English

FUJITSU Software BS2000

UDS/SQL V2.9

Creation and Restructuring

User Guide

Edition September 2017

O
FUJITSU

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN 1SO 9001:2008

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2008.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © 2017 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Contents

1.1
1.2
1.3
14

1.5

1.5.1
1.5.2
1.5.3

1.6

21
2.2

23
2.31

2.4

3.1
3.1.1
3.1.2

3.2
3.2.1

Preface e e e e e e e e e 1"
Structure of the UDS/SQL documentation 1
Objectives and target groups of thismanual 16
Summaryofcontents e e 17
Changes since the last edition of themanuals 18
Notational conventions, 20
Warningsand notes L 20
Non-SDF notational conventions 20
SDF syntax representation L Lo 22
Sampledatabases e e e e e 27
Overview of UDS/SQL i e e e e e e e e e e 31
Basic concepts of the UDS/SQL database system 31
Files and realms of a UDS/SQL database 34
Overview of UDS/SQL programs o v v v i i i e e 43
START commands for the UDS/SQL programs 47
Tools forUDS/SQL o e e e e e e e e e e 51

Database creation

(BCREATE, BFORMAT, DDL- and SSL-Compiler, BGSIA, BGSSIA, BCALLSI) . . 53
Preparing database creation, 57
Setting up the compilerdatabase, 57
Settinguptheuserrealms 61
Generatingtheschema, 63
Formatting the compiler database with BCREATE 63

U931-J-2125-17-76

Contents

3.2.2
3.2.3
3.24

3.3

3.4
3.4.1
3.4.2

3.5

41
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

Compilingthe Schema DDL 66
Compilingthe SSL 76
Setting up the Schema Information Area (SIA) withBGSIA 79
SIAreport e 84
Description of the ESTIMATE-REPORT 84
Formatting user realms with BFORMAT 88
Generatingthesubschema 91
Compiling the Subschema DDL 91
Generating the Subschema Information Area (SSIA) with BGSSIA 94
Additional measures for CALL DML programs with BCALLSI 97

Specifying access authorizations

(ONLINE-PRIVACY, BPRIVACY) e e e e e e e e e e e e e s 103
USergroups o i i i e 104
Accessrights e e 105
Checkingaccessrights 106
System environment for ONLINE-PRIVACY 108
System environment for BPRIVACY 110
Rules forthe statements 111
Overviewof statements oo 112
ADD-USER-GROUP (Defining a user group with or without assigning access rights) 113
END (Terminating command input) 119
GRANT-ACCESS (Assigning access rightstoa usergroup) 120
OPEN-DATABASE (Opening the database) 125
REMOVE-USER-GROUP (Deleting one or more user group(s)) 126
REVOKE-ACCESS (Withdrawing access rights from a usergroup) 129
SHOW-USER-GROUP (Outputting information on user groups) 134
UNDO (Undoing astatement) 137
Command sequence for starting ONLINE-PRIVACY 138
Command sequence for starting BPRIVACY 139

U931-J-2125-17-76

Contents

5.1

5.1.1
5.1.2
5.1.3
5.1.4

5.1.5
5.1.6
5.1.7

5.2

5.2.1
5.2.2
5.2.3
524
525

5.2.6
5.2.7

Storing and unloading data

(BINILOAD, BOUTLOAD)t i e e e e e e e e e e e e e e e e e e e 141
Storing records in the database with BINILOAD 142
Description of functions 143
Readying the input file and preparing the BINILOAD run 148
BINILOAD system environment 149
Statements for BINILOAD 151
EXECUTION (Checking/not checking inputdata) 156
SORTCORE (Specifying the size of the sortbuffer) 157
SCHEMA (Specifying the name of the schema) 158
SUBSCHEMA (Specifying the name of the subschema) 159
FILLING (Specifying the occupancy level of tablepages) 160
USER RECORD LENGTH (Specifying the length of the inputrecords) 161
USER BUFFER LENGTH (Specifying the block length of the inputfile) 162
INPUT FILE (Specifying the name of the inputfile) 163
STORE RECORD (Specifying therecord type) 164
RECORD-DBKEY (Assigning the database key valuetoarecord) 165
RECORD-DISPL (Creating the databaserecord) 167
RECORD-AREA (Specifyingtherealm) 169
INSERT (Specifyingtheset) 170
SET ORDER (Specifying the sort sequence) 171
OWNER (Definingtheowner) 172
Command sequence for starting BINILOAD 179
Creatingwork files e 180
BINILOAD example 184
Copying, deleting and unloading records with BOUTLOAD 188
BOUTLOAD functions e 188
Preparing the output files and the BOUTLOAD run 192
BOUTLOAD log for the outputrecord format 198
BOUTLOAD system environment 199
BOUTLOAD statements e 200
COPY-RECORD (Copying records to outputfiles) 201
END (Terminating the BOUTLOAD run) 202
EXPORT-RECORD (Unloading records to outputfiles) 203
OPEN-DATABASE (Assigning the database) 205
REMOVE-RECORD (Deletingrecords) 206
Command sequence to start BOUTLOAD 207
Examples e 208

U931-J-2125-17-76

Contents

6.1

6.2

6.3
6.3.1
6.3.2

6.4
6.5

6.6
6.6.1
6.6.2

6.7
6.8
6.9
6.10

6.11
6.11.1
6.11.2
6.11.3
6.11.3.1
6.11.3.2
6.11.3.3
6.11.4

Restructuring the database

(BCHANGE, BALTER) e e e e e e e e 213
Modifying the Schema DDL 220
Schemaentry 222
Realmentry e 223
Recordentry e 224
Setentry e 234
Modifyingthe SSL e 239
Schemaentry 241
Recordentry e 242
Setentry e 245
Summary of restrictions oo 249
Schema DDL modifications 250
SSL modifications 251
Checking the consistency of thedatabase 252
Checking freememoryspace i i i i it e e e e e e 253
Calculationformulas 264
Recovery measures and responsetoerrors. 270
Savingthedatabase 270
Restoringthedatabase Lo 272
Preparing the compiler database with BCHANGE 274
Compilingthe SchemaDDL ittt 277
Compilingthe SSL e e e e 278
Generating a new SIA and entering it in the DBDIR with BGSIA 279
Analyzing schema modifications and adapting stored data with BALTER . . . 280
Analysis phase 280
Description of the analysis report (REPORT phase) 282
Restructuringphase 294

Effects of the restructuring on the content of the database 294

Logging the restructuringphase L. 296

System environment in the restructuringphase 296
BALTER statements 299
SORTCORE (Specifying the size of the sortarea) 300
EXECUTION (Starting/not starting the restructuringphase) 301
REPORT (Requesting/suppressing logging) 302
FILLING (Specifying the occupancy level of table pages) 303

U931-J-2125-17-76

Contents

6.11.5
6.11.6

6.12

6.13
6.13.1
6.13.2

6.14
6.15
6.16
6.17

71
7.2

7.3
7.31
7.3.2

7.4
7.5
7.6
7.7

7.8
7.81
7.8.2

7.9

710
7.10.1
7.10.2

7.1
712

Command sequence to start BALTER 305
Description of BALTER messages 307
Adapting accessrights 309
Adapting subschemas 310
Copying compatible subschemas 310
Adapting incompatible subschemas00 L. 314
Adapting DB applications 316
Updating the probable position pointers (PPP) 317
Measures for restartingDB operation 318
Example o e e e e e e e e e e e e e e e e e e e 319

Renaming database objects

(BRENAME, BALTER) i i e e e e e e e e e e e e 335
Modifying the SchemaDDL 339
Modifyingthe SSL e e 341
Recovery measures and responsetoerrors 342
Savingthedatabase 342
Restoringthedatabase 342
Initiating renaming using BRENAME 344
Compilingthe SchemaDDL 347
Compilingthe SSL o e e e e 348
Generating a new SIA and entering it in the DBDIR with BGSIA 349
Checking renaming and updating structure information using BALTER 351
Command sequence for starting BALTER 352
Description of the BALTER check 352
lllegal schema modifications in the renamingcycle 353
Adaptingsubschemas L e 361
Copying compatible subschemas 361
Adapting incompatible subschemas o000 365
Adapting DB applications e 366
Updating accessrights 366

U931-J-2125-17-76

Contents

7.13
7.14
7.15

8.1

8.2
8.2.1
8.2.2
8.2.2.1
8.2.2.2
8.2.2.3
8.2.24
8.2.3
8.24

8.2.5
8.2.6

8.3
8.4

8.5
8.5.1
8.5.2
8.5.2.1
8.5.2.2
8.5.2.3
8.5.3
8.5.4

8.6
8.7

Adaptinguserdata e e 367
Measures for restarting DB operation 367
Example e e e e e e e e e e e e e e e 368

Converting databases to larger page formats

(BPGSIZE) o i e e e e e e e e e e e e e e e 375
Criteriafor conversion e 376
Converting databases withBPGSIZE 378
BPGSIZE functions 379
Realms andfiles 380

Realms of the converted database 380

Required work files 383

COBOL subschema directory (COSSD) of the converted database 384

Module library for hash routines (HASHLIB) of the converted database 384
Conversionphases 385
Statements for BPGSIZE 391
ALLOCATE-BUFFER-POOL (define buffersize) 393
CONVERT-DATABASE (control database conversion) 394
END (terminate input of statements) L. 397
OPEN-DATABASE (opendatabase) 398
UNDO (cancel statement) 399
Command sequence tostart BPGSIZE 400
Example for BPGSIZE 401
Preparing the converted database for DB operation 402
Restructuring the converted database 407
Adapting COBOL and CALL DML statements 409
DDL clauses that indicate the use of extended database key values 410
Adapting DML statements Lo 411

Overview e 412

Adapting COBOL DML statements 413

Adapting CALL DML statements 416
Adapting COBOL definitions 417
Adapting additional locations in the application program 419
Adapting SQL, IQS and KDBS applications 420
Examples of database conversions, 421
Cross-transactional use of extended database key values 422
Database key extension in a multi-DB configuration 424

U931-J-2125-17-76

Contents

9 Migrating databases to DB Layout Version 4 (BTRANS24) 429
9.1 Checking the prerequisites for migration 430
9.2 Performing a database transformation with BTRANS24 431
9.3 BTRANS24 statements e 433
CHECK-DATABASE (startcheckrun) 433
TRANSFORM-DATABASE (transform the database) 434
END (terminate statementinput) o o oo 434
9.4 Calling BTRANS24 e e e e e e e e 435
GloSSary e e e e e e e e e e e e e e e e e 437
Abbreviations L e e e e e e 479
Related publications 483
Index e e e e e e e e e e e e 489

U931-J-2125-17-76

Contents

U931-J-2125-17-76

1 Preface

The Universal Database System UDS/SQL is a high-performance database system based
on the structural concept of CODASYL. Its capabilities, however, go far beyond those of
CODASYL as it also offers the features of the relational model. Both models can be used
in coexistence with each other on the same data resources.

COBOL DML, CALL DML and (ISO standard) SQL are available for querying and updating
data. COBOL DML statements are integrated in the COBOL language; SQL statements can
be used in DRIVE programs or via an ODBC interface.

To ensure confidentiality, integrity and availability, UDS/SQL provides effective but flexible
protection mechanisms that control access to the database. These mechanisms are
compatible with the openUTM transaction monitor.

The data security concept provided by UDS/SQL effectively protects data against
corruption and loss. This concept combines UDS/SQL-specific mechanisms such as
logging updated information with BS2000 functions such as DRV (Dual Recording by
Volume).

If the add-on product UDS-D is used, it is also possible to process data resources in
BS2000 computer networks. UDS/SQL ensures that the data remains consistent
throughout the network. Distributed transaction processing in both BS2000 computer
networks and networks of BS2000 and other operating systems can be implemented using
UDS/SQL together with openUTM-D or openUTM (Unix/Linux/Windows). UDS/SQL can
also be used as the database in client-server solutions via ODBC servers.

The architecture of UDS/SQL (e.g. multitasking, multithreading, DB cache) and its struc-
turing flexibility provide a very high level of throughput.

1.1 Structure of the UDS/SQL documentation

The “Guide through the manuals” section explains which manuals and which parts of the
manuals contain the information required by the user. A glossary gives brief definitions of
the technical terms used in the text.

In addition to using the table of contents, users can find answers to their queries either via
the index or by referring to the running headers.

U931-J-2125-17-76 11

Structure of the UDS/SQL documentation Preface

Guide through the manuals

The UDS/SQL database system is documented in five manuals:

UDS/SQL Design and Definition

UDS/SQL Application Programming

UDS/SQL Creation and Restructuring

UDS/SQL Database Operation

UDS/SQL Recovery, Information and Reorganization

Further manuals describing additional UDS/SQL products and functions are listed on
page 15.

For a basic introduction the user should refer to chapters 2 and 3 of the “Design and
Definition” manual; these chapters describe

reasons for using databases

the CODASYL database model

the relational database model with regard to SQL

the difference between the models

the coexistence of the two database models in a UDS/SQL database
the characteristic features of UDS/SQL

How the manuals are used depends on the user’s previous knowledge and tasks. Table 1
serves as a guide to help users find their way through the manuals.

Examples

A user whose task it is to write COBOL DML programs should look up the column
“COBOL/CALL DML Programming” under “User task” in the second line of table 1.
There, the following chapters of the “Design and Definition” manual are recommended:

General information B = Basic information
Schema DDL D = Detailed information
SSL D = Detailed information
Subschema DDL L = Learning the functions

In the same column the user can also see which chapters of the other manual are of
use.

Database administrators who are in charge of database administration and operation
will find the appropriate information under the column “Administration and Operation”.

12

U931-J-2125-17-76

Preface

Structure of the UDS/SQL documentation

Contents of the five

main manuals

User task

Design
and
definition

COBOL/
CALL DML
programming

SQL
program-
ming

Creation
and re-
structuring

/Administra-
tion and
operation

Working
with
openUTM

Working
with
QS

Working
with
ubS-D

Manual UDS/SQL Design and Def

inition

Preface

B

General information

Designing the database

Schema DDL

SSL

Subschema DDL

||

||

Relational schema

Structure of pages

Structure of records and tables

O|Oo|rirr|rr|r|mo| @

0|0

Reference section

S

»w| 0|0

Manual UDS/SQL Application Programming

Preface

Overview

Transaction concept

Currency table

DML functions

Using DML

COBOL DML reference section

CALL DML reference section

Testing DML functions
using DMLTEST

L i e s A e A o I i R V ¢ A (R 0 ¥

Table 1: Guide through the manuals

(part 1 of 3)

U931-J-2125-17-76

13

Structure of the UDS/SQL documentation

Preface

Contents of the five

main manuals

User task

Design
and
definition

COBOL/
CALL DML
programming

SQL
program-
ming

Creation
and re-
structuring

Administra-
tion and
operation

Working
with
openUTM

Working
with
1QS

Working
with
ubS-D

Manual UDS/SQL Creation and Restructuring

Preface

Overview

Database creation

Defining access rights

Storing and unloading
data

r|r | |0 @

Restructuring the database

Renaming database objects

Database conversion

O|0|0

Database conversion using
BTRANS24

o|lr|r|r

Manual UDS/SQL Database Operation

Preface

The database handler

DBH load parameters

Administration

O|0|0

High availability

Resource extension and reorgani-
sation during live operation

W Wl w

Saving and recovering a database
in the event of errors

-

Optimizing performance

Using BS2000 functionality

The SQL conversation

UDSMON

General functions of the
utility routines

O|0O|r|0O|0

Using 1QS

v}

Using UDS-D

D

Function codes of DML statements

Table 1: Guide through the manuals

(part 2 of 3)

14

U931-J-2125-17-76

Preface

Structure of the UDS/SQL documentation

User task
Contents of the five Design COBOL/ SQL Creation |Administra-| Working | Working | Working
and CALL DML program- | and re- tion and with with with

main manuals definition | programming ming structuring | operation | openUTM QS ubDs-D
Manual

UDS/SQL Recovery, Information and Reorganization

Preface - - - - B B B -
Updating and reconstructing a D - - D L D - -
database

Checking the consistency of a - - - - L - - -
database

Output of database information D - - D L - - -
Executing online services D - - D L - - -
Database reorganization D - - D L - - -
Controlling the reuse of D - - D L - - -
deallocated database keys

Additional Manuals

UDS/SQL Messages D D D D D D D D
UDS/SQL System S S - S S S S S
Reference Guide

QS - - - D D - -
ADILOS - - - - D - -
KDBS - L' - D - - - -
SQL for UDS/SQL - - D - D - - -
Language Reference Manual
Table 1: Guide through the manuals (part 3 of 3)
" only for COBOL-DML

B provides basic information for users with no experience of UDS/SQL

L helps the user learn functions

D provides detailed information

S provides a reference to syntax rules for practical work with UDS/SQL

U931-J-2125-17-76 15

Objectives and target groups of this manual Preface

1.2

Additional notes on the manuals

References to other manuals appear in abbreviated form. For example:
(see the “Application Programming” manual, CONNECT)

advises the user to look up CONNECT in the “Application Programming” manual.
The complete titles of the manuals can be found under “Related publications® at the back
of the manual.

UDS/SQL Messages

This manual contains all messages output by UDS/SQL. The messages are sorted in
ascending numerical order, or in alphabetical order for some utility routines.

UDS/SQL System Reference Guide

The UDS/SQL System Reference Guide gives an overview of the UDS/SQL functions and
formats.

SQL for UDS/SQL
Language Reference Manual

This manual describes the SQL DML language elements of UDS/SQL.
In addition to UDS/SQL-specific extensions, the language elements described include
dynamic SQL as an essential extension of the SQL standard.

Objectives and target groups of this manual

The manual is intended for the database (DB) administrator, i.e. the user responsible for
creating the database, organizing database operation, and restructuring the database as
needed to adapt it to changing operational requirements.

The database administrator should be familiar with all the steps involved in designing a
database (including schema, subschema and SSL generation) and writing DB application
programs.

In addition, he or she should have a comprehensive knowledge of BS2000.

16

U931-J-2125-17-76

Preface Summary of contents

1.3 Summary of contents

What does this manual contain?

This manual begins with an overview of the files required by the UDS/SQL Database
System during database operation and of the UDS/SQL utility routines needed to create a
UDS/SQL database.

It then goes on to describe all the stages involved in

— restructuring a database, and
— converting a database to a larger page format.

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME .<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http.//manuals.ts.fujitsu.com.

U931-J-2125-17-76 17

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last edition of the manuals Preface

1.4 Changes since the last edition of the manuals

The main changes introduced in UDS/SQL V2.9 in comparison with Version V2.8 are listed
in table 2 below together with the manuals and the sections in which the changes are
described. If a specific topic has been dealt with in more than one manual, the manual in
which a detailed description appears is listed first. The following codes are used in the
“Manual” column for the individual manuals involved:

DES Design and Definition DBO Database Operation
APP Application Programming RIR Recovery, Information and Reorganization
CRE Creation and Restructuring MSG Messages

Topic Manual Chapter
FIND-/FETCH-7 with DESCENDING KEY: Suspension of the restric-

tion

The restriction for DESCENDING KEY is omitted APP 7
Record references in COBOL programs:

The new DDL-statement GENERATE-REC-REF generates a data field | CRE 3

and condition names for the access to record references

Changing settings of ALOG files while the database is in use
New DAL command DISPLAY ALOG shows ALOG settings DBO

New DAL commands MODIFY ALOG/MODIFY ALOG-RES and DBO
MODIFY-ALOG-SIZE change ALOG settings

Change of the restrictions for the UDS Online Utility

WAIT-FOR-TRANSACTION offers the possibility to wait until the locked | RIR 8
source page is released by the locking transaction
With SET-RELOCATE-PARAMETERS a behaviour for the case that pa- | RIR 8

ges are locked can be specified also for *INDEX-LEVEL-TABLE-PAGES
(CLASH-HANDLING)

Table 2: Changes in version V2.9 compared to V2.8

18 U931-J-2125-17-76

Preface Changes since the last edition of the manuals

Topic Manual Chapter

BRENAME with after-image logging: The function “Renaming data-
base objects (BRENAME, BALTER)” can also be executed when Af-
ter Image Logging is activated. Thus logging gaps can be avoided

New behaviour in a renaming cycle CRE

After a renaming process a data base update can be executed RIR

Specifying the size for DBTT extensions
New operand EXT of the DAL command ACT DBTT-INCR DBO
The BSTATUS output additionally contains the value of the EXT operand | RIR

New data type FIXED REAL BINARY 63

Expansion of the syntax representation DES 4,9
Changes in messages to consider the new data type MSG 2,4
APP 10

Table 2: Changes in version V2.9 compared to V2.8

U931-J-2125-17-76 19

Non-SDF notational conventions

Preface

1.5

1.5.1

1.5.2

Notational conventions

This section provides an explanation of the symbols used for warnings and notes as well
as the notational conventions used to describe syntax rules.

Warnings and notes

Points out particularly important information

1
é CAUTION!

Warnings

Non-SDF notational conventions

Language element

Explanation

Example

KEYWORD

Keywords are shown in underlined uppercase
letters. You must specify at least the underlined

DATABASE-KEY

parts of a keyword. MANUAL
OPTIONAL WORD Optional words are shown in uppercase letters NAME IS
without underlining. Such words may be omitted
without altering the meaning of a statement. ALLOWED
PAGES
variable Variables are shown in italic lowercase letters. In | 7 tem—name
a format which contains variables, a current value
must be entered in place of each variable. literal-3
integer
Either Exactly one of the expressions enclosed in braces | [CALC
must be specified.
or INDEX

Indented lines belong to the preceding
expression.
The braces themselves must not be specified.

VALUE IS
VALUES ARE

Loptionall

The expression in square brackets can be
omitted. UDS/SQL then uses the default value
The brackets themselves must no be specified.

LIS integer]

[WITHIN realm—-namel

Table 3: Notational conventions

(part 1 of 2)

20

U931-J-2125-17-76

Preface Non-SDF notational conventions

Language element | Explanation Example
. The immediately preceding expression can be item-name, . ..
or repeated several times if required. The two
language elements distinguish between repeti- { SEARCH
tions which use blanks and those which use KEY..... bo..
commas.

..... Indicates where entries have been omitted for SEARCH KEY IS
or reasons of clarity. When the formats are used, RECORD NAME
these omissions are not allowed.

The period must be specified and must be SET SECTION.
R followed by at least one blank. The underline must
not be specified. 03 7tem—name..
Space Means that at least one blank has to be specified. | USING CALC
Table 3: Notational conventions (part 2 of 2)
All other characters such as (), . ; “ = are not metacharacters;

they must be specified exactly as they appear in the formats.

U931-J-2125-17-76 21

SDF syntax representation Preface

1.5.3 SDF syntax representation

This syntax description is based on SDF Version 4.7. The syntax of the SDF
command/statement language is explained in the following three tables.

Table 4: Metasyntax

Certain characters and representations are used in the statement formats; their meaning is
explained in table 4.

Table 5: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific value set. The number of data types is limited to those described in table 5.

The description of the data types is valid for all commands and statements. Therefore only
deviations from table 5 are explained in the relevant operand descriptions.

Table 6: Data type suffixes

The description of the “integer” data type in table 6 also contains a number of items in italics.
The italics are not part of the syntax, but are used merely to make the table easier to read.

The description of the data type suffixes is valid for all commands and statements.
Therefore only deviations from table 6 are explained in the relevant operand descriptions.

Representation Meaning Examples
Uppercase letters denote OPEN DATABASE
UPPERCASE LETTERS | keywords. Some keywords
begin with *. COPY-NAME = *NONE

The equal sign connects an
= operand name with the CONFIGURATION-NAME = <name 1..8>
associated operand values.

Angle brackets denote variables
whose range of values is

. DATABASE =
<7 described by data types and SE = <dbname>
their suffixes (Tables 5 and 6).
. Underscoring denotes the .
Underscoring default value of an operand. SCHEMA-NAME = *STD
/ A slash separates alternative CMD = *ALL / <dal-cmd>
operand values. I
) Parenthesgs 'd'enote operand "KSET-FORMATY(...)
values that initiate a structure.
Table 4: Metasyntax (part 1 of 2)

22 U931-J-2125-17-76

Preface

SDF syntax representation

Representation

Meaning

Examples

Indentation

Indentation indicates that the
operand is dependent on a
higher-ranking operand.

USER-GROUP-NAME = *KSET-FORMAT(...)

*KSET-FORMAT(...)
HOST = <host>

structure.

A vertical bar identifies related
operands within structure. Its
length marks the beginning and
end of a structure. A structure
may contain further structures.
The number of vertical
preceding an operand corre-
sponds to the depth of the

USER-GROUP-NAME = *ALL-EXCEPT(...)

*ALL-EXCEPT(...)
NAME = *KSET-FORMATY(...)
*KSET-FORMAT(...)
HOST = <host>

level.

A comma precedes further
operands at the same structure

,SPACE = STD

list-poss(n):

1ist—poss signifies that the
operand values following it may
be entered as a list. If a value is
specified for (n), the list may
contain no more than that
number of elements. A list of two
or more elements must be
enclosed in parentheses.

NAME = list-poss(30): <subschema-name>

Table 4: Metasyntax (part 2 of 2)
Data type Character set Special rules
alog-seg-no 0.9 1..9 characters
appl A.Z 1..8 characters
0.9 String that can consist of a number of substrings
$H@ separated by hyphens; first character A..Z or $, #, @
Strings of less than 8 characters are filled internally with
Structure identifier: | underscore characters.
hyphen
catid A.Z 1..4 characters
0.9 must not start with the string PUB
copyname A.Z 1..7 characters, starting with A..Z
0.9
Table 5: Data types (part 1 of 4)
U931-J-2125-17-76 23

SDF syntax representation

Preface

Data type Character set Special rules
c-string EBCDIC characters |1..4 characters
Must be enclosed in single quotes; the letter C may be
used as a prefix.
Single quotes within c-string must be specified twice.
csv-filename A.Z 1..30 characters
0.9 Must be enclosed in single quotes
Structure identifier:
hyphen
dal-cmd A.Z 1..64 characters
0..9
hyphen
date 0.9 Date specification
Input format: yyyy-mm-dd
Structure identifier: | yyyy : year; may be 2 or 4 digits long
hyphen mm : month
dd :day
dbname A.Z 1..17 characters, starting with A..Z
0..9
device A.Z 5..8 characters, starting with A..Z or 0..9
0.9 String that can consist of a number of substrings
$#.@ separated by hyphens and and whicch corresponds to a
device. In the dialog guidance, SDF shows the permis-
Structure identifier: sible operand values. Information as the possible
hyphen devices can be found in the relevant operand
description.
host A.Z 1..8 characters
0..9 String that can consist of a number of substrings
$H@ separated by hyphens; first character A..Z or $, #, @
Strings of less than 8 characters are filled internally with
Structure identifier: | underscore characters.
hyphen
integer 0..9,+,- + or - may only be the first character.
kset A.Z 1..8 characters
0..9 String that can consist of a number of substrings
$HQ@ separated by hyphens; first character A..Z or §, #, @
Strings of less than 8 characters are filled internally with
Structure identifier: | underscore characters.
hyphen
name A.Z 1..8 characters
0.9 Must not consist only of 0..9 and must not start with a
$H@ digit

Table 5: Data types

(part 2 of 4)

U931-J-2125-17-76

Preface

SDF syntax representation

Structure identifier:

Data type Character set Special rules
realm-name A.Z 1..30 characters
0.9 String that may consist of a number of substrings by
hyphens;
Structure identifier: | first character: A..Z
hyphen
realmref 0.9 1..3 characters
record-name A.Z 1..30 characters
0.9 String that can consist of a number of substrings

separated by hyphens;
first character: A..Z

Structure identifier:

hyphen In the case of record types with a search key it is recom-
mendable to use names with no more than 26
characters, otherwise the set name created implicitly
(SYS_...) will be truncated in accordance with the
restriction on the name length for sets.
recordref 0.9 1..3 characters
schema-name A. 1..30 characters
0.9 String that can consist of a number of substrings

separated by hyphens;
first character: A..Z

Structure identifier:

hyphen
set-name A.Z 1..30 characters
0.9 String that can consist of a number of substrings

separated by hyphens;
first character: A..Z

Structure identifier:

hyphen

hyphen

structured-name |A...Z Alphanumeric string which may comprise a number of
0...9 substrings separated by a hyphen. First character: A...Z
$.# @ or$, # @
hyphen

subschema-name |A..Z 1..30 characters
0.9 String that can consist of a number of substrings

separated by hyphens;
first character: A..Z

Table 5: Data types

(part 3 of 4)

U931-J-2125-17-76

25

SDF syntax representation Preface

Data type Character set Special rules
time 0..9 Time-of-day specification
. I Input format: hh:mm:ss
Structure identifier: hh s mm
colon hh
hh, mm, ss:
Leading zeros may be omitted
userid A.Z 1..8 characters, beginning with A..Z or $,#,@
BPRIVACY:
0..9 Strings of less than 8 characters are filled internally with
$H@ underscore characters.
volume A.Z 1..6 characters starting with A..Z or 0..9
0..9
$4@
x-string Hexadecimal: 1..8 characters
00..FF Must be enclosed in single quotes and prefixed with the
letter X. There may be an odd number of characters
Table 5: Data types (part 4 of 4)
Suffix Meaning
X..y unit For the “integer” data type: range specification.
X Minimum value permitted for “integer”. x is an (optionally signed)
integer.
y Maximum value permitted for “integer”. y is an (optionally signed)
integer.
unit for “integer” only: additional units.
The following units may be specified:
Mbyte, Kbyte, seconds

Table 6: Data type suffixes

26 U931-J-2125-17-76

Preface

Sample database

1.6 Sample databases

The examples used in this manual refer to a sample database configuration consisting of
the following four databases:

CUSTOMER | «—PIRECT-
LONG
CUSTOMER- HIRE PURCHASE
ORDERS-
PLACED OUTSTANDING
CUSTOMER-
ORDER INSTALMENT
CUSTOMER-
ORDER-
CONTENTS Im-
v ARTICELS
CUST-
ORDER-ITEM

ARTICLE-
ARTICLE-TYPE SELECTION
OFFI;\ AORT-LIST
ARTICLE-

DESCR |© CALC
T
PURCH-ORD-
ARTICLES-—"
SYSTEM slPECf/WmLABLE
MIN-STOCK-
LEVEL ARTICLE l«—cALC
P L_REORDERED-
ARTICLES
CONTAINS

CONTAINED-IN

SUBSET

Realms: CLOTHING, HOUSEHOLD-GOODS,
SPORTS-ARTICLES, FOOD,
LEISURE, STATIONERY

— CONTENTS
T

SYSTEM
SUPPLIERS
SUPPLIER |[¢—
CALC
/
PURCH-ORD- gLéRD_CH'
PLACED RECEIVED
PURCHASE-
ORDER
PURCH-ORD-

PURCH-ORD-
ITEM

Realm: CUSTOMER-ORDER-RLM

COLORS MATERIALS

Realm: ARTICLE-RLM

Realm: PURCHASE-
ORDER-RLM

Figure 1: SHIPPING database with schema name MAIL-ORDERS

U931-J-2125-17-76

27

Sample database

Preface

v

SYSTEM
CUSTOMER
v
CUSTOMER <4— CALC

OUTSTANDING

PURCH-ORD-ITEM

Realm: CUSTOMER-RLM

Figure 2: CUSTOMER database with schema name CUSTOMER-FILE

CONTR-PROPERTY

CUSTOMER

h 4
PROPERTY-INSURANCE

DAMAGES

CLAIMS-PROPERTY

—

Realm: PROP-RLM

\ 4 A 4

DAMAGE-CLAIM

Realm:INSURE-RLM

TRANSPORT-INSURANCE

Figure 3: SHIPPINGDB database

28

U931-J-2125-17-76

Preface

Sample database

SYSTEM
ROUTES
MODE-OF-
ROUTE TRANSPORTATION

SYSTEM @fES

SPECIAL-|DISTANCE

TYPE-OF-TRANSPORTATION

FARES

CUSTOMER

TRAVEL-
COSTS

RESERVATION

ARRANGEMENT

ACCOMMODATION

SYSTEM

DESTINATIONS

REGION

A

HOLIDAY-RESORTS

SYSTEM PLACE CATEGORY
HOTELS
SPECIAL-OFFERS 1 CATEGORIES
HOTEL

ROOM

Realm: TRAVEL-RLM

AVAILABILITY-
OF-ROOMS

Figure 4: TRAVEL database with schema name TRAVEL-AGENCY

U931-J-2125-17-76

29

Sample database Preface

30 U931-J-2125-17-76

2 Overview of UDS/SQL

21

This chapter explains the basic concepts of UDS/SQL, provides an overview of the realms
and files in a UDS/SQL database and introduces the programs of the UDS/SQL database
system.

Basic concepts of the UDS/SQL database system

UDS/SQL database

A UDS/SQL database contains large amounts of interrelated data. The data in a database
is stored in such a way that it is independent of programming functions and can be
accessed to optimum effect by a range of different programs, while keeping redundancy to
a minimum. The addition of new data and the retrieval, updating or deletion of existing data
are closely controlled.

With UDS/SQL, multiple databases can be combined to form a multi-DB system that is
processed as a single unit (see also “Database configuration” on page 33).

Database system

The database system is the sum of all the programs needed to create and maintain the data
resources and to retrieve and store data.

Database handler (DBH)

The database handler (DBH), which controls access to the database, is the central
component of UDS/SQL. It allows mono-DB operation or multi-DB operation.
The DBH is available in the following two versions:

— independent DBH
— linked-in DBH.

U931-J-2125-17-76 31

Basic concepts Overview

With the independent DBH, database operation is controlled by the following modules:

— ubssaL
- UDSSuUB
— UDSCT for UDS-D.

Each module executes as a separate task. Together, they form the task family of the
independent DBH.

The modules have the following functions:

UDSSQL Master task
UDSSQL communicates with the database administrator and initiates,
monitors and terminates the session.

UDSSUB Server task (can be loaded more than once)
UDSSUB receives the processing requests from the application programs
and returns the results to the appropriate application program.

UDSCT UDS-D task
UDSCT handles the communication functions which are needed to process
DML statements from remote application programs.

The linked-in DBH is not an independent program, but is linked into the application
program concerned or loaded dynamically at runtime and runs as part of this program. An
application program running under a linked-in DBH cannot update a database unless it is
accessing it in EXCLUSIVE mode, although any number of linked-in DBHs can have
RETRIEVAL mode access to a database. As the linked-in DBH, unlike the independent
DBH, operates without task communication, it may produce improved runtimes.

Like the independent DBH, the linked-in DBH has multi-DB capability. The linked-in DBH
cannot process SQL statements.

Session

A session is a period in which one or more users can work with the database(s). It begins
with the loading of either DBH and ends with the message “NORMAL SYSTEM TERMINATION”.
The database configuration for the session is defined by operands entered by the database
administrator when loading the DBH or in DAL commands.

32 U931-J-2125-17-76

Overview

Basic concepts

Database configuration

When starting the session, the database administrator uses the DBH load parameters to
specify which databases are to take part in the session. The databases selected for the
session and the environment in which the session is to take place are known as the
database configuration.

Every configuration is assigned a name by the administrator. The configuration data is
stored in the session log file (SLF) for the duration of the session so that the current
database configuration can be restored in the event of a restart.

Transaction

Every database application program must open a transaction with the DBH in order to
communicate with a UDS/SQL database, regardless of the type of DBH used.

A transaction (TA) is a logically related sequence of DML statements that is either
processed in its entirety or not at all. For example, a transaction in a COBOL-DML program
begins with a READY statement and ends with FINISH.

In mono-DB mode, every READY statement opens a transaction and also the database.
Thereafter, the application program can access the opened database any number of times
using DML statements. In multi-DB mode, by contrast, each database needs to be opened
independently with a READY statement. Consequently, a transaction in multi-DB mode
may include several READY statements, where the first such statement opens the
transaction itself.

Once the COBOL-DML application program has issued the DML statement FINISH to
terminate the transaction, it cannot access the database(s) again until the following applies:

— In mono-DB operation: a new transaction, and thus the database, is opened by the
application program by means of another READY statement.

— In multi-DB operation: a new transaction, and thus a database, is opened by the
application program by means of a new READY statement. Note that additional
databases may have also been opened within the same transaction by means of further
READY
statements.

Even an SQL program also only access UDS/SQL databases from within a transaction In
SQL programs, a transaction begins with the first SQL statement that differs from
COMMIT WORK and ends with the SQL statement COMMIT WORK.

U931-J-2125-17-76 33

Files and realms of a UDS/SQL database Overview

2.2

Conversation

In an SQL application, SQL-specific administrative data is maintained beyond transaction
boundaries.
Each such administrative unit is called a conversation.

In openUTM such an administrative unit is also called a service.

i

Files and realms of a UDS/SQL database

A UDS/SQL database consists of the user database and the compiler database and
comprises a number of areas (known as realms).

The user database contains all the realms and files that are needed by the user to store
data in the database and retrieve data from it. This includes:

— the user realms
— the database directory (DBDIR)
— the module library for hash routines (HASHLIB)

The compiler database, which is required by the DDL compiler and the COBOL compiler,
contains the compiled schema and subschema descriptions. It includes:

— the database directory (DBDIR)
— the database compiler realm (DBCOM)
— the COBOL subschema directory (COSSD)

34

U931-J-2125-17-76

Overview Files and realms of a UDS/SQL database

User database

DBDIR l I

DBCOM COSSD

Compiler database

Figure 5: The UDS/SQL database

U931-J-2125-17-76 35

Files and realms of a UDS/SQL database Overview

In addition to the files belonging to the user and compiler databases, certain other files are
necessary for data security and for setting up the connection to the database. The following
is a comprehensive list of the files of a UDS/SQL database:

Database realms

dbname.realmname original user realm(s)
dbname.DBDIR database directory
dbname.DBCOM database compiler realm

Files for database operation

dbname link file to database for mono-DB operation
dbname.COSSD COBOL subschema directory

dbname HASHLIB hash routine storage library
configuration-name link file for database configuration
confname. DBSTAT DB status file

confname. DBSTAT.SAVE
duplicate of the DB status file

confiname.SLF session log file (SLF)
confname. TEMPO.nnn temporary user file

UDS.ENTER.sn.STOnn
ENTER files for starting server tasks

36 U931-J-2125-17-76

Overview

Files and realms of a UDS/SQL database

Files for ensuring the security of the database

Shadow database

dbname.DBDIR.copyname
dbname. DBCOM.copyname
dbname.COSSD.copyname
dbname. HASHLIB.copyname
dbname.realmname.copyname

ALOG file

dbname.A.seqno

RLOG files

confname.RLOG rlogtimestamp.1
confname.RLOG rlogtimestamp.2
confname.RLOG.rlogtimestamp.1.SAVE
confname.RLOG.rlogtimestamp.2.SAVE

Files of the database converted with BPGSIZE

dbname.DBDIR.NEW

dbname. DBCOM.NEW

dbname.COSSD.NEW (if BPGSIZE is used to convert to a larger page format)
dbname.realmname NEW

Syntax rules

dbname

Database name; max. 17 characters in length. Used as a partial qualifier in almost
all file names for database realms and files. It has to conform to the following rules:

— dbname must be the same for all the files in the database.

— dbname must not contain special characters or blanks, and its first character
must be a letter.

— catid:Suserid.dbname.realmname.copyname may be at most 54 characters in
length.

With UDS-D:

— dbname must be unique network-wide.

U931-J-2125-17-76

37

Files and realms of a UDS/SQL database Overview

configuration-name
Freely selectable name of the database configuration; in mono-DB operation this
name can be identical to dbname. It has to conform to the following rules:

— configuration-name may be at most 41 characters in length.

— The first seven characters of all the configuration-names in a BS2000 session
must be unique network-wide.

— The first eight characters of configuration-name must not contain special
characters.

confname
the first eight characters of the database configuration defined by the database
administrator at the start of the session

With UDS-D:

— confname must be unique in the first seven characters.
nnn number of the transaction to which the file has been allocated
nn number of the server task
pool name of the common memory pool
tsn task sequence number of the master task

realm-name
name of a realm of the database;

for user realms: realm name as defined in the AREA clause of the Schema DDL
for database directory: DBDIR
for database compiler realm: DBCOM

copyname
suffix for the shadow database; copyname consists of up to seven characters.

seqno
nine-digit sequence number allocated to each ALOG file

rlogtimestamp
time at which the corresponding RLOG file was opened

The following is a short description of all the files and realms in a UDS/SQL database:

38

U931-J-2125-17-76

Overview

Files and realms of a UDS/SQL database

Database realms

User realms (dbname.realmname)

Before loading the realms with data, they have to be defined in the AREA clause of the
Schema DDL.

Database directory (dbname.DBDIR)

The database directory (DBDIR) includes the full schema description, all subschema
descriptions, and information on access rights.

It also contains information as to whether AFIM logging is switched on or off and
whether realms are added or dropped or have been deleted during restructuring.
The database handler needs this information in order to handle the user’s database
access requests within the area of the used subschema.

Database compiler realm (dbname.DBCOM)

The database compiler realm (DBCOM) stores information on the realms, records and
sets that the user has defined in the Schema DDL and the Subschema DDL. The
DBCOM is required only for compiling the Schema DDL and the Subschema DDL and
for creating the DBDIR and the COSSD.

Files required for database operation

Link file (dbname)
Empty link file for the database in mono-DB operation.
COBOL subschema directory (dbname.COSSD)

On compiling the subschema, the DDL compiler writes information on itinto the COBOL
subschema directory (COSSD). This information is required by the COBOL compiler to
compile DB application programs. The COSSD provides the COBOL compiler with the
data structure of the subschema and with a table for checking the validity of the DML
commands.

Module library for hash routines (dbname. HASHLIB)
The module library dbname.HASHLIB stores the hash routines for the database.
Link file (configuration-name)

Empty link file for the DB configuration in multi-DB operation.

U931-J-2125-17-76

39

Files and realms of a UDS/SQL database Overview

DB status file
(confname. DBSTAT)
(confname. DBSTAT.SAVE)

The DB status file is required by openUTM for a restart; it contains information on the
transaction that was most recently rolled back in each UDS/SQL/openUTM application.
The DB status file is duplicated for data security reasons.

With UDS-D please note:

In distributed processing with UDS-D, this file may also hold information stored when
the transaction is committed.

Session log file (confname.SLF)

The session log file (SLF) is required by the DBH for restarts, as it contains information
on the databases attached to the configuration and the current values of the DBH load
parameters.

Temporary user file (confname. TEMPO.nnn)

If a temporary realm has been declared for (at least) one of the databases in the
configuration, the DBH creates a temporary file for each main reference (parallel open
transaction). This file stores temporary information.

nnn number of main reference
ENTER files (UDS.ENTER.tsn.ST0nn)

The master task generates one or more ENTER files for server tasks
(UDS.ENTER:.tsn.STOnn).

These ENTER tasks are started by the master task using the ENTER commands. If the
session is terminated normally, the master task deletes all ENTER files.

Files for ensuring data security

Shadow database

(dbname.DBDIR.copyname)
(dbname.DBCOM.copyname)
(dbname.COSSD.copyname)
(dbname.HASHLIB.copyname)
(dbname.realmname.copyname)

You can use the COPY-FILE command to copy the realms and files of the database.
The MODIFY-FILE-ATTRIBUTES commands allow you to rename the database. You
can also save the database using the BS2000 utility ARCHIVE.

40

U931-J-2125-17-76

Overview Files and realms of a UDS/SQL database

— ALOG files (dbname.A.seqno)

The DBH or any updating utility routine logs every update to a page, i.e. the status of
the page after the update (after-image) in ALOG files. These ALOG files can thus be
used to apply updates to the database.

The shadow database has no ALOG files; however, all changes can be incorporated
into the shadow database by using the ALOG files of the original database.

— RLOG files

(confname.RLOG.rlogtimestamp.1)
(confname.RLOG.rlogtimestamp.2)
(confname.RLOG.rlogtimestamp.1.SAVE)
(confname . RLOG.rlogtimestamp.2.SAVE)

The RLOG files are used by the DBH to log information (data) being changed both
before the change (before-image, or BFIM) and after the change (after-image, or
AFIM) as needed for use in any rollbacks or warm starts that may be required.

Maximum size of UDS/SQL files

UDS/SQL can administer a maximum of 16777214 database pages in a realm. This results
in the following limit values for the maximum file sizes:

Database page size Maximum file size in PAM pages
2 Kbyte 16777214
4 Kbyte 33554428
8 Kbyte 67108856

Table 7: Limit values for file sizes

UDS/SQL supports of utility routines realm files, temporary files, logging files and work files
as LARGE FILEs. Files which, because of their nature, can only be of a limited size are not
processed with the LARGE FILE property by UDS/SQL (DBSTAT, COSSD, HASHLIB,
parameter files). The monitor’s output files also do not have the LARGE FILE property.

Files set up as auxiliary files by the UDS/SQL utility routines are not created with
BLKCNTRL=PAMKEY so that it is not made implicitly impossible to use them as
LARGE FILEs.

U931-J-2125-17-76 41

Files and realms of a UDS/SQL database Overview

The following prerequisites must be fulfilled in the system if the LARGE FILE property is to
be used:

— Large files may only be used in pubsets that have the property
LARGE-FILES-ALLOWED.

— Large files cannot be used in the HOME pubset.
— Large files cannot be used with BLKCTRL=PAMKEY.

Passwords for UDS/SQL files

UDS/SQL protects the automatically generated files with the default password: C'UDS..".
The RLOG file is an exception. The password for the RLOG file, which is made up of parts
of the RLOG time stamp, is assigned automatically. The password can only be deleted
without password protection in the system ID ($TSOS).

42

U931-J-2125-17-76

Overview

Overview of UDS/SQL programs

2.3 Overview of UDS/SQL programs

The UDS/SQL (BS2000) system in its entirety incorporates a series of programs required
for creating, maintaining and communicating with the database

The functions of these programs are described in brief below:

Creating the |Preparing the | Loading or Monitoring Working with | Testing
database program run |unloading the | the session the database |DML

database functions
BCREATE BCALLSI BINILOAD UDSMON IQS DMLTEST
DDL BOUTLOAD (not part of the
SSL UDS/SQL
BGSIA delivery
BFORMAT package)
BGSSIA
BPRIVACY
OPRIVACY

Database maintenance

Information Reorganizing | Restructuring | Recovering Checking the |Database
output the database |the the database |database conversion

database/Re-

naming data-

base objects
BPSIA BREORG BCHANGE BMEND BCHECK BPGSIZE
BPSQLSIA BMODTT BRENAME BTRANS24
BSTATUS ONLUTIL BALTER
BPRECORD

Database operation

Administer UDS/SQL
UDSADM

Table 8: Program overview

Creating the database

BCREATE
DDL

SSL

formats the DBDIR and the DBCOM.

DDL compiler
compiles the Schema DDL and the Subschema DDL, and sets up DBCOM
and COSSD.

SSL compiler
compiles the SSL and modifies data in DBCOM.

U931-J-2125-17-76

43

Overview of UDS/SQL programs Overview

BGSIA sets up the schema information area (SIA) and stores it in the DBDIR.
BFORMAT formats the user realms of the database and modifies the SIA.

BGSSIA sets up the subschema information area (SSIA) and stores it in the DBDIR
BPRIVACY or OPRIVACY

enters the user access rights in the DBDIR.

Preparing for the program run
BCALLSI only needed in conjunction with CALL DML.
BCALLSI makes subschema information available to CALL DML users.
Loading the database
BINILOAD rapidly loads large volumes of data of the same record type into the
database.
Unloading the database

BOUTLOAD copies, deletes or unloads record types from a database.

Monitoring the session

UDSMON outputs the UDS/SQL operating values during database operation.

Testing DML functions

DMLTEST tests individual DML functions in interactive mode and in procedures.

Outputting information on the database

BPSIA prints a summary of the chief information from the schema or a given
subschema of the database

BPSQLSIA prints the relational schema information of an existing UDS/SQL
subschema defined in accordance with the CODASYL model.
The relational schema information serves as a programming aid for the SQL
user.

BSTATUS generates statistics on storage occupancy in the database realms.

BPRECORD outputs the contents of database realms.

44

U931-J-2125-17-76

Overview

Overview of UDS/SQL programs

Reorganizing the database

BREORG increases and reduces the size of database realms, increases and reduces
the permissible number of records of a record type and reorganizes tables
and hash areas

BMODTT controls the reuse of database key values that have been released and the
search for free space by the DBH.

ONLUTIL relocates records in a database and modifies settings to a database.

Restructuring/renaming the database

BCHANGE prepares DBDIR, DBCOM and COSSD for restructuring
BRENAME prepares DBDIR, DBCOM and COSSD for renaming.

BALTER executes the restructuring/renaming of the existing database in accordance
with the new schema description.

Recovering the database

BMEND creates ALOG files and offers functions for recovering a destroyed
database and outputting information on the status of realms to be updated
and ALOG files.

Checking the database

BCHECK checks whether the physical structures of a database are correct; can be
used in conjunction with data security so that inconsistencies in the
database can be detected and eliminated at an early stage.

Converting the database

BPGSIZE defines a new page format for the database (database conversion).
During conversion, BPGSIZE can optionally create

— a copy of the database with the larger page length.

— a copy of the database with the unaltered page length. Note that the
realms of the converted database usually require less storage space.

BTRANS24 converts databases of UDS/SQL V2.0 to V2.3 for use in UDS/SQL V2.4 and
higher.

U931-J-2125-17-76 45

Overview of UDS/SQL programs

Overview

UDS/SQL administration

UDSADM

The UDSADM program can be used to administer a UDS/SQL

configuration.

Some utility programs that access UDS/SQL databases have to be run in conjunction with
the DBH: such programs load the linked-in DBH using default values for the load

parameters, and they all work with only one database.

The following table shows which programs load the linked-in DBH dynamically and which
require files from the compiler database during the program run:

uDS/sQL
program

Loads linked-in
DBH dynamically

Access to

DBDIR

DBCOM

CcossD

BALTER

x

X

BCALLSI

BCHANGE

X

BCHECK

BCREATE

BFORMAT

BGSIA

BGSSIA

BINILOAD

BMEND

BMODTT

BOUTLOAD

BPGSIZE

BPRECORD

BPRIVACY

BPSIA

BPSQLSIA

BRENAME

BREORG

BSTATUS

BTRANS24

X XPX|XPX|X|X|IX[X|IX|X|X|X]|X|X]|X|X]|X|X

COBOL compiler -

DDL compiler

X

X

X
X

Table 9: Overview of programs in the UDS/SQL database system

(part 1 of 2)

46

U931-J-2125-17-76

Overview START commands for the UDS/SQL programs
DMLTEST X? X - -
ONLINE- - X X! -
PRIVACY
ONLINE-UTILITY X2 X - -
SSL compiler X X X -
UDSADM - - - -
UDSMON - - - -
Table 9: Overview of programs in the UDS/SQL database system (part 2 of 2)
1 The DBCOM is not read, but it must be present
2 Optional

2.3.1 START commands for the UDS/SQL programs

The following table shows the START commands (and their aliases) that you can use to call
the specified UDS/SQL programs

The following prerequisites must be fulfilled:

— UDS/SQL must be installed with IMON and
— the SDF system syntax file must be activated.

Program START command Alias

ubSSQL START-UDS-DBH UDS, SYSINT

BALTER START-UDS-BALTER BALTER

BCALLSI START-UDS-BCALLSI BCALLSI

BCHANGE START-UDS-BCHANGE BCHANGE

BRENAME START-UDS-BRENAME BRENAME

BCHECK START-UDS-BCHECK BCHECK

BCREATE START-UDS-BCREATE BCREATE

BFORMAT START-UDS-BFORMAT BFORMAT

BGSIA START-UDS-BGSIA BGSIA

BGSSIA START-UDS-BGSSIA BGSSIA

BINILOAD START-UDS-BINILOAD BINILOAD

BMEND START-UDS-BMEND BMEND, START-UDS-REPAIR

Table 10: Calling UDS/SQL programs using START commands (part 1 of 2)
U931-J-2125-17-76 47

START commands for the UDS/SQL programs

Overview

Program START command Alias

BMODTT START-UDS-BMODTT BMODTT

BOUTLOAD START-UDS-BOUTLOAD BOUTLOAD,
START-UDS-OUTLOAD

BPGSIZE START-UDS-BPGSIZE BPGSIZE
START-UDS-PAGE-RESIZING

BPRECORD START-UDS-BPRECORD BPRECORD

BPRIVACY START-UDS-BPRIVACY BPRIVACY
START-UDS-AUTHORIZATION

BPSIA START-UDS-BPSIA BPSIA

BPSQLSIA START-UDS-BPSQLSIA BPSQLSIA,
START-UDS-PRINT-SQLSIA

BREORG START-UDS-BREORG BREORG,
START-UDS-REORGANIZATION

BSTATUS START-UDS-BSTATUS BSTATUS

DDL START-UDS-DDL DDL

DMLTEST START-UDS-DMLTEST DMLTEST

SSL START-UDS-SSL SSL

ONLINE-PRIVACY START-UDS-ONLINE-PRIVACY | OPRIVACY

UDSADM START-UDS-ADM UDSADM,
START-UDS-ADMINISTRATION

UDSMON START-UDS-UDSMON UDSMON

UDS online utility START-UDS-ONLINE-UTILITY ONLUTIL

Table 10: Calling UDS/SQL programs using START commands

(part 2 of 2)

48

U931-J-2125-17-76

Overview START commands for the UDS/SQL programs

Syntax of the START-UDS-... commands

START-UDS-...

VERSION = *STD / <product-version>
,MONJV = *NONE / <filename 1..54 without-gen-vers>
,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

,RESIDENT-PAGES = [*PARAMETERS](...) Only for DBH
[*PARAMETERS](...)
MINIMUM = *STD / <integer 0..32767 4Kbyte>
,MAXIMUM = *STD / <integer 0..32767 4Kbyte>

VERSION =
Product version of the program which is to be started.

VERSION = *STD
No explicit specification of the product version. The product version is selected as follows:

1. The version predefined with the /SELECT-PRODUCT-VERSION command.
2. The highest version installed with IMON.

VERSION = <product-version>
Explicit specification of the product version in the form mm.n[a[kk]].

You are recommended always to specify the version in full, e.g. 02.8A00, in order to
facilitate migration in the event of correction packages.

MONJV =
Specifies a monitor job variable to monitor the program run.

MONJV = *NONE
No monitor job variable is used.

MONUJV = <filename 1..54 without-gen-vers>
Name of the job variable to be used.

During the program run the system sets the job variable to the following values:

$R Program running
$T Program successfully terminated
$A Program terminated with error

U931-J-2125-17-76 49

START commands for the UDS/SQL programs Overview

CPU-LIMIT =
Maximum CPU time in seconds which the program may take to execute.

CPU-LIMIT = *JOB-REST
The remaining CPU time for the BS2000 job is to be used for the task.

CPU-LIMIT = <integer 1..32767 seconds>
Only the time specified should be used.

RESIDENT-PAGES = *PARAMETERS(...)
This operand is only permitted for the DBH.

Number of resident memory pages which are required for the DBH run.

This operand must be specified if pages are to be made resident in the program by means
of a CSTAT macro (see the “Executive Macros” manual). The permissible number of
resident memory pages can be influenced by the operator.

If the operand is missing (this corresponds to MIN=*STD, MAX=*STD), the memory
requests are taken from the first record in the program. The file must be open to do this.

MINIMUM = *STD / <integer 0..32767 4Kbyte>
Minimum number of resident memory pages required.

MAXIMUM = *STD / <integer 0..32767 4Kbyte>
Maximum number of resident memory pages required.

50

U931-J-2125-17-76

Overview Tools for UDS/SQL

UDS/SQL programs not installed with IMON

If UDS/SQL has not been installed with IMON, you must enter the following commands to

start the UDS/SQL programs:

[/MODIFY—-SDF-OPTIONS SYNTAX-FILE=$userid.SYSSDF.UDS=SQL.028.USER]
/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname
/ADD=FILE-LINK LINK-NAME=$UDSLIB,FILE-NAME=$userid.SYSLNK.UDS-SQL.028
/START—EXECUTABLE-PROGRAM FROM—-FILE=(LIB=$userid.SYSLNK.UDS-SQL.028

,ELEMENT=uds-utility)

You only need to specify the USER syntax file with the MODIFY-SDF-OPTIONS command

if the system syntax file SYSSDF.UDS-SQL.028 is not active and if UDS/SQL programs are

used with the SDF command interface, i.e. for

- BMEND

— BOUTLOAD

- BPGSIZE

— BPRIVACY and OPRIVACY

— BPSQLSIA

- BREORG

— UDSADM

— BTRANS24

2.4 Tools for UDS/SQL

A number of tools that are not an integral part of the UDS/SQL product scope are supplied
as an additional service. Descriptions of these tools can be found in the information files
included in the delivery package.

The tools are not subject to any maintenance obligation and can be modified or withdrawn
by Fujitsu Technology Solutions without prior announcement.

U931-J-2125-17-76 51

Tools for UDS/SQL Overview

52 U931-J-2125-17-76

3 Database creation
(BCREATE, BFORMAT, DDL- and SSL-
Compiler, BGSIA, BGSSIA, BCALLSI)

The creation of a database requires a number of steps, which are listed in figure 6. The
diagram gives you the exact sequence of the preparations you have to make and the
programs you have to run.

U931-J-2125-17-76

53

Database creation

10)

Initialize volumes

BCREATE

Compile
schema DDL

Compile SSI

BGSIA

LMS

BFORMAT

Compile Sub-
schema DDL

BGSSIA

BPRIVACY

once

any number
of times

Preparation

Generate schema

Format user realms

Generate subschema

Allocate access rights

Figure 6: Stages in the creation of a database

54

U931-J-2125-17-76

Database creation

BCALLSI } Create SSITAB module

Figure 7: Additional database creation measures

Preparatory stage

1) The CREATE-FILE command is used to allocate storage space for the realms and
files of the compiler database: DBDIR, DBCOM, COSSD and DBSTAT.

Generating the schema

2) The BCREATE utility routine formats the realms and files of the compiler database:
DBDIR and DBCOM.
3) The DDL compiler compiles the Schema DDL and stores the compiled result in the

DBCOM. It also stores information in the COSSD file which it has set up previously.

4) SSL compilation is optional, depending on whether the default values for the
storage structure are to apply or whether the physical structure of the database is
to be defined with SSL. If a storage structure definition (SSL) has already been
generated, it has to be compiled at this point.

The SSL compiler redefines the record and set entries in DBCOM accordingly.

5) The BGSIA utility routine sets up the schema information area (SIA) on the basis of
the entries in the DBCOM and stores it in the DBDIR. In addition, BGSIA generates
the UDSHASH module and stores it in the EAM file.

6) The UDSHASH module generated by BGSIA has to be entered in the module
library dbname.HASHLIB using the BS2000 utility routine LMS (see the "LMS
(BS2000)" manual).

Formatting user realms

7) The BFORMAT utility routine formats the user realms of the database on the basis
of the information stored in the DBDIR. The data is then located in the schema
information area (SIA).

U931-J-2125-17-76 55

Database creation

Generating the subschema

8) The DDL compiler compiles the Subschema DDL and stores it in the DBCOM and
COSSD.

9) The BGSSIA utility routine sets up the subschema information area (SSIA) and
stores it in the DBDIR.

Defining access rights

10) The ONLINE-PRIVACY or BPRIVACY utility routine is used to assign access rights
(see the chapter “Specifying access authorizations (ONLINE-PRIVACY,
BPRIVACY)” on page 103).

Generating the SSITAB module

The BCALLSI utility routine is required by CALL DML users only. BCALLSI generates the
SSITAB module with the subschema information needed by the CALL DML application
program.

56

U931-J-2125-17-76

Database creation Preparing database creation

3.1

3.1.1

Preparing database creation

Preparations for database creation comprise:

— setting up the compiler database
— setting up the user database.

When using MPVS to determine the location of storage on public disks, please refer to the
instructions in the "UDS/SQL Database Operation" manual (cf. Using MPVS in UDS/SQL
in the “Database Operation” manual).

Setting up the compiler database

The compiler database (see section “Files and realms of a UDS/SQL database” on
page 34) consists of the following realms:

DBDIR database directory

DBCOM database compiler realm

the file:

COSSD COBOL subschema directory

These files and realms have to be set up and their size specified using the BS2000
command CREATE-FILE.

U931-J-2125-17-76 57

Preparing database creation

Database creation

Setting up DBDIR and DBCOM

/CREATE-FILE FILE-NAME=dbname.DBDIR
, SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY—-ALLOCATION=primary
, SECONDARY—-ALLOCATION=secondary))

[,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn,DEVICE-TYPE=device,SPACE=. ..

/CREATE-FILE FILE-NAME=dbname.DBCOM
, SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY—-ALLOCATION=primary
, SECONDARY-ALLOCATION=secondary))

[,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn,DEVICE-TYPE=device,SPACE=. ..

/ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

dbname

Database name; max. 17 characters in length. dbname is used as a partial qualifier
in almost all file names for database files and has to conform to the following rules:

— dbname must be the same for all files in the database.

— dbname must not contain special characters or blanks, and its first character

must be a letter.

— catid:$userid.dbname.realmname.copyname may be at most 54 characters in

length.
With UDS-D:
— dbname must be unique network-wide.
SPACE

Specification of storage space (see “Maximum size of UDS/SQL files” on page 41).

PRIMARY-ALLOCATION=primary
Primary allocation;

In order to format the DBCOM and DBDIR with the BCREATE utility routine, the
following minimum values are required for the primary allocation (see section

“Formatting the compiler database with BCREATE” on page 63):

DBDIR DBCOM
2-Kbyte format 52 100
4-Kbyte format 79 424
8-Kbyte format 127 607

58

U931-J-2125-17-76

Database creation

Preparing database creation

In the case of databases with large schemas, a correspondingly higher allocation is
required, or automatic extensibility must be enable by a secondary allocation > 0.
The BREORG utility routine can be used later to reduce the amount of unused
space (see the "Recovery, Information and Reorganization" manual, BREORG).

SECONDARY-ALLOCATION=secondary

Secondary allocation.

secondary=0

This setting suppresses the option of automatic realm extensibility and of online
realm extensibility.

secondary>0

Prerequisite for automatic realm extensibility and online realm extensibility and
prerequisite for activating online extensibility of the DBDIR using the ACT INCR
command.

In the case of secondary>0, online realm extensibility is already activated for the
realm concerned when the database is created.

When online realm extensibility is activated in this way, the default values
NR-PAGES=64 and MIN-PAGES=0 are entered for NR-PAGES and MIN-PAGES
(see Activating online extensibility when creating databases and DAL command
ACT INCR in the “Database Operation” manual).

VOLUME
DEVICE-TYPE

Ppriv-vsn

if DBDIR and DBCOM are stored on private disk (PRIVATE VOLUME), the following
must be specified:

Volume serial number

device Device type of private disk.
LINK-NAME

The database directory should be linked to the database via the file link name
DATABASE.

U931-J-2125-17-76

59

Preparing database creation Database creation

Setting up COSSD

/CREATE-FILE FILE-NAME=dbname.COSSD
, SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY—-ALLOCATION=primary
, SECONDARY—-ALLOCATION=secondary))
[,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn,DEVICE-TYPE=device,SPACE=...)]

Specification of storage space (see “Maximum size of UDS/SQL files” on page 41).

PRIMARY-ALLOCATION=primary

Primary allocation;

the storage space requirement of the COSSD is directly dependent on the size of
the compiled subschemas.

In order to ensure that additional compiled subschemas can be added too the
COSSD at a later stage if required, it is advisable to create the COSSD with a
primary and secondary allocation (see below) of 100 2K units (BS2000 half pages)
each.

SECONDARY-ALLOCATION=secondary

Secondary allocation;

depending on how the operating system has been generated, there may be limits
on the extent to which COSSD can be dynamically extended.

A value of 100 2K units (BS2000 half pages) is recommended.

VOLUME
DEVICE-TYPE

If you store COSSD on private disk (PRIVATE VOLUME), the following must be
specified:

priv-vsn Volume serial number

Device type of private disk.

60

U931-J-2125-17-76

Database creation Preparing database creation

3.1.2 Setting up the user realms

Like the realms and files of the compiler database, the user realms have to be set up with
the CREATE-FILE command.

If it is not possible to estimate the size of the user realms before the Schema DDL and SSL
are compiled, setting up the user realms after BGSIA and before BFORMAT will suffice.
BGSIA prints out the ESTIMATE-REPORT listing the sizes of individual user realms as
estimated by UDS/SQL (see “Description of the ESTIMATE-REPORT” on page 84).

/CREATE-FILE FILE-NAME=dbname. realm—-name
, SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE(PRIMARY-ALLOCATION=primary
, SECONDARY—-ALLOCATION=secondary))
[,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn,DEVICE-TYPE=device,SPACE=...)]

dbname
Database name

realmname
Name of the user realm defined in the Schema DDL

SPACE
Specification of storage space (see “Maximum size of UDS/SQL files” on page 41).

PRIMARY-ALLOCATION=primary
Primary allocation for user realm

SECONDARY-ALLOCATION=secondary
Secondary allocation;

secondary=0
Suppresses automatic realm extensibility and online realm extensibility.

secondary>0
Prerequisite for automatic realm extensibility and online realm extensibility.
In the case of secondary>0, online realm extensibility is already activated for the
realm concerned when the database is created.
When online realm extensibility is activated in this way, the default values
NR-PAGES=64 and MIN-PAGES=0 are entered for NR-PAGES and MIN-PAGES
(see Activating online extensibility when creating databases and DAL command
ACT INCR in the “Database Operation” manual).

VOLUME
DEVICE-TYPE

If the user realm is stored on private disk (PRIVATE VOLUME), the following must
be specified:

U931-J-2125-17-76 61

Preparing database creation

Database creation

priv-vsn
Volume serial number

device
Device type of private disk

62

U931-J-2125-17-76

Database creation BCREATE

3.2 Generating the schema

3.2.1

In order to generate the schema, the following programs must execute one after the other:
BCREATE formats the compiler database

DDL compiler compiles the Schema DDL

SSL compiler compiles the SSL

BGSIA sets up the Schema Information Area (SIA)

Formatting the compiler database with BCREATE

The BCREATE utility routine is used to format the DBDIR and DBCOM realms of the
compiler database.

BCREATE assigns to the DBDIR and DBCOM an Act-key-0 page (security information,
creation date, etc.) and at least one FPA page (free place administration).

When required, BCREATE automatically extends the realms of the database being
processed. For details, please refer to the “Database Operation” manual, Automatic realm
extension by means of utility routines).

At startup BCREATE takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

SYSDTA
BCREATE
——— l_l I_l

DBDIR DBCOM

Figure 8: System environment for BCREATE

U931-J-2125-17-76 63

BCREATE

Database creation

A UDS/SQL database can be optionally created with a 2-Kbyte, 4-Kbyte, or 8-Kbyte page
format. In the 4-Kbyte and 8-Kbyte page formats, every database page is embedded in a
page container (see the “Design and Definition“ manual). This results in the following values
for the database page length:

— 2048 bytes for databases with a 2-Kbyte page format
— 4000 bytes for databases with a 4-Kbyte page format (the page container is 4096 bytes)
— 8096 bytes for databases with a 8-Kbyte page format (the page container is 8192 bytes)

Statements for BCREATE

Statement Default Meaning
value

4KB Optional;
defines the page length for a new database:
- 2KB
The database is created with a 2-Kbyte
page format
- 4KB
The database is created with a 4-Kbyte
page format
- 8KB
The database is created with an
8-Kbyte page format

KB

DATABASE-PAGE-L ENGTH IS {

Q0 [+~ N
<

o o
—_—

END - mandatory; terminates the statement input

Table 11: Statements for BCREATE

Command sequence to start BCREATE

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /CREATE-FILE FILE-NAME=dbname.DBDIR ...

02 /CREATE-FILE FILE-NAME=dbname.DBCOM ...

03 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

04 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
05 /START-UDS—-BCREATE

06 [DATABASE-PAGE-LENGTH IS {2/4/8}KB]

07 END

64

U931-J-2125-17-76

Database creation BCREATE

01/02 See “Setting up DBDIR and DBCOM” on page 58.

04 The specified version of BCREATE is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.
05 The UDS/SQL utility routine can also be started using the alias BCREATE.
06 The DATABASE-PAGE-LENGTH statement may be dropped only if the database is
to be created with a 4-Kbyte page format.
07 The END statement is mandatory.
Example
/CREATE-FILE FILE-NAME=TRAVEL.DBDIR,SUPPORT=PUBLIC-DISK(SPACE= -
/ RELATIVE (PRIMARY-ALLOCATION=150 , SECONDARY-ALLOCATION=50))
/CREATE—FILE FILE-NAME=TRAVEL.DBCOM,SUPPORT=PUBLIC—DISK(SPACE=RELATIVE -
/ (PRIMARY-ALLOCATION=500, SECONDARY-ALLOCATION=50))

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS—BCREATE

Fxkxxk START BCREATE (UDS/SQL V2.8 0000) 2015-06-28 11:40:28
+++++ WARNING: 1917 BLOCKLENGTH SET TO 4KB

* SCHEMAS AND SUBSCHEMAS WRITTEN TO DBDIR

* VERSION-RECORDS WRITTEN TO DBDIR

* DBCOM SUCCESSFULLY FORMATTED

DBDIR SUCCESSFULLY FORMATTED

*

Hokkk DIAGNOSTIC SUMMARY OF BCREATE

- 1 WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

wokk END OF DIAGNOSTIC SUMMARY
*kk NR OF DATABASE ACCESSES 69
*xxx NORMAL END BCREATE (Ubs/sQL v2.8 0000) 2015-06-28 11:40:28

U931-J-2125-17-76

65

Compiling the Schema DDL Database creation

3.2.2 Compiling the Schema DDL

The Schema DDL is compiled with the aid of the DDL compiler; it has to be assigned to the
compiler as an input file.

On completing the compilation, the DDL compiler stores the schema description in the
DBCOM (database compiler realm).

On the basis of this information, the subsequent BGSIA utility routine creates the SIA and
stores it in the DBDIR (database directory).

Once an SSL description has been created, the compiled schema description in the
DBCOM forms the basis for further processing by the SSL compiler and the BGSIA utility
routine.

If no SSL description has been created, the schema description in the DBCOM is complete.

The DDL compiler also creates the COBOL subschema directory (COSSD), which stores
information for the COBOL compiler. This information is needed for generation of the DB
application programs. The actual contents of the COSSD are not generated until the
Subschema DDL is compiled.

When required, the DDL compiler automatically extends the DBDIR and DBCOM of the
database being processed or the DBTTs of the record types in the DBDIR and DBCOM. For
details,

please refer to the “Database Operation” manual, Automatic realm extension by means of
utility routines).

At startup the DDL compiler takes into account any assigned UDS/SQL pubset declaration
(see the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

During execution the DDL compiler uses the linked-in DBH.

66

U931-J-2125-17-76

Database creation

Compiling the Schema DDL

SYSDTA

A/ —\\R\

Schema
DDL

DBDIR

DDL

DBCOM

Figure 9: System environment for Schema DDL compilation

U931-J-2125-17-76

67

Compiling the Schema DDL Database creation

Compiler statements:

The DDL compiler is used to compile both the Schema DDL and the Subschema DDL; the
SSL, on the other hand, is compiled by the SSL compiler.
The following table is a list of compiler statements for:

— the Schema DDL, marked with DDL
— the Subschema DDL, marked with SDDL
— the SSL, marked with SSL.

Statement Com- |De- |Meaning
piler |fault
value
YES DDL NO | optional;
PARLIST IS SDDL YES
NO SSL all statements are listed on SYSLST
NO
statements are not listed
YES DDL | YES |optional;
SORCLIST IS SDDL YES
NO SSL a listing is printed out on SYSLST, possibly
containing error messages
NO
no listing is printed
Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 1 of 6)

68

U931-J-2125-17-76

Database creation

Compiling the Schema DDL

Statement

Com-
piler

De-
fault
value

Meaning

SOURCE IS

"dateiname'
"bib(element)'

|

DDL
SDDL
SSL

not required for inputs in interactive mode or if
SYSDTA is assigned as the input file - in this
case, it should be noted that all the statements,
(at least END) must be entered first followed by
the actual source.

assigns the compiler the file containing the
Schema DDL/Subschema DDL/SSL.

Instead of 'file-name’ it is also possible to specify
an element of a program library

(see "Program libraries" in the

"LMS (BS2000)" manual).

lib: name of program library
element: name of element

SYSDTA is switched to the input file. It is reset
to SYSCMD upon completion of the compiler
run.

The statements “SOURCE IS* and “DELETE
SCHEMA" or “DELETE SUBSCHEMA" may not
be used within the same DDL compiler run.

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 2 of 6)

U931-J-2125-17-76

69

Compiling the Schema DDL

Database creation

Statement

Com-
piler

De-
fault
value

Meaning

SUBSCHEMA FORM IS 0OLD

SDDL

optional;

this statement is only required for subschemas
which are used by KDBS applications;

it is permissible only in conjunction with the
“SOURCE IS filename” statement and is ignored
when compiling schemas.

The “SUBSCHEMA FORM IS OLD” statement
causes the transformed subschema and the
check table (CHECK-TABLE) to be entered in
the COSSD in an internal format which was the
standard format up to and including UDS/SQL
V1.2 (“old” form; all reference numbers are 1
byte long).

A subschema can be compiled to a format

compatible with UDS/SQL V1.2 only if the

following conditions are satisfied:

— No item of the subschema is of type
DATABASE-KEY-LONG.

— No item of the subschema is of the type
NATIONAL.

— No record type of the subschema is longer
than 2020 bytes.

— All record references and set numbers of
the schema are < 254.

Otherwise, the DDL compiler aborts with syntax

errors, and the subschema is not entered in the

DBCOM and COSSD.

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 3 of 6)

70

U931-J-2125-17-76

Database creation

Compiling the Schema DDL

Statement

Com-
piler

De-
fault
value

Meaning

YES
ENERATE-REC—-REF IS

NO

SDDL

NO

optional;
YES
record references are generated

In the IMPLICITLY-DEFINED-DATA-NAMES
structure a field REC-REF PIC S9(4) BINARY is
defined. For each record reference a condition
name (level number 88) is assigned to this field,
which matches the following pattern:
REF-record name.

As the maximum length of a name is 30
characters, record name, is truncated to 26
characters if necessary. In this case record_name
must be unique in the first 26 characters.

The record reference can be used in a COBOL
program as follows:

SET REF-record name IN REC-REF TO TRUE.
MOVE REC-REF TO dbkey.

NO
record references are not generated

This statement is effective only for the
generating of subschemas. When generating
schemas the statement is ignored.

DELETE SCHEMA

'schema—name'

DDL

optional;

deletes the specified schema; useful after
restructuring with BALTER if the DDL executes
correctly and the SSL compilation reports errors
actually attributable to the DDL

schema-name: name of schema
The “SOURCE IS* and “DELETE SCHEMA*

statements must not be used within the same
DDL compiler run.

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 4 of 6)

U931-J-2125-17-76

71

Compiling the Schema DDL

Database creation

Statement

Com-
piler

De-
fault
value

Meaning

DELETE [ONLY JSUBSCHEMA

0F
'subschema-name'

SCHEMA 'schema—-name'

SDDL

optional;

deletes the specified subschema. The
subschema being compiled may have the same
name as the subschema named in the DELETE
statement, as it is deleted before the compiler
run.

ONLY
if the parameter is omitted, a SOURCE
statement must follow the DELETE statement.

If the parameter is specified, any SOURCE
statement is ignored.

subschema-name: name of subschema
schema-name: name of schema

Both names have to be given in single quotes

YES
DISPLAY IS

=

DDL
SDDL
SSL

NO

optional;

YES
information held in DBCOM relating to record
types, sets, etc. is output in unencoded form.

NO
values in DBCOM are not output

CREATE COSSD 'schema-name'

DDL
SDDL

Retroactive creation of COSSD.

If this was forgotten during schema compilation
or the DDL compiler was terminated abnormally
owing to an error when the COSSD was being
configured, this can be carried out in a separate
run before the first subschema is compiled;
schema-name: has to be given in single quotes.
The COSSD has to be created with a CREATE-
FILE command prior to the compiler run.

N.B.:
If the SOURCE IS ... parameter is specified at
the same time, compilation will be suppressed.

Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL

(part 5 of 6)

72

U931-J-2125-17-76

Database creation Compiling the Schema DDL

Statement Com- |De- |Meaning
piler |fault
value
COMPARE SUBSCHEMAS SDDL| - |admissible only after restructuring with
BALTER.

The subschemas of the old schema are
checked for compatibility with the new schema;
for this purpose the DDL compiler reads the
subschemas from the old COSSD after the
BALTER run.

If an old subschema is compatible with the new
schema, it is entered in the new DBCOM and in
the new COSSD.

<

YES

diagnoses incompatibilities between old
subschemas and the new schema and lists
them in the form of error messages

ES SDDL| NO |only meaningful in conjunction with COMPARE
DIAGNOSTIC IS

NO

NO
no error messages are output
SINGLE DDL |DOU- |either;
QUOTE TS SDDL |BLE |SINGLE
DousLE literals in the Schema DDL/ Subschema DDL
are given in single quotes
DOUBLE
literals in the Schema DDL/ Subschema DDL
are given in double quotes
END DDL mandatory;
SDDL - terminates statement input
SSL
Table 12: Compiler statements for the Schema DDL/Subschema DDL/SSL (part 6 of 6)

U931-J-2125-17-76 73

Command sequence Database creation

Command sequence for compiling the Schema DDL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01
02
03
04

05
06
07

01
03

04

05
06

/CREATE-FILE FILE-NAME=dbname.COSSD ...
/ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

/CREATE-FILE FILE-NAME=dbname.DBSTAT,SUPPRESS—ERRORS=*FILE-EXISTING
/CREATE-FILE FILE-NAME=dbname.DBSTAT.SAVE, SUPPRESS—ERRORS=*FILE-EXISTING

/START-UDS-DDL
ddl-compiler-statements

END

See “Setting up COSSD” on page 60.

The version-dependent module of the linked-in DBH of the relevant version is
loaded dynamically (see section "Compiling, linking and loading UDS/SQL-TIAM
application programs” in the "Application Programming" manual).

The DBH requires the DB status files.

If the database name contains more than 8 characters, only the first 8 characters of
the database name may be specified for dbname.

The UDS/SQL utility routine can also be started with the alias DDL.

The individual statements can be entered in one line if they are separated by
commas or blanks.

74

U931-J-2125-17-76

Database creation Example

Example

/CREATE-FILE FILE-NAME=TRAVEL.COSSD,SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -

/ (PRIMARY—ALLOCATION=30, SECONDARY—ALLOCATION=10))

/CREATE-FILE FILE-NAME=TRAVEL.DBSTAT, SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -

/ (PRIMARY—ALLOCATION=24 , SECONDARY—ALLOCATION=48))

/CREATE-FILE FILE-NAME=TRAVEL.DBSTAT.SAVE, SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -
/ (PRIMARY—ALLOCATION=24 , SECONDARY—ALLOCATION=48))

/ADD-FILE-LINK LINK-NAME=DATABASE, FILE-NAME=TRAVEL.DBDIR

FHdkk START DDLCOMP (UDs/sQL v2.8 0000) 2015-06-28 11:40:33
* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.TRAVEL.DDL'

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:33/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:33/0YBG)
OYBG: UDS—PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

OYBG: PUBSETS: saL2
OYBG: DEFAULT PUBSET: SQL2
0YBG:

* DDLCOMP: START SCHEMA-PHASE

* DDLCOMP: CHECK SCHEMA RULES

* DDLCOMP: CHECK DATA ALLOCATION

* DDLCOMP: SEMANTIC TEST

* DDLCOMP: CYCLUS TESTS

* DDLCOMP: ERROR DIAGNOSTIC

* DDLCOMP: NO ERRORS IN SCHEMA-PHASE

* DDLCOMP: CREATE FILE COSSD

* DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:40:33/0YBG)

OYBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
OYBG: TRAVEL 1394 4046 67 1760 45

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ##skcikxxix]394 DML-STATEMENTS 2015-06-28 (ILLY033,11:40:33/0YBG)

*4kk*x DIAGNOSTIC SUMMARY FOR DDL-SCHEMA TRAVEL-AGENCY

NO ERRORS
- 8 WARNINGS

k% END OF DIAGNOSTIC SUMMARY
****% NORMAL END DDLCOMP (UDs/sQL v2.8 0000) 2015-06-28 11:40:33

U931-J-2125-17-76 75

Compiling the SSL Database creation

3.2.3 Compiling the SSL

Compilation of the storage structure description is optional; if SSL is not used, UDS/SQL
assumes default values. If an SSL description has been written, it can be compiled by the
SSL compiler.

The SSL compiler analyzes the storage structure description and modifies the entries in the
DBCOM to match the SSL.

When required, the SSL compiler automatically extends the DBDIR and DBCOM of the
database being processed or the DBTTs of the record types in the DBDIR and DBCOM. For
details,

please refer to the “Database Operation” manual, Automatic realm extension by means of
utility routines).

At startup the SSL compiler takes into account any assigned UDS/SQL pubset declaration
(see the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

During execution the SSL compiler uses the linked-in DBH.

DBDIR

SYSCMD
SSL ¢—————> DBCOM

[~ N

Figure 10: System environment for SSL compilation

SSL compiler statements

The statements for the SSL compiler are given in the Table of compiler statements
(see table 12 on page 68).

76

U931-J-2125-17-76

Database creation Compiling the SSL

Command sequence for compiling the SSL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS-SSL

04 ssl—compiler-statements

05 END

02 The version-dependent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM appliction programs" in the "Application Programming" manual).

03 The UDS/SQL utility routine can also be started with the alias SSL.

04 The individual statements can be entered in one line if they are separated by
commas or blanks.

U931-J-2125-17-76 77

Compiling the SSL Database creation

Example

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-SSL

*kkkx START SSLCOMP (UDS/sQL V2.8 0000) 2015-06-28 11:40:33

* SSLCOMP: INPUT SYSTEMPARAMETERS

SORCLIST IS YES

SOURCE IS 'S.TRAVEL.SSL'

END

* SSLCOMP: READ SSL—-SCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:33/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:33/0YBG)

0YBG: UDS—PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

0YBG: PUBSETS: sqL2

0YBG: DEFAULT PUBSET: SQL2

0YBG:
SSLCOMP: START SSL-PHASE

SSLCOMP: CHECK SSL RULES

SSLCOMP: SEMANTIC TEST

SSLCOMP: ERROR DIAGNOSTIC

SSLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:40:33/0YBG)

* Ok * X Ok

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: TRAVEL 354 563 62 57 27

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ****xxikxxi**354 DML-STATEMENTS 2015-06-28
(ILLY033,11:40:33/0YBG)

***** DIAGNOSTIC SUMMARY FOR SSL — SCHEMA

NO ERRORS
NO WARNINGS

**xx*x END OF DIAGNOSTIC SUMMARY
***** NORMAL END SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:40:33

78 U931-J-2125-17-76

Database creation BGSIA

3.2.4 Setting up the Schema Information Area (SIA) with BGSIA

The schema information area (SIA) has to be set up in the DBDIR (database directory)
using the BGSIA utility routine.

For this purpose BGSIA requires the information which has been stored in the DBCOM
during compilation of the Schema DDL and the SSL. The SIA then contains information in
table form on the database schema and its storage structure.

The DBH and other utility routines need the SIA when data has to be stored, retrieved or
updated in the user realms.

BGSIA assigns reference numbers to the names of the realms, record types, sets and keys,
and it will print them out at the end of its run if requested to do so in a DISPLAY statement.
This report is analogous to the one produced by the BPSIA utility routine (see the
“Recovery, Information and Reorganization" manual, SIA PRINT REPORT).

BGSIA also generates the UDSHASH module and stores it in the EAM file. This module
contains a table with the names of all the hash routines defined in the Schema DDL. After
the BGSIA run the UDSHASH module has to be transferred with the attributes
RMODE=ANY and AMODE=ANY to a module library with the name dbname.HASHLIB; this
also applies if no hash routines are used.

If you have programmed your own hash routines (see the "Design and Definition" manual,
Direct access), you must also enter these modules in the HASHLIB.

When required, BGSIA automatically extends the DBDIR of the database being processed.
For details, please refer to the “Database Operation” manual, Automatic realm extension
by means of utility routines).

At startup BGSIA takes into account any assigned UDS/SQL pubset declaration (see the
“Database Operation” manual, Pubset declaration job variable). Faulty assignment leads to
the program aborting.

During execution BGSIA requires the linked-in DBH.

U931-J-2125-17-76 79

BGSIA

Database creation

SYSCMD

/= |\

BGSIA

—

—

DBDIR

DBCOM

Figure 11: System environment for BGSIA

80

U931-J-2125-17-76

Database creation

BGSIA

Statements for BGSIA

Statement Default Meaning
value

GENERATE SCHEMA - Mandatory;

schema—name

Checks and generates the SIA.

schema-name
name of schema as specified in Schema DDL

AREA
RECORD
SET

RENAME

{" name-old’ I0 ’name-
new’}

L, ...1

May only be specified in the renaming cycle;
changes the names of record types, sets and user
realms

name-old.
name which is to be changed
name-new
new name

The renaming of and changes to items in record
types cannot be specified here.

DISPLAY [SCHEMA
schema—name]

Optional;
Prints the SIA generated by BGSIA
schema-name

name of schema as specified in GENERATE
statement

It is sufficient to specify DISPLAY.

END

mandatory;
terminates statement input

Table 13: Statements for BGSIA

U931-J-2125-17-76

81

BGSIA

Database creation

Command sequence for starting BGSIA

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01
02
03
04
05
06

03

04

/DELETE-SYSTEM—-FILE FILE-NAME=*0OMF

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
/SELECT-PRODUCT—-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
/START-UDS-BGSIA

bgsia-statements

END

The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM appliction programs" in the "Application Programming" manual).

The UDS/SQL utility routine can also be started with the alias BGSIA.

Entering the UDSHASH module in the HASHLIB

01 /START-LMS
02 //OPEN-LIB LIB=dbname.HASHLIB,MODE=*UPDATE(STATE=*NEW)
03 //ADD—ELEMENT FROM—FILE=*OMF,TO—ELEMENT=*LIBRARY-ELEMENT(TYPE=R)
04 //END
Example
/DELETE-SYSTEM-FILE FILE-NAME=*OMF
/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS-BGSIA
F*xdxx START BGSIA (UDS/sQL v2.8 0000) 2015-06-28 11:40:33
GENERATE TRAVEL-AGENCY
DISPLAY
END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:34/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:34/0YBG)
OYBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

0YBG: PUBSETS: sqL2
0YBG: DEFAULT PUBSET: SQL2
0YBG:

ESTIMATE-REPORT

82

U931-J-2125-17-76

Database creation BGSIA

Fkkkkkkxx* FOR USER-REALM 3 NAME IS : TRAVEL-RIM
A SIZE OF 147 BLOCKS WAS ESTIMATED
END OF ESTIMATE-REPORT
% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:40:34/0YBG)

O0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
OYBG: TRAVEL 1179 1310 61 276 35

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *****xxxxx**x]]179 DML-STATEMENTS 2015-06-28
(ILLY033,11:40:34/0YBG)

***x*x DIAGNOSTIC SUMMARY OF BGSIA

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

***x*x END OF DIAGNOSTIC SUMMARY
***x* NORMAL END BGSIA (UDs/sqL v2.8 0000) 2015-06-28 11:40:34
/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/MODIFY-JOB-SWITCHES ON=(1,4)
/START-LMS
//MODIFY-LOGGING-PARAMETERS LOG=*MAX
//0OPEN-LIBRARY LIB=TRAVEL.HASHLIB,MODE=*UPDATE
LIBRARY IS CLEARED AND PREPARED
//ADD-ELEMENT FROM-FILE=*OMF,TO-ELEM=*LIB-ELEM(TYPE=R) ,WRITE-MODE=*ANY

INPUT OMF
OUTPUT LIBRARY= :SQL2:$XXXXXXXX.TRAVEL.HASHLIB

ADD UDSHASH AS (R)UDSHASH/@(0001)/2015-06-28
//SHOW-ELEM-ATTR

INPUT LIBRARY= :SQL2:$XXXXXXXX.TRAVEL.HASHLIB
TYP NAME VER (VAR#) DATE
(R) UDSHASH @ (0001) 2015-06-28

1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//END

U931-J-2125-17-76

83

SIA report, ESTIMATE-REPORT Database creation

SIA report

The SIA report printed by DISPLAY is almost identical to the report printed by the BPSIA
utility routine. At some points it does not contain its definitive values, since certain values
are entered at a later stage by BFORMAT. The report is described in detail in "SIA PRINT
REPORT" in the "Recovery, Information and Reorganization" manual.

Description of the ESTIMATE-REPORT

In the BGSIA run listing the start message is followed by the ESTIMATE REPORT, which
serves to estimate the size of the user realms.

This is necessary because, for example, when a user realm is not large enough, BFORMAT
does not perform formatting if the realm concerned is not automatically extendable. For
details, please see the “Database Operation” manual, Automatic realm extension by means
of utility routines.

The ESTIMATE-REPORT always outputs the following information:
— realm number
— realm name

— realm size (in database pages)
The value that is output for the realm size by ESTIMATE-REPORT must be interpreted
differently, depending on the database page format (2-Kbyte, 4-Kbyte or 8-Kbyte), and
cannot be directly used in the CREATE-FILE command, for example. In the case of the
CREATE-FILE command, the value for “SPACE=" is specified in units of 2K (BS2000
half pages), whereas the ESTIMATE-REPORT returns size specifications in units of a
“database page”. Consequently, when converting to 2K units, the sizes given in the
ESTIMATE-REPORT for a 4-Kbyte database must be multiplied by a factor of 2, and
those for an 8-Kbyte database must be multiplied by a factor of 4.

ESTIMATE-REPORT outputs additional information in the following cases:

— The realm contains records for which the COMPRESSION clause was specified in the
SSL.

— There are records with variable items in the realm.

— SEARCH key tables have been created with DUPLICATES ALLOWED and TYPE IS
DATABASE-KEY-LIST.

Reference values needed for correction purposes are output in a correction table. These
values are needed to make corrections if the percentage of space saved for the records is
not as high as the default assumption for the ESTIMATE-REPORT.

84

U931-J-2125-17-76

Database creation

ESTIMATE-REPORT

The following table lists all options together with an explanation of the variables:

Entries in ESTIMATE-REPORT

Explanation of variables

**** FOR USER-REALM realm-ref NAME
IS: realm—name

Realm number;
Realm name

A SIZE OF size BLOCKS WAS ESTIMATED

Realm size in data pages; serves as a reference
value for the amount of space needed for the
specified user realm

** THE RECORD rec-ref
NAME IS record-name

Record type number;
name of the record type for which the
COMPRESSION clause applies

WITH * COMPRESSION * WAS CALCULATED
WITH A PROFIT OF 50%

The calculation of the realm size was based on the
assumption that the saving due to COMPRESSION
for the specified record type would be 50%.

CORRECTION-TABLE:

Correction table (only for COMPRESSION);

FOR RECORD rec-ref

0% 25% 75% n indicates the number of data pages that must be
added (+) to or subtracted from (-) the realm size size

n+ n+ n— for savings of 0% / 25% / 75% .

**x* TN SET set-ref Set number;

NAME IS: set-name Set name;

Record reference number;

A SEARCH-KEY-TABLE TYPE *
DATABASE-KEY—-LIST *

WAS CALCULATED WITH 50% DUPLICATES

Calculation of the size of the DATABASE-KEY-LIST
was based on the assumption that 50% of the key
values would be duplicates.

CORRECTION-TABLE:
0% 75% 90%
n+

n— n—

Correction table;

n indicates the number of data pages that must be
added to or subtracted from the realm size size on
the assumption that 0% / 75% / 90% of the key
values are duplicates.

Table 14: Variables in the ESTIMATE-REPORT

U931-J-2125-17-76

85

ESTIMATE-REPORT Database creation

The suggested realm sizes are intended as an aid to determining orders of magnitude.
They may be imprecise for the following reasons:

— SSL population specifications (DBTT, RECORD POPULATION, SET POPULATION)
are inaccurate.

— The saving cannot be predicted with 100% accuracy (e.g. for record types subject to
the COMPRESSION clause or containing a variable data item).

— The number of key duplicates is not known for SEARCH key tables with DUPLICATES
ALLOWED, TYPE IS DATABASE-KEY-LIST.

— The number of overflow pages cannot be predicted for LOCATION MODE IS CALC or
for CALC SEARCH keys.

— The size of the unused storage space cannot be calculated due to mixed storage.
— In tables, the size may vary according to the order in which the data is stored.
— INCREASE is not taken into account.

The ESTIMATE-REPORT assumes maximum values for records. SINCE these values are
unlikely to be achieved at the beginning, smaller user realms can be set up initially. These
realms can be extended later by using the BREORG utility routine (see the "Recovery,
Information and Reorganization" manual).

You can also configure realms in such a way that they can be extended online when
required (see the “Database Operation” manual, The online realm extension process).

86

U931-J-2125-17-76

Database creation ESTIMATE-REPORT

Example
ESTIMATE-REPORT

FodAkkxxx FOR USER-REALM 3 NAME IS : CUSTOMER-ORDER-RLM
A SIZE OF 52 BLOCKS WAS ESTIMATED

Fxxddkxxkx FOR USER-REALM 4 NAME IS : PURCHASE-ORDER-RLM
A SIZE OF 77 BLOCKS WAS ESTIMATED

FddkRxxx FOR USER-REALM 5 NAME IS : CLOTHING
A SIZE OF 67 BLOCKS WAS ESTIMATED
*** THE RECORD 8 NAME IS : ART-DESCR
WITH *COMPRESSION* WAS CALCULATED WITH A PROFIT OF 50%
CORRECTION-TABLE : 0% 25% 75%
17+ 8+ 8-

xok IN SET 28 NAME IS : SYS_INSTALLMENT
FOR RECORD 5 NAME IS : INSTALLMENT
A SEARCH-KEY-TABLE TYPE *DATABASE-KEY-LIST*
WAS CALCULATED WITH 50% DUPLICATES
CORRECTION-TABLE: 0% 75% 90%
0+ 0- 0-

sokokiors FOR USER-REALM 6 NAME TS : HOUSEHOLD-GOODS
A SIZE OF 32 BLOCKS WAS ESTIMATED
ok THE RECORD 8 NAME TS : ART-DESCR
WITH *COMPRESSTON* WAS CALCULATED WITH A PROFIT OF 50%
CORRECTION-TABLE : 0% 5% 75%
8+ 4+ 4-

kA IN SET 12 NAME IS : ARTICLES-AVAILABLE
FOR RECORD 9 NAME IS : ARTICLE
A SEARCH-KEY-TABLE TYPE *DATABASE-KEY-LIST*
WAS CALCULATED WITH 50% DUPLICATES
CORRECTION-TABLE : 0% 75% 90%
4+ 1- 0-

FAddkkxxx FOR USER-REALM 11 NAME IS : ARTICLE-RLM
A SIZE OF 79 BLOCKS WAS ESTIMATED
END OF ESTIMATE-REPORT

U931-J-2125-17-76 87

BFORMAT

Database creation

3.3

Formatting user realms with BFORMAT

Formatting of the user realms is carried out by the BFORMAT utility routine. BFORMAT
— adds information on the user realms to the SIA,

— stores in every realm an act-key-0 page, an act-key-N page and at least one FPA page
and formats the DBTT and CALC pages,

— stores the note ' BFORMAT EXECUTED’ in the DBDIR.

SYSDTA
BFORMAT |¢——3| DBDIR

=15

BFORMAT must be called in the user ID under which the database is cataloged.

Figure 12: System environment for BFORMAT

If the user realms have not yet been set up, they must be set up before the BFORMAT run
(see section “Setting up the user realms” on page 61").

When required, BFORMAT automatically extends the realms of the processed database
(provided the realms are extendable). For details, please see the “Database Operation”
manual, Automatic realm extension by means of utility routines.

At startup BFORMAT takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

88

U931-J-2125-17-76

Database creation BFORMAT

Statements for BFORMAT

The BFORMAT statement REALM identifies the realms which are to be formatted. Realms
can be formatted in several BFORMAT runs, but each realm can only be formatted once.

Database creation cannot be continued until all realms have been formatted.

Statement Default |Meaning
value
REALM NAME IS ALL Optional;
The specified realms are/are not to be
ALL [EXCEPT realm—-namel,..] formatted
realm—-namel, ..
ALL

all realms defined in the Schema DDL are to
be formatted

ALL EXCEPT realm-name
exclusion list, i.e. all realms other than those
specified are to be formatted

realm-name
specifies a user realm

END - Mandatory;
Terminates statement input

Table 15: Statements for BFORMAT

It is advisable to format realms one at a time. If a BFORMAT run formatting more
than one realm aborts without the normal termination procedures owing to an
operating system failure, realms that have already been successfully formatted will
also be affected. The BFORMAT run will then have to be repeated for them.

i @

The BFORMAT run executes very quickly, since it only formats hash areas and FPA
and DBTT pages.

U931-J-2125-17-76 89

BFORMAT

Database creation

Command sequence to start BFORMAT

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /CREATE-FILE FILE-NAME=dbname.realm-name ...

02 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

03 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

04 /START-UDS-BFORMAT

05 Lbformat—-statement]

06 END

01 See section “Setting up the user realms” on page 61.

03 The specified version of BFORMAT is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

04 The UDS/SQL utility routine can also be started with the alias BFORMAT.

05 If the REALM statement is omitted, all realms are formatted

Example

/CREATE-FILE FILE-NAME=TRAVEL.TRAVEL-RLM, SUPPORT=PUBLIC-DISK(SPACE=RELATIVE -
/ (PRIMARY-ALLOCATION=220,SECONDARY-ALLOCATION=60))

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS—BFORMAT

***** START BFORMAT (UDS/SQL V2.8 0000) 2015-06-28 11:40:34
* VERSION RECORDS EXPANDED

REALM NAME IS ALL

END

* TRAVEL-RLM SUCCESSFULLY FORMATTED

* QUERY-RLM INITIALISED IN DBDIR

* BFORMAT-CONTROL-RECORD WRITTEN TO DBDIR

*xx** ALL REALMS FORMATTED

*xx** DIAGNOSTIC SUMMARY OF BFORMAT

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

*xx** END OF DIAGNOSTIC SUMMARY
***** NR OF DATABASE ACCESSES : 120
***** NORMAL END BFORMAT (UDS/SQL V2.8 0000) 2015-06-28 11:40:38

90

U931-J-2125-17-76

Database creation Generating the subschema

3.4 Generating the subschema

3.41

The following programs are used to generate a subschema:
DDL compiler compiles the subschema description.
BGSSIA generates the Subschema Information Area (SSIA).

Compiling the Subschema DDL

The Subschema DDL (SDDL) is compiled by the same DDL compiler as the Schema DDL.
The SDDL compiler statements are described in table 12 on page 68.

The Subschema DDL must be assigned as an input file to the DDL compiler. When
compilation is finished, the compiled subschema description is stored in the DBCOM
(Database Compiler Realm). Later BGSSIA uses this information to set up the SSIA in the
DBDIR (Database Directory). In addition, the DDL compiler stores the transformed
subschema derived from the compiled subschema description in the COSSD and creates
a check table (CHECK-TABLE) for this subschema. This information is required by the
COBOL compiler for the syntax and semantic checks of the DML statements.

When a subschema which is also to be used in KDBS applications is compiled, you must
specify the DDL compiler statement “SUBSCHEMA FORM IS OLD” (see page 70). The
DDL compiler then creates the transformed subschema and the CHECK-TABLE in the
format of UDS/SQL V1.2 (“old” format with 1-byte long reference numbers for record types
and sets; see page 70).

The COSSD is also used as input for the BCALLSI utility routine (see page 97). BCALLSI
generates the SSITAB module, which makes the subschema information available to CALL
DML programs.

After the subschemas are compiled, the DB administrator should save the database (see
section “Saving the database” on page 270). This ensures that a consistent
backup of the database exists.

The subschema determines the RECORD AREA.

The length of this record area is equal to the total lengths of all record types
contained in the underlying subschema (aligned on a double-word boundary) and
all implicitly defined data items, i.e. ALIAS items and AREA-IDs for distributed
record types.

The DDL compiler aborts the compilation of the subschema with an error as soon
as the associated record area exceeds 65 535 bytes (or 61 328 bytes if
SUBSCHEMA FORM IS OLD was specified).

i @

U931-J-2125-17-76 91

Generating the subschema Database creation

Sub-
schema
DDL

SYSDTA
DDL DBCOM

Figure 13: System environment for subschema compilation

Command sequence for compiling the subschema

01
02
03
04
05

02

03

04

/ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
/START-UDS-DDL

sdd]-compiler-statements

END

The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM appliction programs" in the "Application Programming" manual).

The UDS/SQL utility routine can also be started with the alias DDL.

The individual statements can be entered in one line if they are separated by
commas or blanks.

92

U931-J-2125-17-76

Database creation Generating the subschema

Example

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-DDL

xk% START DDLCOMP (UDs/saL v2.8 0000) 2015-06-28 11:40:38

* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.TRAVEL.SUBDDL'

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:38/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:38/0YBG)

0YBG: UDS—PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

0YBG: PUBSETS: saL2

OYBG: DEFAULT PUBSET: SQL2

0YBG:
DDLCOMP: START SUBSCHEMA-PHASE

DDLCOMP: CHECK SUBSCHEMA RULES

DDLCOMP: CHECK DATA ALLOCATION

DDLCOMP: SUBCOPY

DDLCOMP: ERROR DIAGNOSTIC

DDLCOMP: NO ERRORS IN SUBSCHEMA-PHASE

DDLCOMP: WRITE SUBSCHEMA ON COSSD

DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:40:38/0YBG)

L I R R R B R

OYBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
OYBG: TRAVEL 3011 5388 77 1249 57

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ******xxxx*x*30]] DML-STATEMENTS 2015-06-28
(ILLY033,11:40:38/0YBG)

***x*x DIAGNOSTIC SUMMARY FOR DDL-SUBSCHEMA

NO ERRORS
NO WARNINGS

***x*x END OF DIAGNOSTIC SUMMARY
****x* NORMAL END DDLCOMP (UDs/sQL v2.8 0000) 2015-06-28 11:40:38

U931-J-2125-17-76 93

BGSSIA

Database creation

3.4.2 Generating the Subschema Information Area (SSIA) with BGSSIA

The compiled subschema description is available in DBCOM as the end product of
compilation by the DDL compiler. The BGSSIA utility routine requires this description in
order to generate the Subschema Information Area (SSIA).

The SSIA is stored in the DBDIR as a record of the internal record type SSIA-RECORD.
The SSIA contains subschema information needed by the DBH so that it can access the
database. The information can be printed out by means of the DISPLAY statement in
BGSSIA or by means of the BPSIA utility routine (see "SSIA PRINT REPORT" in the
"Recovery, Information and Reorganization" manual).

When required, BGSSIA automatically extends the DBDIR and DBCOM of the database
being processed or the DBTTs of the record types in the DBCOM. For details, please refer
to the “Database Operation” manual, Automatic realm extension by means of utility
routines).

At startup BGSSIA takes into account any assigned UDS/SQL pubset declaration (see the
“Database Operation” manual, Pubset declaration job variable). Faulty assignment leads to
the program aborting.

During execution BGSSIA works with the linked-in DBH.

DBCOM
7
SYSDTA
BGSSIA
= ~ NN

DBDIR

Figure 14: System environment for BGSSIA

94

U931-J-2125-17-76

Database creation

BGSSIA

Statements for BGSSIA

Statement Default |Meaning
value

GENERATE SUBSCHEMA - Optional;

subschema—name QF
SCHEMA schema—name

subschema-name: name of the subschema
schema-name: name of the schema

Checks whether an SSIA is available for a specific
subschema and generates

an SSIA with information on realms, record types and
sets

lists of individual items

lists of all names contained in the subschema.

DELETE SUBSCHEMA -
subschema—-name QF
SCHEMA schema—name

Optional;
Deletes a previously generated SSIA from the DBDIR.

REGENERATE SUBSCHEMA -
subschema—-name QF
SCHEMA schema—name

Optional;

Deletes the old SSIA and generates a new SSIA
(combines DELETE and GENERATE functions).
Suitable for correction of a subschema.

DISPLAY[SUBSCHEMA -
subschema-name QF
SCHEMA schema—name]

Optional;

Can only be used in conjunction with the GENERATE or
REGENERATE statement. To print out SSIA, DISPLAY
by itself is sufficient.

END -

Mandatory;
Terminates entry of statements.

Table 16: Statements for BGSSIA

U931-J-2125-17-76

95

BGSSIA

Database creation

Command sequence to start BGSSIA

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT—-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-BGSSIA

04 bgssia-statements

05 END

02 The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM appliction programs" in the "Application Programming" manual).

03 The UDS/SQL utility routine can also be started with the alias BGSSIA.

Example

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=TRAVEL.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS-BGSSIA

Fxxkk START BGSSIA (UDs/saL v2.8 0000) 2015-06-28 11:40:38
GENERATE SUBSCHEMA RESERVATION OF SCHEMA TRAVEL-AGENCY

DISPLAY

END

% UDS0215 UDS STARTING UDS/SQL V2.82.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:40:38/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:40:38/0YBG)
OYBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.PUBS

0YBG: PUBSETS: sqL2
0YBG: DEFAULT PUBSET: SQL2
0YBG:

*** SSIA GENERATION NORMALLY ENDED.

*GENERATION OF ITEM-TABLE AND NAME-TABLE STARTED.

*GENERATION OF ITEM-TABLE AND NAME-TABLE FINISHED.

% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:40:38/0YBG)

O0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: TRAVEL 1800 2529 76 296 27

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *****xixxx**x]1800 DML-STATEMENTS 2015-06-28
(ILLY033,11:40:38/0YBG)

*****x DIAGNOSTIC SUMMARY OF BGSSIA
NO WARNINGS

NO ERRORS
NO SYSTEM-ERRORS

96

U931-J-2125-17-76

Database creation BCALLSI

***x*x END OF DIAGNOSTIC SUMMARY
***x* NORMAL END BGSSIA (Ups/sqL v2.8 0000) 2015-06-28 11:40:38

3.5 Additional measures for CALL DML programs with BCALLSI

The BCALLSI utility routine must be executed if you have CALL-DML programs or work with
DMLTEST.

BCALLSI generates the SSITAB module (SUBSCHEMA INFORMATION TABLE) with the
subschema information needed by a CALL-DML program at program runtime.

At startup BCALLSI takes into account any assigned UDS/SQL pubset declaration (see the
“Database Operation” manual, Pubset declaration job variable). Faulty assignment leads to
the program aborting.

Providing subschema information

In order to execute DML statements, the DBH requires information on the subschema being
used. The following information is available in the COSSD as stored by the DDL compiler:

— the transformed subschema
— the so-called CHECK TABLE

This information is gathered for the DBH in a number of different ways.

— In the case of COBOL DML programs, the COBOL compiler needs the subschema
information when compiling the application program.

— For CALL DML programs, the subschema information is required at program runtime.
Since access to the COSSD would be too time-consuming at runtime, you must
generate the SSITAB module with BCALLSI beforehand. BCALLSI uses the information
of the COSSD for this purpose. At program runtime, the SSITAB module is loaded from
the module library by the CALL DML connection module. Thus, in the case of CALL
DML programs, a BCALLSI run must be added between compilation of the Subschema
DDL and the program run.

U931-J-2125-17-76 97

BCALLSI

Database creation

Editing special subschemas in the “old” format

In addition to the standard format in which the transformed subschema and the associated
check table exist, the "old" format up to and including UDS/SQL V1.2 with 1-byte long
reference numbers for record types and sets (see also page 70) is still accepted by
BCALLSI. The "old" format is required for subschemas which are processed in KDBS
applications. A COSSD can contain transformed subschemas in both the standard format
and in the "old" format. From a transformed subschema in the "old" format BCALLSI
generates an SSITAB module in UDS/SQL V1.2 format, which is still supported by the
current CALL-DML converter.

BCALLSI functions

BCALLSI can access a COSSD of UDS/SQL > V1.2 as well as a COSSD of UDS/SQL V1.2
or UDS/SQL V1.1.

BCALLSI performs the following functions:
— Compilation of the transformed subschema in realm, set, record and item tables
— Printing out the transformed subschema

— Checking the realm, set, record and item names for unique identification by means of
the first eight or thirty characters. If the names are not unique, a warning is appended
to the printout of the transformed subschema.

— Copying the check table from the COSSD in order to complete the SSITAB.

— Outputting the SSITAB module to the EAM file under the name subschemat#t#, where
subschema comprises the first six characters of the full subschema name.

98

U931-J-2125-17-76

Database creation BCALLSI

The SSITAB module generated must then be entered in a module library using the BS2000
utility routine LMS. The name of the library is freely selectable. The DBH gives first priority
to loading SSITAB modules from a library assigned with the link name $UDSSSI. If the
SSITAB modules are stored in more than one library, e.g. in a separate library for each
database, other libraries can be assigned with the link names BLSLIB0O to BLSLIB99 (see
the section “DBH start commands” in the “Database Operation” manual and the section
"Compiling, linking and loading UDS/SQL-TIAM appliction programs" in the "Application
Programming" manual).

The first six characters of the subschema names must ensure unique identification,
since the name of the SSITAB module is formed from the first six characters plus

i @

System environment for BCALLSI

SYSCMD
BCALLSI

[N l

Figure 15: System environment of BCALLSI

U931-J-2125-17-76 99

BCALLSI

Database creation

Statements for BCALLSI

Statement Default | Meaning

value

SCHEMA
S
{SUBSCH EMA

- Mandatory;
=schema-name, Assigns the name of the schema and
subschema to BCALLSI:
}=5ub$ chema—name schema-name
SS Name of the schema assigned in the Schema
DDL.

subschema-name
Name of the subschema assigned in the
Subschema DDL.

,MESSAGE} {*ALL } *ALL | *ALL
=]

1

All cases of ambiguity, including those in the
first 8 characters, are output individually to
SYSLST.

M

NLO-AMBIGUITY-81

NO-AMBIGUITY-8

Cases of ambiguity in the first 8 characters of
a name, are not output individually to
SYSLST.

Table 17: Statements for BCALLSI

Command sequence for starting BCALLSI

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01
02
03
04
05

03

04

/DELETE-SYSTEM-FILE FILE-NAME=*OMF

/ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS—-SQL,VERSION=version, SCOPE=*TASK
/START-UDS-BCALLSI

bcallsi-statement

The specified version of BCALLSI is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

The UDS/SQL utility routine can also be started with the alias BCALLSI.

100

U931-J-2125-17-76

Database creation BCALLSI

05 There is no END statement for BCALLSI!

Entering the SSITAB module in the module library

01 /START-LMS

02 //OPEN-LIB LIB=modlib,MODE=*UPDATE

03 //ADD—-ELEMENT FROM—-FILE=*OMF,TO-ELEMENT=*LIBRARY—-ELEMENT(TYPE=R)
04 //END

Example

/DELETE-SYSTEM-FILE FILE-NAME=*OMF

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS—BCALLSI

xk% START BCALLSI (ups/saL v2.8 0000) 2015-06-28 11:40:27
SCHEMA=MAIL-ORDERS , SUBSCHEMA=ADMIN,MESSAGE=*ALL

WARNING: THERE ARE NAME AMBIGUITIES IN THE FIRST 8 CHARACTERS OF SOME NAMES

SEE PRINTOUT!

SSITAB MANAGE## WRITTEN TO EAM—OMF

***%% DIAGNOSTIC SUMMARY OF BCALLSI

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

***%% END OF DIAGNOSTIC SUMMARY

***%* NR OF DATABASE ACCESSES : 0

**%%%* NORMAL END BCALLSI (uDs/saL v2.8 0000) 2015-06-28 11:40:27

/MODIFY-JOB-SWITCHES ON=(1,4)

/START-LMS

//MOD-LOG-PAR LOG=*MAX

//OPEN-LIB LIB=LMS.SSITAB,MODE=*UPD(STATE=*ANY)

//ADD-ELEMENT FROM-FILE=*OMF,TO-ELEM=*LIB(TYPE=R) ,WRITE-MODE=*ANY

INPUT OMF

OUTPUT LIBRARY= :SQL2:$XXXXXXXX.LMS.SSITAB
ADD UDSHASH AS (R)UDSHASH/@(0002)/2015-06-28 , OUTPUT REPLACED
ADD ADMIN## AS (R)ADMIN#H#/@(0001)/2015-06-28

//SHOW-ELEM-ATTR ELEM=*LIB-ELEM()

INPUT LIBRARY= :SQL2:$XXXXXXXX.LMS.SSITAB

TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE

(R) ADMIN/# @ (0002) 2015-06-28 MANAGE#f @ (0002) 2015-06-28
(R) UDSHASH @ (0002) 2015-06-28 VERWAL#H#f @ (0002) 2015-06-28

U931-J-2125-17-76 101

BCALLSI

Database creation

4 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS

//END
PRINTOUT :

SCHEMANAME
SUBSCHEMANAME
MODUL—-ENTRY
LENGTH OF MODUL
SSITAB-VERSION

MAIL—ORDERS
ADMIN
ADMIN#H#
6408 BYTES
2

102

U931-J-2125-17-76

4 Specifying access authorizations
(ONLINE-PRIVACY, BPRIVACY)

In UDS/SQL the ONLINE-PRIVACY and BPRIVACY utility routines are available for
specifying who (which user groups) are allowed to access a database in what manner
(access rights).

The scope of functions and the syntax and semantics for assigning rights are identical for
ONLINE-PRIVACY and BPRIVACY.

— You use ONLINE-PRIVACY online, i.e. while the database is activated for an
independent DBH session. You can also query or change the access authorizations for
a database while the database is running.

— You use BPRIVACY offline, e.g. when creating a database, to specify the access
authorizations for the database.

ONLINE-PRIVACY and BPRIVACY offer the following functions:
— define user groups with or without access rights

— delete user groups

— grant or revoke user groups access rights

— output information on user groups

If UDS/SQL is used with openUTM, the access protection of UDS/SQL can work in
conjunction with that of openUTM (see the openUTM manual "Generating Applications").

U931-J-2125-17-76 103

User groups Specifying access authorizations

4.1

User groups

User groups are groups of users with access to the database.

The name of a user group generally has the following structure (for more information see
table 18 on page 106):

host + appl + grp
host Name of the host computer
appl Name of the UDS/SQL/openUTM application or “_*

grp BS2000 identification or, in the case of a UDS/SQL-openUTM application, the
KSET name associated with the openUTM user ID.

UDS/SQL uses underscores “_“ internally to pad each of the three components to eight
characters.

openUTM or UDS/SQL ascertains the information required. Further entries on access rights
are therefore generally not required in the application programs (e.g. PRIVACY-RECORD
in the SUB-SCHEMA SECTION, PERMIT in SQL programs). UDS/SQL ignores
specifications in existing programs.

Before a user group can execute database calls, you must define a name for it and assign
it access rights with ONLINE-PRIVACY or with BPRIVACY.

You will find further information in the "Database Operation" manual, which also contains
an example of how to define UDS/SQL user groups and assign access rights.

104

U931-J-2125-17-76

Specifying access authorizations Access rights

4.2 Access rights

Access rights allow user groups read access (RETRIEVAL) or read and write access
(UPDATE) to database objects, for example. Access rights can be granted and revoked.

A user group can be assigned read (RETRIEVAL) or read and write (UPDATE) access
rights to the following database objects.

Access rights in CODASYL applications to:

— realms
— record types (RECORDs)
— sets

Access rights in SQL applications to:

— base tables
— foreign keys

RETRIEVAL, UPDATE and ALL access can be:

— granted using
the ADD-USER-GROUP and GRANT-ACCESS statements

— revoked using
the REVOKE-ACCESS statement

— qualified using
the GRANT-ACCESS and REVOKE-ACCESS statements.

When access rights are assigned using the GRANT-ACCESS statement, any existing
access rights for a database object are retained and the newly defined ones are added. In
the same way, when the REVOKE-ACCESS statement is used, only the access rights
specified with this statement are withdrawn; the user group retains any other access rights
it has.

U931-J-2125-17-76 105

Checking access rights

Specifying access authorizations

4.3 Checking access rights

UDS/SQL checks access rights only by means of the user group names.

The user group name must be defined with ONLINE-PRIVACY or BPRIVACY and the
access rights must have been assigned before the users in the group can execute database

calls.

If the DBH cannot identify the user group, the application program is supplied with a status
code or the IQS session is terminated.

The table below indicates how user group names are structured, which configuration is
checked with which group name and how to define the user groups in the ADD-USER-
GROUP statement. The terms "local" and "remote" are meant in relation to the location of

the database.

Configuration Value Definition in the ADD-USER-GROUP statement
host appl grp

openUTM host app! - *KSET-

Appl. w/o KSET FORMAT(HOST=host,APPLICATION=
appl, KSET=*NONE)

openUTM host app! kset |*KSET-

Appl. w/o KSET FORMAT(HOST=host,APPLICATION=
appl,KSET=kset)

TIAM host _ id |*FREE-FORMAT(HOST=host,USER-ID=id)

linked-in host ' id |*FREE-FORMAT(HOST=host,USER-ID=id)

Table 18: Structure of user group names

Key

host ~ Name of the host computer on which the UDS/SQL-openUTM application or the

UDS/SQL application program runs.

Here you must specify the name of your processor from the standpoint of DCAM. If
no DCAM is available in the TIAM case, you specify HOST=LOCAL.

appl Name of the openUTM application

kset KSET name associated with the corresponding openUTM user ID

id BS2000 user ID

106

U931-J-2125-17-76

Specifying access authorizations Checking access rights

In application programs (COBOL DML, CALL DML, SQL) and for IQS, "old" PRIVACY user
specifications (< UDS/SQL V1.2) are still made in some instances or may be required (1QS):

— "Old" specifications in the so-called PRIVACY RECORD (< UDS/SQ Version 1.2) in
application programs (COBOL DML, CALL DML, SQL) or for IQS are ignored by
uDS/sqQL.

— The PRIVACY specifications for IQS of any version < 3.1 must not be empty, but are
otherwise arbitrary.

Access rights are checked by means of the user group name, which comprises the name
of the host computer and the runtime identification of the TIAM application or the name of
the openUTM application (with or without the KSET specification).

The KSET name may be omitted if no KSET name was defined in the
corresponding openUTM application. If no openUTM users are defined, a defined
KSET name of a logical terminal (LTERM) is used for checking access rights.
openUTM uses predefined KSET names, which you can display with KDCINF
KSET. Access rights for the database must also be defined for these predefined
KSET names.

In distributed transaction processing with openUTM-D, the KSET name from the
associated LPAP entry must be used (see the openUTM manual "Generating
Applications").

et @

U931-J-2125-17-76 107

ONLINE-PRIVACY Specifying access authorizations

4.4 System environment for ONLINE-PRIVACY

SYSDTA | |—» | ONLINE-PRIVACY | «—»| Independent DBH | — | DBDIR

Figure 16: System environment for ONLINE-PRIVACY

The ONLINE-PRIVACY utility routine runs as a UDS/SQL TIAM application program in an
independent DBH session.

You can start ONLINE-PRIVACY at any time while the database is operating when the
following requirements are fulfilled:

— ONLINE-PRIVACY is called under the user ID under which the database is cataloged.
— The database is activated as an independent DBH session.
— The database is not attached to the session in the SHARED-RETRIEVAL mode.

With ONLINE-PRIVACY you can grant new user groups access to an existing database
application and change the access rights of existing user groups as many times as needed.
You need to update the access rights after making changes to a schema (for example, after
adding new record types or new base tables).

Activating online extensibility of the DBDIR using ACT INCR enables you to ensure that the
DBDIR can, when required, be extended by the DBH. However, no online extension of the
DBTTs of the DBDIR’s record types takes place.

. Access to a database in a remote configuration via UDS-D is not possible with
1 ONLINE-PRIVACY.

108 U931-J-2125-17-76

Specifying access authorizations ONLINE-PRIVACY

Access locks

An access lock (ACCESS LOCK) or access restriction (ACCESS RETRIEVAL) set with the
DAL command ACCESS on the database or realm level has no effect on the ONLINE-
PRIVACY utility routine.

ONLINE-PRIVACY therefore provides you with the ability to change the access rights for a
database for which only read transactions are permitted. The database must be in the
EXCLUSIVE-UPDATE attach mode and be locked for other transactions with the DAL
command ACCESS RETRIEVAL,DB=dbname.

Effect of changing rights

Changes to the access rights of a database that you have made using ONLINE-PRIVACY
affect all processing chains started after terminating the ONLINE-PRIVACY run (FINISH
statement of the ONLINE-PRIVACY transaction).

Processing chains started before the end of the ONLINE-PRIVACY run continue to work
with the old privacy information.

Effect on the communication pool (CUP)

The ONLINE-PRIVACY utility routine connects to the communication pool (CUP) just like
other UDS/SQL TIAM application programs. The space required by ONLINE-PRIVACY
within the communication pool is about the same as the size of the SIA of the database to
be processed.

Proceed as follows to ensure that the size of the communication pool is large enough to use
ONLINE-PRIVACY:

— Determine the size of the SIA with the BPSIA utility routine.

— Take the size of the SIA into account as an additional space requirement for
ONLINE-PRIVACY when calculating the minimum size of the communication pool.

— Set the value of the DBH load parameter PP CUP-SIZE accordingly.

U931-J-2125-17-76 109

BPRIVACY Specifying access authorizations

4.5 System environment for BPRIVACY

SYSDTA
BPRIVACY |¢———————— | DBDIR

Figure 17: System environment for BPRIVACY

The BPRIVACY utility routine must be called in the identification under which the database
is cataloged.

You can start BPRIVACY at any point after the BFORMAT routine has executed. It is thus
possible to grant new groups access to an existing database application and to change the
access rights of existing user groups any number of times.

After changes have been made to a schema (e.g. after new record types or new base tables
have been introduced), you must update the access rights with BPRIVACY.

In the case of CODASYL access, BPRIVACY can run in the creation phase of a UDS/SQL
database before the subschemas are compiled.

In the case of SQL access, you can start BPRIVACY after compilation and entry of the
relational schema (UDS/SQL subschema) in the database.

When required, BPRIVACY automatically extends the DBDIR of the database being
processed or the DBTTs of the record types in the DBDIR. For details, please refer to the
“Database Operation” manual, Automatic realm extension by means of utility routines).

At startup BPRIVACY takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

The BPRIVACY utility routine uses the linked-in DBH during execution.

110 U931-J-2125-17-76

Specifying access authorizations Rules for the statements

4.6 Rules for the statements

The statement formats of the ONLINE-PRIVACY and BPRIVACY utility routines comply
with the rules of SDF (System Dialog Facility, see the "SDF Dialog Interface" and
"Commands" manuals).

Incorrectly entered statements can be corrected. You can undo any correctly entered
statement with the UNDO statement or the inverse function (if available).

If entries are contradictory, the last one always applies.
Valid statements are not executed until after the END statement.
The OPEN-DATABASE statement is an exception to this.

The ONLINE-PRIVACY and BPRIVACY utility routines always apply to all objects (realms,
records and sets) of the PRIVACY schema (PRIVACY-AND-IQF-SCHEMA).

U931-J-2125-17-76 111

Overview of statements

Specifying access authorizations

4.7 Overview of statements

Statement

Meaning

ADD-USER-GROUP

USER-GROUP-NAME = Tist-poss(6): *KSET-FORMAT(...

*FREE-FORMAT(...)

,OBJECT = NONE / Tist-poss(6): *REALM(...) /
*RECORD(...) / *SET(...)

Defines a user group,
possibly with access
rights

END

Terminates command
input

GRANT—-ACCESS

USER-GROUP-NAME = 1ist-poss(6): *KSET-FORMATC(...

*FREE-FORMAT(...)

,OBJECT = Tist-poss(6): *REALM(...) / *RECORDC(...

*SETC(...)

Assigns access rights
to a user group

OPEN-DATABASE
DATABASE-NAME = <dbname>

Opens a database

REMOVE-USER-GROUP
USER-GROUP-NAME

ALL / *ALL-EXCEPT(...) /

list-poss(6): *KSET-FORMAT(...

*FREE-FORMAT(...)

Deletes one or more
user group(s)

REVOKE-ACCESS
USER-GROUP-NAME

*FREE-FORMAT(...)

,OBJECT = Tist—poss(6): *REALM(...) / *RECORDC(...

*SET(...)

list-poss(6): *KSET-FORMAT(...

Withdraws access
rights from a user

group

SHOW-USER-GROUP
USER-GROUP-NAME = ALL / *ALL-EXCEPT(...) /

lTist-poss(6): *KSET-FORMAT(...

*FREE-FORMAT(...)

,OUTPUT = Tist-poss: SYSLST / SYSOUT

Outputs information
on one or more user

group(s)

UNDO

Undoes a statement

Table 19: Overview of statements

112

U931-J-2125-17-76

Defining access rights ADD-USER-GROUP

ADD-USER-GROUP
(Defining a user group with or without assigning access rights)

The ADD-USER-GROUP statement allows you to define new user groups. You can define
the associated access rights at the same time.

The structure of the user group name depends on the environment in which you are working
(see table 18 on page 106).

You can specify the name of the user group in two different formats:
*KSET-FORMAT and *FREE-FORMAT

*KSET-FORMAT is available for openUTM operation, for example. In this case, the user
group name comprises the three parts openUTM host name, openUTM application name
and KSET name.

If you do not define access rights for the specified user group, the user group is created,
but users in the group cannot access database objects. Access rights must be assigned by
means of subsequent GRANT-ACCESS statements (see page 120).

U931-J-2125-17-76 113

ADD-USER-GROUP Defining access rights

ADD-USER-GROUP

USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)

*KSET-FORMAT(...)

HOST = <host>

,APPLICATION = <appl>

,KSET = *NONE / list-poss(30): <kset>

*FREE-FORMAT(...)

HOST = <host>

,USER-ID = list-poss(30): <userid>/ *NONE

,OBJECT = NONE / list-poss(6): *REALM(...) / *RECORD(...) / *SET(...)

*REALM(...)
NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <realm-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <realm-name>
,RIGHT = ALL / RETRIEVAL
*RECORD(...)
NAME = *ALL / *ALL-EXCEPTY(...) / list-poss(30): <record-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <record-name>
,RIGHT = ALL / RETRIEVAL
*SET(...)
NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <set-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <set-name>
,RIGHT = ALL / RETRIEVAL

USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMATY{...)
Name of the user group.

*KSET-FORMAT(...)
Specification of the user group.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

114 U931-J-2125-17-76

Defining access rights

ADD-USER-GROUP

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

*FREE-FORMATY{...)
Specification of the user group.

HOST = <host>
Host computer of the application.

USER-ID = list-poss(30): <userid>
Identification of the application.

USER-ID = *NONE

No identification is specified. The specification *NONE is now only permitted for
reasons of compatibility. The corresponding user group name can no longer be

used as of UDS/SQL V2.0.

OBJECT = NONE / list-poss(6): “‘REALM(...) / *\RECORD(...) / *SET(...)
The access rights are specified.

NONE
No access rights are assigned.

*REALM(...)
The realm rights are assigned.

NAME = *ALL
The specified access applies to all realms of the database.
This operand must be defined for SQL applications.

NAME = *ALL-EXCEPT(...)

The specified access applies to all realms except those entered here.

NAME = list-poss(30): <realm-name>
The specified access does not apply to these realms.

NAME = list-poss(30): <realm-name>
The specified access applies only to these realms.

RIGHT = ALL
Both read and write access is granted for the realms.

RIGHT = RETRIEVAL
Only read access is granted for the realms.

U931-J-2125-17-76

115

ADD-USER-GROUP Defining access rights

*RECORD (...)
The rights for record types (in SQL applications: base tables) are assigned.

NAME = *ALL
The specified access applies to all record types (in SQL applications: base tables)
in the database.

NAME = *ALL-EXCEPT(...)
The specified access applies to all record types except those entered here.

NAME = list-poss(30): <record name>
The specified access does not apply to these record types.

NAME = list-poss(30): <record-name>
The specified access does not apply to these record types.

RIGHT = ALL
Both read and write access is granted for the record types.

RIGHT = RETRIEVAL
Only read access is granted for the record types.

*SET(...)

The rights for sets (in SQL applications: foreign keys) are assigned.
NAME = *ALL
The specified access applies to all sets (in SQL applications: foreign keys) in the
database.

NAME = *ALL-EXCEPT(...)
The specified access applies to all sets except those entered here.

NAME = list-poss(30): <set-name>
The specified access does not apply to these sets.

NAME = list-poss(30): <set-name>
The specified access applies only to these sets.

RIGHT = ALL
Both read and write access is granted for the sets.

RIGHT = RETRIEVAL
Only read access is granted for the sets.

116 U931-J-2125-17-76

Defining access

rights ADD-USER-GROUP

. In the case of applications that work with BPRIVACY group names of a version

1 < UDS/SQL V1.2 or < UDS-D V1.4, the access rights can be defined by specifying
the old group name for <host> in the *FREE-FORMAT operand (see table 18 on
page 106).
BPRIVACY group names of a version < UDS/SQL V1.2 containing one or more
blanks can no longer be defined via the new interface. In these cases, you must
define a new group name in compliance with SDF rules of syntax.

Example
The following user groups are defined for the SHIPPING database:

"DO17ZE07________ XXxxx___": all rights
"DO17ZE07________ YYYYYY__": retrieval right
"DO17ZE07________ 777777__"": no rights

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS-BPRIVACY

xk% START BPRIVACY (ups/saL v2.8 0000) 2015-06-28 11:41:05

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:41:05/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:41:05/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XDL1U27M.PUBSDECL.ALL

0YBG: PUBSETS: *
0YBG: DEFAULT PUBSET: SQL2
0YBG:

% UDS0722 UDS ORDER ADD RLOG 150628094104 IN EXECUTION (ILL1283,11:41:05/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED (ILL1309,11:41:05/0YBG)
//ADD-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT (HOST=D017ZEOQ7 ,USER-ID=XXXXX), —

// OBJECT=(*REALM(NAME=*ALL,RIGHT=ALL),*RECORD(NAME=*ALL,RIGHT=ALL),*SET(NAME=*ALL,RIGHT=ALL))
//ADD-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT (HOST=D017ZE07 ,USER-ID=YYYYYY), -

// OBJECT=(*REALM(NAME=*ALL,RIGHT=RETRIEVAL),*RECORD(NAME=*ALL,RIGHT=ALL), -

// *SET(NAME=*ALL,RIGHT=ALL))

//ADD-USER-GROUP USER-GROUP-NAME=*FREE-FORMAT (HOST=D017ZEQ7 ,USER-1D=227777)

//END

% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:41:05/0YBG)

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: SHIPPING 13 111 59 42 20

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *****xxxxxxiix]3 DML-STATEMENTS 2015-06-28
(ILLY033,11:41:05/0YBG)

U931-J-2125-17-76

117

ADD-USER-GROUP

Defining access rights

x DIAGNOSTIC SUMMARY OF BPRIVACY

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

*xx** END OF DIAGNOSTIC SUMMARY
**x*x* NORMAL END BPRIVACY (UDs/saL v2.8 0000) 2015-06-28

11:41:05

118

U931-J-2125-17-76

Defining access rights END

END (Terminating command input)

Command input is terminated. Execution begins.

END

This statement has no operands.

U931-J-2125-17-76 119

GRANT-ACCESS

Defining access rights

GRANT-ACCESS (Assigning access rights to a user group)

The GRANT-ACCESS statement allows you to assign a user group access rights for
realms, record types (RECORDs) and sets.

If a user group already has access rights for an object, the rights specified with this
statement are added to them.

GRANT-ACCESS

USER-GROUP-NAME = list-poss(6): *KSET-FORMATY(...) / *FREE-FORMAT(...

*KSET-FORMATY(...)

*F

HOST = <host>

,APPLICATION = <appl>

,KSET = *NONE / list-poss(30): <kset>
REE-FORMAT(...)

HOST = <host>

,USER-ID =*NONE / list-poss(30): <userid>

,OBJECT = list-poss(6): *REALM(...) / *RECORD...) / *SET(...)
*REALM(...)

NAME =_*ALL / *ALL-EXCEPT(...) / list-poss(30): <realm-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <realm-name>
,RIGHT = ALL / RETRIEVAL

*RECORD...)

*S

NAME =_*ALL / *ALL-EXCEPT(...) / list-poss(30): <record-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <record-name>
,RIGHT = ALL /RETRIEVAL
ET(...)
NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <set-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <set-name>
,RIGHT = ALL / RETRIEVAL

120

U931-J-2125-17-76

Defining access rights GRANT-ACCESS

USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)
Name of the user group.

*KSET-FORMATY(...)
Name of the user group.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(6): <kset>
KSET name of the openUTM application.

*FREE-FORMAT(...)
Name of the user group.

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is specified.

USER-ID = list-poss(30): <userid>
Identification of the application.

OBJECT = list-poss(6): “REALM(...) / *RECORD(...) / *SET(...)
The access rights are specified.

*REALM (...)
The existing realm rights are changed.

NAME = *ALL
The specified access applies to all realms in the database. This operand must be
defined for all SQL applications.

NAME = ALL-EXCEPT (...)
The specified access applies to all realms except those entered here.

NAME = list-poss(30): <realm-name>
The specified access does not apply to these realms.

NAME = list-poss(30): <realm-name>
The specified access applies only to these realms.

RIGHT = ALL
Both read and write access is granted for the realms.

U931-J-2125-17-76

121

GRANT-ACCESS Defining access rights

RIGHT = RETRIEVAL
Only read access is granted for the realms.

*RECORD(...)
The existing rights for record types (in SQL applications: base tables) are changed.

NAME = *ALL
The specified access applies to all record types (in SQL applications: base tables
in the database.

NAME = ALL-EXCEPT (...)
The specified access applies to all record types except those entered here.

NAME = list-poss(30): <record-name>
The specified access does not apply to these record types.

NAME = list-poss(30): <record-name>
The specified access applies only to these record types.

RIGHT = ALL
Both read and write access is granted for the record types.

RIGHT = RETRIEVAL
Only read access is granted for the record types.

*SET(...)

The existing rights to sets (in SQL applications: foreign keys) are changed.
NAME = *ALL
The specified access applies to all sets (in SQL applications: foreign keys) in the
database.

NAME = ALL-EXCEPT
The specified access applies to all sets except those entered here.

NAME = list-poss(30): <set-name>
The specified access does not apply to these sets.

NAME = list-poss(30): <set-name>
The specified access applies only to these sets.

RIGHT = ALL
Both read and write access is granted for these sets.

RIGHT = RETRIEVAL
Only read access is granted for these sets.

122 U931-J-2125-17-76

Defining access rights GRANT-ACCESS

Example

The user group "D017ZE07____
realm CUSTOMER-ORDER-RLM.

777777__" (no rights) is assigned all rights for the

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS—BPRIVACY

Fkkxx START BPRIVACY (ups/sqL v2.8 0000) 2015-06-28 11:41:05

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:41:05/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:41:05/0YBG)

0YBG: UDS-PUBSET-JV: :SQL2:$XDL1U27M.PUBSDECL.ALL

0YBG: PUBSETS: *
0YBG: DEFAULT PUBSET: SQL2
0YBG:

% UDS0722 UDS ORDER ADD RLOG 150628094106 IN EXECUTION (ILL1283,11:41:06/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED (ILL1309,11:41:06/0YBG)
//GRANT-ACCESS USER-GROUP-NAME=*FREE-FORMAT (HOST=D017ZEO07 ,USER-1D=277777), -

// OBJECT=(*REALM(NAME=CUSTOMER-ORDER-RLM, RIGHT=ALL),*RECORD(NAME=*ALL,RIGHT=ALL), -

// *SET(NAME=*ALL,RIGHT=ALL))

//SHOW-USER-GROUP USER-GROUP—-NAME=*FREE—FORMAT (HOST=D017ZEQ7 ,USER-1D=2Z7ZZ7Z7) ,0UTPUT=SYSOUT
//END

DATABASE NAME : $XDL1U27M.SHIPPING
SCHEMA NAME : MAIL-ORDERS

*kkhkkkkkhkkkhkkkkhkkkhkkkkkhkkhkkkkkikkhkkhkkikkhkkikkkikkkkhkkikkhkkkkkkkhkkkkkk

ACCESS RIGHTS FOR USERGROUP : D017ZEQ7 777777

RIGHTS ON REALMS

! ! RIGHT !
1 + + +
! REALM NAME ! RETRIEVAL ! UPDATE !
! CUSTOMER-ORDER-RLM ! Y ! Y !
! PURCHASE—ORDER-RLM ! N ! N !
1 CLOTHING ! N ! N !

U931-J-2125-17-76 123

GRANT-ACCESS

Defining access rights

RIGHTS ON RECORDS

! ! RIGHT !

! } " ;
I RECORD NAME ! RETRIEVAL ! UPDATE !
! CUSTOMER ! Y ! Y !
I CST-ORDERS ! Y ! Y !
! ORD-ITEM ! Y ! Y !
RIGHTS ON SETS

! ! RIGHT !
! t t t
! SET NAME ! RETRIEVAL ! UPDATE !
I CST-ORD—PLACED ! Y ! Y !
I CST-0-CONTENTS ! Y ! Y !
I QUTSTANDING ! Y ! Y !

% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:41:06/0YBG)

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: SHIPPING 16 82 57 16 16

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH #*##skiikrrxxx]g DML-STATEMENTS 2015-06-28

(ILLY033,11:41:06/0YBG)

*xxxk DIAGNOSTIC SUMMARY OF BPRIVACY
NO WARNINGS
NO ERRORS

NO SYSTEM-ERRORS

*xxxk END OF DIAGNOSTIC SUMMARY
%%k NORMAL END BPRIVACY (Ubs/sQL v2.8 0000) 2015-06—-28

11:41:06

124

U931-J-2125-17-76

Defining access rights OPEN-DATABASE

OPEN-DATABASE (Opening the database)

The OPEN-DATABASE statement must be the first one entered.

The OPEN-DATABASE statement allows you to specify the database to be processed by
the subsequent ONLINE-PRIVACY or BPRIVACY statements.

OPEN-DATABASE

DATABASE-NAME = <dbname>

DATABASE-NAME = <dbname>

Specifies the database for which access authorizations are to be changed. A user of
ONLINE-PRIVACY or BPRIVACY can process a database only if it is in his or her identifi-
cation. A database in a different identification can only be processed using the TSOS iden-
tification of the system administrator.

The OPEN-DATABASE statement cannot be used if the database is assigned by
means of LINK-NAME=DATABASE for BPRIVACY.

The OPEN-DATABASE statement is always required for ONLINE-PRIVACY.

In this case the configuration name of the independent DBH session is specified via
LINK-NAME=DATABASE.

i @

U931-J-2125-17-76 125

REMOVE-USER-GROUP Defining access rights

REMOVE-USER-GROUP (Deleting one or more user group(s))

The REMOVE-USER-GROUP statement allows you to delete one or more user groups
together with their access rights.

REMOVE-USER-GROUP

USER-GROUP-NAME = ALL / *ALL/ *ALL-EXCEPT(...) / list-poss(6): *KSET-FORMAT(...) / *FREE-FOR-
MAT(...)

*ALL-EXCEPT(...)

NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)
*KSET-FORMAT(...)

HOST = <host>

,APPLICATION = <appl>

,KSET = *NONE / list-poss(30): <kset>

*FREE-FORMATY(...)

HOST = <host>

,USER-ID =*NONE / list-poss(30): <user-id>

*KSET-FORMAT(...)

HOST = <host>

,APPLICATION = <appl>

,KSET =_*NONE / list-poss(30): <kset>

*FREE-FORMAT(...)
HOST = <host>
,USER-ID = *NONE / list-poss(30): <userid>

126

U931-J-2125-17-76

Defining access rights REMOVE-USER-GROUP

USER-GROUP-NAME = ALL / *ALL / *ALL-EXCEPT(...) /

list-poss(6): *KSET-FORMAT(...) *FREE-FORMATY...)

It is specified which user group(s) is (are) to be deleted.

ALLALL /*ALL
All existing user groups are deleted.

*ALL-EXCEPT (...)
All user groups except those entered here are deleted.

NAME = list-poss(6): *KSET-FORMAT(...) / “FREE-FORMAT(...)
The user groups specified here are not deleted.

*KSET-FORMATY...)

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

*FREE-FORMATY...)

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is specified.

USER-ID = list-poss(30): <userid>
Identification of the application

*KSET-FORMATY(...)
All user groups specified here are deleted.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

U931-J-2125-17-76

127

REMOVE-USER-GROUP Defining access rights

*FREE-FORMAT(...)
All user groups specified here are deleted.

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is specified.

USER-ID = list-poss(30): <userid>
Identification of the application.

Example

The user group "D017ZE07 YYYYYY__"is deleted.

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS—BPRIVACY

Fkk START BPRIVACY (UDS/sQL v2.8 0000) 2015-06-28 11:41:06

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:41:06/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:41:06/0YBG)

0YBG: UDS—PUBSET-JV: :SQLZ2:$XDLI1UZ27M.PUBSDECL.ALL

O0YBG: PUBSETS: *
0YBG: DEFAULT PUBSET: SQL2
0YBG:

% UDS0722 UDS ORDER ADD RLOG 150628094106 IN EXECUTION (ILL1283,11:41:06/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED (ILL1309,11:41:06/0YBG)
//REMOVE-USER-GROUP USER-GROUP—-NAME=*FREE—FORMAT (HOST=D017ZEQ7 ,USER-ID=YYYYYY)

//END

% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:41:06/0YBG)

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: SHIPPING 7 91 60 23 20

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH #*xxsdookxsdarax7 DML-STATEMENTS 2015-06-28
(ILLY033,11:41:06/0YBG)

FAskk DIAGNOSTIC SUMMARY OF BPRIVACY
NO WARNINGS
NO ERRORS

NO SYSTEM-ERRORS

wAsk END OF DIAGNOSTIC SUMMARY
**xxx NORMAL END BPRIVACY (UDS/sQL v2.8 0000) 2015-06-28 11:41:06

128

U931-J-2125-17-76

Defining access rights REVOKE-ACCESS

REVOKE-ACCESS (Withdrawing access rights from a user group)

The REVOKE-ACCESS statement allows you to withdraw from a user group access rights
for realms, record types (RECORDs) and sets.

Only t

he access rights specified here are withdrawn. All other access rights are retained.

REVOKE-ACCESS

*

-n

*Rl

*R

*S

USER-GROUP-NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMATY...)
*KSET-FORMAT(...)

,OBJECT = list-poss(6): *REALM(...) / *RECORDY(...) / *SET(...)

HOST = <host>
,APPLICATION = <appl>
JKSET =_*NONE / list-poss(30): <kset>

REE-FORMAT(...)
HOST = <host>
,USER-ID = *NONE / list-poss(30): <userid>

EALM(...)
NAME = *ALL / *ALL-EXCEPT(...) / list-poss(30): <realm-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <realm-name>
,RIGHT = ALL / UPDATE / RETRIEVAL

ECORD(...)
NAME = *ALL / *ALL-EXCEPTY(...) / list-poss(30): <record-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <record-name>
,RIGHT = ALL / UPDATE / RETRIEVAL

ET(...)
NAME =_*ALL / *ALL-EXCEPT(...) / list-poss(30): <set-name>
*ALL-EXCEPT(...)
NAME = list-poss(30): <set-name>

,RIGHT = ALL / UPDATE / RETRIEVAL

U931-J-2125-17-76

129

REVOKE-ACCESS Defining access rights

USER-GROUP-NAME = list-poss(6): “KSET-FORMAT(...) / *“FREE-FORMAT(...)
Name of the user group.

*KSET-FORMATY(...)
Name of the user group.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

*FREE-FORMAT(...)
Name of the user group.

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is specified.

USER-ID = list-poss(30): <userid>

Identification of the application.
OBJECT = list-poss(6): “REALM(...) / *RECORD(...) / *SET(...)
The access rights are specified.

*REALM(...)
The existing realm rights are changed.

NAME = *ALL
The specified access is withdrawn for all realms in the database.

NAME = *ALL-EXCEPT (...)
The specified access is withdrawn for all realms except those entered here.

NAME = list-poss(30): <realm-name>
The specified access is not withdrawn for these realms.

NAME = list-poss(30): <realm-name>
The specified access is withdrawn for these realms only.

130 U931-J-2125-17-76

Defining access rights REVOKE-ACCESS

RIGHT = ALL
The realms can no longer be accessed.

RIGHT = UPDATE
The realms can no longer be write-accessed.

RIGHT = RETRIEVAL

This is only possible if the specified user group does not have write (UPDATE)
access.

The realms can no longer be accessed.

*RECORD(...)
The existing rights for record types (in SQL applications: base tables) are changed.

NAME = *ALL
The specified access is withdrawn for all record types (in SQL applications: base
tables) in the database.

NAME = *ALL-EXCEPT (...)
The specified access is withdrawn for all record types except those entered here.

NAME = list-poss(30): <record-name>
The specified access is not withdrawn for these record types.

NAME = list-poss(30): <record-name>
The specified access is withdrawn only for these record types.

RIGHT = ALL
The record types can no longer be accessed.

RIGHT = UPDATE
The record types can no longer be write-accessed.

RIGHT = RETRIEVAL
This is only possible if the specified user group does not have write (UPDATE)

access.
The record types can no longer be accessed.

*SET(...)

The existing rights for sets (in SQL applications: foreign keys) are changed.
NAME = *ALL

The specified access is withdrawn for all sets (in SQL applications: foreign keys) in
the database.

U931-J-2125-17-76 131

REVOKE-ACCESS Defining access rights

NAME = *ALL-EXCEPT (...)
The specified access is withdrawn for all sets except those entered here.

NAME = list-poss(30): <set-name>
The specified access is not withdrawn for these sets.

NAME = list-poss(30): <set-name>
The specified access is withdrawn for these sets only.

RIGHT = ALL
The sets can no longer be accessed.

RIGHT = UPDATE
The sets can no longer be write-accessed.

RIGHT = RETRIEVAL

This is only possible if the specified user group does not have write (UPDATE)
access.

The sets can no longer be accessed.

Example
The update right for the realm CUSTOMER-ORDER-RLM is withdrawn from user group
"D017ZEQ07 727777__".

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

/START-UDS—BPRIVACY

****x START BPRIVACY (UDS/SQL v2.8 0000) 2015-06-28 11:41:06

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:41:06/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:41:06/0YBG)

OYBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.ALL

0YBG: PUBSETS: *
0YBG: DEFAULT PUBSET: SQL2
0YBG:

% UDS0722 UDS ORDER ADD RLOG 150628094106 IN EXECUTION (ILL1283,11:41:06/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED (ILL1309,11:41:06/0YBG)
//REVOKE-ACCESS USER-GROUP-NAME=*FREE-FORMAT(HOST=D017ZE07 ,USER-1D=22777Z), -

// OBJECT=(*REALM(NAME=CUSTOMER-ORDER-RLM, RIGHT=UPDATE))

//SHOW-USER-GROUP USER-GROUP-NAME=ALL,OUTPUT=SYSOUT

//END

132 U931-J-2125-17-76

Defining access rights REVOKE-ACCESS

DATABASE NAME : $XDL1U27M.SHIPPING
SCHEMA NAME : MAIL-ORDERS

*hkkkkhkkkhkhkkhkkhkkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkhkhkkhkhkhkhkkhhkhkhkhkhkkhkhkhkhkkhkkkhkk

ACCESS RIGHTS FOR USERGROUP : DO017ZEQ7 777777

RIGHTS ON REALMS

! ! RIGHT !
1 + + +
! REALM NAME ! RETRIEVAL ! UPDATE !
! CUSTOMER-ORDER-RLM ! Y ! N !
! PURCHASE-ORDER-RLM ! Y ! Y !
! CLOTHING ! Y ! Y !

% UDSO758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:41:06/0YBG)

0YBG: DATABASE NAME DMLS ~ LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: SHIPPING 17 84 58 16 16

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ##sdsokkxxxxxx]7 DML-STATEMENTS 2015-06-28
(ILLYO033,11:41:06/0YBG)

***x*x DIAGNOSTIC SUMMARY OF BPRIVACY
NO WARNINGS
NO ERRORS

NO SYSTEM-ERRORS

***x*x END OF DIAGNOSTIC SUMMARY
***x* NORMAL END BPRIVACY (Ups/sqL v2.8 0000) 2015-06-28 11:41:06

U931-J-2125-17-76 133

SHOW-USER-GROUP Defining access rights

SHOW-USER-GROUP (Outputting information on user groups)

Information is output on user groups, i.e. on the access rights the groups have for database
objects. The realms, record types and sets are output in ascending order by reference

numb

er.

SHOW-USER-GROUP

USER-GROUP-NAME = ALL / *ALL / *ALL-EXCEPTY(...) / list-poss(6): *KSET-FORMAT(...) / *FREE-FOR-
MAT(...)

*ALL-EXCEPT(...)

*K

*F

NAME = list-poss(6): *KSET-FORMAT(...) / *FREE-FORMAT(...)
*KSET-FORMAT(...)

HOST = <host>

,APPLICATION = <appl>

,KSET = *NONE / list-poss(30): <kset>

*FREE-FORMATY(...)

HOST = <host>

,USER-ID =*NONE / list-poss(30): <userid>

SET-FORMAT(...)

HOST = <host>

,APPLICATION = <appl>

,KSET = *NONE / list-poss(30): <kset>

REE-FORMAT(...)
HOST = <host>

,OUTPUT = list-poss: SYSLST / SYSOUT

,USER-ID =*NONE / list-poss(30): <userid>

134

U931-J-2125-17-76

Defining access rights SHOW-USER-GROUP

USER-GROUP-NAME = ALL / *ALL / *ALL-EXCEPT(...) / list-poss(6):
*KSET-FORMAT(...)/*FREE-FORMAT(...)
The rights are output.

ALL / *ALL
The rights of all user groups are output.

*ALL-EXCEPT (...)
The rights of all user groups except those entered here are output.

NAME = list-poss(6): *KSET-FORMAT(...) / “FREE-FORMAT(...)
The rights of the specified user groups are not output.

*KSET-FORMATY...)

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss (30): <kset>
KSET name of the openUTM application.

*FREE-FORMATY...)

HOST = <host>
Host computer of the application.

USER-ID = *NONE
USER-ID = list-poss(30): <userid>
Identification of the application.

*KSET-FORMATY(...)
The rights of the specified user groups are output.

HOST = <host>
Host computer of the openUTM application (see host, page 106).

APPLICATION = <appl>
Name of the openUTM application.

KSET = *NONE
No KSET name is specified.

KSET = list-poss(30): <kset>
KSET name of the openUTM application.

U931-J-2125-17-76

135

SHOW-USER-GROUP Defining access rights

*FREE-FORMATY...)

HOST = <host>
Host computer of the application.

USER-ID = *NONE
No identification is output.

USER-ID = list-poss(30): <userid>
Identification of the application.

OUTPUT = list-poss: SYSLST / SYSOUT
The information is output.

SYSLST
Output is to SYSLST.

SYSOUT
Output is to SYSOUT.
Beispiel
See example of GRANT-ACCESS.

136 U931-J-2125-17-76

Defining access rights UNDO

UNDO (Undoing a statement)

The last correctly entered statement (except UNDO itself) is not executed. A subsequent
UNDO statement undoes the penultimate statement (apart from UNDO), and so on.

UNDO

This statement has no operands.

U931-J-2125-17-76 137

Command sequence for starting ONLINE-PRIVACY Defining access rights

4.8 Command sequence for starting ONLINE-PRIVACY

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version

02 /SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=configurationname

03 /START-UDS—-ONLINE—PRIVACY

04 OPEN-DATABASE DATABASE-NAME=dbname

05 other online-privacy statements

06 END

Explanation

01 Use the SELECT-PRODUCT-VERSION command to specify which UDS/SQL
version is to be used since more than one UDS/SQL version may be installed in
parallel with IMON in the Software Configuration Inventory (SCI) and more than one
version of the UDS/SQL subsystem may be loaded.

02 You assign the configuration name FILE-NAME=configurationname via the link name
DATABASE with the SET-FILE-LINK command.

The UDS/SQL configuration that is to work with ONLINE-PRIVACY and that the
database to be processed is attached to must be made known to the system using
this command.

03 ONLINE-PRIVACY must run under the user ID under which the database to be
processed was created. If this is not the case, then access to the database is
rejected by the DBH with status code 901.

04 You specify the database to be processed with the OPEN-DATABASE DATABASE-

NAME-=... statement. In contrast to the BPRIVACY ultility routine, this statement
must be specified when ONLINE-PRIVACY is used.

You can only process a single database in each ONLINE-PRIVACY run.

You cannot access a database in a remote configuration via UDS-D with ONLINE-
PRIVACY.

138

U931-J-2125-17-76

Defining access rights Command sequence for starting BPRIVACY

4.9 Command sequence for starting BPRIVACY

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

01
02
03
04
05

/SELECT—PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
[/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR]
/START-UDS-BPRIVACY

bprivacy—-statements

END

Explanation

01

02

03

The version-dependent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM application programs" in the "Application Programming" manual).

If you assign the database using LINK-NAME=DATABASE, you must not specify
the BPRIVACY statement OPEN-DATABASE.

If you do not assign the database using LINK-NAME=DATABASE, the BPRIVACY
statement OPEN-DATABASE is mandatory, i.e. must be specified.

BPRIVACY must runin the ID in which the database to be processed is located. The
UDS/SQL utility routine can also be started with the aliases BPRIVACY and START-
UDS-AUTHORIZATION.

U931-J-2125-17-76

139

Command sequence for starting BPRIVACY Defining access rights

140 U931-J-2125-17-76

5 Storing and unloading data
(BINILOAD, BOUTLOAD)

This chapter describes the utility routines BINILOAD and BOUTLOAD, which allow you to
store and unload data.

The BINILOAD utility routine can be run at any time in order to store data in an empty or
partially loaded database.

The BOUTLOAD utility routine is used to copy, delete or unload entire record types from the
database, e.g. for the purpose of restructuring.

At startup both utility routines take into account any assigned UDS/SQL pubset declaration
(see the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

U931-J-2125-17-76 141

Storing data

BINILOAD

5.1 Storing records in the database with BINILOAD

The following table is intended to help the administrator decide whether to use BINILOAD
or an application program for this purpose.

Keyword

Application program

BINILOAD

Generally used

to update the database.

to load a database.

Stores

every record of a record
type individually in the
database.

large numbers of records of a record type in
the database in one or more runs.

Suitable for loading

a database containing
many set occurrences with
few member records.

a database with set occurrences which have
large numbers of member records.

When inserting into
sets

the correct set occurrence
and the position within this
set occurrence must be
determined separately for
each member record.

all member records which are to belong to a
specific set occurrence are made available as
a sequence of records of an input file and
processed jointly.

Efficiency in loading
the database

bears no relation to the
number of records stored.

increases in proportion to the number of
records to be stored.

Table 20: Comparison of application program and BINILOAD

BINILOAD is designed for loading a database and can efficiently load a large number of
records of one record type.

Whether BINILOAD represents a saving in time compared to an application program, and
how much time it saves, depends on the number of records to be loaded, and the structure
of the database.

Since BINILOAD does not use before-images, DBDIR and at least the realms
required on loading should be saved before a run, especially if a check run is not
going to be carried out.

@

BINILOAD enables records of the same record type to be stored in an empty or partially
empty database. It is important to make all the records to be loaded available in an input
file for BINILOAD. All records loaded during a run are stored in the same realm by
BINILOAD. It does not matter if records of the same record type are already contained in
the database. In each run, BINILOAD only processes records of a single record type.

142

U931-J-2125-17-76

BINILOAD Storing data

BINILOAD can

— presort the records of the input file;

— store records with items of fixed length only;

— generate empty set occurrences for owner records which it has stored;

— when storing member records, insert all records of the input file into a set occurrence
nominated by the DB administrator, or select, using the key value of the owner record
concerned, the individual set occurrences into which the records are to be inserted.

BINILOAD determines the sequence of member records in compliance with the sort criteria

specified in each case and sets up the set occurrence tables so that relatively few accesses

to the pages of the database are necessary.

It is also possible however to stipulate the member record sequence desired by specifying

a character string in the records of the input file (only for sets where ORDER is not SORTED

or SORTED INDEXED, e.g. ORDER IS LAST).

BINILOAD accesses the database directly and not via the DBH. DB records (including set

connection data) and tables (pointer arrays, lists, SEARCH key tables etc.) are generated

by BINILOAD in work files or in main memory. BINILOAD then assembles the complete
pages before transferring them to the database.
5.1.1 Description of functions

Inserting in sets

BINILOAD can insert records it stores in the database in sets; in this case it is very important
to distinguish between owner and member record types:

— Owner record type:
In a CHAIN set, for example, BINILOAD automatically creates an empty set occurrence
for each owner record stored.

— Member record type of one or more sets:
You must specify with the INSERT statement (see section “Statements for BINILOAD”
on page 151) into which sets BINILOAD is to insert the records.

This also applies to sets in which the record type has been defined as AUTOMATIC
member.

U931-J-2125-17-76 143

Storing data

BINILOAD

Selecting the set occurrence

Before BINILOAD inserts member records into a set, it needs to select the set occurrence
into which the member records are to be inserted. It does this by selecting the owner record
using the following key values:

the value of the CALC key (see "LOCATION MODE clause" in the "Design and
Definition" manual)

the value of the SEARCH key. Defined at record type level either as INDEX-SEARCH
key or as CALC-SEARCH key (see "SEARCH KEY clause in the "Design and
Definition" manual).

the value of the database key. This method is always possible, since the database key
value is a unique identifier within the database.

If the owner record is a member in a SYSTEM set, BINILOAD can select it using the
following key values:

the value of the ASC/DESC key (for a sorted SYSTEM set)

the value of the SEARCH key. Defined at set level as INDEX-SEARCH key or as CALC-
SEARCH key (see "Direct access" in the "Design and Definition" manual).

BINILOAD can be informed in two ways of the key of the owner record by means of which
the set occurrence is to be selected:

Firstly by specifying the position of the key in the records of the input file. The value of
the key may then vary from record to record. Consequently BINILOAD inserts records
with different key values in different set occurrences.

Secondly by specifying the key as a literal in the OWNER statement of BINILOAD. In
this case the key value is the same for all records to be stored. BINILOAD therefore
inserts all records of the input file in a single set occurrence.

The following points must be taken into consideration when selecting a set occurrence:

Duplicates

If the set occurrence is selected by specifying the key value (CALC key, ASC/DESC
key, SEARCH key) of the owner record type, and if there are several records with the
same key value (DUPLICATES ARE ALLOWED), BINILOAD selects one owner record
from the owner records having the same key value, without the user knowing which one
will be chosen.

MANUAL member

If the records of the input file are to be inserted into a set in which the record type is
defined as a MANUAL member, the DB administrator must specify whether or not the
record is to be inserted by using the INSERT statement and identifying the input records
for optional insertion in a BINILOAD run.

144

U931-J-2125-17-76

BINILOAD

Storing data

Member record sequence

If the set into which BINILOAD is to insert the records to be stored as member records
is defined with ORDER IS FIRST/LAST/NEXT/PRIOR or IMMATERIAL, the DB
administrator can specify with the SET-ORDER statement of BINILOAD whether
BINILOAD should insert the records in the set occurrences

— in ascending order, by the contents of one item of the input records, or
— in the order in which they occur in the input file.

In all other cases the sequence defined in the ORDER clause of the set description is
used.

Set occurrence not empty

If the records to be stored are to be inserted as member records in a set occurrence in
which member records have already been inserted, the structure of the existing set
occurrence must be taken into consideration.

This structure is determined by the following clauses:
— the MODE clause (SSL) with POINTER-ARRAY, LIST, CHAIN

— the ORDER clause (DDL) with FIRST, LAST, NEXT, PRIOR, IMMATERIAL,
SORTED (can be used with CHAIN only), SORTED INDEXED.

For DDL and SSL, see the "Design and Definition" manual.

The following points must be observed:

— IfMODE IS CHAIN is specified with SORTED, SORTED INDEXED, an unfavorable
chaining structure may arise;

— If MODE IS LIST is specified, no further records can be inserted into an existing set
occurrence by BINILOAD. This also applies for distributable lists.

— If MODE IS LIST is specified, BINILOAD requires at least one page for level 0 of
each set cccurrence.

U931-J-2125-17-76

145

Storing data BINILOAD

Storing in the database

BINILOAD is designed to store large numbers of records in the database. Since BINILOAD
does not use partially filled pages, memory space can be more efficiently used than when
loading by means of an application program.

It can occur that input files, BINILOAD statements and Schema DDL and SSL specifications
are incompatible. BINILOAD therefore offers a facility for checking the input file data before
it is finally stored.

Specifying EXECUTION WITH CHECK causes the first phase of BINILOAD storage, the
table creation phase, to be executed without actual alterations to the database. Any errors
are detected and corresponding messages are output.

If no errors have occurred, BINILOAD repeats its run from the beginning and stores the
input data in the database.

Specifying EXECUTION WITHOUT CHECK causes alterations to be written to the
database immediately. If an error occurs, the BINILOAD run is aborted, error messages are
output and the database is inconsistent.

e Interdependencies between Schema DDL and BINILOAD statements
— DUPLICATES ARE NOT ALLOWED and presence of duplicates:

If, despite specification of DUPLICATES ARE NOT ALLOWED, there are records in
the input file that have the same key value, the following message is issued:

DUPLICATE KEYS OR DBKEYS FOUND / REC REF*®S OR RSQ‘S OUT OF RANGE
SEE PRINTER QUTPUT

In addition, up to the first 60 bytes of the key are output in the BINILOAD listing in
character representation and up to the first 30 bytes of the key are output in
hexadecimal form. The message is repeated for each key value found to be present
more than once. After checking all the input records, BINILOAD terminates with the
message:

ABNORMAL END BINILOAD

BINILOAD is only able to detect duplicates within the input file. It cannot identify
duplication between input records and database records.

— WITHIN clause and RECORD AREA statement of BINILOAD

If more than one realm has been defined in the WITHIN clause of the DDL, the
realm in which the records are to be stored must be specified in the RECORD
AREA statement of BINILOAD.

146

U931-J-2125-17-76

BINILOAD

Storing data

e Interdependence of SSL and BINILOAD statements:

DATABASE-KEY-TRANSLATION-TABLE clause

This clause specifies the size and location of the DBTT for a record type, and
thereby determines the maximum number of records which may be stored in the
database. Consequently the input file must not contain more records than there are
free entries in the DBTT of the corresponding record type.

PLACEMENT OPTIMIZATION clause

This clause packs the member records for the set contiguously in consecutive
pages in accordance with the sort criterion. The member is not stored in the owner

page.
SSL specifications with ATTACHED

MODE IS POINTER-ARRAY ATTACHED

MODE IS LIST ATTACHED

INDEX NAME IS indexname PLACING IS ATTACHED

Specifying ATTACHED in the SSL has no effect.

BINILOAD stores pointer arrays, lists and indexes of all levels in empty database
pages. These information elements are always stored DETACHED within the realm
of the owner.

SSL specifications with DETACHED

Specifying DETACHED WITHIN realm-name in the SSL causes the pointer arrays
and indexes to be stored in the specified realm. The only exception here are the
distributable lists. Here the table part (levels >0) and a possible indirect hash area
are stored in realm-name.

POPULATION clause in the set entry of the SSL and the FILLING statement in
BINILOAD

The FILLING statement can be used to specify the occupancy level for table pages.
In this way additional member records can be loaded by means of the Database
Handler without direct extension and reorganization for these information elements.
The storage space to be reserved for these table pages is determined exclusively
by the occupancy level and not by the SET POPULATION clause in the SSL.

For the Schema DDL and SSL, see the "Design and Definition" manual.

U931-J-2125-17-76

147

Input file

BINILOAD

5.1.2

Readying the input file and preparing the BINILOAD run

The records to be stored using the BINILOAD utility routine must be readied in an input file.

The records of the input file must all have the same structure. The same input file can,
however, be used to store database records of varying structure if different items of the
input record are selected.

An input file record may contain, in addition to items for the database record, items with the
following information:

— User information. Ignored by BINILOAD.

— Key values which are interpreted by BINILOAD in order to determine the correct set
occurrence.

— Information interpreted by BINILOAD in order to determine the sequence of member
records.

— Information interpreted by BINILOAD in order to indicate the insertion or non-insertion
of member records.

Input record
I % (

User
information

Key value

Figure 18: Example of the structure of an input file record

BINILOAD statements are used to specify the position and length of the items to be
transferred to the database record (see table 23 RECORD DISPL statement, page 153).

The item contents are stored in the database in the format in which they appear in the
records of the input file. This means that the item contents specified are not converted to
the type defined for these items in the Schema DDL (see "Defining an alphanumeric item
of fixed length" in the "Design and Definition" manual).

The input file may be stored on disk or tape. In both cases the input file can be a SAM or
ISAM file (EDT format) containing records of the same length in either fixed or variable
record format (RECFORM=V or F). (See table 21 USER RECORD LENGTH statement,
page 151.)

If the input comes from an uncataloged tape file, STATE=FOREIGN must also be specified
in the /CREATE-FILE command for the input file.

148

U931-J-2125-17-76

BINILOAD System environment

The name of the input file is specified in the INPUT-FILE statement, its record length in the
USER RECORD LENGTH statement.

At the end of this chapter there is an example for the BINILOAD command sequence,
followed by an example of a BINILOAD input file.

5.1.3 BINILOAD system environment

Input DBDIR
file

SYSDTA ¢
BINILOAD

=

Figure 19: System environment for BINILOAD

.

i

U931-J-2125-17-76 149

System environment BINILOAD

BINILOAD requires several work files, which it creates automatically in the correct size on
public volumes under the name UTI.SAMWORK .zsn.timestamp and deletes again following
normal termination of the loading operation.

The files have the following default link names: SCRTCH1, SCRTCH2, SCRTCH3,
SORTWK, SRT1WK, SCDnnnnn, STKnnnnn, KEYmmmmm and KSTnnnnn.

SCRTCH1
contains a follow-up version of the input file during execution.

SCRTCH2
SCRTCH3
are used to allocate space for records to be stored.

SORTWK

SRT1WK
requires the SORT used by BINILOAD for sorting internal evaluation records (see
the manual “SORT (BS2000)").

SCDunnnnn
contain, during execution of BINILOAD, the SCD information of the records for the
set with the five-digit set number setref, of which the record type to be loaded is a
member.

STKnnnnn
contain, during execution of BINILOAD, the SEARCH key information of the records
for the set with the five-digit set number setref, of which the record type to be loaded
is a member.

KEYmmmmm
contain, during execution of BINILOAD, the keys of the records for the key with the
five-digit key number keyref, from which the access tables are to be set up.

KSTnnnnn
contain, during execution of BINILOAD, storage information for the records for the
set with the five-digit set number setref, for which there is no user-defined sort key.
No key numbers keyref are identified for the set in the BPSIA log.

Database recovery

BINILOAD writes after-images if AFIM logging has been previously specified for the current
database using the utility routine BMEND (see "BMEND" in the "Recovery, Information and
Reorganization" manual).

150

U931-J-2125-17-76

BINILOAD Statements

ALOG files

If AFIM logging has been turned on, the current ALO file must be present.

If an error on the ALOG file occurs during the execution of BINILOAD or the ALOG file
overflows, AFIM logging is turned off, and BINILOAD continues to completion without
ALOG files. A logging gap results.

On completion of the BINILOAD run, the ALOG file is switched, i.e. a new ALOG file is
set up.

5.1.4 Statements for BINILOAD

In order to execute BINILOAD, a series of statements must be specified. BINILOAD
recognizes four kinds of statements:

Control statements
Program statements
STORE statements
INSERT statements

Statements which are optional are indicated as such. It is advisable to observe the
sequence of statements, even if certain statements are not used. The sequence is
mandatory for STORE and INSERT statements.

Control statements

These control execution of the UDS/SQL utility routine BINILOAD.

Statement Default value |Meaning
WITH WITH Checks/does not check input
[EXECUTION CHECK.] data
WITHOUT
150 Specifies size of main memory
[SORTCORE IS nnn.] for sort/merge routine

Table 21: Control statements for BINILOAD

U931-J-2125-17-76 151

Statements

BINILOAD

Program statements

These determine the schema, subschema, input file, and the occupancy level of tables.

Statement

Default value

Meaning

SCHEMA NAME IS schema-name.
SUBSCHEMA NAME IS subschema-—
name.

Name of schema and subschema

FILLING IS nnn PERCENT.

Specifies occupancy level for
table pages

USER FILE RECORD LENGTH IS n.

Length of input records in bytes

USER FILE BUFFER LENGTH IS n.

Block length of input file; must be
a multiple of 2048

INPUT FILE NAME 'file-name'.

File name of input file

INPUT RECORDNUMBER IS n.

None, only tolerated for reasons
of compatibility

Table 22: Program statements for BINILOAD

152

U931-J-2125-17-76

BINILOAD

Statements

STORE statements

These provide BINILOAD with information on the record type and its relation to the input
records.

Statement Default value |Meaning

STORE RECORD NAME IS record-

Record type to be stored

RECORD-DBKEY IS

-~

name.

DISPL IS n,LENGTH IS {

e8]

Assigns database key value;
— displacement and length of the
database key value

RECORD=RSQ IS

DISPL IS n,LENGTH IS {

(o)) oo
N

Assigns database key value;

— displacement and length of the
record sequence number
(RSQ)

The associated record reference
number (REC-REF) is determined
by BINILOAD.

RECORD=DISPL IS n,

DISPL IS n,LENGTH IS n}

VALUE IS 'Titeral

Structures database record. For

specified record type;

— displacement and length of the
items of this record

— character string to be inserted
in the database records

RECORD—AREA NAME IS realm-
name.

Realm into which the records are to
be loaded.

Table 23: STORE statements for BINILOAD

U931-J-2125-17-76

153

Statements

BINILOAD

INSERT statements

These indicate to BINILOAD the sets into which the records are to be inserted.

Statement

Default value

Meaning

INSERT INTO SET NAME IS set-name.

Specifies the set into which the
records are to be inserted as
member records.

SET ORDER

VIA USER FILE SEQUENCE

{USING DISPL IS n,LENGTH IS n

|

VIA USER
FILE
SEQUENCE

Specifies sort sequence of
records within the sets with
ORDER IS FIRST, LAST,
NEXT, PRIOR, IMMATERIAL;
specifies length of sort item.

OWNER CALCKEY IS

DISPL IS n, LENGTH IS n
VALUE IS 'Jiteral'

AREA NAME IS realm—-name.

Selects set occurrence by

selecting the owner

— displacement and length of
the CALC key values in the
input file records by means
of which the owner is to be
selected

— character string with CALC
key

— name of the realm in which
the owner record is stored.

OWNER SEARCHKEY IS

DISPL IS n, LENGTH IS n
{M IS '"Titeral' }
[VIA SET NAME IS set-name,]
SEARCHKEY TABLE

COLUMN=NR IS n

{ORDER—NR IS keyref}'

Selects set occurrence by

selecting the owner via

SEARCH key

— displacement and length of
the SEARCH key values in
the input file records by
means of which the owner
is to be selected

— character string with
SEARCH key table

— name of the SYSTEM set
in which the owner is a
member

— DBTT column number of
SEARCH key table

— key reference number.

Table 24: INSERT statements for BINILOAD

(part 1 of 2)

154

U931-J-2125-17-76

BINILOAD

Statements

Statement

Default value

Meaning

OWNER DBKEY IS

DISPL IS n, LENGTH IS

———
oo >
= =

VALUE IS dbkey

Selects set occurrence by
selecting the owner via its
database key value:

— displacement and length of
the database key value in
the input file records by
means of which the owner
is to be selected

— character string with
database key value.

3
DISPL IS n, LENGTH IS { }
6

VALUE IS rsg

Selects set occurrence by
selecting the owner via its
database key value:

— displacement and length of
the record sequence
number (RSQ) in the input
file records by means of
which the owner is to be
selected

— character string with record
sequence number (RSQ).

The associated record
reference number (REC-REF)
is determined by BINILOAD.

Position of the item in the input
records, which specifies
whether or not the record is to
be inserted in the SYSTEM
sets.

Table 24: INSERT statements for BINILOAD

(part 2 of 2)

U931-J-2125-17-76

155

EXECUTION statement BINILOAD

EXECUTION (Checking/not checking input data)

The EXECUTION statement is optional.

WITH

EXECUTION
WITHOUT

} CHECK.

WITH Before changes are made to the database, BINILOAD checks whether the input
data and the database structure are compatible and whether there is enough space
available in the database. If it finds discrepancies between input data and the
structure of the database, it issues appropriate messages and terminates the run.
BINILOAD stores the tables and records only if the input data is compatible with the
structure of the database.

If there is not enough space in a realm, this is indicated at the end of the test run by
the following runtime message:

MODIFY-REALM-SIZE <realm—-name>, DIFFERENCE = n .

However, the program run is not aborted if SECONDARY_ALLOCATION > 0 is set
in the realm as the free space required is then obtained by means of automatic
realm extension (see also the “Database Operation” manual).

No automatic DBTT extension by the BINILOAD utility routine takes place.

WITHOUT
BINILOAD suppresses the check run and stores the data from the input file
immediately.
If errors occur, the BINILOAD run is abnormally terminated and appropriate
messages are issued. The database is then inconsistent.

Default value:
WITH

BINILOAD does not check the actual contents of the input file.

@

156 U931-J-2125-17-76

BINILOAD SORTCORE statement

SORTCORE (Specifying the size of the sort buffer)

The SORTCORE statement is optional.

SORTCORE IS nnn.

nnn Specifies, in units of 4 Kbytes, the size of the memory space for the sort buffer
assigned to the BS2000 SORT utility routine (see the "ALLOC statement” in the
"SORT (BS2000)" manual). The population of the data that is to be sorted is the
same as that on which the size of the work files with the link names SORTWK and
SRT1WK is based (see page 183).

Default value: 150

U931-J-2125-17-76 157

SCHEMA statement BINILOAD

SCHEMA (Specifying the name of the schema)

The SCHEMA statement is optional.

SCHEMA NAME IS schema—-name.

schema-name
is the schema name specified in the Schema DDL

158 U931-J-2125-17-76

BINILOAD SUBSCHEMA statement

SUBSCHEMA (Specifying the name of the subschema)

The SUBSCHEMA statement is mandatory.

SUBSCHEMA NAME IS subschema—name.

subschema-name
is the subschema name specified in the Subschema DDL

With the aid of the names specified, BINILOAD obtains information on the database in
which the new records are to be stored.

U931-J-2125-17-76 159

FILLING statement BINILOAD

FILLING (Specifying the occupancy level of table pages)

The FILLING statement is optional.

FILLING IS nnn PERCENT.

nnn Specifies the percentage of filling for table pages on level 0.
This allows for future insertions in these data elements. Pages not used for tables
are filled to the maximum.

nnn=1..100

For table pages on level 1, the default level of occupancy is 95%. On every higher level,
one table entry is left free.

If FILLING is omitted, one entry is left free on level 0 as well.

If nnn is made too small, BINILOAD makes sure that there is room for at least one entry.

160

U931-J-2125-17-76

BINILOAD USER RECORD LENGTH statement

USER RECORD LENGTH (Specifying the length of the input records)

The USER RECORD LENGTH statement is mandatory.

USER FILE RECORD LENGTH IS n.

n Total length of an input file record in bytes.
The input file records may contain, in addition to the item contents of the records to
be stored in the database, additional user information and control information.

If "variable" record format is specified for the input file (RECFORM=V), the length
specification will be the record length minus the record length item (RECSIZE - 4).

n>0

U931-J-2125-17-76 161

USER BUFFER LENGTH statement BINILOAD

USER BUFFER LENGTH (Specifying the block length of the input file)

You can omit the USER BUFFER LENGTH statement if the input has been generated with
fixed record length (RECFORM=F).

USER FILE BUFFER LENGTH IS n.

n Block length of the input file in bytes.
BINILOAD sets up a buffer of the specified length.

n must be a multiple of 2048.

162 U931-J-2125-17-76

BINILOAD INPUT FILE statement

INPUT FILE (Specifying the name of the input file)

The INPUT FILE statement is mandatory.

INPUT FILE NAME IS 'file-name'.

file-name’
Is the name of the input file containing the records to be stored. The file can be a
SAM or ISAM file (EDT format). It may contain not only records of variable length
(RECFORM=V), but also records of fixed length (RECFORM=F).

file-name must be specified in literal format, since the name can be qualified at
multiple levels.

U931-J-2125-17-76 163

STORE RECORD statement BINILOAD

STORE RECORD (Specifying the record type)

The STORE RECORD statement is mandatory.

STORE RECORD NAME IS record—-name.

record-name
Is the name of the record type whose records are to be stored in the database. The
name must be defined in the appropriate schema and subschema.

164 U931-J-2125-17-76

BINILOAD

RECORD-DBKEY statement

RECORD-DBKEY (Assigning the database key value to a record)

If you want to explicitly assign the database key value for each record of the record type
specified for STORE RECORD (see page 164), you must specify either the RECORD-
DBKEY statement or the RECORD-RSQ statement as follows:

— Ifyou are using RECORD-DBKEY, specify the complete database key value in the input
file.

— Ifyou are using RECORD-RSQ, specify only the record sequence number (RSQ) in the
input file. BINILOAD will then use this RSQ to determine the database key value of the
input record and the record reference number (REC-REF) of the record type which you
specified for STORE RECORD.

If the database key values are to be assigned in the same sequence as the order of records
in the input file, the RECORD-DBKEY or RECORD-RSQ statement is optional.

RECORD-DBKEY statement

>

RECORD=DBKEY IS DISPL IS n, LENGTH IS {

lco

DISPL IS n
specifies the displacement within the input record (relative to the beginning of the
record) of the database key value to be assigned.

LENGTH IS {%}

The length of a database key value is always 4 or 8 bytes.

Database key values of 8-byte length with a record reference number (REC-REF)
> 254 and/or a record sequence number (RSQ) > 2241 can only be used for input
in databases with a page length of 4000 or 8096 bytes.

U931-J-2125-17-76 165

RECORD-RSQ statement BINILOAD

RECORD-RSQ statement

(8]

oy

RECORD=RSQ IS DISPL IS n, LENGTH IS { }

DISPL IS n
specifies the displacement within the input record (relative to the beginning of the
record) of the record sequence number (RSQ) to be assigned.

LENGTH IS {g}

The length of a record sequence number (RSQ) is always 3 or 6 bytes.
Record sequence numbers with a length of 6 bytes and a value > 2241 can only be
used for input in databases with a page length of 4000 or 8096 bytes.

166 U931-J-2125-17-76

BINILOAD

RECORD-DISPL statement

RECORD-DISPL (Creating the database record)

The RECORD-DISPL statement is mandatory if the input file records contain, in addition to
the database records, user information and control information or items for other record
types, i.e. if items are to be relocated.

It is to be specified an appropriate number of times if several items are to be transferred
from the input record to appropriate locations in the database record.

It is optional if the input file records are identical to the records to be stored in the database;
with "variable" record format each database record corresponds to the data part without the
record length item.

DISPL IS n,LENGTH IS n
RECORD=DISPL IS n,
VALUE IS 'Jiteral'

RECORD-DISPL IS n
specifies the displacement within the database record (relative to the beginning of
the record) of the item to be transferred.

DISPL IS n
specifies the displacement within the input record (relative to the beginning of the
record) of the item to be transferred.

With variable-length records the record length item must be disregarded.

LENGTH IS
specifies the length of the item to be transferred.

VALUE IS ’literal
specifies a value which is inserted in each stored record at the location specified by
n in the RECORD-DISPL statement.

The literal may be:
— acharacter string, e.g. ’date’ (max. 64 bytes)

— a hexadecimal character string, e.g. '014F’X, 'FFFF’X, etc.
(max. 32 bytes)

If an apostrophe is to be included in a character string, two apostrophes should be
entered.

You can enter up to five RECORD-DISPL statements with a VALUE clause.

U931-J-2125-17-76 167

RECORD-DISPL statement BINILOAD

Example of the RECORD-DISPL statement:

RECORD-DISPL IS 0
0 is the number of bytes between the beginning of the database record and the
first byte to which the item is to be transferred.

DISPLIS 3
3 is the number of bytes (displacement) between the beginning of the input
record and the first byte of the item to be transferred.

LENGTH IS 6
6 is the length of the item to be transferred.

DISPLIS3 l. LENGTH IS 6

g Input record
|| I

g Database record
[I I |1 |

RECORD DISPL IS0

Figure 20: Input record and database record with the item to be transferred

Every RECORD-DISPL statement generates or extends a MOVE statement. Parts
of the input record are inserted (character strings are inserted if VALUE is
specified). If more than one RECORD-DISPL statement is specified, they are
executed in the sequence given. Parts of the record inserted by previous RECORD-
DISPL statements can be overwritten.

The RECORD-DISPL statement must not refer to a displacement position outside
the database record. There is no check to ascertain whether the value of the literal
or the type of input record matches the element in the database record as defined
in the schema. BINILOAD likewise performs no conversions.

i @

168 U931-J-2125-17-76

BINILOAD

RECORD-AREA statement

RECORD-AREA (Specifying the realm)

The RECORD-AREA statement is mandatory if the WITHIN clause of the Schema DDL
contains more than one realm name and the record type to be stored is not the member
record type of a distributable list.

The RECORD-AREA statement can optionally be specified in the following cases:
— When the WITHIN clause of the Schema DDL contains only one realm name
— When the record type to be stored is a member of a distributable list:

If no realm is specified for distributable lists, BINILOAD stores the records
approximately evenly in all realms which are specified in the WITHIN clause of the
Schema DDL.

If a realm is specified for distributable lists with the RECORD-AREA statement, this
must be the table realm. The records are then stored in this realm. The associated list
remains distributable.

When the RECORD-AREA statement is used to specify a realm, this realm must be defined
in the subschema. If the record type to be stored is the member record type of a
distributable list, all realms of the Schema DDL’s WITHIN clause must be defined in the
subschema.

RECORD—AREA NAME IS realm—name.

realm-name
Name of the realm into which the records are to be loaded.

The SSL specifications must be observed!

If the record type to be stored is a member of a set specified with MODE IS LIST
but without DETACHED WITHIN realm-name, or if it is a member of a set specified
with PLACEMENT OPTIMIZATION, the owners of the set occurrences to be stored
must also be contained in the realm specified for the member record type.

i @

U931-J-2125-17-76 169

INSERT statement

BINILOAD

INSERT (Specifying the set)

Wether or not you specify the INSERT statement depends on the membership of the
member records in the set (see the "Design and Definition" manual).

e Standard set MANDATORY AUTOMATIC
You must specify the INSERT statement followed by the OWNER statement.

e Standard set OPTIONAL or MANUAL

You must specify the INSERT statement if all or some of the records are to be
inserted; the OWNER statement must then follow.

You must omit the INSERT statement if none of the records is to be inserted into the
set occurrence; the OWNER statement is also omitted.

e SYSTEM set MANDATORY AUTOMATIC
You must specify INSERT, but omit the subsequent OWNER statement.

e SYSTEM set OPTIONAL or MANUAL

You must specify INSERT if only some of the records are to be inserted; the
OWNER statement must then follow.

You must specify INSERT without a subsequent OWNER statement if all the
member records are to be inserted.

You must omit INSERT if none of the records is to be inserted into the set
occurrence of the SYSTEM set; the OWNER statement is also omitted.

The set must be defined in the specified subschema.

e SYSTEM set IMPLICIT
You must omit INSERT.

INSERT INTO SET NAME IS set-name.

set-name

@

Specifies in which set the input file records are to be inserted as members.

The INSERT and OWNER statements must be specified if BOUTLOAD generates
the set connection data (SCD) when unloading and subsequently BINILOAD is to
restore the old set memberships.

170

U931-J-2125-17-76

BINILOAD

SET ORDER statement

SET ORDER (Specifying the sort sequence)

You have the option of specifying the statement if sorting within the set was defined with
FIRST, LAST, NEXT, PRIOR or IMMATERIAL (see the "Design and Definition" manual) in
the ORDER clause of the Schema DDL and the sequence of the records in the set
occurrence does not match the sequence in the input file.

In this case the sequence within the set occurrence can be specified during loading with
BINILOAD by defining a sort item in each input record. The content of this item is used to
sort the member records in ascending order.

You need not specify the SET ORDER statement if the database records to be stored occur
in the same sequence in the input file as they are to be inserted in the set occurrence.

You should not specify the statement if sorting within the set was defined with SORTED,
SORTED INDEXED in the ORDER clause of the Schema DDL.

USING DISPL 1S n, LENGTH IS n
VIA USER FILE SEQUENCE '

USING DISPL IS
specifies the displacement (relative to the beginning of the record) of the sort item
in the input record.

VIA USER FILE SEQUENCE
causes the sequence of records in the input file to be retained in the set
occurrences.

Default value
VIA USER FILE SEQUENCE

The SET ORDER statement must precede the associated INSERT statement.

U931-J-2125-17-76 171

OWNER statements BINILOAD

OWNER (Defining the owner)

You must specify the OWNER statement for all sets other than SYSTEM sets, irrespective
of whether the sets have MANUAL or AUTOMATIC members, if an INSERT statement has
previously been entered.

BINILOAD can be used to define the owner if you specify the following values in one of the
formats 1 through 3 (with SYSTEM sets format 4 applies):

Value Condition Format

CALC key - Format 1
if the owner is, at the same time, member in a SYSTEM Format 2

ASC-/DESC key set

SEARCH key if the SEARCH key was defined at record type level

DB key - Format 3

All key values can be specified as the content of an item in the input records, or as a literal
in the OWNER statement for this set. If the key value is specified as a literal, all the records
of the input file are assigned to the same owner.

If the owner set is the member record type of a distributable list, the realms of the owner
record type’s DDL-WITHIN clause must be defined in the subschema.

If DUPLICATES ARE ALLOWED has been specified in the Schema DDL and
CALC, ASC/DESC or SEARCH keys have been used, duplicate key values may
occur, in which case it is impossible to predict which owner records BINILOAD will
select.

@

Ifin a MANUAL or OPTIONAL set certain member records are not to be inserted,
HIGH-VALUE should be entered in the item for owner selection in the input file.

172 U931-J-2125-17-76

BINILOAD

OWNER CALCKEY statement

Format 1: Using the CALC key to define the owner

DISPL IS n, LENGTH IS n
OWNER CALCKEY IS ,AREA NAME IS realm—-name.

VALUE IS 'Jiteral'

DISPL IS
specifies the displacement in the input record of the item containing the CALC key.

LENGTH IS n
specifies the length of the item containing the CALC key (length of the CALC key).

VALUE IS ’literal’
specifies the CALC key which selects the owner for all records of the input file.

realm-name
designates a realm specified in the DDL WITHIN clause of the owner record type.
If the owner set is the member record type of a distributable list, its table realm must
be specified here as the indirect CALC area is located there.

The AREA entry is mandatory in format 1.

U931-J-2125-17-76 173

OWNER SEARCHKEY statement BINILOAD

Format 2: Using the SEARCH key to define the owner

DISPL IS n, LENGTH IS n
OWNER SEARCHKEY IS ,LVIA SET NAME IS set-name,]
VALUE IS 'Jiteral'

COLUMN=NR IS n
SEARCHKEY TABLE .
f

ORDER=NR IS keyre

DISPL IS n
is the displacement in the input record of the item containing the SEARCH key.

LENGTH IS n
s the length of the item containing the SEARCH key.

VALUE IS ’literal’
is the SEARCH key value which defines the owner for all records of the input file.

VIA SET NAME IS set-name
is the name of the SYSTEM set in which the owner record type is a member; may
not be specified for SYSTEM sets created by the DDL compiler on the basis of a
record SEARCH key.

SEARCHKEY TABLE
The owner is selected using the ASC/DESC or SEARCH key. The key value must
be contained in a table. Consequently the ASC/DESC key can only be used for
SYSTEM sets with MODE IS CHAIN (see the "Design and Definition" manual) if
ORDER IS SORTED INDEXED was specified in the Schema DDL.

COLUMN-NR IS n
is the DBTT column number of the corresponding SEARCH key or sort key table
(see "SIA PRINT REPORT" in the "Recovery, Information and Reorganization"

manual).

ORDER-NR IS keyref
must be specified if the SEARCH key of the owner is a CALC-SEARCH key. keyref
specifies the key number, which is obtained from the sequence in which the keys
were defined within the record type description or set description in the DDL.

It can also be used instead of the COLUMN-NR option.

174 U931-J-2125-17-76

BINILOAD

OWNER DBKEY statement

Format 3: Using the database key to define the owner

The OWNER DBKEY and OWNER RSQ statements can be used to determine the owner
record by means of its database key value:

— Ifyou are using OWNER DBKEY, specify the complete database key value of the owner
record.

— If you are using OWNER RSQ, specify the record sequence number (RSQ) of the
owner record. BINILOAD will then use this RSQ to determine the database key value
of the owner record and the record reference number (REC-REF) that is assigned to
the owner record of set that you listed in the last specified INSERT statement (see
page 170).

OWNER DBKEY statement

>

DISPL IS n, LENGTH IS {

i

(e8]

VALUE IS dbkey

DISPL IS n
specifies the displacement in the input record of the item containing the database
key value.

LENGTH IS {%}

is the length of the database key value.

You must supply the database key value in the specified length in the records of the
input file: the item defining the owner record must contain the database key value
in binary. For more information on the binary representation of database key values,
see the “Design and Definition“ manual.

If the database key value of the owner record contains a record reference number
(REC-REF) > 254 and/or a record sequence numbers (RSQ) > 224 -1, you must
specify LENGTH IS 8.

VALUE IS dbkey
is the database key that selects the owner record for all records of the input file. This
database key value must be specified as follows:

record reference number (REC-REF) : record sequence numbers (RSQ)
The following applies to the value range of REC-REF and RSQ:

— for“LENGTH IS 4“: 1 < REC-REF < 254 and 0 < RSQ < 2241
— for“LENGTH IS 8“ 1 < REC-REF < 2'%-1 and 0 < RSQ < 23'-1

U931-J-2125-17-76 175

OWNER DBKEY statement BINILOAD

Example for the input of a database key value

The database key value with a REC-REF = 22 and an RSQ = 10 596 can be specified
as follows:

1. Inthe VALUE IS clause:
VALUE IS 22 : 10596

REC-REF RSQ
2. Inthe input file:

— forLENGTH IS 4*: X"16002964"
— for LENGTH IS 8%: X"0016000000002964"

176 U931-J-2125-17-76

BINILOAD

OWNER RSQ statement

OWNER RSQ statement

DISPL IS n, LENGTH IS {

o
= =

OWNER RSQ IS
VALUE IS rsqg

DISPL IS n
specifies the displacement in the input record of the item containing the record

sequence number (RSQ).

LENGTH IS {%}

is the length of the record sequence number (RSQ).

You must supply the RSQ in the specified length in the records of the input file: the
item defining the owner record must contain the RSQ in binary.

If the RSQ of the owner record is greater than 224 -1, you must specify

"LENGTH IS 6.

VALUE IS rsq
is record sequence number (RSQ) that selects the owner record for all records of
the input file. »sq must be specified with the following value range:

— for”LENGTH IS 3 0 < RSQ < 224 -1
— for’LENGTHIS 6“0 <RSQ< 2311

Example for the input of a record sequence numbers (RSQ)
An RSQ = 10 596 can be specified as follows:
1. Inthe VALUE IS clause:
VALUE IS 10596

RSQ
2. Inthe input file:

— for "LENGTH IS 3*: X"002964"
— for "LENGTH IS 6*: X"000000002964"

U931-J-2125-17-76 177

OWNER KEY statement BINILOAD

Format 4: Defining set membership in the SYSTEM set

OWNER KEY IS DISPL IS n, LENGTH IS 1

DISPL IS n
is the displacement of the item in each input record that specifies whether the
record is to be inserted into the SYSTEM set.

LENGTH IS 1
The length of the item is always 1.

Insert: X’00’ (LOW-VALUE)
Do not insert: X’FF’ (HIGH-VALUE)

If you do not specify the OWNER statement, all records are inserted into the SYSTEM set.

178

U931-J-2125-17-76

BINILOAD Command sequence

5.1.5 Command sequence for starting BINILOAD
It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).
01 /ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
02 [/CREATE-FILE FILE-NAME=input-tape-file,...]
03 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
04 /START-UDS—BINILOAD
05 biniload-statements

06 END

03 The specified version of BINILOAD is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

04 The UDS/SQL utility routine can also be started with the alias BINILOAD.

The BINILOAD statements are read in via SYSDTA! A file generated by
BOUTLOAD can also be used for this purpose.

i @

U931-J-2125-17-76 179

Work files

BINILOAD

5.1.6

Creating work files

If you wish to create the work files explicitly, you must issue the appropriate CREATE-FILE
commands. If you specify too little storage space (with SPACE), the value you specify will
be corrected internally by BINILOAD.

/CREATE-FILE FILE-NAME=workfile-n L[,SUPPORT ...]

SCRTCH1

SCRTCH2

SCRTCH3

SCDnnnnn PAM

/ADD—FILE-LINK LINK-=NAME=<STKnnnnn,FILE-=NAME=workfile-nl,ACCESS-METHOD=]

KEYnnnnn SAM
KSTnnnnn

SORTWK

SRTIWK

workfile-n Freely selected name for the work file

SUPPORT The storage space size can be specified with the SPACE entry in the
SUPPORT operand:

ACCESS-METHOD
The work files SORTWK and SRT1WK are created as PAM files. The other
work files are created as SAM files.

Link names for the work file

SCRTCH1
SCRTCH2
SCRTCH3
SCDnnnnn
STKnnnnn

KEYnnnnn

KSTnnnnn

SORTWK

SRT1WK

180

U931-J-2125-17-76

BINILOAD Work files

Calculating primary requirements for work files

The primary allocation for work files should be based on the data population that is to be
buffered. There should always be an appropriate secondary allocation in case it should be
necessary to extend the storage space.

The approximate space requirements for individual work files can be calculated by using
the formulas below.

SCRTCH1
(total key Tengths + 12) x number of input records Bytes

total keylengths:
is the total length of the following keys:

— keys by which the owners of the set are selected
(CALC keys, ASC/DESC keys, SEARCH keys or database keys)

— keys that do not belong to a set (CALC keys)

— keys for all sets in which these records are to be inserted
(ASC/DESC keys, SEARCH keys).

SCRTCH2

12 x number of input records Bytes

SCRTCH3

3 X number of input records Bytes
SCDunnnnn

with 2048-byte page length:

40 x number of input records Bytes

with 4000/8096-byte page length:

50 x number of input records Bytes

U931-J-2125-17-76 181

Work files BINILOAD

STKnnnnn
with 2048-byte page length:

(8 + reclength_1) x number of input records Bytes

with 4000/8096-byte page length:

(12 + reclength_1) x number of input records Bytes

reclength 1.

reclength 1 is the sum of the key lengths of all SEARCH keys in the set with
SET-REF nnnnn.

KEYnnnnn and for SEARCH key
with 2048-byte page length:

(16 + keylength_1) x number of input records Bytes

with 4000/8096-byte page length:

(24 + keylength_1) x number of input records Bytes

keylength I:
Key length of the key with KEY-REF nnnnn

182 U931-J-2125-17-76

BINILOAD Work files

KEYmmmmm and KSTnnnnn for SORT-Key
with 2048-byte page length:
(keylength_1 + 12 + keylength_Z2) x number of input records Bytes

with 4000/8096-byte page length:
(keylength_1 + 16 + keylength_Z2) x number of input records Bytes

keylength I

Length of the key used to specify the owner of the set.

This may be:

CALC keys, ASC-/DESC keys, SEARCH keys or database keys.

keylength 2:
Key length of the key with KEY-REFmmmmm
For KSTnnnnn with SET-REF nnnnn: keylength 1 = 0.

SORTWK and SRT1WK

SORT needs the two work files with the link names SORTWK and SRT1WK if there
is not enough virtual memory for pre-sorting. The primary allocation should be
based on the data population that is to be sorted while taking account of the safety
factor recommended by SORT (see the discussion of work files in the manual
“SORT (BS2000)”). There should always be an appropriate secondary allocation in
case it is necessary to extend the storage space.

The volume of the data that is to be sorted is calculated using the formula:
(reclength_2+SCD+12) x number of input records Bytes

reclength 2.
is the length of the database record.

SCD:

Length of the Set Connection Data. You can take over this value from the BPSIA
log where it is located in the SYSINFO column under the heading
RECORD-INFORMATION (see the manual “Recovery, Information and
Reorganization”).

When the load operation is complete, it is up to you to delete any work files that were
explicitly created.

U931-J-2125-17-76 183

Example BINILOAD

5.1.7 BINILOAD example

The record type ARTICLE is stored in the database SHIPPING. The file
SHIPPING.REC00009.00005 generated by BOUTLOAD is used as the input file.

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS—BINILOAD
Fkk START BINILOAD (UDS/sQL v2.8 0000) 2015-06-28 11:41:03

EXECUTION WITH CHECK.

SCHEMA NAME IS MAIL-ORDERS

SUBSCHEMA NAME IS ADMIN

USER FILE RECORD LENGTH IS 112

USER FILE BUFFER LENGTH IS 8192

INPUT FILE 'SHIPPING.REC00009.00005

INPUT RECORDNUMBER IS 55

STORE RECORD NAME IS ARTICLE

RECORD-DBKEY IS DISPL IS O , LENGTH IS 8

RECORD-DISPL IS 0 , DISPL IS 25 , LENGTH IS 87

RECORD-AREA NAME IS CLOTHING

INSERT INTO SET NAME IS P-ORD-SPEC

OWNER DBKEY IS DISPL IS 8 , LENGTH IS 8

INSERT INTO SET NAME IS MIN-STOCK-LEVEL

OWNER KEY IS DISPL IS 16 , LENGTH IS 1

INSERT INTO SET NAME IS ARTICLES-AVAILABLE

OWNER DBKEY IS DISPL IS 17 , LENGTH IS 8

END

BEGIN CHECK-RUN

% DATE AND TIME 2015-06-28 11:41:03

BEGIN ALLOCATION

*** DATE AND TIME 2015-06—28 11:41:03

SET_NAME: P-ORD-SPEC

SET_REF: 7

SORTKEY TABLE, DBTT_COLUMN_NR: 1

*** JCRELES: MOVE_ROUTINE SORTKF CREATED
CALCKEY TABLE — INDIRECT

*** DATE AND TIME 2015-06-28 11:41:03
BEGIN TABLE-PROCESSOR

% DATE AND TIME 2015-06-28 11:41:03

SET_NAME: MIN-STOCK-LEVEL

SET_REF: 8

SORTKEY TABLE, DBTT_COLUMN_NR: 1
BEGIN TABLE-PROCESSOR

184 U931-J-2125-17-76

BINILOAD

Example

**% DATE AND TIME 2015-06-28 11:41:03

SET_NAME: ARTICLES-AVAILABLE

SET_REF: 12

SORTKEY TABLE, DBTT_COLUMN_NR: 1
BEGIN TABLE-PROCESSOR

%% DATE AND TIME 2015-06-28 11:41:03
SEARCHKEY TABLE, DBTT_COLUMN_NR: 2
INDIRECT CALC-SEARCH-KEY BUCKETS
INDIRECT CALC-SEARCH-KEY BUCKETS

*** NO ERRORS DETECTED DURING CHECK-RUN
END CHECK-RUN

%% DATE AND TIME 2015-06-28 11:41:03
BEGIN ALLOCATION

*** DATE AND TIME 2015-06-28 11:41:03
*** DATABASE IS IN USE

SET_NAME: P-ORD-SPEC

SET_REF: 7

SORTKEY TABLE, DBTT_COLUMN_NR: 1

***% JCRELES: MOVE_ROUTINE SORTKF CREATED
CALCKEY TABLE — INDIRECT

% DATE AND TIME 2015-06-28 11:41:04

BEGIN TABLE-PROCESSOR
*** DATE AND TIME 2015-06-28 11:41:04

SET_NAME: MIN-STOCK-LEVEL

SET_REF: 8

SORTKEY TABLE, DBTT_COLUMN_NR: 1
BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:04

SET_NAME: ARTICLES-AVAILABLE

SET_REF: 12

SORTKEY TABLE, DBTT_COLUMN_NR: 1
BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:04
SEARCHKEY TABLE, DBTT_COLUMN_NR: 2
INDIRECT CALC—SEARCH-KEY BUCKETS
INDIRECT CALC—SEARCH-KEY BUCKETS

BEGIN STORE DB—-RECORD

*** DATE AND TIME 2015-06-28 11:41:04
STORING DATABASE RECORDS

END STORE DB-RECORD

U931-J-2125-17-76

185

Example BINILOAD

% DATE AND TIME 2015-06-28 11:41:04
END CLOSE
*** DATE AND TIME 2015-06-28 11:41:04

Hokxx DIAGNOSTIC SUMMARY OF BINILOAD
NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS
55 RECORDS ~ STORED
*xxxk END OF DIAGNOSTIC SUMMARY

**xx% NR OF DATABASE ACCESSES : 184
*xkx NORMAL END BINILOAD (ubs/sQL v2.8 0000) 2015-06-28 11:41:04

186 U931-J-2125-17-76

BINILOAD Example

BINILOAD input file:

S [A T — E— 9t Ot 1—
| -
| Record contents

|OWNER database key in the set ARTICLES-AVAILABLE

SRS S, T

«=

YSTEM set MIN-STOCK-LEVEL

(%)

OWNER database key in the set P-ORD-SPEC

database key of the record

- 00000210TWO—PART SUMMER DRESS 23210740 & &
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCCA4444444444444444FFFFFFFF0250029000050010000490000000100
0900000908000002FOD00000100000210965935939752026445923594000000000000000023210740080C090C00000COCO0090CO000000CO

- 00000210TWO—PART SUMMER DRESS 23210742 & &
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCCA444444444444444FFFFFFFF0250029000050010000490000000100
0900000A08000002FOD00000100000210965935939752026445923594000000000000000023210742080C090C00000COCO0090CO000000CO

- 00000210TWO—PART SUMMER DRESS 23210744 & &
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCCA444444444444444FFFFFFFF0250029000050010000490000000100
0900000B08000002FOD00000100000210965935939752026445923594000000000000000023210744080C090C00000COCO0090CO000000CO

- 00000210TWO—PART SUMMER DRESS 23210746
0000000000000000F00000000FFFFFFFFEECCECCDCCCE4EDDDCDDDCCCA4444444444444444FFFFFFFFO380039000010000000090000000000
0900000C08000002FOD00000100000210965935939752026445923594000000000000000023210746000C020C00000C4C00096C0000004CO

- 00000210TWO—PART SUMMER DRESS 23210748
0000000000000000F00000000F FFFFFFFEECCECCDCCCE4EDDDCDDDCCCA4444444444444444FFFFFFFFO380039000000000000090000000000
0900000D08000002FOD00000100000210965935939752026445923594000000000000000023210748000C020C00010C2C0O0008C0000002CO

- 83095013PLEATED DRESS WITH JACKET 23310836
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCCADCE4DCCDCA4444444444444444FFFFFFFFO270029000000000000990000000000
0900000408000006FOD00000183095013739225502359404930113250000000000000000023310836000C030C00500C5C00495C0000005CO

- 83095013PLEATED DRESS WITH JACKET 23310838
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCCADCE4DCCDCA4444444444444444FFFFFFFF0270029000000000000990000000000
0900000508000006FOD00000183095013739225502359404930113250000000000000000023310838000C030C00500C5C00495C0000005CO

- 83095013PLEATED DRESS WITH JACKET 23310840
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCCADCE4DCCDCA4444444444444444FFFFFFFFO270029000000000000990000000000
0900000600000006FOD00000183095013739225502359404930113250000000000000000023310840000C030C00500C5C00495C0000005CO

- 83095013PLEATED DRESS WITH JACKET 23310842
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCCADCE4DCCDCA4444444444444444FFFFFFFFO270029000000000000990000000000
0900000708000006FOD00000183095013739225502359404930113250000000000000000023310842000C030C00500C5C00495C0000005CO

- 83095013PLEATED DRESS WITH JACKET 23310844
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCCADCE4DCCDCA4444444444444444FFFFFFFF0270029000000000000990000000000
0900000808000006FOD00000183095013739225502359404930113250000000000000000023310844000C030C00500C5C00495C0000005CO

- 83095013PLEATED DRESS WITH JACKET 23310846
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCCADCE4DCCDCA4444444444444444FFFFFFFF0240029000000000000090000000000
0900000908000006FOD00000183095013739225502359404930113250000000000000000023310846020C050C00020C2C00018C0000002CO

- 83095013PLEATED DRESS WITH JACKET 23310848
0000000100000000F00000000FFFFFFFFDDCEECC6DDCCCADCE4DCCDCA4444444444444444FFFFFFFF0240029000000000000090000000000
0900000A08000006FOD00000183095013739225502359404930113250000000000000000023310848020C050C00020C2C00018C0000002CO

For an example of how BINILOAD and BOUTLOAD work together, refer to page 209.

U931-J-2125-17-76 187

Copying, deleting and unloading from a database BOUTLOAD

5.2 Copying, deleting and unloading records with BOUTLOAD

5.21

BOUTLOAD allows you to copy, delete and unload record types from a database quickly.

You can use BOUTLOAD when you want to unload a database partly or fully and then
reload it, or when you want to evaluate the data.

For restructuring purposes with BALTER, it is only necessary to unload record types in a
few exceptional cases, e.g. if you want to include the DUPLICATES NOT ALLOWED clause
in order to detect duplicates.

The files generated by BOUTLOAD can be reread by BINILOAD. Furthermore,
BOUTLOAD outputs the control statements for a following BINILOAD run to SYSLST if the
parameter SET-INFORMATION is set to YES. If SYSLST is assigned to a file, this file can
be subsequently modified and used for BINILOAD.

BOUTLOAD can also unload records with items of variable length.

BOUTLOAD functions

You can use BOUTLOAD to perform the following functions:

— copy record types from a database to output files
— delete record types from a database
— unload record types from a database to output files.

Furthermore, all records of a record type stored in one realm can be copied to an output file.

It is possible to delete the contents of an entire database and then use BOUTLOAD to
reformat the database.

When copying and unloading, BOUTLOAD stores the records of each specified record type
in one output file each. These output files can at the same time be used as input files for
BINILOAD.

BOUTLOAD copies or deletes the records of the specified record types in a single sweep,
i.e. it not only handles several record types concurrently, but also fills the output files
concurrently. In both cases, the consistency of the database is maintained.

Copying of record types with set information output is also possible parallel to a DBH run
with retrieval access or with a shadow database.

Copying without set information output is also possible parallel to the DBH, provided the
database is attached and has not been updated since mounting and up to termination of
the BOUTLOAD run. You must employ appropriate organizational measures to ensure that
this condition is respected. It is not checked by BOUTLOAD.

188

U931-J-2125-17-76

BOUTLOAD Copying, deleting and unloading from a database

Copying record types (COPY-RECORD)

One or more, or all record types can be copied from a database in a BOUTLOAD run.

If no output files have been created, they are created by BOUTLOAD: one output file per
record type.

The database remains unchanged.

BOUTLOAD reads the records in the physical sequence in which they are stored in the
database.

BOUTLOAD copies the user part of the database record. Compressed records are
decompressed; records with variable items are filled with blanks to their maximum length;
the length item for the variable item is maintained. BINILOAD cannot process a file
generated by BOUTLOAD with variable items.

The structure of the output record is described on page 194.
Copying with SET-INFORMATION=NO is also possible for an inconsistent database.

Copying records of one record type from one realm (COPY-RECORD, REALM-NAME)

Itis also possible in a BOUTLOAD run to copy the records of one or more record types from
only one realm. When this is done, the area reference is not stored in the output records.

If you have not created any output files, they are created by BOUTLOAD, one output file
per record type.

The realm remains unchanged.

For sets with ORDER IS FIRST/LAST/NEXT/PRIOR/IMMATERIAL, the sorting
sequence of the records in the set occurrences may change when they are
reinserted.

i @

U931-J-2125-17-76 189

Copying, deleting and unloading from a database BOUTLOAD

Deleting record types (REMOVE-RECORD)

One or more record types can be deleted from a database in a BOUTLOAD run. The record
types are deleted together with all pointers to the records in associated tables, owner
records and DBTT entries.

When multiple record types are to be deleted, BOUTLOAD deletes them all simultaneously
in a single pass through the database. The hierarchy in the database (member-owner
relations) must be observed: Member record types must be deleted either before or
together with the owner record types.

AFIM logging is permitted for the REMOVE-RECORD function if individual record
types are specified, but not for REMOVE-RECORD *ALL. If you specify REMOVE-
RECORD *ALL, you will need to first turn off AFIM logging with BMEND if required.

i @

Unloading record types (EXPORT-RECORD)

One or more record types can be unloaded from a database in a BOUTLOAD run.

This function is a combination of the copy and delete functions. As when deleting, the
hierarchy in the database must be observed.

In the case of record types whose records are distributed across several realms, it is not
possible to unload records from only one realm.

When unloading all record types the database is reformatted, just as when deleting all
record types.

AFIM logging is permitted for the EXPORT-RECORD function if individual record
types are specified, but not for EXPORT-RECORD *ALL. If you specify EXPORT-
RECORD *ALL, you will need to first turn off AFIM logging with BMEND if required.

i @

190 U931-J-2125-17-76

BOUTLOAD Copying, deleting and unloading from a database

Deleting and unloading all record types from a database
(REMOVE/EXPORT-RECORD,RECORD-NAME=*ALL)

It is possible in a BOUTLOAD run to delete or unload all record types from a database.
When this is done the database is reformatted. The schema and subschema structures of
the database are retained. The FPA pages, DBTTs, CALC pages and anchor records are
relocated (see "BFORMAT", page 88).

A formatting run can be performed only if all realms of the database are available.

Formatting with REMOVE-RECORD,RECORD-NAME=*ALL is also permitted for an
inconsistent database (e.g. following abnormal termination of a BOUTLOAD run).

AFIM logging is permitted in REMOVE-RECORD and EXPORT-RECORD
functions

if individual record types are specified, but not for REMOVE-RECORD *ALL or
EXPORT-RECORD *ALL. If you specify REMOVE-RECORD *ALL or EXPORT-
RECORD *ALL, you will need to first turn off AFIM logging with BMEND if required.

i @

The current setting for the online DBTT extensibility of the record types is retained.

Rights of access with the individual functions

adminci):tlétor id RETRIEVAL EXCLUSIVE
copy - X -
delete X - X
unload X - X

Table 25: Rights of access with individual functions

If a database is to be completely unloaded, for reasons of efficiency it is often
advisable to first execute multiple BOUTLOAD runs in parallel with the copy
function and thereafter to execute a BOUTLOAD run with the delete function.

i @

U931-J-2125-17-76 191

Output files BOUTLOAD

5.2.2 Preparing the output files and the BOUTLOAD run

The individual output files for BOUTLOAD can be created using the following commands:

/CREATE-FILE FILE-NAME=dbname.RECnnnnnl .mmmmm] [,SUPPORT= ...]
/ADD—FILE-LINK LINK-NAME=77nkname,FILE-NAME=dbname.RECnnnnnC . mmmmm]
[,BUFFER-LENGTH=xxx1[,FILE-SEQUENCE=*NEW]

dbname
Name of the database to be processed.

nnnnn
5-digit record reference number with leading zeros.

mmmmm
5-digit area reference number with leading zeros; this specification is required if
records are to be copied from only one realm.

SUPPORT
You can specify the size of the storage space by means of SPACE in the SUPPORT
operand. This is only permitted for a disk.

linkname
A freely selectable link name must be specified if FILE-SEQUENCE=*"NEW is set
or BUFFER-LENGTH is changed. Only one TFT entry may then exist for the output
file.

XXX Default
— for disk:*STD(SIZE=4)

— for tape:
BUFFER-LENGTH depends on the length of the records: At least 4 PAM pages.
The value is rounded up to a whole multiple of the record length and a whole
multiple of a a doubleword.

If output is to be on tape, an explicit number should be entered for BUFFER-
LENGTH, rather than using standard blocks, since specifying standard blocks
(STD) increases the size of the output file.

FILE-SEQUENCE=*NEW
permitted only for tape, if the same set of tapes is to be accessed in a series of
BOUTLOAD runs.

192 U931-J-2125-17-76

BOUTLOAD Output files

The volume of data for output is calculated as follows:

number of records x reclength Bytes

The record length is calculated as follows
— for records containing set information in a 2-Kbyte database:

reclength = record length as per SIA report — length of system information
+ 4 * (number of non-singular sets in which the record is a
member + 1)

+ 1 * (number of singular sets in which the record is a
member, except for MANDATORY AUTOMATIC members)
— for records containing set information in a 4-Kbyte or 8-Kbyte database:

reclength = record length as per SIA report — length of system information
+ 8 * (number of non-singular sets in which the record is a
member + 1)

+ 1 * (number of singular sets in which the record is a
member, except for MANDATORY AUTOMATIC members)
— for records not containing set information:
reclength = record length as per SIA report — length of system information

In the case of record types which are distributed to realms, five bytes for the area reference
are added to the record length when the records are copied or extracted from multiple
realms.

The records are always copied into one output file per record type. An origin from more than
one realm is therefore required for the area reference to be specified.

The number of records can be obtained using the BSTATUS utility routine.

If the output files have not been previously created, they are created by BOUTLOAD on
public disk. The size of each file is calculated by BOUTLOAD from the maximum number
of DBTT entries for the corresponding record type.

For output files on tape it must be ensured that as many tape units are available as
there are record types to be simultaneously unloaded, since BOUTLOAD copies the
record types at the same time.

i @

U931-J-2125-17-76 193

Output files BOUTLOAD

CSV output file

It is not obligatory to create the CSV output file. It is always created by the BOUTLOAD
utility on a public disc.

The CSV output file name consists of the file name of the output file and the suffix ‘CSV’:
dbname.RECnnnnnC . mmmmm] .CSV

dbname
Name of the database to be processed.

nnnnn
5-digit record reference number with leading zeros.

mmmmm
5-digit area reference number with leading zeros. This specification is required if
records are to be copied from only one realm.

CSV Suffix for CSV output file.
The records are always copied into one CSV output file per record type.
If CSV-OUTPUT = *YES is specified, the DBCOM must be available.

Creating the output record

If BOUTLOAD has also output the set information on account of the
SET-INFORMATION=YES statement, the output record is created with the following
structure:

| Database Key I| Item I| Database keys of all owners I| User part I| Area ref. J
L

— The record’s database key

— A one-byte long item with the content
X’00’ = Member inserted
X’FF’ = Member not inserted
(for all singular sets in which the record is a member, except for MANDATORY
AUTOMATIC members)

— The owners’ database keys are not singular sets in which the set is a member

— If the record is not inserted in the set, the owner’s database key is set to High Value
(X'FFFFFFFF' in the case of a 2-KB database, or X'FFFFFFFFFFFFFFFF' in the case
of a 4/8-KB database)

— User part

194 U931-J-2125-17-76

BOUTLOAD Output files

— The five-byte area reference (realm reference) in the case of record types which are
distributed to realms if their records are copied from multiple realms. The records are
always copied into one output file per record type. An origin from more than one realm
is therefore required for the area reference to be specified.

When BOUTLOAD outputs set information on the individual sets, the length of the database
key values is specified in the BOUTLOAD log which contains the statements for a
subsequent BINILOAD run (length “4” in the case of a 2-Kbyte database, length “8” in the
case of a 4-Kbyte/8-Kbyte database).

Without any set information, the output record consists of the user part only.

CSV output data

The following example shows part of a data output to a CSV output file in a presentation
mode similar to Microsoft EXCEL. In contrast, in a CSV file, the single values are separated
by a semicolon (;).

BOUT |CSV 28.03 |14:3
LOAD |V1.20 .2014 |8:53
DBNA | DATABAS |DB1
ME E NAME
INFO |RECORD |RECOR
01 NAME D2
INFO |RECORD |2
02 REF
INFO | REALM AREA1
03 NAME
INFO | REALM 3
04 REF
FIEL |DB Key |DBKey [Memb |Owner DB Owner DB R1 |R2- R2- R2- R2- .. |Are
DS Ref RSQ er Key Ref S1 |Key RSQ S1 1(1,11(1,22(1,1, |2(1,1, a—
SYS—)) 1) 2) ref
1
RECO |2 1 Y 1 6 15 |Y A YZ AC 3
RD .7
RECO |2 3 N 1 3 - A B BC AB 3
RD 47
1

U931-J-2125-17-76 195

Output files BOUTLOAD

The header of the data output contains up to 6 rows, if a realm name was specified in
COPY-RECORUD:

— The first row contains the name of the utility routine, the corresponding utility routine’s
output format version, and the date and time of the CSV output creation.

— The next rows contain database name, record name, and record reference. If a realm
name was specified, the header also contains realm name and realm reference.

The header line of the record output can contain the following fields:

DB Key Ref, DB Key RSQ
Field names for the database key of the record

Member set-name
Field name for a one-byte long item with the following content:

Y Member inserted into the SYSTEM set set-name
N Member not inserted into the SYSTEM set set-name

(for all singular sets in which the record is a member, except for MANDATORY
AUTOMATIC members)

Owner DB Key Ref set-name, Owner DB Key RSQ set-name
If the record is a member record, database keys of all owners are output
additionally.

The item names according to the user schema

Area ref
In the case of a record type that is distributed to realms if its records are copied from
multiple realms

If an item is part of a repetition group or a vector the index value is attached to the item
name of such an element.

Items of the type DBKEY are output in the following format:
DB KEY REF and DB KEY RSQ.

BOUTLOAD converts binary and numeric data into a printable format as follows:
— The decimal point is represented by the character "comma" (",").

— Alphanumeric items of variable length are output according to the current length of the
variable item.

— ltems of national type are converted to a user-defined character set, if it is possible.

196 U931-J-2125-17-76

BOUTLOAD Output files

To assign or get a user default character set, proceed as follows:

» To assign a user default character set use the ADD-USER or MODIFY-USER
commands.

» To get the user default character set, use the SHOW-USER-ATTRIBUTES command.

For conversion from a national data type, the XHCS subsystem must be available in the
system. If national characters cannot be converted due to an XHCS subsystem error, the
warning 3935 is output, the output to this CSV file is terminated, and the CSV file is deleted.

3935 NATIONAL CHARACTERS CANNOT BE CONVERTED: XHCS RETURN CODE: returncode

If a record type contains a national data type, the corresponding CSV file is created with the
CODED-CHARACTER-SET from the USER-ID.

If the CODED-CHARACTER-SET of the user cannot be determined, the warning 3936 is
output, the CSV output for this record type is terminated, and the CSV file is deleted.

3936 USER CODED CHARACTER SET CANNOT BE DETERMINED: SRMUINFI RETURN CODE:
returncode

If a national character cannot be converted to a user-defined character set (because there

is no equivalent), this national character is output as character "period" ("."). A warning
message is output additionally:

3932 STRING CONVERSION WITH SUBSTITUTION BY DEFAULT CHARACTERS PERFORMED FOR
RECORD recordname.

A semicolon (";") is used to separate the individual values.

Alphanumeric values can contain some characters such as separators/delimiters (";"), new
lines, or double quotes, which have special meanings in different system environments. All
alphanumeric values are enclosed by double quotes so that these values can be processed
correctly in other system environments. If a value contains embedded (double) quote
characters, this double quote is represented by two (double) quote characters.

U931-J-2125-17-76 197

LOG

BOUTLOAD

5.2.3 BOUTLOAD log for the output record format

Example

BINILOAD PARAMETERS FOR RECORD : ARTICLE
SCHEMA NAME IS MAIL-ORDERS

SUBSCHEMA NAME IS

USER FILE RECORD LENGTH IS 112

USER FILE BUFFER LENGTH IS 8192

INPUT FILE 'SHIPPING.REC00009.00005

INPUT RECORDNUMBER IS 55

STORE RECORD NAME IS ARTICLE

RECORD-DBKEY IS DISPL IS O , LENGTH IS 8
RECORD-DISPL IS 0 , DISPL IS 25 , LENGTH IS
RECORD-AREA NAME IS CLOTHING

INSERT INTO SET NAME IS P-ORD-SPEC

OWNER DBKEY IS DISPL IS 8 , LENGTH IS 8
INSERT INTO SET NAME IS MIN-STOCK-LEVEL
OWNER KEY IS DISPL IS 16 , LENGTH IS 1
INSERT INTO SET NAME IS ARTICLES-AVAILABLE
OWNER DBKEY IS DISPL IS 17 , LENGTH IS 8
END

BOUTLOAD generates a log on SYSLST if the SET-INFORMATION parameter is set to
YES. If SYSLST is assigned to a file, this file can be used as input file for BINILOAD, and
the BINILOAD statements can be applied. See also the examples starting on page 208.

, REC-REF : 9

87

198

U931-J-2125-17-76

BOUTLOAD

System environment

5.2.4 BOUTLOAD system environment

SYSDTA

[NN

BOUTLOAD

g

|

Eﬁ‘;

OO

CSV files

S AM files

Figure 21: System environment for BOUTLOAD

In this description it is assumed that UDS/SQL was installed with IMON (see section

“START commands for the UDS/SQL programs” on page 47).

U931-J-2125-17-76

199

Statements

BOUTLOAD

5.2.5

BOUTLOAD statements

The statement formats of the BOUTLOAD utility routine conform to the SDF rules (System
Dialog Facility, see the manuals "SDF Dialog Interface" and "Commands").

The data types used in SDF formats are described in table 5 on page 23.

Overview of statements for BOUTLOAD

Statement

Meaning

COPY—RECORD
RECORD-NAME = *ALL / Tist-poss(20): <record—name> /

*ALL-EXCEPT(...)

,REALM-NAME = *ALL / <realm—name>

,SET-INFORMATION = YES / NO

,CSV-0UTPUT = *NO/ *YES

Copy all records of the
specified record types to
output files

END

Terminate BOUTLOAD

EXPORT—-RECORD
RECORD-NAME = *ALL / Tist-poss(20): <record—name> /
*ALL-EXCEPT(...)

,SET-INFORMATION = YES / NO

Unload all records of the
specified record types to
output files

OPEN-DATABASE
DATABASE-NAME = <dbname>
,COPY-NAME = *NONE / <copyname>
,USER-IDENTIFICATION = *QWN / <userid>

Assign the database

REMOVE-RECORD
RECORD-NAME = *ALL / Tist-poss(20): <record—name> /

*ALL-EXCEPT(...)

Delete all records of the
specified record types

Table 26: Statements for BOUTLOAD

200

U931-J-2125-17-76

BOUTLOAD COPY-RECORD statement

COPY-RECORD (Copying records to output files)

This statement is used to copy all records of the specified record types to output files. It is
also possible to get the output in CSV format. The database key values are output in the
same form in which they exist in the database, i.e. BOUTLOAD does not convert them from
the short form to the long form, and vice versa. The database itself remains unchanged.

COPY-RECORD

RECORD-NAME = *ALL / list-poss(20): <record-name> / *ALL-EXCEPT(...)

*ALL-EXCEPTY(...)
EXCEPT-NAME-= list-poss(20):<recordname>

,REALM-NAME = *ALL / <realm-name>
,SET-INFORMATION =_YES / NO
,CSV-OUTPUT =*NO /*YES

RECORD-NAME = *ALL / list-poss(20): <record-name>/ *ALL-EXCEPT(...)

*ALL

With this specification only this one function is permitted in the BOUTLOAD run, i.e. the
END statement must follow.

All records of all record types are copied.

<record-name>
All records of the specified record type(s) are copied.

*ALL-EXCEPT(...)

With this specification only this one function is permitted in the BOUTLOAD run, i.e. the
END statement must follow.

All records with the exception of the specified record types are copied.

EXCEPT-NAME-= list-poss(20): <recordname>
Names of the record types which are not to be copied.

REALM-NAME = *ALL / <realm-name>

*ALL
All records of the specified record type are copied from all realms in which they can
occur.

<realm-name>
If a single realm has been specified, only the records of that realm are copied to output
files.

U931-J-2125-17-76 201

END statement BOUTLOAD

With this specification only this one function is permitted in the BOUTLOAD run, i.e. the
END statement must follow.

SET-INFORMATION = YES / NO
Determines whether set information is to be stored in the corresponding output file for every
record and whether statements for BINILOAD are to be written to SYSLST.

Before copying the database is not checked as to whether it contains records which can be
copied. If no such records exist, the associated output file is either invalidated, if it has been
created by the user, or deleted, if it has been created by BOUTLOAD.

CSV-OUTPUT = *NO / *YES

*NO
BOUTLOAD outputs the data to output files, but not in CSV format.

*YES
BOUTLOAD additionally outputs the data in CSV format.

END (Terminating the BOUTLOAD run)

This statement is used to terminate the BOUTLOAD run. It must be the last statement you
enter.

END

This statement has no operands.

202

U931-J-2125-17-76

BOUTLOAD EXPORT-RECORD statement

EXPORT-RECORD (Unloading records to output files)

This statement is used to unload all records of the specified record types from the database
to output files. The database key values are output in the same form in which they exist in
the database, i.e. BOUTLOAD does not convert them from the short form to the long form,

and vice versa.

This statement may only be used if BOUTLOAD has been loaded under the identification
under which the database is cataloged.

EXPORT-RECORD

RECORD-NAME = *ALL / list-poss(20): <record-name>/ *ALL-EXCEPT(...)

*ALL-EXCEPTY(...)
EXCEPT-NAME-= list-poss(20):<recordname>

,SET-INFORMATION = YES / NO

RECORD-NAME = *ALL / list-poss(20): <record-name>/ *ALL-EXCEPT(...)

*ALL
Implies that this is the only function permitted in the BOUTLOAD run; i.e. the END state-

ment must follow.
The database is reformatted; all realms have to be available.

<record-name>
All records of the specified record type are copied and deleted from the database.

*ALL-EXCEPT(...)
With this specification only this one function is permitted in the BOUTLOAD run, i.e. the

END statement must follow.
All records with the exception of the specified record types are copied and deleted in

the database.

EXCEPT-NAME-= list-poss(20): <recordname>
Names of the record types which are not to be copied and are to be deleted in the

database.
SET-INFORMATION = YES / NO

Determines whether set information is to be stored in the corresponding output file for
every record and whether statements for BINILOAD are to be written to SYSLST.
When BOUTLOAD outputs set information for the individual records, the BOUTLOAD
log, which contains the statements for a subsequent BINILOAD run, indicates the length
of the database key values (length “4” for a 2-Kbyte database and length “8” for a 4-
Kbyte or 8-Kbyte database).

U931-J-2125-17-76 203

EXPORT-RECORD statement BOUTLOAD

Record types may be copied with SET-INFORMATION=NO even if the database is
inconsistent.

Before copying the database is not checked as to whether it contains records which can be
copied. If no such records exist, the associated output file is either invalidated, if it has been
created by the user, or deleted, if it has been created by BOUTLOAD.

When entering the record types, the hierarchical structure of the database schema
must be observed; i.e. the member record types must be unloaded either before or

together with the owner record types.
If the entries are incorrect, the BOUTLOAD run is aborted.

If you store records in the database subsequently, the assignment of the DB keys
begins again at RSQ=1. The DB keys can now also be used (once) if they are
locked for reuse by the DBH by means of the BMODTT statement KEEP. An
additional BMODTT run with the REMOVE statement is not required.

i @

204 U931-J-2125-17-76

BOUTLOAD OPEN-DATABASE statement

OPEN-DATABASE (Assigning the database)

This statement is used to assign the database.
You must enter it first if you have not assigned the database with:
/ADD—FILE-LINK LINK-NAME=DATABASE, FILE-NAME=dbname.DBDIR

If the SET-FILE-LINK command has been entered, an OPEN-DATABASE statement is
rejected as invalid.

OPEN-DATABASE

DATABASE-NAME = <dbname>
,COPYNAME = *NONE / <copyname>
,USER-IDENTIFICATION = *OWN/ <userid>

DATABASE-NAME = <dbname>

Name of the database. A user can edit only databases that are in his or her userid. A data-
base from another userid can only be processed using the TSOS identification of the sys-
tem administrator.

COPY-NAME = *NONE / <copyname>

*NONE
The original database is opened.

<copyname>
The shadow database is opened.

USER-IDENTIFICATION = *OWN / <userid>

*OWN
The database is in the user’s userid.

<userid>
The database is in another userid. This specification is permitted only from the TSOS
identification.

The link name DATABASE remains in effect until it is canceled with the REMOVE-FILE-
LINK command.

The OPEN-DATABASE statement remains in effect up to completion of the BOUTLOAD
run.

U931-J-2125-17-76 205

REMOVE-RECORD statement BOUTLOAD

REMOVE-RECORD (Deleting records)

This statement is used to delete all records of the specified record types from the database.

This statement may only be used if BOUTLOAD has been loaded under the identification
under which the database is cataloged.

REMOVE-RECORD

RECORD-NAME = *ALL / list-poss(20): <record-name> *ALL-EXCEPT(...)

*ALL-EXCEPT(...)
EXCEPT-NAME= list-poss(20):<recordname>

RECORD-NAME = *ALL / list-poss(20): <record-name>/ *ALL-EXCEPT(...)

*ALL

Implies that this is the only function permitted in the BOUTLOAD run; i.e. the END state-
ment must follow.

The database is reformatted; all realms have to be available.

This statement is also allowed for an inconsistent database (with the system break bit
set).

<record-name>
All records of the specified record type are deleted from the database.

*ALL-EXCEPT(...)

With this specification only this one function is permited in the BOUTLOAD run, i.e. the
END must follow.

All records with the exception of the specified record types are copied and deleted in
the database.

EXCEPT-NAME-= list-poss(20): <recordname>
Names of the record types which are not to be deleted.

@

When entering the record types, the hierarchical structure of the database schema
must be observed; i.e. the member record types must be deleted either before or

together with the owner record types.
If the entries are incorrect, the BOUTLOAD run is aborted.

If you store records in the database subsequently, the assignment of the DB keys
begins again at RSQ=1. The DB keys can now also be used (once) if they are
locked for reuse by the DBH by means of the BMODTT statement KEEP. An
additional BMODTT run with the REMOVE statement is not required.

206

U931-J-2125-17-76

BOUTLOAD Command sequence

5.2.6 Command sequence to start BOUTLOAD
It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).
01 [/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR]
02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS—-BOUTLOAD
04 [OPEN-DATABASE DATABASE-NAME=dbname]
05 boutload-statements

06 END

01,04 One of the two statements must be used to assign the database.

02 The specified version of BOUTLOAD is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

03 BOUTLOAD can be called from any user ID. The UDS/SQL utility routine can also
be started with the aliases BOUTLOAD and START-UDS-OUTLOAD.

U931-J-2125-17-76 207

Examples

BOUTLOAD

5.2.7 Examples

Example of BOUTLOAD
Record type COLORS from database SHIPPING is copied.

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS—BOUTLOAD

Fxkkk START BOUTLOAD (UDs/saQL v2.8 0000) 2015-06-28

//OPEN-DATABASE DATABASE-NAME=SHIPPING
//COPY-RECORD RECORD-NAME=COLORS, REALM-NAME=ARTICLE-RLM

11:41:02

3903 AFTER " REALM-NAME = <NAME> " ONLY THE " END " STATEMENT IS ALLOWED

//END

**x*% INPUT CHECK SUCCESSFULLY TERMINATED

x BEGIN SCAN OF USER-REALMS

***** REALM: ARTICLE-RLM

xx SCAN OF USER-REALMS SUCCESSFULLY TERMINATED

x DIAGNOSTIC SUMMARY OF BOUTLOAD
NO WARNINGS
NO ERRORS

NO SYSTEM-ERRORS

*xx** END OF DIAGNOSTIC SUMMARY
x NR OF DATABASE ACCESSES : 32

x NORMAL END BOUTLOAD (UDs/saQL v2.8 0000) 2015-06-28

11:41:02

208

U931-J-2125-17-76

BOUTLOAD

Examples

Example of BOUTLOAD and BINILOAD

The record type MATERIALS is copied and deleted with BOUTLOAD and stored with
BINILOAD. BINILOAD uses the output generated by BOUTLOAD for the input of data
and BINILOAD statements.

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS—BOUTLOAD

xk% START BOUTLOAD (ups/saL v2.8 0000) 2015-06-28 11:41:02
//0OPEN-DATABASE DATABASE-NAME=SHIPPING

//COPY-RECORD RECORD-NAME=MATERIALS,REALM-NAME=ARTICLE-RLM

3903 AFTER " REALM-NAME = <NAME> " ONLY THE " END " STATEMENT IS ALLOWED
//END

Aok INPUT CHECK SUCCESSFULLY TERMINATED

Aok BEGIN SCAN OF USER-REALMS

Aok REALM: ARTICLE-RLM

*xxxxk SCAN OF USER-REALMS SUCCESSFULLY TERMINATED

BINILOAD PARAMETERS FOR RECORD : MATERIALS , REC-REF : 12
SCHEMA NAME IS MAIL-ORDERS
SUBSCHEMA NAME IS

USER FILE RECORD LENGTH IS 29
USER FILE BUFFER LENGTH IS 8192
INPUT FILE 'SHIPPING.REC00012.00011'
INPUT RECORDNUMBER IS 10 -
STORE RECORD NAME IS MATERIALIEN

RECORD-DBKEY IS DISPL IS O , LENGTH IS 8
RECORD-DISPL IS O , DISPL IS 8 , LENGTH IS 21
RECORD-AREA NAME IS ARTICLE-RLM

END

Ak DIAGNOSTIC SUMMARY OF BOUTLOAD

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

Ak END OF DIAGNOSTIC SUMMARY

Ak NR OF DATABASE ACCESSES 32
*xkxx NORMAL END BOUTLOAD (Ubs/sQL v2.8 0000) 2015-06-28 11:41:02

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

T von BOUTLOAD erzeugte BINILOAD-Anweisungen, die als Eingabe fiir BINILOAD verwendet werden.

U931-J-2125-17-76

209

Examples

BOUTLOAD

/START-UDS—BOUTLOAD

*kkkk

START BOUTLOAD (UDs/saL v2.8 0000)

//OPEN-DATABASE DATABASE-NAME=SHIPPING
//REMOVE-RECORD RECORD-NAME=MATERIALS

//END

*kkkk
*kkkk
*kkkk
*hkkk

*hkkk

*kkkk

*kkkk
*kkkk

*kkkk

INPUT CHECK SUCCESSFULLY TERMINATED

NO OCCURRENCES OF MEMBER RECORDS DETECTED
BEGIN SCAN OF USER-REALMS

REALM: ARTICLE-RLM

SCAN OF USER-REALMS SUCCESSFULLY TERMINATED

DIAGNOSTIC SUMMARY OF BOUTLOAD

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

END OF DIAGNOSTIC SUMMARY
NR OF DATABASE ACCESSES : 92
NORMAL END BOUTLOAD (UDs/saL v2.8 0000)

2015-06-28

2015-06-28

11:41:03

11:41:03

210

U931-J-2125-17-76

BOUTLOAD Examples

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00
/START-UDS—BINILOAD

Ak START BINILOAD (ubs/sQL v2.8 0000) 2015-06-28 11:41:04
EXECUTION WITH CHECK.

SCHEMA NAME IS MAIL-ORDERS
SUBSCHEMA NAME IS ADMIN

USER FILE RECORD LENGTH IS 29
USER FILE BUFFER LENGTH IS 8192
INPUT FILE 'SHIPPING.REC00012.00011' rol
INPUT RECORDNUMBER IS 10

STORE RECORD NAME IS MATERIALS

RECORD-DBKEY IS DISPL IS O , LENGTH IS 8
RECORD-DISPL IS O , DISPL IS 8 , LENGTH IS 21
RECORD-AREA NAME IS ARTICLE-RLM

END

BEGIN CHECK-RUN

*** DATE AND TIME 2015-06-28 11:41:04

BEGIN ALLOCATION

*** DATE AND TIME 2015-06-28 11:41:04

SEARCHKEY ON RECORD-LEVEL:

REC REF: 12

RECORD NAME: MATERIALS

SEARCHKEY TABLE, DBTT_COLUMN_NR: 1
*** [CRELES: MOVE_ROUTINE SORTKF CREATED
BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:04
SEARCHKEY ON RECORD-LEVEL:

REC REF: 12

RECORD NAME: MATERIALS

SEARCHKEY TABLE, DBTT_COLUMN_NR: 2
*** NO ERRORS DETECTED DURING CHECK-RUN
END CHECK-RUN

*** DATE AND TIME 2015-06-28 11:41:04
BEGIN ALLOCATION

*** DATE AND TIME 2015-06-28 11:41:04
*** DATABASE IS IN USE

SEARCHKEY ON RECORD-LEVEL:

REC REF: 12

RECORD NAME: MATERIALS

SEARCHKEY TABLE, DBTT_COLUMN_NR: 1
*** [CRELES: MOVE_ROUTINE SORTKF CREATED
BEGIN TABLE-PROCESSOR

*** DATE AND TIME 2015-06-28 11:41:05

1 BINILOAD statements that are generated by BOUTLOAD and used as input for BINILOAD.

U931-J-2125-17-76 211

Examples

BOUTLOAD

SEARCHKEY ON RECORD-LEVEL:

REC REF: 12

RECORD NAME: MATERIALS

SEARCHKEY TABLE, DBTT_COLUMN_NR: 2
BEGIN STORE DB—RECORD

*** DATE AND TIME 2015-06-28 11:41:05
STORING DATABASE RECORDS

END STORE DB-RECORD

*** DATE AND TIME 2015-06-28 11:41:05
END CLOSE

*** DATE AND TIME 2015-06-28 11:41:05

*xx** DIAGNOSTIC SUMMARY OF BINILOAD
NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS
10 RECORDS STORED
**xx*x END OF DIAGNOSTIC SUMMARY

***** NR OF DATABASE ACCESSES
x NORMAL END BINILOAD (UDS/saL

96
V2.8 0000)

2015-06-28

11:41:06

212

U931-J-2125-17-76

6 Restructuring the database
(BCHANGE, BALTER)

Restructuring a database which already contains data means changing the schema and/or
the storage structure.

You can perform actions purely for the purpose of renaming which only affect the schema
in a renaming cycle (see chapter “Renaming database objects (BRENAME, BALTER)” on
page 335).

The activities necessary for restructuring can be divided into three categories as follows:
e preparatory measures
e restructuring process

e follow-up activities.

U931-J-2125-17-76 213

Preparatory measures Restructuring the database

Preparatory measures

Analyzing and modifying the database schema and storage structure
Checking database consistency
Analyzing memory space statistics

If After Image Logging is activated deactivate it using BMEND (see also section “Saving
the database” on page 270)

Either

— save the complete database including DBCOM, COSSD and HASHLIB before the
restructuring process

or
— save HASHLIB, COSSD, DBDIR and DBCOM before the restructuring process

— determine which user realms are required in an analysis run with the statements
REPORT IS YES and EXECUTION IS NO

— save these user realms before the BALTER execution phase

Detailed information on saving is provided in section “Saving the database” on
page 270.

214

U931-J-2125-17-76

Restructuring the database

Preparatory measures

C Preparatory measures)

Modify
storage
structure
only

v
Modify
database schema

©

v

Modify
storage structure

Modify
schema
only

<

A4

BCHECK

Check
database consistency

BSTATUS

Analyze storage
space statistics

¥

Enough
space in DB
or secondary allocation
> 07?

BREORG

Extend
affected realms

yes

<

Save only

yes

required user realms?

START-ARCHIVE/COPY-FILE...

START-ARCHIVE/COPY-FILE...

Save database

Save HASHLIB, COSSD,
DBDIR, DBCOM

C Restructuring process)

Figure 22: Preparatory measures for restructuring the database

U931-J-2125-17-76

215

Restructuring process Restructuring the database

Restructuring process
This is a process that resembles the creation of a database:

— BCHANGE prepares the DBDIR to accept a new SIA

— New DDL and SSL definitions are then compiled and the new SIA is entered in the
DBDIR

— Finally, BALTER adapts the data to the modified schema.

The restructuring cycle of BCHANGE/BALTER cannot be combined with the
renaming cycle of BRENAME/BALTER. Renaming in a restructuring cycle is
interpreted as deleting the old item and inserting the new item. This can result in the
loss of

data.

i @

216 U931-J-2125-17-76

Restructuring the database

Restructuring process

(Restructuring process)

BCHANGE

Prepare restructuring

j g}

DDL error DDL compiler
Compile modified schema DDL
DDL compiler "—bl
Delete schema SSL compiler

4

If no SSL compilation is
processed the default
values for storage structure
are set

SSL error Compile modified SSL
] T<
DDL error BGSIA
Generate new SIA and enter
in DBDIR
LMS

Apply backup

i

®

Enter the UDSHASH module and new

or modified hash routines in HASHLIB

BALTER

Analysis listing:

analyze modifications

not enough
space in DB
?

illegal
modifications

yes

user realms been
saved?

START-ARCHIVE/COPY-FILE ...

Save required user realms

yes

Apply backup

l

BREORG
Extend affected realms

yes

I

BALTER

Adapt data

!

(Follow-up activities)

Figure 23: Restructuring process

U931-J-2125-17-76

217

Follow-up activities Restructuring the database

Follow-up activities

After restructuring, the following activities have to be carried out:

Access rights have to be updated if user group names are defined for access rights in
the output database.

Subschemas have to modified to the schema.
DB application programs have to be adapted to the new schema.
Sets and hash areas have to be reorganized using BREORG.

It may also be necessary to use the utility routine BMODTT to reassign DB keys that
have been released (see "BMODTT" in the "Recovery, Information and Reorganization”
manual).

i @

A logging gap occurs because of the restructuring cycle (see the “Database
Operation” manual, Media recovery). After the restructuring cycle you must

therefore establish a new basis for media recovery by copying the modified files
together with the unmodified files. You must then use BMEND to activate After
Image Logging again.

218

U931-J-2125-17-76

Restructuring the database

Follow-up activities

C Follow-up activities)

|

BPRIVACY

Update access rights

l

DDL compiler

Transfer compatible subschemas

For each
compatible
subschema

")

BGSSIA

Generate and enter in the
DBDIR the SSIA of
the compatible subschemas

For each
incompatible
subschema

] |

v

Correct the incompatible
subschemas

DDL compiler
Compile

I

corrected subschema

|

BGSSIA

Generate SSIA and
enter in DBDIR

I«
)

Adapt DB application
programs

l

Compiler and BINDER

Compile and link adapted
DB application program

l

BREORG

Reorganize the database

BCHECK

CHECK database consistency

All subschemas
are compatible

Figure 24: Activities after database restructuring

U931-J-2125-17-76

219

Modifying the Schema DDL Database restructuring

6.1

Modifying the Schema DDL

If the DB administrator wishes to modify the Schema DDL, he or she must generate a
complete new Schema definition and have it compiled. BALTER enables the following
modifications to be made to the Schema DDL:

e atrealm level
— adding or deleting realms
e at record type level

— adding or deleting record types

— changing LOCATION MODE

— redefining, deleting or modifying SEARCH keys

— adding, omitting, redefining, lengthening or shortening items

e atsetlevel

— adding or deleting sets (with restrictions)

— modifying the ORDER clause (with restrictions)
— changing the sort criteria

— redefining, deleting or modifying SEARCH keys.

During restructuring operations BALTER identifies the database elements (realms, record
types, sets, keys, etc.) solely by means of their names:

— BALTER recognizes elements as identical if they are of the same type (e.g. record type)
and their names occur in the old and new Schema DDL.

— BALTER deletes elements if the name for this element type does not occur in the new
Schema DDL.

— BALTER adds elements if the name for this element type does not occur in the old
Schema DDL.

Consequently it is impossible to rename elements or in the same restructuring run delete
an element and replace it by an element of the same type and name. The BRENAME utility
routine is provided for renaming items (see chapter “Renaming database objects
(BRENAME, BALTER)” on page 335).

When the BGSIA run is carried out during restructuring, the numbers of the database
elements remain the same. BGSIA allocates the numbers in question according to the
element name. Consequently the sequence in which the elements are defined in the new
Schema DDL is immaterial.

220

U931-J-2125-17-76

Database restructuring Modifying the Schema DDL

When restructuring is performed, the clauses of the Schema DDL and the SSL are subject
to the same rules which apply when a database is defined (see the "Design and Definition"
manual). This also means that when a clause of the Schema DDL is modified, all other
associated clauses in the Schema DDL and SSL must be adapted so as to comply with
these rules.

The following is a detailed description of the modifications possible in the Schema DDL and
their effects on the stored data.

U931-J-2125-17-76 221

Schema entry Modifying the Schema DDL

Schema entry

SCHEMA NAME IS schema—-name

schema-name
may be changed if required.

[PRIVACY LOCK FOR COPY IS TJiteral-IL OR literal-211.

The PRIVACY LOCK specifications can be changed as required.

Effects on stored data:

The DDL compiler enters the new PRIVACY LOCK specifications in the new DBCOM.

A subschema whose PRIVACY KEY does not match the new PRIVACY LOCK
specifications can still be used (see section “Copying compatible subschemas” on

page 310). The new PRIVACY LOCK specifications need only be taken into account when
the new or modified subschemas are compiled.

222

U931-J-2125-17-76

Modifying the Schema DDL Realm entry

Realm entry

AREA NAME IS realm—-name

Realms can be added or deleted.

If a realm containing records of a record type which also occurs in the new schema is
deleted, these records must be unloaded before restructuring takes place, since BALTER
does not transfer records to other realms. BALTER simply removes a deleted realm from
the database. When restructuring is complete, the file of the realm must be deleted with the
ERASE command.

Realms which have been added need not be formatted with BFORMAT. BALTER formats
them automatically and adds them to the database. The realms must, however, be set up
using the CREATE-FILE command before the BALTER run takes place.

Make sure that the secondary assignment is set to a value greater than 0 if the realm is to
be extendable online (see the “Database Operation” manual, ACT INCR)

[AREA IS TEMPORARYI.

Adding or deleting the temporary realm is possible.

Changing a temporary realm into a non-temporary realm or vice versa is however not
permissible.

U931-J-2125-17-76 223

Record entry Modifying the Schema DDL

Record entry

RECORD NAME IS record—-name

record-name
It is possible to add or delete record types or to modify their definitions.

A record type which is to be deleted need not first be unloaded. BALTER deletes all related
information such as records, hash areas, DBTT and tables, with one exception:
compressed records or records with variable items must be unloaded before restructuring,
since otherwise BALTER cannot process them and therefore cannot delete them.

IN
DIRECT itemname—1 record-
OFJ name

DIRECT-LONG
[LOCATION MODE IS identifier-I]

CALCL hashroutinel USING 7temname-2, ...

DUPLICATES AREL NOTJ1 ALLOWED

The LOCATION MODE clause can be modified, added or omitted as required.

CALC/DIRECT or CALC/DIRECT-LONG
Allows the conversion of DIRECT or DIRECT-LONG to CALC, and vice versa, or
allows the LOCATION MODE clause with one of these specifications to be omitted
or added.

Effects on stored data:

— DIRECT or DIRECT-LONG — CALC:
BALTER creates a new hash area and transfers the data records to it.
If the record type is the member record type of a list, an indirect CALC is
created. In the case of a distributable list the hash area for all records is located
in one realm.

— CALC — DIRECT or DIRECT-LONG:
BALTER deletes all system information needed for hashing but does not
transfer those records of this record type which have already been stored to the
database.

224 U931-J-2125-17-76

Modifying the Schema DDL Record entry

— Addition/omission of LOCATION MODE IS CALC:
This change has exactly the same effect on the data as changing the
specification DIRECT or DIRECT-LONG to CALC, and vice versa.

— Addition/omission of LOCATION MODE IS DIRECT/DIRECT-LONG:
This change has no effect on the stored data, but needs to be taken into
account in application programs.

DIRECT / DIRECT-LONG

CALC

item-name-1:
the key item may be altered as required

identifier-1:
may be changed

Effects on data:

These changes have no effect on stored data, but needs to be taken into account
in application programs.

hash-routine: Change permitted.

It is permissible to change from the standard UDS/SQL hash routine to a user hash
routine or vice versa; it is also permissible to replace the user hash routine by a new
user hash routine.

item-name-2,....
Any change in the key items permitted.

DUPLICATES...:
Duplicates may be permitted or prohibited as required.

Effects on stored data:

— If the key items or the hash routine are altered, BALTER creates a new hash
area and transfers the records.

— If the DUPLICATES specification is changed to NOT ALLOWED, it is
important to remember that BALTER only checks data for duplicates in those
cases in which further alterations make processing of keys necessary.

— IfBALTER finds records with duplicate key values, it does not eliminate these
values. If duplicates are prohibited, a check must be carried out to ascertain
whether records with duplicate key values occur. If so, duplicates must be
removed before restructuring is performed.

— BALTER logs duplicate key values in the EXECUTION phase only, not in the
analysis log. Restructuring is then continued.

— This treatment of duplicates should be applied to all clauses containing the
DUPLICATES entry.

U931-J-2125-17-76

225

Record entry

Modifying the Schema DDL

WITHIN realm-name-1L, realm—-name—2,... AREA-ID IS identifier-2]

realm-name
It is permissible to change the allocation of record types to realms.

Effects on stored data:

When a realm which is defined with LOCATION MODE IS CALC is added to a
record type, BALTER creates a hash area for the record type in this realm
(except in the case of distributable lists).

When the record type is the member record type of a distributable list and this
is defined with LOCATION MODE IS CALC, an indirect CALC area which is
determined explicitly by the DETACHED WITHIN clause of the MODE IS LIST
statement in the SSL or alternatively by the first realm name of the
aforementioned WITHIN clause is used in one realm. A corresponding change
causes the CALC area to be created anew.

If only one or more realms are added for a member record type of a distributable
list, the existing list remains unchanged.

When realm-name-1 is changed, BALTER relocates the record type’s DBTT to
the newly specified realm if no SSL specification prevents this.

i @

When a realm is omitted in the WITHIN clause, no records of the record type
concerned may be stored in this realm, otherwise (except in the case of

distributable lists) BALTER will abort the restructuring even if another realm
is made available for these records.

When a realm is omitted in the case of distributable lists, this results in the
list being recreated even if this realm contains no records.

When a distributable list is removed, for instance by changing the MODE
clause to POINTER-ARRAY, the records of the member record type remain
in the realm in which they were stored in the distributable list. If these
records are accessed using LOCATION MODE IS CALC, it must be
ensured that the AREA-ID is supplied with correct information after the list
has been removed. To avoid any access problems occurring here, all pages
in the list can be relocated with the UDS online utility to one realm before
restructuring takes place, and just one realm can be declared for the record
type when the list is removed.

226

U931-J-2125-17-76

Modifying the Schema DDL Record entry

To improve the runtime of BALTER with large databases, you can proceed
as follows:

If you increase the realm allocation of an owner record type from one to two
or more realms, you should restructure the database in a first cycle by
changing the DETACHED-specifications (including the default values) to
DETACHED WITHIN realm-name for the tables that depend on the owner
record type. realm-name is the realm in which the owner records are
currently stored. In a second restructuring cycle you should delete the
DETACHED specification.

identifier-2
Can be changed as required.

Effects on stored data:

There are no effects on data; the change need only be taken into account in the
application programs.

U931-J-2125-17-76 227

Record entry Modifying the Schema DDL

[SEARCH KEY IS 7tem—-name-3,... USING [NAME IS namel

CALCL hash-routinel
INDEX

DUPLICATES AREL NOT] ALLOWED]

In the SEARCH-KEY clause any change is permitted. It is possible to:

— change existing SEARCH keys
— define new SEARCH keys
— omit SEARCH keys which are no longer required

item-name-3, ...
There are no restrictions on which data items can be used as a SEARCH key or on
which data items are combined to form the SEARCH key.

USING ...
Any change is allowed.

Effects on stored data:

— CALC — INDEX:
BALTER creates a multi-level SEARCH key table and releases the memory
space of the indirect hash area.

— INDEX — CALC:
BALTER creates the SEARCH key table as an indirect hash area and releases
the previously allocated memory space.

— Any other hash routine:
BALTER creates a new hash area and releases the memory space of the
original hash area.

name This specification can be omitted, added or changed.

DUPLICATES...
For duplicates the same applies here as for the LOCATION MODE clause (see
section “Record entry” on page 224).

. BALTER checks for illegal key value duplicates and logs them only if it
1 has to create a multi-level SEARCH key table or an indirect hash area.

228 U931-J-2125-17-76

Modifying the Schema DDL Record entry

{L7evel-numberl record-element—name

mask—=string
PICTURE IS
LX (integer—1) DEPENDING ON 7tem—name—4
15
BINARY 431
FIXED REAL 63
DECIMALL integer-2L, integer-311]
TYPE IS
CHARACTERL 7nteger—4[DEPENDING ON 7tem—name—5]11]
DATABASE-KEY
DATABASE-KEY—1 ONG

[OCCURS integer—5 TIMESI.}...

The structure of record types can be modified as required, but it is important to bear in mind

the

following:

Length of record type

Record types which are stored in a single-level list must not be lengthened!

A single-level list means ORDER IS LAST, FIRST, PRIOR or IMMATERIAL and MODE
IS LIST.

Number and sequence of item
You may change the order of items. You may also delete items.
Newly defined items are initialized by BALTER dependent on item type:

— alphanumeric items with blanks
— national items with national blanks (Unicode)
— numeric items with the value zero

Length of items
Items can be lengthened or shortened. BALTER proceeds as follows, depending on the
item type:

— Alphanumeric items:

When items are lengthened, BALTER pads to the right with blanks. When items are
shortened, BALTER truncates to the right by the appropriate number of characters.

— National items:

When items are lengthened, BALTER pads to the right with blanks (Unicode). When
items are shortened, BALTER truncates to the right by the appropriate number of
characters.

U931-J-2125-17-76

229

Record entry

Modifying the Schema DDL

— Numeric items:

When items are lengthened, BALTER pads to the left of the decimal point with
zeros. When items are shortened, BALTER truncates to the left of the decimal point
by the appropriate number of characters. Significant digits may be lost as a result.
If the item has a sign, the sign is retained, provided the new item definition allows a
sign.

e Database key items

In the case of database key items, their type can be changed from DATABASE-KEY to
DATABASE-KEY-LONG, and vice versa.

— \\ \ TYPE IS DATABASE-KEY
‘ ‘ &\\w EZ‘%E“?:iSE-KEY-LONG

Figure 25: Changing the type of database key items

TYPE IS DATABASE-KEY — TYPE IS DATABASE-KEY-LONG:

BALTER copies the 1-byte record reference number (REC-REF) of the DATABASE-
KEY item right-justified into the corresponding 2-byte area of the DATABASE-KEY-
LONG item. The 3-byte record sequence number (RSQ) of the DATABASE-KEY item
is copied right-justified into the corresponding 4-byte area of the DATABASE-KEY-
LONG item.

TYPE IS DATABASE-KEY-LONG — TYPE IS DATABASE-KEY:

BALTER copies the right byte of the 2-byte long record reference number (REC-REF)
of the DATABASE-KEY-LONG item right-justified into the corresponding 1-byte area of
the DATABASE-KEY item. The right 3 bytes of the 4-byte long record sequence number
(RSQ) of the DATABASE-KEY-LONG item are copied right-justified into the
corresponding 3-byte area of the DATABASE-KEY item.

230

U931-J-2125-17-76

Modifying the Schema DDL Record entry

Due to the truncation of positions on the left for the REC-REF and RSQ when
converting from TYPE IS DATABASE-KEY-LONG to TYPE IS DATABASE-KEY, data is
lost if the REC-REF > 254 and/or the RSQ > 2%4-1. If this occurs, BALTER issues a
warning, which contains the original DATABASE-KEY-LONG value; however, the
BALTER run is not aborted. The database remains in a consistent state (see also
“‘BCHECK” in the “Recovery, Information and Reorganization” manual). The logical
consistency, i.e. the consistency of application data, will need to be verified and
ensured.

Type of items

When you change the type of a numeric item to another numeric type (e.g. TYPE IS
DECIMAL —TYPE IS BINARY), BALTER converts the data.

If you change the type of an unpacked numeric item to an alphanumeric type (of fixed
length), BALTER will proceed as described below.

For all other type changes, BALTER fills the item in accordance with the new type with
blanks or with the value zero. This also applies in particular for all type changes from or
to national.

unpacked numeric —alphanumeric (fixed length):
If required, BALTER converts the data by proceeding as follows:

1. BALTER copies the numeric digit sequence left-justified into the alphanumeric
target item. Leading zeros are retained.
Any symbol “V” (decimal point) that may be in the definition of the source item is
ignored by BALTER, i.e. the whole part and the decimal positions are copied.
Existing “P” symbols (implicit multiplication with 10) in the definition of the source
item are taken into account by BALTER to the extent possible.

Depending on the size of the alphanumeric target item, BALTER proceeds as
follows:

— If the target item contains fewer positions than the sequence of digits to be
copied (including the considered “P” symbols), the excess positions in the digit
sequence are truncated.

— If the target item contains more positions than the sequence of digits to be
copied (including the considered “P” symbols), the digit sequence is padded on
the right up to the target item length with X‘40°.

2. In the hexadecimal representation of the digit sequence obtained in accordance
with 1), BALTER converts the second-last half-byte (sign) to hexadecimal “F”. This
applies, in particular, even if the definition of the source item contains the
symbol “S* (sign).

U931-J-2125-17-76

231

Record entry

Modifying the Schema DDL

Examples
Source item Target item
(unpacked numeric item) (alphanumeric item)
Item definition Item contents Item definition Item contents
(hexadecimal) (hexadecimal)
1) PIC 9999 F8 F1 F2 C3 — PIC XXXX F8 F1 F2 F3
2) PIC S999PP F5F2D3 —> PIC XXXXX F5F2 F3 FO FO
3) PIC S99V99 F1 F4 F3 D5 PIC XXXX F1F4 F3F5
4) PIC 9999 F1F2F3F4 — PIC XXX F1F2F3
5) PIC 999P F5F2 E3 —> PIC XXXXXX F5 F2 F3 FO 40 40
6) PIC S999v99 FOF2F3F4D5 —> PIC XXXXXX FOF2 F3 F4 F540
7) PIC SV999 FO F2 B3 — PIC XX FO F2
8) PIC V999 F7 F2 A3 — PIC XX F7 F2
9) PIC S999PP FO F2 B3 — PIC X FO
10) PIC 999PP F8 F2 F3 — PIC X F8

e Variable item

In record types, you can only add or modify a variable item providing no records of this
record type are stored in the database (see page 249).

However, items of fixed length can be added to or omitted from records with a variable
item when records are stored. You can also modify the length of such items.

In addition, you can implement all changes in the schema which lead to a change in the
system part (SCD).

Position of the decimal point

If the position of the decimal point or the scale factor is changed, BALTER shifts the
digits within the item so that the former value is retained. Digits shifted beyond the left
or right boundary of the item are lost; BALTER does not round up.

Repetition factor

When the repetition factor of vectors or repeating groups is reduced, BALTER truncates
the items at the end of the vector or the repeating group. Increasing the repetition factor
causes BALTER to initialize new items with blanks or zeros according to type. Itis easy
to check whether BALTER copies, initializes or omits the contents of the items when the
repetition factor is changed:

For indexed items the BALTER conversion routine uses a three-level index for both the
old and new definitions. If the old item and the new item are represented with three-level
indexing, they can be compared easily.

232

U931-J-2125-17-76

Modifying the Schema DDL

Record entry

CAUTION!
Reducing the repetition factor of vectors or repeating groups can cause loss of
data.
OLD-A Old definition:
02 OLD-A OCCURS 2.
B B B 03B OCCURS 3 -
(1,1, ((1,1,2) (1,21)/(1,22)
v . v y .
New definition:
NEW-A - -
NEW-A NEW-A 02 NEW-A OCCURS 3 .
B B B B B B 03B OCCURS 2 -
(1,1,1) 1(1,1,2) |(1,2,1) | (1,2,2)| (1,3,1) | (1,3,2)

Contents initialized according to type

I:I Contents transferred

Contents lost

Figure 26: Changing the item contents of stored records by modifying the repetition factor

U931-J-2125-17-76

233

Set entry

Modifying the Schema DDL

Set entry

SET NAME IS set-name

When changing the set entry, the following applies:
— Omission of sets is allowed without restriction.

— Addition of sets is permissible but subject to certain restrictions on the type of set
membership (these do not apply, however, to the addition of SYSTEM sets).

— The changing of sets is subject to certain restrictions.

[SET IS DYNAMIC]

Dynamic sets may be added or omitted. The conversion of a set into a dynamic set and vice
versa is, however, prohibited.

LAST
FIRST
NEXT
PRIOR
ORDER IS <IMMATERIAL
SORTED[INDEXED[NAME IS namell
DATABASE-KEY
BY }
DEFINED KEYS DUPLICATES AREL NOTJ] ALLOWED

Changes to the ORDER clause must be considered in relation to the MODE clause of the
SSL (see "MODE clause" in the "Design and Definition" manual).

The following applies to changes to the ORDER clause:

If no records of the member record type of the set to be changed are stored, all
modifications are allowed; if records of the member record type of the set to be changed
are stored, the modification of the ORDER clause is subject to certain restrictions.

234

U931-J-2125-17-76

Modifying the Schema DDL

Set entry

Which modifications of the ORDER clause are allowed when records of the member record
type are stored can be seen in the following table:

new
old FIRST [INDEXED ...]
ORDER IS <NEXT ¢+ |.....
schema PRIOR
IMMATERTAL
ORDER IS MODE IS
POINTER- No restrictions on use
ARRAY
Only allowed if the member record
LAST LIST type (incl. CD) is not lengthened
E&%T as a result of the change. allowed
PRIOR Only allowed if the SCD of the
IMMATERIAL CHAIN owner/member record type need
not be enlarged :
h
(see table 28) without
SORTED POINTER- | Not allowed.
[INDEXED ... ARRAY
""" LIST Not allowed. restrictions
CHAIN Only allowed if the SCD of the
owner/member record type need
not be enlarged
(see table 28)

Table 27: Changes to the ORDER clause when member records are stored

U931-J-2125-17-76

235

Set entry Modifying the Schema DDL
When and how the set connection data (SCD) for a set with MODE IS CHAIN is altered is
shown in the following table:

New FIRST FIRST SORTED
ORDER NEXT NEXT [INDEXED...J...
schema PRIOR PRIOR LAST
Old IS IMMATERIAL IMMATERIAL
SORTED
schema [INDEXED...]...
MODE CHAIN CHAIN CHAIN
ORDER IS IS CHAIN LINKED LINKED CHAIN LINKED
MODE IS TO PRIOR TO PRIOR TO PRIOR
2) 1) 2) 2)
FIRST CHAIN - >Member SCD >Member SCD >0wner SCD >0wner SCD
NEXT >0wner SCD >0wner SCD >Member SCD
PRIOR
IMMATERIAL CHAIN 1) 1)
SORTED LINKED TO |<Owner SCD - - <Member SCD -
[INDEXED...] PRIOR <Member SCD
1) 2) 1) 2)
CHAIN <Owner SCD >Member SCD >Member SCD - >Member SCD
LAST
CHAIN 1) 1)
LINKED TO |<Owner SCD - - <Member SCD -
PRIOR <Member SCD

Table 28: Modifying the SCD for a set with MODE IS CHAIN

< is shortened

> is lengthened

- no change in SCD length

1) modification allowed since SCD unchanged or shorter or in the new schema
ORDER IS SORTED [INDEXED...]...
2) modification not allowed since SCD longer and in the new schema not ORDER IS

SORTED [INDEXED..]...

DUPLICATES ...

i

The same applies as for the LOCATION MODE clause (see section “Record

entry” on page 224)

NAME IS name

This specification can be modified, added or omitted as required.

236

U931-J-2125-17-76

Modifying the Schema DDL Set entry

record-name
OWNER IS -
SYSTEM

Changing the OWNER clause of a set is prohibited!

MEMBER IS record-name

{MANDATORY} {AUTOMATIC}

OPTIONAL MANUAL

record-name
Specification of a new member record type is prohibited.

set membership
If an existing set is changed and the database contains

— no records of the member record type, the set membership may be changed as
required.

— records of the member record type, the set membership must not be converted
from OPTIONAL to MANDATORY AUTOMATIC if certain member records are
not allocated to an owner.

If the set is not modified in any other way, this change causes the
database to be inconsistent. If the set must be processed to carry out
other changes, this change causes BALTER to terminate abnormally.

i @

If a new set is defined, and the database contains

— no records of the member record type, the set membership can be selected as
required.

— records of the member record type, then MANDATORY AUTOMATIC must not
be defined as set membership for sets other than SYSTEM sets. BALTER
cannot automatically allocate member records to owner records if the set is not
singular, i.e. the DB administrator must decide which member records are to be
allocated to which owner record and then carry out allocation by program with
the aid of the CONNECT statement.

Effects on stored data:

Changing set membership has no effect on the stored data. Possible changes in set
membership must, however, be taken into account in programs when records are
stored or deleted.

U931-J-2125-17-76 237

Set entry

Modifying the Schema DDL

ASCENDING
L KEY IS 7tem—name-1,...]
DESCENDING

All modifications are allowed.

Effects on stored data:

BALTER recreates the pointer arrays, lists or chains concerned in accordance with the
modified sort criteria.

The recreation of a list involves transferring the member records to another storage area,
since BALTER has to rearrange them in a new sort sequence.

CALC
[SEARCH KEY IS 7tem—name-2,... USING { }[NAME IS namel
INDEX

DUPLICATES AREL NOTI ALLOWEDIT...

The same modification possibilities exist for SEARCH keys at both set level and at record
type level (see the section on changing the SEARCH KEY clause on page 228).

[SET OCCURRENCE SELECTION IS
CURRENT OF SET

LOCATION MODE OF OWNER
THRU

[ALTAS

item—name-3
FOR
identifier—1

} IS identifier-21...

Modification of the SET OCCURRENCE SELECTION clause is allowed.

Effects on stored data:

Modification has no effect on the stored data. The DB administrator must, however, take
any modification into account in his DB applications.

238

U931-J-2125-17-76

Restructuring the database Modifying the SSL

6.2 Modifying the SSL

The runtime performance of the DB applications is very significantly affected by the storage
structure of the database. In order to achieve optimum results, you must match the storage
structure to time-critical applications by modifying the SSL clauses. This can bring about
considerable improvements in DB application runtimes even if the schema and programs
remain unchanged.

Even if the old SSL is used, it must be recompiled since otherwise BGSIA uses the default
values of the SSL clauses.

The following modifications to the storage structure are allowed:

e atrecord type level

relocation of DBTTs to other realms
definition of PLACEMENT OPTIMIZATION

redefinition of location, type and number of pages for the purpose of reorganization
in SEARCH key tables

compression or decompression of records (with restrictions)

at set level

modification of MODE clause (with restrictions)
relocation of pointer arrays or lists of a set
linking the owners of a set via pointer arrays or lists, or cancelling an existing link

changing storage space in which the tables of the set occurrences of a set are
created or enlarged

definition of the number of pages for the reorganization of tables of a set

definition of location, type and number of pages for the purpose of reorganization in
SEARCH key and sort key tables

linking members with their appropriate owner or cancelling an existing link

U931-J-2125-17-76

239

Modifying the SSL Restructuring the database

All SSL clauses are optional, i.e. they can be specified for the first time, or omitted. BGSIA
assumes the default value for every clause omitted.

When restructuring the clauses of the Schema DDL and of the SSL are subject to the same
rules as during database definition (see the "Design and Definition" manual). If Schema
DDL clauses have been modified, all related clauses in the SSL must be adapted to comply
with these rules.

The following is a detailed description of possible modifications to the storage structure and
their effects on the stored data.

240 U931-J-2125-17-76

Modifying the SSL Schema entry

Schema entry

STORAGE STRUCTURE OF SCHEMA schema—-name.

schema-name
Must be the same as the name in the schema entry of the new Schema DDL.

U931-J-2125-17-76 241

Record entry Modifying the SSL

Record entry

RECORD NAME IS record—-name

record-name
Must designate a record type of the new Schema DDL.

[DATABASE-KEY-TRANSLATION-TABLEL IS integer—I11L WITHIN realm-name—-11]

integer-1
The number of DBTT entries can be changed using the BREORG utility routine for
example. BALTER ignores any change to the size specification.

realm-name-1
Can be modified.

Effects on stored data:
BALTER relocates the DBTT to the specified realm.

[PLACEMENT OPTIMIZATION FOR SET set-namel

Any modification is allowed.

Effects on stored data:

BALTER has no effect on the position of records already stored. New records are stored in
the database by the DBH in accordance with the new specifications noted by BALTER.

If this clause is specified for the first time for a record type stored in a direct hash area,
BALTER creates an indirect hash area but does not change the position of the records
concerned; instead it simply converts the CALC pages of the former hash area into normal
data pages.

242

U931-J-2125-17-76

Modifying the SSL Record entry

[POPULATION IS {integer-2 WITHIN realm-name=2},...]

integer
The size of a hash area can be changed using the BREORG utility routine. BALTER
ignores any change of the size specification.

Exception
BALTER must create the hash area anew in the event of a change:

— from direct to indirect hash area or vice versa
of hash routine

of composition of the CALC key

of realm in which the hash area is to be located.

BALTER uses integer-2 in order to calculate the new size of the hash area.

[INDEX NAME IS namel PLACING IS WITHIN realm—name-3]

DATABASE-KEY—-LIST
[IYPE IS SREPEATED—KEY 1]

[DYNAMIC REORGANIZATION SPANS integer-3 PAGES]

PLACING IS ...
SEARCH key tables can be relocated to other realms.

TYPEIS ...
The structure of the SEARCH key tables can be modified by changing the TYPE
clause to DATABASE-KEY-LIST or REPEATED-KEY.

DYNAMIC REORGANIZATION
The number of pages for reorganization purposes can be redefined as required.

Effects on stored data:

Changing the number of pages does not have an immediate effect during
restructuring. It is not until later during database operation when storing records that
the change takes effect.

U931-J-2125-17-76 243

Record entry Modifying the SSL

[LCOMPRESSION FOR ALL ITEMSI.

Itis permissible to store in compressed format records which were previously stored without
compression and vice versa, subject to certain restrictions.

e Changing from 'non-compressed’ to ‘compressed’ format:

BALTER does not compress records which have already been stored and therefore
does not remove empty data items from data records. Instead it merely adds a 4-byte
compression item to the set connection data (SCD) of the records of the record type

concerned.

In so doing BALTER lengthens each record of the record type by 4 bytes and must
therefore transfer to other pages the records which have no more space in the pages
previously occupied by this record type.

e Changing from ‘compressed’ to 'non-compressed’ format:

The change depends on how the stored records of the record type in question have
been entered:

— Ifthe records have been entered in their full length (e.g. with BINILOAD), BALTER
deletes the compression item in the SCD of the records. Since each record is
thereby shortened by 4 bytes, BALTER pushes the records together in each page,
thus releasing space.

— If the records are compressed, i.e. not entered in their full length, BALTER
abnormally terminates restructuring!

BALTER cannot process compressed records even if database changes do not
concern compression:

Neither the user section nor the system information in the records may be altered.
Tables or hash areas which contain items of this record type as keys cannot be
created by BALTER.

244 U931-J-2125-17-76

Modifying the SSL Set entry

Set entry

SET NAME IS set-name

set-name
Must be the same as the name of a set in the new Schema DDL.

CHAINLC LINKED TO PRIOR]

POINTER-ARRAY ATTACHED TO OWNER
[MODE IS]
DETACHEDL WITHIN realm—-name-11]

LIST [WITH PHYSICAL LINKI]

The MODE clause should be considered in relation to the ORDER clause of the Schema
DDL (see the section on changing the ORDER clause on page 234).

If, in the ORDER clause of the new Schema DDL

— SORTED[INDEXED] has been specified, the linkage method specified in the MODE
clause may be changed as required;

— SORTED[INDEXED] has not been specified, changes of the linkage method are
prohibited if records of the member record type have already been stored.

When a distributable list (MODE IS LIST) is changed to an address list (MODE IS
POINTER-ARRAY), the member records remain in the realm in which they were currently
stored in the list. It may be necessary to adjust the access logic of the application programs.

When a change is made in MODE IS LIST, alist is built. Records of the record type affected
may possibly be relocated to another realm.

ATTACHED/DETACHED
Changing ATTACHED to DETACHED or vice versa is allowed with the restriction
that records stored in a list must not be relocated to another realm.

Effects on stored data:

— Existing tables are reallocated by BALTER only if it is necessary to relocate
them to another realm on the basis of a change in the WITHIN realm-name-1
specification.

U931-J-2125-17-76 245

Set entry

Modifying the SSL

— Thelocation of a list without a DETACHED WITHIN clause is determined by the
position of the owner. Consequently records can be relocated in the event of a
change from pointer array to list, and existing programs with direct access
(FIND4) must be adjusted.

WITHIN realm-name-1

A pointer array may be relocated to another realm. Except in the case of
distributable lists, a list may be relocated only when no member records are stored.

In the case of distributable lists realm-name-1 implicitly determines the location of the
table part (level 1 through level N pages) of the list and the location of an indirect
CALC area in the case of LOCATION MODE IS CALC if the location is not specified
explicitly in the SSL of the MODE IS LIST statement.

The table pages can be relocated to another realm even if member records are
stored in the distributable list.

Effects on stored data:

The list and any CALC area will be recreated. In the process the member records
will be distributed approximately evenly over the realms involved.

WITH PHYSICAL LINK

A pointer array or list which is stored separate from the owner can also be linked to
the associated owner for the first time, or an existing link can be cancelled.

Effects on stored data:

— If an additional pointer is set up, BALTER adds the physical address of the
highest level of the table to the set connection data (SCD) of the owner records.
Since the owner records are thereby lengthened, BALTER relocates, within the
database, the records for which no more space is available in the occupied
pages.

— Ifthe additional pointer is removed, BALTER deletes the physical address of the
highest level of the table from the SCD of the owner records.

246

U931-J-2125-17-76

Modifying the SSL Set entry

CPOPULATION IS integer—IL INCREASE IS integer-21]

integer-1
Can be altered as required. BALTER takes this specification into account together
with a corresponding FILLING WITH POPULATION statement. A modification also
has an effect when saving owner records or deleting member records.
BALTER does not modify existing tables.

integer-2
Can be altered as required. Any change has no effect until table extensions become
necessary when storing new member records.

[DYNAMIC REORGANIZATION SPANS 7nteger-3 PAGES]

The number of pages for the reorganization of the set tables can be altered as required.

[INDEX NAME IS namel PLACING IS

ATTACHED TO OWNER

DETACHED CWITHIN reaZmname—Z]}
DATABASE-KEY—-LIST

[TYPE IS JREPEATED—KEY 1]

[DYNAMIC REORGANIZATION SPANS integer PAGES]

The usage of the INDEX clause for set entry is analogous to that of the INDEX clause for
record entry (see the section on changing the INDEX clause on page 243).

ATTACHED/DETACHED
Changing ATTACHED to DETACHED or vice versa is allowed without restriction.

Effects on stored data:

Changes have the same effects as in the MODE clause (see the section on
changing the MODE clause on page 245).

WITHIN realm-name-2
Can be added or omitted, or realm-name-2 can be changed.

Effects on stored data:

In the event of a change, BALTER relocates the tables to the specified realm.

U931-J-2125-17-76 247

Set entry Modifying the SSL

[MEMBER IS PHYSICALLY LINKED TO OWNERI..

Additional linking of the member records to the associated owner record can be requested
for the first time or cancelled.

Effects on stored data:

— If the clause is specified for the first time, BALTER adds to the SCD of the member
records the physical pointer to the associated owner record. Since the member records
are thereby lengthened, BALTER relocates, within the database, the records for which
no more space is available in the occupied pages.

— If the clause is removed from the SSL, BALTER removes the physical pointer to the
associated owner record from the SCD of the member records.

248 U931-J-2125-17-76

Restructuring the database Restrictions

6.3 Summary of restrictions

This section provides an overview of which changes are not permitted in the Schema DDL
and the SSL at all or only with restrictions when records of a record type concerned are
stored. BALTER issues warnings relating to these modifications in the analysis listing.

Compression

Compressed records cannot be processed by BALTER. BALTER abnormally
terminates restructuring if you do not unload the record type before restructuring and if
you:

— change the user or system part of the record type

— change the structure of tables or hash areas which contain items of this record type
as keys

Variable items

If records for a record type with a variable item are stored in the database, restrictions
apply for restructuring. BALTER terminates restructuring abnormally in the following
cases:

— Anitem of variable length is added
— Anitem of variable length is removed
— The maximum length of an item of variable length is changed

Lists
Record types stored in a single-level list must not be lengthened. A single-level list
means ORDER IS LAST, FIRST, NEXT, PRIOR or IMMATERIAL and MODE IS LIST.

Lists which cannot be distributed may not be relocated to other realms.

Distributable lists can be relocated as required. If only realms are added, the list
remains unchanged and the restructuring process as a whole can be executed very
quickly.

Cyclic set structures

If BALTER is to make a modification to all sets of a cyclic set structure (see "Cycle" in
the "Design and Definition" manual), a modification in which the owner record type must
be processed before the member record type, a deadlock situation will arise. Such
modifications are either the creation of a new chain, or the additional linking of the
member records to the appropriate owner record for sets in which the owner record type
must be relocated in the course of further modifications.

If modifications of this nature are planned for a cyclic set structure, restructuring must
be split into two stages.

U931-J-2125-17-76

249

Schema DDL modifications Restrictions

6.3.1 Schema DDL modifications

Schema entry

No restrictions

Realm entry

Conversion of a temporary realm into a non-temporary realm or vice versa is not allowed.

Record entry

WITHIN clause
If a realm is omitted in the WITHIN clause, no records of the record type concerned
may be stored in this realm except in the case of distributable lists.

Record length
Record types which are members in a single-level list must not be lengthened.

Set entry

DYNAMIC clause
Conversion of a set into a dynamic set and vice versa is not allowed.

ORDER clause
If records of the member record type of the set to be modified have been stored, the
following restrictions must be observed:

— for ORDER IS SORTED[INDEXED] and MODE IS POINTER-ARRAY/LIST the
ORDER clause must not be changed to ORDER IS LAST, FIRST, NEXT,
PRIOR or IMMATERIAL;

— for any ORDER clause and MODE IS CHAIN, the ORDER clause can only be
changed to ORDER IS LAST, FIRST, NEXT, PRIOR or IMMATERIAL if, in so
doing, the SCD of the owner record type or of the member record type is not
lengthened;

— for ORDER IS LAST, FIRST, NEXT, PRIOR or IMMATERIAL and MODE IS
LIST, the ORDER clause can only be changed to ORDER IS LAST, FIRST,
NEXT, PRIOR or IMMATERIAL if, in so doing, the member record type including
SCD is not lengthened.

250

U931-J-2125-17-76

Restrictions SSL modifications

OWNER clause
The OWNER clause of a set must not be modified.

MEMBER clause
record-name:
Specifying a new member record type is not allowed.

set membership

— Ifan existing set is modified and if records of the member record type are stored
in the database, set membership must not be converted from OPTIONAL to
MANDATORY AUTOMATIC if certain member records stored are not allocated
to an owner.

— Ifanew set is defined and if records of the member record type are stored in
the database, AUTOMATIC must not be defined as set membership, except for
SYSTEM sets.

6.3.2 SSL modifications

Schema entry

No restrictions.

Record entry

DBTT clause
The number of DBTT entries can be changed by means of the BREORG utility
routine for example. BALTER ignores any change to the size specification.

POPULATION clause
The size of a hash area can be changed by means of the BREORG utility routine.
BALTER ignores any change to the size specification, unless it has to recreate the
hash area in the course of further modifications.

COMPRESSION clause
BALTER cannot process compressed records, i.e. it cannot perform
decompression, reallocation, sorting or deletion.

Set entry

MODE clause
If the ORDER clause in the new schema is LAST, FIRST, NEXT, PRIOR or
IMMATERIAL, the linkage method in the MODE clause may only be modified if no
records of the member record type are stored.

U931-J-2125-17-76 251

Checking consistency Restructuring the database

6.4 Checking the consistency of the database

A consistent database is the most important prerequisite for successful restructuring. The
BCHECK utility routine should be used to ascertain the consistency of the database (see
the "Recovery, Information and Reorganization" manual).

If BCHECK detects any inconsistencies, the database should on no account be
restructured before it has been recovered, otherwise errors may be compounded
and this will make recovery of the inconsistent database even more difficult.

@

252 U931-J-2125-17-76

Restructuring the database Checking free memory space

6.5 Checking free memory space

In order to adapt the stored data to the modified schema or modified storage structure,
BALTER requires additional free memory space

— in order to create new tables, hash areas or DBTTs
— in order to re-store records, tables, hash areas or DBTTs.

If the free memory space in the realms is not large enough to do this, BALTER automatically
extends the realms concerned, provided this is possible (requirement: secondary allocation
for memory space > 0). For details, please see “Database Operation” manual, Automatic
realm extension by means of utility routines).

If automatic realm extension is not possible (secondary allocation for memory space =0 or
no more disk storage is available), BALTER aborts restructuring! As a result your database
is inconsistent and you must revert to the status before restructuring began and start again
from the beginning.

Realms without automatic realm extension

When one or more realms with a secondary allocation = 0 are configured, e.g. because you
do not want automatic realm extension, you must ensure that the available space is
sufficient before you begin restructuring. For this purpose you must use BSTATUS to
display how much memory space is still free in the various realms of your database and
estimate whether the free space is sufficient for the planned restructuring.

This should be done as early as possible, since BREORG can no longer enlarge
the realms of the database once BCHANGE has processed the database for
restructuring purposes.

You can also make use of the analysis report for this purpose (see section
“Description of the analysis report (REPORT phase)” on page 282).

i @

BALTER selects the processing sequence in such a way that it first deletes those elements
from the database which are no longer contained in the new schema. The space released
can then later be used in the course of other activities, such as the creation of new tables,
the creation of new hash areas, the re-storing of records etc. In the same way the space
released after re-storage of a record type can be used again. Unfavorable configurations
may however lead to a situation in which space which is free at the end of a realm is
allocated first of all, leaving gaps at the beginning of the realm. If this is the case, it is
possible, by means of the BREORG utility routine, to relocate hash areas and tables to the
free pages at the beginning of the realm:

— hash areas with REORGANIZE-CALC
— tables with REORGANIZE-SET.

U931-J-2125-17-76 253

Checking free memory space Restructuring the database

You can then reduce the realm by deleting the pages released at the end of the realm.

The overviews on the following pages are intended to help you estimate the size of the free
memory space which must be available for restructuring purposes in the realms of the
database. If insufficient free space is found in a realm, it must be extended using BREORG
before BCHANGE is started for purposes of preparing restructuring.

254 U931-J-2125-17-76

Restructuring the database

Checking free memory space

DBTT

BALTER lists in an analysis listing the free memory space it needs to restore a DBTT or to
create a new DBTT.

The new size of a DBTT can also be determined using the formulas specified in the table.

Modificationin
the database

Reason

Memory requirement

Formula
(see
page 264)

SSL clause
specifying size

Standard
size

Creating a new
DBTT

new record type defined

1

DBTT clause

1 page

Re-storing
DBTT

Number of DBTT columns changed

(only in owner record) by

— modified linkage method in
MODE clause

— addition or omission of SEARCH
key (set level)

— changing the number of sets in
which this record type is owner

DBTT relocated by

— new realm-name-1in the WIHTIN
clause of the DDLL
(record type level)

— new realm-name-1 in the DBTT
clause of the SSL
(record type level)

Orignal
number of
DBTT
entries

Table 29: Memory requirement for DBTT modifications

U931-J-2125-17-76

255

Checking free memory space

Restructuring the database

Hash areas

The number of pages which BALTER needs to create a hash area is given in the analysis
listing.

The size of the hash areas can also be determined with the aid of formulas.
A hash area always occupies contiguous pages of a realm.

Modificationin

Reason

Memory requirement

the database Formula |[SSL clause Standard
(see specifying size |size
page 264)
Creating a — New record type defined with LOCATION
direct or indirect CALC 3
hash area — LOCATION MODE changed to CALC
(primary key) — hash routine or CALC key changed in or POPULATION 1
LOCATION CALC
— record type with LOCATION CALC 4 clause page
lengthened/shortened
Creating an — new SEARCH key defined with using CALC
indirect hash — definition of a SEARCH key changed in
area USING CALC 1
(secondarykey) |- CALC key or hash routine of a SEARCH key |4 DBTT clause
changed page
— indirect hash area relocated to another realm
Converting a A record type defined with LOCATION CALC
direct into an — is owner or member in a set for which
indirect hash PLACEMENT OPTIMIZATION has been for
area (primary first time 4
key) — has become a member in a list
— has been stored for the first time in
compressed form in the new schema
Converting an | In a record type defined with LOCATION CALC POPULATION | 1
indirect into a — PLACEMENT OPTIMIZATION is omitted in all
direct hash area sets in which this record type is a member clause page
(primary key) — compressed storage is cancelled
— the MODE clause of a set in which this record
type is a member is changed from MODE IS |3
LIST to POINTER-ARRAY/CHAIN

Table 30: Memory requirement for modifications affecting hash areas

256

U931-J-2125-17-76

Restructuring the database Checking free memory space

Tables

Relocating tables

BALTER can relocate only single-level tables in their entirety. If it relocates tables to another
realm, the space required in that realm is equal to the space originally occupied by the table.

Creating new tables:

— SYSTEM set or TYPE IS DATABASE-KEY-LIST:
each set occurrence table occupies at least one page.

Non-singular set and not TYPE IS DATABASE-KEY-LIST:
each set occurrence table takes up only as much space as it needs.

BALTER stores tables for the same set using a space-saving strategy such that there may
be a number of tables in the same page, if the tables are stored DETACHED.

Change in DB
Table Change in Schema DDL Create new | Relocate Memory requirement
orin SSL table(s) table(s)
new SEARCH key defined X -
with USING INDEX
Indexed Key item changed X - .
min. 1 page
SEARCH | Table type changed X -
key table | REPEATED-KEY <--> max. refer to formula 5
DATABASE-KEY-LIST
(record Definition of a SEARCH key X -
type changed to USING INDEX
level) SEARCH key table relocated X -
to another realm
Table 31: Memory requirements for table changes (part 1 of 2)

U931-J-2125-17-76 257

Checking free memory space

Restructuring the database

Change in DB
Table Ch_amge in Schema DDL Create new | Relocate Memory requirement
orin SSL table(s) table(s)
Table type changed X -
REPEATED-KEY --> min. 1 page per set occurrence table
Indexed | DATABASE-KEY-LIST
or with SYSTEM set:
key item modified in type min. 1 page
SEARCH |DATABASE-KEY-LIST max. refer to formula5
key New SEARCH key defined X .
table with USING INDEX
Key item changed X - with SYSTEM set:
(set Table type changed X - min. 1 page
level) DATABASE-KEY-LIST --> max. refer to formula5
REPEATED-KEY
Definition of a SEARCH key X -
changed to USING INDEX
SEARCH key table relocated X - . . .
with non-singular set:
to another realm
minimum not specifiable.
MODE clause changed to X - BALTER stores several set occurrence
POINTER ARRAY tables together, provided they are small
Indexed | Agc/DSC key changed X j enolugh and intended to go in the same
realm.
Pointer array relocated X -
pointer to another realm max. size of a single set occurrence table:
array New set defined with X - refer to formula 5
MODE IS POINTER-ARRAY
New set defined with MODE X -
Indexed IS CHAIN and ORDER
SORTED
INDEXED
sort Definition of a set X -
key changed to MODE IS and
table ORDER SORTED INDEXED
ASC/DESC key changed X -
(MODE IS | Table relocated to X -
CHAIN) | another realm

Table 31: Memory requirements for table changes

(part 2 of 2)

258

U931-J-2125-17-76

Restructuring the database

Checking free memory space

IS LIST

Change in DB
Table Change in Schema DDL Create new | Relocate Memory requirement
orin SSL table(s) table(s)
Non-
indexed Pointer array relocated Original size
pointer to another realm - X
array
MODE clause changed to X - with SYSTEM set:
Indexed LIST min. 1 page
» ASC/DESC key changed X j max. refer to formula 5
New set defined with MODE X -

with non-singular set:

minimum not specifiable.

BALTER stores several set

occurrence tables together, provided they
are small enough and intended to goin
the same realm.

max. size of a single set occurrence table:
refer to formula 5

Table 32: Memory requirements for table changes

i @

If a pointer array, list or chain is added SORTED INDEXED to an empty SYSTEM
set, BALTER creates an empty table for it one page in size.

The following changes are allowed only when there are no member records:

— creation of a single-level list or a single-level pointer array (caused e.g. by
MODE definition, changed ORDER clause)

— relocation of a single-level list in the same realm (e.g. by record lengthening)

— relocation of a list to another realm

U931-J-2125-17-76

259

Checking free memory space Restructuring the database

Record reallocation

When records are reallocated, a distinction is made by BALTER between a partial and a
complete reallocation:

e A complete reallocation

occurs when the new schema prescribes a special form of storage. This is the case with
LOCATION MODE IS CALC for direct hash areas and record types stored in a list.

A complete reallocation is carried out by BALTER when:

— you use a hash routine other than the standard routine in the new schema
— you change the CALC key for a direct hash area in the new schema

— you do not specify the reason for indirect storage in the new schema

— you introduce LOCATION MODE IS CALC in the new schema

— you change the ASC/DESC key of a list in the new schema

— you redefine MODE IS LIST in the new schema.

In the case of a complete reallocation, BALTER relocates all records to new pages and
releases the old pages. This means, however, that during the BALTER run double the
storage space required for storing the records must be available.

If a record type with a special form of storage is lengthened, a complete reallocation is
automatically initiated, even if there is no change in the form of storage itself.

e A partial reallocation

occurs when either the user or system part of the records is lengthened, thus making
more pages necessary for storage purposes.

In the case of a partial reallocation, as many records as possible are kept in their original
pages, and the rest are relocated by BALTER to new pages.

e Shortening records

If a record type with a special form of storage is shortened, a complete reallocation is
automatically initiated as for the lengthening of records, even if there is no change in
the form of storage.

If a record type without a special form of storage is shortened, BALTER pushes all the
records within a page together. This releases space within the individual pages.
BALTER does not relocate the records to other pages, however, so no whole pages are
released.

BALTER does not indicate the amount of space required to relocate records in the analysis
listing. It is, however, possible to estimate the required storage space with the help of
table 33 on page 261 and the calculation formulas which follow.

260 U931-J-2125-17-76

Restructuring the database

Checking free memory space

Memory requirement

. Formula |SSL clause Standard
MOd'f'ca' Reason (see specifying size | size
tion page 264)

LOCATION MODE changed to
CALC
Direct Hash routine/CALC key
Complete changed key
hash 3 POPULATION 1
Hash area converted from clause page
real- area indirect to
direct
(see table 30)
location New set defined with MODE IS | with SYSTEM set: min. 1 page
Indexed |LIST max. refer to formula 5
. MODE clause changed . .
list to LIST with ngn.-smgular .
set: minimum not specifiable.
ASC/DESC key changed BALTER stores several set occurrence

tables together, provided they are small
enough and intended to go in the
same realm.

max. size of a single set
occurrence table:
refer to formula 5

Table 33: Memory requireme

nts for record reallocation

(part 1 of 3)

U931-J-2125-17-76

261

Checking free memory space

Restructuring the database

Memory requirement

Modifi R Formula SSL clause Standard
. odifica- eason (see specifying size | size
tion page 264)
User part lengthened
Record type compressed
- . BALTER enters as many records as

Partial Owner linked to its table possible in the previous pages and

Member linked to its owner relocates the remaining records to other
real- MODE IS CHAIN pages.
location introduced

System
y (see table 28) Since most of the records are dispersed

(record part Owner/member record type: throughout the storage space, it is

new set with MODE IS CHAIN |impossible to estimate the memory
type length- added requirement (other than for record types

LINKED TO PRIOR or to with a special form of storage).
length- ened MODE IS CHAIN

(see table 28)
ened

Member record type: new set

added

Table 33: Memory requirements for record reallocation

(part 2 of 3)

262

U931-J-2125-17-76

Restructuring the database

Checking free memory space

Modifica-
tion

Reason

Memory requirement

Formula |SSL clause Standard
(see specifying size | size
page 264)

(no
reallo-

cation)

Record

type

shortened

User part shortened

Record type decompressed

Linkage of owner to its table
cancelled

Linkage of member to its owner
System | cancelled

Sets defined with MODE IS
part CHAIN deleted

LINKED TO PRIOR and

short- | SRDER IS LAST omitted from
ened MODE IS CHAIN
(see table 28)

MODE clause changed from
MODE IS CHAIN to POINTER
ARRAY / LIST

(see table 28)

Set in which record type was
member deleted

BALTER pushes together the records in a
page (except for record type with special
form of storage).

Additional free memory space is not
required (except for record type with
special form of storage).

Table 33: Memory requirements for record reallocation

(part 3 of 3)

U931-J-2125-17-76

263

Calculation formulas

Restructuring the database

Calculation formulas

The calculation formulas indicated below can be used to calculate the following values:

DBTT size for a new DBTT
DBTT size for a re-stored DBTT
size of a direct hash area

size of an indirect hash area

size of a multi-level SEARCH key table on record type level

Calculating the DBTT size for a new DBTT:

2044

= entries—per—-page D (for 2048-byte page length)
LENGTH
3980

= entries—-per-page D (for 4000-byte page Tength)
LENGTH
8076

= entries—per-page D (for 8096-byte page length)
LENGTH

integer

= number-o f—pagesz>

entries—per—-page

number-of-pages
Number of DBTT pages

entries-per-page
Number of DBTT entries per page

integer
Number of planned records as in DBTT clause

LENGTH

Length of a DBTT entry; is contained in the BGSIA report under the heading:
‘DBTT-INFORMATION’ (see the "Recovery, Information and Reorganization"

manual)

" The result must be rounded down to an integer

2 The result must be rounded up to an integer

264

U931-J-2125-17-76

Restructuring the database Calculation formulas

2. Calculating the DBTT size for a re-stored DBTT:

2044
—————— = entries—per—-page—-new D (for 2048-byte page Tength)
LENGTH-new

3980
——————— = entries—per-page—new D (for 4000-byte page Tength)
LENGTH-new

8076
—————— = entries—per-page—new D (for 8096-byte page Tength)
LENGTH-new

prev.-total—-no.-of-entries

= number—-of-pages 2)

entries—per-page—new

number-of-pages
Number of DBTT pages

prev.-total-no.-of-entries
Number of entries in the original DBTT; this value can be determined using
BSTATUS

entries-per-page-new
Number of DBTT entries per page in the new DBTT

LENGTH-new
Length of an entry in the new DBTT

LENGTH-new=4x(n+1)

n
Number of all the tables of the sets in which the record type is the owner record

type

" The result must be rounded down to an integer
2 The result must be rounded up to an integer

U931-J-2125-17-76 265

Calculation formulas Restructuring the database

3.

Calculating the size of a direct hash area:

No allowance is made for the number of overflow pages which BALTER must also
create.

page—length — 30
1)

= entries—per—page
(record-length + calc—key—length + 15)

integer — 1
2)

+ 1 = number-of-pages
entries—per-page

page-length
Page length of the database (2048/4000/8096 bytes)

number-of-pages
Number of pages in the hash area

calc-key-length
Length of CALC key; is given in the BGSIA report under the heading '"CALC-
INFORMATION'’ in the LENGTH column (see the "Recovery, Information and
Reorganization" manual).

integer
Number of records to be stored according to the POPULATION clause (record type
level).

record-length
Length of record type including SCD; is given in the BGSIA report under the
heading 'RECORD-INFORMATION'’ in the LENGTH column (see the "Recovery,
Information and Reorganization™ manual).

entries-per-page
Number of entries (records or CALC index entries) per page.

" The result must be rounded up to an integer

2 The result must be rounded up to the next-higher prime number if no prime number is obtained

266

U931-J-2125-17-76

Restructuring the database

Calculation formulas

4.

Calculating the size of an indirect hash area:

No allowance is made for the number of overflow pages which BALTER must also

create.

page—length — 30
1)

= entries—per—-page
(calc-key—length + 7)

integer — 1
2)

= number-of-pages
entries—per—page

integer
Number of records to be stored
— according to POPULATION clause (primary key)
— according to DBTT clause (secondary key).

For other meanings, see page 266.

" The result must be rounded up to an integer

2 The result must be rounded up to the next-higher prime number if no prime number is obtained

U931-J-2125-17-76

267

Calculation formulas Restructuring the database

5. Calculating the size of a multi-level SEARCH key table (record type level)
This formula is based on slightly simplified assumptions and therefore produces an
estimate, not the exact numerical value.
For a 2048-byte page length:

— if an occupancy level was specified:

no.-of-search—keys 2002 - (search—-key—=1 + 7)
X = no.-of—
2002 occ. level 2002 — 2 x (search—key—1 + 7) pages
max (1, X 1)y
search—key—1 + 7 100
— If no occupancy level was specified:
no.-of-search—-keys 2002 - (search—-key—-1 + 7)
X = no.-of-pages
2002 2 2002 —= 2 x (search—-key—1 + 7)
search—-key—1 + 7
For a 4000-byte page length:
— if an occupancy level was specified:
no.-of-search-keys 3950 - (search-key—1 + 10)
- X = no.-of-
3950 occ. level 3950 - 2 x (search-key—1 + 10) pages
max(1, X 1)y
search—key—1 + 10 100

— If no occupancy level was specified:

no.-of-search—-keys 3950 — (search—-key—1 + 10)
X = no.-of-pages
3950 3950 = 2 x (search—key—1 + 10)

search—key—1 + 10

" The result of the first division and the result of the first multiplication must each be rounded down to an integer
2 The result of the division must be rounded down to an integer

268 U931-J-2125-17-76

Restructuring the database Calculation formulas

For an 8096-byte page length:

— If an occupancy level was specified:

no.-of-search—keys 8046 — (search—-key—1 + 10)
X = seiten—
8046 occ. level 8046 — 2 x (search—key—1 + 10) anzahl
max(1l, X 1y
search-key—1 + 10 100

— If no occupancy level was specified:

no.-of-search—-keys 8046 — (search—-key—1 + 10)
= seitenanzahl

X
8046 2 8046 — 2 x (search—key-1 + 10)

search-key—1 + 10

no.-of-pages
Number of pages required for the whole set occurrence table

no.-of-search-keys
Number of keys in the table

occ. level
Percentage occupancy level (see the FILLING clause, page 303)

search-key-I(ength)
Length of the SEARCH key; is given in the BGSIA report under the heading 'KEY-
INFORMATION’ (NO CALC SEARCH KEY’S)’ in the LENGTH column (see the
"Recovery, Information and Reorganization" manual).

! The result of the first division and the result of the first multiplication must each be rounded down to an integer

2 The result of the division must be rounded down to an integer

U931-J-2125-17-76 269

Security measures Restructuring the database

6.6 Recovery measures and response to errors

6.6.1

Restructuring changes not only the user database but also the compiler database and the
HASHLIB.

If errors occur during restructuring and you require the database in the state it was in before
restructuring began, you also need the realms of the compiler database and the HASHLIB.

Saving the database

Before restructuring operations begin, i.e. before BCHANGE is started, you must switch off
after-image logging (BALTER writes no after-images) and save the entire database or part
of the database as required:

You must always save the following:

dbname.HASHLIB
dbname.COSSD
dbname.DBDIR
dbname.DBCOM

With regard to the user realms, you have two options:

— You save all the user realms before beginning the restructuring process, i.e.
dbname.realmname-1

dbname.realmname-n

— You use an analysis run with the statements
REPORT IS YES
EXECUTION IS NO
to determine which user realms are needed
and then you save only these realms in addition before the BALTER execution phase.

Determining the user realms needed:

After saving dbname. HASHLIB, dbname.COSSD, dbname.DBDIR and

dbname. DBCOM, execute the restructuring process including the analysis run of
BALTER with REPORT IS YES and EXECUTION IS NO. You can determine which
user realms are needed from the analysis log for BALTER under REPORT OF
ADDED, DELETED AND NEEDED AREAS.

270

U931-J-2125-17-76

Restructuring the database Security measures

Realms may also be needed because anchor records of singular sets have to be
recreated. Here BALTER attempts to prevent unnecessary relocations between the
realms in order to limit the backup effort required in the user realms.

Saving the needed user realms:

Before restructuring using BALTER is performed and the EXECUTION IS YES
statement is executed, save the user realms determined in the analysis phase:
dbname.realmname-i

dbname.realmname-j

For further information on saving a database, refer to the section "Saving and recovering a
database in the event of errors" in the "Database Operation" manual.

U931-J-2125-17-76 271

Responding to errors Restructuring the database

6.6.2 Restoring the database

If, during restructuring, a program abnormally terminates processing with "ABNORMAL
END", one of the following steps must be taken, depending on the gravity of the error:

— re-execute the terminated program, or
— make use of the backup and repeat restructuring

The sections of this chapter dealing with the individual restructuring programs describe
when it is necessary to reset the database and to repeat the restructuring process, and
when it is sufficient to repeat the programs terminated abnormally.

The following table shows which programs modify which files or realms in the database
during restructuring.

H D D D Cc Cc
A B B B (o] (0] User
S D Cc Cc S S realms
H | o o S S which have
L R M M D D to be
| . . accessed
B (0] o
BCHANGE - RW | RW w R w -
DDL compiler - RW RW - w - -
SSL compiler - RW RW - w - -
BGSIA - RW | RW - - - -
LMS w - - - - - -
BALTER - R R R - - -
(analysis phase)
BALTER R RW R R - - RW
(restructuring phase)
DDL compiler - RwW RwW - W R -
(subschemas)
BGSSIA - RW R - - - -

Table 34: Access to files and realms of the database during restructuring

R read access
W write access
- no access

272 U931-J-2125-17-76

Restructuring the database Responding to errors

The following options are available for restoring the database:

— You can convert the shadow database to an original database by renaming it with the
die MODIFY-FILE-ATTRIBUTES command.

— You can read in the ARCHIVE backup and then change the database name, if desired,
with the MODIFY-FILE-ATTRIBUTES command. If the ARCHIVE backup was created
on-line, you may have to mend it with the BMEND utility routine (see "BMEND" in the
“Recovery, Information and Reorganization™ manual).

For further information on restoring a database, refer to the section "Saving and recovering
a database in the event of errors" in the "Database Operation" manual.

Steps required in case of memory shortage

If one of the programs terminates with database status (DBSTATUS) 14802 or 14804, you
must

— expand the affected realm or record type with BREORG,

— restart the program and if necessary delete any incompletely generated information
with the DELETE parameter.

U931-J-2125-17-76 273

BCHANGE

Restructuring the database

6.7

Preparing the compiler database with BCHANGE

The tasks of BCHANGE when restructuring a database are comparable to the tasks of
BCREATE when creating a database. BCHANGE prepares the compiler database to
accept the new schema. It carries out the following preliminary functions prior to
restructuring:

It saves the old SIA in the DBDIR and prepares the DBDIR to accept a new SIA, so that
anew and an old SIA are stored in the DBDIR after the BGSIA run for the new schema.
BALTER needs both SIAs when adapting the stored data to the new schema so that it
can recognize differences between the old and the new schemas.

Make sure therefore that there are enough free pages available in the DBDIR before
the BCHANGE run or that automatic realm extension is possible by means of
secondary allocation > 0.

It deletes all user SSIAs in the DBDIR.
It saves the old DBCOM in the file dbname.DBCOM.O and reformats the DBCOM.

BALTER needs the schema information of the old and the new DBCOMs in order to
examine the planned modifications.

It saves the old COSSD in the file dbname.COSSD.O.

After restructuring the DDL compiler needs the old COSSD to accept the subschemas.
You should therefore delete the dbname.COSSD.O file only after you have compiled or
accepted all the other subschemas which are still required.

274

U931-J-2125-17-76

BCHANGE BCHANGE

DBCOM

SYSDTA
BCHANGE
previous

SIA
[R\ l

DBCOM.O

Figure 27: System environment when preparing the compiler database

m

BCHANGE automatically stores the copies of DBCOM and COSSD on public disks. It is not
necessary to issue a CREATE-FILE command to set up the two files (before BCHANGE is
started) unless the copies are to be stored on private disks.

Depending on the size of the files it is, however, advisable to set them up using a CREATE-
FILE command with SPACE operand - even if they are to be stored on public disks (see
“Maximum size of UDS/SQL files” on page 41).

When required, BCHANGE automatically extends the realms of the processed database.
For details, please refer to the “Database Operation” manual, Automatic realm extension
by means of utility routines).

At startup BCHANGE takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

U931-J-2125-17-76 275

Command sequence BCHANGE

Command sequence for starting BCHANGE

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The BCHANGE utility routine is started by the following commands in the identification
under which the database is cataloged:

01
02
03
04
05

[/CREATE-FILE FILE-NAME=dbname.DBCOM.O ...]

[/CREATE-FILE FILE-NAME=dbname.COSSD.0O ...]

/ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS—-SQL, VERSION=version, SCOPE=*TASK
/START-UDS—BCHANGE

01,02 See section “Setting up the compiler database” on page 57.
04

05

The specified version of BCHANGE is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

The UDS/SQL utility routine can also be started with the alias BCHANGE.

@

There are no BCHANGE statements.

276

U931-J-2125-17-76

Restructuring the database Compiling the Schema DDL

6.8 Compiling the Schema DDL

If the compiler database has been prepared to accept a new schema with the aid of the
BCHANGE utility routine, the current Schema DDL must then be compiled by the DDL
compiler, even if the Schema DDL has not been modified.

The compilation procedure is the same as that used for database creation.

Once the Schema DDL has been compiled, the following are available:

— anold and a new DBCOM
— anold SIA in the DBDIR
— anold and a new COSSD.

Command sequence for compiling the current Schema DDL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The commands listed here are described in detail in section “Compiling the Schema DDL”
on page 66.

01 /ADD—-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS-DDL

04 SOURCE IS 'schema-file'

05 END

06 /ASSIGN-SYSDTA TO=*SYSCMD

Itis essential that the DDL compiler should terminate compilation with the message
'NORMAL END’.

If the message '"ABNORMAL END’ is received, compilation must be repeated with
corrected DDL clauses.

i @

U931-J-2125-17-76 277

Compiling the SSL Restructuring the database

6.9 Compiling the SSL

The option is available to compile a new SSL using the SSL compiler once the Schema DDL
has been compiled.

If no SSL compilation is carried out, default values for the storage structure are used. If the
previously defined storage structure is to be retained, it is necessary to recompile the
original SSL clauses.

The compilation procedure is the same as that used for database creation (see section
“Compiling the SSL” on page 76).

Command sequence for compiling the SSL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47. The
aliases for calling the utility routines are also listed in this section).

The commands listed here are described in detail in section “Compiling the SSL” on

page 76.

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS—-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS-SSL

04 SOURCE IS 'ssi-file'

05 END

06 /ASSIGN-SYSDTA TO=*SYSCMD

It is essential that the SSL compiler should terminate compilation with ’NORMAL
END’. If compilation ends with ’ABNORMAL END’, the following action should be
taken:

@

e for errors in the SSL clauses:

the faulty SSL clauses should be corrected and the SSL compilation should be
repeated;

e for errors in the DDL clauses:
— the faulty DDL clauses should be corrected

— the faulty schema should be deleted in a DDL run by means of the
statement DELETE SCHEMA schemaname

— and the restructuring process should be repeated from ’'Compiling the
Schema DDL’ onwards.

278

U931-J-2125-17-76

Restructuring the database Generating a new SIA

6.10 Generating a new SIA and entering it in the DBDIR with
BGSIA

Once the Schema DDL and the SSL (optional) have been successfully compiled, the SIA
of the new schema must be generated and entered in the DBDIR using the BGSIA utility
routine.

The saved SIA of the old schema remains in DBDIR so that, after the BGSIA run, DBDIR
contains the SlAs of both the old and the new schemas. BALTER needs both in order to
adapt the stored data to the modified schema.

The BGSIA run corresponds to the run carried out for the creation of the database (see
section “Setting up the Schema Information Area (SIA) with BGSIA” on page 79). After the
BGSIA run, the module UDSHASH generated by BGSIA must be entered in the HASHLIB.

If hash routines written by the DB administrator are used, these must also be entered in the
HASHLIB with the attributes RMODE=ANY and AMODE=ANY before BALTER is started
by means of EXECUTION IS YES.

Generating SIA and entering it in DBDIR

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /DELETE-SYSTEM-FILE FILE-NAME=*OMF

04 /START-UDS-BGSIA

05 GENERATE SCHEMA schema-name

06 [DISPLAYL SCHEMA schema—-namell

07 END

Entering the module UDSHASH in the HASHLIB

01 /START-LMS

02 //OPEN-LIB LIB=dbname.HASHLIB,MODE=*UPDATE

03 //ADD—-ELEMENT FROM—-FILE=*OMF,TO-ELEMENT=*LIBRARY—-ELEMENT(TYPE=R)
04 //END

U931-J-2125-17-76 279

BALTER

Restructuring the database

6.11

6.11.1

Analyzing schema modifications and adapting stored data
with BALTER

Analyzing the modifications to the database schema and adapting stored data to the
modified schema is the task of the BALTER utility routine. BALTER controls these
processes in two phases:

— in the analysis phase BALTER analyzes the modifications to the database schema
— In the optional REPORT phase BALTER outputs the analysis report

— in the restructuring phase BALTER adapts the stored data and the definition of the
database to the modified schema

In order to run BALTER successfully, you must first use the BGSIA utility routine to create
the new SIA and enter it into the DBDIR (see section “Generating a new SIA and entering
it in the DBDIR with BGSIA” on page 279). Otherwise, the BALTER run will abort with the
message “BGSIA HAS NOT BEEN EXECUTED”.

When required, BALTER automatically extends the realms of the database being
processed. For details, please refer to the “Database Operation” manual, Automatic realm
extension by means of utility routines).

At startup BALTER takes into account any assigned UDS/SQL pubset declaration (see the
“Database Operation” manual, Pubset declaration job variable). Faulty assignment leads to
the program aborting.

Analysis phase

Using the old and new versions of both the DBCOM and the SIA, BALTER determines, in
the analysis phase, the differences between the old and the new schema description and
checks that all the modifications are permissible.

At the end of the analysis phase BALTER offers an optional logging function which logs the
following to SYSLST (see "REPORT statement”, table 42, page 299): the user realms that
will be added, deleted and needed during restructuring, as well as the modifications to be
made to stored data in the order in which they are subsequently carried out in the
restructuring phase.

This analysis listing indicates how much free memory space BALTER requires for individual
restructuring operations in the database, and whether any of the planned modifications are
illegal.

It is therefore important that you output the analysis listing and to read through it carefully,
and that you save any need user realms that have not yet been saved before you initiate
restructuring.

280

U931-J-2125-17-76

BALTER System environment

If you need to create a unique key (sort key, CALC key, SEARCH KEY USING
INDEX) that consists of only newly-defined items for a record type for which there
are already existing records in the database, the following approach is
recommended:

1. Create the new keys with DUPLICATES ARE ALLOWED.

2. Assign unique values or value combinations to the new keys (e.g. by using the
DML statement MOVE).

3. Then change the definition of the key to DUPLICATES ARE NOT ALLOWED.

i @

DBCOM DBCOM.O DBDIR
old SIA
new SIA

SYSDTA BALTER
Analysis phase

Y/re—

Figure 28: System environment in the analysis phase

BALTER issues error messages and warnings via SYSOUT if illegal modifications are
planned (see section “Description of BALTER messages” on page 307). If REPORT IS YES
is specified, BALTER outputs information on which realms are needed and which realms
are not needed to SYSOUT.

U931-J-2125-17-76 281

Analysis report BALTER

6.11.2 Description of the analysis report (REPORT phase)

If REPORT IS YES is specified for a BALTER run, BALTER initiates the REPORT phase
after the analysis phase. In the REPORT phase it outputs the analysis report via SYSLST.
In the analysis report BALTER lists the changes to be carried out in the order in which it
actually implements them during the restructuring phase.

If BALTER requires free memory space in the database for a modification, it also specifies:

— the number of data pages required and
— the realm in which it requires the space.

In addition, BALTER logs whether, and how much, free space will become available as a
result of each restructuring operation, and it reports changes which are illegal or only
permissible under certain circumstances.

Free memory space

When required, BALTER automatically extends the realms of the processed
database. For details, please refer to the “Database Operation” manual, Automatic
realm extension by means of utility routines. If the free memory space is not
sufficient for a change, sufficient space is generally made available by this
automatic realm extension. Only if the requirement for automatic realm extension is
not satisfied can it happen that there is actually not enough free memory space.

i

REPORT OF ADDED, DELETED AND NEEDED AREAS

Message Meaning

realm-name ADDED Realm realmname added

realm—-name DELETED Realm realm-name deleted

realm—-name NEEDED Realm realm-name needed
Realm realmn-ame must be saved before the
restructuring phase.

Table 35: Report of added, deleted and needed realms

If REPORT IS YES is specified, BALTER also outputs to SYSOUT the names of the realms
that are needed and those that are not needed

Message Meaning

REALM NEEDED: realm-name Realm realm-name needed
Realm realm-name must be saved before the
restructuring phase.

REALM NOT NEEDED: realm—-name Realm realm-name not needed

Table 36: SYSOUT report on realms that are needed and not needed

282

U931-J-2125-17-76

BALTER

Analysis report

REPORT OF CHANGES IN DBTT FOR RECORD: record-name

Log of DBTT changes for record type record-name

Message

Meaning

NUMBER OF ENTRIES RESERVED IN
OLD DBTT PAGE = integer

Self-explanatory
(page is synonymous with page)

NUMBER OF ENTRIES RESERVED IN
NEW DBTT PAGE = integer

Self-explanatory

TOTAL NUMBER OF PAGES IN OLD DBTT = integer

Number of pages reserved for the
previous DBTT (DBTT base and DBTT
extents)

TOTAL NUMBER OF PAGES, NEEDED FOR NEW DBTT IN
AREA realm—-name = integer.
IF THERE IS NOT ENOUGH SPACE AVAILABLE,
THE RESTRUCTURING PROCESS WILL ABEND.

Total number of pages that the new
DBTT requires in the realm realm-name.
If there is not enough space available
then the restructuring phase is aborted;
contiguous empty pages must be
available for the new DBTT extents that
are to be created (cf. “Free memory
space” on page 282).

TABLE ANCHORED IN DBTT COLUMN:
WILL BE DELETED.

integer

Self-explanatory

TABLE ANCHORED IN DBTT-COLUMN-NR:
WILL BE MOVED FROM
{AREA realm-name—1 | OWNER AREA}
TO {AREA realm-name-2 | OWNER AREA}.

integer

Self-explanatory

LUP TO1{7nteger | NO} OLD DBTT PAGE(S)
WILL BE FREED IN AREA realm—name

Number of pages released by the
previous DBTT in the realm realm-name.
The precise number of pages actually
released in the execution phase may in
some cases be up to 64 pages smaller
than indicated in integer.

UP TO 256 CONSECUTIVE EMPTY PAM PAGES ARE
NEEDED FOR NEW DBTT.

If parts of an existing DBTT with extents
are re-used then a new DBTT base,
which is greater in size than a DBTT
extent, is created.

THE RECORD TYPE IS NOW OWNER IN SOME SETS.

As a result of restructuring, a record
type which was previously only a set
member is now also a set owner.

Table 37: Report of DBTT changes

(part 1 of 2)

U931-J-2125-17-76

283

Analysis report

BALTER

Message

Meaning

THE DBTT HAS TO BE SHORTENED TO 16 711 679
ENTRIES.

Databases with 2-Kbyte page format
permit only 16711679 DBTT entries for
owner record types (cf section
“Declaring the population” in the
“Design and Definition” maual).

IF THERE ARE EXISTING ENTRIES WITH HIGHER RSQ
THE RESTRUCTURING PROCESS WILL END
ABNORMALLY .

If DBTT entries above those possible
for the owner record types exist in the
previous member record type then
BALTER aborts the restructuring
phase. The planned restructuring is not
possible in 2-Kbyte page format.

Table 37: Report of DBTT changes

(part 2 of 2)

If the new DBTT occupies more pages than the previous one then the previously used
pages continue to be used, if possible. If new DBTT extents are to be created then
contiguous empty pages with the fixed size of these extents must be available. There must
be a minimum of 128 contiguous free PAM- pages for each of the DBTT components.

If the new DBTT is exactly the same size as the previous one, or smaller, BALTER uses the
pages of the previous DBTT to create the new DBTT. DBTT extents that are no longer

required are released.

284

U931-J-2125-17-76

BALTER

Analysis report

REPORT OF DATABASE CHANGES FOR SINGULAR SET: set-name

Message

Meaning

LENGTH OF OLD SYSTEM RECORD

integer

Self-explanatory
(system record = anchor record)

LENGTH OF NEW SYSTEM RECORD = integer

Self-explanatory

TABLE OCCURRENCE ANCHORED IN SYSTEM RECORD
COLUMN 7nteger
WILL BE DELETED IF PRESENT.

Self-explanatory

TABLE ANCHORED IN DBTT-COLUMN-NR 7integer
WILL BE MOVED FROM
AREA realm-name—1 TO AREA realm—name-2.

Self-explanatory

FORWARD CHAIN POINTER WILL BE REMOVED.

Self-explanatory

BACKWARD CHAIN POINTER WILL BE REMOVED.

Self-explanatory

THE SYSTEM RECORD WILL BE CREATED
IN AREA realm—name

Self-explanatory

THE SYSTEM RECORD WILL BE DELETED
IN AREA realm—name

Self-explanatory

THE SYSTEM RECORD WILL BE MOVED FROM
AREA realm-name—1 TO AREA realm-name-2

Self-explanatory

integer PAGES FOR CALC SEARCH KEY TABLES
WILL BE FORMATED IN AREA realm—-name.
THEY ARE CONSECUTIVE.
IS THERE ENOUGH SPACE AVATLABLE?

Self-explanatory
(page is synonymous with page)

cf. “Free memory space” on page 282.

integer PAGES FOR CALC SEARCH KEY TABLES
WILL BE DELETED IN AREA realm—name

Self-explanatory

Table 38: Report of database changes for singular sets

U931-J-2125-17-76

285

Analysis report

BALTER

REPORT OF DATABASE CHANGES FOR DELETION OF RECORD: record-name

Message

Meaning

NUMBER OF ENTRIES RESERVED IN
OLD DBTT PAGE = integer

Self-explanatory

(page is synonymous with page)

integer OLD DBTT PAGES WILL BE FREED
IN AREA realm-name

Self-explanatory

TABLE ANCHORED IN DBTT COLUMN 7integer
WILL BE DELETED IF PRESENT.

Self-explanatory

integer PAGES WITH CALC KEY RECORDS AND
TABLES WILL BE DELETED IN AREA realm—name

Self-explanatory

integer PAGES WITH CALC KEY TABLES WILL BE
DELETED IN AREA realm-name

Self-explanatory

ALL RECORD INFORMATION WILL BE DELETED.

Self-explanatory

Table 39: Report of database changes for deletion of record types

286

U931-J-2125-17-76

BALTER

Analysis report

REPORT OF DATABASE CHANGES FOR CREATION OF RECORD: record-name

Message

Meaning

NUMBER OF ENTRIES RESERVED IN
NEW DBTT PAGE = integer

Self-explanatory
(page is synonymous with page)

TOTAL NUMBER OF PAGES,
NEEDED FOR NEW DBTT IN AREA realm-name
= 7integer

Number of empty pages that the new
DBTT requires in the realm realmname.
Contiguous empty pages must be
available for the DBTT base and the
DBTT extents.

integer PAGES FOR CALC KEY RECORDS AND
TABLES WILL BE FORMATED IN AREA
realm—name.
THEY ARE CONSECUTIVE.

Self-explanatory
(direct hash area)

integer PAGES FOR CALC KEY TABLES WILL BE
FORMATED IN AREA realm—name.
THEY ARE CONSECUTIVE.

Self-explanatory
(indirect hash area)

IF THERE IS NOT ENOUGH SPACE AVAILABLE,
THE RESTRUCTURING PROCESS WILL END
ABNORMALLY .

Self-explanatory
cf. “Free memory space” on page 282.

Table 40: Report of database changes for creation of record types

U931-J-2125-17-76

287

Analysis report

BALTER

REPORT OF DATABASE CHANGES FOR RECORD:

record-name

Message

Meaning

integer PAGES WITH CALC KEY RECORDS AND
TABLES WILL BE DELETED IN AREA realm-name

Self-explanatory

integer PAGES WITH CALC KEY TABLES WILL BE
DELETED IN AREA realm—name

Self-explanatory

integer PAGES FOR CALC KEY RECORDS AND
TABLES WILL BE FORMATED IN AREA realm—-name.
THEY ARE CONSECUTIVE.
IS THERE ENOUGH SPACE AVAILABLE?

Self-explanatory
cf. “Free memory space” on page 282.

integer PAGES FOR CALC KEY TABLES WILL BE
FORMATED IN AREA realm—-name.
THEY ARE CONSECUTIVE.
IS THERE ENOUGH SPACE AVAILABLE?

Self-explanatory
cf. “Free memory space” on page 282.

AREA DELETED FROM RECORD-WITHIN-CLAUSE

Self-explanatory

FOLLOWING ACTIONS EXECUTED IF RECORD
OCCURRENCES ARE PRESENT:

Self-explanatory

THE RESTRUCTURING PROCESS WILL END
ABNORMALLY FOR NOT ALLOWED SCHEMA CHANGES.

Self-explanatory

THE RESTRUCTURING PROCESS WILL END
ABNORMALLY IF RECORD OCCURRENCES ARE
PRESENT IN AREAS WHICH ARE DELETED FROM
RECORD-WITHIN-CLAUSE

Self-explanatory

A NON SINGULAR AUTOMATIC SET THAT WAS NOT
PRESENT IN THE OLD SCHEMA HAS BEEN
SPECIFIED IN THE NEW SCHEMA.

THE RESTRUCTURING PROCESS WILL STOP
BECAUSE THE SET OCCURRENCES TO WHICH EACH
RECORD OCCURRENCE BELONGS ARE NOT KNOWN.

Self-explanatory

AS A CONSEQUENCE OF LOGICAL CHANGE THE
RECORDTYPE WILL BE PLACED IN NEW PAGES.
DURING THE PROCESS THE RECORDTYPE WILL
RESIDE TWICE IN THE AREA(S).

IS THERE ENOUGH SPACE AVAILABLE?

Self-explanatory
cf. “Free memory space” on page 282.

SET setname DOES NOT HAVE MODE = LIST ANY-
MORE. THE LIST TABLE HEADER WILL BE
REMOVED FROM THE LIST-PAGES.

Self-explanatory

DUE TO A CHANGE IN LOCATION MODE THE CALC
KEY INFORMATION WILL BE REMOVED.

Self-explanatory

Table 41: Report of changes for record types

(part 1 of 5)

288

U931-J-2125-17-76

BALTER

Analysis report

Message

Meaning

CALC RECORDS AND KEYS WILL BE PLACED
IN THE CALC KEY PAGES.

Self-explanatory

CALC KEYS WILL BE PLACED
IN THE CALC KEY PAGES.

Self-explanatory

'DUPLICATES ARE NOT ALLOWED' HAS BEEN
SPECIFIED FOR THE CALC KEY.
IF DUPLICATES ARE DETECTED
THE DUPLICATE VALUES WILL BE PRINTED AND
THE RESTRUCTURING PROCESS WILL CONTINUE.

Self-explanatory.

Note: If the table contains duplicates
after the BALTER run, the table
cannot be processed by means of
these duplicates.

This situation can be corrected as
follows:

First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

'"DUPLICATES ARE NOT ALLOWED' HAS BEEN
SPECIFIED FOR THE CALC KEY.
THIS KEY IS A NEW ONE ON
{ONE NEW FIELD | ONLY NEW FIELDS}.
THEREFORE THE TABLE WILL HAVE ONLY
DUPLICATES.
THIS IS INCONSISTENT WITH
NOT ALLOWED'.
SPECIFY 'DUPLICATES ARE ALLOWED'
IF DUPLICATES ARE DETECTED THE DUPLICATE
VALUES WILL BE PRINTED AND THE
RESTRUCTURING PROCESS WILL CONTINUE.

'DUPLICATES ARE

DUPLICATES ARE NOT ALLOWED
was defined for the CALC key. Each
item of this key is new.

If existing records of the record type
for which the key is defined are used
to create the table, the table will
consist of all new items and can only
contain duplicates.

BALTER logs the found duplicates
and continues restructuring. However,
the table cannot be processed.
These conflicting entries can be
corrected as follows:

First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT..

FOR SET setname A SORTED CHAIN WILL BE BUILT.

Self-explanatory

FOR SET setname A LIST TABLE WILL BE BUILT.

Self-explanatory

FOR SET setname A POINTER ARRAY WILL BE BUILT.

Self-explanatory

Table 41: Report of changes for record types

(part 2 of 5)

U931-J-2125-17-76

289

Analysis report

BALTER

Message

Meaning

'DUPLICATES ARE NOT ALLOWED' HAS BEEN
SPECIFIED FOR THE SORT KEY.
IF DUPLICATES ARE DETECTED
THE DUPLICATE VALUES WILL BE PRINTED AND
THE RESTRUCTURING PROCESS WILL CONTINUE.

Self-explanatory.

Note: If the table contains duplicates
after the BALTER run, the table
cannot be processed by means of
these duplicates.

This situation can be corrected as
follows:

First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

"DUPLICATES ARE NOT ALLOWED' HAS BEEN
SPECIFIED FOR THE SORT KEY.
THIS KEY IS A NEW ONE ON
{ONE NEW FIELD | ONLY NEW FIELDS}.
THEREFORE THE TABLE WILL HAVE ONLY
DUPLICATES.

THIS IS INCONSISTENT WITH 'DUPLICATES ARE

NOT ALLOWED'.

SPECIFY 'DUPLICATES ARE ALLOWED'

IF DUPLICATES ARE DETECTED THE DUPLICATE
VALUES WILL BE PRINTED AND THE
RESTRUCTURING PROCESS WILL CONTINUE.

DUPLICATES ARE NOT ALLOWED
was defined for the ASC/DESC key.
Each item of this key is new.

If existing records of the record type
for which the key is defined are used
to create the table, the table will
consist of all new items and can only
contain duplicates.

BALTER logs the found duplicates
and continues restructuring. However,
the table cannot be processed.
These conflicting entries can be
corrected as follows:

First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

FOR SET setname CALC SEARCH KEYS WILL BE
PLACED IN THE CALC KEY PAGES.

Self-explanatory

FOR SET setname AN INDEXED SEARCH KEY TABLE
OF TYPE REPEATED KEY WILL BE BUILT

Self-explanatory

FOR SET setname AN INDEXED SEARCH KEY TABLE
OF TYPE DATABASE KEY LIST WILL BE BUILT.

Self-explanatory

Table 41: Report of changes for record types

(part 3 of 5)

U931-J-2125-17-76

BALTER

Analysis report

Message

Meaning

"DUPLICATES ARE NOT ALLOWED' HAS BEEN

SPECIFIED FOR THE SEARCH KEY.

IF DUPLICATES ARE DETECTED

THE DUPLICATE VALUES WILL BE PRINTED AND
THE RESTRUCTURING PROCESS WILL CONTINUE.

Self-explanatory.

Note: If the table contains duplicates
after the BALTER run, the table
cannot be processed by means of
these duplicates.

This situation can be corrected as
follows:

First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

"DUPLICATES ARE NOT ALLOWED' HAS BEEN

SPECIFIED FOR THE SEARCH KEY.

THIS KEY IS A NEW ONE ON

{ONE NEW FIELD | ONLY NEW FIELDS}.
THEREFORE THE TABLE WILL HAVE ONLY
DUPLICATES.

THIS IS INCONSISTENT WITH
NOT ALLOWED'.

SPECIFY 'DUPLICATES ARE ALLOWED'

IF DUPLICATES ARE DETECTED THE DUPLICATE
VALUES WILL BE PRINTED AND THE
RESTRUCTURING PROCESS WILL CONTINUE.

'DUPLICATES ARE

DUPLICATES ARE NOT ALLOWED
was defined for the SEARCH key.
Each item of this key is new.

If existing records of the record type
for which the key is defined are used
to create the table, the table will
consist of all new items and can only
contain duplicates.

BALTER logs the found duplicates
and continues restructuring. However,
the table cannot be processed.
These conflicting entries can be
corrected as follows:

First define DUPLICATES ARE
ALLOWED in the Schema DDL; then
fill the key items in accordance with
DUPLICATES NOT, and finally
change the DDL definition to
DUPLICATES NOT.

ALL RECORD OCCURRENCES WILL BE

READ AND WRITTEN.

Self-explanatory

ALL RECORD OCCURRENCES WILL BE

READ, MODIFIED AND WRITTEN.

THESE MODIFICATIONS ARE A CONSEQUENCE
OF CHANGES IN:

— THE SYSTEM-PART OF THE RECORD

— THE USER-PART OF THE RECORD

Self-explanatory

THE SYSTEM WILL TRY TO USE SAME PAGE FOR THE

NEW ALLOCATION OF THE RECORD OCCURRENCES.

Self-explanatory

Table 41: Report of changes for record types

(part 4 of 5)

U931-J-2125-17-76

291

Analysis report BALTER

Message Meaning

LIST WILL BE REALLOCATED A list will be reconstructed. Member
records of a distributable SYSTEM-
LIST set will be distributed
approximately evenly over the realms

involved.
RECORDS OF SYSTEM LIST SET CAN NOW BE STORED Following reconstruction the member
IN n REALMS records can be stored in n realms.
Table 41: Report of changes for record types (part 5 of 5)

If the user part of a record type has been modified, BALTER outputs a table contrasting the
layout of the old record with that of the new:

LAYOUT OLD RECORD (USER PART) ‘ LAYOUT NEW RECORD (USER PART)

ITEM-NAME LENGTH TYPE DISPL ‘ ITEM-NAME LENGTH TYPE DISPL

Figure 29: Comparison of the old and the new record (user-part)

LAYOUT OLD RECORD (USER PART)
Self-explanatory

LAYOUT NEW RECORD (USER PART)
Self-explanatory

ITEM-NAME
ltem name

TYPE Type of item:

1 alphanumeric

2 unsigned decimal, unpacked
3 signed decimal, unpacked

5 packed decimal

6 half-word

7 Wort

8 database key item

DISPL Displacement of item from beginning of record type (incl. SCD)

292 U931-J-2125-17-76

BALTER Analysis report

What to do if there is a shortage of memory space in the realms

If the analysis report shows that the space required for restructuring in one or more
database realms is greater than the space available, the following action must be taken:

e either fulfil the requirements to permit the realms concerned to be extended
automatically (for details see the “Database Operation” manual)

e or create additional memory space in the realms concerned manually:

— the realms of the database which have already been modified should be reset to
their original state before the beginning of restructuring (see section “Restoring the
database” on page 272),

— the concerned realms should be extended using BREORG, and

— the restructuring process should be repeated from the ’preparing the compiler
database’ stage onwards.

U931-J-2125-17-76 293

Restructuring phase BALTER

6.11.3 Restructuring phase

6.11.3.1

The restructuring phase is initiated by BALTER when the DB administrator issues a control
statement to that effect (see "EXECUTION statement”, table 42, page 299) and if the
analysis phase has detected no errors.

Effects of the restructuring on the content of the database

The various modifications which can be made to the schema and to the storage structure
have varying effects on the content of the database:

BALTER does not modify the content of the database during the restructuring phase
when

identifier is renamed
— LOCATION DIRECT or DIRECT-LONG is added or omitted

— the specifications in the ORDER clause vary between: LAST, FIRST, NEXT, PRIOR
or IMMATERIAL

— set membership is redefined
— duplicates are allowed or prohibited
— the SET OCCURRENCE SELECTION clause is changed.

Such modifications are noted by BALTER in the database definitions only; they have no
effect on stored data and need only be taken into account when programming the DB
applications.

Again, BALTER does not modify the content of the database when any of the following
are redefined:

— the size of a DBTT
— the number of pages for the dynamic reorganization of tables
— the size of set tables.

Such modifications must be carried out by the BREORG utility routine.

BALTER modifies the content of the database to a certain degree when any of the
following are redefined:

— PLACEMENT OPTIMIZATION
— the location of tables

— the size of a hash area.

294

U931-J-2125-17-76

BALTER

Restructuring phase

Modifications of this kind do affect the content of the database, but DB consistency does
not depend on whether or not BALTER adapts the data stored to the new definition.
Since, in addition, BALTER generally has to re-store a large number of records and
table lines when carrying out such modifications, it updates the overall database
definition, but only adapts the data stored to the new definition if it has to relocate the
records or tables in the course of other modifications.

BALTER modifies the content of the database when

— arealm is added to the database

— anew record type or a new set is defined

— LOCATION CALC is defined for the first time

— the hash routine or the CALC keys are modified when LOCATION CALC is used
— a DBTT is relocated to another realm

— the definition of a SEARCH key is changed

— the user or system information of a record type is changed

— the structure or sort criteria of tables are redefined.

When effecting such modifications, BALTER adapts the stored data to the modified
schema or storage structure by carrying out the following steps in the order specified:

— formatting the realms added

— in the case of owner record types, modifying the DBTT and deleting the set tables
or relocating them in the database

— entering, deleting or modifying system records for SYSTEM sets
— deleting or relocating tables

— deleting all information concerning record types which no longer occur in the new
schema

— creating hash areas and DBTTs for new record types

— modifying and re-storing record types (user and system information) and creating
new tables

— removing realms which no longer occur in the new schema from the database.

U931-J-2125-17-76

295

Restructuring phase BALTER

If the reuse of database keys was disabled using the BMODTT utility routine, this

run must be repeated after restructuring has been performed as BGSIA restores the
default setting (database keys of deleted records are reusable or the search for free
space begins in a contiguous free area at the end of the realm). Delete identifiers

are retained by BALTER when DBTTs are recreated.

i @

6.11.3.2 Logging the restructuring phase

All steps of the restructuring phase can be seen from the analysis report. During
restructuring, BALTER only logs the following to SYSOUT:

— realms or record types which have been added or deleted

— the processing of record types, i.e. the creation of new tables, and the modification of
record types.

6.11.3.3 System environment in the restructuring phase

DBDIR
w old SIA
new SIA
SYSDTA BALTER a
Reorganization phase [¢=————————b
User

s

N
N

e | SCRTCHA1
work file

N~

N
N

»| SORTWK
work file

N~

Figure 30: System environment in the restructuring phase

296 U931-J-2125-17-76

BALTER

Restructuring phase

Realms

e Userrealms
You can query which user realms BALTER needs during the restructuring phase in an
analysis run for which REPORT IS YES EXECUTION IS NO has been specified.
These user realms are not yet accessed. BALTER does not access the needed user
realms until the restructuring phase itself.

e Added realms
Unless temporary, these realms must be created with the CREATE-FILE command
before the restructuring phase is started, under the file name:
dbname.realm-name

Work files

During the restructuring phase, BALTER requires two work files on disk. It automatically
creates these on public disks under the appropriate user identification and deletes them
once the run has normally terminated.

The default names for these files are the link names SCRTCH1 and SORTWK:

SCRTCH1 is required by BALTER for buffering information concerning the re-storage
and modification of records and the creation of tables

SORTWK requires the SORT used by BALTER for sorting internal evaluation records
(see the manual “SORT (BS2000)").

If the two work files are to be created explicitly, they must have the following attributes:

work-file-1

The primary allocation for work file 1 should be based on the data population that is to be
buffered. There should always be an appropriate secondary allocation in case it should be
necessary to extend the storage space.

SCRTCH1 file link name
PAM access method

The data population for buffering can be calculated approximately using the following
formula:

max(key—length x no.-of-records) x 3 Bytes

key-length
total length of all keys required. The value 8 should be chosen as the minimum.

max maximum value obtained when processing various record types.

U931-J-2125-17-76 297

Restructuring phase BALTER

work-file-2

SORT needs work file 2 if there is not enough virtual memory for pre-sorting. The primary
allocation should be based on the data population that is to be sorted while taking account
of the safety factor recommended by SORT (see the discussion of work files in the manual
“SORT (BS2000)”). There should always be an appropriate secondary allocation in case it
is necessary to extend the storage space.

SORTWK file link name
PAM access method

The sort data population can be calculated approximately using the following formula:

max(rec—-length x no.-of-records) Bytes

rec-length
length of a record incl. SCD

max maximum value obtained when processing various record types

If you do not set up the two work files yourself, BALTER creates them with the following
names and sizes:

UTl.zsn.SCRTCH1 (360,360)
UTlzsn.SORTWK (120,120)

tsn is the task sequence number under which BALTER is started.

208

U931-J-2125-17-76

BALTER

Statements

6.11.4 BALTER statements

BALTER recognizes the following statements:

Statement Default Meaning
value
[SORTCORE IS nnn.] 150 Specifies size of sort area

YES
EXECUTION IS .
NO

Starts/does not start restructuring phase

YES
REPORT IS .
NO

Requests/suppresses logging

CEILLING IS nnn PERCENT
[IN SET NAME IS

{setmame, -

*ALLL EXCEPT setname, ..

}].]
]

Specifies table occupancy level
(Format 1)

[FILLING WITH POPULATION
L IN SET NAME IS

{setname, . ..

].]
*ALLL EXCEPT setname, . .]}

Specifies table occupancy level
(Format 2)

END.

Terminates entry of statement

Table 42: Statements for BALTER

The statements are described in detail in the following pages.

U931-J-2125-17-76

299

SORTCORE statement BALTER

SORTCORE (Specifying the size of the sort area)

To sort elements (records/table rows), BALTER uses the BS2000 utility routine SORT. The
SORTCORE statement allows you to specify the size of the main memory space required
for the sort area of the SORT routine (see "ALLOC statement” in the "SORT (BS2000)"
manual).

[SORTCORE IS nnn.]

nnn You specify the size of the sort buffer memory space to be made available to the
BS2000 SORT utility routine in 4-Kbyte units (see "ALLOC statement" in the "SORT
(BS2000)" manual).
Default value:150

The sort data population is the same as that on which the size of work file 2 is based (see
page 298).

300 U931-J-2125-17-76

BALTER EXECUTION statement

EXECUTION (Starting/not starting the restructuring phase)

The EXECUTION statement specifies whether BALTER is to carry out the analysis phase
and analyze the changes made to the schema and the storage structure, or, in addition, to
implement the restructuring phase and adapt stored data to the changes.

The EXECUTION statement must be specified.

<

ES
EXECUTION IS .
NO

NO analysis phase only

YES analysis and restructuring phases

U931-J-2125-17-76 301

REPORT statement BALTER

REPORT (Requesting/suppressing logging)

The REPORT statement specifies whether or not BALTER is to print out an analysis report
(see section “Description of the analysis report (REPORT phase)”’ on page 282).

The REPORT statement must be specified.

<

ES
REPORT IS .
NO

YES BALTER prints out an analysis report
NO BALTER does not perform logging

302 U931-J-2125-17-76

BALTER

FILLING statement

FILLING (Specifying the occupancy level of table pages)

The FILLING statement enables you to define the occupancy level of new tables.
Format 1 Specifies an occupancy level of the new tables in percent.

Format 2 Specifies a minimum size for new tables.
However, the minimum size actually used is limited by the number of table
entries which fit onto a database page. Format 2 consequently only works
for small tables, i.e. ones which fit onto a page.

Format 1

CEILLING IS nnn PERCENT
setname, . ..

[IN SET NAME IS 1.1
*ALLL EXCEPT setname,...]

Format 2

CEILLING WITH POPULATION
setname, . ..

L IN SET NAME IS 1.1
*ALLL EXCEPT setname,...]

nnn Specifies to which percentage the new table pages are to be filled
nnn=1...100

POPULATION
Specifies that the POPULATION clause in the SSL is used to determine the size of
new tables.

IN SET NAME IS ...
Specifies the sets in which the occupancy level specified for new tables applies.
If IN SET NAME IS is omitted, FILLING applies to all new table pages.

setname,...
The specified occupancy level applies to new table pages in the specified sets

*ALL The specified occupancy level applies to all new table pages

U931-J-2125-17-76 303

FILLING statement BALTER

*ALL EXCEPT setname,...
The specified occupancy level applies to all new table pages other than those in the
sets listed after EXCEPT

e Format 1 of the statement is effective for single-level tables and for level 0 of all multi-
level tables which BALTER creates except lists.
On level 1, tables are 95 % filled, and on every higher level one table entry is left free.

If nnn is made too small, BALTER makes sure that there is room for at least one entry.

e Format 2 of the statement is effective for single-level tables which BALTER creates,
including lists.

e If you do not specify FILLING, an entry on level 0 also remains free.

e® You can specify both formats simultaneously for the same set name. If required, more
free table entries can occur than are specified with Format 1.

e You can repeat the statements and consequently complement and correct preceding
statements with the same format.
The last entry therefore applies for each set name.

304

U931-J-2125-17-76

BALTER Command sequence

6.11.5 Command sequence to start BALTER
Itis assumed for the command sequences described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The following commands are used under the identification in which the database is
cataloged to initiate the BALTER analysis and restructuring phases (you can also start the
program using the alias BALTER):

Analysis phase

01 /ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS—-BALTER

04 EXECUTION IS NO.

05 REPORT IS YES.

06 END.

U931-J-2125-17-76 305

Command sequence

BALTER

Restructuring phase

01
02

03

04
05
06
07

08

09

10

11

/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

[/CREATE-FILE FILE-NAME=work-file-1 ...

/ADD-FILE-LINK LINK-NAME=SCRTCHI,FILE-NAME=work—file—1

,ACCESS—METHOD=*UPAM]

[/CREATE-FILE FILE-NAME=work-file-2 ...

/ADD=FILE-LINK LINK-NAME=SORTWK,FILE-NAME=work-file-2
,ACCESS—-METHOD=*UPAM]

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

/START-UDS-BALTER
LSORTCORE IS nnn.]
LFILLING IS nnn PERCENT

[IN SET NAME IS {

LFILLING WITH POPULATION
[IN SET NAME IS {

EXECUTION IS YES.

|

REPORT IS {

END

YES
NO

setname, . ..

*ALL CEXCEPT setname, ...

setname, . ..

*ALL CEXCEPT setname, ...

}].]
]
}].]
]

306

U931-J-2125-17-76

BALTER

Messages

6.11.6 Description of BALTER messages

The messages which BALTER issues to SYSOUT enabile its activities to be monitored:

Message Meaning
*** ANALYSE-PHASE HAK Start message for analysis phase
*** REPORT-PHASE A Start message for REPORT phase with the

analysis report

%% EXECUTION-PHASE ***

Start message for restructuring phase

NO ERRORS DETECTED IN SCHEMA CHANGES

Self-explanatory

ERRORS DETECTED IN SCHEMA CHANGES

Self-explanatory

DATABASE ALTERED

Stored data adapted to schema changes

DATABASE NOT ALTERED

Stored data not adapted to schema changes

NUMBER OF DATABASE ACCESSES integer

Self-explanatory

NUMBER OF FILE ACCESSES integer

Self-explanatory

NUMBER OF SORT ACCESSES integer

Self-explanatory

Table 43: General BALTER messages

Action indicators

Message

Meaning

PRINTOUT OF THE USED TAB2-INDICES
TAB2—INDEX number FOR RECORD rec-name
PRINTOUT OF TAB3— & TAB4-INDICES FOR
MATCHING AND SINGULAR SETS
TAB3-INDEX number FOR SET set-name

TAB4—-INDEX number FOR SET set-name
KEY-REF keyref

The TAB-INDICES are used for
diagnostic purposes only.

They give information about
BALTER activities and changes
to record types, sets and keys.

Table 44: TAB-INDICES

U931-J-2125-17-76

307

BALTER

Restructuring messages

During the restructuring phase BALTER logs to SYSOUT all changes it makes to record

types, sets or keys:

Message

Meaning

REALM ADDED TO DATABASE: realm—name

Self-explanatory

RECORD DELETED FROM DATABASE: record-name

Self-explanatory

RECORD ADDED TO DATABASE: record—-name

Self-explanatory

RECORD MODIFICATION STARTED FOR:
REC NAME: record-name
REC REF : record-reference

Self-explanatory

SET REF : set-no
SET NAME: set-name

Modification/creation of set
set-name begun

CALCKEY TABLE

Modification/creation of CALC-key table
begun

SORTKEY TABLE, DBTT_COLUMN_NR: integer

Modification/creation of SORT key table
begun;
DBTT column no.: integer

SEARCHKEY TABLE, DBTT_COLUMN_NR: integer

Modification/creation of SEARCH key table
begun;
DBTT column no.: integer

TABLE FILLING IS 7nteger PERCENT

Occupancy level for specified table is
integer per cent; only shown if FILLING
(Format 1) has been specified

MINIMUM TABLE SIZE FROM POPULATION:
integer
ENTRIES

The table size was determined on the basis
of the POPULATION clause and the table
contains integer entries; appears only if
FILLING (Format 2) was specified

CALC SEARCHKEY TABLE

Creation of indirect hash area for CALC
SEARCH key begun

ALLOCATION OF LIST RECORDS STARTED

Self-explanatory

STORING DATABASE RECORDS

Self-explanatory

DELETION OF REALM: realm—name

Self-explanatory

Table 45: Restructuring messages

U931-J-2125-17-76

Restructuring the database Adapting access rights

6.12 Adapting access rights
The restructuring process has no effect on the access rights which have been entered in
the old database with the aid of the BPRIVACY utility routine.

These access rights must be adapted to the new schema, i.e. they must be completely
reentered.

If no user group names were assigned for access rights before restructuring took place, you
can dispense with this processing step.

U931-J-2125-17-76 309

Copying compatible subschemas Restructuring the database

6.13 Adapting subschemas

6.13.1

When the compiler database is being prepared for restructuring, one of BCHANGE's tasks
is to delete all the SSIAs in the DBDIR and all subschema information in the DBCOM. The
DDL compiler then readies the COSSD to accept new subschema information when
compiling the new Schema DDL. Consequently all the old subschema information is
deleted after the restructuring phase. No subschema information has as yet been entered
in the new COSSD.

Therefore, once BALTER has restructured the database, all subschemas must be
recompiled and a new SSIA must be generated for each and entered in the DBDIR.

Copying compatible subschemas

Often not all the subschemas will be affected by schema changes. BCHANGE therefore
copies the COSSD into the file COSSD.O at the beginning of restructuring so that all the
old subschema information is retained despite the restructuring activity. If copying of the old
subschemas is required, it is necessary to carry out a DDL compiler run to copy the old
subschemas after BALTER has successfully terminated the restructuring phase.

During this run for copying the subschemas, the DDL compiler reads all the old
subschemas from the file COSSD.O, recompiles them and then checks them for
compatibility with the new schema. It differentiates between three possible results:

— the old subschema description is incompatible with the new schema

— the old subschema is incompatible with the new schema because of logical and/or
physical changes in the schema, i.e. the execution of DML statements is affected

— the old subschema is unaffected by changes in the new schema.

In the first two cases the DDL compiler does not store subschema information in either the
DBCOM or the COSSD. Only in the third case, when a subschema is not affected by
schema changes, does the computer copy the subschema from the COSSD.O, recompile
it and enter the subschema information in the new DBCOM and in the new COSSD. For
every subschema copied a new SSIA must be generated using the BGSSIA utility routine
and entered in the DBDIR.

Please note that "compatibility" only means that the old subschema'’s view of the new
schema has remained the same as that of its view of the old schema. It does not mean, for
example, that when the "COPY [ALL] RECORD[S]" clause is used the view of the (upward-
compatible) changes in the new schema is retained in the new schema. If you want to do
this, you must recompile the subschema.

310

U931-J-2125-17-76

Restructuring the database Copying compatible subschemas

- DBDIR

SIA
SSIA
DDL compiler -
SYSDTA
Maintaining the ~ [¢—*| DBCOM
subschemas
(P \\\ N |
|
! !
i
|
D !
|
|
|
rTT >
1 ¥
|
One BGSSIA run |
per compatible ! BGSSIA <
subschema :
|
b '

Figure 31: System environment for copying subschemas

The compiler run for copying compatible subschemas is optional; if omitted, all subschemas
must be recompiled individually, and the corresponding SSIAs must be regenerated and
entered in the DBDIR.

U931-J-2125-17-76 311

Copying compatible subschemas Restructuring the database

Subschema compatibility and incompatibility

schema-name and PRIVACY LOCK FOR COPY.....
A change of schema name and of PRIVACY LOCK specifications has no effect on
copying the subschemas.
Such changes need only be taken into account when subsequent subschema
compilations are carried out.

PRIVACY LOCK FOR COMPILE
In the compiler run for copying the subschemas, the DDL compiler copies these
PRIVACY specifications from the old subschema description so that access locks
for the compilation of application programs are retained.

identifier
An old subschema is incompatible with the new schema if an identifier has been
added, deleted or renamed in the LOCATION MODE clause, the WITHIN clause
(record type level) or the SET OCCURRENCE SELECTION clause, and the
corresponding record type or set is present in the subschema.

Statements for copying subschemas

The DDL compiler requires the following statements to copy the subschemas:

Statement Default value | Meaning
COMPARE SUBSCHEMAS - Initiates copying of subschemas
YES YES Prints out subschema listing
[SORCLIST IS]
NO
YES NO Diagnoses incompatibilities of old subschemas with
[DIAGNOSTIC 0] the new schema and lists them in the form of error
O messages
END - Terminates entry of the statements

Table 46: Statements for copying subschemas

312 U931-J-2125-17-76

Restructuring the database Copying compatible subschemas

Command sequence for copying subschemas

The following commands initiate a DDL compiler run for copying subschemas (see section
“Compiling the Schema DDL” on page 66):

01 /ADD—-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version, SCOPE=*TASK
03 /START-UDS-DDL

04 COMPARE SUBSCHEMAS

YES
05 [DIAGNOSTIC]
NO

YES
06 [SORCLIST IS]
NO

07 END

An SSIA must then be generated for each subschema copied and entered in the DBDIR
(see section “Generating the Subschema Information Area (SSIA) with BGSSIA” on
page 94) using the following commands:

01 /ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS—BGSSIA

04 GENERATE SUBSCHEMA subschema—-name OF SCHEMA schema-name

05 [DISPLAYL SUBSCHEMA subschema—-name OF SCHEMA schema-name]l]

06 END

U931-J-2125-17-76 313

Adapting incompatible subschemas Restructuring the database

6.13.2 Adapting incompatible subschemas

For all subschemas which, in their original form, are not compatible with the new schema,

it is necessary to do the following:

— correct the subschema description if required

— recompile the corrected subschema with the DDL compiler

— generate a new SSIA using BGSSIA and enter it in the DBDIR

— recompile and relink all relevant application programs.

It is assumed for the command sequence described here that UDS/SQL was installed with

IMON (see section “START commands for the UDS/SQL programs” on page 47. The

aliases for calling the utility routines are also listed in this section).

Command sequence for adapting the subschemas

Compiling the corrected subschema (see section “Compiling the Schema DDL” on

page 66)

01 /ADD—-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK

03 /START-UDS-DDL

04 [DELETE 'subschema—name':'new schema—name']

05 SOURCE IS 'subschema—file'

06 SORCLIST IS YES

07 END

08 /ASSIGN-SYSDTA TO=*SYSCMD

02 The version-independent module of the linked-in DBH of the relevant version is
loaded dynamically (see the section entitled "Compiling, linking and loading
UDS/SQL-TIAM application programs" in the "Application Programming" manual).

03 The UDS/SQL utility routine can also be started using the alias DDL.

04 The DELETE statement should be specified only if a subschema recognized as
compatible and copied by the DDL compiler has been modified and requires
recompilation.

314 U931-J-2125-17-76

Restructuring the database Adapting incompatible subschemas

Generating the SSIA and entering it in the DBDIR

See section “Generating the Subschema Information Area (SSIA) with BGSSIA” on
page 94.

01 /ADD—-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS—BGSSIA

04 GENERATE SUBSCHEMA subschema—name OF SCHEMA schema—name

05 [DISPLAYL SUBSCHEMA subschema—name OF SCHEMA schema—-name]l]

06 END

U931-J-2125-17-76 315

Adapting DB applications Restructuring the database

6.14 Adapting DB applications

Once the subschemas and the access rights have been adapted to the restructured
database, all DB application programs that use an incompatible subschema must, if
necessary, be corrected in accordance with the new definitions. In any case, however, they
must be recompiled and relinked.

No DB application programs that use a compatible subschema need be recompiled or
relinked; this also applies to SQL application programs.

Note for UDS-D:

If necessary, modified subschema modules must be transferred to the remote application
program (see the "Database Operation” manual).

316 U931-J-2125-17-76

Restructuring the database Updating the PPPs

6.15 Updating the probable position pointers (PPP)

Pointers defined as probable position pointers (PPP) either in the old or in the new schema
are not in every case updated when data is relocated during restructuring.

When records are relocated completely or partially, the following applies:

e Pointers in tables or indirect hash areas to records are updated by BALTER only if the
tables or indirect hash areas have to be recreated as a result of schema modifications.

e Pointers within the records of a chain are not updated by BALTER.

e Pointers in member records to owner records are updated by BALTER when owner
records are relocated.

Pointers to records can be updated with the BREORG utility routine. You can use the
REORGANIZE-POINTERS statement to update all the probable position pointers
(PPP) in one realm in one go.

When recreating, deleting, relocating tables:
e Pointers in owner records to their tables are treated by BALTER as act-keys.
The pointers are implemented in all relevant cases as act-keys:

— When the table is recreated

— When existing empty tables are deleted

— When tables are relocated to another realm

— When empty single-level lists are relocated to another realm
— When the pointers are being newly added

If, after restructuring, probable position pointers (PPP) contain obsolete values, this may
result in changes in the runtime behavior of DB applications.

U931-J-2125-17-76 317

Restarting DB operation Restructuring the database

6.16 Measures for restarting DB operation

If the After Image Logging was deactivated before the restructuring cycle was started, it
wille result in a logging gap. After the restructuring cycle, the After Image Logging can be
activated again with the BMEND utility (see the "Recovery, Information and Reorganization"
manual, BMEND). Then a backup of the database has to be created again (see the
"Database Operation" manual, Saving and recovering a database in the event of errors)

You then can delete the DBCOM.O and COSSD.O files, as well as user realms which are
not present in the new schema.

318 U931-J-2125-17-76

Restructuring the database

Example

6.17 Example

The INSURE database shown in the following diagram is to be restructured as follows:
the realm TRANSPORT-RLM is to be added
the record type TRANSPORT-INSURANCE is to be relocated to the realm

TRANSPORT-RLM

the set CONTR-PROP with the owner record type CUSTOMER and the member record

type TRANSPORT-INSURANCE is to be added

the set CLAIMS-TRANSPORT with the owner record type TRANSPORT-INSURANCE
and the member record type DAMAGE-CLAIM is to be added

the record type CUSTOMER is to be modified

The diagram below shows the schema of the INSURE database after restructuring (see
Figure 3, page 28, for a diagram of INSURE before restructuring).

CONTR-PROP

v

PROPERTY-INSURANCE

v

CONTR-TRANSPORT

CUSTOMER
DAMAGES

CLAIMS-PROP

Realm: PROP-RLM

j

TRANSPORT-INSURANCE

y

Py

DAMAGE-CLAIM

Realm:INSURE-RLM

CLAIMS-TRANSPORT

Realm: TRANSPORT-RLM

Figure 32: SHIPPINGDB database after restructuring

U931-J-2125-17-76

319

Example Restructuring the database

DBDIR, DBCOM, COSSD, HASHLIB and the user realms needed are saved before
restructuring is performed (BEFRESTR). The entire database is saved after restructuring
(AFTRESTR).

You should check the consistency of the database using the utility routine BCHECK before
performing any save operation (see the “Recovery, Information and Reorganization”
manual).

This example is only intended to illustrate the restructuring process; therefore a simple
schema has been selected and the logs for Schema DDL, SSL etc. omitted.

Saving DBDIR, DBCOM, COSSD and HASHLIB

/COPY-FILE FROM—FILE=INSURE.DBDIR,TO-FILE=INSURE.DBDIR.BEFRESTR
/COPY-FILE FROM-FILE=INSURE.DBCOM,TO-FILE=INSURE.DBCOM.BEFRESTR
/COPY-FILE FROM-FILE=INSURE.COSSD,TO-FILE=INSURE.COSSD.BEFRESTR
/COPY-FILE FROM-FILE=INSURE.HASHLIB,TO-FILE=INSURE.HASHLIB.BEFRESTR

320 U931-J-2125-17-76

Restructuring the database Example

BCHANGE run and compiling new Schema DDL and SSL

The Schema DDL in this run still contains errors. The error involved is not detected until the
SSL is compiled.

/START-UDS—BCHANGE
Fkkxx START BCHANGE (ups/sqL v2.8 0000) 2015-06-28 11:47:27

**k%% THE FILE: :SQL2:$XXXXXXXX.INSURE.DBCOM IS COPIED TO:
+SQL2 : $XXXXXXXX . INSURE . DBCOM. 0

#kk% THE FILE: :SQL2:$XXXXXXXX.INSURE.COSSD IS COPIED TO:
:SQL2 : $XXXXXXXX. INSURE.COSSD. 0
1006 RESTRUCTURING SUCCESSFULLY INITIATED

***%% DIAGNOSTIC SUMMARY OF BCHANGE

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

***%% END OF DIAGNOSTIC SUMMARY
***x* NR OF DATABASE ACCESSES : 94
***x* NORMAL END BCHANGE (Ups/sqL v2.8 0000) 2015-06-28 11:47:27

/CREATE-FILE FILE-NAME=INSURE.DBSTAT
/CREATE-FILE FILE-NAME=INSURE.DBSTAT.SAVE

/START-UDS-DDL

kkk START DDLCOMP (uDs/sQL v2.8 0000) 2015-06-28 11:47:27

* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.DDL.NEW'

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:27/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:27/0YBG)

0YBG: UDS—PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

O0YBG: DEFAULT PUBSET: SQL2

0YBG:
DDLCOMP: START SCHEMA-PHASE
DDLCOMP: CHECK SCHEMA RULES
DDLCOMP: CHECK DATA ALLOCATION
DDLCOMP: SEMANTIC TEST

DDLCOMP: CYCLUS TESTS

DDLCOMP: ERROR DIAGNOSTIC

DDLCOMP: NO ERRORS IN SCHEMA-PHASE

L I A B I B

U931-J-2125-17-76

321

Example

Restructuring the database

* DDLCOMP: CREATE FILE COSSD
* DDLCOMP: NO ERRORS DETECTED
% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:27/0YBG)

O0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 651 1999 67 914 39

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *****xixxxi**65] DML-STATEMENTS 2015-06-28
(ILLY033,11:47:27/0YBG)

*****x DIAGNOSTIC SUMMARY FOR DDL-SCHEMA CUSTOMER-CARDS

NO ERRORS
-+ 9 WARNINGS

**xx*x END OF DIAGNOSTIC SUMMARY
***** NORMAL END DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:27

/START-UDS-SSL

FAokk START SSLCOMP (ups/sqQL - v2.8 0000) 2015-06-28 11:47:28

* SSLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.SSL.NEW'

END

* SSLCOMP: READ SSL—SCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)
% UDSO746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

0YBG: UDS—PUBSET—JV: :SQLZ2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG:
SSLCOMP: START SSL—PHASE

SSLCOMP: CHECK SSL RULES

SSLCOMP: SEMANTIC TEST

SSLCOMP: ERROR DIAGNOSTIC

* SSLCOMP: ERRORS DETECTED IN SSL—PHASE

SSLCOMP: ERRORS DETECTED

SSLCOMP: ALL SSL—OPTIONS ARE RESET

+++++ ERROR: 0012 UDS-DBH RETURNS WITH DATABASE-STATUS '04021'

% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

*

*

*

*

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 303 387 61 71 25

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ##soiriirrxxx303 DML-STATEMENTS 2015-06—28
(ILLY033,11:47:28/0YBG)

FAsokk DIAGNOSTIC SUMMARY FOR SSL — SCHEMA

- 2 ERRORS
NO WARNINGS

322

U931-J-2125-17-76

Restructuring the database Example

Fddk END OF DIAGNOSTIC SUMMARY
+++++ ABNORMAL END SSLCOMP (Ubs/sQL v2.8 0000) 2015-06-28 11:47:28

Compiling the corrected schema

Once you have corrected the Schema DDL according to the SSL-ERROR-DIAGNOSTIC,
you must delete the errored schema that has already been entered. Only then can you
compile the corrected Schema DDL and then the SSL.

/START-UDS-DDL

Ak START DDLCOMP (ups/sQL - v2.8 0000) 2015-06-28 11:47:28

* DDLCOMP: INPUT SYSTEMPARAMETERS

DELETE SCHEMA 'CUSTOMER-CARDS'

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)
% UDSO746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

0YBG: UDS—-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG:
* DDLCOMP: SCHEMA HAS BEEN ERASED

* DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

0YBG: DATABASE NAME DMLS ~ LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 6 1075 70 556 39

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ##ssdoikrxxxxxxg DML-STATEMENTS 2015-06-28
(ILLYO033,11:47:28/0YBG)
**xxx NORMAL END DDLCOMP (Ubs/sQL v2.8 0000) 2015-06-28 11:47:28

/START-UDS-DDL

Hkkk START DDLCOMP (ubs/sQL ve2.8 0000) 2015-06-28 11:47:28

* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.DDL.KORR'

DISPLAY IS YES

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)

% UDSO746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

0YBG: UDS—-PUBSET-JV: :SQL2Z:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG:

* DDLCOMP: START SCHEMA-PHASE

* DDLCOMP: CHECK SCHEMA RULES

* DDLCOMP: CHECK DATA ALLOCATION
DDLCOMP: SEMANTIC TEST
DDLCOMP: CYCLUS TESTS

U931-J-2125-17-76

323

Example

Restructuring the database

DDLCOMP: ERROR DIAGNOSTIC
DDLCOMP: NO ERRORS IN SCHEMA-PHASE
DDLCOMP: DISPLAY SCHEMA
* DDLCOMP: CREATE FILE COSSD
* DDLCOMP: NO ERRORS DETECTED
% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 751 2120 66 914 40

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ###kiirrxxx75] DML-STATEMENTS 2015-06-28
(ILLY033,11:47:28/0YBG)

**xxxk DIAGNOSTIC SUMMARY FOR DDL—SCHEMA CUSTOMER-CARDS

NO ERRORS
- 9 WARNINGS

**xx%k END OF DIAGNOSTIC SUMMARY
**xx% NORMAL END DDLCOMP (UbS/sQL v2.8 0000) 2015-06-28 11:47:28

/START-UDS-SSL

***xx START SSLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:28

* SSLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.SSL.NEW'

END

* SSLCOMP: READ SSL—SCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

OYBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

O0YBG: DEFAULT PUBSET: SQL2

0YBG:
SSLCOMP: START SSL-PHASE

SSLCOMP: CHECK SSL RULES

SSLCOMP: SEMANTIC TEST

SSLCOMP: ERROR DIAGNOSTIC

SSLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

* Ok F X Ok

OYBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 127 253 63 34 23

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ****dckxsik*]27 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:28/0YBG)

*****x DIAGNOSTIC SUMMARY FOR SSL — SCHEMA

NO ERRORS
NO WARNINGS

324

U931-J-2125-17-76

Restructuring the database Example

***x*x END OF DIAGNOSTIC SUMMARY
***x* NORMAL END SSLCOMP (Ups/sqL v2.8 0000) 2015-06-28 11:47:28
/DELETE-SYSTEM-FILE FILE-NAME=*OMF

/START-UDS—-BGSIA

***xx START BGSIA (Ups/sqL v2.8 0000) 2015-06-28 11:47:28
GENERATE SCHEMA CUSTOMER-CARDS

DISPLAY

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:28/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:28/0YBG)

OYBG: UDS—PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

OYBG: DEFAULT PUBSET: SQLZ2

0YBG:
ESTIMATE-REPORT

Fhkkkkkxxx FOR USER-REALM 3 NAME IS : PROP-RLM
A SIZE OF 24 BLOCKS WAS ESTIMATED

Fkkkkkkkx* FOR USER-REALM 4 NAME IS : INSURE-RLM
A SIZE OF 239 BLOCKS WAS ESTIMATED

Fhkkkkkkxx FOR USER-REALM 6 NAME IS : TRANSPORT-RLM
A SIZE OF 24 BLOCKS WAS ESTIMATED
END OF ESTIMATE-REPORT
% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:28/0YBG)

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 569 779 60 183 30

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *****xxxxi**569 DML—-STATEMENTS 2015-06—28
(ILLY033,11:47:28/0YBG)

***%% DIAGNOSTIC SUMMARY OF BGSIA

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

***%% END OF DIAGNOSTIC SUMMARY
***%* NORMAL END BGSIA (ubps/saL v2.8 0000) 2015-06-28

/MODIFY-JOB-SWITCHES ON=(4)

/START-LMS

//MODIFY-LOGGING-PARAMETERS LOG=*MAX

//0OPEN-LIBRARY LIB=INSURE.HASHLIB,MODE=*UPDATE

//ADD-ELEMENT FROM-FILE=*OMF,TO-ELEM=*LIB-ELEM(TYPE=R),WRITE-MODE=*ANY
INPUT OMF

OUTPUT LIBRARY= :SQL2:$XXXXXXXX.INSURE.HASHLIB

U931-J-2125-17-76

325

Example Restructuring the database

ADD UDSHASH AS (R)UDSHASH/@(0002)/2015-06-28 , OUTPUT REPLACED
//SHOW-ELEM-ATTR

INPUT LIBRARY= :SQL2:$XXXXXXXX.INSURE.HASHLIB

TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE

(R) ADMIN/# @ (0001) 2015-06-28 UDSHASH @ (0002) 2015-06-28
2 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS

//END

/MODIFY-JOB-SWITCHES OFF=(4)

326 U931-J-2125-17-76

Restructuring the database Example

Analysis phase with REPORT IS YES and EXECUTION IS NO

/START-UDS—BALTER

Fkkxx START BALTER (ups/sqL v2.8 0000) 2015-06-28 11:47:29
REPORT IS YES.

EXECUTION IS NO.

END.

*** ANALYSE-PHASE Fekk
*** DATE AND TIME 2015-06-28 11:47:29

+++++ WARNING: 1081 AREAS DELETED FROM RECORD-WITHIN-CLAUSE
RECORD: TRANSPORT—INSURANCE

IF RECORD OCCURRENCES ARE PRESENT IN AREAS

WHICH ARE DELETED FROM RECORD-WITHIN-CLAUSE

THE RESTRUCTURING PROCESS WILL END ABNORMALLY.

NO ERRORS DETECTED IN SCHEMA CHANGES

*** REPORT-PHASE Fekk
*** DATE AND TIME 2015-06-28 11:47:29

REALM NOT NEEDED: PROP-RLM
REALM NEEDED: INSURE-RLM

DATABASE NOT ALTERED

NUMBER OF FILE ACCESSES: 0

***%% DIAGNOSTIC SUMMARY OF BALTER

e 1 WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

***%% END OF DIAGNOSTIC SUMMARY
***%* NR OF DATABASE ACCESSES : 107
**%%%* NORMAL END BALTER (ubps/saL v2.8 0000) 2015-06-28 11:47:29

Since the database does not include a record of the record type TRANSPORT-
INSURANCE, the warning can be ignored and the database restructured.

Of the two user realms INSURE.PROP-RLM and INSURE.INSURE-RLM, only
INSURE.INSURE-RLM is needed for the restructuring process.

This realm is saved:

/COPY-=FILE FROM—FILE=INSURE.INSURE-RLM, TO-FILE=INSURE.INSURE-RLM.BEFRESTR

U931-J-2125-17-76 327

Example Restructuring the database

Restructuring phase

/CREATE-FILE FILE-NAME=INSURE.TRANSPORT-RLM,SUPPORT=*PUBLIC-DISK(—

/ PRIMARY-ALLOCATION=50,SECONDARY—ALLOCATION=0)

/START-UDS-BALTER

*xxkk START BALTER (ups/saL v2.8 0000) 2015-06-28 11:47:29
REPORT IS NO .

EXECUTION IS YES.

END.

***x ANALYSE-PHASE fiaed
*** DATE AND TIME 2015-06-28 11:47:29

+++++ WARNING: 1081 AREAS DELETED FROM RECORD-WITHIN-CLAUSE
RECORD: TRANSPORT-INSURANCE

IF RECORD OCCURRENCES ARE PRESENT IN AREAS

WHICH ARE DELETED FROM RECORD-WITHIN-CLAUSE

THE RESTRUCTURING PROCESS WILL END ABNORMALLY.

NO ERRORS DETECTED IN SCHEMA CHANGES

***x EXECUTION-PHASE ***
*** DATE AND TIME 2015-06-28 11:47:29

REALM ADDED TO DATABASE: TRANSPORT-RLM
*** DATE AND TIME 2015-06-28 11:47:29

MODIFICATION CONCERNING OWNER ATTRIBUTE STARTED FOR
REC NAME: TRANSPORT—INSURANCE

REC REF: 3

*** DATE AND TIME 2015-06-28 11:47:29

MODIFICATION CONCERNING OWNER ATTRIBUTE STARTED FOR
REC NAME: CUSTOMER

REC REF: 4

*** DATE AND TIME 2015-06-28 11:47:29

RECORD MODIFICATION STARTED FOR:

REC NAME: TRANSPORT-INSURANCE

REC REF: 3

*** DATE AND TIME 2015-06-28 11:47:29

RECORD MODIFICATION STARTED FOR:
REC NAME: CUSTOMER

328 U931-J-2125-17-76

Restructuring the database Example

REC REF: 4
**% DATE AND TIME 2015-06-28 11:47:29

RECORD MODIFICATION STARTED FOR:

REC NAME: DAMAGE-CLAIM

REC REF: 5

**% DATE AND TIME 2015-06-28 11:47:29

DATABASE ALTERED
***% DATE AND TIME 2015-06-28 11:47:29

NUMBER OF FILE ACCESSES: 0

***** DIAGNOSTIC SUMMARY OF BALTER

- 1 WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

*****x END OF DIAGNOSTIC SUMMARY
***** NR OF DATABASE ACCESSES : 225
**x*x* NORMAL END BALTER (Ups/sqL v2.8 0000) 2015-06-28 11:47:29

U931-J-2125-17-76 329

Example Restructuring the database

Entering new access rights

/START-UDS-BPRIVACY

*kkkx START BPRIVACY (UDS/sQL v2.8 0000) 2015-06-28 11:47:29

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:29/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:29/0YBG)

O0YBG: UDS—PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG:
% UDS0722 UDS ORDER ADD RLOG 150628094728 IN EXECUTION (ILL1283,11:47:29/0YBG)

% UDS0356 UDS EXECUTION OF ORDERS FOR INSURE TERMINATED (ILL1309,11:47:29/0YBG)
//ADD-USER-GROUP USER-GROUP-NAME=*FREE—FORMAT (HOST=D017ZEQ7 ,USER-ID=XXXXXXXX), —

// OBJECT=(*REALM(NAME=*ALL,RIGHT=ALL) ,*RECORD(NAME=*ALL,RIGHT=ALL) ,*SET (NAME=*ALL,RIGHT=ALL))

//END

% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:29/0YBG)
0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 11 115 57 36 23

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *****xikxxxxxx]] DML-STATEMENTS 2015-06-28
(ILLY033,11:47:29/0YBG)

x DIAGNOSTIC SUMMARY OF BPRIVACY

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

*xx** END OF DIAGNOSTIC SUMMARY
x NORMAL END BPRIVACY (UDs/saL v2.8 0000) 2015-06-28 11:47:29

Testing whether the subschema is compatible with the new schema

/START-UDS-DDL

***x*x START DDLCOMP (UDS/SQL V2.8 0000) 2015-06-28 11:47:29

* DDLCOMP: INPUT SYSTEMPARAMETERS

COMPARE SUBSCHEMAS

DIAGNOSTIC IS YES

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:29/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:29/0YBG)

OYBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

O0YBG: DEFAULT PUBSET: SQL2

0YBG:

DDLCOMP: READ SCHEMA/SUBSCHEMA 1
DDLCOMP: START SUBSCHEMA-PHASE
DDLCOMP: CHECK SUBSCHEMA RULES
DDLCOMP: CHECK DATA ALLOCATION

* ok * *

330 U931-J-2125-17-76

Restructuring the database Example

DDLCOMP: SUBCOPY

DDLCOMP: ERROR DIAGNOSTIC

DDLCOMP: ERRORS DETECTED IN SUBSCHEMA-PHASE

DDLCOMP: SUBSCHEMA HAS BEEN ERASED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:30/0YBG)

* %k % X

OYBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 832 2616 74 936 44

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ******xxxxx*%x832 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:30/0YBG)

***x* DIAGNOSTIC SUMMARY FOR DDL-SUBSCHEMA

- 1 ERRORS
- 9 WARNINGS

***x*x END OF DIAGNOSTIC SUMMARY
***x* NORMAL END DDLCOMP (Ups/sqL v2.8 0000) 2015-06-28 11:47:30

Modifying the subschema

Since the old Subschema DDL is not compatible with the new Schema DDL, the
Subschema DDL is corrected and then recompiled.

/START-UDS-DDL

xk% START DDLCOMP (ups/saL v2.8 0000) 2015-06-28 11:47:30

* DDLCOMP: INPUT SYSTEMPARAMETERS

SOURCE IS 'S.INSURE.SUBDDL.NEW'

END

* DDLCOMP: READ SCHEMA/SUBSCHEMA

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:30/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:30/0YBG)

0YBG: UDS—PUBSET-JV: :SQLZ2:$XXXXXXXX.PUBSDECL.DEFAULT

OYBG: DEFAULT PUBSET: SQL2

0YBG:
DDLCOMP: START SUBSCHEMA-PHASE

DDLCOMP: CHECK SUBSCHEMA RULES

DDLCOMP: CHECK DATA ALLOCATION

DDLCOMP: SUBCOPY

DDLCOMP: ERROR DIAGNOSTIC

DDLCOMP: NO ERRORS IN SUBSCHEMA-PHASE

DDLCOMP: WRITE SUBSCHEMA ON COSSD

DDLCOMP: NO ERRORS DETECTED

% UDS0758 NUMBER OF DML-STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:30/0YBG)

L B I N D B B

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
O0YBG: INSURE 1363 2581 76 631 49

U931-J-2125-17-76

331

Example

Restructuring the database

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH ******ixxx**x]363 DML-STATEMENTS 2015-06-28
(ILLY033,11:47:30/0YBG)

*****x DIAGNOSTIC SUMMARY FOR DDL-SUBSCHEMA

NO ERRORS
NO WARNINGS

**xx*x END OF DIAGNOSTIC SUMMARY

***** NORMAL END DDLCOMP (UDS/SQL v2.8 0000) 2015-06-28 11:47:30
/START-UDS-BGSSIA

Fxxkk START BGSSIA (UDs/saL v2.8 0000) 2015-06-28 11:47:30
GENERATE SUBSCHEMA MANAGEMENT OF SCHEMA CUSTOMER-CARDS

DISPLAY

END

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28 (ILL2038,11:47:30/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS (ILL1746,11:47:30/0YBG)

0YBG: UDS—PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.DEFAULT

0YBG: DEFAULT PUBSET: SQL2

0YBG:
**% SSIA GENERATION NORMALLY ENDED.

*GENERATION OF ITEM-TABLE AND NAME-TABLE STARTED.

*GENERATION OF ITEM-TABLE AND NAME-TABLE FINISHED.

% UDS0758 NUMBER OF DML—STATEMENTS AND I/0 COUNTERS PER DATABASE (ILL1758,11:47:30/0YBG)

0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE PHYS WRITE
0YBG:
0YBG: INSURE 781 1359 76 286 29

% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH *****xxxxxx*78] DML-STATEMENTS 2015-06-28
(ILLY033,11:47:30/0YBG)

*****x DIAGNOSTIC SUMMARY OF BGSSIA
NO WARNINGS
NO ERRORS

NO SYSTEM-ERRORS

**xx*x END OF DIAGNOSTIC SUMMARY
***** NORMAL END BGSSIA (UDS/SQL V2.8 0000) 2015-06-28 11:47:30

The restructuring of the database has now been completed.

Now, of course, the DB application programs have to be modified if they reference the
modified items and have to be recompiled and linked again due to the incompatibility
between the old and new subschemas.

332

U931-J-2125-17-76

Restructuring the database Example

Reorganizing the restructured database

To save memory space, the hash area for the record type CUSTOMER is reorganized, i.e.
moved back to the area that is now free at the front of the realm. This means that the size
of INSURE-RLM can be minimized.

/START-UDS—BREORG

Fkkxx START BREORG (ups/sqL v2.8 0000) 2015-06-28 11:47:30

//SPECIFY-SCHEMA SCHEMA-NAME=CUSTOMER-CARDS

//REORGANIZE-CALC RECORD-NAME=CUSTOMER,
CALC-RECORD=*WITHIN-POPULATION(REALM=INSURE-RLM, POPULATION=500) , CALC-SEARCHKEY=NONE

//END

****% BEGIN OF CALC-REORGANIZATION AT 11:47:31

***x*x RESULTS OF CALC—REORGANIZATION OF RECORD CUSTOMER

NEW CALC BEGIN : 4- 5
NEW NR OF PRIMARY BUCKETS : 59
NEW NR OF OVERFLOW BUCKETS: 0

****%% END OF CALC-REORGANIZATION AT 11:47:31

***x*x DIAGNOSTIC SUMMARY OF BREORG

NO WARNINGS
NO ERRORS
NO SYSTEM-ERRORS

***x*x END OF DIAGNOSTIC SUMMARY
***x* NR OF DATABASE ACCESSES : 66
***x* NORMAL END BREORG (Ups/sqL v2.8 0000) 2015-06-28 11:47:31

/START-UDS—BREORG

xk% START BREORG (ubps/saL v2.8 0000) 2015-06-28 11:47:31
//SPECIFY-SCHEMA SCHEMA-NAME=CUSTOMER-CARDS

//MODIFY-REALM-SIZE REALM-NAME=INSURE-RLM, REALM-SIZE=MINIMUM

//END

***%% BEGIN OF REALM-SIZE-MODIFICATION AT 11:47:32

**k%*% RESULTS OF FPA-REORGANIZATION OF AREA INSURE-RLM

NEW FPA FIRST PAGE : NOT CHANGED
NEW FPA LAST PAGE : NOT CHANGED
NEW FPA SIZE : NOT CHANGED
NEW NR OF PAGES : 80

***%%* END OF REALM-SIZE-MODIFICATION AT 11:47:32
***%% DIAGNOSTIC SUMMARY OF BREORG
NO WARNINGS

NO ERRORS
NO SYSTEM-ERRORS

U931-J-2125-17-76 333

Example

Restructuring the database

*xx*x* END OF DIAGNOSTIC SUMMARY
x NR OF DATABASE ACCESSES : 70
***** NORMAL END BREORG

(UDS/saQL v2.8 0000) 2015-06-28 11:47:32

Measures to be taken before resuming database operation

A shadow database with the suffix AFTRESTR is created. The data saved before
restructuring took place is deleted along with the files INSURE.DBCOM.O and
INSURE.COSSD.O.

/COPY-FILE
/COPY-FILE
/COPY=FILE
/COPY=FILE
/COPY-FILE
/COPY-FILE
/COPY-FILE

FROM-FILE=INSURE
FROM-FILE=INSURE
FROM-FILE=INSURE
FROM-FILE=INSURE
FROM-FILE=INSURE
FROM-FILE=INSURE
FROM-FILE=INSURE

.HASHLIB, TO-FILE=INSURE.HASHLIB.AFTRESTR

.COSSD , TO-FILE=INSURE.COSSD.AFTRESTR

.DBDIR ,TO-FILE=INSURE.DBDIR.AFTRESTR

.DBCOM , TO-FILE=INSURE.DBCOM.AFTRESTR

.PROP—RLM, TO-FILE=INSURE.PROP-RLM.AFTRESTR

. INSURE-RIM, TO—-FILE=INSURE. INSURE-RLM.AFTRESTR

. TRANSPORT-RLM, TO—FILE=INSURE. TRANSPORT—-RLM. AFTRESTR

/DELETE-FILE FILE-NAME=INSURE*BEFRESTR*

/DELETE-FILE FILE-NAME=INSURE.DBCOM.O
/DELETE-FILE FILE-NAME=INSURE.COSSD.O

334

U931-J-2125-17-76

7 Renaming database objects
(BRENAME, BALTER)

The renaming cycle of BRENAME/BALTER enables datenbase objects in existing data-
bases to be renamed. To do this, only the structure information of the DBDIR, DBCOM and
COSSD database files needs to be modified. When names of user realms are changed,
some structure information in the relevant realms is also changed.

However, the actual user data (records and tables in the user realms) are neither checked
nor changed in the renaming cycle. Consequently only changes which leave the physical
database structure unchanged are permitted in the renaming cycle.

As only structure information is modified, a renaming cycle can execute very
quickly.

i

The activities which are required during renaming are divided into three sections:
e preparatory measures
® renaming process

e follow-up activities.

Preparatory measures

In contrast to the restructuring, in a renaming cycle the After Image Logging may remain
activated. Only if the name of a realm is to be changed you have to deactivate the after-
image logging with the BMEND utility (see the "Recovery, Information and Reorganization"
manual, BMEND)

U931-J-2125-17-76 335

Renaming process Renaming database objects

Renaming process

This is a process that resembles the creation of a database:

BRENAME prepares the DBDIR to accept a new SIA

New DDL and SSL definitions are then compiled and the new SIA is entered in the
DBDIR

BALTER checks the renaming and updates the structure information

The following measures can be taken in a BRENAME/BALTER renaming cycle:

Changing item names in record types

Changing the types of items in record types

Subdivision of an existing item into multiple adjacent individual items
Conversion of an existing item into a vector

Conversion of one or more consecutive items into a repeating group

Grouping of multiple adjacent individual items into a new item

Conversion of a vector into a new individual item

Combination of a repeating group into one or more consecutive individual items
Changing of record names

Changing of set names

Changing of realm names

— In arenaming cycle between BRENAME and BALTER BMEND cannot be
executed.

i @

— The renaming cycle of BRENAME/BALTER cannot be combined with the
renaming cycle of BCHANGE/BALTER.

Names of SEARCH keys in the DDL/SSL source of the schema enable the declarations of
the SEARCH keys of the DDL and SSL compilers to be allocated unambiguously. As with
restructuring (BCHANGE/BALTER cycle), these names can be changed without the
schema or subschema description in the SIA or SSIA changing. Consequently such
changes in the renaming cycle are not taken account either in the analysis or in BALTER'’s
REPORT outputs.

336

U931-J-2125-17-76

Renaming database objects Renaming process

Preparatory measures START-ARCHIVE/COPY-FILE...

Save COSSD, DBDIR, DBCOM
and unnamed user realms

|
4

BRENAME
Prepare renaming

N T
DDL error DDL compiler
Compile modified schema DDL

DDL compiler —»l_ If no SSL compilation is

Delete schema SSL compiler processed the default

- " values for storage structure
SSL error ComplleI ITiOdlfled SSL are set
PE——

Restructuring process

DDL error BGSIA

Generate new SIA
and enter in DBDIR
|

BGSIA error v
BALTER

Analysis listing:
analyze modifications
|

v
DDL compiler

Follow-up activities

Transfer compatible subschemas

—
for each BGSSIA

compatible Generate and enter in the
subschema DBDIR the SSIA of
the compatible subschemas

Correct the incompatible
subschemas

—;1

DDL compiler All subschemas
are compatible

Compile

for each . corrected subschema
incompatible 1

subschema

BGSSIA
Generate SSIA and
enter in DBDIR

BPRIVACY
Update access rights

!

Adapt, compile and link
DB application program

Figure 33: Restructuring process

U931-J-2125-17-76 337

Renaming process Renaming database objects

Follow-up activities

The following activities must be performed after renaming:
— Adapting the subschemas to the changed schema
— Adapting DB application programs to the new schema

— If required, generating new SSITAB modules for CALL-DML programs using the
BCALLSI utility routine

— If required, updating access rights
— If required, adapting, compiling and linking application programs

— If required, copying changed database files and activating the After Image Logging
again with BMEND.

A logging gap occurs because of the renaming cycle (see the “Database Operation”
manual, Media recovery). After the renaming cycle you must therefore establish a
new basis for media recovery by copying the modified files together with the

unmodified files. You must then use BMEND to activate After Image Logging again.

i @

Changing stored data

The user data are not changed in a renaming cycle. If renaming entails semantic changes
to the user data, any necessary changes to the stored data must, for example, be executed
using special application programs. This can take place in normal database operation either
before or after the renaming cycle (see section “Adapting user data” on page 367).

338

U931-J-2125-17-76

Renaming database objects Modifying the Schema DDL

7.1 Modifying the Schema DDL

If you want to modify your Schema DDL, you must create a new or modified complete
schema definition and recompile this. The new names must be used at all places in the DDL
and SSL sources.

BALTER checks the renaming and updates the structure information.

To ensure that BGSIA recognizes renamed realms, record types and sets and leaves the
existing references unchanged, name changes which are to be made for realms, record
types and sets must be specified in full in additional statements.

The following modifications are possible in the Schema DDL:

Changing item names in record types
The names must be changed at all places (e.g. also in key definitions).

Changing types of items

The length in bytes of the data items may not be changed. Type changes from CHAR
and to CHAR are possible. In the case of conversion to NCHAR only half the characters
are stored in the new item. Type changes of variable items and of items in compressed
records are not permitted.

The user data in the database also remains physically unchanged in the event of a type
change. No check is made to see whether it is compatible with the new type. Type
changes therefore require special measures to adapt the user data stored in the user
realms (see “Adapting user data” on page 367).

When an item is changed to a numeric type, you may need to take necessary
alignments of the numeric type into account.

Splitting an existing item of the type CHAR into multiple items

The total length must be retained here. If the source item is used as a key item, it must
be retained as such by using the new items. The special features regarding the
modification of NCHAR and numeric types apply in accordance with the changes to the
type of an individual item. Splitting an item into multiple items requires special measures
to adapt the user data stored in the user realms (see “Adapting user data” on page 367).

Grouping existing adjacent items to form an item of the type CHAR

The total length must be retained here. Grouping is not possible if any of the individual
items concerned is used as a key item. The grouping of multiple items requires special
measures to adapt the user data stored in the user realms (see “Adapting user data” on
page 367).

Grouping a vector to form an item of the type CHAR

The total length must be retained here. The grouping of a vector requires special
measures to adapt the user data stored in the user realms (see “Adapting user data” on
page 367).

U931-J-2125-17-76

339

Modifying the Schema DDL Renaming database objects

— Converting an item of the type CHAR to a vector
The total length must be retained here. The generation of a vector requires special
measures to adapt the user data stored in the user realms (see “Adapting user data” on
page 367).

— Grouping a repeating group to form one or more items of the type CHAR
The total length must be retained here. The grouping of a repeating group requires
special measures to adapt the user data stored in the user realms (see “Adapting user
data” on page 367).

— Converting one item or multiple adjacent items of the type CHAR to a repeating group
The total length must be retained here. The generation of a repeating group requires
special measures to adapt the user data stored in the user realms (see “Adapting user
data” on page 367).

— Using any existing free bytes in front of an implicitly aligned numeric item
(FIXED BINARY) for new items on Level 0
In repeating groups FIXED BINARY items in the stored records are not aligned. There
are consequently no implicit free bytes in front of these items.

— Restructuring multiple existing items into multiple new items
Two RENAME/BALTER cycles must be executed to permit restructuring. First the
source items are grouped to form a CHAR item. In a second step this CHAR item can
be split in the new structure. This procedure can be used above all for grouping or
splitting NCHAR items.

— Renaming items of the type DBKEY or DBKEY-LONG
Items of the type DBKEY or DBKEY-LONG which are used with
LOCATION MODE DIRECT cannot be grouped with other items in a renaming cycle.

— Renaming record types
Renaming must be performed at all places in DDL and SSL.

— Renaming sets
Renaming must be performed at all places in DDL and SSL.

— Renaming realms
Renaming must be performed at all places in DDL and SSL. An old realm name may
not immediately be used in a renaming step as a new name for another realm. No file
with the new file name of the user realm may exist.

340 U931-J-2125-17-76

Renaming database objects Modifying the SSL

7.2 Modifying the SSL

All name changes in the Schema DDL must be transferred to the Schema SSL.

Even if you can continue to use your existing SSL unchanged, you must recompile it as
BGSIA otherwise uses the default values of the memory structure!

The following modifications to the memory structure are permitted:

Changing item names in record types
The names must be changed at all places (e.g. also in key definitions).

Renaming items of the type DBKEY or DBKEY-LONG
Items of the type DBKEY or DBKEY-LONG which are used with
LOCATION MODE DIRECT cannot be grouped with other items in a renaming cycle.

Renaming record types
Renaming must be performed at all places in DDL and SSL.

Renaming sets
Renaming must be performed at all places in DDL and SSL.

Renaming realms

Renaming must be performed at all places in DDL and SSL. An old realm name may
not immediately be used in a renaming step as a new name for another realm. No file
with the new file name of the user realm may exist .

U931-J-2125-17-76

341

Recovery measures Renaming database objects

7.3

7.31

7.3.2

Recovery measures and response to errors

Renaming generally only changes the compiler database. So the After Image logging may
remain activated.

Only when user realms are renamed do these also need to be saved as minor modifications
are made in the user realms in the renaming cycle.

Saving the database

If an error occurs during the renaming the database has to be reset to the state before the
renaming cycle was started. Therefore the following possibilities exist:

— Reading in a database backup and recovering the After Image Logging files up to the
last consistency point before the renaming

— Use of a backup which was created directly before the renaming cycle. Therein the
following files must be saved:
— dbname.COSSD
— dbname.DBDIR
— dbname.DBCOM
— user realms which are to be renamed.

For further information on saving a database, refer to the section "Saving and recovering a
database in the event of errors" in the "Database Operation" manual.

Restoring the database

If a program aborts processing with “ABNORMAL END” during the renaming process, you
must perform one of the following actions depending on the severity of the error and where
it occurred in the renaming cycle:

— re-execute the terminated program, or
— fall back on the backup created and repeat the renaming process

When it is necessary to fall back on a backup of the database and to repeat the renaming
process and when it is sufficient to repeat the aborted program is explained in the
descriptions of the various programs.

342

U931-J-2125-17-76

Renaming database objects

Responding to errors

The table below shows which programs modify files or realms of the database in the course

of renaming:.
D D D C C
B B B o o User
D Cc C S S realms
I (0] (0] S S which have
R M M D D to be
. . accessed
(o] (¢}
BRENAME RW | RW w R w -
DDL compiler RW RW - w - -
SSL compiler RW RW - w - -
BGSIA RW | RW - - - -
BALTER RW R R - - RW
(renaming phase)
DDL compiler RW RW - w R -
(subschemas)
BGSSIA RW R - - - -

Table 47: Access to files and realms of the database during renaming

R read access
W write access
- no access

The following options are available for restoring the database:

— You can convert the shadow database to an original database by renaming it with the
die MODIFY-FILE-ATTRIBUTES command.

— You canread in the ARCHIVE backup and then change the database name, if desired,
with the MODIFY-FILE-ATTRIBUTES command. If the ARCHIVE backup was created
on-line, you may have to mend it with the BMEND utility routine (see "BMEND" in the

“Recovery, Information and Reorganization" manual).

For further information on restoring a database, refer to the section "Saving and recovering
a database in the event of errors" in the "Database Operation" manual.

U931-J-2125-17-76

343

BRENAME

Renaming database objects

7.4 Initiating renaming using BRENAME

The task of BRENAME when renaming a database is comparable to that of BCREATE
when creating a database: BRENAME prepares the compiler database to incorporate the
new schema. Specifically, BRENAME performs the following preliminary work for renaming:

It saves the old SIA in the DBDIR and prepares the DBDIR for incorporating a new SIA
so that after the BGSIA run a new and an old SIA are present in the DBDIR for the
schema. BALTER needs both SIAs when the structure data is adapted to the new
schema to enable it to recognize the differences in the new schema compared to the
old schema.

Consequently you must ensure that enough free pages are available in the DBDIR or
that automatic realm extension is possible by means of secondary allocation > 0.

It deletes all user SSIAs in the DBDIR.
It saves the old DBCOM in the file dboname.DBCOM.O and reformats the DBCOM.

BALTER requires the schema information of the old and new DBCOM to check the
planned renaming.

It saves the old COSSD in the file dbname.COSSD.O.

After renaming the DDL compiler requires the old COSSD to transfer the compatible
subschemas. It is therefore advisable to keep the dbname.COSSD.O file available until
all subschemas have been recompiled.

344

U931-J-2125-17-76

Renaming database objects BRENAME

COSSD DBCOM
_

SYSDTA §
BRENAME
previous

[R\

il

SIA

v

DBCOM.O

Figure 34: System environment when preparing the compiler database

&
<

BRENAME automatically stores the copies of DBCOM and COSSD on public disks. It is not
necessary to issue a CREATE-FILE command to set up the two files (before BRENAME is
started) unless the copies are to be stored on private disks.

Depending on the size of the files it is, however, advisable to set them up using a CREATE-
FILE command with SPACE operand - even if they are to be stored on public disks (see
“Maximum size of UDS/SQL files” on page 41).

When required, BRENAME automatically extends the realms of the database being
processed. For details, please refer to the “Database Operation” manual, Automatic realm
extension by means of utility routines).

At startup BRENAME takes into account any assigned UDS/SQL pubset declaration (see
the “Database Operation” manual, Pubset declaration job variable). Faulty assignment
leads to the program aborting.

U931-J-2125-17-76 345

Command sequence Renaming database objects

Command sequence for starting BRENAME

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The BRENAME utility routine is started by the following commands in the identification
under which the database is cataloged:

01 [/CREATE-FILE FILE-NAME=dbname.DBCOM.0 ...1

02 [/CREATE-FILE FILE-NAME=dbname.COSSD.O ...]

03 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

04 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS—-SQL,VERSION=version,SCOPE=*TASK
05 /START-UDS—-BRENAME

06 END

01,02 See section “Setting up the compiler database” on page 57.

04 The specified version of BRENAME is selected.
It is generally recommended that you specify the version since it is possible for
several UDS/SQL versions to be installed in parallel.

05 The UDS/SQL utility routine can also be started with the alias BRENAME.
06 BRENAME is terminated.

The END statement is the only BRENAME statement.

i @

346 U931-J-2125-17-76

Renaming database objects Compiling the Schema DDL

7.5 Compiling the Schema DDL

If the compiler database has been prepared to accept a new schema with the aid of the
BRENAME utility routine, the next thing you must do is to compile your Schema DDL with
the new names using the DDL compiler.

The compilation procedure is the same as that used for database creation.

Once the Schema DDL has been compiled, the following are available:

— anold and a new DBCOM
— anold SIA in the DBDIR
— anold and a new COSSD.

Command sequence for compiling the current Schema DDL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47).

The commands listed here are described in detail in section “Compiling the Schema DDL”
on page 66.

01 /ADD—-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS-DDL

04 SOURCE IS 'schema-file'

05 END

06 /ASSIGN-SYSDTA TO=*SYSCMD

Itis essential that the DDL compiler should terminate compilation with the message
'NORMAL END’.

If the message '"ABNORMAL END’ is received, compilation must be repeated with
corrected DDL clauses.

i @

U931-J-2125-17-76 347

Compiling the SSL Renaming database objects

7.6 Compiling the SSL

The option is available to compile a new SSL using the SSL compiler once the Schema DDL
has been compiled.

If no SSL compilation is carried out, default values for the storage structure are used.
If you want to retain the storage structure which has already been defined, you must
recompile your original SSL clauses with new names which match the DDL source!

The compilation procedure is the same as that used for database creation.

Command sequence for compiling the SSL

It is assumed for the command sequence described here that UDS/SQL was installed with
IMON (see section “START commands for the UDS/SQL programs” on page 47. The
aliases for calling the utility routines are also listed in this section).

The commands listed here are described in detail in section “Compiling the SSL” on
page 76.

01 /ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR

02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS—-SQL,VERSION=version,SCOPE=*TASK
03 /START-UDS-SSL

04 SOURCE IS 'ssi-file'

05 END

06 /ASSIGN-SYSDTA TO=*SYSCMD

It is essential that the SSL compiler should terminate compilation with ’NORMAL
END’. If compilation ends with ’ABNORMAL END’, the following action should be
taken:

@

e for errors in the SSL clauses:

the faulty SSL clauses should be corrected and the SSL compilation should be
repeated;

e for errors in the DDL clauses:
— the faulty DDL clauses should be corrected

— the faulty schema should be deleted in a DDL run by means of the
statement DELETE SCHEMA schemaname

— the renaming process should be repeated from “Compiling the Schema
DDL”.

348

U931-J-2125-17-76

Renaming database objects Generating a new SIA

7.7 Generating a new SIA and entering it in the DBDIR with
BGSIA

Once the Schema DDL and the SSL (optional) have been successfully compiled, the SIA
of the new schema must be generated and entered in the DBDIR using the BGSIA utility
routine.

The saved SIA of the old schema remains in the DBDIR so that, after the BGSIA run,
DBDIR contains the SlAs of both the old and the new schemas. BALTER requires both to
check and execute the planned renaming.

The BGSIA run corresponds to the run carried out for the creation of the database (see
section “Setting up the Schema Information Area (SIA) with BGSIA” on page 79). After the
BGSIA run, the module UDSHASH generated by BGSIA must be stored in the HASHLIB.

To ensure that BGSIA recognizes realms, record types and sets which remain the same in
the renaming cycle despite the name change and leaves the existing references
unchanged, name changes for realms, record types and sets must be specified in full in
additional statements. The names in the DDL/SSL source are affected by this. The
additional statements of BGSIA do not change any names in these sources.

Dynamic sets can be renamed in precisely the same way. The names of the dynamic sets
required for using IQS are predefined and may not be changed. However, this is not
checked.

Implicit sets do not need to be specified explicitly. They are renamed automatically in
accordance with the renamed record type (SYS_recordname) as soon as a search key is
defined.

If you work with your own hash routines, you must also store these in the HASHLIB with the
attributes RMODE=ANY and AMODE=ANY at the latest before BALTER is started.

If, when the SIA is generated, it is recognized that not just purely renaming is involved, a
message is issued that the renaming cycle is being aborted because the references do not
match. This message can be used for correcting the source. A precise analysis only takes
place with BALTER. lllegal type changes and illegal splitting or grouping of items are
examples of changes which conflict with pure renaming.

U931-J-2125-17-76 349

Generating a new SIA Renaming database objects

Generating SIA and entering it in DBDIR

01
02
03
04
05
06
07

/ADD—FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname.DBDIR
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
/DELETE-SYSTEM—FILE FILE-NAME=*0OMF

/START-UDS-BGSTIA

GENERATE SCHEMA schema-name

[DISPLAYL SCHEMA schema-namel]

END

Entering the module UDSHASH in the HASHLIB

01
02
03
04

/START-LMS

//OPEN-LIB LIB=dbname.HASHLIB ,MODE=*UPDATE

//ADD—ELEMENT FROM—-FILE=*OMF, TO—-ELEMENT=*LIBRARY-ELEMENT(TYPE=R)
//END

350

U931-J-2125-17-76

Renaming database objects BALTER

7.8 Checking renaming and updating structure information
using BALTER

In the renaming cycle the BALTER utility routine checks solely whether the planned
modifications are really only restricted to renaming.

The only BALTER statement permitted (apart from the END statement) in the renaming
cycle is the REPORT statement. REPORT IS YES is set by default. All other BALTER
statements are rejected and result in the BALTER run being aborted.

If REPORT IS YES is set, after the analysis phase BALTER starts the REPORT phase in
which it outputs the analysis report to SYSLST (see section “Description of the analysis
report (REPORT phase)” on page 282). In the analysis report BALTER lists all the changes
which are made to record types, sets or keys during the renaming phase. The analysis
report also contains the analysis record concerning error messages and warnings relating
to illegal changes (see section “Description of BALTER messages” on page 307).

You should only use REPORT IS NO when it is certain that renaming can be performed
successfully. If this is not the case, it is more difficult to diagnose errors in the schema.

You can only run BALTER successfully if you have already generated the new SIA and
stored it in the DBDIR using BGSIA (see section “Generating a new SIA and entering it in
the DBDIR with BGSIA” on page 349). Otherwise the BALTER run terminates with the
message “BGSIA HAS NOT BEEN EXECUTED".

BALTER determines the differences between the old and the new schema descriptions
using the old and the new DBCOM or the old and the new SIA and checks whether only
renaming has taken place. If restructuring of the user data would be necessary because
database records (e.g. Set Connection Data) and tables (address lists, lists, SEARCH key
tables, etc.) are to be modified, the renaming cycle is aborted with an error message. If
required, you must then fall back on the status of the database before the renaming cycle.

Changes which do not involve modifications to database records or tables but which mean
that existing data cannot necessarily continue to be used without adaption are permitted but
a corresponding warning is issued. Such changes could be type changes or the

grouping and splitting of items (see also section “Adapting user data” on page 367).

U931-J-2125-17-76 351

BALTER Renaming database objects
7.8.1 Command sequence for starting BALTER
The command sequence described here requires that UDS/SQL was installed using IMON
(see section “START commands for the UDS/SQL programs” on page 47).
You can start BALTER using the command below under the ID in which the database is
cataloged (you can also start the program using the alias BALTER):
01 /START-UDS-BALTER
02 REPORT IS YES.
03 END.
7.8.2 Description of the BALTER check

BALTER checks the renaming in a predefined sequence.

BALTER begins by checking fundamental structures of the schemas ("SIA_CONTROL").
These include the internal numbers of realms, record types, sets and keys in the old and
the new schemas. It is not permissible that these numbers have changed.

The area declarations are then checked. Only renaming of user realms is permitted.

The declarations of the record types are subsequently checked. The renaming of items,
grouping of items and the splitting of items are checked here. A check is also made to see
whether the declarations of the CALC key match.

Finally the set declarations and consequently also the logically associated key declarations
are checked to see whether they match. Only sets may be renamed here.

The BALTER run finishes with any renaming of realms being implemented by recataloging
the realms concerned. This is the only case in which user realms need to be opened and
modified in a renaming cycle.

All renaming actions and actions for splitting and grouping items are documented in
REPORT IS YES. The number of realms, record types (records) and sets which are
unchanged is also output.

Modifications in the schema which conflict with pure renaming lead to error messages and
to the recycling cycle being aborted. An error can result in multiple error messages as it can
lead to related modifications at several places in the SIA. The analysis is not terminated
after the first error which is detected but only after multiple errors have occurred.

352

U931-J-2125-17-76

Renaming database objects lllegal schema modifications

7.9 lllegal schema modifications in the renaming cycle

To enable violations of the renaming rules to be corrected quickly, a current version of the
old schema should be created using the BPSIA utility routine before the renaming cycle
begins. In the renaming cycle you should also use the DISPLAY statement in the BGSIA
utility routine. In some cases BGSIA already recognizes that contradictory declarations are
contained in the new schema when renaming takes place.

In the renaming cycle the BALTER output concerning illegal differences between the old
and new schemas largely relates to the corresponding information in the output of BPSIA
and BGSIA. BALTER also outputs the differences in individual items in record types.

. When corrections are made, first of all the information relating to the record types
1 should be observed because messages about illegal modifications in
SIA_CONTROL, the sets and keys are very often due to illegal declarations in items
of the record types.

U931-J-2125-17-76 353

lllegal schema modifications

Renaming database objects

lllegal schema modifications are checked for in five phases.

In phase one BALTER checks SIA-CONTROL. Modifications in SIA-CONTROL always
indicate illegal modifications. The following illegal modifications can occur (message text:
DIFFERENCE IN sia-content):

Message (sia-content)

Meaning

NR_AREAS The highest realm number assigned (area reference) is different in the
old and new schemas.

NR_RECORDS The highest record type number assigned (REC-REF) is different in
the old and new schemas.

NR_SETS The highest set number assigned (SET-REF) is different in the old and
new schemas.

NR_KEYS The highest key number assigned (KEY-REF) is different in the old

and new schemas.

SCHEMA_NAME

The old and new schema names are not the same.

IMPL_RESULT_SET

There are differences in the IMPLICIT_RESULT_SET of the schema.

SINGULAR_SET

There are differences in the first SYSTEM set of the schema.

DYNAMIC_SET

There are differences in the first dynamic set of the schema.

MAX_REC_LENGTH

The length of the largest record type is different in the old and new
schemas.

MAX_ENTRY_LENGTH

The length of the longest key is different in the old and new schemas.

MAX_MEMBERSHIPS

The largest number of sets in which Member is a record type is
different in the old and new schemas.

MAX_SPLIT_PARAMETER

The maximum number of pages in the SSL which is defined in the
REORGANIZATION parameter is different.

LENGTH_KEY_BIT

The check information for the MODIFY information is different in the
old and new schemas.

BLOCK_LENGTH

The length of the database pages is different in the old and new
schemas.

U931-J-2125-17-76

Renaming database objects lllegal schema modifications

In phase two the individual areas are checked for illegal modifications. The following illegal
modifications can occur (message text: DIFFERENCE IN area-content):

Message (area-content) Meaning

AREA_REF The reference of the realm is different in the old and new schemas.

AREA_PROPERTIES The central properties of the realm are different in the old and new
schemas (TEMP, D/T).

NR_WITHIN_RECORDS The number of record types which can be stored in the realm is

different in the old and new schemas.

RECORD_LIST In the old and new schemas there are differences between the
references of the record types which can be stored in the realm.

The DIFFERENT USE OF AREA-REF message indicates that the assignment of this realm
reference is so different in the new and old schemas that a more detailed differentiated
analysis does not make sense.

The AREA RENAMING WITH ALOG message indicates that the renaming of areas is
allowed only if After Image Logging is deactivated. If the database is operated with After
Image Logging you must deactivate it before the renaming cycle is started.

U931-J-2125-17-76 355

lllegal schema modifications

Renaming database objects

In phase three the

— various record types are checked for illegal modifications.

— keys at record type level are checked for changes to the SIA data.

— key information which is only later stored in the SSIA is checked.

— renaming of items is checked.

The following illegal modifications can occur when the various record types are modified
(message text: DIFFERENCE IN record-content):

Message (record-content)

Meaning

REC_REF

The reference of the record type is different in the old and new
schemas.

LOCATION_MODE

There are differences with regard to the location of the DBKEY or
DBKEY-LONG item which is used for LOCATION MODE DIRECT.

REC_PROPERTIES

The central properties of the record type are different in the old and
new schemas.

IMPLICIT_SET

There are differences in the implicit set of the record type.

OWNER_CHAIN

There are differences in the first set in which the record type is Owner.

MEMBER_CHAIN

There are differences in the first set in which the record type is
Member.

RECORD_LENGTH

The length of the record is different in the old and new schemas.

SYSTEM_INFO

The length of the set connection data is different in the old and new
schemas.

PHYSICAL_CALC_INFO

The location of the CALC buckets is different in the old and new
schemas.

DBTT_ENTRY_LENGTH

The length of the DBTT entries is different in the old and new
schemas.

LOCATION_VIA

The type of location mode is different in the old and new schemas.

The DIFFERENT USE OF REC-REF message indicates that the assignment of this record
reference is so different in the new and old schemas that a more detailed differentiated
analysis does not make sense.

356

U931-J-2125-17-76

Renaming database objects

lllegal schema modifications

The following illegal modifications in the SIA data can occur when a key in a set is modified:

Message Meaning

(record-content)

KEY_LENGTH The key length is different in the old and new schemas.

HASH The reference to the hash routine is different in the old and new

schemas.

DBTT_COLUMN

The DBTT entry corresponding to the key is different in the old and
new schemas.

KEY_PROPERTIES

The properties of the key are different in the old and new schemas.

The following illegal modifications can occur in the key information which is only later
entered in the SSIA (message text: DIFFERENCE IN key-content):

Message (key-content)

Meaning

KEY_LTH

The key length is different in the old and new schemas.

DBTT_COL_NR

The DBTT entry corresponding to the key is different in the old and
new schemas.

INDEX_AREA_REF

The reference of the realm is different in the old and new schemas.

CALC_PROCEDURE_NAME

The name of the CALC routine is different in the old and new
schemas.

CALC_PROCEDURE_NR

The number of the CALC routine is different in the old and new
schemas.

KEY_BITS The properties of the key are different in the old and new schemas.

KEY_REF_NR The (internal) reference number is different in the old and new
schemas.

NR_BUCKETS The size of the CALC area is different in the old and new schemas.

USER_KEY_TYPE

The item type of the key is different in the old and new schemas.

KEY_INDICATOR

The properties of the key are different in the old and new schemas.

KEY_ITEM_DISPL

A key item has a different displacement in the old and new schemas.

KEY_ITEM_CONCAT

The grouping of key items in the new schema does not match the key
items in the old schema.

KEY_ITEM_SPLIT

The splitting of key items in the new schema does not match the item
fields in the old schema.

The DIFFERENT USE OF KEY-REF message indicates that the assignment of this key
reference is so different in the new and old schemas that a more detailed differentiated
analysis does not make sense.

U931-J-2125-17-76

357

lllegal schema modifications

Renaming database objects

The following illegal modifications can occur when items are renamed:

Message Meaning
ITEM BOUNDARIES Grouping or splitting items leads to overlapping.
UNSUITABLE

CONCATENATION TO NON
CHAR TYPE

Items were grouped but the grouped item in the new schema is not of
the type CHAR.

SPLIT OF
NON CHAR TYPE

An item is split but the item in the old schema is not of the type CHAR.

FORM GROUP FROM
NON CHAR TYPE

ltems were combined to form a group but not all items in the new
schema are of the type CHAR.

SPLIT GROUP TO
NON CHAR TYPE

A group was split into one or more items but not all items in the new
schema are of the type CHAR.

LENGTH DIFFERENCE
OF TYPE VARIABLE

The maximum length of a variable item at the end of the record type
was modified illegally.

LENGTH DIFFERENCE
OF LAST OLD ITEM

The length of the last item in the old schema indicates illegal
renaming.

LENGTH DIFFERENCE
OF LAST NEW ITEM

The length of the last item in the new schema indicates illegal
renaming.

DIFFERENCE IN
COMPRESSED RECORD

lllegal modifications have been made in a compressed record type.

DIFFERENCE IN
ITEM TYPE

Indicates an illegal type change in the item

TYPE CHANGE OF
NON CHAR TYPE

An illegal type change was detected.

VECTOR CHANGE OF
NON CHAR TYPE

An illegal type change was detected when a vector was changed.

358

U931-J-2125-17-76

Renaming database objects lllegal schema modifications

In phase four the
— various sets are checked for illegal modifications.

— keys at set level are checked for modifications in the SIA data. The same illegal
modifications can occur as in phase three (see page 357).

As the keys have no explicit names, corresponding internal numbers are output for
various keys or an unambiguous name is output for the key type in the case of
record types and sets. Differences in the keys for record types or sets result from
illegal modifications to the related data items from which the keys are formed. In
order to eradicate these differences, the renaming errors must be corrected.

i @

— key information which is only later stored in the SSIA is checked. The same keys with
the corresponding number are output as in the schema’s BPSIA report. The same
illegal modifications can occur as in phase three (see page 357).

U931-J-2125-17-76 359

lllegal schema modifications

Renaming database objects

The following illegal modifications can occur when the various sets are modified (message
text: DIFFERENCE IN set-content):

Message (set-content)

Meaning

SET_REF The reference of the set is different in the old and new schemas.
SET_PROPERTIES The properties of the set are different in the old and new schemas.
SET_MODE The set mode is different in the old and new schemas.

SET_ORDER The sort sequence is different in the old and new schemas.

OWNER_OF_SET

The owner reference is different in the old and new schemas.

MEMBER_OF_SET

The member reference is different in the old and new schemas.

OWNER_CHAIN

Owner chaining is different in the old and new schemas.

MEMBER_CHAIN

Member chaining is different in the old and new schemas.

SINGULAR_SET_CHAIN

Chaining of the SYSTEM set is different in the old and new schemas.

DYNAMIC_SET_CHAIN

Chaining of the dynamic sets is different in the old and new schemas.

KEY_CHAIN

Chaining of the set is different in the old and new schemas.

SET_MEMBERSHIP

The POPULATION / INCREASE clause is different in the old and new
schemas.

SET_CONNECTION

There are differences in the set connection data.

ANCHOR_DBKEY

The database key of the anchor of a singular set is different in the old
and new schemas.

The DIFFERENT USE OF SET-REF message indicates that the assignment of this set
reference is so different in the new and old schemas that a more detailed differentiated
analysis does not make sense.

In the fifth phase the physical order of all keys of the SIA which are connected to the record
types or sets is checked. The physical order of the keys must be unchanged as they are
assigned an implicit numbering which the database uses. lllegal modifications can occur
again here (see page 357).

U931-J-2125-17-76

Renaming database objects Copying compatible subschemas

7.10 Adapting subschemas

7.10.1

When it prepares the compiler database for renaming, one of BRENAME's tasks is to delete
all SSIAs in the DBDIR and all subschema information in the DBCOM; the DDL compiler
then readies the COSSD to accept new subschema information when the new Schema
DDL is compiled. Consequently all the old subschema information is deleted after the
renaming phase; no subschema information has as yet been entered in the new COSSD.

Therefore, after BALTER has renamed your database, all subschemas must be recompiled
and a new SSIA must be generated for each and entered in the DBDIR.

Copying compatible subschemas

Often not all subschemas are affected by modifications to the schema. Consequently
BRENAME copies the COSSD into the COSSD.O file when renaming begins, as a result of
which all old subschema information is retained despite the renaming activity. If you want
to copy these old subschemas, you must execute a DDL compiler run to copy the old
subschemas after BALTER has successfully completed the renaming phase.

During this run for copying the subschemas, the DDL compiler reads all the old
subschemas from the file COSSD.O, recompiles them and then checks them for
compatibility with the new schema. It differentiates between three possible results:

— the old subschema description is incompatible with the new schema

— the old subschema is incompatible with the new schema because of logical and/or
physical changes in the schema, i.e. the execution of DML statements is affected

— the old subschema is unaffected by changes in the new schema.

In the first two cases the DDL compiler does not store subschema information in either the
DBCOM or the COSSD. Only in the third case, when a subschema is not affected by
schema changes, does the computer copy the subschema from the COSSD.O, recompile
it and enter the subschema information in the new DBCOM and in the new COSSD. For
every subschema copied a new SSIA must be generated using the BGSSIA utility routine
and entered in the DBDIR.

Please note that "compatibility" only means that the old subschema'’s view of the new
schema has remained the same as its view of the old schema. It does not mean, for
example, that when the "COPY [ALL] RECORDI[S]" clause is used the view of the (upward-
compatible) changes in the new schema is retained in the new schema. If you want to do
this, you must recompile the subschema.

U931-J-2125-17-76 361

Copying compatible subschemas

Renamin