

FUJITSU Software BS2000 POSIX-SOCKETS

Version V10.0A

 October 2016

Readme

All rights reserved, including intellectual property rights.
Technical data subject to modifications and delivery subject to availability. Any liability that
the data and illustrations are complete, actual or correct is excluded. Designations may be
trademarks and/or copyrights of the respective manufacturer, the use of which by third parties
for their own purposes may infringe the rights of such owner.

© 2016 Fujitsu Technology Solutions GmbH

Fujitsu and the Fujitsu logo are trademarks or registered trademarks of Fujitsu Limited in Ja-
pan and other countries. BS2000 is a trademark of Fujitsu Technology Solutions GmbH in Ger-
many and other countries.

1 Introduction 3
2 Product Components and Installation 4

2.1 BS2000 Installation 4
2.2 Installation to the POSIX File System 4

3 Functions 6
3.1 Additional Functions 6
3.2 Multihoming 8
3.3 File Descriptor Transfer 8
3.4 Functional Dependencies to another Products 9
3.5 Omitted Functions 9

4 Restrictions 10
4.1 Using Sockets of Domain AF_UNIX 10
4.2 Coexistence of Sockets of Domains AF_INET and AF_INET6 10

Readme file POSIX-SOCKETS V10.0A Edition October 2016

Page 3

1 Introduction

This readme file contains the known changes to the following manual:

POSIX
SOCKETS/XTI for POSIX
Edition March 2005

Readme file POSIX-SOCKETS V10.0A Edition October 2016

Page 4

2 Product Components and Installation

2.1 BS2000 Installation

Following BS2000 files may be installed by IMON:

 MODE SHARE ACCESS MIGRATE

$<TSOS>.SYSLIB.POSIX-SOCKETS.100 COM Y R I

$<TSOS>.SKMLIB.POSIX-SOCKETS.100 X86 Y R I

$<TSOS>.SYSRME.POSIX-SOCKETS.100.D COM Y R I

$<TSOS>.SYSRME.POSIX-SOCKETS.100.E COM Y R I

$<TSOS>.SYSSII.POSIX-SOCKETS.100 COM Y R A

$<TSOS>.SYSLNK.POSIX-SOCKETS.100.PTH COM Y R I

$<TSOS>.SKULNK.POSIX-SOCKETS.100.PTH X86 Y R I

 SYSLIB.POSIX-SOCKETS.100 contains header files and modules in the /390
format for compilation and linking software by means of BS2000 and for the
installation of the Sockets library /usr/lib/libsocket.a to the POSIX file system.

 SKMLIB.POSIX-SOCKETS.100 contains header files and modules in the X86
format for compilation and linking software by means of BS2000 and for the
installation of the Sockets library /usr/lib/libsocket.a resp.
/usr/lib/X86/libsocket.a to the POSIX file system.

 SxxLNK.POSIX-SOCKETS.100.PTH contains the PThread variants of the
modules (as a LLM SOCKGM).
They will be loaded dynamically at run-time by certain POSIX-SOCKETS ap-
plications. These variants are not installed in the POSIX filesystem.

2.2 Installation to the POSIX File System

The installation to the POSIX file system has to be done using the POSIX installa-
tion program. (/START-POSIX-INSTALLATION, function Install Packages on
POSIX). See manual "POSIX Basics" for more details.

The installation to the POSIX file system requires about 7 MB of temporary disk
space in /tmp and about 7 MB of permanent disk space per each installed variant
in /usr/lib or /usr/lib/X86.

The installation will take some time.

If the installation should not have been executed correctly, the text file
/tmp/install.libsocket.err would contain notes on the error reasons.

Readme file POSIX-SOCKETS V10.0A Edition October 2016

Page 5

Installed Libraries:

If only the BS2000 file SYSLIB.POSIX-SOCKETS.100 is installed, only the library

/usr/lib/libsocket.a with the /390 code variant will be created in the

POSIX file system.

If several variants of the BS2000 libraries are installed, several variants of the
Sockets libraries will be created in the POSIX file system, too:

/usr/lib/libsocket.a with /390 format

/usr/lib/X86/libsocket.a with X86 format

In this case the linking with the X86 variant can be done by using the compiler op-
tion
-L /usr/lib/X86

Installed Files:

/usr/lib/libsocket.a

/usr/lib/libxnet.a

/usr/include/netdb.h

/usr/include/arpa/inet.h

/usr/include/arpa.inet.h

/usr/include/net/if.h

/usr/include/net.if.h

/usr/include/netinet/in.h

/usr/include/netinet.in.h

/usr/include/sys/byteorder.h

/usr/include/sys.byteorder.h

/usr/include/sys/netconfig.h

/usr/include/sys.netconfig.h

/usr/include/sys/socket.h

/usr/include/sys.socket.h

/usr/include/sys/sockio.h

/usr/include/sys.sockio.h

/usr/include/sys/un.h

/usr/include/sys.un.h

/usr/include/sys/xti_inet.h

/usr/include/sys.xti_inet.h

/usr/include/xti.h

Activation of multicast functions in netinet/in.h by:
#define IP_MULTICAST

Readme file POSIX-SOCKETS V10.0A Edition October 2016

Page 6

3 Functions

3.1 Additional Functions

In addition to the functions described in the manual the following functions
are supported, too:

bindresvport(int sd , struct sockaddr_in *sin)

rcmd(char **ahost , u_short rport , char *locuser ,

 char *remuser , char *cmd , int *fd2p)

rcmd_af(char **ahost , u_short rport , char *locuser ,

 char *remuser , char *cmd , int *fd2p , int af)

rexec(char **ahost , int rport , char *name , char *pass ,

 char *cmd , int *fd2p)

s_fcntl(int des , int cmd , int arg) /* same as fcntl() */

s_ioctl(int des , int cmd , int arg) /* same as ioctl() */

void s_set_uppernameatgethostbyname(int mode) /* bs2 special */

int t_rcvv(int, struct t_iovec *, unsigned int, int *)

int t_rcvreldata(int, struct t_discon *)

int t_rcvvudata(int, struct t_unitdata *, struct t_iovec *,

 unsigned int, int *)

int t_sndv(int, const struct t_iovec *, unsigned int, int)

int t_sndreldata(int, struct t_discon *)

int t_sndvudata(int, struct t_unitdata *, struct t_iovec *,

 unsigned int)

int t_sysconf(int)

The function getsockopt() supports following option not described in the

manual:

getsockopt(fd, SOL_SOCKET, SO_BS2ERROR, &optval, &optlen);

The variable 'optval' has to be a 'struct so_bs2error'. The function call

provides the internal error code (BCAM return code) and the corresponding 'errno'
of the last error that appeared for this socket. Different from

getsockopt(..., SO_ERROR, ...) that error code will not be reset after the

query.

Both, 'SO_BS2ERROR' and 'struct so_bs2error' are defined in

sys/socket.h.

The functions getsockopt() and setsockopt() support following options

not described in the manual:

getsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &optval, &optlen);

getsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, &optval, &optlen);

getsockopt(fd, IPPROTO_TCP, TCP_KEEPCNT, &optval, &optlen);

setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &optval, optlen);

setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, &optval, optlen);

setsockopt(fd, IPPROTO_TCP, TCP_KEEPCNT, &optval, optlen);

The type of the parameter 'optval' must be 'int *' in all cases. The options

modify the behavior if sending of control messages is enabled by the option
SOL_SOCKET/SO_KEEPALIVE.

Readme file POSIX-SOCKETS V10.0A Edition October 2016

Page 7

TCP_KEEPIDLE
This option defines the time (in seconds) the connection has to be idle before the
first control message is sent. Valid range: 120 to 32767 seconds.

TCP_KEEPINTVL
This option defines the interval (in seconds) after which the sending of control
messages is repeated. Valid range: 120 to 32767 seconds.
The transport system BCAM does not support different values for the options
TCP_KEEPIDLE and TCP_KEEPINTVL. It uses the lower one of the two values if
both are non-zero.

TCP_KEEPCNT
This option shall define the number of control message after which the connection
will be dropped. Valid range: 1 to 127.
Even though this option is supported by POSIX-SOCKETS, it has no influence on
the behavior of the transport systems BCAM.

The function ioctl() supports following option not described in the manual
(as of BCAM V23):

Request *arg Function
SIOCGIFHWADDR struct ifreq Get hardware address (MAC) of the inter-

face

SIOCGIFHWADDR

The hardware address (MAC) is returned in the ifr_hwaddr member for
the interface specified
with the ifr_name member.
Restriction: The hardware address is returned, which was valid at startup
of the POSIX subsystem.
Dynamic changes are not taken into account.

The restriction for IPv6 described for the function ioctl() with SIOCGLIFNETMASK
does no longer apply (as of BCAM V23):

SIOCGLIFNETMASK

The IPv4 subnetwork mask or the IPv6 prefix is returned in the lifr_addr
member for the interface specified with the lifr_name member.

Modifications of the network interface configuration

If dynamic modifications of the network interface configuration of the transport
system BCAM take place, i.e. adding or removing an interface or changing pa-
rameters of an interface, there is no longer a restart of the POSIX subsystem re-
quired to make these modifications effective for POSIX sockets.

Improvement of the close processing of connected sockets

The previous restrictions on the 'close()' for connected sockets have been re-
moved. A "true graceful disconnect" is now supported and the option
SO_LINGER with timeout > 0 no longer leads to delays in the 'close ()'.

Readme file POSIX-SOCKETS V10.0A Edition October 2016

Page 8

3.2 Multihoming

At hosts with multiple IP interfaces (IP addresses) POSIX-SOCKETS applications
are able to bind separate server sockets for each interface to the same port at a
time. Thus every server socket processes only those requests arriving via the in-
terface the socket was bound to.

Instead of that (but not at the same time) a server socket can process request to a

port arriving via any interface (INADDR_ANY).

Restriction:

At a time it is not possible to bind two sockets to one port processing requests in-

dependent on the interface one for IPv4 (INADDR_ANY) only and the other for

IPv6 (IN6ADDR_ANY) only.

3.3 File Descriptor Transfer

The functions sendmsg()/recvmsg() can be used to transmit/receive file de-

scriptors using either the msg_accrights array or a

SOL_SOCKET/SCM_RIGHTS control message.

Only socket file descriptors cat be transmitted/received.

For further details read the description in the "sys/socket.h" header file.

Readme file POSIX-SOCKETS V10.0A Edition October 2016

Page 9

3.4 Functional Dependencies to another Products

The functions gethostbyname() and gethostbyaddr() do support DNS

(Domain Name Service) if the DNS resolver of the product InternetServices is
running or the subsystem SOC6 of the product OpenNetServer is loaded.

The functions getipnodebyname() and getipnodebyaddr() do support DNS

for IPv4 and IPv6 addresses if the subsystem SOC6 is loaded.

3.5 Omitted Functions

The function gethostname() is no longer contained in POSIX-SOCKETS but

only in CRTE and CRTE-BASYS.

Readme file POSIX-SOCKETS V10.0A Edition October 2016

Page 10

4 Restrictions

4.1 Using Sockets of Domain AF_UNIX

The system wide limit is 500.

The adjustments and limits of the transport system BCAM are also valid for these
sockets.

4.2 Coexistence of Sockets of Domains AF_INET and AF_INET6

In general at one port sockets of the domains AF_INET and AF_INET6 can coex-
ist.

This does not apply if one socket is bound to the address

INADDR_ANY (0.0.0.0) and another socket is to be bound to the address

IN6ADDR_ANY (::0). The second bind() call would be rejected in this case with

EADDRINUSE.

Workaround:

The application can bind a socket to the IN6ADDR_ANY (::0) address which

processes request from both domains. Request from the AF_INET domain will be

delivered to that socket with IPv4-mapped addresses (::ffff:a.b.c.d).

	1 Introduction
	2 Product Components and Installation
	2.1 BS2000 Installation
	2.2 Installation to the POSIX File System

	3 Functions
	3.1 Additional Functions
	3.2 Multihoming
	3.3 File Descriptor Transfer
	3.4 Functional Dependencies to another Products
	3.5 Omitted Functions

	4 Restrictions
	4.1 Using Sockets of Domain AF_UNIX
	4.2 Coexistence of Sockets of Domains AF_INET and AF_INET6

