
Edition March 2017

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

ns
sy

st
em

e
 A

G
 1

99
5

P

fa
d:

 P
:\F

T
S

-B
S

\C
o

m
pi

le
r\

JE
N

V
\V

8
.1

A
\H

B
_e

n
\je

nv
.v

or

English

JENV V8.1A
Development and Runtime Environment

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2016 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

JENV V8.1A

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

7.
 M

är
z

20
17

S

ta
nd

 1
3:

08
.5

4
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

JE
N

V
\V

8.
1A

\H
B

_
en

\je
nv

.iv
z

Contents

1 Introduction . 9

1.1 Objectives and target groups of this manual . 10

1.2 Summary of contents . 10

1.3 Changes since the last edition of the manual . 12

1.4 Notational conventions . 13
1.4.1 Description of commands . 13
1.4.2 Names of files, commands and programs . 14
1.4.3 Description of execution sequences . 14

1.5 Further information and sources . 14

1.6 License regulations . 14

2 Environment variables . 15

3 Conversion from ASCII to EBCDIC . 17

3.1 Code sets . 17

3.2 Localized streams . 19

3.3 Property files . 20

3.4 Policy files . 20

3.5 PrintStream . 21

3.6 Standard streams . 23

3.7 JAR archives . 26

3.8 Program arguments . 26

Contents

 JENV V8.1A

4 The Java package JRIO . 27

4.1 Concepts . 27
4.1.1 File systems . 27
4.1.1.1 File names in the DMS file system . 28
4.1.1.2 File names in the UFS file system . 29
4.1.2 File types . 29
4.1.3 Access methods . 30
4.1.4 Access types . 31
4.1.5 Shared update processing . 32
4.1.6 Options and restrictions relating to access types in DMS 33
4.1.7 Drivers . 34
4.1.8 Security . 34

4.2 API overview . 37
4.2.1 Record . 39
4.2.1.1 Constructors . 39
4.2.1.2 General methods . 40
4.2.1.3 Methods for extracting the data of a record . 40
4.2.1.4 Methods for extracting the data fields of a record 40
4.2.1.5 Methods for filling a record with data . 41
4.2.1.6 Methods for filling data fields of a record . 41
4.2.2 RecordFile . 42
4.2.2.1 Basic structure of a file name . 43
4.2.2.2 Constructors . 43
4.2.2.3 Fields . 44
4.2.2.4 General methods . 44
4.2.2.5 Methods for analyzing and transforming path names 45
4.2.2.6 Methods for inquiring file and directory attributes 48
4.2.2.7 Methods for modifying file and directory attributes 49
4.2.2.8 Methods for generating files and directories . 50
4.2.2.9 Methods for deleting and renaming files and directories 51
4.2.2.10 Methods for listing directories . 52
4.2.3 AccessParameter . 53
4.2.3.1 General parameter methods . 53
4.2.3.2 Parameters for SAM in DMS . 54
4.2.3.3 Parameter method for ISAM in DMS . 55
4.2.3.4 Parameter methods for UPAM in DMS . 57
4.2.4 Sequential data processing . 59
4.2.4.1 InputRecordStream . 59
4.2.4.2 FileInputRecordStream . 59
4.2.4.3 ArrayInputRecordStream . 61
4.2.4.4 OutputRecordStream . 62
4.2.4.5 FileOutputRecordStream . 63

Contents

JENV V8.1A

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
p

ile
r\

JE
N

V
\V

8
.1

A
\H

B
_e

n\
je

n
v.

iv
z

4.2.4.6 ArrayOutputRecordStream . 64
4.2.5 RandomAccessRecordFile . 65
4.2.5.1 Opening and closing a file . 66
4.2.5.2 Methods for reading records . 66
4.2.5.3 Methods for writing records . 67
4.2.5.4 Methods for positioning and changing size . 67
4.2.6 Indexed-sequential data processing . 68
4.2.6.1 KeyDescriptor . 69
4.2.6.2 KeyValue . 70
4.2.6.3 KeyedAccessRecordFile . 72

4.3 Implementation details . 76
4.3.1 File-system-specific definitions . 76
4.3.2 Access-method-specific definitions . 78
4.3.3 Default values of the DMS access methods . 82

4.4 Restrictions . 83

4.5 Examples . 84
4.5.1 Sequential data processing . 84
4.5.2 Random data processing . 88
4.5.3 Indexed-sequential data processing . 95

5 Invoking the VM from the BS2000 command interface 101

5.1 INITIALIZE procedure . 101

5.2 START procedure . 102

5.3 DELETE procedure . 105

5.4 Invoking the VM using the invocation API . 106

5.5 Special considerations . 106

6 JNI under BS2000 . 107

6.1 The different variants of JNI . 107

6.2 Java data types in C . 108
6.2.1 Whole numbers . 109
6.2.2 Floating point numbers . 109
6.2.3 Strings . 112

6.3 Dynamic loading of native methods . 115
6.3.1 Shared libraries in Unix systems . 116

Contents

 JENV V8.1A

6.3.2 Shared libraries in BS2000 . 117
6.3.3 Creation of shared objects . 119
6.3.4 Use of shared objects from Java . 121

6.4 Invocation API . 121
6.4.1 Compiling the C and C++ sources . 122
6.4.2 Linking C and C++ applications with Java and Green Threads 122

6.5 Examples . 124
6.5.1 Implementation of a native method in C . 124
6.5.2 Implementation of a native method in C++ . 128
6.5.3 Use of Java from a C application . 129
6.5.4 Use of Java from a C++ application . 133

7 JCI - Invocation API for COBOL . 137

7.1 Compiling the COBOL source codes . 137
7.1.1 Assigning the JCI-COPY library . 137
7.1.2 Required options/directives . 138

7.2 Linking COBOL applications with Java . 139

7.3 Processing COBOL applications with Java . 139

7.4 Characters and strings . 140

7.5 Floating point numbers . 141

7.6 Object references . 142

7.7 Java handle . 142

7.8 Return code in special register RETURN-CODE 142

7.9 Arguments and event values of Java methods 143

7.10 Exceptions . 144

7.11 COPY elements . 145
7.11.1 JCI-CONST - Definition of constants . 145
7.11.2 JCI-TYPEDEFS - Type definitions . 146
7.11.3 JCI-VMOPT - Structure for transferring options . 147
7.11.4 JCI-METHODARGS - Function arguments . 147
7.11.5 JCI-METHODRES - Function result . 149

7.12 Functions . 151
7.12.1 Starting and terminating the Java VM . 151
7.12.1.1 JCI_CreateJavaVM . 151
7.12.1.2 JCI_DestroyJavaVM . 153

Contents

JENV V8.1A

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
p

ile
r\

JE
N

V
\V

8
.1

A
\H

B
_e

n\
je

n
v.

iv
z

7.12.2 Classes and methods . 155
7.12.2.1 JCI_FindClass . 155
7.12.2.2 JCI_GetStaticMethodID . 156
7.12.2.3 JCI_CallStaticMethod . 159
7.12.2.4 JCI_GetMethodID . 161
7.12.2.5 JCI_CallMethod . 162
7.12.2.6 JCI_CallNonvirtualMethod . 164
7.12.3 Object references . 165
7.12.3.1 JCI_DeleteLocalRef . 165
7.12.3.2 JCI_NewLocalRef . 166
7.12.4 Objects . 167
7.12.4.1 JCI_NewObject . 167
7.12.4.2 JCI_GetObjectClass . 170
7.12.4.3 JCI_IsInstanceOf . 171
7.12.4.4 JCI_IsSameObject . 172
7.12.5 Fields . 173
7.12.5.1 JCI_GetStaticFieldID . 173
7.12.5.2 JCI_GetStaticField . 174
7.12.5.3 JCI_SetStaticField . 176
7.12.5.4 JCI_GetFieldID . 177
7.12.5.5 JCI_GetField . 178
7.12.5.6 JCI_SetField . 179
7.12.6 Strings . 180
7.12.6.1 JCI_NewString . 180
7.12.6.2 JCI_GetStringLength . 181
7.12.6.3 JCI_GetString . 182
7.12.7 Arrays . 185
7.12.7.1 JCI_GetArrayLength . 185
7.12.7.2 JCI_NewObjectArray . 186
7.12.7.3 JCI_GetObjectArrayElement . 189
7.12.7.4 JCI_SetObjectArrayElement . 191
7.12.7.5 JCI_NewArray . 193
7.12.7.6 JCI_GetArray . 194
7.12.7.7 JCI_SetArray . 197
7.12.8 Exceptions . 199
7.12.8.1 JCI_ExceptionCheck . 199
7.12.8.2 JCI_ExceptionOccurred . 199
7.12.8.3 JCI_ExceptionDescribe . 200
7.12.8.4 JCI_ExceptionClear . 200
7.12.9 Other functions . 202
7.12.9.1 JCI_GetVersion . 202
7.12.9.2 JCI_GetErrorInformation . 202

7.13 Examples . 204

Contents

 JENV V8.1A

7.13.1 Java class . 204
7.13.2 Compiling the Java code . 204
7.13.3 COBOL program . 204
7.13.4 Compiling the COBOL program in POSIX . 208
7.13.5 Linking the COBOL program in POSIX . 208
7.13.6 Processing of the COBOL program in POSIX . 208
7.13.7 Compiling the COBOL program under the BS2000 command line interface 209
7.13.8 Linking the COBOL program under the BS2000 command line interface 209
7.13.9 Processing of the COBOL program under the BS2000 command line interface . . . 210

8 Commands for BS2000 . 211

8.1 mk_shobj . 212

8.2 pr_shobj . 214

8.3 java . 215

8.4 native2ascii . 217

8.5 jconsole . 218

8.6 jdb . 218

8.7 keytool . 219

8.8 xjc . 219

9 Appendix: Compatibility with earlier versions and migration 221

9.1 Binary compatibility . 221

9.2 Source compatibility . 221

9.3 Incompatibilities . 222

9.4 Migration . 222

Related publications . 223

Index . 229

JENV V8.1A 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
1

1 Introduction

This documentation for the BS2000 Environment For Java™ (JENV) explains the main
points of calling Java commands insofar as they differ from Oracle’s original description. It
also describes the special features which arise from the conversion from ASCII to EBCDIC,
and from working with the Java Native Interface (JNI) within the context of JENV V8.1A.
JENV V8.1A is an implementation of the “Java Platform, Standard Edition” (Java SE™)
based on OpenJDK 8 for BS2000 with the full name “BS2000 Environment for Java™”
V8.1A.

The product includes a runtime environment (JRE) that complies with the relevant specifi-
cations:

– „The Java Language and Virtual Machine Specifications, Java SE 8“
http://docs.oracle.com/javase/specs/

– the version specific API specification
„Java™ Platform, Standard Edition 8 API Specification“
http://docs.oracle.com/javase/8/docs/api/

The product also includes a software development kit (JDK) with a range of development
tools. These can be used to develop applications or applets that comply with the above API
specification.

JENV V8.1A supports all features of OpenJDK with the following exceptions:
– Audio-Features
– JDGA (Java Direct Graphic Access)
– Class Data Sharing.

JENV V8.1A also includes font files from the DejaVu Fonts Package.

The only VM technology used is the HotSpot client VM.

The OpenJDK demo programs are not contained in the product.

Optimized variant for S and SQ systems

Optimized platform-dependent variants are provided for S and SQ systems. If required, the
/390 variant of JENV can also be installed and used on SQ systems.

http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/8/docs/api/

Objectives and target groups of this manual Introduction

10 JENV V8.1A

1.1 Objectives and target groups of this manual

The documentation is intended for all those who wish to use Java™ for development work
and/or in their system environment.

1.2 Summary of contents

Only the special BS2000 features and the special BS2000 parts are described in this
manual. Knowledge of the original description of Oracle is a requirement.

Conversion from ASCII to EBCDIC

Java is a product which was developed in an ASCII world (Unix systems and Windows
systems). In an operating system based on EBCDIC code, therefore, you will notice a
number of peculiarities when working with code sets, localized streams, print streams, and
standard streams, for example. These peculiarities are described in this documentation.

JNI under BS2000

This documentation also describes a number of special features that you as a user of Java
Native Interfaces (JNIs) in BS2000 must take into consideration, such as the use of Java
data types in C and the dynamic loading of native methods.

Introduction Summary of contents

JENV V8.1A 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
1

Contents of the documentation

This manual has the following contents:

– The chapter “Environment variables” contains a description of the file structure, how to
use the classpath and the environment variables.

– The chapter “Conversion from ASCII to EBCDIC” describes the special issues that
need to be taken into account as a result of the different code set used by BS2000
(EBCDIC).

– The chapter “The Java package JRIO” describes the interfaces and the implementa-
tions of JRIO.

– The chapter “Invoking the VM from the BS2000 command interface” describes the
procedures INITIALIZE, DELETE and START.

– The chapter “JNI under BS2000” explains the special issues that users of Java Native
Interfaces (JNI) must take into account in BS2000.

– The chapter “JCI - Invocation API for COBOL” describes the particularities, that a user
of the Java-COBOL-Interface (JCI) in BS2000 must observe.

– The chapter “Commands for BS2000” describes the mk_shobj and pr_shobj commands
that have been additionally implemented in JENV and the commands whose
description deviates from that in “JDK Tools and Utilities" [11].

– The chapter “Appendix: Compatibility with earlier versions and migration” describes
incompatibilities between JENV V8.1A and predecessor versions and it describes how
to migrate from earlier versions to JENV V8.1A.

Changes since the last edition of the manual Introduction

12 JENV V8.1A

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.

The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows
the user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

1.3 Changes since the last edition of the manual

The changes in this manual compared to the manual for JENV V8.0A are the result of the
following major innovations:

● Switch to OpenJDK
Only the special BS2000 features and the special BS2000 parts are described in this
manual. Otherwise, you are referred to the original descriptions of Oracle.

● Introduction of the new interface “JCI - Invocation-API for COBOL”
This is described in a separate chapter.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Introduction Notational conventions

JENV V8.1A 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
1

1.4 Notational conventions

This documentation uses the following notational conventions:

1.4.1 Description of commands

The description of the commands keeps - where possible - to a fixed framework:

Syntax
Shows the command syntax.

Description
Meaning, function, and mode of operation of the command. Where necessary, an
explanation of the prerequisites or conditions to be adhered to is provided.

Options
Description of the relevant command line options.

See also
Further sources of information relating to the command described.

Syntax representation

The metasyntax used has the following meaning:

Bold characters
Constants. Bold characters must be entered exactly as shown.

Normal characters
Variables. These strings represent real specifications that you enter or select.

Italics
Variables in options, which you have to replace with real specifications.

 []
Options. Arguments in square brackets are optional. The square brackets
themselves must not be entered.

 ...
The previous expression can be repeated.

{ | }
Selection option. Chose precisely one of the expressions separated by vertical
lines. The braces themselves must not be entered.

Further information and sources Introduction

14 JENV V8.1A

1.4.2 Names of files, commands and programs

Names of files, commands, and programs etc. are shown in the text in italics. If variables
occur, they are placed in <angle> brackets.

1.4.3 Description of execution sequences

Activities are subdivided into individual steps:

Ê Step which is part of the overall operating sequence. This is where you enter a
command or perform an action.

1.5 Further information and sources

You will find further information about Java™

– in the chapter “Related publications” on page 223

– under the Web page with the URL
http://www.fujitsu.com/fts/products/computing/servers/bs2000/software/programming/javabs2
000.html

1.6 License regulations

Since V8.1A JENV is Open Source Software.
JENV is based on a port of OpenJDK 8.
All relevant license information can be found in

SYSDOC.JENV.081.OSS

oder on the internet at

http://docs.ts.fujitsu.com/dl.aspx?id=5a522414-b320-41ca-94ca-6b5e8bb23c85.

http://www.fujitsu.com/fts/products/computing/servers/bs2000/software/programming/javabs2000.html
http://www.fujitsu.com/fts/products/computing/servers/bs2000/software/programming/javabs2000.html
http://www.fujitsu.com/fts/products/computing/servers/bs2000/software/programming/javabs2000.html
http://docs.ts.fujitsu.com/dl.aspx?id=5a522414-b320-41ca-94ca-6b5e8bb23c85

JENV V8.1A 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
2

2 Environment variables

This section describes the following environment variables:

– CLASSPATH

– JAVA_HOME

– JENV_VMTYPE

– JENV_SYSHSI

– LD_LIBRARY_PATH

CLASSPATH

The syntactical structure of the CLASSPATH environment variable corresponds to that of the
PATH environment variable and describes the directories and JAR and ZIP archives in
which the user classes are searched for.

When using the java commands and tools, users must only define this environment variable
so that their own classes are found. If the environment variable is not set, the search path
for user classes is set to the current directory (except in the case of appletviewer).

Alternatively, the -classpath option can also be used for the JAVA interpreters to define the
path to the user classes.

JAVA_HOME

The environment variable JAVA_HOME describes the installation location of the JAVA
runtime environment. It is only needed for application programs which access JAVA using
the invocation API.

I The installation location of the product is not identical to the installation location of
the runtime environment. The runtime environment is present in subdirectory jre of
the product installation.

For a standard installation JAVA_HOME is therefore to be set to
/opt/java/jdk1.8.0_<nn>/jre where <nn> stands for the current patch level. Refer to
the Release Notice for the currently valid name

Environment variables

16 JENV V8.1A

The Java tools use their own mechanisms to determine their installation location. This
environment variable should thus no be set if the Java Interpreter and the other Java tools
are to be used.

JENV_VMTYPE

For user programs which utilize the invocation API no interface exists to select the VM for
processing. This environment variable can be used to request a special VM for such
programs. The following values are permitted:

client
Selection of the HotSpot™ client VM

If the variable is not set, the default applies (see section “Options for selecting the
HotSpot™ VM type” on page 215). However, because only one VM implementation is
currently available, this variable is not needed.

The Java tools do not use this environment variable but evaluate the corresponding
command line options.

JENV_SYSHSI

The environment variable JENV_SYSHSI specifies the HSI variant to be used for the VM
when calling the java command (siehe section “java” on page 215). The following values are
possible:

s390
The S390 variant of JENV is used (if available).

x86
The X86 variant of JENV is used (if available).

If you don’t specify the variable, the default value is used, as desribed in section “Options
for selecting the HSI variant” on page 215. In case you explicitly specify the variant in the
java command, this value precedes the environment variable.

LD_LIBRARY_PATH

The environment variable LD_LIBRARY_PATH describes the directories in which a search
will be made for “Shared Objects” with the user’s native methods. In its syntactical structure
it corresponds to the environment variable PATH.

Other mechanisms are used for the search for native methods of Java implementation. With
applications that use the invocation API, they are found using JAVA_HOME for example.

JENV V8.1A 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
3

3 Conversion from ASCII to EBCDIC

The Java SE JDK was developed in an ASCII environment (Unix systems and Windows
systems). Since the BS2000 code set is quite different (EBCDIC), therefore, you will notice
a number of peculiarities which are described below.

3.1 Code sets

In ASCII-based operating systems, the partial identity between ASCII and Unicode means
that it is not always necessary to distinguish between text and binary input/output. However,
in BS2000 (and other non-ASCII-based operating systems, such as OS/390), this
distinction is extremely important. If this is not taken into consideration in Java programs,
not only will they not be portable, but they will have to be modified if they are to function
correctly on BS2000.

Java works internally in Unicode. For communication with the outside world Java can use
any code. For the input/output of text data, the new classes
InputStreamReader and OutputStreamWriter, which perform the appropriate code conversions,
have been introduced in JDK 1.1. The standard code conversion which is used here is
determined by the value of the system property file.encoding. By default this is set to
OSD_EBCDIC_DF04_1. When Java is called, this setting can be changed either globally
via -Dfile.encoding=XXX or else locally through specification of an appropriate code set
during instantiation of the classes InputStreamReader and OutputStreamWriter.

Code sets Conversion from ASCII to EBCDIC

18 JENV V8.1A

Supported code sets

The following code sets are additionally supported in BS2000 and accordingly are not
available in other Java implementations:

OSD_EBCDIC_DF04_1
Default code set in BS2000. It is the same as the EBCDIC.DF.04-1 character set,
except that the EBCDIC characters x'15' and x'25' are swapped, so that x'15' is
interpreted as the character for newline. This is in keeping with current practice in
POSIX and in C programming in BS2000.

This character set is compatible with the ISO 8859-1 character set, the default
character set used in Unix systems. “Compatible” here means that it contains the
same character set and can therefore be mapped 1:1, it is just that encoding is
different.

OSD_EBCDIC_DF03_IRV
EBCDIC.DF.03.IRV (international reference version) character set, in which, once
again, x'15' is the character for newline.

OSD_EBCDIC_DF04_15
This is the same as the EBCDIC.DF.04_15 character set, except that the EBCDIC
characters x'15' and x'25' are swapped, so that x'15' is interpreted as the character
for newline. This is in keeping with current practice in POSIX and in C programming
in BS2000.
This character set is fully compatible with the ISO 8859-15 character set.
“Compatible” here means that it contains the same character set and can therefore
be mapped 1:1, it is just that encoding is different.

Specification of the code set

The commands javac, javadoc, appletviewer/ and native2ascii support the
-encoding option, which allows you to specify the character set for the files to be accessed
by the command.

Conversion from ASCII to EBCDIC Localized streams

JENV V8.1A 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
3

3.2 Localized streams

For JENV, as for OS/390, various new classes and methods have been implemented for
localized streams, with the result that a number of ASCII/EBCDIC problems have been
resolved. As an applications programmer, however, you are advised to restrict yourself to
the InputStreamReader and OutputStreamWriter classes defined by Oracle America Inc. for
inputting and outputting text.

The new classes implemented for this purpose are as follows

– com.fujitsu.ts.java.io.LocalizedInputStream
– com.fujitsu.ts.java.io.LocalizedOutputStream
– com.fujitsu.ts.java.io.LocalizedPrintStream

These classes cannot be instantiated, but they do offer a static method localize(), which
converts a specified stream into a “Localized Stream” if the specified stream is based on a
file.

These methods are:

– com.fujitsu.ts.java.io.LocalizedInputStream.localize(InputStream)
– com.fujitsu.ts.java.io.LocalizedOutputStream.localize(OutputStream)
– com.fujitsu.ts.java.io.LocalizedPrintStream.localize(OutputStream)

These methods now actually return an InputStream or OutputStream in BS2000 for which the
behavior is modified in relation to the original stream in such a way that the entire I/O via
this steam is subject to code set conversion from or into the implemented standard code set
(value of system property file.encoding). However this only occurs for streams which are
based on files. These methods have no effect on other streams (e.g. ByteArray).

These streams modified in this way thus behave in a similar way to the objects of the new
classes InputStreamReader and OutputStreamWriter, but in contrast to them, remain of data
type InputStream or OutputStream, and can thus be used wherever only objects of this type
are permitted.

There are in-built precautionary features against double conversions. Thus, a stream
cannot be “Localized” twice. If a getLocalized... method is called for a stream which has
already been localized, that stream is simply returned. An instance of InputStreamReader or
OutputStreamWriter can also be formed from a “Localized Stream” without any danger of this
causing double conversions.

This JENV-specific extension can be deactivated by setting the system property
java.localized.streams to the value False. This can be achieved if Java is called via -
Djava.localized.streams=False.

Property files Conversion from ASCII to EBCDIC

20 JENV V8.1A

3.3 Property files

 Property files can be written and read with the methods store() and load() in the class
java.util.Properties. If the specified streams are file streams, it is assumed in BS2000 that
these files are read or created in the default code set (value of system property
file.encoding).

This does not happen if this JENV extension for the “Localized Streams” has been deacti-
vated (see section “Localized streams” on page 19). Property files are then always written
or expected in the ISO8859-1 encoding (i.e. ASCII encoding).

This behavior is compatible with that on IBM systems.

3.4 Policy files

Policy files used by the default policy implementation must be coded in
UTF-8 code set. Consequently, policytool processes and generates only UTF-8 coded
policy files. Because the first 127 characters of the UTF-8 code set are identical to those of
the ASCII code set, users can also generate a file in this code set by first creating the file
with the editor in the normal native code set (OSD_EBCDIC_DF04_1) and then using the
native2ascii tool to convert the file to the ASCII code set.

V CAUTION!

When the new file is generated, native2ascii does not transfer the access rights of the
old file. If necessary, these must be changed using chmod.

As of version JENV V1.4B the system property sun.security.policy.utf8 is provided which you
can use for policy files with native codeset. sun.security.policy.utf8 can have the values true
or false. You therefore can use policy files in native encoding with the following call:

java -Dsun.security.policy.utf8=false...

We however recommend to use UTF-8 encoded policy files.

Conversion from ASCII to EBCDIC PrintStream

JENV V8.1A 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
3

3.5 PrintStream

The output streams of type java.io.PrintStream are not modified as the default option in the
BS2000 port, but are mentioned here because they can cause special difficulties.

Methods of the java.io.PrintStream class

In accordance with “The Java™ Platform, Standard Edition 8 API Specification” [12]
some methods in the class java.io.PrintStream convert their outputs into the default code set
(value of the system property file.encoding), whereas others do not. With this class it is
therefore extremely easy to write programs which apparently function in an ASCII world but
do not deliver the expected results in BS2000. The following simple example will illustrate
this point:

Example

...
PrintStream out = new PrintStream(new

FileOutputStream("test"));
...
out.print("This is a text.");
out.write('\n');
...

In an ASCII-based system the content of file test will then be a line ending with newline and
containing the above text. In BS2000 the file would contain an EBCDIC-encoded version of
the text, however the line would not end with newline but would contain a “smudge” as the
last character.

This example shows clearly how important it is for the input/output of text in a new imple-
mentation of Java code to use the new read and write classes (i.e. InputStreamReader and
OutputStreamWriter).

In BS2000 an additional option is available which changes the behavior of
PrintStream so that no conversion is performed by any method any more. This can be
achieved if Java is called via -Djava.localized.print=False. With this setting, the class
PrintStream no longer behaves in accordance with the
specification; however, this can actually be useful for existing applications.

For the sake of completeness, mention should be made of the fact that the use of “Localized
Streams” as the basis for PrintStreams or the localization of a PrintStream does not result
in multiple conversions. However, for PrintStreams handled in this way it is of course then
the case that all methods convert.

PrintStream Conversion from ASCII to EBCDIC

22 JENV V8.1A

Interaction between the readLine() and println() methods

It is often assumed that data written with println() to a PrintStream could be reread by the
readLine() methods of some InputStream classes. In BS2000, however, this assumption may
result in an error. This is due to the fact that although data will be converted to the native
code set (OSD_EBCDIC_DF04_1 in BS2000) during output to a PrintStream, this is not
carried out by any of the readLine() methods of the InputStream classes during a read
operation. Instead, you should use the new Reader and Writer classes or use “Localized
Streams” for input.

Conversion from ASCII to EBCDIC Standard streams

JENV V8.1A 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
3

3.6 Standard streams

The class java.lang.System provides three standard streams in, out, and err. By analogy to
the solution in OS/390, these standard streams are “Localized Streams” in JENV. This
means that normal text input and output is possible in BS2000 via these streams.

This can be set selectively for each of the three streams if the following system properties
are defined when the program is started:

System.in -Djava.localized.in=...
System.out -Djava.localized.out=...
System.err -Djava.localized.err=...

These streams are not modified if the extension for “Localized Streams” is deactivated (-
Djava.localized.streams=False). Setting or amending these system properties later on has no
effect on the currently defined standard streams either.

The following values can be specified:

Default
The original streams (which are set when the program is started) are localized. This
is the default value.

Full Both the original streams and also the standard streams which are set later on using
setIn() etc. are localized.

None
 The standard streams are not modified.

If an application uses the methods setIn(), setOut(), or setErr() in order to assign its own
streams, there are two options for guaranteeing correct operation: either you must ensure
that all standard streams are “Localized Streams” (i.e. text streams), or see to it that a clear
distinction is made between text and binary input/output when using standard streams. The
following example shows both options.

The second option is the preferred solution, and should be applied as a matter of principle
when working with standard streams. However, the first option may be necessary if you are
working with existing Java classes which have not been implemented in a portable fashion.

Standard streams Conversion from ASCII to EBCDIC

24 JENV V8.1A

Example

The following code (similar examples of which can be found in the JavaSoft demo
programs) would lead to a binary input/output via these streams, with the result that the
output files would be unreadable or the input might be misinterpreted if text input/output
was really intended.

...
public static String read_write() {

StringBuffer buf = new StringBuffer(80);
int c;
try {

while ((c = System.in.read()) != -1) {
char ch = (char) c;
System.out.write(c);
if (ch == '\n')

break;
buf.append(ch);

}
} catch (IOException e) {

System.err.println(e);
}

return (buf.toString());
}

...
System.setIn(new FileInputStream("myinputfile")); System.setOut(new
PrintStream(new FileOutputStream("myoutputfile")));
...
line = read_write();
...

The following program fragment shows the first option, where all standard streams are
“Localized Streams” (i.e. text streams). This solution would have to be implemented by the
calling program.

...
System.setIn(com.fujitsu.ts.java.io.LocalizedInputStream.
localize (new FileInputStream("myinputfile")));
System.setOut(com.fujitsu.ts.java.io.LocalizedPrintStream.
localize (new FileOutputStream("myoutputfile")));
...
line = read_write();
...

Conversion from ASCII to EBCDIC Standard streams

JENV V8.1A 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
3

The code fragment for the second solution could look like this and would have to be imple-
mented by the user of the standard streams. It involves making a clear distinction between
text and binary input/output when using standard streams.

...
public static String read_write() {

StringBuffer buf = new StringBuffer(80);
int c;
InputStreamReader in = new InputStreamReader(System.in);
OutputStreamWriter out = new OutputStreamWriter(System.out);
try {

while ((c = in.read()) != -1) {
char ch = (char) c;
out.write(c);
if (ch == '\n')

break;
buf.append(ch);
}

} catch (IOException e) {
System.err.println(e);
}

return (buf.toString());
}
...

JAR archives Conversion from ASCII to EBCDIC

26 JENV V8.1A

3.7 JAR archives

In the context of the problems associated with ASCII/EBCDIC conversion, JAR archives
can create special difficulties because they also constitute an exchange format between
different environments (systems). You can pack applets including all their resources into
JAR archives and load them over the network by a browser. Java offers corresponding
methods for accessing the resources packed in this way (see java.util.ResourceBundle).

The typical resources here often also include property files (e.g. with error messages). To
ensure interchangeability, property files which are stored in JAR archives must therefore
always be in ISO8859-1 encoding i.e. they must previously be converted into this code set
by the creator of such a JAR archive in BS2000.

If the user introduces a manifest file of his/her own into the JAR archive
(option -m):

– The manifest file is generated by the jar command itself, this occurs automatically using
ISO8859-1 encoding.

– If the user creates the manifest file himself, it must first be converted into the ISO8859-
1 code set.

The methods for accessing these resources in JAR archives are designed so that they also
expect ASCII input in BS2000.

To support the code conversion of files, the command native2ascii is provided.

3.8 Program arguments

The call arguments which are transferred to the method main() of a Java program are
automatically converted from EBCDIC to Unicode.

JENV V8.1A 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4 The Java package JRIO

The JRIO package is a collection of Java classes to permit direct handling of files with a
record or block structure and for record- or block-oriented input/output to such files.
Naturally these files include above all the BS2000 files of DMS/DVS.

In contrast to normal Java I/O (java.io package), these interfaces also allow operations which
cannot be expressed with the given Java IO classes (which we cannot extend).

The interfaces and implementations of JRIO are contained in the proprietary package
com.fujitsu.ts.jrio and further subpackages. These will not be available in other Java imple-
mentations. However, as far as it makes sense technically, they are very similar to the corre-
sponding IBM package com.ibm.recordio.

4.1 Concepts

The implementation of JRIO is geared to extensibility. The sections below describe these
concepts and their realization.

4.1.1 File systems

Unlike with the normal Java IO classes, various file systems are supported by concept
under JRIO (see section “RecordFile” on page 42). The following file systems will supported
in future versions:

– the BS2000 file system (referred to as DMS in the following)

– the hierarchical file system POSIX (referred to as UFS in the following)

– the BS2000 library file system (referred to as LMS in the following)

In this version only DMS will be supported initially.

Each of the file systems has its own syntax for specifying file names. When a RecordFile
object is created this is associated uniquely and permanently with one file system. This
allocation can be specified either implicitly or explicitly by the user and cannot be modified
later. The allocation then determines the semantics of most of the methods of the RecordFile
object.

Concepts The Java package JRIO

28 JENV V8.1A

4.1.1.1 File names in the DMS file system

File names in the DMS file system are formed in accordance with this file system’s rules
(see manual “Introductory Guide to DMS” [8]. Partially qualified file names and wildcard
specifications are not supported at any of the JRIO interfaces with the exception of the
specifications permissible as a directory and the file identifier in policy files (see also section
“Security” on page 34).

Only the specification of a lone catalog ID (Catid) which is enclosed in colons, a user ID
(Userid) with a leading dollar character and a closing period or a combination of the two are
regarded as directories in the DMS file system. The customary special way of specifying
the system standard ID is also permitted. Consequently only the following specifications are
possible for directories in DMS:

:catid:
$userid.
:catid:$userid.
$.
:catid:$.

As DMS is a flat file system and actually has no directory concept, directories cannot be set
up or deleted with the interfaces provided here. Neither do they have attributes such as
modification date or a size. Only the methods for listing directory contents are practical for
the above-mentioned artificial directories of DMS.

As in the DMS interfaces, the so-called logical system files (SYSFILE environment) are not
supported. In addition, JRIO does not support EAM files, either.

Normalized path names

When generating a RecordFile object and at locations where the user can specify a file or
path name at the JRIO interfaces, not only the syntax and semantics check is performed,
but also what is known as normalization. For DMS files this normalization of the name
means that any lower-case letters contained in the name are converted to upper-case
letters. In addition, file names which contain no periods but begin with a dollar character ($)
are converted into names with a leading system standard ID in accordance with the DMS
conventions:

Example

$EDT => $.EDT

The Java package JRIO Concepts

JENV V8.1A 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Absolute path names

A path name in DMS is regarded as absolute if it begins with a catalog ID. Thus when an
absolute path name is generated this means that if a catalog ID is not already contained in
the name, the default catalog ID of any user ID specified or of the calling program is added
(see section “RecordFile” on page 42).

Canonical path names

A path name in DMS is canonical if it consists only of a catalog ID or contains both a catalog
ID and a user ID. Thus when a canonical path name is generated, this means that (if it is
not already included) the default catalog ID of any specified user ID or that of the calling
program (see section “RecordFile” on page 42).

4.1.1.2 File names in the UFS file system

The same rules apply for the syntactical structure and the semantic definition as for the
java.io.File class. The terms „“absolute path name”, “canonical path name” and “normalized
path name” are also used in the same way at these interfaces.

4.1.2 File types

The following file types are currently supported in the DMS file system:

– SAM files with fixed or variable record length.

– ISAM files with fixed or variable record length.

– PAM files.

The UFS file system does not distinguish between file types. In particular, there are no
defined file types with record/block structure. Only the content of a file and the processing
programs determine what can happen to it or what it is intended for (see section “Access
methods” on page 30).

As with java.io.File, only regular files and directories are supported under JRIO.

Concepts The Java package JRIO

30 JENV V8.1A

4.1.3 Access methods

The term access method is normally used to refer to a set of interfaces which permit access
to data from files and thus offer a particular logical view of this data. Generally this logical
view will differ to a greater or lesser extent from the physical storage in the file (the data
repository). Here access methods which enable record-oriented processing of the data in a
file are of interest; the logical view is thus restricted. The access methods considered here
thus implement the following:

– Definition of a record and mapping of this logical view of the data onto a physical
storage form (file type).

– Definition of the order of the records from the viewpoint of the user or program; this
order need not necessarily have anything to do with the physical order of the data in the
file.

– Interfaces to read and write records in their entirety.

Elementary access methods are a special type of access method. These are distinguished
by the fact that the file system (in which they are effective) knows of them and, for example,
a file and access method can already be assigned to each other via file types. Such access
methods are provided in DMS, albeit not reversibly unique. Other file systems (for example
UFS) know only a single elementary access method which generally offers the raw physical
view of the data and logically also has no content-oriented file types.

However, there can also be any further access method desired, these generally being
implemented using one of the elementary access methods and offering further logical views
of the data. These access methods have one problem in common. As the file system has
no knowledge of them, it is not possible to tell from a file whether and with which of these
access methods it can be successfully processed. Interpretation errors will thus only be
recognized during processing, if at all.

In UFS there is no elementary access method which offers record-oriented processing.
However, the following access methods, for example, are conceivable:

– TEXT - Access method which regards text files as record-structured files with records
of variable and unlimited length. The physical record separator would be the new line
character, which would be masked out in the logical view.

– CISAM - ISAM-type access method for Unix file systems.

In DMS there are several elementary access methods, of which the following are supported
directly in JRIO:

– SAM - sequential access method

– ISAM - indexed-sequential access method

– UPAM - block-oriented access method

The Java package JRIO Concepts

JENV V8.1A 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

In DMS, too, there are access methods which are based on one of the elementary access
methods and supply a different logical view. A prominent example of these is an access
method based on ISAM which is used by various tools (editors, compilers, …) to render
ISAM files usable for normal texts. For this purpose, ISAM files with standard keys are used.
In the logical view these keys (which in ISAM are a part of the record) are masked out, and
are generated by the access method when records are written.

In the JRIO interfaces you always will encounter the access methods when you must take
a decision as to how access to a file is to be implemented.

Currently JRIO only supports the DMS file system, and in this only the access methods
SAM, ISAM and UPAM. However, the JRIO architecture will in future permit extension by
the addition of further file systems without the user interfaces needing to be modified.

4.1.4 Access types

The starting point for designing the JRIO interfaces is an abstract view of the type and
manner of data access (of the sort that is also taken as a basis in the IBM implementation)
which is independent of file systems and access methods.

From the viewpoint of the application, the type and manner of data access can then be
classified in the following access types:

– Sequential access

Read access to records/pages takes place sequentially. Write access extends the file
at the end.

– Random access

In a file processed using this access type any individual records be positioned to before
reading or writing.

– Keyed access

In a file processed using this access type, individual records can be selected for reading
and/or writing by specifying keys.

Concepts The Java package JRIO

32 JENV V8.1A

4.1.5 Shared update processing

By means of locks, JRIO permits the simultaneous, synchronized processing of a file by
multiple applications (shared update processing) if this is supported by the particular file
system and access method.

This type of processing must be explicitly set by the application when the file is opened. It
ensures that the processing steps (e.g. write, delete or a combination of read and write) are
protected by locks and cannot be interfered with by competing applications. Shared update
processing may be subject to file system-specific restrictions. For example, it may not be
permitted for certain file types or open modes, or it may not support certain actions such as
increasing or reducing the size of files.

The lock mechanism employed by JRIO in shared update processing is:

– record-oriented,
– implicit,
– deadlock secure.

Record-oriented means that logically an application locks or releases records only within a
file. However, certain file systems or access methods can physically implement a larger lock
granularity. This is not visible to your own applications but competing applications may
encounter a lock when they attempt to access a record within the larger lock granularity
although the requested record itself is logically locked.

Implicit means that records are implicitly locked when they are read, written or deleted, and
that the lock is implicitly released after the write or delete operation has been completed.
Methods are also offered for the explicit release of records that are locked for reading but
are not to be written.

Deadlock security is achieved by ensuring that an application can only ever logically lock
one record per file. Setting a lock for an operation leads implicitly to the release of any other
lock for another record. Some file systems and access methods are also able to implement
deadlock security beyond file boundaries; in other words, only one lock per application is
permitted - regardless of in which file.

In shared update processing JRIO allows the behavior of the application to be controlled in the
event of access conflicts. The application can demand immediate transfer of control
(NO_WAIT parameter). In the event of access conflicts, a corresponding exception
(RecordLockedException) is then generated or the application can wait for granting of the lock
as a thread (THREAD_WAIT parameter) or at the system interface (APPLICATION_WAIT
parameter). The wait time is unlimited in both cases, i.e. the application waits until a lock is
received or until the application itself is terminated. Waiting as a thread has the advantage
that other threads of the application are not blocked. However, in extreme situations it can
happen that the lock is received by a competing application at the very moment that the

The Java package JRIO Concepts

JENV V8.1A 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

waiting application makes a renewed attempt although the lock was available in the
meantime. Not all file systems offer all wait variants. If, however, a variant is offered, the
semantics described then apply.

4.1.6 Options and restrictions relating to access types in DMS

Not all access types are possible with all access methods/file types. The following table
provides an overview of the relationship between access types and access methods/file
types:

Access type SAM access method ISAM access method UPAM access method

Sequential Reading/writing for SAM
files.
Physical record sequence.
Shared update processing
is not possible.

Reading/writing for ISAM
files.
Record sequence deter-
mined by primary key.
Shared update processing
is possible for reading or
adding to opened files.

Reading/writing for PAM,
SAM and ISAM files.
Physical block sequence.
Shared update processing
is possible only for PAM
files opened for reading.

Random Reading/writing for SAM
files.
When records of variable
length are overwritten, the
record to be written must
be of the same length as
the record to be
overwritten.
Shared update processing
is not possible.

Not possible. Reading/writing for PAM,
SAM and ISAM files.
Shared update processing
is possible only for PAM
files opened as “INPUT” or
“INOUT”.

Keyed Not possible. Reading/writing for ISAM
files.
Shared update processing
is possible for files opened
as “INPUT” or “INOUT”.
Only the first opening
application may open
“OUTIN”.

Not possible.

Table 1: Overview of the relationship between access types and access methods/file types in
the DMS file system

Concepts The Java package JRIO

34 JENV V8.1A

4.1.7 Drivers

JRIO has a dynamic driver concept that separates both the file system implementations and
the implementations of the various access methods from the JRIO user interfaces. New file
system drivers or access method drivers can be added without user interfaces needing to
be modified.

When an application is started, it is determined dynamically which drivers are available for
file systems and access methods. These are then loaded dynamically as required.
However, the associated interfaces (in particular the driver API) and the configuration
mechanisms are currently not to be made accessible to users and are consequently not
described here.

4.1.8 Security

Applications that use JRIO and run under a Security Manager are started with, for example,
the following command:

java -Djava.security.manager <application-name>

All accesses to files and directories of the supported file systems are initially rejected by the
Security Manager. Access is granted only to files in the UFS directory that contains the
loaded class.

When handled by the Security Manager, UFS files are subject to the same mechanism in
JRIO as offered by java.io. The special features of the DMS file system are therefore
described below.

To allow an application to access certain files and directories of the DMS file system under
the Security Manager, appropriate permissions must first be granted in a policy file. The
mechanism for selecting the valid policy file is no different from the usual method in Java
(see “The Java™ Platform, Standard Edition 8 API Specification” [12]); in particular, the
policy file can also be specified directly:

java -Djava.security.manager
 -Djava.security.policy= <policy-file> <application>

JRIO features two new permissions that can be granted in the policy file:

com.fujitsu.ts.jrio.DMS.FilePermission
com.fujitsu.ts.java.bs2000.SystemInfoPermission

I You can make entries in the policy file using the policytool or any normal editor. In
this manual, the entries are shown as if they were made using an editor.

Note that the policy file must be available in UTF8 coding.

The Java package JRIO Concepts

JENV V8.1A 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

File permission

com.fujitsu.ts.jrio.DMS.FilePermission controls access to files and directories. The syntax of
an entry in the policy file is as follows:

grant [codeBase ... | signedBy ...] {
permission com.fujitsu.ts.jrio.DMS.FilePermission
"file-identifier" , "action-list";

};

The file identifier is either a valid BS2000 directory name1 or a valid BS2000 file name with
or without catalog ID and/or user ID. The last character of the file name may be “ * ”. Access
permission then relates to all files whose name begins with the string preceding “ * ”. In this
case, it need only be possible to complete the name part preceding the “ * ” to form a valid
file name. For catalog and user IDs you can also use “:*:” or “$*.” to grant access for all
catalog IDs or all user IDs. The abbreviation “$.” for the default system ID is permitted but
not the abbreviation “$file” for “$.file”.

If no user ID is explicitly specified, permission relates to files under the user ID of the caller
(who need not be known by name to the application). If no catalog ID is specified,
permission relates to files of the default catalog ID of the corresponding user ID. The string
<<ALL FILES>> permits access to all files and directories. Further details are provided in
the shipped JAVADOC documentation for the com.fujitsu.ts.jrio.DMS.FilePermission class.

The action-list is a comma-separated list of the permitted read, write and delete actions for the
file. If permission to perform the action is not granted in this file or directory, any access
attempt is rejected with a SecurityException. This also applies to information functions such
as list() or listFiles() that require read permission for the underlying directory.

1 i.e. a catalog ID (in the format ":catid:"), a user ID (in the format "$userid.") or a combination of the two (in the format
":catid:$userid.").
Refer to the section “File names in the DMS file system” on page 28.

Concepts The Java package JRIO

36 JENV V8.1A

SystemInfo permission

Within JRIO, com.fujitsu.ts.java.bs2000.SystemInfoPermission is used to control which infor-
mation on the DMS file system the application is allowed to obtain. The syntax is:

grant [codeBase ... | signedBy ...] {
permission com.fujitsu.ts.java.bs2000.SystemInfoPermission
"Name";

};

Name is a value formed from HomePubset, UserName, UserPubset,
DefaultUserName, DefaultUserPubset and ForeignUserPubset or the string
<<ALL INFO>> with which permission is granted for all named data. If the permission is
granted, the application is allowed to determine the corresponding catalog and user IDs via
the getCanonicalPath(), getCanonicalFile(),
getAbsolutePath() and getAbsoluteFile() interfaces of the RecordFile class. Otherwise, any
attempt is rejected with a SecurityException. The names beginning with User... relate to the
ID of the caller, the names beginning with Default... to the default system ID, and the names
beginning with Foreign... to all foreign user IDs. Permission relates only to the interfaces that
provide access to the corresponding file names when completed, but not to actual access
to the files under these catalog or user IDs.

Example

An application is granted access to the file named HUGO under the ID of the caller
although the application does not have permission to determine the ID of the caller:

grant [codeBase ... | signedBy ...] {
permission com.fujitsu.ts.jrio.DMS.FilePermission
"Hugo", "read, write";

};

This setting allows the file to be opened, read and written. However, completing the file
name with, for example, getCanonicalPath(...) is not permitted.

The Java package JRIO API overview

JENV V8.1A 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2 API overview

The public classes which constitute the JRIO interfaces are shown below:

Class Use

Record Represents a record/block

BufferOverflowException This exception is triggered when records are being
read whenever the record object provided by the user
is too small to incorporate the data.

RecordLockedException This exception is triggered in shared update
processing when a record that is locked by another
application is accessed and the user has specified that
the application should not wait for the lock to be
granted.

RecordNotLockedException This exception is triggered in shared update
processing when an attempt is made to access a
record using a method that requires the record to be
locked first but the lock does not yet exist or no longer
exists.

RecordFile Represents a file with record/block structure (see
java.io.File).

RecordFileFilter Interface for implementing user-specific classes which
can be used as filters in the listFiles() method of the
RecordFile class (see java.io.FileFilter).

RecordFilenameFilter Interface for implementing user-specific classes which
can be used as filters in the list() method of the
RecordFile class (see
java.io.FilenameFilter).

AccessParameter Represents the general parameters which are
required for access to a file with record/block structure
when using a particular access method.

DMS/AccessParameterSAM Represents a selection of parameters which are
required for access to a file (in particular generation)
using the SAM access method in DMS.

DMS/AccessParameterISAM Represents a selection of parameters which are
required for access to a file (in particular generation)
using the ISAM access method in DMS.

Table 2: Public classes which constitute the JRIO interfaces

API overview The Java package JRIO

38 JENV V8.1A

DMS/AccessParameterUPAM Represents a selection of parameters which are
required for access to a file (in particular generation)
using the UPAM access method in DMS.

DMS/FilePermission Permits the fine-grained granting of access permis-
sions for files and directories in the DMS file system.
This class is normally used only in the context of
entries in the policy file.

InputRecordStream Abstract base class for FileInputRecordStream and
ArrayInputRecordStream and user-implemented input
classes (see java.io.InputStream).

ArrayInputRecordStream Class for sequential reading of records from an array
of records (see java.io.ByteArrayInputStream).

FileInputRecordStream Represents a file with record/block structure that is
open for sequential reading (see
java.io.FileInputStream).

OutputRecordStream Abstract base class for FileOutputRecordStream and
ArrayOutputRecordStream and user-implemented
output classes (see java.io.OutputStream).

ArrayOutputRecordStream Class for sequential writing of records to an array of
records (see java.io.ByteArrayOutputStream).

FileOutputRecordStream Represents a file with record/block structure that is
open for sequential writing (see
java.io.FileOutputStream).

RandomAccessRecordFile Represents a file with record/block structure that is
open for random access (see
java.io.RandomAccessFile).

KeyedAccessRecordFile Represents a file with record/block structure that is
open for keyed access.

KeyDescriptor Describes a record key of an indexed-sequential file.

DMS/PrimaryKeyDescriptorISAM Describes the primary key of an ISAM file.

DMS/SecondaryKeyDescriptorISAM Describes a secondary key of an ISAM file.

KeyValue Represents the concrete value of a record key.

Class Use

Table 2: Public classes which constitute the JRIO interfaces

The Java package JRIO API overview

JENV V8.1A 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

The sections below describe the most important of the classes from the JRIO package
which are mentioned above, together with their principal and most common methods and
fields. A complete description of the interfaces is contained in the javadoc documentation
provided (please refer to the Installation directory under doc/jrio).

4.2.1 Record

A Record object represents a logical record of a file and consists of a record buffer which
contains the actual data record and the separately administered length of the data within
the record buffer.

The Record class provides methods to access the data in the record buffer and their length,
and to set or modify these. No methods are provided for accessing numerical data fields;
users can implement these themselves on the basis of the methods provided.

A Record object is typically used to store or transfer the data of the record-by-record or page-
by-page access operations to files. It is serializable and can therefore be used for Remote
Method Interfaces (RMI). The Cloneable interface is also implemented.

Positions within a record are counted starting with position 0 (the first data byte of a record
thus has position 0 and so on). A logical data record of a file contains only the user data,
while the data record stored physically in the file can contain additional meta information
(for example record length). Consequently the numbering of record positions for example
at the DMS macro interfaces of BS2000 (these supply the physical record) can differ from
that at the JRIO interfaces (these supply the logical record).

4.2.1.1 Constructors

When a Record object is generated, either an empty record buffer of a required size can be
created or a buffer provided by the user can be used. If this buffer already contains data,
the length of the data can also be transferred.

Typically you should select the size of the buffer so that there will be space in it for the
longest expected record. The Record object can then always be reused for input/output if
the old content is no longer required instead of repeatedly generating new instances.

A Copy constructor is also available which generates a new Record object from the data of
another record. A one-to-one copy of a Record object can be generated with the clone()
method.

API overview The Java package JRIO

40 JENV V8.1A

4.2.1.2 General methods

The getBuffer() method returns the record’s record buffer. You can use this to process or
provide the content with the help of other classes and methods. Note that manipulations on
this record buffer modify the object from which the record buffer originates because this is
not a copy of the data. The current length of the data within the record buffer can be deter-
mined using the getDataLength() method.

A record buffer can be replaced using the setBuffer() methods. If the user’s buffer which is
transferred already contains data, the data length can also be transferred.

With the setDataLength() method users can themselves define the occupancy level of the
record buffer. No check is made to see whether the data in the record buffer is useful.

4.2.1.3 Methods for extracting the data of a record

The getByteData() method enables all the data of a record to be returned in binary format
(as bytes).

The methods of the getStringData() family return all the data of a record interpreted as text
(string).

If no encoding for converting the data to text was specified by the user, the system-
dependent standard encoding (in BS2000 the default value is OSD_EBCDIC_DF04_1) is
used.

4.2.1.4 Methods for extracting the data fields of a record

The various methods of the getByteField() family enable the data of a specified data field
(defined by position and length within the record) to be returned in binary format (as bytes).

The methods of the getStringField() family return the data of a specified data field interpreted
as text (string).

If no encoding for converting the data to text was specified by the user, the system-
dependent standard encoding (in BS2000 the default value is OSD_EBCDIC_DF04_1) is
used.

The getKeyField() method returns, on the basis of a key description, the content of a key
field as key value.

The Java package JRIO API overview

JENV V8.1A 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.1.5 Methods for filling a record with data

The setByteData() methods fill a record completely with binary data (bytes); the old content
is lost in the process. The data length of the record subsequently corresponds exactly to
the length of the data entered.

The methods of the setStringData() family fill a record completely with text data (string). The
data length of the record subsequently corresponds exactly to the length of the data
entered.

If no encoding for converting text to data was specified by the user, the system-dependent
standard encoding (in BS2000 the default value is OSD_EBCDIC_DF04_1) is used.

4.2.1.6 Methods for filling data fields of a record

The various methods of the setByteField() family fill binary data (bytes) into a specified data
field (defined by position and length) of a record.

These methods update the data length if the record was lengthened when the record’s data
fields were filled. If the data is shorter than the selected data field, the rest can optionally be
filled with a filler byte. If the data is longer than the selected data field, the length of the data
transferred into the record buffer is limited to the length of the data field.

The methods of the setStringField() family fill text data (string) into a specified data field. If
no encoding for converting text to data was specified by the user, the system-dependent
standard encoding (in BS2000 the default value is OSD_EBCDIC_DF04_1) is used.

These methods update the data length if the record was lengthened when the record’s data
fields were filled. If the data is shorter than the selected data field, the rest can optionally be
filled with blanks. If the data is longer than the selected data field, the length of the data
transferred into the record buffer is limited to the length of the data field.

The setKeyField() method fills a record’s key field with a concrete key value.

API overview The Java package JRIO

42 JENV V8.1A

4.2.2 RecordFile

For record-oriented input/output, the RecordFile class plays approximately the same role as
the java.io.File class for normal Java I/O. It defines the objects of the basic file system(s), in
other words normally files and directories.

Unlike with the java.io.File class, different file systems are actually supported by the
RecordFile class and not just one. Consequently a RecordFile object always consists of a
path name (file or directory name) and an associated file system (DMS, UFS, …).

Thus there can be objects with the same name, especially in different file systems. In
BS2000 it is perfectly conceivable that a file named HALLO can exist both in UFS (Posix file
system), in DMS (BS2000 file system) and also in LMS (as a member of a PLAM library).
This approach consequently reflects the actual situation in BS2000 better than the
monolithic approach of java.io.File (see section “File systems” on page 27).

The RecordFile class (like java.io.File, too) provides methods and fields for analyzing and
transforming the path name. These may be defined differently for each supported file
system. For these operations it is normally unimportant whether the file system actually
contains a file or directory with the name in question, because recourse is generally not
made to the basic file system.

In addition, the RecordFile class also provides methods for accessing, and possibly
modifying, the attributes of existing files and directories.

Furthermore, with the RecordFile class methods are provided for performing typical file
system operations. These include renaming and deleting existing files and directories,
creating files and directories which do not yet exist, and listing directory contents.

All methods which actually access the file system should be subject to the restrictions of the
active Security Manager and trigger corresponding exceptions when access to the file
system is restricted (see section “Security” on page 34).

In the sections below the particular features relating to the UFS file system are generally
not referred to. In these cases what applies for java.io.File for the Unix file system also
applies for the UFS file system.

The Java package JRIO API overview

JENV V8.1A 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.2.1 Basic structure of a file name

Generally a path name in all of the file systems supported comprises a file system prefix (if
present) and no name part, or a sequence of one or more name parts which may be
separated by separator characters. Each name part in a path name, except the last one,
designates a directory. The last name part can designate either a directory or a file. The
empty path name has no prefix and an empty sequence of name parts. Whether an empty
path name is permitted and what the semantics of the path name is depends on the file
system

The file system prefix or prefixes are defined on a file-system-specific basis. It is
guaranteed that all root directories returned by listRoots() are permissible file system
prefixes. In the DMS file system each catalog ID is interpreted as a file system prefix in this
sense, regardless of whether this catalog ID exists in the file system, and in the UFS file
system the root “/” is the only file system prefix.

If multi-part names are permitted in a file system, a separator is generally (but not always)
defined with which the name parts are separated (for example “/” in UFS). However, the file
system involved ultimately defines whether and how many name parts are permitted and
how they are separated.

There is no defined separator for path names in the DMS file system. In addition to the file
system prefix (the catalog ID with colons ':' at the beginning and end), the path name can
also contain up to two name parts: a user ID (with dollar '$' at the beginning and period '.'
at the end) and/or a file name. Even if both parts are contained in the path name, there is
no additional separator between them.

The same naming rules are used for path names in the UFS file system as for java.io.File.

4.2.2.2 Constructors

A RecordFile object is formed from a given path name and a file system specification. Here
a check is made to ensure that the given path name satisfies the syntactical rules of the
specified file system, and what is termed normalization of the path name takes place. What
this means specifically is defined separately for each file system supported (see section
“File systems” on page 27). This normalized path name is then the name of this object and
the basis of all operations on it.

There are constructor variants which permit path name specification in a different form,
either simply as a single string, or separately as two strings which constitute the directory
part and the file name part of the path name, or as a RecordFile object for the directory part
and a string for the file name part. In the latter case the file system specification is omitted
because the RecordFile object already includes this implicitly for the directory part.

API overview The Java package JRIO

44 JENV V8.1A

4.2.2.3 Fields

The separator separatorChar or separator (in string form) is defined on a file-system-specific
basis. Normally this separator is used to separate different name parts within a path name.

Special features of the DMS file system
The DMS file system knows no separators in this sense. Consequently the null
character is used for separatorChar and an empty string for separator. However, this
calls for care when it is used because the null character is a defined character within
character strings.

The separator pathSeparatorChar or pathSeparator (in string form) is also defined on a file-
system-specific basis. This separator is used in order to separate the individual path names
from one another when path name lists are specified.

Special features of the DMS file system
The separator for path name lists is the comma “ , ”.

Unlike in java.io.File, the separators are not static fields as several file systems are
supported here. During instantiation of a RecordFile object the separators are initialized by
the underlying file system.

4.2.2.4 General methods

The getPath() method returns the path name of this RecordFile object. The getFileSystem()
method returns the name of the file system associated with the path name. The string
“DMS” is returned for the DMS file system, and the string “UFS” for the UFS file system
(currently not supported by JRIO).

The Java package JRIO API overview

JENV V8.1A 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.2.5 Methods for analyzing and transforming path names

The getName() method returns the last name part of the path name of this RecordFile object.
The result is formed by dropping any file system prefix there may be and every name part
except the last. If the path name consists only of a name part and this is not a file system
prefix, the object’s path name is returned. If the path name is empty or consists only of the
file system prefix, an empty string is returned.

Special features of the DMS file system
The file system prefix is the catalog ID.

Example

The getParent() method returns the parent of this path name as a string, or the return value
null if the path name has no parent. The parent of a path name consists of the file system
prefix (if present) and of every name part, except the last, in the name sequence of the path
name. If the name sequence is empty, then the path name has no parent.

Name Result

:JAVA:$USER.HALLO.JAVA HALLO.JAVA

:JAVA:HALLO.JAVA HALLO.JAVA

$USER.HALLO.JAVA HALLO.JAVA

HALLO.JAVA HALLO.JAVA

:JAVA:$.HALLO.JAVA HALLO.JAVA

:JAVA:$USER. $USER.

:JAVA: empty string ""

$USER. $USER.

API overview The Java package JRIO

46 JENV V8.1A

Special features of the DMS file system
The file system prefix is the catalog ID.

Example

The getParentFile() method, like the getParent() method, returns the parent of this path
name, but as a RecordFile object. If the path name has no parent, null is returned.

The isAbsolute() method returns true if the path name of this RecordFile object is an absolute
path name. What an absolute path name is defined on a file-system-specific basis (see
section “File systems” on page 27).

Example

The getAbsolutePath() method returns the absolute form of this RecordFile object’s path
name as a string. If the RecordFile object was constructed with the aid of an absolute path
name, this name is returned. If this is not the case, the name is supplemented on a file-
system-specific basis (see section “File systems” on page 27).

Name Result

:JAVA:$USER.HALLO.JAVA :JAVA:$USER.

:JAVA:HALLO.JAVA :JAVA:

$USER.HALLO.JAVA $USER.

HALLO.JAVA null

:JAVA:$.HALLO.JAVA :JAVA:$.

:JAVA:$USER. :JAVA:

:JAVA: null

$USER. null

Name Result

:catid:$userid. true

:catid:$. true

$userid. false

$. false

:catid: true

$.HALLO false

$USER.HALLO false

:JAVA:$.HALLO.JAVA true

The Java package JRIO API overview

JENV V8.1A 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Special features of the DMS file system
In DMS it may not be possible to form the absolute path name for a syntactically
correct path name. For example, a file name consisting of 42 characters with a 5-
character user ID is syntactically correct. However, if it is complemented by a
catalog ID comprising 4 characters, a syntactically incorrect (too long) path name
results.

The getAbsoluteFile() method returns the absolute form of this RecordFile object’s path
name as a RecordFile object.

The getCanonicalPath() method returns the canonical form of this RecordFile object’s path
name as a string. A canonical path name is both absolute and unique. The precise definition
of the canonical form depends on the file system (see section “File systems” on page 27).

Special features of the DMS file system
In DMS it may not be possible to form the canonical path name for a syntactically
correct path name. For example, a file name consisting of 42 characters with a 4-
character catalog ID is syntactically correct. However, if it is complemented by user
ID comprising 5 or more characters, a syntactically incorrect (too long) path name
results.

The getCanonicalFile() method returns the canonical form of this RecordFile object’s path
name as a RecordFile object.

File name completion using the above methods provides the application with an insight into
the structure of the file system and must therefore be monitored by an active Security
Manager. In certain circumstances, file name completion is rejected with a corresponding
exception (see section “Security” on page 34).

The compareTo() method compares two path names lexicographically. If the two path names
belong to different file systems, first of all the file system names are compared.

The equals() method compares two path names. It returns true only if the specified object is
a RecordFile object which is assigned to the same file system and if the path names of both
objects (in the sense of compareTo()) are equal. Equality is checked on the basis of the path
names and not on the basis of the file or directory in the underlying file system, in other
words if different names designate the same existing file, false is still returned.

The hashcode() method calculates a hash code from the characters of the path name and
the file system name. Two RecordFile objects with the same path names and the same file
system name also have the same hash code. However, two RecordFile objects with the
same hash codes do not necessarily have the same path name.

API overview The Java package JRIO

48 JENV V8.1A

4.2.2.6 Methods for inquiring file and directory attributes

The exists() method checks whether the file or the directory exists in the file system. Many
of the methods offered can only be used effectively if the file or directory exists and is visible
(for example files are not always visible for the calling program in foreign user IDs).

Special features of the DMS file system
A file is regarded as existing if it has already been opened once. This means that a
catalog entry for the existence of a file is not sufficient. A directory exists if the
specified catalog ID and/or user ID is accessible in the file system.

The canRead() method checks whether the file or the directory for this object exists (in the
sense of exists()) and is readable for the calling program.

Special features of the DMS file system
true is always returned for existing directories.

The canWrite() method checks whether the file or the directory for this object exists (in the
sense of exists()) and is writable for the calling program.

Special features of the DMS file system
Always returns false for a directory consisting only of the catalog ID if the calling
program is not privileged, also for foreign user IDs.

The isDirectory() method returns true if an existing directory in the associated file system is
involved.

The isFile() method returns true if a normal file in the associated file system is involved. A
file is normal if it is not a directory and also meets file-system-specific criteria (for example
special files in UFS are not normal files). Every file generated by a Java application which
is not a directory is guaranteed to be a normal file.

The isHidden() method can be used to determine whether the file or directory is hidden in
the file system. What precisely hidden means is defined on a file-system-specific basis.

Special features of the DMS file system
Temporary files in the DMS sense are always regarded as hidden.

The lastModified() method returns the time of the last modification to the file or directory if
the file system supports this.

The Java package JRIO API overview

JENV V8.1A 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Special features of the DMS file system
Directories do not have their own modification date. Consequently 0 is always
returned.

The length() method returns the size of a file or directory. How the size of a directory is
defined is file-system-specific.

Special features of the DMS file system
For files the number of used (not reserved) PAM pages in the file multiplied by 2048
is returned, and for directories always the value 0.

The getAccessParameter() method returns the parameters for accessing this file with the
specified access method. The AccessParameter object returned can, for example, be used
to generate a new file with the same parameters and is used internally for file access.

The static method getDefaultAccessParameter() returns the default parameters for the given
access method in the given file system. The user can then, if required, modify these param-
eters and generate new files with them.

The getPreferredAccessMethod() method returns the name of the preferred access method
for an existing file in the associated file system. It is not guaranteed that the file was
generated with this access method, especially if the access methods in this file system are
only a logical view of the file contents and not inquirable file attributes.

The getAllowedAccessMethods() method returns a list of the names of the permitted access
methods for an existing file in the associated file system. It is not guaranteed that the file
was generated with one of these access methods, especially if the access methods in this
file system are only a logical view of the file contents and not inquirable file attributes.

The static method getAllAccessMethods() returns a list of the names of all the access
methods supported in the specified file system.

4.2.2.7 Methods for modifying file and directory attributes

The setLastModified() method sets the modification date to the specified value if the file
system supports this.

Special features of the DMS file system
The modification date cannot be set.

The setReadOnly() method modifies the file attributes so that only read operations are
permitted.

Special features of the DMS file system
For files the files attribute ACCESS is set to the value READ. This attribute cannot be
set for directories and temporary files in the DMS sense.

API overview The Java package JRIO

50 JENV V8.1A

4.2.2.8 Methods for generating files and directories

The createNewFile() methods generate a new file with the path name of the RecordFile object
using the specified access parameters or the default parameters of the specified access
method.

Special features of the DMS file system
When a file is generated, it is opened exclusively and then closed. Any shared update
option set in the access parameters is ignored. The shared update option does not
takes effect until the file is opened for processing.

The static methods createTempFile() provide the option of creating temporary files using the
specified access parameters. A temporary file has a generated name which definitely does
not already exist in the file system. The file is either created in the specified directory or, if
no directory was specified, in a file-system-specific directory. The file is not automatically
deleted; the user must call the deleteOnExit() method if the file is to be deleted when the
application is terminated. The name is formed from the user’s prefix and suffix specifica-
tions and a string generated on a file-system-specific basis.

Special features of the DMS file system
No temporary files in the usual DMS sense are generated, but always permanent
files which users must delete themselves. The file-system-specific directory always
refers to the default catalog ID of the calling user. The directory parameter can be
used in the DMS file system to generate temporary files on a different catalog ID
from the default catalog ID.

When a temporary file is generated, it is opened exclusively and then closed. Any
shared update option set in the access parameters is ignored. The shared update option
does not take effect until the file is opened for processing.

The mkdir() method creates a directory with the name of this object in the associated file
system.

Special features of the DMS file system
No directories can be created.

The mkdirs() method creates a directory including all the necessary parent directories in the
associated file system.

Special features of the DMS file system
No directories can be created.

The Java package JRIO API overview

JENV V8.1A 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.2.9 Methods for deleting and renaming files and directories

The renameTo() method renames this file or directory in the specified path names. The target
file may not already exist. Renaming is only possible within a file system.

I The Record-File object itself, stays assigned to the old name, thus it may not
represent an existing file afterwards.

Special features of the DMS file system
It is not possible to rename directories. Files can only be renamed if the same
catalog ID and user ID are used.

The delete() method deletes this file or directory in the associated file system. If the path
name designates a directory, this can only be deleted if it is empty.

Special features of the DMS file system
Directories cannot be deleted.

The deleteOnExit() method ensures that this file or directory is deleted in the associated file
system when the application is terminated. Deletions are only performed if the application
terminates normally.

Special features of the DMS file system
Directories cannot be deleted.

API overview The Java package JRIO

52 JENV V8.1A

4.2.2.10 Methods for listing directories

The list() methods return a list of all or selected names of files and directories in the
directory which this RecordFile object represents. The file/directory names are returned
without parent directories. The order of the names returned is not defined. The files and
directories returned can be selected using a filter (see RecordfilenameFilter on page 37).

The listFiles() methods return an array of RecordFile objects with path names of files or
directories in the directory which is represented by the path name of this RecordFile object.
The path names created are created from the directory itself and the file and directory
names that are ascertained. The order of the names is not defined. The files and directories
returned can be selected using filters (see RecordFilenameFilter and RecordFileFilter on
page 37).

The list() and listFiles() methods can provide an application with information on file names
that do not belong to their actual area. These methods are therefore monitored by an active
Security Manager. Consequently, they are allowed only if the application has read permission
for the corresponding directory (see section “Security” on page 34).

The static method listRoots() returns a list of all file system prefixes (“roots”) for the specified
file system. It is guaranteed that the canonical path name of a file that actually exists physi-
cally begins with one of the prefixes returned by listRoots().

The listRoots() method provides an application with information on the structure of the file
system. If a Security Manager is active, only the roots for which read permission has been
granted are shown. If you want the application to be able to determine all roots, you must
grant the application read permission for
<<ALL FILES>> (see section “Security” on page 34).

Special features of the DMS file system
A list of all accessible catalog IDs is returned.

Name Results

:JAVA: Only the home user ID, for example $USER., for non-privileged
users or all user IDs in the pubset JAVA for a privileged user

:JAVA:HALLO.JAVA Empty as no directory was specified

$USER. Visible files of the user ID USER in their default catalog ID

$. Visible files of the standard system ID

:JAVA:$. Visible files of the standard system ID on the pubset JAVA

Table 3: Sample DMS file system

The Java package JRIO API overview

JENV V8.1A 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.3 AccessParameter

The AccessParameter class and the classes derived from it define all parameters required to
access record-oriented files (and which are supported) and contain at least the access
method used and the associated file system, plus the default parameters record format and
record length.

The access-method-specific implementations of this class can define additional parameters
and then offer methods for setting and inquiring the values of these parameters. The
subsections below describe the general methods which every implementation must
provide, as well as the specific methods for the access methods currently supported.

Objects of the access-method-specific implementations of the AccessParameter class can be
used to create new files in the corresponding file system using the relevant access method.
Internally such objects are also used for other accesses to files (for example to open files).
They can only be used to generate files in the file system from which they originate.

Objects of this abstract class cannot be generated by the user. However, the recordFile
class provides the getAccessParameter() and getDefaultAccessParameter() methods which you
can use to have objects of the access-method-specific implementations of this class
returned.

Inadmissible values in the individual parameters are generally not discovered when the
values are entered in the Parameter object, but only when this object is used.

4.2.3.1 General parameter methods

The getFileSystem() method returns the name of the associated file system.

The getAccessMethod() method returns the name of the access method to which this
Parameter object belongs.

In addition, each implementation must provide the getRecordFormat(),
setRecordFormat(), getRecordLength() and setRecordLength() methods. These are not dealt
with here because the specific details are described in the following sections.

The constants RECORD_FORMAT_UNKNOWN, RECORD_FORMAT_FIXED and
RECORD_FORMAT_VARIABLE are used as arguments when calling the
setRecordFormat() method. Their meanings as used in their specific access methods are
explained below.

The constants NO_WAIT, THREAD_WAIT and APPLICATION_WAIT are used as arguments
in shared update processing when calling the method setWaitMode(). Their meanings as used
in their specific access methods are explained below.

API overview The Java package JRIO

54 JENV V8.1A

4.2.3.2 Parameters for SAM in DMS

The AccessParameterSAM class in the com.fujitsu.ts.jrio.DMS package provides a raft of
additional methods for setting and inquiring further parameters which are specific to this
access method.

Objects of this abstract class cannot be generated by the user. However, the RecordFile
class provides the getAccessParameter() and getDefaultAccessParameter() methods via which
the user can receive objects of this class’s implementation.

Inadmissible values in the individual parameters are generally not discovered when the
values are entered in the Parameter object, but only when this object is used.

The getRecordFormat() method returns the record format stored in this parameter object.
The setRecordFormat() method sets the record format in this Parameter object.
RECORD_FORMAT_FIXED and RECORD_FORMAT_VARIABLE can be specified when SAM
is used. This parameter corresponds to the RECFORM specification in DMS.

The getRecordLength() method returns the record length stored in this parameter object. The
setRecordLength() method sets the record length in this Parameter object. This parameter
corresponds to the RECSIZE specification in DMS. In conjunction with fixed record format,
this parameter defines the exact length of each record in a file. With variable record format
it defines the maximum length of each record. The length specification 0 is then permitted
and means unlimited record length. The DMS/SAM-specific restrictions and dependencies
on other parameters (record format, block length) naturally apply as much for JRIO as at
other DMS interfaces.

The getBlockSize() method returns the block length stored in this parameter. The
setBlockSize() method sets the logical block length (as a number of PAM blocks) in this
parameter object. This parameter corresponds to the BLKSIZE=(STD,n) specification in
DMS. The dependencies on the record length naturally apply as much for JRIO as at other
DMS interfaces.

The getBlockControl() method returns the block format stored in this parameter. This
parameter corresponds to the BLKCTRL specification in DMS. The setBlockControl() method
sets the block format in this parameter object. BLOCK_CONTROL_BY_PUBSET,
BLOCK_CONTROL_DATA, BLOCK_CONTROL_NO, BLOCK_CONTROL_PAMKEY,
BLOCK_CONTROL_DATA_2K and BLOCK_CONTROL_DATA_4K can be specified. This
parameter is only of significance when new files are generated.

The getPrimarySpaceAllocation() method returns the value stored in this parameter for the
primary space allocation in a file. The
setPrimarySpaceAllocation() method sets the value for the primary space allocation of a file
in this parameter object. This parameter corresponds to the first part of the SPACE specifi-
cation in DMS.

The Java package JRIO API overview

JENV V8.1A 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

The getSecondarySpaceAllocation() method returns the value stored in this parameter for the
secondary space allocation in a file. The
setSecondarySpaceAllocation() method sets the value for the secondary space allocation in a
file in this Parameter object. This parameter corresponds to the second part of the SPACE
specification in DMS.

The SAM access method enables a file to be opened simultaneous for read-only access by
multiple applications. For this reason, shared update processing is not possible for SAM files.

4.2.3.3 Parameter method for ISAM in DMS

The AccessParameterISAM class in the com.fujitsu.ts.jrio.DMS package provides a raft of
additional methods for setting and inquiring further parameters which are specific to this
access method.

Objects of this abstract class cannot be generated by the user. However, the RecordFile
class provides the getAccessParameter() and getDefaultAccessParameter() via which the user
can receive objects of this class’s implementation.

Inadmissible values in the individual parameters are generally not discovered when the
values are entered in the parameter object, but only when this object is used.

The getRecordFormat() method returns the record format stored in this parameter object.
The setRecordFormat() method sets the record format in this Parameter object.
RECORD_FORMAT_FIXED and RECORD_FORMAT_VARIABLE can be specified when ISAM
is used. This parameter corresponds to the RECFORM specification in DMS.

The getRecordLength() method returns the record length stored in this parameter object. The
setRecordLength() method sets the record length in this parameter object. This parameter
corresponds to the RECSIZE specification in DMS. In conjunction with fixed record format,
this parameter defines the exact length of each record in a file. With variable record format
it defines the maximum length of each record. The length specification 0 is then permitted
and means unlimited record length. The DMS/SAM-specific restrictions and dependencies
on other parameters (record format, block length) naturally apply as much for JRIO as at
other DMS interfaces.

The getBlockSize() method returns the block length stored in this parameter object. The
setBlockSize() method sets the logical block length (as a number of PAM blocks) in this
parameter object. This parameter corresponds to the BLKSIZE=(STD,n) specification in
DMS. The dependencies on the record length naturally apply as much for JRIO as at other
DMS interfaces.

API overview The Java package JRIO

56 JENV V8.1A

The getBlockControl() method returns the block format stored in this parameter object. This
parameter corresponds to the BLKCTRL specification in DMS. The setBlockControl()
method sets the block format in this parameter object. BLOCK_CONTROL_BY_PUBSET,
BLOCK_CONTROL_DATA, BLOCK_CONTROL_NO, BLOCK_CONTROL_PAMKEY,
BLOCK_CONTROL_DATA_2K and BLOCK_CONTROL_DATA_4K can be specified. This
parameter is only of significance when new files are generated.

The getSharedUpdate() method returns true or false depending on whether simultaneous
processing of a file by multiple applications (shared update processing) is permitted (or is to
be permitted) or is prohibited (or is to be prohibited) with the parameter object. The
setSharedUpdate() method specifies whether
shared update processing for a file is to be allowed (setSharedUpdate(true)) or not
(setSharedUpdate(false)) with the parameter object. The parameter is relevant only when a
file is opened. It corresponds to the SHARUPD specification in DMS.

The getWaitMode() method returns the setting stored in the parameter object to control the
behavior of the application in the event of conflicts during shared update processing for a file
opened with the parameter object.

The setWaitMode() method controls the behavior of the application in the event of conflicts
during shared update processing for a file. The specifications NO_WAIT, THREAD_WAIT and
APPLICATION_WAIT are possible. NO_WAIT causes the application not to wait for granting
of the lock and causes a RecordLockedException to be triggered in the event of a lock.

THREAD_WAIT causes the thread to be placed in a wait state. After expiry of a (brief, inter-
nally specified) wait time, repeated attempts are made to receive a lock until this succeeds
or the application is terminated. APPLICATION_WAIT causes the entire application to wait
at the system interface for the granting of the lock. The wait time at the interface is limited
by the operating system to approx. ½ hr. After this period and after expiry of a (brief, inter-
nally specified) wait time, the system call is repeatedly issued until the lock is received or
the application is terminated. This parameter has no direct equivalent in DMS because the
wait behavior with ISAM shared update can only be controlled by means of the EXLST
mechanism.

The getPrimarySpaceAllocation() method returns the value stored in this parameter object for
the primary space allocation in a file. The
setPrimarySpaceAllocation() method sets the value for the primary space allocation of a file
in this parameter object. This parameter corresponds to the first part of the SPACE specifi-
cation in DMS.

The getSecondarySpaceAllocation() method returns the value stored in this parameter object
for the secondary space allocation in a file. The
setSecondarySpaceAllocation() method sets the value for the secondary space allocation of a
file in this parameter object. This parameter corresponds to the second part of the SPACE
specification in DMS.

The Java package JRIO API overview

JENV V8.1A 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

The getPrimaryKeyPosition() method returns the value stored in this parameter object for the
key position of an ISAM file. The setPrimaryKeyPosition() method sets the value for the key
position of an ISAM file in this parameter object. This parameter corresponds to the KEYPOS
specification in DMS but with the difference that the numbering of the positions in JRIO
deviates from that of other DMS interfaces (see section “Record” on page 39).

The getPrimaryKeyLength() method returns the value stored in this parameter for the key
length of an ISAM file. The setPrimaryKeyLength() method sets the value for the key length
of an ISAM file in this parameter object. This parameter corresponds to the KEYLEN speci-
fication in DMS.

The getDuplicateKeyIndicator() method returns the value stored in this parameter for
permitting duplication of the same key values in an ISAM file. The
setDuplicateKeyIndicator() method sets the value for permitting duplication of the same key
values in an ISAM file in this parameter object. This parameter corresponds to the DUPEKY
specification in DMS.

4.2.3.4 Parameter methods for UPAM in DMS

The AccessParameterUPAM class in the com.fujitsu.ts.jrio.DMS package provides a raft of
additional methods for setting and inquiring further parameters which are specific to this
access method.

Objects of this abstract class cannot be generated by the user. However, the RecordFile
class provides the getAccessParameter() and getDefaultAccessParameter() via which the user
can receive objects of this class’s implementation.

Inadmissible values in the individual parameters are generally not discovered when the
values are entered in the parameter object, but only when this object is used.

The getRecordFormat() method returns the record format stored in this parameter object.
The setRecordFormat() method sets the record format in this parameter object. Only
RECORD_FORMAT_FIXED is permitted in UPAM.

The getRecordLength() method returns the record length stored in this parameter object. The
setRecordLength() method sets the record length in this parameter object. For UPAM, the
record length is always identical to the logical block length in bytes. Thus only values which
are multiples of 2048 are permitted.

The getBlockControl() method returns the block format stored in this parameter object. This
parameter corresponds to the BLKCTRL specification in DMS. The setBlockControl()
method sets the block format in this parameter object. BLOCK_CONTROL_BY_PUBSET,
BLOCK_CONTROL_DATA, BLOCK_CONTROL_NO, BLOCK_CONTROL_PAMKEY,
BLOCK_CONTROL_DATA_2K and BLOCK_CONTROL_DATA_4K can be specified. This
parameter is only of significance when new files are generated.

API overview The Java package JRIO

58 JENV V8.1A

The getPrimarySpaceAllocation() method returns the value stored in this parameter object for
the primary space allocation in a file. The
setPrimarySpaceAllocation() method sets the value for the primary space allocation of a file
in this parameter object. This parameter corresponds to the first part of the SPACE specifi-
cation in DMS.

The getSecondarySpaceAllocation() method returns the value stored in this parameter object
for the secondary space allocation in a file. The
setSecondarySpaceAllocation() method sets the value for the secondary space allocation of a
file in this parameter object. This parameter corresponds to the second part of the SPACE
specification in DMS.

The getSharedUpdate() method returns true or false depending on whether simultaneous
processing of a file by multiple applications (shared update processing) is permitted (or is to
be permitted) or is prohibited (or is to be prohibited) with the parameter object. The
setSharedUpdate() method specifies whether
shared update processing for a file is to be allowed (setSharedUpdate(true)) or not
(setSharedUpdate(false)) with the parameter object. The parameter is relevant only when a
file is opened. It corresponds to the SHARUPD specification in DMS.

The getWaitMode() method returns the setting stored in the parameter object to control the
behavior of the application in the event of conflicts during shared update processing for a file
opened with the parameter object. The setWaitMode() method controls the behavior of the
application in the event of conflicts during shared update processing for a file. The specifica-
tions NO_WAIT, THREAD_WAIT and APPLICATION_WAIT are possible. NO_WAIT causes the
application not to wait for granting of the lock and causes a RecordLockedException to be
triggered in the event of a lock.

THREAD_WAIT causes the thread to be placed in a wait state. After expiry of a (brief, inter-
nally specified) wait time, repeated attempts are made to receive a lock until this succeeds
or the application is terminated. APPLICATION_WAIT causes the entire application to wait
at the system interface for the granting of the lock. The wait time at the interface is limited
by the operating system to approx. ½ hr. After this period and after expiry of a (brief, inter-
nally specified) wait time, the system call is repeatedly issued until the lock is received or
the application is terminated. This parameter has no direct equivalent in DMS because the
wait behavior with UPAM shared update can only be controlled by means of the PAMTOUT
value.

The Java package JRIO API overview

JENV V8.1A 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.4 Sequential data processing

Separate interface groups for input and output are available for the sequential processing
of files or other media which contain data records. The structure, designation and function-
ality of these interfaces is based on the classes known from the normal package java.io for
sequential input/output familiar from normal Java I/O.

4.2.4.1 InputRecordStream

The abstract class InputRecordStream is the base class for all implementations of classes
which permit sequential reading of records. The JRIO API provides two implementations of
this abstract class, the FileInputRecordStream class for sequential reading from a file, and the
ArrayInputRecordStream class for sequential reading from an array of Record objects.

The abstract class specifies the implementation of methods for sequential reading and
skipping of records and for closing the file, as well as a method group for elementary reposi-
tioning (mark/reset), but which need not necessarily be supported by implementations.

The methods of the abstract class are not described in more detail here, but explained with
the individual implementations. The API documentation contains this description for users
who wish to define their own implementations.

4.2.4.2 FileInputRecordStream

A FileInputRecordStream object represents a file that has been opened for sequential read
access. The file is opened implicitly when the object is created (see section “Opening and
closing a file” on page 60).

The FileInputRecordStream class offers methods for reading and skipping records and for
closing the file. The method group for positioning is present, but provides no functionality.

The file that is to be opened must already exist in the underlying file system. The
createNewFile() method of the RecordFile class must be used to generate a file.

For a file opened for sequential read access a current file position is always defined at which
the next read operation is performed. The current file position is defined by the number of
the record in accordance with the order of the records in this file, the records of a file being
numbered starting with 0. After the file has been opened the current file position is the start
of the file.

API overview The Java package JRIO

60 JENV V8.1A

Opening and closing a file

When a FileInputRecordStream object is constructed, the file specified as RecordFile object is
opened in read mode with the specified access method or with the specified access param-
eters. The file must exist in the underlying file system and the access method must belong
to this file system and must be permissible for this file. The user must possess the access
rights which permit the file to be read. If a Security Manager is active and its restrictions do
not allow the file to be read, an exception is triggered (see section “Security” on page 34).

If access parameters are specified for opening the file, these are taken into account when
the file is opened provided the file parameters do not have priority. After the file has been
opened, the parameters are updated with the corresponding values of the opened file.

The close() method closes the file. Subsequently no I/O operations can be performed via
this FileInputRecordStream object.

Special features of the DMS file system
Shared update processing (see section “Shared update processing” on page 32 and
section “AccessParameter” on page 53) of a FileInputRecordStream is possible with
the ISAM and UPAM access methods. However, with UPAM only PAM files can be
opened in shared update processing. Because the file is opened for reading only, all
accesses are made without locks. As a result, no access conflicts can arise.
However, it must be expected that another application changes the contents of the
record in the meantime.

Methods for reading records

The read method is offered in two variants, one in which the record read is provided as a
result in a newly generated Record object, and a second in which a Record object transferred
by the calling program as an argument is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the
calling program provides the Record object, it must ensure that the record buffer is large
enough to contain the data of the record to be read. If the specified record buffer is too small
to contain all the data, an exception is triggered and no data is transferred.

The read() methods read the record at the current file position. The current file position is
subsequently incremented by one, in other words the next record is automatically
positioned on.

The skip() method enables the specified number of records in the file to be skipped. It may
be the case that it is not possible to skip exactly the number of records specified (for
example if there are no longer enough records in the file). The return value of skip() specifies
the actual number of records that are skipped.

The Java package JRIO API overview

JENV V8.1A 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

The available() method returns the minimum number of records that can be read without
blocking. But even the result null, which is often returned if it is impossible or difficult to
determine whether a read attempt leads to a wait state (of the thread), does not justify the
assumption that the next call of read() or skip() will actually lead to such a wait state.

Methods for positioning

The markSupported() method provides information on whether marking or repositioning is
supported for this file. As with the java.io.FileInputStream class, positioning is currently not
supported for objects of this class, in other words this method always returns false.

The mark() method is present, but has no function.

Calling reset() results in an exception as this functionality is currently not supported.

4.2.4.3 ArrayInputRecordStream

An ArrayInputRecordStream object represents an array of Record objects opened for
sequential read access. Opening takes place implicitly when an object is generated (see
“Opening and closing” on page 61), but has no further meaning here as it would with files.

The ArrayInputRecordStream class offers methods for reading and skipping records. The
method group for positioning is also supported in full.

Within the array from which is read a current read position is always defined at which the
next read operation is performed. The current read position is defined by the number of the
record in the array, the numbering of the records starting with zero. After opening, the
current read position is zero.

Opening and closing

When an ArrayInputRecordStream object is constructed, the calling program provides the
array with data records which are to be read later. This array is used directly and not copied,
in other words any manipulations on this array or the records contained in it have a direct
affect on the ArrayInputRecordStream object. With a second variant of the constructor the
user can make part of an array with records (defined by offset and length) available for
input.

The close() methods is present, but has no function for this class.

API overview The Java package JRIO

62 JENV V8.1A

Methods for reading records

The read method is offered in two variants, one in which the record read is provided as a
result in a newly generated Record object, and a second in which a Record object transferred
by the calling program as an argument is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the
calling program provides the Record object, it must ensure that the record buffer is large
enough to contain the data of the record to be read. If the specified record buffer is too small
to contain all the data, an exception is triggered and no data is transferred.

The read() methods read the record at the current read position. The current read position
is subsequently incremented by one, in other words the next record in the array is automat-
ically positioned on.

The skip() method enables the specified number of records in the array to be skipped. It may
be the case that it is not possible to skip exactly the number of records specified because
the array no longer contains enough records. The return value of skip() specifies the actual
number of records that are skipped.

The available() method returns the number of records which can still be read before the end
of the array is reached. Reading from an array of records never leads to wait states.

Methods for positioning

The markSupported() method provides information on whether marking or repositioning is
supported for this data stream. In this class this method always returns true.

The mark() method notes the current read position so as to be able to reposition to it later.
The argument envisaged for mark() is ignored in this implementation and should always be
specified as 0.

Calling reset() repositions the pointer to a read position previously noted with mark().

4.2.4.4 OutputRecordStream

The abstract class OutputRecordStream is the base class for all implementations of classes
which permit sequential writing of records. The JRIO API provides two implementations of
this abstract class, the FileOutputRecordStream class for sequential writing to a file, and the
ArrayOutputRecordStream class for sequential writing to an array of Record objects.

This abstract class specifies the implementation of methods for sequential writing of
records and for closing the file.

The methods of the abstract class are not described in more detail here, but explained with
the individual implementations. The API documentation contains this description for users
who wish to define their own implementations.

The Java package JRIO API overview

JENV V8.1A 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.4.5 FileOutputRecordStream

A FileOutputRecordStream object represents a file that has been opened for sequential write
access. The file is opened implicitly when the object is created (see section “Opening and
closing a file” below).

The FileOutputRecordStream class offers methods for writing records and for closing the file.
In a file opened for sequential write access, records are always added at the end.

The file that is to be opened must already exist in the underlying file system. The
createNewFile() method of the RecordFile class must be used to generate a file.

Opening and closing a file

When a FileOutputRecordStream object is constructed, the file specified as RecordFile object
is opened in write mode with the specified access method or with the specified access
parameters. Users can decide whether or not any content the file may have should be
deleted when the file is opened.

The file must already exist in the underlying file system and the access method must belong
to this file system and must be permissible for this file. The user must possess the access
rights which permit writing. If a Security Manager is active and its restrictions mean that
writing is not permitted for the file, an exception is triggered (see section “Security” on
page 34).

If access parameters are specified for opening the file, these are taken into account when
the file is opened provided the file parameters do not have priority. After the file has been
opened, the parameters are updated with the corresponding values of the opened file.

The close() method closes the file. Subsequently no I/O operations can be performed via
this FileOutputRecordStream object.

Special features of the DMS file system
Shared update processing (see section “Shared update processing” on page 32 and
section “AccessParameter” on page 53) for a FileOutputRecordStream is only
possible with the ISAM access method if an existing file is opened in order to add
to it. Other applications cannot then also open the file as FileOutputRecordStream.
You are generally advised not to use shared update processing in conjunction with
FileOutputRecordStream. In exceptional cases, simultaneous opening as
FileInputRecordStream may be useful.

API overview The Java package JRIO

64 JENV V8.1A

Methods for writing records

The write() method writes a record after the last record in the file. A lock is implicitly
requested when shared update processing is used. This can trigger a RecordLockedException
or, depending on the option set with setWaitMode(), can cause the thread or the entire appli-
cation to wait in the event of access conflicts. The lock is released after completion of the
write operation.

The flush() method ensures that all the records written with write() are actually output into
the file, even if the basic access method envisages buffering the outputs. An existing lock
for this file is released if shared update processing is used.

4.2.4.6 ArrayOutputRecordStream

An ArrayOutputRecordStream object represents an array of Record objects opened for
sequential write access. The array is created implicitly when it is opened (see “Opening and
closing” on page 64) and expands with the data written into it.

The ArrayOutputRecordStream class offers methods for reading records. When writing,
records are always added at the end of the array. In addition, this class also offers methods
to fetch the entire contents of the data stream, to delete the contents, or to inquire the size.

Opening and closing

When an ArrayOutputRecordStream object is constructed, an array is provided internally into
which records are later to be written. When doing this, the calling program can specify how
many records the array should initially receive. If it does not do this, a default size is
assumed. However, if this size is not sufficient to accommodate the records, the array is
automatically enlarged internally.

The close() method is present, but has no function.

Methods for writing records

The write() method adds a record after the last record in the array.

The flush() method is present, but has no function for this class.

Methods for access to the content of a data stream

The size() method returns the number of records in the array.

The reset() method enables the entire contents of the array to be deleted. The array itself is
retained unchanged in size and is refilled when further write() calls are made.

The Java package JRIO API overview

JENV V8.1A 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

The toRecordArray() method returns the entire current contents of the data stream as an
array of Record objects. The array returned is, in contrast to the one used internally, of exactly
the size required to contain the data. The individual records are not copied here, which
means that manipulation of the record contents has an effect on the content of the data
stream.

The writeTo() method writes the entire current contents of the data stream into another
specified data stream. Every data stream whose implementation is derived from the
abstract class OutputRecordStream is suitable for this.

4.2.5 RandomAccessRecordFile

A RandomAccessRecordFile object represents a file opened for random access. The file is
opened implicitly when the object is generated (see section “Opening and closing a file”
below).

The RandomAccessRecordFile class offers methods for reading and writing records and for
shortening and extending this file. There are also methods for positioning and for closing
the file.

The file that is to be opened must already exist in the underlying file system. The
createNewFile() method of the RecordFile class must be used to generate a file.

For a file that has been opened for random access a current file position is always defined
at which the next read or write operation takes place. The current file position is defined by
the number of the record in accordance with the sequence of records in this file, the records
being numbered starting with zero. The current file position after the file is opened is the
start of file.

When a file is opened for random access, the specific access direction can be restricted
and deletion of the contents of an existing file can be requested.

The following open modes are permitted with this class:

– INPUT
After the file has been opened only read operations are permitted.

– OUTIN
After the file has been opened both write and read operations are permitted. The entire
file contents are deleted when the file is opened.

– INOUT
After the file has been opened both read and write operations are permitted. The file
contents remain unchanged when the file is opened.

After the file has been closed the RandomAccessRecordFile object should no longer be used.

API overview The Java package JRIO

66 JENV V8.1A

4.2.5.1 Opening and closing a file

When a RandomAccessRecordFile object is constructed, the file specified as RecordFile object
is opened in the specified mode with the specified access method or with the specified
access parameters.

The file must already exist in the underlying file system and the access method must belong
to this file system and must be permissible for this file. The user must possess the
necessary access rights to the file for the specified open mode. If a Security Manager is
active and its restrictions for this file conflict with the specified open mode, an exception is
triggered (see section “Security” on page 34).

If access parameters are specified for opening the file, these are taken into account when
the file is opened provided the file parameters do not have priority. After the file has been
opened, the parameters are updated with the corresponding values of the opened file.

The close() method closes the file. Subsequently no I/O operations can be performed via
this RandomAccessRecordFile object.

Special features of the DMS file system
Shared update processing (see section “Shared update processing” on page 32 and
section “AccessParameter” on page 53) for a RandomAccessRecordFile is possible
with the UPAM access method only for PAM files in the INPUT and INOUT open
modes. If the file was opened in INPUT open mode, all accesses are made without
locks. Consequently, no access conflicts can arise. However, it must be expected
that another application changes the contents of the record in the meantime. In the
INOUT open mode, read and write accesses are made with an implicit lock. In the
event of access conflicts the option set using setWaitMode() can trigger a
RecordLockedException or cause the thread or the entire application to wait. Locks
are implicitly released when the locked record is written but can also be explicitly
released using flush(). Details are provided in the appropriate interface description
in the shipped JAVADOC documentation.

4.2.5.2 Methods for reading records

The read method is offered in two variants, one in which the record read is provided as a
result in a newly generated Record object, and a second in which a Record object transferred
by the calling program as an argument is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the
calling program provides the Record object, it must ensure that the record buffer is large
enough to contain the data of the record to be read. If the specified record buffer is too small
to contain all the data, an exception is triggered and no data is transferred.

The read() methods read the record at the current file position. The current file position is
subsequently incremented by one, in other words the next record in the array is automati-
cally positioned on.

The Java package JRIO API overview

JENV V8.1A 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.5.3 Methods for writing records

The write() method writes a record into the file at the current file position. Any existing record
is overwritten, but only if the restrictions applicable for the access method (for example
same record length) are complied with. If the current file position is the end of file (or after
this), the file is extended. After writing, the current file position is the record after the written
record or the end of file.

In shared update processing, an existing record can only be changed safely (when there are
competing applications) if the record lock implicitly set when reading is not released
between reading and writing - in particular, no other record must be read or written in the
meantime. You should therefore follow a corresponding sequence of actions in shared
update processing; however, no check of this sequence is made.

The flush() method ensures that all records written with write() are output to the file even if
the underlying access method provides buffering. Shared update processing also ensures that
a lock received for a file by the application is released.

Special features of the DMS file system
When shared update processing is used in the DMS file system, information on the
current end-of-file cannot be synchronized between participating applications.
Simultaneous extension of RandomAccessRecordFiles by multiple applications is not
therefore recommended.

4.2.5.4 Methods for positioning and changing size

The getCurrentRecordNumber() method returns the current file position as a record number.

The setCurrentRecordNumber() method sets the current position of the file to the record with
the specified number. The special constants POS_FIRST and POS_LAST can be used to
position to the start or end of file.

The getRecordCount() method returns the number of records in the file. That is simultane-
ously the position of the end of file.

The setRecordCount() method modifies the size of the file to the number of records specified.
If the specified number of records is less than the current number of records in the file, the
file is shortened so that it only contains as many records as specified. If in this case the
current file position was greater than the new file size, the current file position is set to the
new end of file. If the specified number of records is greater than the current number of
records in the file, the file can be extended. An access method can reject such a file
extension, for example for files with variable record format. When the operation has been
executed, the content of the newly added records is undefined.

API overview The Java package JRIO

68 JENV V8.1A

Special features of the DMS file system
When shared update processing is used in the DMS file system, it is not possible to
reduce the size of a file. This would trigger an IOException.

When shared update processing is used in the DMS file system, information on the
current end-of-file cannot be synchronized between participating applications.
Simultaneous extension of RandomAccessRecordFiles by several applications is not
therefore recommended. Nevertheless, the locks are set as if the file were being
extended by writing individual records on after the other.

4.2.6 Indexed-sequential data processing

Keys play a very central role in indexed-sequential data processing.

Keys define the order of the records within an indexed-sequential file. A key is always part
of a record and is defined by the key field (position and length) within each record of an
indexed-sequential file. The content of a key field is the key value. In addition, a key can
have a name if, for example, this is necessary to distinguish different keys in an implemen-
tation.

A distinction is made between primary and secondary keys. Each indexed-sequential file
always has precisely one primary key and can have one or more secondary keys.
Secondary keys must always have a unique name. If a file has several keys, each of these
keys may define a different order.

Identical key values in different records are permitted for a key.

Special features of the BS2000 access method ISAM

For ISAM files, an unnamed primary key is always defined. Only for NK-ISAM files can
several secondary files (up to 30) be defined in addition. The secondary keys must always
have a unique name (up to 8 characters). The restrictions which apply for ISAM (for
example regarding key length) must naturally also be taken into account when the JRIO
interfaces are used. Identical secondary keys in different records are only permissible if no
identical key values are permitted in different records for the primary key and if and if
identical key values in different records have already been permitted for all other secondary
keys.

The marking options (value flag and logical marking) which ISAM offers are not supported
by JRIO.

Note that at the ISAM DMS interfaces, positions within a record, in particular key positions,
can be numbered differently than at the JRIO interfaces (see section “Record” on page 39).

The Java package JRIO API overview

JENV V8.1A 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.2.6.1 KeyDescriptor

The KeyDescriptor class defines the position, length and other attributes of a particular key
field within a record of an indexed-sequential file (key definition). It provides methods for
accessing these key attributes of an indexed-sequential file.

A KeyDescriptor object is used for generating or extracting a concrete key value. Appropriate
implementations of this abstract class are provided for ISAM. You can thus generate such
KeyDescriptor objects themselves or have them provided via the methods of the
KeyedAccessRecordFile class.

If you are working on an ISAM file with key definitions they have generated themselves, you
must naturally ensure that these fit the keys defined in the file.

A KeyDescriptor object is serializable and can thus be used for Remote Method Interfaces
(RMIs).

Methods

The getPosition() method returns the position of the key field in a record.

The getLength() method returns the length of the key field.

The getName() method returns the name of a named key, or null for unnamed keys. Thus
with secondary keys the unique name is always returned. In the case of the primary key,
whether or not a name is returned depends on the implementation.

The hasDuplicates() method is used to check whether identical key values are permitted in
different records for the key concerned.

Whether the key is a primary or secondary key is checked using the isPrimary() or
isSecondary() method.

API overview The Java package JRIO

70 JENV V8.1A

PrimaryKeyDescriptorISAM

The PrimaryKeyDescriptorISAM class in the com.fujitsu.ts.jrio.DMS package is an implemen-
tation of the abstract class KeyDescriptor and represents the primary key of an ISAM file.
The class offers only those methods which the abstract class specifies, as well as
constructors for generating the key definitions. The following particular features apply for
ISAM:

– The key position must be a value between 0 and 32767. However, this does not mean
that these values always make sense. The values actually used for I/O depend on other
factors (block size, record format, key length), but these cannot be checked by the
constructor.

– The length of the key must be a value between 1 and 255.

– The primary ISAM key does not have a name, and the getName() method therefore
always returns null.

SecondaryKeyDescriptorISAM

The SecondaryKeyDescriptorISAM class in the com.fujitsu.ts.jrio.DMS package is an imple-
mentation of the abstract class KeyDescriptor and represents a secondary key of an ISAM
file. The class offers only those methods which the abstract class specifies, as well as
constructors for generating the key definitions. The following particular features apply for
ISAM:

– The key position must be a value between 0 and 32767. However, this does not mean
that these values always make sense. The values actually used for I/O depend on other
factors (block size, record format, key length), but these cannot be checked by the
constructor.

– The length of the key must be a value between 1 and 127.

– A secondary ISAM key must have a unique name up to 8 characters in length which
complies with the DMS rules. Upper/lower case is ignored in these names, and a name
is always returned in upper case by getName().

4.2.6.2 KeyValue

The KeyValue class defines an actual key value. Every key value has a key definition
associated with it. This class provides methods for manipulating the key value and for
inquiring the attributes of the associated key description.

A KeyValue object can be used to select a record in an indexed-sequential file using this key.

A KeyValue object is serializable can thus be used for Remote Method Interfaces (RMIs).

The Java package JRIO API overview

JENV V8.1A 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Constructors

When a KeyValue object is generated, the key value is filled with the user’s data. This data
can be specified as a byte array or string. If the user specifies no data or the data specified
is shorter than the key, the complete key value is padded with null bytes or blanks. If the
data is longer than the key, only as much data is transferred as will fit in the key.

If the user specifies the data as a string but specifies no encoding for converting text to data,
the system-dependent standard encoding (in BS2000 the default value is
OSD_EBCDIC_DF04_1) is used.

Methods for manipulating the key value

The setValue() methods fill the key with the specified user data. If the user specifies no data,
the entire key value is filled with null bytes. If the data is shorter than the key, the rest is filled
with a filler byte. The filler byte can be supplied by the user, otherwise a null byte is used.
If the data is longer than the key, only as much data is transferred as will fit in the key.

The setStringValue() methods fill the key with the converted data of the specified string. If the
user specifies no data, the entire key value is filled with blanks. If the data is shorter than
the key, the rest is filled with blanks. If the data is longer than the key, only as much data is
transferred as will fit in the key.

If no encoding for converting text to data was specified by the user, the system-dependent
standard encoding (in BS2000 the default value is OSD_EBCDIC_DF04_1) is used.

The getValue() methods are used to return the key value of a key. The key value is either
transferred to a buffer provided by the user or returned as a copy of the value. As the key
value is therefore always copied, this means that manipulations on the result returned have
no influence on the object from which the value originates. If the value in the object is to be
modified, the setValue() method must subsequently be used.

With the getStringValue() methods, the key value of a key is returned converted into a string.
If no encoding for converting text to data was specified by the user, the system-dependent
standard encoding (in BS2000 the default value is OSD_EBCDIC_DF04_1) is used.

Methods for determining the key attributes

The getPosition() method returns the position of the key field in a record.

The getLength() method returns the length of the key field.

The getKeyDescriptor() method returns the key definition associated with the key value.

API overview The Java package JRIO

72 JENV V8.1A

4.2.6.3 KeyedAccessRecordFile

A KeyedAccessRecordFile object represents a file opened for keyed access. The file is
opened implicitly when the object is generated (see section “Opening and closing a file” on
page 72).

The KeyedAccessRecordFile class offers methods for reading, writing and deleting records in
this file. There are also methods for handling keys and for closing the file.

The file that is to be opened must already exist in the underlying file system. The
createNewFile() method of the RecordFile class must be used to generate a file.

When a file is opened for keyed access, the specific access direction can be restricted and
deletion of the contents of an existing file can be requested.

The following open modes are permitted with this class:

– INPUT
After the file has been opened only read operations are permitted.

– OUTIN
After the file has been opened both write and read operations are permitted. The entire
file contents are deleted when the file is opened.

– INOUT
After the file has been opened both read and write operations are permitted. The file
contents remain unchanged when the file is opened.

After the file has been closed the KeyedAccessRecordFile object should no longer be used.

Opening and closing a file

When a KeyedAccessRecordFile object is constructed, the file specified as RecordFile object
is opened in the specified mode with the specified access method or with the specified
access parameters.

The file must already exist in the underlying file system and the access method must belong
to this file system and must be permissible for this file. The user must possess the
necessary access rights to the file for the specified open mode. gegebenen Open-Modus
erforderlichen Zugriffsrechte auf die Datei besitzen. If a Security Manager is active and its
restrictions for this file conflict with the specified open mode, an exception is triggered (see
section “Security” on page 34).

If access parameters are specified for opening the file, these are taken into account when
the file is opened provided the file parameters do not have priority. After the file has been
opened, the parameters are updated with the corresponding values of the opened file.

The close() method closes the indexed-sequential file. Subsequently no I/O operations can
be performed via this KeyedAccessRecordFile object.

The Java package JRIO API overview

JENV V8.1A 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Special features of the DMS file system
Shared update processing (see section “Shared update processing” on page 32 and
section “AccessParameter” on page 53) of a KeyedAccessRecordFile is possible for
all open modes (INPUT, INOUT, OUTIN). However, OUTIN open mode is permitted
only for the application that opened the file first. If the file was opened in INPUT open
mode, all accesses are made without locks. As a result, no access conflicts can
arise. However, it must be expected that another application changes the contents
of the record in the meantime. With the other open modes, read and write accesses
are made with implicit locks. In the event of access conflicts, this can trigger a
RecordLockedException or cause the thread or the entire application to wait,
depending on the option set using setWaitMode(). Locks are released after writing or
deleting the locked record. They can also be released explicitly using unlock().
When a record is read, an existing lock for another record is also released. Details
are provided in the appropriate interface description in the shipped JAVADOC
documentation.

Methods for reading records

All read methods are offered in two variants, one in which the record read is provided as a
result in a newly generated Record object, and a second in which a Record object transferred
by the calling program as an argument is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the
calling program provides the Record object, it must ensure that the record buffer is large
enough to contain the data of the record to be read. If the specified record buffer is too small
to contain all the data, an exception is triggered and no data is transferred.

With the read methods in which a KeyValue or KeyDescriptor object can be specified, such
arguments are only accepted if they are suitable for the file (see the
getPrimaryKeydescriptor() and getSecondaryKeydescriptor() methods).

The read() methods read the record which is selected by the specified key value. If there is
more than one record with the same key value in the file, the first one is returned. Both a
value of the primary key and a value of the secondary key can be specified as the key value.

The readNext() methods read the next record in the order determined by the given
argument. There are three variants of these methods:

– If no order argument is specified, the next record defined by the order of the primary key
is read. If this method is called as the first operation after a file has been opened, the
record with the lowest available primary key value is read. In all other cases this
operation reads the record following the last record read, provided the last record read
was also read via the primary key (in other cases the behavior is access-method-
specific). This is a method to permit sequential reading of records which contain the
same key value.

API overview The Java package JRIO

74 JENV V8.1A

– If a key definition is specified as an order argument, the next record defined by the order
of the primary or secondary key of the given key definition is read. If this method is
called immediately after a file has been opened, the record with the lowest available key
value as defined in the given key definition is read. In all other cases this operation
reads the record following the last record read, provided the last record read was read
via the same key definition (in other cases the behavior is access-method-specific).
This is a method to permit sequential reading of records which contain the same key
value.

– If a key value is specified as an order argument, the record is read with the next highest
key in accordance with the order of the associated key definition.

The readPrevious() methods read like the readNext() methods, but they read the preceding
record rather than the following record.

Methods for writing and deleting records

When records are written to an indexed-sequential file, the position of a written record is
determined by the key fields contained in the record.

The write() method writes a record to a file. If a file with the same primary key value already
exists and no duplicate keys are permitted for the primary key, the existing record is
replaced. If duplicate keys are permitted and the record already exists, the record is added
after the last record with the same primary key value.

The writeNew() method writes a record to the file, but only if no record with the same primary
key exists in the file.

The writeBack() method overwrites a record in the file that was read directly beforehand.
Between the read and write operations, no modification may be made to the record’s
primary key field. In shared update processing an existing record is not overwritten unless the
lock set in order to read the record still applies. Otherwise, a RecordNotLockedException is
triggered.

The delete() method deletes the record selected by the specified key value. If there are
several records with the same key value in the file, the first one is deleted. Either a value of
the primary key or a value of a secondary key can be specified as the key value.

Methods for unconditional lock release

The unlock() method is used to explicitly release a lock set implicitly by a read operation in
shared update processing.

The Java package JRIO API overview

JENV V8.1A 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Methods for determining key definitions

The getPrimaryKeyDescriptor() method returns the key definition for the primary key of this
file.

The getSecondaryKeyDescriptor() method returns the key definition for the secondary key
with the specified name.

The getKeyDescriptorNames() method returns a list of the names of all of this file’s secondary
keys.

Methods for generating and deleting secondary keys

The createSecondaryKey() methods generate a new secondary key for this indexed-
sequential file with the specified parameters. There are two parameter variants. One variant
is that all fields of the KeyDescriptor object (name, key position, key length and the specifi-
cation as to whether identical key values are permitted in different records for this key) are
specified individually, and the second is that a KeyDescriptor object is specified for a
secondary key. The second variant enables, for example, the attributes of another file’s
secondary key to be used in order to generate a corresponding secondary key in this file.

The deleteSecondaryKey() method deletes the specified secondary key of this indexed-
sequential file.

The createSecondaryKey() and deleteSecondaryKey() methods require exclusive access to the
file and are therefore not permitted in shared update processing. They would trigger an
IOException.

Implementation details The Java package JRIO

76 JENV V8.1A

4.3 Implementation details

The attributes marked as implementation-specific in the API descriptions are defined in this
section.

4.3.1 File-system-specific definitions

Both in the API descriptions in this document and in the actual API specifications it is
specified in various places that a file system implementation can specify particular defini-
tions.

These definitions are shown in the table below for the file systems supported in this version.
The UFS file system is included merely to complete the picture, although it is currently not
supported.

Detail DMS file system UFS file system

Name to be used at the
JRIO interfaces

“DMS” “UFS”

Access methods ISAM, SAM, UPAM Currently none

File system prefixes Catalog IDs (":catid:") Root directory '/'

Normalization Lower-case letters are
converted to upper-case letters
and path names $<name> to
$.<name>

. and .. directories are
cancelled and double slashes
'//' are converted into single
slashes; a '/' at the end of the
path name is deleted

Absolute path name Supplementing the path name
with the catalog ID

Supplementing the current
directory for relative path
names

Canonical path name Either only catalog ID or the file
name supplemented by
catalog ID and user ID, if
required with cancellation of
the standard system ID

Conversion like absolute path
name and resolution of all
symbolic links

Empty path name Standard catalog ID of the user Root directory '/'

Normal file All files are normal files Regular files (for example no
special files)

Hidden files and direc-
tories

Temporary files in the DMS
sense

All files and directories whose
name begins with a period '.'

Table 4: File-system-specific definitions

The Java package JRIO Implementation details

JENV V8.1A 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Size of a file with the
length() method

Number of PAM pages used *
2048 (last page pointer)

Size in bytes

Size of a directory with
the length() method

Always 0 Size in bytes

File name See the manual “Introductory
Guide to DMS” [8]

See manual “POSIX, Basics
for Users and Systems Admin-
istrators” [1]

Separator between path
name parts
separatorChar and
separator

Not defined Slash '/' or "/"

Separator between path
names
pathSeparatorChar and
pathSeparator

 Comma ',' or "," Colon ':' or ":"

Default directory when
creating a temporary file
with the createTempFile()
method

Default catalog ID of the calling
program

Default directory which is
assigned to the system
property java.io.tmpdir

Generated name part of
a temporary file
(between suffix and
prefix specifications)

String with the length 7 String with the length 7

Shared update
processing

Supported (with restrictions) Not supported

Detail DMS file system UFS file system

Table 4: File-system-specific definitions

Implementation details The Java package JRIO

78 JENV V8.1A

4.3.2 Access-method-specific definitions

Both in the API descriptions in this document and in the actual API specifications it is
specified in various places that an access method implementation can specify particular
definitions.

These definitions are shown in the table below for the DMS access methods supported in
this version.

Details SAM access
method

ISAM access
method

UPAM access
method

Name to be used at the JRIO
interfaces

“SAM” “ISAM” “UPAM”

Permissible record formats Record format
with variable and
fixed record length

Record format
with variable and
fixed record length

Record format
with fixed record
length

Maximum record length
(depending on the record
format (fixed, variable),
logical block format (NO,
KEY, DATA) and block size
(1 Î BS Î 16) - the
setRecordLength method of
the AccessParameter...
classes also accepts greater
values because block size or
record format can be
modified later)

fixed, KEY

BS * 2048

fixed, NO, DATA

BS * 2048 - 16

variable, KEY:

BS * 2048 -4

variable, NO,
DATA

BS * 2048 - 20

fixed:

BS * 2048

variable:

BS * 2048 - 4

In the event of full
utilization overflow
blocks may occur

fixed, NO, KEY

BS * 2048

fixed, DATA

BS * 2048

(the first 12 bytes
contain metadata!)

Permissible values for
setRecordLength() of the
AccessParameter... classes

0 through 32768
(0 means:
variable, restricted
only by block size)

0 through 32768
(0 means:
variable, restricted
only by block size)

0 through 32768
(0 means: pubset
standard) Values
!= n*2048
(n=0,,16) are not
permitted

Table 5: Access-method-specific definitions

The Java package JRIO Implementation details

JENV V8.1A 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Permissible values for the
setBlocksize,
setPrimarySpaceAllocation,
setSecondarySpaceAllocation,
setPrimary-KeyPosition,
setSecondaryKeyPosition
methods of the
AccessParameter... classes

See API
documentation on
the
AccessParameter
SAM interface

See API
documentation on
the
AccessParameter
ISAM interface

See API
documentation on
the
AccessParameterU
PAM interface

markSupported() method
For marking and reposi-
tioning in the event of
sequential reading of the
FileInputRecordStream class

Always false Always false Always false

Writing buffered output to the
output stream with the flush()
method of the
FileOutputRecordStream class

The write buffer is
emptied

The write buffer is
emptied

No function

Permissible values when
generating secondary keys
with the createSecondaryKey()
method of the
KeyedAccessRecordFile class

Not supported Yes

Max. 30
secondary keys,
each max. 127
bytes long.
keyPos
<= 32495

Not supported

Name of secondary keys
(createSecondaryKey() method
of the KeyedAccessRecordFile
class)

Not supported 8-character, as
per DMS rules,
lower-case letters
may be converted
to upper-case
letters

Not supported

Details SAM access
method

ISAM access
method

UPAM access
method

Table 5: Access-method-specific definitions

Implementation details The Java package JRIO

80 JENV V8.1A

Setting the file position with
the setCurrentRecordNumber()
method of the
RandomAccessRecordFile
class after the last record
(value of getRecordCount()) -
or writing at such a position

Yes - empty
records (with
variable record
format) or records
with undefined
contents (with
fixed record
format) may be
added

No Yes - records with
undefined
contents may be
added

Overwriting records with the
write() method

Same record
length at records
with variable
lenght

Possible without
restrictions

Overwriting records with the
writeBack() method

- The primary key
may not be
modified

Sequence in the event of
sequential reading with the
KeyedAccessRecordFile class

- Write or delete
operations modify
the file position
and should
therefore not be
used between
sequential read
operations. With
regard to different
keys, ISAM
behavior applies
for the sequence
in sequential read
operations (see
themanual “Intro-
ductory Guide to
DMS” [8])

Details SAM access
method

ISAM access
method

UPAM access
method

Table 5: Access-method-specific definitions

The Java package JRIO Implementation details

JENV V8.1A 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

Shared update processing:
general

Not possible Possible as:
FileInputStream,
FileOutputStream
KeyedAccess
RecordFile

Only possible for
PAM files as
FileInputStream or
as
RandomAccess
RecordFile

Shared update processing:
open modes

- INPUT, INOUT or
OUTIN permitted,
FileOutputStream
only to add to a
file, OUTIN only for
the first appli-
cation that opens
the file

INPUT or INOUT
permitted

Shared update processing:
lock granularity

- With NK-ISAM, the
lock is on key level
(primary key), with
K-ISAM the lock is
on block level

Lock is on block
level

Shared update processing:
other special features

- Locks apply for
the entire appli-
cation (not only for
a file)

It is not possible to
increase or
decrease the size
of a file

Details SAM access
method

ISAM access
method

UPAM access
method

Table 5: Access-method-specific definitions

Implementation details The Java package JRIO

82 JENV V8.1A

4.3.3 Default values of the DMS access methods

The table below provides an overview of the default values for the access methods in the
DMS file system of an AccessParameter object that was generated with the
getDefaultAccessParameter() method. The overview is structured according to the methods
used for reading.

The value 0 with getRecordLength() designates the value “variable - only limited by block
size” for the SAM and ISAM access methods and the “pubset-specific default” for UPAM.

The values 0 with getBlockSize(), 0 with getPrimarySpaceAllocation() and -1 with
getSecondarySpaceAllocation() designate the “pubset-specific default”. If the file has been
created, the current values are entered here.

Method SAM access
method

ISAM access
method

UPAM access
method

getAccessMethod() “SAM” “ISAM” “UPAM”

getFileSystem() “DMS” “DMS” “DMS”

getRecordFormat() RECORD_

FORMAT_

VARIABLE

RECORD_

FORMAT_

VARIABLE

RECORD_

FORMAT_

FIXED

getRecordLength() 0 0 0

getBlockSize() 0 0 -

getDuplicateKeyIndicator() - false -

getPrimaryKeyLength() - 8 -

getPrimaryKeyPosition() - 0 -

getPrimarySpaceAllocation() 0 0 0

getSecondarySpaceAllocation() -1 -1 -1

getBlockControl() BLOCK-
CONTROL_
BY_PUBSET

BLOCK-
CONTROL_
BY_PUBSET

BLOCK-
CONTROL_
BY_PUBSET

getSharedUpdate() - false false

getWaitMode() - THREAD_
WAIT

THREAD_
WAIT

Table 6: Default values of the DMS access methods

The Java package JRIO Restrictions

JENV V8.1A 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.4 Restrictions

The following explicit restrictions are defined for DMS under JRIO:

– Tape files and private disks are not supported.

– EAM and logical system files are not supported.

– Not all file parameters can be manipulated or set via JRIO. Only the parameters
explicitly named in the API descriptions are taken into account. Especially when new
files are created this results in restrictions when particularly special attributes are to be
used. However, the most common parameters of the various access methods are
already supported with the
AccessParameter class and the associated implementations of the access methods.

– Only the access methods shown and the files related to them are supported.

– Shared update and locking are not supported in this version.

– Reverse reading is supported only for keyed access, not for sequential or random
access.

– In ISAM the logical value flag is not supported. ISAM files which contain such a flag
cannot be processed. ISAM pools are also not supported.

– The undefined record format is not supported. Files with undefined record format
cannot be processed.

– File generation groups are not supported.

Examples The Java package JRIO

84 JENV V8.1A

4.5 Examples

The examples in the sections below are designed to show the various access types and
general use of the JRIO interfaces on the basis of one or two (more or less typical)
problems.

All the examples given here consist of complete programs which can be executed. The
source texts of all sample programs are supplied with the product and are contained in the
subdirectory demo/jrio of the installation directory. In conjunction with your inline documen-
tation, the programs should be largely self-explanatory.

4.5.1 Sequential data processing

A simple copy program for SAM files is used to demonstrate sequential data processing.
The program requires two parameters: the name of the file which is to be copied and the
file name of the copy. If the target file already exists, it is deleted (take care!) and created
again.

The example is so designed that no knowledge of the file attributes, such as record format
or record length, of the file to be copied is required. The error handling in the example is not
particularly convenient, simply to prevent the comprehensive code which would be required
for this distracting the reader from the way the interface is actually used.

The program is contained in the CopySAM.java file:

import java.io.*;
import com.fujitsu.ts.jrio.*;

/**
 * This sample program demonstrates the use of the
 * JRIO interfaces for file handling and sequential
 * input and output.
 *
 * The program creates a copy of a DMS file of type SAM
 * by sequentially copying each record of the file.
 *
 * The interesting part of this program is the method
 * doCopySAM(), all other methods are added to make it
 * a complete executable program.
 */
public class CopySAM

{
 /**
 * The main method, which analyses the program arguments,
 * calls the work method and provides global error
 * handling.

The Java package JRIO Examples

JENV V8.1A 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

 */
 public static void main(String args[])
 {
 String source = null;
 String target = null;

 for (int i = 0; i < args.length; i++)
 {
 if (source == null)
 source = args[i];
 else if (target == null)
 target = args[i];
 else
 usage();
 }
 if (source == null || target == null)
 usage();
 try {
 doCopySAM(source,target);
 } catch (Exception e) {
 error(e.toString());
 }
 }
 /**
 * Print a usage message and exit with error
 */
 private static void usage()
 {
 error("Usage: CopySAM source target");
 }
 /**
 * Print the given error message and exit
 */
 private static void error(String msg)
 {
 System.err.println(msg);
 System.exit(1);
 }
 /**
 * The work method.
 * This method demonstrates, how the JRIO interfaces
 * may be used to copy a complete SAM file by
 * sequential read and write operations.
 *
 * @param source
 * The name of the file to be copied
 * @param target
 * The name of the copied file

Examples The Java package JRIO

86 JENV V8.1A

 */
 public static void doCopySAM(String source,String target)
 throws IOException
 {
 Record rec;
 RecordFile sourceFile;
 RecordFile targetFile;
 FileInputRecordStream input;
 FileOutputRecordStream output;
 /**
 * check file names and create RecordFile objects
 */
 sourceFile = new RecordFile(source,"DMS");
 targetFile = new RecordFile(target,"DMS");
 /**
 * check source file existence
 */
 if (!sourceFile.exists())
 error("Source file " + source + " does not exist");
 /**
 * check target file existence
 */
 if (targetFile.exists())
 {
 /**
 * delete the existing file
 */
 if (!targetFile.delete())
 error("Target file " + target
 + " could not be deleted");
 }
 /**
 * create an empty output file with same attributes
 */
 if (!targetFile.createNewFile(
 sourceFile.getAccessParameter("SAM")))
 error("Target file " + target + " still exists");
 /**
 * open source for input
 */
 input = new FileInputRecordStream(sourceFile,"SAM");
 /**
 * open target for output
 */
 output =new FileOutputRecordStream(targetFile,"SAM");
 /**
 * read and write all records
 */

The Java package JRIO Examples

JENV V8.1A 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

 while ((rec = input.read()) != null)
 output.write(rec);
 /**
 * close all files
 */
 input.close();
 output.close();
 }
}

The program can be compiled with the Java compiler javac and then be run. No particular
specifications are required to make the JRIO interfaces available.

Examples The Java package JRIO

88 JENV V8.1A

4.5.2 Random data processing

Two examples are used to demonstrate random data processing. The first program solves
the problem of deleting one or more records from a SAM file. For this purpose the program
expects as parameters the name of an existing file and the number or the number range of
the records to be deleted. Note that here, too, the records are numbered consecutively
starting with zero.

The example is so designed that no knowledge of the file attributes, such as record format
or record length, of the file to be processed is required. The error handling in the example
is not particularly convenient, simply to prevent the comprehensive code which would be
required for this distracting the reader from the way the interface is actually used.

The program is contained in the DeleteRecordsSAM.java file:

import java.io.*;
import com.fujitsu.ts.jrio.*;

/**
 * This sample program demonstrates the use of the
 * JRIO interfaces for file handling and random
 * access to a file.
 *
 * This program deletes a sequence of specified records
 * from a DMS file of type SAM.
 *
 * The interesting part of this program is the method
 * doDeleteRecordsSAM(), all other methods are added
 * to make it a complete executable program.
 */
public class DeleteRecordsSAM
{
 /**
 * The main method, which analyses the program arguments,
 * calls the work method and provides global error
 * handling.
 */
 public static void main(String args[])
 {
 String file = null;
 String first = null;
 String last = null;
 int firstNum, lastNum;
 for (int i = 0; i < args.length; i++)
 {
 if (file == null)
 file = args[i];
 else if (first == null)

The Java package JRIO Examples

JENV V8.1A 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

 first = args[i];
 else if (last == null)
 last = args[i];
 else
 usage();
 }
 if (file == null || first == null)
 usage();
 try {
 firstNum = Integer.parseInt(first);
 if (firstNum < 0)
 error("Illegal record number " + firstNum);
 if (last != null)
 {
 lastNum = Integer.parseInt(last);
 if (lastNum < 0 || lastNum < firstNum)
 error("Illegal record number " + lastNum);
 }
 else
 lastNum = firstNum;
 doDeleteRecordsSAM(file,firstNum,lastNum);
 } catch (Exception e) {
 error(e.toString());
 }
 }
 /**
 * Print a usage message and exit with error
 */
 private static void usage()
 {
 error("Usage: DeleteRecordsSAM file first [last]");
 }
 /**
 * Print the given error message and exit
 */
 private static void error(String msg)
 {
 System.err.println(msg);
 System.exit(1);
 }
 /**
 * The work method.
 * Delete all records between the given record
 * numbers in a SAM accessible file using
 * the random access classes of JRIO.
 *
 * @param file
 * The file to modify

Examples The Java package JRIO

90 JENV V8.1A

 * @param first
 * The first record to delete
 * @param last
 * The last record to delete
 */
 public static void doDeleteRecordsSAM(
 String file,int first,int last)
 throws IOException
 {
 Record rec;
 RecordFile sourceFile;
 RandomAccessRecordFile update;
 ArrayOutputRecordStream buffer;
 Record[] remaining;
 /**
 * check file name and create RecordFile object
 */
 sourceFile = new RecordFile(file,"DMS");
 /**
 * check source file existence and write rights
 */
 if (!sourceFile.exists() || !sourceFile.canWrite())
 error("Source file " + file + " does not exist"
 + " or is not writeable");
 /**
 * open file for update
 */
 update = new RandomAccessRecordFile(sourceFile,"SAM",
 RandomAccessRecordFile.INOUT);
 /**
 * check record numbers
 */
 if (first >= update.getRecordCount())
 {
 /**
 * nothing todo
 */
 update.close();
 return;
 }
 /**
 * position to first record after delete area
 */
 update.setCurrentRecordNumber(last + 1);
 /**
 * read all remaining records into an array
 */
 buffer = new ArrayOutputRecordStream();

The Java package JRIO Examples

JENV V8.1A 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

 while ((rec = update.read()) != null)
 buffer.write(rec);
 remaining = buffer.toRecordArray();
 /**
 * truncate file
 */
 update.setRecordCount(first);
 /**
 * append the buffered records to the truncated file
 */
 for (int i = 0; i < remaining.length; i++)
 update.write(remaining[i]);
 /**
 * close the file
 */
 update.close();
 }
}

The program can be compiled with the Java compiler javac and then be run. No particular
specifications are required to make the JRIO interfaces available.

The second program outputs a randomly selected “slogan of the day” from a file (SAM) with
slogans. For this purpose the program expects as a parameter the name of the file with the
slogans. If this does not yet exist, it is created with a basic stock of slogans.

The example is also so designed that no knowledge of the file attributes, such as record
format or record length, of the file to be processed is required. The error handling in the
example is not particularly convenient, simply to prevent the comprehensive code which
would be required for this distracting the reader from the way the interface is actually used.

The program is contained in the SloganOfTheDay.java file:

import com.fujitsu.ts.jrio.*;
import java.io.*;
import java.util.Random;

/**
 * This example demonstrates a random access to a SAM file.
 *
 * A randomly selected record (the slogan of the day) is read
 * from the file and written to the standard output stream.
 * If the file with the slogans does not yet exist, it is
 * created and filled with some standard slogans.
 *
 * The interesting part of this program is the method
 * doSloganOfTheDay(), all other methods are added to make it
 * a complete executable program.
 */

Examples The Java package JRIO

92 JENV V8.1A

public class SloganOfTheDay
{
 /**
 * The main method, which analyses the program arguments,
 * calls the work method and provides global error
 * handling.
 */
 public static void main(String[] args)
 {
 if (args.length != 1)
 usage();
 try {
 doSloganOfTheDay(args[0]);
 } catch (Exception e) {
 error(e.toString());
 }
 }
 /**
 * Print a usage message and exit with error
 */
 private static void usage()
 {
 error("Usage: SloganOfTheDay file");
 }
 /**
 * Print the given error message and exit
 */
 private static void error(String msg)
 {
 System.err.println(msg);
 System.exit(1);
 }
 /**
 * The work method.
 * It demonstrates how the JRIO interfaces may be used
 * for random access to a file.
 *
 * @param filename
 * the file containing the slogans
 */
 public static void doSloganOfTheDay(String filename)
 throws IOException
 {
 /**
 * the random number generator, used to select the
 * slogan
 */
 Random generator = new Random();

The Java package JRIO Examples

JENV V8.1A 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

 /**
 * some slogans to be written to the slogan file
 * in case it is still empty.
 */
 String[] data = {
 "Schuster bleib bei deinen Leisten.",
 "Es fuehren viele Wege nach Rom.",
 "In ungezaehlten Muehen waechst das Schoene.",
 "It's better to burn out, than to fade away.",
 "Make your ideas work!",
 "Erlaubt ist, was gefaellt.",
 "Der schoenste Morgen bringt uns das Gestern "
 + "nicht zurueck.",
 "Sage nicht immer, was du weisst, aber wisse "
 + "immer, was du sagst.",
 "Alles muss man selber machen - sogar das Lachen."
 };
 /**
 * Definition of the slogan file
 */
 RecordFile rf = new RecordFile(filename, "DMS");
 RandomAccessRecordFile slogfile = null;
 /**
 * The record object used for accessing
 * the slogan file
 */
 Record record = null;
 /**
 * the number of records in the slogan file
 */
 long numOfRecs = 0;
 /**
 * Check if the slogan file is already existing
 */
 if (!rf.exists())
 {
 rf.createNewFile("SAM");
 slogfile = new RandomAccessRecordFile(rf, "SAM",
 RandomAccessRecordFile.OUTIN);
 for (int i = 0; i < data.length; i++)
 {
 record = new Record(data[i].length());
 record.setStringData(data[i]);
 slogfile.write(record);
 }
 }
 else
 {

Examples The Java package JRIO

94 JENV V8.1A

 slogfile = new RandomAccessRecordFile(rf, "SAM",
 RandomAccessRecordFile.INPUT);
 }
 /**
 * check if there is at least 1 record in the
 * slogan file
 * if not, the modulo function would fail
 */
 if ((numOfRecs = slogfile.getRecordCount()) == 0)
 {
 slogfile.close();
 error("Slogan file is empty!");
 }
 /**
 * Position to a randomly selected record within
 * the file.
 * Thanks to the modulo function (%) we are sure
 * that the position will always be inside the file
 */
 slogfile.setCurrentRecordNumber(
 Math.abs(generator.nextInt() % numOfRecs));
 /**
 * read the record and show the slogan
 */
 record = slogfile.read();
 System.out.println("Slogan of the day: "
 + record.getStringData());
 /**
 * close the slogan file
 */
 slogfile.close();
 }
}

The program can be compiled with the Java compiler javac and then be run. No particular
specifications are required to make the JRIO interfaces available.

The Java package JRIO Examples

JENV V8.1A 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

4.5.3 Indexed-sequential data processing

To demonstrate indexed-sequential data processing a program is used which monitors the
lifetime of files on an ID. The program expects two parameters: the user ID to be monitored
and the name of the file in which the program can store data. When first called the file
should not yet exist. It is then created with the correct attributes for the program.

The example generates an ISAM file with fixed record length as a database. The error
handling in the example is not particularly convenient, simply to prevent the comprehensive
code which would be required for this distracting the reader from the way the interface is
actually used.

The program is contained in the FileHistory.java file:

import java.io.*;
import com.fujitsu.ts.jrio.*;
import com.fujitsu.ts.jrio.DMS.AccessParameterISAM;
import java.util.Date;
import java.text.DateFormat;
import java.text.SimpleDateFormat;

/**
 * The demo program FileHistory provides a
 * simple mechanism to log changes in the files belonging
 * to a given BS2000 userid. In fact, only two dates are
 * logged for each file: date first seen and date last seen.
 *
 * Every time the program is started it synchronizes the
 * current list of filenames with the list of filenames
 * given by the logfile:
 *
 * New filenames are added to the logfile with date first seen
 * and date last seen set to the current date.
 *
 * For filenames of the current list which are already logged
 * the date last seen is updated.
 *
 * Filenames in the logfile which are no more in the current
 * list remain untouched.
 *
 * The program should run once a day, to create a complete
 * history.
 *
 * The interesting part of this program is the method
 * doFileHistory(), all other methods are added to make it
 * a complete executable program.
 */
public class FileHistory

Examples The Java package JRIO

96 JENV V8.1A

{
 /**
 * The main method, which analyses the program arguments,
 * calls the work method and provides global error
 * handling.
 */
 public static void main(String args[])
 {
 String userid = null;
 String logfilename = null;
 for (int i = 0; i < args.length; i++)
 {
 if (userid == null)
 userid = "$" + args[i] + ".";
 else if (logfilename == null)
 logfilename = args[i];
 else
 usage();
 }
 if (userid == null || logfilename == null)
 usage();
 try {
 doFileHistory(userid,logfilename);
 } catch (Exception e) {
 error(e.toString());
 }
 }
 /**
 * Print a usage message and exit with error
 */
 private static void usage()
 {
 error("Usage: FileHistory userid logfile\n"
 + " - userid without '$' and '.'");
 }
 /**
 * Print the given error message and exit
 */
 private static void error(String msg)
 {
 System.err.println(msg);
 System.exit(1);
 }
 /**
 * The work method.
 * This method demonstrates, how the JRIO interfaces
 * may be used to update records in an ISAM file
 *

The Java package JRIO Examples

JENV V8.1A 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

 * @param userid
 * the userid (with '$' and '.') to be scanned
 * @param logfilename
 * the file containing the log records
 */
 public static void doFileHistory(String userid,
 String logfilename)
 throws IOException
 {
 /**
 * The current Date as string,
 * to be written to the log record
 */
 DateFormat df = new SimpleDateFormat("yyyy.MM.dd");
 String toDay = df.format(new Date());
 /**
 * The directory to be scanned for additional or
 * deleted files in its canonical form
 */
 RecordFile root =
 new RecordFile(userid,"DMS").getCanonicalFile();
 /**
 * List of filenames within the scanned directory
 */
 String[] rfList = root.list();
 /**
 * Definition of file for logging
 */
 RecordFile logfile =
 new RecordFile(logfilename,"DMS");
 KeyedAccessRecordFile log = null;
 /**
 * key descriptor of the log file
 * and dummy key value (will be filled later
 * and used for reading)
 */
 KeyDescriptor keyDesc = null;
 KeyValue keyVal = null;
 /**
 * Records from the logfile are read into this buffer.
 * It has fixed length: filename (54),
 * date fist seen (10), date last seen (10)
 */
 Record logrec = new Record(54 + 10 + 10);
 /**
 * check if the logfile already exists
 * and prepare access parameter
 */

Examples The Java package JRIO

98 JENV V8.1A

 AccessParameterISAM accesspar;
 if (!logfile.exists())
 {
 /* No, create it */
 accesspar = (AccessParameterISAM)
 logfile.getDefaultAccessParameter("ISAM");
 accesspar.setPrimaryKeyPosition(0);
 accesspar.setPrimaryKeyLength(54);
 accesspar.setRecordFormat(
 AccessParameter.RECORD_FORMAT_FIXED);
 accesspar.setRecordLength(54 + 10 + 10);
 if (logfile.createNewFile(accesspar) == false)
 error("Cannot create file " + logfilename);
 }
 else
 {
 accesspar = (AccessParameterISAM)
 logfile.getAccessParameter("ISAM");
 }
 /**
 * Open the log file
 */
 log = new KeyedAccessRecordFile(
 logfile,accesspar,KeyedAccessRecordFile.INOUT);
 /**
 * Get the key descriptor of the log file
 */
 keyDesc = log.getPrimaryKeyDescriptor();
 /**
 * Consistency check
 */
 if (keyDesc.getPosition() != 0
 || keyDesc.getLength() != 54)
 {
 log.close();
 error("File " + logfile
 + " is no valid logfile.");
 }
 /**
 * create key value connected with key descriptor
 * proper values will be inserted later
 */
 keyVal = new KeyValue(keyDesc);
 /**
 * loop through the list of filenames
 */
 for (int i = 0; i < rfList.length; i++)
 {

The Java package JRIO Examples

JENV V8.1A 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
4

 /**
 * prepare key vaue for reading the
 * log record for this filename
 */
 keyVal.setStringValue(rfList[i]);
 /**
 * check if the filename is already in the log
 */
 if (log.read(keyVal,logrec) > -1)
 {
 /**
 * yes, filename did exist at last run,
 * update 'date last seen' field
 */
 logrec.setStringField(toDay,64,10);
 /**
 * write updated record back to logfile
 */
 log.writeBack(logrec);
 }
 else
 {
 /**
 * filename is new: build a new record
 */
 logrec.setKeyField(keyVal);
 logrec.setStringField(toDay,54,10);
 logrec.setStringField(toDay,64,10);
 /**
 * write new record to log file
 */
 log.write(logrec);
 }
 }
 /**
 * close the logfile
 */
 log.close();
 }
}

The program can be compiled with the Java compiler javac and then be run. No particular
specifications are required to make the JRIO interfaces available.

Examples The Java package JRIO

100 JENV V8.1A

JENV V8.1A 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
5

5 Invoking the VM from the BS2000 command
interface

The INITIALIZE, DELETE and START procedures are available in the PLAM library
SYSPRC.JENV.081.

– INITIALIZE is used to set the environment variables needed to execute the VM.

– START is used to start the VM. If INITIALIZE is not invoked before START, the default
values are used.

– DELETE is used to delete all environment variables set by INITIALIZE.

The procedures are also delivered in a compiled variant so that the user can execute them
without the product SDF-P.

A prerequisite for execution is that the user has permission to run POSIX programs and is
authorized to access the POSIX file system on which the POSIX part of JENV V8.1A is
installed.

5.1 INITIALIZE procedure

The INITIALIZE procedure sets the environment variables that are evaluated by the Java
VM. This is done by setting the corresponding structure elements of the structure variable
SYSPOSIX. Other existing structure elements of this structure remain unchanged. If the
structure variable SYSPOSIX does not already exist, it will be created.

Parameters

JAVA-HOME
Determines the value of the environment variable JAVA_HOME (see chapter
“Environment variables” on page 15). If the parameter is not specified or is set to
’*STD’, the variable is not assigned. Any existing assignment is cleared.

CLASSPATH
Determines the value of the environment variable CLASSPATH. If the parameter is
not specified or is set to ’*STD’, the variable is not assigned. Any existing
assignment is cleared.

START procedure Invoking the VM

102 JENV V8.1A

LD-LIBRARY-PATH
Determines the value of the environment variable LD_LIBRARY_PATH. If the
parameter is not specified or is set to ’*STD’, the variable is not assigned. Any
existing assignment is cleared.

PWD
Sets the value of environment variable PWD and thereby determines the current
working directory. If the parameter is not specified or is set to ’*STD’, the directory
set for the user id with the commando
/MODIFY-POSIX-USER-ATTRIBUTES DIRECTORY= ... is used.

DISPLAY
Determines the value of the environment variable DISPLAY. This specifies the
address of the screen in which the X-Windows are displayed. If the application
operates without X-Windows, the value of this variable is irrelevant.If the parameter
is not specified or is set to ’*STD’, the variable is not changed.

SCOPE
Specifies the scope of the structure variable SYSPOSIX. The default value is ’*TASK’.
The parameter is passed directly to the SCOPE operand of the DECLARE-VARIABLE
command (see manual “SDF-P (BS2000)” [7]). Only the ’*TASK’ and
’*PROCEDURE’ procedures with their sub-operands are meaningful, and
’*PROCEDURE’ is only meaningful if the procedure is called with INCLUDE-
PROCEDURE.

Since the system is case-sensitive, all parameter values must be entered enclosed in single
quotes.

In addition to this, the following environment variables are always set implicitly:

PROGRAM_ENVIRONMENT = ’shell’
as the Java VM can only be run in this mode.

HOME
to the home directory which was set for the user id with the command /MODIFY-
POSIX-USER-ATTRIBUTES DIRECTORY=

5.2 START procedure

The START function starts the VM with the command START-PROGRAM and passes the
parameters which have been set. If the structure variable SYSPOSIX does not already exist,
the INITIALIZE procedure is first invoked using the default values. If the structure variable
SYSPOSIX does already exist, INITIALIZE will not be called. The internal environment
variables necessary for calling the tool will however be set.

Invoking the VM START procedure

JENV V8.1A 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
5

Parameters

CMD
Must be assigned one of the following values:

’appletviewer’
’extcheck’
’idlj’
’jar’
’jarsigner’
’java’
’javac’
’javadoc’
’javah’
’javap’
’jconsole’
’jdb’
’jdeps’
’jjs’
’keytool’
’native2ascii’
’orbd’
’pack200’
’policytool’
’rmic’
’rmid’
’rmiregistry’
’schemagen’
’serialver’
’servertool’
’tnameserv’
’unpack200’
’wsgen’
’wsimport’
’xjc’

The values correspond to the shell commands.

Other values:

’?’
’help’ outputs a help text in English.

’hilfe’ outputs a help text in German.

START procedure Invoking the VM

104 JENV V8.1A

ARGS
The arguments for the command above are to be enclosed in single quotes.

The wildcard substitution function, which is usually available under the shell, is not
supported.

REDIRECT
This parameter must be used if input/output is to be redirected. This is done in the
same way as for the corresponding option under the shell. For example:
REDIRECT=’2>MyFile’ redirects the output of stderr to MyFile.

See the section “Redirection of default streams” on page 105.

SYSHSI
This parameter must be assigned to one of the following values:

’*STD’
’X86’
’S390’

This parameter specifies, whether the s390 variant of the Java VM or the X86
variant is used.

Default value: ’*STD’
The variant corresponding to the system is used.

INSTALLATION-ID
User ID of the JENV installation. This parameter must only be specified if the object
to be started under VM is not stored under the same user ID as the procedure library
in which the START procedure is located.

Invoking the VM DELETE procedure

JENV V8.1A 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
5

Redirection of default streams

If PROGRAM_ENVIRONMENT=’shell’ is set, the file names into which the default streams
are redirected refer to files in the POSIX file system.

It is possible to redirect the streams to BS2000 files using the usual prefix /BS2/. To redirect
to SYSDTA, SYSOUT or SYSLST you must also use this prefix, i.e. /BS2/(SYSDTA),
/BS2/(SYSOUT) or /BS2/(SYSLST). If the prefix is not used, redirecting to (SYSOUT) will result
in a POSIX file being written with the name (SYSOUT).

The same applies to redirections which indicate special treatment under the shell. Outside
the shell everything to the right of < or > is interpreted as a file name. So, for example, a
redirection of 2>&1 creates a file called &1.

The redirection of stdout and stderr to the same BS2000 file is not possible, and if these
streams are redirected to the same POSIX file, output data may be lost.

Example

If an applet is to be started via the file /MyDir/MyTest/Test1.html and the terminal has the
symbolic address ABCD1234, this could be achieved as follows:

/CALL-PROCEDURE *LIB($TSOS.SYSPRC.JENV.080,INITIALIZE),
(PWD=’/MyDir/MyTest ’,DISPLAY=’ABCD1234:0.0’)

/CALL-PROCEDURE *LIB($TSOS.SYSPRC.JENV.080,START),
(CMD=’appletviewer’,ARGS=’Test1.html’)

5.3 DELETE procedure

The DELETE procedure deletes all elements of the structure variable SYSPOSIX which are
set by the INITIALIZE procedure. If the SYSPOSIX structure subsequently contains no
elements, it is itself deleted.

Parameters

SCOPE
Specifies the scope of the structure variable SYSPOSIX. The default value is
’*TASK’. The ’*PROCEDURE’ value need only be specified if it was specified in the
INITIALIZE procedure (see section “INITIALIZE procedure” on page 101).

Using the Invocation API Invoking the VM

106 JENV V8.1A

5.4 Invoking the VM using the invocation API

If a C or C++ program which invokes the VM via the invocation API is started using START-
PROGRAM, the environment variables must be set using the INITIALIZE procedure. The
following operands must be set in the START-PROGRAM command:

PROGRAM-MODE=*ANY,RUN-MODE=*ADVANCED,SHARE-SCOPE=*NONE.

I A C/C++ program must be linked with the Java Runtime Adapter and not with the
normal CRTE-, C++ or socket libraries (see section “Invocation API” on page 121).

5.5 Special considerations

When invoking a BS2000 program using START-PROGRAM neither the /etc/profile nor the
.profile file of the user is executed. The result of this is that a program may, in some cases,
behave differently than if it had been started under the shell. If the file access rights of newly
created files are restricted in the profiles using umask, this does not apply to programs
started using START-PROGRAM. The result of this is that these programs then create files
with more extensive access rights than intended. There is currently no solution available to
remedy this. The tools are also affected because they are called with the START-PROGRAM
command in the START procedure.

The environment variable PATH is not set after START-PROGRAM. The consequence of this
is that creating a new process with fork/exec is not possible under some circumstances
when the program to be started cannot be found. It is possible to resolve this problem by
setting the SDF-P variable SYSPOSIX.PATH to the value used in the shell before calling
START-PROGRAM, or by specifying a complete path name in the program for exec(). In Java
this problem effects the method Runtime.exec().

Example

The following instruction can only be excuted if the environment variable PATH was not
set correctly:

Process child = Runtime.getRuntime().exec("java Myclass");

The following instruction rectifies the problem:

Process child =
Runtime.getRuntime().exec(System.getProperty("java.home") +
"/bin/java Myclass");

Even if the VM is started using START-PROGRAM, the input/output is, by default, directed to
files in the POSIX file system. BS2000 files can be opened using the package JRIO. The
class files must be located in the POSIX file system.

JENV V8.1A 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

6 JNI under BS2000

This chapter describes the special features which a user of Java native interfaces (JNI)
needs to look out for in BS2000. The chapter will not go in any depth into the general use
of the native interfaces (i.e. independent of the operating system)

Specifications and tutorials on this are available in the internet and on the book market.

The use of the JNI for real applications is not simple, since komplex interaction between the
Java and C environments is possible. Before making the decision to use the JNI, you should
discuss the alternatives carefully.

6.1 The different variants of JNI

Only Version 1.2 of JNI is still supported.

Java data types in C JNI under BS2000

108 JENV V8.1A

6.2 Java data types in C

A mapping, which essentially also applies to BS2000, has been defined between the
primitive Java data types and the native C representation. The following table provides a
summary of the data types and any special features:

For complex data types, JNI defines corresponding access and conversion functions which
can be used in BS2000 analogously to other operating systems. A special role is played
here by strings as the UTF-8 encoding of Unicode strings which is used by Java, although
closely related to ASCII, is quite unlike EBCDIC encoding. A C programmer in an ASCII
environment (Unix systems, Windows systems) will therefore easily succumb to the
temptation to use this similarity, with a result that it will not be possible to use such C
programs in BS2000 (i.e. in the EBCDIC environment) without taking some further
measures.

When C code and Java are linked up via the JNI, there will inevitably be instances in
BS2000 where different forms of data encoding coincide. Users must decide for themselves
where they want to make corresponding conversion points between the data representa-
tions. The essential and critical conversion points are shown in the following table:

Java type C type Compatible C type Remarks

boolean jboolean unsigned char JNI_FALSE, JNI_TRUE

byte jbyte signed char

char jchar unsigned short Unicode

short jshort signed short

int jint signed int

long jlong signed longlong from C/C++ V3.0B

float jfloat float IEEE

double jdouble double IEEE

void void void

Table 7: Java data types in C

Data Representation in
Java

Normal represen-
tation in BS2000

Alternative represen-
tation in BS2000

Whole numbers 32 and 64 bit 32 bit 32 and 64 bit

Floating point numbers IEEE format /390 format IEEE format

Strings, characters Unicode, UTF-8, ASCII EBCDIC ASCII

Table 8: C code in Java and BS2000

JNI under BS2000 Java data types in C

JENV V8.1A 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

In order that the user can make a free choice of conversion point, appropriate help on the
various topics is provided through the compiler and runtime systems.

Typically, a JNI interface user will implement this conversion point either directly at the JNI
interface and have all his C code run in the normal BS2000 environment or else he will have
parts of his C code (or even all of it) run in the alternative representation which is more
closely oriented to Java (and Unix systems) and, for example, only carry out the relevant
conversions in the context of legacy applications (use of well-tried software).

The sections below describe the support available for the various data types.

6.2.1 Whole numbers

The Java data type long is a 64-bit data type which is represented in the JNI by the C data
types jlong

The C/C++ compiler (as of version 3.0B) supports the data type longlong or int64_t, which
is compatible with the above mentioned data types (i.e. jlong). This means that this data can
be used in C without any further precautionary measures being required. The scope of the
support available through C runtime system functions as of CRTE V2.1B is explained in the
appropriate CRTE documentation.

6.2.2 Floating point numbers

The Java data types float and double are floating point data types which are represented in
the JNI through the C data types jfloat and jdouble.

These data types are formally compatible with the C data types float and double. However,
as they are represented in IEEE format (instead of /390 format) they cannot be used in C
without taking precautionary measures.

As well as explicit conversion options, appropriate compiler and runtime system extensions
are provided to support the IEEE format. These allow you to work directly with this number
format in C.

Explicit conversion

A number of functions are available for explicit conversion between floating-point numbers
in IEEE format and in /390 format. These are declared in the header file ieee_390.h, which
is part of the CRTE distribution. These conversion functions are described in the manual
“CRTE” [3].

Java data types in C JNI under BS2000

110 JENV V8.1A

Example

The following example shows the use of a conversion function in a native method which
performs arithmetic manipulations on a floating point number. On the Java side the
method will be declared as:

public native double manipulate(double arg);

The associated C program could look like this:

#include <jni.h>
#include ".....h" // javah generated Header
#include <ieee_390.h>

JNIEXPORT jdouble JNICALL
Java_..._manipulate(JNIEnv *env, jobject jthis, jdouble num);
{
double result, arg;

arg = ieee2double(num);
result = (arg < 1.7)? arg * 3.4 : arg - 1.0;
return double2ieee(result);

}

The above code example does not contain any error handling for possible conversion
errors.

IEEE floating point numbers in the C code

As of version V3.0B, the C/C++ compiler allows you to generate code for IEEE format as
an alternative to /390 format for floating point numbers. The setting, which is controlled via
the compiler option -Kieee_floats, applies to the entire compilation unit (source file).

This option only has an effect on floating point constants in the source code, and on arith-
metic, type conversion or comparison of floating point numbers. It has no effect on the
passing of such data to other functions or simple assignments

Setting this option also has the effect of implicitly permitting the use of C library functions
with floating point arguments and/or floating point result in a variant for IEEE arithmetic.

All the arithmetic is processed using corresponding emulation routines. This applies to SQ
systems too, as long as generation of native code for the corresponding commands via
Asstran is not possible. Naturally this has a negative effect on performance. C programs
which make intensive use of floating point arithmetic should therefore not be run in this
mode.

JNI under BS2000 Java data types in C

JENV V8.1A 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

Example

The example shown above could then be implemented as follows:

#include <jni.h>
#include ".....h" // javah generated Header

JNIEXPORT jdouble JNICALL
Java_..._manipulate(JNIEnv *env, jobject jthis, jdouble num)
{

return (num < 1.7)? num * 3.4 : num - 1.0;
}

The compilation must be carried out using the C compiler option
-Kieee_floats.

IEEE floating point numbers in the C runtime system

The C runtime system contains, in addition to the conversion routines which are declared
in the ieee_390.h, all the essential XPG4 functions which work with floating point numbers in
a variant for IEEE arithmetic. When the aforementioned compiler option for using IEEE is
selected, the corresponding library functions are normally used automatically without the
user needing to do anything. You can also modify this behavior for mixed mode (see the
manual “CRTE” [3]).

Example

The next example illustrates the use of the IEEE version of the C function tanh in a
native method for calculating the hyperbolic tangent in a Java class. On the Java side
the method will be declared as:

public native double tanhyp(double arg);

The associated C program could look like this:

#include <math.h>
#include <jni.h
#include ".....h" // javah generated Header

JNIEXPORT jdouble JNICALL

Java_..._tanhyp(JNIEnv *env, jobject jthis, jdouble num)
{

//printf("tan_hyp called with: %e\n",num);
return tanh(num);

}

To work correctly it must naturally be compiled in this form using the
C compiler option -Kieee_floats.

Java data types in C JNI under BS2000

112 JENV V8.1A

6.2.3 Strings

The Java data type string is provided in JNI as data type jstring. This type cannot be used
directly in C; in particular, it has no commonality with the C data type char *. In order to
convert the string to a form which can be processed in C, the corresponding JNI interfaces
must be used for the conversion (see JNI documentation).

The Java data typeChar is available at the JNI interface as data type jchar. This is
compatible with the C data type unsigned short and constitutes one character in Unicode
representation. The first 256 characters in Unicode are identical to the ISO8859-1
encoding. Unicode characters outside this range are not supported in C/C + + in BS2000.
Processing of these characters must therefore be undertaken by users themselves.

The UTF-8 representation of Unicode, which is partially used by Java in the JNI, plays a
special role. In UTF-8 representation, Unicode characters are encoded into one, two or
three bytes. Under this encoding, Unicode characters with codes 1 to 127 are represented
with this value in a single byte, corresponding once again exactly to the ASCII encoding of
these characters.

Moreover, UTF-8 byte sequences are always terminated in Java with a NULL byte, which
enables them to be processed as C strings. Here, the Unicode NULL character is encoded
into two bytes so as to avoid confusion with the string delimiter in C, since, unlike in C, it is
perfectly acceptable in Java for strings to contain NULL characters.

The following simple rules apply to the processing of UTF-8 byte sequences
in C:

– The NULL byte marks the end of the byte sequence, and is absolutely essential.

– Bytes for which the function isascii_ascii() returns the value “true” (1-127) are also in
fact ASCII characters as per ISO8859-1

– To represent Unicode characters outside the range 1 to 127, all the other bytes are
treated as if they were part of a multibyte sequence. These have to be interpreted by
the user.

As nearly all these conversion functions constitute character sequences at least in a form
which is upwardly compatible with ASCII, code conversion from ASCII to EBCDIC and vice
versa does not play a special role in BS2000. Naturally, this applies not only to strings but
also, for example to byte arrays or characters (jchar).

References to “ASCII” in this manual always refer to the ISO8859-1 character set (ISO Latin
1) or its 7 bit offshoot (ISO 646). “EBCDIC” refers to the character set DF04-1 (international
reference version) with swapped 0x15 and 0x25 or its 7 bit offshoot DF03-1.

As well as explicit conversion facilities, to support ASCII strings, appropriate compiler and
runtime system extensions are available which allow you to work directly with ASCII strings
and characters in C.

JNI under BS2000 Java data types in C

JENV V8.1A 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

Explicit conversion

The JNI conversion functions (see „Java™ Native Interface” [13]) work in BS2000 exactly
as specified. They always return or else expect Unicode or UTF-8.

Some functions are available in CRTE for explicit conversion between
ASCII (8859-1) and EBCDIC (DF04-1). These are declared in the header file
<ascii_ebcdic.h>, which is part of the CRTE distribution. These conversion functions are
described in the manual “CRTE” [3].

Example

The next example illustrates usage in a native method which ascertains the value of an
environment variable and removes the prefix JAVA_ from this. On the Java side the
method will be declared as:

public native String get_jenviron(String name);

The associated C program could look like this:

#include <jni.h>
#include ".....h" // Header generated by javah
#include <stdlib.h>
#include <ascii_ebcdic.h>

JNIEXPORT jstring JNICALL
Java_..._get_jenviron(JNIEnv *env, jobject jthis,

jstring name)
{

const char *utf_name;
char *ebcdic_name, *ebcdic_value, *utf_value;
jstring value;

utf_name = (env*)->GetStringUTFChars(env,name,NULL),
ebcdic_name = _a2e_dup(utf_name);
(*env)->ReleaseStringUTFChars(env,name,utf_name);

ebcdic_value = getenv(ebcdic_name);
free(ebcdic_name);
if (ebcdic_value == NULL)
return NULL;

if (strncmp(ebcdic_value,"JAVA_",5) == 0)
utf_value = _e2a_dup(ebcdic_value+5);

else
utf_value = _e2a_dup(ebcdic_value);

value = (*env)->NewStringUTF(env,utf_value);

Java data types in C JNI under BS2000

114 JENV V8.1A

free(utf_value);
return value;

}

The above sample code does not contain any error handling. It is implicitly assumed
that in all strings only characters from the 7 bit ASCII character set will occur. Moreover,
this code is naturally very much BS2000-specific.

ASCII strings in the C code

As of version V3.0B, the C/C++ compiler allows you to generate an equivalent ASCII code
as an alternative to the normal EBCDIC encoding for string and character literals. This
setting must apply to a complete compilation unit (source file) and is controlled via the
compiler options -Kliteral_encoding_ascii and
-Kliteral_encoding_ascii_full. The difference between the two options lies in the treatment of
octal and hexadecimal sequences in such literals. With
-Kliteral_encoding_ascii such literal parts are not converted.

ASCII strings in the C runtime system

In addition to the above conversion routines, the C runtime system provides further support
for the use of ASCII strings and characters. All key XPG4 functions that work with or return
strings or characters are available in a variant for ASCII coding. When one of the compiler
options for ASCII use described in the section “ASCII strings in the C code” on page 114 is
set, the corresponding library functions are generally used automatically without the need
for user intervention. You can change this behavior for mixed operation (see the manual
“CRTE” [3]).

If the compiler option -Kieee_floats is set at the same time, the combined ASCII/IEEE
variants are used (e.g. with printf).

As of C Compiler V3.1A and CRTE V2.4C, the arguments of the vector argv[] are passed
as ASCII strings when compiling the main program with one of the compiler options
described in the section “ASCII strings in the C code” on page 114. The global variables of
the C runtime system tzname and the strings of environ are saved as ASCII strings. Explicit
conversion of argv[] is therefore unnecessary.

If explicit access is made to the strings of the global variables tzname or environ, it should be
noted that as of JENV V1.4B these are stored as ASCII strings (formerly EBCDIC strings).
However, the Technical Standard “the Single UNIX Specification” warns against explicit
access to the environ variable (see “X/Open System Interface (XSI) Specification” [51]).
Implicit access using getenv() and putenv() functions as in the past and is compatible with
previous versions.

JNI under BS2000 Dynamic loading of native methods

JENV V8.1A 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

Example

If you use these options, the above C program could look like this:

#include <jni.h>
#include ".....h" // javah generated Header
#include <stdlib.h>

JNIEXPORT jstring JNICALL
Java_..._get_jenviron(JNIEnv *env, jobject jthis,

jstring name)
{

const char *utf_name;
char *utf_value;
utf_name = (*env)->GetStringUTFChars(env,name,NULL);
utf_value = getenv(utf_name);
(*env)->ReleaseStringUTFChars(env,name,utf_name);

if (utf_value == NULL)
return NULL;

if (strncmp(utf_value, "JAVA_",5) == 0)
return (*env)->NewStringUTF(env,utf_value+5);

else
return (*env)->NewStringUTF(env,utf_value);

}

This implementation is exactly the same as one which could also be used on Unix systems
This form is therefore the one most highly recommended for ported code.

6.3 Dynamic loading of native methods

Native methods for Java must be dynamically loadable. The procedure here is very similar
to the established methods in Unix systems (shared libraries). The Unix concepts and the
BS2000 implementation will now be compared. The BS2000 solution and the associated
requirements for the user will then be described in detail.

Java applications on Unix platforms require that native methods are produced as shared
libraries. The native methods can then be dynamically loaded and called. The C system
functions dlopen() and dlsym() are used for this purpose.

Although in OSD-POSIX there is now a shared libraries implementation, the analogous
mechanism familiar from the preceding version has been retained. However, not all the
functionality of the shared libraries is offered here but only those functions which are
needed in the Java environment.

Dynamic loading of native methods JNI under BS2000

116 JENV V8.1A

6.3.1 Shared libraries in Unix systems

Shared libraries contain an object (i.e. a module which can be loaded and executed by the
system loader) with a special structure (a “shared object”). One of the characteristics of
shared objects is that they can be dynamically loaded during program execution.

List of required objects

A shared object can specify other objects which are necessary in order for it to be executed.
These objects are loaded at the same time as a shared object is loaded and are considered
during resolution of unresolved external references. Here again, each of these objects can
specify other required objects, so that chains are formed.

Name spaces

When a shared object is loaded, other dynamically loaded shared objects are not accessed
unless they are included in the list of required objects.

An exception here is the context in which the program was loaded on startup (and all the
objects which were dynamically loaded at that time).

This causes the name spaces to be partitioned.

Search sequence

The search for shared objects during program execution is controlled through the
environment variable LD_LIBRARY_PATH, in which different directories can be specified
which the system will search through in the specified sequence, looking for the shared
objects which are to be loaded.

Resolution of external references

When a shared object is loaded, any unresolved external references are initially resolved
from the primary load context. The current shared object is then included and finally the
objects which were loaded as required objects. (This is a simplified version. Full details are
provided in the interfaces descriptions of dlopen() and dlsym() in the corresponding Unix
manuals).

As the external references within a shared object are not resolved, a function which exists
in a shared object can be overwritten by a function of the primary load context (this is not
possible in LLMs!).

JNI under BS2000 Dynamic loading of native methods

JENV V8.1A 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

Naming convention

Shared libraries always begin with the prefix lib and end with the suffix .so, for example,
libhello.so. Often a name also has a version suffix for the co-existence and unambiguous
assignment of different interface versions, for example, libXm.so.1.2.

6.3.2 Shared libraries in BS2000

As already mentioned, in BS2000 there is no exact correspondence to the familiar shared
objects from Unix systems. The characteristics essential to Java such as dynamic loading,
the partitioning of name spaces and the dynamic determination of function addresses are
mapped during the Java port. On the other hand, the naming property of multiple usage,
the implicit loading of shared objects at program start and the subtleties of resolution cannot
be mapped. This would require extension of the linking loader.

As the BS2000 linking loader cannot dynamically load any module from the POSIX file
system, native methods must be created as LLMs and stored in PLAM libraries.

In the LLM there is no means of specifying a “list of required objects”, yet this functionality
is necessary for Java and a search method analogous to Unix systems would appear to be
useful in the POSIX file system. Hence, an additional description file has been imple-
mented. This file contains what amounts to a description of a shared object. It is stored in
the POSIX file system, observes the same naming conventions as shared libraries in Unix
systems and contains all the information needed by Java in order to dynamically load and
call the native methods.

This information comprises above all the PLAM library in which the LLM is stored, the name
of the module (or modules) and, if appropriate, the list of required objects.

List of required objects

A list of required objects can be entered in the description file. These objects are dynami-
cally loaded before the current object. Objects which already exist are not dynamically
loaded again. Objects are identified by their POSIX file names.

These objects are included during loading of the current object to resolve external refer-
ences.

It is perfectly possible for different shared objects to contain the same objects in their lists
of required objects. The first reference to such an object then leads to dynamic loading

Dynamic loading of native methods JNI under BS2000

118 JENV V8.1A

Name spaces (link contexts)

Each object is loaded in a separate link context. Objects are therefore partitioned in their
name space.

The BS2000 linking loader now allows 200 link contexts. If more objects are loaded the
application is aborted.

Search sequence

The search for shared objects (or rather, for the description files) operates in exactly the
same way as in Unix systems, i.e. it is controlled through the environment variable
LD_LIBRARY_PATH.

Resolution of external references

The contexts into which the required objects have been loaded are specified as reference
contexts. The default context is used as reference context with the highest priority.

Searching through the share scope is explicitly prevented as it is not possible at the present
time to see to it that this does not happen until after the reference contexts have been
handled.

To resolve any unresolved external references, the system therefore initially searches
through the default context and then through the required objects. All other objects are
ignored.

I This continues to be different from Unix systems. In particular, all external refer-
ences in an LLM are shorted, so that no function in an LLM can be overwritten.

JNI under BS2000 Dynamic loading of native methods

JENV V8.1A 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

6.3.3 Creation of shared objects

The next few sections explain the procedure for creating a shared object with native
methods which can later be dynamically loaded by the Java VM.

Compilation of source code

To compile the C source code of Java native methods, the C/C++ compiler as of V3.0B must
be used for the parts of the source code which work with the JNI.

When compiling the C or C++ parts, it is essential that the following compiler options are
used:

-I <Installation path>/include
This option is necessary in order that the Java distribution header files are found.
For <Installation path> the path in which JENV has been installed must be substi-
tuted. For a standard installation, this is /opt/java/jdk1.8.0_<nn> where <nn> stands
for the current patch level. Refer to the Release Notice for the currently valid name.

-K workspace_stack
This is necessary in order that the Garbage Collector can also find the Java objects
used in the C parts and that the objects can be thread-safe.

-K c_names_unlimited
This is necessary in order that the name mangling correctly functions for native
interface functions.

-K llm_keep
This is necessary in order that the name mangling correctly functions for native
interface functions and that the runtime system functions are found.

-K llm_case_lower
This is necessary in order that the name mangling correctly functions for native
interface functions and that the runtime system functions are found.

-D __SNI_THREAD_SUPPORT
This option is mandatory for C++ compilations.

The following compiler options can be useful:

-K ieee_floats
Used when you want the IEEE format for floating point numbers to also be used in
the C code.

-K literal_encoding_ascii
-K literal_encoding_ascii_full

 Used when you want to use ASCII strings in the C code.

Dynamic loading of native methods JNI under BS2000

120 JENV V8.1A

-K enum_long
Should always be set, as the default setting does not conform to the ANSI standard.

Furthermore, it is essential that compilation is performed in ANSI mode (-Xa or -Xc).

Linking a main module

If the implementation of a shared object is to consist of several modules, then these should
be linked together into a main module. This is done using the command cc or c89, where
the following options must be specified

-r This option has the effect of linking a main module without adding any standard
libraries like (CRTE). Under no circumstances should these be explicitly linked to it
with -lc or -lsocket.

-B llm4
This option cause the linker to create a main module in LLM4 format which is
necessary for the long name of the Java native methods.

Creating an LMS library

The main module created (and held in the POSIX file system) must be stored in a PLAM
library as an element with the element type L. The best way to do this is with the POSIX
command bs2cp, which also creates the library if it does not yet exist.

It is quite in order for several shared objects to be stored in such a PLAM library

I The element name of the module in the library must not exceed
32 characters.

Creating the object description

To create the necessary description file for a shared object, the command mk_shobj is
available. The command pr_shobj is used to view the content of such a description file. Both
commands are part of the Java distribution and are described in detail in chapter
“Commands for BS2000” on page 211.

C++ objects must be labeled as such (see section “Options” on page 212).

JNI under BS2000 Invocation API

JENV V8.1A 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

6.3.4 Use of shared objects from Java

To dynamically load the user’s native methods, it is necessary in Java to call, for example,
the method System.loadLibrary().

A new name is formed from the name specified in loadLibrary(), under which the library is
then searched for. This name is lib<name>.so

The library is searched for using the environment variable LD_LIBRARY_PATH. The first
description file found using this method is then used to dynamically load the appropriate
module or modules.

The JVM and the native methods of Java are held in separate shared libraries and loaded
into separate contexts in each case. Thus, if JVM interfaces which extend beyond the JNI
interface are used (which they should not be), the corresponding dependencies to the
shared Libraries should be entered in the user libraries.

When the first C++ method is started a C++ runtime system is loaded dynamically (including
the tools and standard library) and C++ is initialized, if this has not already been done.

During dynamic loading of shared libraries (BIND macro), at present the system does not
search through the “share scope” to resolve any open external references as this would
mean it could no longer be guaranteed that the Java private CRTE or sockets will be used.

This must likewise be done if the user himself dynamically loads via BIND code, at least
when references to the C runtime system and the sockets exist.

Java native methods and main modules containing them cannot be pre-loaded with the
current linking loader.

6.4 Invocation API

The invocation API is a part of the JNI for invoking Java from C/C++ applications. Only
Version 1.2 is still supported.

Changes to the invocation API

The invocation API provides no interface which allows you to select which variant of the
HotSpot™ VM (client, server, etc.) is to be used by the program.

In BS2000 the client VM is normally used by default. However, in this implementation it is
also possible to use the environment variable JENV_VMTYPE to select another VM variant
(if available) (see chapter “Environment variables” on page 15).

Invocation API JNI under BS2000

122 JENV V8.1A

6.4.1 Compiling the C and C++ sources

The compiler options described in section “Implementation of the Java code” on page 124
must be used when compiling the C/C++ parts.

The HotSpot™ VM handles overflow events itself. To prevent interrupts occurring you must
also specify:

-K no_integer_overflow
This option must be set for the main program.

The C/C++ Compiler as of Version 3.1A20 has been changed (and is therefore incom-
patible) so that if a main program is compiled with this compiler the argument strings are
automatically passed as ASCII strings if the
-K literal_encoding_ascii or -K literal_encoding_ascii_full option was set. Explicit conversion
with, for example, _e2a() is not needed. If an existing main program already performs this
conversion and you do not want to change it, the following option must be specified for
reasons of compatibility:

-K environment_encoding_ebcdic
The argument strings continue to be passed as EBCDIC strings.

6.4.2 Linking C and C++ applications with Java and Green Threads

When linking C/C++ applications the link options described in section “Implementation of a
native method in C++” on page 128 must be used.

With JENV a runtime adapter is provided which has to be linked with C applications which
need to call Java via the invocation API (part of the JNI). This adapter contains the functions
of the Invocation API as well as the adapter to the thread-safe C and C++ runtime system
and to the thread-safe socket library.

The runtime adapter is available in an optimized variant, as is used in java. The runtime
systems are located in PLAM libraries which are part of the scope of delivery of JENV:

For S390:

SYSLNK.JENV.081.GREEN-JAVA.

For X86:

SKULNK.JENV.081.GREEN-JAVA

When linking an application with this runtime adapter, it must also be borne in mind that,
due to the long names which occur in Java, this runtime system is of LLM type 4. It is
therefore essential that the compiler option -B llm4 is used during linking. It should also be
noted that the C compiler normally automatically links a CRTE during linking and in the case
of C++ a standard library. This must be prevented to avoid any conflict with the thread-safe

JNI under BS2000 Invocation API

JENV V8.1A 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

runtime system already contained in the runtime adapter. This is achieved with the -
Kno_link_stdlibs option. For the same reason, no socket library can be explicitly linked and
nor can any tools library. During linking, the options -lc, -lsocket or -ltools should therefore
never be used

Under POSIX a C application can be linked as follows with JENV:

export BLSLIB00='$.SYSLNK.JENV.080.GREEN-JAVA'
cc -Kno_link_stdlibs -B llm4 -o <program> \

 <objects> -l BLSLIB

The linked program can then be run without further precautions although naturally it needs
a completely installed JENV under the standard installation path. If a Java installed
elsewhere is to be used, the environment variable JAVA_HOME must be set to the instal-
lation path of the Java runtime environment (see chapter “Environment variables” on
page 15).

The cc command implicitly links the POSIX linkage option. If linkage is not carried out under
the shell using the cc command, but under the BS2000 command line interface using
BINDER, this option must be linked from $.SYSLNK.CRTE.POSIX.

In order to use the BINDER to obtain the required LLM4 format when using a OSD V3 for
production you must specify the operand
FOR-BS2000-VERSIONS=*FROM-OSD-V4 in SAVE-LLM . The objects can also run on OSD
V3.

This procedure applies equally for C++ applications, in which case the command CC with
the options specified above is to be used for linkage.

An application that explicitly calls the C interfaces of the POSIX sockets may not link the
modules of the socket library but must link the LIBSOCKET module from
SYSLNK.JENV.081.GREEN (or SKULNK.JENV.081.GREEN).

Examples JNI under BS2000

124 JENV V8.1A

6.5 Examples

Four examples will now illustrate the complete process of creating a Java application using
the JNI.

6.5.1 Implementation of a native method in C

Our sample application will consist of two Java classes Hello and Work, each of which
contains a native method. One of them issues a greeting message, while the other performs
a calculation. This example is highly artificial as normally no user would have this performed
using native methods.

The native methods in both classes are to be stored in a common library called example1.

Implementation of the Java code

In a file called Hello.java the following Java class is defined:

class Hello {
public native void greetings(String text);
static {
System.loadLibrary("example1");

}
public static void main(String[] args) {

new Hello().greetings("Hello");
new Work().compute();

}
}

In the file Work.java the second Java class is defined:

import java.io.*;

class Work {
public native double docompute(double arg);

public void compute() {
System.out.println("Resultat 1: " + docompute(1.0));
System.out.println("Resultat 2: " + docompute(7.0));
System.out.println("Resultat 3: " + docompute(3.11));

}
}

If you had wanted to store the native methods in different libraries, each class would have
to load its own library during initialization.

JNI under BS2000 Examples

JENV V8.1A 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

Compiling the Java code

The two Java classes can now be simply compiled using the command

javac Hello.java

The dependent class Work is created during this compilation.

Creation of header files

The header files which are needed in order to implement the native methods can be
generated from the class files using the tool javah:

javah -jni Hello
javah -jni Work

Once this step is complete, the header files Hello.h and Work.h will be available with the
prototypes of the native functions.

Implementation of the C code

The native methods are now typically implemented in corresponding source files. In our
example these will be the files Hello.c and Work.c. Both files include the header which is
provided with JENV jni.h and in each case the associated header previously generated,
Hello.h or Work.h. The function definition must match the prototype which has been
generated. The further coding depends on the desired implementation.

The program Hello.c will now be implemented in the example as follows:

#include <jni.h>
#include "Hello.h"
#include <stdio.h>
#include <stdlib.h>
#include <ascii_ebcdic.h>

JNIEXPORT void JNICALL
Java_Hello_greetings(JNIEnv *env, jobject jthis, jstring text)
{
char *ebcdic_text;
const char *utf_text;

utf_text = (*env)->GetStringUTFChars(env,text,NULL);
ebcdic_text = _a2e_dup(utf_text);
(*env)->ReleaseStringUTFChars(env,text,utf_text);
printf("The program responds here %s\n",ebcdic_text); free(ebcdic_text);

}

Examples JNI under BS2000

126 JENV V8.1A

The file Work.c contains the following code:

#include <jni.h>
#include "Work.h"

JNIEXPORT jdouble JNICALL
Java_Work_docompute(JNIEnv *env, jobject jthis, jdouble num)
{
return (num < 1.7) ? num * 3.4 : num - 1.0;

}

In the file Work.c use has been made of the option of transparent usage of IEEE functions,
described in more detail above. In file Hello.c explicit ASCII-EBCDI conversions are carried
out.

To make the examples clear and at the same time keep them short, detailed error handling
has been omitted.

Compiling the C source

The C source code implemented in the section above must now be compiled using the
correct compiler options. For Hello.c these are the standard options which are described in
more detail above:

cc -c -I/opt/java/include \
 -Kllm_keep,llm_case_lower \

-Kworkspace_stack,c_names_unlimited Hello.c

For Work.c the IEEE arithmetic must also be considered:

cc -c -I/opt/java/include \
 -Kllm_keep,llm_case_lower \

-Kworkspace_stack,c_names_unlimited \
-Kieee_floats Work.c

This results in the object files being made available

JNI under BS2000 Examples

JENV V8.1A 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

Creation of the shared object

The previously created objects can be linked to a main module with the following command:

cc -r -B llm4 -o example1.o Hello.o Work.o

The main module created is then stored in a BS2000 library.

bs2cp example1.o bs2:'syslnk.example1(example1,L)'

Finally, a description file which complies with the naming convention is created. This must
naturally contain the correct references.

mk_shobj -l syslnk.example1 -m example1 libexample1.so

Processing of the program

To run the program all that remains now is to set the environment variable
LD_LIBRARY_PATH so that the created shared object is also found. In our example this can
be done using

export LD_LIBRARY_PATH=.

The application can now be started with

java Hello

Examples JNI under BS2000

128 JENV V8.1A

6.5.2 Implementation of a native method in C++

Implementation in C++ is largely identical to the procedure used for implementation in C.
The differences from the example above are as follows:

Program Hello.cpp is now implemented as follows:

#include <jni.h>
#include "Hello.h"
#include <iostream.h>
#include <ascii_ebcdic.h>
#include <stdlib.h>

JNIEXPORT void JNICALL
Java_Hello_greetings(JNIEnv *env, jobject jthis, jstring text)
{
char *ebcdic_text;
const char *utf_text;

utf_text = env->GetStringUTFChars(text,NULL);
ebcdic_text = _a2e_dup(utf_text);
env->ReleaseStringUTFChars(text,utf_text);
cout << "The program responds here" << ebcdic_text << endl;
free(ebcdic_text);

}

For compilation, instead of using command cc, use command CC. For creation of the
shared object, the flag cpp must be set:

mk_shobj -f cpp -l syslnk.example1 -m example1 libexample1.so

JNI under BS2000 Examples

JENV V8.1A 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

6.5.3 Use of Java from a C application

The next example illustrates the use of the Java invocation API (part of the JNI) for calling
Java programs from C. The example we have chosen is consciously kept simple.

A Java echo program will output all its arguments to standard output. This Java program
will then be called from a C program.

Implementation of the Java code

In the file Echo.java we define the following class:

class Echo {
public static void main(String[] args)
{
for (int i = 0; i < args.length; i++)
{
if (i > 0)
System.out.print(" ");

System.out.print(args[i]);
}
System.out.println("");

}
}

Compiling the Java code

The above defined Java class can now be simply compiled using the command

javac Echo.java

By calling

java Echo This is a test

you can prove to yourself that the program is working.

Implementation of the C code

In our example, the following C program will call the above Java program and at the same
time transfer its call arguments to it. Once again you should note that all strings transferred
to JNI functions must be coded in ASCII. This example will therefore be implemented and
produced completely in ASCII mode.

Examples JNI under BS2000

130 JENV V8.1A

The file Echo.c is implemented as follows:

#include <jni.h>

int
main(int argc, char *argv[])
{

JavaVMInitArgs vm_args;
JavaVMOption options[1];
JavaVM *jvm;
JNIEnv *env;
jint res;
jclass cls;
jmethodID mid;
jobjectArray args;
int i;

/*
** Prepare VM Options
*/
options[0].optionString = "-Djava.class.path=.";
/*
** Prepare VM configuration
*/
vm_args.version = JNI_VERSION_1_4;
vm_args.nOptions = 1;
vm_args.options = options;
vm_args.ignoreUnrecognized = JNI_FALSE;
/*
** Create the Java VM
*/
res = JNI_CreateJavaVM(&jvm,(void **)&env,&vm_args);
if (res < 0)
{
fprintf(stderr,"Can't create Java VM\n");
exit(1);

}
/*
** Get class Echo
*/
cls = (*env)->FindClass(env,"Echo");
if (cls == NULL)
{
fprintf(stderr,"Can't find Echo class\n");
exit(1);

}
/*
** Get main method

JNI under BS2000 Examples

JENV V8.1A 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

*/
mid = (*env)->GetStaticMethodID(env,cls,"main",

"([Ljava/lang/String;)V");
if (mid == 0)
{
fprintf(stderr,"Can't find main in Echo\n");
exit(1);

}
/*
** Allocate argument array
*/
args = (*env)->NewObjectArray(env,argc-1,

(*env)->FindClass(env,"java/lang/String"),NULL);
if (args == 0)
{
fprintf(stderr,"Out of memory\n");
exit(1);

}
/*
** Prepare arguments
*/
for (i=1; i<argc; i++)
{
jstring jstr;

jstr = (*env)->NewStringUTF(env,argv[i]);
if (jstr == NULL)
{

fprintf(stderr,"Out of memory\n");
exit(1);

}
(*env)->SetObjectArrayElement(env,args,i-1,jstr);

}

/*
** Call Java method
*/
(*env)->CallStaticVoidMethod(env,cls,mid,args);
/*
** Destroy Java VM
*/
(*jvm)->DestroyJavaVM(jvm);
return 0;

}

The program functions in this form only with a standard JENV installation. If you want to run
the program with a private installation, you must set the JAVA_HOME environment variable
accordingly (see chapter “Environment variables” on page 15).

Examples JNI under BS2000

132 JENV V8.1A

Compilation of the C source code

The C source code implemented in the section above must now be compiled using the
correct compiler options. For Echo.c , in addition to the standard options which have been
described in detail above, the ASCII mode must also be considered:

cc -c -I/opt/java/include \
 -Kllm_keep,llm_case_lower \

-Kworkspace_stack,c_names_unlimited \
-Kliteral_encoding_ascii
-Kno_integer_overflow Echo.c

This results in an object file being made available.

Linking and executing the application

When linking the application, it must be remembered that the Java runtime adapter is linked
and not the “normal“ runtime systems.

The application can be statically linked with the following commands:

export BLSLIB00='$.SYSLNK.JENV.080.GREEN-JAVA'
cc -Kno_link_stdlibs -B llm4 -o Echo \

Echo.o -l BLSLIB

The program can be called like any other POSIX program. However, for JENV to execute,
it must be installed under the default installation path. To use a JENV installed elsewhere,
you must set the JAVA_HOME environment variable accordingly (see chapter “Environment
variables” on page 15).

The call using

Echo This is a Java echo

produces the expected output:

This is a Java echo

The program is run using the default VM described in section “Options for selecting the
HotSpot™ VM type” on page 215. By selecting the environment variable JENV_VMTYPE
beforehand you can determine the VM type explicitly. For example:

export JENV_VMTYPE=client

This results in the HotSpot™ client VM being used.

JNI under BS2000 Examples

JENV V8.1A 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

6.5.4 Use of Java from a C++ application

The differences as compared to using Java from a C application (see section “Use of Java
from a C application” on page 129) are listed below.

Implementation of the C++ code

Let us assume that the Echo.cpp file is implemented as follows:

#include <jni.h>

int
main(int argc, char *argv[])
{

JavaVMInitArgs vm_args;
JavaVMOption options[1];
JavaVM *jvm;
JNIEnv *env;
jint res;
jclass cls;
jmethodID mid;
jobjectArray args;
int i;

/*
** Prepare VM Options
*/
options[0].optionString = "-Djava.class.path=.";
/*
** Prepare VM configuration
*/
vm_args.version = JNI_VERSION_1_4;
vm_args.nOptions = 2;
vm_args.options = options;
vm_args.ignoreUnrecognized = JNI_FALSE;
/*
** Create the Java VM
*/
res = JNI_CreateJavaVM(&jvm,(void **)&env,&vm_args);
if (res < 0)
{
fprintf(stderr,"Can't create Java VM\n");
exit(1);

}
/*

Examples JNI under BS2000

134 JENV V8.1A

** Get class Echo
*/
cls = env->FindClass("Echo");
if (cls == NULL)
{
fprintf(stderr,"Can't find Echo class\n");
exit(1);

}
/*
** Get main method
*/
mid = env->GetStaticMethodID(cls,"main",

"([Ljava/lang/String;)V");
if (mid == 0)
{
fprintf(stderr,"Can't find main in Echo\n");
exit(1);

}
/*
** Allocate argument array
*/
args = env->NewObjectArray(argc-1,

env->FindClass("java/lang/String"),NULL);
if (args == 0)
{
fprintf(stderr,"Out of memory\n");
exit(1);

}
/*
** Prepare arguments
*/
for (i=1; i<argc; i++)
{
jstring jstr;

jstr = env->NewStringUTF(argv[i]);
if (jstr == NULL)
{

fprintf(stderr,"Out of memory\n");
exit(1);

}
env->SetObjectArrayElement(args,i-1,jstr);

}

JNI under BS2000 Examples

JENV V8.1A 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
6

/*
** Call Java method
*/
env->CallStaticVoidMethod(cls,mid,args);
/*
** Destroy Java VM
*/
(*jvm)->DestroyJavaVM(jvm);
return 0;

}

Compiling the C++ source

You must now compile the above C++ source using the CC command and the correct
compiler options. For Echo.cpp, you must also take ASCII mode into account in addition to
the default options described above. This example generates an application that can be
executed with the X86 variant of JENV on SQ systems:

CC -c -I<installation-path>/include \
 -Kllm_keep,llm_case_lower \

-Kworkspace_stack,c_names_unlimited \
-Kliteral_encoding_ascii -Kno_integer_overflow
-D_SNI_THREAD_SUPPORT Echo.cpp

Examples JNI under BS2000

136 JENV V8.1A

Linking and executing the application

When you link the application, you must remember that the X86 runtime adapter of Java is
linked and not the “normal” runtime systems.

You can link the application with the following commands:

export BLSLIB00='$.SKULNK.JENV.080.GREEN-JAVA'

CC -Kno_link_stdlibs -B llm4 -o Echo \
Echo.o -l BLSLIB

The program can be called like any other POSIX program on an SQ system. However, for
it to run, a X86 variant of JENV must be installed under the default installation path. To use
a JENV installed elsewhere, you must set the JAVA_HOME environment variable accord-
ingly (see chapter “Environment variables” on page 15).

The call using

Echo This is a Java echo

produces the expected output:

This is a Java echo

The program is executed with the default VM described in “Options for selecting the
HotSpot™ VM type” on page 215. The VM type can be specified explicitly by setting the
JENV_VMTYPE environment variable beforehand. For example:

export JENV_VMTYPE=client
Echo This is a Java echo

This causes the HotSpot™ Client-VM to be used for execution.

JENV V8.1A 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7 JCI - Invocation API for COBOL

The Java-COBOL Interface (JCI) is a collection of functions and COBOL-COPY elements
to permit simpler operation of the interfaces of the Java Invocation API from COBOL programs.

The Java Invocation API is part of the Java Native Interface (JNI). As it is designed for th language
C/C++, its interfaces are inconvenient to operate directly from COBOL programs.

The JCI supports the following functions:

● Starting a Java VM

● Loading classes

● Calling methods

● Generating and editing Java objects

● Checking whether an exception has been generated

● Terminating a Java VM

The option of creating and calling native COBOL methods is not supported.

7.1 Compiling the COBOL source codes

A COBOL2000 compiler Version V1.4A or higher is required to compile a COBOL source
code which uses JCI interfaces.

7.1.1 Assigning the JCI-COPY library

The JCI-COPY elements are contained in the POSIX directory <installation-
path>/include. Here the path under which JENV was installed must be used for
<installation-path>. For standard installation this is /opt/java/jdk1.8.0_<nn>, where <nn>
stands for the current patch level. The currently valid name can be found in the Release
Notice.

This path must be made known to the compiler under the BS2000 command line interface
by means of the S variable SYSIOL-<libname> or SYSIOL-COBLIB:

Compiling the COBOL source codes JCI - Invocation API for COBOL

138 JENV V8.1A

DECL-VAR SYSIOL-COBLIB,INIT='*POSIX(<Installations-Pfad>/include)',SCOPE=*TASK

For details, see “COBOL2000 (BS2000) User Manual” [5].

Under POSIX, the environment variable <libname> or COBLIB must be set:

export COBLIB=.:<Installations-Pfad>/include

For details, see “COBOL2000 (BS2000) User Manual” [5].

7.1.2 Required options/directives

As data structures which contain pointers are used at the interface to JCI functions, the
option below is required when the COBOL program is compiled:

SOURCE-PROPERTIES=*PAR(STANDARD-DEVIATION=*YES,...)

Under POSIX, this corresponds to the option:

-C PERMIT-STANDARD-DEVIATION=YES

All JCI functions return an integral return value according to ILCS conventions (i.e. in
general register R1). To enable this value to be used in the COBOL program, it must be
made available in the COBOL special register RETURN-CODE after it has been returned.
You can do this as follows:

– Specification of the option

SOURCE-PROPERTIES=*PAR(RETURN-CODE=*FROM-ALL-SUBPROGRAMS,...)

– or under POSIX

-C ACTIVATE-XPG4-RETURNCODE=YES

– or on a targeted basis in the source program by specifying the directive

>>CALL-CONVENTION ILCS-SET-RETURN-CODE

The options apply for the entire source program, the directive only until a >>CALL-
CONVENTION directive with a different value is specified, see “COBOL2000 (BS2000)
Reference Manual” [6]).

The module generated must be available in LLM format. When compilation takes place
under the BS2000 command line interface, the option below is required for this purpose:

COMPILER-ACTION=*MODULE-GENERATION(MODULE-FORMAT=*LLM,...)

When compilation takes place under POSIX, no corresponding options exists as an LLM is
always generated there.

JCI - Invocation API for COBOL Linking COBOL applications with Java

JENV V8.1A 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.2 Linking COBOL applications with Java

The JCI functions are provided in two PLAM libraries:

SYSLNK.JENV.081.GREEN-JAVA (for the S390 variant),

SKULNK.JENV.081.GREEN-JAVA (for the X86 variant)

In addition, these libraries contain the JNI functions called by the JCI, the thread-safe
C/C++ runtime system, and the complete COBOL runtime system, the latter always in S390
format.

External references from applications which call JCI functions must be resolved with priority
from one of these libraries.

Under POSIX, the environment variable BLSLIB00 must be assigned to do this:

export BLSLIB00='$.SYSLNK.JENV.081.GREEN-JAVA'

cobol -g -M <PROG-ID> -o <program> <objekte> -l BLSLIB

The cobol command implicitly links the POSIX linkage option. If linkage is not carried out
under the shell using the cobol command, but under the BS2000 command line interface
using BINDER, this option must be linked from $.SYSLNK.CRTE.POSIX.

7.3 Processing COBOL applications with Java

Before an application which calls JCI functions is started from the BS2000 command line
interface, the POSIX environment must be initialized for the run with the INITIALIZE
procedures (see page 101).

The COBOL runtime system then mainly behaves as if it had been started under the POSIX
shell (see “COBOL2000 (BS2000) User Manual” [5] and section “Special considerations”
on page 106).

After the application has terminated, the POSIX environment must on all accounts be reset
by calling the DELETE procedure. Otherwise the environment is set incorrectly for further
compilations runs.

Characters and strings JCI - Invocation API for COBOL

140 JENV V8.1A

7.4 Characters and strings

Alphanumeric and national strings are transferred to JCI functions in structures which
contain a length field in addition to the data area.

Example:

01 ANUM.
05 ANUM-LEN PIC S9(9) COMP-5 VALUE 10.
05 ANUM-TEXT PIC X(10) VALUE "ANUM-TEXT".
01 NAT.
05 NAT-LEN PIC S9(9) COMP-5 VALUE 10.
05 NAT-TEXT PIC N(10) VALUE N"NAT-TEXT".

In this chapter, such structures in the formats are referred to as Cobvar or CobNvar.

Whether blanks at the end of the text area are ignored or retained depends on the function
called. In some functions this behavior can be controlled by means of an additional
parameter.

Alphanumeric characters and COBOL strings have an EBCDIC representation, while the
Java VM expects or supplies a UTF representation (depending on the interface, UTF8 or
UTF16). Necessary conversions are performed automatically in the JCI functions. For this
purpose, it must be possible to represent all characters in EDF03IRV. National characters
(strings) (UTF16 representation) must be used for characters (strings) for which no such
representation exists, otherwise the result is undefined. National strings must also be used
for strings which contain binary zeros. Only convertible characters may be used for inter-
faces for which no national strings are defined (e.g. class and method names).

Java strings are available as objects. Conversion between Java strings and COBOL strings
takes place automatically in the JCI functions.

Conversion consists of two partial steps:

● Conversion between EBCDIC strings and UTF8 strings (for alphanumeric strings only).

● Conversion between UTF8 and UTF16 strings and objects.

If an error occurs in any of these conversions (e.g. lack of memory), the condition variable
ResErrCode (COPY element JCI-METHODRES) is set to the value RES-ERR-NOMEM (error in
the first step) or RES-ERR-OBJECT (error in the second step).

If the length field of the COBOL structure is equal to 0 before the conversion, the text area
remains unchanged when a Java string is converted to a COBOL string. In the case of
conversion in the other direction, an object is created for a null string. If the length field is
less than 0 before the conversion, the condition variable ResErrCode is set to RES-ERR-
LENGTH.

JCI - Invocation API for COBOL Floating point numbers

JENV V8.1A 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.5 Floating point numbers

The Java floating point types float and double are represented in IEEE format, while the
COBOL floating point types COMP-1 and COMP-2 are represented in /390 format. The
conversion is performed automatically in the JCI functions.

During conversion, the following exceptional situations can occur, which are displayed to
the caller as a condition variable in the field ResErrCode (COPY element JCI-METHODRES)
when returning from the JCI function:

– COMP-1 ---> IEEE:

RES-ERR-FLOAT-UNDERFLOW
The /390 floating point number is lower than the smallest representable IEEE
floating point number.

RES-ERR-FLOAT-OVERFLOW
The /390 floating point number is greater than the largest representable IEEE
floating point number.

– COMP-2 ---> IEEE:

(none)

– IEEE ---> COMP-1:

RES-ERR-FLOAT-INVALID
The IEEE floating point number equals NaN or infinity.

– IEEE ---> COMP-2:

RES-ERR-FLOAT-UNDERFLOW
The IEEE floating point number.is less than the smallest representable /390 floating
point number.

RES-ERR-FLOAT-OVERFLOW
The IEEE floating point number.is greater than the largest representable /390
floating point number.

RES-ERR-FLOAT-INVALID
The IEEE floating point number equals NaN or infinity.

If bit positions are lost in the conversion, this does not lead to an exceptional situation.

Object references JCI - Invocation API for COBOL

142 JENV V8.1A

7.6 Object references

Java objects are transferred to the COBOL program as local object references.

To prevent the Garbage Collector from removing the referenced objects, the VM registers all
the transferred references.

The references are valid until a native method returns to Java. However, this is never the
case with a COBOL main program. To release the resources required for the registration
and to enable the Garbage Collector to remove the objects referenced by the object refer-
ences, the references must therefore be released explicitly by the COBOL program (see
section “Object references” on page 165).

For object references, the TYPEDEF JCI-object is defined in the COPY element JCI-
TYPEDEF.

7.7 Java handle

Some JCI functions use parameters with an opaque data type. These are referred to as
Java handles in the formats.

In the COPY element JCI-TYPEDEF, the TYPEDEF JCI-handle is defined for Java handles.

7.8 Return code in special register RETURN-CODE

All JCI functions are int functions which return either a truth value or an error indicator in
the special register RETURN-CODE.

A separate parameter is used to return other values. Unless described differently, the
content of the result field referenced by this parameter is undefined in the event of an error.

JCI - Invocation API for COBOL Arguments and event values of Java methods

JENV V8.1A 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.9 Arguments and event values of Java methods

Structures are used to transfer arguments and result values between the COBOL program
and JCI functions which call Java methods or edit Java data fields. These must contain all
the necessary information. The structures are defined in the COPY elements JCI-
METHODARGS and JCI-METHODRES (see sections “JCI-METHODARGS - Function
arguments” on page 147 and “JCI-METHODRES - Function result” on page 149). In this
chapter they are referred to as MethodArg or MethodRes.

If nothing else is defined in the function descriptions, the following prerequisites apply for
calling functions which reference an argument of the type MethodArg or MethodRes:

● Arguments

Before the function is called, the CallArgNum field must contain the number of
arguments to be transferred.

For each argument, an element of the CallArg table must be supplied with values in
the structure.

In the ArgType field, the condition name ARG-... which corresponds to the COBOL
data type must be set.

The address of a Cobvar or CobNvar structure must be specified for strings. If trailing
spaces are to be ignored, IGNORE-TRAILING-SPACES must also be set. Other
arguments must be transferred directly into the structure.

● Result values

For result values, the condition name which corresponds to the COBOL data type RES-
... must be set in the ResType field, or RES-VOID if no return value is expected. If a
string is expected as the return value, the address of a Cobvar or CobNvar structure
must be specified with a maximum length for the data area in the ResValAddr field. If
the length Î0, the result value is not transferred.

After returning from the function, a Cobvar or CobNvar structure referenced as a return
value contains the number of transferred characters (maximum entry value) in the
length field, and the transferred characters in the data area. For other data types, the
return value is transferred directly into the structure.

If an exceptional situation occurred during the conversion of a floating point data field or
string object, the ResErrCode field contains the corresponding error code after returning
from the function. This can be inquired by means of the condition variable RES-ERR-
<condition> (see sections “Characters and strings” on page 140 and “Floating point
numbers” on page 141). If an argument was incorrect (RETURN-CODE RET-ERR-
EARGUMENT), the ResErrIndex field contains the number of the argument.

Exceptions JCI - Invocation API for COBOL

144 JENV V8.1A

The table below provides an overview of the definitions and the corresponding COBOL and
Java types. For COBOL types whose name begins with 'JCI-', a type definition exists in
the COPY element JCI-TYPEDEF. A '*' in the last column specifies that automatic conversion
of the argument or result value will take place in the JCI functions.

7.10 Exceptions

Exceptions can be triggered both by the JCI functions and explicitly by a Java method. This
can generally not be recognized from the function’s return value.

JCI functions are available to inquire the existence of an exception, have information
output, and to remove the exception (see section “Exceptions” on page 199).

When an exception has been triggered, it must first be removed by calling JCI_Exception-
Clear before the error-free execution of further JCI functions is guaranteed.

Java type COBOL type or
TYPEDEF

Variable
ResVal...,
ArgVal...

Condition name
RES-..., ARG-...

String Structure CobVar
Structure CobNVar

Addr ANUM-STRING
NAT-STRING

*

byte JCI-byte Byte BYTE

char PIC X Achar ANUM-CHAR *

char PIC N Nchar NAT-CHAR

boolean JCI-boolean Boolean BOOLEAN

short JCI-short Short SHORT

int JCI-int Int INT

long JCI-long Long LONG

float USAGE COMP-1 Float FLOAT *

double USAGE COMP-2 Double DOUBLE *

Java object (also
string object)

JCI-object Object OBJECT

JCI - Invocation API for COBOL COPY elements

JENV V8.1A 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.11 COPY elements

COPY elements are made available for general definitions and structures.

These are contained in the POSIX directory include beneath the path under which JENV
was installed.

7.11.1 JCI-CONST - Definition of constants

This element defines the COBOL partial structure JCI-Const which contains all constants
which are relevant to the JCI as data fields:

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
41 JCI-Const.
42 JCI-Versions.
43 JCI-INTERFACE-VERSION PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
43 JCI-VERSION-1 PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
42 JCI-ReturnValues.
*> success
43 JCI-RET-OK PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
*> truth-value false (from test-functions)
43 JCI-RET-FALSE PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
*> truth-value true (from test-functions)
43 JCI-RET-TRUE PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
*> unspecific error
43 JCI-RET-ERR PIC S9(009) USAGE COMP-5 SYNC VALUE 010.
*> VM not created
43 JCI-RET-ENOVM PIC S9(009) USAGE COMP-5 SYNC VALUE 011.
*> class/method/... not found
43 JCI-RET-ENOTFOUND PIC S9(009) USAGE COMP-5 SYNC VALUE 012.
*> JCI-NULL object not allowed
43 JCI-RET-ENULLOBJ PIC S9(009) USAGE COMP-5 SYNC VALUE 013.
*> JCI-NULL method-id/field-id not allowed
43 JCI-RET-ENULLID PIC S9(009) USAGE COMP-5 SYNC VALUE 014.
*> array-index out of bounds
43 JCI-RET-EINDAOB PIC S9(009) USAGE COMP-5 SYNC VALUE 015.
*> invalid argument
43 JCI-RET-EARGUMENT PIC S9(009) USAGE COMP-5 SYNC VALUE 016.
*> not enough memory
43 JCI-RET-ENOMEM PIC S9(009) USAGE COMP-5 SYNC VALUE 017.
*> VM already created
43 JCI-RET-EEXIST PIC S9(009) USAGE COMP-5 SYNC VALUE 020.
*> invalid version in option structure
43 JCI-RET-EOPTVERS PIC S9(009) USAGE COMP-5 SYNC VALUE 021.

COPY elements JCI - Invocation API for COBOL

146 JENV V8.1A

*> invalid option number
43 JCI-RET-OPTNUM PIC S9(009) USAGE COMP-5 SYNC VALUE 022.
*> invalid version in argument structure
43 JCI-RET-EARGVERS PIC S9(009) USAGE COMP-5 SYNC VALUE 101.
*> invalid version in result structure
43 JCI-RET-ERESVERS PIC S9(009) USAGE COMP-5 SYNC VALUE 102.
*> invalid argument number
43 JCI-RET-EARGNUM PIC S9(009) USAGE COMP-5 SYNC VALUE 103.
*> invalid argument-type
43 JCI-RET-EARGTYPE PIC S9(009) USAGE COMP-5 SYNC VALUE 110.
*> invalid result-type
43 JCI-RET-ERESTYPE PIC S9(009) USAGE COMP-5 SYNC VALUE 111.
*> argument conversion error
43 JCI-RET-EARGCONV PIC S9(009) USAGE COMP-5 SYNC VALUE 112.
*> result conversion error
43 JCI-RET-ERESCONV PIC S9(009) USAGE COMP-5 SYNC VALUE 113.
*> pending exception after method-call
43 JCI-RET-EEXCEPT PIC S9(009) USAGE COMP-5 SYNC VALUE 120.
42 JCI-Values.
43 JCI-NULL PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
42 JCI-BooleanValues.
43 JCI-FALSE PIC X(001) VALUE X'00'.
43 JCI-TRUE PIC X(001) VALUE X'01'.

7.11.2 JCI-TYPEDEFS - Type definitions

This element contains all elementary type definitions which are relevant to the JCI:

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
01 JCI-short TYPEDEF PIC S9(004) USAGE COMP-5.
01 JCI-int TYPEDEF PIC S9(009) USAGE COMP-5.
01 JCI-long TYPEDEF PIC S9(018) USAGE COMP-5.
01 JCI-size TYPEDEF TYPE JCI-int.
01 JCI-object TYPEDEF PIC S9(009) USAGE COMP-5.
01 JCI-handle TYPEDEF PIC S9(009) USAGE COMP-5.
01 JCI-byte TYPEDEF PIC X(001).
01 JCI-boolean TYPEDEF PIC X(001).

JCI - Invocation API for COBOL COPY elements

JENV V8.1A 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.11.3 JCI-VMOPT - Structure for transferring options

This element contains the partial structure JCI-VMopt which is required to transfer options
when the VM is started:

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
41 JCI-VMopt.
42 PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
42 PIC S9(004) USAGE COMP-5 SYNC
VALUE <max-options>.
42 VMOptNum PIC S9(004) USAGE COMP-5 SYNC VALUE 000.
42 VMOptFlag PIC X(001) VALUE X'00'.
88 IGNORE-UNRECOGNIZED VALUE X'01'
WHEN SET TO FALSE X'00'.
42 PIC X(003) VALUE X'00'.
42 VMOpt OCCURS <max-options>.
43 VMOptVstring USAGE POINTER.
43 VMExtrainf USAGE PROGRAM-POINTER.

This structure is referred to as OptArg below.

Then umber of elements with which the options table is to be expanded (maximum number
of arguments) must be set by the REPLACING entry in the COPY statement:

COPY JCI-VMOPT REPLACING == <max-options> == BY num.

The following statement is required for dynamic initialization of the structure as a whole in
order to ensure the correct values for fields which are reserved internally:

INITIALIZE JCI-VMopt WITH FILLER ALL TO VALUE

7.11.4 JCI-METHODARGS - Function arguments

This element contains the partial structure JCI-MethodArgs required for transferring
arguments:

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
41 JCI-MethodArgs.
42 USAGE COMP-2 SYNC VALUE 000.
42 PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
42 PIC S9(004) USAGE COMP-5 SYNC
VALUE <max-arguments>.
42 CallArgNum PIC S9(004) USAGE COMP-5 SYNC VALUE 000.
42 CallArg OCCURS <max-arguments>.

COPY elements JCI - Invocation API for COBOL

148 JENV V8.1A

43 ArgType PIC X(001) VALUE X'00'.
88 ARG-BYTE VALUE X'01'.
88 ARG-ANUM-CHAR VALUE X'02'.
88 ARG-NAT-CHAR VALUE X'03'.
88 ARG-DOUBLE VALUE X'04'.
88 ARG-FLOAT VALUE X'05'.
88 ARG-LONG VALUE X'06'.
88 ARG-INT VALUE X'07'.
88 ARG-SHORT VALUE X'08'.
88 ARG-BOOLEAN VALUE X'09'.
88 ARG-ANUM-STRING VALUE X'0A'.
88 ARG-NAT-STRING VALUE X'0B'.
88 ARG-OBJECT VALUE X'0C'.
43 ArgInd PIC X(001) VALUE X'00'.
*> Indicator for Strings
88 IGNORE-TRAILING-SPACES VALUE X'01'
WHEN SET TO FALSE X'00'.
43 PIC X(002) VALUE ALL X'00'.
43 ArgValAddr USAGE POINTER.
43 ArgValDouble USAGE COMP-2 SYNC VALUE 0.
43 ArgValFloat REDEFINES ArgValDouble USAGE COMP-1.
43 ArgValLong REDEFINES ArgValDouble PIC S9(018) USAGE COMP-5.
43 ArgValInt REDEFINES ArgValDouble PIC S9(009) USAGE COMP-5.
43 ArgValShort REDEFINES ArgValDouble PIC S9(004) USAGE COMP-5.
43 ArgValObject REDEFINES ArgValDouble PIC S9(009) USAGE COMP-5.
43 ArgValBoolean REDEFINES ArgValDouble PIC X(001).
43 ArgValByte REDEFINES ArgValDouble PIC X(001).
43 ArgValAchar REDEFINES ArgValDouble PIC X(001).
43 ArgValNchar REDEFINES ArgValDouble PIC N(001).

The number of elements to be used to expand the argument table (maximum number of
arguments) must be set by means of the REPLACING entry in the COPY statement:

COPY JCI-METHODARGS REPLACING == <max-arguments> == BY num.

The following statement is required for dynamic initialization of the structure as a whole in
order to ensure the correct values for both reserved fields and for the table elements:

INITIALIZE JCI-MethodArgs WITH FILLER ALL TO VALUE
THEN REPLACING ALPHANUMERIC BY ALL X'00'
THEN TO DEFAULT

JCI - Invocation API for COBOL COPY elements

JENV V8.1A 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.11.5 JCI-METHODRES - Function result

This element contains the partial structure JCI-MethodRes required for transferring result
values and error information:

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
41 JCI-MethodRes.
42 USAGE COMP-2 SYNC VALUE 000.
42 PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
*> index to argument/table-element that caused a conversion-error
42 ResErrIndex PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
*> additional information for function return-code
*> JCI-RET-EARGCONV and JCI-RET-ERESCONV
42 ResErrCode PIC S9(004) USAGE COMP-5 SYNC VALUE 000.
*> no error
88 RES-NO-ERROR VALUE 000.
*> not enough memory to create/convert data
88 RES-ERR-NOMEM VALUE 001.
*> object conversion error (object <-> string)
88 RES-ERR-OBJECT VALUE 010.
*> floating-point conversion-errors (S390 <-> IEEE)
88 RES-ERR-FLOAT-UNDERFLOW VALUE 020.
88 RES-ERR-FLOAT-OVERFLOW VALUE 021.
88 RES-ERR-FLOAT-INVALID VALUE 022.
42 PIC X(006) VALUE ALL X'00'.
42 ResultValue.
43 ResType PIC X(001) VALUE X'00'.
88 RES-VOID VALUE X'00'.
88 RES-BYTE VALUE X'01'.
88 RES-ANUM-CHAR VALUE X'02'.
88 RES-NAT-CHAR VALUE X'03'.
88 RES-DOUBLE VALUE X'04'.
88 RES-FLOAT VALUE X'05'.
88 RES-LONG VALUE X'06'.
88 RES-INT VALUE X'07'.
88 RES-SHORT VALUE X'08'.
88 RES-BOOLEAN VALUE X'09'.
88 RES-ANUM-STRING VALUE X'0A'.
88 RES-NAT-STRING VALUE X'0B'.
88 RES-OBJECT VALUE X'0C'.
43 PIC X(003) VALUE ALL X'00'.
43 ResValAddr USAGE POINTER.
43 ResValDouble USAGE COMP-2 SYNC VALUE 0.
43 ResValFloat REDEFINES ResValDouble USAGE COMP-1.
43 ResValLong REDEFINES ResValDouble PIC S9(018) USAGE COMP-5.
43 ResValInt REDEFINES ResValDouble PIC S9(009) USAGE COMP-5.

COPY elements JCI - Invocation API for COBOL

150 JENV V8.1A

43 ResValShort REDEFINES ResValDouble PIC S9(004) USAGE COMP-5.
43 ResValObject REDEFINES ResValDouble PIC S9(009) USAGE COMP-5.
43 ResValBoolean REDEFINES ResValDouble PIC X(001).
43 ResValByte REDEFINES ResValDouble PIC X(001).
43 ResValAchar REDEFINES ResValDouble PIC X(001).
43 ResValNchar REDEFINES ResValDouble PIC N(001).

The following statement is required for dynamic initialization of the structure as a whole in
order to ensure the correct values for fields which are reserved internally:

INITIALIZE JCI-MethodRes WITH FILLER ALL TO VALUE

JCI - Invocation API for COBOL Functions

JENV V8.1A 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12 Functions

The interfaces of the JCI functions are described according to aspects relating to content in
this section.

For simplicity’s sake, object references are mainly referred to as objects in the formats.

Class object refers to a reference to an object of the class java.lang.Class.

7.12.1 Starting and terminating the Java VM

This section describes the JCI functions which are required to start and terminate the Java
VM.

7.12.1.1 JCI_CreateJavaVM

This function generates, i.e. loads and initializes, the Java VM.
It is equivalent to the JNI function JNI_CreateJavaVM.

Call

CALL 'JCI_CreateJavaVM' USING opt

opt Options for the Java VM

Arguments

opt A structure in the form OptArg with the following elements:

VMOptNum
The number of VM options; the value may not exceed the value specified for
<max-options> (see section “JCI-VMOPT - Structure for transferring options”
on page 147).

VMOptFlag
Displays whether unknown options are to be ignored (condition name IGNORE-
UNRECOGNIZED).

VMOptVstring
For each option, the address of a Cobvar structure.
Trailing spaces at the end of the text are ignored

VMExtrainf
Depending on the option, the address of an external function.
All options can be specified which are also permissible in the JNI function
JNI_CreateJavaVM.

Functions JCI - Invocation API for COBOL

152 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-EVERSION
The statically generated version number in opt is invalid (possibly overwritten).

JCI-RET-EOPTNUM
The number of options transferred (VMOptNum) is less than 0 or greater than the
value specified for <max-options> (see section “JCI-VMOPT - Structure for trans-
ferring options” on page 147).

JCI-RET-EEXIST
A Java VM has already been generated.

JCI-RET-ENOMEM
Not enough memory is available to generate the Java VM.

JCI-RET-ERR
An error which is not specified in more detail has occurred (e.g. invalid option and
IGNORE-UNRECOGNIZED not set).

Notes

Only one JavaVM can be generated in a program run.

No new Java VM can be generated after terminating the VM with JCI_DestroyJavaVM,
either.

JCI - Invocation API for COBOL Functions

JENV V8.1A 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OptCP.
05 PIC S9(9) COMP-5 VALUE 30.
05 PIC X(30) VALUE '-Djava.class.path=.'.
01 OptEnc.
05 PIC S9(9) COMP-5 VALUE 40.
05 PIC X(40) VALUE '-Dfile.encoding=OSD_EBCDIC_DF04_15'.
01 JVMOptions.
COPY JCI-VMOPT REPLACING == <max-options> == BY 2.
...
PROCEDURE DIVISION.
*>
*> Prepare VM options
*>
MOVE 2 TO VMOptNum.
SET IGNORE-UNRECOGNIZED TO FALSE.
SET VMOptVstring(1) TO ADDRESS OF OptCP
SET VMOptVstring(2) TO ADDRESS OF OptEnc
*>
*> Create the Java VM
*>
CALL 'JCI_CreateJavaVM' USING JVMOptions
IF RETURN-CODE NOT = JCI-RET-OK
...

7.12.1.2 JCI_DestroyJavaVM

This function releases resources of the Java VM.
It is equivalent to the JNI function JNI_DestroyJavaVM.

Call

CALL 'JCI_DestroyJavaVM'

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-ERR
An error which is not specified in more detail has occurred.

Functions JCI - Invocation API for COBOL

154 JENV V8.1A

Notes

– The function should not be called if the call of the function JCI_CreateJavaVM was not
successful.

– After the function has been executed correctly, no further JCI functions can be called.

– The Java VM is not unloaded.

– It is not possible to reboot the Java VM with JCI_CreateJavaVM.

JCI - Invocation API for COBOL Functions

JENV V8.1A 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.2 Classes and methods

This section describes the JCI functions which are required to load classes and call
methods.

7.12.2.1 JCI_FindClass

This function localizes and loads a class.
It is equivalent to the JNI function FindClass.

Call

CALL 'JCI_FindClass' USING cName cObj

cName
Name of the class

cObj Class object returned by the function

Arguments

cName
Structure of the type Cobvar
Fully qualified name of the class (i.e. a package-name separated by "/" followed by
the name and class) which is to be searched for. If the name begins with "[" (array
signature character), an array class is returned.
Trailing spaces at the end of the text are ignored.

cObj Data field of the type JCI-object
After the function has been successfully executed, the field contains a class object
of the class being searched for.
In the event of an error, the value JCI-NULL is returned.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENOTFOUND
The class could not be loaded.

Functions JCI - Invocation API for COBOL

156 JENV V8.1A

Exceptions

The exceptions generated by the function correspond to those of the JNI function
FindClass.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 className.
02 PIC S9(9) USAGE COMP-5 VALUE 30.
02 PIC X(30) VALUE 'Hello'.
...
01 classObj TYPE JCI-object.
...
PROCEDURE DIVISION.
...
CALL 'JCI_FindClass' USING className classObj
IF RETURN-CODE NOT = JCI-RET-OK
...

7.12.2.2 JCI_GetStaticMethodID

This function returns the method ID (Java handle) for a static method of a class.
It is equivalent to the JNI function GetStaticMethodID.

Call

CALL 'JCI_GetStaticMethodID' USING cObj mName mSig mID

cObj Class object

mName
Name of the method

mSig Signature of the method

mID Method ID returned by the function

JCI - Invocation API for COBOL Functions

JENV V8.1A 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Arguments

cObj Data field of the type JCI-object
Object of the class in which the method is to be searched for.

mName
Structure of the type Cobvar
Name of the method which is to be searched for.
Trailing spaces at the end of the text are ignored.

mSig Structure of the type Cobvar
Signature of the method which is to be searched for.
Trailing spaces at the end of the text are ignored.

mID Data field of the type JCI-handle
After the function has been successfully executed, the field contains the method ID
of the method being searched for.
In the event of an error, the value JCI-NULL is returned.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
cObj is JCI-NULL.

JCI-RET-EARGUMENT
cObj is not a class object.

JCI-RET-ENOTFOUND
The method could not be found.

Exceptions

The exceptions generated by the function correspond to those of the JNI function
GetStaticMethodID.

Functions JCI - Invocation API for COBOL

158 JENV V8.1A

Notes

The method is identified by the name and the signature. The signature can be received by
the statement,

javap –s <Klassenname>

the <class-name> being the name of the class identified by cObj.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 methodName.
05 PIC S9(9) COMP-5 VALUE 30.
05 PIC X(30) VALUE 'hello'.
01 methodSig.
05 PIC S9(9) COMP-5 VALUE 80.
05 PIC X(80) VALUE '(Ljava/lang/String;)V'.
...
01 classObj TYPE JCI-object.
01 methodID TYPE JCI-handle.
...
PROCEDURE DIVISION.
...
CALL 'JCI_GetStaticMethodID' USING classObj methodName
methodSig methodID
IF RETURN-CODE NOT = JCI-RET-OK
...

JCI - Invocation API for COBOL Functions

JENV V8.1A 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.2.3 JCI_CallStaticMethod

This function calls a static method.
It is equivalent to the JNI functions CallStatic<type>Method. However, it also offers the
option of transferring or receiving strings directly.

Call

CALL 'JCI_CallStaticMethod' USING cObj mID arg res

cObj Class object

mID Method ID

arg Method arguments

res Method result

Arguments

cObj Data field of the type JCI-object
Class object whose method is to be called.

mID Data field of the type JCI-handle
ID of the method which is to be called. The method ID must be obtained by calling
the function JCI_GetStaticMethodID for the cObj class.

arg A structure of the form MethodArg
Description of the arguments for the method call (see section “Arguments and event
values of Java methods” on page 143).

res A structure of the form MethodRes
Description of the return value for the method call and error information (see section
“Arguments and event values of Java methods” on page 143). If the return value of
the method is a NULL object, the length field of the target structure is set to 0 for the
types RES-ANUM-STRING and RES-NAT-STRING, and the text area remains
unchanged.

Functions JCI - Invocation API for COBOL

160 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
cObj is JCI-NULL.

JCI-RET-ENULLID
mId is JCI-NULL.

JCI-RET-EARGUMENT
cObj is not a class object.

JCI-RET-EARGVERS
The statically generated version number in arg is invalid (possibly overwritten).

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-EARGNUM
The number of arguments transferred (CallArgNum) is less than 0 or greater than
the value used for <max-arguments> (see section “JCI-METHODARGS - Function
arguments” on page 147).

JCI-RET-EARGTYPE
The value of the ArgType field is invalid. The ResErrIndex field contains the
number of the faulty argument.

JCI-RET-ERESTYPE
The value of the ResType field is invalid.

JCI-RET-EARGCONV
An error occurred while an argument was being converted.
The ResErrIndex field contains the number of the argument, the ResErrCode field
a more precise error code.

JCI-RET-ERESCONV
An error occurred while the result was being converted.
The ResErrCode field contains a more precise error code.

JCI-RET-EEXCEPT
An exception exists after the method was called. No distinction is made between
whether the exception was generated by this or an earlier function call.
The field corresponding to the method result in the res structure is unchanged.

JCI - Invocation API for COBOL Functions

JENV V8.1A 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Exceptions

All exceptions which were generated by the called method.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
...
01 MethodArgs.
COPY JCI-METHODARGS REPLACING ==<max-arguments>== BY 2.
01 MethodRes.
COPY JCI-METHODRES.
...
01 myName.
05 len PIC S9(9) COMP-5 VALUE 30.
05 txt PIC X(30).
01 classObj TYPE JCI-object.
01 methodID TYPE JCI-handle.
PROCEDURE DIVISION.
...
MOVE 1 TO CallArgNum
SET RES-VOID TO TRUE
SET ARG-ANUM-STRING(1) IGNORE-TRAILING-SPACES(1) TO TRUE
SET ArgValAddr(1) TO ADDRESS OF myName
CALL 'JCI_CallStaticMethod' USING classObj methodId
MethodArgs MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...

7.12.2.4 JCI_GetMethodID

This function returns the method ID (Java handle) for an instance method of a class or
interface.
It is equivalent to the JNI function GetMethodID.

Call

CALL 'JCI_GetMethodID' USING cObj mName mSig mID

cObj Class object

mName Name of the method

mSig Signature of the method

mID Method ID returned by the function

Functions JCI - Invocation API for COBOL

162 JENV V8.1A

Arguments

See function JCI_GetStaticMethodID.

Return value (RETURN-CODE)

See function JCI_GetStaticMethodID.

Exceptions

The exceptions generated by the function correspond to those of the JNI function
GetMethodID.

Notes

The method can be defined in an upper class of the class referenced by cObj and be
inherited by the latter.

The method is identified by the name and the signature. The signature can be received by
the statement,

javap –s <Klassenname>

the <class-name> being the name of the class identified by cObj.

7.12.2.5 JCI_CallMethod

This function calls an instance method.
It is equivalent to the JNI functions Call<type>Method. However, it also offers the option
of transferring or receiving strings directly.

Call

CALL 'JCI_CallMethod' USING obj mID arg res

obj Instance object

mID Method ID

arg Method arguments

res Method result

JCI - Invocation API for COBOL Functions

JENV V8.1A 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Arguments

obj Data field of the type JCI-object
Instance object for which the method is to be called.

mID Data field of the type JCI-handle
ID of the method which is to be called. The method ID must be obtained by calling
the JCI_GetStaticMethodID function for the class of the object obj or one of its
upper classes.

arg A structure of the form MethodArg
Description of the arguments for the method call (see section “Arguments and event
values of Java methods” on page 143).

res A structure of the form MethodRes
Description of the return value for the method call and error information (see section
“Arguments and event values of Java methods” on page 143). If the return value of
the method is a NULL object, the length field of the target structure is set to 0 for the
types RES-ANUM-STRING and RES-NAT-STRING, and the text area remains
unchanged.

Return value (RETURN-CODE)

JCI-RET-ENULLOBJ
obj is JCI-NULL.

All other values as in JCI_CallStaticMethod.

Exceptions

All exceptions which were generated by the called method.

Functions JCI - Invocation API for COBOL

164 JENV V8.1A

7.12.2.6 JCI_CallNonvirtualMethod

This function calls an instance method of a predefined class.
It is equivalent to the JNI functions CallNonvirtual<type>Method. However, it also
offers the option of transferring or receiving strings directly.

Call

CALL 'JCI_CallNonvirtualMethod' USING obj cObj mID arg res

obj Instance object

cObj Object of the class in which the method is defined.

mID Method ID

arg Method arguments

res Method result

Arguments

obj Data field of the type JCI-object
Instance object for which the method is to be called.

cObj Data field of the type JCI-object
Object of the class whose method is to be called.

mID Data field of the type JCI-handle
ID of the method which is to be called.
The method ID must be obtained by calling the function JCI_GetMethodID for the
cObj class. This class must match the class of the obj object or of one of its upper
classes.

arg A structure of the form MethodArg
Description of the arguments for the method call (see section “Arguments and event
values of Java methods” on page 143).

res A structure of the form MethodRes
Description of the return value for the method call and error information (see section
“Arguments and event values of Java methods” on page 143). If the return value of
the method is a NULL object, the length field of the target structure is set to 0 for the
types RES-ANUM-STRING and RES-NAT-STRING, and the text area remains
unchanged.

JCI - Invocation API for COBOL Functions

JENV V8.1A 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Return value (RETURN-CODE)

JCI-RET-ENULLOBJ
obj or cObj is JCI-NULL.

All other values as in JCI_CallStaticMethod.

Exceptions

All exceptions which were generated by the called method.

7.12.3 Object references

This section describes the JCI functions required to manage local object references.

7.12.3.1 JCI_DeleteLocalRef

This function deletes a local object reference.
It is equivalent to the JNI function DeleteLocalRef.

Call

CALL 'JCI_DeleteLocalRef' USING obj

obj Object reference

Arguments

obj Data field of the type JCI-object
Object reference which is to be deleted.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

Notes

After the JCI_DeleteLocalRef function has been called, the object reference obj may no
longer be used.

Functions JCI - Invocation API for COBOL

166 JENV V8.1A

7.12.3.2 JCI_NewLocalRef

This function generates a new local reference to an object.
It is equivalent to the JNI function NewLocalRef.

Call

CALL 'JCI_NewLocalRef' USING obj newObj

obj Object reference

newObj Object reference returned by the function

Arguments

obj Data field of the type JCI-object
Object reference to the object to which a new reference is to be generated.

newObj Data field of the type JCI-object
New object reference to the object referenced by obj.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI - Invocation API for COBOL Functions

JENV V8.1A 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.4 Objects

This section describes the JCI functions required to generate and edit Java objects.

7.12.4.1 JCI_NewObject

This function generates a new Java object.
It is equivalent to the JNI function NewObject. However, it also offers the option of trans-
ferring strings directly.

Call

CALL 'JCI_NewObject' USING cObj mID arg res

cObj Class object

mID Method ID

arg Constructor arguments

res Result

Arguments

cObj Data field of the type JCI-object
Class object for which an object is to be generated. It may not refer to an array
class.

mID Data field of the type JCI-handle
ID of the constructor method. The method ID must be obtained by calling the
function JCI_GetMethodID with the name <init> and signature (...)V for the
cObj class.

arg A structure of the form MethodArg
Description of the arguments for the constructor call (see section “Arguments and
event values of Java methods” on page 143).

res A structure of the form MethodRes
Return value (new object) and error information (output only, result in ResVal-
Object). In the event of an error, JCI-NULL is returned.

Functions JCI - Invocation API for COBOL

168 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENULLOBJ
cObj is JCI-NULL.

JCI-RET-ENULLID
mId is JCI-NULL.

JCI-RET-EARGUMENT
cObj is not a class object or refers to an array.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-EARGVERS
The statically generated version number in arg is invalid (possibly overwritten).

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-EARGNUM
The number of arguments transferred (CallArgNum) is less than 0 or greater than
the value used for <max-arguments> (see section “JCI-METHODARGS - Function
arguments” on page 147).

JCI-RET-EARGTYPE
The value of the ArgType field is invalid. The ResErrIndex field contains the
number of the faulty argument.

JCI-RET-EARGCONV
An error occurred while an argument was being converted.
The ResErrIndex field contains the number of the argument, the ResErrCode field
a more precise error code.

JCI-RET-ERR
The object could not be generated.

Exceptions

All exceptions generated by the constructor.

The other exceptions generated by the function correspond to those of the JNI function
NewObject.

JCI - Invocation API for COBOL Functions

JENV V8.1A 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 className.
02 PIC S9(9) COMP-5 VALUE 30.
02 PIC X(30) VALUE 'myClass'.
01 methodName.
05 PIC S9(9) COMP-5 VALUE 9.
05 PIC X(10) VALUE '<init>'.
01 methodSig.
05 PIC S9(9) COMP-5 VALUE 80.
05 PIC X(80) VALUE
'(Ljava/lang/String;Ljava/lang/String;)V'.
01 nText.
05 PIC S9(9) COMP-5 VALUE 8.
05 PIC N(20) VALUE N'COBOL'.
01 aText.
05 PIC S9(9) COMP-5 VALUE 8.
05 PIC X(20) VALUE 'Java'.
01 classObj TYPE JCI-object.
01 instanceObj TYPE JCI-object.
01 methodID TYPE JCI-handle.
01 MethodArgs.
COPY JCI-METHODARGS REPLACING ==<max-arguments>== BY 2.
01 MethodRes.
COPY JCI-METHODRES.
...
PROCEDURE DIVISION.
...
CALL 'JCI_FindClass' USING className classObject
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF
CALL 'JCI_GetMethodID' USING classObj methodName
methodSig methodID
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF
MOVE 2 TO CallArgNum
SET ARG-NAT-STRING(1) IGNORE-TRAILING-SPACES(1) TO TRUE
SET ArgValAddr(1) TO ADDRESS OF nText
SET ARG-ANUM-STRING(2) IGNORE-TRAILING-SPACES(2) TO TRUE
SET ArgValAddr(2) TO ADDRESS OF aText

Functions JCI - Invocation API for COBOL

170 JENV V8.1A

CALL 'JCI_NewObject' USING classObj methodId
MethodArgs MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF
MOVE ResValObject TO instanceObject
...

7.12.4.2 JCI_GetObjectClass

This function returns the class object of an object.
It is equivalent to the JNI function GetObjectClass.

Call

CALL 'JCI_GetObjectClass' USING obj cObj

obj Instance object

cObj Class object returned by the function

Arguments

obj Data field of the type JCI-object
Instance object whose class object is to be returned. The object may not be 0.

cObj Data field of the type JCI-object
After the function has been successfully executed, the field contains the class
object of the class being searched for.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
obj is JCI-NULL.

JCI - Invocation API for COBOL Functions

JENV V8.1A 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.4.3 JCI_IsInstanceOf

This function checks whether an object is an instance of a class.
It is equivalent to the JNI function IsInstanceOf.

Call

CALL 'JCI_IsInstanceOf' USING obj cObj

obj Instance object

cObj Class object

Arguments

obj Data field of the type JCI-object
Object which is to be checked. If obj is JCI-NULL, it is an instance of every class.

cObj Data field of the type JCI-object
Class which is to be checked for.

Return value (RETURN-CODE)

JCI-RET-TRUE
obj is an instance of cObj.

JCI-RET-FALSE
obj is not an instance of cObj.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
cObj is JCI-NULL.

JCI-RET-EARGUMENT
cObj is not a class object.

Functions JCI - Invocation API for COBOL

172 JENV V8.1A

7.12.4.4 JCI_IsSameObject

This function checks whether two object references refer to the same object.
It is equivalent to the JNI function IsSameObject.

Call

CALL 'JCI_IsSameObject' USING obj1 obj2

obj1 Object

obj2 Object

Arguments

obj1, obj2
Data fields of the type JCI-object
Objects which are to be compared.

Return value (RETURN-CODE)

JCI-RET-TRUE
Both object references refer to the same object or are both JCI-NULL.

JCI-RET-FALSE
The object references refer to different objects.

JCI-RET-ENOVM
No Java VM has been started.

JCI - Invocation API for COBOL Functions

JENV V8.1A 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.5 Fields

This section describes the JCI functions which enable fields in Java objects to be edited.

7.12.5.1 JCI_GetStaticFieldID

This function returns the field ID (Java handle) for a static field of a class.
It is equivalent to the JNI function GetStaticFieldID.

Call

CALL 'JCI_GetStaticFieldID' USING cObj fName fSig fID

cObj Class object

fName Name of the field

fSig Signature of the field

fID Field ID returned by the function

Arguments

cObj Data field of the type JCI-object
Object of the class in which the method is to be searched for.

fName Structure of the type Cobvar
Name of the field which is to be searched for.
Trailing spaces at the end of the text are ignored.

fSig Structure of the type Cobvar
Signature of the field which is to be searched for.
Trailing spaces at the end of the text are ignored.

fID Data field of the type JCI-handle
After the function has been successfully executed, the field contains the field ID of
the field being searched for.
In the event of an error, the value JCI-NULL is returned.

Functions JCI - Invocation API for COBOL

174 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
cObj is JCI-NULL.

JCI-RET-EARGUMENT
cObj is not a class object.

JCI-RET-ENOTFOUND
The field could not be found.

Exceptions

The exceptions generated by the function correspond to those of the JNI function
GetStaticFieldID.

Notes

The field is identified by the name and the signature. The signature can be received by the
statement,

javap –s <Klassenname>

the <class-name> being the name of the class identified by cObj.

7.12.5.2 JCI_GetStaticField

This function returns the value of a static field of a class.
It is equivalent to the JNI functions GetStatic<type>Field. However, it also offers the
option of obtaining strings directly.

Call

CALL 'JCI_GetStaticField' USING cObj fID res

cObj Class object

fID Field ID

res Result

JCI - Invocation API for COBOL Functions

JENV V8.1A 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Arguments

cObj Data field of the type JCI-object
Class object whose field content is to be returned.

fID Data field of the type JCI-handle
ID of the field whose content is to be returned. The field ID must be obtained by
calling the function JCI_GetStaticFieldID for the cObj class.

res A structure of the form MethodRes
Description of the return value for the field content and error information (see
section “Arguments and event values of Java methods” on page 143). If the content
of the field is a NULL object, the length field of the target structure is set to 0 for the
types RES-ANUM-STRING and RES-NAT-STRING, and the text area remains
unchanged.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
cObj is JCI-NULL.

JCI-RET-ENULLID
fID is JCI-NULL.

JCI-RET-EARGUMENT
cObj is not a class object.

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-ERESTYPE
The value of the ResType field is invalid.

JCI-RET-ERESCONV
An error occurred while the result was being converted.
The ResErrCode field contains a more precise error code.

Functions JCI - Invocation API for COBOL

176 JENV V8.1A

7.12.5.3 JCI_SetStaticField

This function sets the value of a static field of a class.
It is equivalent to the JNI functions SetStatic<type>Field. However, it also offers the
option of transferring strings directly.

Call

CALL 'JCI_SetStaticField' USING cObj fID arg res

cObj Class object

fID Field ID

arg New value

res Result

Arguments

cObj Data field of the type JCI-object
Class object whose field content is to be set.

fID Data field of the type JCI-handle
ID of the field whose content is to be set. The field ID must be obtained by calling
the function JCI_GetStaticFieldID for the cObj class.

arg A structure of the form MethodArg
Description of the new value for the field content (see section “Arguments and event
values of Java methods” on page 143).
Only the partial structure CallArg(1) is required.

res A structure of the form MethodRes
Error information (output only).

JCI - Invocation API for COBOL Functions

JENV V8.1A 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLID
fID is JCI-NULL.

JCI-RET-ENULLOBJ
cObj is JCI-NULL.

JCI-RET-EARGUMENT
cObj is not a class object.

JCI-RET-EARGVERS
The statically generated version number in arg is invalid (possibly overwritten).

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-EARGTYPE
The value of the ArgType field is invalid.

JCI-RET-EARGCONV
An error occurred while the argument was being converted.
The ResErrCode field contains a more precise error code.

7.12.5.4 JCI_GetFieldID

This function returns the field ID (Java handle) for an instance field of a class.
It is equivalent to the JNI function GetFieldID.

Call

CALL 'JCI_GetFieldID' USING cObj fName fSig fID

cObj Class object

fName Name of the field

fSig Signature of the field

fID Field ID returned by the function

Arguments

See function JCI_GetStaticFieldID.

Functions JCI - Invocation API for COBOL

178 JENV V8.1A

Return value (RETURN-CODE)

See function JCI_GetStaticFieldID.

Exceptions

The exceptions generated by the function correspond to those of the JNI function
GetFieldID.

Notes

See function JCI_GetStaticField.

7.12.5.5 JCI_GetField

This function returns the value of an instance field of an object.
It is equivalent to the JNI functions Get<type>Field. However, it also offers the option of
obtaining strings directly.

Call

CALL 'JCI_GetField' USING obj fID res

obj Instance object

fID Field ID

res Result

Arguments

obj Data field of the type JCI-object
Instance object whose field content is to be returned.

fID Data field of the type JCI-handle
ID of the field whose content is to be returned. The field ID must be obtained by
calling the function JCI_GetFieldID.

res A structure of the form MethodRes
Description of the return value for the field content and error information (see
section “Arguments and event values of Java methods”). If the content of the field
is a NULL object, the length field of the target structure is set to 0 for the types RES-
ANUM-STRING and RES-NAT-STRING, and the text area remains unchanged.

JCI - Invocation API for COBOL Functions

JENV V8.1A 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Return value (RETURN-CODE)

JCI-RET-ENULLOBJ
obj is JCI-NULL.

All other values as in JCI_GetStaticField.

7.12.5.6 JCI_SetField

This function sets the value of a static field of a class.
It is equivalent to the JNI functions Set<type>Field. However, it also offers the option of
transferring strings directly.

Call

CALL 'JCI_SetField' USING obj fID arg res

obj Instance object

fID Field ID

arg New value

res Result

Arguments

obj Data field of the type JCI-object
Instance object whose field content is to be modified.

fID Data field of the type JCI-handle
ID of the field whose content is to be set. The field ID must be obtained by calling
the function JCI_GetFieldID.

arg A structure of the form MethodArg
Description of the new value for the field content (see section “Arguments and event
values of Java methods”).
Only the partial structure CallArg(1) is required.

res A structure of the form MethodRes
Error information (output only).

Return value (RETURN-CODE)

JCI-RET-ENULLOBJ
obj is JCI-NULL.

All other values as in JCI_GetStaticField.

Functions JCI - Invocation API for COBOL

180 JENV V8.1A

7.12.6 Strings

This section describes the JCI functions which enable Java strings to be generated and
edited.

7.12.6.1 JCI_NewString

This function generates a new Java string object from a COBOL string.
It is equivalent to the JNI function NewString. However, it also offers the option of trans-
ferring alphanumeric (EBCDIC) strings directly.

Call

CALL 'JCI_NewString' USING arg res

arg Argument description

res Result description

Arguments

arg A structure of the form MethodArg
Description of the string from which the string object is to be generated (see section
“Arguments and event values of Java methods” on page 143).
Only the partial structure CallArg(1) is required.
The only permissible value for ArgType(1) is ARG-ANUM-STRING or ARG-NAT-
STRING.

res A structure of the form MethodRes
Return value and error information (output only, result in ResValObject). In the
event of an error, the value JCI-NULL is returned.

JCI - Invocation API for COBOL Functions

JENV V8.1A 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-EARGVERS
The statically generated version number in arg is invalid (possibly overwritten).

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-EARGTYPE
The value of the ArgType field is invalid.

JCI-RET-EARGCONV
An error occurred while the argument was being converted.
The ResErrCode field contains a more precise error code.

JCI-RET-ERR
The object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI function
NewString.

7.12.6.2 JCI_GetStringLength

This function returns the length (number of Unicode characters) of a Java string.
It is equivalent to the JNI function GetStringLength.

Call

CALL 'JCI_GetStringLength' USING sObj len

sObj String object

len Length

Functions JCI - Invocation API for COBOL

182 JENV V8.1A

Arguments

sObj Data field of the type JCI-object
String object whose length is to be returned.

len Data field of the type JCI-size
After the function has been successfully executed, the field contains the number of
Unicode characters in the string object referenced by sObj.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
sObj is JCI-NULL.

JCI-RET-EARGUMENT
sObj is not a string object.

7.12.6.3 JCI_GetString

This function copies part of a Java string to a data area provided.
It is equivalent to the JNI function GetStringRegion. However, it also offers the option of
obtaining alphanumeric (EBCDIC) strings directly.

Call

CALL 'JCI_GetString' USING sObj start res

sObj String object

start Start position

res Result description

JCI - Invocation API for COBOL Functions

JENV V8.1A 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Arguments

sObj Data field of the type JCI-object
String object whose content is to be copied.

start Data field of the type JCI-size
Position of the first character which is to be returned (beginning with 1).

res A structure of the form MethodRes
Return value and error information (see section “Arguments and event values of
Java methods” on page 143).
The only permissible value for ResType is RES-ANUM-STRING or RES-NAT-STRING.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
sObj is JCI-NULL.

JCI-RET-EARGUMENT
sObj is not a string object.

JCI-RET-EINDAOB
start is less than 1 or greater than the number of characters in the Java string.

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-ERESTYPE
The value of the ResType field is invalid.

JCI-RET-ERESCONV
An error occurred while the string was being converted.
The ResErrCode field contains a more precise error code.

Notes

The maximum length of the transfer (length of Java string – start + 1) or of the value len
equals that of the output structure.

Functions JCI - Invocation API for COBOL

184 JENV V8.1A

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 sObj TYPE JCI-object.
01 sPos PIC S9(9) COMP-5 VALUE 0.
01 sLen PIC S9(9) COMP-5 VALUE 0.
01 aText.
05 alen PIC S9(9) COMP-5 VALUE 80.
05 atxt PIC X(80) VALUE SPACE.
...
01 MethodRes.
COPY JCI-METHODRES.
...
PROCEDURE DIVISION.
...
CALL 'JCI_GetStringLength' USING sObj sLen
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF.
SET RES-ANUM-STRING TO TRUE
SET ResValAddr TO ADDRESS OF aText
MOVE LENGTH OF atxt TO alen
*> loop to output the complete java-string
PERFORM VARYING sPos FROM 1 BY alen UNTIL sPos > sLen
CALL 'JCI_GetString' USING sobj sPos MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF
DISPLAY aTxt(1:aLen) UPON T
END-PERFORM
...

JCI - Invocation API for COBOL Functions

JENV V8.1A 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.7 Arrays

This section describes the JCI functions which enable Java arrays to be generated and
processed.

7.12.7.1 JCI_GetArrayLength

This function is equivalent to the JNI function GetArrayLength.

Call

CALL 'JCI_GetArrayLength' USING aObj num

aObj Array object

num Number of elements

Arguments

aObj Data field of the type JCI-object
Array object whose number of elements is to be returned.

num Data field of the type JCI-size
After the function has been successfully executed, the field contains the number of
elements of the array object referenced by aObj.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
aObj is JCI-NULL.

JCI-RET-EARGUMENT
aObj is not an array object.

Functions JCI - Invocation API for COBOL

186 JENV V8.1A

7.12.7.2 JCI_NewObjectArray

This function generates an array object for object elements.
It is equivalent to the JNI function NewObjectArray.

Call

CALL 'JCI_NewObjectArray' USING num cObj eObj res

num Number of elements

cObj Element class

eObj Element initil value

res Result description

Arguments

num Data field of the type JCI-size
Number of elements in the array.

cObj Data field of the type JCI-object
Class object for the class of the array elements.

eObj Data field of the type JCI-object
Initial value for the array elements (may also be JCI-NULL).

res A structure of the form MethodRes
Return value (new object reference) in ResValObject. In the event of an error, the
value JCI-NULL is returned.

JCI - Invocation API for COBOL Functions

JENV V8.1A 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENULLOBJ
cObj is JCI-NULL.

JCI-RET-EARGUMENT
cObj is not a class object.

JCI-RET-EINDAOB
num is less than 0.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-ERR
The array object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI function NewOb-
jectArray.

Functions JCI - Invocation API for COBOL

188 JENV V8.1A

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 className.
05 len PIC S9(9) COMP-5 VALUE 40.
05 txt PIC X(40) VALUE SPACE.
01 classObj TYPE JCI-object.
01 initObj TYPE JCI-object.
01 arrayObj TYPE JCI-object.
01 numElements PIC S9(9) COMP-5.
...
...
01 MethodRes.
COPY JCI-METHODRES.
...
PROCEDURE DIVISION.
*>
*> Create array of 10 String-elements
*>
MOVE 'java/lang/String' TO txt IN className
CALL 'JCI_FindClass' USING className classId
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF.
MOVE 10 TO numElements
MOVE JCI-NULL TO initObj
CALL 'JCI_NewObjectArray' USING numElements classId
initObj MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF.
MOVE ResValObject TO arrayObj
...

JCI - Invocation API for COBOL Functions

JENV V8.1A 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.7.3 JCI_GetObjectArrayElement

This function returns an element of an object array.
It is equivalent to the JNI function GetObjectArrayElement. However, it also offers the
option of obtaining strings instead of string objects.

Call

CALL 'JCI_GetObjectArrayElement' USING aObj index res

aObj Array object

index Array index

res Result description

Arguments

aObj Data field of the type JCI-object
Array object whose element is to be returned.

index Data field of the type JCI-size
Position of the element in the array which is to be returned (beginning with 1).

res A structure of the form MethodRes
Return value and error information (see section “Arguments and event values of
Java methods” on page 143).
The only permissible values for ResType are RES-OBJECT, RES-ANUM-STRING, and
RES-NAT-STRING. If the array element is a NULL object, the length field of the target
structure is set to 0 for the types RES-ANUM-STRING and RES-NAT-STRING, and the
text area remains unchanged.

Functions JCI - Invocation API for COBOL

190 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
aObj is JCI-NULL.

JCI-RET-EARGUMENT
aObj is not an array object.

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-ERESTYPE
The value of the ResType field is invalid.

JCI-RET-ERESCONV
An error occurred while the element was being converted.
The ResErrCode field contains a more precise error code.

JCI-RET-EINDAOB
index is less than 1 or greater than the number of elements in the array.

JCI - Invocation API for COBOL Functions

JENV V8.1A 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 arrayObj TYPE JCI-object.
01 arrayIndex PIC S9(9) COMP-5.
01 natText.
05 nlen PIC S9(9) COMP-5 VALUE 80.
05 ntxt PIC N(80) VALUE SPACE.
...
01 MethodRes.
COPY JCI-METHODRES.
...
PROCEDURE DIVISION.
MOVE 7 TO arrayIndex
SET RES-NAT-STRING TO TRUE
SET ResValAddr TO ADDRESS OF natText
CALL 'JCI_GetObjectArrayElement' USING
arrayObj arrayIndex MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF.
DISPLAY FUNCTION DISPLAY-OF(ntxt(1:nlen)) UPON T
...

7.12.7.4 JCI_SetObjectArrayElement

This function sets an element of an object array.
It is equivalent to the JNI function SetObjectArrayElement. However, it also offers the
option of transferring strings instead of string objects.

Call

CALL 'JCI_SetObjectArrayElement' USING aObj index arg res

aObj Array object

index Array index

arg Argument description

res Result description

Functions JCI - Invocation API for COBOL

192 JENV V8.1A

Arguments

aObj Data field of the type JCI-object
Array object which is to be modified.

index Data field of the type JCI-size
Position of the element in the array which is to be set (beginning with 1).

arg A structure of the form MethodArg
Description of the new value for the array element (see section “Arguments and
event values of Java methods” on page 143).
Only the partial structure CallArg(1) is required.
The only permissible values for ArgType(1) are ARG-OBJECT, ARG-ANUM-STRING,
and ARG-NAT-STRING.

res A structure of the form MethodRes
Error information (output only).

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
aObj is JCI-NULL.

JCI-RET-EARGUMENT
aObj is not an array object.

JCI-RET-EARGVERS
The statically generated version number in elem is invalid (possibly overwritten).

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-EARGTYPE
The value of the ArgType field is invalid.

JCI-RET-EARGCONV
An error occurred while the argument was being converted.
The ResErrCode field contains a more precise error code.

JCI-RET-EINDAOB
index is less than 1 or greater than the number of elements in the array.

JCI - Invocation API for COBOL Functions

JENV V8.1A 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Exceptions

The exceptions generated by the function correspond to those of the JNI function SetOb-
jectArrayElement.

7.12.7.5 JCI_NewArray

This function generates an array object for non-object elements which is initialized with
binary zeros.
It is equivalent to the JNI functions New<PrimitiveType>Array.

Call

CALL 'JCI_NewArray' USING num arg res

num Number of elements

arg Element description

res Result description

Arguments

num Data field of the type JCI-size
Number of elements in the array.

arg A structure of the form MethodArg
Type description of the array elements.
Only the ArgType(1) field is required.
ArgType(1) may not be ARG-OBJECT, ARG-ANUM-STRING, or ARG-NAT-STRING.

r A structure of the form MethodRes
Return value (new object reference) in ResValObject. In the event of an error, the
value JCI-NULL is returned.

Functions JCI - Invocation API for COBOL

194 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-EINDAOB
num is less than 0.

JCI-RET-EARGVERS
The statically generated version number in elem is invalid (possibly overwritten).

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-EARGTYPE
The value of the ArgType field is invalid.

JCI-RET-ERR
The array object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI functions
New<PrimitiveType>Array.

7.12.7.6 JCI_GetArray

This function copies elements of a Java array to a COBOL table provided.
It is equivalent to the JNI functions Get<PrimitiveType>ArrayRegion.

Call

CALL 'JCI_GetArray' USING aObj start num res

aObj Array object

start Start position

num Number

r Result description

JCI - Invocation API for COBOL Functions

JENV V8.1A 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Arguments

aObj Data field of the type JCI-object
Array object whose elements are to be copied.

start Data field of the type JCI-size
Position of the first element in the Java array which is to be transferred (beginning
with 1).

num Data field of the type JCI-size
Maximum number of elements which are to be transferred.
After the call, num contains the number of elements which were actually transferred.

r A structure of the form MethodRes
Return value and error information (see section “Arguments and event values of
Java methods” on page 143).
ResType must be set in accordance with the COBOL data type of the table
elements. Neither RES-OBJECT nor RES-ANUM-STRING nor RES-NAT-STRING is
permissible.
The address of the COBOL table to which the elements are to be copied is always
transferred in the ResValAddr field, regardless of the data type.

Functions JCI - Invocation API for COBOL

196 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
aObj is JCI-NULL.

JCI-RET-EARGUMENT
aObj is not an array object.

JCI-RET-EINDAOB
num is less than 0 or start is less than 1 or greater than the number of elements in
the array.

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-ERESTYPE
The value of the ResType field is invalid.

JCI-RET-ERESCONV
An error occurred while the table elements were being converted.
The ResErrIndex field contains the number of the COBOL table element
(beginning with 1), the ResErrCode field a more precise error code.
All elements up to the faulty element are transferred; all subsequent fields of the
COBOL table remain unchanged.

Notes

A maximum of (number of array elements - start + 1) or num elements are transferred.

JCI - Invocation API for COBOL Functions

JENV V8.1A 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.7.7 JCI_SetArray

This function copies a COBOL table to the elements of a Java array.
It is equivalent to the JNI functions Set<PrimitiveType>ArrayRegion.

Call

CALL 'JCI_SetArray' USING aObj start num arg res

aObj Array object

start Start position

num Number

arg Argument description

r Result description

Arguments

aObj Data field of the type JCI-object
Array object whose elements are to be set.

start Data field of the type JCI-size
Position of the first element in the Java array which is to be overwritten (beginning
with 1).

num Data field of the type JCI-size
Maximum number of elements which are to be transferred.
After the call, num contains the number of elements which were actually transferred,
and in the case of an error 0.

arg A structure of the form MethodArg
Description of the array elements.
Only the ArgType(1) and ArgValAddr(1) fields are required.
ArgType(1) must be set in accordance with the COBOL data type of the table
elements. Neither ARG-OBJECT nor ARG-ANUM-STRING nor ARG-NAT-STRING is
permissible.
The address of the COBOL table from which the elements are to be copied is
always transferred in the ArgValAddr(1) field, regardless of the data type.

r A structure of the form MethodRes
Error information (output only).

Functions JCI - Invocation API for COBOL

198 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

JCI-RET-ENOVM
No Java VM has been started.

JCI-RET-ENULLOBJ
aObj is JCI-NULL.

JCI-RET-EARGUMENT
aObj is not an array object.

JCI-RET-EARGVERS
The statically generated version number in elem is invalid (possibly overwritten).

JCI-RET-ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCI-RET-EARGTYPE
The value of the ArgType field is invalid.

JCI-RET-EARGCONV
An error occurred while the table elements were being converted.
The ResErrIndex field contains the number of the COBOL table element
(beginning with 1), the ResErrCode field a more precise error code.
If a conversion error occurs in an element, no transfer takes place, i.e. all fields of
the Java array remain unchanged.

JCI-RET-EINDAOB
num is less than 0 or start is less than 1 or greater than the number of elements in
the array.

Notes

A maximum of (number of array elements - start + 1) or num elements are transferred.

JCI - Invocation API for COBOL Functions

JENV V8.1A 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.12.8 Exceptions

This section describes the JCI functions required to process Java exceptions.

7.12.8.1 JCI_ExceptionCheck

This function checks whether a pending exception exists.
It is equivalent to the JNI function ExceptionCheck.

Call

CALL 'JCI_ExceptionCheck'

Return value (RETURN-CODE)

JCI-RET-TRUE
An exception is pending.

JCI-RET-FALSE
No exception is pending.

Notes

If the function is called without the Java VM being started, JCI-RET-FALSE is returned.

7.12.8.2 JCI_ExceptionOccurred

This function checks whether a pending exception exists, and returns the associated
exception object.
It is equivalent to the JNI function ExceptionOccurred.

Call

CALL 'JCI_ExceptionOccurred' USING eObj

eObj Exception object

Arguments

eObj Data field of the type JCI-object
Reference to the pending exception object.
If no object was created, JCI-NULL is returned.

Functions JCI - Invocation API for COBOL

200 JENV V8.1A

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

Notes

If the function is called without the Java VM being started, JCI-NULL and JCI-RET-OK are
returned.

7.12.8.3 JCI_ExceptionDescribe

This function outputs information in English about a pending exception to stderr.
It is equivalent to the JNI function ExceptionDescribe.

Call

CALL 'JCI_ExceptionDescribe'

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

Notes

This function may also be called when no Java VM has been started.

If the VM has not been started or no exception is pending, the output does not take place.

If the program was started from the BS2000 command line interface, the output is directed
to SYSOUT.

7.12.8.4 JCI_ExceptionClear

This function removes any pending exception.
It is equivalent to the JNI function ExceptionClear.

Call

CALL 'JCI_ExceptionClear'

Return value (RETURN-CODE)

JCI-RET-OK

JCI - Invocation API for COBOL Functions

JENV V8.1A 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

The call was successful.

Notes

This function may also be called when no Java VM has been started or no exception is
pending.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 className.
02 PIC S9(9) USAGE COMP-5 VALUE 30.
02 PIC X(30) VALUE 'hello'.
...
01 classObj TYPE JCI-object.
...
PROCEDURE DIVISION.
...
CALL 'JCI_FindClass' USING className classObj
IF RETURN-CODE NOT = JCI-RET-OK
CALL 'JCI_ExceptionCheck'
IF RETURN-CODE = JCI-RET-TRUE
CALL 'JCI_ExceptionDescribe'
CALL 'JCI_ExceptionClear'
END-IF
ELSE
...
END-IF.
...

If the hello class does not exist, the output looks roughly as follows:

Exception in thread "main" java.lang.NoClassDefFoundError: hello
Caused by: java.lang.ClassNotFoundException: hello
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:332)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)

Functions JCI - Invocation API for COBOL

202 JENV V8.1A

7.12.9 Other functions

This section described all JCI functions for which there are no equivalent JNI functions.

7.12.9.1 JCI_GetVersion

This function returns the version of the Java COBOL interface module.

Call

CALL 'JCI_GetVersion' USING vers

vers Version

Arguments

vers Data field of the type JCI-int
Data field to which the version number of the JCI is to be transferred.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

Notes

The version of the COPY elements used in the COBOL application is defined in JCI-CONST
as JCI-interface-version. This may not be greater than the version returned by
JCI_GetVersion.

7.12.9.2 JCI_GetErrorInformation

This function returns more precise error information.

Call

CALL 'JCI_GetErrorInformation' USING eInf

eInf Error information

JCI - Invocation API for COBOL Functions

JENV V8.1A 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

Arguments

eInf A structure of the type Cobvar
Structure to which the at most 256-character-long error information of the JCI is to
be transferred.
The transfer occupies at most the length of the length field. If this is less than or
equal to 0 or no error information exists, it is set to 0, and no transfer takes place.
If no error information is available, the length field in eInf is set to 0, and the text area
remains unchanged.

Return value (RETURN-CODE)

JCI-RET-OK
The call was successful.

Notes

This function can always be called, even when the call of JCI functions is described as
invalid, as in, for instance, section “Exceptions” on page 144.

In the event of an error, more precise information on this error is stored in a joint field by all
JCI functions which can supply an error return code. If no error occurs, the field is deleted.
As a result, only the information of the function called most recently is ever available. The
text is in English and only intended to be displayed to the user.

After the JCI_GetErrorInformation function has been called, the error information is no
longer available for further calls.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
01 eInf.
02 len PIC S9(9) USAGE COMP-5 SYNC VALUE 256.
02 txt PIC X(256).
...
PROCEDURE DIVISION.
...
CALL 'JCI_GetErrorInformation ' USING eInf
IF len IN eInf > 0
DISPLAY txt IN eInf(1:len IN eInf) UPON T
END-IF
...

Examples JCI - Invocation API for COBOL

204 JENV V8.1A

7.13 Examples

In this example, all Java sources are available in the /myhome/jcitest directory.

JENV is installed in the /myjava directory under the $MYJAVA ID.

7.13.1 Java class

The following class is defined in the Hello.java file:

class Hello {
public static void hello(String arg)
{
System.out.println(">> Hello " + arg + "!");
}
}

7.13.2 Compiling the Java code

The Java class defined above can now be simply compiled using the command

javac /myhome/jcitest/Hello.java

The call generates the Hello.class file in the /myhome/jcitest directory.

Calling

javap –s –cp /myhome/jcitest Hello

returns, among other things, the signature of the hello method:

public static void hello(java.lang.String);
descriptor: (Ljava/lang/String;)V

7.13.3 COBOL program

The COBOL program HELLO is implemented in the Hello.cob file as follows:

>>SOURCE FREE
>>IMP LISTING-OPTIONS MERGE-DIAGNOSTICS
ID DIVISION.
PROGRAM-ID. HELLO.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

JCI - Invocation API for COBOL Examples

JENV V8.1A 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

ARGUMENT-NUMBER IS ARGNUM
ARGUMENT-VALUE IS ARGVAL
TERMINAL IS T.

DATA DIVISION.
WORKING-STORAGE SECTION.

*> Types and constants
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.

*> Constant strings
01 optCP.
05 PIC S9(9) COMP-5 VALUE 80.
05 PIC X(80) VALUE '-Djava.class.path=.:/myhome/jcitest'.
01 OptEnc.
05 PIC S9(9) COMP-5 VALUE 40.
05 PIC X(40) VALUE '-Dfile.encoding=OSD_EBCDIC_DF04_15'.
01 className.
05 PIC S9(9) COMP-5 VALUE 30.
05 PIC X(30) VALUE 'Hello'.
01 methodName.
05 PIC S9(9) COMP-5 VALUE 30.
05 PIC X(30) VALUE 'hello'.
01 methodSig.
05 PIC S9(9) COMP-5 VALUE 80.
05 PIC X(80) VALUE '(Ljava/lang/String;)V'.

LOCAL-STORAGE SECTION.

*> JCI structures
01 JVMOptions.
COPY JCI-VMOPT REPLACING == <max-options> == BY 2.
01 MethodArgs.
COPY JCI-METHODARGS REPLACING == <max-arguments> == BY 4.
01 MethodRes.
COPY JCI-METHODRES.

*> String structures
01 myName.
05 len PIC S9(9) COMP-5 VALUE 30.
05 txt PIC X(30).

*> Objects and handles
01 classObj TYPE JCI-object.
01 methodId TYPE JCI-handle.

Examples JCI - Invocation API for COBOL

206 JENV V8.1A

*> Error handling
01 ErrIdent PIC X(10) VALUE SPACE.
01 RetcodeSave PIC S9(9) COMP-5 VALUE 0.
01 errorInf.
05 len PIC S9(9) COMP-5 VALUE 300.
05 txt PIC X(300).

PROCEDURE DIVISION.
>>CALL-CONVENTION ILCS-SET-RETURN-CODE
*>
*> get name from terminal
*>
DISPLAY ">> Please enter name" UPON T
ACCEPT txt IN myName FROM T
*>
*> Prepare VM options
*>
MOVE 2 TO VMOptnum.
SET IGNORE-UNRECOGNIZED TO FALSE.
SET VMOptVstring(1) TO ADDRESS OF optCP
SET VMOptVstring(2) TO ADDRESS OF optEnc
*>
*> Create the Java VM
*>
CALL 'JCI_CreateJavaVM' USING JVMOptions
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'CreateVM' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
*>
*> Get class Hello
*>
CALL 'JCI_FindClass' USING className classObj
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'FindClass' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
*>
*> Get method hello
*>
CALL 'JCI_GetStaticMethodID' USING classObj methodName
methodSig methodId
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'GetMethod' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
*>
*> Call Java method

JCI - Invocation API for COBOL Examples

JENV V8.1A 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

*>
MOVE 1 TO CallArgNum
SET RES-VOID TO TRUE
SET ARG-ANUM-STRING(1) IGNORE-TRAILING-SPACES(1) TO TRUE
SET ArgValAddr(1) TO ADDRESS OF myName
CALL 'JCI_CallStaticMethod' USING classObj methodId MethodArgs MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'CallMeth' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
*>
*> Destroy Java VM
*>
CALL 'JCI_DestroyJavaVM'
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'DestroyVM' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
GOBACK.
*>
*> Error exit
*>
ERROR-EXIT.
MOVE RETURN-CODE TO RetcodeSave
CALL 'JCI_GetErrorInformation' USING errorInf
IF len IN errorInf > 0
DISPLAY 'Message from ' ErrIdent ': "' txt IN errorInf(1:len IN errorInf) '"'
UPON T
END-IF
CALL 'JCI_ExceptionCheck'
IF RETURN-CODE = JCI-RET-TRUE
CALL 'JCI_ExceptionDescribe'
CALL 'JCI_ExceptionClear'
END-IF
CALL 'JCI_DestroyJavaVM'
MOVE RetcodeSave TO RETURN-CODE
GOBACK.
END PROGRAM HELLO.

Examples JCI - Invocation API for COBOL

208 JENV V8.1A

7.13.4 Compiling the COBOL program in POSIX

In this example, the COBOL source program resides in the POSIX directory
/myhome/jcitest.

The following commands are needed to compile the COBOL program HELLO:

export COBLIB='/myjava/include'
cobol -c -C PERMIT-STANDARD-DEVIATION=YES \
/myhome/jcitest/Hello.cob

The object file Hello.o is available as the result.

7.13.5 Linking the COBOL program in POSIX

When linking the application, it must be remembered that the runtime routines for the
languages C/C++ and COBOL are linked from the Java runtime library and not from the
CRTE.

The application can be linked with the following commands:

export BLSLIB00='$MYJAVA.SYSLNK.JENV.081.GREEN-JAVA'
cobol -M HELLO -o Hello Hello.o -l BLSLIB

7.13.6 Processing of the COBOL program in POSIX

As the standard installation path of JENV is not to be used for this example, the environment
variable JAVA_HOME must be set before calling the program.

The call and processing are then as follows:

export JAVA_HOME=/myjava/jre
Hello
>> Please enter name
Susanne
>> Hello Susanne!

JCI - Invocation API for COBOL Examples

JENV V8.1A 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

5
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
7

7.13.7 Compiling the COBOL program under the BS2000 command line
interface

In this example, the COBOL source program resides in the LMS library SRC.LIB, but the
JCI-COPY elements in the POSIX directory /myjava/include.

Consequently the following commands are required for compilation:

/DECL-VAR SYSIOL-COBLIB,INIT='*POSIX(/myjava/include)',
SCOPE=*TASK
/START-COBOL2-COMP SO=*LIB(SRC.LIB,HELLO.COB),
SOURCE-PROPERTIES=*PAR(ST-DEV=*YES),
COMPILER-ACTION=*MOD-GEN(MOD-FORM=*LLM),
MODULE-OUTPUT=*LIB(MOD.LIB,HELLO),
RUNTIME-OPTIONS=*PARAMETERS(ENABLE-UFS-ACCESS=*YES)

7.13.8 Linking the COBOL program under the BS2000 command line
interface

In addition to functions and CRTE from the Java runtime library, the POSIX options must
also be linked:

/START-BINDER
//START-LLM-CREATION HELLO
//INCLUDE LIB=MOD.LIB,ELEM=HELLO
//INCLUDE LIB=$.SYSLNK.CRTE.POSIX
//RESOLVE LIB=$MYJAVA.SYSLNK.JENV.081.GREEN-JAVA
//SAVE-LLM LIB=LLM.LIB,ELEM=HELLO
//END

Examples JCI - Invocation API for COBOL

210 JENV V8.1A

7.13.9 Processing of the COBOL program under the BS2000 command line
interface

Before the application is started, the POSIX environment must be initialized for processing.
The COBOL runtime system then behaves as if it had been started under the POSIX shell
(see „COBOL2000 (BS2000) User Manual“ [5]).

After the application has terminated, the POSIX environment must on all accounts be reset
by calling the DELETE procedure. Otherwise the environment is set incorrectly for further
compilations runs.

The call and processing are then as follows under the $MYHOME ID:
/CALL-PROCEDURE *LIB($MYJAVA.SYSPRC.JENV.081,INITIALIZE),

(PWD='myhome/work',JAVA-HOME='/myjava/jre')
/START-PROGRAM *MODULE(LIBRARY=LLM.LIB,ELEMENT=HELLO,
PROGRAM-MODE=ANY,RUN-MODE=*ADVANCED(SHARE-SCOPE=*NONE))
% BLS0523 ELEMENT 'HELLO', VERSION '@', TYPE 'L' FROM LIBRARY
':LUNB:$MYHOME.LLM.LIB' IN PROCESS
% BLS0524 LLM 'HELLO', VERSION ' ' OF '2016-04-13 15:17:10' LOADED
>> Please enter name
Susanne
>> Hello Susanne!
/CALL-PROCEDURE *LIB($MYJAVA.SYSPRC.JENV.081,DELETE)

JENV V8.1A 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

6
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
8

8 Commands for BS2000

The tools belonging to the JDK are described in “JDK Tools and Utilities" [11]. JENV V8.1A
supports all the tools listed there for Solaris with the following exceptions:
– Monitoring und Management Tools jps, jstat, jstatd
– Troubleshooting Tools jcmd, jinfo, jhat, jmap, jsadebugd, jstack
– Scripting Tool jrunscript.

This chapter only includes the commands which differ from the description in “JDK Tools
and Utilities" [11], namely:

● The mk_shobj and pr_shobj commands
JENV offers these is in addition to supporting the shared object description files.

● The java command
Its options differ from those described for Solaris.

● The native2ascii command
This is described in more detail because of its greater importance in the EBCDIC en-
vironment.

● The jconsole, jdb, keytool und xjc commands

mk_shobj Commands for BS2000

212 JENV V8.1A

8.1 mk_shobj

The mk_shobj command creates and processes descriptive files for shared objects.

Syntax

mk_shobj [Options ...] Filename

Options ...
One or more command line options, separated by spaces.

Filename
Description file for shared objects in the POSIX file system which mk_shobj is to
create.

Description

The mk_shobj command creates and processes descriptive files for shared objects in the
POSIX file system. These descriptive files are evaluated by the Java interpreter if native
methods are loaded (methods loadLibrary() or load() of the classes runtime and system).

The names of the descriptive files must be put together in such a way that they can be found
by the VM using the search procedure described under the use of shared objects from Java,
or in other words, beginning with the prefix lib and ending with the suffix .so.

Options

-? Outputs help information for the command.

-l lib Specifies the PLAM library (in BS2000) in which the LLM to be loaded is located.

-o userid
BS2000 user ID, under which the PLAM library lib is installed. Where “.” stands for
the current user ID and “$” stands for the system ID and the form %name indicates,
that the user ID to be used at runtime can be taken from the environment variable
name and any other specification stands for the names of user IDs.

Default: current user ID

-m modulename
Specification of the module which is to be loaded. This option can be specified
several times, and then all specified modules can be loaded dynamically. The
module name may not be longer than 32 characters.

Commands for BS2000 mk_shobj

JENV V8.1A 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

6
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
8

-n filename
Specifies the required shared objects (descriptive file). The shared object specified
here is loaded before the primary shared object. This option can be specified
several times, and all the required shared objects are loaded before the current
shared object.

-u The specified descriptive file must exist and is updated using the specified infor-
mation. This can be used, for example, to subsequently modify the user ID. If the -
u option is not specified, the descriptive file is generated again.

-f cpp
If the shared object has been implemented in C++, this flag must be set to ensure
that the required runtime libraries can be loaded and initialized.

-d
If this flag is set, the module is loaded in the default context LOCAL#DEFAULT.

-c ctxt
The module is loaded in the specified context.

Example

The command

mk_shobj -l syslnk.hello -m helloworld libhello.so

creates the file libhello.so in the current file directory of the POSIX file system, and specifies
that when hello is loaded the module helloworld is to be dynamically loaded from the PLAM
library syslnk.hello of the current user ID. When hello is loaded the Java interpreter expands
loadLibrary(hello) to read libhello.so.

pr_shobj Commands for BS2000

214 JENV V8.1A

8.2 pr_shobj

The command pr_shobj outputs the contents of a shared object descriptive file.

Syntax

pr_shobj Filename

Filename
Descriptive file for which the contents is to be output.

Description

The command pr_shobj outputs the contents of a shared object descriptive file to stdout.

Example

pr_shobj libhello.so

Output:

Library: syslnk.hello
UserID : .
Module : helloworld

Commands for BS2000 java

JENV V8.1A 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

6
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
8

8.3 java

Options for selecting the HotSpot™ VM type

-client
The HotSpot™ client VM is used. This VM optimizes the generated object code for
short-running programs (default).

-server
The option is not supported.

-d32
-d64

The options are not supported.

Options for selecting the HSI variant

-s390
The S390 variant of JENV is used (if available). This option is useful only if both the
S390 variant and the X86 variant of JENV are installed on one system and you want
to explicitly select one of them for execution.
This option overrides any specification in the environment variable JENV_SYSHSI
(see the chapter “Environment variables” on page 15).

The variant that matches your system is used by default, i.e. if no value has been
assigned to the environment variable JENV_SYSHSI either.

-x86
The X86 variant of JENV is used (if available). This option is useful only if both the
S390 variant and the X86 variant of JENV are installed on one SQ system and you
want to explicitly select one of them for execution.
This option overrides any specification in the environment variable JENV_SYSHSI
(see the chapter “Environment variables” on page 15).

The variant that matches your system is used by default, i.e. if no value has been
assigned to the environment variable JENV_SYSHSI either.

Non-standard options

-Xmaxjitcodesize size
In contrast to the original description, the cache size is specified without an equals
sign, e.g.:

-Xmaxjitcodesize48m

java Commands for BS2000

216 JENV V8.1A

Controlling the Java heap memory

The following options allow the user to control heap expansion or reduction. Since the
standard settings for heap expansion are suitable for most applications, it is not necessary
to use these options in most situations. You should only use them if you understand the
effects of the options on the applications concerned. Deliberately setting these options can
just as easily adversely affect system performance as improve it.

In BS2000 the maximum size of heap memory is always requested by the system right from
the start and always remains reserved in this size. Option -Xms merely controls how much
of the heap memory is to be used currently. The smaller this area is, the faster garbage
collection proceeds since only the area currently being used must be searched. On the
other hand it can be that garbage collection has to be called unnecessarily frequently if
there is only a small amount of space for new objects in the currently used area.

Minimum and default values which differ from the original description are defined for these
options:

-Xsssize
Minimum value: 512K
Default value: 1M

-Xmssize
Minimum value: 1M
Default value: 3.5M

-Xmxsize
Minimum value: 1M
Default value: 64M

I The specified value is rounded off the next multiple of 2M.

Commands for BS2000 native2ascii

JENV V8.1A 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

6
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
8

8.4 native2ascii

This command converts a file from any code set into the US-ASCII (7 bit ASCII) code set.

Syntax

native2ascii [Options ...] [input file[output file]]

Options ...
One or more command line options, separated by blanks.

Input file
File which is to be converted. If input file is not specified, the input is expected on
stdin.

Output file
Destination file for the conversion. If output file is not specified, output is on stdout.

output file and input file may also be the same.

Description

The native2ascii command converts text available in any code set (e.g OSD_EBC-
DIC_DF04_1) into US-ASCII (7-bit ASCII); non-printable characters in ASCII are printed in
portable Unicode (\uxxxx). Conversion in the reverse direction is also possible. Portable
Unicode is interpreted, for example, when property files are loaded.

If property files are stored in JAR archives, they must be present in code set ISO8859-1.
The same applies to manifest files or other texts. This command makes it possible to
prepare the corresponding files for this because the full
US-ASCII code set is included in ISO8859-1.

As of JENV V1.4A policy files, which are used by the standard policy implementation, must
be encoded in the UTF-8 codeset. native2ascii can be used for the conversion, as the UTF-
8 codeset concurs with the first 127 characters of the US-ASCII codeset.

jconsole Commands for BS2000

218 JENV V8.1A

Options

-encoding character set
Specifies the character set from which or into which the command converts. If the
option is not specified, the value set via the system property file.encoding is used.
Since JENV V1.2A the default value for this system property is OSD_EBC-
DIC_DF04_1. Permitted values can be found in the Specification entitled
“Supported Encodings” [30]. The character sets additionally supported since JENV
V1.2A are described in section “Code sets” on page 17.

-reverse
The conversion is performed in the reverse direction: A text which is present in
character set US-ASCII is converted into the character set specified by -encoding.
Any portable Unicode representations in the input (\uxxxx) are interpreted when this
is done. Characters which cannot be shown in the output character set are output
there in portable Unicode representation.

-Jjavaoption
Passes javaoption to the JVM, where javaoption is one of the options described for
java.

8.5 jconsole

In BS2000, in contrast to jconsole auf Solaris, the use of a process ID (pid) is not supported
when setting up a connection with a Java application.

8.6 jdb

jdb does not work when the default input is connected with a BS2000 block terminal, in
which case jdb is terminated with an error message.

Commands for BS2000 keytool

JENV V8.1A 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
1

7
 S

ta
nd

 1
3:

08
.5

6
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
JE

N
V

\V
8.

1A
\H

B
_

en
\je

n
v.

k0
8

8.7 keytool

When extensions are specified, the use of upper- and lowercase is not relevant.

The following specifications, for example, are all equivalent:
-ext ExtendedKeyUsage=anyExtendedKeyUsage
-ext extendedkeyusage=anyext
-ext eku=ANYext
-ext EKU=aeku
-ext EKU=AEKU

8.8 xjc

Option -relaxing

The option is called -relaxng.

xjc Commands for BS2000

220 JENV V8.1A

JENV V8.1A 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

7.
 M

a
rc

h
20

17

S
ta

nd
 1

3:
08

.5
6

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

JE
N

V
\V

8.
1A

\H
B

_
en

\je
nv

.a
n

h

9 Appendix: Compatibility with earlier versions
and migration

JENV V8.1A is an implementation of the “Java Platform, Standard Edition” (Java SE™) for
BS2000. This chapter describes the
compatibility of JENV V8.1A to earlier versions of JENV and also draws attention to any
potential incompatibilities.

9.1 Binary compatibility

JENV V8.1A is upwards binary compatible to JENV V8.0A. With the exception of the incom-
patibilities described below, this means that class files compiled under JENV V8.0A will also
run without errors under JENV V8.1A.

Some early byte code obfuscators generate class files in a format that clashes with the
format required for class files by the Java-VM specifications. Such improperly formatted
class files will not run under JENV V8.1A, even though they may have run correctly on
earlier versions. To resolve this problem, regenerate these class files with a current obfus-
cator that creates correctly formatted files.

9.2 Source compatibility

Downward source compatibility is not supported. If source files use new language features
or Java platform APIs, they cannot be used with earlier versions of the Java platform.

Deprecated APIs are interfaces that are supported only for backwards compatibility. The
javac compiler generates a warning message whenever one of these is used, unless the -
nowarn command-line option is used. You are recommended to modify programs to
eliminate the use of deprecated APIs, though there are no current plans to remove such
APIs - with the exception of JVMDI and JVMPI - entirely from the system.

V CAUTION!

Some APIs in the sun.* packages have been changed. These APIs should not be
used. You import these sun.* packages at your own risk.

Incompatibilities Appendix: Compatibility with earlier versions and migration

222 JENV V8.1A

9.3 Incompatibilities

JENV V8.1A is strongly compatible with earlier versions of JENV. Almost all existing
programs should run under JENV V8.1A without modification.

There are no known BS2000-specific incompatibilties. For general Java incompatibilities
see “Compatibility Guide for JDK 8” [49].

9.4 Migration

Information on the changes in Java SE 8 and hints how to migrate from earlier versions to
Java SE 8 you will find in “JDK 8 Adoption Guide” [48].

JENV V8.1A 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
ar

ch
 2

01
7

 S
ta

n
d

13
:0

8.
56

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

JE
N

V
\V

8
.1

A
\H

B
_e

n\
je

n
v.

lit

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

[1] POSIX (BS2000)
POSIX, Basics for Users and Systems Administrators
User manual

[2] CRTE
C Library functions for POSIX applications
Reference Manual

[3] CRTE
Common RunTime Environment
User Manual

[4] C/C++ (BS2000)
C/C++-Compiler
User Manual

[5] COBOL2000 (BS2000)
COBOL-Compiler
User Manual

[6] COBOL2000 (BS2000)
COBOL-Compiler
Reference Manual

[7] SDF-P (BS2000)
Programming in the Command Language
User Guide

[8] BS2000 OSD/BC
Introductory Guide to DMS
User Guide

http://manuals.ts.fujitsu.com

Related publications

224 JENV V8.1A

Texts for Java

You will find the following texts in the internet, mainly on the Web pages of Oracle America
Inc.:

All links given below were valid when going to press. However, no guarantee can be given
for their future validity. The information in this manual always takes precedence over infor-
mation in the internet.

[9] Java Platform Standard Edition 8 Documentation
http://docs.oracle.com/javase/8/docs/index.html

[10] The Java™ Language and Virtual Machine Specifications
http://docs.oracle.com/javase/specs/

[11] JDK Tools and Utilities
http://docs.oracle.com/javase/8/docs/technotes/tools/index.html

[12] The Java™ Platform, Standard Edition 8 API Specification
http://docs.oracle.com/javase/8/docs/api/

[13] Java™ Native Interface
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/

[14] The Java™ Extension Mechanism
http://docs.oracle.com/javase/8/docs/technotes/guides/extensions/index.html

[15] Java SE 8 Security Documentation
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html

[16] The Java™ Programming Language Compiler, javac
http://docs.oracle.com/javase/8/docs/technotes/guides/javac/index.html

[17] JVM™ Tool Interface
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

[18] The Java™ Tutorials
http://docs.oracle.com/javase/tutorial/reallybigindex.html

[19] JSR 56: Java Network Launching Protocol and API
http://jcp.org/en/jsr/detail?id=56

[20] What's New in Javadoc 8
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/whatsnew-8.html

http://docs.oracle.com/javase/8/docs/index.html
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://docs.oracle.com/javase/8/docs/technotes/guides/extensions/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/javac/index.html
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/tutorial/reallybigindex.html
http://jcp.org/en/jsr/detail?id=56
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/whatsnew-8.html
http://docs.oracle.com/javase/8/docs/technotes/tools/index.html

Related publications

JENV V8.1A 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
ar

ch
 2

01
7

 S
ta

n
d

13
:0

8.
56

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

JE
N

V
\V

8
.1

A
\H

B
_e

n\
je

n
v.

lit

[21] Javadoc Technology
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html

[22] Doclet Overview
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html/

[23] Deprecation of APIs
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/deprecation/index.html

[24] The IANA - Internet Assigned Numbers Authority
http://www.iana.org/assignments/character-sets

[25] How to Write Doc Comments for the Javadoc Tool
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

[26] The Standard Doclet
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/standard-doclet.html

[27] AppletViewer Tags
http://docs.oracle.com/javase/8/docs/technotes/tools/appletviewertags.html

[28] Java™ Archive (JAR) Files
http://docs.oracle.com/javase/8/docs/technotes/guides/jar/index.html

[29] Connection and Invocation Details
http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/conninv.html

[30] Supported Encodings
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

[31] Java™ Cryptography Architecture (JCA) Reference Guide
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

[32] Default Policy Implementation and Policy File Syntax
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

[33] Permissions in the Java™ Development Kit (JDK)
http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html

[34] Java™ Security Overview
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html

[35] Java™ SE Platform Security Architecture
http://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html

http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/deprecation/index.html
http://www.iana.org/assignments/character-sets
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/standard-doclet.html
http://docs.oracle.com/javase/8/docs/technotes/tools/appletviewertags.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jar/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/conninv.html
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html

Related publications

226 JENV V8.1A

[36] Java™ PKI Programmer's Guide
http://docs.oracle.com/javase/7/docs/technotes/guides/security/certpath/CertPathProgGuide.html

[37] Java™ IDL (CORBA)
http://docs.oracle.com/javase/8/docs/technotes/guides/idl/index.html

[38] Java IDL: IDL to Java Language Mapping
http://docs.oracle.com/javase/8/docs/technotes/guides/idl/mapping/jidlMapping.html

[39] JSR-000200 Network Transfer Format for Java™ Archives
http://jcp.org/aboutJava/communityprocess/final/jsr200/index.html

[40] The Java™ Secure Socket Extension (JSSE) Reference Guide
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

[41] Monitoring and Management for the Java™ Platform
http://docs.oracle.com/javase/8/docs/technotes/guides/management/index.html

[42] Java Architecture for XML Binding (JAXB)
http://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxb/index.html

[43] Java™ Architecture for XML Binding
JAXB RI Vendor Extensions
http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/jaxb/vendor.html

[44] Collections Framework Enhancements
http://docs.oracle.com/javase/8/docs/technotes/guides/collections/changes8.html

[45] Internationalization Support
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/index.html

[46] Enhancements in Java I/O
http://docs.oracle.com/javase/8/docs/technotes/guides/io/enhancements.html

[47] Enhancements in Packages java.lang.* and java.util.*
http://docs.oracle.com/javase/8/docs/technotes/guides/lang/enhancements.html#jdk8

[48] JDK 8 Adoption Guide
http://www.oracle.com/technetwork/java/javase/jdk8-adoption-guide-2157601.html

[49] Compatibility Guide for JDK 8
http://www.http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html

http://docs.oracle.com/javase/7/docs/technotes/guides/security/certpath/CertPathProgGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/idl/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/idl/mapping/jidlMapping.html
http://jcp.org/aboutJava/communityprocess/final/jsr200/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxb/index.html
http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/jaxb/vendor.html
http://docs.oracle.com/javase/8/docs/technotes/guides/collections/changes8.html
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/io/enhancements.html
http://docs.oracle.com/javase/8/docs/technotes/guides/lang/enhancements.html#jdk8
http://www.oracle.com/technetwork/java/javase/jdk8-adoption-guide-2157601.html
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html

Related publications

JENV V8.1A 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
ar

ch
 2

01
7

 S
ta

n
d

13
:0

8.
56

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

JE
N

V
\V

8
.1

A
\H

B
_e

n\
je

n
v.

lit

Further literature

[50] Erich Gamma
Richard Helm

Ralph E. Johnson

John Vlissides

Design Pattern
Addison Wesley 1994

[51] Technical Standard
X/Open System Interface (XSI) Specification
System Interfaces and Headers, Issue 4, Version 2

Related publications

228 JENV V8.1A

JENV V8.1A 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
17

S

ta
nd

 1
3:

08
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

JE
N

V
\V

8.
1A

\H
B

_
en

\je
nv

.s
ix

Index

/BS2/(SYSDTA) 105
/BS2/(SYSLST) 105
/BS2/(SYSOUT) 105

A
absolute path name 29
access conflicts 32
access method 30, 31
access types 33
ASCII

conversion to EBCDIC 17
strings in C code 114
strings in the C runtime system 114

B
block structure 27
BS2000

files 27
invoking the VM 101
JNI 107

BS2000 files
DVS/DMS 27
JRIO 27

C
C/C++-applications

linking 122
runtime adapter 122

canonical path name 29
catalog ID 28
Catid 28
char 112

code set 17, 217
OSD_EBCDIC_DF03_IRV 18
OSD_EBCDIC_DF04_1 18
OSD_EBCDIC_DF04_15 18

com.fsc.java.io.LocalizedOutputStream 19
com.fujitsu.ts.java.io.LocalizedInputStream 19
com.fujitsu.ts.java.io.LocalizedOutputStream 19
command

java 215
mk_shobj 212
native2ascii 217
pr_shobj 214
START-PROGRAM 102

conflicts, access 32
constants, JCI 145
COPY element

JCI-CONST 145
JCI-METHODARGS 147
JCI-METHODRES 149
JCI-TYPEDEFS 146
JCI-VMOPT 147

COPY elements, JCI 145
COPY library, JCI 137

Index

230 JENV V8.1A

D
data type

char 112
double 109, 141
float 109, 141
floating point numbers 109, 141
int64_t 109
jchar 112
jdouble 109, 141
jfloat 109, 141
jstring 112
long 109
longlong 109
string 112
unsigned short 112
whole numbers 109

deadlock 32
DELETE 105
descriptive file

creating 212
outputting 214

DISPLAY 102
DMS 27
double 109, 141
DVS 27

E
EAM file 28
EBCDIC

code sets 17
conversion from ASCII 17

environment variable
DISPLAY 102
HOME 102
JAVA_HOME 15, 101, 102
JENV_SYSHSI 16
JENV_VMTYPE 16
LD_LIBRARY_PATH 16
PATH 106
PROGRAM_ENVIRONMENT 102
PWD 102

exception 32, 144

F
file permission 35
float 109, 141
floating point number 109, 141

in C code 110
in C runtime system 111

function arguments, JCI 147
function result, JCI 149

G
Green Threads 122

H
HOME 102

I
INITIALIZE 101
InputStreamReader 19
internationalization 217
invocation API 121

for COBOL 137
invoking the VM 106
migration 121

ISO8859-1 112

J
JAR archive 26
Java

data types in C 108
linking COBOL applications 139
linking of C/C++-applications 122
native interfaces 107
using shared objects 121

java 215
controlling the Java heap memory 216
nonstandard options 215
selecting the HotSpot VM type 215
selecting the HSI variant 215

Java handle 142
JAVA_HOME 15, 101, 102
java.io.PrintStream 21
java.lang.System 23
java.util.properties 20
jchar 112

Index

JENV V8.1A 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
17

. M
a

rc
h

20
17

S

ta
nd

 1
3:

08
.5

6
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

JE
N

V
\V

8.
1A

\H
B

_
en

\je
nv

.s
ix

JCI
constants, definition 145
function arguments 147
function result 149
invocation API 137
options, transfer 147
transfer of options 147
type definitions 146

JCI function
JCI_CallMethod 162
JCI_CallNonvirtualMethod 164
JCI_CallStaticMethod 159
JCI_CreateJavaVM 151
JCI_DeleteLocalRef 165
JCI_DestroyJavaVM 153
JCI_ExceptionCheck 199
JCI_ExceptionClear 200
JCI_ExceptionDescribe 200
JCI_ExceptionOccurred 199
JCI_FindClass 155
JCI_GetArray 194
JCI_GetArrayLength 185
JCI_GetErrorInformation 202
JCI_GetField 178
JCI_GetFieldID 177
JCI_GetMethodID 161
JCI_GetObjectArrayElement 189
JCI_GetObjectClass 170
JCI_GetStaticField 174
JCI_GetStaticFieldID 173
JCI_GetStaticMethodID 156
JCI_GetString 182
JCI_GetStringLength 181
JCI_GetVersion 202
JCI_IsInstanceOf 171
JCI_IsSameObject 172
JCI_NewArray 193
JCI_NewLocalRef 166
JCI_NewObject 167
JCI_NewObjectArray 186
JCI_NewString 180
JCI_SetArray 197

JCI_SetField 179
JCI_SetObjectArrayElement 191
JCI_SetStaticField 176

JCI-CONST, COPY element 145
JCI-COPY elements 145
JCI-COPY library 137
JCI-METHODARGS, COPY element 147
JCI-METHODRES, COPY element 149
JCI-TYPEDEFS, COPY element 146
JCI-VMOPT, COPY element 147
jdouble 109, 141
JENV_SYSHSI 16
JENV_VMTYPE 16
jfloat 109, 141
jlong 109
JNI 107

API invocation 121
JRIO 27
jstring 112

L
LD_LIBRARY_PATH 16, 116, 118, 121
LMS 27
logical system files 28
long 109
longlong 109

M
migration

invocation API 121
mk_shobj 212

N
native methods

dynamic loading 115
shared libraries 116, 117

native2ascii 217
normalized path name 28
numbers

floating point 109, 141
whole 109

Index

232 JENV V8.1A

O
options, JCI 147
OSD_EBCDIC_DF03_IRV 18
OSD_EBCDIC_DF04_1 18, 217
OSD_EBCDIC_DF04_15 18
output descriptive file 214
OutputStreamWriter 19

P
PATH 106
permission

file permission 35
SystemInfo permission 36

policy file 20
un.security.policy.utf8 20
UTF-8 encoded 20

POSIX 27
POSIX file names 117
pr_shobj 214
PrintStream 21
procedure

DELETE 105
INITIALIZE 101
START 102

PROGRAM_ENVIRONMENT 102
property files 20

JAR archives 26
PWD 102

R
Readme file 12
record structure 27
Runtime adapter 122

debug variant 122
optimized variant 122

S
security 34

deadlock 32
Security Manager 34

Shared libraries
BS2000 117
Unix operating systems 116

Shared objects 116, 117
compiling source 119
creating 119
creating an LMS library 120
linking a main module 120
using from Java 121

shared update processing 32
standard input/output files

redirection 105
standard stream

java.lang.System 23
standard streams 23
START 102
START-PROGRAM 102
string 112
synchronized processing 32
SYSDTA 105
SYSFILE environment 28
SYSLST 105
SYSPOSIX 102

deleting 105
setting 101

SystemInfo permission 36

T
transfer of options, JCI 147
type definitions, JCI 146

U
UFS 27
un.security.policy.utf8 20
user ID 28
Userid 28

V
VM

invoking in BS2000 101
invoking in the invocation API 106
setting the environment variables 101
starting 102

	Contents
	Introduction
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manual
	Notational conventions
	Description of commands
	Names of files, commands and programs
	Description of execution sequences

	Further information and sources
	License regulations

	Environment variables
	Conversion from ASCII to EBCDIC
	Code sets
	Localized streams
	Property files
	Policy files
	PrintStream
	Standard streams
	JAR archives
	Program arguments

	The Java package JRIO
	Concepts
	File systems
	File names in the DMS file system
	File names in the UFS file system

	File types
	Access methods
	Access types
	Shared update processing
	Options and restrictions relating to access types in DMS
	Drivers
	Security

	API overview
	Record
	Constructors
	General methods
	Methods for extracting the data of a record
	Methods for extracting the data fields of a record
	Methods for filling a record with data
	Methods for filling data fields of a record

	RecordFile
	Basic structure of a file name
	Constructors
	Fields
	General methods
	Methods for analyzing and transforming path names
	Methods for inquiring file and directory attributes
	Methods for modifying file and directory attributes
	Methods for generating files and directories
	Methods for deleting and renaming files and directories
	Methods for listing directories

	AccessParameter
	General parameter methods
	Parameters for SAM in DMS
	Parameter method for ISAM in DMS
	Parameter methods for UPAM in DMS

	Sequential data processing
	InputRecordStream
	FileInputRecordStream
	ArrayInputRecordStream
	OutputRecordStream
	FileOutputRecordStream
	ArrayOutputRecordStream

	RandomAccessRecordFile
	Opening and closing a file
	Methods for reading records
	Methods for writing records
	Methods for positioning and changing size

	Indexed-sequential data processing
	KeyDescriptor
	KeyValue
	KeyedAccessRecordFile

	Implementation details
	File-system-specific definitions
	Access-method-specific definitions
	Default values of the DMS access methods

	Restrictions
	Examples
	Sequential data processing
	Random data processing
	Indexed-sequential data processing

	Invoking the VM from the BS2000 command interface
	INITIALIZE procedure
	START procedure
	DELETE procedure
	Invoking the VM using the invocation API
	Special considerations

	JNI under BS2000
	The different variants of JNI
	Java data types in C
	Whole numbers
	Floating point numbers
	Strings

	Dynamic loading of native methods
	Shared libraries in Unix systems
	Shared libraries in BS2000
	Creation of shared objects
	Use of shared objects from Java

	Invocation API
	Compiling the C and C++ sources
	Linking C and C++ applications with Java and Green Threads

	Examples
	Implementation of a native method in C
	Implementation of a native method in C++
	Use of Java from a C application
	Use of Java from a C++ application

	JCI - Invocation API for COBOL
	Compiling the COBOL source codes
	Assigning the JCI-COPY library
	Required options/directives

	Linking COBOL applications with Java
	Processing COBOL applications with Java
	Characters and strings
	Floating point numbers
	Object references
	Java handle
	Return code in special register RETURN-CODE
	Arguments and event values of Java methods
	Exceptions
	COPY elements
	JCI-CONST - Definition of constants
	JCI-TYPEDEFS - Type definitions
	JCI-VMOPT - Structure for transferring options
	JCI-METHODARGS - Function arguments
	JCI-METHODRES - Function result

	Functions
	Starting and terminating the Java VM
	JCI_CreateJavaVM
	JCI_DestroyJavaVM

	Classes and methods
	JCI_FindClass
	JCI_GetStaticMethodID
	JCI_CallStaticMethod
	JCI_GetMethodID
	JCI_CallMethod
	JCI_CallNonvirtualMethod

	Object references
	JCI_DeleteLocalRef
	JCI_NewLocalRef

	Objects
	JCI_NewObject
	JCI_GetObjectClass
	JCI_IsInstanceOf
	JCI_IsSameObject

	Fields
	JCI_GetStaticFieldID
	JCI_GetStaticField
	JCI_SetStaticField
	JCI_GetFieldID
	JCI_GetField
	JCI_SetField

	Strings
	JCI_NewString
	JCI_GetStringLength
	JCI_GetString

	Arrays
	JCI_GetArrayLength
	JCI_NewObjectArray
	JCI_GetObjectArrayElement
	JCI_SetObjectArrayElement
	JCI_NewArray
	JCI_GetArray
	JCI_SetArray

	Exceptions
	JCI_ExceptionCheck
	JCI_ExceptionOccurred
	JCI_ExceptionDescribe
	JCI_ExceptionClear

	Other functions
	JCI_GetVersion
	JCI_GetErrorInformation

	Examples
	Java class
	Compiling the Java code
	COBOL program
	Compiling the COBOL program in POSIX
	Linking the COBOL program in POSIX
	Processing of the COBOL program in POSIX
	Compiling the COBOL program under the BS2000 command line interface
	Linking the COBOL program under the BS2000 command line interface
	Processing of the COBOL program under the BS2000 command line interface

	Commands for BS2000
	mk_shobj
	pr_shobj
	java
	native2ascii
	jconsole
	jdb
	keytool
	xjc

	Appendix: Compatibility with earlier versions and migration
	Binary compatibility
	Source compatibility
	Incompatibilities
	Migration

	Related publications
	Texts for Java
	Further literature

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

