in the order in which they occur in the input file.

In all other cases the sequence defined in the ORDER clause of the set description is
used.

● Set occurrence not empty
If the records to be stored are to be inserted as member records in a set occurrence in
which member records have already been inserted, the structure of the existing set
occurrence must be taken into consideration.

This structure is determined by the following clauses:

– the MODE clause (SSL) with POINTER-ARRAY, LIST, CHAIN

– the ORDER clause (DDL) with FIRST, LAST, NEXT, PRIOR, IMMATERIAL,
SORTED (can be used with CHAIN only), SORTED INDEXED.

For DDL and SSL, see the "Design and Definition" manual.

The following points must be observed:

– If MODE IS CHAIN is specified with SORTED, SORTED INDEXED, an unfavorable
chaining structure may arise;

– If MODE IS LIST is specified, no further records can be inserted into an existing set
occurrence by BINILOAD. This also applies for distributable lists.

– If MODE IS LIST is specified, BINILOAD requires at least one page for level 0 of
each set cccurrence.

Storing data BINILOAD

146 U931-J-Z125-17-76

Storing in the database

BINILOAD is designed to store large numbers of records in the database. Since BINILOAD
does not use partially filled pages, memory space can be more efficiently used than when
loading by means of an application program.

It can occur that input files, BINILOAD statements and Schema DDL and SSL specifications
are incompatible. BINILOAD therefore offers a facility for checking the input file data before
it is finally stored.

Specifying EXECUTION WITH CHECK causes the first phase of BINILOAD storage, the
table creation phase, to be executed without actual alterations to the database. Any errors
are detected and corresponding messages are output.

If no errors have occurred, BINILOAD repeats its run from the beginning and stores the
input data in the database.

Specifying EXECUTION WITHOUT CHECK causes alterations to be written to the
database immediately. If an error occurs, the BINILOAD run is aborted, error messages are
output and the database is inconsistent.

● Interdependencies between Schema DDL and BINILOAD statements

– DUPLICATES ARE NOT ALLOWED and presence of duplicates:

If, despite specification of DUPLICATES ARE NOT ALLOWED, there are records in
the input file that have the same key value, the following message is issued:

DUPLICATE KEYS OR DBKEYS FOUND / REC REF‘S OR RSQ‘S OUT OF RANGE
SEE PRINTER OUTPUT

In addition, up to the first 60 bytes of the key are output in the BINILOAD listing in
character representation and up to the first 30 bytes of the key are output in
hexadecimal form. The message is repeated for each key value found to be present
more than once. After checking all the input records, BINILOAD terminates with the
message:

ABNORMAL END BINILOAD

BINILOAD is only able to detect duplicates within the input file. It cannot identify
duplication between input records and database records.

– WITHIN clause and RECORD AREA statement of BINILOAD

If more than one realm has been defined in the WITHIN clause of the DDL, the
realm in which the records are to be stored must be specified in the RECORD
AREA statement of BINILOAD.

BINILOAD Storing data

U931-J-Z125-17-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

● Interdependence of SSL and BINILOAD statements:

– DATABASE-KEY-TRANSLATION-TABLE clause

This clause specifies the size and location of the DBTT for a record type, and
thereby determines the maximum number of records which may be stored in the
database. Consequently the input file must not contain more records than there are
free entries in the DBTT of the corresponding record type.

– PLACEMENT OPTIMIZATION clause

This clause packs the member records for the set contiguously in consecutive
pages in accordance with the sort criterion. The member is not stored in the owner
page.

– SSL specifications with ATTACHED

MODE IS POINTER-ARRAY ATTACHED

MODE IS LIST ATTACHED

INDEX NAME IS indexname PLACING IS ATTACHED

Specifying ATTACHED in the SSL has no effect.
BINILOAD stores pointer arrays, lists and indexes of all levels in empty database
pages. These information elements are always stored DETACHED within the realm
of the owner.

– SSL specifications with DETACHED

Specifying DETACHED WITHIN realm-name in the SSL causes the pointer arrays
and indexes to be stored in the specified realm. The only exception here are the
distributable lists. Here the table part (levels >0) and a possible indirect hash area
are stored in realm-name.

– POPULATION clause in the set entry of the SSL and the FILLING statement in
BINILOAD

The FILLING statement can be used to specify the occupancy level for table pages.
In this way additional member records can be loaded by means of the Database
Handler without direct extension and reorganization for these information elements.
The storage space to be reserved for these table pages is determined exclusively
by the occupancy level and not by the SET POPULATION clause in the SSL.

For the Schema DDL and SSL, see the "Design and Definition" manual.

Input file BINILOAD

148 U931-J-Z125-17-76

5.1.2 Readying the input file and preparing the BINILOAD run

The records to be stored using the BINILOAD utility routine must be readied in an input file.

The records of the input file must all have the same structure. The same input file can,
however, be used to store database records of varying structure if different items of the
input record are selected.

An input file record may contain, in addition to items for the database record, items with the
following information:

– User information. Ignored by BINILOAD.

– Key values which are interpreted by BINILOAD in order to determine the correct set
occurrence.

– Information interpreted by BINILOAD in order to determine the sequence of member
records.

– Information interpreted by BINILOAD in order to indicate the insertion or non-insertion
of member records.

Figure 18: Example of the structure of an input file record

BINILOAD statements are used to specify the position and length of the items to be
transferred to the database record (see table 23 RECORD DISPL statement, page 153).

The item contents are stored in the database in the format in which they appear in the
records of the input file. This means that the item contents specified are not converted to
the type defined for these items in the Schema DDL (see "Defining an alphanumeric item
of fixed length" in the "Design and Definition" manual).

The input file may be stored on disk or tape. In both cases the input file can be a SAM or
ISAM file (EDT format) containing records of the same length in either fixed or variable
record format (RECFORM=V or F). (See table 21 USER RECORD LENGTH statement,
page 151.)

If the input comes from an uncataloged tape file, STATE=FOREIGN must also be specified
in the /CREATE-FILE command for the input file.

User
information

Key value

Input record

BINILOAD System environment

U931-J-Z125-17-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

The name of the input file is specified in the INPUT-FILE statement, its record length in the
USER RECORD LENGTH statement.

At the end of this chapter there is an example for the BINILOAD command sequence,
followed by an example of a BINILOAD input file.

5.1.3 BINILOAD system environment

Figure 19: System environment for BINILOAD

SYSDTA
BINILOAD

DBDIR

STK

SCRTCH

SCD

KEY

SORTWK

SRT1WK

KST

User
realms

Input
file

System environment BINILOAD

150 U931-J-Z125-17-76

BINILOAD requires several work files, which it creates automatically in the correct size on
public volumes under the name UTI.SAMWORK.tsn.timestamp and deletes again following
normal termination of the loading operation.

The files have the following default link names: SCRTCH1, SCRTCH2, SCRTCH3,
SORTWK, SRT1WK, SCDnnnnn, STKnnnnn, KEYmmmmm and KSTnnnnn.

SCRTCH1
contains a follow-up version of the input file during execution.

SCRTCH2
SCRTCH3

are used to allocate space for records to be stored.

SORTWK
SRT1WK

requires the SORT used by BINILOAD for sorting internal evaluation records (see
the manual “SORT (BS2000)”).

SCDnnnnn
contain, during execution of BINILOAD, the SCD information of the records for the
set with the five-digit set number setref, of which the record type to be loaded is a
member.

STKnnnnn
contain, during execution of BINILOAD, the SEARCH key information of the records
for the set with the five-digit set number setref, of which the record type to be loaded
is a member.

KEYmmmmm
contain, during execution of BINILOAD, the keys of the records for the key with the
five-digit key number keyref, from which the access tables are to be set up.

KSTnnnnn
contain, during execution of BINILOAD, storage information for the records for the
set with the five-digit set number setref, for which there is no user-defined sort key.
No key numbers keyref are identified for the set in the BPSIA log.

Database recovery

BINILOAD writes after-images if AFIM logging has been previously specified for the current
database using the utility routine BMEND (see "BMEND" in the "Recovery, Information and
Reorganization" manual).

BINILOAD Statements

U931-J-Z125-17-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

ALOG files

If AFIM logging has been turned on, the current ALO file must be present.
If an error on the ALOG file occurs during the execution of BINILOAD or the ALOG file
overflows, AFIM logging is turned off, and BINILOAD continues to completion without
ALOG files. A logging gap results.

On completion of the BINILOAD run, the ALOG file is switched, i.e. a new ALOG file is
set up.

5.1.4 Statements for BINILOAD

In order to execute BINILOAD, a series of statements must be specified. BINILOAD
recognizes four kinds of statements:

– Control statements
– Program statements
– STORE statements
– INSERT statements

Statements which are optional are indicated as such. It is advisable to observe the
sequence of statements, even if certain statements are not used. The sequence is
mandatory for STORE and INSERT statements.

Control statements

These control execution of the UDS/SQL utility routine BINILOAD.

Statement Default value Meaning

 lWITH ⎫
[EXECUTION m } CHECK.]
 nWITHOUT~

WITH Checks/does not check input
data

[SORTCORE IS nnn.]
150 Specifies size of main memory

for sort/merge routine

Table 21: Control statements for BINILOAD

Statements BINILOAD

152 U931-J-Z125-17-76

Program statements

These determine the schema, subschema, input file, and the occupancy level of tables.

Statement Default value Meaning

SCHEMA NAME IS schema-name.
SUBSCHEMA NAME IS subschema-
name.

- Name of schema and subschema

FILLING IS nnn PERCENT. - Specifies occupancy level for
table pages

USER FILE RECORD LENGTH IS n.

-
Length of input records in bytes

USER FILE BUFFER LENGTH IS n. - Block length of input file; must be
a multiple of 2048

INPUT FILE NAME 'file-name'. - File name of input file

INPUT RECORDNUMBER IS n. - None, only tolerated for reasons
of compatibility

Table 22: Program statements for BINILOAD

BINILOAD Statements

U931-J-Z125-17-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

STORE statements

 These provide BINILOAD with information on the record type and its relation to the input
records.

Statement Default value Meaning

STORE RECORD NAME IS record-
name.

- Record type to be stored

RECORD-DBKEY IS
 l4⎫
 DISPL IS n,LENGTH IS m }.
 n8~

- Assigns database key value;
– displacement and length of the

database key value

RECORD-RSQ IS
 l3⎫
 DISPL IS n,LENGTH IS m }.
 n6~

- Assigns database key value;
– displacement and length of the

record sequence number
(RSQ)

The associated record reference
number (REC-REF) is determined
by BINILOAD.

RECORD-DISPL IS n,

 lDISPL IS n,LENGTH IS n⎫
 m }.
 nVALUE IS 'literal' ~

- Structures database record. For
specified record type;
– displacement and length of the

items of this record
– character string to be inserted

in the database records

RECORD-AREA NAME IS realm-
name.

- Realm into which the records are to
be loaded.

Table 23: STORE statements for BINILOAD

Statements BINILOAD

154 U931-J-Z125-17-76

INSERT statements

These indicate to BINILOAD the sets into which the records are to be inserted.

Statement Default value Meaning

INSERT INTO SET NAME IS set-name. - Specifies the set into which the
records are to be inserted as
member records.

SET ORDER

 lUSING DISPL IS n,LENGTH IS n⎫
 m }.
 nVIA USER FILE SEQUENCE ~

VIA USER
FILE
SEQUENCE

Specifies sort sequence of
records within the sets with
ORDER IS FIRST, LAST,
NEXT, PRIOR, IMMATERIAL;
specifies length of sort item.

OWNER CALCKEY IS

 lDISPL IS n, LENGTH IS n⎫
 m },
 nVALUE IS 'literal' ~

 AREA NAME IS realm-name.

- Selects set occurrence by
selecting the owner
– displacement and length of

the CALC key values in the
input file records by means
of which the owner is to be
selected

– character string with CALC
key

– name of the realm in which
the owner record is stored.

OWNER SEARCHKEY IS

 lDISPL IS n, LENGTH IS n ⎫
 m },
 nVALUE IS 'literal' ~

 [VIA SET NAME IS set-name,]

 SEARCHKEY TABLE

 lCOLUMN-NR IS n ⎫
 m }.
 nORDER-NR IS keyref~

- Selects set occurrence by
selecting the owner via
SEARCH key
– displacement and length of

the SEARCH key values in
the input file records by
means of which the owner
is to be selected

– character string with
SEARCH key table

– name of the SYSTEM set
in which the owner is a
member

– DBTT column number of
SEARCH key table

– key reference number.

Table 24: INSERT statements for BINILOAD (part 1 of 2)

BINILOAD Statements

U931-J-Z125-17-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

OWNER DBKEY IS

 l l4⎫⎫
 oDISPL IS n, LENGTH IS m }o
 m n8~}.
 o o
 nVALUE IS dbkey ~

- Selects set occurrence by
selecting the owner via its
database key value:
– displacement and length of

the database key value in
the input file records by
means of which the owner
is to be selected

– character string with
database key value.

OWNER RSQ IS

 l l3⎫⎫
 oDISPL IS n, LENGTH IS m }o
 m n6~}.
 o o
 nVALUE IS rsq ~

- Selects set occurrence by
selecting the owner via its
database key value:
– displacement and length of

the record sequence
number (RSQ) in the input
file records by means of
which the owner is to be
selected

– character string with record
sequence number (RSQ).

The associated record
reference number (REC-REF)
is determined by BINILOAD.

OWNER KEY IS DISPL IS n,
LENGTH IS 1.

- Position of the item in the input
records, which specifies
whether or not the record is to
be inserted in the SYSTEM
sets.

Statement Default value Meaning

Table 24: INSERT statements for BINILOAD (part 2 of 2)

EXECUTION statement BINILOAD

156 U931-J-Z125-17-76

EXECUTION (Checking/not checking input data)

The EXECUTION statement is optional.

 lWITH ⎫
 EXECUTION m } CHECK.
 nWITHOUT~

WITH Before changes are made to the database, BINILOAD checks whether the input
data and the database structure are compatible and whether there is enough space
available in the database. If it finds discrepancies between input data and the
structure of the database, it issues appropriate messages and terminates the run.
BINILOAD stores the tables and records only if the input data is compatible with the
structure of the database.

If there is not enough space in a realm, this is indicated at the end of the test run by
the following runtime message:

MODIFY-REALM-SIZE <realm-name>, DIFFERENCE = n .

However, the program run is not aborted if SECONDARY_ALLOCATION > 0 is set
in the realm as the free space required is then obtained by means of automatic
realm extension (see also the “Database Operation” manual).

No automatic DBTT extension by the BINILOAD utility routine takes place.

WITHOUT
BINILOAD suppresses the check run and stores the data from the input file
immediately.
If errors occur, the BINILOAD run is abnormally terminated and appropriate
messages are issued. The database is then inconsistent.

Default value:
WITH

 BINILOAD does not check the actual contents of the input file. i

BINILOAD SORTCORE statement

U931-J-Z125-17-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

SORTCORE (Specifying the size of the sort buffer)

The SORTCORE statement is optional.

 SORTCORE IS nnn.

nnn Specifies, in units of 4 Kbytes, the size of the memory space for the sort buffer
assigned to the BS2000 SORT utility routine (see the "ALLOC statement" in the
"SORT (BS2000)" manual). The population of the data that is to be sorted is the
same as that on which the size of the work files with the link names SORTWK and
SRT1WK is based (see page 183).

Default value:150

SCHEMA statement BINILOAD

158 U931-J-Z125-17-76

SCHEMA (Specifying the name of the schema)

The SCHEMA statement is optional.

 SCHEMA NAME IS schema-name.

schema-name
is the schema name specified in the Schema DDL

BINILOAD SUBSCHEMA statement

U931-J-Z125-17-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

SUBSCHEMA (Specifying the name of the subschema)

The SUBSCHEMA statement is mandatory.

 SUBSCHEMA NAME IS subschema-name.

subschema-name
is the subschema name specified in the Subschema DDL

With the aid of the names specified, BINILOAD obtains information on the database in
which the new records are to be stored.

FILLING statement BINILOAD

160 U931-J-Z125-17-76

FILLING (Specifying the occupancy level of table pages)

The FILLING statement is optional.

 FILLING IS nnn PERCENT.

nnn Specifies the percentage of filling for table pages on level 0.
This allows for future insertions in these data elements. Pages not used for tables
are filled to the maximum.

nnn = 1 ... 100

For table pages on level 1, the default level of occupancy is 95%. On every higher level,
one table entry is left free.

If FILLING is omitted, one entry is left free on level 0 as well.

If nnn is made too small, BINILOAD makes sure that there is room for at least one entry.

BINILOAD USER RECORD LENGTH statement

U931-J-Z125-17-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

USER RECORD LENGTH (Specifying the length of the input records)

The USER RECORD LENGTH statement is mandatory.

 USER FILE RECORD LENGTH IS n.

n Total length of an input file record in bytes.
The input file records may contain, in addition to the item contents of the records to
be stored in the database, additional user information and control information.

If "variable" record format is specified for the input file (RECFORM=V), the length
specification will be the record length minus the record length item (RECSIZE - 4).

n > 0

USER BUFFER LENGTH statement BINILOAD

162 U931-J-Z125-17-76

USER BUFFER LENGTH (Specifying the block length of the input file)

You can omit the USER BUFFER LENGTH statement if the input has been generated with
fixed record length (RECFORM=F).

 USER FILE BUFFER LENGTH IS n.

n Block length of the input file in bytes.
BINILOAD sets up a buffer of the specified length.

n must be a multiple of 2048.

BINILOAD INPUT FILE statement

U931-J-Z125-17-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

INPUT FILE (Specifying the name of the input file)

The INPUT FILE statement is mandatory.

 INPUT FILE NAME IS 'file-name'.

’file-name’
Is the name of the input file containing the records to be stored. The file can be a
SAM or ISAM file (EDT format). It may contain not only records of variable length
(RECFORM=V), but also records of fixed length (RECFORM=F).

file-name must be specified in literal format, since the name can be qualified at
multiple levels.

STORE RECORD statement BINILOAD

164 U931-J-Z125-17-76

STORE RECORD (Specifying the record type)

The STORE RECORD statement is mandatory.

 STORE RECORD NAME IS record-name.

record-name
Is the name of the record type whose records are to be stored in the database. The
name must be defined in the appropriate schema and subschema.

BINILOAD RECORD-DBKEY statement

U931-J-Z125-17-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

RECORD-DBKEY (Assigning the database key value to a record)

If you want to explicitly assign the database key value for each record of the record type
specified for STORE RECORD (see page 164), you must specify either the RECORD-
DBKEY statement or the RECORD-RSQ statement as follows:

– If you are using RECORD-DBKEY, specify the complete database key value in the input
file.

– If you are using RECORD-RSQ, specify only the record sequence number (RSQ) in the
input file. BINILOAD will then use this RSQ to determine the database key value of the
input record and the record reference number (REC-REF) of the record type which you
specified for STORE RECORD.

If the database key values are to be assigned in the same sequence as the order of records
in the input file, the RECORD-DBKEY or RECORD-RSQ statement is optional.

RECORD-DBKEY statement

 l4⎫
 RECORD-DBKEY IS DISPL IS n, LENGTH IS m }.
 n8~

DISPL IS n
specifies the displacement within the input record (relative to the beginning of the
record) of the database key value to be assigned.

LENGTH IS

The length of a database key value is always 4 or 8 bytes.
Database key values of 8-byte length with a record reference number (REC-REF)
> 254 and/or a record sequence number (RSQ) > 224-1 can only be used for input
in databases with a page length of 4000 or 8096 bytes.

4
8

RECORD-RSQ statement BINILOAD

166 U931-J-Z125-17-76

RECORD-RSQ statement

 l3⎫
 RECORD-RSQ IS DISPL IS n, LENGTH IS m }.
 n6~

DISPL IS n
specifies the displacement within the input record (relative to the beginning of the
record) of the record sequence number (RSQ) to be assigned.

LENGTH IS

The length of a record sequence number (RSQ) is always 3 or 6 bytes.
Record sequence numbers with a length of 6 bytes and a value > 224-1 can only be
used for input in databases with a page length of 4000 or 8096 bytes.

3
6

BINILOAD RECORD-DISPL statement

U931-J-Z125-17-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

RECORD-DISPL (Creating the database record)

The RECORD-DISPL statement is mandatory if the input file records contain, in addition to
the database records, user information and control information or items for other record
types, i.e. if items are to be relocated.

It is to be specified an appropriate number of times if several items are to be transferred
from the input record to appropriate locations in the database record.

It is optional if the input file records are identical to the records to be stored in the database;
with "variable" record format each database record corresponds to the data part without the
record length item.

 lDISPL IS n,LENGTH IS n⎫
 RECORD-DISPL IS n, m }.
 nVALUE IS 'literal' ~

RECORD-DISPL IS n
specifies the displacement within the database record (relative to the beginning of
the record) of the item to be transferred.

DISPL IS n
specifies the displacement within the input record (relative to the beginning of the
record) of the item to be transferred.

With variable-length records the record length item must be disregarded.

LENGTH IS n
specifies the length of the item to be transferred.

VALUE IS ’literal’
specifies a value which is inserted in each stored record at the location specified by
n in the RECORD-DISPL statement.

The literal may be:

– a character string, e.g. ’date’ (max. 64 bytes)

– a hexadecimal character string, e.g. ’014F’X, ’FFFF’X, etc.
(max. 32 bytes)

If an apostrophe is to be included in a character string, two apostrophes should be
entered.

You can enter up to five RECORD-DISPL statements with a VALUE clause.

RECORD-DISPL statement BINILOAD

168 U931-J-Z125-17-76

Example of the RECORD-DISPL statement:

RECORD-DISPL IS 0
0 is the number of bytes between the beginning of the database record and the
first byte to which the item is to be transferred.

DISPL IS 3
3 is the number of bytes (displacement) between the beginning of the input
record and the first byte of the item to be transferred.

LENGTH IS 6
6 is the length of the item to be transferred.

Figure 20: Input record and database record with the item to be transferred

 Every RECORD-DISPL statement generates or extends a MOVE statement. Parts
of the input record are inserted (character strings are inserted if VALUE is
specified). If more than one RECORD-DISPL statement is specified, they are
executed in the sequence given. Parts of the record inserted by previous RECORD-
DISPL statements can be overwritten.
The RECORD-DISPL statement must not refer to a displacement position outside
the database record. There is no check to ascertain whether the value of the literal
or the type of input record matches the element in the database record as defined
in the schema. BINILOAD likewise performs no conversions.

Input record

Database record

RECORD DISPL IS 0

DISPL IS 3 LENGTH IS 6

i

BINILOAD RECORD-AREA statement

U931-J-Z125-17-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

RECORD-AREA (Specifying the realm)

The RECORD-AREA statement is mandatory if the WITHIN clause of the Schema DDL
contains more than one realm name and the record type to be stored is not the member
record type of a distributable list.

The RECORD-AREA statement can optionally be specified in the following cases:

– When the WITHIN clause of the Schema DDL contains only one realm name

– When the record type to be stored is a member of a distributable list:

If no realm is specified for distributable lists, BINILOAD stores the records
approximately evenly in all realms which are specified in the WITHIN clause of the
Schema DDL.
If a realm is specified for distributable lists with the RECORD-AREA statement, this
must be the table realm. The records are then stored in this realm. The associated list
remains distributable.

When the RECORD-AREA statement is used to specify a realm, this realm must be defined
in the subschema. If the record type to be stored is the member record type of a
distributable list, all realms of the Schema DDL’s WITHIN clause must be defined in the
subschema.

 RECORD-AREA NAME IS realm-name.

realm-name
Name of the realm into which the records are to be loaded.

 The SSL specifications must be observed!
If the record type to be stored is a member of a set specified with MODE IS LIST
but without DETACHED WITHIN realm-name, or if it is a member of a set specified
with PLACEMENT OPTIMIZATION, the owners of the set occurrences to be stored
must also be contained in the realm specified for the member record type.

i

INSERT statement BINILOAD

170 U931-J-Z125-17-76

INSERT (Specifying the set)

Wether or not you specify the INSERT statement depends on the membership of the
member records in the set (see the "Design and Definition" manual).

● Standard set MANDATORY AUTOMATIC
You must specify the INSERT statement followed by the OWNER statement.

● Standard set OPTIONAL or MANUAL

– You must specify the INSERT statement if all or some of the records are to be
inserted; the OWNER statement must then follow.

– You must omit the INSERT statement if none of the records is to be inserted into the
set occurrence; the OWNER statement is also omitted.

● SYSTEM set MANDATORY AUTOMATIC
You must specify INSERT, but omit the subsequent OWNER statement.

● SYSTEM set OPTIONAL or MANUAL

– You must specify INSERT if only some of the records are to be inserted; the
OWNER statement must then follow.

– You must specify INSERT without a subsequent OWNER statement if all the
member records are to be inserted.

– You must omit INSERT if none of the records is to be inserted into the set
occurrence of the SYSTEM set; the OWNER statement is also omitted.

– The set must be defined in the specified subschema.

● SYSTEM set IMPLICIT
You must omit INSERT.

 INSERT INTO SET NAME IS set-name.

set-name
Specifies in which set the input file records are to be inserted as members.

 The INSERT and OWNER statements must be specified if BOUTLOAD generates
the set connection data (SCD) when unloading and subsequently BINILOAD is to
restore the old set memberships.

i

BINILOAD SET ORDER statement

U931-J-Z125-17-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

SET ORDER (Specifying the sort sequence)

You have the option of specifying the statement if sorting within the set was defined with
FIRST, LAST, NEXT, PRIOR or IMMATERIAL (see the "Design and Definition" manual) in
the ORDER clause of the Schema DDL and the sequence of the records in the set
occurrence does not match the sequence in the input file.

In this case the sequence within the set occurrence can be specified during loading with
BINILOAD by defining a sort item in each input record. The content of this item is used to
sort the member records in ascending order.

You need not specify the SET ORDER statement if the database records to be stored occur
in the same sequence in the input file as they are to be inserted in the set occurrence.

You should not specify the statement if sorting within the set was defined with SORTED,
SORTED INDEXED in the ORDER clause of the Schema DDL.

 lUSING DISPL IS n, LENGTH IS n⎫
 SET ORDER m }.
 nVIA USER FILE SEQUENCE ~

USING DISPL IS n
specifies the displacement (relative to the beginning of the record) of the sort item
in the input record.

VIA USER FILE SEQUENCE
causes the sequence of records in the input file to be retained in the set
occurrences.

Default value
VIA USER FILE SEQUENCE

The SET ORDER statement must precede the associated INSERT statement.

OWNER statements BINILOAD

172 U931-J-Z125-17-76

OWNER (Defining the owner)

You must specify the OWNER statement for all sets other than SYSTEM sets, irrespective
of whether the sets have MANUAL or AUTOMATIC members, if an INSERT statement has
previously been entered.

BINILOAD can be used to define the owner if you specify the following values in one of the
formats 1 through 3 (with SYSTEM sets format 4 applies):

All key values can be specified as the content of an item in the input records, or as a literal
in the OWNER statement for this set. If the key value is specified as a literal, all the records
of the input file are assigned to the same owner.

If the owner set is the member record type of a distributable list, the realms of the owner
record type’s DDL-WITHIN clause must be defined in the subschema.

 If DUPLICATES ARE ALLOWED has been specified in the Schema DDL and
CALC, ASC/DESC or SEARCH keys have been used, duplicate key values may
occur, in which case it is impossible to predict which owner records BINILOAD will
select.

If in a MANUAL or OPTIONAL set certain member records are not to be inserted,
HIGH-VALUE should be entered in the item for owner selection in the input file.

Value Condition Format

CALC key - Format 1

ASC-/DESC key
SEARCH key

if the owner is, at the same time, member in a SYSTEM
set

Format 2

if the SEARCH key was defined at record type level

DB key - Format 3

i

BINILOAD OWNER CALCKEY statement

U931-J-Z125-17-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

Format 1: Using the CALC key to define the owner

 lDISPL IS n, LENGTH IS n⎫
 OWNER CALCKEY IS m },AREA NAME IS realm-name.
 nVALUE IS 'literal' ~

DISPL IS n
specifies the displacement in the input record of the item containing the CALC key.

LENGTH IS n
specifies the length of the item containing the CALC key (length of the CALC key).

VALUE IS ’literal’
specifies the CALC key which selects the owner for all records of the input file.

realm-name
designates a realm specified in the DDL WITHIN clause of the owner record type.
If the owner set is the member record type of a distributable list, its table realm must
be specified here as the indirect CALC area is located there.

The AREA entry is mandatory in format 1.

OWNER SEARCHKEY statement BINILOAD

174 U931-J-Z125-17-76

Format 2: Using the SEARCH key to define the owner

 lDISPL IS n, LENGTH IS n⎫
 OWNER SEARCHKEY IS m },[VIA SET NAME IS set-name,]
 nVALUE IS 'literal' ~

 lCOLUMN-NR IS n ⎫
 SEARCHKEY TABLE m }.
 nORDER-NR IS keyref~

DISPL IS n
is the displacement in the input record of the item containing the SEARCH key.

LENGTH IS n
s the length of the item containing the SEARCH key.

VALUE IS ’literal’
is the SEARCH key value which defines the owner for all records of the input file.

VIA SET NAME IS set-name
is the name of the SYSTEM set in which the owner record type is a member; may
not be specified for SYSTEM sets created by the DDL compiler on the basis of a
record SEARCH key.

SEARCHKEY TABLE
The owner is selected using the ASC/DESC or SEARCH key. The key value must
be contained in a table. Consequently the ASC/DESC key can only be used for
SYSTEM sets with MODE IS CHAIN (see the "Design and Definition" manual) if
ORDER IS SORTED INDEXED was specified in the Schema DDL.

COLUMN-NR IS n
is the DBTT column number of the corresponding SEARCH key or sort key table
(see "SIA PRINT REPORT" in the "Recovery, Information and Reorganization"
manual).

ORDER-NR IS keyref
must be specified if the SEARCH key of the owner is a CALC-SEARCH key. keyref
specifies the key number, which is obtained from the sequence in which the keys
were defined within the record type description or set description in the DDL.

It can also be used instead of the COLUMN-NR option.

BINILOAD OWNER DBKEY statement

U931-J-Z125-17-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

Format 3: Using the database key to define the owner

The OWNER DBKEY and OWNER RSQ statements can be used to determine the owner
record by means of its database key value:

– If you are using OWNER DBKEY, specify the complete database key value of the owner
record.

– If you are using OWNER RSQ, specify the record sequence number (RSQ) of the
owner record. BINILOAD will then use this RSQ to determine the database key value
of the owner record and the record reference number (REC-REF) that is assigned to
the owner record of set that you listed in the last specified INSERT statement (see
page 170).

OWNER DBKEY statement

 l l4⎫⎫
 oDISPL IS n, LENGTH IS m }o
 OWNER DBKEY IS m n8~}.
 o o
 nVALUE IS dbkey ~

DISPL IS n
specifies the displacement in the input record of the item containing the database
key value.

LENGTH IS

is the length of the database key value.
You must supply the database key value in the specified length in the records of the
input file: the item defining the owner record must contain the database key value
in binary. For more information on the binary representation of database key values,
see the “Design and Definition“ manual.
If the database key value of the owner record contains a record reference number
(REC-REF) > 254 and/or a record sequence numbers (RSQ) > 224 -1, you must
specify ”LENGTH IS 8“.

VALUE IS dbkey
is the database key that selects the owner record for all records of the input file. This
database key value must be specified as follows:

record reference number (REC-REF) : record sequence numbers (RSQ)

The following applies to the value range of REC-REF and RSQ:

– for “LENGTH IS 4“: 1 < REC-REF Î 254 and 0 < RSQ Î 224-1
– for “LENGTH IS 8“: 1 < REC-REF Î 215-1 and 0 < RSQ Î 231-1

4
8

OWNER DBKEY statement BINILOAD

176 U931-J-Z125-17-76

Example for the input of a database key value

The database key value with a REC-REF = 22 and an RSQ = 10 596 can be specified
as follows:

1. In the VALUE IS clause:

VALUE IS 22 : 10596
3 3

REC-REF RSQ

2. In the input file:

– for ”LENGTH IS 4“: X´16002964´
– for ”LENGTH IS 8“: X´0016000000002964´

BINILOAD OWNER RSQ statement

U931-J-Z125-17-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

OWNER RSQ statement

 l l3⎫⎫
 oDISPL IS n, LENGTH IS m }o
 OWNER RSQ IS m n6~}.
 o o
 nVALUE IS rsq ~

DISPL IS n
specifies the displacement in the input record of the item containing the record
sequence number (RSQ).

LENGTH IS

is the length of the record sequence number (RSQ).
You must supply the RSQ in the specified length in the records of the input file: the
item defining the owner record must contain the RSQ in binary.
If the RSQ of the owner record is greater than 224 -1, you must specify
”LENGTH IS 6“.

VALUE IS rsq
is record sequence number (RSQ) that selects the owner record for all records of
the input file. rsq must be specified with the following value range:

– for ”LENGTH IS 3“: 0 < RSQ Î 224 -1

– for ”LENGTH IS 6“: 0 < RSQ Î 231 -1

Example for the input of a record sequence numbers (RSQ)

An RSQ = 10 596 can be specified as follows:

1. In the VALUE IS clause:

VALUE IS 10596
3
RSQ

2. In the input file:

– for ”LENGTH IS 3“: X´002964´
– for ”LENGTH IS 6“: X´000000002964´

3
6

OWNER KEY statement BINILOAD

178 U931-J-Z125-17-76

Format 4: Defining set membership in the SYSTEM set

 OWNER KEY IS DISPL IS n, LENGTH IS 1

DISPL IS n
is the displacement of the item in each input record that specifies whether the
record is to be inserted into the SYSTEM set.

LENGTH IS 1
The length of the item is always 1.

Insert: X’00’ (LOW-VALUE)
Do not insert: X’FF’ (HIGH-VALUE)

If you do not specify the OWNER statement, all records are inserted into the SYSTEM set.

BINILOAD Command sequence

U931-J-Z125-17-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

5.1.5 Command sequence for starting BINILOAD

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 [/CREATE-FILE FILE-NAME=input-tape-file,...]

03 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

04 /START-UDS-BINILOAD

05 biniload-statements

06 END

03 The specified version of BINILOAD is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

04 The UDS/SQL utility routine can also be started with the alias BINILOAD.

 The BINILOAD statements are read in via SYSDTA! A file generated by
BOUTLOAD can also be used for this purpose. i

Work files BINILOAD

180 U931-J-Z125-17-76

5.1.6 Creating work files

If you wish to create the work files explicitly, you must issue the appropriate CREATE-FILE
commands. If you specify too little storage space (with SPACE), the value you specify will
be corrected internally by BINILOAD.

/CREATE-FILE FILE-NAME=workfile-n [,SUPPORT ...]

 lSCRTCH1 ⎫
 oSCRTCH2 o
 oSCRTCH3 o
 oSCDnnnnno lPAM⎫
/ADD-FILE-LINK LINK-NAME=mSTKnnnnn},FILE-NAME=workfile-n[,ACCESS-METHOD=m }]
 oKEYnnnnno nSAM~
 oKSTnnnnno
 oSORTWK o
 nSRT1WK ~

workfile-n Freely selected name for the work file

SUPPORT The storage space size can be specified with the SPACE entry in the
SUPPORT operand:

ACCESS-METHOD
The work files SORTWK and SRT1WK are created as PAM files. The other
work files are created as SAM files.

Link names for the work file

SCRTCH1
SCRTCH2
SCRTCH3
SCDnnnnn
STKnnnnn
KEYnnnnn
KSTnnnnn
SORTWK
SRT1WK

BINILOAD Work files

U931-J-Z125-17-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

Calculating primary requirements for work files

The primary allocation for work files should be based on the data population that is to be
buffered. There should always be an appropriate secondary allocation in case it should be
necessary to extend the storage space.

The approximate space requirements for individual work files can be calculated by using
the formulas below.

SCRTCH1

(total key lengths + 12) x number of input records Bytes

total keylengths:
is the total length of the following keys:

– keys by which the owners of the set are selected
(CALC keys, ASC/DESC keys, SEARCH keys or database keys)

– keys that do not belong to a set (CALC keys)

– keys for all sets in which these records are to be inserted
(ASC/DESC keys, SEARCH keys).

SCRTCH2

12 x number of input records Bytes

SCRTCH3

3 x number of input records Bytes

SCDnnnnn

with 2048-byte page length:

40 x number of input records Bytes

with 4000/8096-byte page length:

50 x number of input records Bytes

Work files BINILOAD

182 U931-J-Z125-17-76

STKnnnnn

with 2048-byte page length:

(8 + reclength_1) x number of input records Bytes

with 4000/8096-byte page length:

(12 + reclength_1) x number of input records Bytes

reclength_1:
reclength_1 is the sum of the key lengths of all SEARCH keys in the set with
SET-REF nnnnn.

KEYnnnnn and for SEARCH key

with 2048-byte page length:

(16 + keylength_1) x number of input records Bytes

with 4000/8096-byte page length:

(24 + keylength_1) x number of input records Bytes

keylength_1:
Key length of the key with KEY-REF nnnnn

BINILOAD Work files

U931-J-Z125-17-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

KEYmmmmm and KSTnnnnn for SORT-Key

with 2048-byte page length:

(keylength_1 + 12 + keylength_2) x number of input records Bytes

with 4000/8096-byte page length:

(keylength_1 + 16 + keylength_2) x number of input records Bytes

keylength_1:
Length of the key used to specify the owner of the set.
This may be:
CALC keys, ASC-/DESC keys, SEARCH keys or database keys.

keylength_2:
Key length of the key with KEY-REFmmmmm
For KSTnnnnn with SET-REF nnnnn: keylength_1 = 0.

SORTWK and SRT1WK

SORT needs the two work files with the link names SORTWK and SRT1WK if there
is not enough virtual memory for pre-sorting. The primary allocation should be
based on the data population that is to be sorted while taking account of the safety
factor recommended by SORT (see the discussion of work files in the manual
“SORT (BS2000)”). There should always be an appropriate secondary allocation in
case it is necessary to extend the storage space.

The volume of the data that is to be sorted is calculated using the formula:

(reclength_2+SCD+12) x number of input records Bytes

reclength_2:
is the length of the database record.

SCD:
Length of the Set Connection Data. You can take over this value from the BPSIA
log where it is located in the SYSINFO column under the heading
RECORD-INFORMATION (see the manual “Recovery, Information and
Reorganization”).

When the load operation is complete, it is up to you to delete any work files that were
explicitly created.

Example BINILOAD

184 U931-J-Z125-17-76

5.1.7 BINILOAD example

The record type ARTICLE is stored in the database SHIPPING. The file
SHIPPING.REC00009.00005 generated by BOUTLOAD is used as the input file.

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BINILOAD

***** START BINILOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:03

 EXECUTION WITH CHECK.

 SCHEMA NAME IS MAIL-ORDERS

 SUBSCHEMA NAME IS ADMIN

 USER FILE RECORD LENGTH IS 112

 USER FILE BUFFER LENGTH IS 8192

 INPUT FILE 'SHIPPING.REC00009.00005 '

 INPUT RECORDNUMBER IS 55

 STORE RECORD NAME IS ARTICLE

 RECORD-DBKEY IS DISPL IS 0 , LENGTH IS 8

 RECORD-DISPL IS 0 , DISPL IS 25 , LENGTH IS 87

 RECORD-AREA NAME IS CLOTHING

 INSERT INTO SET NAME IS P-ORD-SPEC

 OWNER DBKEY IS DISPL IS 8 , LENGTH IS 8

 INSERT INTO SET NAME IS MIN-STOCK-LEVEL

 OWNER KEY IS DISPL IS 16 , LENGTH IS 1

 INSERT INTO SET NAME IS ARTICLES-AVAILABLE

 OWNER DBKEY IS DISPL IS 17 , LENGTH IS 8

 END

 BEGIN CHECK-RUN

 *** DATE AND TIME 2015-06-28 11:41:03

 BEGIN ALLOCATION

 *** DATE AND TIME 2015-06-28 11:41:03

 SET_NAME: P-ORD-SPEC

 SET_REF: 7

 SORTKEY TABLE, DBTT_COLUMN_NR: 1

 *** ICRELES: MOVE_ROUTINE SORTKF CREATED

 CALCKEY TABLE - INDIRECT

 *** DATE AND TIME 2015-06-28 11:41:03

 BEGIN TABLE-PROCESSOR

 *** DATE AND TIME 2015-06-28 11:41:03

 SET_NAME: MIN-STOCK-LEVEL

 SET_REF: 8

 SORTKEY TABLE, DBTT_COLUMN_NR: 1

 BEGIN TABLE-PROCESSOR

BINILOAD Example

U931-J-Z125-17-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

 *** DATE AND TIME 2015-06-28 11:41:03

 SET_NAME: ARTICLES-AVAILABLE

 SET_REF: 12

 SORTKEY TABLE, DBTT_COLUMN_NR: 1

 BEGIN TABLE-PROCESSOR

 *** DATE AND TIME 2015-06-28 11:41:03

 SEARCHKEY TABLE, DBTT_COLUMN_NR: 2

 INDIRECT CALC-SEARCH-KEY BUCKETS

 INDIRECT CALC-SEARCH-KEY BUCKETS

 *** NO ERRORS DETECTED DURING CHECK-RUN

 END CHECK-RUN

 *** DATE AND TIME 2015-06-28 11:41:03

 BEGIN ALLOCATION

 *** DATE AND TIME 2015-06-28 11:41:03

 *** DATABASE IS IN USE

 SET_NAME: P-ORD-SPEC

 SET_REF: 7

 SORTKEY TABLE, DBTT_COLUMN_NR: 1

 *** ICRELES: MOVE_ROUTINE SORTKF CREATED

 CALCKEY TABLE - INDIRECT

*** DATE AND TIME 2015-06-28 11:41:04

BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:04

SET_NAME: MIN-STOCK-LEVEL

SET_REF: 8

SORTKEY TABLE, DBTT_COLUMN_NR: 1

BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:04

SET_NAME: ARTICLES-AVAILABLE

SET_REF: 12

SORTKEY TABLE, DBTT_COLUMN_NR: 1

BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:04

SEARCHKEY TABLE, DBTT_COLUMN_NR: 2

INDIRECT CALC-SEARCH-KEY BUCKETS

INDIRECT CALC-SEARCH-KEY BUCKETS

BEGIN STORE DB-RECORD

*** DATE AND TIME 2015-06-28 11:41:04

STORING DATABASE RECORDS

END STORE DB-RECORD

Example BINILOAD

186 U931-J-Z125-17-76

*** DATE AND TIME 2015-06-28 11:41:04

END CLOSE

*** DATE AND TIME 2015-06-28 11:41:04

***** DIAGNOSTIC SUMMARY OF BINILOAD

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

 55 RECORDS STORED

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 184

***** NORMAL END BINILOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:04

BINILOAD Example

U931-J-Z125-17-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

BINILOAD input file:

xxxxx+xxxx1xxxx+LRxxx2xxxx+xxxx3xxxx+xxxx4xxxx+xxxx5xxxx+xxxx6xxxx+xxxx7xxxx+xxxx8xxxx+xxxx9xxxx+xxxx0xxxx+xxxx1xxx
 o xxxxxxxxxxxxxxx.
 o Record contents
 ooxxxxxxo
 oOWNER database key in the set ARTICLES-AVAILABLE

/
 SYSTEM set MIN-STOCK-LEVEL
 oxxxxxxo
 OWNER database key in the set P-ORD-SPEC
oxxxxxxo
database key of the record
 .
 .
 .
 x 00000210TWO-PART SUMMER DRESS 23210740 & &
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCC4444444444444444FFFFFFFF0250029000050010000490000000100
0900000908000002F0D00000100000210965935939752026445923594000000000000000023210740080C090C00000C0C00090C0000000C0
 x 00000210TWO-PART SUMMER DRESS 23210742 & &
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCC4444444444444444FFFFFFFF0250029000050010000490000000100
0900000A08000002F0D00000100000210965935939752026445923594000000000000000023210742080C090C00000C0C00090C0000000C0
 x 00000210TWO-PART SUMMER DRESS 23210744 & &
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCC4444444444444444FFFFFFFF0250029000050010000490000000100
0900000B08000002F0D00000100000210965935939752026445923594000000000000000023210744080C090C00000C0C00090C0000000C0
 x 00000210TWO-PART SUMMER DRESS 23210746
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCC4444444444444444FFFFFFFF0380039000010000000090000000000
0900000C08000002F0D00000100000210965935939752026445923594000000000000000023210746000C020C00000C4C00096C0000004C0
 x 00000210TWO-PART SUMMER DRESS 23210748
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCC4444444444444444FFFFFFFF0380039000000000000090000000000
0900000D08000002F0D00000100000210965935939752026445923594000000000000000023210748000C020C00010C2C00008C0000002C0
 x 83095013PLEATED DRESS WITH JACKET 23310836
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCC4DCE4DCCDC44444444444444444FFFFFFFF0270029000000000000990000000000
0900000408000006F0D00000183095013739225502359404930113250000000000000000023310836000C030C00500C5C00495C0000005C0
 x 83095013PLEATED DRESS WITH JACKET 23310838
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCC4DCE4DCCDC44444444444444444FFFFFFFF0270029000000000000990000000000
0900000508000006F0D00000183095013739225502359404930113250000000000000000023310838000C030C00500C5C00495C0000005C0
 x 83095013PLEATED DRESS WITH JACKET 23310840
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCC4DCE4DCCDC44444444444444444FFFFFFFF0270029000000000000990000000000
0900000600000006F0D00000183095013739225502359404930113250000000000000000023310840000C030C00500C5C00495C0000005C0
 x 83095013PLEATED DRESS WITH JACKET 23310842
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCC4DCE4DCCDC44444444444444444FFFFFFFF0270029000000000000990000000000
0900000708000006F0D00000183095013739225502359404930113250000000000000000023310842000C030C00500C5C00495C0000005C0
 x 83095013PLEATED DRESS WITH JACKET 23310844
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCC4DCE4DCCDC44444444444444444FFFFFFFF0270029000000000000990000000000
0900000808000006F0D00000183095013739225502359404930113250000000000000000023310844000C030C00500C5C00495C0000005C0
 x 83095013PLEATED DRESS WITH JACKET 23310846
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCC4DCE4DCCDC44444444444444444FFFFFFFF0240029000000000000090000000000
0900000908000006F0D00000183095013739225502359404930113250000000000000000023310846020C050C00020C2C00018C0000002C0
 x 83095013PLEATED DRESS WITH JACKET 23310848
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCC4DCE4DCCDC44444444444444444FFFFFFFF0240029000000000000090000000000
0900000A08000006F0D00000183095013739225502359404930113250000000000000000023310848020C050C00020C2C00018C0000002C0
 .
 .
 .

For an example of how BINILOAD and BOUTLOAD work together, refer to page 209.

Copying, deleting and unloading from a database BOUTLOAD

188 U931-J-Z125-17-76

5.2 Copying, deleting and unloading records with BOUTLOAD

BOUTLOAD allows you to copy, delete and unload record types from a database quickly.

You can use BOUTLOAD when you want to unload a database partly or fully and then
reload it, or when you want to evaluate the data.
For restructuring purposes with BALTER, it is only necessary to unload record types in a
few exceptional cases, e.g. if you want to include the DUPLICATES NOT ALLOWED clause
in order to detect duplicates.

The files generated by BOUTLOAD can be reread by BINILOAD. Furthermore,
BOUTLOAD outputs the control statements for a following BINILOAD run to SYSLST if the
parameter SET-INFORMATION is set to YES. If SYSLST is assigned to a file, this file can
be subsequently modified and used for BINILOAD.

BOUTLOAD can also unload records with items of variable length.

5.2.1 BOUTLOAD functions

You can use BOUTLOAD to perform the following functions:

– copy record types from a database to output files
– delete record types from a database
– unload record types from a database to output files.

Furthermore, all records of a record type stored in one realm can be copied to an output file.

It is possible to delete the contents of an entire database and then use BOUTLOAD to
reformat the database.

When copying and unloading, BOUTLOAD stores the records of each specified record type
in one output file each. These output files can at the same time be used as input files for
BINILOAD.

BOUTLOAD copies or deletes the records of the specified record types in a single sweep,
i.e. it not only handles several record types concurrently, but also fills the output files
concurrently. In both cases, the consistency of the database is maintained.

Copying of record types with set information output is also possible parallel to a DBH run
with retrieval access or with a shadow database.

Copying without set information output is also possible parallel to the DBH, provided the
database is attached and has not been updated since mounting and up to termination of
the BOUTLOAD run. You must employ appropriate organizational measures to ensure that
this condition is respected. It is not checked by BOUTLOAD.

BOUTLOAD Copying, deleting and unloading from a database

U931-J-Z125-17-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

Copying record types (COPY-RECORD)

One or more, or all record types can be copied from a database in a BOUTLOAD run.

If no output files have been created, they are created by BOUTLOAD: one output file per
record type.

The database remains unchanged.

BOUTLOAD reads the records in the physical sequence in which they are stored in the
database.

BOUTLOAD copies the user part of the database record. Compressed records are
decompressed; records with variable items are filled with blanks to their maximum length;
the length item for the variable item is maintained. BINILOAD cannot process a file
generated by BOUTLOAD with variable items.

The structure of the output record is described on page 194.

Copying with SET-INFORMATION=NO is also possible for an inconsistent database.

Copying records of one record type from one realm (COPY-RECORD, REALM-NAME)

It is also possible in a BOUTLOAD run to copy the records of one or more record types from
only one realm. When this is done, the area reference is not stored in the output records.

If you have not created any output files, they are created by BOUTLOAD, one output file
per record type.

The realm remains unchanged.

 For sets with ORDER IS FIRST/LAST/NEXT/PRIOR/IMMATERIAL, the sorting
sequence of the records in the set occurrences may change when they are
reinserted.

i

Copying, deleting and unloading from a database BOUTLOAD

190 U931-J-Z125-17-76

Deleting record types (REMOVE-RECORD)

One or more record types can be deleted from a database in a BOUTLOAD run. The record
types are deleted together with all pointers to the records in associated tables, owner
records and DBTT entries.

When multiple record types are to be deleted, BOUTLOAD deletes them all simultaneously
in a single pass through the database. The hierarchy in the database (member-owner
relations) must be observed: Member record types must be deleted either before or
together with the owner record types.

 AFIM logging is permitted for the REMOVE-RECORD function if individual record
types are specified, but not for REMOVE-RECORD *ALL. If you specify REMOVE-
RECORD *ALL, you will need to first turn off AFIM logging with BMEND if required.

Unloading record types (EXPORT-RECORD)

One or more record types can be unloaded from a database in a BOUTLOAD run.

This function is a combination of the copy and delete functions. As when deleting, the
hierarchy in the database must be observed.

In the case of record types whose records are distributed across several realms, it is not
possible to unload records from only one realm.

When unloading all record types the database is reformatted, just as when deleting all
record types.

 AFIM logging is permitted for the EXPORT-RECORD function if individual record
types are specified, but not for EXPORT-RECORD *ALL. If you specify EXPORT-
RECORD *ALL, you will need to first turn off AFIM logging with BMEND if required.

i

i

BOUTLOAD Copying, deleting and unloading from a database

U931-J-Z125-17-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

Deleting and unloading all record types from a database
(REMOVE/EXPORT-RECORD,RECORD-NAME=*ALL)

It is possible in a BOUTLOAD run to delete or unload all record types from a database.
When this is done the database is reformatted. The schema and subschema structures of
the database are retained. The FPA pages, DBTTs, CALC pages and anchor records are
relocated (see "BFORMAT", page 88).
A formatting run can be performed only if all realms of the database are available.

Formatting with REMOVE-RECORD,RECORD-NAME=*ALL is also permitted for an
inconsistent database (e.g. following abnormal termination of a BOUTLOAD run).

 AFIM logging is permitted in REMOVE-RECORD and EXPORT-RECORD
functions
if individual record types are specified, but not for REMOVE-RECORD *ALL or
EXPORT-RECORD *ALL. If you specify REMOVE-RECORD *ALL or EXPORT-
RECORD *ALL, you will need to first turn off AFIM logging with BMEND if required.

The current setting for the online DBTT extensibility of the record types is retained.

Rights of access with the individual functions

 If a database is to be completely unloaded, for reasons of efficiency it is often
advisable to first execute multiple BOUTLOAD runs in parallel with the copy
function and thereafter to execute a BOUTLOAD run with the delete function.

only
administrator id RETRIEVAL EXCLUSIVE

copy - x -

delete x - x

unload x - x

Table 25: Rights of access with individual functions

i

i

Output files BOUTLOAD

192 U931-J-Z125-17-76

5.2.2 Preparing the output files and the BOUTLOAD run

The individual output files for BOUTLOAD can be created using the following commands:

/CREATE-FILE FILE-NAME=dbname.RECnnnnn[.mmmmm] [,SUPPORT= ...]
/ADD-FILE-LINK LINK-NAME=linkname,FILE-NAME=dbname.RECnnnnn[.mmmmm]
 [,BUFFER-LENGTH=xxx][,FILE-SEQUENCE=*NEW]

dbname
Name of the database to be processed.

nnnnn
5-digit record reference number with leading zeros.

mmmmm
5-digit area reference number with leading zeros; this specification is required if
records are to be copied from only one realm.

SUPPORT
You can specify the size of the storage space by means of SPACE in the SUPPORT
operand. This is only permitted for a disk.

linkname
A freely selectable link name must be specified if FILE-SEQUENCE=*NEW is set
or BUFFER-LENGTH is changed. Only one TFT entry may then exist for the output
file.

xxx Default

– for disk:*STD(SIZE=4)

– for tape:
BUFFER-LENGTH depends on the length of the records: At least 4 PAM pages.
The value is rounded up to a whole multiple of the record length and a whole
multiple of a a doubleword.

If output is to be on tape, an explicit number should be entered for BUFFER-
LENGTH, rather than using standard blocks, since specifying standard blocks
(STD) increases the size of the output file.

FILE-SEQUENCE=*NEW
permitted only for tape, if the same set of tapes is to be accessed in a series of
BOUTLOAD runs.

BOUTLOAD Output files

U931-J-Z125-17-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

The volume of data for output is calculated as follows:

number of records x reclength Bytes

The record length is calculated as follows

– for records containing set information in a 2-Kbyte database:

reclength = record length as per SIA report - length of system information
+ 4 * (number of non-singular sets in which the record is a

member + 1)

+ 1 * (number of singular sets in which the record is a
member, except for MANDATORY AUTOMATIC members)

– for records containing set information in a 4-Kbyte or 8-Kbyte database:

reclength = record length as per SIA report - length of system information
+ 8 * (number of non-singular sets in which the record is a

member + 1)

+ 1 * (number of singular sets in which the record is a
member, except for MANDATORY AUTOMATIC members)

– for records not containing set information:

reclength = record length as per SIA report - length of system information

In the case of record types which are distributed to realms, five bytes for the area reference
are added to the record length when the records are copied or extracted from multiple
realms.

The records are always copied into one output file per record type. An origin from more than
one realm is therefore required for the area reference to be specified.

The number of records can be obtained using the BSTATUS utility routine.

If the output files have not been previously created, they are created by BOUTLOAD on
public disk. The size of each file is calculated by BOUTLOAD from the maximum number
of DBTT entries for the corresponding record type.

 For output files on tape it must be ensured that as many tape units are available as
there are record types to be simultaneously unloaded, since BOUTLOAD copies the
record types at the same time.

i

Output files BOUTLOAD

194 U931-J-Z125-17-76

CSV output file

It is not obligatory to create the CSV output file. It is always created by the BOUTLOAD
utility on a public disc.

The CSV output file name consists of the file name of the output file and the suffix ‘CSV’:

dbname.RECnnnnn[.mmmmm].CSV

dbname
Name of the database to be processed.

nnnnn
5-digit record reference number with leading zeros.

mmmmm
5-digit area reference number with leading zeros. This specification is required if
records are to be copied from only one realm.

CSV Suffix for CSV output file.

The records are always copied into one CSV output file per record type.

If CSV-OUTPUT = *YES is specified, the DBCOM must be available.

Creating the output record

If BOUTLOAD has also output the set information on account of the
SET-INFORMATION=YES statement, the output record is created with the following
structure:

3 Database Key 3 Item 3 Database keys of all owners 3 User part 3 Area ref. 3
gDDDDDDDDDDDDDDADDDDDDADDDDDDDDDDDDDDDDDDDDDDDDDDDDDADDDDDDDDDDDADDDDDDDDDDDY

– The record’s database key

– A one-byte long item with the content
X’00’ = Member inserted
X’FF’ = Member not inserted
(for all singular sets in which the record is a member, except for MANDATORY
AUTOMATIC members)

– The owners’ database keys are not singular sets in which the set is a member

– If the record is not inserted in the set, the owner’s database key is set to High Value
(X'FFFFFFFF' in the case of a 2-KB database, or X'FFFFFFFFFFFFFFFF' in the case
of a 4/8-KB database)

– User part

BOUTLOAD Output files

U931-J-Z125-17-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

– The five-byte area reference (realm reference) in the case of record types which are
distributed to realms if their records are copied from multiple realms. The records are
always copied into one output file per record type. An origin from more than one realm
is therefore required for the area reference to be specified.

When BOUTLOAD outputs set information on the individual sets, the length of the database
key values is specified in the BOUTLOAD log which contains the statements for a
subsequent BINILOAD run (length “4” in the case of a 2-Kbyte database, length “8” in the
case of a 4-Kbyte/8-Kbyte database).

Without any set information, the output record consists of the user part only.

CSV output data

The following example shows part of a data output to a CSV output file in a presentation
mode similar to Microsoft EXCEL. In contrast, in a CSV file, the single values are separated
by a semicolon (;).

BOUT
LOAD

CSV
V1.20

28.03
.2014

14:3
8:53

DBNA
ME

DATABAS
E NAME

DB1

INFO
01

RECORD
NAME

RECOR
D2

INFO
02

RECORD
REF

2

INFO
03

REALM
NAME

AREA1

INFO
04

REALM
REF

3

FIEL
DS

DB Key
Ref

DB Key
RSQ

Memb
er
SYS-
1

Owner DB
Key Ref S1

Owner DB
Key RSQ S1

R1 R2-
1(1,1
)

R2-
1(1,2
)

R2-
2(1,1,
1)

R2-
2(1,1,
2)

… Are
a-
ref
.

RECO
RD

2 1 Y 1 6 15
,7

Y A YZ AC … 3

RECO
RD

2 3 N 1 3 -
47
,1

A B BC AB … 3

Output files BOUTLOAD

196 U931-J-Z125-17-76

The header of the data output contains up to 6 rows, if a realm name was specified in
COPY-RECORD:

– The first row contains the name of the utility routine, the corresponding utility routine’s
output format version, and the date and time of the CSV output creation.

– The next rows contain database name, record name, and record reference. If a realm
name was specified, the header also contains realm name and realm reference.

The header line of the record output can contain the following fields:

DB Key Ref, DB Key RSQ
Field names for the database key of the record

Member set-name
Field name for a one-byte long item with the following content:

Y Member inserted into the SYSTEM set set-name

N Member not inserted into the SYSTEM set set-name

(for all singular sets in which the record is a member, except for MANDATORY
AUTOMATIC members)

Owner DB Key Ref set-name, Owner DB Key RSQ set-name
If the record is a member record, database keys of all owners are output
additionally.

The item names according to the user schema

Area ref
In the case of a record type that is distributed to realms if its records are copied from
multiple realms

If an item is part of a repetition group or a vector the index value is attached to the item
name of such an element.

Items of the type DBKEY are output in the following format:
DB KEY REF and DB KEY RSQ.

BOUTLOAD converts binary and numeric data into a printable format as follows:

– The decimal point is represented by the character "comma" (",").

– Alphanumeric items of variable length are output according to the current length of the
variable item.

– Items of national type are converted to a user-defined character set, if it is possible.

BOUTLOAD Output files

U931-J-Z125-17-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

To assign or get a user default character set, proceed as follows:

Ê To assign a user default character set use the ADD-USER or MODIFY-USER
commands.

Ê To get the user default character set, use the SHOW-USER-ATTRIBUTES command.

For conversion from a national data type, the XHCS subsystem must be available in the
system. If national characters cannot be converted due to an XHCS subsystem error, the
warning 3935 is output, the output to this CSV file is terminated, and the CSV file is deleted.

3935 NATIONAL CHARACTERS CANNOT BE CONVERTED: XHCS RETURN CODE: returncode

If a record type contains a national data type, the corresponding CSV file is created with the
CODED-CHARACTER-SET from the USER-ID.
If the CODED-CHARACTER-SET of the user cannot be determined, the warning 3936 is
output, the CSV output for this record type is terminated, and the CSV file is deleted.

3936 USER CODED CHARACTER SET CANNOT BE DETERMINED: SRMUINFI RETURN CODE:
returncode

If a national character cannot be converted to a user-defined character set (because there
is no equivalent), this national character is output as character "period" ("."). A warning
message is output additionally:

3932 STRING CONVERSION WITH SUBSTITUTION BY DEFAULT CHARACTERS PERFORMED FOR
RECORD recordname.

A semicolon (";") is used to separate the individual values.

Alphanumeric values can contain some characters such as separators/delimiters (";"), new
lines, or double quotes, which have special meanings in different system environments. All
alphanumeric values are enclosed by double quotes so that these values can be processed
correctly in other system environments. If a value contains embedded (double) quote
characters, this double quote is represented by two (double) quote characters.

LOG BOUTLOAD

198 U931-J-Z125-17-76

5.2.3 BOUTLOAD log for the output record format

BOUTLOAD generates a log on SYSLST if the SET-INFORMATION parameter is set to
YES. If SYSLST is assigned to a file, this file can be used as input file for BINILOAD, and
the BINILOAD statements can be applied. See also the examples starting on page 208.

Example

BINILOAD PARAMETERS FOR RECORD : ARTICLE , REC-REF : 9
SCHEMA NAME IS MAIL-ORDERS
SUBSCHEMA NAME IS
USER FILE RECORD LENGTH IS 112
USER FILE BUFFER LENGTH IS 8192
INPUT FILE 'SHIPPING.REC00009.00005 '
INPUT RECORDNUMBER IS 55
STORE RECORD NAME IS ARTICLE
RECORD-DBKEY IS DISPL IS 0 , LENGTH IS 8
RECORD-DISPL IS 0 , DISPL IS 25 , LENGTH IS 87
RECORD-AREA NAME IS CLOTHING
INSERT INTO SET NAME IS P-ORD-SPEC
OWNER DBKEY IS DISPL IS 8 , LENGTH IS 8
INSERT INTO SET NAME IS MIN-STOCK-LEVEL
OWNER KEY IS DISPL IS 16 , LENGTH IS 1
INSERT INTO SET NAME IS ARTICLES-AVAILABLE
OWNER DBKEY IS DISPL IS 17 , LENGTH IS 8
END

BOUTLOAD System environment

U931-J-Z125-17-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

5.2.4 BOUTLOAD system environment

Figure 21: System environment for BOUTLOAD

In this description it is assumed that UDS/SQL was installed with IMON (see section
“START commands for the UDS/SQL programs” on page 47).

S Y S DT A
B OUT LOAD

DB DIR

S Y S LS T

M S A files

Us er
rea lms

C S V files

Statements BOUTLOAD

200 U931-J-Z125-17-76

5.2.5 BOUTLOAD statements

The statement formats of the BOUTLOAD utility routine conform to the SDF rules (System
Dialog Facility, see the manuals "SDF Dialog Interface" and "Commands").

The data types used in SDF formats are described in table 5 on page 23.

Overview of statements for BOUTLOAD

Statement Meaning

COPY-RECORD
 RECORD-NAME = *ALL / list-poss(20): <record-name> /

 *ALL-EXCEPT(...)
 ,REALM-NAME = *ALL / <realm-name>
 ,SET-INFORMATION = YES / NO
 ,CSV-OUTPUT = *NO/ *YES

Copy all records of the
specified record types to
output files

END Terminate BOUTLOAD

EXPORT-RECORD
 RECORD-NAME = *ALL / list-poss(20): <record-name> /

*ALL-EXCEPT(...)
 ,SET-INFORMATION = YES / NO

Unload all records of the
specified record types to
output files

OPEN-DATABASE
 DATABASE-NAME = <dbname>
 ,COPY-NAME = *NONE / <copyname>
 ,USER-IDENTIFICATION = *OWN / <userid>

Assign the database

REMOVE-RECORD
 RECORD-NAME = *ALL / list-poss(20): <record-name> /

*ALL-EXCEPT(...)

Delete all records of the
specified record types

Table 26: Statements for BOUTLOAD

BOUTLOAD COPY-RECORD statement

U931-J-Z125-17-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

COPY-RECORD (Copying records to output files)

This statement is used to copy all records of the specified record types to output files. It is
also possible to get the output in CSV format. The database key values are output in the
same form in which they exist in the database, i.e. BOUTLOAD does not convert them from
the short form to the long form, and vice versa. The database itself remains unchanged.

RECORD-NAME = *ALL / list-poss(20): <record-name>/ *ALL-EXCEPT(...)

*ALL
With this specification only this one function is permitted in the BOUTLOAD run, i.e. the
END statement must follow.
All records of all record types are copied.

<record-name>
All records of the specified record type(s) are copied.

*ALL-EXCEPT(...)
With this specification only this one function is permitted in the BOUTLOAD run, i.e. the
END statement must follow.
All records with the exception of the specified record types are copied.

EXCEPT-NAME= list-poss(20): <recordname>
Names of the record types which are not to be copied.

REALM-NAME = *ALL / <realm-name>

*ALL
All records of the specified record type are copied from all realms in which they can
occur.

<realm-name>
If a single realm has been specified, only the records of that realm are copied to output
files.

COPY-RECORD

 RECORD-NAME = *ALL / list-poss(20): <record-name> / *ALL-EXCEPT(...)

*ALL-EXCEPT(...)

⏐ EXCEPT-NAME= list-poss(20):<recordname>

,REALM-NAME = *ALL / <realm-name>

,SET-INFORMATION = YES / NO

,CSV-OUTPUT = *NO / *YES

END statement BOUTLOAD

202 U931-J-Z125-17-76

With this specification only this one function is permitted in the BOUTLOAD run, i.e. the
END statement must follow.

SET-INFORMATION = YES / NO
Determines whether set information is to be stored in the corresponding output file for every
record and whether statements for BINILOAD are to be written to SYSLST.

Before copying the database is not checked as to whether it contains records which can be
copied. If no such records exist, the associated output file is either invalidated, if it has been
created by the user, or deleted, if it has been created by BOUTLOAD.

CSV-OUTPUT = *NO / *YES

*NO
BOUTLOAD outputs the data to output files, but not in CSV format.

*YES
BOUTLOAD additionally outputs the data in CSV format.

END (Terminating the BOUTLOAD run)

This statement is used to terminate the BOUTLOAD run. It must be the last statement you
enter.

This statement has no operands.

END

BOUTLOAD EXPORT-RECORD statement

U931-J-Z125-17-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

EXPORT-RECORD (Unloading records to output files)

This statement is used to unload all records of the specified record types from the database
to output files. The database key values are output in the same form in which they exist in
the database, i.e. BOUTLOAD does not convert them from the short form to the long form,
and vice versa.

This statement may only be used if BOUTLOAD has been loaded under the identification
under which the database is cataloged.

RECORD-NAME = *ALL / list-poss(20): <record-name>/ *ALL-EXCEPT(...)

*ALL
Implies that this is the only function permitted in the BOUTLOAD run; i.e. the END state-
ment must follow.
The database is reformatted; all realms have to be available.

<record-name>
All records of the specified record type are copied and deleted from the database.

*ALL-EXCEPT(...)
With this specification only this one function is permitted in the BOUTLOAD run, i.e. the
END statement must follow.
All records with the exception of the specified record types are copied and deleted in
the database.

EXCEPT-NAME= list-poss(20): <recordname>
Names of the record types which are not to be copied and are to be deleted in the
database.

SET-INFORMATION = YES / NO

Determines whether set information is to be stored in the corresponding output file for
every record and whether statements for BINILOAD are to be written to SYSLST.
When BOUTLOAD outputs set information for the individual records, the BOUTLOAD
log, which contains the statements for a subsequent BINILOAD run, indicates the length
of the database key values (length “4” for a 2-Kbyte database and length “8” for a 4-
Kbyte or 8-Kbyte database).

EXPORT-RECORD

 RECORD-NAME = *ALL / list-poss(20): <record-name>/ *ALL-EXCEPT(...)

*ALL-EXCEPT(...)

⏐ EXCEPT-NAME= list-poss(20):<recordname>

,SET-INFORMATION = YES / NO

EXPORT-RECORD statement BOUTLOAD

204 U931-J-Z125-17-76

Record types may be copied with SET-INFORMATION=NO even if the database is
inconsistent.

Before copying the database is not checked as to whether it contains records which can be
copied. If no such records exist, the associated output file is either invalidated, if it has been
created by the user, or deleted, if it has been created by BOUTLOAD.

 When entering the record types, the hierarchical structure of the database schema
must be observed; i.e. the member record types must be unloaded either before or
together with the owner record types.
If the entries are incorrect, the BOUTLOAD run is aborted.

If you store records in the database subsequently, the assignment of the DB keys
begins again at RSQ=1. The DB keys can now also be used (once) if they are
locked for reuse by the DBH by means of the BMODTT statement KEEP. An
additional BMODTT run with the REMOVE statement is not required.

i

BOUTLOAD OPEN-DATABASE statement

U931-J-Z125-17-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

OPEN-DATABASE (Assigning the database)

This statement is used to assign the database.

You must enter it first if you have not assigned the database with:

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

If the SET-FILE-LINK command has been entered, an OPEN-DATABASE statement is
rejected as invalid.

DATABASE-NAME = <dbname>
Name of the database. A user can edit only databases that are in his or her userid. A data-
base from another userid can only be processed using the TSOS identification of the sys-
tem administrator.

COPY-NAME = *NONE / <copyname>

*NONE
The original database is opened.

<copyname>
The shadow database is opened.

USER-IDENTIFICATION = *OWN / <userid>

*OWN
The database is in the user’s userid.

<userid>
The database is in another userid. This specification is permitted only from the TSOS
identification.

The link name DATABASE remains in effect until it is canceled with the REMOVE-FILE-
LINK command.

The OPEN-DATABASE statement remains in effect up to completion of the BOUTLOAD
run.

OPEN-DATABASE

 DATABASE-NAME = <dbname>

,COPYNAME = *NONE / <copyname>

,USER-IDENTIFICATION = *OWN/ <userid>

REMOVE-RECORD statement BOUTLOAD

206 U931-J-Z125-17-76

REMOVE-RECORD (Deleting records)

This statement is used to delete all records of the specified record types from the database.

This statement may only be used if BOUTLOAD has been loaded under the identification
under which the database is cataloged.

RECORD-NAME = *ALL / list-poss(20): <record-name>/ *ALL-EXCEPT(...)

*ALL
Implies that this is the only function permitted in the BOUTLOAD run; i.e. the END state-
ment must follow.
The database is reformatted; all realms have to be available.

This statement is also allowed for an inconsistent database (with the system break bit
set).

<record-name>
All records of the specified record type are deleted from the database.

*ALL-EXCEPT(...)
With this specification only this one function is permited in the BOUTLOAD run, i.e. the
END must follow.
All records with the exception of the specified record types are copied and deleted in
the database.

EXCEPT-NAME= list-poss(20): <recordname>
Names of the record types which are not to be deleted.

 When entering the record types, the hierarchical structure of the database schema
must be observed; i.e. the member record types must be deleted either before or
together with the owner record types.
If the entries are incorrect, the BOUTLOAD run is aborted.

If you store records in the database subsequently, the assignment of the DB keys
begins again at RSQ=1. The DB keys can now also be used (once) if they are
locked for reuse by the DBH by means of the BMODTT statement KEEP. An
additional BMODTT run with the REMOVE statement is not required.

REMOVE-RECORD

RECORD-NAME = *ALL / list-poss(20): <record-name> *ALL-EXCEPT(...)

*ALL-EXCEPT(...)

⏐ EXCEPT-NAME= list-poss(20):<recordname>

i

BOUTLOAD Command sequence

U931-J-Z125-17-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

5.2.6 Command sequence to start BOUTLOAD

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 [/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR]

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-BOUTLOAD

04 [OPEN-DATABASE DATABASE-NAME=dbname]

05 boutload-statements

06 END

01,04 One of the two statements must be used to assign the database.

02 The specified version of BOUTLOAD is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

03 BOUTLOAD can be called from any user ID. The UDS/SQL utility routine can also
be started with the aliases BOUTLOAD and START-UDS-OUTLOAD.

Examples BOUTLOAD

208 U931-J-Z125-17-76

5.2.7 Examples

Example of BOUTLOAD

Record type COLORS from database SHIPPING is copied.

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BOUTLOAD

***** START BOUTLOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:02

//OPEN-DATABASE DATABASE-NAME=SHIPPING

//COPY-RECORD RECORD-NAME=COLORS,REALM-NAME=ARTICLE-RLM

3903 AFTER " REALM-NAME = <NAME> " ONLY THE " END " STATEMENT IS ALLOWED

//END

***** INPUT CHECK SUCCESSFULLY TERMINATED

***** BEGIN SCAN OF USER-REALMS

***** REALM: ARTICLE-RLM

***** SCAN OF USER-REALMS SUCCESSFULLY TERMINATED

***** DIAGNOSTIC SUMMARY OF BOUTLOAD

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 32

***** NORMAL END BOUTLOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:02

BOUTLOAD Examples

U931-J-Z125-17-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

Example of BOUTLOAD and BINILOAD

The record type MATERIALS is copied and deleted with BOUTLOAD and stored with
BINILOAD. BINILOAD uses the output generated by BOUTLOAD for the input of data
and BINILOAD statements.

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BOUTLOAD

***** START BOUTLOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:02

//OPEN-DATABASE DATABASE-NAME=SHIPPING

//COPY-RECORD RECORD-NAME=MATERIALS,REALM-NAME=ARTICLE-RLM

3903 AFTER " REALM-NAME = <NAME> " ONLY THE " END " STATEMENT IS ALLOWED

//END

***** INPUT CHECK SUCCESSFULLY TERMINATED

***** BEGIN SCAN OF USER-REALMS

***** REALM: ARTICLE-RLM

***** SCAN OF USER-REALMS SUCCESSFULLY TERMINATED

BINILOAD PARAMETERS FOR RECORD : MATERIALS , REC-REF : 12

SCHEMA NAME IS MAIL-ORDERS

SUBSCHEMA NAME IS

USER FILE RECORD LENGTH IS 29

USER FILE BUFFER LENGTH IS 8192

INPUT FILE 'SHIPPING.REC00012.00011'

INPUT RECORDNUMBER IS 10 1

STORE RECORD NAME IS MATERIALIEN

RECORD-DBKEY IS DISPL IS 0 , LENGTH IS 8

RECORD-DISPL IS 0 , DISPL IS 8 , LENGTH IS 21

RECORD-AREA NAME IS ARTICLE-RLM

END

***** DIAGNOSTIC SUMMARY OF BOUTLOAD

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 32

***** NORMAL END BOUTLOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:02

 .
 .
 .

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

1 von BOUTLOAD erzeugte BINILOAD-Anweisungen, die als Eingabe für BINILOAD verwendet werden.

Examples BOUTLOAD

210 U931-J-Z125-17-76

/START-UDS-BOUTLOAD

***** START BOUTLOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:03

//OPEN-DATABASE DATABASE-NAME=SHIPPING

//REMOVE-RECORD RECORD-NAME=MATERIALS

//END

***** INPUT CHECK SUCCESSFULLY TERMINATED

***** NO OCCURRENCES OF MEMBER RECORDS DETECTED

***** BEGIN SCAN OF USER-REALMS

***** REALM: ARTICLE-RLM

***** SCAN OF USER-REALMS SUCCESSFULLY TERMINATED

***** DIAGNOSTIC SUMMARY OF BOUTLOAD

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 92

***** NORMAL END BOUTLOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:03

.

.

.

BOUTLOAD Examples

U931-J-Z125-17-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
4.

 S
e

pt
em

b
er

 2
01

7
 S

ta
n

d
11

:4
6

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

bü
ch

e
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
u

ds
au

f.
k0

5

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BINILOAD

***** START BINILOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:04

EXECUTION WITH CHECK.

SCHEMA NAME IS MAIL-ORDERS

SUBSCHEMA NAME IS ADMIN

USER FILE RECORD LENGTH IS 29

USER FILE BUFFER LENGTH IS 8192

INPUT FILE 'SHIPPING.REC00012.00011' 1

INPUT RECORDNUMBER IS 10

STORE RECORD NAME IS MATERIALS

RECORD-DBKEY IS DISPL IS 0 , LENGTH IS 8

RECORD-DISPL IS 0 , DISPL IS 8 , LENGTH IS 21

RECORD-AREA NAME IS ARTICLE-RLM

END

BEGIN CHECK-RUN

*** DATE AND TIME 2015-06-28 11:41:04

BEGIN ALLOCATION

*** DATE AND TIME 2015-06-28 11:41:04

SEARCHKEY ON RECORD-LEVEL:

REC REF: 12

RECORD NAME: MATERIALS

SEARCHKEY TABLE, DBTT_COLUMN_NR: 1

*** ICRELES: MOVE_ROUTINE SORTKF CREATED

BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:04

SEARCHKEY ON RECORD-LEVEL:

REC REF: 12

RECORD NAME: MATERIALS

SEARCHKEY TABLE, DBTT_COLUMN_NR: 2

*** NO ERRORS DETECTED DURING CHECK-RUN

END CHECK-RUN

*** DATE AND TIME 2015-06-28 11:41:04

BEGIN ALLOCATION

*** DATE AND TIME 2015-06-28 11:41:04

*** DATABASE IS IN USE

SEARCHKEY ON RECORD-LEVEL:

REC REF: 12

RECORD NAME: MATERIALS

SEARCHKEY TABLE, DBTT_COLUMN_NR: 1

*** ICRELES: MOVE_ROUTINE SORTKF CREATED

BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:05

1 BINILOAD statements that are generated by BOUTLOAD and used as input for BINILOAD.

Examples BOUTLOAD

212 U931-J-Z125-17-76

SEARCHKEY ON RECORD-LEVEL:

REC REF: 12

RECORD NAME: MATERIALS

SEARCHKEY TABLE, DBTT_COLUMN_NR: 2

BEGIN STORE DB-RECORD

*** DATE AND TIME 2015-06-28 11:41:05

STORING DATABASE RECORDS

END STORE DB-RECORD

*** DATE AND TIME 2015-06-28 11:41:05

END CLOSE

*** DATE AND TIME 2015-06-28 11:41:05

***** DIAGNOSTIC SUMMARY OF BINILOAD

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

 10 RECORDS STORED

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 96

***** NORMAL END BINILOAD (UDS/SQL V2.8 0000) 2015-06-28 11:41:06

U931-J-Z125-17-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6 Restructuring the database
(BCHANGE, BALTER)

Restructuring a database which already contains data means changing the schema and/or
the storage structure.

You can perform actions purely for the purpose of renaming which only affect the schema
in a renaming cycle (see chapter “Renaming database objects (BRENAME, BALTER)” on
page 335).

The activities necessary for restructuring can be divided into three categories as follows:

● preparatory measures

● restructuring process

● follow-up activities.

Preparatory measures Restructuring the database

214 U931-J-Z125-17-76

Preparatory measures

● Analyzing and modifying the database schema and storage structure

● Checking database consistency

● Analyzing memory space statistics

● If After Image Logging is activated deactivate it using BMEND (see also section “Saving
the database” on page 270)

● Either

– save the complete database including DBCOM, COSSD and HASHLIB before the
restructuring process

or

– save HASHLIB, COSSD, DBDIR and DBCOM before the restructuring process

– determine which user realms are required in an analysis run with the statements
REPORT IS YES and EXECUTION IS NO

– save these user realms before the BALTER execution phase

Detailed information on saving is provided in section “Saving the database” on
page 270.

Restructuring the database Preparatory measures

U931-J-Z125-17-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Figure 22: Preparatory measures for restructuring the database

Preparatory measures

Modify
database schema

Modify
storage structure

BCHECK
Check

database consistency

BSTATUS

Analyze storage
space statistics

Enough
space in DB

or secondary allocation
> 0?

yes

nein

BREORG
Extend

affected realms

Restructuring process

R
Modify
storage
structure
only

Modify
schema
only

Save only

required user realms?

no

yes

START-ARCHIVE/COPY-FILE...

Save HASHLIB, COSSD,
DBDIR, DBCOM Save database

START-ARCHIVE/COPY-FILE...

Restructuring process Restructuring the database

216 U931-J-Z125-17-76

Restructuring process

This is a process that resembles the creation of a database:

– BCHANGE prepares the DBDIR to accept a new SIA

– New DDL and SSL definitions are then compiled and the new SIA is entered in the
DBDIR

– Finally, BALTER adapts the data to the modified schema.

 The restructuring cycle of BCHANGE/BALTER cannot be combined with the
renaming cycle of BRENAME/BALTER. Renaming in a restructuring cycle is
interpreted as deleting the old item and inserting the new item. This can result in the
loss of
data.

i

Restructuring the database Restructuring process

U931-J-Z125-17-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Figure 23: Restructuring process

Restructuring process

BCHANGE
Prepare restructuring

DDL compiler

SSL compiler

Compile modified schema DDL

Compile modified SSL

BGSIA
Generate new SIA and enter

in DBDIR

LMS
Enter the UDSHASH module and new
or modified hash routines in HASHLIB

BALTER
Analysis listing:

analyze modifications

not enough
space in DB

?

illegal
modifications

?

Follow-up activities

DDL compiler

Delete schema

Apply backup

BREORG
Extend affected realms

R

yes

no

no

yes

DDL error

DDL error

SSL error

If no SSL compilation is
processed the default
values for storage structure
are set

Have all
user realms been

saved?

Save required user realms

BALTER
Adapt data

yes

nein

Apply backup

START-ARCHIVE/COPY-FILE ...

Follow-up activities Restructuring the database

218 U931-J-Z125-17-76

Follow-up activities

After restructuring, the following activities have to be carried out:

– Access rights have to be updated if user group names are defined for access rights in
the output database.

– Subschemas have to modified to the schema.

– DB application programs have to be adapted to the new schema.

– Sets and hash areas have to be reorganized using BREORG.

– It may also be necessary to use the utility routine BMODTT to reassign DB keys that
have been released (see "BMODTT" in the "Recovery, Information and Reorganization"
manual).

 A logging gap occurs because of the restructuring cycle (see the “Database
Operation” manual, Media recovery). After the restructuring cycle you must
therefore establish a new basis for media recovery by copying the modified files
together with the unmodified files. You must then use BMEND to activate After
Image Logging again.

i

Restructuring the database Follow-up activities

U931-J-Z125-17-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Figure 24: Activities after database restructuring

BCHECK

CHECK database consistency

Follow-up activities

DDL compiler

Transfer compatible subschemas

BGSSIA

Generate and enter in the
DBDIR the SSIA of

the compatible subschemas

Correct the incompatible
subschemas

DDL compiler

Compile
corrected subschema

BGSSIA

Generate SSIA and
enter in DBDIR

Adapt DB application
programs

Compiler and BINDER

 Compile and link adapted
DB application program

BREORG

Reorganize the database

For each
incompatible
subschema

For each
compatible
subschema

All subschemas
are compatible

Update access rights

BPRIVACY

Modifying the Schema DDL Database restructuring

220 U931-J-Z125-17-76

6.1 Modifying the Schema DDL

If the DB administrator wishes to modify the Schema DDL, he or she must generate a
complete new Schema definition and have it compiled. BALTER enables the following
modifications to be made to the Schema DDL:

● at realm level

– adding or deleting realms

● at record type level

– adding or deleting record types
– changing LOCATION MODE
– redefining, deleting or modifying SEARCH keys
– adding, omitting, redefining, lengthening or shortening items

● at set level

– adding or deleting sets (with restrictions)
– modifying the ORDER clause (with restrictions)
– changing the sort criteria
– redefining, deleting or modifying SEARCH keys.

During restructuring operations BALTER identifies the database elements (realms, record
types, sets, keys, etc.) solely by means of their names:

– BALTER recognizes elements as identical if they are of the same type (e.g. record type)
and their names occur in the old and new Schema DDL.

– BALTER deletes elements if the name for this element type does not occur in the new
Schema DDL.

– BALTER adds elements if the name for this element type does not occur in the old
Schema DDL.

Consequently it is impossible to rename elements or in the same restructuring run delete
an element and replace it by an element of the same type and name. The BRENAME utility
routine is provided for renaming items (see chapter “Renaming database objects
(BRENAME, BALTER)” on page 335).

When the BGSIA run is carried out during restructuring, the numbers of the database
elements remain the same. BGSIA allocates the numbers in question according to the
element name. Consequently the sequence in which the elements are defined in the new
Schema DDL is immaterial.

Database restructuring Modifying the Schema DDL

U931-J-Z125-17-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

When restructuring is performed, the clauses of the Schema DDL and the SSL are subject
to the same rules which apply when a database is defined (see the "Design and Definition"
manual). This also means that when a clause of the Schema DDL is modified, all other
associated clauses in the Schema DDL and SSL must be adapted so as to comply with
these rules.

The following is a detailed description of the modifications possible in the Schema DDL and
their effects on the stored data.

Schema entry Modifying the Schema DDL

222 U931-J-Z125-17-76

Schema entry

 SCHEMA NAME IS schema-name

schema-name
may be changed if required.

 [PRIVACY LOCK FOR COPY IS literal-1[OR literal-2]].

The PRIVACY LOCK specifications can be changed as required.

Effects on stored data:

The DDL compiler enters the new PRIVACY LOCK specifications in the new DBCOM.

A subschema whose PRIVACY KEY does not match the new PRIVACY LOCK
specifications can still be used (see section “Copying compatible subschemas” on
page 310). The new PRIVACY LOCK specifications need only be taken into account when
the new or modified subschemas are compiled.

Modifying the Schema DDL Realm entry

U931-J-Z125-17-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Realm entry

 AREA NAME IS realm-name

Realms can be added or deleted.

If a realm containing records of a record type which also occurs in the new schema is
deleted, these records must be unloaded before restructuring takes place, since BALTER
does not transfer records to other realms. BALTER simply removes a deleted realm from
the database. When restructuring is complete, the file of the realm must be deleted with the
ERASE command.

Realms which have been added need not be formatted with BFORMAT. BALTER formats
them automatically and adds them to the database. The realms must, however, be set up
using the CREATE-FILE command before the BALTER run takes place.
Make sure that the secondary assignment is set to a value greater than 0 if the realm is to
be extendable online (see the “Database Operation” manual, ACT INCR)

 [AREA IS TEMPORARY].

Adding or deleting the temporary realm is possible.

Changing a temporary realm into a non-temporary realm or vice versa is however not
permissible.

Record entry Modifying the Schema DDL

224 U931-J-Z125-17-76

Record entry

 RECORD NAME IS record-name

record-name
It is possible to add or delete record types or to modify their definitions.

A record type which is to be deleted need not first be unloaded. BALTER deletes all related
information such as records, hash areas, DBTT and tables, with one exception:
compressed records or records with variable items must be unloaded before restructuring,
since otherwise BALTER cannot process them and therefore cannot delete them.

l l lIN⎫ ⎫⎫
 olDIRECT ⎫ oitemname-1 m } record- oo
 om } m nOF~ name }o
 onDIRECT-LONG~ o oo
 [LOCATION MODE IS m nidentifier-1 ~}]
 o o
 oCALC[hashroutine] USING itemname-2,... o
 o o
 n DUPLICATES ARE[NOT] ALLOWED ~

The LOCATION MODE clause can be modified, added or omitted as required.

CALC/DIRECT or CALC/DIRECT-LONG
Allows the conversion of DIRECT or DIRECT-LONG to CALC, and vice versa, or
allows the LOCATION MODE clause with one of these specifications to be omitted
or added.

Effects on stored data:

– DIRECT or DIRECT-LONG → CALC:
BALTER creates a new hash area and transfers the data records to it.
If the record type is the member record type of a list, an indirect CALC is
created. In the case of a distributable list the hash area for all records is located
in one realm.

– CALC → DIRECT or DIRECT-LONG:
BALTER deletes all system information needed for hashing but does not
transfer those records of this record type which have already been stored to the
database.

Modifying the Schema DDL Record entry

U931-J-Z125-17-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

– Addition/omission of LOCATION MODE IS CALC:
This change has exactly the same effect on the data as changing the
specification DIRECT or DIRECT-LONG to CALC, and vice versa.

– Addition/omission of LOCATION MODE IS DIRECT/DIRECT-LONG:
This change has no effect on the stored data, but needs to be taken into
account in application programs.

DIRECT / DIRECT-LONG
item-name-1:
the key item may be altered as required

identifier-1:
may be changed

Effects on data:

These changes have no effect on stored data, but needs to be taken into account
in application programs.

CALC hash-routine: Change permitted.
It is permissible to change from the standard UDS/SQL hash routine to a user hash
routine or vice versa; it is also permissible to replace the user hash routine by a new
user hash routine.

item-name-2,...:
Any change in the key items permitted.

DUPLICATES...:
Duplicates may be permitted or prohibited as required.

Effects on stored data:

– If the key items or the hash routine are altered, BALTER creates a new hash
area and transfers the records.

– If the DUPLICATES specification is changed to NOT ALLOWED, it is
important to remember that BALTER only checks data for duplicates in those
cases in which further alterations make processing of keys necessary.

– If BALTER finds records with duplicate key values, it does not eliminate these
values. If duplicates are prohibited, a check must be carried out to ascertain
whether records with duplicate key values occur. If so, duplicates must be
removed before restructuring is performed.

– BALTER logs duplicate key values in the EXECUTION phase only, not in the
analysis log. Restructuring is then continued.

– This treatment of duplicates should be applied to all clauses containing the
DUPLICATES entry.

Record entry Modifying the Schema DDL

226 U931-J-Z125-17-76

 WITHIN realm-name-1[,realm-name-2,... AREA-ID IS identifier-2]

realm-name
It is permissible to change the allocation of record types to realms.

Effects on stored data:

– When a realm which is defined with LOCATION MODE IS CALC is added to a
record type, BALTER creates a hash area for the record type in this realm
(except in the case of distributable lists).

– When the record type is the member record type of a distributable list and this
is defined with LOCATION MODE IS CALC, an indirect CALC area which is
determined explicitly by the DETACHED WITHIN clause of the MODE IS LIST
statement in the SSL or alternatively by the first realm name of the
aforementioned WITHIN clause is used in one realm. A corresponding change
causes the CALC area to be created anew.
If only one or more realms are added for a member record type of a distributable
list, the existing list remains unchanged.

– When realm-name-1 is changed, BALTER relocates the record type’s DBTT to
the newly specified realm if no SSL specification prevents this.

 When a realm is omitted in the WITHIN clause, no records of the record type
concerned may be stored in this realm, otherwise (except in the case of
distributable lists) BALTER will abort the restructuring even if another realm
is made available for these records.

When a realm is omitted in the case of distributable lists, this results in the
list being recreated even if this realm contains no records.

When a distributable list is removed, for instance by changing the MODE
clause to POINTER-ARRAY, the records of the member record type remain
in the realm in which they were stored in the distributable list. If these
records are accessed using LOCATION MODE IS CALC, it must be
ensured that the AREA-ID is supplied with correct information after the list
has been removed. To avoid any access problems occurring here, all pages
in the list can be relocated with the UDS online utility to one realm before
restructuring takes place, and just one realm can be declared for the record
type when the list is removed.

i

Modifying the Schema DDL Record entry

U931-J-Z125-17-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

To improve the runtime of BALTER with large databases, you can proceed
as follows:

If you increase the realm allocation of an owner record type from one to two
or more realms, you should restructure the database in a first cycle by
changing the DETACHED-specifications (including the default values) to
DETACHED WITHIN realm-name for the tables that depend on the owner
record type. realm-name is the realm in which the owner records are
currently stored. In a second restructuring cycle you should delete the
DETACHED specification.

identifier-2
Can be changed as required.

Effects on stored data:

There are no effects on data; the change need only be taken into account in the
application programs.

Record entry Modifying the Schema DDL

228 U931-J-Z125-17-76

 lCALC[hash-routine]⎫
 [SEARCH KEY IS item-name-3,... USING m } [NAME IS name]
 nINDEX ~

 DUPLICATES ARE[NOT] ALLOWED]

In the SEARCH-KEY clause any change is permitted. It is possible to:

– change existing SEARCH keys
– define new SEARCH keys
– omit SEARCH keys which are no longer required

item-name-3,...
There are no restrictions on which data items can be used as a SEARCH key or on
which data items are combined to form the SEARCH key.

USING ...
Any change is allowed.

Effects on stored data:

– CALC → INDEX:
BALTER creates a multi-level SEARCH key table and releases the memory
space of the indirect hash area.

– INDEX → CALC:
BALTER creates the SEARCH key table as an indirect hash area and releases
the previously allocated memory space.

– Any other hash routine:
BALTER creates a new hash area and releases the memory space of the
original hash area.

name This specification can be omitted, added or changed.

DUPLICATES...
For duplicates the same applies here as for the LOCATION MODE clause (see
section “Record entry” on page 224).

BALTER checks for illegal key value duplicates and logs them only if it
has to create a multi-level SEARCH key table or an indirect hash area. i

Modifying the Schema DDL Record entry

U931-J-Z125-17-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 {[level-number] record-element-name

 l lmask-string ⎫ ⎫
 oPICTURE IS m } o
 o nLX (integer-1) DEPENDING ON item-name-4~ o
 o o
 o l l l15⎫ ⎫⎫o
 o o oBINARY m31} ooo
 o oFIXED REAL m n63~ }oo
 m o o oo}
 o o nDECIMAL[integer-2[,integer-3]] ~oo
 oTYPE IS m }o
 o oCHARACTER[integer-4[DEPENDING ON item-name-5]] oo
 o o oo
 o oDATABASE-KEY oo
 o o oo
 n nDATABASE-KEY-LONG ~~

 [OCCURS integer-5 TIMES].}...

The structure of record types can be modified as required, but it is important to bear in mind
the following:

● Length of record type
Record types which are stored in a single-level list must not be lengthened!
A single-level list means ORDER IS LAST, FIRST, PRIOR or IMMATERIAL and MODE
IS LIST.

● Number and sequence of item
You may change the order of items. You may also delete items.
Newly defined items are initialized by BALTER dependent on item type:

– alphanumeric items with blanks
– national items with national blanks (Unicode)
– numeric items with the value zero

● Length of items
Items can be lengthened or shortened. BALTER proceeds as follows, depending on the
item type:

– Alphanumeric items:

When items are lengthened, BALTER pads to the right with blanks. When items are
shortened, BALTER truncates to the right by the appropriate number of characters.

– National items:

When items are lengthened, BALTER pads to the right with blanks (Unicode). When
items are shortened, BALTER truncates to the right by the appropriate number of
characters.

Record entry Modifying the Schema DDL

230 U931-J-Z125-17-76

– Numeric items:

When items are lengthened, BALTER pads to the left of the decimal point with
zeros. When items are shortened, BALTER truncates to the left of the decimal point
by the appropriate number of characters. Significant digits may be lost as a result.
If the item has a sign, the sign is retained, provided the new item definition allows a
sign.

● Database key items
In the case of database key items, their type can be changed from DATABASE-KEY to
DATABASE-KEY-LONG, and vice versa.

Figure 25: Changing the type of database key items

TYPE IS DATABASE-KEY → TYPE IS DATABASE-KEY-LONG:
BALTER copies the 1-byte record reference number (REC-REF) of the DATABASE-
KEY item right-justified into the corresponding 2-byte area of the DATABASE-KEY-
LONG item. The 3-byte record sequence number (RSQ) of the DATABASE-KEY item
is copied right-justified into the corresponding 4-byte area of the DATABASE-KEY-
LONG item.

TYPE IS DATABASE-KEY-LONG → TYPE IS DATABASE-KEY:
BALTER copies the right byte of the 2-byte long record reference number (REC-REF)
of the DATABASE-KEY-LONG item right-justified into the corresponding 1-byte area of
the DATABASE-KEY item. The right 3 bytes of the 4-byte long record sequence number
(RSQ) of the DATABASE-KEY-LONG item are copied right-justified into the
corresponding 3-byte area of the DATABASE-KEY item.

2 bytes 2 bytes

REC-REF RSQ

REC-REF
RSQ

 = record reference number
= record sequence number

not used

4 bytes

1 byte 3 bytes

REC-REF RSQ

TYPE IS DATABASE-KEY

TYPE IS
DATABASE-KEY-LONG

Modifying the Schema DDL Record entry

U931-J-Z125-17-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Due to the truncation of positions on the left for the REC-REF and RSQ when
converting from TYPE IS DATABASE-KEY-LONG to TYPE IS DATABASE-KEY, data is
lost if the REC-REF > 254 and/or the RSQ > 224-1. If this occurs, BALTER issues a
warning, which contains the original DATABASE-KEY-LONG value; however, the
BALTER run is not aborted. The database remains in a consistent state (see also
“BCHECK” in the “Recovery, Information and Reorganization” manual). The logical
consistency, i.e. the consistency of application data, will need to be verified and
ensured.

● Type of items
When you change the type of a numeric item to another numeric type (e.g. TYPE IS
DECIMAL →TYPE IS BINARY), BALTER converts the data.
If you change the type of an unpacked numeric item to an alphanumeric type (of fixed
length), BALTER will proceed as described below.
For all other type changes, BALTER fills the item in accordance with the new type with
blanks or with the value zero. This also applies in particular for all type changes from or
to national.

unpacked numeric →alphanumeric (fixed length):
If required, BALTER converts the data by proceeding as follows:

1. BALTER copies the numeric digit sequence left-justified into the alphanumeric
target item. Leading zeros are retained.
Any symbol “V” (decimal point) that may be in the definition of the source item is
ignored by BALTER, i.e. the whole part and the decimal positions are copied.
Existing “P” symbols (implicit multiplication with 10) in the definition of the source
item are taken into account by BALTER to the extent possible.

Depending on the size of the alphanumeric target item, BALTER proceeds as
follows:

– If the target item contains fewer positions than the sequence of digits to be
copied (including the considered “P” symbols), the excess positions in the digit
sequence are truncated.

– If the target item contains more positions than the sequence of digits to be
copied (including the considered “P” symbols), the digit sequence is padded on
the right up to the target item length with X‘40‘.

2. In the hexadecimal representation of the digit sequence obtained in accordance
with 1), BALTER converts the second-last half-byte (sign) to hexadecimal “F”. This
applies, in particular, even if the definition of the source item contains the
symbol “S“ (sign).

Record entry Modifying the Schema DDL

232 U931-J-Z125-17-76

Examples

● Variable item
In record types, you can only add or modify a variable item providing no records of this
record type are stored in the database (see page 249).
However, items of fixed length can be added to or omitted from records with a variable
item when records are stored. You can also modify the length of such items.
In addition, you can implement all changes in the schema which lead to a change in the
system part (SCD).

● Position of the decimal point
If the position of the decimal point or the scale factor is changed, BALTER shifts the
digits within the item so that the former value is retained. Digits shifted beyond the left
or right boundary of the item are lost; BALTER does not round up.

● Repetition factor
When the repetition factor of vectors or repeating groups is reduced, BALTER truncates
the items at the end of the vector or the repeating group. Increasing the repetition factor
causes BALTER to initialize new items with blanks or zeros according to type. It is easy
to check whether BALTER copies, initializes or omits the contents of the items when the
repetition factor is changed:
For indexed items the BALTER conversion routine uses a three-level index for both the
old and new definitions. If the old item and the new item are represented with three-level
indexing, they can be compared easily.

Source item
(unpacked numeric item)

Target item
(alphanumeric item)

Item definition Item contents
(hexadecimal)

Item definition Item contents
(hexadecimal)

1) PIC 9999 F8 F1 F2 C3 → PIC XXXX F8 F1 F2 F3

2) PIC S999PP F5 F2 D3 → PIC XXXXX F5 F2 F3 F0 F0

3) PIC S99V99 F1 F4 F3 D5 PIC XXXX F1 F4 F3 F5

4) PIC 9999 F1 F2 F3 F4 → PIC XXX F1 F2 F3

5) PIC 999P F5 F2 E3 → PIC XXXXXX F5 F2 F3 F0 40 40

6) PIC S999V99 F0 F2 F3 F4 D5 → PIC XXXXXX F0 F2 F3 F4 F5 40

7) PIC SV999 F0 F2 B3 → PIC XX F0 F2

8) PIC V999 F7 F2 A3 → PIC XX F7 F2

9) PIC S999PP F0 F2 B3 → PIC X F0

10) PIC 999PP F8 F2 F3 → PIC X F8

Modifying the Schema DDL Record entry

U931-J-Z125-17-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 CAUTION!
Reducing the repetition factor of vectors or repeating groups can cause loss of
data.

Figure 26: Changing the item contents of stored records by modifying the repetition factor

!

OLD-A OLD-A

B
(1,1,1)

B
(1,1,2)

B
(1,1,3)

B
(1,2,1)

B
(1,2,2)

B
(1,2,3)

NEW-A NEW-A NEW-A

B
(1,1,1)

B
(1,1,2)

B
(1,2,1)

B
(1,2,2)

B
(1,3,1)

B
(1,3,2)

Contents initialized according to type

Contents transferred

Contents lost

Old definition:
02 OLD-A OCCURS 2

OCCURS 303 B

New definition:
02 NEW-A OCCURS 3

OCCURS 203 B

Set entry Modifying the Schema DDL

234 U931-J-Z125-17-76

Set entry

 SET NAME IS set-name

When changing the set entry, the following applies:

– Omission of sets is allowed without restriction.

– Addition of sets is permissible but subject to certain restrictions on the type of set
membership (these do not apply, however, to the addition of SYSTEM sets).

– The changing of sets is subject to certain restrictions.

 [SET IS DYNAMIC]

Dynamic sets may be added or omitted. The conversion of a set into a dynamic set and vice
versa is, however, prohibited.

 lLAST ⎫
 oFIRST o
 oNEXT o
 oPRIOR o
 ORDER IS mIMMATERIAL }
 oSORTED[INDEXED[NAME IS name]] o
 o lDATABASE-KEY ⎫o
 o BY m }o
 n nDEFINED KEYS DUPLICATES ARE[NOT] ALLOWED~~

Changes to the ORDER clause must be considered in relation to the MODE clause of the
SSL (see "MODE clause" in the "Design and Definition" manual).

The following applies to changes to the ORDER clause:
If no records of the member record type of the set to be changed are stored, all
modifications are allowed; if records of the member record type of the set to be changed
are stored, the modification of the ORDER clause is subject to certain restrictions.

Modifying the Schema DDL Set entry

U931-J-Z125-17-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Which modifications of the ORDER clause are allowed when records of the member record
type are stored can be seen in the following table:

old
schema

new
schema lLAST ⎫

 oFIRST o
ORDER IS mNEXT }
 oPRIOR o
 nIMMATERIAL~

ORDER IS SORTED
[INDEXED ...]
.....

ORDER IS MODE IS

lLAST ⎫
oFIRST o
mNEXT }
oPRIOR o
nIMMATERIAL~

POINTER-
ARRAY

No restrictions on use

allowed

without

restrictions

LIST
Only allowed if the member record
type (incl. CD) is not lengthened
as a result of the change.

CHAIN
Only allowed if the SCD of the
owner/member record type need
not be enlarged
(see table 28)

SORTED
[INDEXED ...]
.....

POINTER-
ARRAY

Not allowed.

LIST Not allowed.

CHAIN Only allowed if the SCD of the
owner/member record type need
not be enlarged
(see table 28)

Table 27: Changes to the ORDER clause when member records are stored

Set entry Modifying the Schema DDL

236 U931-J-Z125-17-76

When and how the set connection data (SCD) for a set with MODE IS CHAIN is altered is
shown in the following table:

< is shortened

> is lengthened

– no change in SCD length

1) modification allowed since SCD unchanged or shorter or in the new schema
ORDER IS SORTED [INDEXED...]...

2) modification not allowed since SCD longer and in the new schema not ORDER IS
SORTED [INDEXED...]...

DUPLICATES ...
 The same applies as for the LOCATION MODE clause (see section “Record

entry” on page 224)

NAME IS name
This specification can be modified, added or omitted as required.

 New
schema

Old
schema

ORDER

IS

lFIRST ⎫
oNEXT o
oPRIOR o
mIMMATERIAL }
oSORTED o
n[INDEXED...]...~

lFIRST ⎫
oNEXT o
mPRIOR }
nIMMATERIAL~

SORTED
[INDEXED...]...

LAST

ORDER IS
 MODE
 IS
MODE IS

CHAIN
CHAIN
LINKED
TO PRIOR

CHAIN
LINKED
TO PRIOR

CHAIN
CHAIN
LINKED
TO PRIOR

lFIRST ⎫
oNEXT o
oPRIOR o
mIMMATERIAL }
oSORTED o
n[INDEXED...]~

CHAIN -
 2)
>Member SCD
>Owner SCD

 1)
>Member SCD
>Owner SCD

 2)
>Owner SCD

 2)
>Owner SCD
>Member SCD

CHAIN
LINKED TO
PRIOR

 1)
<Owner SCD
<Member SCD

 - -
 1)
<Member SCD -

LAST
CHAIN

 1)
<Owner SCD

 2)
>Member SCD

 1)
>Member SCD -

 2)
>Member SCD

CHAIN
LINKED TO
PRIOR

 1)
<Owner SCD
<Member SCD

 - -
 1)
<Member SCD -

Table 28: Modifying the SCD for a set with MODE IS CHAIN

i

Modifying the Schema DDL Set entry

U931-J-Z125-17-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 lrecord-name⎫
 OWNER IS m }.
 nSYSTEM ~

Changing the OWNER clause of a set is prohibited!

 lMANDATORY⎫ lAUTOMATIC⎫
 MEMBER IS record-name m } m }
 nOPTIONAL ~ nMANUAL ~

record-name
Specification of a new member record type is prohibited.

set membership
If an existing set is changed and the database contains

– no records of the member record type, the set membership may be changed as
required.

– records of the member record type, the set membership must not be converted
from OPTIONAL to MANDATORY AUTOMATIC if certain member records are
not allocated to an owner.

If a new set is defined, and the database contains

– no records of the member record type, the set membership can be selected as
required.

– records of the member record type, then MANDATORY AUTOMATIC must not
be defined as set membership for sets other than SYSTEM sets. BALTER
cannot automatically allocate member records to owner records if the set is not
singular, i.e. the DB administrator must decide which member records are to be
allocated to which owner record and then carry out allocation by program with
the aid of the CONNECT statement.

Effects on stored data:

Changing set membership has no effect on the stored data. Possible changes in set
membership must, however, be taken into account in programs when records are
stored or deleted.

If the set is not modified in any other way, this change causes the
database to be inconsistent. If the set must be processed to carry out
other changes, this change causes BALTER to terminate abnormally.

i

Set entry Modifying the Schema DDL

238 U931-J-Z125-17-76

 lASCENDING ⎫
 [m } KEY IS item-name-1,...]
 nDESCENDING~

All modifications are allowed.

Effects on stored data:

BALTER recreates the pointer arrays, lists or chains concerned in accordance with the
modified sort criteria.

The recreation of a list involves transferring the member records to another storage area,
since BALTER has to rearrange them in a new sort sequence.

 lCALC ⎫
 [SEARCH KEY IS item-name-2,... USING m }[NAME IS name]
 nINDEX~

 DUPLICATES ARE[NOT] ALLOWED]...

The same modification possibilities exist for SEARCH keys at both set level and at record
type level (see the section on changing the SEARCH KEY clause on page 228).

 [SET OCCURRENCE SELECTION IS

 lCURRENT OF SET ⎫
 o o
 oLOCATION MODE OF OWNER o
 THRU m }.
 o litem-name-3 ⎫ o
 o [ALIAS FOR m } IS identifier-2]...o
 n nidentifier-1~ ~

Modification of the SET OCCURRENCE SELECTION clause is allowed.

Effects on stored data:

Modification has no effect on the stored data. The DB administrator must, however, take
any modification into account in his DB applications.

Restructuring the database Modifying the SSL

U931-J-Z125-17-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.2 Modifying the SSL

The runtime performance of the DB applications is very significantly affected by the storage
structure of the database. In order to achieve optimum results, you must match the storage
structure to time-critical applications by modifying the SSL clauses. This can bring about
considerable improvements in DB application runtimes even if the schema and programs
remain unchanged.

Even if the old SSL is used, it must be recompiled since otherwise BGSIA uses the default
values of the SSL clauses.

The following modifications to the storage structure are allowed:

● at record type level

– relocation of DBTTs to other realms

– definition of PLACEMENT OPTIMIZATION

– redefinition of location, type and number of pages for the purpose of reorganization
in SEARCH key tables

– compression or decompression of records (with restrictions)

● at set level

– modification of MODE clause (with restrictions)

– relocation of pointer arrays or lists of a set

– linking the owners of a set via pointer arrays or lists, or cancelling an existing link

– changing storage space in which the tables of the set occurrences of a set are
created or enlarged

– definition of the number of pages for the reorganization of tables of a set

– definition of location, type and number of pages for the purpose of reorganization in
SEARCH key and sort key tables

– linking members with their appropriate owner or cancelling an existing link

Modifying the SSL Restructuring the database

240 U931-J-Z125-17-76

All SSL clauses are optional, i.e. they can be specified for the first time, or omitted. BGSIA
assumes the default value for every clause omitted.

When restructuring the clauses of the Schema DDL and of the SSL are subject to the same
rules as during database definition (see the "Design and Definition" manual). If Schema
DDL clauses have been modified, all related clauses in the SSL must be adapted to comply
with these rules.

The following is a detailed description of possible modifications to the storage structure and
their effects on the stored data.

Modifying the SSL Schema entry

U931-J-Z125-17-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Schema entry

 STORAGE STRUCTURE OF SCHEMA schema-name.

schema-name
Must be the same as the name in the schema entry of the new Schema DDL.

Record entry Modifying the SSL

242 U931-J-Z125-17-76

Record entry

 RECORD NAME IS record-name

record-name
Must designate a record type of the new Schema DDL.

 [DATABASE-KEY-TRANSLATION-TABLE[IS integer-1][WITHIN realm-name-1]]

integer-1
The number of DBTT entries can be changed using the BREORG utility routine for
example. BALTER ignores any change to the size specification.

realm-name-1
Can be modified.

Effects on stored data:

BALTER relocates the DBTT to the specified realm.

 [PLACEMENT OPTIMIZATION FOR SET set-name]

Any modification is allowed.

Effects on stored data:

BALTER has no effect on the position of records already stored. New records are stored in
the database by the DBH in accordance with the new specifications noted by BALTER.

If this clause is specified for the first time for a record type stored in a direct hash area,
BALTER creates an indirect hash area but does not change the position of the records
concerned; instead it simply converts the CALC pages of the former hash area into normal
data pages.

Modifying the SSL Record entry

U931-J-Z125-17-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 [POPULATION IS {integer-2 WITHIN realm-name-2},...]

integer
The size of a hash area can be changed using the BREORG utility routine. BALTER
ignores any change of the size specification.

Exception

BALTER must create the hash area anew in the event of a change:

– from direct to indirect hash area or vice versa
– of hash routine
– of composition of the CALC key
– of realm in which the hash area is to be located.

BALTER uses integer-2 in order to calculate the new size of the hash area.

 [INDEX NAME IS name[PLACING IS WITHIN realm-name-3]

 lDATABASE-KEY-LIST ⎫
 o o
 [TYPE IS mREPEATED-KEY }]]
 o o
 n [DYNAMIC REORGANIZATION SPANS integer-3 PAGES]~

PLACING IS ...
SEARCH key tables can be relocated to other realms.

TYPE IS ...
The structure of the SEARCH key tables can be modified by changing the TYPE
clause to DATABASE-KEY-LIST or REPEATED-KEY.

DYNAMIC REORGANIZATION
The number of pages for reorganization purposes can be redefined as required.

Effects on stored data:

Changing the number of pages does not have an immediate effect during
restructuring. It is not until later during database operation when storing records that
the change takes effect.

Record entry Modifying the SSL

244 U931-J-Z125-17-76

 [COMPRESSION FOR ALL ITEMS].

It is permissible to store in compressed format records which were previously stored without
compression and vice versa, subject to certain restrictions.

● Changing from ’non-compressed’ to ’compressed’ format:

BALTER does not compress records which have already been stored and therefore
does not remove empty data items from data records. Instead it merely adds a 4-byte
compression item to the set connection data (SCD) of the records of the record type
concerned.
In so doing BALTER lengthens each record of the record type by 4 bytes and must
therefore transfer to other pages the records which have no more space in the pages
previously occupied by this record type.

● Changing from ’compressed’ to ’non-compressed’ format:

The change depends on how the stored records of the record type in question have
been entered:

– If the records have been entered in their full length (e.g. with BINILOAD), BALTER
deletes the compression item in the SCD of the records. Since each record is
thereby shortened by 4 bytes, BALTER pushes the records together in each page,
thus releasing space.

– If the records are compressed, i.e. not entered in their full length, BALTER
abnormally terminates restructuring!

BALTER cannot process compressed records even if database changes do not
concern compression:

Neither the user section nor the system information in the records may be altered.
Tables or hash areas which contain items of this record type as keys cannot be
created by BALTER.

Modifying the SSL Set entry

U931-J-Z125-17-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Set entry

 SET NAME IS set-name

set-name
Must be the same as the name of a set in the new Schema DDL.

 lCHAIN[LINKED TO PRIOR] ⎫
 o o
 olPOINTER-ARRAY⎫ lATTACHED TO OWNER ⎫o
 [MODE IS mo o o o}]
 om } mDETACHED[WITHIN realm-name-1]}o
 oo o o oo
 nnLIST ~ n [WITH PHYSICAL LINK] ~~

The MODE clause should be considered in relation to the ORDER clause of the Schema
DDL (see the section on changing the ORDER clause on page 234).

If, in the ORDER clause of the new Schema DDL

– SORTED[INDEXED] has been specified, the linkage method specified in the MODE
clause may be changed as required;

– SORTED[INDEXED] has not been specified, changes of the linkage method are
prohibited if records of the member record type have already been stored.

When a distributable list (MODE IS LIST) is changed to an address list (MODE IS
POINTER-ARRAY), the member records remain in the realm in which they were currently
stored in the list. It may be necessary to adjust the access logic of the application programs.

When a change is made in MODE IS LIST, a list is built. Records of the record type affected
may possibly be relocated to another realm.

ATTACHED/DETACHED
Changing ATTACHED to DETACHED or vice versa is allowed with the restriction
that records stored in a list must not be relocated to another realm.

Effects on stored data:

– Existing tables are reallocated by BALTER only if it is necessary to relocate
them to another realm on the basis of a change in the WITHIN realm-name-1
specification.

Set entry Modifying the SSL

246 U931-J-Z125-17-76

– The location of a list without a DETACHED WITHIN clause is determined by the
position of the owner. Consequently records can be relocated in the event of a
change from pointer array to list, and existing programs with direct access
(FIND4) must be adjusted.

WITHIN realm-name-1
A pointer array may be relocated to another realm. Except in the case of
distributable lists, a list may be relocated only when no member records are stored.

In the case of distributable lists realm-name-1 implicitly determines the location of the
table part (level 1 through level N pages) of the list and the location of an indirect
CALC area in the case of LOCATION MODE IS CALC if the location is not specified
explicitly in the SSL of the MODE IS LIST statement.

The table pages can be relocated to another realm even if member records are
stored in the distributable list.

Effects on stored data:

The list and any CALC area will be recreated. In the process the member records
will be distributed approximately evenly over the realms involved.

WITH PHYSICAL LINK
A pointer array or list which is stored separate from the owner can also be linked to
the associated owner for the first time, or an existing link can be cancelled.

Effects on stored data:

– If an additional pointer is set up, BALTER adds the physical address of the
highest level of the table to the set connection data (SCD) of the owner records.
Since the owner records are thereby lengthened, BALTER relocates, within the
database, the records for which no more space is available in the occupied
pages.

– If the additional pointer is removed, BALTER deletes the physical address of the
highest level of the table from the SCD of the owner records.

Modifying the SSL Set entry

U931-J-Z125-17-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 [POPULATION IS integer-1[INCREASE IS integer-2]]

integer-1
Can be altered as required. BALTER takes this specification into account together
with a corresponding FILLING WITH POPULATION statement. A modification also
has an effect when saving owner records or deleting member records.
BALTER does not modify existing tables.

integer-2
Can be altered as required. Any change has no effect until table extensions become
necessary when storing new member records.

 [DYNAMIC REORGANIZATION SPANS integer-3 PAGES]

The number of pages for the reorganization of the set tables can be altered as required.

 lATTACHED TO OWNER ⎫
 [INDEX NAME IS name[PLACING IS m }
 nDETACHED [WITHIN realmname-2]~

 lDATABASE-KEY-LIST ⎫
 o o
 [TYPE IS mREPEATED-KEY }]]
 o o
 n [DYNAMIC REORGANIZATION SPANS integer PAGES]~

The usage of the INDEX clause for set entry is analogous to that of the INDEX clause for
record entry (see the section on changing the INDEX clause on page 243).

ATTACHED/DETACHED
Changing ATTACHED to DETACHED or vice versa is allowed without restriction.

Effects on stored data:

Changes have the same effects as in the MODE clause (see the section on
changing the MODE clause on page 245).

WITHIN realm-name-2
Can be added or omitted, or realm-name-2 can be changed.

Effects on stored data:

In the event of a change, BALTER relocates the tables to the specified realm.

Set entry Modifying the SSL

248 U931-J-Z125-17-76

 [MEMBER IS PHYSICALLY LINKED TO OWNER]..

Additional linking of the member records to the associated owner record can be requested
for the first time or cancelled.

Effects on stored data:

– If the clause is specified for the first time, BALTER adds to the SCD of the member
records the physical pointer to the associated owner record. Since the member records
are thereby lengthened, BALTER relocates, within the database, the records for which
no more space is available in the occupied pages.

– If the clause is removed from the SSL, BALTER removes the physical pointer to the
associated owner record from the SCD of the member records.

Restructuring the database Restrictions

U931-J-Z125-17-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.3 Summary of restrictions

This section provides an overview of which changes are not permitted in the Schema DDL
and the SSL at all or only with restrictions when records of a record type concerned are
stored. BALTER issues warnings relating to these modifications in the analysis listing.

● Compression
Compressed records cannot be processed by BALTER. BALTER abnormally
terminates restructuring if you do not unload the record type before restructuring and if
you:

– change the user or system part of the record type

– change the structure of tables or hash areas which contain items of this record type
as keys

● Variable items
If records for a record type with a variable item are stored in the database, restrictions
apply for restructuring. BALTER terminates restructuring abnormally in the following
cases:

– An item of variable length is added
– An item of variable length is removed
– The maximum length of an item of variable length is changed

● Lists
Record types stored in a single-level list must not be lengthened. A single-level list
means ORDER IS LAST, FIRST, NEXT, PRIOR or IMMATERIAL and MODE IS LIST.

Lists which cannot be distributed may not be relocated to other realms.

Distributable lists can be relocated as required. If only realms are added, the list
remains unchanged and the restructuring process as a whole can be executed very
quickly.

● Cyclic set structures
If BALTER is to make a modification to all sets of a cyclic set structure (see "Cycle" in
the "Design and Definition" manual), a modification in which the owner record type must
be processed before the member record type, a deadlock situation will arise. Such
modifications are either the creation of a new chain, or the additional linking of the
member records to the appropriate owner record for sets in which the owner record type
must be relocated in the course of further modifications.

If modifications of this nature are planned for a cyclic set structure, restructuring must
be split into two stages.

Schema DDL modifications Restrictions

250 U931-J-Z125-17-76

6.3.1 Schema DDL modifications

Schema entry

No restrictions

Realm entry

Conversion of a temporary realm into a non-temporary realm or vice versa is not allowed.

Record entry

WITHIN clause
If a realm is omitted in the WITHIN clause, no records of the record type concerned
may be stored in this realm except in the case of distributable lists.

Record length
Record types which are members in a single-level list must not be lengthened.

Set entry

DYNAMIC clause
Conversion of a set into a dynamic set and vice versa is not allowed.

ORDER clause
If records of the member record type of the set to be modified have been stored, the
following restrictions must be observed:

– for ORDER IS SORTED[INDEXED] and MODE IS POINTER-ARRAY/LIST the
ORDER clause must not be changed to ORDER IS LAST, FIRST, NEXT,
PRIOR or IMMATERIAL;

– for any ORDER clause and MODE IS CHAIN, the ORDER clause can only be
changed to ORDER IS LAST, FIRST, NEXT, PRIOR or IMMATERIAL if, in so
doing, the SCD of the owner record type or of the member record type is not
lengthened;

– for ORDER IS LAST, FIRST, NEXT, PRIOR or IMMATERIAL and MODE IS
LIST, the ORDER clause can only be changed to ORDER IS LAST, FIRST,
NEXT, PRIOR or IMMATERIAL if, in so doing, the member record type including
SCD is not lengthened.

Restrictions SSL modifications

U931-J-Z125-17-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

OWNER clause
The OWNER clause of a set must not be modified.

MEMBER clause
record-name:
Specifying a new member record type is not allowed.

set membership

– If an existing set is modified and if records of the member record type are stored
in the database, set membership must not be converted from OPTIONAL to
MANDATORY AUTOMATIC if certain member records stored are not allocated
to an owner.

– If a new set is defined and if records of the member record type are stored in
the database, AUTOMATIC must not be defined as set membership, except for
SYSTEM sets.

6.3.2 SSL modifications

Schema entry

No restrictions.

Record entry

DBTT clause
The number of DBTT entries can be changed by means of the BREORG utility
routine for example. BALTER ignores any change to the size specification.

POPULATION clause
The size of a hash area can be changed by means of the BREORG utility routine.
BALTER ignores any change to the size specification, unless it has to recreate the
hash area in the course of further modifications.

COMPRESSION clause
BALTER cannot process compressed records, i.e. it cannot perform
decompression, reallocation, sorting or deletion.

Set entry

MODE clause
If the ORDER clause in the new schema is LAST, FIRST, NEXT, PRIOR or
IMMATERIAL, the linkage method in the MODE clause may only be modified if no
records of the member record type are stored.

Checking consistency Restructuring the database

252 U931-J-Z125-17-76

6.4 Checking the consistency of the database

A consistent database is the most important prerequisite for successful restructuring. The
BCHECK utility routine should be used to ascertain the consistency of the database (see
the "Recovery, Information and Reorganization" manual).

 If BCHECK detects any inconsistencies, the database should on no account be
restructured before it has been recovered, otherwise errors may be compounded
and this will make recovery of the inconsistent database even more difficult.

i

Restructuring the database Checking free memory space

U931-J-Z125-17-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.5 Checking free memory space

In order to adapt the stored data to the modified schema or modified storage structure,
BALTER requires additional free memory space

– in order to create new tables, hash areas or DBTTs
– in order to re-store records, tables, hash areas or DBTTs.

If the free memory space in the realms is not large enough to do this, BALTER automatically
extends the realms concerned, provided this is possible (requirement: secondary allocation
for memory space > 0). For details, please see “Database Operation” manual, Automatic
realm extension by means of utility routines).

If automatic realm extension is not possible (secondary allocation for memory space = 0 or
no more disk storage is available), BALTER aborts restructuring! As a result your database
is inconsistent and you must revert to the status before restructuring began and start again
from the beginning.

Realms without automatic realm extension

When one or more realms with a secondary allocation = 0 are configured, e.g. because you
do not want automatic realm extension, you must ensure that the available space is
sufficient before you begin restructuring. For this purpose you must use BSTATUS to
display how much memory space is still free in the various realms of your database and
estimate whether the free space is sufficient for the planned restructuring.

 This should be done as early as possible, since BREORG can no longer enlarge
the realms of the database once BCHANGE has processed the database for
restructuring purposes.
You can also make use of the analysis report for this purpose (see section
“Description of the analysis report (REPORT phase)” on page 282).

BALTER selects the processing sequence in such a way that it first deletes those elements
from the database which are no longer contained in the new schema. The space released
can then later be used in the course of other activities, such as the creation of new tables,
the creation of new hash areas, the re-storing of records etc. In the same way the space
released after re-storage of a record type can be used again. Unfavorable configurations
may however lead to a situation in which space which is free at the end of a realm is
allocated first of all, leaving gaps at the beginning of the realm. If this is the case, it is
possible, by means of the BREORG utility routine, to relocate hash areas and tables to the
free pages at the beginning of the realm:

– hash areas with REORGANIZE-CALC
– tables with REORGANIZE-SET.

i

Checking free memory space Restructuring the database

254 U931-J-Z125-17-76

You can then reduce the realm by deleting the pages released at the end of the realm.

The overviews on the following pages are intended to help you estimate the size of the free
memory space which must be available for restructuring purposes in the realms of the
database. If insufficient free space is found in a realm, it must be extended using BREORG
before BCHANGE is started for purposes of preparing restructuring.

Restructuring the database Checking free memory space

U931-J-Z125-17-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

DBTT

BALTER lists in an analysis listing the free memory space it needs to restore a DBTT or to
create a new DBTT.

The new size of a DBTT can also be determined using the formulas specified in the table.

Modification in
the database R e a s o n

Memory requirement

Formula
(see
page 264)

SSL clause
specifying size

Standard
size

Creating a new
DBTT

new record type defined 1 DBTT clause 1 page

Re-storing
DBTT

Number of DBTT columns changed
(only in owner record) by
– modified linkage method in

MODE clause
– addition or omission of SEARCH

key (set level)
– changing the number of sets in

which this record type is owner
DBTT relocated by
– new realm-name-1 in the WIHTIN

clause of the DDLL
 (record type level)

– new realm-name-1 in the DBTT
clause of the SSL
(record type level)

2 -

Orignal
number of

DBTT
entries

Table 29: Memory requirement for DBTT modifications

Checking free memory space Restructuring the database

256 U931-J-Z125-17-76

Hash areas

The number of pages which BALTER needs to create a hash area is given in the analysis
listing.

The size of the hash areas can also be determined with the aid of formulas.
A hash area always occupies contiguous pages of a realm.

Modification in
the database

R e a s o n Memory requirement

Formula
(see
page 264)

SSL clause
specifying size

Standard
size

Creating a
direct or indirect
hash area
(primary key)

– New record type defined with LOCATION
CALC

– LOCATION MODE changed to CALC
– hash routine or CALC key changed in

LOCATION CALC
– record type with LOCATION CALC

lengthened/shortened

 3

or

 4

POPULATION

clause

 1

page

Creating an
indirect hash
area
(secondary key)

– new SEARCH key defined with using CALC
– definition of a SEARCH key changed in

USING CALC
– CALC key or hash routine of a SEARCH key

changed
– indirect hash area relocated to another realm

4 DBTT clause
 1

page

Converting a
direct into an
indirect hash
area (primary
key)

A record type defined with LOCATION CALC
– is owner or member in a set for which

PLACEMENT OPTIMIZATION has been for
first time

– has become a member in a list
– has been stored for the first time in

compressed form in the new schema

4

POPULATION

clause

 1

page

Converting an
indirect into a
direct hash area
(primary key)

In a record type defined with LOCATION CALC
– PLACEMENT OPTIMIZATION is omitted in all

sets in which this record type is a member
– compressed storage is cancelled
– the MODE clause of a set in which this record

type is a member is changed from MODE IS
LIST to POINTER-ARRAY/CHAIN

3

Table 30: Memory requirement for modifications affecting hash areas

Restructuring the database Checking free memory space

U931-J-Z125-17-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Tables

Relocating tables

BALTER can relocate only single-level tables in their entirety. If it relocates tables to another
realm, the space required in that realm is equal to the space originally occupied by the table.

Creating new tables:

– SYSTEM set or TYPE IS DATABASE-KEY-LIST:
each set occurrence table occupies at least one page.

Non-singular set and not TYPE IS DATABASE-KEY-LIST:
each set occurrence table takes up only as much space as it needs.

BALTER stores tables for the same set using a space-saving strategy such that there may
be a number of tables in the same page, if the tables are stored DETACHED.

Table Change in Schema DDL
or in SSL

 Change in DB
Memory requirementCreate new

table(s)
Relocate
table(s)

Indexed

SEARCH
key table

(record
type
level)

new SEARCH key defined
with USING INDEX

 X -

min. 1 page

max. refer to formula 5

Key item changed X -

Table type changed
REPEATED-KEY <-->
DATABASE-KEY-LIST

 X -

Definition of a SEARCH key
changed to USING INDEX

 X -

SEARCH key table relocated
to another realm

 X -

Table 31: Memory requirements for table changes (part 1 of 2)

Checking free memory space Restructuring the database

258 U931-J-Z125-17-76

Indexed

SEARCH
key
table

(set
level)

Table type changed
REPEATED-KEY -->
DATABASE-KEY-LIST
or
key item modified in type
DATABASE-KEY-LIST

 X -
min. 1 page per set occurrence table

with SYSTEM set:
min. 1 page
max. refer to formula5

New SEARCH key defined
with USING INDEX

 X -

with SYSTEM set:

min. 1 page
max. refer to formula5

with non-singular set:

minimum not specifiable.
BALTER stores several set occurrence
tables together, provided they are small
enough and intended to go in the same
realm.

max. size of a single set occurrence table:
refer to formula 5

Key item changed X -

Table type changed
DATABASE-KEY-LIST -->
REPEATED-KEY

 X -

Definition of a SEARCH key
changed to USING INDEX

 X -

SEARCH key table relocated
to another realm

 X -

Indexed

pointer
array

MODE clause changed to
POINTER ARRAY

 X -

ASC/DSC key changed X -

Pointer array relocated
to another realm

 X -

New set defined with
MODE IS POINTER-ARRAY

 X -

Indexed

sort
key
table

(MODE IS
 CHAIN)

New set defined with MODE
IS CHAIN and ORDER
SORTED
INDEXED

 X -

Definition of a set
changed to MODE IS and
 ORDER SORTED INDEXED

 X -

ASC/DESC key changed X -

Table relocated to
another realm

 X -

Table Change in Schema DDL
or in SSL

 Change in DB
Memory requirementCreate new

table(s)
Relocate
table(s)

Table 31: Memory requirements for table changes (part 2 of 2)

Restructuring the database Checking free memory space

U931-J-Z125-17-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 If a pointer array, list or chain is added SORTED INDEXED to an empty SYSTEM
set, BALTER creates an empty table for it one page in size.

The following changes are allowed only when there are no member records:

– creation of a single-level list or a single-level pointer array (caused e.g. by
MODE definition, changed ORDER clause)

– relocation of a single-level list in the same realm (e.g. by record lengthening)

– relocation of a list to another realm

Table Change in Schema DDL
or in SSL

 Change in DB
Memory requirementCreate new

table(s)
Relocate
table(s)

Non-
indexed
pointer
array

Pointer array relocated
to another realm - X

Original size

Indexed

list

MODE clause changed to
LIST

 X - with SYSTEM set:
min. 1 page
max. refer to formula 5

with non-singular set:
minimum not specifiable.
BALTER stores several set
occurrence tables together, provided they
are small enough and intended to go in
the same realm.

max. size of a single set occurrence table:
refer to formula 5

ASC/DESC key changed X -

New set defined with MODE
IS LIST

 X -

Table 32: Memory requirements for table changes

i

Checking free memory space Restructuring the database

260 U931-J-Z125-17-76

Record reallocation

When records are reallocated, a distinction is made by BALTER between a partial and a
complete reallocation:

● A complete reallocation

occurs when the new schema prescribes a special form of storage. This is the case with
LOCATION MODE IS CALC for direct hash areas and record types stored in a list.

A complete reallocation is carried out by BALTER when:

– you use a hash routine other than the standard routine in the new schema

– you change the CALC key for a direct hash area in the new schema

– you do not specify the reason for indirect storage in the new schema

– you introduce LOCATION MODE IS CALC in the new schema

– you change the ASC/DESC key of a list in the new schema

– you redefine MODE IS LIST in the new schema.

In the case of a complete reallocation, BALTER relocates all records to new pages and
releases the old pages. This means, however, that during the BALTER run double the
storage space required for storing the records must be available.

If a record type with a special form of storage is lengthened, a complete reallocation is
automatically initiated, even if there is no change in the form of storage itself.

● A partial reallocation

occurs when either the user or system part of the records is lengthened, thus making
more pages necessary for storage purposes.

In the case of a partial reallocation, as many records as possible are kept in their original
pages, and the rest are relocated by BALTER to new pages.

● Shortening records

If a record type with a special form of storage is shortened, a complete reallocation is
automatically initiated as for the lengthening of records, even if there is no change in
the form of storage.

If a record type without a special form of storage is shortened, BALTER pushes all the
records within a page together. This releases space within the individual pages.
BALTER does not relocate the records to other pages, however, so no whole pages are
released.

BALTER does not indicate the amount of space required to relocate records in the analysis
listing. It is, however, possible to estimate the required storage space with the help of
table 33 on page 261 and the calculation formulas which follow.

Restructuring the database Checking free memory space

U931-J-Z125-17-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Modifica-
tion

R e a s o n

Memory requirement

Formula
(see
page 264)

SSL clause
specifying size

Standard
size

Complete

real-

location

Direct

hash

area

LOCATION MODE changed to
CALC

3 POPULATION
clause

 1
page

Hash routine/CALC key
changed key

Hash area converted from
 indirect to
 direct
(see table 30)

Indexed

list

New set defined with MODE IS
LIST

with SYSTEM set: min. 1 page
max. refer to formula 5

with non-singular
set: minimum not specifiable.
BALTER stores several set occurrence
tables together, provided they are small
enough and intended to go in the
same realm.

max. size of a single set
occurrence table:
refer to formula 5

MODE clause changed
 to LIST

ASC/DESC key changed

Table 33: Memory requirements for record reallocation (part 1 of 3)

Checking free memory space Restructuring the database

262 U931-J-Z125-17-76

Partial

real-

location

(record

type

length-

ened

User part lengthened

BALTER enters as many records as
possible in the previous pages and
relocates the remaining records to other
pages.

Since most of the records are dispersed
throughout the storage space, it is
impossible to estimate the memory
 requirement (other than for record types
with a special form of storage).

System

part

length-

ened

Record type compressed

Owner linked to its table

Member linked to its owner

MODE IS CHAIN
 introduced
 (see table 28)

Owner/member record type:
new set with MODE IS CHAIN
added

LINKED TO PRIOR or to
MODE IS CHAIN
 (see table 28)

Member record type: new set
added

Modifica-
tion

R e a s o n

Memory requirement

Formula
(see
page 264)

SSL clause
specifying size

Standard
size

Table 33: Memory requirements for record reallocation (part 2 of 3)

Restructuring the database Checking free memory space

U931-J-Z125-17-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

(no

reallo-

cation)

Record

type

shortened

User part shortened
BALTER pushes together the records in a
page (except for record type with special
form of storage).

Additional free memory space is not
required (except for record type with
special form of storage).

System

part

short-

ened

Record type decompressed

Linkage of owner to its table
cancelled

Linkage of member to its owner
cancelled

Sets defined with MODE IS
CHAIN deleted

LINKED TO PRIOR and
ORDER IS LAST omitted from
MODE IS CHAIN
(see table 28)

MODE clause changed from
MODE IS CHAIN to POINTER
ARRAY / LIST
(see table 28)

Set in which record type was
member deleted

Modifica-
tion

R e a s o n

Memory requirement

Formula
(see
page 264)

SSL clause
specifying size

Standard
size

Table 33: Memory requirements for record reallocation (part 3 of 3)

Calculation formulas Restructuring the database

264 U931-J-Z125-17-76

Calculation formulas

The calculation formulas indicated below can be used to calculate the following values:

– DBTT size for a new DBTT

– DBTT size for a re-stored DBTT

– size of a direct hash area

– size of an indirect hash area

– size of a multi-level SEARCH key table on record type level

1. Calculating the DBTT size for a new DBTT:

2044
DDDDDD = entries-per-page 1) (for 2048-byte page length)
LENGTH

3980
DDDDDD = entries-per-page 1) (for 4000-byte page length)
LENGTH

8076
DDDDDD = entries-per-page 1) (for 8096-byte page length)
LENGTH

integer
DDDDDDDDDDDDDDDD = number-of-pages2)

entries-per-page

number-of-pages
Number of DBTT pages

entries-per-page
Number of DBTT entries per page

integer
Number of planned records as in DBTT clause

LENGTH
Length of a DBTT entry; is contained in the BGSIA report under the heading:
’DBTT-INFORMATION’ (see the "Recovery, Information and Reorganization"
manual)

1 The result must be rounded down to an integer
2 The result must be rounded up to an integer

Restructuring the database Calculation formulas

U931-J-Z125-17-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

2. Calculating the DBTT size for a re-stored DBTT:

2044
DDDDDDDDDD = entries-per-page-new 1) (for 2048-byte page length)
LENGTH-new

3980
DDDDDDDDDD = entries-per-page-new 1) (for 4000-byte page length)
LENGTH-new

8076
DDDDDDDDDD = entries-per-page-new 1) (for 8096-byte page length)
LENGTH-new

prev.-total-no.-of-entries
DDDDDDDDDDDDDDDDDDDDDDDDDD = number-of-pages 2)

entries-per-page-new

number-of-pages
Number of DBTT pages

prev.-total-no.-of-entries
Number of entries in the original DBTT; this value can be determined using
BSTATUS

entries-per-page-new
Number of DBTT entries per page in the new DBTT

LENGTH-new
Length of an entry in the new DBTT

LENGTH-new = 4 x (n + 1)

n
Number of all the tables of the sets in which the record type is the owner record
type

1 The result must be rounded down to an integer
2 The result must be rounded up to an integer

Calculation formulas Restructuring the database

266 U931-J-Z125-17-76

3. Calculating the size of a direct hash area:

No allowance is made for the number of overflow pages which BALTER must also
create.

page-length - 30
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD = entries-per-page 1)

(record-length + calc-key-length + 15)

integer - 1
DDDDDDDDDDDDDDDD + 1 = number-of-pages 2)

entries-per-page

page-length
Page length of the database (2048/4000/8096 bytes)

number-of-pages
Number of pages in the hash area

calc-key-length
Length of CALC key; is given in the BGSIA report under the heading ’CALC-
INFORMATION’ in the LENGTH column (see the "Recovery, Information and
Reorganization" manual).

integer
Number of records to be stored according to the POPULATION clause (record type
level).

record-length
Length of record type including SCD; is given in the BGSIA report under the
heading ’RECORD-INFORMATION’ in the LENGTH column (see the "Recovery,
Information and Reorganization" manual).

entries-per-page
Number of entries (records or CALC index entries) per page.

1 The result must be rounded up to an integer
2 The result must be rounded up to the next-higher prime number if no prime number is obtained

Restructuring the database Calculation formulas

U931-J-Z125-17-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

4. Calculating the size of an indirect hash area:

No allowance is made for the number of overflow pages which BALTER must also
create.

page-length - 30
DDDDDDDDDDDDDDDDDDDDD = entries-per-page 1)

(calc-key-length + 7)

integer - 1
DDDDDDDDDDDDDDDDD = number-of-pages 2)

entries-per-page

integer
Number of records to be stored
– according to POPULATION clause (primary key)
– according to DBTT clause (secondary key).

For other meanings, see page 266.

1 The result must be rounded up to an integer
2 The result must be rounded up to the next-higher prime number if no prime number is obtained

Calculation formulas Restructuring the database

268 U931-J-Z125-17-76

5. Calculating the size of a multi-level SEARCH key table (record type level)

This formula is based on slightly simplified assumptions and therefore produces an
estimate, not the exact numerical value.

For a 2048-byte page length:

– if an occupancy level was specified:

no.-of-search-keys 2002 - (search-key-l + 7)
LRxLR x LR = no.-of-

 2002 occ. level 2002 - 2 x (search-key-l + 7) pages
 max(1, LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR x LRLRLRLRLRLRLRLRLRLRLRLR1))

search-key-l + 7 100

– If no occupancy level was specified:

no.-of-search-keys 2002 - (search-key-l + 7)
 LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRxLRLRLRLRLRLRLR x LR = no.-of-pages

2002 2002 - 2 x (search-key-l + 7)
LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR - 1 2)

search-key-l + 7

For a 4000-byte page length:

– if an occupancy level was specified:

no.-of-search-keys 3950 - (search-key-l + 10)
-LR x LR = no.-of-

 3950 occ. level 3950 - 2 x (search-key-l + 10) pages
 max(1, LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR x LRLRLRLRLRLRLRLRLRLR 1))

search-key-l + 10 100

– If no occupancy level was specified:

 no.-of-search-keys 3950 - (search-key-l + 10)
 LR x LR = no.-of-pages

3950 3950 - 2 x (search-key-l + 10)
LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR - 1 2)

search-key-l + 10

1 The result of the first division and the result of the first multiplication must each be rounded down to an integer
2 The result of the division must be rounded down to an integer

Restructuring the database Calculation formulas

U931-J-Z125-17-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

For an 8096-byte page length:

– If an occupancy level was specified:

 no.-of-search-keys 8046 - (search-key-l + 10)
LR x LR = seiten-

8046 occ. level 8046 - 2 x (search-key-l + 10) anzahl
 max(1, LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR x LRLRLRLRLRLRLRLRLRLR 1))

search-key-l + 10 100

– If no occupancy level was specified:

no.-of-search-keys 8046 - (search-key-l + 10)
 LR x LR = seitenanzahl

8046 8046 - 2 x (search-key-l + 10)
LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR - 1 2)

search-key-l + 10

no.-of-pages
Number of pages required for the whole set occurrence table

no.-of-search-keys
Number of keys in the table

occ. level
Percentage occupancy level (see the FILLING clause, page 303)

search-key-l(ength)
Length of the SEARCH key; is given in the BGSIA report under the heading ’KEY-
INFORMATION’ (NO CALC SEARCH KEY’S)’ in the LENGTH column (see the
"Recovery, Information and Reorganization" manual).

1 The result of the first division and the result of the first multiplication must each be rounded down to an integer
2 The result of the division must be rounded down to an integer

Security measures Restructuring the database

270 U931-J-Z125-17-76

6.6 Recovery measures and response to errors

Restructuring changes not only the user database but also the compiler database and the
HASHLIB.

If errors occur during restructuring and you require the database in the state it was in before
restructuring began, you also need the realms of the compiler database and the HASHLIB.

6.6.1 Saving the database

Before restructuring operations begin, i.e. before BCHANGE is started, you must switch off
after-image logging (BALTER writes no after-images) and save the entire database or part
of the database as required:

You must always save the following:

dbname.HASHLIB
dbname.COSSD
dbname.DBDIR
dbname.DBCOM

With regard to the user realms, you have two options:

– You save all the user realms before beginning the restructuring process, i.e.
dbname.realmname-1
.
.

dbname.realmname-n

– You use an analysis run with the statements
REPORT IS YES
EXECUTION IS NO
to determine which user realms are needed
and then you save only these realms in addition before the BALTER execution phase.

Determining the user realms needed:

After saving dbname.HASHLIB, dbname.COSSD, dbname.DBDIR and
dbname.DBCOM, execute the restructuring process including the analysis run of
BALTER with REPORT IS YES and EXECUTION IS NO. You can determine which
user realms are needed from the analysis log for BALTER under REPORT OF
ADDED, DELETED AND NEEDED AREAS.

Restructuring the database Security measures

U931-J-Z125-17-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Realms may also be needed because anchor records of singular sets have to be
recreated. Here BALTER attempts to prevent unnecessary relocations between the
realms in order to limit the backup effort required in the user realms.

Saving the needed user realms:

Before restructuring using BALTER is performed and the EXECUTION IS YES
statement is executed, save the user realms determined in the analysis phase:
dbname.realmname-i
.
.

dbname.realmname-j

For further information on saving a database, refer to the section "Saving and recovering a
database in the event of errors" in the "Database Operation" manual.

Responding to errors Restructuring the database

272 U931-J-Z125-17-76

6.6.2 Restoring the database

If, during restructuring, a program abnormally terminates processing with "ABNORMAL
END", one of the following steps must be taken, depending on the gravity of the error:

– re-execute the terminated program, or
– make use of the backup and repeat restructuring

The sections of this chapter dealing with the individual restructuring programs describe
when it is necessary to reset the database and to repeat the restructuring process, and
when it is sufficient to repeat the programs terminated abnormally.

The following table shows which programs modify which files or realms in the database
during restructuring.

R read access

W write access

- no access

H
A
S
H
L
I
B

D
B
D
I
R

D
B
C
O
M

D
B
C
O
M
.
O

C
O
S
S
D

C
O
S
S
D
.
O

User
realms

which have
to be

accessed

BCHANGE - RW RW W R W -

DDL compiler - RW RW - W - -

SSL compiler - RW RW - W - -

BGSIA - RW RW - - - -

LMS W - - - - - -

BALTER
(analysis phase)

- R R R - - -

BALTER
(restructuring phase)

R RW R R - - RW

DDL compiler
(subschemas)

- RW RW - W R -

BGSSIA - RW R - - - -

Table 34: Access to files and realms of the database during restructuring

Restructuring the database Responding to errors

U931-J-Z125-17-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

The following options are available for restoring the database:

– You can convert the shadow database to an original database by renaming it with the
die MODIFY-FILE-ATTRIBUTES command.

– You can read in the ARCHIVE backup and then change the database name, if desired,
with the MODIFY-FILE-ATTRIBUTES command. If the ARCHIVE backup was created
on-line, you may have to mend it with the BMEND utility routine (see "BMEND" in the
“Recovery, Information and Reorganization" manual).

For further information on restoring a database, refer to the section "Saving and recovering
a database in the event of errors" in the "Database Operation" manual.

Steps required in case of memory shortage

If one of the programs terminates with database status (DBSTATUS) 14802 or 14804, you
must

– expand the affected realm or record type with BREORG,

– restart the program and if necessary delete any incompletely generated information
with the DELETE parameter.

BCHANGE Restructuring the database

274 U931-J-Z125-17-76

6.7 Preparing the compiler database with BCHANGE

The tasks of BCHANGE when restructuring a database are comparable to the tasks of
BCREATE when creating a database. BCHANGE prepares the compiler database to
accept the new schema. It carries out the following preliminary functions prior to
restructuring:

– It saves the old SIA in the DBDIR and prepares the DBDIR to accept a new SIA, so that
a new and an old SIA are stored in the DBDIR after the BGSIA run for the new schema.
BALTER needs both SIAs when adapting the stored data to the new schema so that it
can recognize differences between the old and the new schemas.
Make sure therefore that there are enough free pages available in the DBDIR before
the BCHANGE run or that automatic realm extension is possible by means of
secondary allocation > 0.

– It deletes all user SSIAs in the DBDIR.

– It saves the old DBCOM in the file dbname.DBCOM.O and reformats the DBCOM.

BALTER needs the schema information of the old and the new DBCOMs in order to
examine the planned modifications.

– It saves the old COSSD in the file dbname.COSSD.O.

After restructuring the DDL compiler needs the old COSSD to accept the subschemas.
You should therefore delete the dbname.COSSD.O file only after you have compiled or
accepted all the other subschemas which are still required.

BCHANGE BCHANGE

U931-J-Z125-17-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Figure 27: System environment when preparing the compiler database

BCHANGE automatically stores the copies of DBCOM and COSSD on public disks. It is not
necessary to issue a CREATE-FILE command to set up the two files (before BCHANGE is
started) unless the copies are to be stored on private disks.
Depending on the size of the files it is, however, advisable to set them up using a CREATE-
FILE command with SPACE operand - even if they are to be stored on public disks (see
“Maximum size of UDS/SQL files” on page 41).

When required, BCHANGE automatically extends the realms of the processed database.
For details, please refer to the “Database Operation” manual, Automatic realm extension
by means of utility routines).

At startup BCHANGE takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

SYSDTA
DBDIRBCHANGE

DBCOM

COSSD.O

COSSD

previous
SIA

DBCOM.O

Command sequence BCHANGE

276 U931-J-Z125-17-76

Command sequence for starting BCHANGE

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The BCHANGE utility routine is started by the following commands in the identification
under which the database is cataloged:

01 [/CREATE-FILE FILE-NAME=dbname.DBCOM.0 ...]

02 [/CREATE-FILE FILE-NAME=dbname.COSSD.0 ...]

03 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

04 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

05 /START-UDS-BCHANGE

01,02 See section “Setting up the compiler database” on page 57.

04 The specified version of BCHANGE is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

05 The UDS/SQL utility routine can also be started with the alias BCHANGE.

 There are no BCHANGE statements. i

Restructuring the database Compiling the Schema DDL

U931-J-Z125-17-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.8 Compiling the Schema DDL

If the compiler database has been prepared to accept a new schema with the aid of the
BCHANGE utility routine, the current Schema DDL must then be compiled by the DDL
compiler, even if the Schema DDL has not been modified.

The compilation procedure is the same as that used for database creation.

Once the Schema DDL has been compiled, the following are available:

– an old and a new DBCOM
– an old SIA in the DBDIR
– an old and a new COSSD.

Command sequence for compiling the current Schema DDL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The commands listed here are described in detail in section “Compiling the Schema DDL”
on page 66.

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-DDL

04 SOURCE IS 'schema-file'

05 END

06 /ASSIGN-SYSDTA TO=*SYSCMD

 It is essential that the DDL compiler should terminate compilation with the message
’NORMAL END’.

If the message ’ABNORMAL END’ is received, compilation must be repeated with
corrected DDL clauses.

i

Compiling the SSL Restructuring the database

278 U931-J-Z125-17-76

6.9 Compiling the SSL

The option is available to compile a new SSL using the SSL compiler once the Schema DDL
has been compiled.

If no SSL compilation is carried out, default values for the storage structure are used. If the
previously defined storage structure is to be retained, it is necessary to recompile the
original SSL clauses.

The compilation procedure is the same as that used for database creation (see section
“Compiling the SSL” on page 76).

Command sequence for compiling the SSL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47. The
aliases for calling the utility routines are also listed in this section).
The commands listed here are described in detail in section “Compiling the SSL” on
page 76.

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-SSL

04 SOURCE IS 'ssl-file'

05 END

06 /ASSIGN-SYSDTA TO=*SYSCMD

 It is essential that the SSL compiler should terminate compilation with ’NORMAL
END’. If compilation ends with ’ABNORMAL END’, the following action should be
taken:

● for errors in the SSL clauses:

the faulty SSL clauses should be corrected and the SSL compilation should be
repeated;

● for errors in the DDL clauses:

– the faulty DDL clauses should be corrected

– the faulty schema should be deleted in a DDL run by means of the
statement DELETE SCHEMA schemaname

– and the restructuring process should be repeated from ’Compiling the
Schema DDL’ onwards.

i

Restructuring the database Generating a new SIA

U931-J-Z125-17-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.10 Generating a new SIA and entering it in the DBDIR with
BGSIA

Once the Schema DDL and the SSL (optional) have been successfully compiled, the SIA
of the new schema must be generated and entered in the DBDIR using the BGSIA utility
routine.

The saved SIA of the old schema remains in DBDIR so that, after the BGSIA run, DBDIR
contains the SIAs of both the old and the new schemas. BALTER needs both in order to
adapt the stored data to the modified schema.

The BGSIA run corresponds to the run carried out for the creation of the database (see
section “Setting up the Schema Information Area (SIA) with BGSIA” on page 79). After the
BGSIA run, the module UDSHASH generated by BGSIA must be entered in the HASHLIB.

If hash routines written by the DB administrator are used, these must also be entered in the
HASHLIB with the attributes RMODE=ANY and AMODE=ANY before BALTER is started
by means of EXECUTION IS YES.

Generating SIA and entering it in DBDIR

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /DELETE-SYSTEM-FILE FILE-NAME=*OMF

04 /START-UDS-BGSIA

05 GENERATE SCHEMA schema-name

06 [DISPLAY[SCHEMA schema-name]]

07 END

Entering the module UDSHASH in the HASHLIB

01 /START-LMS

02 //OPEN-LIB LIB=dbname.HASHLIB,MODE=*UPDATE

03 //ADD-ELEMENT FROM-FILE=*OMF,TO-ELEMENT=*LIBRARY-ELEMENT(TYPE=R)

04 //END

BALTER Restructuring the database

280 U931-J-Z125-17-76

6.11 Analyzing schema modifications and adapting stored data
with BALTER

Analyzing the modifications to the database schema and adapting stored data to the
modified schema is the task of the BALTER utility routine. BALTER controls these
processes in two phases:

– in the analysis phase BALTER analyzes the modifications to the database schema

– In the optional REPORT phase BALTER outputs the analysis report

– in the restructuring phase BALTER adapts the stored data and the definition of the
database to the modified schema

In order to run BALTER successfully, you must first use the BGSIA utility routine to create
the new SIA and enter it into the DBDIR (see section “Generating a new SIA and entering
it in the DBDIR with BGSIA” on page 279). Otherwise, the BALTER run will abort with the
message “BGSIA HAS NOT BEEN EXECUTED”.

When required, BALTER automatically extends the realms of the database being
processed. For details, please refer to the “Database Operation” manual, Automatic realm
extension by means of utility routines).

At startup BALTER takes into account any assigned UDS/SQL pubset declaration (see the
“Database Operation” manual, Pubset declaration job variable). Faulty assignment leads to
the program aborting.

6.11.1 Analysis phase

Using the old and new versions of both the DBCOM and the SIA, BALTER determines, in
the analysis phase, the differences between the old and the new schema description and
checks that all the modifications are permissible.

At the end of the analysis phase BALTER offers an optional logging function which logs the
following to SYSLST (see "REPORT statement", table 42, page 299): the user realms that
will be added, deleted and needed during restructuring, as well as the modifications to be
made to stored data in the order in which they are subsequently carried out in the
restructuring phase.
This analysis listing indicates how much free memory space BALTER requires for individual
restructuring operations in the database, and whether any of the planned modifications are
illegal.

It is therefore important that you output the analysis listing and to read through it carefully,
and that you save any need user realms that have not yet been saved before you initiate
restructuring.

BALTER System environment

U931-J-Z125-17-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 If you need to create a unique key (sort key, CALC key, SEARCH KEY USING
INDEX) that consists of only newly-defined items for a record type for which there
are already existing records in the database, the following approach is
recommended:

1. Create the new keys with DUPLICATES ARE ALLOWED.

2. Assign unique values or value combinations to the new keys (e.g. by using the
DML statement MOVE).

3. Then change the definition of the key to DUPLICATES ARE NOT ALLOWED.

Figure 28: System environment in the analysis phase

BALTER issues error messages and warnings via SYSOUT if illegal modifications are
planned (see section “Description of BALTER messages” on page 307). If REPORT IS YES
is specified, BALTER outputs information on which realms are needed and which realms
are not needed to SYSOUT.

i

� � � 	 � �

 � � �
 �

� % � � & � ' � � () � � �

	
 � � � * � 	
 	 � �	
 � � �
" � # � � � �
% � + � � � �

� � � � � �

Analysis report BALTER

282 U931-J-Z125-17-76

6.11.2 Description of the analysis report (REPORT phase)

If REPORT IS YES is specified for a BALTER run, BALTER initiates the REPORT phase
after the analysis phase. In the REPORT phase it outputs the analysis report via SYSLST.
In the analysis report BALTER lists the changes to be carried out in the order in which it
actually implements them during the restructuring phase.

If BALTER requires free memory space in the database for a modification, it also specifies:

– the number of data pages required and
– the realm in which it requires the space.

In addition, BALTER logs whether, and how much, free space will become available as a
result of each restructuring operation, and it reports changes which are illegal or only
permissible under certain circumstances.

 Free memory space
When required, BALTER automatically extends the realms of the processed
database. For details, please refer to the “Database Operation” manual, Automatic
realm extension by means of utility routines. If the free memory space is not
sufficient for a change, sufficient space is generally made available by this
automatic realm extension. Only if the requirement for automatic realm extension is
not satisfied can it happen that there is actually not enough free memory space.

REPORT OF ADDED, DELETED AND NEEDED AREAS

If REPORT IS YES is specified, BALTER also outputs to SYSOUT the names of the realms
that are needed and those that are not needed

Message Meaning

realm-name ADDED Realm realmname added

realm-name DELETED Realm realm-name deleted

realm-name NEEDED Realm realm-name needed
Realm realmn-ame must be saved before the
restructuring phase.

Table 35: Report of added, deleted and needed realms

Message Meaning

REALM NEEDED: realm-name Realm realm-name needed
Realm realm-name must be saved before the
restructuring phase.

REALM NOT NEEDED: realm-name Realm realm-name not needed

Table 36: SYSOUT report on realms that are needed and not needed

i

BALTER Analysis report

U931-J-Z125-17-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

REPORT OF CHANGES IN DBTT FOR RECORD: record-name

Log of DBTT changes for record type record-name

Message Meaning

NUMBER OF ENTRIES RESERVED IN
 OLD DBTT PAGE = integer

Self-explanatory
(page is synonymous with page)

NUMBER OF ENTRIES RESERVED IN
 NEW DBTT PAGE = integer

Self-explanatory

TOTAL NUMBER OF PAGES IN OLD DBTT = integer Number of pages reserved for the
previous DBTT (DBTT base and DBTT
extents)

TOTAL NUMBER OF PAGES, NEEDED FOR NEW DBTT IN
AREA realm-name = integer.
 IF THERE IS NOT ENOUGH SPACE AVAILABLE,
 THE RESTRUCTURING PROCESS WILL ABEND.

Total number of pages that the new
DBTT requires in the realm realm-name.
If there is not enough space available
then the restructuring phase is aborted;
contiguous empty pages must be
available for the new DBTT extents that
are to be created (cf. “Free memory
space” on page 282).

TABLE ANCHORED IN DBTT COLUMN: integer
 WILL BE DELETED.

Self-explanatory

TABLE ANCHORED IN DBTT-COLUMN-NR: integer
 WILL BE MOVED FROM
 {AREA realm-name-1 | OWNER AREA}
 TO {AREA realm-name-2 | OWNER AREA}.

Self-explanatory

[UP TO]{integer | NO} OLD DBTT PAGE(S)
 WILL BE FREED IN AREA realm-name

Number of pages released by the
previous DBTT in the realm realm-name.
The precise number of pages actually
released in the execution phase may in
some cases be up to 64 pages smaller
than indicated in integer.

UP TO 256 CONSECUTIVE EMPTY PAM PAGES ARE
NEEDED FOR NEW DBTT.

If parts of an existing DBTT with extents
are re-used then a new DBTT base,
which is greater in size than a DBTT
extent, is created.

THE RECORD TYPE IS NOW OWNER IN SOME SETS. As a result of restructuring, a record
type which was previously only a set
member is now also a set owner.

Table 37: Report of DBTT changes (part 1 of 2)

Analysis report BALTER

284 U931-J-Z125-17-76

If the new DBTT occupies more pages than the previous one then the previously used
pages continue to be used, if possible. If new DBTT extents are to be created then
contiguous empty pages with the fixed size of these extents must be available. There must
be a minimum of 128 contiguous free PAM- pages for each of the DBTT components.

If the new DBTT is exactly the same size as the previous one, or smaller, BALTER uses the
pages of the previous DBTT to create the new DBTT. DBTT extents that are no longer
required are released.

THE DBTT HAS TO BE SHORTENED TO 16 711 679
ENTRIES.

Databases with 2-Kbyte page format
permit only 16711679 DBTT entries for
owner record types (cf section
“Declaring the population” in the
“Design and Definition” maual).

IF THERE ARE EXISTING ENTRIES WITH HIGHER RSQ
THE RESTRUCTURING PROCESS WILL END
ABNORMALLY.

If DBTT entries above those possible
for the owner record types exist in the
previous member record type then
BALTER aborts the restructuring
phase. The planned restructuring is not
possible in 2-Kbyte page format.

Message Meaning

Table 37: Report of DBTT changes (part 2 of 2)

BALTER Analysis report

U931-J-Z125-17-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

REPORT OF DATABASE CHANGES FOR SINGULAR SET: set-name

Message Meaning

LENGTH OF OLD SYSTEM RECORD = integer Self-explanatory
(system record = anchor record)

LENGTH OF NEW SYSTEM RECORD = integer Self-explanatory

TABLE OCCURRENCE ANCHORED IN SYSTEM RECORD
 COLUMN integer
 WILL BE DELETED IF PRESENT.

Self-explanatory

TABLE ANCHORED IN DBTT-COLUMN-NR integer
 WILL BE MOVED FROM
 AREA realm-name-1 TO AREA realm-name-2.

Self-explanatory

FORWARD CHAIN POINTER WILL BE REMOVED. Self-explanatory

BACKWARD CHAIN POINTER WILL BE REMOVED. Self-explanatory

THE SYSTEM RECORD WILL BE CREATED
 IN AREA realm-name

Self-explanatory

THE SYSTEM RECORD WILL BE DELETED
 IN AREA realm-name

Self-explanatory

THE SYSTEM RECORD WILL BE MOVED FROM
 AREA realm-name-1 TO AREA realm-name-2

Self-explanatory

integer PAGES FOR CALC SEARCH KEY TABLES
 WILL BE FORMATED IN AREA realm-name.
 THEY ARE CONSECUTIVE.
 IS THERE ENOUGH SPACE AVAILABLE?

Self-explanatory
(page is synonymous with page)
cf. “Free memory space” on page 282.

integer PAGES FOR CALC SEARCH KEY TABLES
 WILL BE DELETED IN AREA realm-name

Self-explanatory

Table 38: Report of database changes for singular sets

Analysis report BALTER

286 U931-J-Z125-17-76

 REPORT OF DATABASE CHANGES FOR DELETION OF RECORD: record-name

Message Meaning

NUMBER OF ENTRIES RESERVED IN
 OLD DBTT PAGE = integer

Self-explanatory
(page is synonymous with page)

integer OLD DBTT PAGES WILL BE FREED
 IN AREA realm-name

Self-explanatory

TABLE ANCHORED IN DBTT COLUMN integer
 WILL BE DELETED IF PRESENT.

Self-explanatory

integer PAGES WITH CALC KEY RECORDS AND
 TABLES WILL BE DELETED IN AREA realm-name

Self-explanatory

integer PAGES WITH CALC KEY TABLES WILL BE
 DELETED IN AREA realm-name

Self-explanatory

ALL RECORD INFORMATION WILL BE DELETED. Self-explanatory

Table 39: Report of database changes for deletion of record types

BALTER Analysis report

U931-J-Z125-17-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

REPORT OF DATABASE CHANGES FOR CREATION OF RECORD: record-name

Message Meaning

NUMBER OF ENTRIES RESERVED IN
 NEW DBTT PAGE = integer

Self-explanatory
(page is synonymous with page)

TOTAL NUMBER OF PAGES,
 NEEDED FOR NEW DBTT IN AREA realm-name
 = integer

Number of empty pages that the new
DBTT requires in the realm realmname.
Contiguous empty pages must be
available for the DBTT base and the
DBTT extents.

integer PAGES FOR CALC KEY RECORDS AND
 TABLES WILL BE FORMATED IN AREA

realm-name.
 THEY ARE CONSECUTIVE.

Self-explanatory
(direct hash area)

integer PAGES FOR CALC KEY TABLES WILL BE
 FORMATED IN AREA realm-name.
 THEY ARE CONSECUTIVE.

Self-explanatory
(indirect hash area)

IF THERE IS NOT ENOUGH SPACE AVAILABLE,
 THE RESTRUCTURING PROCESS WILL END
 ABNORMALLY.

Self-explanatory
cf. “Free memory space” on page 282.

Table 40: Report of database changes for creation of record types

Analysis report BALTER

288 U931-J-Z125-17-76

REPORT OF DATABASE CHANGES FOR RECORD: record-name

Message Meaning

integer PAGES WITH CALC KEY RECORDS AND
 TABLES WILL BE DELETED IN AREA realm-name

Self-explanatory

integer PAGES WITH CALC KEY TABLES WILL BE
 DELETED IN AREA realm-name

Self-explanatory

integer PAGES FOR CALC KEY RECORDS AND
 TABLES WILL BE FORMATED IN AREA realm-name.
 THEY ARE CONSECUTIVE.
 IS THERE ENOUGH SPACE AVAILABLE?

Self-explanatory
cf. “Free memory space” on page 282.

integer PAGES FOR CALC KEY TABLES WILL BE
 FORMATED IN AREA realm-name.
 THEY ARE CONSECUTIVE.
 IS THERE ENOUGH SPACE AVAILABLE?

Self-explanatory
cf. “Free memory space” on page 282.

AREA DELETED FROM RECORD-WITHIN-CLAUSE Self-explanatory

FOLLOWING ACTIONS EXECUTED IF RECORD
 OCCURRENCES ARE PRESENT:

Self-explanatory

THE RESTRUCTURING PROCESS WILL END
 ABNORMALLY FOR NOT ALLOWED SCHEMA CHANGES.

Self-explanatory

THE RESTRUCTURING PROCESS WILL END
 ABNORMALLY IF RECORD OCCURRENCES ARE
 PRESENT IN AREAS WHICH ARE DELETED FROM
 RECORD-WITHIN-CLAUSE

Self-explanatory

A NON SINGULAR AUTOMATIC SET THAT WAS NOT
 PRESENT IN THE OLD SCHEMA HAS BEEN
 SPECIFIED IN THE NEW SCHEMA.
 THE RESTRUCTURING PROCESS WILL STOP
 BECAUSE THE SET OCCURRENCES TO WHICH EACH
 RECORD OCCURRENCE BELONGS ARE NOT KNOWN.

Self-explanatory

AS A CONSEQUENCE OF LOGICAL CHANGE THE
 RECORDTYPE WILL BE PLACED IN NEW PAGES.
 DURING THE PROCESS THE RECORDTYPE WILL
 RESIDE TWICE IN THE AREA(S).
 IS THERE ENOUGH SPACE AVAILABLE?

Self-explanatory
cf. “Free memory space” on page 282.

SET setname DOES NOT HAVE MODE = LIST ANY-
 MORE. THE LIST TABLE HEADER WILL BE
 REMOVED FROM THE LIST-PAGES.

Self-explanatory

DUE TO A CHANGE IN LOCATION MODE THE CALC
 KEY INFORMATION WILL BE REMOVED.

Self-explanatory

Table 41: Report of changes for record types (part 1 of 5)

BALTER Analysis report

U931-J-Z125-17-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

CALC RECORDS AND KEYS WILL BE PLACED
 IN THE CALC KEY PAGES.

Self-explanatory

CALC KEYS WILL BE PLACED
 IN THE CALC KEY PAGES.

Self-explanatory

'DUPLICATES ARE NOT ALLOWED' HAS BEEN
 SPECIFIED FOR THE CALC KEY.
 IF DUPLICATES ARE DETECTED
 THE DUPLICATE VALUES WILL BE PRINTED AND
 THE RESTRUCTURING PROCESS WILL CONTINUE.

Self-explanatory.

Note: If the table contains duplicates
after the BALTER run, the table
cannot be processed by means of
these duplicates.
This situation can be corrected as
follows:
First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

'DUPLICATES ARE NOT ALLOWED' HAS BEEN
 SPECIFIED FOR THE CALC KEY.
 THIS KEY IS A NEW ONE ON
 {ONE NEW FIELD | ONLY NEW FIELDS}.
 THEREFORE THE TABLE WILL HAVE ONLY
 DUPLICATES.
 THIS IS INCONSISTENT WITH 'DUPLICATES ARE
 NOT ALLOWED'.
 SPECIFY 'DUPLICATES ARE ALLOWED'
 IF DUPLICATES ARE DETECTED THE DUPLICATE
 VALUES WILL BE PRINTED AND THE
 RESTRUCTURING PROCESS WILL CONTINUE.

DUPLICATES ARE NOT ALLOWED
was defined for the CALC key. Each
item of this key is new.
If existing records of the record type
for which the key is defined are used
to create the table, the table will
consist of all new items and can only
contain duplicates.
BALTER logs the found duplicates
and continues restructuring. However,
the table cannot be processed.
These conflicting entries can be
corrected as follows:
First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT..

FOR SET setname A SORTED CHAIN WILL BE BUILT. Self-explanatory

FOR SET setname A LIST TABLE WILL BE BUILT. Self-explanatory

FOR SET setname A POINTER ARRAY WILL BE BUILT. Self-explanatory

Message Meaning

Table 41: Report of changes for record types (part 2 of 5)

Analysis report BALTER

290 U931-J-Z125-17-76

'DUPLICATES ARE NOT ALLOWED' HAS BEEN
 SPECIFIED FOR THE SORT KEY.
 IF DUPLICATES ARE DETECTED
 THE DUPLICATE VALUES WILL BE PRINTED AND
 THE RESTRUCTURING PROCESS WILL CONTINUE.

Self-explanatory.

Note: If the table contains duplicates
after the BALTER run, the table
cannot be processed by means of
these duplicates.
This situation can be corrected as
follows:
First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

'DUPLICATES ARE NOT ALLOWED' HAS BEEN
 SPECIFIED FOR THE SORT KEY.
 THIS KEY IS A NEW ONE ON
 {ONE NEW FIELD | ONLY NEW FIELDS}.
 THEREFORE THE TABLE WILL HAVE ONLY
 DUPLICATES.
 THIS IS INCONSISTENT WITH 'DUPLICATES ARE
 NOT ALLOWED'.
 SPECIFY 'DUPLICATES ARE ALLOWED'
 IF DUPLICATES ARE DETECTED THE DUPLICATE
 VALUES WILL BE PRINTED AND THE
 RESTRUCTURING PROCESS WILL CONTINUE.

DUPLICATES ARE NOT ALLOWED
was defined for the ASC/DESC key.
Each item of this key is new.
If existing records of the record type
for which the key is defined are used
to create the table, the table will
consist of all new items and can only
contain duplicates.
BALTER logs the found duplicates
and continues restructuring. However,
the table cannot be processed.
These conflicting entries can be
corrected as follows:
First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

FOR SET setname CALC SEARCH KEYS WILL BE
 PLACED IN THE CALC KEY PAGES.

Self-explanatory

FOR SET setname AN INDEXED SEARCH KEY TABLE
 OF TYPE REPEATED KEY WILL BE BUILT

Self-explanatory

FOR SET setname AN INDEXED SEARCH KEY TABLE
 OF TYPE DATABASE KEY LIST WILL BE BUILT.

Self-explanatory

Message Meaning

Table 41: Report of changes for record types (part 3 of 5)

BALTER Analysis report

U931-J-Z125-17-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

'DUPLICATES ARE NOT ALLOWED' HAS BEEN
 SPECIFIED FOR THE SEARCH KEY.
 IF DUPLICATES ARE DETECTED
 THE DUPLICATE VALUES WILL BE PRINTED AND
 THE RESTRUCTURING PROCESS WILL CONTINUE.

Self-explanatory.

Note: If the table contains duplicates
after the BALTER run, the table
cannot be processed by means of
these duplicates.
This situation can be corrected as
follows:
First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

'DUPLICATES ARE NOT ALLOWED' HAS BEEN
 SPECIFIED FOR THE SEARCH KEY.
 THIS KEY IS A NEW ONE ON
 {ONE NEW FIELD | ONLY NEW FIELDS}.
 THEREFORE THE TABLE WILL HAVE ONLY
 DUPLICATES.
 THIS IS INCONSISTENT WITH 'DUPLICATES ARE
 NOT ALLOWED'.
 SPECIFY 'DUPLICATES ARE ALLOWED'
 IF DUPLICATES ARE DETECTED THE DUPLICATE
 VALUES WILL BE PRINTED AND THE
 RESTRUCTURING PROCESS WILL CONTINUE.

DUPLICATES ARE NOT ALLOWED
was defined for the SEARCH key.
Each item of this key is new.
If existing records of the record type
for which the key is defined are used
to create the table, the table will
consist of all new items and can only
contain duplicates.
BALTER logs the found duplicates
and continues restructuring. However,
the table cannot be processed.
These conflicting entries can be
corrected as follows:
First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

ALL RECORD OCCURRENCES WILL BE
 READ AND WRITTEN.

Self-explanatory

ALL RECORD OCCURRENCES WILL BE
 READ, MODIFIED AND WRITTEN.
 THESE MODIFICATIONS ARE A CONSEQUENCE
 OF CHANGES IN:
 - THE SYSTEM-PART OF THE RECORD
 - THE USER-PART OF THE RECORD

Self-explanatory

THE SYSTEM WILL TRY TO USE SAME PAGE FOR THE
 NEW ALLOCATION OF THE RECORD OCCURRENCES.

Self-explanatory

Message Meaning

Table 41: Report of changes for record types (part 4 of 5)

Analysis report BALTER

292 U931-J-Z125-17-76

If the user part of a record type has been modified, BALTER outputs a table contrasting the
layout of the old record with that of the new:

Figure 29: Comparison of the old and the new record (user-part)

LAYOUT OLD RECORD (USER PART)
Self-explanatory

LAYOUT NEW RECORD (USER PART)
Self-explanatory

ITEM-NAME
Item name

TYPE Type of item:

1 alphanumeric
2 unsigned decimal, unpacked
3 signed decimal, unpacked
5 packed decimal
6 half-word
7 Wort
8 database key item

DISPL Displacement of item from beginning of record type (incl. SCD)

LIST WILL BE REALLOCATED A list will be reconstructed. Member
records of a distributable SYSTEM-
LIST set will be distributed
approximately evenly over the realms
involved.

RECORDS OF SYSTEM LIST SET CAN NOW BE STORED
IN n REALMS

Following reconstruction the member
records can be stored in n realms.

Message Meaning

Table 41: Report of changes for record types (part 5 of 5)

LAYOUT OLD RECORD (USER PART) LAYOUT NEW RECORD (USER PART)

ITEM-NAME LENGTH TYPE DISPL ITEM-NAME LENGTH TYPE DISPL
...

BALTER Analysis report

U931-J-Z125-17-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

What to do if there is a shortage of memory space in the realms

If the analysis report shows that the space required for restructuring in one or more
database realms is greater than the space available, the following action must be taken:

● either fulfil the requirements to permit the realms concerned to be extended
automatically (for details see the “Database Operation” manual)

● or create additional memory space in the realms concerned manually:

– the realms of the database which have already been modified should be reset to
their original state before the beginning of restructuring (see section “Restoring the
database” on page 272),

– the concerned realms should be extended using BREORG, and

– the restructuring process should be repeated from the ’preparing the compiler
database’ stage onwards.

Restructuring phase BALTER

294 U931-J-Z125-17-76

6.11.3 Restructuring phase

The restructuring phase is initiated by BALTER when the DB administrator issues a control
statement to that effect (see "EXECUTION statement", table 42, page 299) and if the
analysis phase has detected no errors.

6.11.3.1 Effects of the restructuring on the content of the database

The various modifications which can be made to the schema and to the storage structure
have varying effects on the content of the database:

● BALTER does not modify the content of the database during the restructuring phase
when

– identifier is renamed

– LOCATION DIRECT or DIRECT-LONG is added or omitted

– the specifications in the ORDER clause vary between: LAST, FIRST, NEXT, PRIOR
or IMMATERIAL

– set membership is redefined

– duplicates are allowed or prohibited

– the SET OCCURRENCE SELECTION clause is changed.

Such modifications are noted by BALTER in the database definitions only; they have no
effect on stored data and need only be taken into account when programming the DB
applications.

● Again, BALTER does not modify the content of the database when any of the following
are redefined:

– the size of a DBTT

– the number of pages for the dynamic reorganization of tables

– the size of set tables.

Such modifications must be carried out by the BREORG utility routine.

● BALTER modifies the content of the database to a certain degree when any of the
following are redefined:

– PLACEMENT OPTIMIZATION

– the location of tables

– the size of a hash area.

BALTER Restructuring phase

U931-J-Z125-17-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Modifications of this kind do affect the content of the database, but DB consistency does
not depend on whether or not BALTER adapts the data stored to the new definition.
Since, in addition, BALTER generally has to re-store a large number of records and
table lines when carrying out such modifications, it updates the overall database
definition, but only adapts the data stored to the new definition if it has to relocate the
records or tables in the course of other modifications.

● BALTER modifies the content of the database when

– a realm is added to the database

– a new record type or a new set is defined

– LOCATION CALC is defined for the first time

– the hash routine or the CALC keys are modified when LOCATION CALC is used

– a DBTT is relocated to another realm

– the definition of a SEARCH key is changed

– the user or system information of a record type is changed

– the structure or sort criteria of tables are redefined.

When effecting such modifications, BALTER adapts the stored data to the modified
schema or storage structure by carrying out the following steps in the order specified:

– formatting the realms added

– in the case of owner record types, modifying the DBTT and deleting the set tables
or relocating them in the database

– entering, deleting or modifying system records for SYSTEM sets

– deleting or relocating tables

– deleting all information concerning record types which no longer occur in the new
schema

– creating hash areas and DBTTs for new record types

– modifying and re-storing record types (user and system information) and creating
new tables

– removing realms which no longer occur in the new schema from the database.

Restructuring phase BALTER

296 U931-J-Z125-17-76

 If the reuse of database keys was disabled using the BMODTT utility routine, this
run must be repeated after restructuring has been performed as BGSIA restores the
default setting (database keys of deleted records are reusable or the search for free
space begins in a contiguous free area at the end of the realm). Delete identifiers
are retained by BALTER when DBTTs are recreated.

6.11.3.2 Logging the restructuring phase

All steps of the restructuring phase can be seen from the analysis report. During
restructuring, BALTER only logs the following to SYSOUT:

– realms or record types which have been added or deleted

– the processing of record types, i.e. the creation of new tables, and the modification of
record types.

6.11.3.3 System environment in the restructuring phase

Figure 30: System environment in the restructuring phase

i

� � � 	 � �
 � � �
 �
� � " , � % ' - � ! ' " % � () � � �

	
 	 � �

" � # � � � �

% � + � � � �

� � � � � � .
+ " / � 0 ' � �

� � � � 1 �
+ " / � 0 ' � �

� � � � � �

� � � � � �

� � �
 � � � � �

BALTER Restructuring phase

U931-J-Z125-17-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Realms

● User realms
You can query which user realms BALTER needs during the restructuring phase in an
analysis run for which REPORT IS YES EXECUTION IS NO has been specified.
These user realms are not yet accessed. BALTER does not access the needed user
realms until the restructuring phase itself.

● Added realms
Unless temporary, these realms must be created with the CREATE-FILE command
before the restructuring phase is started, under the file name:
dbname.realm-name

Work files

During the restructuring phase, BALTER requires two work files on disk. It automatically
creates these on public disks under the appropriate user identification and deletes them
once the run has normally terminated.

The default names for these files are the link names SCRTCH1 and SORTWK:

SCRTCH1 is required by BALTER for buffering information concerning the re-storage
and modification of records and the creation of tables

SORTWK requires the SORT used by BALTER for sorting internal evaluation records
(see the manual “SORT (BS2000)”).

If the two work files are to be created explicitly, they must have the following attributes:

work-file-1

The primary allocation for work file 1 should be based on the data population that is to be
buffered. There should always be an appropriate secondary allocation in case it should be
necessary to extend the storage space.

SCRTCH1 file link name

PAM access method

The data population for buffering can be calculated approximately using the following
formula:

max(key-length x no.-of-records) x 3 Bytes

key-length
total length of all keys required. The value 8 should be chosen as the minimum.

max maximum value obtained when processing various record types.

Restructuring phase BALTER

298 U931-J-Z125-17-76

work-file-2

SORT needs work file 2 if there is not enough virtual memory for pre-sorting. The primary
allocation should be based on the data population that is to be sorted while taking account
of the safety factor recommended by SORT (see the discussion of work files in the manual
“SORT (BS2000)”). There should always be an appropriate secondary allocation in case it
is necessary to extend the storage space.

SORTWK file link name

PAM access method

The sort data population can be calculated approximately using the following formula:

max(rec-length x no.-of-records) Bytes

rec-length
length of a record incl. SCD

max maximum value obtained when processing various record types

If you do not set up the two work files yourself, BALTER creates them with the following
names and sizes:

UTI.tsn.SCRTCH1 (360,360)

UTI.tsn.SORTWK (120,120)

tsn is the task sequence number under which BALTER is started.

BALTER Statements

U931-J-Z125-17-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.11.4 BALTER statements

BALTER recognizes the following statements:

The statements are described in detail in the following pages.

Statement Default
value

Meaning

[SORTCORE IS nnn.] 150 Specifies size of sort area

 lYES⎫
EXECUTION IS m }.
 nNO ~

-
Starts/does not start restructuring phase

 lYES⎫
REPORT IS m }.
 nNO ~

-
Requests/suppresses logging

[FILLING IS nnn PERCENT

 [IN SET NAME IS

 lsetname,... ⎫
 m }].]
 n*ALL[EXCEPT setname,..]~

- Specifies table occupancy level
(Format 1)

[FILLING WITH POPULATION

 [IN SET NAME IS

 lsetname,... ⎫
 m }].]
 n*ALL[EXCEPT setname,..]~

- Specifies table occupancy level
(Format 2)

END. - Terminates entry of statement

Table 42: Statements for BALTER

SORTCORE statement BALTER

300 U931-J-Z125-17-76

SORTCORE (Specifying the size of the sort area)

To sort elements (records/table rows), BALTER uses the BS2000 utility routine SORT. The
SORTCORE statement allows you to specify the size of the main memory space required
for the sort area of the SORT routine (see "ALLOC statement" in the "SORT (BS2000)"
manual).

 [SORTCORE IS nnn.]

nnn You specify the size of the sort buffer memory space to be made available to the
BS2000 SORT utility routine in 4-Kbyte units (see "ALLOC statement" in the "SORT
(BS2000)" manual).
Default value:150

The sort data population is the same as that on which the size of work file 2 is based (see
page 298).

BALTER EXECUTION statement

U931-J-Z125-17-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

EXECUTION (Starting/not starting the restructuring phase)

The EXECUTION statement specifies whether BALTER is to carry out the analysis phase
and analyze the changes made to the schema and the storage structure, or, in addition, to
implement the restructuring phase and adapt stored data to the changes.

The EXECUTION statement must be specified.

 lYES⎫
 EXECUTION IS m }.
 nNO ~

NO analysis phase only

YES analysis and restructuring phases

REPORT statement BALTER

302 U931-J-Z125-17-76

REPORT (Requesting/suppressing logging)

The REPORT statement specifies whether or not BALTER is to print out an analysis report
(see section “Description of the analysis report (REPORT phase)” on page 282).

The REPORT statement must be specified.

 lYES⎫
 REPORT IS m }.
 nNO ~

YES BALTER prints out an analysis report

NO BALTER does not perform logging

BALTER FILLING statement

U931-J-Z125-17-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

FILLING (Specifying the occupancy level of table pages)

The FILLING statement enables you to define the occupancy level of new tables.

Format 1 Specifies an occupancy level of the new tables in percent.

Format 2 Specifies a minimum size for new tables.
However, the minimum size actually used is limited by the number of table
entries which fit onto a database page. Format 2 consequently only works
for small tables, i.e. ones which fit onto a page.

 Format 1

 [FILLING IS nnn PERCENT
 lsetname,... ⎫
 [IN SET NAME IS m }].]
 n*ALL[EXCEPT setname,...]~

Format 2

 [FILLING WITH POPULATION
 lsetname,... ⎫
 [IN SET NAME IS m }].]
 n*ALL[EXCEPT setname,...]~

nnn Specifies to which percentage the new table pages are to be filled

nnn = 1 ... 100

POPULATION
Specifies that the POPULATION clause in the SSL is used to determine the size of
new tables.

IN SET NAME IS ...
Specifies the sets in which the occupancy level specified for new tables applies.
If IN SET NAME IS is omitted, FILLING applies to all new table pages.

setname,...
The specified occupancy level applies to new table pages in the specified sets

*ALL The specified occupancy level applies to all new table pages

FILLING statement BALTER

304 U931-J-Z125-17-76

*ALL EXCEPT setname,...
The specified occupancy level applies to all new table pages other than those in the
sets listed after EXCEPT

● Format 1 of the statement is effective for single-level tables and for level 0 of all multi-
level tables which BALTER creates except lists.
On level 1, tables are 95 % filled, and on every higher level one table entry is left free.

If nnn is made too small, BALTER makes sure that there is room for at least one entry.

● Format 2 of the statement is effective for single-level tables which BALTER creates,
including lists.

● If you do not specify FILLING, an entry on level 0 also remains free.

● You can specify both formats simultaneously for the same set name. If required, more
free table entries can occur than are specified with Format 1.

● You can repeat the statements and consequently complement and correct preceding
statements with the same format.
The last entry therefore applies for each set name.

BALTER Command sequence

U931-J-Z125-17-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.11.5 Command sequence to start BALTER

It is assumed for the command sequences described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The following commands are used under the identification in which the database is
cataloged to initiate the BALTER analysis and restructuring phases (you can also start the
program using the alias BALTER):

Analysis phase

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-BALTER

04 EXECUTION IS NO.

05 REPORT IS YES.

06 END.

Command sequence BALTER

306 U931-J-Z125-17-76

Restructuring phase

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 [/CREATE-FILE FILE-NAME=work-file-1 ...
 /ADD-FILE-LINK LINK-NAME=SCRTCH1,FILE-NAME=work-file-1
 ,ACCESS-METHOD=*UPAM]

03 [/CREATE-FILE FILE-NAME=work-file-2 ...
 /ADD-FILE-LINK LINK-NAME=SORTWK,FILE-NAME=work-file-2
 ,ACCESS-METHOD=*UPAM]

04 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

05 /START-UDS-BALTER

06 [SORTCORE IS nnn.]

07 [FILLING IS nnn PERCENT
 lsetname,... ⎫
 [IN SET NAME IS m }].]
 n*ALL [EXCEPT setname,...]~

08 [FILLING WITH POPULATION
 lsetname,... ⎫
 [IN SET NAME IS m }].]
 n*ALL [EXCEPT setname,...]~

09 EXECUTION IS YES.

lYES⎫
10 REPORT IS m }.
 nNO ~

11 END

BALTER Messages

U931-J-Z125-17-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.11.6 Description of BALTER messages

The messages which BALTER issues to SYSOUT enable its activities to be monitored:

Action indicators

Message Meaning

*** ANALYSE-PHASE *** Start message for analysis phase

*** REPORT-PHASE *** Start message for REPORT phase with the
analysis report

*** EXECUTION-PHASE *** Start message for restructuring phase

NO ERRORS DETECTED IN SCHEMA CHANGES Self-explanatory

ERRORS DETECTED IN SCHEMA CHANGES Self-explanatory

DATABASE ALTERED Stored data adapted to schema changes

DATABASE NOT ALTERED Stored data not adapted to schema changes

NUMBER OF DATABASE ACCESSES integer Self-explanatory

NUMBER OF FILE ACCESSES integer Self-explanatory

NUMBER OF SORT ACCESSES integer Self-explanatory

Table 43: General BALTER messages

Message Meaning

PRINTOUT OF THE USED TAB2-INDICES

TAB2-INDEX number FOR RECORD rec-name

PRINTOUT OF TAB3- & TAB4-INDICES FOR

 MATCHING AND SINGULAR SETS

TAB3-INDEX number FOR SET set-name

TAB4-INDEX number FOR SET set-name
 KEY-REF keyref

⎫
o
o
o The TAB-INDICES are used for
o diagnostic purposes only.
} They give information about
o BALTER activities and changes
o to record types, sets and keys.
o
o
o
~

Table 44: TAB-INDICES

Messages BALTER

308 U931-J-Z125-17-76

Restructuring messages

During the restructuring phase BALTER logs to SYSOUT all changes it makes to record
types, sets or keys:

Message Meaning

REALM ADDED TO DATABASE: realm-name Self-explanatory

RECORD DELETED FROM DATABASE: record-name Self-explanatory

RECORD ADDED TO DATABASE: record-name Self-explanatory

RECORD MODIFICATION STARTED FOR:
REC NAME: record-name
REC REF : record-reference

Self-explanatory

SET REF : set-no
SET NAME: set-name

Modification/creation of set
set-name begun

CALCKEY TABLE Modification/creation of CALC-key table
begun

SORTKEY TABLE, DBTT COLUMN NR: integer Modification/creation of SORT key table
begun;
DBTT column no.: integer

SEARCHKEY TABLE, DBTT COLUMN NR: integer Modification/creation of SEARCH key table
begun;
DBTT column no.: integer

TABLE FILLING IS integer PERCENT Occupancy level for specified table is
integer per cent; only shown if FILLING
(Format 1) has been specified

MINIMUM TABLE SIZE FROM POPULATION:
integer
ENTRIES

The table size was determined on the basis
of the POPULATION clause and the table
contains integer entries; appears only if
FILLING (Format 2) was specified

CALC SEARCHKEY TABLE Creation of indirect hash area for CALC
SEARCH key begun

ALLOCATION OF LIST RECORDS STARTED Self-explanatory

STORING DATABASE RECORDS Self-explanatory

DELETION OF REALM: realm-name Self-explanatory

Table 45: Restructuring messages

Restructuring the database Adapting access rights

U931-J-Z125-17-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.12 Adapting access rights

The restructuring process has no effect on the access rights which have been entered in
the old database with the aid of the BPRIVACY utility routine.

These access rights must be adapted to the new schema, i.e. they must be completely
reentered.

If no user group names were assigned for access rights before restructuring took place, you
can dispense with this processing step.

Copying compatible subschemas Restructuring the database

310 U931-J-Z125-17-76

6.13 Adapting subschemas

When the compiler database is being prepared for restructuring, one of BCHANGE’s tasks
is to delete all the SSIAs in the DBDIR and all subschema information in the DBCOM. The
DDL compiler then readies the COSSD to accept new subschema information when
compiling the new Schema DDL. Consequently all the old subschema information is
deleted after the restructuring phase. No subschema information has as yet been entered
in the new COSSD.

Therefore, once BALTER has restructured the database, all subschemas must be
recompiled and a new SSIA must be generated for each and entered in the DBDIR.

6.13.1 Copying compatible subschemas

Often not all the subschemas will be affected by schema changes. BCHANGE therefore
copies the COSSD into the file COSSD.O at the beginning of restructuring so that all the
old subschema information is retained despite the restructuring activity. If copying of the old
subschemas is required, it is necessary to carry out a DDL compiler run to copy the old
subschemas after BALTER has successfully terminated the restructuring phase.

During this run for copying the subschemas, the DDL compiler reads all the old
subschemas from the file COSSD.O, recompiles them and then checks them for
compatibility with the new schema. It differentiates between three possible results:

– the old subschema description is incompatible with the new schema

– the old subschema is incompatible with the new schema because of logical and/or
physical changes in the schema, i.e. the execution of DML statements is affected

– the old subschema is unaffected by changes in the new schema.

In the first two cases the DDL compiler does not store subschema information in either the
DBCOM or the COSSD. Only in the third case, when a subschema is not affected by
schema changes, does the computer copy the subschema from the COSSD.O, recompile
it and enter the subschema information in the new DBCOM and in the new COSSD. For
every subschema copied a new SSIA must be generated using the BGSSIA utility routine
and entered in the DBDIR.

Please note that "compatibility" only means that the old subschema’s view of the new
schema has remained the same as that of its view of the old schema. It does not mean, for
example, that when the "COPY [ALL] RECORD[S]" clause is used the view of the (upward-
compatible) changes in the new schema is retained in the new schema. If you want to do
this, you must recompile the subschema.

Restructuring the database Copying compatible subschemas

U931-J-Z125-17-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Figure 31: System environment for copying subschemas

The compiler run for copying compatible subschemas is optional; if omitted, all subschemas
must be recompiled individually, and the corresponding SSIAs must be regenerated and
entered in the DBDIR.

SYSDTA

DBDIR
SIA

SSIA

DBCOM

BGSSIA

COSSD

One BGSSIA run
per compatible
subschema

COSSD.0

DDL compiler

Maintaining the
subschemas

Copying compatible subschemas Restructuring the database

312 U931-J-Z125-17-76

Subschema compatibility and incompatibility

schema-name and PRIVACY LOCK FOR COPY.....
A change of schema name and of PRIVACY LOCK specifications has no effect on
copying the subschemas.
Such changes need only be taken into account when subsequent subschema
compilations are carried out.

PRIVACY LOCK FOR COMPILE
In the compiler run for copying the subschemas, the DDL compiler copies these
PRIVACY specifications from the old subschema description so that access locks
for the compilation of application programs are retained.

identifier
An old subschema is incompatible with the new schema if an identifier has been
added, deleted or renamed in the LOCATION MODE clause, the WITHIN clause
(record type level) or the SET OCCURRENCE SELECTION clause, and the
corresponding record type or set is present in the subschema.

Statements for copying subschemas

The DDL compiler requires the following statements to copy the subschemas:

Statement Default value Meaning

COMPARE SUBSCHEMAS - Initiates copying of subschemas

 lYES⎫
[SORCLIST IS m }]
 nNO ~

YES Prints out subschema listing

 lYES⎫
[DIAGNOSTIC m }]
 nNO ~

NO Diagnoses incompatibilities of old subschemas with
the new schema and lists them in the form of error
messages

END - Terminates entry of the statements

Table 46: Statements for copying subschemas

Restructuring the database Copying compatible subschemas

U931-J-Z125-17-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 Command sequence for copying subschemas

The following commands initiate a DDL compiler run for copying subschemas (see section
“Compiling the Schema DDL” on page 66):

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-DDL

04 COMPARE SUBSCHEMAS

lYES⎫
05 [DIAGNOSTIC m }]
 nNO ~

 lYES⎫
06 [SORCLIST IS m }]
 nNO ~
07 END

An SSIA must then be generated for each subschema copied and entered in the DBDIR
(see section “Generating the Subschema Information Area (SSIA) with BGSSIA” on
page 94) using the following commands:

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-BGSSIA

04 GENERATE SUBSCHEMA subschema-name OF SCHEMA schema-name

05 [DISPLAY[SUBSCHEMA subschema-name OF SCHEMA schema-name]]

06 END

Adapting incompatible subschemas Restructuring the database

314 U931-J-Z125-17-76

6.13.2 Adapting incompatible subschemas

For all subschemas which, in their original form, are not compatible with the new schema,
it is necessary to do the following:

– correct the subschema description if required

– recompile the corrected subschema with the DDL compiler

– generate a new SSIA using BGSSIA and enter it in the DBDIR

– recompile and relink all relevant application programs.

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47. The
aliases for calling the utility routines are also listed in this section).

Command sequence for adapting the subschemas

Compiling the corrected subschema (see section “Compiling the Schema DDL” on
page 66)

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-DDL

04 [DELETE 'subschema-name':'new schema-name']

05 SOURCE IS 'subschema-file'

06 SORCLIST IS YES

07 END

08 /ASSIGN-SYSDTA TO=*SYSCMD

02 The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM application programs" in the "Application Programming" manual).

03 The UDS/SQL utility routine can also be started using the alias DDL.

04 The DELETE statement should be specified only if a subschema recognized as
compatible and copied by the DDL compiler has been modified and requires
recompilation.

Restructuring the database Adapting incompatible subschemas

U931-J-Z125-17-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Generating the SSIA and entering it in the DBDIR

See section “Generating the Subschema Information Area (SSIA) with BGSSIA” on
page 94.

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-BGSSIA

04 GENERATE SUBSCHEMA subschema-name OF SCHEMA schema-name

05 [DISPLAY[SUBSCHEMA subschema-name OF SCHEMA schema-name]]

06 END

Adapting DB applications Restructuring the database

316 U931-J-Z125-17-76

6.14 Adapting DB applications

Once the subschemas and the access rights have been adapted to the restructured
database, all DB application programs that use an incompatible subschema must, if
necessary, be corrected in accordance with the new definitions. In any case, however, they
must be recompiled and relinked.

No DB application programs that use a compatible subschema need be recompiled or
relinked; this also applies to SQL application programs.

Note for UDS-D:

If necessary, modified subschema modules must be transferred to the remote application
program (see the "Database Operation” manual).

Restructuring the database Updating the PPPs

U931-J-Z125-17-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.15 Updating the probable position pointers (PPP)

Pointers defined as probable position pointers (PPP) either in the old or in the new schema
are not in every case updated when data is relocated during restructuring.

When records are relocated completely or partially, the following applies:

● Pointers in tables or indirect hash areas to records are updated by BALTER only if the
tables or indirect hash areas have to be recreated as a result of schema modifications.

● Pointers within the records of a chain are not updated by BALTER.

● Pointers in member records to owner records are updated by BALTER when owner
records are relocated.

Pointers to records can be updated with the BREORG utility routine. You can use the
REORGANIZE-POINTERS statement to update all the probable position pointers
(PPP) in one realm in one go.

When recreating, deleting, relocating tables:

● Pointers in owner records to their tables are treated by BALTER as act-keys.

The pointers are implemented in all relevant cases as act-keys:

– When the table is recreated
– When existing empty tables are deleted
– When tables are relocated to another realm
– When empty single-level lists are relocated to another realm
– When the pointers are being newly added

If, after restructuring, probable position pointers (PPP) contain obsolete values, this may
result in changes in the runtime behavior of DB applications.

Restarting DB operation Restructuring the database

318 U931-J-Z125-17-76

6.16 Measures for restarting DB operation

If the After Image Logging was deactivated before the restructuring cycle was started, it
wille result in a logging gap. After the restructuring cycle, the After Image Logging can be
activated again with the BMEND utility (see the "Recovery, Information and Reorganization"
manual, BMEND). Then a backup of the database has to be created again (see the
"Database Operation" manual, Saving and recovering a database in the event of errors)

You then can delete the DBCOM.O and COSSD.O files, as well as user realms which are
not present in the new schema.

Restructuring the database Example

U931-J-Z125-17-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

6.17 Example

The INSURE database shown in the following diagram is to be restructured as follows:

– the realm TRANSPORT-RLM is to be added

– the record type TRANSPORT-INSURANCE is to be relocated to the realm
TRANSPORT-RLM

– the set CONTR-PROP with the owner record type CUSTOMER and the member record
type TRANSPORT-INSURANCE is to be added

– the set CLAIMS-TRANSPORT with the owner record type TRANSPORT-INSURANCE
and the member record type DAMAGE-CLAIM is to be added

– the record type CUSTOMER is to be modified

The diagram below shows the schema of the INSURE database after restructuring (see
Figure 3, page 28, for a diagram of INSURE before restructuring).

Figure 32: SHIPPINGDB database after restructuring

CUSTOMER

PROPERTY-INSURANCE TRANSPORT-INSURANCE

DAMAGE-CLAIM

CONTR-PROP

CLAIMS-PROP

DAMAGES

Realm: PROP-RLM Realm:INSURE-RLM Realm:TRANSPORT-RLM

CONTR-TRANSPORT

CLAIMS-TRANSPORT

Example Restructuring the database

320 U931-J-Z125-17-76

DBDIR, DBCOM, COSSD, HASHLIB and the user realms needed are saved before
restructuring is performed (BEFRESTR). The entire database is saved after restructuring
(AFTRESTR).

You should check the consistency of the database using the utility routine BCHECK before
performing any save operation (see the “Recovery, Information and Reorganization”
manual).

This example is only intended to illustrate the restructuring process; therefore a simple
schema has been selected and the logs for Schema DDL, SSL etc. omitted.

Saving DBDIR, DBCOM, COSSD and HASHLIB

/COPY-FILE FROM-FILE=INSURE.DBDIR,TO-FILE=INSURE.DBDIR.BEFRESTR

/COPY-FILE FROM-FILE=INSURE.DBCOM,TO-FILE=INSURE.DBCOM.BEFRESTR

/COPY-FILE FROM-FILE=INSURE.COSSD,TO-FILE=INSURE.COSSD.BEFRESTR

/COPY-FILE FROM-FILE=INSURE.HASHLIB,TO-FILE=INSURE.HASHLIB.BEFRESTR

Restructuring the database Example

U931-J-Z125-17-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

BCHANGE run and compiling new Schema DDL and SSL

The Schema DDL in this run still contains errors. The error involved is not detected until the
SSL is compiled.

/START-UDS-BCHANGE

***** START BCHANGE (UDS/SQL V2.8 0000) 2015-06-28 11:47:27

***** THE FILE: :SQL2:$XXXXXXXX.INSURE.DBCOM IS COPIED TO:

 :SQL2:$XXXXXXXX.INSURE.DBCOM.O

***** THE FILE: :SQL2:$XXXXXXXX.INSURE.COSSD IS COPIED TO:

 :SQL2:$XXXXXXXX.INSURE.COSSD.O

1006 RESTRUCTURING SUCCESSFULLY INITIATED

***** DIAGNOSTIC SUMMARY OF BCHANGE

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 94

***** NORMAL END BCHANGE (UDS/SQL V2.8 0000) 2015-06-28 11:47:27

/CREATE-FILE FILE-NAME=INSURE.DBSTAT

/CREATE-FILE FILE-NAME=INSURE.DBSTAT.SAVE

/START-UDS-DDL

***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:27

* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.DDL.NEW'

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:27/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:27/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* DDLCOMP: START SCHEMA-PHASE

* DDLCOMP: CHECK SCHEMA RULES

* DDLCOMP: CHECK DATA ALLOCATION

* DDLCOMP: SEMANTIC TEST

* DDLCOMP: CYCLUS TESTS

* DDLCOMP: ERROR DIAGNOSTIC

* DDLCOMP: NO ERRORS IN SCHEMA-PHASE

Example Restructuring the database

322 U931-J-Z125-17-76

* DDLCOMP: CREATE FILE COSSD

* DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:27/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 651 1999 67 914 39

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************651 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:27/0YBG)

***** DIAGNOSTIC SUMMARY FOR DDL-SCHEMA CUSTOMER-CARDS

 NO ERRORS

 +++++ 9 WARNINGS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:27

/START-UDS-SSL

***** START SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

* SSLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.SSL.NEW'

END

* SSLCOMP: READ SSL-SCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* SSLCOMP: START SSL-PHASE

* SSLCOMP: CHECK SSL RULES

* SSLCOMP: SEMANTIC TEST

* SSLCOMP: ERROR DIAGNOSTIC

* SSLCOMP: ERRORS DETECTED IN SSL-PHASE

* SSLCOMP: ERRORS DETECTED

* SSLCOMP: ALL SSL-OPTIONS ARE RESET

+++++ ERROR: 0012 UDS-DBH RETURNS WITH DATABASE-STATUS '04021'

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 303 387 61 71 25

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************303 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:28/0YBG)

***** DIAGNOSTIC SUMMARY FOR SSL - SCHEMA

+++++ 2 ERRORS

 NO WARNINGS

Restructuring the database Example

U931-J-Z125-17-76 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

***** END OF DIAGNOSTIC SUMMARY

+++++ ABNORMAL END SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

Compiling the corrected schema

Once you have corrected the Schema DDL according to the SSL-ERROR-DIAGNOSTIC,
you must delete the errored schema that has already been entered. Only then can you
compile the corrected Schema DDL and then the SSL.

/START-UDS-DDL

***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

* DDLCOMP: INPUT SYSTEMPARAMETERS

DELETE SCHEMA 'CUSTOMER-CARDS'

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* DDLCOMP: SCHEMA HAS BEEN ERASED

* DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 6 1075 70 556 39

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ***************6 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:28/0YBG)

***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

/START-UDS-DDL

***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.DDL.KORR'

DISPLAY IS YES

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* DDLCOMP: START SCHEMA-PHASE

* DDLCOMP: CHECK SCHEMA RULES

* DDLCOMP: CHECK DATA ALLOCATION

* DDLCOMP: SEMANTIC TEST

* DDLCOMP: CYCLUS TESTS

Example Restructuring the database

324 U931-J-Z125-17-76

* DDLCOMP: ERROR DIAGNOSTIC

* DDLCOMP: NO ERRORS IN SCHEMA-PHASE

* DDLCOMP: DISPLAY SCHEMA

* DDLCOMP: CREATE FILE COSSD

* DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 751 2120 66 914 40

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************751 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:28/0YBG)

***** DIAGNOSTIC SUMMARY FOR DDL-SCHEMA CUSTOMER-CARDS

 NO ERRORS

+++++ 9 WARNINGS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

/START-UDS-SSL

***** START SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

* SSLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.SSL.NEW'

END

* SSLCOMP: READ SSL-SCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* SSLCOMP: START SSL-PHASE

* SSLCOMP: CHECK SSL RULES

* SSLCOMP: SEMANTIC TEST

* SSLCOMP: ERROR DIAGNOSTIC

* SSLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 127 253 63 34 23

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************127 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:28/0YBG)

***** DIAGNOSTIC SUMMARY FOR SSL - SCHEMA

 NO ERRORS

 NO WARNINGS

Restructuring the database Example

U931-J-Z125-17-76 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

/DELETE-SYSTEM-FILE FILE-NAME=*OMF

/START-UDS-BGSIA

***** START BGSIA (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

GENERATE SCHEMA CUSTOMER-CARDS

DISPLAY

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

ESTIMATE-REPORT

********** FOR USER-REALM 3 NAME IS : PROP-RLM

 A SIZE OF 24 BLOCKS WAS ESTIMATED

********** FOR USER-REALM 4 NAME IS : INSURE-RLM

 A SIZE OF 239 BLOCKS WAS ESTIMATED

********** FOR USER-REALM 6 NAME IS : TRANSPORT-RLM

 A SIZE OF 24 BLOCKS WAS ESTIMATED

END OF ESTIMATE-REPORT

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 569 779 60 183 30

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************569 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:28/0YBG)

***** DIAGNOSTIC SUMMARY OF BGSIA

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END BGSIA (UDS/SQL V2.8 0000) 2015-06-28

/MODIFY-JOB-SWITCHES ON=(4)

/START-LMS

//MODIFY-LOGGING-PARAMETERS LOG=*MAX

//OPEN-LIBRARY LIB=INSURE.HASHLIB,MODE=*UPDATE

//ADD-ELEMENT FROM-FILE=*OMF,TO-ELEM=*LIB-ELEM(TYPE=R),WRITE-MODE=*ANY

INPUT OMF

OUTPUT LIBRARY= :SQL2:$XXXXXXXX.INSURE.HASHLIB

Example Restructuring the database

326 U931-J-Z125-17-76

 ADD UDSHASH AS (R)UDSHASH/@(0002)/2015-06-28 , OUTPUT REPLACED

//SHOW-ELEM-ATTR

INPUT LIBRARY= :SQL2:$XXXXXXXX.INSURE.HASHLIB

TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE

(R) ADMIN## @ (0001) 2015-06-28 UDSHASH @ (0002) 2015-06-28

 2 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS

//END

/MODIFY-JOB-SWITCHES OFF=(4)

Restructuring the database Example

U931-J-Z125-17-76 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Analysis phase with REPORT IS YES and EXECUTION IS NO

/START-UDS-BALTER

***** START BALTER (UDS/SQL V2.8 0000) 2015-06-28 11:47:29

REPORT IS YES.

EXECUTION IS NO.

END.

*** ANALYSE-PHASE ***

*** DATE AND TIME 2015-06-28 11:47:29

+++++ WARNING: 1081 AREAS DELETED FROM RECORD-WITHIN-CLAUSE

RECORD: TRANSPORT-INSURANCE

 IF RECORD OCCURRENCES ARE PRESENT IN AREAS

 WHICH ARE DELETED FROM RECORD-WITHIN-CLAUSE

 THE RESTRUCTURING PROCESS WILL END ABNORMALLY.

NO ERRORS DETECTED IN SCHEMA CHANGES

*** REPORT-PHASE ***

*** DATE AND TIME 2015-06-28 11:47:29

REALM NOT NEEDED: PROP-RLM

REALM NEEDED: INSURE-RLM

DATABASE NOT ALTERED

NUMBER OF FILE ACCESSES: 0

***** DIAGNOSTIC SUMMARY OF BALTER

+++++ 1 WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 107

***** NORMAL END BALTER (UDS/SQL V2.8 0000) 2015-06-28 11:47:29

Since the database does not include a record of the record type TRANSPORT-
INSURANCE, the warning can be ignored and the database restructured.

Of the two user realms INSURE.PROP-RLM and INSURE.INSURE-RLM, only
INSURE.INSURE-RLM is needed for the restructuring process.

This realm is saved:

/COPY-FILE FROM-FILE=INSURE.INSURE-RLM, TO-FILE=INSURE.INSURE-RLM.BEFRESTR

Example Restructuring the database

328 U931-J-Z125-17-76

Restructuring phase

 /CREATE-FILE FILE-NAME=INSURE.TRANSPORT-RLM,SUPPORT=*PUBLIC-DISK(-

 / PRIMARY-ALLOCATION=50,SECONDARY-ALLOCATION=0)

 /START-UDS-BALTER

 ***** START BALTER (UDS/SQL V2.8 0000) 2015-06-28 11:47:29

 REPORT IS NO .

 EXECUTION IS YES.

 END.

 *** ANALYSE-PHASE ***

 *** DATE AND TIME 2015-06-28 11:47:29

 +++++ WARNING: 1081 AREAS DELETED FROM RECORD-WITHIN-CLAUSE

 RECORD: TRANSPORT-INSURANCE

 IF RECORD OCCURRENCES ARE PRESENT IN AREAS

 WHICH ARE DELETED FROM RECORD-WITHIN-CLAUSE

 THE RESTRUCTURING PROCESS WILL END ABNORMALLY.

 NO ERRORS DETECTED IN SCHEMA CHANGES

 *** EXECUTION-PHASE ***

 *** DATE AND TIME 2015-06-28 11:47:29

 REALM ADDED TO DATABASE: TRANSPORT-RLM

 *** DATE AND TIME 2015-06-28 11:47:29

 MODIFICATION CONCERNING OWNER ATTRIBUTE STARTED FOR

 REC NAME: TRANSPORT-INSURANCE

 REC REF: 3

 *** DATE AND TIME 2015-06-28 11:47:29

 MODIFICATION CONCERNING OWNER ATTRIBUTE STARTED FOR

 REC NAME: CUSTOMER

 REC REF: 4

 *** DATE AND TIME 2015-06-28 11:47:29

 RECORD MODIFICATION STARTED FOR:

 REC NAME: TRANSPORT-INSURANCE

 REC REF: 3

 *** DATE AND TIME 2015-06-28 11:47:29

 RECORD MODIFICATION STARTED FOR:

 REC NAME: CUSTOMER

Restructuring the database Example

U931-J-Z125-17-76 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

 REC REF: 4

 *** DATE AND TIME 2015-06-28 11:47:29

 RECORD MODIFICATION STARTED FOR:

 REC NAME: DAMAGE-CLAIM

 REC REF: 5

 *** DATE AND TIME 2015-06-28 11:47:29

 DATABASE ALTERED

 *** DATE AND TIME 2015-06-28 11:47:29

 NUMBER OF FILE ACCESSES: 0

 ***** DIAGNOSTIC SUMMARY OF BALTER

 +++++ 1 WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 225

***** NORMAL END BALTER (UDS/SQL V2.8 0000) 2015-06-28 11:47:29

Example Restructuring the database

330 U931-J-Z125-17-76

Entering new access rights

/START-UDS-BPRIVACY

***** START BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:47:29

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:29/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:29/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

% UDS0722 UDS ORDER ADD RLOG 150628094728 IN EXECUTION (ILL1283,11:47:29/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR INSURE TERMINATED (ILL1309,11:47:29/0YBG)

//ADD-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07,USER-ID=XXXXXXXX), -

// OBJECT=(*REALM(NAME=*ALL,RIGHT=ALL),*RECORD(NAME=*ALL,RIGHT=ALL),*SET(NAME=*ALL,RIGHT=ALL))

//END

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:29/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 11 115 57 36 23

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH **************11 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:29/0YBG)

***** DIAGNOSTIC SUMMARY OF BPRIVACY

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END BPRIVACY (UDS/SQL V2.8 0000) 2015-06-28 11:47:29

Testing whether the subschema is compatible with the new schema

/START-UDS-DDL

***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:29

* DDLCOMP: INPUT SYSTEMPARAMETERS

COMPARE SUBSCHEMAS

DIAGNOSTIC IS YES

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:29/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:29/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* DDLCOMP: READ SCHEMA/SUBSCHEMA 1

* DDLCOMP: START SUBSCHEMA-PHASE

* DDLCOMP: CHECK SUBSCHEMA RULES

* DDLCOMP: CHECK DATA ALLOCATION

Restructuring the database Example

U931-J-Z125-17-76 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

* DDLCOMP: SUBCOPY

* DDLCOMP: ERROR DIAGNOSTIC

* DDLCOMP: ERRORS DETECTED IN SUBSCHEMA-PHASE

* DDLCOMP: SUBSCHEMA HAS BEEN ERASED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:30/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 832 2616 74 936 44

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************832 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:30/0YBG)

***** DIAGNOSTIC SUMMARY FOR DDL-SUBSCHEMA

+++++ 1 ERRORS

+++++ 9 WARNINGS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:30

Modifying the subschema

Since the old Subschema DDL is not compatible with the new Schema DDL, the
Subschema DDL is corrected and then recompiled.

/START-UDS-DDL

***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:30

* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.SUBDDL.NEW'

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:30/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:30/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

* DDLCOMP: START SUBSCHEMA-PHASE

* DDLCOMP: CHECK SUBSCHEMA RULES

* DDLCOMP: CHECK DATA ALLOCATION

* DDLCOMP: SUBCOPY

* DDLCOMP: ERROR DIAGNOSTIC

* DDLCOMP: NO ERRORS IN SUBSCHEMA-PHASE

* DDLCOMP: WRITE SUBSCHEMA ON COSSD

* DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:30/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 1363 2581 76 631 49

Example Restructuring the database

332 U931-J-Z125-17-76

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ************1363 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:30/0YBG)

***** DIAGNOSTIC SUMMARY FOR DDL-SUBSCHEMA

 NO ERRORS

 NO WARNINGS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:30

/START-UDS-BGSSIA

***** START BGSSIA (UDS/SQL V2.8 0000) 2015-06-28 11:47:30

GENERATE SUBSCHEMA MANAGEMENT OF SCHEMA CUSTOMER-CARDS

DISPLAY

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:30/0YBG)

% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:30/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG: --

*** SSIA GENERATION NORMALLY ENDED.

*GENERATION OF ITEM-TABLE AND NAME-TABLE STARTED.

*GENERATION OF ITEM-TABLE AND NAME-TABLE FINISHED.

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:30/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 781 1359 76 286 29

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************781 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:30/0YBG)

***** DIAGNOSTIC SUMMARY OF BGSSIA

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NORMAL END BGSSIA (UDS/SQL V2.8 0000) 2015-06-28 11:47:30

The restructuring of the database has now been completed.

Now, of course, the DB application programs have to be modified if they reference the
modified items and have to be recompiled and linked again due to the incompatibility
between the old and new subschemas.

Restructuring the database Example

U931-J-Z125-17-76 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
2:

08
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
6

Reorganizing the restructured database

To save memory space, the hash area for the record type CUSTOMER is reorganized, i.e.
moved back to the area that is now free at the front of the realm. This means that the size
of INSURE-RLM can be minimized.

/START-UDS-BREORG

***** START BREORG (UDS/SQL V2.8 0000) 2015-06-28 11:47:30

//SPECIFY-SCHEMA SCHEMA-NAME=CUSTOMER-CARDS

//REORGANIZE-CALC RECORD-NAME=CUSTOMER,

 CALC-RECORD=*WITHIN-POPULATION(REALM=INSURE-RLM,POPULATION=500),CALC-SEARCHKEY=NONE

//END

***** BEGIN OF CALC-REORGANIZATION AT 11:47:31

***** RESULTS OF CALC-REORGANIZATION OF RECORD CUSTOMER

 NEW CALC BEGIN : 4- 5

 NEW NR OF PRIMARY BUCKETS : 59

 NEW NR OF OVERFLOW BUCKETS: 0

***** END OF CALC-REORGANIZATION AT 11:47:31

***** DIAGNOSTIC SUMMARY OF BREORG

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 66

***** NORMAL END BREORG (UDS/SQL V2.8 0000) 2015-06-28 11:47:31

/START-UDS-BREORG

***** START BREORG (UDS/SQL V2.8 0000) 2015-06-28 11:47:31

//SPECIFY-SCHEMA SCHEMA-NAME=CUSTOMER-CARDS

//MODIFY-REALM-SIZE REALM-NAME=INSURE-RLM,REALM-SIZE=MINIMUM

//END

***** BEGIN OF REALM-SIZE-MODIFICATION AT 11:47:32

***** RESULTS OF FPA-REORGANIZATION OF AREA INSURE-RLM

 NEW FPA FIRST PAGE : NOT CHANGED

 NEW FPA LAST PAGE : NOT CHANGED

 NEW FPA SIZE : NOT CHANGED

 NEW NR OF PAGES : 80

***** END OF REALM-SIZE-MODIFICATION AT 11:47:32

***** DIAGNOSTIC SUMMARY OF BREORG

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

Example Restructuring the database

334 U931-J-Z125-17-76

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 70

***** NORMAL END BREORG (UDS/SQL V2.8 0000) 2015-06-28 11:47:32

Measures to be taken before resuming database operation

A shadow database with the suffix AFTRESTR is created. The data saved before
restructuring took place is deleted along with the files INSURE.DBCOM.O and
INSURE.COSSD.O.

/COPY-FILE FROM-FILE=INSURE.HASHLIB,TO-FILE=INSURE.HASHLIB.AFTRESTR

/COPY-FILE FROM-FILE=INSURE.COSSD ,TO-FILE=INSURE.COSSD.AFTRESTR

/COPY-FILE FROM-FILE=INSURE.DBDIR ,TO-FILE=INSURE.DBDIR.AFTRESTR

/COPY-FILE FROM-FILE=INSURE.DBCOM ,TO-FILE=INSURE.DBCOM.AFTRESTR

/COPY-FILE FROM-FILE=INSURE.PROP-RLM,TO-FILE=INSURE.PROP-RLM.AFTRESTR

/COPY-FILE FROM-FILE=INSURE.INSURE-RLM,TO-FILE=INSURE.INSURE-RLM.AFTRESTR

/COPY-FILE FROM-FILE=INSURE.TRANSPORT-RLM,TO-FILE=INSURE.TRANSPORT-RLM.AFTRESTR

/DELETE-FILE FILE-NAME=INSURE*BEFRESTR*

/DELETE-FILE FILE-NAME=INSURE.DBCOM.O

/DELETE-FILE FILE-NAME=INSURE.COSSD.O

U931-J-Z125-17-76 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7 Renaming database objects
(BRENAME, BALTER)

The renaming cycle of BRENAME/BALTER enables datenbase objects in existing data-
bases to be renamed. To do this, only the structure information of the DBDIR, DBCOM and
COSSD database files needs to be modified. When names of user realms are changed,
some structure information in the relevant realms is also changed.
However, the actual user data (records and tables in the user realms) are neither checked
nor changed in the renaming cycle. Consequently only changes which leave the physical
database structure unchanged are permitted in the renaming cycle.

 As only structure information is modified, a renaming cycle can execute very
quickly.

The activities which are required during renaming are divided into three sections:

● preparatory measures

● renaming process

● follow-up activities.

Preparatory measures

In contrast to the restructuring, in a renaming cycle the After Image Logging may remain
activated. Only if the name of a realm is to be changed you have to deactivate the after-
image logging with the BMEND utility (see the "Recovery, Information and Reorganization"
manual, BMEND)

i

Renaming process Renaming database objects

336 U931-J-Z125-17-76

Renaming process

This is a process that resembles the creation of a database:

– BRENAME prepares the DBDIR to accept a new SIA

– New DDL and SSL definitions are then compiled and the new SIA is entered in the
DBDIR

– BALTER checks the renaming and updates the structure information

The following measures can be taken in a BRENAME/BALTER renaming cycle:

– Changing item names in record types

– Changing the types of items in record types

– Subdivision of an existing item into multiple adjacent individual items

– Conversion of an existing item into a vector

– Conversion of one or more consecutive items into a repeating group

– Grouping of multiple adjacent individual items into a new item

– Conversion of a vector into a new individual item

– Combination of a repeating group into one or more consecutive individual items

– Changing of record names

– Changing of set names

– Changing of realm names

 – In a renaming cycle between BRENAME and BALTER BMEND cannot be
executed.

– The renaming cycle of BRENAME/BALTER cannot be combined with the
renaming cycle of BCHANGE/BALTER.

Names of SEARCH keys in the DDL/SSL source of the schema enable the declarations of
the SEARCH keys of the DDL and SSL compilers to be allocated unambiguously. As with
restructuring (BCHANGE/BALTER cycle), these names can be changed without the
schema or subschema description in the SIA or SSIA changing. Consequently such
changes in the renaming cycle are not taken account either in the analysis or in BALTER’s
REPORT outputs.

i

Renaming database objects Renaming process

U931-J-Z125-17-76 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

Figure 33: Restructuring process

Restructuring process BRENAME
Prepare renaming

BALTER
Analysis listing:

analyze modifications

BGSIA error

DDL compiler

Transfer compatible subschemas

BGSSIA
Generate and enter in the

Correct the incompatible
subschemas

DDL compiler

Compile
corrected subschema

BGSSIA
Generate SSIA and

enter in DBDIR

Adapt, compile and link
DB application program

BPRIVACY

for each
compatible
subschema

All subschemas
are compatible

Update access rights

Preparatory measures START-ARCHIVE/COPY-FILE...

Save COSSD, DBDIR, DBCOM
and unnamed user realms

DDL compiler

SSL compiler

Compile modified schema DDL

Compile modified SSL

BGSIA
Generate new SIA
and enter in DBDIR

DDL compiler

Delete schema

DDL error

DDL error

SSL error

Follow-up activities

If no SSL compilation is
processed the default
values for storage structure
are set

for each
incompatible
subschema

DBDIR the SSIA of
the compatible subschemas

Renaming process Renaming database objects

338 U931-J-Z125-17-76

Follow-up activities

The following activities must be performed after renaming:

– Adapting the subschemas to the changed schema

– Adapting DB application programs to the new schema

– If required, generating new SSITAB modules for CALL-DML programs using the
BCALLSI utility routine

– If required, updating access rights

– If required, adapting, compiling and linking application programs

– If required, copying changed database files and activating the After Image Logging
again with BMEND.

 A logging gap occurs because of the renaming cycle (see the “Database Operation”
manual, Media recovery). After the renaming cycle you must therefore establish a
new basis for media recovery by copying the modified files together with the
unmodified files. You must then use BMEND to activate After Image Logging again.

Changing stored data

The user data are not changed in a renaming cycle. If renaming entails semantic changes
to the user data, any necessary changes to the stored data must, for example, be executed
using special application programs. This can take place in normal database operation either
before or after the renaming cycle (see section “Adapting user data” on page 367).

i

Renaming database objects Modifying the Schema DDL

U931-J-Z125-17-76 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.1 Modifying the Schema DDL

If you want to modify your Schema DDL, you must create a new or modified complete
schema definition and recompile this. The new names must be used at all places in the DDL
and SSL sources.
BALTER checks the renaming and updates the structure information.

To ensure that BGSIA recognizes renamed realms, record types and sets and leaves the
existing references unchanged, name changes which are to be made for realms, record
types and sets must be specified in full in additional statements.

The following modifications are possible in the Schema DDL:

– Changing item names in record types
The names must be changed at all places (e.g. also in key definitions).

– Changing types of items
The length in bytes of the data items may not be changed. Type changes from CHAR
and to CHAR are possible. In the case of conversion to NCHAR only half the characters
are stored in the new item. Type changes of variable items and of items in compressed
records are not permitted.

– The user data in the database also remains physically unchanged in the event of a type
change. No check is made to see whether it is compatible with the new type. Type
changes therefore require special measures to adapt the user data stored in the user
realms (see “Adapting user data” on page 367).
When an item is changed to a numeric type, you may need to take necessary
alignments of the numeric type into account.

– Splitting an existing item of the type CHAR into multiple items
The total length must be retained here. If the source item is used as a key item, it must
be retained as such by using the new items. The special features regarding the
modification of NCHAR and numeric types apply in accordance with the changes to the
type of an individual item. Splitting an item into multiple items requires special measures
to adapt the user data stored in the user realms (see “Adapting user data” on page 367).

– Grouping existing adjacent items to form an item of the type CHAR
The total length must be retained here. Grouping is not possible if any of the individual
items concerned is used as a key item. The grouping of multiple items requires special
measures to adapt the user data stored in the user realms (see “Adapting user data” on
page 367).

– Grouping a vector to form an item of the type CHAR
The total length must be retained here. The grouping of a vector requires special
measures to adapt the user data stored in the user realms (see “Adapting user data” on
page 367).

Modifying the Schema DDL Renaming database objects

340 U931-J-Z125-17-76

– Converting an item of the type CHAR to a vector
The total length must be retained here. The generation of a vector requires special
measures to adapt the user data stored in the user realms (see “Adapting user data” on
page 367).

– Grouping a repeating group to form one or more items of the type CHAR
The total length must be retained here. The grouping of a repeating group requires
special measures to adapt the user data stored in the user realms (see “Adapting user
data” on page 367).

– Converting one item or multiple adjacent items of the type CHAR to a repeating group
The total length must be retained here. The generation of a repeating group requires
special measures to adapt the user data stored in the user realms (see “Adapting user
data” on page 367).

– Using any existing free bytes in front of an implicitly aligned numeric item
(FIXED BINARY) for new items on Level 0
In repeating groups FIXED BINARY items in the stored records are not aligned. There
are consequently no implicit free bytes in front of these items.

– Restructuring multiple existing items into multiple new items
Two RENAME/BALTER cycles must be executed to permit restructuring. First the
source items are grouped to form a CHAR item. In a second step this CHAR item can
be split in the new structure. This procedure can be used above all for grouping or
splitting NCHAR items.

– Renaming items of the type DBKEY or DBKEY-LONG
Items of the type DBKEY or DBKEY-LONG which are used with
LOCATION MODE DIRECT cannot be grouped with other items in a renaming cycle.

– Renaming record types
Renaming must be performed at all places in DDL and SSL.

– Renaming sets
Renaming must be performed at all places in DDL and SSL.

– Renaming realms
Renaming must be performed at all places in DDL and SSL. An old realm name may
not immediately be used in a renaming step as a new name for another realm. No file
with the new file name of the user realm may exist.

Renaming database objects Modifying the SSL

U931-J-Z125-17-76 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.2 Modifying the SSL

All name changes in the Schema DDL must be transferred to the Schema SSL.

Even if you can continue to use your existing SSL unchanged, you must recompile it as
BGSIA otherwise uses the default values of the memory structure!

The following modifications to the memory structure are permitted:

– Changing item names in record types
The names must be changed at all places (e.g. also in key definitions).

– Renaming items of the type DBKEY or DBKEY-LONG
Items of the type DBKEY or DBKEY-LONG which are used with
LOCATION MODE DIRECT cannot be grouped with other items in a renaming cycle.

– Renaming record types
Renaming must be performed at all places in DDL and SSL.

– Renaming sets
Renaming must be performed at all places in DDL and SSL.

– Renaming realms
Renaming must be performed at all places in DDL and SSL. An old realm name may
not immediately be used in a renaming step as a new name for another realm. No file
with the new file name of the user realm may exist .

Recovery measures Renaming database objects

342 U931-J-Z125-17-76

7.3 Recovery measures and response to errors

Renaming generally only changes the compiler database. So the After Image logging may
remain activated.

Only when user realms are renamed do these also need to be saved as minor modifications
are made in the user realms in the renaming cycle.

7.3.1 Saving the database

If an error occurs during the renaming the database has to be reset to the state before the
renaming cycle was started. Therefore the following possibilities exist:

– Reading in a database backup and recovering the After Image Logging files up to the
last consistency point before the renaming

– Use of a backup which was created directly before the renaming cycle. Therein the
following files must be saved:
– dbname.COSSD
– dbname.DBDIR
– dbname.DBCOM
– user realms which are to be renamed.

For further information on saving a database, refer to the section "Saving and recovering a
database in the event of errors" in the "Database Operation" manual.

7.3.2 Restoring the database

If a program aborts processing with “ABNORMAL END” during the renaming process, you
must perform one of the following actions depending on the severity of the error and where
it occurred in the renaming cycle:

– re-execute the terminated program, or

– fall back on the backup created and repeat the renaming process

When it is necessary to fall back on a backup of the database and to repeat the renaming
process and when it is sufficient to repeat the aborted program is explained in the
descriptions of the various programs.

Renaming database objects Responding to errors

U931-J-Z125-17-76 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

The table below shows which programs modify files or realms of the database in the course
of renaming:.

R read access

W write access

- no access

The following options are available for restoring the database:

– You can convert the shadow database to an original database by renaming it with the
die MODIFY-FILE-ATTRIBUTES command.

– You can read in the ARCHIVE backup and then change the database name, if desired,
with the MODIFY-FILE-ATTRIBUTES command. If the ARCHIVE backup was created
on-line, you may have to mend it with the BMEND utility routine (see "BMEND" in the
“Recovery, Information and Reorganization" manual).

For further information on restoring a database, refer to the section "Saving and recovering
a database in the event of errors" in the "Database Operation" manual.

D
B
D
I
R

D
B
C
O
M

D
B
C
O
M
.
O

C
O
S
S
D

C
O
S
S
D
.
O

User
realms

which have
to be

accessed

BRENAME RW RW W R W -

DDL compiler RW RW - W - -

SSL compiler RW RW - W - -

BGSIA RW RW - - - -

BALTER
(renaming phase)

RW R R - - RW

DDL compiler
(subschemas)

RW RW - W R -

BGSSIA RW R - - - -

Table 47: Access to files and realms of the database during renaming

BRENAME Renaming database objects

344 U931-J-Z125-17-76

7.4 Initiating renaming using BRENAME

The task of BRENAME when renaming a database is comparable to that of BCREATE
when creating a database: BRENAME prepares the compiler database to incorporate the
new schema. Specifically, BRENAME performs the following preliminary work for renaming:

– It saves the old SIA in the DBDIR and prepares the DBDIR for incorporating a new SIA
so that after the BGSIA run a new and an old SIA are present in the DBDIR for the
schema. BALTER needs both SIAs when the structure data is adapted to the new
schema to enable it to recognize the differences in the new schema compared to the
old schema.
Consequently you must ensure that enough free pages are available in the DBDIR or
that automatic realm extension is possible by means of secondary allocation > 0.

– It deletes all user SSIAs in the DBDIR.

– It saves the old DBCOM in the file dbname.DBCOM.O and reformats the DBCOM.

BALTER requires the schema information of the old and new DBCOM to check the
planned renaming.

– It saves the old COSSD in the file dbname.COSSD.O.

After renaming the DDL compiler requires the old COSSD to transfer the compatible
subschemas. It is therefore advisable to keep the dbname.COSSD.O file available until
all subschemas have been recompiled.

Renaming database objects BRENAME

U931-J-Z125-17-76 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

Figure 34: System environment when preparing the compiler database

BRENAME automatically stores the copies of DBCOM and COSSD on public disks. It is not
necessary to issue a CREATE-FILE command to set up the two files (before BRENAME is
started) unless the copies are to be stored on private disks.
Depending on the size of the files it is, however, advisable to set them up using a CREATE-
FILE command with SPACE operand - even if they are to be stored on public disks (see
“Maximum size of UDS/SQL files” on page 41).

When required, BRENAME automatically extends the realms of the database being
processed. For details, please refer to the “Database Operation” manual, Automatic realm
extension by means of utility routines).

At startup BRENAME takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

SYSDTA
DBDIRBRENAME

DBCOM

COSSD.O

COSSD

previous
SIA

DBCOM.O

Command sequence Renaming database objects

346 U931-J-Z125-17-76

Command sequence for starting BRENAME

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The BRENAME utility routine is started by the following commands in the identification
under which the database is cataloged:

01 [/CREATE-FILE FILE-NAME=dbname.DBCOM.0 ...]

02 [/CREATE-FILE FILE-NAME=dbname.COSSD.0 ...]

03 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

04 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

05 /START-UDS-BRENAME

06 END

01,02 See section “Setting up the compiler database” on page 57.

04 The specified version of BRENAME is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

05 The UDS/SQL utility routine can also be started with the alias BRENAME.

06 BRENAME is terminated.

 The END statement is the only BRENAME statement.i

Renaming database objects Compiling the Schema DDL

U931-J-Z125-17-76 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.5 Compiling the Schema DDL

If the compiler database has been prepared to accept a new schema with the aid of the
BRENAME utility routine, the next thing you must do is to compile your Schema DDL with
the new names using the DDL compiler.

The compilation procedure is the same as that used for database creation.

Once the Schema DDL has been compiled, the following are available:

– an old and a new DBCOM
– an old SIA in the DBDIR
– an old and a new COSSD.

Command sequence for compiling the current Schema DDL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The commands listed here are described in detail in section “Compiling the Schema DDL”
on page 66.

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-DDL

04 SOURCE IS 'schema-file'

05 END

06 /ASSIGN-SYSDTA TO=*SYSCMD

 It is essential that the DDL compiler should terminate compilation with the message
’NORMAL END’.

If the message ’ABNORMAL END’ is received, compilation must be repeated with
corrected DDL clauses.

i

Compiling the SSL Renaming database objects

348 U931-J-Z125-17-76

7.6 Compiling the SSL

The option is available to compile a new SSL using the SSL compiler once the Schema DDL
has been compiled.

If no SSL compilation is carried out, default values for the storage structure are used.
If you want to retain the storage structure which has already been defined, you must
recompile your original SSL clauses with new names which match the DDL source!

The compilation procedure is the same as that used for database creation.

Command sequence for compiling the SSL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47. The
aliases for calling the utility routines are also listed in this section).
The commands listed here are described in detail in section “Compiling the SSL” on
page 76.

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-SSL

04 SOURCE IS 'ssl-file'

05 END

06 /ASSIGN-SYSDTA TO=*SYSCMD

 It is essential that the SSL compiler should terminate compilation with ’NORMAL
END’. If compilation ends with ’ABNORMAL END’, the following action should be
taken:

● for errors in the SSL clauses:

the faulty SSL clauses should be corrected and the SSL compilation should be
repeated;

● for errors in the DDL clauses:

– the faulty DDL clauses should be corrected

– the faulty schema should be deleted in a DDL run by means of the
statement DELETE SCHEMA schemaname

– the renaming process should be repeated from “Compiling the Schema
DDL”.

i

Renaming database objects Generating a new SIA

U931-J-Z125-17-76 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.7 Generating a new SIA and entering it in the DBDIR with
BGSIA

Once the Schema DDL and the SSL (optional) have been successfully compiled, the SIA
of the new schema must be generated and entered in the DBDIR using the BGSIA utility
routine.

The saved SIA of the old schema remains in the DBDIR so that, after the BGSIA run,
DBDIR contains the SIAs of both the old and the new schemas. BALTER requires both to
check and execute the planned renaming.

The BGSIA run corresponds to the run carried out for the creation of the database (see
section “Setting up the Schema Information Area (SIA) with BGSIA” on page 79). After the
BGSIA run, the module UDSHASH generated by BGSIA must be stored in the HASHLIB.

To ensure that BGSIA recognizes realms, record types and sets which remain the same in
the renaming cycle despite the name change and leaves the existing references
unchanged, name changes for realms, record types and sets must be specified in full in
additional statements. The names in the DDL/SSL source are affected by this. The
additional statements of BGSIA do not change any names in these sources.

Dynamic sets can be renamed in precisely the same way. The names of the dynamic sets
required for using IQS are predefined and may not be changed. However, this is not
checked.
Implicit sets do not need to be specified explicitly. They are renamed automatically in
accordance with the renamed record type (SYS_recordname) as soon as a search key is
defined.

If you work with your own hash routines, you must also store these in the HASHLIB with the
attributes RMODE=ANY and AMODE=ANY at the latest before BALTER is started.

If, when the SIA is generated, it is recognized that not just purely renaming is involved, a
message is issued that the renaming cycle is being aborted because the references do not
match. This message can be used for correcting the source. A precise analysis only takes
place with BALTER. Illegal type changes and illegal splitting or grouping of items are
examples of changes which conflict with pure renaming.

Generating a new SIA Renaming database objects

350 U931-J-Z125-17-76

Generating SIA and entering it in DBDIR

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /DELETE-SYSTEM-FILE FILE-NAME=*OMF

04 /START-UDS-BGSIA

05 GENERATE SCHEMA schema-name

06 [DISPLAY[SCHEMA schema-name]]

07 END

Entering the module UDSHASH in the HASHLIB

01 /START-LMS

02 //OPEN-LIB LIB=dbname.HASHLIB,MODE=*UPDATE

03 //ADD-ELEMENT FROM-FILE=*OMF,TO-ELEMENT=*LIBRARY-ELEMENT(TYPE=R)

04 //END

Renaming database objects BALTER

U931-J-Z125-17-76 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.8 Checking renaming and updating structure information
using BALTER

In the renaming cycle the BALTER utility routine checks solely whether the planned
modifications are really only restricted to renaming.

The only BALTER statement permitted (apart from the END statement) in the renaming
cycle is the REPORT statement. REPORT IS YES is set by default. All other BALTER
statements are rejected and result in the BALTER run being aborted.

If REPORT IS YES is set, after the analysis phase BALTER starts the REPORT phase in
which it outputs the analysis report to SYSLST (see section “Description of the analysis
report (REPORT phase)” on page 282). In the analysis report BALTER lists all the changes
which are made to record types, sets or keys during the renaming phase. The analysis
report also contains the analysis record concerning error messages and warnings relating
to illegal changes (see section “Description of BALTER messages” on page 307).

You should only use REPORT IS NO when it is certain that renaming can be performed
successfully. If this is not the case, it is more difficult to diagnose errors in the schema.

You can only run BALTER successfully if you have already generated the new SIA and
stored it in the DBDIR using BGSIA (see section “Generating a new SIA and entering it in
the DBDIR with BGSIA” on page 349). Otherwise the BALTER run terminates with the
message “BGSIA HAS NOT BEEN EXECUTED”.

BALTER determines the differences between the old and the new schema descriptions
using the old and the new DBCOM or the old and the new SIA and checks whether only
renaming has taken place. If restructuring of the user data would be necessary because
database records (e.g. Set Connection Data) and tables (address lists, lists, SEARCH key
tables, etc.) are to be modified, the renaming cycle is aborted with an error message. If
required, you must then fall back on the status of the database before the renaming cycle.

Changes which do not involve modifications to database records or tables but which mean
that existing data cannot necessarily continue to be used without adaption are permitted but
a corresponding warning is issued. Such changes could be type changes or the
grouping and splitting of items (see also section “Adapting user data” on page 367).

BALTER Renaming database objects

352 U931-J-Z125-17-76

7.8.1 Command sequence for starting BALTER

The command sequence described here requires that UDS/SQL was installed using IMON
(see section “START commands for the UDS/SQL programs” on page 47).

You can start BALTER using the command below under the ID in which the database is
cataloged (you can also start the program using the alias BALTER):

01 /START-UDS-BALTER

02 REPORT IS YES.

03 END.

7.8.2 Description of the BALTER check

BALTER checks the renaming in a predefined sequence.

BALTER begins by checking fundamental structures of the schemas ("SIA_CONTROL").
These include the internal numbers of realms, record types, sets and keys in the old and
the new schemas. It is not permissible that these numbers have changed.

The area declarations are then checked. Only renaming of user realms is permitted.

The declarations of the record types are subsequently checked. The renaming of items,
grouping of items and the splitting of items are checked here. A check is also made to see
whether the declarations of the CALC key match.

Finally the set declarations and consequently also the logically associated key declarations
are checked to see whether they match. Only sets may be renamed here.

The BALTER run finishes with any renaming of realms being implemented by recataloging
the realms concerned. This is the only case in which user realms need to be opened and
modified in a renaming cycle.

All renaming actions and actions for splitting and grouping items are documented in
REPORT IS YES. The number of realms, record types (records) and sets which are
unchanged is also output.

Modifications in the schema which conflict with pure renaming lead to error messages and
to the recycling cycle being aborted. An error can result in multiple error messages as it can
lead to related modifications at several places in the SIA. The analysis is not terminated
after the first error which is detected but only after multiple errors have occurred.

Renaming database objects Illegal schema modifications

U931-J-Z125-17-76 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.9 Illegal schema modifications in the renaming cycle

To enable violations of the renaming rules to be corrected quickly, a current version of the
old schema should be created using the BPSIA utility routine before the renaming cycle
begins. In the renaming cycle you should also use the DISPLAY statement in the BGSIA
utility routine. In some cases BGSIA already recognizes that contradictory declarations are
contained in the new schema when renaming takes place.

In the renaming cycle the BALTER output concerning illegal differences between the old
and new schemas largely relates to the corresponding information in the output of BPSIA
and BGSIA. BALTER also outputs the differences in individual items in record types.

 When corrections are made, first of all the information relating to the record types
should be observed because messages about illegal modifications in
SIA_CONTROL, the sets and keys are very often due to illegal declarations in items
of the record types.

i

Illegal schema modifications Renaming database objects

354 U931-J-Z125-17-76

Illegal schema modifications are checked for in five phases.

In phase one BALTER checks SIA-CONTROL. Modifications in SIA-CONTROL always
indicate illegal modifications. The following illegal modifications can occur (message text:
DIFFERENCE IN sia-content):

Message (sia-content) Meaning

NR_AREAS The highest realm number assigned (area reference) is different in the
old and new schemas.

NR_RECORDS The highest record type number assigned (REC-REF) is different in
the old and new schemas.

NR_SETS The highest set number assigned (SET-REF) is different in the old and
new schemas.

NR_KEYS The highest key number assigned (KEY-REF) is different in the old
and new schemas.

SCHEMA_NAME The old and new schema names are not the same.

IMPL_RESULT_SET There are differences in the IMPLICIT_RESULT_SET of the schema.

SINGULAR_SET There are differences in the first SYSTEM set of the schema.

DYNAMIC_SET There are differences in the first dynamic set of the schema.

MAX_REC_LENGTH The length of the largest record type is different in the old and new
schemas.

MAX_ENTRY_LENGTH The length of the longest key is different in the old and new schemas.

MAX_MEMBERSHIPS The largest number of sets in which Member is a record type is
different in the old and new schemas.

MAX_SPLIT_PARAMETER The maximum number of pages in the SSL which is defined in the
REORGANIZATION parameter is different.

LENGTH_KEY_BIT The check information for the MODIFY information is different in the
old and new schemas.

BLOCK_LENGTH The length of the database pages is different in the old and new
schemas.

Renaming database objects Illegal schema modifications

U931-J-Z125-17-76 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

In phase two the individual areas are checked for illegal modifications. The following illegal
modifications can occur (message text: DIFFERENCE IN area-content):

The DIFFERENT USE OF AREA-REF message indicates that the assignment of this realm
reference is so different in the new and old schemas that a more detailed differentiated
analysis does not make sense.

The AREA RENAMING WITH ALOG message indicates that the renaming of areas is
allowed only if After Image Logging is deactivated. If the database is operated with After
Image Logging you must deactivate it before the renaming cycle is started.

Message (area-content) Meaning

AREA_REF The reference of the realm is different in the old and new schemas.

AREA_PROPERTIES The central properties of the realm are different in the old and new
schemas (TEMP, D/T).

NR_WITHIN_RECORDS The number of record types which can be stored in the realm is
different in the old and new schemas.

RECORD_LIST In the old and new schemas there are differences between the
references of the record types which can be stored in the realm.

Illegal schema modifications Renaming database objects

356 U931-J-Z125-17-76

In phase three the

– various record types are checked for illegal modifications.

– keys at record type level are checked for changes to the SIA data.

– key information which is only later stored in the SSIA is checked.

– renaming of items is checked.

The following illegal modifications can occur when the various record types are modified
(message text: DIFFERENCE IN record-content):

The DIFFERENT USE OF REC-REF message indicates that the assignment of this record
reference is so different in the new and old schemas that a more detailed differentiated
analysis does not make sense.

Message (record-content) Meaning

REC_REF The reference of the record type is different in the old and new
schemas.

LOCATION_MODE There are differences with regard to the location of the DBKEY or
DBKEY-LONG item which is used for LOCATION MODE DIRECT.

REC_PROPERTIES The central properties of the record type are different in the old and
new schemas.

IMPLICIT_SET There are differences in the implicit set of the record type.

OWNER_CHAIN There are differences in the first set in which the record type is Owner.

MEMBER_CHAIN There are differences in the first set in which the record type is
Member.

RECORD_LENGTH The length of the record is different in the old and new schemas.

SYSTEM_INFO The length of the set connection data is different in the old and new
schemas.

PHYSICAL_CALC_INFO The location of the CALC buckets is different in the old and new
schemas.

DBTT_ENTRY_LENGTH The length of the DBTT entries is different in the old and new
schemas.

LOCATION_VIA The type of location mode is different in the old and new schemas.

Renaming database objects Illegal schema modifications

U931-J-Z125-17-76 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

The following illegal modifications in the SIA data can occur when a key in a set is modified:

The following illegal modifications can occur in the key information which is only later
entered in the SSIA (message text: DIFFERENCE IN key-content):

The DIFFERENT USE OF KEY-REF message indicates that the assignment of this key
reference is so different in the new and old schemas that a more detailed differentiated
analysis does not make sense.

Message
(record-content)

Meaning

KEY_LENGTH The key length is different in the old and new schemas.

HASH The reference to the hash routine is different in the old and new
schemas.

DBTT_COLUMN The DBTT entry corresponding to the key is different in the old and
new schemas.

KEY_PROPERTIES The properties of the key are different in the old and new schemas.

Message (key-content) Meaning

KEY_LTH The key length is different in the old and new schemas.

DBTT_COL_NR The DBTT entry corresponding to the key is different in the old and
new schemas.

INDEX_AREA_REF The reference of the realm is different in the old and new schemas.

CALC_PROCEDURE_NAME The name of the CALC routine is different in the old and new
schemas.

CALC_PROCEDURE_NR The number of the CALC routine is different in the old and new
schemas.

KEY_BITS The properties of the key are different in the old and new schemas.

KEY_REF_NR The (internal) reference number is different in the old and new
schemas.

NR_BUCKETS The size of the CALC area is different in the old and new schemas.

USER_KEY_TYPE The item type of the key is different in the old and new schemas.

KEY_INDICATOR The properties of the key are different in the old and new schemas.

KEY_ITEM_DISPL A key item has a different displacement in the old and new schemas.

KEY_ITEM_CONCAT The grouping of key items in the new schema does not match the key
items in the old schema.

KEY_ITEM_SPLIT The splitting of key items in the new schema does not match the item
fields in the old schema.

Illegal schema modifications Renaming database objects

358 U931-J-Z125-17-76

The following illegal modifications can occur when items are renamed:

Message Meaning

ITEM BOUNDARIES
UNSUITABLE

Grouping or splitting items leads to overlapping.

CONCATENATION TO NON
CHAR TYPE

Items were grouped but the grouped item in the new schema is not of
the type CHAR.

SPLIT OF
NON CHAR TYPE

An item is split but the item in the old schema is not of the type CHAR.

FORM GROUP FROM
NON CHAR TYPE

Items were combined to form a group but not all items in the new
schema are of the type CHAR.

SPLIT GROUP TO
NON CHAR TYPE

A group was split into one or more items but not all items in the new
schema are of the type CHAR.

LENGTH DIFFERENCE
OF TYPE VARIABLE

The maximum length of a variable item at the end of the record type
was modified illegally.

LENGTH DIFFERENCE
OF LAST OLD ITEM

The length of the last item in the old schema indicates illegal
renaming.

LENGTH DIFFERENCE
OF LAST NEW ITEM

The length of the last item in the new schema indicates illegal
renaming.

DIFFERENCE IN
COMPRESSED RECORD

Illegal modifications have been made in a compressed record type.

DIFFERENCE IN
ITEM TYPE

Indicates an illegal type change in the item

TYPE CHANGE OF
NON CHAR TYPE

An illegal type change was detected.

VECTOR CHANGE OF
NON CHAR TYPE

An illegal type change was detected when a vector was changed.

Renaming database objects Illegal schema modifications

U931-J-Z125-17-76 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

In phase four the

– various sets are checked for illegal modifications.

– keys at set level are checked for modifications in the SIA data. The same illegal
modifications can occur as in phase three (see page 357).

 As the keys have no explicit names, corresponding internal numbers are output for
various keys or an unambiguous name is output for the key type in the case of
record types and sets. Differences in the keys for record types or sets result from
illegal modifications to the related data items from which the keys are formed. In
order to eradicate these differences, the renaming errors must be corrected.

– key information which is only later stored in the SSIA is checked. The same keys with
the corresponding number are output as in the schema’s BPSIA report. The same
illegal modifications can occur as in phase three (see page 357).

i

Illegal schema modifications Renaming database objects

360 U931-J-Z125-17-76

The following illegal modifications can occur when the various sets are modified (message
text: DIFFERENCE IN set-content):

The DIFFERENT USE OF SET-REF message indicates that the assignment of this set
reference is so different in the new and old schemas that a more detailed differentiated
analysis does not make sense.

In the fifth phase the physical order of all keys of the SIA which are connected to the record
types or sets is checked. The physical order of the keys must be unchanged as they are
assigned an implicit numbering which the database uses. Illegal modifications can occur
again here (see page 357).

Message (set-content) Meaning

SET_REF The reference of the set is different in the old and new schemas.

SET_PROPERTIES The properties of the set are different in the old and new schemas.

SET_MODE The set mode is different in the old and new schemas.

SET_ORDER The sort sequence is different in the old and new schemas.

OWNER_OF_SET The owner reference is different in the old and new schemas.

MEMBER_OF_SET The member reference is different in the old and new schemas.

OWNER_CHAIN Owner chaining is different in the old and new schemas.

MEMBER_CHAIN Member chaining is different in the old and new schemas.

SINGULAR_SET_CHAIN Chaining of the SYSTEM set is different in the old and new schemas.

DYNAMIC_SET_CHAIN Chaining of the dynamic sets is different in the old and new schemas.

KEY_CHAIN Chaining of the set is different in the old and new schemas.

SET_MEMBERSHIP The POPULATION / INCREASE clause is different in the old and new
schemas.

SET_CONNECTION There are differences in the set connection data.

ANCHOR_DBKEY The database key of the anchor of a singular set is different in the old
and new schemas.

Renaming database objects Copying compatible subschemas

U931-J-Z125-17-76 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.10 Adapting subschemas

When it prepares the compiler database for renaming, one of BRENAME’s tasks is to delete
all SSIAs in the DBDIR and all subschema information in the DBCOM; the DDL compiler
then readies the COSSD to accept new subschema information when the new Schema
DDL is compiled. Consequently all the old subschema information is deleted after the
renaming phase; no subschema information has as yet been entered in the new COSSD.

Therefore, after BALTER has renamed your database, all subschemas must be recompiled
and a new SSIA must be generated for each and entered in the DBDIR.

7.10.1 Copying compatible subschemas

Often not all subschemas are affected by modifications to the schema. Consequently
BRENAME copies the COSSD into the COSSD.O file when renaming begins, as a result of
which all old subschema information is retained despite the renaming activity. If you want
to copy these old subschemas, you must execute a DDL compiler run to copy the old
subschemas after BALTER has successfully completed the renaming phase.

During this run for copying the subschemas, the DDL compiler reads all the old
subschemas from the file COSSD.O, recompiles them and then checks them for
compatibility with the new schema. It differentiates between three possible results:

– the old subschema description is incompatible with the new schema

– the old subschema is incompatible with the new schema because of logical and/or
physical changes in the schema, i.e. the execution of DML statements is affected

– the old subschema is unaffected by changes in the new schema.

In the first two cases the DDL compiler does not store subschema information in either the
DBCOM or the COSSD. Only in the third case, when a subschema is not affected by
schema changes, does the computer copy the subschema from the COSSD.O, recompile
it and enter the subschema information in the new DBCOM and in the new COSSD. For
every subschema copied a new SSIA must be generated using the BGSSIA utility routine
and entered in the DBDIR.

Please note that "compatibility" only means that the old subschema’s view of the new
schema has remained the same as its view of the old schema. It does not mean, for
example, that when the "COPY [ALL] RECORD[S]" clause is used the view of the (upward-
compatible) changes in the new schema is retained in the new schema. If you want to do
this, you must recompile the subschema.

Copying compatible subschemas Renaming database objects

362 U931-J-Z125-17-76

Figure 35: System environment for copying subschemas

The compiler run for copying compatible subschemas is optional; if omitted, all subschemas
must be recompiled individually, and the corresponding SSIAs must be regenerated and
entered in the DBDIR.

SYSDTA

DBDIR
SIA

SSIA

DBCOM

BGSSIA

COSSD

One BGSSIA run
per compatible
subschema

COSSD.0

DDL compiler

Maintaining the
subschemas

Renaming database objects Copying compatible subschemas

U931-J-Z125-17-76 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

Subschema compatibility and incompatibility

schema-name and PRIVACY LOCK FOR COPY.....
A change of schema name and of PRIVACY LOCK specifications has no effect on
copying the subschemas.
Such changes need only be taken into account when subsequent subschema
compilations are carried out.

PRIVACY LOCK FOR COMPILE
In the compiler run for copying the subschemas, the DDL compiler copies these
PRIVACY specifications from the old subschema description so that access locks
for the compilation of application programs are retained.

identifier
An old subschema is incompatible with the new schema if an identifier has been
added, deleted or renamed in the LOCATION MODE clause, the WITHIN clause
(record type level) or the SET OCCURRENCE SELECTION clause, and the
corresponding record type or set is present in the subschema.

Statements for copying subschemas

The DDL compiler requires the following statements to copy the subschemas:

Statement Default value Meaning

COMPARE SUBSCHEMAS - Initiates copying of subschemas

 lYES⎫
[SORCLIST IS m }]
 nNO ~

YES Prints out subschema listing

 lYES⎫
[DIAGNOSTIC m }]
 nNO ~

NO Diagnoses incompatibilities of old subschemas with
the new schema and lists them in the form of error
messages

END - Terminates entry of the statements

Table 48: Statements for copying subschemas

Copying compatible subschemas Renaming database objects

364 U931-J-Z125-17-76

 Command sequence for copying subschemas

The following commands initiate a DDL compiler run for copying subschemas (see section
“Compiling the Schema DDL” on page 66):

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-DDL

04 COMPARE SUBSCHEMAS

 lYES⎫
05 [DIAGNOSTIC m }]
 nNO ~

 lYES⎫
06 [SORCLIST IS m }]
 nNO ~
07 END

An SSIA must then be generated for each subschema copied and entered in the DBDIR
(see section “Generating the Subschema Information Area (SSIA) with BGSSIA” on
page 94) using the following commands:

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-BGSSIA

04 GENERATE SUBSCHEMA subschema-name OF SCHEMA schema-name

05 [DISPLAY[SUBSCHEMA subschema-name OF SCHEMA schema-name]]

06 END

Renaming database objects Adapting incompatible subschemas

U931-J-Z125-17-76 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.10.2 Adapting incompatible subschemas

For all subschemas which, in their original form, are not compatible with the new schema,
it is necessary to do the following:

– adapt the source with regard to renaming

– correct the subschema description if required

– recompile the corrected subschema with the DDL compiler

– generate a new SSIA using BGSSIA and enter it in the DBDIR

– recompile and link any application programs

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47. The
aliases for calling the utility routines are also listed in this section).

Command sequence for adapting the subschemas

Compiling the corrected subschema (see section “Compiling the Schema DDL” on
page 66)

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-DDL

04 [DELETE 'subschema-name':'new schema-name']

05 SOURCE IS 'subschema-file'

06 SORCLIST IS YES

07 END

08 /ASSIGN-SYSDTA TO=*SYSCMD

02 The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM application programs" in the "Application Programming" manual).

03 The UDS/SQL utility routine can also be started using the alias DDL.

04 The DELETE statement should be specified only if a subschema recognized as
compatible and copied by the DDL compiler has been modified and requires
recompilation.

Adapting DB applications Renaming database objects

366 U931-J-Z125-17-76

Generating the SSIA and entering it in the DBDIR

See section “Generating the Subschema Information Area (SSIA) with BGSSIA” on
page 94.

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-BGSSIA

04 GENERATE SUBSCHEMA subschema-name OF SCHEMA schema-name

05 [DISPLAY[SUBSCHEMA subschema-name OF SCHEMA schema-name]]

06 END

7.11 Adapting DB applications

It is not necessary to adapt the DB applications to new names immediately if purely
renaming without type changes or the splitting or grouping of items is involved. In these
cases adaptations are only required the next time the application program is compiled.

Applications which are not affected by the renaming do not need to be modified, for
example if the subschema does not contain the renamed parts.

SSITAB modules which are not affected by renaming do not need to be created using
BCALLSI.

When item types are changed or when items are split or grouped, all the applications
affected must be recompiled on the basis of the new subschemas.

7.12 Updating access rights

The renaming process changes nothing in the access rights which you entered using the
BPRIVACY utility routine. However, because record types, sets and user realms have been
renamed, input files for assigning access rights may no longer be up-to-date. Following
renaming you should therefore using BPRIVACY or ONLINE-PRIVACY and the SHOW-
USER-GROUP statement generate a display of the current rights and adapt the input files
as required.

Renaming database objects Adapting user data

U931-J-Z125-17-76 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

7.13 Adapting user data

In the renaming cycle only the schema and subschema data is modified in the event of type
changes or when items are split or grouped. The actual user data remains unchanged. If
initialization or other input is required for the modified data items, this must be implemented
independently of the renaming cycle. You must execute this before or after the renaming
cycle parallel to normal operation, e.g. by means of suitable application programs.

7.14 Measures for restarting DB operation

If the After Image Logging was deactivated before the renaming cycle was started, it will
result in a logging gap. After the renaming cycle, the After Image Logging can be activated
again with the BMEND utility (see the "Recovery, Information and Reorganization" manual,
BMEND). Then a backup of the database has to be created again (see the "Database
Operation" manual, Saving and recovering a database in the event of errors)

You then can delete the DBCOM.O and COSSD.O files.

Example Renaming database objects

368 U931-J-Z125-17-76

7.15 Example

BRENAME run and compiling new Schema DDL and SSL

A reserve item in the record type Customer is split into a new Unicode item for the copy of
the address and the remaining reserve item.

 /START-UDS-BRENAME

 ***** START BRENAME (UDS/SQL V2.8 0000) 2015-06-28 11:47:32

 ***** THE FILE: :SQL2:$XXXXXXXX.INSURE.DBCOM IS COPIED TO:

 :SQL2:$XXXXXXXX.INSURE.DBCOM.O

 ***** THE FILE: :SQL2:$XXXXXXXX.INSURE.COSSD IS COPIED TO:

 :SQL2:$XXXXXXXX.INSURE.COSSD.O

 1005 RENAMING SUCCESSFULLY INITIATED

 ***** DIAGNOSTIC SUMMARY OF BRENAME

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NR OF DATABASE ACCESSES : 90

 ***** NORMAL END BRENAME (UDS/SQL V2.8 0000) 2015-06-28 11:47:33

 /START-UDS-DDL

 ***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:33

 * DDLCOMP: INPUT SYSTEMPARAMETERS

 SOURCE IS 'S.INSURE.DDL.RENAME'

 END

 * DDLCOMP: READ SCHEMA/SUBSCHEMA

 % UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:33/0YBG)

 % UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:33/0YBG)

 0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

 0YBG: DEFAULT PUBSET: SQL2

 0YBG: --

 * DDLCOMP: START SCHEMA-PHASE

 * DDLCOMP: CHECK SCHEMA RULES

 * DDLCOMP: CHECK DATA ALLOCATION

 * DDLCOMP: SEMANTIC TEST

 * DDLCOMP: CYCLUS TESTS

 * DDLCOMP: ERROR DIAGNOSTIC

 * DDLCOMP: NO ERRORS IN SCHEMA-PHASE

Renaming database objects Example

U931-J-Z125-17-76 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

 * DDLCOMP: CREATE FILE COSSD

 * DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:33/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 658 2026 67 926 39

 % UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************658 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:33/0YBG)

 ***** DIAGNOSTIC SUMMARY FOR DDL-SCHEMA CUSTOMER-CARDS

 NO ERRORS

 +++++ 9 WARNINGS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:33

 /START-UDS-SSL

 ***** START SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:33

 * SSLCOMP: INPUT SYSTEMPARAMETERS

 SOURCE IS 'S.INSURE.SSL.NEW'

 END

 * SSLCOMP: READ SSL-SCHEMA

 % UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:33/0YBG)

 % UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:33/0YBG)

 0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

 0YBG: DEFAULT PUBSET: SQL2

 0YBG: --

 * SSLCOMP: START SSL-PHASE

 * SSLCOMP: CHECK SSL RULES

 * SSLCOMP: SEMANTIC TEST

 * SSLCOMP: ERROR DIAGNOSTIC

 * SSLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:33/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 127 251 60 34 23

 % UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************127 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:33/0YBG)

 ***** DIAGNOSTIC SUMMARY FOR SSL - SCHEMA

 NO ERRORS

 NO WARNINGS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NORMAL END SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:33

Example Renaming database objects

370 U931-J-Z125-17-76

 /START-UDS-BGSIA

 ***** START BGSIA (UDS/SQL V2.8 0000) 2015-06-28 11:47:33

 GENERATE SCHEMA CUSTOMER-CARDS

 DISPLAY

 END

 % UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:34/0YBG)

 % UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:34/0YBG)

 0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

 0YBG: DEFAULT PUBSET: SQL2

 0YBG: --

 ESTIMATE-REPORT

 ********** FOR USER-REALM 3 NAME IS : PROP-RLM

 A SIZE OF 24 BLOCKS WAS ESTIMATED

 ********** FOR USER-REALM 4 NAME IS : INSURE-RLM

 A SIZE OF 239 BLOCKS WAS ESTIMATED

 ********** FOR USER-REALM 6 NAME IS : TRANSPORT-RLM

 A SIZE OF 24 BLOCKS WAS ESTIMATED

 END OF ESTIMATE-REPORT

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:34/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

0YBG: INSURE 569 778 60 183 29

 % UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************569 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:34/0YBG)

 ***** DIAGNOSTIC SUMMARY OF BGSIA

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NORMAL END BGSIA (UDS/SQL V2.8 0000) 2015-06-28 11:47:34

 /MODIFY-JOB-SWITCHES ON=(1,4)

 /START-LMS

 //MODIFY-LOGGING-PARAMETERS LOG=*MAX

 //OPEN-LIBRARY LIB=INSURE.HASHLIB,MODE=*UPDATE

 //ADD-ELEMENT FROM-FILE=*OMF,TO-ELEM=*LIB-ELEM(TYPE=R),WRITE-MODE=*ANY

 INPUT OMF

 OUTPUT LIBRARY= :SQL2:$XXXXXXXX.INSURE.HASHLIB

 ADD UDSHASH AS (R)UDSHASH/@(0003)/2015-06-28 , OUTPUT REPLACED

 //SHOW-ELEM-ATTR

 INPUT LIBRARY= :SQL2:$XXXXXXXX.INSURE.HASHLIB

Renaming database objects Example

U931-J-Z125-17-76 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

 TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE

 (R) ADMIN## @ (0001) 2015-06-28 UDSHASH @ (0003) 2015-06-28

 2 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS

 //END

 /MODIFY-JOB-SWITCHES OFF=(1)

Checking the renaming using BALTER

 /START-UDS-BALTER

 ***** START BALTER (UDS/SQL V2.8 0000) 2015-06-28 11:47:34

 REPORT IS YES .

 END.

 +++++ WARNING: 1091 1 CHANGE(S) OF ITEM TYPE

 +++++ WARNING: 1096 1 CHANGE(S) WITH SPLIT OF ITEMS

 NUMBER OF FILE ACCESSES: 0

 ***** DIAGNOSTIC SUMMARY OF BALTER

 +++++ 2 WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NR OF DATABASE ACCESSES : 119

 ***** NORMAL END BALTER (UDS/SQL V2.8 0000) 2015-06-28 11:47:34

Example Renaming database objects

372 U931-J-Z125-17-76

List output of BALTER:

 RENAME CHECK FOR SCHEMA CUSTOMER-CARDS

 RENAME CHECK SIA_CONTROL

 RENAME CHECK AREA

 NO CHANGES IN ALL 4 AREA(S)

 RENAME CHECK RECORD

 |--|

 | DIFFERENCE IN RECORD CUSTOMER |

 |--|

 | |

 | +++ WARNING +++ DIFFERENCE IN ITEM_TYPE NOT-USED |

 | |

 | ITEM SPLIT |

 | ITEM-NAME (OLD SIA) LENGTH TYPE | ITEM-NAME (NEW SIA) LENGTH TYPE |

 | NOT-USED 255 CHAR | ADRESSE-U 240 NCHAR |

 | | NOT-USED 15 CHAR |

 |--|

 NO CHANGES IN REMAINING 3 RECORD(S)

 RENAME CHECK SET

 NO CHANGES IN ALL 13 SET(S)

 RENAME CHECK KEYS IN SIA

 NO CHANGES IN ALL 5 KEY(S)

+++++ WARNING: 1091 1 CHANGE(S) OF ITEM TYPE

+++++ WARNING: 1096 1 CHANGE(S) WITH SPLIT OF ITEMS

NUMBER OF FILE ACCESSES: 0

***** DIAGNOSTIC SUMMARY OF BALTER

+++++ 2 WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 119

Renaming database objects Example

U931-J-Z125-17-76 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

13
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
7

Compiling the subschema

 /START-UDS-DDL

 ***** START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:34

 * DDLCOMP: INPUT SYSTEMPARAMETERS

 SOURCE IS 'S.INSURE.SUBDDL.NEW'

 END

 * DDLCOMP: READ SCHEMA/SUBSCHEMA

 % UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:34/0YBG)

 % UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:34/0YBG)

 0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

 0YBG: DEFAULT PUBSET: SQL2

 0YBG: --

 * DDLCOMP: START SUBSCHEMA-PHASE

 * DDLCOMP: CHECK SUBSCHEMA RULES

 * DDLCOMP: CHECK DATA ALLOCATION

 * DDLCOMP: SUBCOPY

 * DDLCOMP: ERROR DIAGNOSTIC

 * DDLCOMP: NO ERRORS IN SUBSCHEMA-PHASE

 * DDLCOMP: WRITE SUBSCHEMA ON COSSD

 * DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:34/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 1379 2613 75 639 47

 % UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ************1379 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:34/0YBG)

 ***** DIAGNOSTIC SUMMARY FOR DDL-SUBSCHEMA

 NO ERRORS

 NO WARNINGS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:34

 /START-UDS-BGSSIA

 ***** START BGSSIA (UDS/SQL V2.8 0000) 2015-06-28 11:47:34

 GENERATE SUBSCHEMA MANAGEMENT OF SCHEMA CUSTOMER-CARDS

 DISPLAY

 END

 % UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:34/0YBG)

 % UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:34/0YBG)

 0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

 0YBG: DEFAULT PUBSET: SQL2

 0YBG: --

 *** SSIA GENERATION NORMALLY ENDED.

Example Renaming database objects

374 U931-J-Z125-17-76

 *GENERATION OF ITEM-TABLE AND NAME-TABLE STARTED.

 *GENERATION OF ITEM-TABLE AND NAME-TABLE FINISHED.

% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE (ILL1758,11:47:34/0YBG)

 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE

 0YBG: --

 0YBG: INSURE 802 1392 76 297 29

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *************802 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:34/0YBG)

 ***** DIAGNOSTIC SUMMARY OF BGSSIA

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

 ***** END OF DIAGNOSTIC SUMMARY

 ***** NORMAL END BGSSIA (UDS/SQL V2.8 0000) 2015-06-28 11:47:34

Renaming of the database objects has now been completed.

U931-J-Z125-17-76 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8 Converting databases to larger page formats
(BPGSIZE)

UDS/SQL databases can be structured with the following page formats (see section
“Formatting the compiler database with BCREATE” on page 63):

– 2-Kbyte format with a page length of 2048 bytes
– 4-Kbyte format with a page length of 4000 bytes
– 8-Kbyte format with a page length of 8096 bytes

You use the BPGSIZE utility routine to

– convert a database to a format with a larger page length (see section “Converting
databases with BPGSIZE” on page 378)

– reduce the memory space requirements for realms of a database without changing the
page length

– remove any FPA extents that may be present for each realm. BPGSIZE combines the
entire FPA into a single FPA that consists solely of the FPA base.

– combine DBTTs. BPGSIZE combines the DBTT base and DBTT extents to form a new
DBTT base.

In order to convert a database and its associated applications, you will need to perform the
following individual steps:

– check the criteria required to convert the database to a larger format,

– convert the database to a larger format by using the BPGSIZE utility routine,

– adapt the database schema and subschemas (i.e. restructure the database), and

– determine and adapt applications affected by the database conversion if required. Note,
however, that converting a database to a larger page format does not always involve
the adaptation of application programs that work with the database.

The individual steps required for conversion, i.e. converting the database with BPGSIZE,
restructuring it, and adapting application programs, need not be performed at the same
time. In other words, normal database operation is possible between these steps.

Criteria for conversion Database conversion

376 U931-J-Z125-17-76

Two typical conversion examples reflecting different application scenarios are outlined at
the end of this chapter, including the case that occurs most frequently in practice.

8.1 Criteria for conversion

A database may need to be converted to a larger page format for the following reasons:

– to prevent capacity bottlenecks

– to use database key values in the extended value range

– to utilize the full functionality of UDS/SQL

Converting a database for capacity reasons

The individual capacity reasons that could make it necessary to convert a database from a
2-Kbyte to a 4-Kbyte or 8-Kbyte format are as follows (see the “Design and Definition”
manual):

– More than 16 777 215 (=224-1) records need to be stored for at least one record type
of the database.

– The record length for at least one record type is greater than 1700 bytes (guideline: die
maximum record length in a database with a 2-Kbyte format equals 2020 bytes).

– The database uses more than 200 record types (guideline: a maximum of 253 record
types can be defined in a database with a 2-Kbyte format).

– The database is expected to contain more than 123 realms in the future.

– A multi-DB configuration was created with the sole purpose of distributing records of a
record type across multiple databases (due to capacity limits).

The conversion of a database from a 4-Kbyte to an 8-Kbyte format is required if the
maximum record length permitted for the 4-Kbyte format, i.e. 3968 bytes, is no longer
sufficient.

The relevant information on whether and to what extent the above criteria are satisfied for
a database can be obtained from the SIA report of the BPSIA utility routine and the record
type statistics output by the BSTATUS utility routine (see the “Recovery, Information and
Reorganization” manual).

Database conversion Criteria for conversion

U931-J-Z125-17-76 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

Converting a 2-Kbyte database due to the use of extended database key values

If a database key of a 2- Kbyte database i.e. one with a 2-Kbyte format) is supplied by an
application program with database key values from the extended value range (i.e. with a
REC-REF > 254 and/or an RSQ > 224-1; see the “Design and Definition” manual), the
database will need to be converted to the 4-Kbyte or 8-Kbyte format even if there are initially
no capacity shortages.

Consequently, in the case of multi-DB programs, i.e. application programs which access
multiple databases, it is first necessary to check whether these programs also use database
key values across multiple databases. If such an application program copies database key
values from a 4-Kbyte or 8-Kbyte database to a database key of a 2-Kbyte database, this
2-Kbyte database will also need to be converted to the 4-Kbyte or 8-Kbyte format and
restructured accordingly (see section “Restructuring the converted database” on
page 407).

Databases that are affected by the use of extended database key values can be essentially
converted in any order; however, the following approach is recommended:

1. First convert, and possibly restructure, any databases that are to be supplied with
extended database key values in the future.

2. Then convert, and possibly restructure, the databases from which extended database
key values my be copied to other databases by application programs.

This approach will eliminate the possibility of errors arising from copying extended
database key values to databases that haven’t been converted.

Converting a 2-Kbyte database in order to use the full UDS/SQL functionality

Databases with a 4-Kbyte or 8-Kbyte format are also required in order to use the following
functions:

– databases on NK4 pubsets

– BS2000 access method FASTPAM for files and realms of the database

BPGSIZE Database conversion

378 U931-J-Z125-17-76

8.2 Converting databases with BPGSIZE

The BPGSIZE utility can be used to convert a database to a format with the same or a
higher page length. The database to be converted may be the original database or any
shadow database (i.e. a database copy) with a copy name other than NEW (suffix).
The database to be converted must be consistent and is not altered by BPGSIZE. The
consistency of a database to be converted can be verified with the BCHECK utility routine
(see the “Recovery, Information and Reorganization” manual).

BPGSIZE creates the converted database as a shadow database with the copy name
(suffix) NEW. During the conversion with BPGSIZE, other UDS/SQL utility routines and
UDS/SQL sessions are allowed read access to the database.

The BPGSIZE utility routine operates without AFIM logging. Consequently, if AFIM logging
has been turned on for the database to be converted, BPGSIZE reports the fact during
conversion and also issues a warning at the end of processing. Both AFIM logging and
online backup capability are always turned off for the converted database.

Following the BPGSIZE run, a number of additional measures are required (see section
“Preparing the converted database for DB operation” on page 402) to prepare the
converted database for use in the running UDS/SQL mode.

When it starts BPGSIZE takes into account any UDS/SQL pubset declaration which is
assigned (see the “Database Operation” manual, Pubset declaration job variable). Faulty
assignment results in the program aborting.

Database conversion BPGSIZE

U931-J-Z125-17-76 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.2.1 BPGSIZE functions

The BPGSIZE utility routine offers the following functions:

– Conversion of a 2-Kbyte database to a database (copy name NEW) with a 4-Kbyte or
8-Kbyte format.
When BPGSIZE converts a database to pages with a larger format, it extends, among
other things, the system data structures such as the SCD and page index and thus
prepares the database to accept and manage database key values with a
REC-REF > 254 and/or an RSQ > 224-1 (see the "Design and Definition" manual).

– Conversion of a 4-Kbyte database to a database (copy name NEW) with a 8-Kbyte
format.

– Conversion to a database (copy name NEW) that has the same page length, but
requires less storage space than the original database due to the compression of
realms.
Compression is enabled by the fact that neither the gaps in the pages of the original
database nor the empty pages are transferred to the converted database by BPGSIZE
during conversion.

– Deletion of FPA extents.
For each realm, BPGSIZE combines the base free space administration table (FPA
base) and any existing FPA extents to form an FPA that consists solely of the FPA base.
FPA extents may be created in the context of an automatic realm extension, an online
realm extension or a realm extension by the BREORG utility routine (see the “Database
Operation“ manual, Online realm extension).

– Deletion of DBTT extents
BPGSIZE combines each DBTT into a DBTT that consists solely of the DBTT base. Any
existing DBTT extents are eliminated.

Realms for which the online extensibility has been activated with the DAL command
ACT INCR retain this activation during a BPGSIZE run.

BPGSIZE Database conversion

380 U931-J-Z125-17-76

8.2.2 Realms and files

The realms of the converted database are created by BPGSIZE on the basis of those in the
original database. This is achieved by means of work files.

8.2.2.1 Realms of the converted database

By default, BPGSIZE creates a converted realm on a public volume with the same size as
the original realm.
If desired, you can use the BS2000 CREATE-FILE command to have the file for a converted
realm selectively created under a specific catalog ID or on a private disk.

File name of the converted realm

The file name of the new converted realm is as follows: dbname.realm-name.NEW

dbname
Name of the converted database

realm-name
Name of the realm that is converted.
realm-name stands for the DBDIR or DBCOM, depending on whether the database
directory or database compiler realm is involved.

Calculating storage space for the converted realm

The approach followed by BPGSIZE during conversion is outlined below to assist you in
determining whether the converted realm will require more space than the original realm
and how the primary allocation for the converted realm should be selected.

Factors due to which additional storage space may be required for the converted realm in
some circumstances:

– When a 2-Kbyte database is converted to the 4-Kbyte or 8-Kbyte format, the 2048 byte
page length of the original realm is not exactly doubled, but quadrupled. Furthermore,
since each record must be fully stored within one page, a new 4000-byte or 8096-byte
page is generally not enough for the contents of two or four full 2048-byte pages.

– When converting a 2-Kbyte database to the 4-Kbyte or 8-Kbyte format, BPGSIZE
converts hash areas by mapping each direct or indirect CALC page with a length of
2048 bytes to a new CALC page of 4000 or 8096 bytes on a one-to-one basis. When a
4-Kbyte database is converted to the 8-Kbyte format, a CALC page with a length of
4000 bytes is mapped on a one-to-one basis to new CALC page of 8096 bytes. The
initial storage space required in the converted realm for hash areas is thus double or
four times the original space.

Database conversion BPGSIZE

U931-J-Z125-17-76 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

– If the value specified for TABLE-FILLING in the CONVERT-DATABASE statement is too
low (see page 394), the tables in the new realm will not be fully filled by BPGSIZE. If the
occupancy level of the tables is reduced as a result, more space is required.

Factors that may reduce the required storage space for the converted realm in some
circumstances:

– Only the pages in the original realm that already contain records or tables are
transferred by BPGSIZE to a page of the converted realm; empty pages are ignored.

– BPGSIZE fills pages of the converted realm with records and tables to the maximum
extend possible. The storage space required for the converted realm is thus reduced if
the original realm contains several partially-filled page.

– BPGSIZE reduces the number of overflow pages for hash areas and duplicates tables
wherever possible.

Automatic creation of the converted realm by BPGSIZE

If the realm dbname.realm-name.NEW is created by BPGSIZE, an FPA area of the same size
as that of original realm dbname.realm-name is created by BPGSIZE for dbname.realm-
name.NEW.

Note that the new realm dbname.realm-name.NEW may become too large for the FPA area
calculated by BPGSIZE due to file extensions and thus cause the conversion to be aborted
by BPGSIZE with an error message. If this occurs, you will need to use the BS2000
CREATE-FILE command to create the file for the realm dbname.realm-name.NEW with a
larger primary allocation and then start the conversion of the realm with BPGSIZE again.

Creating the file for the converted realm

If the converted realm requires more space than the original realm, you will need to create
the file dbname.realm-name.NEW for the converted realm yourself. This can be done with the
BS2000 CREATE-FILE command. (see “Maximum size of UDS/SQL files” on page 41).

In this case, BPGSIZE calculates the required size for the FPA area from the primary
allocation specified in the CREATE-FILE command. BPGSIZE then creates the FPA area
for the converted realm using this calculated value, provided it is greater than the one for
the original realm.
If you specify a value of less than 576 PAM pages as the secondary allocation, the value
for the secondary allocation is automatically set to 576 PAM pages by BPGSIZE.

BPGSIZE Database conversion

382 U931-J-Z125-17-76

Converting realms with distributable lists

When realms which participate in a distributable list are converted (and must therefore be
converted in a single BPGSIZE run), you must bear in mind that the conversion attempts to
distribute the records of the member record type in the distributable list evenly over the
realms.

If the distribution over the realms was previously very uneven, before conversion takes
place you should explicitly create the new realms with a size which takes into consideration
even distribution (for this purpose you can use BSTATUS to obtain information on the
location and distribution of the records over the various realms). If you do not create the
realms explicitly, they will be created with the current size without taking the intended even
distribution into consideration. This might then lead to abnormal termination while
attempting even distribution as BPGSIZE does not extend the new realms.

Database conversion BPGSIZE

U931-J-Z125-17-76 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.2.2.2 Required work files

In order to update the DBTTs of the database, one work file is required by BPGSIZE for
each record type contained in the realm being converted.
These work files have the following names:

UTI.BPGSIZE.dbname.realmref.recref

dbname
Name of the database being converted

realmref
Three-digit internal number of the realm being converted

recref
Five-digit internal number of the record type

A work file with recref 0 is also required for each realm for the handling of SYSTEM sets. A
work file with realmref 0 and recref 0 that is shared by all realms is required for completion
processing.

These files are created by BPGSIZE during conversion on a public volume by default and
with a primary allocation of 129 PAM pages and a secondary allocation of 25 PAM pages.

If desired, you can use the BS2000 CREATE-FILE command before executing BPGSIZE
to create the work files independently under a specific catalog ID or on private disk. Note,
however, that you must always use the standard file names. The internal realm and record
reference numbers and their corresponding assignments can be determined with the
BPSIA utility routine (see the “Recovery, Information and Reorganization” manual). The
data population for buffering is calculated for the record-specific work files using the
following formula:

Number of records of the record type in the relevant realm *
Number of DBTT columns of the record type * 9 Bytes

If the DBTT of a record type lies in the same realm as all records of that type, BPGSIZE
processed the associated work file together with the realm and then deletes the work file.
Otherwise, BPGSIZE deletes the work file only after all realms (including the DBDIR and
DBCOM) and possibly the COBOL subschema directory (COSSD; see next section) have
been successfully converted.

The LMS library SIPLIB.UDS-SQL-T.024 contains the example procedure
P.GEN-FILE-BPGSIZE which uses CSV output data from the BPSIA and BSTATUS utility
routines to create the record-specific work files.

BPGSIZE Database conversion

384 U931-J-Z125-17-76

8.2.2.3 COBOL subschema directory (COSSD) of the converted database

BPGSIZE generates the converted COBOL subschema directory (COSSD) only if the page
length of the database is extended during conversion. The converted COSSD that is
automatically created by BPGSIZE in such cases is placed on a public volume and has the
same size as the original COSSD.
The file name of the converted COSSD is:

dbname.COSSD.NEW

dbname
Name of the database being converted

If desired, the file dbname.COSSD.NEW for the converted COBOL subschema directory can
also be created independently under a particular catalog ID or on private disk by using the
BS2000 CREATE-FILE command.

If the page length of the database is not modified by BPGSIZE during conversion, the
contents of the original COSSD will also apply to the converted database. The association
between the COSSD and the converted database can then be created by copying the file
or recataloging it with the BS2000 command COPY-FILE or MODIFY-FILE-ATTRIBUTES,
respectively.

8.2.2.4 Module library for hash routines (HASHLIB) of the converted database

The module library for hash routines (HASHLIB) is not taken into account by BPGSIZE
during database conversion, since the contents of the HASHLIB for the original database
are also applicable to the converted database. The association between the HASHLIB and
the converted database can be established by copying or recataloging it with the BS2000
command COPY-FILE or MODIFY-FILE-ATTRIBUTES.

Database conversion BPGSIZE

U931-J-Z125-17-76 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.2.3 Conversion phases

You can optionally convert the entire database in one BPGSIZE run or split the database
conversion process over a multiple BPGSIZE runs.

The following three phases must always be differentiated, regardless of how many
BPGSIZE runs are used to convert the database:

1. Conversion of the database directory (dbname.DBDIR)

2. Conversion of the database compiler realm (dbname.DBCOM) and all user realms
(dbname.realm-name)

3. Update run: among other things, BPGSIZE reads in auxiliary files that have not been
processed and updates the remaining DBTTs; if conversion to a larger page format is
involved, the COBOL subschema directory (dbname.COSSD) is also converted here.

The realm being currently processed can be determined from the runtime messages of
BPGSIZE.

When realms which do not participate in distributable lists are converted, only the realm
which is to be converted plus dbname.DBDIR and dbname.DBDIR.NEW are required. You
can therefore temporarily swap out all other original and converted realms in the database
(to create space for converting the realm which is currently being processed).

You cannot convert a realm which is being used by a distributable list on its own. Instead,
you must convert all realms which belong to a distributable list S in the same BPGSIZE run.
The set of realms which can be converted in a BPGSIZE run must be closed with respect
to distributable lists.

A set of realms is closed with respect to distributable lists when it is assigned the
characteristic that for every realm of the set which is used by any distributable list S every
other realm which is used by the same list S is also contained in the set.
If, for example, SX is a distributable list with the realms R1, R2, R3 and SY is a distributable
list with the realms R2, R4, R5, the realm set R1, R2, R3, R4, R5 is closed with respect to
distributable lists. The set R1, R2, R3, on the other hand, is not closed with respect to
distributable lists as R2 is contained in the set, but realms R4 and R5 which belong to the
same list SY are not.

BPGSIZE Database conversion

386 U931-J-Z125-17-76

Required realms

The following overview shows which realms are required by BPGSIZE to convert the
database directory (dbname.DBDIR), the database compiler realm (dbname.DBCOM), and
the individual user realms. The required realms must be made available on magnetic disk
during the period required for conversion.

● The following are required to convert the database directory:

– the original database directory dbname.DBDIR

– the file dbname.DBDIR.NEW for the converted database directory. This file is
created by BPGSIZE by default.

● The following are required to convert the database compiler realm:

– the original database compiler realm dbname.DBCOM

– the file dbname.DBCOM.NEW for the converted database compiler realm. This file
is created by BPGSIZE by default.

– the original database directory dbname.DBDIR

– the converted database directory dbname.DBDIR.NEW

● The following are required to convert a user realm dbname.realm-name:

– the original user realm dbname.realm-name

– the file dbname.realm-name.NEW for the converted user realm. This file is created by
BPGSIZE by default.

– the original database directory dbname.DBDIR

– the converted database directory dbname.DBDIR.NEW

Apart from the original database directory (dbname.DBDIR), the original realm is no longer
required by BPGSIZE for conversion as soon as that realm has been fully converted. The
original database directory, by contrast, is no longer required only after the entire database
has been converted.

Database conversion BPGSIZE

U931-J-Z125-17-76 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

System environment of BPGSIZE

The following diagrams show the system environment of BPGSIZE in the individual
conversion phases.

System environment when converting the DBDIR

Figure 36: System environment of BPGSIZE when converting the DBDIR

BPGSIZE
SYSDTA

DBDIR

DBDIR.NEW

UTI.BPGSIZE.dbname.realmref.recref

...

BPGSIZE Database conversion

388 U931-J-Z125-17-76

System environment when converting the DBCOM and user realms

The following system environment is required by BPGSIZE in order to convert the database
compiler realm (dbname.DBCOM) or a user realm (dbname.realm-name):

Figure 37: System environment of BPGSIZE when converting the DBCOM or a user realm

In the case of the database compiler realm, the realm-name in figure 37 realm-name refers to
the DBCOM.

BPGSIZE
SYSDTA

DBDIR realm-name

DBDIR.NEW

UTI.BPGSIZE.dbname.realmref.recref

...

realm-name.
NEW

Database conversion BPGSIZE

U931-J-Z125-17-76 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

System environment during the update run

Figure 38: System environment of BPGSIZE during the update run

The COBOL subschema directory (COSSD) is converted only if the database is being
converted to a larger page format.

BPGS IZE

SYSDTA

DB DI R

DBDIR.NEW COSSD. NEW

UTI.BPGS IZE.dbname.realmref.recref

...

...

realm-name.N E W

*)

only if the page length of the database is extended

*)

*)

C OSSD

BPGSIZE Database conversion

390 U931-J-Z125-17-76

Converting the database in one BPGSIZE run

If the entire database is converted in a single BPGSIZE run, the three phases of conversion
are combined automatically by BPGSIZE in that run. This is typically achieved by calling
BPGSIZE with REALM-NAME=*ALL in the CONVERT-DATABASE statement (see
page 394).
When a database is converted in one BPGSIZE run, the individual realms are converted
sequentially. This could result in unacceptably long conversion times for large databases.
It is therefore advisable to only convert small databases in one BPGSIZE run.

Converting the database in multiple BPGSIZE runs

If you want the database conversion to be distributed over multiple BPGSIZE runs, you will
need to ensure the correct sequence for the conversion yourself.

To convert the database in multiple BPGSIZE runs, proceed as follows:

1. Create the converted database directory (dbname.DBDIR.NEW) in the first BPGSIZE
run.
This first BPGSIZE run could also be used to convert the database compiler realm
(dbname.DBCOM) and/or user realms of the database.

2. You can now convert the remaining realms of the database in further BPGSIZE runs.
Note that it is also possible to call BPGSIZE concurrently for individual realms. This may
be meaningful in some cases, since the time required to convert a realm essentially
depends on the size of that realm.

 Exception:
As only realm sets which are closed with respect to distributable lists can be
converted in one BPGSIZE run (see page 385), realms of a distributable list
cannot be converted in parallel.

The following factors should be taken into account when deciding whether to convert
realms sequentially or in parallel:

– Sequential realm conversion requires less memory, but generally results in longer
runtimes.

– Parallel realm conversion requires more memory in the short term, but speeds up
the conversion of the database.

3. Now start the update run by calling the BPGSIZE with REALM- NAME=*ALL in the
CONVERT-DATABASE statement (see page 394). If a conversion to a larger page
format is involved, BPGSIZE will automatically convert the COBOL subschema
directory (dbname.COSSD.NEW) as well.

4. All realms for a distributable list must be converted in the same BPGSIZE run.

i

Database conversion BPGSIZE (statements)

U931-J-Z125-17-76 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

Restarting an aborted BPGSIZE run

If a BPGSIZE run is aborted due to a small FPA area in the converted realm, for example,
you will need to restart the aborted BPGSIZE run. This should be done by starting BPGSIZE
again with the same statements so that BPGSIZE is prevented from processing fully
converted realms again.

8.2.4 Statements for BPGSIZE

The following statements are available for the BPGSIZE utility routine:

BPGSIZE statements can be applied on not only the user realms of the database, but also
the database directory (DBDIR) and the database compiler realm (DBCOM). Temporary
realms must not be specified.

Rules for statements

Incorrectly entered statements can be corrected, and every correctly entered statement can
also be cancelled with the UNDO statement.

If conflicting entries are made with respect to the function or object, the last specification
entered always applies.

The ALLOCATE-BUFFER-POOL, OPEN-DATABASE and UNDO statements are executed
immediately by BPGSIZE. All valid CONVERT-DATABASE statements are executed by
BPGSIZE after the END statement.

The statements must be entered in the following order:

1. ALLOCATE-BUFFER-POOL

2. OPEN-DATABASE

3. CONVERT-DATABASE (possibly more than once)

4. UNDO (if required)

Statement Function

ALLOCATE-BUFFER-POOL Define buffer size

CONVERT-DATABASE Convert database

END Terminate input of statements

OPEN-DATABASE Open database

UNDO Cancel effect of statement

Table 49: Statements for BPGSIZE

BPGSIZE (statements) Database conversion

392 U931-J-Z125-17-76

5. END

Statement syntax

The individual statements are described in detail below in alphabetic order.

Database conversion BPGSIZE - ALLOCATE-BUFFER-POOL

U931-J-Z125-17-76 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

ALLOCATE-BUFFER-POOL (define buffer size)

The ALLOCATE-BUFFER-POOL statement is used to define the size of the used buffer
pools in Mbytes (see the "Database Operation" manual).

The ALLOCATE-BUFFER-POOL statement must be specified as the first statement. It may
be dropped if the default values are to be used for buffer initialization.

The ALLOCATE-BUFFER-POOL statement will then no longer be offered in the SDF mask.

The ALLOCATE-BUFFER-POOL statement cannot be canceled with the UNDO statement.

BUFFER-SIZE = STD
Sets the buffer pool to the default size of 2 Mbytes.

BUFFER-SIZE = <integer 1..2000>
Size of the buffer pool in Mbytes. The size of the buffer pool must lie within the specified
limits. The maximum value depends on the operating system version, the main memory
configuration of the system, and the ADDRESS-SPACE-LIMIT value set for the specific
user ID.

ALLOCATE-BUFFER-POOL

BUFFER-SIZE = STD / <integer 1..2000>

BPGSIZE - CONVERT-DATABASE Database conversion

394 U931-J-Z125-17-76

CONVERT-DATABASE (control database conversion)

The CONVERT-DATABASE statement is used to control the conversion of realms.
The realms of the converted database are created by BPGSIZE with the copy name NEW.
For every database conversion, the DBDIR must be the first realm to be converted.

The CONVERT-DATABASE statement may be specified more than once in each BPGSIZE
run. The statement is considered valid (i.e. can be executed) only if all the realms named
in it are present. If a realm that has already been converted is specified in the CONVERT-
DATABASE statement, the realm is not converted again.

REALM-NAME = *ALL
All realms of the database, including the DBDIR and DBCOM, are converted.
Every database conversion involves the execution of a BPGSIZE run with only one
CONVERT-DATABASE statement using REALM-NAME=*ALL. This must be

– the first and only BPGSIZE run if the entire database is to be converted at once and with
the same occupancy level (see below) for all tables, or

– the final update run after all realms of the database have been converted in earlier
BPGSIZE runs.

REALM-NAME = *ALL-EXCEPT(...)
All realms except for those specified are converted.

NAME = list-poss(30): <realmname>
Names of realms to be excluded from conversion. You can also specify the DBDIR
(database directory) and DBCOM (database compiler realm) here.

REALM-NAME = list-poss(30): <realmname>
All specified realms are converted. You can also specify the DBDIR (database directory)
and DBCOM (database compiler realm) here.

CONVERT-DATABASE

REALM-NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <realm-name>

*ALL-EXCEPT(...)

⏐ NAME = list-poss(30): <realm-name>

,DATABASE-PAGE-LENGTH = *UNCHANGED / 2KB / 4KB / 8KB

,TABLE-FILLING = *UNCHANGED / *MAXIMUM / <integer 1..100>

Database conversion BPGSIZE - CONVERT-DATABASE

U931-J-Z125-17-76 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

 BPGSIZE does not create a converted realm for a realm specified with
REALM-NAME=... in the following cases:
– The realm does not exist.
– The realm is detached.
– The realm is inconsistent.
– The realm does not match the original DBDIR (dbname.DBDIR) or the converted

DBDIR (dbname.DBDIR.NEW).

DATABASE-PAGE-LENGTH = *UNCHANGED
The database page length is not changed during conversion. If the original realm contain
empty or only partially filled pages, this option can be used to reduce the storage space
requirements for the realm.

DATABASE-PAGE-LENGTH = 2KB
Sets the database page length in the converted database to 2048 bytes. This entry is only
allowed for 2-Kbyte databases and has the same effect there as the value *UNCHANGED.
If a 4-Kbyte or 8-Kbyte database is involved, the statement is rejected.

DATABASE-PAGE-LENGTH = 4KB
Sets the database page length in the converted database to 4000 bytes. This entry is only
allowed for 2-Kbyte and 4-Kbyte database. If an 8-Kbyte database is involved, the state-
ment is rejected.

DATABASE-PAGE-LENGTH = 8KB
Sets the database page length in the converted database to 8096 bytes. In the case of an
8-Kbyte database, the entry has the same effect as the value *UNCHANGED.

 The database page length in the converted database must be uniform.
Consequently, the following must be observed when specifying the DATABASE-
PAGE-LENGTH:

– In the first BPGSIZE run for the database:
If multiple CONVERT-DATABASE statements are specified with different
DATABASE-PAGE-LENGTH values, BPGSIZE will always use the DATABASE-
PAGE-LENGTH value entered in the last valid CONVERT-DATABASE
statement. This entry thus determines the page length in the converted
database. This is reported by means of a runtime message of BPGSIZE.

– In all other BPGSIZE runs for the database:
The page length specified in the first BPGSIZE run must be specified for all
DATABASE-PAGE-LENGTH values. Otherwise, BPGSIZE will terminate the
run with an error message.

i

i

BPGSIZE - CONVERT-DATABASE Database conversion

396 U931-J-Z125-17-76

TABLE-FILLING = *UNCHANGED
The level to which tables are filled in the converted realms remain (virtually) unchanged.

TABLE-FILLING = *MAXIMUM
Every table in the converted realms is filled as follows:

– One table entry remains free at level 0 (base level).
– Up to 95 % of the table is filled on level 1.
– One table entry remains free on every higher level that follows.

TABLE-FILLING = <integer 1..100>
Every table in the converted realms is filled as follows:

– On level 0 (base level), the table is filled in accordance with the specified occupancy
level (%).

– Up to 95 % of the table is filled on level 1.
– One table entry remains free on every higher level that follows.

 If the same realm is addressed in multiple CONVERT-DATABASE statements with
different TABLE-FILLING values, the entry found in the last valid CONVERT-
DATABASE statement in which that realm is addressed will apply to the associated
converted realm.

Since all tables of the converted realm are filled up to the specified percentage, a
converted realms may require more storage space than the associated original
realm in some cases. It is therefore generally advisable to use a high occupancy
level (i.e. 99, 100 or *MAXIMUM). More details on selecting a meaningful
occupancy level can be found in the “SSL” chapter of the "Design and Definition"
manual.

i

Database conversion BPGSIZE - END

U931-J-Z125-17-76 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

END (terminate input of statements)

The END statement terminates the input of statements and starts execution.

This statement has no operands.

END

BPGSIZE - OPEN-DATABASE Database conversion

398 U931-J-Z125-17-76

OPEN-DATABASE (open database)

The OPEN-DATABASE statement defines the database to be processed by subsequent
statements.

This statement is not allowed if the database has already been assigned using
SET-FILE-LINK LINK-NAME=DATABASE.

DATABASE-NAME = <dbname>
Name of the database. You can only process a database that is available under your own
user ID. A database from another user ID can only be processed from the TSOS ID of the
system administrator.

COPY-NAME = *NONE
The original database is processed.

COPY-NAME = <copyname>
The database copy (shadow database) with the specified copy name is processed.

USER-IDENTIFICATION = *OWN
The database is located under the user‘s own ID.

USER-IDENTIFICATION = <userid>
The specification of a foreign database ID is only allowed under the TSOS ID.

OPEN-DATABASE

 DATABASE-NAME = <dbname>

,COPY-NAME = *NONE / <copyname>

,USER-IDENTIFICATION = *OWN / <userid>

Database conversion BPGSIZE - UNDO

U931-J-Z125-17-76 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

UNDO (cancel statement)

The UNDO statement cancels the last correctly entered statement (other than UNDO itself).

The UNDO statement cannot be used to cancel the ALLOCATE-BUFFER-POOL
statement.

A sequence of two UNDO statements cancels the two statements that immediately precede
the UNDO sequence; a sequence of three UNDO statements cancels the three statements
that precede the sequence, and so on.

This statement has no operands.

UNDO

BPGSIZE - Command sequence Database conversion

400 U931-J-Z125-17-76

8.2.5 Command sequence to start BPGSIZE

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

[01 [/ADD-FILE-LINK LINK-NAME=DATABASE
,FILE-NAME=[:catid:][$userid.].DBDIR.[copyname]]

02 [/CREATE-FILE FILE-NAME=[:catid:][$userid.]dbname.realm-name.NEW
 [,SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY-ALLOCATION=primary
 ,SECONDARY-ALLOCATION=576)) /
 ,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn -

DEVICE-TYPE=device[,SPACE=...])]]

03 ... Further CREATE-FILE statements for files of the converted realm

04 [/CREATE-FILE FILE-NAME= -
[:catid:][$userid.]UTI.BPGSIZE.dbname.realm-nummer.recref-number

 [,SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY-ALLOCATION=primary
 ,SECONDARY-ALLOCATION=secondary)) /
 ,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn -

DEVICE-TYPE=device[,SPACE=...])]]

05 ... Further CREATE-FILE statements for work files of BPGSIZE

06 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

07 /START-UDS-BPGSIZE

08 [//OPEN-DATABASE DATABASE-NAME = ...]

09 //BPGSIZE-statements

10 //END

01,08 You must specify only one of these two statements.

02 This CREATE-FILE command may be optionally used to create a file for the
converted realm (DBDIR, DBCOM or user realm); see page 381.

04 This CREATE-FILE command may be optionally used to create a work file for
BPGSIZE (see page 383).

06 The specified version of BPGSIZE is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

07 The UDS/SQL utility routine can also be started using the aliases BPGSIZE and
START-UDS-PAGE-RESIZING.

Database conversion BPGSIZE - Example

U931-J-Z125-17-76 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.2.6 Example for BPGSIZE

The following example is based on the assumption that the TRAVEL database is initially
available in a 2-Kbyte format. The example shows the conversion of this 2-Kbyte database
to the 4-Kbyte format. Since a small database is involved, it makes sense to convert this
database in a single BPGSIZE run. The work files are created automatically by BPGSIZE.

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR
/CREATE-FILE FILE-NAME=TRAVEL.DBDIR.NEW,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -

/ (PRIMARY-ALLOCATION=200,SECONDARY-ALLOCATION=0))
/CREATE-FILE FILE-NAME=TRAVEL.DBCOM.NEW,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -

/ (PRIMARY-ALLOCATION=550,SECONDARY-ALLOCATION=0))
/CREATE-FILE FILE-NAME=TRAVEL.TRAVEL-RLM.NEW,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -

/ (PRIMARY-ALLOCATION=250,SECONDARY-ALLOCATION=0))

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BPGSIZE

***** START BPGSIZE (UDS/SQL V2.8 0000) 2015-06-28 11:40:38

//CONVERT-DATABASE REALM-NAME=*ALL,DATABASE-PAGE-LENGTH=4KB

//END

***** BEGIN FUNCTION CONVERT DATABASE AT 2015-06-28 11:40:38

***** CONVERSION OF REALM DBDIR STARTED

 CALC FOR RECORD USERGROUP-RECORD CONVERTED

 CALC FOR RECORD SUBSCHEMA-RECORD CONVERTED

 CALC FOR RECORD ERROR-MESSAGE CONVERTED

***** CONVERSION OF REALM DBDIR FINISHED

***** CONVERSION OF REALM DBCOM STARTED

***** CONVERSION OF REALM DBCOM FINISHED

***** CONVERSION OF REALM TRAVEL-RLM STARTED

 CALC FOR RECORD TRANSPORTATION CONVERTED

 CALC FOR RECORD ARRANGEMENT CONVERTED

 CALC FOR RECORD HOTEL CONVERTED

***** CONVERSION OF REALM TRAVEL-RLM FINISHED

***** NORMAL END FUNCTION CONVERT DATABASE AT 2015-06-28 11:40:39

***** DIAGNOSTIC SUMMARY OF BPGSIZE

 NO WARNINGS

 NO ERRORS

 NO SYSTEM-ERRORS

***** END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES : 345

***** NORMAL END BPGSIZE (UDS/SQL V2.8 0000) 2015-06-28 11:40:39

Preparing the database for DB operation Database conversion

402 U931-J-Z125-17-76

8.3 Preparing the converted database for DB operation

The following section describes the steps required to create a practically usable UDS/SQL
database from the database copy (copy name NEW) generated by BPGSIZE:

1. Declare the converted database as the original database.

2. Check the consistency of the database if required and output database information.

3. Reorganize and adapt the converted database:

– Reorganize hash areas of the converted database.

– Adjust the size of realms in the converted database (if required).

– Update the probable position pointers (PPP).

– Extend the record population for record types where more than 16 777 215 records
are to be stored in the future.

4. Check the consistency of the database if required and output database information.

5. Turn on AFIM logging (if desired) and/or online backup capability, and back up the
usable database to tape.

In order to perform the above activities, you will need, among other things, the BMEND,
BCHECK, BPSIA, BSTATUS, BPRECORD and BREORG utility routines (described in the
“Recovery, Information and Reorganization” manual) and possibly also the BCHANGE and
BALTER utility routines described in chapter “Restructuring the database (BCHANGE,
BALTER)” on page 213 of this manual.

Database conversion Preparing the database for DB operation

U931-J-Z125-17-76 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

Declaring the converted database as the original database

Following the conversion with BPGSIZE, you will need to declare the database copy (copy
name NEW) that was created by BPGSIZE as the original database. This can be optionally
done by using the BS2000 command MODIFY-FILE-ATTRIBUTES (to recatalog the
database) or the BS2000 command COPY-FILE (to copy the database). You can then
process the converted database.

If you want to be able to extend the realms of the database online, then you can fulfill the
requirements for this now:
A realm that is to be extendable online must have enough space available at the time of the
extension. This requirement is fulfilled when at the time of the extension the realm either
has a sufficient number of file pages available or the option of online realm extension is
available (see the “Database Operation” manual, Online realm extension). Storage space
is assigned when the realm file is created with the BS2000 command
CREATE-FILE (see section “Preparing database creation” on page 57). You can change
the storage space assignment after creation with the MODIFY-FILE-ATTRIBUTES
command.

Now you can work with the converted database.

Checking the database consistency and displaying database information

Before you start reorganizing and adapting the converted database, you may use the
BCHECK utility routine to check its consistency, but make sure that you take the runtimes
for BCHECK into account.
You can then use the BPSIA, BSTATUS and BPRECORD utility routines to obtain relevant
database information as a guideline for the required reorganization and adaptation
measures.

After you have completed the reorganization and adaptation measures, you can repeat the
BCHECK run and also the BPSIA, BSTATUS, and BPRECORD runs if desired.
Since the BCHECK run may take some time, this can also be done independently of the
measures to adapt the database at a later stage.

Preparing the database for DB operation Database conversion

404 U931-J-Z125-17-76

Reorganizing and adapting the converted database

Reorganizing hash areas of the converted database

BPGSIZE fills pages of the converted realm with records and tables to the maximum
possible extent without transferring any empty pages to it. This means that a converted
realm will initially have no free space for the addition of new data. On the other hand, when
the hash areas are converted by BPGSIZE, each direct and indirect CALC page of an
original realm is mapped on a one-to-one basis to a CALC page in the converted realm that
is approximately double or four times its original size (if conversion to a larger page format
is involved).

The BREORG utility routine (REORGANIZE-CALC statement) can be used to reduce the
storage space required for hash areas in the converted realm and to thus create space for
the addition of new data.

Example

/REMARK **** REORGANIZING HASH AREAS ****
/START-UDS-BREORG
//SPECIFY-SCHEMA SCHEMA-NAME=schema name
//REORGANIZE-CALC RECORD-NAME=rec-name-1, -

CALC-RECORD=*WITHIN-POPULATION(REALM=*ALL, -
POPULATION=1000), -

CALC-SEARCHKEY=*KEY-POPULATION(KEY-REF=*ALL, -
POPULATION=1000)

//REORGANIZE-CALC RECORD-NAME=rec-name-2, -
CALC-RECORD=*WITHIN-POPULATION(REALM=*ALL, -

POPULATION=15000), -
CALC-SEARCHKEY=*KEY-POPULATION(KEY-REF=*ALL, -

POPULATION=150000)
.
.
.
//END

Adjusting the size of converted realms

If the additional space regained from reorganizing the hash areas is not sufficient, you will
need to extend the realm in question by using the MODIFY-REALM-SIZE statement of the
BREORG utility routine.

Note that if the space required to store new data in the converted realm is less than the
already available amount, the MODIFY-REALM-SIZE statement could also be used to
reduce the realm after reorganizing the hash areas.

When adjusting the realm size, the DBDIR (database directory) and DBCOM (database
compiler realm) realms, in particular, should also be taken into account.

Database conversion Preparing the database for DB operation

U931-J-Z125-17-76 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

Updating probable position pointers (PPP)

Pointer arrays that are created as probable position pointers (PPP) are not updated by
BPGSIZE when converting the database. After the conversion, you can use the SIA report
of the BPSIA utility routine to determine which probable position pointers (PPP) are
inaccurate (see PPP-BITS in the output of CALC/KEY/CALC-SEARCH-KEY
INFORMATION) and then correct them selectively for each access path with the
REORGANIZE-SET statement of the BREORG utility routine. Sets in which records are
relocated must be reorganized first. Such sets are defined in the SSL with MODE IS LIST
(see the "Design and Definition" manual).
Note that since the BREORG runs to update the probable position pointers may take a
relatively long time, this BREORG runs could also be completed later independently of the
steps required to prepare the database for DB operation.

Example

/REMARK **** UPDATING PPPs ****
/START-UDS-BREORG
/SPECIFY-SCHEMA SCHEMA-NAME=schema-name
//REORGANIZE-SET SET-NAME=set-name-1,OWNER-SELECTION=ALL,FILLING=UNCHANGED
//REORGANIZE-SET SET-NAME=set-name-2,OWNER-SELECTION=ALL,FILLING=UNCHANGED
.
.
.
//REORGANIZE-SET SET-NAME=set-name-n,OWNER-SELECTION=ALL,FILLING=UNCHANGED
//END

Updating the probable position pointers is faster if you use the REORGANIZE-POINTERS
statement (see the section entitled ’Reorganizing the database with BREORG’ in the
“Recovery, Information and Reorganization" manual).

/START-UDS-BREORG
//SPECIFY-SCHEMA SCHEMA-NAME=schema-name
//REORGANIZE-POINTERS REALM-NAME=realm-name-1
//REORGANIZE-POINTERS REALM-NAME=realm-name-2
.
.
.
//REORGANIZE-POINTERS REALM-NAME=realm-name-n,
//END

Preparing the database for DB operation Database conversion

406 U931-J-Z125-17-76

The following schema names and set names are used to update the probable position
pointers (PPP) of the DBDIR and DBCOM:

Example

/REMARK **** REORGANIZING THE DBDIR ****
/START-UDS-BREORG
//SPECIFY-SCHEMA SCHEMA-NAME=PRIVACY-AND-IQF-SCHEMA
//REORGANIZE-SET SET-NAME=USERGROUP-USERID,OWNER-SELECTION=ALL
//END

/REMARK **** REORGANISATION VON DBCOM ****
/START-UDS-BREORG
//SPECIFY-SCHEMA SCHEMA-NAME=COMPILER-SCHEMA
//REORGANIZE-SET SET-NAME=NAME-TABLE,OWNER-SELECTION=ALL
//END

Extending the record set population

If the converted database was created from an original database with a 2-Kbyte format, you
will need to extend the record population for record types that are expected to have more
than the maximum number of 16 777 215 records allowed for 2-Kbyte databases.
The record population can be extended by using the MODIFY-RECORD-POPULATION
statement of the BREORG utility routine.

Turning on AFIM logging and online backup capability, saving the prepared database

If you want to operate the converted database with AFIM logging, you can turn on AFIM
logging for the converted database with the BMEND utility routine.

If you want to be able to back up the converted database online in the future, use the
BMEND utility routine to turn on online backup capability.

Make sure that you create a consistent backup copy of the converted database before
restarting any database operations.

Schema name Set name

DBDIR PRIVACY-AND-IQF-SCHEMA USERGROUP-USERID

DBCOM COMPILER-SCHEMA NAME-TABLE

Database conversion Restructuring the converted database

U931-J-Z125-17-76 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.4 Restructuring the converted database

When a database has been converted from the 2-Kbyte format to the 4-Kbyte or 8-Kbyte
format, you can use the extended value range for the maximum number or records per
record type without changing the database schema, unless a field of type DATABASE-KEY
is defined in the record description or in the LOCATION-MODE in the schema DDL - if you
want to use the extended value range for records then you must convert this field to
DATABASE-KEY-LONG for each record type.
The main advantage of this is that application programs can be adapted independently of
the database conversion.
Changes in the schema are required if you want to use the extended value range without
restrictions even for record types with an explicitly defined database key item.

This section only illustrates the changes required in the Schema DDL and Subschema DDL
If the extended value range is to be used. The restructuring of a database is described in
detail in chapter “Restructuring the database (BCHANGE, BALTER)” on page 213.

If DB application programs use database key values of a record type for which no more than
16 777 215 records are to be stored even in the future (RSQ < 224-1), you should ensure
that the record type involved receives a record reference (REC-REF) < 255 when
restructuring the database. This helps reduce the overhead for adapting and possibly
recompiling the application programs, since the corresponding USAGE IS DATABASE-KEY
items need not be adapted in this case (see section “Adapting COBOL and CALL DML
statements” on page 409).

Existing database key values are converted to the extended format on restructuring the
database when the data repository is adapted with the BALTER utility routine (see section
“Analyzing schema modifications and adapting stored data with BALTER” on page 280).

In order to optimize your database, you should adjust the values specified for the population
in the SSL to the extended value range (see the "Design and Definition" manual).

Restructuring the converted database Database conversion

408 U931-J-Z125-17-76

Adapting the database schema

The following language options of the Schema DDL must be changed in order to use
extended database key values:

– TYPE IS DATABASE-KEY changed to TYPE IS DATABASE-KEY-LONG

– LOCATION MODE IS DIRECT changed to LOCATION MODE IS DIRECT-LONG

In the case of record types that contain a database key item (TYPE IS DATABASE-KEY),
you should check whether this database key item will need to accept extended database
key values in the future. Note, however, that a database key item need not always be used
for the database key of the record in which it is defined. It could, for example, also be used
for the database key of some other record type. You should therefore also examine all
possible cross-links when deciding whether to convert an item of type DATABASE-KEY to
a DATABASE-KEY-LONG item.
The conversion of a DATABASE-KEY item to a DATABASE-KEY-LONG item also requires
all LOCATION MODE IS DIRECT clauses in which that DATABASE-KEY-LONG item is
addressed to be changed to LOCATION MODE IS DIRECT-LONG (see the "Design and
Definition" manual).

Adapting subschemas

For each database key item of the database schema that has been changed to DATABASE-
KEY-LONG, the associated USAGE IS DATABASE-KEY clauses must be changed to
USAGE IS DATABASE-KEY-LONG in the subschema definitions involved (see the "Design
and Definition" manual). These subschemas and the application programs that access
them must then be recompiled.

If all record types of a subschema containing a DATABASE-KEY-LONG item are to be
copied with the Subschema DDL statement COPY, this subschema will only need to be
recompiled, but not adapted.

The subschemas that need to be adapted can be determined following the BALTER run to
adapt stored data (see page 280) by means of the DDL compiler run, which copies the
subschemas and also filters out those that are incompatible (see section “Copying
compatible subschemas” on page 310).

Database conversion Adapting application programs

U931-J-Z125-17-76 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.5 Adapting COBOL and CALL DML statements

The conversion of a 2-Kbyte database to a 4-Kbyte or 8-Kbyte format with the BPGSIZE
utility routine has no impact on connected database applications and other databases so
long as the database contains only database key values with a REC-REF Î 254 and an
RSQ Î 224-1.

In most cases, however, a database will be converted so that the extended value range for
database key values (REC REF > 254 and/or RSQ > 224-1) can be used in it. The use of
extended database key values usually affects the associated application programs as well
as other databases in some circumstances and therefore mandates appropriate adaptation
measures.

In order to enable the use of extended database key values in the database, an application
program may need to be adapted in the following cases:

● The Schema DDL of the converted database contains at least one of the following
clauses:

– TYPE IS DATABASE-KEY-LONG
– LOCATION MODE IS DIRECT-LONG
– SET SELECTION THRU LOCATION MODE OF OWNER if the primary key is

defined with LOCATION MODE IS DIRECT-LONG

● The application program uses DML statements that access the database via database
key items.

● The application program uses at least one of the following COBOL definitions:

– definition of a COBOL item of type USAGE IS DATABASE-KEY
– redefinition with REDEFINES for a USAGE IS DATABASE-KEY item
– reference via a LINKAGE to a data structure containing items of type USAGE IS

DATABASE-KEY-LONG (e.g. LINKAGE to a subschema).

● The application program uses database key values in areas that are not directly
detectable (see section “Adapting additional locations in the application program” on
page 419).

Following the adaptation, the application program must be recompiled and linked again.

Adapting application programs Database conversion

410 U931-J-Z125-17-76

8.5.1 DDL clauses that indicate the use of extended database key values

An analysis of the schema and Subschema DDL indicates if and where database key
values of the extended value range are used in an application program.

The use of extended database key values in an application program can be deduced from
the following DDL clauses:

● Definition of an item with TYPE IS DATABASE-KEY-LONG in the Schema DDL entry
for a record type that is copied into a subschema used by the application program with
COPY.

● Specification of the LOCATION MODE IS DIRECT-LONG clause in the Schema DDL
entry for a record type that is copied into a subschema used by the application program
with COPY.

● Specification of the SET SELECTION THRU LOCATION clause in the DDL set entry for
an owner record type with the following attributes:

– The record type is defined with LOCATION MODE IS DIRECT-LONG.

– The record type is copied to a subschema used by the application program with
COPY.

● Definition of a USAGE IS DATABASE-KEY-LONG item in a subschema used by the
application program.

A description of which COBOL DML and CALL DML statements are affected by these DDL
clauses can be found in section “Adapting DML statements”, below.

Subschemas that are affected by data type changes (DATABASE-KEY-LONG) in the
Schema DDL are subject to other validation criteria. Application programs that use such
subschemas must therefore be adapted, recompiled, and linked again.

Database conversion Adapting application programs

U931-J-Z125-17-76 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.5.2 Adapting DML statements

DML statements that use a database key value provide an indication of where adaptations
to database key values of the extended value range (REC-REF > 254 and/or RSQ > 224-1)
may be required in the application program.

The following COBOL DML statements use a database key value:

– ACCEPT
– FIND (format 1) or FETCH (format 1)
– FIND (format 7) or FETCH (format 7)
– MODIFY
– SET
– STORE

The following CALL DML statements use a database key value:

– ACCEPTC
– FIND1 or FTCH1
– STORE1 or STORE2

DML statements are described in detail in the “Application Programming” manual.

Adapting application programs Database conversion

412 U931-J-Z125-17-76

8.5.2.1 Overview

The table 50 contains a general decision framework indicating when adaptations to
database key values of the extended value range are required for individual DML
statements. This table only takes the functionality of DML statements into account; no
distinction is made between COBOL DML and CALL DML statements.

DML statement ... must be adapted if:

ACCEPT
FIND/FETCH-1

there are database key
values with a
REC-REF > 254 and/or
RSQ > 224-1 for a record
type used by the
statement

_ _

STORE
_

the DDL entry of the
used record type
contains the clause
LOCATION MODE IS
DIRECT-LONG

_

STORE,
MODIFY,
FIND/FETCH-7
(without
CURRENT)

_

the DDL entry of the
owner record type
contains the clause
LOCATION MODE IS
DIRECT-LONG

the DDL entry of the
affected set in which the
record type is “owner”
contains the clause:
SET SELECTION THRU
LOC MODE OF OWNER

Table 50: Criteria for adapting DML statements to extended database key values

Database conversion Adapting application programs

U931-J-Z125-17-76 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.5.2.2 Adapting COBOL DML statements

ACCEPT

The ACCEPT statement has two variants:

– Format 1 of ACCEPT determines the database key value of the CRR, CRS, CRA or
CRU and places it in a COBOL item of type USAGE IS DATABASE-KEY. This item must
be adapted (USAGE IS DATABASE-KEY-LONG) if it is not possible to guarantee that
the database key values of the CRR, CRS, CRA or CRU lies in the extended value
range.
If the determined database key value is too large for the result field, UDS/SQL reports
status code 15102.

– Format 2 of ACCEPT determines the realm containing the record whose database key
value is specified in the COBOL item of type USAGE IS DATABASE-KEY. This item
must be adapted (USAGE IS DATABASE KEY LONG) if database key values from the
extended value range are to be passed in it.

FIND (format 1) and FETCH (format 1)

Format 1 of the FIND and FETCH statements locate a database record via the value of a
COBOL item of type USAGE IS DATABASE-KEY. This item must be adapted (USAGE IS
DATABASE-KEY-LONG) if a record whose database key value lies in the extended value
range is to be found.

FIND (format 7) and FETCH (format 7)

Format 7 of FIND/FETCH can be used by the application program to select the desired set
occurrence via the database key of the owner record if the Schema DDL contains the
following two clauses:

– LOCATION MODE IS DIRECT or LOCATION MODE IS DIRECT-LONG in the record
entry of the owner record type

– SET OCCURRENCE SELECTION THRU LOCATION MODE OF OWNER in the
corresponding set entry

In order to select the set occurrence, the application program passes the database key
value to the database key item named in the LOCATION MODE clause (see the "Design
and Definition" manual).

In the case of LOCATION MODE IS DIRECT-LONG, the type of the associated database
key item is DATABASE-KEY-LONG. In order to enable the application program to pass
database key values of the extended value range, the type of the COBOL item that passes
the database key value must be changed to USAGE IS DATABASE-KEY-LONG.

Adapting application programs Database conversion

414 U931-J-Z125-17-76

MODIFY

MODIFY can be used by the application program to move the Current Record of Run-unit
(CRU) to another set occurrence if the Schema DDL contains the following two clauses:

– LOCATION MODE IS DIRECT or LOCATION MODE IS DIRECT-LONG in the record
entry of the owner record type and

– SET OCCURRENCE SELECTION THRU LOCATION MODE OF OWNER in the
corresponding set entry

The application program can select the desired set occurrence with MODIFY via the
database key value of the owner record by passing the database key value to the database
key item named in the LOCATION MODE clause (see the "Design and Definition" manual).

In the case of LOCATION MODE IS DIRECT-LONG, the type of the associated database
key item is DATABASE-KEY-LONG. In order to enable the application program to pass
database key values of the extended value range, the type of the COBOL item that passes
the database key value must be changed to USAGE IS DATABASE-KEY-LONG.

SET

The SET statement transfers the contents of a database key item to one or more other
database key items.

The target items must be adapted to the extended value range (USAGE IS DATABASE-
KEY-LONG) if the following applies:

– The item whose contents are to be transferred has already been changed to the type
USAGE IS DATABASE-KEY-LONG or is a redefinition of an item of type USAGE IS
DATABASE-KEY-LONG.

– Database key values of the extended value range are to be transferred.

Database conversion Adapting application programs

U931-J-Z125-17-76 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

The behavior of the COBOL runtime system when assigning database key values with the
SET statement is reflected in the table below (see the “Application Programming” manual):

a) The values are mapped on a 1:1 basis

b) The values are extended internally

c) The values are internally truncated. If the database key value to be transferred is
too large for a target item (REC-REF > 254 and/or RSQ > 224-1), a status code of
00102 is reported, and the value of the target item is set to 0; however, the
execution of the statement is not aborted.

STORE

The STORE statement adds a new record to the database. If the schema entry for the
record type involved contains the LOCATION MODE IS DIRECT or LOCATION MODE IS
DIRECT-LONG clause, the database key value for the record to be stored can be specified
by the application program. This is done by passing the database key value to the database
key item named in the LOCATION MODE clause.

UDS/SQL then proceeds as described below:

– Database key assignment:
UDS/SQL stores the record in the database under the database key value provided by
the application program.

– Set occurrence selection:
If the record type involved is a member of a set that is defined with SET OCCURRENCE
SELECTION THRU LOCATION MODE OF OWNER, UDS/SQL stores the record as a
member record in the set occurrence of the owner record whose database key value
matches the one provided by the application program.

In the case of LOCATION MODE IS DIRECT-LONG, the type of the associated database
key item is DATABASE-KEY-LONG. In order to enable the application program to pass
database key values of the extended value range, the type of the COBOL item that passes
the value must be changed to USAGE IS DATABASE-KEY-LONG.

Transfer to
from

DATABASE-KEY DATABASE-KEY-LONG

DATABASE-KEY a b

DATABASE-KEY-LONG c a

Adapting application programs Database conversion

416 U931-J-Z125-17-76

8.5.2.3 Adapting CALL DML statements

ACCPTC

The ACCPTC statement has two variants:

– ACCPTC with the function option DB-KEY, DBKREC, DBKRLM or DBKSET determines
the database key value of the CRR, CRS, CRA or CRU and makes it available in the
user information area (UINF). The ACCPTC statement must be replaced by the
ACCPTL statement if it is not possible to guarantee that the database key values of the
CRR, CRS, CRA or CRU are not in the extended value range .
UDS/SQL reports status code 15102 for ACCPTC if the value of the determined
database key lies in the extended value range.

– ACCPTC with the function option RLMDBK determines the realm containing the record
with the database key value specified in the user information area (UINF). The
ACCPTC statement must be replaced by ACCPTL if database key values from the
extended value range are to be passed in the user information area.

FIND1 and FTCH1

The FIND1 and FTCH1 statements locate a database record via a database key value that
is specified by the database programmer in the user information area (UINF). These
statements must be replaced by the corresponding FIND1L or FTCH1L statement if a
record with a database key value in the extended value range is to be found.

STORE1 and STORE2

The STORE1 statement stores a complete record in the database. The STORE2 statement
stores individual items in the database and also compressed them if the corresponding
record type is defined with the COMPRESSION ALL clause in the SSL.
If the record type in question is defined in the Schema DDL with the LOCATION MODE IS
DIRECT or LOCATION MODE IS DIRECT-LONG clause, UDS/SQL stores the record
under the database key value specified by the database programmer in
special parameter 2 (SPP2).
Database key values from the extended value range cannot be specified in the SPP2 of the
STORE1 and STORE2 statements. In order to ensure that such values can be specified in
combination with LOCATION MODE IS DIRECT-LONG, the STORE1 or STORE2
statement must be replaced by STOR1L or STOR2L, respectively.

Database conversion Adapting application programs

U931-J-Z125-17-76 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.5.3 Adapting COBOL definitions

COBOL definitions that refer to the database key provide an indication of where adaptations
to database key values of the extended value range (REC-REF > 254 and/or RSQ > 224-1)
may be required in the application program.

The following COBOL definitions refer to the database key:

– Definition of a COBOL item with type USAGE IS DATABASE-KEY

– Redefinition with REDEFINES of a COBOL item or subschema item of type USAGE IS
DATABASE KEY

– LINKAGE SECTION describing COBOL or subschema items of type USAGE IS
DATABASE-KEY

These definitions thus indicate where adaptations for extended database key values may
be required in the application program.

Adapting definitions of COBOL items with USAGE IS DATABASE-KEY

The definition of COBOL items of type USAGE IS DATABASE-KEY or USAGE IS
DATABASE-KEY-LONG in the WORKING-STORAGE SECTION of an COBOLD program
corresponds to the definition of a database key item in the subschema.

A COBOL item that is defined with USAGE IS DATABASE-KEY indicates that the
application program uses database key values. If this COBOL item is also to accept
database key values of the extended value range (e.g. with ACCEPT), the type of the
COBOL item must be changed to USAGE IS DATABASE-KEY-LONG.

Any COBOL program that only uses database key items (USAGE IS DATABASE-KEY)
which are defined within its WORKING STORAGE SECTION can be prepared to use
extended database key values (USAGE IS DATABASE-KEY-LONG) even before the
database conversion has been performed.

Adapting application programs Database conversion

418 U931-J-Z125-17-76

Adapting redefinitions of database key items

Individual components of database key values can be selectively addressed and processed
in a COBOL program by redefining them with REDEFINES in the WORKING-STORAGE
SECTION.
The following database key items can be redefined:

– COBOL items of type USAGE IS DATABASE-KEY or USAGE IS DATABASE-KEY-
LONG

– Items of type USAGE IS DATABASE-KEY or USAGE IS DATABASE-KEY-LONG that
are defined in a subschema (SUB-SCHEMA SECTION) used by the application
program.

All redefinitions for COBOL or subschema items of type USAGE IS DATABASE-KEY-LONG
must be adapted accordingly.

Adapting the LINKAGE SECTION

The LINKAGE SECTION in a called COBOL program describes and uses a data structure
that is defined outside the program in another called program.

If a subschema or COBOL item of type USAGE IS DATABASE-KEY is addressed in the
LINKAGE SECTION of an application program, the following must be checked:

– whether and how (if relevant) this item is supplied with values,

– whether this item is supplied with values originating from records of other databases,

– whether a type conversion is performed when assigning the value.

If the item defined in the called program was changed to the type USAGE IS DATABASE-
KEY-LONG, and if the need to pass database key values from the extended value range
cannot be excluded in the future, the local definition must also be changed to DATABASE-
KEY-LONG.

As a rule, the LINKAGE-SECTION refers to a data item defined in the calling program by
means of the COPY statement. It is therefore sufficient to recompile the called program in
order to have the data type changes in it copied to the calling program.

Database conversion Adapting application programs

U931-J-Z125-17-76 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.5.4 Adapting additional locations in the application program

The application program must be adapted for the use of extended database key values
even in areas where it is not immediately obvious that such database key values are being
used. This includes the following cases:

– The application program gets database key values from user data.

– The application program transfers database key values between two or more record
types.

– The application program uses database key values across databases. In this case,
changes may be required in the databases involved (see page 377) in addition to those
needed in the application program.

– The application program manages set connections via database key values.

– The application program uses database key values

– to directly influence the management of records of this record type
– to remember links and dependencies.

– The application program uses a COBOL item that is not of type USAGE IS DATABASE-
KEY or USAGE IS DATABASE-KEY-LONG in order to temporarily store or process
database key values.

– The application program uses a COBOL item in order to temporarily store or process
database key values of different record types.

– The application program transfers database key values to database items that are not
of type DATABASE-KEY or DATABASE-KEY-LONG. In this case, adaptations may be
required in the database involved (see page 377) in addition to the changes in the
application program.

Adapting SQL, IQS and KDBS applications Database conversion

420 U931-J-Z125-17-76

8.6 Adapting SQL, IQS and KDBS applications

Adapting SQL applications

Application programs can access UDS/SQL databases using SQL.

When an SQL program processes database key values, a check must be performed to
determine if the database keys involved are of type DATABASE-KEY-LONG. If this is the
case, the fields of the host language in which the database key values are to be accepted
must be of type CHARACTER(8).

Primary and foreign key attributes are unaffected by conversions and retain their INTEGER
type.

Adapting IQS and KDBS applications

As in the case of CALL DML and COBOL DML applications, even applications of the
interactive system IQS and the compatible database interface UDS-KDBS must be
checked to determine whether database key items are directly accessed within them.

If an application accesses a database key item of type DATABASE-KEY-LONG, the related
data fields in the application must be adapted with respect to the data type and the supplied
values.

Database conversion Examples

U931-J-Z125-17-76 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

8.7 Examples of database conversions

The following examples outline the conversion process for two different application
scenarios:

– Database key extension for cross-transactional use of database key values within one
database

– Database key extensions for the use of database key values across databases in a
multi-DB configuration

The examples refer to the databases TRAVEL, CUSTOMER and SHIPPING. They are
based on the assumption that the TRAVEL, CUSTOMER and SHIPPING databases are
initially available in 2-Kbyte format. Following the conversion procedure outlined in the
examples, the TRAVEL, CUSTOMER and SHIPPING databases will be identical to the
4-Kbyte databases described in section “Sample databases” on page 27. The AP1, AP2
and AP3 application programs listed in the examples are COBOL programs.

Examples Database conversion

422 U931-J-Z125-17-76

Cross-transactional use of extended database key values

The use of database key values across transactions within one database represents the
typical situation in which database key values are used in application programs:

1. The application program TA1 determines the database key value of the CRR of record
type CSTMR by means of the DML statement ACCEPT in a transaction TA1 and stores
this value in a COBOL item DBK of type USAGE IS DATABASE-KEY:

ACCEPT DBK FROM CSTMR CURRENCY

The record type CSTMR is defined in the schema TRAVEL-AGENCY of the TRAVEL
database.

2. In a subsequent transaction TA2, the application program AP1 uses the DML statement
FIND (format 1) to immediately reposition to the CSTMR record containing the
database key value stored in the COBOL item DBK:

FIND CSTMR DATABASE-KEY IS DBK

Figure 39: Cross-transactional use of database key values by an application program

Application
TRAVEL

TA1:

ACCEPT

...

...

...

FIND1

TA2:
...

...

database program AP1

Record of type CSTMR

Database conversion Examples

U931-J-Z125-17-76 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

A maximum of 16 777 215 (= 224-1) records can be stored for the record type CSTMR in
the 2-Kbyte TRAVEL database. In this case, however, more than 16 777 215 records will
need to be stored for the record type CSTMR in the future, and these extended database
key values will need to be processed by the application program AP1 accordingly. No other
capacity bottlenecks are present in the TRAVEL database.

The required conversion and adaptation measures can be performed in the following steps:

1. Use the BPGSIZE utility routine to convert the TRAVEL database to the 4-Kbyte format.
Then declare the converted database as the original.

2. The next step is to prepare the TRAVEL database for database operation. This means,
in particular, that the BREORG utility routine must be used to extend the population for
the record type CSTMR in the schema TRAVEL-AGENCY to the required value.
It is now possible to store more than 16 777 215 records for the record type CSTMR in
the TRAVEL database.

3. Since database key values for the record type CSTMR are not assigned by the
application program (no LOCATION MODE IS DIRECT clause in the DDL record entry
for the record type CSTMR), the Schema DDL (and thus the Subschema DDL) for the
TRAVEL-AGENCY schema of the TRAVEL database need not be adapted, i.e. the
TRAVEL database need not be restructured.

4. Existing application programs are still executable without changes so long as they do
not access CSTMR records whose database key values contain an RSQ > 224-1 in the
TRAVEL database.
In order to enable the application program AP1 to access CSTMR records in the
TRAVEL database even in cases where their database key values have an
RSQ > 224-1, the declaration of the COBOL item DBK in the application program AP1
must be adapted to the data type USAGE IS DATABASE-KEY-LONG. If required,
redefinitions of the DBK item must also be taken into account.
The application program AP1 must now be recompiled and linked again.
The adaptation of the application program is not chronologically dependent on the
database conversion.

Examples Database conversion

424 U931-J-Z125-17-76

Database key extension in a multi-DB configuration

This example outlines a multi-DB configuration in which an application program AP2
accesses the CUSTOMER and SHIPPING databases via one UDS/SQL DBH.
The application program AP2 contains two modules, MODULE1 and MODULE2, which
exchange database key values via a globally defined COBOL item DBK of type USAGE IS
DATABASE-KEY. MODULE1 accesses the CUSTOMER database; MODULE2 accesses
the SHIPPING database (see figure 40 on page 425):

1. MODULE1 uses the DML statement ACCEPT on the CUSTOMER database to
determine the database key value of the CRR of record type CSTMR and stores this
value in a globally defined COBOL item DBK of type USAGE IS DATABASE-KEY:

ACCEPT DBK FROM CSTMR CURRENCY

The record type CSTMR is defined in the schema CUSTOMER-CARDS of the
CUSTOMER database. It is also contained in a subschema of CUSTOMER-CARDS
that is used by MODULE2 (transfer to the Subschema DDL with COPY CSTMR).

2. MODULE2 supplies the CSTMR-NO item of record type CSTMR with the database key
value stored in the COBOL item DBK in the record area of the UWA (User Work Area)
for the SHIPPING database:

SET CSTMR-NO TO DBK

The record type CSTMR is defined in the MAIL-ORDERS schema of the 2-Kbyte
database SHIPPING, and the item CSTMR-NO is of type DATABASE-KEY. In addition,
the record type CSTMR is also contained in a subschema of MAIL-ORDERS that is
used by MODULE2 (transfer to the Subschema DDL with COPY CSTMR).

3. After the remaining items of the CSTMR record have also been supplied with values in
the UWA by MODULE2, this record is copied by MODULE2 to the SHIPPING database.

STORE CSTMR [...]

Since the entry for the record type CSTMR in the Schema DDL for the 2-Kbyte
SHIPPING database contains the clause LOCATION MODE IS DIRECT CSTMR-NO
OF CSTMR, the value stored in the CSTMR-NO item also serves as the database key
value of the stored record.

Database conversion Examples

U931-J-Z125-17-76 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

Figure 40: Use of database key values by an application program across databases

To begin with, only a maximum of 16 777 215 (=224-1) records can be stored for both the
record type CSTMR in the CUSTOMER-CARDS schema of the 2-Kbyte CUSTOMER
database and for the record type CSTMR in the MAIL-ORDERS schema of the 2-Kbyte
SHIPPING database.

In this case, however, more than 16 777 215 records are expected in the future for the
record type CSTMR in the CUSTOMER-CARDS schema of the CUSTOMER database. No
other capacity bottlenecks are present in the CUSTOMER database.

The CUSTOMER and SHIPPING databases can be converted and adapted independently
of one another. The following sequence is recommended:

Application

CUSTOMER

program AP2

Item DBK

S database

Record of type CSTMR

MODULE1

ACCEPT

STORE

SET

...

...

...

...

SHIPPING database

Record of type CSTMR

MODULE2

Examples Database conversion

426 U931-J-Z125-17-76

Converting and restructuring the SHIPPING database

1. Use the BPGSIZE utility routine to convert the 2-Kbyte SHIPPING database to the
4-Kbyte_format. This conversion is required, since database key values with an
RSQ > 224-1 are to be copied from the CUSTOMER database to the record type
CSTMR of the SHIPPING database in the future.
Then declare the converted database as the original.

2. You can now prepare the SHIPPING database for database operation. This means, in
particular, that the BREORG utility routine must be used to extend the population for the
record type CSTMR in the MAIL-ORDERS schema to the required value.
It is now possible to store more than 224-1 records for the record type CSTMR of the
MAIL-ORDERS schema in the SHIPPING database.

3. The next step is to restructure the SHIPPING database:

– Change the LOCATION MODE IS DIRECT CSTMR-NO OF CSTMR clause in the
record entry of the record type CSTMR in the MAIL-ORDERS schema to
LOCATION MODE IS DIRECT-LONG CSTMR-NO OF CSTMR. The data type of
the CSTMR-NO item must be change to type DATABASE-KEY-LONG.

– The subschema required by MODULE2 need not be modified, since the record type
CSTMR from the MAIL-ORDERS schema is transferred to it with COPY. The
subschema only needs to be recompiled. In addition, all application programs that
use this subschema must also be recompiled and linked again.

– Further restructuring measures can then be performed as described in
chapter “Restructuring the database (BCHANGE, BALTER)” (see page 213).

Converting the CUSTOMER database

1. Use the BPGSIZE utility routine to convert the 2-Kbyte CUSTOMER database to the 4-
Kbyte format. Then declare the converted database as the original.

2. You can now prepare the CUSTOMER database for database operation. This means,
in particular, that the BREORG utility routine must be used to extend the population for
the record type CSTMR in the CUSTOMER-CARDS schema to the required value.
It is now possible to store more than 224-1 records for the record type CSTMR of the
CUSTOMER-CARDS schema in the CUSTOMER database.

3. No changes are required in the CUSTOMER-CARDS schema of the CUSTOMER
database, i.e. the CUSTOMER database need not be restructured.

Database conversion Examples

U931-J-Z125-17-76 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
8

Adapting the AWP2 application program

In the application program AWP2, the declaration of the COBOL item DBK must be
changed to type USAGE IS DATABASE-KEY-LONG, while also taking redefinitions of the
DBK items into account. The AWP2 application program must then be recompiled and
linked again.

Alternative method: converting and restructuring independently

An alternative method to the one above is to convert the databases with BPGSIZE and to
restructure them independently at some other time, i.e.:

1. convert the SHIPPING database with BPGSIZE, but differ restructuring to a later stage

2. convert the CUSTOMER database with BPGSIZE, but differ restructuring to a later
stage

3. restructure the SHIPPING database and adapt application programs

4. restructure the CUSTOMER database and adapt application programs

Normal database operation is possible between the individual steps outlined above. As far
as possible, steps 3.) and 4.) should be combined and performed at the same time, since
at least some of the application programs will need to be adapted and compiled for both
3.) and 4.) application program.

Examples Database conversion

428 U931-J-Z125-17-76

U931-J-Z125-17-76 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

3
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
9

9 Migrating databases to DB Layout Version 4
(BTRANS24)

To permit version migration from UDS/SQL V2.0 up to and including V2.3 to a version V2.4
or higher the databases must be converted to Database Layout Version '004.00' using the
BTRANS24 utility routine.

Databases which were last modified using UDS/SQL versions up to and including V2.3
must also be migrated to Database Layout Version '004.00' in this way before they are
processed - for example for auditing purposes using UDS/SQL version V2.4 or
higher. When migration takes place, the Realm Layout Version of all realms is converted to
'004.00'.

The BTRANS24 utility routine is a component part of the UDS-SQL-T package and is by
default contained in the SIPPRG.UDS-SQL-T.028 library.

The BTRANS24 utility routine provides two functions for migrating the DB Layout Version:

– It checks prerequisites for database migration (see page 430)
– It transforms the databases (see page 431)

For a description of the BTRANS24 statements, see section “BTRANS24 statements” on
page 433.

For information on calling BTRANS24, see section “Calling BTRANS24” on page 435.

The messages output by BTRANS24 can be found in the “Messages” manual.

Prerequisites for version migration BTRANS24

430 U931-J-Z125-17-76

9.1 Checking the prerequisites for migration

You can use the utility routine BTRANS24 to check whether the prerequisites for
transforming a database to the version '004.00' are fulfilled.

You can explicitly ask for a check to be performed using the CHECK-DATABASE statement.
In this case, the check can be performed in parallel with the live DBH session. In addition,
a check run is always performed implicitly before the database is transformed
(TRANSFORM-DATABASE statement).

The following prerequisites must be fulfilled before migration takes place:

– The databases to be transformed must be original databases.

– The databases to be transformed must have database layout version '002.00' or
'003.00', i.e. they must at least be usable in UDS/SQL V2.0.
If this is not the case then the databases must first be transformed using the conversion
utility routines from the corresponding UDS/SQL versions (BTRANS20 for use in
UDS/SQL V2.0; BTRANSDB for use in UDS/SQL V1.2).

– An empty database page must be available in the corresponding realm for each DBTT.
This is used to store the initial state of the DBTT anchor table.
If this condition is not satisfied, you must provide sufficient space in the realm by
performing offline realm extension using BREORG Version 2.3.
The BREORG utility routine Version 2.3 is also available in the current UDS/SQL
version. It is a component part of the UDS-SQL-T package and is by default contained
in the SIPPRG.UDS-SQL-T.028 library. There is no start command for BREORG V2.3;
the utility routine can be started using the following command:

/START-EXECUTABLE-PROGRAM FROM-FILE=(LIB=UDS/SQL-T-module-library,
ELEM=BREORG)

Free pages must also be available in the DBDIR (8 pages) and DBCOM (29 pages) for
the DBTTs of PRIVACY-AND-IQF schema and compiler schema.

– All the realms in the database must be accessible and attached -
in particular DBCOM.

– COSSD and HASHLIB are not needed for the transformation.

BTRANS24 Performing database transformation

U931-J-Z125-17-76 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

3
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
9

9.2 Performing a database transformation with BTRANS24

The actual database transformation using BTRANS24 is performed offline on a consistent
database state. Transformation must be performed under the user ID of the database. You
start database transformation with the TRANSFORM-DATABASE statement.

Check run

A check is implicitly conducted before transformation. Only if this check indicates that all the
prerequisites for database transformation are fulfilled are the modifications made. If any
prerequisites are not satisfied then the database is not transformed. The database
continues to be consistent. The database is also consistent if BTRANS24 aborts for any
reason whatsoever up to this point.

Logging

To facilitate version migration from UDS/SQL V2.3 and earlier versions, all the changes
made by BTRANS24 are performed with Alogging provided that this is active. Like all
modifying utility routines that support Alogging, BTRANS24 first generates a checkpoint for
AFIM logging. If recovery is necessary, for example because of a disk crash in a
subsequent session with a version higher than UDS/SQL V2.3, then the database can be
restored to the state of the last save copy using the following tools and resources:
– the BMEND in UDS/SQL V2.3 or the version previously used by means of

UPDATE-DATABASE...DEADLINE=BREAKPOINT
– the ALOG files created before conversion
– the BTRANS24 ALOG file
– the ALOG files created during subsequent operation with a version higher than

UDS/SQL V2.3

Performing database transformation BTRANS24

432 U931-J-Z125-17-76

Transformation

BTRANS24 makes the following changes:

– A new DB layout version that is incompatible with earlier versions is entered in the
DBDIR.

– The required DBTT anchor pages are created in the realms.

– For each record type, the ACTKEY of the first new DBTT- anchor table page is entered
in the SIA.

– The new DB_LAYOUT_VERSION is entered in the ACT_KEY0 and ACT_KEYN of
each realm.

– If there is a realm present with realm layout version '002.00' then the administration
tables for FPA extents are created in ACT_KEY0. Any unused data areas belonging to
ACT_KEY0 are deleted.

– Data areas are initialized in ACT_KEY0 for the restartable monitoring of online DBTT
extensions

Overall, only very few changes are required in the database. As a result, the utility routine
BTRANS24 executes quickly.

The utility routine cannot be restarted during the modification phase. In the event of a
crash, it is necessary to recommence from a backup state possibly updated on the basis of
ALOG files.

The COSSD and the SSIAs in the DBDIR are not modified. The criterion for subschema
modification does not change. It is therefore not necessary to recompile or relink
applications.

BTRANS24 Statements

U931-J-Z125-17-76 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

3
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
9

9.3 BTRANS24 statements

The following SDF statements exist for the utility routine BTRANS24

You must specify precisely one of the two statements CHECK-DATABASE or
TRANSFORM-DATABASE. If you specify more than one correctly formulated statement
then the last statement issued is effective.

CHECK-DATABASE (start check run)

You use the CHECK-DATABASE statement to start an explicit check run. The check run
must be performed under the user ID of the database. It can be performed in parallel with
the DBH session. The realms are opened for read access only.

DATABASE-NAME=<dbname>
Name of the database.

CHECK-DATABASE assesses the prerequisites for database transformation and outputs
the corresponding messages. Please note that this assessment may become invalid due to
changes that only take effect in the database after the check has been completed.

Statement Meaning

CHECK-DATABASE Start check run

TRANSFORM-DATABASE Transform database

END End statement input and start execution

Table 51: Statements for BTRANS24

CHECK-DATABASE

DATABASE-NAME=<dbname>

Statements BTRANS24

434 U931-J-Z125-17-76

TRANSFORM-DATABASE (transform the database)

This statement starts database transformation. Transformation must be performed under
the user ID.

DATABASE-NAME=<dbname>
Name of the database.

The realms are opened for modification only. An implicit check run is performed first. If this
reveals that the conditions for transformation are not fulfilled then transformation is aborted.
Up to this point, no changes are made to the database which therefore remains consistent.

END (terminate statement input)

You use the END statement to terminate statement input. Execution is then started.

This statement has no operands.

TRANSFORM-DATABASE

DATABASE-NAME=<dbname>

END

BTRANS24 Calling BTRANS24

U931-J-Z125-17-76 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

11
. S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

21
.3

3
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

k0
9

9.4 Calling BTRANS24

You call BTRANS24 with the following command

/START-EXECUTABLE-PROGRAM FROM-FILE=(LIB=UDS/SQL-T-modlib,
ELEM=BTRANS24)

BTRANS24 is a component part of the UDS-SQL-T package and is by default contained in
the SIPPRG.UDS-SQL-T.028 library.

You can then enter the BTRANS24 statements, e.g.

//TRANSFORM-DATABASE DATABASE-NAME=dbname
//END

Calling BTRANS24 BTRANS24

436 U931-J-Z125-17-76

U931-J-Z125-17-76 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

Glossary

This Glossary contains the definitions of some of the important terms and
concepts used in the UDS/SQL manuals.
Terms that appear in italics within a particular definition have also been defined
in this Glossary.
In cases where two or more terms are used synonymously, a “See” reference
points to the more commonly used term in these manuals.

A

access, contending
See contending access.

access, direct
See direct access.

access, sequential
See sequential access.

access authorization
The rights of a specified user group with regard to access to the database.
Access rights are defined during live database operation using ONLINE-
PRIVACY utility routine or, in offline mode, using the BPRIVACY utility routine.

access path
Means of finding a certain subset of all records qualified by a search query,
without having to carry out a sequential search of the whole database.

access rights
Right of access to a database as defined in the BPRIVACY utility routine.

access type
Type of access, e.g. read, update etc.

A Glossary

438 U931-J-Z125-17-76

act-key
(actual key) Actual address of a page, consisting of realm number and page
number.

act-key-0 page
First page of a realm; contains general information on the realm such as
– when the realm was created,
– when the realm was last updated,
– internal version number of the realm,
– system break information
– if applicable, warm start information.

act-key-N page
Characteristic page of a realm, with the highest page number.
Copy of the act-key-0 page.

address, physical
See act-key or probable position pointer (PPP).

administrator task
Task of the independent DBH; The database administrator can control execution of
the independent DBH via this task.

AFIM
See after-image.

after-image
Modified portion of a page after its content has been updated.
The DBH writes after-images to the RLOG file as well as the ALOG file.

after-image, ALOG file
The after-images are written to the ALOG file when the ALOG buffer is full. The
purpose of the after-images in the ALOG file is to secure the data contained in
the database and thus they must be maintained for a long period of time. They
are used to reconstruct an original database or update a shadow database.

after-image, RLOG file
After-images are logged in the RLOG file before the updates are applied to the
database. The after-images held in the RLOG file are required for warm start only.
They are thus periodically overwritten.

ALOG file
File for securing the data contained in the database in the long term; see after-
image.

Glossary A

U931-J-Z125-17-76 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

ALOG sequence number
See sequence number.

anchor record
Record automatically created by UDS/SQL as owner record for SYSTEM sets. It
cannot contain any items defined with the schema DDL and cannot be accessed.

application
Realization of a job in one or several user programs working with UDS/SQL
databases.

application program (AP)
E.g. COBOL DML program or IQS.

area
See realm.

ascending key (ASC key)
Primary key of a set. Defines the sequence of member records in the set occurrences
by ascending key values.

authorization
Identification used for user groups.

authorized users
Specified user groups who are authorized to access the database.

automatic DBTT extension
Some utility routines automatically extend the number of records possible for a
record type if too few are available; no separate administration is required to do
this.
See also online DBTT extension.

automatic realm extension
Some utility routines automatically extend realms when insufficient free space
is available; no separate administration is required to do this.
See also online realm extension.

B Glossary

440 U931-J-Z125-17-76

B

backup database
See shadow database.

base interface block (BIB)
(Base Interface Block) Standard interface between UDS/SQL and each
individual user; it contains, among other things, the RECORD AREA (user
records as defined in the subschema).

before-image
Copy of a page taken before its contents are updated.
The DBH writes before-images to the RLOG files during database operation
before the updates are applied to the database. A prerequisite is that the RLOG
files exist.

BFIM
See before-image.

BIB
See base interface block.

buffer pool
See system buffer pools and exclusive buffer pool.

C

CALC key
Key whose value is converted into a relative page number by means of a hash
routine.

CALC page
Page of a hash area.

CALC SEARCH key
Secondary key. Used as access path for direct access via hash routine.

Glossary C

U931-J-Z125-17-76 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

CALC table
Table in the direct/indirect CALC page whose entries point to the stored records.
Each line contains:
– the CALC key,
– the record sequence number
– the displacement to the related page index entry (direct CALC page) or the

probable position pointer (indirect CALC page).

CALL DML
DML that is called by various programming languages (Assembler, COBOL,
FORTRAN, PASCAL, PL/1) via the CALL interface.

catalog identifier
Name of the public volume set (PVS) under which the BS2000 UDS/SQL files
are stored. The catalog identifier is part of the database or file name and must
be enclosed in colons: “:catid:”.

chain
Storage mode for a set occurrence in which every record contains a pointer to the
subsequent record.

Character Separated Values (CSV)
Output format in which the values are separated by a predefined character.

checkpoint
Consistency point, at which the ALOG file was changed and to which it is possible
to return at any time using BMEND utility routine

check records
Elements which provide information for checking the database. They vary in
length from 20 to 271 bytes.

CHECK-TABLE
Check table produced by the DDL compiler during Subschema DDL compilation,
and used by the COBOL compiler and CALL DML to check whether the DML
statements specified in the application program are permitted. It is part of the
COSSD or SSITAB module.

C Glossary

442 U931-J-Z125-17-76

clone pair, clone pubset, clone session, clone unit
A clone unit is the copy of an (original) unit (logical disk in BS2000) at a
particular time (“Point-in-Time copy”). The TimeFinder/Clone component
creates this copy optionally as a complete copy or as a “snapshot”.
After they have been activated, the unit and clone unit are split; applications can
access both.
The unit and clone unit together form a clone pair. TimeFinder/Clone manages
this pair in what is known as a clone session.
If clone units exist for all units of a pubset, these clone units together form the
clone pubset.
Details of this are provided in the manual "Introduction to System Adminis-
tration".

COBOL DML
DML integrated in the COBOL language.

COBOL runtime system
Runtime system; sharable routines selected by the COBOL compiler
(COBOL2000 or COBOL85) for the execution of complex statements.

COBOL Subschema Directory (COSSD)
Provides the COBOL compiler with subschema information for compilation of
the DB application programs.

common memory
Shareable memory area used by several different tasks. In UDS/SQL, it always
consists of the common pool and the communication pool and, depending on the
application, the SSITAB pool (see SSITAB module) if CALL DML is used.
If UDS-D is used, it also consists of the distribution pool and the transfer pool.

common pool
Communication area of the independent DBH. Enables DBH modules to commu-
nicate with each other. Contains, among other things, an input/output buffer for
pages (buffer pools).

communication partners
Tasks or data display terminals.

communication pool
Communication area of the independent DBH for application programs. One of its
functions is to store base interface blocks (BIB).

compatible database interface (KDBS)
see KDBS

Glossary C

U931-J-Z125-17-76 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

compiler database
The realms and files of the database which are required by the UDS/SQL
compiler. They are
– DBDIR (Database Directory)
– DBCOM (Database Compiler Realm)
– COSSD (COBOL Subschema Directory).

COMPILER-SCHEMA
UDS/SQL-internal schema of the compiler database.

COMPILER-SUBSCHEMA
UDS/SQL-internal subschema of the compiler database.

compound key
Key consisting of several key items.

compression
Only the filled items of a record are stored (see SSL clause COMPRESSION).

configuration
See DB configuration.

configuration user ID
User ID in which the database administrator starts the DBH.

configuration name
Freely selectable name of the database configuration for a particular session. The
DBH uses it to form:
– the name of the Session Log File,
– the names of the DB status file and its backup copy,
– the names of the RLOG files,
– the names of the temporary realms,
– the names of session job variables,
– the event names of P1 eventing,
– the DCAM application name for the administration,
– the names of the common pools
– the names of the dump files.

connection module
Module that must be linked into every UDS/SQL application program and which
establishes the connection with the DBH.

consistency
State of the database without conflicts in the data stored in it.

C Glossary

444 U931-J-Z125-17-76

consistency, logical
State of the database in which the stored data has no internal conflicts and
reflects the real-world situation.

consistency, physical
State of the database in which the stored data is consistent with regard to
correct physical storage, access paths and description information.

consistency, storage
See physical consistency.

consistency error
A violation of the physical consistency of the stored data.

consistency point
Point (in time) at which the database is consistent, i.e. all modifying transaction
have been terminated and their modifications have been executed in the
database.

consistency record
Administration record with consistency time and date stamps in the DBDIR. For
an update in a realm the DBH enters the date and time in the consistency record
and in the updated realm. When realms or databases are attached for a session,
the DBH uses this time stamp to check the consistency of the realms within
each database.

contending access
Different transactions attempting to access a page simultaneously.

conversation
SQL-specific administration data is retained across transaction boundaries in an
SQL application. This kind of data administration unit is called a conversation.
In openUTM such an administrative unit is also called a service.

copy
See database copy.

COSSD
See COBOL Subschema Directory.

CRA
(Current Record of Area) Record which is marked in the currency table as the
current record of a particular realm (area).

Glossary D

U931-J-Z125-17-76 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

CRR
(Current Record of Record) Record which is marked in the currency table as the
current record of a particular record type (Record).

CRS
(Current Record of Set) Record which is marked in the currency table as the
current record of a particular set.

CRU
(Current Record of Rununit) Record which is marked in the currency table as the
current record of the processing chain.

CSV
see Character Separated Values

currency table
The currency table contains:
– CURRENT OF AREA table (table of CRAs),
– CURRENT OF RECORD table (table of CRRs) and
– CURRENT OF SET table (table of CRSs).

CURRENT OF AREA table
See currency table.

CURRENT OF RECORD table
See currency table.

CURRENT OF SET table
See currency table.

D

DAL
(Database Administrator Language) Comprises the commands which monitor
and control a session.

data backup
Protection against loss of data as a result of hardware or software failure.

data deadlock
See deadlock.

D Glossary

446 U931-J-Z125-17-76

data protection (privacy)
Protection against unauthorized access to data. Implemented in UDS/SQL by
means of the schema/subschema concept and access authorization. Access
rights are granted by means of the BPRIVACY utility routine.

database (DB)
Related data resources that are evaluated, processed and administered with
the help of a database system.
A database is identified by the database name.
An UDS/SQL database consists of the user database and the compiler database.
To prevent the loss of data, a shadow database may be operated together with
(i.e. parallel to) the original database.

database administrator
Person who manages and controls database operation. The DB administrator is
responsible for the utility routines and the Database Administrator Language
(DAL).

database copy
Copy of a consistent database; may be taken at a freely selectable point in time.

database compiler realm (DBCOM)
Stores information on the realms, records and sets defined by the user in the
Schema DDL and Subschema DDL.

database copy update
Updating of a database copy to the status of a checkpoint by applying the appro-
priate after-images.

database directory (DBDIR)
Contains, among other things, the SIA, all the SSIAs and information on access
rights.

database job variable
Job variable in which UDS/SQL stores information on the status of a database.

database key (DB key)
Key whose value represents a unique identifier of a record in the database. It
consists of the record reference number and the record sequence number. The
database key values are either defined by the database programmer or
automatically assigned by UDS/SQL.

Glossary D

U931-J-Z125-17-76 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

database key item
Item of type DATABASE-KEY or DATABASE-KEY-LONG that is used to accom-
modate database key values.
Items of type DATABASE-KEY and DATABASE-KEY-LONG differ in terms of
the item length (4 bytes / 8 bytes) and value range.

DATABASE-KEY item
See database key item.

DATABASE-KEY-LONG item
See database key item.

database page
See page.

DATABASE-STATUS
Five-byte item indicating the database status and consisting of the statement
code and the status code.

database system
Software system that supports all tasks in connection with managing and
controlling large data resources. The database system provides mechanisms
for stable and expandable data organization without redundancies. They allow
many users to access databases concurrently and guarantee a consistent data
repository.

DB status file
(database status file) Contains information on the most recently reset transac-
tions.
openUTM-S or, in the case of distributed processing, UDS-D/openUTM-D
needs this information for a session restart.

DB configuration
(database configuration) The databases attached to a DBH at any one point
during session runtime. As the result of DAL commands or DBH error handling,
the database configuration can change in the course of a session.
At the session start, the DB configuration may be empty. Databases can be
attached with DAL commands after the start of the session. They can also be
detached during the session with DAL commands.

DBCOM
See database compiler realm.

D Glossary

448 U931-J-Z125-17-76

DBDIR
See database directory.

DBH
Database Handler: program (or group of programs) which controls access to
the database(s) of a session and assumes all the attendant administrative
functions.

DBH end
End of the DBH program run. DBH end can be either a session end or a session
abort.

DBH, independent
See independent DBH.

DB key
See database key.

DBH, linked-in
See linked-in DBH.

DBH load parameters
See load parameters (DBH).

DBH start
Start of the DBH program run. DBH start can be either a session start or a session
restart.

DBTT
(Database Key Translation Table) Table from which UDS/SQL can obtain the
page address (act-key) of a record and associated tables by means of the
database key value.
The DBTT for the SSIA-RECORD consists only of the DBTT base. For all other
record types, the DBTT consists of a base table (DBTT base) and possibly of
one or more extension tables (DBTT extents) resulting from an online DBTT
extension or created by BREORG.

DBTT anchor page
Page lying within the realm of the associated DBTT in which the DBTT base and
DBTT extents are administered. Depending on the number of DBTT extents
multiple chained DBTT anchor pages may be required for their administration.

DBTT base
see DBTT

Glossary D

U931-J-Z125-17-76 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

DBTT extent
see DBTT

DBTT page
Page containing the DBTT or part of the DBTT for a particular record type.

DCAM
Component of the TRANSDATA data communication program.

DCAM application
Communication application using the DCAM communication method. A DCAM
application enables communication between
– a DCAM application and terminals.
– different DCAM applications within the same or different hosts, and with

remote configurations.
– a DCAM and a openUTM application.

DDL
(Data Description Language) Formalized language for defining the logical data
structure.

deadlock
Mutual blocking of transactions.
A deadlock can occur in the following situations:
– Data deadlock: This occurs when transactions block each other with

contending access.
– Task deadlock: This occurs when a transaction that is holding a lock cannot

release it, since no openUTM task is free. This deadlock situation can only
occur with UDS/SQL-openUTM interoperation.

descending key (DESC key)
Primary key of a set. Determines the sequence of member records in the set occur-
rences to reflect descending key values.

direct access
Access to a record via an item content. UDS/SQL supports direct access via the
database key, hash routines and multi-level tables.

direct hash area
See hash area.

distributed database
A logically connected set of data resources that is distributed over more than
one UDS/SQL configuration.

D Glossary

450 U931-J-Z125-17-76

distributed transaction
Transaction that addresses at least one remote configuration. A transaction can
be distributed over:
– UDS-D,
– openUTM-D,
– UDS-D and openUTM-D.

distribution pool
Area in the independent DBH used for communication between UDSCT, server
tasks, user tasks and the master task with regard to UDS-D-specific data. The
distribution pool contains the distribution table and the UDS-D-specific system
tables.

distribution table
Table created by UDS-D using the input file assigned in the distribution pool.
With the aid of the distribution table, the distribution component in the user task
decides whether a processing chain should be processed locally or remotely.
Assigned in the distribution table are:
subschema - database
database - configuration
configuration - host computer.

DML
Data Manipulation Language: language for accessing a UDS/SQL database.

dummy subtransaction
A primary subtransaction is created by UDS-D when the first READY statement
in a transaction addresses a remote database.
A dummy subtransaction is used to inform the local configuration of the trans-
action so that the database can be recovered following an error.

duplicates header
Contains general information on a duplicates table or a page of a duplicates table,
i.e.
– chaining reference to the next and previous overflow page
– the number of free bytes in the page of the duplicates table.

Glossary E

U931-J-Z125-17-76 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

duplicates table
Special SEARCH-KEY table in which a key value which occurs more than once
is stored only once.
For each key value, the duplicates table contains:
– a table index entry with the key value and a pointer to the associated table

entry
– a table entry (DB key list), which can extend over several pages, containing

the record sequence numbers of the records which contain this key value.

duplicates table, main level
Main level, Level 0. Contains a table index entry and the beginning of the
associated table entry (DB key list).

dynamic set
Set which exists only for the life of a transaction and which stores member records
retrieved as result of search queries.

E

ESTIMATE-REPORT
Report produced after BGSIA run. Used to estimate the size of the user realms.

event name
Identification used in eventing.

exclusive buffer pool
Buffer which, in addition to the system buffer pools, is used exclusively for
buffering pages of the specified database.

F

foreign key
Record element whose value matches the primary key values of another table
(UDS/SQL record type). Foreign keys in the sense of UDS/SQL are qualified as
"REFERENCES owner record type" in the member record type of a set
relationship in the BPSQLSIA protocol.

FPA
See free place administration.

G Glossary

452 U931-J-Z125-17-76

FPA base
See free place administration.

FPA extent
See free place administration.

FPA page
Free place administration page.

free place administration (FPA)
Free space is managed both at realm level (FPA pages) and at page and table
level. Free place administration of the pages is carried out in a base table (FPA
base) and possibly in one or more extension tables (FPA extents) created by
means of an online realm extension or BREORG.

function code
Coding of a DML statement; included in information output by means of the DAL
command DISPLAY or by UDSMON.

G

group item
Nameable grouping of record elements.

H

hash area
Storage area in which UDS/SQL stores data and from which it retrieves data on
the basis of key values which are converted into relative page numbers. A hash
area may contain the record addresses as well as the records themselves.
A direct hash area contains the records themselves; an indirect hash area, by
contrast, contains the addresses of records stored at some other location.

hash routine
Module which performs hashing.

hashing
Method of converting a key value into a page address.

Glossary I

U931-J-Z125-17-76 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

HASHLIB
Module library for the storage of hash routines for one database.

I

identifier
Name allocated by the database designer to an item that UDS/SQL creates
automatically. UDS/SQL adapts item type and length to the specified item
usage.

implicit set
SYSTEM set created by UDS/SQL when a SEARCH key is defined at record type
level.

inconsistency
State of the database in which the data values contained in it are inconsistent.

independent DBH
Independent program system enabling more than one user to access a single
database (mono-DB operation) or several databases (multi-DB operation) simulta-
neously. The independent DBH is designed as a task family, consisting of
– a master task (UDSSQL)
– one or more server tasks (UDSSUB)
– an administrator task (UDSADM)

index level
Hierarchy level of an index page.

index page
Page in which the highest (lowest) key values of the next-lower level of an
indexed table are stored.

INDEX search key
Secondary key. Used as access path for direct access via a multi-level table.

indirect hash area
See hash area.

K Glossary

454 U931-J-Z125-17-76

integrity
State of the database in which the data contained in it is complete and free of
errors.
– entity integrity
– referential integrity
– user integrity

interconfiguration
Concerning at least one remote configuration.

interconfiguration consistency
A distributed transaction that has caused updates in at least one remote configu-
ration is terminated in such a way that the updates are either executed on the
databases in each participating DB configuration or on none at all.
Interconfiguration consistency is assured by the two-phase commit protocol.

interconfiguration deadlock
Situation where distributed transactions are mutually locked due to contending
accesses.

interface
In software: memory area used by several different programs for the transfer of
data.

internal version number
Each realm of the database, including DBDIR and DBCOM, has an internal
version number which the utility routines (e.g. BREORG, BALTER) increment by
one whenever a realm is updated. This internal version number is kept in the
act-key-0 page of the realm itself and also in the PHYS VERSION RECORD in
the DBDIR.

item
Smallest nameable unit of data within a record type. It is defined by item type and
item length.

K

KDBS
Compatible database interface. Enables programs to be applied to applications
of DB systems by different manufacturers.

Glossary L

U931-J-Z125-17-76 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

key
Item used by the database programmer for direct access to records; an optimized
access path is provided for the key by UDS/SQL in accordance with the schema
definition.

key, compound
Key consisting of several key items.

key item
Item defined as a key in the schema.

key reference number
Keys are numbered consecutively in ascending order, beginning at 1.

L

linked-in control system
UDS/SQL component for linked-in DBH, responsible for control functions (corre-
sponds to the subcontrol system of the independent DBH).

linked-in DBH
Module linked in to or dynamically loaded for the current DB application program
and controlling access to a single database (mono-DB operation) or several
databases simultaneously (multi-DB operation).

list
Table containing the member records of a set occurrence. Used for sequential and
direct access to member records.
In a distributable list the data pages which contain the member records (level 0
pages) can be distributed over more than one realm. The pages containing the
higher-ranking table levels all reside in one realm (table realm of a distributable
list).

load parameters (DBH)
Parameters requested by the DBH at the beginning of the session. They define
the basic characteristics of a session.

local application program
An application program is local with regard to a configuration if it was linked to the
configuration using /SET-FILE-LINK LINK-NAME=DATABASE,FILE-
NAME=conf-name

M Glossary

456 U931-J-Z125-17-76

local configuration
The configuration assigned to an application program before it is called using
/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=conf-name.
The application program communicates with the local configuration via the
communication pool. The local configuration is in the same host as the appli-
cation program.

local database
Database in a local configuration.

local distribution table
A distribution table is considered local to a DBH if it is held in the DBH’s
distribution pool.

local host
Host computer containing the application program.

local transaction
Transaction that only addresses the local configuration.

logging
Recording of all updates in the database.

logical connection
Assignment of two communication partners that enables them to exchange data.
DCAM applications communicate via logical connections.

M

main reference
In the DBH the main reference is used to manage the resources required for
processing a transaction’s requests, including those for transferring the
requests from the application program to the DBH and back.

mainref number
Number assigned to the transaction at READY. This number is unique only at a
given time; at the end of the transaction, it is assigned to another transaction.

master task
Task of the independent DBH in which the UDSQL module executes. Controls the
start and end of a session and communicates with the database administrator
directly or via the administrator task.

Glossary M

U931-J-Z125-17-76 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

member
See member record or member record type.

member, AUTOMATIC
Record is inserted at storage time.

member, MANDATORY
Record cannot be removed.

member, MANUAL
Record is not inserted automatically at storage time.

member, OPTIONAL
Record can be removed.

member record
Lower-ranking record in a set occurrence.

member record type
Lower-ranking record type in a set.

mono-DB configuration
Type of configuration where only one database takes part in a session.

mono-DB operation
Mode of database operation where the DBH uses only one database of a
configuration.

multi-DB configuration
Type of configuration where several databases take part in a session.

multi-DB operation
Mode of database operation where the DBH uses several databases of a
configuration.

multi-DB program
Application program that addresses more than one database. The databases may
be part of one or more mono-DB or multi-DB configurations.

multi-level table
SEARCH KEY table which contains a line for each record of the associated
record type or each member record of the set occurrence, as appropriate. Each line
comprises the key value of the record and the record pointer. It is also referred
to as an indexed table.

N Glossary

458 U931-J-Z125-17-76

multithreading
A mechanism that enables the DBH to fully exploit the CPU.
Multithreading means that the DBH processes several jobs concurrently by
using so-called threads. Each thread has information on the current status of a
particular job stored in it. When a job needs to wait for the completion of an I/O
operation, DBH uses the CPU to process some other job.

N

network
All computers linked via TRANSDATA.

O

OLTP
(Online Transaction Processing) In an OLTP application, a very large number
of users access the same programs and data. This usually occurs under the
control of a transaction monitor (TP monitor).

online backup
If AFIM logging is active, the database can be saved during a session. The ability
to save a database online is determined with the BMEND utility routine.

online DBTT extension
Extension during ongoing database operation of the number of possible records
of a record type. The DAL commands ACT DBTT-INCR, DEACT DBTT-INCR,
DISPLAY DBTT-INCR and EXTEND DBTT can be used to administer the online
extension of DBTTs.
See also automatic DBTT extension.

online realm extension
Extension of user realms and DBDIR in ongoing database operation. The DAL
commands ACT INCR, DEACT INCR, DISPLAY INCR, EXTEND REALM and
REACT INCR are provided for administering the online extensibility of realms.
See also automatic realm extension.

open transaction
Transaction which has not been closed with FINISH or FINISH WITH CANCEL,
or with COMMIT or ROLLBACK.

Glossary P

U931-J-Z125-17-76 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

openUTM
(universal transaction monitor) Facilitates the creation and operation of trans-
action-oriented applications.

operator task (OT)
See master task

original database
The term “original database” refers solely to the naming of the database files
(dbname.dbfile), not to the status of the database content (see also shadow
database).

overflow page
Page in hash areas and duplicates tables for storing data that does not fit in the
primary page. Their structure is the same as that of the pages of the hash area
or duplicates table in question.

owner
See owner record or owner record type.

owner record
Higher-ranking record in a set occurrence.

owner record type
Higher-ranking record type in a set.

P

page
Physical subunit of a realm. UDS/SQL identifies pages by means of unique keys
(act-key).
The length of a page may be optionally 2048, 4000 or 8096 bytes. All pages
within a database must have the same length. Pages with a length of 4000 or
8096 bytes are embedded in a page container.

page address
In a page address, a distinction is made between the current address of a page,
i.e. the act-key, and the probable address of a page, the probable position pointer
(PPP).

P Glossary

460 U931-J-Z125-17-76

page container
Pages with a length of 4000 or 8096 bytes are embedded in a so-called page
container, which consists of a 64-byte header that precedes the page and a
32-byte trailer at the end of the page.

page header (page info)
The first 20 bytes of a database page (except for the FPA and DBTT pages with a
length of 2048 bytes). They contain:
– the act-key of the page itself,
– the number of page index entries
– the length and displacement of the bytes which are still vacant in this page.
– the page type (ACT-Key-0 page, FPA page, DBTT page, DBTT anchor page,

normal data page or CALC page)

page index entry
Indicates the position of a record within a page.

page number
In each realm the pages are numbered consecutively in ascending order starting
starting from 0. The page number is part of the page address.
Page number = PAM page number -1 for databases with a page length of 2048
bytes
Page number = (PAM page number-1) / 2 for databases with a page length of
4000 bytes
Page number = (PAM page number-1) / 4 for databases with a page length of
8096 bytes.

password for UDS/SQL files
Password serving to protect the files created by UDS/SQL (default: C’UDSË’).
The DB administrator can define other passwords with PP CATPASS or
MODIFY-FILE-ATTRIBUTES.

pattern
Symbolic representation of all possible item contents, used at item definition.

pattern string
String defining a pattern.

Glossary P

U931-J-Z125-17-76 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

PETA
Preliminary end of transaction: UDS-D or openUTM-D statement that causes a
preliminary transaction end.
The PETA statement belongs to the first phase of the two-phase commit protocol
which terminates a distributed transaction.
The PETA statement stores the following information failproof in the RLOG file
of the local DBH:
– each updated page
– rollback and locking information
– the names of all participating configurations.
This information is required for any future warm start.

pointer array
Table of pointers to the member records of a set occurrence. Used for sequential
and direct access to member records.

PPP
See probable position pointer (PPP).

prepared to commit (PTC)
Part of the two-phase commit protocol:
State of a subtransaction after execution of a PETA statement and before receipt
of the message that the complete transaction is to be terminated with FINISH or
FINISH WITH CANCEL.

primary key
Distinguished from secondary keys for reasons of efficiency. Usually a unique
identifier for a record.

primary key (DDL)
The key of a record type which is defined by means of "LOCATION MODE IS
CALC" or the key of an order-determining key of a set occurrence which is
defined by means of "ORDER IS SORTED [INDEXED]". Also used for direct
access to a record or a set of records with the same key values or within a search
interval.

primary key (SQL)
In the broader sense (SQL), a record element uniquely identifying a record.
In UDS-SQL, the database key of an owner record output as the "PRIMARY
KEY" in the BPSQLSIA log (see also foreign key).
A record element which uniquely identifies a record is flagged as "UNIQUE" in the
BPSQLSIA log unless it is the aforementioned "PRIMARY KEY".

P Glossary

462 U931-J-Z125-17-76

primary subtransaction
Subtransaction that runs in the local configuration.
The primary subtransaction is opened by the first READY statement in a trans-
action on a local database.
If the first READY statement addresses a remote database, UDS-D generates a
dummy subtransaction as the primary subtransaction.

PRIVACY-AND-IQF SCHEMA
UDS/SQL-internal schema for protection against unauthorized access.

PRIVACY-AND-IQF SUBSCHEMA
UDS/SQL-internal subschema for protection against unauthorized access.

probable position pointer (PPP)
Probable address of a page, comprising realm number and page number.
UDS/SQL does not always update probable position pointers (PPP) when the
storage location of data is changed.

processing chain
Sequence of DML statements applied to a database within a transaction.

PTC state
See prepared to commit.

pubset declaration
Siee UDS/SQL pubset declaration

pubset declaration job variable
Job variable in which a UDS/SQL pubset declaration is specified.

P1 eventing
Manner in which tasks communicate with each other.

Glossary R

U931-J-Z125-17-76 463

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

R

READY
Start of a transaction or a processing chain in COBOL DML programs.

READYC
Start of a transaction or a processing chain in CALL DML programs.

realm
Nameable physical subunit of the database. Equivalent to a file. Apart from the
user realms for user data there are also the realms DBDIR and DBCOM, which
are required by UDS/SQL.

realm configuration
Comprises all the database realms taking part in a session.

realm copy
See database copy.

realm reference number
Realms are numbered consecutively in ascending order, starting with 1. The
realm reference number (area reference) is part of the page address.

reconfiguration
Regrouping of databases in a DB configuration after a session abort. A pre-
requisite for reconfiguration is that the SLF has been deleted or that its contents
have been marked as invalid.

record
Single occurrence of a record type; consists of one item content for each of the
items defined for the record type and is the smallest unit of data managed by
UDS/SQL via a unique identifier, the database key.
The reserved word RECORD is used in DDL and SSL syntax to declare a
record type.

record address
Address of the page containing the record. See page address.

R Glossary

464 U931-J-Z125-17-76

RECORD AREA
Area in the USER WORK AREA (UWA) which can be referenced by the user.
The record area contains the record types and the implicitly defined items
(IMPLICITLY-DEFINED-DATA-NAMES) of the database such as the AREA-ID
items of the WITHIN clauses of the schema. The length of the record area is
essentially defined by the record types contained in it.

record element
Item, vector or group item.

record hierarchy
Owner/member relationship between record types:
the owner record type is the higher-ranking part of the relationship;
the member record type is the lower-ranking part.

REC-REF
See record reference number.

record reference number
Record types are numbered consecutively in ascending order, starting at 1. The
record reference number is part of the database key.

record SEARCH KEY table
SEARCH KEY table for selection of a record from a record type.

record sequence number (RSQ)
The record sequence number can be assigned by the database programmer; if
not, UDS/SQL numbers the records of a record type contiguously in ascending
order, in the sequence in which they are stored; numbering starts at 1. The
record sequence number is part of the database key.

record type
Nameable grouping of record elements.

record type, linear
Record type that is neither the owner nor the member of a set (corresponds to
record types of a conventional file).

referential integrity
Integrity of the relationships between tables (UDS/SQL record types).

remote application program
Application program that is not local with regard to a particular configuration.

Glossary R

U931-J-Z125-17-76 465

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

remote configuration
DB-configurations that are not assigned to the application program via /SET-FILE-
LINK LINK-NAME=DATABASE,FILE-NAME=conf-name but via the distribution
table once the application program is running. The connection module of the appli-
cation program communicates with the remote configurations via DCAM appli-
cations.
Remote configurations can be situated on local or remote hosts.

remote database
Database in a remote configuration.

remote host
Host computer that is not local.

repeating group
Group item with repetition factor. The repetition factor, which must be greater
than 1, specifies the number of duplicates of the group item to be incorporated
in the repeating group.

request
The functions of the DAL commands ADD DB, ADD RN, DROP DB, DROP RN,
NEW RLOG and CHECKPOINT are held in the DBH as "requests" and are not
executed until the DAL command PERFORM is entered.

restart of BMEND
Resumption of an aborted BMEND run.

restart of a session
See session restart.

restructuring
Modification of the Schema DDL or SSL for databases already containing data.

return code
Internal code which the called program sends to the calling program;
Return code ≠ 0 means an error has occurred.

RLOG file
Backup file used by the DBH during a session to store before-images (BFIMs)
and after-images (AFIMs) of data which is updated. With the aid of the RLOG file,
the DBH can cancel updates effected by incomplete transactions. There is one
RLOG file per configuration. An RLOG file consists of two physical files.

S Glossary

466 U931-J-Z125-17-76

rollback
Canceling of all updates effected within a transaction.

RSQ
See record sequence number.

RUNUNIT-ID
See transaction identification.

S

schema
Formalized description of all data structures permitted in the database. A
UDS/SQL schema is defined by means of the Schema DDL.

Schema DDL
Formalized language for defining a schema.

Schema Information Area (SIA)
The SIA contains the complete database definition. The DBH loads the SIA into
main memory at the start of DB processing.

SEARCH KEY
Secondary key; access paths using secondary keys are created by UDS/SQL by
means of hash routines and multi-level tables.

SEARCH KEY table
Multi-level table used by UDS/SQL as an access path via a secondary key.

secondary key
Any key which is not a primary key. Used for direct access to a record or a set of
records with the same key values or within a search interval.

secondary subtransactions
Subtransactions that address remote configurations.

sequence number
Identifier in the name of the ALOG files (000000001 - 999999999). The first
ALOG file of a database is always numbered 000000001.

Glossary S

U931-J-Z125-17-76 467

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

sequential access
Accessing a record on the basis of its position within a predefined record
sequence.

server task
Task of the independent DBH in which the UDSSUB module executes; processes
the requests of the DB application programs.

session
Period between starting and normal termination of the DBH (independent/ linked-
in) in which it is possible to work with the databases of the configuration. Normally,
a session consists of a sequence of session sections and session interrupts.

session abort
Occurs when the DBH is terminated abnormally after a successful session start.
A session abort can be caused by: power failure, computer failure, BS2000
problems, DBH problems, %TERM.

session end
Is the result of:
– DAL when using independent DBH,
– TERM in the DML application program when using linked-in DBH,
– DBH error handling.
During a session interrupt, the user can also effect session end by invalidating
the SLF contents. Inconsistent databases can be made consistent again by a
warm start, even without an SLF.

session interrupt
The period between a session abort and the related session restart.

session job variable
Job variable in which UDS/SQL stores information about a session.

Session Log File (SLF)
File which is permanently assigned to a session and which is required by the
DBH in the event of a session restart. It contains information on the current DB
configuration, the number of current file identifiers and the current values of the
DBH load parameters.

S Glossary

468 U931-J-Z125-17-76

session restart
Starting of the DBH, under the same configuration name and configuration user ID,
after a session abort. With the aid of the SLF, the DBH load parameters and the
current file identifiers which existed when the session aborted are re-estab-
lished, and the databases of the previous configuration are reattached, if
necessary by means of a warm start.

session section
Period from the start of the DBH, either at the session start or a restart, to the
normal session end or to a session abort.

session section number
Number which identifies a session section unambiguously.

session start
State of a session in which the DBH is started under a configuration name for
which there is no Session Log File (SLF) with valid contents.

set
Nameable relationship between two record types.

set, dynamic
See dynamic set.

set, implicit
See implicit set.

set, singular
See SYSTEM set.

set, standard
See standard set.

Set Connection Data (SCD)
Linkage information for the records of a set occurrence.

set occurrence
Single instance of a set. Comprises exactly one owner record and any number of
subordinate member records.

set reference number
Sets are numbered contiguously in ascending order, beginning at 1.

Glossary S

U931-J-Z125-17-76 469

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

set SEARCH KEY table
SEARCH KEY table for selecting a member record from a set occurrence.

SF pubset
See single feature pubset

shadow database
Backup of all the files of a database, each saved under the name
”dbname.dbfile.copyname”.
A shadow database can be created at any time and processed parallel to the
original database in RETRIEVAL mode.
In addition BMEND can be used to apply ALOG files that have already been
closed to the database parallel to the UDS/SQL session.

Shared user buffer pool
Shared buffer of several databases which is used in addition to the System Buffer
Pool, solely for buffering pages of the databases that have been assigned to it.

SIA
See Schema Information Area.

SIB
See SQL Interface Block.

single feature pubset
A single feature pubset (SF pubset) consists of one or more homogeneous
disks which must have the same major properties (disk format, allocation unit).

SLF
See session log file.

SM pubset
See system managed pubset

S Glossary

470 U931-J-Z125-17-76

snap pair, snap pubset, snap session, snap unit
A snap unit is the copy of an (original) unit (logical disk in BS2000) at a particular
time (“Point-in-Time copy”). The TimeFinder/Snap component creates this copy
as a “snapshot” in accordance with the “Copy-On-First-Write strategy“: Only if
data is modified is the original data concerned written beforehand into a central
save pool of the Symmetrix system. The snap unit contains the references
(track pointers) to the original data. In the case of unmodified data the refer-
ences point to the unit, in the case of modified data to the save pool.
After they have been activated, the unit and snap unit are split; applications can
access both.
The unit and snap unit together form a snap pair. TimeFinder/Snap manages
this pair in what is known as a snap session.
If snap units exist for all units of a pubset, these snap units together form the
snap pubset.
Details of this are provided in the manual "Introduction to System Adminis-
tration".

sort key table
Table pointing to the member records of a set occurrence.

source program
Program written in a programming language and not yet translated into machine
language.

spanned record
Record exceeding the length of a page. Only UDS/SQL-internal records can
be spanned records;
User record types must not exceed
– 2020 bytes for a page length of 2048 bytes
– 3968 bytes for a page length of 4000 bytes
– 8064 bytes for a page length of 8096 bytes.

SQL
SQL is a relational database language which has been standardized by ISO
(International Organization for Standardization).

SQL conversation
See conversation.

SQL DML
SQL Data Manipulation Language for querying and updating data.

Glossary S

U931-J-Z125-17-76 471

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

SQL Interface Block (SIB)
Interface between UDS/SQL and SQL application program(s); contains the
SQL statement, any existing parameters and the statement results.

SQL transaction
Related sequence of SQL statements which is processed by UDS/SQL either as
a whole or not at all. This method ensures that the database(s) is/are always in
a consistent state.

SSIA
See Subschema Information Area.

SSIA-RECORD
UDS/SQL-internal record type, located in the DBDIR. Records belonging to this
type are, for example, the Schema Information Area (SIA) and the Subschema
Information Areas (SSIAs).

SSITAB module
Module generated by the BCALLSI utility routine; makes available the
subschema information required by CALL DML programs.

SSL
See Storage Structure Language.

standard set
A set other than a dynamic, implicit or SYSTEM set.

statement code
Number stored in the first part of the DATABASE-STATUS item. Its function is to
indicate which DML statement resulted in an exception condition.

status code
Number stored in the second part of the DATABASE-STATUS item. It indicates
which exception condition has occurred.

Storage Structure Language (SSL)
Formalized language for describing the storage structure.

string
A series of consecutive alphanumeric characters.

subcontrol system
Component for the independent DBH. Responsible for control functions.

S Glossary

472 U931-J-Z125-17-76

subschema
Section of a schema required for a particular application; it can be restructured,
within limits, for the intended application; a subschema is defined by means of
the Subschema DDL.

Subschema DDL
Formalized language for defining a subschema.

Subschema Information Area (SSIA)
The SSIA contains all subschema information required by the DBH to carry out,
on behalf of the user, the database accesses permitted within the specified
subschema. The DBH loads the SSIA into main memory when it is referenced in
a READY command.

subschema module
Module resulting from subschema compilation when a COBOL DML program is
compiled. It must be linked in to the application program and includes the USER
WORK AREA (UWA) as well as the RECORD AREA, which is also part of the
base interface block (BIB). The name of the subschema module is the first 8 bytes
of the subschema name.

subschema record
Record defined in the Subschema DDL.

SUB-SCHEMA SECTION
In COBOL programs with DML statements: section of the DATA DIVISION used
for specifying the schema name and the subschema name.

subtransaction
In a distributed transaction, all the processing chains that address the databases
in one configuration form a subtransaction.

system area
Realm required only by UDS/SQL. The system areas of a database include:
– the Database Directory (DBDIR),
– the Database Compiler Realm (DBCOM),
– the COBOL Subschema Directory (COSSD)

system break information
Indicates whether the database is consistent or inconsistent.

Glossary T

U931-J-Z125-17-76 473

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

system buffer pools
Input/output buffer for database pages (see page). The buffer is part of the
common pool (independent DBH) or the DBH work area (linked-in DBH). Its size is
determined by the DBH load parameters 2KB-BUFFER-SIZE, 4KB-BUFFER-
SIZE or 8KB-BUFFER-SIZE.

system managed pubset
A system managed pubset consists of one or more volume sets which, as with
an SF pubset, comprise a collection of multiple homogeneous disks; here, too,
homogeneity relates to particular physical properties such as disk format and
allocation unit.

SYSTEM record
See anchor record.

SYSTEM set
Set whose owner record type is the symbolic record type SYSTEM.

T

table, multi-level
See multi-level table.

table (SQL)
A table in the context of SQL corresponds to a UDS/SQL record type.

table header
Contains general information on a table or table page:
– the table type and the level number of the table page,
– the number of reserved and current entries in this table page,
– the chaining reference to other table pages on the same level,
– the pointer to the associated table page on the next higher level,
– the pointer to the page containing the last table on the main level (for the

highest-level table only).

table page
Page containing a table or part of a table. If a table which does not extend over
several pages or the highest level of a multi-level table is concerned, "table
page" only refers to the object involved, not the entire page.

T Glossary

474 U931-J-Z125-17-76

TANGRAM
(Task and Group Affinity Management) Subsystem of BS2000 that plans the
allocation of processors for task groups which access large quantities of shared
data in multi-task applications.

task attribute TP
There are 4 task attributes in BS2000: SYS, TP, DIALOG and BATCH.
Special runtime parameters that are significant for task scheduling are assigned
to each of these task attributes.
In contrast to the other task attributes, the TP attribute is characterized by
optimized main memory management that is specially tailored to transaction
processing requirements.

task communication
Communication between the DBH modules. See also common pool.

task deadlock
See deadlock.

task priority
In BS2000, it is possible to define a priority for a task. This priority is taken into
account when initiating and activating the task.
Priorities may be fixed or variable. Variable priorities are adapted dynamically;
fixed priorities do not change.
Note that UDS/SQL server tasks should be started with a fixed priority in order
to ensure consistent performance.

TCUA
See Transaction Currency Area.

time acknowledgment
Message sent by the UDS-D task to the remote application program to indicate
that there is still a DML statement being processed.

transaction (TA)
Related sequence of DML statements which is processed by UDS/SQL either
as a whole or not at all. This method ensures that the database(s) is/are always
in a consistent state.
For UDS-D:
The total set of subtransactions active at a given time.

transaction, committing a
Terminating a transaction with FINISH, i.e. all updates performed within the
transaction are committed to the database.

Glossary U

U931-J-Z125-17-76 475

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

transaction, rolling back a
Terminating a transaction with FINISH WITH CANCEL, i.e. all updates
performed on the database within the transaction are rolled back.

Transaction Currency Area (TCUA)
Contains currency information.

transaction identification (TA-ID)
Assigned by the DBH to identify a particular transaction. Can be requested with
the DAL command DISPLAY.

transfer pool
UDS-D-specific storage area in which the UDSCT receives the BIBs from remote
application programs.

two-phase commit protocol
Procedure by which a distributed transaction that has made changes in at least
one remote configuration is terminated in such a way as to safeguard inter-config-
uration consistency or UDS/SQL openUTM-D consistency. The two-phase
commit is controlled
– by the distribution component in the user task if the transaction is distributed

via UDS-D.
– by openUTM-D if the transaction is distributed via openUTM-D or via

openUTM-D and UDS-D.

U

UDSADM
Module of the independent DBH; executes in the administrator task.

UDSHASH
Module generated by the BGSIA utility routine. It contains the names of all the
hash routines defined in the Schema DDL.

UDSNET
Distribution component in the user task.

UDSSQL
Start module of the independent DBH; executes in the master task.

UDSSUB
Start module of the independent DBH; executes in the server task.

U Glossary

476 U931-J-Z125-17-76

UDS-D task UDSCT
Task started for each configuration by UDS/SQL so that it can participate in
distributed processing with UDS-D.

UDS/SQL / openUTM-D consistency
A transaction that has updated both openUTM data and UDS/SQL databases is
terminated in such a way that the openUTM data and the UDS/SQL databases
are either updated together or not at all.

UDS/SQL pubset declaration
Declaration in a pubset declaration job variable for restricting the UDS/SQL
pubset environment. This reduces or prevents the risk of file names being
ambiguous.

unique throughout the network
Unique in all the computers that are included in the network.

user database
The realms and files of the database required by the user in order to be able to
store data in, and to retrieve data from a database are:
– the Database Directory (DBDIR),
– the user realms
– the module library for hash routines (HASHLIB).

user realm
A realm defined in the realm entry of the Schema DDL. It contains, among other
things, the user records.

user task
Execution of an application program or openUTM program, including the parts
linked by the system.

USER-WORK-AREA (UWA)
Transfer area for communication between the application program and the DBH.

UTM
See openUTM.

UWA
See USER-WORK-AREA (UWA).

Glossary V

U931-J-Z125-17-76 477

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.5
0

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
b

üc
he

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

ud
sa

uf
.m

ix

V

vector
Item with repetition factor. The repetition factor must be greater than 1. It
specifies how many duplicates of the item are combined in the vector.

version number, internal
See internal version number.

W

warm start
A warm start is performed by UDS/SQL if an inconsistent database is attached
to a session. For UDS/SQL this involves applying all updates of completed trans-
actions to the database which have not yet been applied, rolling back all
database transactions that are open, and making the database consistent. The
related RLOG file and the DB status file are required for a warm start.

W Glossary

478 U931-J-Z125-17-76

U931-J-Z125-17-76 479

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

ab
k

Abbreviations

ACS Alias Catalog Service

Act-Key ACTual KEY

AFIM AFter-IMage

AP Application Program

ASC ASCending

BIB Base Interface Block

BFIM BeFore-IMage

COBOL COmmon Business Oriented Language

CODASYL COnference on DAta SYstem Languages

CRA CuRrent of Area

CRR CuRrent of Record

CRS CuRrent of Set

CRU Current of RunUnit

COSSD COBOL SubSchema Directory

DAL Database Administration Language

DB DataBase

DBCOM DataBase COmpiler Realm

DBDIR DataBase DIRectory

DBH DataBase Handler

DB-Key DataBase Key

DBTT DataBase key Translation Table

DDL Data Description Language

DESC DESCending

DML Data Manipulation Language

DRV Dual Recording by Volume

DSA Database System Access

DSSM Dynamic SubSystem Management

Abbreviations

480 U931-J-Z125-17-76

FC Function Code

FPA Free Place Administration

GS Global Storage

HSMS Hierarchic Storage Management System

ID IDentification

IQL Interactive Query Language

IQS Interactive Query System

KDBS Kompatible Datenbank-Schnittstelle (= compatible database interface)

KDCS Kompatible Datenkommunikationsschnittstelle
(= compatible data communications interface)

LM Lock Manager

LMS Library Maintenance System

MPVS Multiple Public Volume Set

MR-NR MainRef NumbeR

MT Master task

OLTP OnLine transaction processing

openUTM Universal Transaction Monitor

OT Operator Task

PETA Preliminary End of TrAnsaction

PPP Probable Position Pointer

PTC Prepared To Commit

PTT Primäre Teiltransaktion (= primary subtransaction)

PVS Public Volume Set

REC-REF RECord REFerence number

RSQ Record Sequence Number

SC SubControl

SCD Set Connection Data

SCI Software Configuration Inventory

SECOLTP SECure OnLine Transaction Processing

SECOS SEcurity COntrol System

SET-REF SET-REFerence

SIA Schema Information Area

SIB SQL Interface Block

Abbreviations

U931-J-Z125-17-76 481

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6.
 S

e
pt

em
be

r
20

17
 S

ta
nd

 1
3:

12
.4

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
9\

H
a

nd
bü

ch
e

r\
ak

tu
el

l\u
d

sa
uf

\e
n\

u
ds

au
f.

ab
k

SLF Session Log File

SQL Structured Query Language

SSD Solid State Disk

SSIA SubSchema Information Area

SSITAB SubSchema Information TABle

SSL Storage Structure Language

ST ServerTask

STT Sekundäre Teiltransaktion (= secondary subtransaction)

TA TrAnsaction

TA-ID TrAnsaction IDentification

TANGRAM TAsk aNd GRoup Affinity Management

TCUA Transaction CUrrency Area

UDS/SQL Universal Database System/Structured Query Language

UWA User Work Area

Abbreviations

482 U931-J-Z125-17-76

U931-J-Z125-17-76 483

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.4
9

P
fa

d
: P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

b
üc

he
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
ud

sa
uf

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

UDS/SQL (BS2000)
Application Programming
User Guide

UDS/SQL (BS2000)
Database Operation
User Guide

UDS/SQL (BS2000)
Design and Definition
User Guide

UDS/SQL (BS2000)
Messages
User Guide

UDS/SQL (BS2000)
Recovery, Information and Reorganization
User Guide

UDS/SQL (BS2000)
Ready Reference

UDS (BS2000)
Interactive Query System IQS
User’s Guide

UDS-KDBS (BS2000)
Compatible Database Interface
User Guide

http://manuals.ts.fujitsu.com

Related publications

484 U931-J-Z125-17-76

SQL for UDS/SQL
Language Reference Manual

BS2000 OSD/BC
Commands
User Guide

BS2000 OSD/BC
Introduction to System Administration
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BS2000 OSD/BC
Introductory Guide to DMS
User Guide

SDF (BS2000)
SDF Dialog Interface
User Guide

SORT (BS2000)
User Guide

SPACEOPT (BS2000)
Disk Optimization and Reorganization
User Guide

LMS (BS2000)
SDF Format
User Guide

DSSM/SSCM
Subsystem Management in BS2000
User Guide

ARCHIVE (BS2000)
User Guide

DRV (BS2000)
Dual Recording by Volume
User Guide

Related publications

U931-J-Z125-17-76 485

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.4
9

P
fa

d
: P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

b
üc

he
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
ud

sa
uf

.li
t

HSMS / HSMS-SV (BS2000)
Hierarchical Storage Management System
Volume 1: Functions, Management and Installation
User Guide

SECOS (BS2000)
Security Control System
User Guide

openNet Server (BS2000)
BCAM
Reference Manual

DCAM (BS2000)
Program Interfaces
Reference Manual

DCAM (BS2000)
Macros
User Guide

OMNIS/OMNIS-MENU (BS2000)
Functions and Commands
User Guide

OMNIS/OMNIS-MENU (BS2000)
Administration and Programming
User Guide

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
User Guide

openUTM
Generating Applications
User Guide

openUTM
Administering Applications
User Guide

Related publications

486 U931-J-Z125-17-76

openUTM
Using openUTM Applications under BS2000
User Guide

openUTM
Messages, Debugging and Diagnostics in BS2000
User Guide

COBOL2000 (BS2000)
COBOL Compiler
Reference Manual

COBOL2000 (BS2000)
COBOL Compiler
User’s Guide

COBOL85 (BS2000)
COBOL Compiler
Reference Manual

COBOL85 (BS2000)
COBOL Compiler
User’s Guide

CRTE (BS2000)
Common Runtime Environment
User Guide

DRIVE/WINDOWS (BS2000)
Programming System
User Guide

DRIVE/WINDOWS (BS2000)
Programming Language
Reference Guide

DRIVE/WINDOWS (BS2000)
System Directory of DRIVE Statements
Reference Manual

DRIVE/WINDOWS (BS2000/SINIX)
Directory of DRIVE SQL Statements for UDS
Reference Manual

Related publications

U931-J-Z125-17-76 487

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

6
. S

ep
te

m
be

r
20

17

S
ta

nd
 1

3:
12

.4
9

P
fa

d
: P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

9\
H

a
nd

b
üc

he
r\

ak
tu

el
l\u

d
sa

uf
\e

n\
ud

sa
uf

.li
t

DAB (BS2000)
Disk Access Buffer
User Guide

Unicode in BS2000
Introduction

XHCS (BS2000)
8-Bit Code and Unicode Processing in BS2000
User Guide

BS2000 OSD/BC
Softbooks English
DVD

openSM2 (BS2000)
Software Monitor
User Guide

SNMP Management (BS2000)
User Guide

Related publications

488 U931-J-Z125-17-76

U931-J-Z125-17-76 489

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

Index

A
ACCEPT 412, 413
access

contending 437
direct 437
sequential 437

access authorization 437
specifying 103

access path 437
access rights 105, 437

adapt 309, 366
assign 120
BOUTLOAD 191
check 106
CODASYL applications 105
define 56
SQL applications 105

access type 437
ACCPTC/ACCPTL 416
action indicators, BALTER 307
act-key 438
act-key-0 page 438
act-key-N page 438
adapt

access rights 309, 366
application program 409
DB applications 316
DML statements 411, 412
incompatible subschemas 314, 365
LINKAGE SECTION 418
subschema 408
subschemas 310, 361

adapt DML statements 412
add

item 220

realm 220
record type 220, 224
set 220

address
physical 438

ADD-USER-GROUP 113
administer

configuration 46
UDS/SQL 46

administrator task 438
AFIM 438
AFIM logging 378, 406
After Image Logging 214
after-image 438

ALOG file 438
RLOG file 438

alias 47
ALLOCATE-BUFFER-POOL 393
ALOG file 37, 41, 438

BINILOAD 151
ALOG sequence number 439
alog-seq-no 23
analysis phase

BALTER 280
command sequence 305
system environment 281

analysis report, BALTER 282
analyze schema modifications, database

restructuring 280
anchor record 439
appl 23
application 439
application program (AP) 439

adapt 409
area 439

Index

490 U931-J-Z125-17-76

AREA clause, Schema DDL modification 223
area reference 192

CSV output file 194
ascending key (ASC key) 439
ASCENDING KEY clause, Schema DDL

modification 238
assign

access rights 120
database 205

authorization 439
authorized users 439
automatic DBTT extension 439
automatic realm extension 439

B
backup database 440
backup files 37
BALTER 45, 280, 408

action indicators 307
analysis phase 280
analysis report 282
messages 307
restructuring messages 308
statements 299

Base Interface Block (BIB) 440
BCALLSI 44, 97

command sequence 100
statements 100
system environment 99

BCHANGE 45, 274
command sequence 276
system environment 275

BCHECK 45
BCREATE 43, 63, 64

command sequence 64
system environment 63, 64

before-image 440
behavior when error occurs 342

database reconstruction 342
BFIM 440

BFORMAT 44, 88
command sequence 90
statements 89
system environment 88

BGSIA 44, 79
command sequence 82
statements 81
system environment 80, 81

BGSSIA 44, 94
command sequence 96
statements 95
system environment 94, 95

BIB (Base Interface Block) 440
BINILOAD 44, 141, 150, 151, 189, 203

command sequence 179
control statements 151
functions 143
input data 148, 156
input file 148, 184, 187, 198
input record 161
INSERT 170
INSERT (overview) 154
INSERT statements 154
program statements 152, 158
statements 151
STORE 164
store records 143
STORE statements 153
system environment 149
work file 150

BMEND 45
BODTT 45
BOUTLOAD 44, 188

access rights 191
command sequence 207
format 191
functions 188
log 195
output file 189
output record 195
statements 200
system environment 199
terminate 202

Index

U931-J-Z125-17-76 491

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

BPGSIZE 45
ALLOCATE-BUFFER-POOL 393
command sequence 400
CONVERT-DATABASE 394
END 397
example 401
functions 379
hash area 380
OPEN-DATABASE 398
realms and files 380
restart 391
statements 391
system environment 387
UNDO 399
work files 383

BPRECORD 44
BPRIVACY 44, 103

command sequence 139
system environment 110

BPSIA 44, 405
BPSQLSIA 44
BRENAME 45, 344

command sequence 346
BREORG 45

END statement 397
BSTATUS 44
BTRANS24 45

CHECK-DATABASE 433
database transformation 431
END 434
starting 435
TRANSFORM-DATABASE 434
version migration to UDS/SQL V2.4 429

buffer pools
see exclusive buffer pool
see system buffer pools

buffer size
define 393

BUFFER-LENGTH 192

C
CALC key 440
CALC page 440
CALC SEARCH key 440

CALC table 441
calculation formulas

DBTT 264
direct hash area 266
indirect hash area 267
multi-level SEARCH-KEY table 268

CALL DML 441
adapt statements 416

call UDS programs without IMON installation 51
call, BINDER 49
CALL-DML applications 97
capacity limits 376
CATALOG 57
catalog identifier 441
catid 23
chain 441
change

linkage 248
reorganization, table 243
SEARCH key 228
type, table 243

Character Separated Values (CSV) 441
check

database 45
input data 156
memory space 253

check consistency 403
check records 441
check run

version migration 430
check table 91, 97, 98
CHECK-DATABASE 433
checkpoint 441
CHECK-TABLE 70, 441
clone 442
COBOL DML 442

adapt statements 411, 413
COBOL item 418
COBOL runtime system 442
COBOL subschema directory 34, 60, 275, 345,

389
converted database 384
COSSD 39

COBOL Subschema Directory (COSSD) 442

Index

492 U931-J-Z125-17-76

CODASYL applications, access rights 105
command input, terminate 119
command sequence

analysis phase 305
BCHANGE 276
BCREATE 64
BFORMAT 90
BGSIA 82
BGSSIA 96
BINILOAD 179
BOUTLOAD 207
BPGSIZE 400
BPRIVACY 139, 400
BRENAME 346
compile Schema DDL 277, 347
compile SSL 278, 348
copy subschemas 313, 364
enter UDSHASH in HASHLIB 279, 350
ONLINE-PRIVACY 138
restructuring phase 306
Schema DDL 74
SSL compilation 77
subschema compilation 92
subschemas, adapt 314, 365

COMMIT WORK 33
common memory 442
common pool 442
communication partners 442
communication pool 442
COMPARE 312, 363
COMPARE SUBSCHEMAS 73
compatibility, subschemas 312, 363
compatible database interface 442, 454
compile

SSL 76, 278, 348
Subschema DDL 91

compile Schema DDL 66, 68, 74, 277, 347
command sequence 277, 347
respond to errors 277, 347

compile SSL
command sequence 278, 348
respond to errors 278, 348

compiler database 443
files 36
format 63
general 34
prepare 274, 344
set 57

compiler statements 68
Schema DDL 68
SSL 68
Subschema DDL 68

COMPILER-SCHEMA 443
COMPILER-SUBSCHEMA 443
compiling

Schema DDL 66
compound key 443
compress record type 244
compression 443
COMPRESSION clause, SSL modification 244,

251
configuration 443

administer 46
configuration identification 443
configuration name 443
confname 38
connection module 443
consistency 443

logical 444
physical 444
storage 444

consistency error 444
consistency point 444
consistency record 444
contending access 444
control statements, BINILOAD 151
conversation 34, 444
conversion

database 375
database (examples) 421
phases 385
required realms 386

convert
DBCOM 386
DBDIR 386
user realm 386

Index

U931-J-Z125-17-76 493

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

convert database 45, 378, 394
BPGSIZE 378
in multiple BPGSIZE runs 390
in one BPGSIZE run 390
phases 385

CONVERT-DATABASE 394
converted database

adapt 404
adapt applications 409
adapt Schema DDL 408
adapt subschema 408
check consistency 403
COSSD 384
declare as the original database 403
HASHLIB 384
modify record set population 406
prepare DB operation 402
reorganize 404
restructure 407
turn on AFIM logging 406
turning on online save capability 406

converted realm 380
adjust size 404
created by BPGSIZE 381
file name 380
space requirement 380

converting distributable lists 382
copy 444

record 188, 201
record type 189, 201
user database 37

copy name 378
copy subschemas

command sequence 313, 364
statements 312, 363
system environment 311, 362

copyname 23, 38
COPY-RECORD 189, 200, 201
correction table 84
COSSD 345, 389, 444

COBOL subschema directory 39
CRA 444
CREATE 72

create
database 43, 53
database record 167
file for the converted realm 381
output file 192
output record 194
work file 180, 297, 383

CRR 445
c-string 24
CSV 445
CSV output data 195
CSV output file 194
csv-dateiname 24
currency table 445
CURRENT

OF AREA table 445
OF RECORD table 445
OF SET table 445

Current
Record of Rununit 445
Record of Set (CRS) 445

D
dal-cmd 24
data

store 141
unload 141

data backup 445
files 37, 40

data deadlock 445
data loss 231
Data Manipulation Language (DML) 450
data protection (privacy) 446
data type

structured-name 25
data types 23
database

assign 205
check 45
conversion (examples) 421
create 43, 53
load 44
open 125

Index

494 U931-J-Z125-17-76

database (cont.)
reconstruct 342
recover 45
reorganize 45
restructure 45, 213, 335
save 270, 342
transforming to UDS/SQL V2.4 432
transforming with BTRANS24 431
unload 44

database (DB) 446
database administrator 33, 446
Database Administrator Language (DAL) 445
database compiler realm 57, 274, 344
database compiler realm (DBCOM) 34, 39, 57,

277, 347, 386, 388, 446
database configuration, general 33
database conversion 45, 375

control 394
criteria 376
examples 421
order 377

database copy 446
database copy update 446
database directory 57, 344, 349
database directory (DBDIR) 34, 39, 57, 274, 279,

385, 386, 387, 446
database handler, see DBH
database job variable 446
database key 230, 419, 446

determine owner 175
extension 424
item 447

database key item 230, 417
modify Schema DDL 230
redefinition 418

database key value 408, 409, 410
assign 165
cross-transactional use 422
extended 377
use across databases 424

database objects
rename 335

database operation
files 34, 39
prepare converted database 402

database page 447
database realm 34, 39

set 57
database reconstruction

prepare compiler database 344
database record

create 167
database recovery 150
database restructuring

analyze schema modifications 280
memory requirements 253, 255, 256, 257,

260, 264, 266, 267, 268
preparatory measures 215, 216
prepare compiler database 274
respond to errors 272, 277, 278, 348
restrictions 249, 250
security measures 270

database system 31, 447
programs 43

DATABASE-KEY item 230, 408, 415, 417, 419,
447

DATABASE-KEY-LONG item 230, 408, 415, 417,
419, 447

DATABASE-STATUS 447
date 24
DB application, adapt 316
DB configuration 447
DB key 448
DB status file 40, 447

DBSTAT 40
DBCOM 447
DBCOM (database compiler realm) 39, 388

before conversion 386
converted 386

DBCOM.0 274, 344
DBCOM.NEW 386
DBDIR 274, 344, 385, 387, 448

before conversion 386
database directory 39

DBDIR.NEW 386

Index

U931-J-Z125-17-76 495

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

DBH 448
end 448
independent 31, 448
linked-in 31, 448
start 448

DBH load parameters 448
dbname 24, 37
DBSTAT, DB status file 40
DBTT 375, 385, 448

calculation formulas 264
entry 147
for BPGSIZE 383
page 449
relocate 242

DBTT anchor page 448
DBTT base 375, 448
DBTT clause, SSL modification 251
DBTT extension

automatic 439
online 458

DBTT extent 449
DCAM 449
DCAM application 449
DDL 43, 449
DDL compiler 66
deadlock 449
decimal point, Schema DDL modification 232
define

access rights 56
buffer size 393
in SYSTEM set, set membership 178
owner 172
user group 113
using CALC key, owner 173
using SEARCH KEY, owner 174

delete
realm 220
record 188, 206
record type 190, 206, 220, 224
set 220
user group 126

delete FPA extents 379
DELETE SCHEMA 71
DELETE SUBSCHEMA 72, 95

descending key (DESC key) 449
DESCENDING KEY clause, Schema DDL

modification 238
device 24
DIAGNOSTIC 73, 312, 363
direct

hash area, calculation formulas 266
direct access 449
direct hash area 449
DISPLAY 72, 81
DISPLAY SUBSCHEMA 95
distributable list 145, 147, 169, 172, 173, 224,

226, 245, 246, 249, 250, 292, 382, 385, 390,
455
converting 382
table part 147, 246
table realm 169, 173, 455

distributed database 449
distributed transaction 450
distribution pool 450
distribution table 450
DML functions, test 44
DML statements

adapt 411
DMLTEST 44, 97
dummy subtransaction 450
dummy UDS.MODLIB 99
duplicate 144
duplicates header 450
DUPLICATES specification, Schema DDL

modification 225, 228, 236
duplicates table 451

main level 451
dynamic reorganization 294
DYNAMIC REORGANIZATION clause, SSL

modification 247
dynamic set 451
DYNAMIC specification, Schema DDL

modification 234

E
EMA 91
END statement 119, 202, 299, 397, 434

Index

496 U931-J-Z125-17-76

enter
SSITAB module in module library 101
UDSHASH in HASHLIB, command

sequence 279, 350
ENTER files 40
entry

DBTT 147
error, behavior when error occurs 342
errors

respond to 272, 277, 278, 347, 348
ESTIMATE-REPORT 84, 451
event name 451
exclusive buffer pool 451
EXECUTION 151, 156, 299, 301
EXPORT-RECORD 190, 200, 203
extend record set population 406
extended database key value 377

F
file

converted database 37
converted realm 380
create for the converted realm 381
data backup 40
database operation 34, 39
UDS/SQL database 34
user database 36

file link name
KEYmmmmm 150
KEYnnnnn 180
KSTnnnnn 150, 180
SCDnnnnn 150, 180
SCRTCH1 297
SCRTCH1-3 150, 180
SORTWK 150, 180, 297
SRT1WK 150, 180
STKnnnnn 150, 180

files
maximum size 41

FILLING 152, 160, 299, 303
filling level (table) 396
FIND/FETCH 412, 413
FIND1/FTCH1/FIND1L/FTCH1L 416
FINISH statement 33

follow-up activities 218, 338
restructure database 219

foreign key 451
format

BOUTLOAD 191
compiler database 63
user realm 55, 88

format, old (subschema) 70, 91
FPA 451
FPA area 381
FPA base 375, 452
FPA extent 375, 452

delete 379
FPA page 452
free place administration 452
function code 452
functions

BINILOAD 143
BOUTLOAD 188
BPGSIZE 379

G
GARANT-ACCESS 120
general rules, Schema DDL modification 220,

339
GENERATE 81
generate

schema 55, 63
SIA 279, 349
SSIA 94
SSITAB module 56
subschema 56, 91
Subschema Information Area 94

GENERATE SUBSCHEMA 95
GENERATE-REC-REF 71
GRANT-ACCESS 120
group item 452

H
hash area 380, 452

reorganize 404
hash routine 452
hashing 452

Index

U931-J-Z125-17-76 497

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

HASHLIB 453
converted database 384
module library 39

host 24

I
identifier 453
implicit set 453
incompatible subschemas 312, 363

adapt 314, 365
inconsistency 453
independent DBH 31, 453
index level 453
INDEX NAME clause, SSL modification 243, 247
index page 453
INDEX search key 453
indirect hash area 453

calculation formulas 267
information

on user groups, output 134
output 44

input data
BINILOAD 148, 156
check 156
omit check 156

INPUT FILE 152, 153, 163
input file

BINILOAD 148, 187, 198
specify block length 162
specify file name 163

input record
BINILOAD 161
specify length 161

inputs
terminate 397

INSERT (overview) 154
insert member record 148
INSERT SET 154, 170
INSERT statements

BINILOAD 154
integer 24
integrity 454

interconfiguration 454
consistency 454
deadlock 454

interface 454
internal version number 454
IQS applications

adapt 420
item 454

add 220
lengthen 220, 229
lengthen, Schema DDL modification 229
modify, Schema DDL modification 232
national 70, 229, 231
numeric 231
omit 220, 230
redefine 220
shorten 220, 229
shorten, Schema DDL modification 229
unpacked numeric 231

K
KDBS 442, 454
KDBS applications

adapt 420
key 455

compound 455
key item 455
key reference number 455
key value 144, 148
KEYmmmmm 150, 183

file link name 150, 180
keyword 20, 21
kset 24
KSTnnnnn 150, 183

file link name 150, 180

L
lengthen, item 220, 229
link file 39
linkage method, member record 245
LINKAGE SECTION

adapt 418
linkage, change 248
linked-in control system 455

Index

498 U931-J-Z125-17-76

linked-in DBH 31, 455
LIST 405
list 455

distributable, see distributable list
multi-level, Schema DDL modification 267
relocation, SSL modification 245
Schema DDL modification 229
single-level, Schema DDL modification 229

LMS 82, 99
load database 44
load parameters DBH 455
loading and starting the BINDER 49
local application program 455
local configuration 456
local database 456
local distribution table 456
local host 456
local transaction 456
LOCATION MODE clause 408, 412, 415

Schema DDL modification 224
log, BOUTLOAD 195
logging 456

request/suppress 302
logging gap 218, 338
logical connection 456
logical reallocation 260

M
main reference 456
mainref number 456
master task 38, 40, 456
member 457

AUTOMATIC 143, 457
MANDATORY 457
MANUAL 144, 457
OPTIONAL 457

MEMBER clause, Schema DDL modification 237
member record 143, 457

insert 148
linkage method 245

member record sequence 145
member record type 457
membership, set 142, 237

memory requirements 273
database restructuring 253, 255, 256, 257,

260, 264, 266, 267, 268
memory space

check 253
shortage 293

messages, BALTER 307
MODE clause, SSL modification 245, 251
MODIFY 412, 414
modify

Schema DDL 220, 222, 339
sort criteria, set 238
SSL 239, 341

modify Schema DDL
general rules 339

modify the SSL
MODE clause 251
POPULATION clause 247
relocate table 246

module library 79
HASHLIB 39

monitor, session 44
mono-DB configuration 457
mono-DB operation 31, 33, 457
multi-DB configuration 376, 424, 457
multi-DB operation 31, 33, 457
multi-DB program 377, 457
multi-DB system 31
multi-level SEARCH-KEY table

calculation formulas 268
multi-level SEARCH-KEY table, calculation

formulas 268
multi-level table 457
multithreading 458

N
name 24
national item 70, 229, 231
network 458
NEW (copy name) 378
non-IMON installation 51
notational conventions 20, 21

SDF statements 22
numeric (item) 231

Index

U931-J-Z125-17-76 499

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

O
occupancy level, specify 159, 303
old format (subschema) 70, 91
OLTP 458
omit, item 220, 230
online backup 458
online backup capability 406
online DBTT extension 458
online realm extension 458
ONLINE-PRIVACY 103

command sequence 138
system environment 108

ONLUTIL 45
open

database 125
open transaction 458
OPEN-DATABASE 125, 200, 205, 398
openUTM 459
operator task (OT) 459
OPRIVACY 44
optional word 20, 21
ORDER clause, Schema DDL modification 234
original database 459
original user database 36
output

information 44
information on user groups 134

output file
BOUTLOAD 189
create 192
tape unit 193

output record
BOUTLOAD 195
create 194

overflow pages 459
owner 459

define 172
define using CALC key 173
define using SEARCH KEY 174
determine via database key 175

OWNER CALCKEY 154, 173
OWNER clause, Schema DDL modification 237
OWNER DBKEY 155, 175
OWNER KEY 155

owner record 143, 459
owner record type 459
OWNER RSQ 155, 177
OWNER SEARCHKEY 154, 174
OWNER statement 172

P
P1 eventing 462
page 459
page address 459
page container 460
page format 375, 389
page header (page info) 460
page index entry 460
page length 375, 395
page number 460
PARLIST 68
password 42
password for UDS/SQL files 460
pattern 460
pattern string 460
PETA 461
physical reallocation 260
PHYSICALLY LINKED clause, SSL

modification 248
PICTURE clause, Schema DDL modification 229
PLACEMENT OPTIMIZATION clause, SSL

modification 242
pointer array 461
pointer array relocation, SSL modification 246
pool 38
POPULATION clause

modify SSL 247
POPULATION clause, SSL modification 243,

247, 251
PPP (probable position pointer) 317, 402, 405,

461, 462
preparation

restructure database 216
preparatory measures

restructuring the database 215
prepare

compiler database 274, 344
program run 44

Index

500 U931-J-Z125-17-76

prepare DB operation
after conversion 402

prepared to commit (PTC) 461
primary key 461
primary key (DDL) 461
primary key (SQL) 461
primary subtransaction 462
PRIVACY LOCK clause, Schema DDL

modification 222
PRIVACY-AND-IQF SCHEMA 462
PRIVACY-AND-IQF SUBSCHEMA 462
probable position pointer (PPP) 317, 402, 405,

461, 462
update 317, 405

processing chain 462
program run, prepare 44
program statements, BINILOAD 152, 158
programs

database system 43
UDS/SQL 43

PTC state 462
pubset declaration 63, 66, 76, 79, 88, 94, 97,

110, 141, 275, 280, 345, 378, 462
pubset declaration job variable 462

Q
QUOTE 73

R
Readme file 17
READY 463
READY statement 33
READYC 463
realm 376, 463

add 220
converted 380, 404
delete 220
specify 169

realm configuration 463
realm copy 463
realm extension

automatic 439
online 458

realm reference number 463

realm-name 25, 38
realmref 25
reconfiguration 463
reconstruct database 342
record 463

copy 188, 201
delete 188, 206
shorten 260
unload 188, 203

record address 463
RECORD AREA 91, 464
record area 91
RECORD clause, Schema DDL modification 224
record element 464
record hierarchy 464
record length 376
RECORD NAME clause 242

SSL modification 242
record reference 192

CSV output file 194
record reference number 464
record SEARCH KEY table 464
record sequence number 464

input 177
record type 376, 464

add 220, 224
compress 244
copy 189, 201
delete 190, 206, 220, 224
linear 464
specify 164
unload 190, 203

record type compression
SSL modification 244

RECORD-AREA 169
RECORD-AREA NAME 153
RECORD-DBKEY 153, 165
RECORD-DISPL 153, 167
record-name 25
recordref 25
RECORD-RSQ 153, 165, 166
recover database 45
recovery 271, 342
REC-REF 464

Index

U931-J-Z125-17-76 501

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

redefine item 220
redefinitions 418
referential integrity 464
REGENERATE SUBSCHEMA 95
relocate

DBTT 242
table 243, 257

remote application program 464
remote configuration 465
remote database 465
remote host 465
REMOVE-RECORD 190, 200, 206
REMOVE-USER-GROUP 126
RENAME 81
rename database

behavior when error occurs 342
rename databases

respond to errors 347
renaming process 336
reorganization, dynamic 294
reorganize database 45
repeating group 465

Schema DDL modification 232
REPORT 299, 302
report, SIA 84
request 465
request/suppress, logging 302
respond to errors 272

compile Schema DDL 277, 347
compile SSL 278, 348
database restructuring 272, 277, 278, 348
rename database objects 347

restart 33, 40
BPGSIZE 391
of a session 465
of BMEND 465

restore database 272
restrictions, database restructuring 249, 250
restructuring 465

messages, BALTER 308
process 216, 274

restructuring phase
command sequence 306
start analysis 301

start analysis and restructuring 301
system environment 297

restructuring process 344
restructuring the database 45, 213, 335, 407

follow-up activities 219
memory requirements 256
preparatory measures 215, 216
restrictions 249

RETRIEVAL 105
return code 465
REVOKE-ACCESS 129
RLOG file 37, 41, 465
rlogtimestamp 38
rollback 466
RSQ 466

enter 177
rules, general

modifying Schema DDL 339
rules, general, SSL modification 239, 341
RUNUNIT-ID 466

S
save 271, 342

database 270, 342
SCD of chain, Schema DDL modification 236
SCDnnn

file link name 150
SCDnnnnn 150, 181

file link name 150, 180
SCHEMA 100, 158
schema 466

generate 55, 63
SCHEMA clause, Schema DDL modification 222
Schema DDL

adapt converted database 408
command sequence 74
compilation, system environment 68
compile 66, 68, 74, 277, 347
compiler statements 68
modify 220, 222, 339
overview 55

schema DDL 466
Schema DDL compilation

system environment 67

Index

502 U931-J-Z125-17-76

Schema DDL modification
/SEARCH-KEY clause 228
AREA clause 223
ASCENDING KEY clause 238
decimal point 232
DESCENDING KEY clause 238
DUPLICATES specification 225, 228, 236
DYNAMIC specification 234
general rules 220
item, lengthen 229
item, modify 232
item, shorten 229
list 229
list, multi-level 267
list, single-level 229
LOCATION MODE clause 224
MEMBER clause 237
newly defined item 229
ORDER clause 234
OWNER clause 237
PICTURE clause 229
PRIVACY LOCK clause 222
RECORD clause 224
repeating group 232
rules, general 339
SCD of chain 236
SCHEMA clause 222
SEARCH-KEY clause 238
SEARCH-KEY modification 238
SET clause 234
SET OCCURRENCE SELECTION 238
set, membership 237
variable item 232
vector 232
WITHIN clause 226

Schema Information Area 349
Schema Information Area (SIA) 63, 79, 279, 349,

466
SCHEMA NAME 152, 158
schema-name 25
SCRTCH1 150, 181, 297

file link name 297
SCRTCH1-3

file link name 150, 180

SCRTCH2 150, 181
SCRTCH3 150, 181
SDF statements notational conventions 22
SEARCH KEY 466
SEARCH KEY table 466
SEARCH key, change 228
SEARCH-KEY clause, Schema DDL

modification 228, 238
SEARCH-KEY modification, Schema DDL

modification 238
secondary key 466
secondary subtransaction 466
security measures, database restructuring 270
seqno 38
sequence number 466
sequential access 467
server task 32, 467
session 32, 467

abort 467
end 467
interrupt 467
monitor 44
start 468

session job variable 467
Session Log File (SLF) 33, 40, 467
session restart 468
session section 468
session section number 468
SET 414
set 468

add 220
compiler database 57
database realm 57
delete 220
dynamic 468
implicit 468
membership 142, 237
membership, define in SYSTEM set 178
membership, Schema DDL modification 237
modify sort criteria 238
singular 170, 468
specify 170
standard 468
user realm 61

Index

U931-J-Z125-17-76 503

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

SET clause, Schema DDL modification 234
Set Connection Data (SCD) 468
set information 201, 203
set occurrence 468
SET OCCURRENCE SELECTION clause 412,

414, 415
SET OCCURRENCE SELECTION, Schema DDL

modification 238
SET ORDER 154, 171
set reference number 468
set SEARCH KEY table 469
set up, SIA 79
set-name 25
SET-NAME clause

SSL modification 245
SF pubset 469
shadow database 40, 469
Shared User buffer pool 469
shorten

item 220, 229
record 260

SHOW-USER-GROUP 134
SIA 469

generate 279, 349
report 84
set up 79

SIA (Schema Information Area) 63, 79, 279, 349
SIB 469
single feature pubset 469
SLF 469
SM pubset 469
snap 470
SORCLIST 68, 71, 312, 363
sort area size, specify 300
sort key table 470
sort sequence, specify 171
SORTCORE 151, 157, 299, 300
SORTWK 150, 183, 297

file link name 150, 180, 297
SOURCE 69
source program 470
space requirement

converted realm 380

spanned record 470
special subschema

old format 98
specify

access authorization 103
block length, input file 162
file name, input file 163
length, input record 161
occupancy level 159, 303
realm 169
record type 164
set 170
sort area size 300
sort sequence 171
storage space 58, 60, 61, 192

SQL 470
SQL applications

access rights 105
adapt 420

SQL conversation 470
SQL DML 470
SQL Interface Block (SIB) 471
SQL transaction 471
SRT1WK 150, 183

file link name 150, 180
SSIA 471

generate 94
SSIA-RECORD 471
SSITAB module 91, 471

enter in module library 101
generate 56

SSL 43, 471
compile 76, 278, 348
compiler statements 68
modify 239, 341

SSL compilation
command sequence 77
system environment 76

SSL compiler 66, 76
statements 76

SSL description 66

Index

504 U931-J-Z125-17-76

SSL modification
COMPRESSION clause 244, 251
DBTT clause 251
DYNAMIC REORGANIZATION clause 247
INDEX NAME clause 243, 247
list relocation 245
member record linkage method 245
MODE clause 245, 251
PHYSICALLY LINKED clause 248
PLACEMENT OPTIMIZATION clause 242
pointer array relocation 246
POPULATION clause 243, 247, 251
RECORD NAME clause 242
record type compression 244
rules, general 239, 341
SET-NAME clause 245
STORAGE clause 242
table relocation 246

standard set 170, 471
start

BTRANS24 435
start analysis and restructuring, restructuring

phase 301
start analysis, restructuring phase 301
start commands 47

alias 47
statement code 471
statements

BALTER 299
BCALLSI 100
BFORMAT 89
BGSIA 81
BGSSIA 95
BINILOAD 151
BOUTLOAD 200
BPGSIZE 391
compiler 68
copy subschemas 312, 363
SSL compiler 76
undo 137, 399

status code 471
STKnnnnn 150, 182

file link name 150, 180

STORAGE clause 242
SSL modification 242

storage space
converted realm 380
size 180
specify 58, 60, 61, 192

Storage Structure Language (SSL) 471
STORE 412
STORE (adaptation) 415
store data 141
STORE RECORD 153, 164
store records, BINILOAD 143
STORE statements

BINILOAD 153
STORE1/STORE2/STOR1L/STOR2L 416
STORE-Anweisungen BINILOAD 153
stored data

changing 338
string 471
structure, user group name 106
structured-name (data type) 25
subcontrol system 471
SUBSCHEMA 100, 159
subschema 418, 472

adapt 310, 361, 408
adapt, command sequence 314, 365
compatibility 312, 363
generate 56, 91
incompatibility 312, 363, 408
transformed 91, 97

subschema compilation
command sequence 92
system environment 92

Subschema DDL 472
compile 91
compiler statements 68
overview 56

SUBSCHEMA FORM IS OLD 70
Subschema Information Area (SSIA) 472

generate 94
subschema module 472
SUBSCHEMA NAME 152
subschema record 472
SUB-SCHEMA SECTION 418, 472

Index

U931-J-Z125-17-76 505

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

6.
 S

e
pt

em
b

er
 2

01
7

 S
ta

n
d

13
:2

2.
35

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
29

\H
an

d
bü

ch
er

\a
kt

ue
ll\

u
ds

au
f\

en
\u

ds
au

f.s
ix

subschema-name 25
subschemas

adapt 361
subtransaction 472
syntax description 22
syntax rules, DB files 37
SYSINT 32
system area 472
system break information 472
system buffer pools 473
system environment

analysis phase 281
BCALLSI 99
BCHANGE 275
BCREATE 63, 64
BFORMAT 88
BGSIA 80, 81
BGSSIA 94, 95
BINILOAD 149
BOUTLOAD 199
BPGSIZE 387
BPRIVACY 110
copy subschemas 311, 362
ONLINE-PRIVACY 108
restructuring phase 297
Schema DDL compilation 67, 68
SSL compilation 76
subschema compilation 92

system managed pubset 473
SYSTEM record 473
SYSTEM set 170, 473

T
table

change reorganization 243
change type 243
create 257
filling level 396
multi-level 473
relocate 243, 257

table (SQL) 473
table header 473
table pages 473
table part

distributable list 147, 246
table realm

distributable list 169, 173, 455
table relocation, SSL modification 246
TANGRAM 474
tape unit

output file 193
task attribute TP 474
task communication 474
task deadlock 474
task priority 474
task sequence number 38
TCUA 474
temporary user file 40
terminate

BOUTLOAD 202
command input 119
input 434
inputs 397

terminate input 434
terminate, BINDER 49
test DML functions 44
time 26
time acknowledgment 474
tools 51
transaction 474

committing a 474
roll back 475

Transaction Currency Area 475
transaction identification (TA-ID) 475
transfer pool 475
TRANSFORM-DATABASE 434
transformed subschema 91, 97
tsn 38
two-phase commit protocol 475

U
UDS 475
UDS load module 32
UDS/SQL 476

administration 46
UDS/SQL / openUTM-D consistency 476
UDS/SQL database 31

files 34

Index

506 U931-J-Z125-17-76

UDS/SQL pubset declaration 63, 66, 76, 79, 88,
94, 97, 110, 141, 275, 280, 345, 378, 476

UDS/SQL, programs 43
UDS/SQL/UTM application

file 40
UDS/SQL-UTM application 103
UDSADM 46, 475
UDSCT 32
UDS-D task 32
UDS-D task UDSCT 476
UDSHASH 475
UDSMON 44
UDSNET 475
UDSSUB 475
UNDO 137, 399
undo statement 137, 399
Unicode 70, 229, 231
unique throughout the network 476
unload

data 141
database 44
record 188, 203
record type 190, 203

unpacked numeric (item) 231
UPDATE 105
update

probable position pointer (PPP) 317, 405
update run 385, 389
user database 476

copy 37
files 36
general 34
original 36

USER FILE BUFFER LENGTH 152, 162
USER FILE RECORD LENGTH 152, 161
user file, temporary 40
user group 104

define 113
delete 126
withdraw access rights 129

user group name, structure 106
user information 148

user realm 39, 388, 476
before conversion 386
convert 386
converted 386
format 55, 88
original 36
set 61

user task 476
userid 26
USER-WORK-AREA (UWA) 476
UTI.SAMWORK.tsn.timestamp 150
UWA 476

V
variable 20, 21
variable item, Schema DDL modification 232
vector 477

Schema DDL modification 232
version migration

check run 430
prerequisites 430
to UDS/SQL V2.4 431

version migration with BTRANS24 429
version number

internal 477
volume 26

W
warm start 477
withdraw access rights, user group 129
WITHIN clause, Schema DDL modification 226
work file 150

BINILOAD 150
BPGSIZE 383
create 180, 297, 383

WORKING-STORAGE SECTION 418

X
x-string 26

	Contents
	Preface
	Structure of the UDS/SQL documentation
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manuals
	Notational conventions
	Warnings and notes
	Non-SDF notational conventions
	SDF syntax representation

	Sample databases

	Overview of UDS/SQL
	Basic concepts of the UDS/SQL database system
	Files and realms of a UDS/SQL database
	Overview of UDS/SQL programs
	START commands for the UDS/SQL programs

	Tools for UDS/SQL

	Database creation (BCREATE, BFORMAT, DDL- and SSL- Compiler, BGSIA, BGSSIA, BCALLSI)
	Preparing database creation
	Setting up the compiler database
	Setting up the user realms

	Generating the schema
	Formatting the compiler database with BCREATE
	Compiling the Schema DDL
	Compiling the SSL
	Setting up the Schema Information Area (SIA) with BGSIA
	SIA report
	Description of the ESTIMATE-REPORT

	Formatting user realms with BFORMAT
	Generating the subschema
	Compiling the Subschema DDL
	Generating the Subschema Information Area (SSIA) with BGSSIA

	Additional measures for CALL DML programs with BCALLSI

	Specifying access authorizations (ONLINE-PRIVACY, BPRIVACY)
	User groups
	Access rights
	Checking access rights
	System environment for ONLINE-PRIVACY
	System environment for BPRIVACY
	Rules for the statements
	Overview of statements
	ADD-USER-GROUP (Defining a user group with or without assigning access rights)
	END (Terminating command input)
	GRANT-ACCESS (Assigning access rights to a user group)
	OPEN-DATABASE (Opening the database)
	REMOVE-USER-GROUP (Deleting one or more user group(s))
	REVOKE-ACCESS (Withdrawing access rights from a user group)
	SHOW-USER-GROUP (Outputting information on user groups)
	UNDO (Undoing a statement)

	Command sequence for starting ONLINE-PRIVACY
	Command sequence for starting BPRIVACY

	Storing and unloading data (BINILOAD, BOUTLOAD)
	Storing records in the database with BINILOAD
	Description of functions
	Readying the input file and preparing the BINILOAD run
	BINILOAD system environment
	Statements for BINILOAD
	EXECUTION (Checking/not checking input data)
	SORTCORE (Specifying the size of the sort buffer)
	SCHEMA (Specifying the name of the schema)
	SUBSCHEMA (Specifying the name of the subschema)
	FILLING (Specifying the occupancy level of table pages)
	USER RECORD LENGTH (Specifying the length of the input records)
	USER BUFFER LENGTH (Specifying the block length of the input file)
	INPUT FILE (Specifying the name of the input file)
	STORE RECORD (Specifying the record type)
	RECORD-DBKEY (Assigning the database key value to a record)
	RECORD-DISPL (Creating the database record)
	RECORD-AREA (Specifying the realm)
	INSERT (Specifying the set)
	SET ORDER (Specifying the sort sequence)
	OWNER (Defining the owner)
	Command sequence for starting BINILOAD
	Creating work files
	BINILOAD example

	Copying, deleting and unloading records with BOUTLOAD
	BOUTLOAD functions
	Preparing the output files and the BOUTLOAD run
	BOUTLOAD log for the output record format
	BOUTLOAD system environment
	BOUTLOAD statements
	COPY-RECORD (Copying records to output files)
	END (Terminating the BOUTLOAD run)
	EXPORT-RECORD (Unloading records to output files)
	OPEN-DATABASE (Assigning the database)
	REMOVE-RECORD (Deleting records)
	Command sequence to start BOUTLOAD
	Examples

	Restructuring the database (BCHANGE, BALTER)
	Modifying the Schema DDL
	Schema entry
	Realm entry
	Record entry
	Set entry

	Modifying the SSL
	Schema entry
	Record entry
	Set entry

	Summary of restrictions
	Schema DDL modifications
	SSL modifications

	Checking the consistency of the database
	Checking free memory space
	Calculation formulas

	Recovery measures and response to errors
	Saving the database
	Restoring the database

	Preparing the compiler database with BCHANGE
	Compiling the Schema DDL
	Compiling the SSL
	Generating a new SIA and entering it in the DBDIR with BGSIA
	Analyzing schema modifications and adapting stored data with BALTER
	Analysis phase
	Description of the analysis report (REPORT phase)
	Restructuring phase
	Effects of the restructuring on the content of the database
	Logging the restructuring phase
	System environment in the restructuring phase

	BALTER statements
	SORTCORE (Specifying the size of the sort area)
	EXECUTION (Starting/not starting the restructuring phase)
	REPORT (Requesting/suppressing logging)
	FILLING (Specifying the occupancy level of table pages)
	Command sequence to start BALTER
	Description of BALTER messages

	Adapting access rights
	Adapting subschemas
	Copying compatible subschemas
	Adapting incompatible subschemas

	Adapting DB applications
	Updating the probable position pointers (PPP)
	Measures for restarting DB operation
	Example

	Renaming database objects (BRENAME, BALTER)
	Modifying the Schema DDL
	Modifying the SSL
	Recovery measures and response to errors
	Saving the database
	Restoring the database

	Initiating renaming using BRENAME
	Compiling the Schema DDL
	Compiling the SSL
	Generating a new SIA and entering it in the DBDIR with BGSIA
	Checking renaming and updating structure information using BALTER
	Command sequence for starting BALTER
	Description of the BALTER check

	Illegal schema modifications in the renaming cycle
	Adapting subschemas
	Copying compatible subschemas
	Adapting incompatible subschemas

	Adapting DB applications
	Updating access rights
	Adapting user data
	Measures for restarting DB operation
	Example

	Converting databases to larger page formats (BPGSIZE)
	Criteria for conversion
	Converting databases with BPGSIZE
	BPGSIZE functions
	Realms and files
	Realms of the converted database
	Required work files
	COBOL subschema directory (COSSD) of the converted database
	Module library for hash routines (HASHLIB) of the converted database

	Conversion phases
	Statements for BPGSIZE
	ALLOCATE-BUFFER-POOL (define buffer size)
	CONVERT-DATABASE (control database conversion)
	END (terminate input of statements)
	OPEN-DATABASE (open database)
	UNDO (cancel statement)
	Command sequence to start BPGSIZE
	Example for BPGSIZE

	Preparing the converted database for DB operation
	Restructuring the converted database
	Adapting COBOL and CALL DML statements
	DDL clauses that indicate the use of extended database key values
	Adapting DML statements
	Overview
	Adapting COBOL DML statements
	Adapting CALL DML statements

	Adapting COBOL definitions
	Adapting additional locations in the application program

	Adapting SQL, IQS and KDBS applications
	Examples of database conversions
	Cross-transactional use of extended database key values
	Database key extension in a multi-DB configuration

	Migrating databases to DB Layout Version 4 (BTRANS24)
	Checking the prerequisites for migration
	Performing a database transformation with BTRANS24
	BTRANS24 statements
	CHECK-DATABASE (start check run)
	TRANSFORM-DATABASE (transform the database)
	END (terminate statement input)

	Calling BTRANS24

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

