English

FUJITSU Software BS2000

CRYPT V2.0

Security with Cryptography

User Guide

Edition July 2017

O
FUJITSU

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN 1SO 9001:2008

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2008.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © 2017 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Contents

1.1
1.2
1.3
14
1.5

21

5.1
5.2
5.3
5.4

Introduction L e e e e e e 7
Objectives and target groups of thismanual 7
Security information L L e 7
Summaryofcontents e e 8
Changes since the last edition of themanual 9
Notational conventions 10
Encryption in BS2000/0SD e 1
PKCS#11standard it e it 1"
PKCS#11 functions and the corresponding interfaces in BS2000. 13
PKCS#11 mechanisms in CRYPT Services 17
PKCS#11 — implementationinBS2000 19
Mechanisms e e e e e e e 20
Generaldatatypes e e e e e 23
Objects e e e e e e e e e e e e e e e e e 23
Functions e e e e 24

U41238-J-2125-3-76

6.1
6.2
6.3
6.4

6.5
6.5.1
6.5.2

71
7.2

Description of the Assemblermacrocalls 27

Metasyntax formacros e e 28
Macro syntax for formatoperands 0oL, 30
Asynchronous execution e 32
Description of the macrocalls 34
CGENRAL —general functions 35
CGTSTMI —display information 38
CWTFSLE — waiting foraslotevent 42
CINITTK —initialize token 43
CPIN —initialize ormodify PIN 44
CSESION —session management 45
COPSTAT — display/set operationstate 48
CLOG —login/logout 50
COBJMGT —object management 51
CCRYINI — initialize cryptographic operation 56
CCRY —execute cryptographic operation. 58
CCRYFIN —finalize cryptographic operation 63
CGENKEY —generate secretkey 66
CGENKPR —generate key pair 68
CWRPKEY —wrapkey e 70
CUNWKEY —unwrap key e 72
CDRVKEY —derive key e 74
CRANDOM —generate randomnumbers 76
Sample programs L e e e e e e e e e e e e e e e e e e 78
Synchronous execution —example oo 78
Asynchronous execution —example Lo Lo 83
Description of the functionsinC 93
Notes about the description inPKCS#11 93
Sample program L L e 97

U41238-J-2125-3-76

8 Creating diagnosticdocuments 103

9 Returncodes e e e e e e e e e e e e e e 105
CPKC11T —generaldatatypes 106
CRYASC2 —subreturncode 2 109
GloSSary i i i e 113
Related publications e e 119
Index e 121

U41238-J-2125-3-76

U41238-J-2125-3-76

1 Introduction

CRYPT is a subsystem that provides cryptographic functions and interfaces in BS2000.

1.1 Objectives and target groups of this manual

This manual is designed for use by system administrators and users of the cryptographic
interface in BS2000.

To ensure cryptographically secure application programming it is assumed that the
programmer has knowledge of the cryptographic functions implemented.

1.2 Security information

é DISCLAIMER!

If you implement a security architecture within the framework of a project, you will
need to configure and use the selectable functions and mechanisms according to
your actual requirements.

Fujitsu Technology Solutions takes no responsibility for any incidents or damage
that may occur as a result of incorrectly used parameter values, or incorrectly
specified mechanisms or functions of the CRYPT interfaces.

U41238-J-2125-3-76

Summary of contents Introduction

1.3 Summary of contents

This manual describes the architecture of CRYPT and the cryptographic functions and
interfaces in BS2000.

It is based on the description of the “PKCS#11 V2.20: Cryptographic Token Interface
Standard” from RSA Laboratories dated December 1999. This standard is freely available
on the Internet under http://germany.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-
cryptographic-token-interface-standard. htm and will be required in order to correctly implement
the parameters. Additional references to chapters or sections of the PKCS#11 standard are
made throughout the manual as and when this additional information may prove useful.

The chapter “Description of the Assembler macro calls” on page 27 provides detailed
information about the Assembler macro calls using both syntax diagrams and detailed
operand descriptions. A programming example finishes off the chapter. The PKCS#11
standard provides additional detailed information.

The chapter “Description of the Assembler macro calls” on page 27chapter “Description of
the functions in C” on page 93 helps the user to find their way around and makes it easier
to locate the detailed descriptions in the PKCS#11 standard. This chapter provides an
overview of the functions of the standard that are implemented in C in the CRYPT interface
and cross-references the appropriate chapters or sections in the PKCS#11 standard.
Chapter 8 also contains a complete programming example.

The chapter “Creating diagnostic documents” on page 103 explains how diagnostic
documents are created.

The PKCS#11 standard is needed if you wish to use the C interface.

8 U41238-J-2125-3-76

Introduction

Changes since the last edition of the manual

1.4

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at Attp://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME .<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>command shows the
user ID under which the product’s files are stored.

Additional product information

Currentinformation, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

Changes since the last edition of the manual
This manual describes the functionality of CRYPT V2.0A. Compared to the previous edition
of this manual the following changes have been introduced:

No hardware is used any more to execute the CRYPT functions. The functions are
executed in BS2000 without configuration of the subsystem.

U41238-J-2125-3-76 9

Notational conventions

Introduction

1.5 Notational conventions

This manual uses the following notation conventions:

1
é CAUTION!

fixed pitch text

text in italics

is used to identify general notes

is used to identify security and warning notes

identifies programming text in examples

identifies names of cryptographic functions and operations
(in C), function parameters and files in descriptive text;
syntax variables

The conventions used to describe the Assembler macro calls are described in the sections
“Metasyntax for macros” on page 28 and “Macro syntax for format operands” on page 30.

References to places within this manual will specify the relevant page number and, if
necessary, also the section or chapter. References to topics that are described in other
manuals will give the short title of the appropriate manual. The complete title can be found
in the list of references at the back of this manual.

10

U41238-J-2125-3-76

2 Encryption in BS2000/0SD

2.1 PKCS#11 standard

RSA Laboratories, in conjunction with developers of security systems from industry,
educational establishments and governmental sectors, have developed specifications, the
aim of which is to speed the development of encryption and decryption technology using
public keys.

These specifications are known as the Public-Key Cryptography Standards, or PKCS for
short. Sections of this set of PKCS standards have since become components of many
formal and de-facto standards, for example, ANSI X9 documents, PKIX, SET, S/MIME and
SSL.

PKCS#11 is the Cryptographic Token Interface Standard. The CRYPT product is based on
Version 2.10 of PKCS#11. CRYPT also comprises functions, such as the AES support,
which are based on the newer version 2.11 of PKCS#11.

This de-facto standard specifies a program interface (API) to devices that save
cryptographic information and carry out cryptographic functions. The short form for the
Cryptographic Token Interface is Cryptoki.

The specification for the PKCS#11 standard can be found on the Internet under:

http://germany.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-
interface-standard.htm

U41238-J-2125-3-76 11

PKCS#11 standard Encryption in BS2000/0SD

12 U41238-J-2125-3-76

3 PKCS#11 functions and the corresponding
interfaces in BS2000

The table below provides a summary of which BS2000 interface the various PKCS#11
functions are assigned to.

Key to the table
e The C_ prefix in the PKCS#11 functions indicates a function.

e “no” in the “Functionality available” column:
The interfaces are, for the sake of portability, implemented in BS2000, the macro calls
have no function, however since, for this function, just an interface is provided without
any associated functionality, a call is answered with MAINCODE = LINKAGE_ERROR
and SUBCODE1 = FCT_NOT_AVAILABLE.

PKCS#11 function BS2000 interface Functionality available
(SVCI/ISL)

General-purpose functions

C_Initialize CGENRAL yes

C_Finalize CGENRAL yes

C_Getlinfo CGENRAL yes

C_GetFunctionList CGENRAL yes, via C interface

Slot and token management functions

C_GetSlotList CGTSTMI yes

C_GetSlotinfo CGTSTMI yes

C_GetTokenlInfo CGTSTMI yes

C_WaitForSlotEvent CWTFSLE no

C_GetMechanismList CGTSTMI yes

C_GetMechanisminfo CGTSTMI yes

C_InitToken CINITTK no

PKCS#11 functions and the corresponding interfaces in BS2000 (Part 1 of 4)

U41238-J-2125-3-76 13

PKCS#11 functions - BS2000 interfaces

PKCS#11 function

BS2000 interface

Functionality available

(SVCI/ISL)
C_InitPIN CPIN no
C_SetPIN CPIN no
Session management functions
C_OpenSession CSESION yes
C_CloseSession CSESION yes
C_CloseAllSessions CSESION yes
C_GetSessionInfo CSESION no
C_GetOperationState COPSTAT no
C_SetOperationState COPSTAT no
C_Login CLOG yes
C_Logout CLOG yes
Object management functions
C_CreateObject COBJMGT yes
C_CopyObject COBJMGT yes
C_DestroyObiject COBJMGT yes
C_GetObjectSize COBJMGT no
C_GetAttributeValue COBJMGT yes
C_SetAttributeValue COBJMGT yes
C_FindObjectslnit COBJMGT yes
C_FindObjects COBJMGT yes
C_FindObjectsFinal COBJMGT yes
Encryption functions
C_Encryptinit CCRYINI yes
C_Encrypt CCRY yes
C_EncryptUpdate CCRY yes
C_EncryptFinal CCRYFIN yes
Decryption functions
C_Decryptinit CCRYINI yes
C_Decrypt CCRY yes

PKCS#11 functions and the corresponding interfaces in BS2000

(Part 2 of 4)

14

U41238-J-2125-3-76

PKCS#11 functions - BS2000 interfaces

PKCS#11 function

BS2000 interface

Functionality available

(SVCI/ISL)
C_DecryptUpdate CCRY yes
C_DecryptFinal CCRYFIN yes
Message digesting functions
C_Digestlnit CCRYINI yes
C_Digest CCRY yes
C_DigestUpdate CCRY yes
C_DigestKey CCRYINI yes
C_DigestFinal CCRYFIN yes
Signing and MACing functions
C_Signlnit CCRYINI yes
C_Sign CCRY yes
C_SignUpdate CCRY yes
C_SignFinal CCRYFIN yes
C_SignRecoverlnit CCRYINI no
C_SignRecover CCRY no
Functions for verifying signatures and MACs
C_Verifylnit CCRYINI yes
C_Verify CCRY yes
C_VerifyUpdate CCRY yes
C_VerifyFinal CCRYFIN yes
C_VerifyRecoverlnit CCRYINI yes
C_VerifyRecover CCRY yes
Dual-function cryptographic functions
C_DigestEncryptUpdate CCRY no
C_DecryptDigestUpdate CCRY no
C_SignEncryptUpdate CCRY no
C_DecryptVerifyUpdate CCRY no
PKCS#11 functions and the corresponding interfaces in BS2000 (Part 3 of 4)
U41238-J-2125-3-76 15

PKCS#11 functions - BS2000 interfaces

PKCS#11 function

BS2000 interface

Functionality available

(SVCI/ISL)
Key management functions
C_GenerateKey CGENKEY yes
C_GenerateKeyPair CGENKPR yes
C_WrapKey CWRPKEY yes
C_UnwrapKey CUNWKEY yes
C_DeriveKey CDRVKEY yes
Random number generation functions
C_SeedRandom CRANDOM yes
C_GenerateRandom CRANDOM yes
Parallel function management functions
C_GetFunctionStatus - no
C_CancelFunction - no
Callback functions
Surrender callbacks - no
Vendor-defined callbacks - no

PKCS#11 functions and the corresponding interfaces in BS2000

(Part 4 of 4)

16

U41238-J-2125-3-76

4 PKCS#11 mechanisms in CRYPT Services

A mechanism is a process used to implement cryptographic operations.
The CRYPT subsystem covers the mechanisms of the PKCS#11 standard as listed below.

The explanations for the various mechanisms can be found in chapter “Glossary” on
page 113, and in chapter 12 “Mechanisms” of the PKCS#11 standard.
The prefix CKM__ in the standard stands for mechanism type.

Symmetric algorithms
e Block ciphers
— DES
— DES3
— SD2 (corresponds to RC2)
- AES
e Operating modes
- ECB
- CBC
- OFB
e Stream ciphers
— SD4 (corresponds to RC4)

e Generation of keys for the supported algorithms

Hash algorithms and integrity codes

MD2, MD5, SHA-1, RIPEMD160, HMAC-MD5, HMAC-SHA

U41238-J-2125-3-76 17

PKCS#11 mechanisms

Public key procedure

e Code/key exchange procedures
— RSA (PKCS#1)
— RSA (pure)
— Diffie-Hellman
e Signature procedures
— RSA (PKCS#1)
— RSA (pure)
- DSA

e Generation of keys for the supported algorithms

Random generators

Pseudo random generators DES OFB, DES3 OFB

18

U41238-J-2125-3-76

5 PKCS#11 — implementation in BS2000

This chapter describes all the features of the CRYPT interface in BS2000 that do not
correspond to the specifications of the PKCS#11 standard.

A range of different prefixes are used in the PKCS#11 standard. The table shown below lists
the prefixes used in this chapter and their meanings. You will also find a description of
additional prefixes in chapter 5 “Symbols and Abbreviations” of the PKCS#11 standard.

Prefix Meaning

C_ function

CKA_ attribute

CKM_ mechanism type
CKR_ return code

U41238-J-2125-3-76 19

Mechanisms PKCS#11 — implementation in BS2000/0SD

5.1 Mechanisms

A mechanism specifies how a particular cryptographic process is to be performed.

The table below shows which Cryptoki mechanisms are supported by which cryptographic
operations. It replaces the table at the beginning of chapter 12 “Mechanisms” of the
PKCS#11 V2.20 standard.

XX: The function(s) is/are supported.

X: Single-part operations are supported.
Wrap and unwrap are only possible on secret keys.

Functions
Mechanisms Encrypt | Sign & | Sign-/ | Digest | Generat | Wrap & | Derive
& Verify Verify- e Key/ | Unwrap
Decrypt Recover KeyPair
CKM_RSA_PKCS_KEY_PAIR_ XX
GEN
CKM_RSA_9796 X X X XX
CKM_RSA_PKCS X X X XX
CKM_RSA_X_509 X X X XX
CKM_MD2_RSA_PKCS XX
CKM_MD5_RSA_PKCS XX
CKM_SHA1_RSA_PKCS XX
CKM_RIPEMD160_RSA_PKCS XX
CKM_DSA_KEY_PAIR_GEN XX
CKM_DSA X
CKM_DSA_SHA1 XX
CKM_DH_PKCS_KEY_PAIR_GEN XX
CKM_DH_PKCS_DERIVE XX
CKM_RC2_KEY_GEN XX
CKM_RC2_ECB XX XX
CKM_RC2_CBC XX XX
CKM_RC2_CBC_PAD XX XX
CKM_RC2_MAC_GENERAL XX
CKM_RC2_MAC XX
Mechanisms and functions supporting these mechanisms (Part 1 of 3)

20 U41238-J-2125-3-76

PKCS#11 — implementation in BS2000/0SD

Mechanisms

Mechanisms

Functions

Encrypt

Decrypt

Sign &
Verify

Sign-/
Verify-
Recover

Digest

Generat Derive
e Key/

KeyPair

Wrap &
Unwrap

CKM_RC4_KEY_GEN

XX

CKM_RC4

XX

CKM_RC5_KEY_GEN

XX

CKM_RC5_ECB

XX

XX

CKM_RC5_CBC

XX

XX

CKM_RC5_CBC_PAD

XX

XX

CKM_RC5_MAC_GENERAL

XX

CKM_RC5_MAC

XX

CKM_DES_KEY_GEN

XX

CKM_DES_ECB

XX

XX

CKM_DES_CBC

XX

XX

CKM_DES_CBC_PAD

XX

XX

CKM_DES_MAC_GENERAL

XX

CKM_DES_MAC

XX

CKM_DES2_KEY_GEN

XX

CKM_DES3_KEY_GEN

XX

CKM_DES3_ECB

XX

XX

CKM_DES3_CBC

XX

XX

CKM_DES3_CBC_PAD

XX

XX

CKM_DES3_MAC_GENERAL

XX

CKM_DES3_MAC

XX

CKM_IDEA_KEY_GEN

XX

CKM_IDEA_ECB

XX

XX

CKM_IDEA_CBC

XX

XX

CKM_IDEA_CBC_PAD

XX

XX

CKM_IDEA_MAC_GENERAL

XX

CKM_IDEA_MAC

XX

CKM_MD?2

XX

CKM_MD2_HMAC_GENERAL

XX

CKM_MD2_HMAC

XX

Mechanisms and functions supporting these mechanisms

(Part 2 of 3)

U41238-J-2125-3-76

21

Mechanisms

PKCS#11 — implementation in BS2000/0SD

Mechanisms

Functions
Encrypt | Sign & | Sign-/ | Digest | Generat | Wrap & | Derive
& Verify Verify- e Key/ | Unwrap
Decrypt Recover KeyPair

CKM_MD5

XX

CKM_MD5_HMAC_GENERAL

XX

CKM_MD5_HMAC

XX

CKM_SHA 1

XX

CKM_SHA_1_HMAC_GENERAL

XX

CKM_SHA_1_HMAC

XX

CKM_RIPEMD128

XX

CKM_RIPEMD128_HMAC_
GENERAL

XX

CKM_RIPEMD128_HMAC

XX

CKM_RIPEMD160

XX

CKM_RIPEMD160_HMAC_
GENERAL

XX

CKM_RIPEMD160_HMAC

XX

CKM_AES_KEY_GEN

XX

CKM_AES_ECB

XX

XX

CKM_AES_CBC

XX

XX

CKM_AES_CBC_PAD

XX

XX

CKM_AES_MAC_GENERAL

XX

CKM_AES_MAC

XX

Mechanisms and functions supporting these mechanisms

(Part 3 of 3)

22

U41238-J-2125-3-76

PKCS#11 — implementation in BS2000/0SD Data types / Objects

5.2

5.3

General data types

slotld

In CRYPT V2.0 the Slotld is meaningless. The slotid needs not to be provided in the func-
tions that require a slotld

Objects

Attributes when generating objects

The application must ensure that the transferred templates are both correct and complete.
An incorrect or incomplete attribute template when generating an object is not always
recognized and expanded (see also PKCS#11 V2.20 standard: chapter 10).

This affects the following functions:
— C_CreateObject
C_CopyObject
C_GenerateKey
C_GenerateKeyPair
C_UnwrapKey

C_DeriveKey

The attributes CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_LOCAL, CKA_TOKEN

The notes in this section refer to section 10.4 “Storage objects” in the PKCS#11 V2.20
standard.

The persistent saving of keys and other objects is not supported. The attribute
CKA_TOKEN must, as a result, always be set to FALSE.

é CAUTION!

No continuous protection of secret data of an object.

The attributes CKA_SENSITIVE and CKA_EXTRACTABLE are capable of
preventing the secret data being read using C_GetAttributeValue or by exporting this
data using C_WrapKey. However, the flags that are set by this process are ignored
by other Cryptoki functions, thus allowing the protective function to be
circumvented.

The attribute CKA_LOCAL is also not always set correctly.

U41238-J-2125-3-76 23

Functions

PKCS#11 — implementation in BS2000/0SD

5.4 Functions

An operation is a series of several functions.

The notes in this section refer to chapter 11 “Functions” of the PKCS#11 V2.20 standard.

In BS2000 most functions from version 1.1 can be executed not just synchronously via
the BS2000 specific assembler interfaces, but also asynchronously.

You can fine more detailed information on this in section “Asynchronous execution” on
page 32.

The following general functions are not required in BS2000.

C_InitToken
C_Login
C_Logout

The maximum output data length for the functions, encryptFinal, decryptFinal,
digestFinal, signFinal, verifyFinal, wrapKey and generateRandom is 2048 bytes.

For certain functions you should not initially determine the size of the output area. This
has an adverse effect on performance. See section 11.2 “Conventions for functions
returning output in a variable-length buffer” of the PKCS#11 V2.20 standard.

All operations initiated using ...Init will not be terminated by follow-up calls that supply
the return code CKR_SESSION_HANDLE_INVALID or CKR_ARGUMENTS_BAD.
The return codes CKR_KEY_HANDLE_INVALID, CKR_MECHANISM_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID will not usually terminate the active operation
either. See the section 11.4 “General-purpose functions” of the PKCS#11 V2.20
standard.

The number of sessions that a user can open simultaneously is limited to 999. You can
set this limit to a lower value with the CRYPTO-SESSION-LIMIT operand of the ADD-
USER or MODIFY-USER-ATTRIBUTES command. Further information regarding this
command you will find in the “BS2000 OSD/BC Commands” user manual [2]

If this limit of parallel session is exceeded the return code session_count provided.

24

U41238-J-2125-3-76

PKCS#11 — implementation in BS2000/0SD Functions

C_lInitialize, C_Finalize:

e C_lnitialize:
In addition to the functionality described in the PKCS#11 standard, C_Initialize in
BS2000 controls whether the program works synchronously or asynchronously with
CRYPT:

If you select synchronous function execution, a C_lInitialize in BS2000 is not required.
plnitArgs must be a NULL_PTR.

e C Finalize:
C_Finalize has no effect in BS2000.

Compare section 11.4 “General-purpose functions” in the PKCS#11 V2.20 standard.

C_GetMechanisminfo:

In the mechanism information data of the mechanisms CKM_RSA_ PKCS and
CKM_RSA_ X 509, the flags for the operations Sign and Verify are not set. Despite this, the
corresponding operations are still supported.

See the section 11.5 “Slot and token management functions” of the PKCS#11 V2.20
standard.

C_CopyObject:

The flags CKA_SENSITIVE and CKA_EXTRACTABLE which are used to protect the
security-relevant data of a key from being read or from being extracted can be changed in
both directions.

See section 11.7 “Object management functions” of the PKCS#11 V2.20 standard.

C_SetAttributeValue:

é CAUTION!

No complete check of transferred values is carried out.

It is possible that inconsistent states may occur since it is possible to set incorrect
attribute values and to modify attributes which (according to the standard) may not
be modified.

The calling application must ensure that these states do not occur.

C_GenerateKeyPair:

In order to generate an RSA key it is not necessary to specify the attribute
CKA_PUBLIC_EXPONENT. See the section 11.14 “Key management functions” of the
PKCS#11 V2.20 standard.

U41238-J-2125-3-76 25

Functions

PKCS#11 — implementation in BS2000/0SD

C_Encrypt, C_Decrypt, C_Digest, C_Sign, C_Verify

The cryptographic single-part operations (C_Encrypt, C_Decrypt, C_Digest, C_Sign, C_Verify)
correspond to an update operation followed by a final operation.

As a result, you can terminate a sequence of C_EncryptUpdate calls using either

C EncryptFinal or C_Encrypt.

Single-part operation Corresponding update and final operations
C_Encrypt C_EncryptUpdate + C_EncryptFinal
C_Decrypt C_DecryptUpdate + C_DecryptFinal

C_Digest C_DigestUpdate + C_DigestFinal

C_Sign C_SignUpdate + C_SignFinal

C_Verify C_VerifyUpdate + C_VerifyFinal

The input data length of an update operation need not necessarily meet the criteria
described in chapter 12ff of the PKCS#11 V2.20 standard. These criteria only refer to the

overall length.

See sections 11.8 though 11.12 “Encryption / Decryption / Message digesting / Signing and
MACing functions and functions for verifying signatures and MACs” of the PKCS#11 V2.20

standard.

26

U41238-J-2125-3-76

6 Description of the Assembler macro calls

The introductory part of the chapter provides information about the following topics:

e Metasyntax for macros

e Macrosyntax for format operands

i @

You will also find detailed information in the “Executive Macros” user guide [3] about
the following:

Use of registers

Returned information and error messages (return codes) and their transfer in
the standard header

Standard header
Eventing

Contingency processes

After this introductory section, the individual macro calls are listed for the user along with
syntax diagrams and operand descriptions. You will also find a reference to the relevant
detailed descriptions in the PKCS#11 standard.

U41238-J-2125-3-76

27

Metasyntax for macros

Assembler macro calls

6.1 Metasyntax for macros

Kennzeichnung

Meaning

Example

UPPERCASE
LETTERS

Uppercase letters denote keywords or
constants which must be specified exactly as
shown.

Keywords begin with *.

ACTION=*INITIALIZE

lowercase letters

Lowercase letters denote the types of values
or variables for which current values must be
specified by the user, i.e. their value may be
different from case to case.

AUTKEY=<var: int:4>

The equals sign links an operand to the
associated operand value.

SLOTID =<var: int:4>

/ The slash separates simple alternative ACTION=
operand values. *OPENSESSION /
*CLOSESESSION
<> Angle brackets enclose the data type of the |<var: int:4>

operand.

underscored values

The underscore indicates the default value,
i.e. the value assumed by the system, if no
value is specified by the user.

Default values which contain the character
“ " are indicated with “default:” at the
beginning instead of the underscore.

TEMPL = <var: pointer>/
NULL

no specification implies
TEMPL=NULL

Metasyntax for macros

28

U41238-J-2125-3-76

Assembler macro calls

Metasyntax for macros

Data types of the operand values

Data type

Character set

Special features

integer

0..9,+,-

“+” or “-” may be specified only as the first character. The suffix
n..m specifies the permissible value range.

Example:

in syntax diagram: SESSION=<integer 0 .. 2147483647>
actual input: SESSION=5

var:

Starts a variable specification. The colon is followed by the data
type of the variable.

Example:

in syntax diagram: LEN=<var: int:4>

actual input: LEN=100

Data types of variables and register contents

integer (n)

An integer which occupies n bytes, where n<=4.
If the length specification is omitted, n=1 is assumed.

enum NAME(n)

A list which occupies n bytes, where n<=4.
If the length specification is omitted, n=1 is assumed.

pointer

Pointer (the address is passed).

U41238-J-2125-3-76

29

Macro syntax for format operands Assembler macro calls

6.2 Macro syntax for format operands

The macro operands may be subdivided into two groups:

Control operands Operands which determine the macro form and generation

Function operands Interface-specific operands

Control operands

MF
PREFIX
MACID
PARAM
XPAND

Macro forms

controls code generation (“macro form”)

controls name generation (first character)
controls name generation (2nd to 4th characters)
controls parameter area addressing

controls data structure expansion

The MF operand determines the macro form and can have any of the following values:
MF=C|D|L|E|M

MF =C

The layout of the data structure (usually the parameter area) is generated,
with names being specified for each individual field and equate. The data
structure becomes part of the current control section (CSECT/DSECT).

The function operands of the macro are not evaluated.
PREFIX

The PREFIX operand is used for name generation. PREFIX is one,
and only one, letter that is used as the first letter of all names. The
identifier of the functional unit of which the macro is a part is used
as the default PREFIX. In order to avoid the use of identical names,
PREFIX should be specified explicitly if the same data structure is
used more than once within a module.

MACID

The MACID operand is also used for name generation and defines
the 2nd to 4th characters of a name. The default value is formed by
two characters serving as the development group ID and one
character serving as a macro-specific identifier. The default value
guarantees that the same name will not occur twice within one
component group.

30

U41238-J-2125-3-76

Assembler macro calls

Macro syntax for format operands

MF =D
MF =L
MF = E
MF =M

as with MF = C;
in addition, a DSECT statement is generated. The MACID operand is
ignored, i.e. the default value is assumed.

generates a parameter area entity by evaluating the function operands. This
macro form generates no field names; the label specification is used for
naming the generated constants.

generates the instructions required for the function call. The function
operands are ignored. The PARAM control operand must be used to ensure
that the parameter area can be addressed correctly:

PARAM
PARAM=<address>
parameter area address, given as a name.
PARAM=(<reg>)

parameter area address, to be fetched from the register with the
name <reg>.

modifies a parameter area previously initialized by copying a MF=L form,
evaluating the specified function operands in the process. Any operands
that are not specified retain their original state.

The macro caller is responsible for ensuring the consistency of the
parameter area.

MF=M cannot be used unless the MF=D form or MF=C form was invoked
with the same values for the PREFIX and MACID operands and a USING
statement was issued to address the DSECT (MF=D form).

U41238-J-2125-3-76

31

Asynchronous execution Assembler macro calls

6.3 Asynchronous execution

In BS2000 most functions from version 1.1 up can be performed both synchronously and
asynchronously. This is thanks to the BS2000-specific interfaces.

Synchronous execution

In the case of synchronous execution, control is only restored to the program when the
function has been executed. This may entail some waiting, for example, whilst keys are
being generated. The advantage of synchronous execution is its simple operation.

Asynchronous execution

In the case of asynchronous execution, control is restored to the program before the
function has been fully executed. The program can therefore make use of waiting time.

Proceed as follows for asynchronous execution:

1.
2.

Define an event code using the ENAEI call.

If an interrupt routine is to be started when an event occurs, define this routine with the
ENACO call.

Using the call CGENRAL ACTION=*INITIALIZE, EXEC=*ASYNCHRON specify that
the task works asynchronously with CRYPT.

Specify the event code for CRYPT macro calls with the operand BOID=....
In addition, specify a postcode area (RPOSTAD=, RPOSTL=).

CRYPT uses the postcode1 which comprises the following:

ETC SC1] MC2] MC1 \

ETC Event Code Type
for CRYPT is 23’
The macro call CPKC11T contains a symbolic value for this.

SC1 Subcode1
corresponds to the value in the standard header
MC2 Maincode2

corresponds to the value in the standard header

32

U41238-J-2125-3-76

Assembler macro calls Asynchronous execution

You

MCA1 Maincode1
corresponds to the value in the standard header

The main code X’8000° — parameter area not accessible — can only appear in
postcode1: CRYPT could not access the parameter area at the time the function was
being performed.

Use postcode2, especially when using a contingency, for a relationship to the
corresponding function call (see section “Asynchronous execution — example” on
page 83).

Write access to the parameter area and any data areas specified there must be assured
until the end of function processing has been signalled.

The session will remain locked for other function calls until the end of the function
processing has been signalled.

CRYPT sends a signal for the event code as soon as execution is complete. The
program can request the processing signal using the SOLSIG call.

can find more details about eventing and the necessary macro calls in the “Executive

Macros” user guide [3].

U41238-J-2125-3-76

33

Description Assembler macro calls

6.4 Description of the macro calls

The individual macro calls are explained using syntax diagrams and operand descriptions.
For more information you will find a reference to the relevant detailed description in the
PKCS#11 standard for each macro call.

The C_ prefix for the PKCS#11 functions stands for function.

The following five macro calls have no function. They are not supported in CRYPT.

i The interfaces are however implemented for reasons of portability within BS2000.
e CWTFSLE
e CINITTK
e CPIN
e COPSTAT

34 U41238-J-2125-3-76

Assembler macro calls CGENRAL

CGENRAL - general functions

The CGENRAL macro covers all of the following general functions:
e initializing a Cryptoki library

e finalizing an application with the Cryptoki library

e outputting general information about Cryptoki

e outputting the function list of the Cryptoki library

All functions are always performed synchronously

A detailed description of the functions of the CGENRAL macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.4 “General-purpose

functions”.
Macro Operands
CGENRAL |MF= C/D/L/IM/E

,VERSION= 001/002
,ACTION= *INITIALIZE /
*FINALIZE /
*GETINFO /
*GETFUNCTIONLIST /
<var: enum-of _action_set: 1>/
default: _action_set.undefined
,EXEC= *SYNCHRONOUS /
*ASYNCHRONOUS /
<var: enum-of _exec_set:1>/
default: _exec_set.synchronous
,INFO= <var: pointer> / NULL
,BOID= <var:int:4>/0
,RPOSTAD= <var: pointer>/ NULL
,RPOSTL= <integer 1..2>/ <var: int:4>/0

U41238-J-2125-3-76 35

CGENRAL

Assembler macro calls

VERSION specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.
=001 This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.
=002 This generates the format that is supported as of CRYPT V1.1.
ACTION Type of action.
The corresponding PKCS#11 function is specified for each action code.
=*INITIALIZE corresponds to the PKCS#11 function C Initialize;
initializes the Cryptoki library.
=*FINALIZE corresponds to the PKCS#11 function C_Finalize;
indicates that an application has been executed with the Cryptoki
library.
=*GETINFO corresponds to the PKCS#11 function C_GetlInfo;
outputs general information about Cryptoki.
=*GETFUNCTIONLIST
corresponds to the PKCS#11 function C_GetFunctionList;
outputs the function list.
i This function is not supported.
EXEC specifies the execution mode of the following functions
=*SYNCHRONOUS
only restores control to the caller once the function has been executed.
=*ASYNCHRONOUS

restores control to the caller once the function has been sent to the
token.

36

U41238-J-2125-3-76

Assembler macro calls

CGENRAL

INFO

BOID

RPOSTAD

RPOSTL

Type of information output depending on the action:

*INITIALIZE: INFO points to an _INITIALIZE_ARGS structure
*FINALIZE: INFO should be set to NULL_PTR.

*GETINFO: INFO points tothe storage area which will receive the
information.

*GETFUNCTIONLIST: INFO points to a value which receives a
pointer to the FUNCTION_LIST structure of the library.

Event identification

in the case of synchronous execution: BOID is not used

in the case of asynchronous execution:

event identification which informs the program about the scheduling
of CRYPT.

Address of postcode

in the case of synchronous execution: RPOSTAD is not used.

in the case of asynchronous execution:

specifies a field containing the postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).

Length of postcode: 4 or 8 bytes

Length of postcode

in the case of synchronous execution: RPOSTL is not used.
in the case of asynchronous execution:
specifies the length of the postcode information in words (1 or 2).

U41238-J-2125-3-76

37

CGTSTMI

Assembler macro calls

CGTSTMI - display information

The CGTSTMI macros covers the following functions of slot and token management

outputting a list of the slots in the system

outputting information about a single slot in the system

outputting information about a single token in the system

outputting a list of types of mechanism that are supported by a token

outputting information about a single mechanism that is supported by a token

The C_GetMechanismList and C_GetMechanismInfo functions are performed
asynchronously if asynchronous function execution has been specified for the task with
C_Initialize.

The functions C_GetSlotList, C_GetSlotinfo and C_GetTokenlInfo are always executed
synchronously.

A detailed description of the functions of the CGTSTMI macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.5 “Slot and token
management functions” under “C_GetSlotList”, “C_GetSlotinfo”, “C_Get TokenInfo”,
“C_GetMechanismList”, “C_GetMechanisminfo”.

Macro Operands

CGTSTMI MF=

,VERSION=
,ACTION=

,TOKNPRS=
,SLOTID=
,TYPE=
,INFO=
,COUNT=
,BOID=
,RPOSTAD=
,RPOSTL=

C/D/L/M/E

001 /002
*GETSLOTLIST/
*GETSLOTINFO /
*GETTOKENINFO /
*GETMECHANISMLIST /
*GETMECHANISMINFO /

<var:

enum-of _action_set: 1>/

default: _action_set.undefined

<var:
<var:
<var:
<var:
<var:
<var:
<var:

int:1>/ *TRUE / *FALSE /0

int:4> / <integer 0 .. 2147483647>/ Q
int:4> / <integer 0 .. 2147483647>/ Q
pointer> / NULL

int:4> / <integer 0 .. 2147483647>/ Q
int:4>/0

pointer> / NULL

<integer 1..2>/ <var: int:4> /0

38

U41238-J-2125-3-76

Assembler macro calls

CGTSTMI

VERSION

=001

=002

ACTION

specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.

This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.

This generates the format that is supported as of CRYPT V1.1.

Type of action.
The corresponding PKCS#11 function is specified for each action code.

=*GETSLOTLIST

corresponds to the PKCS#11 function C_GetSlotList;
outputs the list of slots in the system.

=*GETSLOTINFO

corresponds to the PKCS#11 function C_GetSlotinfo;
outputs information about a single slot in the system

=*GETTOKENINFO

corresponds to the PKCS#11 function C_GetTokenInfo;
outputs information about a single token in the system

=*GETMECHANISMLIST

corresponds to the PKCS#11 function C_GetMechanismList,
outputs the list of types of mechanism that are supported by a token

=*GETMECHANISMINFO

TOKNPRS

=*TRUE
=*FALSE

SLOTID

TYPE

corresponds to the PKCS#11 function C_GetMechanismlInfo;
outputs information about a single mechanism that is supported by a
token.

Information about the current token;
is only relevant for the action *GETSLOTLIST.

A token must be available.

It is not relevant whether a token is available or not.

ID of the slot

Mechanism type: value from _mechanism_set (see also section
“CPKC11T — general data types” on page 106);
is only relevant for the action *GETMECHANISMINFO.

U41238-J-2125-3-76

39

CGTSTMI

Assembler macro calls

INFO

COUNT

BOID

The type of information output depends on the action:

*GETSLOTLIST: NULL_PTR or pointer to a memory location that
receives the slot list.

*GETSLOTINFO: INFO points to the memory location that receives
the slot information.

*GETTOKENINFO: INFO points to the memory location that
receives the token information.

*GETMECHANISMLIST: NULL_PTR or pointer to a memory
location that receives the mechanism list.
*GETMECHANISMINFO: INFO points to the memory location that
receives the information about the mechanism.

The memory size depends on the action:

*GETSLOTLIST:

INFO = NULL_PTR: Returns the number of slots;

INFO <> NULL_PTR: Must contain the size of the memory that
INFO is pointing to. The size of the memory corresponds to the
number of SLOT_ID elements.

*GETSLOTINFO: COUNT is not evaluated.
*GETTOKENINFO: COUNT is not evaluated.
*GETMECHANISMLIST:

INFO = NULL_PTR: Returns the number of slots;

INFO <> NULL_PTR: Must contain the size of the memory that
INFO is pointing to. The size of the memory corresponds to the
number of MECHANISM_TYPE elements.
*GETMECHANISMINFO: COUNT is not evaluated.

Event identification

in the case of synchronous execution: BOID is not used.

in the case of asynchronous execution:

event identification to which the end of function processing is
signalled.

40

U41238-J-2125-3-76

Assembler macro calls

CGTSTMI

RPOSTAD

RPOSTL

Postcode address

— in the case of synchronous execution: RPOSTAD is not used.

— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes

Length of postcode

— in the case of synchronous execution: RPOSTL is not used.

— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76

41

CWTFSLE

Assembler macro calls

CWTFSLE - waiting for a slot event

The CWTFSLE macro waits for a slot event.

i

This macro call has no function. The interface is implemented for reasons of
portability within BS2000.

A detailed description of the function of the CWTFSLE macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.5 “Slot and token
management functions” under “C_WaitForSlotEvent”.

Macro Operands
CWTFSLE |MF= C/D/L/IM/E
,DONTBLK= <var: bit:1>/ *TRUE / *FALSE
,SLOTID= <var: int:4> / <integer 0..2147483647> / Q
DONTBLK specifies whether the CWTFSLE call blocks or not, if, for example, the
macro is waiting for the arrival of a slot event.
SLOTID ID of the slot

42

U41238-J-2125-3-76

Assembler macro calls CINITTK

CINITTK - initialize token

The CINITTK macro initializes a token.

. This macro call has no function. The interface is implemented for reasons of
1 | portability within BS2000.

A detailed description of the function of the CINITTK macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.5 “Slot and token
management functions” under “C_InitToken”.

Macro Operands

CINITTK MF= C/D/L/M/E
,SLOTID= <var: int:4> / <integer 0..2147483647> / Q
,PIN= <var: pointer> / NULL
,PINLEN= <var: int:4> / <integer 0..2147483647> / Q
,LABEL= <var: pointer> / NULL

SLOTID ID of the slot

PIN points to the first PIN of the security officer (SO)

PINLEN Length of the PIN in bytes

LABEL 32-byte label of the token.

The label must be padded with spaces and may not end in a null.

U41238-J-2125-3-76 43

CPIN Assembler macro calls

CPIN - initialize or modify PIN

The CPIN macro initializes or modifies a PIN.

. This macro call has no function. The interface is implemented for reasons of
1 | portability within BS2000.

A detailed description of the functions of the CPIN macro can be found in PKCS#11 V2.20:
Cryptographic Token Interface Standard in section 11.5 “Slot and token management
functions” under “C_InitPIN” and “C_SetPIN".

Macro Operands
CPIN MF= C/D/L/M/E
LACTION= *INITPIN /

*SETPIN /

<var: enum-of _action_set: 1>/

default: _action_set.undefined
,SESSION= <var: int:4> / <integer 0..2147483647> / Q
,OLDPIN= <var: pointer> / NULL
,OLDPINL= <var: int:4> / <integer 0..2147483647> / Q
,NEWPIN= <var: pointer>/ NULL
,NEWPINL= <var: int:4> / <integer 0..2147483647> / Q

ACTION Type of action.
The corresponding PKCS#11 function is specified for each action code.

=*INITPIN corresponds to the PKCS#11 function C_InitPIN;
initializes a PIN.

=*SETPIN corresponds to the PKCS#11 function C_SetPIN;
modifies a PIN.

SESSION Session identifier
OLDPIN points to the old PIN;

is not used for the action *INITPIN.
OLDPINL Length of the old PIN in bytes;

is not used for the action *INITPIN.
NEWPIN points to the new PIN.
NEWPINL Length of the new PIN in bytes.

44 U41238-J-2125-3-76

Assembler macro calls CSESION

CSESION - session management

The CSESION macro covers the following session management functions

@ opening a session between an application and a token in a specified slot
e closing a session between an application and a token

e closing all sessions of an application with a token

e outputting information about a session

The functions C_OpenSession, C_CloseSession and C_CloseAllSessions are performed
asynchronously if asynchronous function execution was specified for the task with
C_lInitialize.

A detailed description of the functions of the CSESION macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.6 “Session management
functions” under “C_OpenSession”, “C_CloseSession”, “C_CloseAllSessions” and
“C_GetSessionInfo”.

Macro Operands

CSESION MF= C/D/L/IM/E

,VERSION= 001 /002

LACTION= *OPENSESSION /
*CLOSESESSION /
*CLOSEALLSESSIONS /
*GETSESSIONINFO /
<var: enum-of _action_set; 1>/
default: _action_set.undefined

,SESSION= <var: int:4>/ <integer 0..2147483647> / Q

,SLOTID= <var:int:4>/0

,RWSESS= <var: bit:1>/*NO / *YES

,SERIAL= <var: bit:1>/*NO / *YES

,INFO= <var: pointer> / NULL
,NOTIFY= <var: pointer> / NULL
,BOID= <var:int:4>/0

,RPOSTAD= <var: pointer>/ NULL
,RPOSTL= <integer 1..2>/ <var: int:4>/0
,GENKPR= <var: bit:1>/ *ALLOWED / *NOTALLOWED

U41238-J-2125-3-76 45

CSESION

Assembler macro calls

VERSION specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.
=001 This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.
=002 This generates the format which is supported as of CRYPT V1.1.
ACTION Type of action.
The corresponding PKCS#11 function is specified for each action code.
=*OPENSESSION

corresponds to the PKCS#11 function C_OpenSession;
opens a session between an application and a token in a specified slot

=*CLOSESESSION

corresponds to the PKCS#11 function C_CloseSession;
closes a session between an application and a token

=*CLOSEALLSESSIONS

corresponds to the PKCS#11 function C_CloseAllSessions;
closes all sessions between an application and a token

=*GETSESSIONINFO

1
SESSION

SLOTID

RWSESS
=*NO
=*YES

SERIAL

corresponds to the PKCS#11 function C_GetSessionlnfo;
outputs information about a session.

« | This function is not supported.

Session identifier

ID of the slot

indicates Read/Write and Read-only sessions.
Read-only session

Read/Write session

Serial session

— *OPENSESSION: SERIAL should always be set to *YES.

— *GETSESSIONINFO / *CLOSESESSION /
*CLOSEALLSESSIONS: SERIAL is not used.

46

U41238-J-2125-3-76

Assembler macro calls

CSESION

INFO

NOTIFY

BOID

RPOSTAD

RPOSTL

GENKPR

The type of information depends on the action:

— *OPENSESSION: INFO is a pointer defined in the application which
is passed to the notification callback function;
is not supported.

— *GETSESSIONINFO: INFO points to the memory location that
receives the session information.

— *CLOSESESSION / *CLOSEALLSESSIONS: INFO is not used.

Callback function

— *OPENSESSION: Address of the notification callback function;
is not supported

— *CLOSESESSION / *CLOSEALLSESSIONS /
*GETSESSIONINFO: The callback function is not used.

Event identification

— in the case of synchronous execution: BOID is not used.

— in the case of asynchronous execution:
event identification to which the end of the function processing is
signalled.

Postcode address

— in the case of synchronous execution: RPOSTAD is not used.

— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes

Length of postcode

— in the case of synchronous execution: RPOSTL is not used.

— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

This operand has no function.

U41238-J-2125-3-76

47

COPSTAT Assembler macro calls

COPSTAT - display/set operation state

The COPSTAT macro covers the following session management functions
e outputting a copy of the state of the cryptographic operations of a session

e restoring the state of the cryptographic operations of a session

This macro call has no function. The interface is implemented for reasons of
portability within BS2000.

i @

A detailed description of the functions of the COPSTAT macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.6 “Session management
functions” under “C_GetOperationState” and “C_SetOperationState”.

Macro Operands
COPSTAT MF= C/D/L/M/E
LACTION= *GETOPERATIONSTATE /

*SETOPERATIONSTATE /

<var: enum-of _action_set: 1>/

default: _action_set.undefined
,SESSION= <var: int:4> / <integer 0..2147483647> / Q
,STATE= <var: pointer> / NULL
,STATEL= <var: int:4> / <integer 0..2147483647> / Q
,CRYKEY= <var: int:4> / <integer 0..2147483647> / Q
LAUTHKEY= <var: int:4> / <integer 0..2147483647> / Q

ACTION Type of action.
The corresponding PKCS#11 function is specified for each action code.
=*GETOPERATIONSTATE

corresponds to the PKCS#11 function C_GetOperationState;
outputs a copy of the state of the cryptographic operations of a session

=*SETOPERATIONSTATE
corresponds to the PKCS#11 function C_SetOperationState;
restores the state of the cryptographic operations of a session

SESSION Session identifier

48 U41238-J-2125-3-76

Assembler macro calls

COPSTAT

STATE

STATEL

CRYKEY

AUTHKEY

State of the cryptographic operation:

— *GETOPERATIONSTATE: Memory location that receives the state

— *SETOPERATIONSTATE: Memory location in which the stored
state is located

Length of the *...OPERATIONSTATE memory location

Encryption and decryption key, only in *“SETOPERATIONSTATE;
*GETOPERATIONSTATE: CRYKEY is not used.

signs/verifies the authentication key,
only with *SETOPERATINSTATE;
*GETOPERATIONSTATE: AUTHKEY is not used.

U41238-J-2125-3-76

49

CLOG

Assembler macro calls

CLOG - login/logout

The CLOG macro covers the following session management functions

e logging a user into a token

e logging a user out of a token

All functions are always performed synchronously.

A detailed description of the functions of the CLOG macro can be found in PKCS#11 V2.20:
Cryptographic Token Interface Standard in section 11.6 “Session management functions”

under “C_Login

”and “C_Logout”.

Macro

Operands

CLOG

MF= C/D/L/MI/E
LACTION= *LOGIN /

*LOGOUT /

<var: enum-of _action_set: 1>/

default: _action_set.undefined
,SESSION= <var: int:4> / <integer 0..2147483647> / Q
,PIN= <var: pointer> / NULL
,PINL= <var: int:4> / <integer 0..2147483647> / Q

ACTION

=*LOGIN

=*LOGOUT

SESSION

PIN

PINL

Type of action.
The corresponding PKCS#11 function is specified for each action code.

corresponds to the PKCS#11 function C_Login;
logs a user into a token.

corresponds to the PKCS#11 function C_Logout;
logs a user out of a token.

Session identifier

points to the PIN;
*LOGOUT: PIN is not used.

Length of the PIN in bytes;
*LOGOUT: PINL is not used.

50

U41238-J-2125-3-76

Assembler macro calls COBJMGT

COBJMGT - object management

The COBJMGT macro covers the following object management functions

e generating a new object

e copying an object

e deleting an object

e outputting the size of an object in bytes

e outputting the value of one or more attributes of an object

e modifying the value of one or more attributes of an object

e initializing a search for token and session objects that correspond to a template

e continuing a search for token and session objects that correspond to a template, where
additional object handles are output

e terminating a search for token and session objects

The functions C_FindObijectsInit and C_FindObjectsFinal are always performed
synchronously.

All other functions are performed asynchronously if asynchronous function execution has
been specified for the task with C_Initialize.

A detailed description of the functions of the COBJMGT macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.7 “Object management
functions”.

U41238-J-2125-3-76 51

COBJMGT

Assembler macro calls

Macro Operands
COBJMGT |MF= C/D/L/IM/E
,VERSION= 001 /002
LACTION= *CREATEOBJECT /
*COPYOBJECT /
*DESTROYOBJECT /
*GETOBJECTSIZE /
*GETATTRIBUTEVALUE /
*SETATTRIBUTEVALUE /
*FINDOBJECTSINIT /
*FINDOBJECTS /
*FINDOBJECTSFINAL /
<var: enum-of _action_set: 1>/
default: _action_set.undefined
,SESSION= <var: int:4>/ <integer 0 .. 2147483647>/ Q
,OBJECT= <var: int:4>/ <integer 0 .. 2147483647>/ Q
,TEMPLAT= <var: pointer>/ NULL
,COUNT= <var: int:4>/ <integer 0 .. 2147483647>/ Q
,OBJLIST= <var: pointer>/ NULL
,OBJSIZE= <var: int:4>/ <integer 0 .. 2147483647>/ Q
,MAXOBJ= <var: int:4>/ <integer 0 .. 2147483647>/ Q
,OBJCNT= <var: int:4>/ <integer 0 .. 2147483647>/ Q
,BOID= <var: int:4>/0
,RPOSTAD= <var: pointer>/ NULL
,RPOSTL= <integer 1..2>/ <var: int:4> /0
VERSION specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.
=001 This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.
=002 This generates the format which is supported as of CRYPT V1.1.

52

U41238-J-2125-3-76

Assembler macro calls COBJMGT

ACTION Type of action.

The corresponding PKCS#11 function is specified for each action code.

=*CREATEOBJECT
corresponds to the PKCS#11 function C_CreateObject;
creates a new object.

=*COPYOBJECT
corresponds to the PKCS#11 function C_CopyObject;
copies an object.

=*DESTROYOBJECT
corresponds to the PKCS#11 function C_DestroyObject;
deletes an object.

=*GETOBJECTSIZE
corresponds to the PKCS#11 function C_GerObjectSize;
outputs the size of an object in bytes.

i This function is not supported.
=*GETATTRIBUTEVALUE

corresponds to the PKCS#11 function C_GetAttributeValue;
outputs the value of one or more attributes of an object.

=*SETATTRIBUTEVALUE
corresponds to the PKCS#11 function C_SetAttributeValue;
modifies the value of one or more attributes of an object.

=*FINDOBJECTSINIT
corresponds to the PKCS#11 function C_FindObjectsinit;
initializes a search for token and session objects that correspond to a
template.

=*FINDOBJECTS
corresponds to the PKCS#11 function C_FindObjects;
continues a search for token and session objects that correspond to a
template, where additional object handles are output.

=*FINDOBJECTSFINAL

corresponds to the PKCS#11 function C_FindObjectsFinal,;
terminates a search for token and session objects.

SESSION Session identifier

U41238-J-2125-3-76

53

COBJMGT

Assembler macro calls

OBJECT

TEMPLAT

COUNT

OBJLIST

OBJSIZE

MAXOBJ

OBJCNT

Object handle

— *CREATEOBJECT: OBJECT receives the new object handle

— *COPYOBJECT, “DESTROYOBJECT, *GETOBJECTSIZE,
*GETATTRIBUTEVALUE,*SETATTRIBUTEVALUE:
The object handle

— *FINDOBJECTSINIT, *FINDOBJECTS, *FINDOBJECTSFINAL:
Object handle is not used

Object template

— *CREATEOBJECT, *COPYOBJECT: The template of the object

— *GETATTRIBUTEVALUE: TEMPLAT points to a template which
specifies which attribute values must be output and which receives
attribute values.

— *SETATTRIBUTEVALUE: TEMPLAT points to a template which
specifies which attribute values must be modified and specifies the
new values.

— *FINDOBJECTSINIT: TEMPLAT points to a search template which
specifies the attribute values that are to be matched.

— *DESTROYOBJECT, *GETOBJECTSIZE, *FINDOBJECTS,
*FINDOBJECTSFINAL: TEMPLAT is not used.

Number of attributes in the template
*DESTROYOBJECT, *GETOBJECTSIZE, *FINDOBJECTS,
*FINDOBJECTSFINAL: COUNT is not used.

points to the memory location which receives the list (array) of additional
object handles;
is only used by *FINDOBJECTS.

outputs the size of an object in bytes;
is only used by *GETOBJECTSIZE.

Maximum number of object handles that are returned.
is only used by *FINDOBJECTS.

receives the current number of object handles that are returned;
is only used by *FINDOBJECTS.

54

U41238-J-2125-3-76

Assembler macro calls

COBJMGT

BOID

RPOSTAD

RPOSTL

Event identification

— in the case of synchronous execution: BOID is not used.

— in the case of asynchronous execution:
event identification to which the end of the function processing is
signalled.

Postcode address

— in the case of synchronous execution: RPOSTAD is not used.

— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that outputs the SOLSIG
macro call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes

Length of postcode

— in the case of synchronous execution: RPOSTL is not used.

— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76

55

CCRYINI

Assembler macro calls

CCRYINI - initialize cryptographic operation

The CCRYINI macro covers the following functions

initializing an encryption operation
initializing a decryption operation
initializing a message-digesting operation

continuing a multiple-part message-digesting operation by integrating the value of the
secret key.

initializing a signature operation where the signature is an appendix of the data
initializing a signature operation where the data can be recovered from the signature
initializing a verification operation where the signature is an appendix of the data

initializing a signature verification operation where the data can be recovered from the
signature

All functions are always performed synchronously.

A detailed description of the functions of the CCRYINI macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in the sections 11.8 through 11.12 under
“C_EncryptInit”, “C_DecryptInit’, “C_DigestInit”, “C_DigestKey”, “C_SignlInit”,
“C_SignRecoverlnit”, “C_Verifylnit” and “C_VerifyRecoverlnit”.

Macro Operands

CCRYINI MF= C/D/L/M/E

LACTION= *ENCRYPTINIT /

*DECRYPTINIT /

*DIGESTINIT /

*DIGESTKEY /

*SIGNINIT /

*SIGNRECOVERINIT /

*VERIFYINIT /

*VERIFYRECOVERINIT /

<var: enum-of _action_set: 1>/

default: _action_set.undefined
,SESSION= <var: int:4>/ <integer 0..2147483647>/ Q
,MECHAN= <var: pointer>/ NULL
,KEY= <var: int:4> / <integer 0..2147483647> / Q

56

U41238-J-2125-3-76

Assembler macro calls CCRYINI

ACTION Type of action.

The corresponding PKCS#11 function is specified for each action code.

=*ENCRYPTINIT
corresponds to the PKCS#11 function C_Encryptinit,
initializes an encryption operation.

=*DECRYPTINIT
corresponds to the PKCS#11 function C_Decryptlnit;
initializes an decryption operation.

=*DIGESTINIT
corresponds to the PKCS#11 function C_DigestInit;
initializes a message-digesting operation.

=*DIGESTKEY
corresponds to the PKCS#11 function C_DigestKey;
continues a multiple-part message-digesting operation by integrating
the value of the secret key in data which has already been summarized.

=*SIGNINIT corresponds to the PKCS#11 function C_Signlinit,
initializes a signature operation where the signature is an appendix of
the data.

=*SIGNRECOVERINIT
corresponds to the PKCS#11 function C_SignRecoverlnit;
initializes a signature operation where the data can be recovered from
the signature.

. This function is not supported.

=*VERIFYINIT
corresponds to the PKCS#11 function C_Verifyinit,
initializes a verification operation where the signature is an appendix of
the data

=*VERIFYRECOVERINIT
corresponds to the PKCS#11 function C_VerifyRecoverlnit;
initializes a signature verification operation where the data can be
recovered from the signature.

SESSION Session identifier
MECHAN Mechanism
KEY Key handle

*DIGESTINIT: KEY is not used.

U41238-J-2125-3-76

57

CCRY

Assembler macro calls

CCRY - execute cryptographic operation

The CCRY macro covers the following functions

e encrypting a data package

e continuing a multiple-part encryption operation

e decrypting encrypted data in a single part

e continuing a multiple-part decryption operation

e digesting data in a single part

e continuing a multiple-part message-digesting operation

e signing data in a single part where the signature is an appendix of the data

e continuing a multiple-part signature operation where the signature is an appendix of the
data

e signing data in a single operation where the data can be recovered from the signature

e verifying a signature in a single-part operation where the signature is an appendix of the
data

e continuing a verification operation where the signature is an appendix of the data

e verifying a signature in a single-part operation where the data can be recovered from
the signature

e continuing a multiple-part digesting and encryption operation
e continuing a multiple-part decryption and digesting operation
e continuing a multiple-part signature and encryption operation
e continuing a multiple-part decryption and verification operation

All functions are always performed asynchronously if asynchronous function execution was
specified for the task with C_Initialize.

A detailed description of the functions of the CCRY macro can be found in PKCS#11 V2.20:
Cryptographic Token Interface Standard in the sections 11.8 through 11.13 under

“C_Encrypt”, “C_EncryptUpdate”, “C_Decrypt”, “C_DecryptUpdate”, “C_Digest”,
“C_DigestUpdate”, “C_DigestKey”, “C_Sign”, “C_SignUpdate”, “C_SignRecover”,
“C_Verify”, “C_VerifyUpdate”, “C_VerifyRecover”, “C_DigestEncryptUpdate”,

“C_DecryptDigestUpdate”, “C_SignEncryptUpdate” and “C_DecryptVerifyUpdate”.

58

U41238-J-2125-3-76

Assembler macro calls

CCRY

Macro Operands
CCRY MF= C/D/L/M/E
,VERSION= 001/002
,ACTION= *ENCRYPT /
*ENCRYPTUPDATE /
*DECRYPT /
*DECRYPTUPDATE /
*DIGEST /
*DIGESTUPDATE /
*SIGN /
*SIGNUPDATE /
*SIGNRECOVER /
*VERIFY /
*VERIFYUPDATE /
*VERIFYRECOVER /
*DIGESTENCRYPTUPDATE /
*DECRYPTDIGESTUPDATE /
*SIGNENCRYPTUPDATE /
*DECRYPTVERIFYUPDATE
<var: enum-of _action_set; 1>/
default: _action_set.undefined
,SESSION= <var: int:4>/ <integer 0 .. 2147483647>/Q
,DATAIN= <var: pointer> / NULL
JINLEN= <var: int:4>/ <integer 0 .. 2147483647>/Q
,DATAOUT= <var: pointer>/ NULL
,OUTLEN= <var: int:4>/ <integer 0 .. 2147483647>/Q
,BOID= <var:int:4>/0
,RPOSTAD= <var: pointer>/ NULL
,RPOSTL= <integer 1..2>/ <var: int:4>/0
VERSION specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.
=001 This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.
=002 This generates the format that is supported as of CRYPT V1.1.

U41238-J-2125-3-76

59

CCRY

Assembler macro calls

ACTION Type of action.
The corresponding PKCS#11 function is specified for each action code.
=*ENCRYPT corresponds to the PKCS#11 function C_Encrypt;
encrypts a data package.
=*ENCRYPTUPDATE
corresponds to the PKCS#11 function C_EncryptUpdate;
continues a multiple-part encryption operation.
=*DECRYPT corresponds to the PKCS#11 function C_Decrypt;
decrypts encrypted data in a single part.
=*DECRYPTUPDATE
corresponds to the PKCS#11 function C_DecryptUpdate;
continues a multiple-part decryption operation.
=*DIGEST corresponds to the PKCS#11 function C_Digest;

digests data in a single part.

=*DIGESTUPDATE

=*SIGN

corresponds to the PKCS#11 function C_DigestUpdate;
continues a multiple-part message-digesting operation.

corresponds to the PKCS#11 function C_Sign;
signs data in a single part where the signature is an appendix of the
data.

=*SIGNUPDATE

corresponds to the PKCS#11 function C_SignUpdate;
continues a multiple-part signature operation where the signature is an
appendix of the data.

=*SIGNRECOVER

=*VERIFY

corresponds to the PKCS#11 function C_SignRecover;
signs data in a single operation where the data can be recovered from
the signature

This function is not supported.

corresponds to the PKCS#11 function C_Verify;
checks a signature in a single-part operation where the signature is an
appendix of the data.

=*VERIFYUPDATE

corresponds to the PKCS#11 function C_VerifyUpdate;
continues a multiple-part verification operation where the signature is
an appendix of the data.

60

U41238-J-2125-3-76

Assembler macro calls CCRY

=*VERIFYRECOVER
corresponds to the PKCS#11 function C_VerifyRecover;
checks a signature verification operation where the data can be
recovered from the signature.

=*DIGESTENCRYPTUPDATE
corresponds to the PKCS#11 function C_DigestEncryptUpdate;
continues a multiple-part digesting and encryption operation.

. This function is not supported.

1

=*DECRYPTDIGESTUPDATE
corresponds to the PKCS#11 function C_DecryptDigestUpdate;
continues a multiple-part decryption and digesting operation.

. This function is not supported.

1

=*SIGNENCRYPTUPDATE
corresponds to the PKCS#11 function C_SignEncryptUpdate;
continues a multiple-part signature and encryption operation.

. This function is not supported.

1

=*DECRYPTVERIFYUPDATE
corresponds to the PKCS#11 function C_DecryptVerifyUpdate;
continues a multiple-part decryption and verification operation.

i This function is not supported.
SESSION Session identifier
DATAIN points to the input data
INLEN Length of the input data in bytes
DATAOUT points to the output data

— *VERIFY: Pointer to signature
— *DIGESTUPDATE, *SIGNUPDATE, *VERIFYUPDATE:
are not used.

U41238-J-2125-3-76 61

CCRY

Assembler macro calls

OUTLEN

BOID

RPOSTAD

RPOSTL

Length of the output data in bytes

— *VERIFY: Length of the signature

— *DIGESTUPDATE, *SIGNUPDATE, *VERIFYUPDATE:
are not used.

Event identification

— in the case of synchronous execution: BOID is not used.

— in the case of asynchronous execution:
Event identification to which the end of function processing is
signalled.

Postcode address

— in the case of synchronous execution: RPOSTAD is not used.

— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes

Length of postcode

— in the case of synchronous execution: RPOSTL is not used.

— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

62

U41238-J-2125-3-76

Assembler macro calls CCRYFIN

CCRYFIN - finalize cryptographic operation

The CCRYFIN macro covers the following functions

terminating a multiple-part encryption operation

terminating a multiple-part decryption operation

terminating a multiple-part message-digesting operation

terminating a multiple-part signature operation with return of signature

terminating a multiple-part verification operation with the verification of the signature

All functions are performed asynchronously if asynchronous function execution was
specified for the task with C_Initialize.

A detailed description of the functions of the CCRYFIN macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in the sections 11.8 through 11.12 under
“C_EncryptFinal”, “C_DecryptFinal”, “C_DigestFinal’, “C_SignFinal” and “C_VerifyFinal”.

Macro Operands

CCRYFIN MF= C/D/L/M/E

,VERSION= 001 /002
LACTION= *ENCRYPTFINAL /
*DECRYPTFINAL /
*DIGESTFINAL /
*SIGNFINAL /
*VERIFYFINAL /
<var: enum-of _action_set; 1>/
default: _action_set.undefined
,SESSION= <var: int:4>/ <integer 0 .. 2147483647>/Q

,DATA= <var: pointer> / NULL
,LEN= <var: int:4>/ <integer 0 .. 2147483647>/Q
,BOID= <var:int:4>/0

,RPOSTAD= <var: pointer>/ NULL
,RPOSTL= <integer 1..2>/ <var: int:4>/0

U41238-J-2125-3-76

63

CCRYFIN

Assembler macro calls

VERSION

=001

=002

ACTION

specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.

This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.

This generates the format that is supported as of CRYPT V1.1.

Type of action.
The corresponding PKCS#11 function is specified for each action code.

=*ENCRYPTFINAL

corresponds to the PKCS#11 function C_EncryptFinal,
terminates a multiple-part encryption operation.

=*DECRYPTFINAL

corresponds to the PKCS#11 function C_DecryptFinal,
terminates a multiple-part decryption operation.

=*DIGESTFINAL

=*SIGNFINAL

corresponds to the PKCS#11 function C_DigestFinal,
terminates a multiple-part message-digesting operation.

corresponds to the PKCS#11 function C_SignFinal,;
terminates a multiple-part signature operation with return of signature

=*VERIFYFINAL

SESSION

DATA

LEN

corresponds to the PKCS#11 function C_VerifyFinal,;
terminates a multiple-part verification operation with the verification of
the signature.

Session identifier

points to data

— *ENCRYPTFINAL, *DECRYPTFINAL, *DIGESTFINAL,
*SIGNFINAL: DATA points to the output data.

— *VERIFYFINAL: DATA points to the signature.

Length of the data in bytes

— *ENCRYPTFINAL, *DECRYPTFINAL, *DIGESTFINAL,
*SIGNFINAL: Length of the output data in bytes

— *VERIFYFINAL: Length of the signature in bytes

64

U41238-J-2125-3-76

Assembler macro calls

CCRYFIN

BOID

RPOSTAD

RPOSTL

Event identification

— in the case of synchronous execution: BOID is not used.

— In the case of asynchronous execution:
Event identification to which the end of function processing is
signalled.

Postcode address

— in the case of synchronous execution: RPOSTAD is not used.

— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes

Postcode length

— in the case of synchronous execution: RPOSTL is not used.

— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76

65

CGENKEY

Assembler macro calls

CGENKEY - generate secret key

The CGENKEY macro generates a secret key by creating a new key object.

The function is performed asynchronously if asynchronous function execution was
specified for the task with C_Initialize.

A detailed description of the function of the CGENKEY macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.14 “Key management
functions” under “C_GenerateKey”.

Macro Operands
CGENKEY |MF= C/D/L/IM/E
,VERSION= 001 /002
,SESSION= <var: int:4> / <integer 0..2147483647> / Q
,MECHAN= <var: pointer>/ NULL
,TEMPL= <var: pointer> / NULL
,COUNT= <var: int:4> / <integer 0..2147483647> / Q
,BOID= <var: int:4>/0
,RPOSTAD= <var: pointer>/ NULL
,RPOSTL= <integer 1..2>/ <var: int:4>/0
VERSION specifies which version of the parameter area is to be generated.
It is always advisable to use the latest version.
=001 This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.
=002 This generates the format supported as of CRYPT V1.1.
SESSION Session identifier
MECHAN points to the mechanism for key generation
TEMPL points to the template for the new key
COUNT Number of attributes in the template

66

U41238-J-2125-3-76

Assembler macro calls

CGENKEY

BOID

RPOSTAD

RPOSTL

Event identification

— in the case of synchronous execution: BOID is not used.

— in the case of asynchronous execution:
event identification to which the end of function processing is
signalled.

Postcode address

— in the case of synchronous execution: RPOSTAD is not used.

— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes

Length of postcode

— in the case of synchronous execution: RPOSTL is not used.

— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76

67

CGENKPR

Assembler macro calls

CGENKPR - generate key pair

The CGENKPR macro generates a key pair from a public and a private key by creating new
key objects.

The function is performed asynchronously if asynchronous function execution was
specified for the task with C_Initialize.

A detailed description of the function of the CGENKPR macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.14 “Key management
functions” under “C_GenerateKeyPair”.

Macro Operands

CGENKPR |MF= C/D/L/M/E

,VERSION= 001/002

,SESSION= <var: int:4> / <integer 0..2147483647> / Q
,MECHAN= <var: pointer>/ NULL
,PUBTEMP=<var: pointer>/ NULL

,PUBACNT= <var: int:4>/ <integer 0..2147483647> / Q
,PRVTEMP=<var: pointer>/ NULL

,PRVACNT= <var: int:4> / <integer 0..2147483647> / Q
,BOID= <var: int:4>/0

,RPOSTAD= <var: pointer>/ NULL

,RPOSTL= <integer 1..2>/ <var: int:4>/0

VERSION specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.

=001 This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters known in CRYPT V1.0.
VERSION=001 is the default.

=002 This generates the format supported as of CRYPT V1.1.
SESSION Session identifier
MECHAN points to the mechanism for key generation
PUBTEMP points to the template for the public key

68

U41238-J-2125-3-76

Assembler macro calls

CGENKPR

PUBACNT

PRVTEMP

PRVACNT

BOID

RPOSTAD

RPOSTL

Number of attributes in the template for the public key
points to the template for the private key
Number of attributes in the template for the private key

Event identification

— in the case of synchronous execution: BOID is not used.

— in the case of asynchronous execution:
Event identification to which the end of function processing is
signalled.

Postcode address

— in the case of synchronous execution: RPOSTAD is not used.

— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of the postcode: 4 or 8 bytes

Length of postcode

— in the case of synchronous execution: RPOSTL is not used.

— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76

69

CWRPKEY Assembler macro calls

CWRPKEY - wrap key

The CWRPKEY macro wraps a private or secret key.

The function is performed asynchronously if asynchronous function execution was
specified for the task with C_Initialize.

A detailed description of the function of the CWRPKEY macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.14 “Key management
functions” under “C_WrapKey”.

Macro Operands

CWRPKEY |MF= C/D/L/M/E

,VERSION= 001/002

,SESSION= <var: int:4> / <integer 0..2147483647> / Q
,MECHAN= <var: pointer>/ NULL

,KEK= <var: int:4> / <integer 0..2147483647> / Q
,KEY= <var: int:4> / <integer 0..2147483647> / Q
\WRPDKEY= <var: pointer>/ NULL

,\WRPDLEN= <var: int:4> / <integer 0..2147483647> / Q
,BOID= <var: int:4>/0

,RPOSTAD= <var: pointer>/ NULL

,RPOSTL= <integer 1..2>/ <var: int:4> /0

VERSION specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.

=001 This generates the format that was supported by CRYPT V1.0. This
format only supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.

=002 This generates the format supported as of CRYPT V1.1.
SESSION Session identifier
MECHAN points to the key wrap mechanism
KEK Handle of the wrapping key
KEY Handle of the key that is to be wrapped

70 U41238-J-2125-3-76

Assembler macro calls CWRPKEY

WRPDKEY points to the memory location that receives the wrapped key
WRPDLEN Length of the wrapped key
BOID Event identification

— in the case of synchronous execution: BOID is not used.

— in the case of asynchronous execution:
Event identification to which the end of function processing is
signalled.

RPOSTAD Postcode address
— in the case of synchronous execution: RPOSTAD is not used.
— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of the postcode: 4 or 8 bytes

RPOSTL Length of postcode
— in the case of synchronous execution: RPOSTL is not used.
— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76 71

CUNWKEY

Assembler macro calls

CUNWKEY - unwrap key

The CUNWKEY macro unwraps a wrapped key by creating a new object for a private or

secret key.

The function is performed asynchronously if asynchronous function execution was
specified for the task with C_Initialize.

A detailed description of the function of the CUNWKEY macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.14 “Key management
functions” under “C_UnwrapKey”.

Macro

Operands

CUNWKEY

MF= C/D/L/M/E

,VERSION= 001/002

,SESSION= <var: int:4> / <integer 0..2147483647> / Q
,MECHAN= <var: pointer>/ NULL

,KEK= <var: int:4> / <integer 0..2147483647> / Q
\WRPDKEY= <var: pointer>/ NULL

,\WRPDLEN= <var: int:4> / <integer 0..2147483647> / Q
,TEMPL= <var: pointer> / NULL

,COUNT= <var: int:4> / <integer 0..2147483647> / Q
,BOID= <var: int:4>/0

,RPOSTAD= <var: pointer>/ NULL

,RPOSTL= <integer 1..2>/ <var: int:4>/0

VERSION

=001

=002

SESSION

MECHAN

KEK

specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.

This generates the format that was supported by CRYPT V1.0.
This format only supports the parameters already known in CRYPT
V1.0.

VERSION=001 is the default.
This generates the format that is supported as of CRYPT V1.1.
Session identifier

points to the key wrap mechanism

Handle of the unwrapping key

72

U41238-J-2125-3-76

Assembler macro calls CUNWKEY

WRPDKEY points to the wrapped key
WRPDLEN Length of the wrapped key

TEMPL points to the template for the new key
COUNT Number of attributes in the template
BOID Event identification

— in the case of synchronous execution: BOID is not used.

— in the case of asynchronous execution:
Event identification to which the end of signal processing is
signalled.

RPOSTAD Postcode address
— in the case of synchronous execution: RPOSTAD is not used.
— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes

RPOSTL Length of postcode
— in the case of synchronous execution: RPOSTL is not used.
— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76 73

CDRVKEY

Assembler macro calls

CDRVKEY - derive key

The CDRVKEY macro derives a key from a basic key by generating a new key object.

The function is performed asynchronously if asynchronous function execution was
specified for the task with C_Initialize.

A detailed description of the function of the CDRVKEY macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.14 “Key management
functions” under “C_DeriveKey”.

Macro Operands
CDRVKEY |MF= C/D/L/IM/E
,VERSION= 001 /002
,SESSION= <var: int:4> / <integer 0..2147483647> / Q
,MECHAN= <var: pointer>/ NULL
,BASEKEY= <var: int:4> / <integer 0..2147483647> / Q
,TEMPL= <var: pointer> / NULL
,COUNT= <var: int:4> / <integer 0..2147483647> / Q
,BOID= <var: int:4>/0
,RPOSTAD= <var: pointer>/ NULL
,RPOSTL= <integer 1..2>/ <var: int:4> /0
VERSION specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.
=001 This generates the format that was supported by CRYPT V1.0. This
format supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.
=002 This generates the format supported as of CRYPT V1.1.
SESSION Session identifier
MECHAN points to the mechanism used to derive the key
BASEKEY Handle of the basic key
TEMPL points to the template for the new key

74

U41238-J-2125-3-76

Assembler macro calls

CDRVKEY

COUNT

BOID

RPOSTAD

RPOSTL

Number of attributes in the template

Event identification

— in the case of synchronous execution: BOID is not used.

— in the case of asynchronous execution:
Event identification to which the end of function processing is
signalled.

Postcode address

— in the case of synchronous execution: RPOSTAD is not used.

— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes

Length of postcode

— in the case of synchronous execution: RPOSTL is not used.

— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76

75

CRANDOM Assembler macro calls

CRANDOM - generate random numbers

The CRANDOM macro covers the following functions
e mixing additional seed material into the token’s random number generator
e generating random data

All functions are performed asynchronously if asynchronous function execution was
specified for the task with C_Initialize.

A detailed description of the functions of the CRANDOM macro can be found in PKCS#11
V2.20: Cryptographic Token Interface Standard in section 11.15 “Random number
generation functions”.

Macro Operands

CRANDOM |MF= C/D/L/MI/E
,VERSION= 001/002
LACTION= *SEEDRANDOM /
*GENERATERANDOM /
<var: enum-of _action_set: 1>/
default: _action_set.undefined
,SESSION= <var: int:4> / <integer 0..2147483647> / Q

,DATA= <var: pointer> / NULL
,DATALEN= <var: int:4> / <integer 0..2147483647> / Q
,BOID= <var: int:4>/0

,RPOSTAD= <var: pointer>/ NULL
,RPOSTL= <integer 1..2>/ <var: int:4>/0Q

VERSION specifies which version of the parameter area is to be generated. It is
always advisable to use the latest version.
=001 This generates the format that was supported by CRYPT V1.0. This

format supports the parameters already known in CRYPT V1.0.
VERSION=001 is the default.

=002 This generates the format supported as of CRYPT V1.1.

76 U41238-J-2125-3-76

Assembler macro calls

CRANDOM

ACTION Type of action.
The corresponding PKCS#11 function is specified for each action code.
=*SEEDRANDOM
corresponds to the PKCS#11 function C_SeedRandom;
mixes additional seed material in the token’s random number generator
=*GENERATERANDOM
corresponds to the PKCS#11 function C_GenerateRandom;
generates random data.
SESSION Session identifier
DATA points to the following data:
— with *SEEDRANDOM: DATA points to the start parameter material.
— with *GENERATERANDOM: DATA points to the memory location
that receives the random data.
DATALEN Length of the data in bytes
BOID Event identification
— in the case of synchronous execution: BOID is not used.
— in the case of asynchronous execution:
Event identification to which the end of function processing is
signalled.
RPOSTAD Postcode address
— in the case of synchronous execution: RPOSTAD is not used.
— in the case of asynchronous execution:
specifies a field containing postcode information which is to be
transferred to the corresponding program that issues the SOLSIG
call (see also “Executive Macros” user guide [3]).
Length of postcode: 4 or 8 bytes
RPOSTL Length of postcode

— in the case of synchronous execution: RPOSTL is not used.
— in the case of asynchronous execution: specifies the length of the
postcode information in words (1 or 2).

U41238-J-2125-3-76

77

Sample programs Assembler macro calls

6.5 Sample programs

6.5.1

In this section you will find a sample program for both synchronous and asynchronous
execution modes.

Synchronous execution — example

The following CRYPT macros are used in the sample program:

The CPKC11T macro contains data descriptions and equates that are used by the
subsequent macros.

The CSESION macro uses the *OPENSESSION action to open a session between an
application and a token in a specified slot.

The CGENKEY macro generates a secret key.

Then the action “ENCRYPTINIT of the CCRYINI macro initiates an encryption
operation.

The *ENCRYPT action of the CCRY macro is used to continue and terminate the
encryption operation.

The action *DECRYPTINIT of the CCRYINI macro initiates a decryption operation.

Then the CCRY macro continues and terminates the decryption using the *DECRYPT
action.

The session is terminated using the “*CLOSESESSION action of the CSESION macro.

TITLE 'CPKC11T LAYOUT'
CPKC11T MF=D

TITLE 'CSESION PARAM LIST'
CSESION MF=D

TITLE 'CCRYINI PARAM LIST'
CCRYINI MF=D

TITLE 'CCRY PARAM LIST'
CCRY MF=D

TITLE 'CGENKEY PARAM LIST'
CGENKEY MF=D

TITLE 'CRYZEX — EXAMPLE

CRYZ2EX RMODE ANY
CRYZEX ~ AMODE ANY

SPACE 3

78

U41238-J-2125-3-76

Assembler macro calls

Sample programs

*khkkkk

Fxxxx ENTRIES

*khkhkkKk

SPACE

CRYZ2EX ~ @ENTR TYP=M, ENV=SPLSPEC,FUNCT='EXAMPLE OF CRYPT ASS PROGRAM', -

LOCAL=ZEXALOC
SPACE 4
* PRESET ILLEGAL SESSION HANDLE
MVC ZSESSION,=F'0"'
* OPEN SESSION
LA R3,CSESIONC
MVC ~ CSESIONC,CSESIONL
@DATA BASE=R3,CLASS=B,DSECT=CRYO_MDL
MV I CRYOACTION, CRYOOPENSESSION
* MVC ~ CRYOSLOTID,=F'Q'
CSESION MF=E,PARAM=(R3),CALLER=USER
@IF EQ
CLC CRYORET,=F'0"'
@THEN
MVC ZSESSION,CRYOSESSION

* GENERATE SECRET KEY
LA R3,CGENKEYC
MVC CGENKEYC,CGENKEYL
@DATA BASE=R3,CLASS=B,DSECT=CRYD_MDL
MVC ~ CRYDSESSION,ZSESSION
MVC CRYDMECHANISM,=A(MDESKGEN)

* MVC ~ CRYDTEMPLAT,=F'0'
* MVC ~ CRYDCOUNT,=F'0'
CGENKEY MF=E,PARAM=(R3),CALLER=USER
@IF EQ
CLC CRYDRET,=F'0'
@THEN
MVC ZDESKEY, CRYDKEY
SPACE 4

* INITIALIZE ENCRYPTION OPERATION
LA R3,CCRYINIC
MVC CCRYINIC,CCRYINIL
@DATA BASE=R3,CLASS=B,DSECT=CRYA_MDL
MVI CRYAACTION,CRYAENCRYPTINIT
MVC ~ CRYASESSION,ZSESSION
MVC CRYAKEY,ZDESKEY
MVC ~ CRYAMECHANISM,=A(MDESECB)
CCRYINI MF=E,PARAM=(R3),CALLER=USER
SPACE
@IF EQ
CLC CRYARET,=F'0'
@THEN

U41238-J-2125-3-76

79

Sample programs Assembler macro calls

* ENCRYPT OPERATION
LA R3,CCRYC
MVC CCRYC,CCRYL
@DATA BASE=R3,CLASS=B,DSECT=CRYB_MDL
MVI CRYBACTION,CRYBENCRYPT
MVC ~ CRYBSESSION,ZSESSION
MVC CRYBDATAIN,=A(ZINPUT)
MVC CRYBDATAINLEN,=A(L'ZINPUT)
LA R15,ZENCOUT
ST R15,CRYBDATAQUT
MVC ~ CRYBDATAOUTLEN,=A(L'ZENCOUT)
CCRY MF=E,PARAM=(R3),CALLER=USER
@IF EQ
* CCRY SUCCESSFUL ?
CLC CRYBRET,=F'0'
Q@THEN
* SAVE LENGTH OF ENCRYPTED STRING
MVC ZENCOUTL,CRYBDATAOUTLEN
* ENCRYPT OPERATION WAS TERMINATED BY SINGLE STEP ENCRYPTION.

* INITIALIZE DECRYPT OPERATION
LA R3,CCRYINIC
MVC CCRYINIC,CCRYINIL
@DATA BASE=R3,CLASS=B,DSECT=CRYA_MDL
MVI CRYAACTION,CRYADECRYPTINIT
MVC ~ CRYASESSION,ZSESSION
MVC CRYAKEY,ZDESKEY
MVC CRYAMECHANISM,=A(MDESECB)
CCRYINI MF=E,PARAM=(R3),CALLER=USER
SPACE
@IF EQ
CLC CRYARET,=F'0'
Q@THEN

* DECRYPT OPERATION
LA R3,CCRYC
MVC CCRYC,CCRYL
@DATA BASE=R3,CLASS=B,DSECT=CRYB_MDL
MVI CRYBACTION,CRYBDECRYPT
MVC ~ CRYBSESSION,ZSESSION
LA R15,ZENCOUT
ST R15,CRYBDATAIN
MVC ~ CRYBDATAINLEN,ZENCOUTL
LA R15,ZDECOUT
ST R15,CRYBDATAOUT
MVC CRYBDATAOUTLEN,=A(L'ZDECOUT)
CCRY MF=E,PARAM=(R3),CALLER=USER
@IF EQ

* CCRY SUCCESSFUL 7?
CLC CRYBRET,=F'0"
Q@THEN
* SAVE LENGTH OF DECRYPTED STRING
MVC ZDECOUTL, CRYBDATAOUTLEN
* DECRYPT OPERATION WAS TERMINATED BY SINGLE STEP DECRYPTION.

* NO ERROR FROM CRYPT CALLS

LA R3,0
* CHECK RESULT
@IF EQ

* LENGTH IDENTICAL
CLC ~ ZDECOUTL,=ACL'ZINPUT)
@AND EQ
* DECRYPTED STRING IDENTICAL
CLC ZINPUT,ZDECOUT
@THEN

80 U41238-J-2125-3-76

Assembler macro calls Sample programs

* REPORT SUCCESS

WROUT SUCCESS, SUCCESSE, PARMOD=31
SUCCESSE DS OH

@ELSE
* REPORT FAILURE

WROUT FAILURE,FAILUREE,PARMOD=31
FAILUREE DS OH

@BEND

@BEND

@BEND

@BEND

@BEND

@BEND

@BEND

@IF NE
* SESSION WAS INITIALIZED ?

CLC ZSESSION,=F'0"'

@THEN

* CLOSE SESSION
LA R3,CSESIONC
MVC CSESIONC,CSESIONL
@DATA BASE=R3,CLASS=B,DSECT=CRYO_MDL
MVI CRYOACTION,CRYOCLOSESESSION
MVC ~ CRYOSESSION,ZSESSION
CSESION MF=E,PARAM=(R3),CALLER=USER
@BEND
SPACE
@EXIT

* DATA

CSESIONL CSESION MF=L
CGENKEYL CGENKEY MF=L
CCRYINIL CCRYINI MF=L
CCRYL CCRY MF=L

*

* MECHANISM DES_KEY_GEN (NO PARAMETER)
MDESKGEN DC ACCRYOMDES_KEY_GEN),A(0),A(0)
* MECHANISM DES_ECB (NO PARAMETER)

MDESECB DC A(CRYOMDES_ECB) ,A(0),A(0)

*

* STRING TO BE ENCRYPTED (FOR DES-ECB, LENGTH MUST BE A MULTIPLE OF 8)
ZINPUT DC CL16'DAS IST GEHEIM !
*

*

SUCCESS DC Y (SUCCESSL)
DC X'000001"
C'SUCCESSFUL ENCRYPTION AND DECRYPTION'
SUCCESSL EQU *-=SUCCESS
*

FATLURE DC Y (FATLUREL)

DC X'000001"

DC C'DECRYPTION OUTPUT DIFFERS FROM ENCRYPTION INPUT'
FATLUREL EQU *-FAILURE
*

U41238-J-2125-3-76 81

Sample programs Assembler macro calls

ZEXALOC @PAR D=YES

DS 0F
CSESIONC DS XL(CRYO#)
CGENKEYC DS XL(CRYD#)
CCRYINIC DS XL(CRYA#)
CCRYC DS XL(CRYB#)
* ENCRYPTED STRING AREA
ZENCOUT DS XL24
* ENCRYPTED STRING AREA
ZDECOUT DS XLz24
* SESSION #
ZSESSION DS F
* SECRET KEY HANDLE
Z/DESKEY DS F
* LENGTH OF ENCRYPTED STRING
ZENCOUTL DS F
* LENGTH OF DECRYPTED STRING
Z/DECOUTL DS F

SPACE
ZEXALOC @PAR LEND=YES

@END

END

/START—-ASSEMBH
//COMPILE SOURCE=...

//MACRO-LIBRARY=(.....)
//SOURCE-PROPERTIES=*PAR(LOW-CASE-CONVERSION=YES,...)
/...

//END

/START-BINDER ...

//START-LLM-CREATION INTERNAL-NAME=...
//INCLUDE-MODULES ELEMENT=CRYZEX,LIB=...
//INCLUDE-MODULES ELEMENT=ITSP1PMS, LIB=PM.MODULE
//RESOLVE-BY—AUTOLINK LIBRARY=PM.MODULE
//SAVE-LLM LIB=...

//END

82 U41238-J-2125-3-76

Assembler macro calls Sample programs

6.5.2 Asynchronous execution — example

CRYPT uses the following macros in the sample program section below:

1.

10.
11.
12.
13.

The CPKC11T macro contains data descriptions and equates that are used by the
following macros.

The CGENRAL macro implements asynchronous processing for the task with CRYPT.
The event identification CRYPTTST is defined. The address of the short ID is OUTEIID.

The CRY2ABC routine is defined as a contingency process:
CONTAAD specifies the start address.
OUTCOID specifies the address of the short ID.

The program requests a signal from the event identification CRYPTTST using a
SOLSIG call and specifies the contingency process CRY2ABC. If the signal has not yet
arrived after 600 seconds the event control should start the contingency process
CRY2ABC. The program continues to run after this SOLSIG call.

The CSESION macro opens a session between an application and a token in a certain
slot using the *OPENSESSION action.

The CGENKEY macro generates a secret DES key.

The *ENCRYPTINIT action of the CCRYINI macro then initiates an encryption
operation with the DES key created.

The *ENCRYPT action of the CCRY macro performs the encryption operation
Routine CRY2ABC which acts as a contingency process.

The program once again requests a signal with a SOLSIG call.

A check is carried out to determine whether an CRYPT event has occurred.

Follow-up processing takes place depending on the event that has occurred.

i @

You can find information about eventing and the contingency process in the
“Executive Macros” user guide [3].

Macro calls that are not described in this manual (e.g. SOLSIG) are also described
in the “Executive Macros” user guide [3].

U41238-J-2125-3-76

83

Sample programs

Assembler macro calls

FHDR MF=
TITLE 'CPKC11T layout'

D

CPKC11T MF=D

TITLE 'CSESION'

CSESION MF=D,VERSION=002
TITLE 'CCRY'

CCRY MF=

D,VERSION=002

TITLE 'CGENKEY'
CGENKEY MF=D,VERSION=002
TITLE 'CRY2ABS — example'

*

AREA
OUTEIID
0UTCOID
AREA#

*

CRY2AB
CRYZ2AB
CRY2AB

*

CRYZ2ABV

*

SPACE
CRYZ2ABS

CRYZ2ABS
CRY2ABS
*

CGENRALE
*

DSECT

DS F
DS F
EQU *—
CSECT

AMODE ANY
RMODE ANY

AREA

ENTRY CRYZ2ABV
DS 0D
DS XLC(AREA#)

@ENTR TYP=M, ENV=SPLSPEC,FUNCT="example of crypt ass program', -

LOCAL=ZEXALOC
AMODE ANY
RMODE ANY

L R9,=V(CRY2ABV)
@DATA BASE=R9,CLASS=B,DSECT=AREA

LA R3,CGENRALC

MVC CGENRALC,CGENRALL

@DATA BASE=R3,CLASS=B,DSECT=CRYJHEADER
MVI CRYJACTION,CRYJINITIALIZE

MVI CRYJEXEC, CRYJASYNCHRON

CGENRAL MF=E,PARAM=(R3),CALLER=USER

@IF ZE
CLC CRYJRET,=F'0'
@THEN , INIT ok

@ELSE , error

* error handling

EXIT
@BEND , INIT ok/error

LA R2,0UTEIID

ENAET EINAME=CRYPTTST,EIIDRET=(R2),PARMOD=31
ST R15, ENAEIRC

@IF EQ

CLI ENAEIMC,X'00'
@THEN , event item created

(2.)

(3.)

84

U41238-J-2125-3-76

Assembler macro calls Sample programs

@ELSE , event item not created
* error handling
B EXIT
@BEND , event item (not) created

LA R2,0UTCOID

ENACO CONAME=CRYPTST,COADAD=CONTAAD,COIDRET=(R2),PARMOD=31 ————— (4.)
ST R15, ENACORC
@IF EQ

CLI ENACOMC, X' 00"
@THEN , contingency created

@ELSE , contingency not created
* error handling
EXIT
@BEND , contingency (not) created

LA R4,0UTCOID
LA R2,0UTEIID
SOLSIG EIID=(R2),COID=(R4),LIFETIM=600,PARMOD=31 —-——————————————— (5.)

@IF
* SOLSIG ok?
LTR R15,R15
@THEN , error
* error handling
B EXIT
@BEND , error

NZ

* REQM for openSession PA
REQM 1,PARMOD=31
@IF NZ
LTR R15,R15
@THEN , error

* error handling
B EXIT
@BEND , error

LR R6,R1
@DATA BASE=R6,CLASS=B,DSECT=CRYO_MDL

U41238-J-2125-3-76 85

Sample programs

Assembler macro calls

set up CSESION call

MVC
MVI
MVC
LA
ST
ST
MVC

CSESION MF=E,PARAM=(R6),CALLER=USER

@IF
CLC
Q@THEN

CRYOHEADER(CRYO#) ,CSESIONL
CRYOACTION,CRYOOPENSESSION
CRYOBOID,OUTEIID
R1,0PSTKEY1

R1,CRYORPOSTAD

R6,0PSTKEY2
CRYORPOSTL,=F'2"

EQ
CRYORET,=F'0Q"
, open session accepted

wait for the completion of openSession

@ELSE

, open session not accepted

error handling

B

@BEND ,

EXIT
open session (not) accepted

REQM for genKey PA

(6.)

REQM 1,PARMOD=31
@IF NZ
LTR R15,R15
@THEN , error
error handling
B EXIT
@BEND , error
LR R7,R1
@DATA BASE=R7,CLASS=B,DSECT=CRYDHEADER
MVC CRYDHEADER(CRYD#) ,CGENKEYL
MVC CRYDSESSION,CRYOSESSION
MVC CRYDMECHANISM, =A(MDESKGEN)
MVC CRYDBOID,OUTEIID
LA R1,DPSTKEY1
ST R1,CRYDRPOSTAD
ST R7 ,DPSTKEY2
MVC CRYDRPOSTL,=F'2"
CGENKEY MF=E,PARAM=(R7),CALLER=USER
@IF EQ
CLC CRYDRET,=F'0"
@THEN , generate key accepted

wait for the completion of generate key

@ELSE ,

generate key not accepted

error handling

@BEND

EXIT
, generate key (not) accepted

(7.

86

U41238-J-2125-3-76

Assembler macro calls

Sample programs

* set up encrypt CCRYINI call

MVC CCRYINIC,CCRYINIL

LA R8,CCRYINIC

@DATA BASE=R8,CLASS=B,DSECT=CRYAHEADER
MV I CRYAACTION, CRYAENCRYPTINIT

MVC ~ CRYASESSION,CRYOSESSION

MVC CRYAKEY,CRYDKEY

MVC ~ CRYAMECHANISM,=A(MDESECB)

CCRYINI MF=E,PARAM=(R8),CALLER=USER

@IF EQ
CLC CRYARET,=F'0"
@THEN , encrypt init ok

@ELSE , encrypt init not ok

* error handling

*

EXIT
@BEND , encrypt init (not) ok

REQM for encrypt PA

REQM 1,PARMOD=31
@IF NZ

LTR R15,R15
@THEN , error

* error handling

EXIT
@BEND , error

LR R8,R1
@DATA BASE=R8,CLASS=B,DSECT=CRYB_MDL

MVC ~ CRYBHEADER(CRYB#),CCRYL

MVC ~ CRYBSESSION,CRYOSESSION

MVI CRYBACTION, CRYBENCRYPT

MVC CRYBDATAIN,=A(ZINPUT)

MVC CRYBDATAINLEN,=A(L'ZINPUT)
LA R15,ZENCOUT

ST R15,CRYBDATAQUT

MVC CRYBDATAOUTLEN,=A(L"'ZENCOUT)
MVC CRYBBOID,OUTEIID

LA R1,BPSTKEY1

ST R1,CRYBRPOSTAD

ST R8,BPSTKEY2

MVC ~ CRYBRPOSTL,=F'2'

CCRY MF=E,PARAM=(R8),CALLER=USER

@IF EQ
CLC CRYBRET,=F'0"'
@THEN , encrypt accepted

U41238-J-2125-3-76

87

Sample programs

Assembler macro calls

* wait for the completion of encrypt

*

EXIT

* DATA
*
CONTAAD
*

CGENRALL
CSESTONL
CGENKEYL
CCRYINIL
CCRYL

*

@ELSE , encrypt not accepted
* error handling

EXIT

@BEND , encrypt (not) accepted

EQu

*

@EXIT

DC

A(CRY2ABC)

CGENRAL MF=L,VERSION=002
CSESTON MF=L,VERSION=002
CGENKEY MF=L,VERSION=002
CCRYINI MF=L

CCRY MF=L,VERSION=002

* mechanism DES_KEY_GEN (no parameter)

MDESKGEN

DC

A(CRYOMDES_KEY_GEN),A(0),A(0)

* mechanism DES_ECB (no parameter)

MDESECB
*

DC

A(CRYOMDES_ECB) ,A(0),A(0)

* string to be encrypted (for DES-ECB, Tength must be a multiple of 8)

ZINPUT

*

*
ZEXALOC
*
CGENRALC
*
CCRYINIC
*
ENAEIRC
ENAEISC
ENAEIMC
*
ENACORC
ENACOSC
ENACOMC
*
OPOSTKEY
OPSTKEY1
OPSTKEYZ2
*
DPOSTKEY
DPSTKEY1
DPSTKEY?2
*
BPOSTKEY

BPSTKEY1
BPSTKEY2
*

DC

CL16'that is secret!'

@PAR D=YES

CGENRAL MF=C,VERSION=002

CCRYINI MF=C

DS
DS
DS
DS
DS

DS
DS
DS
DS
DS

DS
DS
DS

DS
DS
DS

DS
DS
DS

* encrypted

ZENCOUT
*

DS

string area
XL24

ZEXALOC @PAR LEND=YES
@END

*

88

U41238-J-2125-3-76

Assembler macro calls

Sample programs

*

ENTRY CRYZ2ABC

CRY2ABC @ENTR TYP=B,BASE=R10,FUNCT='Contingency '

CRY2ABC ~AMODE ANY
CRY2ABC RMODE ANY

*

b ok o X b

*

*

*

register contents at start of contingency

R1: contingency message — not used

R2: event information code

R3: post code 1 (bytel: EC type of Crypt; rest: RC)
R4: post code 2 (A(PA))

LR R10,R15
CONTXT STACKR=(R12,R13),0WNR=(R12,R13),FUNCT=READ, PROCESS=LAST

L R9,=V(CRY2ABV)
@DATA BASE=R9,CLASS=B,DSECT=AREA

LA R14,0UTCOID
LA R15,0UTEIID

SOLSIG EIID=(R15),C0ID=(R14),LIFETIM=600,PARMOD=31 —-———————————

@IF NZ
error at SOLSIG?

LTR R15,R15

@THEN , error
error handling

B RETCO

@BEND , error

ST R2,CONTIRC
@IF EQ
ok?
CLI CONTIMC,X'00"
@THEN , cont correctly started

@IF EQ

CLI CONTISC,X'28'
@R EQ

CLI CONTISC,X'2C'
@THEN , ok

nothing to do

@ELSE , what's wrong

@IF EQ
timeout?

CLI CONTIMC,X'04"'

@THEN , timeout or EI killed
timeout handling

B RETCO
@ELSE , something wrong

error handling

B RETCO
@BEND , something wrong/ timeout or EI killed
@BEND , what's wrong
@ELSE , something wrong
error handling
B RETCO
@BEND , something wrong

(10.)

U41238-J-2125-3-76

89

Sample programs

Assembler macro calls

*

*

cont correctly started

@IF NE

contains post code 1 the ETC of CRYPT?

CLM R3,B'1000',=AL1(CRYOEVENT)
@THEN , not a CRYPT event

error handling

B RETCO
@BEND , not a CRYPT event

@IF EQ

PA not allocated?

CLM R3,B'0011"',=AL2(CRYOPA_NOT_ALLOC)
@THEN , PA not allocated

error handling

@IF EQ

*

*

*

*

action

handle

B RETCO
@BEND , PA not allocated

LR R3,R4
@DATA BASE=R3,DSECT=ESMFHDR

(12.)

@CAS2 ESMFCT,COMP=CLI
@0F ESESION

@DATA BASE=R3,DSECT=CRYO_MDL
@IF EQ

CLC CRYORET,=F'0"
@THEN , session function ok

= opensession

CLI CRYOACTION,CRYOOPENSESSION
@THEN , openSession

open session

@BEND , openSession

@ELSE , session function not ok

error handling

B RETCO
@BEND , session function (not) ok

end ESESION

@DATA BASE=R3,DSECT=ESMFHDR
@OF EGENKEY

@DATA BASE=R3,DSECT=CRYD_MDL
@IF EQ

CLC CRYDRET,=F'0"

@THEN , generate key ok

(13.)

90

U41238-J-2125-3-76

Assembler macro calls

Sample programs

*

X ok X ot *

*

handle generate key

@ELSE , generate key not ok
error handling

B RETCO

@BEND , generate key (not) ok

end EGENKEY

@DATA BASE=R3,DSECT=ESMFHDR
@OF ECRY

CRY
@DATA BASE=R3,DSECT=CRYB_MDL

@IF EQ
CLC CRYBRET,=F'0"'
@THEN , crypt function ok

@IF EQ

action = encrypt?
CLI ~ CRYBACTION,CRYBENCRYPT
@THEN , encrypt

handle encrypt

@ELSE , <> encrypt
@IF EQ
action = decrypt?
CLI CRYBACTION, CRYBDECRYPT
@THEN , decrypt

handle decrypt
@ELSE , <> decrypt

@BEND , decrypt

@BEND , encrypt ...

@ELSE , crypt function not ok
error handling

B RETCO

@BEND , crypt function (not) ok

end ECRY
@DATA BASE=R3,DSECT=ESMFHDR
@OFRE

error: unknown function

error handling

B RETCO
@BEND , CAS ESMFCT,COMP=CLI

U41238-J-2125-3-76

91

Sample programs

Assembler macro calls

RETCO EQU *
RETCO
@EXIT

* EQUates for the CRYPT functions

EGENRAL EQU 1 GENeRAL-purpose functions
ESESION EQU 20 SESsION management

EOBJMGT EQU 30 OBJect ManaGemenT

ECRYINI EQU 40 INIt a CRYptographic function
ECRY EQU 41 CRYptographic function
ECRYFIN EQU 42 FINalize a CRYptographic function
EGENKEY EQU 80 GENerateKEY

EGENKPR EQU 81 GENerateKeyPaiR

EWRPKEY EQU 82 WRaPKEY

EUNWKEY EQU 83 UNWrapKEY

EDRVKEY EQU 84 DeRiVeKEY

ERANDOM EQU 90 RANDOM number generation

*

*
*

CONTIRC DS 0F
CONTISC DS X
DS X
DS X
X

CONTIMC DS
*

92

U41238-J-2125-3-76

7 Description of the functions in C

71

In order to develop portable applications, or to ensure that applications that use a PKCS#11
interface can be easily ported CRYPT also provides the ANSI C interface described in
PKCS#11 and the include files PKCS11.H, PKCS11T.H and PKCS11F.H.

Prerequisites

If you wish to use this C interface, you will need to link the CRYADAP adapter module from
the SYSLIB.CRYPT.nnn library in to the program.

Notes about the description in PKCS#11

Version 2.10 of the PKCS#11 standard is used as the basis for your work with the C
interface of CRYPT.
This standard can be found on the Internet under

http://germany.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-
interface-standard.htm

U41238-J-2125-3-76 93

Notes about the description in PKCS#11

Description of the functions in C

The following table lists the functions and where you will find the description in the
PKSC#11 V2.20 standard. The C_ prefix in the PKCS#11 functions indicates a function.

Function

Description in
PKCS#11 vV2.20

General-purpose functions

C_lInitialize
C_Finalize
C_Getlinfo
C_GetFunctionList

section 11.4

Slot and token management functions

C_GetSlotList
C_GetSlotinfo
C_GetTokenlInfo
C_WaitForSlotEvent
C_GetMechanismList
C_GetMechanisminfo
C_InitToken
C_InitPIN

C_SetPIN

section 11.5

Session management functions

C_OpenSession
C_CloseSession
C_CloseAllSessions
C_GetSessionInfo
C_GetOperationState
C_SetOperationState
C_Login

C_Logout

section 11.6

Object management functions

C_CreateObject
C_CopyObject
C_DestroyObject
C_GetObjectSize
C_GetAttributeValue
C_SetAttributeValue
C_FindObjectslnit
C_FindObjects
C_FindObjectsFinal

section 11.7

Functions and corresponding description in PKCS#11

(Part 1 of 3)

94

U41238-J-2125-3-76

Description of the functions in C Notes about the description in PKCS#11

Function Description in
PKCS#11 vV2.20

Encryption functions section 11.8

— C_Encryptinit

— C_Encrypt

— C_EncryptUpdate
— C_EncryptFinal

Decryption functions section 11.9
— C_Decryptlnit

— C_Decrypt

— C_DecryptUpdate
— C_DecryptFinal

Message digesting functions section 11.10
— C_Digestlnit

— C_Digest

— C_DigestUpdate
— C_DigestKey

— C_DigestFinal

Signing and MACing functions section 11.11
— C_Signlnit

— C_Sign

— C_SignUpdate

— C_SignFinal

— C_SignRecoverlnit
— C_SignRecover

Functions for verifying signatures and MACs section 11.12
— C_Verifylnit

— C_Verify

— C_VerifyUpdate

— C_VerifyFinal

— C_VerifyRecoverlnit
— C_VerifyRecover

Dual-function cryptographic functions section 11.13
— C_DigestEncryptUpdate
— C_DecryptDigestUpdate
— C_SignEncryptUpdate

— C_DecryptVerifyUpdate

Functions and corresponding description in PKCS#11 (Part 2 of 3)

U41238-J-2125-3-76 95

Notes about the description in PKCS#11

Description of the functions in C

Function

Description in
PKCS#11 V2.20

Key management functions
— C_GenerateKey

— C_GenerateKeyPair

— C_WrapKey

— C_UnwrapKey

— C_DeriveKey

section 11.14

Random number generation functions
— C_SeedRandom
— C_GenerateRandom

section 11.15

Parallel function management functions
— C_GetFunctionStatus
— C_CancelFunction

section 11.16

Callback functions
— Surrender callbacks
— Vendor-defined callbacks

section 11.17

Functions and corresponding description in PKCS#11

(Part 3 of 3)

96

U41238-J-2125-3-76

Description of the functions in C Sample program

7.2 Sample program

The following CRYPT functions are used in the sample program:

e C OpenSession is used to open a session between an application and a token in a
specified slot.

o C GenerateKey generates a secret key.

e Then C Encryptlnit is used to initialize an encryption operation and C_EncryptUpdate
used to continue it.

o C EncryptFinal terminates a multiple-part encryption operation.

e Then C Decryptinit is used to initialize a decryption operation and C_DecryptUpdate
used to continue it.

o C DecryptFinal terminates a multiple-part decryption operation.

e The session is then closed using C_CloseSession.

Example

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "pkcsll.h"

static CK_BBOOL aTrue = TRUE;
static CK_BBOOL aFalse = FALSE;

void main()

{

CK_MECHANISM MGDES1 = {CKM_DES_KEY_GEN, 0, O};
CK_MECHANISM MCDES1E = {CKM_DES_ECB, 0, Ot};
CK_ATTRIBUTE AGDES[] =

{

{CKA_EXTRACTABLE, &aTrue, sizeof(aTrue)}
,{CKA_SENSITIVE, &aFalse, sizeof(aFalse)}
, {CKA_ENCRYPT, &aTrue, sizeof(aTrue)!}
, {CKA_DECRYPT, &aTrue, sizeof(aTrue)!}

by

CK_ULONG NGDES = sizeof(AGDES)/12;
CK_MECHANISM_PTR mgdesl = &MGDES1;
void *encin = 0;

void *encout =

0;
void *decout = 0;

U41238-J-2125-3-76 97

Sample program Description of the functions in C

unsigned int encinlen = 32*%1024;
unsigned int encoutlen = 34*1024;
unsigned int decoutlen = 34*1024;
CK_BYTE_PTR encAktlIn;

CK_BYTE_PTR encAktOut;
CK_BYTE_PTR decAktOut;

CK_ULONG encAcrylQutlLen = 0;
CK_ULONG decAcrylQutLen
unsigned int i;

CK_RV rc;
CK_SESSTON_HANDLE session;
CK_OBJECT_HANDLE key:
CK_ULONG 1inLen;

CK_ULONG outlLen;

char *nextChar;

I
(@]

encin = calloc(encinlen, 1);

if (lencin)

{
printf("————-no more memory\n");
return;

}

nextChar = (char*) encin;
for (i = 0; i < encinlen; i++)
*nextChar++ = i % 256;

encout = malloc(encoutlen);

if (lencout)

{
printf("————-no more memory\n");
return;

}

decout = malloc(decoutlen);

if (!decout)

{
printf ("-———no more memory\n");
return;

}

/* Opening the session */
rc = C_OpenSession(0, CKF_SERIAL_SESSION | CKF_RW_SESSION,
NULL_PTR, NULL_PTR, &session);

if (rc != CKR_OK)

{
printf("-—— open session rc: %08x\n", rc);
return;

98 U41238-J-2125-3-76

Description of the functions in C Sample program

printf("++++ open session: ok; session: %08X\n", session);

/* Generating a secret key */
rc = C_GenerateKey(session, mgdesl, AGDES, NGDES, &key);
if (rc != CKR_OK)
{
printf("———— genkey rc: %08x\n", rc);
return;

}
printf("++++ genkey: ok; key: %08X\n", key);

/* Initializing an encryption operation */
rc = C_EncryptInit(session, &MCDES1E, key);
if (rc != CKR_OK)
{
printf("-——— cryini rc: %08x\n", rc);
return;

}
printf("++++ cryini: encryptinit DES_ECB ok\n");

encAktIn = (CK_BYTE_PTR) encin;
encAktOut = (CK_BYTE_PTR) encout;
for (i = 0; i < 32; i++)
{
/* outlLen = 1024; */
outLen = encoutlen — encAcrylOutlLen;

/* Continuing a multiple-part encryption operation */
rc = C_EncryptUpdate(session, encAktIn, 1024, encAktOut, &outlen);
if (rc != CKR_OK)
{
printf("-—— cry rc: %08x\n", rc);
return;
}
encAcryl0OutlLen += outlen;
encAktIn += 1024; /* next portion */
encAktOut += outlen;
} /* for (i =0; i < 32; i++) */

outLen = encoutlen — encAcrylOQOutlLen;

/* Terminating an encryption operation */
rc = C_EncryptFinal(session, encAktOut, &outlen);
if (rc != CKR_OK)
{
printf("——— cryfin rc: %08x\n", rc);
return;

U41238-J-2125-3-76 99

Sample program Description of the functions in C

encAcrylOutLen += outlen;
printf("++++ cry: encrypt DES_ECB ok\n");

/* Initializing a decryption operation */
rc = C_DecryptInit(session, &MCDES1E, key);
if (rc != CKR_OK)
{
printf("——— cryini rc: %08x\n", rc);
return;
}
printf("++++ cryini: decryptinit DES_ECB ok\n");

encAktOut = (CK_BYTE_PTR) encout;
decAktOut = (CK_BYTE_PTR) decout;
inLen = encAcrylQutlLen >= 1024 ? 1024 : encAcrylQutlLen;
while (inLen > 0)
{
/* outlen = 1024; */
outlLen = decoutlen — decAcrylOutlLen;

/* Continuing a multiple-part decryption operation */

rc = C_DecryptUpdate(session, encAktOut, inLen,
decAktOut, &outlen);

if (rc != CKR_OK)

{

printf("-=——= cry rc: %08x\n", rc);
return;

}

encAcrylOutlLen —= inlLen;

if (encAcrylOutlLen < 1024)
inLen = encAcrylQOutlLen;
decAcrylOutlLen += outlen;
encAktOut += 1024; /* next portion */
decAktOut += outlen;
} /* while (encAcrylOutlLen > 0) */
outlLen = decoutlen — decAcrylQOutlLen;

/* Terminating a decryption operation */
rc = C_DecryptFinal(session, decAktOut, &outlen);
decAcryl0QutlLen += outlLen;
printf("++++ cry: decrypt DES_ECB ok\n");
if (decAcrylQutlLen == encinlen)
{
printf("++++ Tength ok \n");
}

100 U41238-J-2125-3-76

Description of the functions in C Sample program

else
{
printf("-—— enc/dec: length diff %d %d\n", encinlen,
decAcryl0QutlLen);
return;
}
if (memcmp(encin, decout, decAcrylOutlLen) == 0)

{
printf("++++ output ok \n");
}

else

{
printf("——— enc/dec: diff \n");
return;

/* Sitzung schlieBen */

rc = C_CloseSession(session);

if (rc != CKR_OK)

{
printf("——— close session rc: %08x\n", rc);
return;

}

printf ("++++ close session: ok\n");

}

/START-CPLUS—-COMPILER

//MODIFY-SOURCE-PROPERTIES -
// LANG=*C(MODE=*ANSI)

//MODIFY-INCLUDE-LIBRARIES -
// STD—INCLUDE-LIBRARY=*USER-INCLUDE-LIBRARY, -
// USER-INCLUDE-LIBRARY=(-
// $.SYSLIB.CRYPT.nnn

/...

/START-BINDER ...

//INCLUDE-MODULES ELEMENT=

//INCLUDE-MODULES ELEMENT=CRYADAP,LIB=$.SYSLIB.CRYPT.nnn
//RESOLVE-BY-AUTOLINK LIBRARY=...

/...

//SAVE-LLM LIB=...

//END

U41238-J-2125-3-76 101

Sample program Description of the functions in C

102 U41238-J-2125-3-76

8 Creating diagnostic documents

If an error occurs whilst CRYPT is running which you cannot repair yourself, please contact
your partner at Fuijitsu.

In order to be able to troubleshoot the problem efficiently, your Fujitsu contact person will
require the following information:

precise description of the fault, as well as information as to whether the fault is
reproducible

information about the version of the product and the operating system as well as about
the HSI (/390 or x86).

the $SYSAUDIT.SYS.CONSLOG file of the BS2000 session
dumps

$.SYS.SERSLOG file

CRYPDIAG documents if applicable

You will receive the CRYPDIAG documents as follows:

1. Assign SYSLST to a file.

2. Start CRYPDIAG program:

» CRYPDIAG

3. Enter TOTAL statement:
» TOTAL

4. Enter statement END:
» END

5. Undo the SYSLST assignment.
Use trace files if necessary
Activate the CRYPT user interfaces trace CRYPT.COM using the /DCDIAG command.

Please see the “openNet Server” manual [1] for more details about the /DCDIAG command.

U41238-J-2125-3-76 103

Creating diagnostic documents

104 U41238-J-2125-3-76

9 Return codes

The function return codes set out by the PKCS#11 standard are returned in the standard
header in the main return code (MRC).

The generic component CPKC11T contains the definitions for the MRCs. In addition to this,
the type and structure definitions from the PKCS11T.H include file are also available in
CPKC11T.

The generic component CRYASC2 contains the definitions for the sub-return code 2
(SRC2) if the MRC definition in the CPKC11T components is “arguments_bad”.

This section lists all possible MRCs and SRCs and their meanings.

U41238-J-2125-3-76 105

Main return codes

Return codes

CPKC11T - general data types

The generic component CPKC11T contains the definitions from the PKCS11T.H include file.
A detailed description of CPKC11T can be found in PKCS#11 V2.20: Cryptographic Token

Interface Standard in chapter 9 “General data types”.

Macro

Operands

CPKCM1T

MF=

D/C

Main return codes (MRC)

A detailed description of the meanings of the various MRCs can be found in section 11.1
“Function return values” as of page 112 of the PKCS#11 V2.20 standard. The CKR _ prefix
indicates a return code. The following table provides an overview of these MRCs.

If you use the asynchronous interface, other return codes, which are not described in the
PKCS#11 standard, may occur. These are listed in the table on page 109.

SRC2 |SRC1 | MRC |MRC identifier

00 00 0000 |ok

00 40 0001 |cancel

00 20 0002 |host_memory

00 80 0002 [host_memory

00 01 0003 |slot_id_invalid

XX 20 0005 |general_error

00 40 0006 |function_failed

aa 01 0007 |arguments_bad see also CRYASC2
00 40 0008 |no_event

00 40 0009 |need_to_create_threads

00 40 000a |cant_lock

00 40 0010 |attribute_read_only

00 40 0011 | attribute_sensitive

00 40 0012 |attribute_type_invalid

ii 01 0013 |attribute_value_invalid The i" value is invalid.

Main return codes (MRC)

(Part 1 of 4)

106

U41238-J-2125-3-76

Return codes

Main return codes

SRC2 |SRC1 |[MRC

MRC identifier

Note

00 40 0020

data_invalid

00 40 0021

data_len_range

00 20 0030

device_error

00 20 0031

device_memory

00 80 0032

device_removed

00 40 0040

encrypted_data_invalid

00 40 0041

encrypted_data_len_range

00 80 0050

function canceled

00 40 0051

function_not_parallel

00 01 0054

function_not_supported

aa 01 0060

key_handle_invalid

see also CRYASC2

00 40 0062

key_size range

00 40 0063

key_type_inconsistent

00 40 0064

key_not_needed

00 40 0065

key changed

00 40 0066

key needed

00 40 0067

key_indigestible

00 40 0068

key_function_not_permitted

00 40 0069

key_not_wrappable

00 40 006a

key_unextractable

08 01 0070

mechanism_invalid

08 01 0071

mechanism_param_invalid

00 01 0082

object_handle_invalid

00 40 0090

operation_active

00 40 0091

operation_not_initialized

00 40 00a0

pin_incorrect

00 40 00a1

pin_invalid

00 40 00a2

pin_len_range

00 40 00a3 |pin_expired

00 40 00a4 |pin_locked

Main return codes (MRC) (Part 2 of 4)
U41238-J-2125-3-76 107

Main return codes

Return codes

SRC2 |SRC1 |[MRC

MRC identifier

Note

00 80 00b0

session_closed

00 80 00b1

session_count

00 40 00b3

session_handle_invalid

00 01 00b4

session_parallel_not_supported

00 40 00b5

session_read_only

00 40 00b6

session_exists

00 40 00b7

session_read_only_exists

00 40 00b8

session_read_write_so_exists

00 40 00c0

signature_invalid

00 40 00c1

signature_len_range

00 40 00do

template_incomplete

00 40 00d1

template_inconsistent

00 80 00e0

token_not_present

00 80 00e1

token_not_recognized

00 80 00e2

token_write_protected

00 40 00f0

unwrapping_key_handle_invalid

00 40 00f1

unwrapping_key_size _range

00 40 00f2

unwrapping_key_type_inconsist

00 40 0100

user_already_logged_in

00 40 0101

user_not_logged_in

00 40 0102

user_pin_not_initialized

00 40 0103

user_type_invalid

00 40 0104

user_another_already_logged_in

00 40 0105

user_too_many_types

00 40 0110

wrapped_key_invalid

00 40 0112

wrapped_key_len_range

00 40 0113

wrapping_key_handle_invalid

00 40 0114

wrapping_key_size _range

00 40 0115

wrapping_key_type_inconsistent

00 40 0120

random_seed_not_supported

Main return codes (MRC)

(Part 3 of 4)

108

U41238-J-2125-3-76

Return codes

Sub return codes 2

SRC2 |SRC1 | MRC |MRC identifier Note

00 40 0121 |(random_no_rng

00 40 0150 |buffer_too_small

00 40 0160 |saved_state_invalid

00 40 0170 |information_sensitive

00 40 0180 |state_unsaveable

00 80 0190 |cryptoki_not_initialized

00 40 0191 |cryptoki_already _initialized

00 40 01a0 |mutex_bad

00 40 01a1 |mutex_not_locked

Main return codes (MRC) (Part 4 of 4)

SRC2 |SRC1 | MRC | MRC-Identifier Meaning

00 40 8000 |PA_not_alloc parameter area not allocated

00 40 8001 |asynch_call_active asynchronous call is active

02 00 8002 |no_open_session no session to close

00 80 8003 |CRYPT_down Subsystem CRYPT has been termi-
nated betwenn two function calls

Possible main return codes (MRC), that are not described in PKCS#11 V2.20

CRYASC2 - sub return code 2

The generic component CRYASC2 contains the sub return codes 2 for the main return code
CPKC11T “arguments_bad”.

Macro

Operands

CRYASC2

MF=

D/C

U41238-J-2125-3-76

109

Sub return codes 2

Return codes

Sub return codes 2

SRC2 |Identifier for main return |Meaning
code (Assembler)
01 CRY2wrAction invalid action
02 CRY2wrSession invalid session
03 CRY2wrinfo invalid information
04 CRY2wrNotify invalid notify
05 CRY2wrSlotld invalid slot ID
06 CRY2wrDatIn invalid data input
07 CRY2wrDatOut invalid data output
08 CRY2wrMechanism invalid mechanism
09 CRY2wrKey invalid key
Oa CRY2wrBKey invalid base key
Ob CRY2wrTmplt invalid template
Oc CRY2wrAttr invalid attribute
0d CRY2wrCnt invalid count
Oe CRY2wrPubKey invalid public key
of CRY2wrPrvKey invalid private key
10 CRY2wrPubTmplt invalid public key template
11 CRY2wrPrvTmplt invalid private key template
14 CRY2wrTpkPr invalid present token
15 CRY2wrType invalid type
16 CRY2wrLabel invalid label
17 CRY2wrPin invalid pin
18 CRY2wrPinL invalid pin length
19 CRY2wrUTyp invalid user type
1a CRY2wrObj invalid object
1b CRY2wrObijLst invalid object list
1c CRY2wrObjSz invalid object size
1d CRY2wrObjCnt invalid object count

Sub return codes 2

(Part10of2)

110

U41238-J-2125-3-76

Return codes

Sub return codes 2

SRC2 |Identifier for main return |Meaning
code (Assembler)

1e CRY2wrmaxObjCnt invalid maximum object count

1f CRY2wrOpState invalid operation state

20 CRY2wrOpStateLen invalid length of the operation state

21 CRY2wrEncKey invalid encryption key

22 CRY2wrAutKey invalid authentication key

23 CRY2wrData invalid data

24 CRY2wrDatalLen invalid length of data

25 CRY2wrUnwrKey invalid unwrapping key

26 CRY2wrWrKey invalid wrapped key

27 CRY2wrWrKeyLen invalid length of wrapped key

28 CRY2wrWringKey invalid wrapping key

29 CRY2wrExec invalid execution mode

2a CRY2wrRPostAd invalid postcode address

2b CRY2wrRPostL invalid postcode length

2c CRY2wrBoid invalid stock exchange identification

2d CRY2wrSigLen invalid signature length

2e CRY2wrVers1 asynchronous execution with version 1.0 not
permitted

2f CRY2wrAlloc non-allocated storage area detected

40 reserved reserved parameter area is not 0

FO preceding for all main return codes:
The error occurred in a preceding function (see also
the following section).

Sub return codes 2

SRC2 “preceding”

(Part 2 of 2)

If SRC2 returns the value “preceding” (X’F0’), the error returned in the MRC does not refer
to the function for which the value is returned, but instead to a preceding function. This may
occur if an errored parameter is recognized after the preceding function has been

completed.

U41238-J-2125-3-76

111

Sub return codes 2 Return codes

Example

The macro call CCRYINI SES=1,ACT="ENCRYPTINIT,MECH=mDes_key gen,KEY=7 is
first confirmed with OK.

The follow-up call CCRY ACT=*ENCRYPT,DATAIN=...,INLEN=...,DATAOUT=...,
OUTLEN-=... is answered with X’F0400070’.

The “mechanism_invalid” MRC refers, in this case, not to the CCRY call, but instead - as
can be seen from the SRC2 - to the preceding CCRYINI call.

This mechanism cannot be used for the *ENCRYPT action.

112

U41238-J-2125-3-76

Glossary

This glossary is designed to supplement chapter 4 “Definitions” of the PKCS#11 standard.

AES (Advanced Encryption Standard)

The AES is a FIPS publication that specifies a cryptographic algorithm for the USA
authorities. AES is now the default block cipher. AES was developed by the Belgian
cryptologists Dr. Joan Daemen and Dr. Vincent Rijmen.

ANSI (American National Standards Institute)
This institute develops standards for various accredited standard committees (ASC). The
X9 committee is mainly concerned with security standards for financial services.

Asymmetric keys

A separate, yet integrated, user key pair consisting of a public key and a private key. This
is a “one-way” key, or in other words, a key that is used to encrypt certain data, but which
cannot be used to decrypt this data.

Block cipher
A symmetrical cipher code that is based on blocks (usually 128-bit blocks) of plain text and
encrypted text.

CBC (Cipher Block Chaining)

The process of the application of the XOR operator which brings plaintext into an either-or
relationship with the preceding text block before it is encrypted. This adds a “feedback”
mechanism to a block cipher.

CFB or CFM (Cipher Feedback Mode)

A block cipher that is implemented as a self-synchronizing stream cipher. This feeds back
a specified number of bits of the ciphertext as the input data for the block cipher and
encrypts it using a fixed key.

Ciphertext
This is the result of a change made to letters or bits. This change is made by replacing,
exchanging or replacing and exchanging information.

Cleartext
See plaintext

U41238-J-2125-3-76 113

Glossary

Cryptoki
A program interface to devices that save cryptographic information and carry out
cryptographic functions; as specified by the PKSC#11 standard.

Decryption
The process of converting ciphered (or encrypted) text back to clear text.

DES (Data Encryption Standard)

A 64-bit block cipher or symmetric algorithm that is also referred to as the Data Encryption
Algorithm (DEA) (ANSI) or DEA-1 (ISO). This has been used widely for the last 20 years,
adopted in 1976 as “FIPS 46”.

Diffie-Hellman
The first encryption algorithm for public keys that used discret logarithms in a finite field. It
was created in 1976.

Distinguished Encoding Rules (DER)
A subset of BER.

DSA (Digital Signature Algorithm)
A digital signature algorithm created by NIST for public keys for use in DSS.

DSS (Digital Signature Standard)
A standard (FIPS) suggested by NIST for digital signatures using DSA.

ECB (electronic codebook)

A block cipher which uses the plain text block as direct input for the encryption algorithm.
The output block resulting from the encryption process is then used directly as the
ciphertext.

FIPS (Federal Information Processing Standard)
A standard of the USA government as published by NIST.

Handle
A value used to identify a session or an object assigned by Cryptoki (see also section 6.6.5
“Session handles and object handles” of the PKCS#11 standard).

Hash function
A single-direction hash function is a function that generates a message core, that cannot
be reversed in order to obtain the original information.

HMAC
A key-dependent single-direction hash function specially designed for use with MAC
(Message Authentication Code) and based on IETF RFC 2104.

114

U41238-J-2125-3-76

Glossary

IETF (Internet Engineering Task Force)

A comprehensive open international community made up of network developers, operators,
dealers and research specialists whose job is the development of the Internet architecture
and the smooth running of the Internet. This organization is open to all those who are
interested.

Initialization vector or IV
A block of random data that uses “Chaining Feedback Mode” (see “Cipher Block Chaining
(CBC)”) and serves as the starting point for a block cipher.

Integrity
Proof that data has not been changed (by unauthorized persons) during saving or transfer.

ISO (International Organization for Standardization)
This organization is responsible for a wide range of standards, for example, the OSI model,
and also for international relations with ANSI for X. 509.

Key
This is a method of granting and rejecting the following access, ownership rights or control
rights. This is represented by any number of values.

Key exchange
A procedure that uses two or more nodes to transfer a secret session key via an insecure
channel.

Key length
The number of bits used to represent the key size. The longer the key - the more secure itis.

Key management
A procedure used to save and distribute accurate cryptographic keys. The entire process
of secure creation and distribution of cryptographic keys to authorized recipients.

MAC (Message Authentication Code)
A key-dependant single-direction hash function which requires an identical key to verify the
hash.

MD2 (Message Digest 2)

A single-direction hash function with 128-bit hash result, uses a random permutation of
bytes.

Designed by Ron Rivest.

MD4 (Message Digest 4)
A single-direction hash function with 128-bit hash result, uses a simple set of bit
manipulations with 32-bit operands. Designed by Ron Rivest.

U41238-J-2125-3-76 115

Glossary

MD5 (Message Digest 5)
An improved and more complex version of MD4. But still a single-direction hash function
with 128-bit hash result.

Mechanism
Process used to implement cryptographic operations

Message Digest
A checksum that is calculated from a message. If you change just a single character in a
message then the message will have a different Message Digest.

Mutex objects

Mutex is a short form of Mutual Exclusion;

simple objects that can be in only one of two states at any time: locked or unlocked (see
also PKCS#11 specification, section 6.5.2 “Applications and threads”).

NIST (National Institute for Standards and Technology)
A department of the “U.S. Department of Commerce”. Publishes standards on compatibility
(FIPS).

NSA (National Security Agency)
A department of the “U.S. Department of Defense”.

OFB (Output Feedback Mode)
As in CFB a block cipher is used as a stream cipher. Unlike CFB, the bits of the output are
directly fed back. OFB is not self-synchronizing.

Operation
A sequence of several cryptographic functions

PKCS (Public Key Crypto Standards)

A range of de-facto standards for encryption using public keys, developed by an informal
consortium (Apple, DEC, Lotus, Microsoft, MIT, RSA and Sun). This also includes
algorithm-specific and algorithm-independent implementation standards. Specifications for
the definition of message syntax and other protocols that are controlled by the RSA Data
Security, Inc.

Plaintext or cleartext
Data or messages before encryption, in a format that can be easily read by humans - also
known as uncoded text.

Private key
The “secret” component of an integrated asymmetrical key pair, the component that is said
to be in private possession, and is also often known as the decryption key.

116

U41238-J-2125-3-76

Glossary

Pseudo-random number
A number that is calculated by applying algorithms, this creates random values that are
derived from the computer environment (e.g. mouse coordinates). See random number.

Public key
The publicly available component of an integrated asymmetrical key pair,
often referred to as the encryption key.

Random number

An important aspect for many encryption systems and a necessary element when creating
unique keys that a potential hacker is unable to calculate. Real random numbers are usually
derived from analog sources and generally require the use of special hardware.

RC2 (Rivest Cipher 2)
Symmetrical 64-bit block cipher with variable key size, a branch-internal key from RSA,
SDI.

RC4 (Rivest Cipher 4)

Stream cipher with variable key size, was originally the property of RSA Data Security, Inc.
It is strongly recommended not to use RC4 as it meanwhile shows to many
weaknesses.has Da RC4 mittlerweile zu viele Schwachen zeigt, wird von seiner
Verwendung dringend abgeraten. See also RFC 7465 "Prohibiting RC4 Cipher Suites".

RFC (Request for Comment)

An IETF document from the subgroup FYI RFC giving an overview and introduction or from
the subgroup STD RFC which gives Internet standard. The abbreviation FY| stands for “For
Your Information”. Each RFC has an RFC number that is used to identify it and call it up
(www.ietf.org).

RSA

Short for RSA Data Security, Inc. Also refers to the names of the company founders Ron
Rivest, Adi Shamir and Len Adleman, or to the algorithm developed by them. The RSA
algorithm is used in cryptography with public keys. Its functionality is based on the fact that
two large prime numbers may be easy to multiply together, but that it is very difficult to
reduce the product back to the original two numbers.

Salt

A random string of characters that is linked using passwords (or random numbers) before
operations are carried out using single-direction functions. This linking effectively extends
the length of the password and makes it more obscure. Thus your cipher text is better
protected against dictionary attack.

Secret key
The “session key” in symmetrical algorithms

U41238-J-2125-3-76 117

Glossary

Session key
The secret (symmetric) key used to encrypt all data records on a transaction basis. For
each communication session a new session key is used.

SET (Secure Electronic Transaction)
Is used to transfer credit card details securely across the Internet.

SHA-1 (Secure Hash Algorithm)

In 1994 the SHA (FIPS 180-1) developed by NIST was revised and SHA-1 was the result.
SHA-1 is used in conjunction with DSS to create a 160-bit hash result. It is similar to the
popular and wide spread MD4.

Slot
According to the definition, PKCS#11 can simultaneously use logical cryptographic function
units (slots). In CRYPT only one slot is supported at this time.

SSL (Secure Socket Layer)

This was developed by Netscape to ensure the security and non-disclosure of sensitive
information on the Internet. Supports the server/client authentication and ensures the
security and integrity of the transfer channel. This works on the transfer level and serves as
the “socket library” and makes possible application-independent results. Encrypts the entire
communication channel.

Stream cipher

A class of symmetric key encryption during which the conversion can be changed for each
character of plaintext that is to encrypted. This is recommended for environments with
limited memory capacity available to buffer data.

Symmetric algorithm

Also called a conventional, secret key or single-key algorithm. The encryption key is either
identical to the decryption key, or it is possible to derive one key from the other. There are
two sub-categories - block and stream.

TLS (Transport Layer Security)
A draft from IETF. Version 1 is based on Version 3.0 of the SSL protocol and serves to
maintain privacy when communicating across the Internet.

Triple-DES
An encryption configuration in which the DES algorithm is used three times with three
different keys.

118

U41238-J-2125-3-76

Related publications

(1]

(2]

3]

You will find the manuals on the internet at Attp://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

openNet Server (BS2000/0OSD)
BCAM
User Guide

BS2000 OSD/BC
Commands
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

Additional references

PKCS#11 V2.30: Cryptographic Token Interface Standard

RSA Laboratories, April 2009:
http://germany.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-
interface-standard.htm

U41238-J-2125-3-76 119

Related publications

120 U41238-J-2125-3-76

IndeXx

A C_GetMechanisminfo 25
architecture, openCRYPT 11 C_Initialize 24, 25
Assembler, sample program 78, 83 C_InitToken 24
asynchronous execution 32 C Login 24
asynchronous execution (example) 83 C _Logout 24
attribute C_SetAttributeValue 25
CKA_EXTRACTABLE 23 C_Sign 26
CKA_LOCAL 23 C_SignFinal 26
CKA_PUBLIC_EXPONENT 25 C_SignUpdate 26
CKA_SENSITIVE 23 C_Verify 26
C_VerifyFinal 26
B C_VerifyUpdate 26
BS2000 CCRY 58
differences compared to PKCS#11 CCRYFIN 63
standard 19 CCRYINI 56
functions not required 24 CDRVKEY 74
BS2000 interfaces CGENKEY 66
associated PKCS#11 functions 13 CGENKPR 68
CGENRAL 35
c o CGTSTMI 38
C function descriptions CINITTK 43
reference to 94 CKA_EXTRACTABLE 23, 25
C sample program 97 CKA LOCAL 23
C_CopyObject 25 CKA_PUBLIC_EXPONENT 25
C_Decrypt 26 CKA_SENSITIVE 23, 25
C_DecryptFinal 26 CKM_RSA_PKCS 25, 26
C_DecryptUpdate 26 CKM_RSA_X 509 25,26
C_Digest 26 CKR_ATTRIBUTE_VALUE_ INVALID 24
C_DigestFinal 26 CKR_KEY_HANDLE_INVALID 24
C_DigestUpdate 26 CKR_MECHANISM_INVALID 24
C_Encrypt 26 CLOG 50
C_EncryptFinal 26 close
C_EncryptUpdate 26 all sessions 45
C_Finalize 24, 25 session 45
C_GenerateKeyPair 25 COBJMGT 51

U41238-J-2125-3-76 121

Index

continue D
decryption and digesting operation 58 data
decryption and digesting operation (multiple- digest (single-part) 58
part) 58 sign 58
decryption and verification operation (multiple- decrypt data (single-part) 58
part) 58 decryption operation
decryption operation (multiple-part) 58 continue (multiple-part) 58
digesting and encryption operation 58 initialize 56
encryption operation (multiple-part) 58 terminate 63
message-digesting operation (multiple- definition
part) 56, 58 mechanism 17
search (according to template) 51 operation 24
signature and encryption operation 58 delete
signature operation 58 object 51
verification operation (multiple-part) 58 derive
continuing key 74
decryption and verification operation 58 description
signature and encryption operation 58 macro calls 34
COPSTAT 48 determine size of output area 24
copy diagnostic documents, create 103
object 51 differences compared to version 1.0 9
CPIN 44 digest data 58
CPKCMMT 105 disclaimer 7, 25
main return code 105 display information
CRANDOM 76 CGTSTMI 38
creating diagnostic documents 103 display operation state 48
CRYASC2
sub return code 2 105 E
CRYPT encrypt data (single-part) 58
differences compared to PKCS#11 encryption operation
standard 19 continue (multiple-part) 58
Cryptoki library, initialize 35 initialize 56
CSESION 45 terminate 63
CUNWKEY 72 error codes 105
CWRPKEY 70 execute operation 58
CWTFSLE 42 execution

asynchronous 32
asynchronous (example) 83
synchronous 32
synchronous (example) 78

122 U41238-J-2125-3-76

Index

F

finalize application 35

flag
CKA_EXTRACTABLE 25
CKA_SENSITIVE 25

functions
C_CopyObject 25
C_Finalize 25
C_GenerateKeyPair 25
C_GetMechanisminfo 25
C_Initialize 25
C_SetAttributeValue 25
maximum output data length 24
special features 24

G
general data types

special features compared to PKCS#11 23
general functions

CGENRAL 35

not required in BS2000 24
general-purpose functions

not required in BS2000 24

generate
key pair 68
object 51

random data 76
random numbers 76
secret key 66

H
hash algorithms 17

|
important note
security 7,25
include file
PKCS11.H 93
PKCS11F.H 93
PKCS11T.H 93
initialize
Cryptoki library 35
decryption operation 56
encryption operation 56
message-digesting operation 56
operation 56
PIN 44
search (according to template) 51
signature operation 56
token 43
verification operation 56
input data length
update operation 26
integrity codes 17

K

key
derive 74
generate (secret) 66
unwrap 72
wrap 70

key pair, generate 68

L
login 50

user to token 50
logout 50

user out of token 50

U41238-J-2125-3-76

123

Index

M
macro
metasyntax 28
macro call
CCRY 58
CCRYFIN 63
CCRYINI 56
CDRVKEY 74
CGENKEY 66
CGENKPR 68
CGENRAL 35
CGTSTMI 38
CINITTK 43
CLOG 50
COBJMGT 51
COPSTAT 48
CPIN 44
CRANDOM 76
CSESION 45
CUNWKEY 72
CWRPKEY 70
CWTFSLE 42
macro calls
description 34
macro syntax 30
control operands 30
macro forms 30
main return code 105
list 106
management
object 51
session 45
mechanism
CKM_RSA_PKCS 25, 26
CKM_RSA_X 509 25, 26
definition 17
outputting information about 38
mechanism types
supported by a token 38
mechanisms
supporting cryptographic operations 20

message-digesting operation
continue 58
continue (multiple-part) 56
initialize 56
terminate 63
metasyntax
macro 28
modify
object attributes 51
PIN 44
MRC 105

N
notational conventions 10
note

security 7, 25

(0]
object
copy 51
delete 51
generate 51
modifying attributes 51
output attributes 51
output size 51
special features 23
object generation
attribute 23
object management 51
open
session 45
openCRYPT
architecture 11
openCRYPT-SERV
mechanisms 17
operation 24
execute 58
initialize 56
sign 25, 26
single-part 26
terminate 63
verify 25, 26

124

U41238-J-2125-3-76

Index

operation state
display 48
set 48
output
data length, maximum 24
function list of Cryptoki library 35
general information about Cryptoki 35
object attributes 51
object size 51
slot list 38
state of the cryptographic operations 48
supported mechanism types 38
output area
determine size 24
outputting information
mechanism 38

session 45
slot 38
token 38

P

PIN
initialize 44
modify 44

PKCS#11
prefixes 19

PKCS#11 functions
associated BS2000 interfaces 13
PKCS#11 mechanisms 17
PKCS#11 standard 11
PKCS11.H 93
PKCS1MT.H 93, 105
PKCSF.H 93
prefixes 19
prerequisites
use the C interface 93
public key procedure 18

R
random data, generate 76
random generators 18
random number generator

mix seed material into 76
random numbers, generate 76

Readme file 9

reference
to C function description 94

return code
CKR_ATTRIBUTE_VALUE_INVALID 24
CKR_KEY_HANDLE_INVALID 24
CKR_MECHANISM_INVALID 24

S
sample program
Assembler
Cc 97
search
continue according to template 51
initiate according to template 51
terminate 51
security information 7, 25
seed material
mix into random number generator 76
session
close 45
close (all) 45
open 45
outputting information 45
session management 45
set operation state 48
sign 25, 26
data 58
signature
verify 58
signature operation
continue 58
initialize 56
terminate 63
single-part operation
corresponding update and final
operations 26

78, 83

slot

outputting information about 38
slot event

waiting for 42
slotld 23

U41238-J-2125-3-76

125

Index

special features
functions 24
general data types 23
mechanisms 20
objects 23
SRC2 105
standard, PKCS#11 11
state of the cryptographic operations
output 48
restore 48
sub return code 2 105, 109
list 110
supported mechanisms 20
symmetric algorithms 17
synchronous execution 32
synchronous execution (example) 78

T

target groups 7

terminate
decryption operation 63
encryption operation 63
message-digesting operation 63
operation 63
search 51
signature operation 63
verification operation 63

token

initialize 43
outputting information about 38

outputting supported mechanism types 38

U
unwrap
key 72
update and final operations
single-part operation 26
update operation
input data length 26
use of registers 27
user
login to token 50
logout of token 50
using the C interface
prerequisites 93

\'}

verification operation
continue 58
initialize 56
terminate 63

verify 25, 26
signature 58

w
waiting for a slot event 42

126

U41238-J-2125-3-76

	Contents
	Introduction
	Objectives and target groups of this manual
	Security information
	Summary of contents
	Changes since the last edition of the manual
	Notational conventions

	Encryption in BS2000/OSD
	PKCS#11 standard

	PKCS#11 functions and the corresponding interfaces in BS2000
	PKCS#11 mechanisms in CRYPT Services
	PKCS#11 – implementation in BS2000
	Mechanisms
	General data types
	Objects
	Functions

	Description of the Assembler macro calls
	Metasyntax for macros
	Macro syntax for format operands
	Asynchronous execution
	Description of the macro calls
	CGENRAL – general functions
	CGTSTMI – display information
	CWTFSLE – waiting for a slot event
	CINITTK – initialize token
	CPIN – initialize or modify PIN
	CSESION – session management
	COPSTAT – display/set operation state
	CLOG – login/logout
	COBJMGT – object management
	CCRYINI – initialize cryptographic operation
	CCRY – execute cryptographic operation
	CCRYFIN – finalize cryptographic operation
	CGENKEY – generate secret key
	CGENKPR – generate key pair
	CWRPKEY – wrap key
	CUNWKEY – unwrap key
	CDRVKEY – derive key
	CRANDOM – generate random numbers

	Sample programs
	Synchronous execution – example
	Asynchronous execution – example

	Description of the functions in C
	Notes about the description in PKCS#11
	Sample program

	Creating diagnostic documents
	Return codes
	CPKC11T – general data types
	CRYASC2 – sub return code 2

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

